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CHAPTER OVERVIEW

1: Foundations
In this chapter we review several mathematical topics that form the foundation of probability and mathematical statistics. These
include the algebra of sets and functions, general relations with special emphasis on equivalence relations and partial orders,
counting measure, and some basic combinatorial structures such as permuations and combinations. We also discuss some advanced
topics from topology and measure theory. You may wish to review the topics in this chapter as the need arises.
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1.12: Special Set Structures
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1.1: Sets
      

Set theory is the foundation of probability and statistics, as it is for almost every branch of mathematics.

Sets and subsets
In this text, sets and their elements are primitive, self-evident concepts, an approach that is sometimes referred to as naive set theory.

A set is simply a collection of objects; the objects are referred to as elements of the set. The statement that  is an element of set  is written ,
and the negation that  is not an element of  is written as . By definition, a set is completely determined by its elements; thus sets  and 
are equal if they have the same elements:

Our next definition is the subset relation, another very basic concept.

If  and  are sets then  is a subset of  if every element of  is also an element of :

Concepts in set theory are often illustrated with small, schematic sketches known as Venn diagrams, named for John Venn. The Venn diagram in the
picture below illustrates the subset relation.

Figure : 

As noted earlier, membership is a primitive, undefined concept in naive set theory. However, the following construction, known as Russell's paradox,
after the mathematician and philosopher Bertrand Russell, shows that we cannot be too cavalier in the construction of sets.

Let  be the set of all sets  such that . Then  if and only if .

Proof

The contradiction follows from the definition of : If , then by definition, . If , then by definition, . The net result, of
course, is that  is not a well-defined set.

Usually, the sets under discussion in a particular context are all subsets of a well-defined, specified set , often called a universal set. The use of a
universal set prevents the type of problem that arises in Russell's paradox. That is, if  is a given set and  is a predicate on  (that is, a valid
mathematical statement that is either true or false for each ), then  is a valid subset of . Defining a set in this way is known as
predicate form. The other basic way to define a set is simply be listing its elements; this method is known as list form.

In contrast to a universal set, the empty set, denoted , is the set with no elements.

 for every set .

Proof

 means that . Since the premise is false, the implication is true.

One step up from the empty set is a set with just one element. Such a set is called a singleton set. The subset relation is a partial order on the collection
of subsets of .

Suppose that ,  and  are subsets of a set . Then

1.  (the reflexive property).
2. If  and  then  (the anti-symmetric property).
3. If  and  then  (the transitive property).

Here are a couple of variations on the subset relation.

Suppose that  and  are sets.

1. If  and , then  is a strict subset of  and we sometimes write .
2. If , then  is called a proper subset of .

x S x ∈ S

x S x ∉ S A B

A=B if and only if x ∈ A⟺ x ∈ B (1.1.1)

A B A B A B

A⊆B if and only if x ∈ A ⟹ x ∈ B (1.1.2)

1.1.1 A ⊆B

R A A ∉ A R ∈ R R ∉ R

R R ∈ R R ∉ R R ∉ R R ∈ R

R

S

S p(x) S

x ∈ S {x ∈ S : p(x)} S

∅

∅ ⊆A A

∅ ⊆A x ∈ ∅ ⟹ x ∈ A

S

A B C S

A⊆A

A⊆B B⊆A A=B

A⊆B B⊆C A⊆C

A B

A⊆B A≠B A B A⊂B

∅ ⊂A⊂B A B

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10116?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/01%3A_Foundations/1.01%3A_Sets


1.1.2 https://stats.libretexts.org/@go/page/10116

The collection of all subsets of a given set frequently plays an important role, particularly when the given set is the universal set.

If  is a set, then the set of all subsets of  is known as the power set of  and is denoted .

Special Sets

The following special sets are used throughout this text. Defining them will also give us practice using list and predicate form.

Special Sets

1.  denotes the set of real numbers and is the universal set for the other subsets in this list.
2.  is the set of natural numbers
3.  is the set of positive integers
4.  is the set of integers
5.  is the set of rational numbers
6.  is the set of algebraic numbers.

Note that . We will also occasionally need the set of complex numbers  where  is the imaginary
unit. The following special rational numbers turn out to be useful for various constructions.

For , a rational number of the form  where  is odd is a dyadic rational (or binary rational) of rank .

1. For , the set of dyadic rationals of rank  or less is .
2. The set of all dyadic rationals is .

Note that  and  for , and of course, . We use the usual notation for intervals of real numbers, but again the definitions
provide practice with predicate notation.

Suppose that  with .

1. . This interval is closed.
2. . This interval is open.
3. . This interval is closed-open.
4. . This interval is open-closed.

The terms open and closed are actually topological concepts.

You may recall that  is rational if and only if the decimal expansion of  either terminates or forms a repeating block. The binary rationals have
simple binary expansions (that is, expansions in the base 2 number system).

A number  is a binary rational of rank  if and only if the binary expansion of  is finite, with  in position  (after the separator).

Proof

It suffices to consider . The result is very simple so we just give the first few cases.

1. The number with rank 1 is  with binary expansion 0.1
2. The numbers with rank 2 are  with expansion 0.01 and  with expansion 0.11
3. The numbers with rank 3 are  with expansion 0.001,  with expansion 0.011,  with expansion 0.101, and  with expansion 0.111.

Set Operations

We are now ready to review the basic operations of set theory. For the following definitions, suppose that  and  are subsets of a universal set, which
we will denote by .

The union of  and  is the set obtained by combining the elements of  and .

The intersection of  and  is the set of elements common to both  and :

If  then  and  are disjoint.

So  and  are disjoint if the two sets have no elements in common.

The set difference of  and  is the set of elements that are in  but not in :

S S S P(S)

R

N = {0, 1, 2, …}

= {1, 2, 3, …}N

+

Z = {… , −2, −1, 0, 1, 2, …}

Q= {m/n : m ∈ Z and n ∈ }N

+

A = {x ∈ R : p(x) = 0 for some polynomial p with integer coefficients}

⊂N ⊂Z ⊂Q⊂A ⊂RN

+

C = {x+ iy : x, y ∈ R} i

n ∈ N j/2

n

j∈ Z n

n ∈ N n = {j/ : j∈ Z}D

n

2

n

D = {j/ : j∈ Z and n ∈ N}2

n

=ZD

0

⊂D

n

D

n+1

n ∈ N D ⊂Q

a, b ∈ R a < b

[a, b] = {x ∈ R : a ≤ x ≤ b}

(a, b) = {x ∈ R : a < x < b}

[a, b) = {x ∈ R : a ≤ x < b}

(a, b] = {x ∈ R : a < x ≤ b}

x ∈ R x

x ∈ R n ∈ N

+

x 1 n

x ∈ (0, 1)

1/2

1/4 3/4

1/8 3/8 5/8 7/8

A B

S

A B A B

A∪B = {x ∈ S : x ∈ A or x ∈ B} (1.1.3)

A B A B

A∩B = {x ∈ S : x ∈ A and x ∈ B} (1.1.4)

A∩B = ∅ A B

A B

B A B A

B∖A = {x ∈ S : x ∈ B and x ∉ A} (1.1.5)
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Sometimes (particularly in older works and particularly when ), the notation  is used instead of . When ,  is known as
proper set difference.

The complement of  is the set of elements that are not in :

Note that union, intersection, and difference are binary set operations, while complement is a unary set operation.

In the Venn diagram app, select each of the following and note the shaded area in the diagram.

1. 
2. 
3. 
4. 
5. 
6. 

Basic Rules

In the following theorems, , , and  are subsets of a universal set . The proofs are straightforward, and just use the definitions and basic logic. Try
the proofs yourself before reading the ones in the text.

.

The identity laws:

1. 
2. 

So the empty set acts as an identity relative to the union operation, and the universal set acts as an identiy relative to the intersection operation.

The idempotent laws:

1. 
2. 

The complement laws:

1. 
2. 

The double complement law: 

The commutative laws:

1. 
2. 

Proof

These results follows from the commutativity of the or and and logical operators.

The associative laws:

1. 
2. 

Proof

These results follow from the associativity of the or and and logical operators.

Thus, we can write  without ambiguity. Note that  is an element of this set if and only if  is an element of at least one of the three given
sets. Similarly, we can write  without ambiguity. Note that  is an element of this set if and only if  is an element of all three of the given
sets.

The distributive laws:

1. 
2. 

A⊆B B−A B∖A A⊆B B−A

A A

= {x ∈ S : x ∉ A}A

c

(1.1.6)

A

B

A

c

B

c

A∪B

A∩B

A B C S

A∩B⊆A⊆A∪B

A∪∅ =A

A∩S =A

A∪A=A

A∩A=A

A∪ = SA

c

A∩ = ∅A

c

( =AA

c

)

c

A∪B=B∪A

A∩B=B∩A

A∪ (B∪C) = (A∪B)∪C

A∩ (B∩C) = (A∩B)∩C

A∪B∪C x x

A∩B∩C x x

A∩ (B∪C) = (A∩B)∪ (A∩C)

A∪ (B∩C) = (A∪B)∩ (A∪C)
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Proof
1.  if and only if  and  if and only if  and either  or  if and only if  and , or, 

 and  if and only if  or  if and only if .
2. The proof is exactly the same as (a), but with or and and interchanged.

So intersection distributes over union, and union distributes over intersection. It's interesting to compare the distributive properties of set theory with
those of the real number system. If , then , so multiplication distributes over addition, but it is not true that 

, so addition does not distribute over multiplication. The following results are particularly important in probability theory.

DeMorgan's laws (named after Agustus DeMorgan):

1. 
2. .

Proof
1.  if and only if  if and only if  and  if and only  and  if and only if 
2.  if and only if  if and only if  or  if and only  or  if and only if 

The following result explores the connections between the subset relation and the set operations.

The following statements are equivalent:

1. 
2. 
3. 
4. 
5. 

Proof
1. Recall that  means that .
2.  means that . This is the contrapositive of (a) and hence is equivalent to (a).
3. If  then clearly . Conversely suppose . If  then  so . Hence .
4. If  then clearly . Conversely suppose . If  then  and so . Hence .
5. Suppose . If  then  and so by definition, . If  then again by definition, . Thus .

Conversely suppose that . If  then  so . Thus .

In addition to the special sets defined earlier, we also have the following:

More special sets

1.  is the set of irrational numbers
2.  is the set of transcendental numbers

Since  it follows that , that is, every transcendental number is also irrational.

Set difference can be expressed in terms of complement and intersection. All of the other set operations (complement, union, and intersection) can be
expressed in terms of difference.

Results for set difference:

1. 
2. 
3. 
4. 

Proof
1. This is clear from the definition: .
2. This follows from (a) with .
3. Using (a), DeMorgan's law, and the distributive law, the right side is

4. Using (a), (b), DeMorgan's law, and the distributive law, the right side is

So in principle, we could do all of set theory using the one operation of set difference. But as (c) and (d) suggest, the results would be hideous.

x ∈ A∩ (B∪C) x ∈ A x ∈ B∪C x ∈ A x ∈ B x ∈ C x ∈ A x ∈ B

x ∈ A x ∈ C x ∈ A∩B x ∈ A∩C x ∈ (A∩B)∪ (A∩C

x, y, z ∈ R x(y+z) = (xy)+(xz)

x+(yz) = (x+y)(x+z)

(A∪B = ∩)

c

A

c

B

c

(A∩B = ∪)

c

A

c

B

c

x ∈ (A∪B)

c

x ∉ A∪B x ∉ A x ∉ B x ∈ A

c

x ∈ B

c

x ∈ ∩A

c

B

c

x ∈ (A∩B)

c

x ∉ A∩B x ∉ A x ∉ B x ∈ A

c

x ∈ B

c

x ∈ ∪A

c

B

c

A⊆B

⊆B

c

A

c

A∪B=B

A∩B=A

A ∖B= ∅

A⊆B x ∈ A ⟹ x ∈ B

⊆B

c

A

c

x ∉ B ⟹ x ∉ A

A⊆B A∪B=B A∪B=B x ∈ A x ∈ A∪B x ∈ B A⊆B

A⊆B A∩B=A A∩B=A x ∈ A x ∈ A∩B x ∈ B A⊆B

A⊆B x ∈ A x ∈ B x ∉ A ∖B x ∉ A x ∉ A ∖B A ∖B= ∅

A ∖B= ∅ x ∈ A x ∉ A ∖B x ∈ B A⊆B

R ∖Q

R ∖A

Q⊂A ⊂R R ∖A ⊂R ∖Q

B∖A=B∩A

c

= S ∖AA

c

A∩B=A ∖ (A ∖B)

A∪B= S ∖ {(S ∖A) ∖ [(S ∖A) ∖ (S ∖B)]}

B∖A=B∩ = {x ∈ S : x ∈ B and x ∉ A}A

c

B= S

A∩ (A∩ =A∩ ( ∪B) = (A∩ )∪ (A∩B) = ∅∪ (A∩B) =A∩BB

c

)

c

A

c

A

c

(1.1.7)

=A∪ ( ∩B) = (A∪ )∩ (A∪B) = S∩ (A∪B) =A∪B[ ∩ ( ∩B ]A

c

A

c

)

c

c

A

c

A

c

(1.1.8)
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.

Proof

A direct proof is simple, but for practice let's give a proof using set algebra, in particular, DeMorgan's law, and the distributive law:

The set in the previous result is called the symmetric difference of  and , and is sometimes denoted . The elements of this set belong to one
but not both of the given sets. Thus, the symmetric difference corresponds to exclusive or in the same way that union corresponds to inclusive or. That
is,  if and only if  or  (or both);  if and only if  or , but not both. On the other hand, the complement of
the symmetric difference consists of the elements that belong to both or neither of the given sets:

Proof

Again, a direct proof is simple, but let's give an algebraic proof for practice:

There are 16 different (in general) sets that can be constructed from two given events  and .

Proof

 is the union of 4 pairwise disjoint sets: , , , and . If  and  are in “general position”, these 4 sets are distinct.
Every set that can be constructed from  and  is a union of some (perhaps none, perhaps all) of these 4 sets. There are  sub-collections of
the 4 sets.

Open the Venn diagram app. This app lists the 16 sets that can be constructed from given sets  and  using the set operations.

1. Select each of the four subsets in the proof of the last exercise: , , , and . Note that these are disjoint and their
union is .

2. Select each of the other 12 sets and show how each is a union of some of the sets in (a).

General Operations
The operations of union and intersection can easily be extended to a finite or even an infinite collection of sets.

Definitions

Suppose that  is a nonempty collection of subsets of a universal set . In some cases, the subsets in  may be naturally indexed by a nonempty index
set , so that . (In a technical sense, any collection of subsets can be indexed.)

The union of the collection of sets  is the set obtained by combining the elements of the sets in :

If , so that the collection of sets is indexed, then we use the more natural notation:

The intersection of the collection of sets  is the set of elements common to all of the sets in :

If , so that the collection of sets is indexed, then we use the more natural notation:

Often the index set is an “integer interval” of . In such cases, an even more natural notation is to use the upper and lower limits of the index set. For
example, if the collection is  then we would write  for the union and  for the intersection. Similarly, if the collection is 

 for some , we would write  for the union and  for the intersection.

(A∪B) ∖ (A∩B) = (A ∖B) ∪ (B∖A)

(A∪B) ∖ (A∩B) = (A∪B) ∩ (A∩B = (A∪B) ∩ ( ∪ ))

c

A

c

B

c

= (A∩ ) ∪ (B∩ ) ∪ (A∩ ) ∪ (B∩ )A

c

A

c

B

c

B

c

= ∅ ∪ (B∖A) ∪ (A ∖B) ∪ ∅ = (A ∖B) ∪ (B∖A)

(1.1.9)

(1.1.10)

(1.1.11)

A B A△ B

x ∈ A∪B x ∈ A x ∈ B x ∈ A△ B x ∈ A x ∈ B

(A△ B = (A∩B) ∪ ( ∩ ) = ( ∪B) ∩ ( ∪A))

c

A

c

B

c

A

c

B

c

(A△ B)

c

= [(A∪B) ∩ (A∩B ])

c

c

= (A∪B ∪ (A∩B) = ( ∩ ) ∪ (A∩B))

c

A

c

B

c

= ( ∪A) ∩ ( ∪B) ∩ ( ∪A) ∩ ( ∪B)A

c

A

c

B

c

B

c

= S∩ ( ∪B) ∩ ( ∪A) ∩S = ( ∪B) ∩ ( ∪A)A

c

B

c

A

c

B

c

(1.1.12)

(1.1.13)

(1.1.14)

(1.1.15)

A B

S A∩B A∩B

c

∩BA

c

∩A

c

B

c

A B

A B = 162

4

A B

A∩B A∩B

c

∩BA

c

∩A

c

B

c

S

A S A

I A = { : i ∈ I}A

i

A A

⋃A = {x ∈ S : x ∈ A for some A ∈A } (1.1.16)

A = { : i ∈ I}A

i

= {x ∈ S : x ∈  for some i ∈ I}⋃

i∈I

A

i

A

i

(1.1.17)

A A

⋂A = {x ∈ S : x ∈ A for all A ∈A } (1.1.18)

A = { : i ∈ I}A

i

= {x ∈ S : x ∈  for all i ∈ I}⋂

i∈I

A

i

A

i

(1.1.19)

N

{ : i ∈ }A

i

N

+

⋃

∞

i=1

A

i

⋂

∞

i=1

A

i

{ : i ∈ {1, 2, … ,n}}A

i

n ∈ N

+

⋃

n

i=1

A

i

⋂

n

i=1

A

i
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A collection of sets  is pairwise disjoint if the intersection of any two sets in the collection is empty:  for every  with 
.

A collection of sets  is said to partition a set  if the collection  is pairwise disjoint and .

Partitions are intimately related to equivalence relations. As an example, for , the set

is a partition of  into intervals of equal length . Note that the endpoints are the dyadic rationals of rank  or less, and that  can be obtained
from  by dividing each interval into two equal parts. This sequence of partitions is one of the reasons that the dyadic rationals are important.

Basic Rules

In the following problems,  is a collection of subsets of a universal set , indexed by a nonempty set , and  is a subset of .

The general distributive laws:

1. 
2. 

Restate the laws in the notation where the collection  is not indexed.

Proof
1.  is an element of the set on the left or the right of the equation if and only if  and  for some .
2.  is an element of the set on the left or the right of the equation if and only if  or  for every .

, 

The general De Morgan's laws:

1. 
2. 

Restate the laws in the notation where the collection  is not indexed.

Proof

1.  if and only if  if and only if  for every  if and only if  for every  if and only if 
.

2.  if and only if  if and only if  for some  if and only if  for some  if and only if 
.

, 

Suppose that the collection  partitions . For any subset , the collection  partitions .

Proof

Suppose  where  is an index set. If  with  then , so the
collection  is disjoint. Moreover, by the distributive law,

Figure : A partition of  induces a partition of 

Suppose that  is a collection of subsets of a universal set 

1. 
2. 

Proof

A A∩B = ∅ A, B ∈A

A ≠ B

A B A ⋃A = B

n ∈ N

={[ , ) : j∈ Z}D

n

j

2

n

j+1

2

n

(1.1.20)

R 1/2

n

n D

n+1

D

n

A = { : i ∈ I}A

i

S I B S

( )∩B = ( ∩B)⋃

i∈I

A

i

⋃

i∈I

A

i

( )∪B = ( ∪B)⋂

i∈I

A

i

⋂

i∈I

A

i

A

x x ∈ B x ∈ A

i

i ∈ I

x x ∈ B x ∈ A

i

i ∈ I

(⋃A ) ∩B =⋃{A∩B : A ∈A } (⋂A ) ∪B =⋂{A∪B : A ∈A }

=( )⋃

i∈I

A

i

c

⋂

i∈I

A

c

i

=( )⋂

i∈I

A

i

c

⋃

i∈I

A

c

i

A

x ∈ ( )⋃

i∈I

A

i

c

x ∉⋃

i∈I

A

i

x ∉ A

i

i ∈ I x ∈ A

c

i

i ∈ I

x ∈⋂

i∈I

A

c

i

x ∈ ( )⋂

i∈I

A

i

c

x ∉⋂

i∈I

A

i

x ∉ A

i

i ∈ I x ∈ A

c

i

i ∈ I

x ∈⋃

i∈I

A

c

i

=⋂{ : A ∈A }(⋃A )

c

A

c

=⋃{ : A ∈A }(⋂A )

c

A

c

A S B {A∩B : A ∈A } B

A = { : i ∈ I}A

i

I i, j∈ I i ≠ j ( ∩B) ∩ ( ∩B) = ( ∩ ) ∩B = ∅ ∩B = ∅A

i

A

j

A

i

A

j

{ ∩B : i ∈ I}A

i

( ∩B) =( )∩B = S∩B = B⋃

i∈I

A

i

⋃

i∈I

A

i

(1.1.21)

1.1.2 S B

{ : i ∈ }A

i

N

+

S

= {x ∈ S : x ∈  for infinitely many k ∈ }⋂

∞

n=1

⋃

∞

k=n

A

k

A

k

N

+

= {x ∈ S : x ∈  for all but finitely many k ∈ }⋃

∞

n=1

⋂

∞

k=n

A

k

A

k

N

+
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1. Note that  if and only if for every  there exists  such that . In turn, this occurs if and only if 
for infinitely many .

2. Note that  if and only if there exists  such that  for every . In turn, this occurs if and only if 
for all but finitely many .

The sets in the previous result turn out to be important in the study of probability.

Product sets

Definitions

Product sets are sets of sequences. The defining property of a sequence, of course, is that order as well as membership is important.

Let us start with ordered pairs. In this case, the defining property is that  if and only if  and . Interestingly, the structure of an
ordered pair can be defined just using set theory. The construction in the result below is due to Kazimierz Kuratowski

Define . This definition captures the defining property of an ordered pair.

Proof

Suppose that  so that . In the case that  note that . Thus we must have 
 and hence , and in particular,  and . In the case that , we must have  and hence .

But we cannot have  because then  and hence , which would force , a contradiction. Thus we must
have . Since  and  we must have . The converse is trivial: if  and  then  and 
so .

Of course, it's important not to confuse the ordered pair  with the open interval , since the same notation is used for both. Usually it's clear
form context which type of object is referred to. For ordered triples, the defining property is  if and only if , , and .
Ordered triples can be defined in terms of ordered pairs, which via the last result, uses only set theory.

Define . This definition captures the defining property of an ordered triple.

Proof

Suppose . Then . Hence by the definition of an ordered pair, we must have  and .
Using the definition again we have  and . Conversely, if , , and , then  and hence 

. Thus .

All of this is just to show how complicated structures can be built from simpler ones, and ultimately from set theory. But enough of that! More
generally, two ordered sequences of the same size (finite or infinite) are the same if and only if their corresponding coordinates agree. Thus for ,
the definition for -tuples is  if and only if  for all . For infinite sequences, 

 if and only if  for all .

Suppose now that we have a sequence of  sets, , where . The Cartesian product of the sets is defined as follows:

Cartesian products are named for René Descartes. If  for each , then the Cartesian product set can be written compactly as , a Cartesian
power. In particular, recall that  denotes the set of real numbers so that  is -dimensional Euclidean space, named after Euclid, of course. The
elements of  are called bit strings of length . As the name suggests, we sometimes represent elements of this product set as strings rather than
sequences (that is, we omit the parentheses and commas). Since the coordinates just take two values, there is no risk of confusion.

Suppose that we have an infinite sequence of sets . The Cartesian product of the sets is defined by

When  for , the Cartesian product set is sometimes written as a Cartesian power as  or as . An explanation for the last notation, as
well as a much more general construction for products of sets, is given in the next section on functions. Also, notation similar to that of general union
and intersection is often used for Cartesian product, with  as the operator. So

Rules for Product Sets

We will now see how the set operations relate to the Cartesian product operation. Suppose that  and  are sets and that ,  and , 
. The sets in the theorems below are subsets of .

The most important rules that relate Cartesian product with union, intersection, and difference are the distributive rules:

x ∈⋂

∞

n=1

⋃

∞

k=n

A

k

n ∈ N

+

k ≥ n x ∈ A

k

x ∈ A

k

k ∈ N

+

x ∈⋃

∞

n=1

⋂

∞

k=n

A

k

n ∈ N

+

x ∈ A

k

k ≥ n x ∈ A

k

k ∈ N

+

(a, b) = (c, d) a = c b = d

(a, b) = {{a}, {a, b}}

(a, b) = (c, d) {{a}, {a, b}} = {{c}, {c, d}} a = b (a, b) = {{a}}

{c} = {c, d} = {a} c = d = a a = c b = d a ≠ b {c} = {a} c = a

{c, d} = {a} (c, d) = {{a}} {a, b} = {a} a = b

{c, d} = {a, b} c = a a ≠ b d = b a = c b = d {a} = {c} {a, b} = {c, d}

(a, b) = (c, d)

(a, b) (a, b)

(a, b, c) = (d, e, f) a = d b = e c = f

(a, b, c) = (a, (b, c))

(a, b, c) = (d, e, f) (a, (b, c)) = (d, (e, f)) a = d (b, c) = (e, f)

b = e c = f a = d b = e c = f (b, c) = (e, f)

(a, (b, c)) = (d, (e, f)) (a, b, c) = (d, e, f)

n ∈ N

+

n ( , , … , ) = ( , , … , )x

1

x

2

x

n

y

1

y

2

y

n

=x

i

y

i

i ∈ {1, 2, … ,n}

( , , …) = ( , , …)x

1

x

2

y

1

y

2

=x

i

y

i

i ∈ N

+

n ( , , … , )S

1

S

2

S

n

n ∈ N

+

× ×⋯ × = {( , , … , ) : ∈  for i ∈ {1, 2, … ,n}}S

1

S

2

S

n

x

1

x

2

x

n

x

i

S

i

(1.1.22)

= SS

i

i S

n

R R

n

n

{0, 1}

n

n

( , , …)S

1

S

2

× ×⋯ = {( , , …) : ∈  for each i ∈ {1, 2, …}}S

1

S

2

x

1

x

2

x

i

S

i

(1.1.23)

= SS

i

i ∈ N

+

S

∞

S

N

+

∏

= × ×⋯ × , = × ×⋯∏

i=1

n

S

i

S

1

S

2

S

n

∏

i=1

∞

S

i

S

1

S

2

(1.1.24)

S T A ⊆ S B ⊆ S C ⊆ T

D ⊆ T S×T
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Distributive rules for product sets

1. 
2. 
3. 
4. 
5. 
6. 

Proof
1.  if and only if  and  if and only if  and either  or  if and only if  and ,

or,  and  if and only if  or  if and only if .
2. Similar to (a), but with the roles of the coordinates reversed.
3.  if and only if  and  if and only if  and  and  if and only if  and 

 if and only if .
4. Similar to (c) but with the roles of the coordinates reversed.
5.  if and only if  and  if and only if  and  and  if and only if  and 

 if and only if .
6. Similar to (e) but with the roles of the coordinates reversed.

In general, the product of unions is larger than the corresponding union of products.

Proof

 if and only if  and  if and only if at least one of the following is true:  and , 
 and ,  and ,  and  if and only if 

So in particular it follows that . On the other hand, the product of intersections is the same as the
corresponding intersection of products.

Proof

 if and only if  and  if and only if  and  and  and  if and
only if  and  if and only if .

In general, the product of differences is smaller than the corresponding difference of products.

Proof

 if and only if  and  if and only if  and  and  and . On the other hand, 
 if and only if  and . The first

statement means that  and  and . The second statement is the negation of  and  and . The two statements both
hold if and only if  and  and  and .

So in particular it follows that ,

Projections and Cross Sections

In this discussion, suppose again that  and  are nonempty sets, and that .

Cross Sections

1. The cross section of  in the first coordinate at  is 
2. The cross section of  at in the second coordinate at  is

Note that  for  and  for .

Projections

1. The projection of  onto  is .
2. The projection of  onto  is .

A×(C ∪D) = (A×C) ∪ (A×D)

(A∪B) ×C = (A×C) ∪ (B×C)

A×(C ∩D) = (A×C) ∩ (A×D)

(A∩B) ×C = (A×C) ∩ (B×C)

A×(C ∖D) = (A×C) ∖ (A×D)

(A ∖B) ×C = (A×C) ∖ (B×C)

(x, y) ∈ A×(C ∪D) x ∈ A y ∈ C ∪D x ∈ A y ∈ C y ∈ D x ∈ A y ∈ C

x ∈ A y ∈ D (x, y) ∈ A×C (x, y) ∈ A×D (x, y) ∈ (A×C) ∪ (A×D)

(x, y) ∈ A×(C ∩D) x ∈ A y ∈ C ∩D x ∈ A y ∈ C y ∈ D (x, y) ∈ A×C

(x, y) ∈ A×D (x, y) ∈ (A×C) ∩ (A×D)

(x, y) ∈ A×(C ∖D) x ∈ A y ∈ C ∖D x ∈ A y ∈ C y ∉ D (x, y) ∈ A×C

(x, y) ∉ A×D (x, y) ∈ (A×C) ∖ (A×D)

(A∪B) ×(C ∪D) = (A×C) ∪ (A×D) ∪ (B×C) ∪ (B×D)

(x, y) ∈ (A∪B) ×(C ∪D) x ∈ A∪B y ∈ C ∪D x ∈ A y ∈ C

x ∈ A y ∈ D x ∈ B y ∈ C x ∈ B y ∈ D (x, y) ∈ (A×C) ∪ (A×D) ∪ (B×C) ∪ (B×D)

(A×C) ∪ (B×D) ⊆ (A∪B) ×(C ∪D)

(A×C) ∩ (B×D) = (A∩B) ×(C ∩D)

(x, y) ∈ (A×C) ∩ (B×D) (x, y) ∈ A×C (x, y) ∈ B×D x ∈ A y ∈ C x ∈ B y ∈ D

x ∈ A∩B y ∈ C ∩D (x, y) ∈ (A∩B) ×(C ∩D)

(A ∖B) ×(C ∖D) = [(A×C) ∖ (A×D)] ∖ [(B×C) ∖ (B×D)]

(x, y) ∈ (A ∖B) ×(C ∖D) x ∈ A ∖B y ∈ C ∖D x ∈ A x ∉ B y ∈ C y ∉ D

(x, y) ∈ [(A×C) ∖ (A×D)] ∖ [(B×C) ∖ (B×D)] (x, y) ∈ (A×C) ∖ (A×D) (x, y) ∉ (B×C) ∖ (B×D)

x ∈ A y ∈ C y ∉ D x ∈ B y ∈ C y ∉ D

x ∈ A x ∉ B y ∈ C y ∉ D

(A ∖B) ×(C ∖D) ⊆ (A×C) ∖ (B×D)

S T C ⊆ S×T

C x ∈ S = {y ∈ T : (x, y) ∈ C}C

x

C y ∈ T

= {x ∈ S : (x, y) ∈ C}C

y

(1.1.25)

⊆ TC

x

x ∈ S ⊆ SC

y

y ∈ T

C T = {y ∈ T : (x, y) ∈ C  for some x ∈ S}C

T

C S = {x ∈ S : (x, y) ∈ C  for some y ∈ T}C

S
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The projections are the unions of the appropriate cross sections.

Unions

1. 
2. 

Cross sections are preserved under the set operations. We state the result for cross sections at . By symmetry, of course, analgous results hold for
cross sections at .

Suppose that . Then for ,

1. 
2. 
3. 

Proof
1.  if and only if  if and only if  or  if and only if  or .
2. The proof is just like (a), with and replacing or.
3. The proof is just like (a), with and not replacing or.

For projections, the results are a bit more complicated. We give the results for projections onto ; naturally the results for projections onto  are
analogous.

Suppose again that . Then

1. 
2. 
3. 

Proof
1. Suppose that . Then there exists  such that . Hence  so , or  so . In

either case, . Conversely, suppose that . Then  or . If  then there exists  such that 
. But then  so . Similarly if  then .

2. Suppose that . Then there exists  such that . Hence  so  and  so .
Therefore .

3. Suppose that . Then , so for every , . Fix . Then  so  and therefore 
.

It's easy to see that equality does not hold in general in parts (b) and (c). In part (b) for example, suppose that  are nonempty and disjoint
and  is nonempty. Let  and . Then  so . But . In part (c) for example,
suppose that  is a nonempty proper subset of  and  is a nonempty proper subset of . Let . Then  so . On the
other hand, , so .

Cross sections and projections will be extended to very general product sets in the next section on Functions.

Computational Exercises

Subsets of 

The universal set is . Let  and . Express each of the following in terms of intervals:

1. 
2. 
3. 
4. 
5. 

Answer
1. 
2. 
3. 
4. 
5. 

The universal set is . Let  and let . Give each of the following:

1.  in list form

=C

T

⋃

x∈S

C

x

=C

S

⋃

y∈T

C

y

x ∈ S

y ∈ T

C, D ⊆ S×T x ∈ S

(C ∪D = ∪)

x

C

x

D

x

(C ∩D = ∩)

x

C

x

D

x

(C ∖D = ∖)

x

C

x

D

x

y ∈ (C ∪D)

x

(x, y) ∈ C ∪D (x, y) ∈ C (x, y) ∈ D y ∈ C

x

y ∈ D

x

T S

C, D ⊆ S×T

(C ∪D = ∪)

T

C

T

D

T

(C ∩D ⊆ ∩)

T

C

T

D

T

( ⊆ (C

T

)

c

C

c

)

T

y ∈ (C ∪D)

T

x ∈ S (x, y) ∈ C ∪D (x, y) ∈ C y ∈ C

T

(x, y) ∈ D y ∈ D

T

y ∈ ∪C

T

D

T

y ∈ ∪C

T

D

T

y ∈ C

T

y ∈ D

T

y ∈ C

T

x ∈ S

(x, y) ∈ C (x, y) ∈ C ∪D y ∈ (C ∪D)

T

y ∈ D

T

y ∈ (C ∪D)

T

y ∈ (C ∩D)

T

x ∈ S (x, y) ∈ C ∩D (x, y) ∈ C y ∈ C

T

(x, y) ∈ D y ∈ D

T

y ∈ ∩C

T

D

T

y ∈ (C

T

)

c

y ∉ C

T

x ∈ S (x, y) ∉ C ∈ Sx

0

( , y) ∉ Cx

0

( , y) ∈x

0

C

c

y ∈ (C

c

)

T

, ⊆ SA

1

A

2

B⊆ T C = ×BA

1

D = ×BA

2

C ∩D = ∅ (C ∩D = ∅)

T

= =BC

T

D

T

A S B T C =A×B =BC

T

( =C

T

)

c

B

c

= ( ×B) ∪ (A× ) ∪ ( × )C

c

A

c

B

c

A

c

B

c

( = TC

c

)

T

R

[0, ∞) A = [0, 5] B= (3, 7)

A∩B

A∪B

A ∖B

B∖A

A

c

(3, 5]

[0, 7)

[0, 3]

(5, 7)

(5, ∞)

N A = {n ∈ N : n is even} B= {n ∈ N : n ≤ 9}

A∩B
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2.  in predicate form
3.  in list form
4.  in list form
5.  in predicate form
6.  in list form

Answer
1. 
2. 
3. 
4. 
5. 
6. 

Coins and Dice

Let . This is the set of outcomes when a 4-sided die and a 6-sided die are tossed. Further let 
 and . Give each of the following sets in list form:

1. 
2. 
3. 
4. 
5. 
6. 

Answer
1. 
2. 
3. 
4. 
5. 
6. 

Let . This is the set of outcomes when a coin is tossed 3 times (0 denotes tails and 1 denotes heads). Further let 
 and . Give each of the following sets in list form, using bit-string

notation:

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Answer
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Let . This is the set of outcomes when a coin is tossed twice (0 denotes tails and 1 denotes heads). Give  in list form.

Answer

A∪B

A ∖B

B∖A

A

c

B

c

{0, 2, 4, 6, 8}

{n ∈ N : n is even or n ≤ 9}

{10, 12, 14, …}

{1, 3, 5, 7, 9}

{n ∈ N : n is odd}

{10, 11, 12, …}

S = {1, 2, 3, 4} ×{1, 2, 3, 4, 5, 6}

A = {(x, y) ∈ S : x = 2} B = {(x, y) ∈ S : x+y = 7}

A

B

A∩B

A∪B

A ∖B

B∖A

{(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)}

{(1, 6), (2, 5), (3, 4), (4, 3)}

{(2, 5)}

{(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (1, 6), (3, 4), (4, 3)}

{(2, 1), (2, 2), (2, 3), (2, 4), (2, 6)}

{(1, 6), (3, 4), (4, 3)}

S = {0, 1}

3

A = {( , , ) ∈ S : = 1}x

1

x

2

x

3

x

2

B = {( , , ) ∈ S : + + = 2}x

1

x

2

x

3

x

1

x

2

x

3

S

A

B

A

c

B

c

A∩B

A∪B

A ∖B

B∖A

{000, 100, 010, 001, 110, 101, 011, 111}

{010, 110, 011, 111}

{110, 011, 101}

{000, 100, 001, 101}

{000, 100, 010, 001, 111}

{110, 011}

{010, 110, 011, 111, 101}

{010, 111}

{101}

S = {0, 1}

2

P(S)

{∅, {00}, {01}, {10}, {11}, {00, 01}, {00, 10}, {00, 11}, {01, 10}, {01, 11}, {10, 11}, {00, 01, 10}, {00, 01, 11}, {00, 10, 11}, {01, 10, 11},

{00, 01, 10, 11}}
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Cards

A standard card deck can be modeled by the Cartesian product set

where the first coordinate encodes the denomination or kind (ace, 2–10, jack, queen, king) and where the second coordinate encodes the suit (clubs,
diamonds, hearts, spades). Sometimes we represent a card as a string rather than an ordered pair (for example  for the queen of hearts). For the
problems in this subsection, the card deck  is the universal set.

Let  denote the set of hearts and  the set of face cards. Find each of the following:

1. 
2. 
3. 
4. 

Answer
1. 
2. 
3. 
4. 

A bridge hand is a subset of  with 13 cards. Often bridge hands are described by giving the cross sections by suit.

Suppose that  is a bridge hand, held by a player named North, defined by

Find each of the following:

1. The nonempty cross sections of  by denomination.
2. The projection of  onto the set of suits.
3. The projection of  onto the set of denominations

Answer
1. , , , , , , , 
2. 
3. 

By contrast, it is usually more useful to describe a poker hand by giving the cross sections by denomination. In the usual version of draw poker, a hand
is a subset of  with 5 cards.

Suppose that  is a poker hand, held by a player named Bill, with

Find each of the following:

1. The nonempty cross sections of  by suit.
2. The projection of  onto the set of suits.
3. The projection of  onto the set of denominations

Answer
1. , , 
2. 
3. 

The poker hand in the last exercise is known as a dead man's hand. Legend has it that Wild Bill Hickock held this hand at the time of his murder in
1876.

General unions and intersections

For the problems in this subsection, the universal set is .

Let  for . Find

1. 
2. 
3. 

D= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, k}×{♣,♢,♡,♠} (1.1.26)

q♡

D

H F

H ∩F

H ∖F

F ∖H

H △ F

{j♡, q♡, k♡}

{1♡, 2♡, 3♡, 4♡, 5♡, 6♡, 7♡, 8♡, 9♡, 10♡}

{j♠, q♠, k♠, j♢, q♢, k♢, j♣, q♣, k♣}

{1♡, 2♡, 3♡, 4♡, 5♡, 6♡, 7♡, 8♡, 9♡, 10♡, j♠, q♠, k♠, j♢, q♢, k♢, j♣, q♣, k♣}

D

N

= {2, 5, q}, = {1, 5, 8, q, k}, = {8, 10, j, q}, = {1}N

♣

N

♢

N

♡

N

♠

(1.1.27)

N

N

N

= {♢,♠}N

1

= {♣}N

2

= {♣,♢}N

5

= {♢,♡}N

8

= {♡}N

10

= {♡}N

j

= {♣,♢,♡}N

q

= {♢}N

k

{♣,♢,♡,♠}

{1, 2, 5, 8, 10, j, q, k}

D

B

= {♣,♠}, = {♣,♠}, = {♡}B

1

B

8

B

q

(1.1.28)

B

B

B

= {1, 8}B

♣

= {q}B

♡

= {1, 8}B

♠

{♣,♡,♠}

{1, 8, q}

R

= [0, 1− ]A

n

1

n

n ∈ N

+

⋂

∞

n=1

A

n

⋃

∞

n=1

A

n

⋂

∞

n=1

A

c

n
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4. 

Answer
1. 
2. 
3. 
4. 

Let  for . Find

1. 
2. 
3. 
4. 

Answer
1. 
2. 
3. 
4. 

Subsets of 

Let  be the closed triangular region in  with vertices , , and . Find each of the following:

1. The cross section  for 
2. The cross section  for 
3. The projection of  onto the horizontal axis
4. The projection of  onto the vertical axis

Answer
1.  for ,  otherwise
2.  for ,  otherwise
3. 
4. 

This page titled 1.1: Sets is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via source content that was
edited to the style and standards of the LibreTexts platform.

⋃

∞

n=1

A

c

n

{0}

[0, 1)

(−∞, 0)∪ [1,∞)

R−{0}

= (2− , 5+ )A

n

1

n

1

n

n ∈ N

+

⋂

∞

n=1

A

n

⋃

∞

n=1

A

n

⋂

∞

n=1

A

c

n

⋃

∞

n=1

A

c

n

[2, 5]

(1, 6)

(−∞, 1] ∪ [6,∞)

(−∞, 2)∪ (5,∞)

R

2

T R

2

(0, 0) (1, 0) (1, 1)

T

x

x ∈ R

T

y

y ∈ R

T

T

= [0, x]T

x

x ∈ [0, 1] = ∅T

x

= [y, 1]T

y

y ∈ [0, 1] = ∅T

y

[0, 1]

[0, 1]
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1.2: Functions
     

Functions play a central role in probability and statistics, as they do in every other branch of mathematics. For the most part, the
proofs in this section are straightforward, so be sure to try them yourself before reading the ones in the text.

Definitions and Properties

Basic Definitions

We start with the formal, technical definition of a function. It's not very intuitive, but has the advantage that it only requires set
theory.

A function  from a set  into a set  is a subset of the product set  with the property that for each element , there
exists a unique element  such that . If  is a function from  to  we write . If  we write 

.

Less formally, a function  from  into  is a “rule” (or “procedure” or “algorithm”) that assigns to each  a unique element 
. The definition of a function as a set of ordered pairs, is due to Kazimierz Kuratowski. The term map or mapping is also

used in place of function, so we could say that  maps  into .

Figure : A function  from  into 

The sets  and  in the definition are clearly important.

Suppose that .

1. The set  is the domain of .
2. The set  is the range space or co-domain of .
3. The range of  is the set of function values. That is, .

The domain and range are completely specified by a function. That's not true of the co-domain: if  is a function from  into ,
and  is another set with , then we can also think of  as a function from  into . The following definitions are natural
and important.

Suppose again that .

1.  maps  onto  if . That is, for each  there exists  such that .
2.  is one-to-one if distinct elements in the domain are mapped to distinct elements in the range. That is, if  and 

 then .

Clearly a function always maps its domain onto its range. Note also that  is one-to-one if  implies  for 
.

Inverse functions

A funtion that is one-to-one and onto can be “reversed” in a sense.

If  maps  one-to-one onto , the inverse of  is the function  from  onto  given by

f S T S×T x ∈ S

y ∈ T (x, y) ∈ f f S T f : S → T (x, y) ∈ f

y = f(x)

f S T x ∈ S

f(x) ∈ T

f S T

1.2.1 f S T

S T

f : S → T

S f

T f

f range (f) = {y ∈ T : y = f(x) for some x ∈ S}

f S T

U T ⊆U f S U

f : S → T

f S T range (f) = T y ∈ T x ∈ S f(x) = y

f u, v∈ S

u ≠ v f(u) ≠ f(v)

f f(u) = f(v) u = v

u, v∈ S

f S T f f

−1

T S

(y) = x⟺ f(x) = y; x ∈ S, y ∈ Tf

−1

(1.2.1)
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If you like to think of a function as a set of ordered pairs, then . The fact that  is one-to-one
and onto ensures that  is a valid function from  onto . Sets  and  are in one-to-one correspondence if there exists a one-
to-one function from  onto . One-to-one correspondence plays an essential role in the study of cardinality.

Restrictions

The domain of a function can be restricted to create a new funtion.

Suppose that  and that . The function  defined by  for  is the restriction of 
to .

As a set of ordered pairs, note that .

Composition

Composition is perhaps the most important way to combine two functions to create another function.

Suppose that  and . The composition of  with  is the function  defined by

Composition is associative:

Suppose that , , and . Then

Proof

Note that both functions map  into . Using the definition of composition, the value of both functions at  is 
.

Thus we can write  without ambiguity. On the other hand, composition is not commutative. Indeed depending on the
domains and co-domains,  might be defined when  is not. Even when both are defined, they may have different domains
and co-domains, and so of course cannot be the same function. Even when both are defined and have the same domains and co-
domains, the two compositions will not be the same in general. Examples of all of these cases are given in the computational
exercises below.

Suppose that  and .

1. If  and  are one-to-one then  is one-to-one.
2. If  and  are onto then  is onto.

Proof
1. Suppose that  and . Then . Since  is one-to-one, . Since

 is one-to-one, .
2. Suppose that . Since  is onto, there exist  with . Since  is onto, there exists  with .

Then .

The identity function on a set  is the function  from  onto  defined by  for 

The identity function acts like an identity with respect to the operation of composition.

If  then

1. 
2. 

Proof
1. Note that . For , .
2. Note that . For , .

= {(y, x) ∈ T ×S : (x, y) ∈ f}f

−1

f

f

−1

T S S T

S T

f : S→ T A⊆ S : A→ Tf

A

(x) = f(x)f

A

x ∈ A f

A

= {(x, y) ∈ f : x ∈ A}f

A

g : R→ S f : S→ T f g f ∘ g : R→ T

(f ∘ g) (x) = f (g(x)) , x ∈ R (1.2.2)

h : R→ S g : S→ T f : T →U

f ∘ (g∘ h) = (f ∘ g) ∘ h (1.2.3)

R U x ∈ R

f (g (h(x)))

f ∘ g∘ h

f ∘ g g∘ f

g : R→ S f : S→ T

f g f ∘ g

f g f ∘ g

u, v∈ R (f ∘ g)(u) = (f ∘ g)(v) f (g(u)) = f (g(v)) f g(u) = g(v)

g u = v

z ∈ T f y ∈ S f(y) = z g x ∈ R g(x) = y

(f ∘ g)(x) = f (g(x)) = f(y) = z

S I

S

S S (x) = xI

S

x ∈ S

f : S→ T

f ∘ = fI

S

∘ f = fI

T

f ∘ : S→ TI

S

x ∈ S (f ∘ )(x) = f ( (x)) = f(x)I

S

I

S

∘ f : S→ TI

T

x ∈ S ( ∘ f)(x) = (f(x)) = f(x)I

T

I

T
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The inverse of a function is really the inverse with respect to composition.

Suppose that  is a one-to-one function from  onto . Then

1. 
2. 

Proof
1. Note that . For , .
2. Note that . For , 

An element  can be thought of as a function from  into . Similarly, an element  can be thought of as
a function from  into . For such a sequence , of course, we usually write  instead of . More generally, if  and  are
sets, then the set of all functions from  into  is denoted by . In particular, as we noted in the last section,  is also (and
more accurately) written as .

Suppose that  is a one-to-one function from  onto  and that  is a one-to-one function from  onto . Then 
.

Proof

Note that  and . For , let . Then  so that 
 and hence  and finally .

Inverse Images

Inverse images of a function play a fundamental role in probability, particularly in the context of random variables.

Suppose that . If , the inverse image of  under  is the subset of  given by

So  is the subset of  consisting of those elements that map into .

Figure : The inverse image of  under 

Technically, the inverse images define a new function from  into . We use the same notation as for the inverse
function, which is defined when  is one-to-one and onto. These are very different functions, but usually no confusion results. The
following important theorem shows that inverse images preserve all set operations.

Suppose that , and that . Then

1. 
2. 
3. 
4. If  then 
5. If  and  are disjoint, so are  and 

Proof
1.  if and only if  if and only if  or  if and only if  or 

 if and only if 
2. The proof is the same as (a), with intersection replacing union and with and replacing or throughout.
3. The proof is the same as (a), with set difference replacing union and with and not replacing or throughout.

f S T

∘ f =f

−1

I

S

f ∘ =f

−1

I

T

∘ f : S→ Sf

−1

x ∈ S ( ∘ f) (x) = (f(x)) = xf

−1

f

−1

f ∘ : T → Tf

−1

y ∈ T (f ∘ ) (y) = f ( (y))= yf

−1

f

−1

x ∈ S

n

{1, 2,… ,n} S x ∈ S

∞

N

+

S x x

i

x(i) S T

S T T

S

S

∞

S

N

+

g R S f S T

= ∘(f ∘ g)

−1

g

−1

f

−1

(f ∘ g : T →R)

−1

∘ : T →Rg

−1

f

−1

y ∈ T x = (y)(f ∘ g)

−1

(f ∘ g) (x) = y

f (g(x)) = y g(x) = (y)f

−1

x = ( (y))g

−1

f

−1

f : S→ T A⊆ T A f S

(A) = {x ∈ S : f(x) ∈ A}f

−1

(1.2.4)

(A)f

−1

S A

1.2.2 A f

P(T ) P(S)

f

f : S→ T A, B⊆ T

(A∪B) = (A)∪ (B)f

−1

f

−1

f

−1

(A∩B) = (A)∩ (B)f

−1

f

−1

f

−1

(A ∖B) = (A) ∖ (B)f

−1

f

−1

f

−1

A⊆B (A) ⊆ (B)f

−1

f

−1

A B (A)f

−1

(B)f

−1

x ∈ (A∪B)f

−1

f(x) ∈ A∪B f(x) ∈ A f(x) ∈ B x ∈ (A)f

−1

x ∈ (B)f

−1

x ∈ (A)∪ (B)f

−1

f

−1
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4. Suppose . If  then  and hence , so .
5. If  and  are disjoint, then from (b), .

The result in part (a) holds for arbitrary unions, and the result in part (b) holds for arbitrary intersections. No new ideas are
involved; only the notation is more complicated.

Suppose that  is a collection of subsets of , where  is a nonempty index set. Then

1. 
2. 

Proof
1.  if and only if  if and only if  for some  if and only if  for

some  if and only if 
2. The proof is the same as (a), with intersection replacing union and with for every replacing for some.

Forward Images

Forward images of a function are a naturally complement to inverse images.

Suppose again that . If , the forward image of  under  is the subset of  given by

So  is the range of  restricted to .

Figure : The forward image of  under 

Technically, the forward images define a new function from  into , but we use the same symbol  for this new function
as for the underlying function from  into  that we started with. Again, the two functions are very different, but usually no
confusion results.

It might seem that forward images are more natural than inverse images, but in fact, the inverse images are much more important
than the forward ones (at least in probability and measure theory). Fortunately, the inverse images are nicer as well—unlike the
inverse images, the forward images do not preserve all of the set operations.

Suppose that , and that . Then

1. .
2. . Equality holds if  is one-to-one.
3. . Equality holds if  is one-to-one.
4. If  then .

Proof
1. Suppose . Then  for some . If  then  and if  then . In

both cases . Conversely suppose . If  then  for some . But
then  so . Similarly, if  then  for some . But then  so 

.
2. If  then  for some . But then  so  and  so  and hence 

. Conversely, suppose that . Then  and , so there exists  with 
 and there exists  with . At this point, we can go no further. But if  is one-to-one, then 

and hence  and . Thus  so .

A⊆B x ∈ (A)f

−1

f(x) ∈ A f(x) ∈ B x ∈ (B)f

−1

A B (A)∩ (B) = (A∩B) = (∅) = ∅f

−1

f

−1

f

−1

f

−1

{ : i ∈ I}A

i

T I

( )= ( )f

−1

⋃

i∈I

A

i

⋃

i∈I

f

−1

A

i

( )= ( )f

−1

⋂

i∈I

A

i

⋂

i∈I

f

−1

A

i

x ∈ ( )f

−1

⋃

i∈I

A

i

f(x) ∈⋃

i∈I

A

i

f(x) ∈ A

i

i ∈ I x ∈ ( )f

−1

A

i

i ∈ I x ∈ ( )⋃

i∈I

f

−1

A

i

f : S→ T A⊆ S A f T

f(A) = {f(x) : x ∈ A} (1.2.5)

f(A) f A

1.2.3 A f

P(S) P(T ) f

S T

f : S→ T A, B⊆ S

f(A∪B) = f(A)∪ f(B)

f(A∩B) ⊆ f(A)∩ f(B) f

f(A) ∖ f(B) ⊆ f(A ∖B) f

A⊆B f(A) ⊆ f(B)

y ∈ f(A∪B) y = f(x) x ∈ A∪B x ∈ A y ∈ f(A) x ∈ B y ∈ f(B)

y ∈ f(A)∪ f(B) y ∈ f(A)∪ f(B) y ∈ f(A) y = f(x) x ∈ A

x ∈ A∪B y ∈ f(A∪B) y ∈ f(B) y = f(x) x ∈ B x ∈ A∪B

y ∈ f(A∪B)

y ∈ f(A∩B) y = f(x) x ∈ A∩B x ∈ A y ∈ f(A) x ∈ B y ∈ f(B)

y ∈ f(A)∩ f(B) y ∈ f(A)∩ f(B) y ∈ f(A) y ∈ f(B) x ∈ A

f(x) = y u ∈ B f(u) = y f u = x

x ∈ A x ∈ B x ∈ A∩B y ∈ f(A∩B)
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3. Suppose . Then  and . Hence  for some  and  for every 
. Thus,  so  and hence . Conversely, suppose . Then  for some

. Hence  so . Again, the proof breaks down at this point. However, if  is one-to-one and 
 for some , then  so , a contradiction. Hence  for every  so . Thus 

.
4. Suppose . If  then  for some . But then  so .

The result in part (a) hold for arbitrary unions, and the results in part (b) hold for arbitrary intersections. No new ideas are involved;
only the notation is more complicated.

Suppose that  is a collection of subsets of , where  is a nonempty index set. Then

1. .
2. . Equality holds if  is one-to-one.

Proof
1.  if and only if  for some  if and only if  for some  and some 

if and only if  for some  if and only if .
2. If  then  for some . Hence  for every  so  for every  and

thus . Conversely, suppose that . Then  for every . Hence for every 
there exists  with . If  is one-to-one,  for all . Call the common value . Then 
for every  so  and therefore .

Suppose again that . As noted earlier, the forward images of  define a function from  into  and the inverse
images define a function from  into . One might hope that these functions are inverses of one another, but alas no.

Suppose that .

1.  for . Equality holds if  is one-to-one.
2.  for . Equality holds if  is onto.

Proof
1. If  then  and hence . Conversely suppose that . Then  so 

 for some . At this point we can go no further. But if  is one-to-one, then  and hence .
2. Suppose . Then  for some . But then . Conversely suppose that  is

onto and . There exist  with . Hence  and so .

Spaces of Real Functions

Real-valued function on a given set  are of particular importance. The usual arithmetic operations on such functions are defined
pointwise.

Suppose that  and , then  are defined as follows for all .

1. 
2. 
3. 
4. 
5.  assuming that  for .

Now let  denote the collection of all functions from the given set  into . A fact that is very important in probability as well as
other branches of analysis is that , with addition and scalar multiplication as defined above, is a vector space. The zero function 
is defined, of course, by  for all .

 is a vector space over . That is, for all  and 

1. , the commutative property of vector addition.
2. , the associative property of vector addition.

y ∈ f(A) ∖ f(B) y ∈ f(A) y ∉ f(B) y = f(x) x ∈ A y ≠ f(u)

u ∈ B x ∉ B x ∈ A ∖B y ∈ f(A ∖B) y ∈ f(A ∖B) y = f(x)

x ∈ A ∖B x ∈ A y ∈ f(A) f

f(u) = y u ∈ B u = x x ∈ B f(u) ≠ y u ∈ B y ∉ f(B)

y ∈ f(A ∖B)

A⊆B y ∈ f(A) y = f(x) x ∈ A x ∈ B y ∈ f(B)

{ : i ∈ I}A

i

S I

f ( )= f( )⋃

i∈I

A

i

⋃

i∈I

A

i

f ( )⊆ f( )⋂

i∈I

A

i

⋂

i∈I

A

i

f

y ∈ f ( )⋃

i∈I

A

i

y = f(x) x ∈⋃

i∈I

A

i

y = f(x) x ∈ A

i

i ∈ I

y ∈ f( )A

i

i ∈ I y ∈ f( )⋃

i∈I

A

i

y ∈ f ( )⋂

i∈I

A

i

y = f(x) x ∈⋂

i∈I

A

i

x ∈ A

i

i ∈ I y ∈ f( )A

i

i ∈ I

y ∈ f( )⋂

i∈I

A

i

y ∈ f( )⋂

i∈I

A

i

y ∈ f( )A

i

i ∈ I i ∈ I

∈x

i

A

i

y = f( )x

i

f =x

i

x

j

i, j∈ I x x ∈ A

i

i ∈ I x ∈⋂

i∈I

A

i

y ∈ f ( )⋂

i∈I

A

i

f : S→ T f P(S) P(T )

P(T ) P(S)

f : S→ T

A⊆ [f(A)]f

−1

A⊆ S f

f [ (B)] ⊆Bf

−1

B⊆ T f

x ∈ A f(x) ∈ f(A) x ∈ [f(A)]f

−1

x ∈ [f(A)]f

−1

f(x) ∈ f(A)

f(x) = f(u) u ∈ A f u = x x ∈ A

y ∈ f [ (B)]f

−1

y = f(x) x ∈ (B)f

−1

y = f(x) ∈ B f

y ∈ B x ∈ S f(x) = y x ∈ (B)f

−1

y ∈ f [ (B)]f

−1

S

f , g : S→R c ∈ R f +g, f −g, fg, cf , f/g : S→R x ∈ S

(f +g)(x) = f(x)+g(x)

(f −g)(x) = f(x)−g(x)

(fg)(x) = f(x)g(x)

(cf)(x) = cf(x)

(f/g)(x) = f(x)/g(x) g(x) ≠ 0 x ∈ S

V S R

V 0

0(x) = 0 x ∈ S

(V , +, ⋅) R f , g, h ∈ V a, b ∈ R

f +g= g+f

f +(g+h) = (f +g)+h
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3. , scalar multiplication distributes over vector addition.
4. , scalar multiplication distributive over scalar addition.
5. , the existence of an zero vector.
6. , the existence of additive inverses.
7. , the unity property.

Proof

Each of these properties follows from the corresponding property in .

Various subspaces of  are important in probability as well. We will return to the discussion of vector spaces of functions in the
sections on partial orders and in the advanced sections on metric spaces and measure theory.

Indicator Functions

For our next discussion, suppose that  is the universal set, so that all other sets mentioned are subsets of .

Suppose that . The indicator function of  is the function  defined as follows:

Thus, the indicator function of  simply indicates whether or not  for each . Conversely, any function on  that just
takes the values 0 and 1 is an indicator function.

If  then  is the indicator function of the set .

Thus, there is a one-to-one correspondence between , the power set of , and the collection of indicator functions .
The next result shows how the set algebra of subsets corresponds to the arithmetic algebra of the indicator functions.

Suppose that . Then

1. 
2. 
3. 
4. 
5.  if and only if 

Proof
1. Note that both functions on the right just take the values 0 and 1. Moreover,  if

and only if  and .
2. Note that both function on the right just take the values 0 and 1. Moreover, 

 if and only if  or .
3. Note that  just takes the values 0 and 1. Moreover,  if and only if .
4. Note that  by parts (a) and (c).
5. Since both functions just take the values 0 and 1, note that  if and only if  implies . But in

turn, this is equivalent to .

The results in part (a) extends to arbitrary intersections and the results in part (b) extends to arbitrary unions.

Suppose that  is a collection of subsets of , where  is a nonempty index set. Then

1. 
2. 

Proof

In general, a product over an infinite index set may not make sense. But if all of the factors are either 0 or 1, as they are here,
then we can simply define the product to be 1 if all of the factors are 1, and 0 otherwise.

a(f +g) = af +ag

(a+b)f = af +bf

f +0 = f

f +(−f) = 0

1 ⋅ f = f

R

V

S S

A⊆ S A : S→{0, 1}1

A

(x) ={1

A

1,

0,

x ∈ A

x ∉ A

(1.2.6)

A x ∈ A x ∈ S S

f : S→{0, 1} f A= {1} = {x ∈ S : f(x) = 1}f

−1

P(S) S {0, 1}

S

A, B⊆ S

= =min{ , }1

A∩B

1

A

1

B

1

A

1

B

= 1−(1− ) (1− ) =max{ , }1

A∪B

1

A

1

B

1

A

1

B

= 1−1

A

c

1

A

= (1− )1

A∖B

1

A

1

B

A⊆B ≤1

A

1

B

(x) (x) =min{ (x), (x)} = 11

A

1

B

1

A

1

B

x ∈ A x ∈ B

1−(1− (x)) (1− (x)) =max{ (x), (x)} = 11

A

1

B

1

A

1

B

x ∈ A x ∈ B

1−1

A

1− (x) = 11

A

x ∉ A

= = = (1− )1

A∖B

1

A∩B

c

1

A

1

B

c

1

A

1

B

≤1

A

1

B

(x) = 11

A

(x) = 11

B

A⊆B

{ : i ∈ I}A

i

S I

= =min{ : i ∈ I}1

⋂

i∈I

A

i

∏

i∈I

1

A

i

1

A

i

= 1− (1− ) =max{ : i ∈ I}1

⋃

i∈I

A

i

∏

i∈I

1

A

i

1

A

i
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1. The functions in the middle and on the right just take the values 0 and 1. Moreover, both take the value 1 at  if and
only if  for every .

2. The functions in the middle and on the right just take the values 0 and 1. Moreover, both take the value 1 at  if and
only if  for some .

Multisets

A multiset is like an ordinary set, except that elements may be repeated. A multiset  (with elements from a universal set ) can be
uniquely associated with its multiplicity function , where  is the number of times that element  is in  for
each . So the multiplicity function of a multiset plays the same role that an indicator function does for an ordinary set.
Multisets arise naturally when objects are sampled with replacement (but without regard to order) from a population. Various
sampling models are explored in the section on Combinatorial Structures. We will not go into detail about the operations on
multisets, but the definitions are straightforward generalizations of those for ordinary sets.

Suppose that  and  are multisets with elements from the universal set . Then

1.  if and only if 
2. 
3. 
4. 

Product Spaces

Using functions, we can generalize the Cartesian products studied earlier. In this discussion, we suppose that  is a set for each 
in a nonempty index set .

Define the product set

Note that except for being nonempty, there are no assumptions on the cardinality of the index set . Of course, if 
for some , or if  then this construction reduces to  and to , respectively. Since
we want to make the notation more closely resemble that of simple Cartesian products, we will write  instead of  for the
value of the function  at , and we sometimes refer to this value as the th coordinate of . Finally, note that if  for
each , then  is simply the set of all functions from  into , which we denoted by  above.

For  define the projection  by  for .

So  is just the th coordinate of . The projections are of basic importance for product spaces. In particular, we have a better
way of looking at projections of a subset of a product set.

For  and , the forward image  is the projection of  onto .

Proof

Note that , the set of all th coordinates of the points in .

So the properties of projection that we studied in the last section are just special cases of the properties of forward images.
Projections also allow us to get coordinate functions in a simple way.

Suppose that  is a set, and that . If  then  is the th coordinate function of .

Proof

Note that for , , the th coordinate of .

This will look more familiar for a simple cartesian product. If , then  where 
 is the th coordinate function for .

x ∈ S

x ∈ A

i

i ∈ I

x ∈ S

x ∈ A

i

i ∈ I

A S

: S →Nm

A

(x)m

A

x A

x ∈ S

A B S

A ⊆B ≤m

A

m

B

= max{ , }m

A∪B

m

A

m

B

= min{ , }m

A∩B

m

A

m

B

= +m

A+B

m

A

m

B

S

i

i

I

={x : x is a function from I into   such that x(i) ∈  for each i ∈ I}∏

i∈I

S

i

⋃

i∈I

S

i

S

i

(1.2.7)

I I = {1, 2 … ,n}

n ∈ N

+

I =N

+

× ×⋯ ×S

1

S

2

S

n

× ×⋯S

1

S

2

x

i

x(i)

x i ∈ I i x = SS

i

i ∈ I ∏

i∈I

S

i

I S S

I

j∈ I : →p

j

∏

i∈I

S

i

S

j

(x) =p

j

x

j

x ∈∏

i∈I

S

i

(x)p

j

j x

A ⊆∏

i∈I

S

i

j∈ I (A)p

j

A S

j

(A) = { (x) : x ∈ A} = { : x ∈ A}p

j

p

j

x

j

j A

R f : R →∏

i∈I

S

i

j∈ I ∘ f : R →p

j

S

j

j f

x ∈ R ( ∘ f)(x) = [f(x)] = (x)p

j

p

j

f

j

j f(x) ∈∏

i∈I

S

i

f : R → × ×⋯ ×S

1

S

2

S

n

f = ( , , … , )f

1

f

2

f

n

: R →f

j

S

i

j j∈ {1, 2, … ,n}

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10117?pdf


1.2.8 https://stats.libretexts.org/@go/page/10117

Cross sections of a subset of a product set can be expressed in terms of inverse images of a function. First we need some additional
notation. Suppose that our index set  has at least two elements. For  and , define  by 

 where  for  and . In words,  takes a point  and assigns  to coordinate  to
produce the point .

In the setting above, if ,  and  then  is the cross section of  in the th coordinate at .

Proof

This follows from the definition of cross section:  is the set of all  such that  defined above is in 
and has th coordinate .

Let's look at this for the product of two sets  and . For , the function  is given by .
Similarly, for , the function  is given by . Suppose now that . If , then 

, the very definition of the cross section of  in the first coordinate at . Similarly, if , then 
, the very definition of the cross section of  in the second coordinate at . This construction is

not particularly important except to show that cross sections are inverse images. Thus the fact that cross sections preserve all of the
set operations is a simple consequence of the fact that inverse images generally preserve set operations.

Operators

Sometimes functions have special interpretations in certain settings.

Suppose that  is a set.

1. A function  is sometimes called a unary operator on .
2. A function  is sometimes called a binary operator on .

As the names suggests, a unary operator  operates on an element  to produce a new element . Similarly, a binary
operator  operates on a pair of elements  to produce a new element . The arithmetic operators are
quintessential examples:

The following are operators on :

1.  is a unary operator.
2.  is a binary operator.
3.  is a binary operator.
4.  is a binary operator.

For a fixed universal set , the set operators studied in the section on Sets provide other examples.

For a given set , the following are operators on :

1.  is a unary operator.
2.  is a binary operator.
3.  is a binary operator.
4.  is a binary operator.

As these examples illustrate, a binary operator is often written as  rather than . Still, it is useful to know that operators
are simply functions of a special type.

Suppose that  is a unary operator on a set ,  is a binary operator on , and that .

1.  is closed under  if  implies .
2.  is closed under  if  implies .

Thus if  is closed under the unary operator , then  restricted to  is unary operator on . Similary if  is closed under the
binary operator , then  restricted to  is a binary operator on . Let's return to our most basic example.

I j∈ I u ∈ S

j

: →j

u

∏

i∈I−{j}

S

i

∏

i∈I

S

i

(x) = yj

u

=y

i

x

i

i ∈ I−{j} = uy

j

j

u

x ∈∏

i∈I−{j}

S

i

u j

y ∈∏

i∈I

S

i

j∈ I u ∈ S

j

A⊆∏

i∈I

S

i

(A)j

−1

u

A j u

(A)j

−1

u

x ∈∏

i∈I−{j}

S

i

y A

j u

S T x ∈ S : T → S×T1

x

(y) = (x, y)1

x

y ∈ T : S→ S×T2

y

(x) = (x, y)2

y

A⊆ S×T x ∈ S

(A) = {y ∈ T : (x, y) ∈ A}1

−1

x

A x y ∈ T

(A) = {x ∈ S : (x, y) ∈ A}2

−1

y

A y

S

f : S→ S S

g : S×S→ S S

f x ∈ S f(x) ∈ S

g (x, y) ∈ S×S g(x, y) ∈ S

R

minus(x) =−x

sum(x, y) = x+y

product(x, y) = x y

difference(x, y) = x−y

S

S P(S)

complement(A) =A

c

union(A,B) =A∪B

intersect(A,B) =A∩B

difference(A,B) =A ∖B

x f y f(x, y)

f S g S A⊆ S

A f x ∈ A f(x) ∈ A

A g (x, y) ∈ A×A g(x, y) ∈ A

A f f A A A

g g A×A A
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For the arithmetic operatoes on ,

1.  is closed under plus and times, but not under minus and difference.
2.  is closed under plus, times, minus, and difference.
3.  is closed under plus, times, minus, and difference.

Many properties that you are familiar with for special operators (such as the arithmetic and set operators) can now be formulated
generally.

Suppose that  and  are binary operators on a set . In the following definitions, , , and  are arbitrary elements of .

1.  is commutative if , that is, 
2.  is associative if , that is, .
3.  distributes over  (on the left) if , that is, 

The Axiom of Choice

Suppose that  is a collection of nonempty subsets of a set . The axiom of choice states that there exists a function 
 with the property that  for each . The function  is known as a choice function.

Stripped of most of the mathematical jargon, the idea is very simple. Since each set  is nonempty, we can select an element
of ; we will call the element we select  and thus our selections define a function. In fact, you may wonder why we need an
axiom at all. The problem is that we have not given a rule (or procedure or algorithm) for selecting the elements of the sets in the
collection. Indeed, we may not know enough about the sets in the collection to define a specific rule, so in such a case, the axiom of
choice simply guarantees the existence of a choice function. Some mathematicians, known as constructionists do not accept the
axiom of choice, and insist on well defined rules for constructing functions.

A nice consequence of the axiom of choice is a type of duality between one-to-one functions and onto functions.

Suppose that  is a function from a set  onto a set . There exists a one-to-one function  from  into .

Proof.

For each , the set  is non-empty, since  is onto. By the axiom of choice, we can select an element  from 
 for each . The resulting function  is one-to-one.

Suppose that  is a one-to-one function from a set  into a set . There exists a function  from  onto .

Proof.

Fix a special element . If , there exists a unique  with . Define . If ,
define . The function  is onto.

Computational Exercises

Some Elementary Functions

Each of the following rules defines a function from  into .

Find the range of the function and determine if the function is one-to-one in each of the following cases:

1. 
2. 
3. 
4. 

R

N

Z

Q

f g S x y z S

f f(x, y) = f(y, x) x f y = y f x

f f(x, f(y, z)) = f(f(x, y), z) x f (y f z) = (x f y) f z

g f g(x, f(y, z)) = f(g(x, y), g(x, z)) x g (y f z) = (x gy) f (x gz)

S S

f :S → S f(A) ∈ A A ∈S f

A ∈S

A f(A)

f S T g T S

y ∈ T {y}f

−1

f g(y)

{y}f

−1

y ∈ T g

f S T g T S

∈ Sx

0

y ∈ range(f) x ∈ S f(x) = y g(y) = x y ∉ range(f)

g(y) = x

0

g

R R

f(x) = x

2

g(x) = sin(x)

h(x) = ⌊x⌋

u(x) =

e

x

1+e

x

f

g

h

u
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Answer
1. Range . Not one-to-one.
2. Range . Not one-to-one.
3. Range . Not one-to-one.
4. Range . One-to-one.

Find the following inverse images:

1. 
2. 
3. 

Answer
1. 
2. 
3. 

The function  is one-to-one. Find (that is, give the domain and rule for) the inverse function .

Answer

 for 

Give the rule and find the range for each of the following functions:

1. 
2. 
3. 

Answer
1. . Range 
2. . Range 
3. . Range 

Note that  and  are well-defined functions from  into , but .

Dice

Let . This is the set of possible outcomes when a pair of standard dice are thrown. Let , , , and  be the
functions from  into  defined by the following rules:

In addition, let  and  be the functions defined by  and .

Find the range of each of the following functions:

1. 
2. 
3. 
4. 
5. 

Answer
1. 
2. 

[0,∞)

[−1, 1]

Z

(0, 1)

[4, 9]f

−1

{0}g

−1

{2, 3, 4}h

−1

[−3,−2] ∪ [2, 3]

{nπ : n ∈ Z}

[2, 5)

u u

−1

(p) = ln( )u

−1

p

1−p

p ∈ (0, 1)

f ∘ g

g∘ f

h ∘ g∘ f

(f ∘ g)(x) = (x)sin

2

[0, 1]

(g∘ f)(x) = sin( )x

2

[−1, 1]

(h ∘ g∘ f)(x) = ⌊sin( )⌋x

2

{−1, 0, 1}

f ∘ g g∘ f R R f ∘ g≠ g∘ f

S = {1, 2, 3, 4, 5, 6}

2

f g u v

S Z

f(x, y) = x+y

g(x, y) = y−x

u(x, y) =min{x, y}

v(x, y) =max{x, y}

F U F = (f , g) U = (u, v)

f

g

u

v

U

{2, 3, 4,… , 12}

{−5,−4,… , 4, 5}
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3. 
4. 
5. 

Give each of the following inverse images in list form:

1. 
2. 
3. 
4. 

Answer
1. 
2. 
3. 
4. 

Find each of the following compositions:

1. 
2. 
3. 
4. 
5. 
6. 

Answer
1. 
2. 
3. 
4. 
5. 
6. 

Note that while  is well-defined,  is not. Note also that  even though  is not the identity function on .

Bit Strings

Let  and let  and . Recall that the elements of  are bit strings of length , and could
represent the possible outcomes of  tosses of a coin (where 1 means heads and 0 means tails). Let  be the function
defined by . Note that  is just the number of 1s in the the bit string . Let  be the
function defined by  where  denotes the bit string with  1s followed by  0s.

Find each of the following

1. 
2. 

Answer
1.  and .
2.  and  where . In words,  is the bit string with the same

number of 1s as , but rearranged so that all the 1s come first.

In the previous exercise, note that  and  are both well-defined, but have different domains, and so of course are not the
same. Note also that  is the identity function on , but  is not the inverse of . Indeed  is not one-to-one, and so does not
have an inverse. However,  restricted to  (the range of ) is one-to-one and is the inverse of .

{1, 2, 3, 4, 5, 6}

{1, 2, 3, 4, 5, 6}

{(i, j) ∈ {1, 2, 3, 4, 5, 6 : i ≤ j}}

2

{6}f

−1

{3}u

−1

{4}v

−1

{(3, 4)}U

−1

{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}

{(3, 3), (3, 4), (4, 3), (3, 5), (5, 3), (3, 6), (6, 3)}

{(1, 4), (4, 1), (2, 4), (4, 2), (3, 4), (4, 3), (4, 4)}

{(3, 4), (4, 3)}

f ∘U

g∘U

u ∘F

v∘F

F ∘U

U ∘F

f ∘U = f

g∘U = |g|

u ∘F = g

v∘F = f

F ∘U = (f , |g|)

U ∘F = (g, f)

f ∘U U ∘ f f ∘U = f U S

n ∈ N

+

S = {0, 1}

n

T = {0, 1,… ,n} S n

n f : S→ T

f( , ,… , ) =x

1

x

2

x

n

∑

n

i=1

x

i

f(x) x g : T → S

g(k) = x

k

x

k

k n−k

f ∘ g

g∘ f

f ∘ g : T → T (f ∘ g) (k) = k

g∘ f : S→ S (g∘ f) (x) = x

k

k= f(x) =∑

n

i=1

x

i

(g∘ f) (x)

x

f ∘ g g∘ f

f ∘ g T f g f

f { : k ∈ T}x

k

g g
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Let . Give  in list form for each .

Answer
1. 
2. 
3. 
4. 
5. 

Again let . Let  and . Give each of the following in list form:

1. 
2. 
3. 
4. 
5. 

Answer
1. 
2. 
3. 
4. 
5. 

In the previous exercise, note that  and .

Indicator Functions

Suppose that  and  are subsets of a universal set . Express, in terms of  and , the indicator function of each of the 14
non-trivial sets that can be constructed from  and . Use the Venn diagram app to help.

Answer
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 

Suppose that , , and  are subsets of a universal set . Give the indicator function of each of the following, in terms of ,
, and  in sum-product form:

1. 
2. 

Answer
1. 
2. 

n = 4 ({k})f

−1

k ∈ T

({0}) = {0000}f

−1

({1}) = {1000, 0100, 0010, 0001}f

−1

({2}) = {1100, 1010, 1001, 0110, 0101, 0011}f

−1

({3}) = {1110, 1101, 1011, 0111}f

−1

({4}) = {1111}f

−1

n = 4 A = {1000, 1010} B= {1000, 1100}

f(A)

f(B)

f(A∩B)

f(A) ∩ f(B)

(f(A))f

−1

{1, 2}

{1, 2}

{1}

{1, 2}

{1000, 0100, 0010, 0001, 1100, 1010, 1001, 0110, 0101, 0011}

f(A∩B) ⊂ f(A) ∩ f(B) A ⊂ (f(A))f

−1

A B S 1

A

1

B

A B

1

A

1

B

= 1 −1

A

c

1

A

= 1 −1

B

c

1

B

=1

A∩B

1

A

1

B

= + −1

A∪B

1

A

1

B

1

A

1

B

= −1

A∩B

c

1

A

1

A

1

B

= −1

B∩A

c

1

B

1

A

1

B

= 1 − +1

A∪B

c

1

B

1

A

1

B

= 1 − +1

B∪A

c

1

A

1

A

1

B

= 1 − − +1

∩A

c

B

c

1

A

1

B

1

A

1

B

= 1 −1

∪A

c

B

c

1

A

1

B

= + −21

(A∩ )∪(B∩ )B

c

A

c

1

A

1

B

1

A

1

B

= 1 − − +21

(A∩B)∪( ∩ )A

c

B

c

1

A

1

B

1

A

1

B

A B C S 1

A

1

B

1

C

D = {x ∈ S : x is an element of exactly one of the given sets}

E = {x ∈ S : x is an element of exactly two of the given sets}

= + + −2 ( + + ) +31

D

1

A

1

B

1

C

1

A

1

B

1

A

1

C

1

B

1

C

1

A

1

B

1

C

= + + −31

E

1

A

1

B

1

A

1

C

1

B

1

C

1

A

1

B

1

C
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Operators

Recall the standard arithmetic operators on  discussed above.

We all know that sum is commutative and associative, and that product distributes over sum.

1. Is difference commutative?
2. Is difference associative?
3. Does product distribute over difference?
4. Does sum distributed over product?

Answer
1. No. 
2. No. 
3. Yes. 
4. No. 

Multisets

Express the multiset  in list form that has the multiplicity function  given by , , 
, , .

Answer

Express the prime factors of 360 as a multiset in list form.

Answer

This page titled 1.2: Functions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.

R

x−y ≠ y−x

x−(y−z) ≠ (x−y)−z

x(y−z) = (xy)−(xz)

x+(yz) ≠ (x+y)(x+z)

A m : {a, b, c, d, e} →N m(a) = 2 m(b) = 3

m(c) = 1 m(d) = 0 m(e) = 4

A= {a, a, b, b, b, c, e, e, e, e}

{2, 2, 2, 3, 3, 5}
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1.3: Relations
  

Relations play a fundamental role in probability theory, as in most other areas of mathematics.

Definitions and Constructions

Suppose that  and  are sets. A relation from  to  is a subset of the product set .

1. The domain of  is the set of first coordinates: .
2. The range of  is the set of second coordinates: .

A relation from a set  to itself is a relation on .

As the name suggests, a relation  from  into  is supposed to define a relationship between the elements of  and the elements
of , and so we usually use the more suggestive notation  when . Note that the domain of  is the projections of 
onto  and the range of  is the projection of  onto .

Basic Examples

Suppose that  is a set and recall that  denotes the power set of , the collection of all subsets of . The membership relation
 from  to  is perhaps the most important and basic relationship in mathematics. Indeed, for us, it's a primitive (undefined)

relationship—given  and , we assume that we understand the meaning of the statement .

Another basic primitive relation is the equality relation  on a given set of objects . That is, given two objects  and , we
assume that we understand the meaning of the statement .

Other basic relations that you have seen are

1. The subset relation  on .
2. The order relation  on 

These two belong to a special class of relations known as partial orders that we will study in the next section. Note that a function 
from  into  is a special type of relation. To compare the two types of notation (relation and function), note that  means that 

.

Constructions

Since a relation is just a set of ordered pairs, the set operations can be used to build new relations from existing ones.

if  and  are relations from  to , then so are , , .

1.  if and only if  or .
2.  if and only if  and .
3.  if and only if  but not .
4. If  then  implies .

If  is a relation from  to  and , then  is a relation from  to .

The restriction of a relation defines a new relation.

If  is a relation on  and  then  is a relation on , called the restriction of  to .

The inverse of a relation also defines a new relation.

If  is a relation from  to , the inverse of  is the relation from  to  defined by

Equivalently, . Note that any function  from  into  has an inverse relation, but only when the  is
one-to-one is the inverse relation also a function (the inverse function). Composition is another natural way to create new relations

S T S T S×T

R domain(R) = {x ∈ S : (x, y) ∈ R for some y ∈ T}

R range(R) = {y ∈ T : (x, y) ∈ R for some x ∈ S}

S S

R S T S

T xRy (x, y) ∈ R R R

S R R T

S P(S) S S

∈ S P(S)

x A x ∈ A

= S x y

x = y

⊆ P(S)

≤ R

f

S T x f y

y = f(x)

Q R S T Q∪R Q∩R Q ∖R

x(Q∪R)y xQ y xRy

x(Q∩R)y xQ y xRy

x(Q ∖R)y xQ y xRy

Q ⊆R xQ y xRy

R S T Q ⊆R Q S T

R S A ⊆ S =R∩ (A×A)R

A

A R A

R S T R T S

y x if and only if xRyR

−1

(1.3.1)

= {(y, x) : (x, y) ∈ R}R

−1

f S T f
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from existing ones.

Suppose that  is a relation from  to  and that  is a relation from  to . The composition  is the relation from  to
 defined as follows: for  and ,  if and only if there exists  such that  and .

Note that the notation is inconsistent with the notation used for composition of functions, essentially because relations are read
from left to right, while functions are read from right to left. Hopefully, the inconsistency will not cause confusion, since we will
always use function notation for functions.

Basic Properties
The important classes of relations that we will study in the next couple of sections are characterized by certain basic properties.
Here are the definitions:

Suppose that  is a relation on .

1.  is reflexive if  for all .
2.  is irreflexive if no  satisfies .
3.  is symmetric if  implies  for all .
4.  is anti-symmetric if  and  implies  for all .
5.  is transitive if  and  implies  for all .

The proofs of the following results are straightforward, so be sure to try them yourself before reading the ones in the text.

A relation  on  is reflexive if and only if the equality relation  on  is a subset of .

Proof

This follows from the definitions.  is reflexive if and only if  for all .

A relation  on  is symmetric if and only if .

Proof

Suppose that  is symmetric. If  then  and hence . If  then  and
hence . Thus . Conversely, suppose . If  then  and hence .

A relation  on  is transitive if and only if .

Proof

Suppose that  is transitive. If  then there exists  such that  and . But then 
 by transitivity. Hence . Conversely, suppose that . If  and  then 

 and hence . Hence  is transitive.

A relation  on  is antisymmetric if and only if  is a subset of the equality relation  on .

Proof

Restated, this result is that  is antisymmetric if and only if  implies . Thus suppose that  is
antisymmetric. If  then  and . But then  so by antisymmetry, .
Conversely suppose that  implies . If  and  then  and hence 

. Thus  so  is antisymmetric.

Suppose that  and  are relations on . For each property below, if both  and  have the property, then so does .

1. reflexive
2. symmetric
3. transitive

Proof

Q S T R T U Q ∘R S

U x ∈ S z ∈ U x(Q ∘R)z y ∈ T xQ y y Rz

R S

R xRx x ∈ S

R x ∈ S xRx

R xRy y Rx x, y ∈ S

R xRy y Rx x = y x, y ∈ S

R xRy y Rz xRz x, y, z ∈ S

R S = S R

R (x, x) ∈ R x ∈ S

R S =RR

−1

R (x, y) ∈ R (y, x) ∈ R (x, y) ∈ R

−1

(x, y) ∈ R

−1

(y, x) ∈ R

(x, y) ∈ R R=R

−1

R=R

−1

(x, y) ∈ R (x, y) ∈ R

−1

(y, x) ∈ R

R S R∘R⊆R

R (x, z) ∈ R∘R y ∈ S (x, y) ∈ R (y, z) ∈ R

(x, z) ∈ R R∘R⊆R R∘R⊆R (x, y) ∈ R (y, z) ∈ R

(x, z) ∈ R∘R (x, z) ∈ R R

R S R∩R

−1

= S

R (x, y) ∈ R∩R

−1

x = y R

(x, y) ∈ R∩R

−1

(x, y) ∈ R (x, y) ∈ R

−1

(y, x) ∈ R x = y

(x, y) ∈ R∩R

−1

x = y (x, y) ∈ R (y, x) ∈ R (x, y) ∈ R

−1

(x, y) ∈ R∩R

−1

x = y R

Q R S Q R Q∩R
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1. Suppose that  and  are reflexive. Then  and  for each  and hence  for each 
. Thus  is reflexive.

2. Suppose that  and  are symmetric. If  then  and . Hence  and 
 so . Hence  is symmetric.

3. Suppose that  and  are transitive. If  and  then , , , and 
. Hence  and  so . Hence  is transitive.

Suppose that  is a relation on a set .

1. Give an explicit definition for the property  is not reflexive.
2. Give an explicit definition for the property  is not irreflexive.
3. Are any of the properties  is reflexive,  is not reflexive,  is irreflexive,  is not irreflexive equivalent?

Answer
1.  is not reflexive if and only if there exists  such that .
2.  is not irreflexive if and only if there exists  such that .
3. Nope.

Suppose that  is a relation on a set .

1. Give an explicit definition for the property  is not symmetric.
2. Give an explicit definition for the property  is not antisymmetric.
3. Are any of the properties  is symmetric,  is not symmetric,  is antisymmetric,  is not antisymmetric equivalent?

Answer
1.  is not symmetric if and only if there exist  such that  and .
2.  is not antisymmetric if and only if there exist distinct  such that  and .
3. Nope.

Computational Exercises

Let  be the relation defined on  by  if and only if . Determine if  has each of the following
properties:

1. reflexive
2. symmetric
3. transitive
4. irreflexive
5. antisymmetric

Answer
1. yes
2. yes
3. yes
4. no
5. no

The relation  in the previous exercise is a member of an important class of equivalence relations.

Let  be the relation defined on  by  if and only if . Determine if  has each of the following properties:

1. reflexive
2. symmetric
3. transitive
4. irreflexive
5. antisymmetric

Answer

Q R (x, x) ∈Q (x, x) ∈ R x ∈ S (x, x) ∈Q∩R

x ∈ S Q∩R

Q R (x, y) ∈Q∩R (x, y) ∈Q (x, y) ∈ R (y, x) ∈Q

(y, x) ∈ R (y, x) ∈Q∩R Q∩R

Q R (x, y) ∈Q∩R (y, z) ∈Q∩R (x, y) ∈Q (x, y) ∈ R (y, z) ∈Q

(y, z) ∈ R (x, z) ∈Q (x, z) ∈ R (x, z) ∈Q∩R Q∩R

R S

R

R

R R R R

R x ∈ S (x, x) ∉ R

R x ∈ S (x, x) ∈ R

R S

R

R

R R R R

R x, y ∈ S (x, y) ∈ R (y, x) ∉ R

R x, y ∈ S (x, y) ∈ R (y, x) ∈ R

R R xRy sin(x) = sin(y) R

R

R R xRy + ≤ 1x

2

y

2

R
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1. no
2. yes
3. no
4. no
5. no
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1.4: Partial Orders
   

Partial orders are a special class of relations that play an important role in probability theory.

Basic Theory

A partial order on a set  is a relation  on  that is reflexive, anti-symmetric, and transitive. The pair  is called a partially
ordered set. So for all :

1. , the reflexive property
2. If  and  then , the antisymmetric property
3. If  and  then , the transitive property

As the name and notation suggest, a partial order is a type of ordering of the elements of . Partial orders occur naturally in many areas
of mathematics, including probability. A partial order on a set naturally gives rise to several other relations on the set.

Suppose that  is a partial order on a set . The relations , , , , and  are defined as follows:

1.  if and only if .
2.  if and only if  and .
3.  if and only if .
4.  if and only if  or .
5.  if and only if neither  nor .

Note that  is the inverse of , and  is the inverse of . Note also that  if and only if either  or , so the relation 
completely determines the relation . The relation  is sometimes called a strict or strong partial order to distingush it from the
ordinary (weak) partial order . Finally, note that  means that  and  are related in the partial order, while  means that  and

 are unrelated in the partial order. Thus, the relations  and  are complements of each other, as sets of ordered pairs. A total or linear
order is a partial order in which there are no unrelated elements.

A partial order  on  is a total order or linear order if for every , either  or .

Suppose that  and  are partial orders on a set . Then  is an sub-order of , or equivalently  is an extension of  if
and only if  implies  for .

Thus if  is a suborder of , then as sets of ordered pairs,  is a subset of . We need one more relation that arises naturally from a
partial order.

Suppose that  is a partial order on a set . For ,  is said to cover  if  but no element  satisfies .

If  is finite, the covering relation completely determines the partial order, by virtue of the transitive property.

Suppose that  is a partial order on a finite set . The covering graph or Hasse graph of  is the directed graph with vertex set
 and directed edge set , where  if and only if  covers .

Thus,  if and only if there is a directed path in the graph from  to . Hasse graphs are named for the German mathematician
Helmut Hasse. The graphs are often drawn with the edges directed upward. In this way, the directions can be inferred without having to
actually draw arrows.

Basic Examples
Of course, the ordinary order  is a total order on the set of real numbers . The subset partial order is one of the most important in
probability theory:

Suppose that  is a set. The subset relation  is a partial order on , the power set of .

Proof

 Definitions

S ⪯ S (S,⪯)

x,  y,  z ∈ S

x ⪯ x

x ⪯ y y ⪯ x x = y

x ⪯ y y ⪯ z x ⪯ z

S

⪯ S ⪰ ≺ ≻ ⊥ ∥

x ⪰ y y ⪯ x

x ≺ y x ⪯ y x ≠ y

x ≻ y y ≺ x

x ⊥ y x ⪯ y y ⪯ x

x ∥ y x ⪯ y y ⪯ x

⪰ ⪯ ≻ ≺ x ⪯ y x ≺ y x = y ≺

⪯ ≺

⪯ x ⊥ y x y x ∥ y x

y ⊥ ∥

⪯ S x,  y ∈ S x ⪯ y y ⪯ x

⪯

1

⪯

2

S ⪯

1

⪯

2

⪯

2

⪯

1

x y⪯

1

x y⪯

2

x,  y ∈ S

⪯

1

⪯

2

⪯

1

⪯

2

⪯ S x,  y ∈ S y x x ≺ y z ∈ S x ≺ z≺ y

S

⪯ S (S,⪯)

S E (x, y) ∈ E y x

x ≺ y x y

≤ R

S ⊆ P(S) S
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We proved this result in the section on sets. To review, recall that for ,  means that  implies .
Also  means that  if and only if . Thus

1. 
2.  and  if and only if 
3.  and  imply 

Here is a partial order that arises naturally from arithmetic.

Let  denote the division relation on the set of positive integers . That is,  if and only if there exists  such that 
. Then

1.  is a partial order on .
2.  is a sub-order of the ordinary order .

Proof
1. Clearly  for , since , so  is reflexive. Suppose  and , where . Then there exist 

 such that  and . Substituting gives , and hence . Thus  so  is
antisymmetric. Finally, suppose  and , where . Then there exists  such that  and 

. Substituting gives , so . Thus  is transitive.
2. If  and , then there exists  such that . Since , .

The set of functions from a set into a partial ordered set can itself be partially ordered in a natural way.

Suppose that  is a set and that  is a partially ordered set, and let  denote the set of functions . The relation 
on  defined by  if and only  for all  is a partial order on .

Proof

Suppose that .

1.  for all , so .
2. If  and  then  and  for all . Hence  for all  so .
3. If  and  then  and  for all . Hence  for all  so .

Note that we don't need a partial order on the domain .

Basic Properties
The proofs of the following basic properties are straightforward. Be sure to try them yourself before reading the ones in the text.

The inverse of a partial order is also a partial order.

Proof

Clearly the reflexive, antisymmetric and transitive properties hold for .

If  is a partial order on  and  is a subset of , then the restriction of  to  is a partial order on .

Proof

The reflexive, antisymmetric, and transitive properties given above hold for all  and hence hold for all .

The following theorem characterizes relations that correspond to strict order.

Let  be a set. A relation  is a partial order on  if and only if  is transitive and irreflexive.

Proof

Suppose that  is a partial order on . Recall that  is defined by  if and only if  and . If  and  then 
 and , and so . On the other hand, if  then  and  so , a contradiction. Hence  and so 
. Therefore  is transitive. If  then  by definition, so  is irreflexive.

Conversely, suppose that  is a transitive and irreflexive relation on . Recall that  is defined by  if and only if  or 
. By definition then,  is reflexive:  for every . Next, suppose that  and . If  and  then 

A,  B ∈P(S) A⊆B x ∈ A x ∈ B

A=B x ∈ A x ∈ B

A⊆A

A⊆B B⊆A A=B

A⊆B B⊆C A⊆C

∣ N

+

m ∣ n k ∈ N

+

n= km

∣ N

+

∣ ≤

n ∣ n n ∈ N

+

n= 1 ⋅n ∣ m ∣ n n ∣m m,  n ∈ N

+

j,  k ∈ N

+

n= km m = jn n= jkn j= k= 1 m = n ∣

m ∣ n n ∣ p m,  n,  p ∈ N

+

j,  k ∈ N

+

n= jm

p = kn p = jkm m ∣ p ∣

m,  n ∈ N

+

m ∣ n k ∈ N

+

n= km k≥ 1 m ≤ n

S (T , )⪯

T

S f : S→ T ⪯

S f ⪯ g f(x) g(x)⪯

T

x ∈ S S

f , g, h ∈S

f(x) f(x)⪯

T

x ∈ S f ⪯ f

f ⪯ g g⪯ f f(x) g(x)⪯

T

g(x) f(x)⪯

T

x ∈ S f(x) = g(x) x ∈ S f = g

f ⪯ g g⪯ h f(x) g(x)⪯

T

g(x) h(x)⪯

T

x ∈ S f(x) h(x)⪯

T

x ∈ S f ⪯ h

S

⪰

⪯ S A S ⪯ A A

x,  y,  z ∈ S x,  y,  z ∈ A

S ⪯ S ≺

⪯ S ≺ x ≺ y x ⪯ y x ≠ y x ≺ y y ≺ z

x ⪯ y y ⪯ z x ⪯ z x = z x ⪯ y y ⪯ x x = y x ≠ z

x ≺ z ≺ x ≺ y x ≠ y ≺

≺ S ⪯ x ⪯ y x ≺ y

x = y ⪯ x ⪯ x x ∈ S x ⪯ y y ⪯ x x ≺ y y ≺ x
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 by the transitive property of . But this is a contradiction by the irreflexive property, so we must have . Thus  is
antisymmetric. Suppose  and . There are four cases:

1. If  and  then  by the transitive property of .
2. If  and  then  by substitution.
3. If  and  then  by substitution.
4. If  and  then  by the transitive property of .

In all cases we have  so  is transitive. Hence  is a partial order on .

Monotone Sets and Functions

Partial orders form a natural setting for increasing and decreasing sets and functions. Here are the definitions:

Suppose that  is a partial order on a set  and that . In the following definitions,  are arbitrary elements of .

1.  is increasing if  and  imply .
2.  is decreasing if  and  imply .

Suppose that  is a set with partial order ,  is a set with partial order , and that . In the following definitions, 
are arbitrary elements of .

1.  is increasing if and only if  implies .
2.  is decreasing if and only if  implies .
3.  is strictly increasing if and only if  implies .
4.  is strictly decreasing if and only if  implies .

Recall the definition of the indicator function  associated with a subset  of a universal set : For ,  if  and 
 if .

Suppose that  is a partial order on a set  and that . Then

1.  is increasing if and only if  is increasing.
2.  is decreasing if and only if  is decreasing.

Proof
1.  is increasing if and only if  and  implies  if and only if  and  implies  if and

only if  is increasing.
2.  is decreasing if and only if  and  implies  if and only if  and  implies  if and

only if  is decreasing.

Isomorphism

Two partially ordered sets  and  are said to be isomorphic if there exists a one-to-one function  from  onto 
such that  if and only if , for all . The function  is an isomorphism.

Generally, a mathematical space often consists of a set and various structures defined in terms of the set, such as relations, operators, or a
collection of subsets. Loosely speaking, two mathematical spaces of the same type are isomorphic if there exists a one-to-one function
from one of the sets onto the other that preserves the structures, and again, the function is called an isomorphism. The basic idea is that
isomorphic spaces are mathematically identical, except for superficial matters of appearance. The word isomorphism is from the Greek
and means equal shape.

Suppose that the partially ordered sets  and  are isomorphic, and that  is an isomorphism. Then  and 
 are strictly increasing.

Proof

We need to show that for ,  if and only if . If  then by definition, . But if 
 then  since  is one-to-one. This is a contradiction, so . Similarly, if  then by

definition, . But if  then , a contradiction. Hence .

x ≺ x ≺ x = y ⪯

x ⪯ y y ⪯ z

x ≺ y y ≺ z x ≺ z ≺

x = y y ≺ z x ≺ z

x ≺ y y = z x ≺ z

x = y y = z x = z =

x ⪯ z ⪯ ⪯ S

⪯ S A⊆ S x, y S

A x ∈ A x ⪯ y y ∈ A

A y ∈ A x ⪯ y x ∈ A

S ⪯

S

T ⪯

T

f : S→ T x, y

S

f x y⪯

S

f(x) f(y)⪯

T

f x y⪯

S

f(x) f(y)⪰

T

f x y≺

S

f(x) f(y)≺

T

f x y≺

S

f(x) f(y)≻

T

1

A

A S x ∈ S (x) = 11

A

x ∈ A

(x) = 01

A

x ∉ A

⪯ S A⊆ S

A 1

A

A 1

A

A x ∈ A x ⪯ y y ∈ A (x) = 11

A

x ≤ y (y) = 11

A

1

A

A y ∈ A x ⪯ y x ∈ A (y) = 11

A

x ≤ y (x) = 11

A

1

A

(S, )⪯

S

(T , )⪯

T

f S T

x y⪯

S

f(x) f(y)⪯

T

x,  y ∈ S f

(S, )⪯

S

(T , )⪯

T

f : S→ T f

f

−1

x,  y ∈ S x y≺

S

f(x) f(y)≺

T

x y≺

S

f(x) f(y)⪯

T

f(x) = f(y) x = y f f(x) f(y)≺

T

f(x) f(y)≺

T

x y⪯

S

x = y f(x) = f(y) x y≺

S
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In a sense, the subset partial order is universal—every partially ordered set is isomorphic to  for some collection of sets .

Suppose that  is a partial order on a set . Then there exists  such that  is isomorphic to .

Proof

For each , let , and then let , so that . We will show that the function 
 from  onto  is one-to-one, and satisfies

First, suppose that  and . Then  so  and hence . Similarly,  so  and hence 
. Thus , so the mapping is one-to-one. Next, suppose that . If  then  so  by the transitive

property, and hence . Thus . Conversely, suppose . As before, , so  and hence .

Extremal Elements

Various types of extremal elements play important roles in partially ordered sets. Here are the definitions:

Suppose that  is a partial order on a set  and that .

1. An element  is the minimum element of  if and only if  for every .
2. An element  is a minimal element of  if and only if no  satisfies .
3. An element  is the maximum element of  if and only if  for every .
4. An element  is a maximal element of  if and only if no  satisfies .

In general, a set can have several maximal and minimal elements (or none). On the other hand,

The minimum and maximum elements of , if they exist, are unique. They are denoted  and , respectively.

Proof

Suppose that  are minimum elements of . Since  we have  and , so  by the antisymmetric property.
The proof for the maximum element is analogous.

Minimal, maximal, minimum, and maximum elements of a set must belong to that set. The following definitions relate to upper and
lower bounds of a set, which do not have to belong to the set.

Suppose again that  is a partial order on a set  and that . Then

1. An element  is a lower bound for  if and only if  for every .
2. An element  is an upper bound for  if and only if  for every .
3. The greatest lower bound or infimum of , if it exists, is the maximum of the set of lower bounds of .
4. The least upper bound or supremum of , if it exists, is the minimum of the set of upper bounds of .

By (20), the greatest lower bound of  is unique, if it exists. It is denoted  or . Similarly, the least upper bound of  is
unique, if it exists, and is denoted  or . Note that every element of  is a lower bound and an upper bound for , since the
conditions in the definition hold vacuously.

The symbols  and  are also used for infimum and supremum, respectively, so  and  if they exist.. In
particular, for , operator notation is more commonly used, so  and . Partially ordered sets
for which these elements always exist are important, and have a special name.

Suppose that  is a partial order on a set . Then  is a lattice if  and  exist for every .

For the subset partial order, the inf and sup operators correspond to intersection and union, respectively:

Let  be a set and consider the subset partial order  on , the power set of . Let  be a nonempty subset of , that is, a
nonempty collection of subsets of . Then

1. 
2. 

Proof

(S , ⊆) S

⪯ S S ⊆P(S) (S,⪯) (S , ⊆)

x ∈ S = {u ∈ S : u ⪯ x}A

x

S = { : x ∈ S}A

x

S ⊆P(S)

x↦A

x

S S

x ⪯ y ⟺ ⊆A

x

A

y

(1.4.1)
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y ⪯ x x = y x ⪯ y u ∈ A

x

u ⪯ x u ⪯ y

u ∈ A

y

⊆A

x

A

y

⊆A

x

A

y

x ∈ A

x

x ∈ A

y

x ⪯ y

⪯ S A⊆ S

a ∈ A A a⪯ x x ∈ A

a ∈ A A x ∈ A x ≺ a

b ∈ A A b ⪰ x x ∈ A

b ∈ A A x ∈ A x ≻ b

A min(A) max(A)

a,  b A a,  b ∈ A a⪯ b b ⪯ a a= b

⪯ S A⊆ S

u ∈ S A u ⪯ x x ∈ A

v∈ S A v⪰ x x ∈ A

A A

A A

A glb(A) inf(A) A

lub(A) sup(A) S ∅

∧ ∨ ⋀A= inf(A) ⋁A= sup(A)

x,  y ∈ S x∧ y = inf{x, y} x∨ y = sup{x, y}

⪯ S (S,⪯) x∧ y x∨ y x,  y ∈ S

S ⊆ P(S) S A P(S)

S

inf(A ) =⋂A

sup(A ) =⋃A
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1. First,  for every  and hence  is a lower bound of . If  is a lower bound of  then  for every 
 and hence . Therefore  is the greatest lower bound.

2. First,  for every  and hence  is an upper bound of . If  is an upper bound of  then  for every 
 and hence . Therefore  is the least upper bound.

In particular,  and , so  is a lattice.

Consider the division partial order  on the set of positive integers  and let  be a nonempty subset of .

1.  is the greatest common divisor of , usually denoted  in this context.
2. If  is infinite then  does not exist. If  is finite then  is the least common multiple of , usually denoted 

 in this context.

Suppose that  is a set and that . An element  is said to be a fixed point of  if .

The following result explores a basic fixed point theorem for a partially ordered set. The theorem is important in the study of cardinality.

Suppose that  is a partial order on a set  with the property that  exists for every . If  is increasing, then 
has a fixed point.

Proof.

Let  and let . If  then  so . Hence  is an upper bound of 
so . But then  so . Hence . Therefore .

Note that the hypotheses of the theorem require that  exists. The set  is nonempty since 
.

If  is a total order on a set  with the property that every nonempty subset of  has a minimum element, then  is said to be well
ordered by . One of the most important examples is , which is well ordered by the ordinary order . On the other hand, the well
ordering principle, which is equivalent to the axiom of choice, states that every nonempty set can be well ordered.

Orders on Product Spaces

Suppose that  and  are sets with partial orders  and  respectively. Define the relation  on  by  if and
only if  and .

1. The relation  is a partial order on , called, appropriately enough, the product order.
2. Suppose that . If  has at least 2 elements, then  is not a total order on .

Proof

Figure : The product order on . The region shaded red is the set of points . The region shaded blue is the set of points 
. The region shaded white is the set of points that are not comparable with .

Product order extends in a straightforward way to the Cartesian product of a finite or an infinite sequence of partially ordered spaces. For
example, suppose that  is a set with partial order  for each , where . The product order  on the product
set  is defined as follows: for  and  in the product set,  if and only
if  for each . We can generalize this further to arbitrary product sets. Suppose that  is a set for each  in a
nonempty (both otherwise arbitrary) index set . Recall that

⋂A ⊆A A ∈A ⋂A A B A B ⊆A

A ∈A B ⊆⋂A ⋂A

A ⊆⋃A A ∈A ⋃A A B A A ⊆B

A ∈A ⋃A ⊆B ⋃A

A∧B =A∩B A∨B =A∪B (P(S), ⊆)
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To make the notation look more like a simple Cartesian product, we will write  instead of  for the value of a function  in the
product set at .

Suppose that  is a set with partial order  for each  in a nonempty index set . Define the relation  on  by  if and
only if  for each . Then  is a partial order on the product set, known again as the product order.

Proof

In spite of the abstraction, the proof is perfectly straightforward. Suppose that .

1.  for every , and hence . Thus  is reflexive.
2. Suppose that  and . Then  and  for each . Hence  for each  and so . Thus 

is antisymmetric
3. Suppose that  and . Then  and  for each . Hence  for each , so . Thus  is

transitive.

Note again that no assumptions are made on the index set , other than it be nonempty. In particular, no order is necessary on . The next
result gives a very different type of order on a product space.

Suppose again that  and  are sets with partial orders  and  respectively. Define the relation  on  by 
if and only if either , or  and .

1. The relation  is a partial order on , called the lexicographic order or dictionary order.
2. If  and  are total orders on  and , respectively, then  is a total order on .

Proof

Figure : The lexicographic order on . The region shaded red is the set of points . The region shaded blue is the set of
points .

As with the product order, the lexicographic order can be generalized to a collection of partially ordered spaces. However, we need the
index set to be totally ordered.

Suppose that  is a set with partial order  for each  in a nonempty index set . Suppose also that  is a total order on . Define
the relation  on the product set  as follows:  if and only if there exists  such that  if  and .
Then

1.  is a partial order on , known again as the lexicographic order.
2. If  is a total order for each , and  is well ordered by , then  is a total order on .

Proof
1. By the result on strong orders, we need to show that  is irreflexive and transitive. First, no  satisfies  since 

 for all . Hence  is irreflexive. Next, suppose that  and that  and . Then there exists
 such that  if  and . Similarly, there exists  such that  if  and . Again,

since  is totally ordered, either  or  or . If , then  if  and . If , then
 if  and . If , then  if  and . In all cases,  so  is

transitive.
2. Suppose now that  is a total order on  for each  and that  is well ordered by . Let  with . Let 

. Then  by assumption, and hence has a minimum element . If  then  and hence 
. On the other hand,  since  and therefore, since  is totally ordered, we must have either  or 
. In the first case,  and in the second case . Hence  is totally ordered.
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The term lexicographic comes from the way that we order words alphabetically: We look at the first letter; if these are different, we
know how to order the words. If the first letters are the same, we look at the second letter; if these are different, we know how to order
the words. We continue in this way until we find letters that are different, and we can order the words. In fact, the lexicographic order is
sometimes referred to as the first difference order. Note also that if  is a set and  a total order on  for , then by the well
ordering principle, there exists a well ordering  of , and hence there exists a lexicographic total order on the product space .
As a mathematical structure, the lexicographic order is not as obscure as you might think.

 is isomorphic to the lexicographic product of  with , where  is the ordinary order for real numbers.

Proof

Every  can be uniquely expressed in the form  where  is the integer part and  is
the remainder. Thus  is a one-to-one function from  onto . For example,  maps to , while 
maps to . Suppose that , where of course  are the integer parts of  and ,
respectively, and  are the corresponding remainders. Then  if and only if  or  and . Again, to
illustrate with real real numbers, we can tell that  just by comparing the integer parts: . We can ignore the
remainders. On the other hand, to see that  we need to compare the remainders:  since the integer parts are the
same.

Limits of Sequences of Real Numbers

Suppose that  is a sequence of real numbers.

The sequence  is increasing in .

Since the sequence of infimums in the last result is increasing, the limit exists in , and is called the limit inferior of the original
sequence:

The sequence  is decreasing in .

Since the the sequence of supremums in the last result is decreasing, the limit exists in , and is called the limit superior of the
original sequence:

Note that  and equality holds if and only if  exists (and is the common value).

Vector Spaces of Functions

Suppose that  is a nonempty set, and recall that the set  of functions  is a vector space, under the usual pointwise definition
of addition and scalar multiplication. As noted in (9),  is also a partial ordered set, under the pointwise partial order:  if and only
if  for all . Consistent with the definitions (19),  is bounded if there exists  such that  for
all . Now let  denote the set of bounded functions , and for  define

 is a vector subspace of  and  is a norm on .

Proof

To show that  is a subspace, we just have to note that it is closed under addition and scalar multiplication. That is, if 
are bounded, and if , then  and  are bounded. Next we show that  satisfies the axioms of a norm. Again, let 

 and 

1. Clearly  and  if and only if  for all  if and only if , the zero function on .
2. 
3. By the usual triangle inequality on ,  for . Hence

That is, .
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Recall that part (a) is the positive property, part (b) is the scaling property, and part (c) is the triangle inequality.

Appropriately enough,  is called the supremum norm on . Vector spaces of bounded, real-valued functions, with the supremum
norm are especially important in probability and random processes. We will return to this discussion again in the advanced sections on
metric spaces and measure theory.

Computational Exercises

Let .

1. Sketch the Hasse graph corresponding to the ordinary order  on .
2. Sketch the Hasse graph corresponding to the division partial order  on .

Answer

1. The Hasse graph of 
Hasse graph

2. The Hasse graph of 
Hasse graph

Consider the ordinary order  on the set of real numbers , and let  where . Find each of the following that exist:

1. The set of minimal elements of 
2. The set of maximal elements of 
3. 
4. 
5. The set of lower bounds of 
6. The set of upper bounds of 
7. 
8. 

Answer
1. 
2. 
3. 
4. Does not exist
5. 
6. 
7. 
8. 

Again consider the division partial order  on the set of positive integers  and let . Find each of the following
that exist:

1. The set of minimal elements of 
2. The set of maximal elements of 
3. 
4. 
5. The set of lower bounds of 
6. The set of upper bounds of 
7. 
8. .

Answer
1. 
2. 
3. Does not exist
4. 
5. 
6. 
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7. 
8. 

Let .

1. Give  in list form.
2. Describe the Hasse graph of 

Answer
1. 
2. For  and , there is a directed edge from  to 

Note that the Hasse graph of  looks the same as the graph of , except for the labels on the vertices. This symmetry is because of
the complement relationship.

Let .

1. Give  in list form.
2. Describe the Hasse graph of 

Answer
1. 
2. For  and , there is a directed edge from  to 

Note again that the Hasse graph of  looks the same as the graph of , except for the labels on the vertices. This symmetry is
because the complement relationship.

Suppose that  and  are subsets of a universal set . Let  denote the collection of the 16 subsets of  that can be constructed
from  and  using the set operations. Show that  is isomorphic to the partially ordered set in the previous exercise. Use the
Venn diagram app to help.

Proof

Let , , , . Our basic assumption is that  and  are in “general position”, so that 
 are distinct and nonempty. Note also that  partitions . Now, map each subset  of  to . This

function is an isomorphism from  to . That is, for  and  subsets of ,  if and only if .

This page titled 1.4: Partial Orders is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services)
via source content that was edited to the style and standards of the LibreTexts platform.
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1.5: Equivalence Relations
   

Basic Theory

A relation  on a nonempty set  that is reflexive, symmetric, and transitive is an equivalence relation on . Thus, for all 
,

1. , the reflexive property.
2. If  then , the symmetric property.
3. If  and  then , the transitive property.

As the name and notation suggest, an equivalence relation is intended to define a type of equivalence among the elements of .
Like partial orders, equivalence relations occur naturally in most areas of mathematics, including probability.

Suppose that  is an equivalence relation on . The equivalence class of an element  is the set of all elements that are
equivalent to , and is denoted

Results

The most important result is that an equivalence relation on a set  defines a partition of , by means of the equivalence classes.

Suppose that  is an equivalence relation on a set .

1. If  then .
2. If  then .
3. The collection of (distinct) equivalence classes is a partition of  into nonempty sets.

Proof
1. Suppose that . If  then  and hence  by the transitive property. Hence . Similarly, if 

then . But  by the symmetric property, and hence  by the transitive property. Hence .
2. Suppose that . If , then  and , so  and . But then  by the symmetric

property, and then  by the transitive property. This is a contradiction, so .
3. From (a) and (b), the (distinct) equivalence classes are disjoint. If , then  by the reflexive property, and hence 

. Therefore .

Sometimes the set  of equivalence classes is denoted . The idea is that the equivalence classes are new “objects” obtained
by “identifying” elements in  that are equivalent. Conversely, every partition of a set defines an equivalence relation on the set.

Suppose that  is a collection of nonempty sets that partition a given set . Define the relation  on  by  if and only if
 and  for some .

1.  is an equivalence relation.
2.  is the set of equivalence classes.

Proof
1. If , then  for some , since  partitions . Hence , and so the reflexive property holds. Next, 

is trivially symmetric by definition. Finally, suppose that  and . Then  for some  and 
for some . But then . The sets in  are disjoint, so . Hence , so . Thus  is
transitive.

2. If , then  for a unique , and then by definition, .

 Definitions

≈ S S

x, y, z ∈ S

x ≈ x

x ≈ y y ≈ x

x ≈ y y ≈ z x ≈ z

S

≈ S x ∈ S

x

[x] = {y ∈ S : y ≈ x} (1.5.1)

S S

≈ S

x ≈ y [x] = [y]

x ≉ y [x] ∩ [y] = ∅

S

x ≈ y u ∈ [x] u ≈ x u ≈ y u ∈ [y] u ∈ [y]

u ≈ y y ≈ x u ≈ x u ∈ [x]

x ≉ y u ∈ [x] ∩ [y] u ∈ [x] u ∈ [y] u ≈ x u ≈ y x ≈ u

x ≈ y [x] ∩ [y] = ∅

x ∈ S x ≈ x

x ∈ [x] [x] = S⋃

x∈S

S S/ ≈

S

S S ≈ S x ≈ y

x ∈ A y ∈ A A ∈S

≈

S

x ∈ S x ∈ A A ∈S S S x ≈ x ≈

x ≈ y y ≈ z x, y ∈ A A ∈S y, z ∈ B

B ∈S y ∈ A∩B S A=B x, z ∈ A x ≈ z ≈

x ∈ S x ∈ A A ∈S [x] =A
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Figure : A partition of . Any two points in the same partition set are equivalent.

Sometimes the equivalence relation  associated with a given partition  is denoted . The idea, of course, is that elements in
the same set of the partition are equivalent.

The process of forming a partition from an equivalence relation, and the process of forming an equivalence relation from a
partition are inverses of each other.

1. If we start with an equivalence relation  on , form the associated partition, and then construct the equivalence relation
associated with the partition, then we end up with the original equivalence relation. In modular notation,  is the
same as .

2. If we start with a partition  of , form the associated equivalence relation, and then form the partition associated with the
equivalence relation, then we end up with the original partition. In modular notation,  is the same as .

Suppose that  is a nonempty set. The most basic equivalence relation on  is the equality relation . In this case  for
each . At the other extreme is the trivial relation  defined by  for all . In this case  is the only equivalence
class.

Every function  defines an equivalence relation on its domain, known as the equivalence relation associated with . Moreover,
the equivalence classes have a simple description in terms of the inverse images of .

Suppose that . Define the relation  on  by  if and only if .

1. The relation  is an equivalence relation on .
2. The set of equivalences classes is .
3. The function  defined by  is well defined and is one-to-one.

Proof
1. If  then trivially , so . Hence  is reflexive. If  then  so trivially 

and hence . Thus  is symmetric. If  and  then  and , so trivially 
and so . Hence  is transitive.

2. Recall that  if and only if  for some . Then by definition, 

3. From (3),  if and only if  if and only if . This shows both that  is well defined, and that  is
one-to-one.

Figure : The equivalence relation on  associated with 

Suppose again that .

1. If  is one-to-one then the equivalence relation associated with  is the equality relation, and hence  for each 
.

2. If  is a constant function then the equivalence relation associated with  is the trivial relation, and hence  is the only
equivalence class.

Proof
1. If  is one-to-one, then  if and only if  if and only if .
2. If  is constant on  then  and hence  for all .

1.5.1 S

≈ S S/S

≈ S

S/(S/ ≈)

≈

S S

S/(S/S ) S

S S = [x] = {x}

x ∈ S ≈ x ≈ y x, y ∈ S S

f f

f

f : S→ T ≈ S x ≈ y f(x) = f(y)

≈ S

S = { {t} : t ∈ range(f)}f

−1

F :S → T F ([x]) = f(x)

x ∈ S f(x) = f(x) x ≈ x ≈ x ≈ y f(x) = f(y) f(y) = f(x)

y ≈ x ≈ x ≈ y y ≈ z f(x) = f(y) f(y) = f(z) f(x) = f(z)

x ≈ z ≈

t ∈ range(f) f(x) = t x ∈ S

[x] = {t} = {y ∈ S : f(y) = t} = {y ∈ S : f(y) = f(x)}f

−1

[x] = [y] x ≈ y f(x) = f(y) F F

1.5.2 S f : S→ T

f : S→ T

f f [x] = {x}

x ∈ S

f f S

f x ≈ y f(x) = f(y) x = y

f S f(x) = f(y) x ≈ y x, y ∈ S
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Equivalence relations associated with functions are universal: every equivalence relation is of this form:

Suppose that  is an equivalence relation on a set . Define  by . Then  is the equivalence relation
associated with .

Proof

From (6),  if and only if  if and only if .

The intersection of two equivalence relations is another equivalence relation.

Suppose that  and  are equivalence relations on a set . Let  denote the intersection of  and  (thought of as subsets of 
). Equivalently,  if and only if  and .

1.  is an equivalence relation on .
2. .

Suppose that we have a relation that is reflexive and transitive, but fails to be a partial order because it's not anti-symmetric. The
relation and its inverse naturally lead to an equivalence relation, and then in turn, the original relation defines a true partial order on
the equivalence classes. This is a common construction, and the details are given in the next theorem.

Suppose that  is a relation on a set  that is reflexive and transitive. Define the relation  on  by  if and only if 
and .

1.  is an equivalence relation on .
2. If  and  are equivalence classes and  for some  and , then  for all  and .
3. Define the relation  on the collection of equivalence classes  by  if and only if  for some (and hence all) 

 and . Then  is a partial order on .

Proof
1. If  then  since  is reflexive. Hence , so  is reflexive. Clearly  is symmetric by the symmetry of the

definition. Suppose that  and . Then , ,  and . Hence  and  since  is
transitive. Therefore  so  is transitive.

2. Suppose that  and  are equivalence classes of  and that  for some  and . If  and , then 
 and . Therefore  and . By transitivity, .

3. Suppose that . If  then  and hence . Therefore  and so  is reflexive. Next suppose that
 and that  and . If  and  then  and . Hence  so . Therefore 

is antisymmetric. Finally, suppose that  and that  and . Note that  so let . If 
 then  and . Hence  and therefore . So  is transitive.

A prime example of the construction in the previous theorem occurs when we have a function whose range space is partially
ordered. We can construct a partial order on the equivalence classes in the domain that are associated with the function.

Suppose that  and  are sets and that  is a partial order on . Suppose also that . Define the relation  on 
by  if and only if .

1.  is reflexive and transitive.
2. The equivalence relation on  constructed in (10) is the equivalence relation associated with , as in (6).
3.  can be extended to a partial order on the equivalence classes corresponding to .

Proof
1. If  then  since  is reflexive, and hence . Thus  is reflexive. Suppose that 

and that  and . Then  and . Hence  since  is transitive. Thus 
 is transitive.

2. For the equivalence relation  on  constructed in (10),  if and only if  and  if and only if 
 and  if and only if , since  is antisymmetric. Thus  is the equivalence

relation associated with .

≈ S f : S→P(S) f(x) = [x] ≈

f

x ≈ y [x] = [y] f(x) = f(y)

≈ ≅ S ≡ ≈ ≅

S×S x ≡ y x ≈ y x≅y

≡ S

[x = [x ∩ [x]

≡

]

≈

]

≅

⪯ S ≈ S x ≈ y x ⪯ y

y ⪯ x

≈ S

A B x ⪯ y x ∈ A y ∈ B u ⪯ v u ∈ A v∈ B

⪯ S A⪯B x ⪯ y

x ∈ A y ∈ B ⪯ S

x ∈ S x ⪯ x ⪯ x ≈ x ≈ ≈

x ≈ y y ≈ z x ⪯ y y ⪯ z z⪯ y y ⪯ x x ⪯ z z⪯ x ⪯

x ≈ z ≈

A B ≈ x ⪯ y x ∈ A y ∈ B u ∈ A v∈ B

x ≈ u y ≈ v u ⪯ x y ⪯ v u ⪯ v

A ∈S x, y ∈ A x ≈ y x ⪯ y A⪯A ⪯

A, B ∈S A⪯B B⪯A x ∈ A y ∈ B x ⪯ y y ⪯ x x ≈ y A=B ⪯

A, B, C ∈S A⪯B B⪯C B≠ ∅ y ∈ B

x ∈ A, z ∈ C x ⪯ y y ⪯ z x ⪯ z A⪯C ⪯

S T ⪯

T

T f : S→ T ⪯

S

S

x y⪯

S

f(x) f(y)⪯

T

⪯

S

S f

⪯

S

f

x ∈ S f(x) f(x)⪯

T

⪯

T

x x⪯

S

⪯

S

x, y, z ∈ S

x y⪯

S

y z⪯

S

f(x) f(y)⪯

T

f(y) f(z)⪯

T

f(x) f(z)⪯

T

⪯

T

⪯

S

≈ S x ≈ y x y⪯

S

y x⪯

S

f(x) f(y)⪯

T

f(y) f(x)⪯

T

f(x) = f(y) ⪯

T

≈

f
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3. This follows immediately from (10) and parts (a) and (b). If , then  if and only if 
.

Examples and Applications

Simple functions

Give the equivalence classes explicitly for the functions from  into  defined below:

1. .
2. .
3. .

Answer
1. 
2. 
3. 

Calculus

Suppose that  is a fixed interval of , and that  is the set of differentiable functions from  into . Consider the equivalence
relation associated with the derivative operator  on , so that . For , give a simple description of .

Answer

Congruence

Recall the division relation  from  to : For  and ,  means that  for some . In words,  divides 
 or equivalently  is a multiple of . In the previous section, we showed that  is a partial order on .

Fix .

1. Define the relation  on  by  if and only if . The relation  is known as congruence modulo .
2. Let  be defined so that  is the remainder when  is divided by .

Recall that by the Euclidean division theorem, named for Euclid of course,  can be written uniquely in the form 
where  and , and then .

Congruence modulo .

1.  is the equivalence relation associated with the function .
2. There are  distinct equivalence classes, given by  for .

Proof
1. Recall that for the equivalence relation associated with , integers  and  are equivalent if and only if .

By the division theorem,  and , where  and , and these
representations are unique. Thus , and so  if and only if  if and only if 

 if and only if .
2. Recall that the equivalence classes are  for . By the division theorem, 

.

Explicitly give the equivalence classes for , congruence mod 4.

Answer

u, v∈ range(f) ({u}) ({v})f

−1

⪯

S

f

−1

u v⪯

T

R R

f(x) = x

2

g(x) = ⌊x⌋

h(x) = sin(x)

[x] = {x, −x}

[x] = [⌊x⌋, ⌊x⌋+1)

[x] = {x+2nπ : n ∈ Z} ∪{(2n+1)π−x : n ∈ Z}

I R S I R

D S D(f) = f

′

f ∈ S [f ]

[f ] = {f +c : c ∈ R}

∣ N

+

Z d ∈ N

+

n ∈ Z d ∣ n n= kd k ∈ Z d

n n d ∣ N

+

d ∈ N

+

≡

d

Z m n≡

d

d ∣ (n−m) ≡

d

d

: Z→{0, 1,… , d−1}r

d

r(n) n d

n ∈ Z n= kd+q

k ∈ Z q ∈ {0, 1,… , d−1} (n) = qr

d

d

≡

d

r

d

d [q = {q+kd : k ∈ Z}]

d

q ∈ {0, 1,… , d−1}

r

d

m n (m) = (n)r

d

r

d

m = jd+p n= kd+q j, k ∈ Z p, q ∈ {0.1,… , d−1}

n−m = (k−j)d+(q−p) m n≡

d

d ∣ (n−m)

p = q (m) = (n)r

d

r

d

{q}r

−1

d

q ∈ range ( ) = {0, 1,… , d−1}r

d

{q} = {kd+q : k ∈ Z}r

−1

d

≡

4

[0 = {0, 4, 8, 12,…}∪{−4,−8,−12,−16,…}]

4

[1 = {1, 5, 9, 13,…}∪{−3,−7,−11,−15,…}]

4

[2 = {2, 6, 10, 14,…}∪{−2,−6,−10,−14,…}]

4

[3 = {3, 7, 11, 15,…}∪{−1,−5,−9,−13,…}]

4
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Linear Algebra

Linear algebra provides several examples of important and interesting equivalence relations. To set the stage, let  denote the
set of  matrices with real entries, for .

Recall that the following are row operations on a matrix:

1. Multiply a row by a non-zero real number.
2. Interchange two rows.
3. Add a multiple of a row to another row.

Row operations are essential for inverting matrices and solving systems of linear equations.

Matrices  are row equivalent if  can be transformed into  by a finite sequence of row operations. Row
equivalence is an equivalence relation on .

Proof.

If , then  is row equivalent to itself: we can simply do nothing, or if you prefer, we can multiply the first row of 
by 1. For symmetry, the key is that each row operation can be reversed by another row operation: multiplying a row by 
is reversed by multiplying the same row of the resulting matrix by . Interchanging two rows is reversed by interchanging
the same two rows of the resulting matrix. Adding  times row  to row  is reversed by adding  times row  to row  in the
resulting matrix. Thus, if we can transform  into  by a finite sequence of row operations, then we can transform  into 
by applying the reversed row operations in the reverse order. Transitivity is clear: If we can transform  into  by a sequence
of row operations and  into  by another sequence of row operations, then we can transform  into  by putting the two
sequences together.

Our next relation involves similarity, which is very important in the study of linear transformations, change of basis, and the theory
of eigenvalues and eigenvectors.

Matrices  are similar if there exists an invertible  such that . Similarity is an equivalence
relation on .

Proof

If  then , where  is the  identity matrix, so  is similar to itself. Suppose that  and
that  is similar to  so that  for some invertible . Then  so  is
similar to . Finally, suppose that  and that  is similar to  and that  is similar to . Then 
and  for some invertible . Then , so  is similar to .

Next recall that for , the transpose of  is the matrix  with the property that  entry of  is the 
entry of , for . Simply stated,  is the matrix whose rows are the columns of . For the theorem that
follows, we need to remember that  for  and , and  if  is
invertible.

Matrices  are congruent if there exists an invertible  such that . Congruence is an
equivalence relation on 

Proof

If  then , where again  is the  identity matrix, so  is congruent to itself. Suppose that 
 and that  is congruent to  so that  for some invertible . Then 

 so  is congruent to . Finally, suppose that  and that  is congruent
to  and that  is congruent to . Then  and  for some invertible . Then 

, so  is congruent to .

Congruence is important in the study of orthogonal matrices and change of basis. Of course, the term congruence applied to
matrices should not be confused with the same term applied to integers.

R

m×n

m×n m, n ∈ N

+

A, B ∈ R

m×n

A B

R

m×n

A ∈ R

m×n

A A

c ≠ 0

1/c

c i j −c i j

A B B A

A B

B C A C

A, B ∈ R

n×n

P ∈ R

n×n

AP =BP

−1

R

n×n

A ∈ R

n×n

A= AII

−1

I n×n A A, B ∈ R

n×n

A B B= APP

−1

P ∈ R

n×n

A= PB = BP

−1

( )P

−1

−1

P

−1

B

A A, B, C ∈ R

n×n

A B B C B= APP

−1

C = BQQ

−1

P , Q ∈ R

n×n

C = APQ = (PQ A(PQ)Q

−1

P

−1

)

−1

A C

A ∈ R

m×n

A ∈A

T

R

n×m

(i, j) A (j, i)

A

T

i, j∈ {1, 2,… ,m} A

T

A

(AB =)

T

B

T

A

T

A ∈ R

m×n

B ∈ R

n×k

=( )A

T

−1

( )A

−1

T

A ∈ R

n×n

A, B ∈ R

n×n

P ∈ R

n×n

B= APP

T

R

n×n

A ∈ R

n×n

A= AII

T

I n×n A

A, B ∈ R

n×n

A B B= APP

T

P ∈ R

n×n

A= B = B( )P

T

−1

P

−1

( )P

−1

T

P

−1

B A A, B, C ∈ R

n×n

A

B B C B= APP

T

C = BQQ

T

P , Q ∈ R

n×n

C = APQ = (PQ A(PQ)Q

T

P

T

)

T

A C
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Number Systems

Equivalence relations play an important role in the construction of complex mathematical structures from simpler ones. Often the
objects in the new structure are equivalence classes of objects constructed from the simpler structures, modulo an equivalence
relation that captures the essential properties of the new objects.

The construction of number systems is a prime example of this general idea. The next exercise explores the construction of rational
numbers from integers.

Define a relation  on  by  if and only if .

1.  is an equivalence relation.
2. Define , the equivalence class generated by , for  and . This definition captures the

essential properties of the rational numbers.

Proof
1. For ,  of course, so . Hence  is reflexive. If  and 

, then  so trivially , and hence . Thus  is symmetric. Finally, suppose
that  and that  and . Then  and , so 

 which implies , and so . Hence  so  is transitive.
2. Suppose that  and  are rational numbers in the usual, informal sense, where  and . Then  if

and only if  if and only if , so it makes sense to define  as the equivalence class generated by 
. Addition and multiplication are defined in the usual way: if  then

The definitions are consistent; that is they do not depend on the particular representations of the equivalence classes.

This page titled 1.5: Equivalence Relations is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

≈ Z×N

+

(j, k) ≈ (m,n) jn= km

≈

= [(m,n)]

m

n

(m,n) m ∈ Z n ∈ N

+

(m,n) ∈ Z×N

+

mn= nm (m,n) ≈ (m,n) ≈ (j, k), (m,n) ∈ Z×N

+

(j, k) ≈ (m,n) jn= km mk= nj (m,n) ≈ (j, k) ≈

(j, k), (m,n), (p, q) ∈ Z×N

+

(j, k) ≈ (m,n) (m,n) ≈ (p, q) jn= km mq = np

jnp = kmp jmq = kmp jq = kp (j, k) ≈ (p, q) ≈

j

k

m

n

j, m ∈ Z k, n ∈ N

+

=

j

k

m

n

jn= km (j, k) ≈ (m,n)

m

n

(m,n) (j, k), (m,n) ∈ Z×N

+

+ = ,    ⋅ =

j

k

m

n

jn+mk

kn

j

k

m

n

jm

kn

(1.5.2)
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1.6: Cardinality
     

Basic Theory

Definitions

Suppose that  is a non-empty collection of sets. We define a relation  on  by  if and only if there exists a one-to-
one function  from  onto . The relation  is an equivalence relation on . That is, for all ,

1. , the reflexive property
2. If  then , the symmetric property
3. If  and  then , the transitive property

Proof
1. The identity function  on , given by  for , maps  one-to-one onto . Hence 
2. If  then there exists a one-to-one function  from  onto . But then  is a one-to-one function from  onto ,

so 
3. Suppose that  and . Then there exists a one-to-one function  from  onto  and a one-to-one function 

from  onto . But then  is a one-to-one function from  onto , so .

A one-to-one function  from  onto  is sometimes called a bijection. Thus if  then  and  are in one-to-one
correspondence and are said to have the same cardinality. The equivalence classes under this equivalence relation capture the
notion of having the same number of elements.

Let , and for , let . As always,  is the set of all natural numbers.

Suppose that  is a set.

1.  is finite if  for some , in which case  is the cardinality of , and we write .
2.  is infinite if  is not finite.
3.  is countably infinite if .
4.  is countable if  is finite or countably infinite.
5.  is uncountable if  is not countable.

In part (a), think of  as a reference set with  elements; any other set with  elements must be equivalent to this one. We will
study the cardinality of finite sets in the next two sections on Counting Measure and Combinatorial Structures. In this section, we
will concentrate primarily on infinite sets. In part (d), a countable set is one that can be enumerated or counted by putting the
elements into one-to-one correspondence with  for some  or with all of . An uncountable set is one that cannot be so
counted. Countable sets play a special role in probability theory, as in many other branches of mathematics. Apriori, it's not clear
that there are uncountable sets, but we will soon see examples.

Preliminary Examples

If  is a set, recall that  denotes the power set of  (the set of all subsets of ). If  and  are sets, then  is the set of all
functions from  into . In particular,  denotes the set of functions from  into .

If  is a set then .

Proof

The mapping that takes a set  into its indicator function  is one-to-one and onto. Specifically, if 
 and , then , so the mapping is one-to-one. On the other hand, if  then 

where . Hence the mapping is onto.

Next are some examples of countably infinite sets.

The following sets are countably infinite:

S ≈ S A≈B

f A B ≈ S A, B, C ∈S

A≈A

A≈B B≈A

A≈B B≈C   A≈C

I

A

A (x) = xI

A

x ∈ A A A A≈A

A≈B f A B f

−1

B A

B≈A

A≈B B≈C f A B g

B C g∘ f A C A≈C

f A B A≈B A B

= ∅N

0

k ∈ N

+

= {0, 1,… k−1}N

k

N = {0, 1, 2,…}

A

A A≈N

k

k ∈ N k A #(A) = k

A A

A A≈N

A A

A A

N

k

k k

N

k

k ∈ N N

S P(S) S S A B A

B

B A {0, 1}

S

S {0, 1}

S P(S) ≈ {0, 1}

S

A ∈P(S) ∈ {0, 11

A

}

S

A, B ∈P(S) =1

A

1

B

A=B f ∈ {0, 1}

S

f = 1

A

A= {x ∈ S : f(x) = 1}
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1. The set of even natural numbers 
2. The set of integers 

Proof
1. The function  given by  is one-to-one and onto.
2. The function  given by  if  is even and  if  is odd, is one-to-one and onto.

At one level, it might seem that  has only half as many elements as  while  has twice as many elements as . as the previous
result shows, that point of view is incorrect: , , and  all have the same cardinality (and are countably infinite). The next
example shows that there are indeed uncountable sets.

If  is a set with at least two elements then , the set of all functions from  into , is uncountable.

Proof

The proof is by contradiction, and uses a nice trick known as the diagonalization method. Suppose that  is countably infinite
(it's clearly not finite), so that the elements of  can be enumerated: . Let  and  denote distinct elements
of  and define  by  if  and  if . Note that  for each , so 

. This contradicts the fact that  is the set of all functions from  into .

Subsets of Infinite Sets

Surely a set must be as least as large as any of its subsets, in terms of cardinality. On the other hand, by example (4), the set of
natural numbers , the set of even natural numbers  and the set of integers  all have exactly the same cardinality, even though 

. In this subsection, we will explore some interesting and somewhat paradoxical results that relate to subsets of infinite
sets. Along the way, we will see that the countable infinity is the “smallest” of the infinities.

If  is an infinite set then  has a countable infinite subset.

Proof

Select . It's possible to do this since  is infinite and therefore nonempty. Inductively, having chosen 
, select . Again, it's possible to do this since  is not finite. Manifestly, 

 is a countably infinite subset of .

A set  is infinite if and only if  is equivalent to a proper subset of .

Proof

If  is finite, then  is not equivalent to a proper subset by the “pigeonhole principle”. If  is infinite, then  has countably
infinite subset  by the previous result. Define the function  by  for  and 

 for . Then  maps  one-to-one onto .

When  was infinite in the proof of the previous result, not only did we map  one-to-one onto a proper subset, we actually threw
away a countably infinite subset and still maintained equivalence. Similarly, we can add a countably infinite set to an infinite set 
without changing the cardinality.

If  is an infinite set and  is a countable set, then .

Proof

Consider the most extreme case where  is countably infinite and disjoint from . Then  has a countably infinite subset 
 by the result above, and  can be enumerated, so . Define the function 

 by  if  is even,  if  is odd, and  if . Then 
 maps  one-to-one onto .

In particular, if  is uncountable and  is countable then  and  have the same cardinality as , and in particular are
uncountable. In terms of the dichotomies finite-infinite and countable-uncountable, a set is indeed at least as large as a subset. First
we need a preliminary result.

E = {0, 2, 4,…}

Z

f : N→E f(n) = 2n

g : N→ Z g(n) =

n

2

n g(n) =−

n+1

2

n

E N Z N

N E Z

A S =A

N

N A

S

S S = { , , ,…}f

0

f

1

f

2

a b

A g : N→A g(n) = b (n) = af

n

g(n) = a (n) ≠ af

n

g≠ f

n

n ∈ N

g ∉ S S N A

N E Z

E ⊂N ⊂Z

S S

∈ Sa

0

S

{ , ,… , } ⊆ Sa

0

a

1

a

k−1

∈ S ∖ { , ,… , }a

k

a

0

a

1

a

k−1

S

{ , ,…}a

0

a

1

S

S S S

S S S S

{ , , ,…}a

0

a

1

a

2

f : S→ S f ( ) =a

n

a

2n

n ∈ N

f(x) = x x ∈ S ∖ { , , ,…}a

0

a

1

a

2

f S S ∖ { , , ,…}a

1

a

3

a

5

S S

S

S B S ≈ S∪B

B S S

A= { , , ,…}a

0

a

1

a

2

B B= { , , ,…}b

0

b

1

b

2

f : S→ S∪B f ( ) =a

n

a

n/2

n f ( ) =a

n

b

(n−1)/2

n f(x) = x x ∈ S ∖ { , , ,…}a

0

a

1

a

2

f S S∪B

S B S∪B S ∖B S
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If  is countably infinite and  then  is countable.

Proof

It suffices to show that if  is an infinite subset of  then  is countably infinite. Since  is countably infinite, it can be
enumerated: . Let  be the th smallest index such that . Then  and
hence is countably infinite.

Suppose that .

1. If  is finite then  is finite.
2. If  is infinite then  is infinite.
3. If  is countable then  is countable.
4. If  is uncountable then  is uncountable.

Proof
1. This is clear from the definition of a finite set.
2. This is the contrapositive of (a).
3. If  is finite, then  is countable. If  is infinite, then  is infinite by (b) and hence is countably infinite. But then  is

countably infinite by (9).
4. This is the contrapositive of (c).

Comparisons by one-to-one and onto functions

We will look deeper at the general question of when one set is “at least as big” as another, in the sense of cardinality. Not
surprisingly, this will eventually lead to a partial order on the cardinality equivalence classes.

First note that if there exists a function that maps a set  one-to-one into a set , then in a sense, there is a copy of  contained in 
. Hence  should be at least as large as .

Suppose that  is one-to-one.

1. If  is finite then  is finite.
2. If  is infinite then  is infinite.
3. If  is countable then  is countable.
4. If  is uncountable then  is uncountable.

Proof

Note that  maps  one-to-one onto . Hence  and . The results now follow from (10):

1. If  is finite then  is finite and hence  is finite.
2. If  is infinite then  is infinite and hence  is infinite.
3. If  is countable then  is countable and hence  is countable.
4. If  is uncountable then  is uncountable and hence  is uncountable.

On the other hand, if there exists a function that maps a set  onto a set , then in a sense, there is a copy of  contained in .
Hence  should be at least as large as .

Suppose that  is onto.

1. If  is finite then  is finite.
2. If  is infinite then  is infinite.
3. If  is countable then  is countable.
4. If  is uncountable then  is uncountable.

Proof

For each , select a specific  with  (if you are persnickety, you may need to invoke the axiom of choice).
Let  be the set of chosen points. Then  maps  one-to-one onto , so  and . The results now follow from
(11):

S A⊆ S A

A S A S

S = { , , ,…}x

0

x

1

x

2

n

i

i ∈ Ax

n

i

A= { , , ,…}x

n

0

x

n

1

x

n

2

A⊆B

B A

A B

B A

A B

A A A B A

A B A

B B A

f : A→B

B A

A B

B A

A B

f A f(A) A≈ f(A) f(A) ⊆B

B f(A) A

A f(A) B

B f(A) A

A f(A) B

A B B A

A B

f : A→B

A B

B A

A B

B A

y ∈ B x ∈ A f(x) = y

C f C B C ≈B C ⊆A
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1. If  is finite then  is finite and hence  is finite.
2. If  is infinite then  is infinite and hence  is infinite.
3. If  is countable then  is countable and hence  is countable.
4. If  is uncountable then  is uncountable and hence  is uncountable.

The previous exercise also could be proved from the one before, since if there exists a function  mapping  onto , then there
exists a function  mapping  one-to-one into . This duality is proven in the discussion of the axiom of choice. A simple and
useful corollary of the previous two theorems is that if  is a given countably infinite set, then a set  is countable if and only if
there exists a one-to-one function  from  into , if and only if there exists a function  from  onto .

If  is a countable set for each  in a countable index set , then  is countable.

Proof

Consider the most extreme case in which the index set  is countably infinite. Since  is countable, there exists a function 
that maps  onto  for each . Let . Note that the points in  are distinct, that is, 

 if  and . Hence  is infinite, and since ,  is countably infinite.
The function  given by  for  maps  onto , and hence this last set is countable.

If  and  are countable then  is countable.

Proof

There exists a function  that maps  onto , and there exists a function  that maps  onto . Again, let 
 and recall that  is countably infinite. Define  by .

Then  maps  onto  and hence this last set is countable.

The last result could also be proven from the one before, by noting that

Both proofs work because the set  is essentially a copy of , embedded inside of . The last theorem generalizes to the
statement that a finite product of countable sets is still countable. But, from (5), a product of infinitely many sets (with at least 2
elements each) will be uncountable.

The set of rational numbers  is countably infinite.

Proof

The sets  and  are countably infinite and hence the set  is countably infinite. The function  given
by  is onto.

A real number is algebraic if it is the root of a polynomial function (of degree 1 or more) with integer coefficients. Rational
numbers are algebraic, as are rational roots of rational numbers (when defined). Moreover, the algebraic numbers are closed under
addition, multiplication, and division. A real number is transcendental if it's not algebraic. The numbers  and  are transcendental,
but we don't know very many other transcendental numbers by name. However, as we will see, most (in the sense of cardinality)
real numbers are transcendental.

The set of algebraic numbers  is countably infinite.

Proof

Let  and let  for . The set  is countably infinite for each . Let .
Think of  as the set of coefficients and note that  is countably infinite. Let  denote the set of polynomials of degree 1 or
more, with integer coefficients. The function  maps  onto , and hence  is
countable. For , let  denote the set of roots of . A polynomial of degree  in  has at most  roots, by the
fundamental theorem of algebra, so in particular  is finite for each . Finally, note that  and so  is
countable. Of course , so  is countably infinite.

A C B

B C A

A C B

B C A

f A B

g B A

B A

f A B g B A

A

i

i I ⋃

i∈I

A

i

I A

i

f

i

N A

i

i ∈ N M = { : (i, j) ∈ N×N}2

i

3

j

M

≠2

i

3

j

2

m

3

n

(i, j), (m,n) ∈ N×N (i, j) ≠ (m,n) M M ⊂N M

f f ( )= (j)2

i

3

j

f

i

(i, j) ∈ N×N M ⋃

i∈I

A

i

A B A×B

f N A g N B

M = { : (i, j) ∈ N×N}2

i

3

j

M h :M →A×B h ( )= (f(i), g(j))2

i

3

j

h M A×B

A×B= {a}×B⋃

a∈A

(1.6.1)

M N×N N

Q

Z N

+

Z×N

+

f : Z× →QN

+

f(m,n) =

m

n

e π

A

=Z ∖ {0}Z

0

= ×Z

n

Z

n−1

Z

0

n ∈ N

+

Z

n

n C =⋃

∞

n=1

Z

n

C C P

( , ,… , )↦ + x+⋯+a

0

a

1

a

n

a

0

a

1

a

n

x

n

C P P

p ∈ P A

p

p n P n

A

p

p ∈ P A =⋃

p∈P

A

p

A
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Now let's look at some uncountable sets.

The interval  is uncountable.

Proof

Recall that  is the set of all functions from  into , which in this case, can be thought of as infinite sequences
or bit strings:

By (5), this set is uncountable. Let , the set of bit strings that
eventually terminate in all 1s. Note that  where . Clearly  is
finite for all , so  is countable, and therefore  is uncountable. In fact, . The function

maps  one-to-one onto . In words every number in  has a unique binary expansion in the form of a sequence in .
Hence  and in particular, is uncountable. The reason for eliminating the bit strings that terminate in 1s is to ensure
uniqueness, so that the mapping is one-to-one. The bit string  corresponds to the same number in  as
the bit string .

The following sets have the same cardinality, and in particular all are uncountable:

1. , the set of real numbers.
2. Any interval  of , as long as the interval is not empty or a single point.
3. , the set of irrational numbers.
4. , the set of transcendental numbers.
5. , the power set of .

Proof

1. The mapping  maps  one-to-one onto  so . But , so ,

and all of these sets are uncountable by the previous result.
2. Suppose  and . The mapping  maps  one-to-one onto  and hence 

. Also, , , and , so 
. The function  maps  one-to-one onto , so . For ,

the function  maps  one-to-one onto  and the mapping  maps  one to one onto 
 so . Next,  and , so 

.
3.  is countably infinite, so .
4. Similarly,  is countably infinite, so .
5. If  is countably infinite, then by the previous result and (a), .

The Cardinality Partial Order

Suppose that  is a nonempty collection of sets. We define the relation  on  by  if and only if there exists a one-to-one
function  from  into , if and only if there exists a function  from  onto . In light of the previous subsection,  should
capture the notion that  is at least as big as , in the sense of cardinality.

The relation  is reflexive and transitive.

Proof

For , the identity function  given by  is one-to-one (and also onto), so . Suppose that 
 and that  and . Then there exist one-to-one functions  and . But then 
 is one-to-one, so .

[0, 1)

{0, 1}

N

+

N

+

{0, 1}

{0, 1 = {x = ( , , …) : ∈ {0, 1} for all n ∈ }}

N

+

x

1

x

2

x

n

N

+

(1.6.2)

N = {x ∈ {0, 1 : = 1 for all but finitely many n}}

N

+

x

n

N =⋃

∞

n=1

N

n

= {x ∈ {0, 1 : = 1 for all k ≥ n}N

n

}

N

+

x

k

N

n

n ∈ N

+

N S = {0, 1 ∖N}

N

+

S ≈ {0, 1}

N

+

x ↦∑

n=1

∞

x

n

2

n

(1.6.3)

S [0, 1) [0, 1) S

[0, 1) ≈ S

⋯ 0111 ⋯x

1

x

2

x

k

[0, 1)

⋯ 1000 ⋯x

1

x

2

x

k

R

I R

R ∖Q

R ∖A

P(N) N

x ↦

2x−1

x(1−x)

(0, 1) R (0, 1) ≈R (0, 1) = [0, 1) ∖ {0} (0, 1] ≈ (0, 1) ≈R

a, b ∈ R a < b x ↦ a+(b−a)x (0, 1) (a, b)

(a, b) ≈ (0, 1) ≈R [a, b) = (a, b) ∪ {a} (a, b] = (a, b) ∪ {b} [a, b] = (a, b) ∪ {a, b}

(a, b) ≈ [a, b) ≈ (a, b] ≈ [a, b] ≈R x ↦ e

x

R (0, ∞) (0, ∞) ≈R a ∈ R

x ↦ a+x (0, ∞) (a, ∞) x ↦ a−x (0, ∞)

(−∞, a) (a, ∞) ≈ (−∞, a) ≈ (0, ∞) ≈R [a, ∞) = (a, ∞) ∪ {a} (−∞, a] = (−∞, a) ∪ {a}

[a, ∞) ≈ (−∞, a] ≈R

Q R ∖Q≈R

A R ∖A ≈R

S P(S) ≈P( ) ≈ {0, 1 ≈ [0, 1)N

+

}

N

+

S ⪯ S A⪯B

f A B g B A A⪯B

B A

⪯

A ∈S : A →AI

A

(x) = xI

A

A⪯A

A, B, C ∈S A⪯B B⪯C f : A →B g : B →C

g∘ f : A →C A⪯C
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Thus, we can use the construction in the section on on Equivalence Relations to first define an equivalence relation on , and then
extend  to a true partial order on the collection of equivalence classes. The only question that remains is whether the equivalence
relation we obtain in this way is the same as the one that we have been using in our study of cardinality. Rephrased, the question is
this: If there exists a one-to-one function from  into  and a one-to-one function from  into , does there necessarily exist a
one-to-one function from  onto ? Fortunately, the answer is yes; the result is known as the Schröder-Bernstein Theorem, named
for Ernst Schröder and Felix Bernstein.

If  and  then .

Proof

Set inclusion  is a partial order on  (the power set of ) with the property that every subcollection of  has a
supremum (namely the union of the subcollection). Suppose that  maps  one-to-one into  and  maps  one-to-one into 

. Define the function  by  for . Then  is increasing:

From the fixed point theorem for partially ordered sets, there exists  such that . Hence 
and therefore . Now define  by  if  and  if .

 maps  one-to-one onto ;  maps  one-to-one onto 
Schroder-Bernstein Theorem

Next we show that  is one-to-one. Suppose that  and . If  then  so 
 since  is one-to-one. If  then  so  since  is one-to-one. If 

and . Then  while , so  is impossible.

Finally we show that  is onto. Let . If  then  for some  so . If  then 
 so .

We will write  if , but , That is, there exists a one-to-one function from  into , but there does not exist a
function from  onto . Note that  would have its usual meaning if applied to the equivalence classes. That is,  if and
only if  but . Intuitively, of course,  means that  is strictly larger than , in the sense of cardinality.

 in each of the following cases:

1.  and  are finite and .
2.  is finite and  is countably infinite.
3.  is countably infinite and  is uncountable.

We close our discussion with the observation that for any set, there is always a larger set.

If  is a set then .

Proof

First, it's trivial to map  one-to-one into ; just map  to . Suppose now that  maps  onto  and let 
. Since  is onto, there exists  such that . Note that  if and only if .

The proof that a set cannot be mapped onto its power set is similar to the Russell paradox, named for Bertrand Russell.

The continuum hypothesis is the statement that there is no set whose cardinality is strictly between that of  and . The continuum
hypothesis actually started out as the continuum conjecture, until it was shown to be consistent with the usual axioms of the real
number system (by Kurt Gödel in 1940), and independent of those axioms (by Paul Cohen in 1963).

Assuming the continuum hypothesis, if  is uncountable then there exists  such that  and  are uncountable.

Proof

Under the continuum hypothesis, if  is uncountable then . Hence there exists a one-to-one function .
Let . Then  is uncountable, and since ,  is uncountable.

S

⪯

A B B A

A B

A⪯B B⪯A A≈B

⊆ P(A) A P(A)

f A B g B

A h :P(A) →P(A) h(U) =A ∖ g[B∖ f(U)] U ⊆A h

U ⊆ V ⟹ f(U) ⊆ f(V ) ⟹ B∖ f(V ) ⊆B∖ f(U)
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(1.6.4)

(1.6.5)
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There is a more complicated proof of the last result, without the continuum hypothesis and just using the axiom of choice.

This page titled 1.6: Cardinality is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
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https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10121?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/01%3A_Foundations/1.06%3A_Cardinality
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random


1.7.1 https://stats.libretexts.org/@go/page/10122

1.7: Counting Measure

Basic Theory

For our first discussion, we assume that the universal set  is finite. Recall the following definition from the section on cardinality.

For , the cardinality of  is the number of elements in , and is denoted . The function  on  is called
counting measure.

Counting measure plays a fundamental role in discrete probability structures, and particularly those that involve sampling from a
finite set. The set  is typically very large, hence efficient counting methods are essential. The first combinatorial problem is
attributed to the Greek mathematician Xenocrates.

In many cases, a set of objects can be counted by establishing a one-to-one correspondence between the given set and some other
set. Naturally, the two sets have the same number of elements, but for various reasons, the second set may be easier to count.

The Addition Rule

The addition rule of combinatorics is simply the additivity axiom of counting measure.

If  is a collection of disjoint subsets of  then

Figure : The addition rule

The following counting rules are simple consequences of the addition rule. Be sure to try the proofs yourself before reading the
ones in the text.

. This is the complement rule.

Proof

Figure : The complement rule

. This is the difference rule.

Proof

Note that  and  are disjoint and their union is . Hence .

If  then . This is the proper difference rule.

Proof

This follows from the difference rule, since .

If  then .

S

A⊆ S A A #(A) # P(S)
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n
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#( ) = #( )⋃
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n
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i

∑

i=1

n

A

i

(1.7.1)

1.7.1

#( ) =#(S)−#(A)A

c

1.7.2

#(B∖A) =#(B)−#(A∩B)

A∩B B∖A B #(A∩B)+#(B∖A) =#(B)

A⊆B #(B∖A) =#(B)−#(A)

A∩B=A

A⊆B #(A) ≤#(B)
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Proof

This follows from the proper difference rule: .

Thus,  is an increasing function, relative to the subset partial order  on , and the ordinary order  on .

Inequalities

Our next disucssion concerns two inequalities that are useful for obtaining bounds on the number of elements in a set. The first is
Boole's inequality (named after George Boole) which gives an upper bound on the cardinality of a union.

If  is a finite collection of subsets of  then

Proof

Let  and  for . Note that  is a pairwise disjoint
collection and has the same union as . From the increasing property,  for each 

. Hence by the addition rule,

Intuitively, Boole's inequality holds because parts of the union have been counted more than once in the expression on the right.
The second inequality is Bonferroni's inequality (named after Carlo Bonferroni), which gives a lower bound on the cardinality of
an intersection.

If  is a finite collection of subsets of  then

Proof

Using the complement rule, Boole's inequality, and DeMorgan's law,

The Inclusion-Exclusion Formula

The inclusion-exclusion formula gives the cardinality of a union of sets in terms of the cardinality of the various intersections of the
sets. The formula is useful because intersections are often easier to count. We start with the special cases of two sets and three sets.
As usual, we assume that the sets are subsets of a finite universal set .

If  and  are subsets of  then .

Proof

Figure : The inclusion-exclusion theorem for two sets

If , ,  are subsets of  then 
.

#(B) =#(A)+#(B∖A) ≥#(A)
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{ , ,… , }A

1

A

2

A

n

S

#( ) ≤ #( )⋃

i=1

n

A

i

∑

i=1

n

A

i

(1.7.2)

=B

1

A

1

= ∖ ( ∪⋯ )B

i

A

i

A

1

A

i−1

i ∈ {2, 3,… ,n} { , ,… , }B

1

B

2

B

n

{ , ,… , }A

1

A

2

A

n

#( ) ≤#( )B

i

A

i

i ∈ {1, 2,… ,n}

#( ) =#( ) ≤ #( )⋃

i=1

n

A

i

⋃

i=1

n

B

i

∑

i=1

n

A

i

(1.7.3)

{ , ,… , }A

1

A

2

A

n

S

#( ) ≥#(S)− [#(S)−#( )]⋂

i=1

n

A

i

∑

i=1

n

A

i

(1.7.4)

#( ) =#(S)−#( ) ≥#(S)− #( ) =#(S)− [#(S)−#( )]⋂

i=1

n

A

i

⋃

i=1

n

A

c

i

∑

i=1

n

A

c

i

∑

i=1

n

A

i

(1.7.5)

S

A B S #(A∪B) =#(A)+#(B)−#(A∩B)

1.7.3

A B C S

#(A∪B∪C) =#(A)+#(B)+#(C)−#(A∩B)−#(A∩C)−#(B∩C)+#(A∩B∩C)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10122?pdf


1.7.3 https://stats.libretexts.org/@go/page/10122

Proof

Figure : The inclusion-exclusion theorem for three sets

The inclusion-exclusion rule for two and three sets can be generalized to a union of  sets; the generalization is known as the
(general) inclusion-exclusion formula.

Suppose that  is a collection of subsets of  where  is an index set with . Then

Proof

The proof is by induction on . The formula holds for  sets by the result for two sets. Suppose the formula holds for 
, and suppose that  is a collection of  subsets of . Then

and the two sets connected by the central union are disjoint. Using the addition rule and the difference rule,

By the induction hypothesis, the formula holds for the two unions of  sets in the last expression. The result then follows by
simplification.

The general Bonferroni inequalities, named again for Carlo Bonferroni, state that if sum on the right is truncated after  terms (
), then the truncated sum is an upper bound for the cardinality of the union if  is odd (so that the last term has a positive

sign) and is a lower bound for the cardinality of the union if  is even (so that the last terms has a negative sign).

The Multiplication Rule

The multiplication rule of combinatorics is based on the formulation of a procedure (or algorithm) that generates the objects to be
counted.

Suppose that a procedure consists of  steps, performed sequentially, and that for each , step  can be
performed in  ways, regardless of the choices made on the previous steps. Then the number of ways to perform the entire
procedure is .

The key to a successful application of the multiplication rule to a counting problem is the clear formulation of an algorithm that
generates the objects being counted, so that each object is generated once and only once. That is, we must neither over count nor
under count. It's also important to notice that the set of choices available at step  may well depend on the previous steps; the
assumption is only that the number of choices available does not depend on the previous steps.

The first two results below give equivalent formulations of the multiplication principle.

Suppose that  is a set of sequences of length , and that we denote a generic element of  by . Suppose that
for each ,  has  different values, regardless of the values of the previous coordinates. Then 

.

1.7.4
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Proof

A procedure that generates the sequences in  consists of  steps. Step  is to select the th coordinate.

Suppose that  is an ordered tree with depth  and that each vertex at level  has  children for . Then
the number of endpoints of the tree is .

Proof

Each endpoint of the tree is uniquely associated with the path from the root vertex to the endpoint. Each such path is a
sequence of length , in which there are  values for coordinate  for each . Hence the result follows from
the result above on sequences.

Product Sets

If  is a set with  elements for  then

Proof

This is a corollary of the result above on sequences.

If  is a set with  elements, then  has  elements.

Proof

This is a corollary of the previous result.

In (16), note that the elements of  can be thought of as ordered samples of size  that can be chosen with replacement from a
population of  objects. Elements of  are sometimes called bit strings of length . Thus, there are  bit strings of length .

Functions

The number of functions from a set  of  elements into a set  of  elements is .

Proof

An algorithm for constructing a function  is to choose the value of  for each . There are  choices
for each of the  elements in the domain.

Recall that the set of functions from a set  into a set  (regardless of whether the sets are finite or infinite) is denoted . This
theorem is motivation for the notation. Note also that if  is a set with  elements, then the elements in the Cartesian power set 
can be thought of as functions from  into . So the counting formula for sequences can be thought of as a corollary of
counting formula for functions.

Subsets

Suppose that  is a set with  elements, where . There are  subsets of .

Proof from the multiplication principle

An algorithm for constructing , is to decide whether  or  for each . There are 2 choices for each of
the  elements of .

Proof using indicator functions

Recall that there is a one-to-one correspondence between subsets of  and indicator functions on . An indicator function is
simply a function from  into , and the number of such functions is  by the previous result.

Suppose that  is a collection of  subsets of a set , where . There are  different (in general) sets
that can be constructed from the  given sets, using the operations of union, intersection, and complement. These sets form the
algebra generated by the given sets.
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Proof

First note that there are  pairwise disjoint sets of the form  where  or  for each . Next,
note that every set that can be constructed from  is a union of some (perhaps all, perhaps none) of these
intersection sets.

Open the Venn diagram app.

1. Select each of the 4 disjoint sets , , , .
2. Select each of the 12 other subsets of . Note how each is a union of some of the sets in (a).

Suppose that  is a set with  elements and that  is a subset of  with  elements, where  and . The number
of subsets of  that contain  is .

Proof

Note that subset  of  that contains  can be written uniquely in the form  where .  has 
elements and hence there are  subsets of  by the general subset result.

Our last result in this discussion generalizes the basic subset result above.

Suppose that  and that  is a set with  elements. The number of sequences of subsets  with 
 is .

Proof

To construct a sequence of the type in the theorem, we can use the following algorithm: For each , either  is not in the
sets, or  occurs for the first time in set  where . (That is,  for  and  for 

.) So there are  choices for each of the  elements of .

When  we get  as the number of subsets of , as before.

Computational Exercises

Identification Numbers

A license number consists of two letters (uppercase) followed by five digits. How many different license numbers are there?

Answer

Suppose that a Personal Identification Number (PIN) is a four-symbol code word in which each entry is either a letter
(uppercase) or a digit. How many PINs are there?

Answer

Cards, Dice, and Coins

In the board game Clue, Mr. Boddy has been murdered. There are 6 suspects, 6 possible weapons, and 9 possible rooms for the
murder.

1. The game includes a card for each suspect, each weapon, and each room. How many cards are there?
2. The outcome of the game is a sequence consisting of a suspect, a weapon, and a room (for example, Colonel Mustard with

the knife in the billiard room). How many outcomes are there?
3. Once the three cards that constitute the outcome have been randomly chosen, the remaining cards are dealt to the players.

Suppose that you are dealt 5 cards. In trying to guess the outcome, what hand of cards would be best?

Answer
1.  cards
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2.  outcomes
3. The best hand would be the  remaining weapons or the  remaining suspects.

An experiment consists of rolling a standard die, drawing a card from a standard deck, and tossing a standard coin. How many
outcomes are there?

Answer

A standard die is rolled 5 times and the sequence of scores recorded. How many outcomes are there?

Answer

In the card game Set, each card has 4 properties: number (one, two, or three), shape (diamond, oval, or squiggle), color (red,
blue, or green), and shading (solid, open, or stripped). The deck has one card of each (number, shape, color, shading)
configuration. A set in the game is defined as a set of three cards which, for each property, the cards are either all the same or
all different.

1. How many cards are in a deck?
2. How many sets are there?

Answer
1. 
2. 

A coin is tossed 10 times and the sequence of scores recorded. How many sequences are there?

Answer

The die-coin experiment consists of rolling a die and then tossing a coin the number of times shown on the die. The sequence
of coin results is recorded.

1. How many outcomes are there?
2. How many outcomes are there with all heads?
3. How many outcomes are there with exactly one head?

Answer

1. 
2. 
3. 

Run the die-coin experiment 100 times and observe the outcomes.

Consider a deck of cards as a set  with 52 elements.

1. How many subsets of  are there?
2. How many functions are there from  into the set ?

Answer
1. 
2. 

6 ⋅ 6 ⋅ 9 = 324

5 5

6 ⋅ 52 ⋅ 2 = 624

= 77766

5

= 813

4

1080

= 10242

10

= 126∑

6

k=1

2

k

6

k= 21∑

6

k=1

D

D

D {1, 2, 3, 4}

= 4 503 599 627 370 4962

52

= 20 282 409 603 651 670 423 947 251 286 0164

52
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Birthdays

Consider a group of 10 persons.

1. If we record the birth month of each person, how many outcomes are there?
2. If we record the birthday of each person (ignoring leap day), how many outcomes are there?

Answer
1. 
2. 

Reliability

In the usual model of structural reliability, a system consists of components, each of which is either working or defective. The
system as a whole is also either working or defective, depending on the states of the components and how the components are
connected.

A string of lights has 20 bulbs, each of which may be good or defective. How many configurations are there?

Answer

If the components are connected in series, then the system as a whole is working if and only if each component is working. If the
components are connected parallel, then the system as a whole is working if and only if at least one component is working.

A system consists of three subsystems with 6, 5, and 4 components, respectively. Find the number of component states for
which the system is working in each of the following cases:

1. The components in each subsystem are in parallel and the subsystems are in series.
2. The components in each subsystem are in series and the subsystems are in parallel.

Answer
1. 
2. 

Menus

Suppose that a sandwich at a restaurant consists of bread, meat, cheese, and various toppings. There are 4 choices for the bread,
3 choices for the meat, 5 choices for the cheese, and 10 different toppings (each of which may be chosen). How many
sandwiches are there?

Answer

At a wedding dinner, there are three choices for the entrée, four choices for the beverage, and two choices for the dessert.

1. How many different meals are there?
2. If there are 50 guests at the wedding and we record the meal requested for each guest, how many possible outcomes are

there?

Answer
1. 
2. 

Braille

Braille is a tactile writing system used by people who are visually impaired. The system is named for the French educator
Louis Braille and uses raised dots in a  grid to encode characters. How many meaningful Braille configurations are there?

Answer

= 61 917 364 22412

10

= 41 969 002 243 198 805 166 015 625365

10

= 1 048 5762

20

( −1)( −1)( −1) = 29 2952

6

2

5

2

4

−1 = 72

3

4 ⋅ 3 ⋅ 5 ⋅ = 61 4402

10

3 ⋅ 4 ⋅ 2 = 24

≈ 1.02462×24

50

10

69

3×2
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Figure : The Braille encoding of the number 2 and the letter b

Personality Typing

The Meyers-Briggs personality typing is based on four dichotomies: A person is typed as either extroversion (E) or
introversion (I), either sensing (S) or intuition (I), either thinking (T) or feeling (F), and either judgement (J) or perception (P).

1. How many Meyers-Briggs personality types are there? List them.
2. Suppose that we list the personality types of 10 persons. How many possible outcomes are there?

Answer
1. 16
2. 

The Galton Board

The Galton Board, named after Francis Galton, is a triangular array of pegs. Galton, apparently too modest to name the device after
himself, called it a quincunx from the Latin word for five twelfths (go figure). The rows are numbered, from the top down, by 

. Row  has  pegs that are labeled, from left to right by . Thus, a peg can be uniquely identified by an
ordered pair  where  is the row number and  is the peg number in that row.

A ball is dropped onto the top peg  of the Galton board. In general, when the ball hits peg , it either bounces to the left
to peg  or to the right to peg . The sequence of pegs that the ball hits is a path in the Galton board.

There is a one-to-one correspondence between each pair of the following three collections:

1. Bit strings of length 
2. Paths in the Galton board from  to any peg in row .
3. Subsets of a set with  elements.

Thus, each of these collections has  elements.

Open the Galton board app.

1. Move the ball from  to  along a path of your choice. Note the corresponding bit string and subset.
2. Generate the bit string . Note the corresponding subset and path.
3. Generate the subset . Note the corresponding bit string and path.
4. Generate all paths from  to . How many paths are there?

Answer

4. 6

This page titled 1.7: Counting Measure is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.

1.7.5

= 1 099 511 627 77616

10

(0, 1,…) n n+1 (0, 1,… ,n)

(n, k) n k

(0, 0) (n, k)

(n+1, k) (n+1, k+1)

n

(0, 0) n

n

2

n

(0, 0) (10, 6)

0111001010

{2, 4, 5, 9, 10}

(0, 0) (4, 2)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10122?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/01%3A_Foundations/1.07%3A_Counting_Measure
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random


1.8.1 https://stats.libretexts.org/@go/page/10123

1.8: Combinatorial Structures
  

The purpose of this section is to study several combinatorial structures that are of basic importance in probability.

Permutations

Suppose that  is a set with  elements. A permutation of length  from  is an ordered sequence of 
distinct elements of ; that is, a sequence of the form  where  for each  and  for .

Statistically, a permutation of length  from  corresponds to an ordered sample of size  chosen without replacement from the
population .

The number of permutations of length  from an  element set is

Proof

This follows easily from the multiplication principle. There are  ways to choose the first element,  ways to choose the
second element, and so forth.

By convention, . Recall that, in general, a product over an empty index set is 1. Note that  has  factors, starting at ,
and with each subsequent factor one less than the previous factor. Some alternate notations for the number of permutations of size 

 from a set of  objects are , , and .

The number of permutations of length  from the  element set  (these are called simply permutations of ) is

The function on  given by  is the factorial function. The general permutation formula in (2) can be written in terms of
factorials:

For  and 

Although this formula is succinct, it's not always a good idea numerically. If  and  are large,  and  are enormous,
and division of the first by the second can lead to significant round-off errors.

Note that the basic permutation formula in (2) is defined for every real number  and nonnegative integer . This extension is
sometimes referred to as the generalized permutation formula. Actually, we will sometimes need an even more general formula of
this type (particularly in the sections on Pólya's urn and the beta-Bernoulli process).

For , , and , define

1. 
2. 
3. 
4. 

The product  (our ordinary permutation formula) is sometimes called the falling power of  of order , while  is
called the rising power of  of order , and is sometimes denoted . Note that  is the ordinary th power of . In general,
note that  has  factors, starting at  and with each subsequent factor obtained by adding  to the previous factor.
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Combinations

Consider again a set  with  elements. A combination of size  from  is an (unordered) subset of 
distinct elements of . Thus, a combination of size  from  has the form , where  for each  and 

 for .

Statistically, a combination of size  from  corresponds to an unordered sample of size  chosen without replacement from the
population . Note that for each combination of size  from , there are  distinct orderings of the elements of that combination.
Each of these is a permutation of length  from . The number of combinations of size  from an -element set is denoted by .
Some alternate notations are , , and .

The number of combinations of size  from an  element set is

Proof

An algorithm for generating all permutations of size  from  is to first select a combination of size  and then to select an
ordering of the elements. From the multiplication principle it follows that . Hence 

.

The number  is called a binomial coefficient. Note that the formula makes sense for any real number  and nonnegative integer 
 since this is true of the generalized permutation formula . With this extension,  is called the generalized binomial

coefficient. Note that if  and  are positive integers and  then . By convention, we will also define  if 
. This convention sometimes simplifies formulas.

Properties of Binomial Coefficients

For some of the identities below, there are two possible proofs. An algebraic proof, of course, should be based on (5). A
combinatorial proof is constructed by showing that the left and right sides of the identity are two different ways of counting the
same collection.

.

Algebraically, the last result is trivial. It also makes sense combinatorially: There is only one way to select a subset of  with 
elements (  itself), and there is only one way to select a subset of size 0 from  (the empty set ).

If  with  then

Combinatorial Proof

Note that if we select a subset of size  from a set of size , then we leave a subset of size  behind (the complement).
Thus  is a one-to-one correspondence between subsets of size  and subsets of size .

The next result is one of the most famous and most important. It's known as Pascal's rule and is named for Blaise Pascal.

If  with  then

Combinatorial Proof

Suppose that we have  persons, one named Fred, and that we want to select a committee of size . There are  different
committees. On the other hand, there are  committees with Fred as a member, and  committees without Fred as a
member. The sum of these two numbers is also the number of committees.
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Recall that the Galton board is a triangular array of pegs: the rows are numbered  and the pegs in row  are numbered 
. If each peg in the Galton board is replaced by the corresponding binomial coefficient, the resulting table of

numbers is known as Pascal's triangle, named again for Pascal. By (8), each interior number in Pascal's triangle is the sum of the
two numbers directly above it.

The following result is the binomial theorem, and is the reason for the term binomial coefficient.

If  and  is a positive integer, then

Combinatorial Proof

Note that to get the term  in the expansion of , we must select  from  of the factors and  from the remaining
 factors. The number of ways to do this is .

If  with  then

Combinatorial Proof

Consider two procedures for selecting a committee of size  from a group of  persons, with  distinct members of the
committee as officers (chair, vice chair, etc.). For the first procedure, select the committee from the population and then select
the member of the committee to be the officers. The number of ways to perform the first step is  and the number of ways to
perform the second step is . So by the multiplication principle, the number of ways to choose the committee is the left side
of the equation. For the second procedure, select the officers of the committee from the population and then select  other
committee members from the remaining  members of the population. The number of ways to perform the first step is 
and the number of ways to perform the second step is . So by the multiplication principle, the number of committees is
the right side of the equation.

The following result is known as Vandermonde's identity, named for Alexandre-Théophile Vandermonde.

If  with , then

Combinatorial Proof

Suppose that a committee of size  is chosen form a group of  persons, consisting of  men and  women. The number
of committees with exactly  men and  women is . The sum of this product over  is the total number of
committees, which is .

The next result is a general identity for the sum of binomial coefficients.

If  with  then

Combinatorial Proof

Suppose that we pick a subset of size  from the set . For , the number of subsets
in which the largest element is  is . Hence the sum of these numbers over  is the total number of subsets of size 

, which is also .
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For an even more general version of the last result, see the section on Order Statistics in the chapter on Finite Sampling Models.
The following identity for the sum of the first  positive integers is a special case of the last result.

If  then

Proof

Let  in previous result.

There is a one-to-one correspondence between each pair of the following collections. Hence the number objects in each of
these collection is .

1. Subsets of size  from a set of  elements.
2. Bit strings of length  with exactly  1's.
3. Paths in the Galton board from  to .

Proof

Let  be a set with  elements. A one-to-one correspondence between the subsets  of  with  elements
and the bit strings  of length  with  1's can be constructed by the rule that  if and only if . In
turn, a one-to-one correspondence between the bit strings  in part (b) and the paths in Galton board in part (c) can be
constructed by the rule that in row , turn right if  and turn left if .

The following identity is known as the alternating sum identity for binomial coefficients. It turns out to be useful in the Irwin-Hall
probability distribution. We give the identity in two equivalent forms, one for falling powers and one for ordinary powers.

If ,  then

1. 

2. 

Proof
1. We use the identity above and the binomial theorem binomial theorem:

Note that it's the last step where we need .
2. This follows from (a), since  is a linear combination of  for . That is, there exists  for 

 such that . Hence

Our next identity deals with a generalized binomial coefficient.
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Proof

Note that

In particular, note that . Our last result in this discussion concerns the binomial operator and its inverse.

The binomial operator takes a sequence of real numbers  and returns the sequence of real numbers 
 by means of the formula

The inverse binomial operator recovers the sequence  from the sequence  by means of the formula

Proof

Exponential generating functions can be used for an elegant proof. Exponential generating functions are the combinatorial
equivalent of moment generating functions for discrete probability distributions on . So let  and  denote the exponential
generating functions of the sequences  and , resepectively. Then

So it follows that

But by definition,

and so the inverse formula follows.

Samples

The experiment of drawing a sample from a population is basic and important. There are two essential attributes of samples:
whether or not order is important, and whether or not a sampled object is replaced in the population before the next draw. Suppose
now that the population  contains  objects and we are interested in drawing a sample of  objects. Let's review what we know
so far:
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…

…

If order is important and sampled objects are replaced, then the samples are just elements of the product set . Hence, the
number of samples is .
If order is important and sample objects are not replaced, then the samples are just permutations of size  chosen from .
Hence the number of samples is .
If order is not important and sample objects are not replaced, then the samples are just combinations of size  chosen from .
Hence the number of samples is .

Thus, we have one case left to consider.

Unordered Samples With Replacement

An unordered sample chosen with replacement from  is called a multiset. A multiset is like an ordinary set except that elements
may be repeated.

There is a one-to-one correspondence between each pair of the following collections:

1. Mulitsets of size  from a population  of  elements.
2. Bit strings of length  with exactly  1s.
3. Nonnegative integer solutions  of the equation .

Each of these collections has  members.

Proof

Suppose that . Consider a multiset of size . Since order does not matter, we can list all of the
occurrences of  (if any) first, then the occurrences of  (if any), and so forth, until we at last list the occurrences of  (if
any). If we know we are using this data structure, we don't actually have to list the actual elements, we can simply use 1 as a
placeholder with 0 as a seperator. In the resulting bit string, 1 occurs  times and 0 occurs  times. Conversely, any such
bit string uniquely defines a multiset of size . Next, given a multiset of size  from , let  denote the number of times that 

 occurs, for . Then  satisfies the conditions in (c). Conversely, any solution to the equation
in (c) uniquely defines a multiset of size  from . We already know how to count the collection in (b): the number of bit
strings of length  with 1 occurring  times is .

Summary of Sampling Formulas

The following table summarizes the formulas for the number of samples of size  chosen from a population of  elements, based
on the criteria of order and replacement.

Sampling formulas

Number of Samples With order Without

With replacement

Without

Multinomial Coefficients

Partitions of a Set

Recall that the binomial coefficient  is the number of subsets of size  from a set  of  elements. Note also that when we select
a subset  of size  from , we effectively partition  into two disjoint subsets of sizes  and , namely  and . A natural
generalization is to partition  into a union of  distinct, pairwise disjoint subsets  where  for each 

. Of course we must have .

The number of ways to partition a set of  elements into a sequence of  sets of sizes  is

Proof
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The left side follows from the multiplication rule. There are  ways to select the first set in the partition,  ways to
select the second set in the partition, and so forth. The right side follows by writing the binomial coefficients on the left in
terms of factorials and simplifying.

The number in (18) is called a multinomial coefficient and is denoted by

If  with  then

Combinatorial Proof

As noted before, if we select a subset of size  from an  element set, then we partition the set into two subsets of sizes  and 
.

Sequences

Consider now the set . Elements of this set are sequences of length  in which each coordinate is one of 
values. Thus, these sequences generalize the bit strings of length . Again, let  be a sequence of nonnegative
integers with .

There is a one-to-one correspondence between the following collections:

1. Partitions of  into pairwise disjoint subsets  where  for each .
2. Sequences in  in which  occurs  times for each .

Proof

Suppose that . A one-to-one correspondence between a partition  of the type in (a) and
a sequence  of the type in (b) can be constructed by the rule that  if and only if .

It follows that the number of elements in both of these collections is

Permutations with Indistinguishable Objects

Suppose now that we have  object of  different types, with  elements of type  for each . Moreover,
objects of a given type are considered identical. There is a one-to-one correspondence between the following collections:

1. Sequences in  in which  occurs  times for each .
2. Distinguishable permutations of the  objects.

Proof

A one-to-one correspondence between a sequence  of the type in (a) and a permutation of the  objects
can be constructed by the rule that we put an object of type  in position  if and only if .

Once again, it follows that the number of elements in both collections is

The Multinomial Theorem

The following result is the multinomial theorem which is the reason for the name of the coefficients.

If  and  then
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n

, ,⋯ ,n
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k
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The sum is over sequences of nonnegative integers  with . There are  terms
in this sum.

Combinatorial Proof

Note that to get  in the expansion of , we must chose  in  of the factors, for each . The
number of ways to do this is the multinomial coefficient . The number of terms in the sum follows from the
formula above.

Computational Exercises

Arrangements

In a race with 10 horses, the first, second, and third place finishers are noted. How many outcomes are there?

Answer

Eight persons, consisting of four male-female couples, are to be seated in a row of eight chairs. How many seating
arrangements are there in each of the following cases:

1. There are no other restrictions.
2. The men must sit together and the women must sit together.
3. The men must sit together.
4. Each couple must sit together.

Answer
1. 
2. 
3. 
4. 

Suppose that  people are to be seated at a round table. How many seating arrangements are there? The mathematical
significance of a round table is that there is no dedicated first chair.

Answer

. Seat one, distinguished person arbitrarily. Every seating arrangement can then be specified by giving the position of a
person (say clockwise) relative to the distinguished person.

Twelve books, consisting of 5 math books, 4 science books, and 3 history books are arranged on a bookshelf. Find the number
of arrangements in each of the following cases:

1. There are no restrictions.
2. The books of each type must be together.
3. The math books must be together.

Answer
1. 
2. 
3. 

Find the number of distinct arrangements of the letters in each of the following words:

1. statistics
2. probability

( + +⋯+ =∑( ) ⋯x

1

x

2

x

k

)

n

n

, ,⋯ ,n

1

n

2

n

k

x

n

1

1

x

n

2

2

x

n

k

k
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720

40 320

1152
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3. mississippi
4. tennessee
5. alabama

Answer
1. 
2. 
3. 
4. 
5. 

A child has 12 blocks; 5 are red, 4 are green, and 3 are blue. In how many ways can the blocks be arranged in a line if blocks of
a given color are considered identical?

Answer

Code Words

A license tag consists of 2 capital letters and 5 digits. Find the number of tags in each of the following cases:

1. There are no other restrictions
2. The letters and digits are all different.

Answer
1. 
2. 

Committees

A club has 20 members; 12 are women and 8 are men. A committee of 6 members is to be chosen. Find the number of different
committees in each of the following cases:

1. There are no other restrictions.
2. The committee must have 4 women and 2 men.
3. The committee must have at least 2 women and at least 2 men.

Answer
1. 
2. 
3. 

Suppose that a club with 20 members plans to form 3 distinct committees with 6, 5, and 4 members, respectively. In how many
ways can this be done.

Answer

. Note that the members not on a committee also form one of the sets in the partition.

Cards

A standard card deck can be modeled by the Cartesian product set

where the first coordinate encodes the denomination or kind (ace, 2-10, jack, queen, king) and where the second coordinate encodes
the suit (clubs, diamonds, hearts, spades). Sometimes we represent a card as a string rather than an ordered pair (for example ).

A poker hand (in draw poker) consists of 5 cards dealt without replacement and without regard to order from a deck of 52
cards. Find the number of poker hands in each of the following cases:

50 400

9 979 200

34 650

3780

210

27 720

67 600 000

19 656 000

38 760

13 860

30 800

9 777 287 520

D= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, k}×{♣,♢,♡,♠} (1.8.28)

q♡
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1. There are no restrictions.
2. The hand is a full house (3 cards of one kind and 2 of another kind).
3. The hand has 4 of a kind.
4. The cards are all in the same suit (so the hand is a flush or a straight flush).

Answer
1. 
2. 
3. 
4. 

The game of poker is studied in detail in the chapter on Games of Chance.

A bridge hand consists of 13 cards dealt without replacement and without regard to order from a deck of 52 cards. Find the
number of bridge hands in each of the following cases:

1. There are no restrictions.
2. The hand has exactly 4 spades.
3. The hand has exactly 4 spades and 3 hearts.
4. The hand has exactly 4 spades, 3 hearts, and 2 diamonds.

Answer
1. 
2. 
3. 
4. 

A hand of cards that has no cards in a particular suit is said to be void in that suit. Use the inclusion-exclusion formula to find
each of the following:

1. The number of poker hands that are void in at least one suit.
2. The number of bridge hands that are void in at least one suit.

Answer
1. 
2. 

A bridge hand that has no honor cards (cards of denomination 10, jack, queen, king, or ace) is said to be a Yarborough, in
honor of the Second Earl of Yarborough. Find the number of Yarboroughs.

Answer

A bridge deal consists of dealing 13 cards (a bridge hand) to each of 4 distinct players (generically referred to as north, south,
east, and west) from a standard deck of 52 cards. Find the number of bridge deals.

Answer

This staggering number is about the same order of magnitude as the number of atoms in your body, and is one of the reasons that
bridge is a rich and interesting game.

Find the number of permutations of the cards in a standard deck.

Answer

2 598 960

3744

624

5148

635 013 559 600

151 519 319 380

47 079 732 700

11 404 407 300

1 913 496

32 427 298 180

347 373 600

53 644 737 765 488 792 839 237 440 000 ≈ 5.36×10

28

52! ≈ 8.0658×10

67
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This number is even more staggering. Indeed if you perform the experiment of dealing all 52 cards from a well-shuffled deck, you
may well generate a pattern of cards that has never been generated before, thereby ensuring your immortality. Actually, this
experiment shows that, in a sense, rare events can be very common. By the way, Persi Diaconis has shown that it takes about seven
standard riffle shuffles to thoroughly randomize a deck of cards.

Dice and Coins

Suppose that 5 distinct, standard dice are rolled and the sequence of scores recorded.

1. Find the number of sequences.
2. Find the number of sequences with the scores all different.

Answer
1. 
2. 

Suppose that 5 identical, standard dice are rolled. How many outcomes are there?

Answer

A coin is tossed 10 times and the outcome is recorded as a bit string (where 1 denotes heads and 0 tails).

1. Find the number of outcomes.
2. Find the number of outcomes with exactly 4 heads.
3. Find the number of outcomes with at least 8 heads.

Answer
1. 
2. 
3. 

Polynomial Coefficients

Find the coefficient of  in .

Answer

Find the coefficient of  in .

Answer

Find the coefficient of  in .

Answer

The Galton Board

In the Galton board game,

1. Move the ball from  to  along a path of your choice. Note the corresponding bit string and subset.
2. Generate the bit string . Note the corresponding subset and path.
3. Generate the subset . Note the corresponding bit string and path.
4. Generate all paths from  to . How many paths are there?

Answer

7776

720

252

1024

210

56

x

3

y

4

(2 x−4 y)

7

71 680

x

5

(2+3 x)

8

108 864

x

3

y

7

z

5

(x+y+z)

15

360 360

(0, 0) (10, 6)

0011101001

{1, 4, 5, 7, 8, 10}

(0, 0) (5, 3)
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4. 10

Generate Pascal's triangle up to .

Samples

A shipment contains 12 good and 8 defective items. A sample of 5 items is selected. Find the number of samples that contain
exactly 3 good items.

Answer

In the  lottery,  numbers are chosen without replacement from the set of integers from 1 to  (where  and 
). Order does not matter.

1. Find the number of outcomes in the general  lottery.
2. Explicitly compute the number of outcomes in the  lottery (a common format).

Answer
1. 
2. 

For more on this topic, see the section on Lotteries in the chapter on Games of Chance.

Explicitly compute each formula in the sampling table above when  and .

Answer
1. Ordered samples with replacement: 
2. Ordered samples without replacement: 
3. Unordered samples with replacement: 
4. Unordered samples without replacement: 

Greetings

Suppose there are  people who shake hands with each other. How many handshakes are there?

Answer

. Note that a handshake can be thought of as a subset of size 2 from the set of  people.

There are  men and  women. The men shake hands with each other; the women hug each other; and each man bows to each
woman.

1. How many handshakes are there?
2. How many hugs are there?
3. How many bows are there?
4. How many greetings are there?

Answer
1. 
2. 
3. 
4. 

Integer Solutions

Find the number of integer solutions of  in each of the following cases:

1.  for each .

n= 10

6160

(n, k) k n n, k ∈ N

+

k< n

(n, k)

(44, 6)

( )

n

k

7 059 052

n= 10 k= 4

10 000

5040

715

210

n

( )

n

2

n

m n

( )

m

2

( )

n

2

mn

( )+( )+mn= ( )

m

2

n

2

m+n

2

+ + = 10x

1

x

2

x

3

≥ 0x

i

i
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2.  for each .

Answer
1. 
2. 

Generalized Coefficients

Compute each of the following:

1. 

2. 

3. 

Answer
1. 
2. 
3. 

Compute each of the following:

1. 
2. 
3. 

Answer

1. 
2. 
3. 

Birthdays

Suppose that  persons are selected and their birthdays noted. (Ignore leap years, so that a year has 365 days.)

1. Find the number of outcomes.
2. Find the number of outcomes with distinct birthdays.

Answer
1. .
2. .

Chess

Note that the squares of a chessboard are distinct, and in fact are often identified with the Cartesian product set

Find the number of ways of placing 8 rooks on a chessboard so that no rook can capture another in each of the following cases.

1. The rooks are distinguishable.
2. The rooks are indistinguishable.

Answer
1. 
2. 

> 0x

i

i

66

36

(−5)

(3)

( )

1

2

(4)

(− )

1

3

(5)

−210

−

15

16

−

3640

243

( )

1/2

3

( )

−5

4

( )

−1/3

5

1

16

70

−

91

729

n

365

n

365

(n)

{a, b, c, d, e, f , g,h}×{1, 2, 3, 4, 5, 6, 7, 8} (1.8.29)

1 625 702 400

40 320
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Gifts

Suppose that 20 identical candies are distributed to 4 children. Find the number of distributions in each of the following cases:

1. There are no restrictions.
2. Each child must get at least one candy.

Answer
1. 
2. 

In the song The Twelve Days of Christmas, find the number of gifts given to the singer by her true love. (Note that the singer
starts afresh with gifts each day, so that for example, the true love gets a new partridge in a pear tree each of the 12 days.)

Answer

Teams

Suppose that 10 kids are divided into two teams of 5 each for a game of basketball. In how many ways can this be done in each
of the following cases:

1. The teams are distinguishable (for example, one team is labeled “Alabama” and the other team is labeled “Auburn”).
2. The teams are not distinguishable.

Answer
1. 
2. 

This page titled 1.8: Combinatorial Structures is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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1.9: Topological Spaces
        

Topology is one of the major branches of mathematics, along with other such branches as algebra (in the broad sense of algebraic
structures), and analysis. Topology deals with spatial concepts involving distance, closeness, separation, convergence, and
continuity. Needless to say, entire series of books have been written about the subject. Our goal in this section and the next is
simply to review the basic definitions and concepts of topology that we will need for our study of probability and stochastic
processes. You may want to refer to this section as needed.

Basic Theory

Definitions

A topological space consists of a nonempty set  and a collection  of subsets of  that satisfy the following properties:

1.  and 
2. If  then 
3. If  and  is finite, then 

If , then  is said to be open and  is said to be closed. The collection  of open sets is a topology on .

So the union of an arbitrary number of open sets is still open, as is the intersection of a finite number of open sets. The universal set
 and the empty set  are both open and closed. There may or may not exist other subsets of  with this property.

Suppose that  is a nonempty set, and that  and  are topologies on . If  then  is finer than , and  is
coarser than . Coarser than defines a partial order on the collection of topologies on . That is, if  are topologies
on  then

1.  is coarser than , the reflexive property.
2. If  is coarser than  and  is coarser than  then , the anti-symmetric property.
3. If  is coarser than  and  is coarser than  then  is coarser than , the transitive property.

A topology can be characterized just as easily by means of closed sets as open sets.

Suppose that  is a nonempty set. A collection of subsets  is the collection of closed sets for a topology on  if and only if

1.  and 
2. If  then .
3. If  and  is a finite then .

Proof

The set  must satisfy the axioms of a topology. So the result follows DeMorgan's laws: if  is a collection
of subsets of  then

Suppose that  is a topological space, and that . A set  is a neighborhood of  if there exists  with 
.

So a neighborhood of a point  is simply a set with an open subset that contains . The idea is that points in a “small”
neighborhood of  are “close” to  in a sense. An open set can be defined in terms of the neighborhoods of the points in the set.

Suppose again that  is a topological space. A set  is open if and only if  is a neighborhood of every 

Proof

S S S

S ∈S ∅ ∈S

A ⊆S ⋃A ∈S

A ⊆S A ⋂A ∈S

A ∈S A A

c

S S

S ∅ S

S S T S S ⊆T T S S

T S R, S , T

S

R R

R S S R R =S

R S S T R T

S C S

S ∈ C ∅ ∈ C

A ⊆C ⋂A ∈ C

A ⊆C A ⋃A ∈ C

S = { : A ∈ C }A

c

A

S

(⋃A )

c

(⋂A )

c

=⋂{ : A ∈A }A

c

=⋃{ : A ∈A }A

c

(S,S ) x ∈ S A⊆ S x U ∈S

x ∈ U ⊆A

x ∈ S x

x x

(S,S ) U ⊆ S U x ∈ U
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If  is open, then clearly  is a neighborhood of every point  and clearly satisfies the condition in the theorem.
Conversely, suppose that  is a neighborhood of every . Then by definition of neighborhood, for every  there
exists an open set  with . But then  is open, and clearly this set is .

Although the proof seems trivial, the neighborhood concept is how you should think of openness. A set  is open if every point in 
 has a set of “nearby points” that are also in .

Our next three definitions deal with topological sets that are naturally associated with a given subset.

Suppose again that  is a topological space and that . The closure of  is the set

This is the smallest closed set containing :

1.  is closed.
2. .
3. If  is closed and  then 

Proof

Note that  is nonempty since .

1. The sets in  are closed so  is closed.
2. By definition,  for each . Hence .
3. If  is closed and  then  so .

Of course, if  is closed then . Complementary to the closure of a set is the interior of the set.

Suppose again that  is a topological space and that . The interior of  is the set

This set is the largest open subset of :

1.  is open.
2. .
3. If  is open and  then 

Proof

Note that  is nonempty since .

1. The sets in  are open so  is open.
2. By definition,  for each . Hence .
3. If  is open and  then  so .

Of course, if  is open then . The boundary of a set is the set difference between the closure and the interior.

Suppose again that  is a topological space. The boundary of  is . This set is closed.

Proof

By definition, , the intersection of two closed sets.

A topology on a set induces a natural topology on any subset of the set.

Suppose that  is a topological space and that  is a nonempty subset of . Then  is a topology
on , known as the relative topology induced by .

Proof

First  and , so . Next,  and  so . Suppose that . For each ,
select  such that . Let  denote the collection of sets selected (we need the axiom of choice to do this).

U U x ∈ U

U x ∈ U x ∈ U

U

x

x ∈ ⊆UU

x

⋃

x∈U

U

x

U

U

U U

(S,S ) A ⊆ S A

cl(A) =⋂{B⊆ S : B is closed and A ⊆B} (1.9.1)

A

cl(A)

A ⊆ cl(A)

B A ⊆B cl(A) ⊆B

B = {B⊆ S : B is closed and A ⊆B} S ∈B

B ⋂B

A ⊆B B ∈B A ⊆⋂B

B A ⊆B B ∈B ⋂B ⊆B

A A = cl(A)

(S,S ) A ⊆ S A

int(A) =⋃{U ⊆ S : U  is open and U ⊆A} (1.9.2)

A

int(A)

int(A) ⊆A

U U ⊆A U ⊆ int(A)

U = {U ⊆ S : U  is open and U ⊆A} ∅ ∈U

U ⋃U

U ⊆A U ∈U ⋃U ⊆A

U U ⊆A U ∈U U ⊆⋃U

A A = int(A)

(S,S ) A ∂(A) = cl(A) ∖ int(A)

∂(A) = cl(A) ∩ [int(A)]

c

(S,S ) R S R = {A∩R : A ∈S }

R S

S ∈S S∩R=R R ∈R ∅ ∈S ∅ ∩R= ∅ ∅ ∈R B ⊆R B ∈B

A ∈S B=A∩R A
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Then  and , so . Finally, suppose that  is finite. Once again, for each 
there exists  with . Let  denote the collection of sets selected. Then  is finite so . But 

 so .

In the context of the previous result, note that if  is itself open, then the relative topology is , the subsets
of  that are open in the original topology.

Separation Properties

Separation properties refer to the ability to separate points or sets with disjoint open sets. Our first definition deals with separating
two points.

Suppose that  is a topological space and that  are distinct points in . Then  and  can be separated if there exist
disjoint open sets  and  with  and . If every pair of distinct points in  can be separated, then  is called
a Hausdorff space.

Hausdorff spaces are named for the German mathematician Felix Hausdorff. There are weaker separation properties. For example,
there could be an open set  that contains  but not , and an open set  that contains  but not , but no disjoint open sets that
contain  and . Clearly if every open set that contains one of the points also contains the other, then the points are
indistinguishable from a topological viewpoint. In a Hausdorff space, singletons are closed.

Suppose that  is a Hausdorff space. Then  is closed for each .

Proof

The definition shows immediately that  is open: if , there exists on open set  with .

Our next definition deals with separating a point from a closed set.

Suppose again that  is a topological space. A nonempty closed set  and a point  can be separated if there
exist disjoint open sets  and  with  and . If every nonempty closed set  and point  can be separated,
then the space  is regular.

Clearly if  is a regular space and singleton sets are closed, then  is a Hausdorff space.

Bases

Topologies, like other set structures, are often defined by first giving some basic sets that should belong to the collection, and the
extending the collection so that the defining axioms are satisfied. This idea is motivation for the following definition:

Suppose again that  is a topological space. A collection  is a base for  if every set in  can be written as a
union of sets in .

So, a base is a smaller collection of open sets with the property that every other open set can be written as a union of basic open
sets. But again, we often want to start with the basic open sets and extend this collection to a topology. The following theorem
gives the conditions under which this can be done.

Suppose that  is a nonempty set. A collection  of subsets of  is a base for a topology on  if and only if

1. 
2. If  and , there exists  with 

Proof

Suppose that  is a base for a topology  on . Since  is open,  is a union of sets in . Since every set in  is a subset of
, we must have . Suppose that  and that . Since  is open, it's a union of sets in . The

point  must be in one of those sets, so there exists  with .

Suppose now that  satisfies the two conditions in the theorem. Let  be the collection of all unions of sets in . Then 
 by condition (a), and  by taking a vacuous union. Suppose that  for  where  is an arbitrary index

⋃A ∈S ⋃B = (⋃A )∩R ⋃B ∈R B ⊆R B ∈B

A ∈S A∩R=B A A ⋂A ∈S

⋂B = (⋂A )∩R ⋂B ∈R

R R = {A ∈S : A⊆R}

R

(S,S ) x, y S x y

U V x ∈ U y ∈ V S (S,S )

U x y V y x

x y

(S,S ) {x} x ∈ S

{x}

c

y ∈ {x}

c

V y ∈ V ⊆ {x}

c

(S,S ) A⊆ S x ∈ A

c

U V A⊆U x ∈ V A x ∈ A

c

(S,S )

(S,S ) (S,S )

(S,S ) B ⊆S S S

B

S B S S

S =⋃B

A, B ∈B x ∈ A∩B C ∈B x ∈ C ⊆A∩B

B S S S S B B

S S =⋃B A, B ∈B x ∈ A∩B A∩B B

x C ∈B x ∈ C ⊆A∩B

B S B

S ∈S ∅ ∈S ∈SU

i

i ∈ I I
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set. Then for each , there exists an index set  such that  where  for each . But then

Finally, suppose that . Then there exist index sets  and  with  and  where 
for all  and  for all . Then

By condition (b), for each , , and  there exists  with . But then clearly

Here is a slightly weaker condition, but one that is often satisfied in practice.

Suppose that  is a nonempty set. A collection  of subsets of  that satisfies the following properties is a base for a topology
on :

1. 
2. If  then 

Part (b) means that  is closed under finite intersections.

Compactness

Our next discussion considers another very important type of set. Some additional terminology will make the discussion easier.
Suppose that  is a set and . A collection of subsets  of  is said to cover  if . So the word cover simply means
a collection of sets whose union contains a given set. In a topological space, we can have open an open cover (that is, a cover with
open sets), a closed cover (that is, a cover with closed sets), and so forth.

Suppose again that  is a topological space. A set  is compact if every open cover of  has a finite sub-cover.
That is, if  with  then there exists a finite  with .

So intuitively, a compact set is compact in the ordinary sense of the word. No matter how “small” are the open sets in the covering
of , there will always exist a finite number of the open sets that cover .

Suppose again that  is a topological space and that  is a compact. If  is closed, then  is also compact.

Proof

Suppose that  is an open cover of . Since  is closed,  is open, so  is an open cover of . Since  is
compact, this last collection has a finite sub-cover of , which is also a finite sub-cover of .

Compactness is also preserved under finite unions.

Suppose again that  is a topological space, and that  is compact for each  in a finite index set . Then 
 is compact.

Proof

Suppose that  is an open cover of . Then trivially,  is also an open cover of  for each . Hence there exists a finite
subcover  of  for each . But then  is also finite and is a covering of .

As we saw above, closed subsets of a compact set are themselves compact. In a Hausdorff space, a compact set is itself closed.

Suppose that  is a Hausdorff space. If  is compact then  is closed.

Proof

i ∈ I J

i

=U

i

⋃

j∈J

i

B

i,j

∈BB

i,j

j∈ J

i

= ∈S⋃

i∈I

U

i

⋃

i∈I

⋃

j∈J

i

B

i,j

(1.9.3)

U, V ∈S I J U =⋃

i∈I
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∈BA

i

i ∈ I ∈BB

j

j∈ J
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i

B

j

(1.9.4)
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j
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(1.9.5)
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We will show that  is open, so fix . For each , the points  and  can be separated, so there exist disjoint open
sets  and  such that  and . Trivially, the collection  is an open cover of , and hence there
exist a finite subset  such that  covers . But then  is open and is disjoint from .
Hence also  is disjoint from . So to summarize,  is open and .

Also in a Hausdorff space, a point can be separated from a compact set that does not contain the point.

Suppose that  is a Hausdorff space. If ,  is compact, and , then there exist disjoint open sets  and 
 with  and 

Proof

Since the space is Hausdorff, for each  there exist disjoint open sets  and  with  and . The collection 
 is an open cover of , and hence there exists a finite set  such that  covers . Thus let 

 and . Then  is open, since  is finite, and  is open. Moreover  and  are disjoint, and 
 and .

In a Hausdorff space, if a point has a neighborhood with a compact boundary, then there is a smaller, closed neighborhood.

Suppose again that  is a Hausdorff space. If  and  is a neighborhood of  with  compact, then there exists a
closed neighborhood  of  with .

Proof

By (20), there exist disjoint open sets  and  with  and . Hence  and  are disjoint. Let 
. Note that  is closed, and is a neighborhood of  since  and  are neighborhoods of . Moreover,

Generally, local properties in a topological space refer to properties that hold on the neighborhoods of a point .

A topological space  is locally compact if every point  has a compact neighborhood.

This definition is important because many of the topological spaces that occur in applications (like probability) are not compact,
but are locally compact. Locally compact Hausdorff spaces have a number of nice properties. In particular, in a locally compact
Hausdorff space, there are arbitrarily “small” compact neighborhoods of a point.

Suppose that  is a locally compact Hausdorff space. If  and  is a neighborhood of , then there exists a compact
neighborhood  of  with .

Proof

Since  is locally compact, there exists a compact neighborhood  of . Hence  is a neighborhood of . Moreover, 
 is closed and is a subset of  and hence is compact. From (21), there exists a closed neighborhood  of  with 

. Since  is closed and ,  is compact. Of course also, .

Countability Axioms

Our next discussion concerns topologies that can be “countably constructed” in a certain sense. Such axioms limit the “size” of the
topology in a way, and are often satisfied by important topological spaces that occur in applications. We start with an important
preliminary definition.

Suppose that  is a topological space. A set  is dense if  is nonempty for every nonempty .

Equivalently,  is dense if every neighborhood of a point  contains an element of . So in this sense, one can find elements
of  “arbitrarily close” to a point . Of course, the entire space  is dense, but we are usually interested in topological spaces
that have dense sets of limited cardinality.

Suppose again that  is a topological space. A set  is dense if and only if .

C
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V
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(S,S ) x ∈ S A x ∂(A)

B x B⊆A

U V x ∈ U ∂(A) ⊆ V cl(U) ∂(A)

B= cl(A∩U) B x U A x

B⊆ cl(A)∩ cl(U) = [A∪∂(A)] ∩ cl(U) = [A∩cl(U)] ∪ [∂(A)∩ cl(U)] =A∩cl(U) ⊆A (1.9.6)
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Proof

Suppose that  is dense. Since  is closed,  is open. If this set is nonempty, it must contain a point in . But
that's clearly a contradiction since . Conversely, suppose that . Suppose that  is a nonempty, open set.
Then  is closed, and . If , then . But then  so .

Here is our first countability axiom:

A topological space  is separable if there exists a countable dense subset.

So in a separable space, there is a countable set  with the property that there are points in  “arbitrarily close” to every .
Unfortunately, the term separable is similar to separating points that we discussed above in the definition of a Hausdorff space. But
clearly the concepts are very different. Here is another important countability axiom.

A topological space  is second countable if it has a countable base.

So in a second countable space, there is a countable collection of open sets  with the property that every other open set is a union
of sets in . Here is how the two properties are related:

If a topological space  is second countable then it is separable.

Proof

Suppose that  is a base for , where  is a countable index set. Select  for each , and let 
. Of course,  is countable. If  is open and nonempty, then  for some nonempty . But

then , so  is dense.

As the terminology suggests, there are other axioms of countability (such as first countable), but the two we have discussed are the
most important.

Connected and Disconnected Spaces

This discussion deals with the situation in which a topological space falls into two or more separated pieces, in a sense.

A topological space  is disconnected if there exist nonempty, disjoint, open sets  and  with . If  is
not disconnected, then it is connected.

Since , it follows that  and  are also closed. So the space is disconnected if and only if there exists a proper subset 
that is open and closed (sadly, such sets are sometimes called clopen). If  is disconnected, then  consists of two pieces  and ,
and the points in  are not “close” to the points in , in a sense. To study  topologically, we could simply study  and 
separately, with their relative topologies.

Convergence

There is a natural definition for a convergent sequence in a topological space, but the concept is not as useful as one might expect.

Suppose again that  is a topological space. A sequence of points  in  converges to  if for every
neighborhood  of  there exists  such that  for . We write  as .

So for every neighborhood of , regardless of how “small”, all but finitely many of the terms of the sequence will be in the
neighborhood. One would naturally hope that limits, when they exist, are unique, but this will only be the case if points in the space
can be separated.

Suppose that  is a Hausdorff space. If  is a sequence of points in  with  as  and 
 as , then .

Proof

If , there exist disjoint neighborhoods  and  of  and , respectively. There exist  such that  for all
 and  for all . But then if ,  and , a contradiction.
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On the other hand, if distinct points  cannot be separated, then any sequence that converges to  will also converge to .

Continuity

Continuity of functions is one of the most important concepts to come out of general topology. The idea, of course, is that if two
points are close together in the domain, then the functional values should be close together in the range. The abstract topological
definition, based on inverse images is very simple, but not very intuitive at first.

Suppose that  and  are topological spaces. A function  is continuous if  for every 
.

So a continuous function has the property that the inverse image of an open set (in the range space) is also open (in the domain
space). Continuity can equivalently be expressed in terms of closed subsets.

Suppose again that  and  are topological spaces. A function  is continuous if and only if  is a
closed subset of  for every closed subset  of .

Proof

Recall that  for . The result follows directly from the definition and the fact that a set is open if
and only if its complement is closed.

Continuity preserves limits.

Suppose again that  and  are topological spaces, and that  is continuous. If  is a
sequence of points in  with  as , then  as .

Proof

Suppose that  is open and . Then  is open in  and . Hence there exists  such
that  for every . But then  for . So  as .

The converse of the last result is not true, so continuity of functions in a general topological space cannot be characterized in terms
of convergent sequences. There are objects like sequences but more general, known as nets, that do characterize continuity, but we
will not study these. Composition, the most important way to combine functions, preserves continuity.

Suppose that , , and  are topological spaces. If  and  are continuous, then 
 is continuous.

Proof

If  is open in  then  is open in  and therefore  is open in . But 
.

The next definition is very important. A recurring theme in mathematics is to recognize when two mathematical structures of a
certain type are fundamentally the same, even though they may appear to be different.

Suppose again that  and  are topological spaces. A one-to-one function  that maps  onto  with both  and 
 continuous is a homeomorphism from  to . When such a function exists, the topological spaces are said to

be homeomorphic.

Note that in this definition,  refers to the inverse function, not the mapping of inverse images. If  is a homeomorphism, then 
is open in  if and only if  is open in . It follows that the topological spaces are essentially equivalent: any purely
topological property can be characterized in terms of open sets and therefore any such property is shared by the two spaces.

Being homeomorphic is an equivalence relation on the collection of topological spaces. That is, for spaces , ,
and ,

1.  is homeomorphic to  (the reflexive property).
2. If  is homeomorphic to  then  is homeomorphic to  (the symmetric property).
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3. If  is homeomorphic to  and  is homeomorphic to  then  is homeomorphic to 
(the transitive property).

Proof
1. The identity function  defined by  for  is a homeomorphism from the space  to itself.
2. If  is a homoemorphism from  to  then  is a homeomorphism from  to .
3. If  is a homeomorphism from  to  and  is a homeomorphism from  to , then  is a

homeomorphism from  to .

Continuity can also be defined locally, by restricting attention to the neighborhoods of a point.

Suppose again that  and  are topological spaces, and that . A function  is continuous at  if 
 is a neighborhood of  in  whenever  is a neighborhood of  in . If , then  is continuous on  is  is

continuous at each .

Suppose again that  and  are topological spaces, and that . Then  is continuous if and only if  is
continuous at each .

Proof

Suppose that  is continuous. Let  and let  be a neighborhood of . Then there exists an open set  in  with 
. But then  is open in , and , so  is a neighborhood of . Hence  is

continuous at .

Conversely, suppose that  is continuous at each , and suppose that . If  contains no points in the range of ,
then . Otherwise, there exists  with . But then  is a neighborhood of , so 

 is a neighborhood of . Let . Then  also, so  is also a neighborhood of . Hence .

Properties that are defined for a topological space can be applied to a subset of the space, with the relative topology. But one has to
be careful.

Suppose again that  are topological spaces and that . Suppose also that , and let  denote the relative
topology on  induced by , and let  denote the restriction of  to . If  is continuous on  then  is continuous
relative to the spaces  and . The converse is not generally true.

Proof

Suppose that . If  then . Otherwise, suppose there exists  with . Then
 is a neighborhood of  in  so  is a neighborhood of  in . Hence  is a

neighborhood of  in . Since  is continuous (relative to ) at each ,  is continuous from the previous
result.

For a simple counterexample, suppose that  is not continuous at a particular . The set  has the trivial relative
topology , and so  restricted to  is trivially continuous.

Product Spaces

Cartesian product sets are ubiquitous in mathematics, so a natural question is this: given topological spaces  and ,
what is a natural topology for ? The answer is very simple using the concept of a base above.

Suppose that  and  are topological spaces. The collection  is a base for a
topology on , called the product topology associated with the given spaces.

Proof

Trivially, . In fact . Next if  and , so that  are open in  and 
are open in , then

Hence  is a base for a topology on .
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So basically, we want the product of open sets to be open in the product space. The product topology is the smallest topology that
makes this happen. The definition above can be extended to very general product spaces, but to state the extension, let's recall how
general product sets are constructed. Suppose that  is a set for each  in a nonempty index set . Then the product set  is
the set of all functions  such that  for .

Suppose that  is a topological space for each  in a nonempty index set . Then

is a base for a topology on , known as the product topology associated with the given spaces.

Proof

The proof is just as before, except for the more complicated notation. Trivially , and  is closed under finite
intersections.

Suppose again that  is a set for each  in a nonempty index set . For , recall that projection function  is
defined by .

Suppose again that  is a topological space for each , and give the product spacee  the product topology.
The projection function  is continuous for each .

Proof

If  is open in  then  where  for  with , and , so clearly this inverse image is
open in the product space.

As a special case of all this, suppose that  is a topological space, and that  for all . Then the product space 
 is the set of all functions from  to , sometimes denoted . In this case, the base for the product topology on  is

For , the projection function  just returns the value of a function  at : . This projection function is
continuous. Note in particular that no topology is necessary on the domain .

Examples and Special Cases

The Trivial Topology

Suppose that  is a nonempty set. Then  is a topology on , known as the trivial topology.

With the trivial topology, no two distinct points can be separated. So the topology cannot distinguish between points, in a sense,
and all points in  are close to each other. Clearly, this topology is not very interesting, except as a place to start. Since there is only
one nonempty open set (  itself), the space is connected, and every subset of  is compact. A sequence in  converges to every
point in .

Suppose that  has the trivial topology and that  is another topological space.

1. Every function from  to  is continuous.
2. If  is a Hausdorff space then the only continuous functions from  to  are constant functions.

Proof
1. Suppose . Then  and , so  is continuous.
2. Suppose that  is continuous and that  are distinct elements in the range of . There exist disjoint open sets 

 with  and . But  and  are nonempty and so must be . If ,  and 
, a contradiction.
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j∈ I p

j

x : I → S j (x) = x(j)p

j
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S S S

S

S (T ,T )

T S

(T ,T ) S T

f : T → S (S) = T ∈ Tf

−1

(∅) = ∅ ∈ Tf

−1

f

f : S → T u, v f

U, V ∈ T u ∈ U v∈ V (U)f

−1

(V )f

−1
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The Discrete Topology

At the opposite extreme from the trivial topology, with the smallest collection of open sets, is the discrete topology, with the largest
collection of open sets.

Suppose that  is a nonempty set. The power set  (consisting of all subsets of ) is a topology, known as the discrete
topology.

So in the discrete topology, every set is both open and closed. All points are separated, and in a sense, widely so. No point is close
to another point. With the discrete topology,  is Hausdorff, disconnected, and the compact subsets are the finite subsets. A
sequence in  converges to , if and only if all but finitely many terms of the sequence are .

Suppose that  has the discrete topology and that  is another topological space.

1. Every function from  to  is continuous.
2. If  is connected, then the only continuous functions from  to  are constant functions.

Proof
1. Trivially, if , then  for  so  is continuous.
2. Suppose that  is continuous and that  is in the range of . Then  is open and closed in , so  is open

and closed in . If  is connected, this means that .

Euclidean Spaces

The standard topologies used in the Euclidean spaces are the topologies built from open sets that you familiar with.

For the set of real numbers , let , the collection of open intervals. Then  is a base for a
topology  on , known as the Euclidean topology.

Proof

Clearly the conditions for  to be a base given above are satisfied. First . Next, if  and  and 
, then .

The space  satisfies many properties that are motivations for definitions in topology in the first place. The convergence of a
sequence in , in the topological sense given above, is the same as the definition of convergence in calculus. The same statement
holds for the continuity of a function  from  to .

Before listing other topological properties, we give a characterization of compact sets, known as the Heine-Borel theorem, named
for Eduard Heine and Émile Borel. Recall that  is bounded if  for some  with .

A subset  is compact if and only if  is closed and bounded.

So in particular, closed, bounded intervals of the form  with  and  are compact.

The space  has the following properties:

1. Hausdorff.
2. Connected.
3. Locally compact.
4. Second countable.

Proof
1. Distinct points in  can be separated by open intervals.
2.  has no proper subset that is both open and closed.
3. If  is a neighborhood of , then there exists  with  such that . The closed interval 

is compact.
4. The collection  is a countable base for , where as usual,  is the set of rational real

numbers.
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C ⊆R C
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As noted in the proof, , the set of rationals, is countable and is dense in . Another countable, dense subset is 
, the set of dyadic rationals (or binary rationals). For the higher-dimensional Euclidean spaces, we

can use the product topology based on the topology of the real numbers.

For , let  be the -fold product space corresponding to the space . Then  is the Euclidean
topology on .

A subset  is bounded if there exists  with  such that , so that  fits inside of an -dimensional
“block”.

A subset  is compact if and only if  is closed and bounded.

The space  has the following properties:

1. Hausdorff.
2. Connected.
3. Locally compact.
4. Second countable.

This page titled 1.9: Topological Spaces is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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1.10: Metric Spaces
    

Basic Theory

Most of the important topological spaces that occur in applications (like probability) have an additional structure that gives a distance
between points in the space.

Definitions

A metric space consists of a nonempty set  and a function  that satisfies the following axioms: For 
,

1.  if and only if .
2. .
3. .

The function  is known as a metric or a distance function.

So as the name suggests,  is the distance between points . The axioms are intended to capture the essential properties
of distance from geometry. Part (a) is the positive property; the distance is strictly positive if and only if the points are distinct. Part
(b) is the symmetric property; the distance from  to  is the same as the distance from  to . Part (c) is the triangle inequality;
going from  to  cannot be longer than going from  to  by way of a third point .

Note that if  is a metric space, and  is a nonempty subset of , then the set  with  restricted to  is also a metric
space (known as a subspace). The next definitions also come naturally from geometry:

Suppose that  is a metric space, and that  and .

1.  is the open ball with center  and radius .
2.  is the closed ball with center  and radius .

A metric on a space induces a topology on the space in a natural way.

Suppose that  is a metric space. By definition, a set  is open if for every  there exists  such that 
. The collection  of open subsets of  is a topology.

Proof
1. Trivially  is open and vacuously  is open.
2. Suppose that  is open for  in an arbitrary index set , and let . If  then  for some . Since 

 is open, there exists  with . But then  so  is open.
3. Suppose that  is open for  in a finite index set , and let . If  then  for every . Hence for

each  there exist  such that . Let . Since  is finite,  and 
 for each . Hence , so  is open.

As the names suggests, an open ball is in fact open and a closed ball is in fact closed.

Suppose again that  is a metric space, and that  and . Then

1.  is open.
2.  is closed.

Proof
1. Let , and let , so that . If  then we have  and , so

by the triangle inequality, . Hence . Thus . It follows that 
 is open

2. We show that  is open. Suppose that , and let , so that . Let  and
suppose that , so that . By the triangle inequality again,

S d : S×S→ [0,∞)

x, y, z ∈ S

d(x, y) = 0 x = y

d(x, y) = d(y, x)

d(x, z) ≤ d(x, y)+d(y, z)

d

d(x, y) x, y ∈ S

x y y x

x z x z y

(S, d) A S A d A×A

(S, d) x ∈ S r ∈ (0,∞)

B(x, r) = {y ∈ S : d(x, y) < r} x r

C(x, r) = {y ∈ S : d(x, y) ≤ r} x r

(S, d) U ⊆ S x ∈ U r ∈ (0,∞)

B(x, r) ⊆U S

d

S

S ∅

A

i

i I A=⋃

i∈I
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i

x ∈ A x ∈ A

i

i ∈ I

A

i

r ∈ (0,∞) B(x, r) ⊆A

i

B(x, r) ⊆A A

A

i

i I A=⋂

i∈I

A

i

x ∈ A x ∈ A

i

i ∈ I

i ∈ I ∈ (0,∞)r

i

B(x, ) ⊆r

i

A

i

r=min{ : i ∈ I}r

i

I r> 0

B(x, r) ⊆B(x, ) ⊆r

i

A

i

i ∈ I B(x, r) ⊆A A

(S, d) x ∈ S r ∈ (0,∞)

B(x, r)

C(x, r)

y ∈ B(x, r) a= d(x, y) a< r z ∈ B(y, r−a) d(x, y) = a d(y, z) < r−a

d(x, z) < a+(r−a) = r z ∈ B(x, r) B(y, r−a) ⊆B(x, r)

B(x, r)

U = [C(x, r)]

c

y ∈ U a= d(x, y) a> r z ∈ B(y, a−r)

z ∈ C(x, r) d(z, x) ≤ r

d(x, y) ≤ d(x, z)+d(z, y) < r+(a−r) = a (1.10.1)
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a contradiction. Hence . So .

Recall that for a general topological space, a neighborhood of a point  is a set  with the property that there exists an
open set  with . It follows that in a metric space,  is a neighborhood of  if and only if there exists  such
that . In words, a neighborhood of a point must contain an open ball about that point.

It's easy to construct new metrics from ones that we already have. Here's one such result.

Suppose that  is a nonempty set, and that  are metrics on , and . Then the following are also metrics on :

1. 
2. 

Proof
1. Recall that  is the function defined by  for . Since , it's easy to see that the axioms

are satisfied.
2. Recall that  is the function defined by  for . Again, it's easy to see that

the axioms are satisfied.

Since a metric space produces a topological space, all of the definitions for general topological spaces apply to metric spaces as well.
In particular, in a metric space, distinct points can always be separated.

A metric space  is a Hausdorff space.

Proof

Let  be distinct points in . Then . The sets  and  are open, and contain  and ,
respectively. Suppose that . By the triangle inequality,

a contradiction. Hence  and  are disjoint.

Metrizable Spaces

Again, every metric space is a topological space, but not conversely. A non-Hausdorff space, for example, cannot correspond to a
metric space. We know there are such spaces; a set  with more than one point, and with the trivial topology  is non-
Hausdorff.

Suppose that  is a topological space. If there exists a metric  on  such that , then  is said to be
metrizable.

It's easy to see that different metrics can induce the same topology. For example, if  is a metric and , then the metrics 
and  induce the same topology.

Let  be a nonempty set. Metrics  and  on  are equivalent, and we write , if . The relation  is an
equivalence relation on the collection of metrics on . That is, for metrics  on ,

1. , the reflexive property.
2. If  then , the symmetric property.
3. If  and  then , the transitive property.

There is a simple condition that characterizes when the topology of one metric is finer than the topology of another metric, and then
this in turn leads to a condition for equivalence of metrics.

Suppose again that  is a nonempty set and that  are metrics on . Then  is finer than  if and only if every open ball
relative to  contains an open ball relative to .

Proof

z ∈ U B(y, a−r) ⊆U

x ∈ S A⊆ S

U x ∈ U ⊆A A⊆ S x r> 0

B(x, r) ⊆A

S d, e S c ∈ (0,∞) S

cd

d+e

cd (cd)(x, y) = cd(x, y) (x, y) ∈ S

2

c > 0

d+e (d+e)(x, y) = d(x, y)+e(x, y) (x, y) ∈ S

2

(S, d)

x, y S r= d(x, y) > 0 B(x, r/2) B(y, r/2) x y

z ∈ B(x, r/2)∩B(y, r/2)

d(x, y) ≤ d(x, z)+d(z, y) < + = r

r

2

r

2
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Suppose that  so that  is finer than . If  and , then the open ball  centered at  of
radius  for the metric  is in  and hence in . Thus there exists  such that . Conversely,
suppose that the condition in the theorem holds and suppose that . If  there exists  such that 

. Hence there exists  such that . So .

It follows that metrics  and  on  are equivalent if and only if every open ball relative to one of the metrics contains an open ball
relative to the other metric.

So every metrizable topology on  corresponds to an equivalence class of metrics that produce that topology. Sometimes we want to
know that a topological space is metrizable, because of the nice properties that it will have, but we don't really need to use a specific
metric that generates the topology. At any rate, it's important to have conditions that are sufficient for a topological space to be
metrizable. The most famous such result is the Urysohn metrization theorem, named for the Russian mathematician Pavel Uryshon:

Suppose that  is a regular, second-countable, Hausdorff space. Then  is metrizable.

Review of the terms

Recall that regular means that every closed set and point not in the set can be separated by disjoint open sets. As discussed
earlier, Hausdorff means that any two distinct points can be separated by disjoint open sets. Finally, second-countable means that
there is a countable base for the topology, that is, there is a countable collection of open sets with the property that every other
open set is a union of sets in the collection.

Convergence

With a distance function, the convergence of a sequence can be characterized in a manner that is just like calculus. Recall that for a
general topological space , if  is a sequence of points in  and , then  as  means that for
every neighborhood  of , there exists  such that  for .

Suppose that  is a metric space, and that  is a sequence of points in  and . Then  as 
if and only if for every  there exists  such that if  then . Equivalently,  as  if
and only if  as  (in the usual calculus sense).

Proof

Suppose that  as , and let . Then  is a neighborhood of , so there exists  such that 
 for , which is the condition in the theorem. Conversely, suppose that condition in the theorem holds, and let

 be a neighborhood of . Then there exists  such that . By assumption, there exists  such that if 
 then .

So, no matter how tiny  may be, all but finitely many terms of the sequence are within  distance of . As one might hope,
limits are unique.

Suppose again that  is a metric space. Suppose also that  is a sequence of points in  and that . If 
 as  and  as  then .

Proof

This follows immediately since a metric space is a Hausdorff space, and the limit of a sequence in a Hausdorff space is unique.
Here's a direct proof: Let . Then there exists  such that  for , and there exists  such
that  for . Let . By the triangle inequality,

So we have  for every  and hence  and thus .

Convergence of a sequence is a topological property, and so is preserved under equivalence of metrics.

Suppose that  are equivalent metrics on , and that  is a sequence of points in  and . Then  as 
 relative to  if and only if  as  relative to .
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Closed subsets of a metric space have a simple characterization in terms of convergent sequences, and this characterization is more
intuitive than the abstract axioms in a general topological space.

Suppose again that  is a metric space. Then  is closed if and only if whenever a sequence of points in  converges,
the limit is also in .

Proof

Suppose that  is closed and that  is a sequence of points in  with  as . Suppose that 
. Since  is open,  for  sufficiently large, a contradiction. Hence . Conversely, suppose that  has the

sequential closure property, but that  is not closed. Then  is not open. This means that there exists  with the property
that every neighborhood of  has points in . Specifically, for each  there exists  with . But
clearly  as , again a contradiction.

The following definition also shows up in standard calculus. The idea is to have a criterion for convergence of a sequence that does
not require knowing a-priori the limit. But for metric spaces, this definition takes on added importance.

Suppose again that  is a metric space. A sequence of points  in  is a Cauchy sequence if for every 
there exist  such that if  with  and  then .

Cauchy sequences are named for the ubiquitous Augustin Cauchy. So for a Cauchy sequence, no matter how tiny  may be, all
but finitely many terms of the sequence will be within  distance of each other. A convergent sequence is always Cauchy.

Suppose again that  is a metric space. If a sequence of points  in  converges, then the sequence is Cauchy.

Proof

By assumption, there exists  such that  as . Let . There exists  such that if  and 
 then . Hence if  with  and  then by the triangle inequality,

So the sequence is Cauchy.

Conversely, one might think that a Cauchy sequence should converge, but it's relatively trivial to create a situation where this is false.
Suppose that  is a metric space, and that there is a point  that is the limit of a sequence of points in  that are all distinct
from . Then the space  with the metric  restricted to  has a Cauchy sequence that does not converge.
Essentially, we have created a “convergence hole”. So our next defintion is very natural and very important.

Suppose again that  is metric space and that . Then  is complete if every Cauchy sequence in  converges to a
point in .

Of course, completeness can be applied to the entire space . Trivially, a complete set must be closed.

Suppose again that  is a metric space, and that . If  is complete, then  is closed.

Proof

Suppose that  is a sequence of points in  and that  as . Then  is a Cauchy sequence,
and so by completeness, . Hence  is closed by (12).

Completeness is such a crucial property that it is often imposed as an assumption on metric spaces that occur in applications. Even
though a Cauchy sequence may not converge, here is a partial result that will be useful latter: if a Cauchy sequence has a convergent
subsequence, then the sequence itself converges.

Suppose again the  is a metric space, and that  is a Cauchy sequence in . If there exists a subsequence 
 such that  as , then  as .

Proof
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k

k→∞ → xx

n

n→∞
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Recall that in the construction of a subsequence, the indices  must be a strictly increasing sequence in . In
particular,  as . So let . From the hypotheses, there exists  such that if  then 

. There exists  such that if  and  then . Now let . Pick 
such that  and . By the triangle inequality,

Continuity

In metric spaces, continuity of functions also has simple characterizations in terms of that are familiar from calculus. We start with
local continuity. Recall that the general topological definition is that  is continuous at  if  is a neighborhood
of  in  for every open set  of  in .

Suppose that  and  are metric spaces, and that . The continuity of  at  is equivalent to each of the
following conditions:

1. If  is a sequence in  with  as  then  as .
2. For every , there exists  such that if  and  then .

Proof
1. This condition is sequential continuity at . Continuity at  implies sequential continuity at  for general topological spaces,

and hence for metric spaces. Conversely, suppose that sequential continuity holds at , and let  be a neighborhood of 
 in . If  is not a neighborhood of  in , then for every , there exists  with 

. But then clearly  as  but  does not converge to  as , a contradiction.
2. Suppose that  is continuous at . For ,  is a neighborhood of , and hence  is a

neighborhood of . Hence there exists  such that . But this means that if  then 
. Conversely suppose that the condition in (b) holds, and suppose that  is a neighborhood of . Then

there exists  such that . By assumpiton, there exists  such that if  then 
. This means that  is a neighborhood of .

More generally, recall that  continuous on  means that  is continuous at each , and that  continuous means that  is
continuous on . So general continuity can be characterized in terms of sequential continuity and the -  condition.

On a metric space, there are stronger versions of continuity.

Suppose again that  and  are metric spaces and that . Then  is uniformly continuous if for every 
there exists  such that if  with  then .

In the -  formulation of ordinary point-wise continuity above,  depends on the point  in addition to . With uniform continuity,
there exists a  depending only on  that works uniformly in .

Suppose again that  and  are metric spaces, and that . If  is uniformly continuous then  is continuous.

Here is an even stronger version of continuity.

Suppose again that  and  are metric spaces, and that . Then  is Höder continuous with exponent 
 if there exists  such that  for all .

The definition is named for Otto Höder. The exponent  is more important than the constant , which generally does not have a
name. If ,  is said to be Lipschitz continuous, named for the German mathematician Rudolf Lipschitz.

Suppose again that  and  are metric spaces, and that . If  is Höder continuous with exponent  then 
 is uniformly continuous.

The case where  and  is particularly important.

Suppose again that  and  are metric spaces. A function  is a contraction if there exists  such
that

( : k ∈ )n

k

N

+

N

+

→∞n

k

k→∞ ϵ> 0 j∈ N

+

k> j

d ( , x) < ϵ/2x

n

k

N ∈ N

+

m >N p >N d( , ) < ϵ/2x

m

x

p

m >N k ∈ N

+

k> j >Nn

k

d( , x) ≤ d ( , )+d ( , x) ≤ + = ϵx

m

x

m

x

n

k

x

n

k

ϵ

2

ϵ

2

(1.10.5)

f : S→ T x ∈ S (V )f

−1

x S V f(x) T

(S, d) (T , e) f : S→ T f x ∈ S

( : n ∈ )x

n

N

+

S → xx

n

n→∞ f( ) → f(x)x

n

n→∞

ϵ> 0 δ > 0 y ∈ S d(x, y) < δ e[f(y)−f(x)] < ϵ

x x x

x ∈ S V

f(x) T U = (V )f

−1

x S n ∈ N

+

∈ B(x, 1/n)x

n

∉ Ux

n

→ xx

n

n→∞ f( )x

n

f(x) n→∞

f x ϵ> 0 [f(x), ϵ]B

T

f(x) U = ( [f(x), ϵ])f

−1

B

T

x δ > 0 (x, δ) ⊆UB

S

d(y, x) < δ

e[f(y), f(x)] < ϵ V f(x)

ϵ> 0 [f(x), ϵ] ⊆ VB

T

δ > 0 y ∈ (x, δ)B

S

f(y) ∈ [f(x), ϵ] ⊆ VB

T

(V )f

−1

x

f A⊆ S f x ∈ A f f

S ϵ δ

(S, d) (T , e) f : S→ T f ϵ> 0

δ > 0 x, y ∈ S d(x, y) < δ e[f(x), f(y)] ≤ ϵ

ϵ δ δ x ϵ

δ ϵ x ∈ S

(S, d) (T , e) f : S→ T f f

(S, d) (T , e) f : S→ T f

α ∈ (0,∞) C ∈ (0,∞) e[f(x), f(y)] ≤C[d(x, y)]

α

x, y ∈ S

α C

α = 1 f

(S, d) (T , e) f : S→ T f α > 0

f

α = 1 C < 1

(S, d) (T , e) f : S→ T C ∈ (0, 1)
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So contractions shrink distance. By the result above, a contraction is uniformly continuous. Part of the importance of contraction
maps is due to the famous Banach fixed-point theorem, named for Stefan Banach.

Suppose that  is a complete metric space and that  is a contraction. Then  has a unique fixed point. That is,
there exists exactly one  with . Let , and recursively define  for . Then 

 as .

Functions that preserve distance are particularly important. The term isometry means distance-preserving.

Suppose again that  and  are metric spaces, and that . Then  is an isometry if  for
every .

Suppose again that  and  are metric spaces, and that . If  is an isometry, then  is one-to-one and
Lipschitz continuous.

Proof

If  with , then , so . Hence  is one-to-one. Directly from the definition,
 is Höder continuous with exponent  and constant multiple .

In particular, an isometry  is uniformly continuous. If one metric space can be mapped isometrically onto another metric space, the
spaces are essentially the same.

Metric spaces  and  are isometric if there exists an isometry  that maps  onto . Isometry is an equivalence
relation on metric spaces. That is, for metric spaces , , and ,

1.  is isometric to , the reflexive property.
2. If  is isometric to  them  is isometric to , the symmetric property.
3. If  is isometric to  and  is isometric to , then  is isometric to , the transitive property.

Proof
1. The identity function  defined by  for  is an isometry from  onto .
2. If  is an isometry from  onto  then  is an isometry from  onto .
3. If  is an isometry from  onto  and  is an isometry from  onto , then  is an isometry from 

 to .

In particular, if metric spaces  and  are isometric, then as topological spaces, they are homeomorphic.

Compactness and Boundedness

In a metric space, various definitions related to a set being bounded are natural, and are related to the general concept of
compactness.

Suppose again that  is a metric space, and that . Then  is bounded if there exists  such that 
for all . The diameter of  is

Additional details

Recall that , so  if  is unbounded. In the bounded case, note that if the distance between points in 
is bounded by , then the distance is bounded by any . Hence the diameter definition makes sense.

So  is bounded if and only if . Diameter is an increasing function relative to the subset partial order.

Suppose again that  is a metric space, and that . Then .

e[f(x), f(y)] ≤ Cd(x, y), x, y ∈ S (1.10.6)

(S, d) f : S → S f

∈ Sx

∗

f( ) =x

∗

x

∗

∈ Sx

0

= f( )x

n

x

n−1

n ∈ N

+

→x

n

x

∗

n → ∞

(S, d) (T , e) f : S → T f e[f(x), f(y)] = d(x, y)

x, y ∈ S

(S, d) (T , e) f : S → T f f

x, y ∈ S x ≠ y e[f(x), f(y)] = d(x, y) > 0 f(x) ≠ f(y) f

f α = 1 C = 1

f

(S, d) (T , e) f S T

(S, d) (T , e) (U, ρ)

(S, d) (S, d)

(S, d) (T , e) (T , e) (S, d)

(S, d) (T , e) (T , e) (U, ρ) (S, d) (U, ρ)

I : S → S I(x) = x x ∈ S (S, d) (S, d)

f (S, d) (T , e) f

−1

(T , e) (S, d)

f (S, d) (T , e) g (T , e) (U, ρ) g∘ f

(S, d) (U, ρ)

(S, d) (T , e)

(S, d) A ⊆ S A r ∈ (0, ∞) d(x, y) ≤ r

x, y ∈ A A

diam(A) = inf{r > 0 : d(x, y) < r for all x, y ∈ A} (1.10.7)

inf(∅) = ∞ diam(A) = ∞ A A

r ∈ (0, ∞) s ∈ [r, ∞)

A diam(A) < ∞

(S, d) A ⊆ B ⊆ S diam(A) ≤ diam(B)
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Our next definition is stronger, but first let's review some terminology that we used for general topological spaces: If  is a set,  a
subset of , and  a collection of subsets of , then  is said to cover  if . So with this terminology, we can talk about
open covers, closed covers, finite covers, disjoint covers, and so on.

Suppose again that  is a metric space, and that . Then  is totally bounded if for every  there is a finite cover
of  with open balls of radius .

Recall that for a general topological space, a set  is compact if every open cover of  has a finite subcover. So in a metric space,
the term precompact is sometimes used instead of totally bounded: The set  is totally bounded if every cover of  with open balls
of radius  has a finite subcover.

Suppose again that  is a metric space. If  is totally bounded then  is bounded.

Proof

There exists a finite cover of  with open balls of radius 1. Let  denote the set of centers of the balls, and let 
, the maximum distance between two centers. Since  is finite, . Now let . Since

the balls cover , there exist  with  and . By the triangle inequality (what else?)

Hence  is bounded.

Since a metric space is a Hausdorff space, a compact subset of a metric space is closed. Compactness also has a simple
characterization in terms of convergence of sequences.

Suppose again that  is a metric space. A subset  is compact if and only if every sequence of points in  has a
subsequence that converges to a point in .

Proof

The condition in the theorem is known as sequential compactness, so we want to show that sequential compactness is equivalent
to compactness. The proof is harder than most of the others in this section, but the proof presented here is the nicest I have found,
and is due to Anton Schep.

Suppose that  is compact and that  is a sequence of points in . Let , the
unordered set of distinct points in the sequence. If  is finite, then some element of  must occur infinitely many times in
the sequence. In this case, we can construct a subsequence of  all of whose terms are , and so this subsequence trivially
converges to . Suppose next that  is infinite. Since the space is Hausdorff,  is closed, and therefore . Our
next claim is that there exists  such that for every , the set  is infinte. If the claim is false, then for
each  there exists  such that  is finite. It then follows that for each , there exists  such
that . But then  is an open cover of  that has no finite subcover,
a contradiction. So the claim is true and for some , the set  is infinite for each . We can construct a
subsequence of  that converges to .

Conversely, suppose that  is sequentially compact. If  is a Cauchy sequence in , then by assumption, 
has a subsequence that converges to some . But then by (17) the sequence  itself converges to , so it follows that  is
complete. We next show that  is totally bounded. Our goal is to show that  can be covered by a finite number of balls of an
arbitrary radius . Pick . If  then we are done. Otherwise, pick . If 

 then again we are done. Otherwise there exists . This process must
terminate in a finite number of steps or otherwise we would have a sequence of points  in  with the property
that  for every . Such a sequence does not have a convergent subsequence. Suppose now that  is an
open cover of  and let . Then  can be covered by a finite number of closed balls of with centers in  and with
radius . It follows that at least one of these balls cannot be covered by a finite subcover from . Let  denote the
intersection of this ball with . Then  is closed and is sequentially compact with . Repeating the argument,
we generate a nested sequence of close sets  such that , and with the property that  cannot be
finitely covered by  for each . Pick  for each . Then  is a Cauchy sequence in 
and hence has a subsequence that converges to some . Then  and since  as  it follows
that in fact, . Now, since  covers , there exists  such that . Since  is open, there exists 

S A

S A S A A A⊆⋃A

(S, d) A⊆ S A r> 0

A r

A A

A A

r

(S, d) A⊆ S A

A C

c =max{d(u, v) : u, v∈ C} C c <∞ x, y ∈ A

A u, v∈ C x ∈ B(u, 1) y ∈ B(v, 1)

d(x, y) ≤ d(x, u)+d(u, v)+d(v, y) ≤ 2+c (1.10.8)

A

(S, d) C ⊆ S C

C

C x = ( : n ∈ )x
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N

+

C A= { : n ∈ } ⊆Cx

n

N

+
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x a

a ∈ C A C cl(A) ⊆C
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a
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a

A∩B(a, ) = {a}ϵ

a
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a

]

c

C

a ∈ cl(A) A∩B(a, r) r> 0

x a ∈ C
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n

N

+

C x

x ∈ C x x C
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x

2
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1

diam( ) ≤ c/4C
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1

C

2

diam( ) ≤ c/C

n

2

n

C

n

U n ∈ N

+

∈x

n

C

n

n ∈ N

+

x = ( : n ∈ )x

n

N

+

C

x ∈ C x ∈⋂

∞

n=1

C

n

diam( )→ 0C
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such that . Now let  be sufficiently large that  and . Then 
, which contradicts the fact that  cannot be finitely covered by .

Hausdorff Measure and Dimension

Our last discussion is somewhat advanced, but is important for the study of certain random processes, particularly Brownian motion.
The idea is to measure the “size” of a set in a metric space in a topological way, and then use this measure to define a type of
“dimension”. We need a preliminary definition, using our convenient cover terminology. If  is a metric space, , and 

, then a countable  cover of  is a countable cover  of  with the property that  for each .

Suppose again that  is a metric space and that . For  and , define

The -dimensional Hausdorff measure of  is

Additional details

Note that if  is a countable  cover of  then it is also a countable  cover of  for every . This means that  is
decreasing in  for fixed . Hence

Note that the -dimensional Hausdorff measure is defined for every , not just nonnegative integers. Nonetheless, the
integer dimensions are interesting. The 0-dimensional measure of  is the number of points in . In Euclidean space, which we
consider in (36), the measures of dimension 1, 2, and 3 are related to length, area, and volume, respectively.

Suppose again that  is a metric space and that . The Hausdorff dimension of  is

Of special interest, as before, is the case when  for some  and  is the standard Euclidean distance, reviewed in (36).
As you might guess, the Hausdorff dimension of a point is 0, the Hausdorff dimension of a “simple curve” is 1, the Hausdorff
dimension of a “simple surface” is 2, and so on. But there are also sets with fractional Hausdorff dimension, and the stochastic
process Brownian motion provides some fascinating examples. The graph of standard Brownian motion has Hausdorff dimension 

 while the set of zeros has Hausdorff dimension .

Examples and Special Cases

Normed Vector Spaces

A norm on a vector space generates a metric on the space in a very simple, natural way.

Suppose that  is a vector space, and that  is a norm on the space. Then  defined by  for 
is a metric on .

Proof

The metric axioms follow easily from the norm axioms.

1. The positive property for  follows since  if and only if .
2. The symmetric property for  follows since .
3. The triangle inequality for  follows from the triangle inequality for the norm: .

On , we have a variety of norms, and hence a variety of metrics.

For  and , the function  given below is a metric on :

B(x, r) ⊆ U n ∈ N

+

d(x, ) ≤ r/2x

n

diam( ) < r/2C

n

⊆ B(x, r) ⊆ UC

n

C

n

U

(S, d) A ⊆ S

δ ∈ (0, ∞) δ A B A diam(B) < δ B ∈B

(S, d) A ⊆ S δ ∈ (0, ∞) k ∈ [0, ∞)

(A) = inf{ :B is a countable δ cover of A}H

k

δ

∑

B∈B

[diam(B)]

k

(1.10.9)

k A

(A) = sup{ (A) : δ > 0} = (A)H

k

H

k

δ

lim

δ↓0

H

k

δ

(1.10.10)

B δ A ϵ A ϵ > δ (A)H

k

δ

δ ∈ (0, ∞) k ∈ [0, ∞)

sup{ (A) : δ > 0} = (A)H

k

δ

lim

δ↓0

H

k

δ

(1.10.11)

k k ∈ [0, ∞)

A A

(S, d) A ⊆ S A

(A) = inf{k ∈ [0, ∞) : (A) = 0}dim

H

H

k

(1.10.12)

S =R

n

n ∈ N

+

d

3/2 1/2

(S, +, ⋅) ∥ ⋅ ∥ d d(x, y) = ∥y−x∥ x, y ∈ S

S

d ∥x∥ = 0 x = 0

d ∥ −x∥ = ∥x∥
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R

n
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Proof

This follows from the general result above, since  defined below is a norm on :

Of course the metric  is Euclidean distance, named for Euclid of course. This is the most important one, in a practical sense
because it's the usual one that we use in the real world, and in a mathematical sense because the associated norm corresponds to the
standard inner product on  given by

For , the function  defined below is a metric on :

Proof

This follows from the general result above, since  defined below is a norm on :

To justify the notation, recall that  as  for , and hence  as  for 
.

Figure : From inside out, the boundaries of the unit balls centered at the origin in  for the metrics  with 
.

Suppose now that  is a nonempty set. Recall that the collection  of all functions  is a vector space under the usual
pointwise definition of addition and scalar multiplication. That is, if  and , then  and  are defined
by  and  for . Recall further that the collection  of bounded functions 
is a vector subspace of , and moreover,  defined by  is a norm on , known as the supremum
norm. It follow that  is a metric space with the metric  defined by

Vector spaces of bounded, real-valued functions, with the supremum norm are very important in the study of probability and
stochastic processes. Note that the supremum norm on  generalizes the maximum norm on , since we can think of a point in 
as a function from  into . Later, as part of our discussion on integration with respect to a positive measure, we will see
how to generalize the  norms on  to spaces of functions.

Products of Metric Spaces

If we have a finite number of metric spaces, then we can combine the individual metrics, together with an norm on the vector space 
, to create a norm on the Cartesian product space.

(x,y) = , x = ( , ,… , ), y = ( , ,… , ) ∈d
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1/k
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1
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1

y

2

y

n
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n

(1.10.13)

∥ ⋅ ∥
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(1.10.15)

n ∈ N

+

d

∞
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n
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∥ ⋅ ∥

∞

R

n

∥x =max{| | : i ∈ {1, 2,… ,n}}, x = ( , ,… , ) ∈∥

∞

x

i

x

1

x

2

x

n

R

n

(1.10.17)

∥x →∥x∥

k
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∞

k→∞ x ∈ R

n

(x,y) → (x,y)d

k

d

∞

k→∞

x,y ∈ R

n

1.10.1 R

2

d

k
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S V f : S→R

f , g ∈ V c ∈ R f +g ∈ V cf ∈ V

(f +g)(x) = f(x)+g(x) (cf)(x) = cf(x) x ∈ S U f : S→R

V ∥ ⋅ ∥ ∥f∥ = sup{|f(x)| : x ∈ S} U

U d

d(f , g) = ∥f −g∥ = sup{|f(x)−g(x)| : x ∈ S} (1.10.18)
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Suppose , and that  is a metric space for each . Suppose also that  is a norm on .
Then the function  given as follows is a metric on :

Proof
1. Note that  if and only if  for  if and only if  for  if and

only if .
2. Since  for , we have .
3. The triangle inequality follows from the triangle inequality for each metric, and the triangle inequality for the norm.

Graphs

Recall that a graph (in the combinatorial sense) consists of a countable set  of vertices and a set  of edges. In this
discussion, we assume that the graph is undirected in the sense that  if and only if , and has no loops so that 

 for . Finally, recall that a path of length  from  to  is a sequence  such
that , , and  for . The graph is connected if there exists a path of finite length between
any two distinct vertices in . Such a graph has a natural metric:

Suppose that  is a connected graph. Then  defined as follows is a metric on :  for , and 
is the length of the shortest path from  to  for distinct .

Proof
1. The positive property follows from the definition:  if and only if 
2. The symmetric property follows since the graph is undirected:  for all .
3. For the triangle inequality, suppose that , and that  and . Then there is a path of length 

from  to  and a path of length  from  to . Concatenating the paths produces a path of length  from  to . But 
 is the length of the shortest such path, so it follows that .

The Discrete Topology

Suppose that  is a nonempty set. Recall that the discrete topology on  is , the power set of , so that every subset of  is
open (and closed). The discrete topology is metrizable, and there are lots of metrics that generate this topology.

Suppose again that  is a nonempty set. A metric  on  with the property that there exists  such that  for
distinct  generates the discrete topology.

Proof

Note that  for . Hence  is open for each .

So any metric that is bounded from below (for distinct points) generates the discrete topology. It's easy to see that there are such
metrics.

Suppose again that  is a nonempty set. The function  on  defined by  for  and  for distinct 
 is a metric on , known as the discrete metric. This metric generates the discrete topology.

Proof

Clearly  if and only if , and  for , so the positive and symmetric properties hold.
For the triangle inequality, suppose . The inequality trivially holds if the points are not distinct. If the points are
distinct, then  and .

In probability applications, the discrete topology is often appropriate when  is countable. Note also that the discrete metric is the
graph distance if  is made into the complete graph, so that  is an edge for every pair of distinct vertices .

This page titled 1.10: Metric Spaces is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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1.11: Measurable Spaces
     

In this section we discuss some topics from measure theory that are a bit more advanced than the topics in the early sections of this
chapter. However, measure-theoretic ideas are essential for a deep understanding of probability, since probability is itself a
measure. The most important of the definitions is the -algebra, a collection of subsets of a set with certain closure properties. Such
collections play a fundamental role, even for applied probability, in encoding the state of information about a random experiment.

On the other hand, we won't be overly pedantic about measure-theoretic details in this text. Unless we say otherwise, we assume
that all sets that appear are measurable (that is, members of the appropriate -algebras), and that all functions are measurable
(relative to the appropriate -algebras).

Although this section is somewhat abstract, many of the proofs are straightforward. Be sure to try the proofs yourself before
reading the ones in the text.

Algebras and -Algebras

Suppose that  is a set, playing the role of a universal set for a particular mathematical model. It is sometimes impossible to
include all subsets of  in our model, particularly when  is uncountable. In a sense, the more sets that we include, the harder it is
to have consistent theories. However, we almost always want the collection of admissible subsets to be closed under the basic set
operations. This leads to some important definitions.

Algebras of Sets

Suppose that  is a nonempty collection of subsets of . Then  is an algebra (or field) if it is closed under complement and
union:

1. If  then .
2. If  and  then .

If  is an algebra of subsets of  then

1. 
2. 

Proof
1. Since  is nonempty, there exists . Hence  so .
2. 

Suppose that  is an algebra of subsets of  and that  for each  in a finite index set .

1. 
2. 

Proof
1. This follows by induction on the number of elements in .
2. Thie follows from (a) and DeMorgan's law. If  for  then  for . Therefore  and

hence .

Thus it follows that an algebra of sets is closed under a finite number of set operations. That is, if we start with a finite number of
sets in the algebra , and build a new set with a finite number of set operations (union, intersection, complement), then the new
set is also in . However in many mathematical theories, probability in particular, this is not sufficient; we often need the
collection of admissible subsets to be closed under a countable number of set operations.

-Algebras of Sets

Suppose that  is a nonempty collection of subsets of . Then  is a -algebra (or -field) if the following axioms are
satisfied:
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1. If  then .
2. If  for each  in a countable index set , then .

Clearly a -algebra of subsets is also an algebra of subsets, so the basic results for algebras above still hold. In particular, 
and .

If  for each  in a countable index set , then .

Proof

The proof is just like the one above for algebras. If  for  then  for . Therefore  and
hence .

Thus a -algebra of subsets of  is closed under countable unions and intersections. This is the reason for the symbol  in the
name. As mentioned in the introductory paragraph, -algebras are of fundamental importance in mathematics generally and
probability theory specifically, and thus deserve a special definition:

If  is a set and  a -algebra of subsets of , then the pair  is called a measurable space.

The term measurable space will make more sense in the next chapter, when we discuss positive measures (and in particular,
probability measures) on such spaces.

Suppose that  is a set and that  is a finite algebra of subsets of . Then  is also a -algebra.

Proof

Any countable union of sets in  reduces to a finite union.

However, there are algebras that are not -algebras. Here is the classic example:

Suppose that  is an infinite set. The collection of finite and co-finite subsets of  defined below is an algebra of subsets of ,
but not a -algebra:

Proof

 since  is finite. If  then  by the symmetry of the definition. Suppose that . If  and 
are both finite then  is finite. If  or  is finite, then  is finite. In either case, . Thus 

 is an algebra of subsets of .

Since  is infinite, it contains a countably infinite subset . Let  for . Then  is finite, so 
 for each . Let . Then  is infinite by construction. Also 

, so  is infinite as well. Hence  and so  is not a -algebra.

General Constructions

Recall that  denotes the collection of all subsets of , called the power set of . Trivially,  is the largest -algebra of 
. The power set is often the appropriate -algebra if  is countable, but as noted above, is sometimes too large to be useful if  is

uncountable. At the other extreme, the smallest -algebra of  is given in the following result:

The collection  is a -algebra.

Proof

Clearly  is a finite algebra:  and  are complements of each other, and . Hence  is a -algebra by the
result above.

In many cases, we want to construct a -algebra that contains certain basic sets. The next two results show how to do this.

Suppose that  is a -algebra of subsets of  for each  in a nonempty index set . Then  is also a -algebra of
subsets of .
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Proof

The proof is completely straightforward. First,  for each  so . If  then  for each  and
hence  for each . Therefore . Finally suppose that  for each  in a countable index set . Then 

 for each  and  and therefore  for each . It follows that .

Note that no restrictions are placed on the index set , other than it be nonempty, so in particular it may well be uncountable.

Suppose that  is a set and that  is a collection of subsets of . The -algebra generated by  is

If  is countable then  is said to be countably generated.

So the -algebra generated by  is the intersection of all -algebras that contain , which by the previous result really is a -
algebra. Note that the collection of -algebras in the intersection is not empty, since  is in the collection. Think of the sets in 

 as basic sets that we want to be measurable, but do not form a -algebra.

The -algebra  is the smallest  algebra containing .

1. 
2. If  is a -algebra of subsets of  and  then .

Proof

Both of these properties follows from the definition of  as the intersection of all -algebras that contain .

Note that the conditions in the last theorem completely characterize . If  and  satisfy the conditions, then by (a), 
 and . But then by (b),  and .

If  is a subset of  then 

Proof

Let . Clearly  is an algebra:  and  are complements of each other, as are  and . Also,

Since  is finite, it is a -algebra by (7). Next, . Conversely, if  is a -algebra and  then of course 
 so . Hence 

We can generalize the previous result. Recall that a collection of subsets  is a partition of  if  for 
 with , and .

Suppose that  is a countable partition of  into nonempty subsets. Then  is the collection of all unions
of sets in . That is,

Proof

Let . Note that  since . Next, suppose that . Then  for

some . But then , so . Next, suppose that  for  where  is a countable index set.
Then for each  there exists  such that . But then  where

. Hcnce . Therefore  is a -algebra of subsets of . Trivially, . If  is a -algebra of
subsets of  and , then clearly  for every . Hence .
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A -algebra of this form is said to be generated by a countable partition. Note that since  for , the representation of a
set in  as a union of sets in  is unique. That is, if  and  then . In particular, if there
are  nonempty sets in , so that , then there are  subsets of  and hence  sets in .

Suppose now that  is a collection of  subsets of  (not necessarily disjoint). To describe the -algebra
generated by  we need a bit more notation. For  (a bit string of length ), let 
where  and .

In the setting above,

1.  partitions .
2.  for .
3. .

Proof
1. Suppose that  and that . Without loss of generality we can suppose that for some , 

 while . Then  and  so  and  are disjoint. Suppose that . Construct 
by  if  and  if , for each . Then by definition, . Hence  partitions .

2. Fix . Again if  and  then . Hence .
Conversely, suppose . Define  by  if  and  if  for each .
Then  and . Hence .

3. Clearly, every -algebra of subsets of  that contains  must also contain , and every -algebra of subsets of  that
contains  must also contain . It follows that . The characterization in terms of unions now follows from
the previous result.

Recall that there are  bit strings of length . The sets in  are said to be in general position if the sets in  are distinct (and
hence there are  of them) and are nonempty. In this case, there are  sets in .

Open the Venn diagram app. This app shows two subsets  and  of  in general position, and lists the 16 sets in .

1. Select each of the 4 sets that partition : , , , .
2. Select each of the other 12 sets in  and note how each is a union of some of the sets in (a).

Sketch a Venn diagram with sets  in general position. Identify the set  for each .

If a -algebra is generated by a collection of basic sets, then each set in the -algebra is generated by a countable number of the
basic sets.

Suppose that  is a set and  a nonempty collection of subsets of . Then

Proof

Let  denote the collection on the right. We first show that  is a -algebra. First, pick , which we can do since  is
nonempty. Then  so . Let  so that  for some countable . Then  so 

. Finally, suppose that  for  in a countable index set . Then for each , there exists a countable 
such that . But then  is also countable and . Hence .

Next if  then  so . Hence . Conversely, if  for some countable  then
trivially .

A -algebra on a set naturally leads to a -algebra on a subset.

Suppose that  is a measurable space, and that . Let . Then

1.  is a -algebra of subsets of .
2. If  then .
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Proof
1. First,  and  so . Next suppose that . Then there exists  such that . But

then  and , so . Finally, suppose that  for  in a countable index set 
. For each  there exists  such that . But then  and , so

.
2. Suppose that . Then  for every , and of course, . Conversely, if  and 

then  so 

The -algebra  is the -algebra on  induced by . The following construction is useful for counterexamples. Compare this
example with the one for finite and co-finite sets.

Let  be a nonempty set. The collection of countable and co-countable subsets of  is

1.  is a -algebra
2. , the -algebra generated by the singleton sets.

Proof
1. First,  since  is countable. If  then  by the symmetry of the definition. Suppose that 

for each  in a countable index set . If  is countable for each  then  is countable. If  is countable for
some  then  is countable. In either case, .

2. Let . Clearly  for . Hence . Conversely, suppose that . If  is
countable, then . If  is countable, then by an identical argument,  and hence .

Of course, if  is itself countable then . On the other hand, if  is uncountable, then there exists  such that 
and  are uncountable. Thus, , but , and of course . Thus, we have an example of a -algebra that
is not closed under general unions.

Topology and Measure

One of the most important ways to generate a -algebra is by means of topology. Recall that a topological space consists of a set 
and a topology , the collection of open subsets of . Most spaces that occur in probability and stochastic processes are
topological spaces, so it's crucial that the topological and measure-theoretic structures are compatible.

Suppose that  is a topological space. Then  is the Borel -algebra on , and  is a Borel measurable
space.

So the Borel -algebra on , named for Émile Borel is generated by the open subsets of . Thus, a topological space 
naturally leads to a measurable space . Since a closed set is simply the complement of an open set, the Borel -algebra
contains the closed sets as well (and in fact is generated by the closed sets). Here are some other sets that are in the Borel -
algebra:

Suppose again that  is a topological space and that  is a countable index set.

1. If  is open for each  then . Such sets are called  sets.
2. If  is closed for each  then . Such sets are called  sets.
3. If  is Hausdorff then  for every .

Proof
1. This follows direction from the closure property for intersections.
2. This follows from the definition.
3. This follows since  is closed for each  if the topology is Hausdorff.

In terms of part (c), recall that a topological space is Hausdorff, named for Felix Hausdorff, if the topology can distinguish
individual points. Specifically, if  are distinct then there exist disjoint open sets  with  and . This is a

S ∈S S∩R =R R ∈R B ∈R A ∈S B =A∩R

∈SA
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R∖B ∈R ∈RB

i

i

I i ∈ I ∈SA
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i∈I
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i

⋃

i∈I
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i

∈R⋃
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R ∈S A∩R ∈S A ∈S A∩R ⊆R B ∈S B ⊆R

B =B∩R B ∈R

σ R σ R S

S S
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c
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i∈I

A

i

D = σ{{x} : x ∈ S} {x} ∈ C x ∈ S D ⊆C A ∈ C A
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very basic property possessed by almost all topological spaces that occur in applications. A simple corollary of (c) is that if the
topological space  is Hausdorff then  for every countable .

Let's note the extreme cases. If  has the discrete topology , so that every set is open (and closed), then of course the Borel 
-algebra is also . As noted above, this is often the appropriate -algebra if  is countable, but is often too large if  is

uncountable. If  has the trivial topology , then the Borel -algebra is also , and so is also trivial.

Recall that a base for a topological space  is a collection  with the property that every set in  is a union of a
collection of sets in . In short, every open set is a union of some of the basic open sets.

Suppose that  is a topological space with a countable base . Then .

Proof

Since  it follows trivially that . Conversely, if , there exists a collection of sets in  whose
union is . Since  is countable, .

The topological spaces that occur in probability and stochastic processes are usually assumed to have a countable base (along with
other nice properties such as the Hausdorff property and locally compactness). The -algebra used for such a space is usually the
Borel -algebra, which by the previous result, is countably generated.

Measurable Functions

Recall that a set usually comes with a -algebra of admissible subsets. A natural requirement on a function is that the inverse image
of an admissible set in the range space be admissible in the domain space. Here is the formal definition.

Suppose that  and  are measurable spaces. A function  is measurable if  for every 
.

If the -algebra in the range space is generated by a collection of basic sets, then to check the measurability of a function, we need
only consider inverse images of basic sets:

Suppose again that  and  are measurable spaces, and that  for a collection of subsets  of . Then 
 is measurable if and only if  for every .

Proof

First , so if  is measurable then the condition in the theorem trivially holds. Conversely, suppose that the
condition in the theorem holds, and let . Then  since . If 
then , so . If  for  in a countable index set , then 

, and hence . Thus  is a -algebra of subsets of . But  by
assumption, so . Of course  by definition, so  and hence  is measurable.

If you have reviewed the section on topology then you may have noticed a striking parallel between the definition of continuity for
functions on topological spaces and the defintion of measurability for functions on measurable spaces: A function from one
topological space to another is continuous if the inverse image of an open set in the range space is open in the domain space. A
function from one measurable space to another is measurable if the inverse image of a measurable set in the range space is
measurable in the domain space. If we start with topological spaces, which we often do, and use the Borel -algebras to get
measurable spaces, then we get the following (hardly surprising) connection.

Suppose that  and  are topological spaces, and that we give  and  the Borel -algebras  and 
respectively. If  is continuous, then  is measurable.

Proof

If  then . Hence  is measurable by the previous theorem.

Measurability is preserved under composition, the most important method for combining functions.

(S,S ) A ∈ σ(S ) A⊆ S

S P(S)

σ P(S) σ S S

S {S, ∅} σ {S, ∅}

(S,T ) B ⊆T T

B

(S,S ) B σ(B) = σ(S )

B ⊆S σ(B) ⊆ σ(S ) U ∈S B

U B U ∈ σ(B)

σ

σ

σ

(S,S ) (T ,T ) f : S→ T (A) ∈Sf

−1

A ∈ T

σ

(S,S ) (T ,T ) T = σ(B) B T

f : S→ T (B) ∈Sf

−1

B ∈B

B ⊆T f : S→ T

U = {A ∈ T : (A) ∈S }f

−1

T ∈U (T ) = S ∈Sf

−1

A ∈U

( ) = ∈Sf

−1

A

c

[ (A)]f

−1

c

∈UA

c

∈UA

i

i I
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⋃

i∈I
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⋃

i∈I
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A

i
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i∈I

A

i

U σ T B ⊆U

T = σ(B) ⊆U U ⊆T U =T f

σ

(S,S ) (T ,T ) S T σ σ(S ) σ(T )
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Suppose that , , and  are measurable spaces. If  is measurable and  is measurable,
then  is measurable.

Proof

If  then  since  is measurable, and hence  since  is measurable.

If  is given the smallest possible -algebra or if  is given the largest one, then any function from  into  is measurable.

Every function  is measurable in each of the following cases:

1.  and  is an arbitrary -algebra of subsets of 
2.  and  is an arbitrary -algebra of subsets of .

Proof
1. Suppose that  and that  is an arbitrary -algebra on . If , then  and 

 so  is measurable.
2. Suppose that  and that  is an arbitrary -algebra on . If , then trivially  for every 

 so  is measurable.

When there are several -algebras for the same set, then we use the phrase with respect to so that we can be precise. If a function is
measurable with respect to a given -algebra on its domain, then it's measurable with respect to any larger -algebra on this space.
If the function is measurable with respect to a -algebra on the range space then its measurable with respect to any smaller -
algebra on this space.

Suppose that  has -algebras  and  with , and that  has -algebras  and  with . If  is
measurable with respect to  and , then  is measureable with respect to  and .

Proof

If  then . Hence  so .

The following construction is particularly important in probability theory:

Suppose that  is a set and  is a measurable space. Suppose also that  and define 
. Then

1.  is a -algebra on .
2.  is the smallest -algebra on  that makes  measurable.

Proof
1. The key to the proof is that the inverse image preserves all set operations. First,  since  and .

If  then  for some . But then  and hence . Finally, suppose
that  for  in a countable index set . Then for each  there exists  such that . But
then  and . Hence .

2. If  is a -algebra on  and  is measurable with respect to  and , then by definition  for every ,
so .

Appropriately enough,  is called the -algebra generated by . Often,  will have a given -algebra  and  will be
measurable with respect to  and . In this case, . We can generalize to an arbitrary collection of functions on .

Suppose  is a set and that  is a measurable space for each  in a nonempty index set . Suppose also that 
for each . The -algebra generated by this collection of functions is

Again, this is the smallest -algebra on  that makes  measurable for each .

(R,R) (S,S ) (T ,T ) f : R→ S g : S→ T

g∘ f : R→ T

A ∈ T (A) ∈Sg

−1

g (g∘ f (A) = [ (A)] ∈R)

−1

f

−1

g

−1

f

T σ S S T

f : S→ T

T = {∅,T} S σ S
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−1
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Product Sets
Product sets arise naturally in the form of the higher-dimensional Euclidean spaces  for . In addition, product
spaces are particularly important in probability, where they are used to describe the spaces associated with sequences of random
variables. More general product spaces arise in the study of stochastic processes. We start with the product of two sets; the
generalization to products of  sets and to general products is straightforward, although the notation gets more complicated.

Suppose that  and  are measurable spaces. The product -algebra on  is

So the definition is natural: the product -algebra is generated by products of measurable sets. Our next goal is to consider the
measurability of functions defined on, or mapping into, product spaces. Of basic importance are the projection functions. If  and 

 are sets, let  and  be defined by  and  for . Recall that 
 is the projection onto the first coordinate and  is the projection onto the second coordinate. The product  algebra is the

smallest -algebra that makes the projections measurable:

Suppose again that  and  are measurable spaces. Then .

Proof

If  then . Similarly, if  then . Hence  and  are
measurable, so . Conversely, if  and  then .
Since sets of this form generate the product -algebra, we have .

Projection functions make it easy to study functions mapping into a product space.

Suppose that ,  and  are measurable spaces, and that  is given the product -algebra .
Suppose also that , so that  for , where  and  are the
coordinate functions. Then  is measurable if and only if  and  are measurable.

Proof

Note that  and . So if  is measurable then  and  are compositions of measurable functions, and
hence are measurable. Conversely, suppose that  and  are measurable. If  and  then 

. Since products of measurable sets generate , it follows that  is measurable.

Our next goal is to consider cross sections of sets in a product space and cross sections of functions defined on a product space. It
will help to introduce some new functions, which in a sense are complementary to the projection functions.

Suppose again that  and  are measurable spaces, and that  is given the product -algebra .

1. For  the function , defined by  for , is measurable.
2. For  the function , defined by  for , is measurable.

Proof

To show that the functions are measurable, if suffices to consider inverse images of products of measurable sets, since such sets
generate . Thus, let  and .

1. For  note that  is  if  and is  if . In either case, .
2. Similarly, for  note that  is  if  and is  if . In either case, .

Now our work is easy.

Suppose again that  and  are measurable spaces, and that . Then

1. For , .
2. For , .

Proof

R

n

n ∈ {2, 3,…}

n

(S,S ) (T ,T ) σ S×T

S ⊗T = σ{A×B : A ∈S , B ∈ T } (1.11.7)
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These result follow immediately from the measurability of the functions  and :

1. For , .
2. For , .

The set in (a) is the cross section of  in the first coordinate at , and the set in (b) is the cross section of  in the second
coordinate at . As a simple corollary to the theorem, note that if ,  and  then  and .
That is, the only measurable product sets are products of measurable sets. Here is the measurability result for cross-sectional
functions:

Suppose again that  and  are measurable spaces, and that  is given the product -algebra .
Suppose also that  is another measurable space, and that  is measurable. Then

1. The function  from  to  is measurable for each .
2. The function  from  to  is measurable for each .

Proof

Note that the function in (a) is just , and the function in (b) is just , both are compositions of measurable functions

The results for products of two spaces generalize in a completely straightforward way to a product of  spaces.

Suppose  and that  is a measurable space for each . The product -algebra on the Cartesian
product set  is

So again, the product -algebra is generated by products of measurable sets. Results analogous to the theorems above hold. In the
special case that  for , the Cartesian product becomes  and the corresponding product -
algebra is denoted . The notation is natural, but potentially confusing. Note that  is not the Cartesian product of   times,
but rather the -algebra generated by sets of the form  where  for .

We can also extend these ideas to a general product. To recall the definition, suppose that  is a set for each  in a nonempty index
set . The product set  consists of all functions  such that  for each . To make the notation
look more like a simple Cartesian product, we often write  instead of  for the value of a function in the product set at .
The next definition gives the appropriate -algebra for the product set.

Suppose that  is a measurable space for each  in a nonempty index set . The product -algebra on the product set 
 is

If you have reviewed the section on topology, the definition should look familiar. If the spaces were topological spaces instead of
measurable spaces, with  the topology of  for , then the set of products in the displayed expression above is a base for
the product topology on .

The definition can also be understood in terms of projections. Recall that the projection onto coordinate  is the function 
 given by . The product -algebra is the smallest -algebra on the product set that makes all of the

projections measurable.

Suppose again that  is a measurable space for each  in a nonempty index set , and let  denote the product -
algebra on the product set . Then .

Proof

Let  and . Then  where  for  and . This set is in  so  is measurable.
Hence . For the other direction, consider a product set  where  except for , where 

1

x

2

y

x ∈ S (C) = {y ∈ T : (x, y) ∈ C}1

−1

x

y ∈ T (C) = {x ∈ S : (x, y) ∈ C}2

−1

y

C x C

y A ⊆ S B ⊆ T A×B ∈S ⊗T A ∈S B ∈ T
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 is finite. Then . This set is in . Product sets of this form generate  so it follows
that .

In the special case that  is a fixed measurable space and  for all , the product set  is just the
collection of functions from  into , often denoted . The product -algebra is then denoted , a notation that is natural, but
again potentially confusing. Here is the main measurability result for a function mapping into a product space.

Suppose that  is a measurable space, and that  is a measurable space for each  in a nonempty index set . As
before, let  have the product -algebra. Suppose now that . For  let  denote the th
coordinate function of , so that  for . Then  is measurable if and only if  is measurable for each 

.

Proof

Suppose that  is measurable. For  note that  is a composition of measurable functions, and hence is
measurable. Conversely, suppose that  is measurable for each . To show that measurability of  we need only consider
inverse images of sets that generate the product -algebra. Thus, suppose that  for  in a finite subset , and let 

 for . Then . This set is in  since the intersection is over a finite index
set.

Just as with the product of two sets, cross-sectional sets and functions are measurable with respect to the product measure. Again,
it's best to work with some special functions.

Suppose that  is a measurable space for each  in an index set  with at least two elements. For  and ,
define the function  by  where  for  and . Then  is measurable with
respect to the product -algebras.

Proof

Once again, it suffices to consider the inverse image of the sets that generate the product -algebra. So suppose  for 
 with  for all but finitely many . Then  if , and the inverse image is 

otherwise. In either case,  is in the product -algebra on .

In words, for  and , the function  takes a point in the product set  and assigns  to coordinate  to give a
point in . If , then  is the cross section of  in coordinate  at . So it follows immediately from the
previous result that the cross sections of a measurable set are measurable. Cross sections of measurable functions are also
measurable. Suppose that  is another measurable space, and that  is measurable. The cross section of  in
coordinate  at  is simply , a composition of measurable functions.

However, a non-measurable set can have measurable cross sections, even in a product of two spaces.

Suppose that  is an uncountable set with the -algebra  of countable and co-countable sets as in (21). Consider  with
the product -algebra . Let , the diagonal of . Then  has measurable cross sections, but 

 is not measurable.

Proof

For , the cross section of  in the first coordinate at  is . Similarly, for , the
cross section of  in the second coordinate at  is . But  cannot be generated by a
countable collection of sets of the form  with , so , by the result above.

Special Cases
Most of the sets encountered in applied probability are either countable, or subsets of  for some , or more generally, subsets of
a product of a countable number of sets of these types. In the study of stochastic processes, various spaces of functions play an
important role. In this subsection, we will explore the most important special cases.

J ⊆ I = ( )∏

i∈I

A

i

⋂

j∈J

p

−1

j

A

j

σ{ : i ∈ I}p

i

S

S⊆ σ{ : i ∈ I}p

i

(S,S ) ( , ) = (S,S )S

i

S

i

i ∈ I S∏

i∈I

I S S

I

σ S

I

(R,R) ( , )S

i

S

i

i I

∏

i∈I

S

i

σ f : R→∏

i∈I

S

i

i ∈ I : R→f

i

S

i

i

f (x) = [f(x)f

i

]

i

x ∈ R f f

i

i ∈ I

f i ∈ I = ∘ ff

i

p

i

f

i

i ∈ I f

σ ∈A

j

S

j

j J ⊆ I

=A

i

S

i

i ∈ I−J ( )= ( )f

−1

∏

i∈I

A

i

⋂

j∈J

f

−1

j

A

j

R

( , )S

i

S

i

i I j∈ I u ∈ S

j

: →j

u

∏

i∈I−{j}

∏

i∈I

S

i

(x) = yj

u

=y

i

x

i

i ≠ j = uy

j

j

u

σ

σ ∈A

i

S

i

i ∈ I =A

i

S

i

i ∈ I ( )=j

−1

u

∏

i∈I

A

i

∏

i∈I−{j}

A

i

u ∈ A

j

∅

( )j

−1

u

∏

i∈I

A

i

σ ∏

i∈I−{j}

S

i

j∈ I u ∈ S

j

j

u

∏

i∈I−{j}

S

i

u j

∏

i∈I

S

i

A⊆∏

i∈I

S

i

(A)j

−1

u

A j u

(T ,T ) f : → T∏

i∈I

S

i

f

j∈ I u ∈ S

j

f ∘ : → Tj

u

S

I−{j}

S σ C S×S

σ C ⊗C D= {(x, x) : x ∈ S} S×S D

D

x ∈ S D x {y ∈ S : (x, y) ∈D} = {x} ∈ C y ∈ S

D y {x ∈ S : (x, y) ∈D} = {y} ∈ C D

A×B A, B ∈ C D ∉ C ⊗C

R

n

n

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10126?pdf


1.11.11 https://stats.libretexts.org/@go/page/10126

Discrete Spaces

If  is countable and  is the collection of all subsets of , then  is a discrete measurable space.

Thus if  is discrete, all subsets of  are measurable and every function from  to another measurable space is measurable.
The power set is also the discrete topology on , so  is a Borel -algebra as well. As a topological space,  is complete,
locally compact, Hausdorff, and since  is countable, separable. Moreover, the discrete topology corresponds to the discrete metric 

, defined by  for  and  for  with .

Euclidean Spaces

Recall that for , the Euclidean topology on  is generated by the standard Euclidean metric  given by

With this topology,  is complete, connected, locally compact, Hausdorff, and separable.

For , the -dimensional Euclidean measurable space is  where  is the Borel -algebra corresponding to
the standard Euclidean topology on .

The one-dimensional case is particularly important. In this case, the standard Euclidean metric  is given by  for 
. The Borel -algebra  can be generated by various collections of intervals.

Each of the following collections generates .

1. 
2. 
3. 

Proof

The proof involves showing that each set in any one of the collections is in the -algebra of any other collection. Let 
 for .

1. Clearly  and  so  and .
2. If  with  then  and , so . Also 

 so . Thus all bounded intervals are in . Next, , 
, , and , so each of these intervals is in 

. Of course , so we now have that  for every interval . Thus , and so from (a), .
3. If  with  then  so . Hence . But then from (a) and (b) it

follows that .

Since the Euclidean topology has a countable base,  is countably generated. In fact each collection of intervals above, but with
endpoints restricted to , generates . Moreover,  can also be constructed from -algebras that are generated by countable
partitions. First recall that for , the set of dyadic rationals (or binary rationals) of rank  or less is .
Note that  is countable and  for . Moreover, the set  of all dyadic rationals is dense in . The
dyadic rationals are often useful in various applications because  has the natural ordered enumeration  for each .
Now let

Then  is a countable partition of  into nonempty intervals of equal size , so  consists of unions of sets in 
as described above. Every set  is the union of two sets in  so clearly  for . Finally, the Borel -algebra on 

 is . This construction turns out to be useful in a number of settings.

For , the Euclidean topology on  is the -fold product topology formed from the Euclidean topology on . So the
Borel -algebra  is also the -fold power -algebra formed from . Finally,  can be generated by -fold products of sets in
any of the three collections in the previous theorem.
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Space of Real Functions

Suppose that  is a measurable space. From our general discussion of functions, recall that the usual arithmetic operations on
functions from  into  are defined pointwise.

If  and  are measurable and , then each of the following functions from  into  is also
measurable:

1. 
2. 
3. 
4. 

Proof

These results follow from the fact that the arithmetic operators are continuous, and hence measurable. That is, ,
, and  are continuous as functions from  into . Thus, if  are measurable, then 
 is measurable by the result above. Then, , ,  are the compositions, respectively, of , ,  with 

. Of course, (d) is a simple corollary of (c).

Similarly, if  is measurable, then so is . Recall that the set of functions from  into  is a vector space, under
the pointwise definitions of addition and scalar multiplication. But once again, we usually want to restrict our attention to
measurable functions. Thus, it's nice to know that the measurable functions from  into  also form a vector space. This follows
immediately from the closure properties (a) and (d) of the previous theorem. Of particular importance in probability and stochastic
processes is the vector space of bounded, measurable functions , with the supremum norm

The elementary functions that we encounter in calculus and other areas of applied mathematics are functions from subsets of  into
. The elementary functions include algebraic functions (which in turn include the polynomial and rational functions), the usual

transcendental functions (exponential, logarithm, trigonometric), and the usual functions constructed from these by composition,
the arithmetic operations, and by piecing together. As we might hope, all of the elementary functions are measurable.

This page titled 1.11: Measurable Spaces is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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1.12: Special Set Structures
 

There are several other types of algebraic set structures that are weaker than -algebras. These are not particularly important in
themselves, but are important for constructing -algebras and the measures on these -algebras. You may want to skip this section
if you are not intersted in questions of existence and uniqueness of positive measures.

Basic Theory

Definitions

Throughout this section, we assume that  is a set and  is a nonempty collection of subsets of . Here are the main definitions
we will need.

 is a -system if  is closed under finite intersections: if  then .

Closure under intersection is clearly a very simple property, but  systems turn out to be useful enough to deserve a name.

 is a -system if it is closed under complements and countable disjoint unions.

1. If  then .
2. If  for  in a countable index set  and  for  then .

 is a semi-algebra if it is closed under intersection and if complements can be written as finite, disjoint unions:

1. If  then .
2. If  then there exists a finite, disjoint collection  such that .

For our final structure, recall that a sequence  of subsets of  is increasing if  for all . The
sequence is decreasing if  for all . Of course, these are the standard meanings of increasing and decreasing
relative to the ordinary order  on  and the subset partial order  on .

 is a monotone class if it is closed under increasing unions and decreasing intersections:

1. If  is an increasing sequence of sets in  then .
2. If  is a decreasing sequence of sets in  then .

If  is an increasing sequence of sets then we sometimes write . Similarly, if  is a
decreasing sequence of sets we sometimes write . The reason for this notation will become clear in the
section on Convergence in the chapter on Probability Spaces. With this notation, a monotone class  is defined by the condition
that if  is an increasing or decreasing sequence of sets in  then .

Basic Theorems

Our most important set structure, the -algebra, has all of the properties in the definitions above.

If  is a -algebra then  is a -system, a -system, a semi-algebra, and a monotone class.

If  is a -system then  and .

Proof

The proof is just like the one for an algebra. There exists  since  is non-empty. Hence  and so 
. Finally .

Any type of algebraic structure on subsets of  that is defined purely in terms of closure properties will be preserved under
intersection. That is, we will have results that are analogous to how -algebras are generated from more basic sets, with completely
straightforward and analgous proofs. In the following two theorems, the term system could mean -system, -system, or monotone
class of subsets of .
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If  is a system for each  in an index set  and  is nonempty, then  is a system of the same type.

The condition that  be nonempty is unnecessary for a -system, by the result above. Now suppose that  is a nonempty
collection of subsets of , thought of as basic sets of some sort. Then the system generated by  is the intersection of all systems
that contain .

The system  generated by  is the smallest system containing , and is characterized by the following properties:

1. .
2. If  is a system and  then .

Note however, that the previous two results do not apply to semi-algebras, because the semi-algebra is not defined purely in terms
of closure properties (the condition on  is not a closure property).

If  is a monotone class and an algebra, then  is a -algebra.

Proof

All that is needed is to prove closure under countable unions. Thus, suppose that  for . Then 
 since  is an algebra. The sequence  is increasing, so , since  is a

monotone class. But .

By definition, a semi-algebra is a -system. More importantly, a semi-algebra can be used to construct an algebra.

Suppose that  is a semi-algebra of subsets of . Then the collection  of finite, disjoint unions of sets in  is an algebra.

Proof

Suppose that . Then there exist finite, disjoint collections  and  such that 
 and . Hence

But  is a finite, disjoint collection of sets in , so . Suppose , so that there
exists a finite, disjoint collection  such that . Then . But  by definition of
semi-algebra, and we just showed that  is closed under finite intersections, so .

We will say that our nonempty collection  is closed under proper set difference if  and  implies .
The following theorem gives the basic relationship between -systems and monotone classes.

Suppose that  is a nonempty collection of subsets of .

1. If  is a -system then  is a monotone class and is closed under proper set difference.
2. If  is a monotone class, is closed under proper set difference, and contains , then  is a -system.

Proof
1. Suppose that  is a -system. Suppose that  and . Then , and  and  are disjoint, so 

. But then . Hence  is closed under proper set difference. Next
suppose that  is an increasing sequence of sets in . Let  and  for .
Then  for each . But the sequence  is disjoint and has the same union as . Hence 

. Finally, suppose that  is a decreasing sequence of sets in . Then  for
each  and  is increasing. Hence  and therefore .

2. Suppose that  is a monotone class, is closed under proper set difference, and . If  then trivially  so 
. Next, suppose that  are disjoint. Then  and , so .

Hence . Finally, suppose that  is a disjoint sequence of sets in . We just showed
that  is closed under finite, disjoint unions, so . But the sequence  is increasing, and
hence .

S

i

i I ⋂

i∈I

S

i

⋂

i∈I

S

i

⋂

i∈I

S

i

λ B

S B

B

S B B

B ⊆S

T B ⊆T S ⊆T

A

c

S S σ

∈SA

i

i ∈ N

+

= ∈SB

n

⋃

n

i=1

A

i

S ( , ,…)B

1

B

2

∈S⋃

∞

n=1

B

n

S

=⋃

∞

n=1

B

n

⋃

∞

i=1

A

i

π

S S S

∗

S

A, B ∈S

∗

{ : i ∈ I} ⊆SA

i

{ : j∈ J} ⊆SB

j

A=⋃

i∈I

A

i

B=⋃

j∈J

B

j

A∩B= ( ∩ )⋃

(i,j)∈I×J

A

i

B

j

(1.12.1)

{ ∩ : (i, j) ∈ I×J}A

i

B

j

S A∩B ∈S

∗

A ∈S

∗

{ : i ∈ I}A

i

A=⋃

i∈I

A

i

=A

c

⋂

i∈I

A

c

i

∈A

c

i

S

∗

S

∗

∈A

c

S

∗

S A, B ∈S A⊆B B∖A ∈S

λ

S S

S λ S

S S S λ

S λ A, B ∈S A⊆B ∈SB

c

A B

c

A∪ ∈SB

c

(A∪ =B∩ =B∖A ∈SB

c

)

c

A

c

S

( , ,…)A

1

A

2

S =B

1

A

1

= ∖B

n

A

n

A

n−1

n ∈ {2, 3,…}

∈SB

i

i ∈ N

+

( , ,…)B

1

B

2

( , ,…)A

1

A

2

= ∈S⋃

∞

i=1

A

i

⋃

∞

i=1

B

i

( , ,…)A

1

A

2

S ∈SA

c

i

i ∈ N

+

( , ,…)A

c

1

A

c

2

∈S⋃

∞

i=1

A

c

i

= ∈S( )⋃

∞

i=1

A

c

i

c

⋂

∞

i=1

A

i

S S ∈S A ∈S A⊆ S

= S ∖A ∈SA

c

A, B ∈S ∈SA

c

B⊆A

c

∖B= ∩ ∈SA

c

A

c

B

c

A∪B= ( ∩ ∈SA

c

B

c

)

c

( , ,…)A

1

A

2

S

S = ∈SB

n

⋃

n

i=1

A

i

( , ,…)B

1

B

2

= ∈S⋃

∞

n=1

B

n

⋃

∞

i=1

A

i

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10127?pdf


1.12.3 https://stats.libretexts.org/@go/page/10127

The following theorem is known as the monotone class theorem, and is due to the mathematician Paul Halmos.

Suppose that  is an algebra,  is a monotone class, and . Then .

Proof

First let  denote the monotone class generated by , as defined above. The outline of the proof is to show that  is
an algebra, so that by (9),  is a -algebra. It then follows that . To show that  is an
algebra, we first show that it is closed under complements and then under simple union.

Since  is a monotone class, the collection  is also a monotone class. Moreover, 
 so it follows that . Hence if  then  so . Thus  is

closed under complements.

Let . Then  is a monotone class and  so . Next
let . Then  is also a monotone class. Let . If 
then  and hence . Hence . Thus we have , so . Finally, let 

. Then  so  and therefore  is closed under simple union.

As noted in (5), a -algebra is both a -system and a -system. The converse is also true, and is one of the main reasons for
studying these structures.

If  is a -system and a -system then  is a -algebra.

Proof

, and if  then  by definition of a -system. Thus, all that is left is to show closure under countable
unions. Thus, suppose that  is a sequence of sets in . Then  for each . Since  is also a -
system, it follows that for each ,  (by convention ). But the sequence 

 is disjoint and has the same union as . Hence .

The importance of -systems and -systems stems in part from Dynkin's -  theorem given next. It's named for the mathematician
Eugene Dynkin.

Suppose that  is a -system of subsets of ,  is a -system of subsets of , and . Then .

Proof

Let  denote the -system generated by . Then of course . For , let

We will show that  is a -system. Note that  and therefore . Next, suppose that 
and that . Then  and  and . Hence 

. Hence . Finally, suppose that  is a countable,
disjoint collection of sets in . Then  for each , and  is also a disjoint collection.
Therefore, . Hence .

Next fix . If  then , so  and hence . But  is the smallest -system containing
 so we have shown that  for every . Now fix . If  then  so  and

therefore . Again,  is the smallest -system containing  so we have now shown that  for every .
Finally, let . Then  and hence . It now follows that  is a -system, as well as a -system,
and therefore by the theorem above,  is a sigma-algebra. But  and hence .

Examples and Special Cases

Suppose that  is a set and  is a finite partition of . Then  is a semi-algebra of subsets of .

Proof

If  then . If  then 
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Euclidean Spaces

The following example is particulalry important because it will be used to construct positive measures on . Let

 is a semi-algebra of subsets of .

Proof

Note that the intersection of two intervals of the type in  is another interval of this type. The complement of an interval of
this type is either another interval of this type or the union of two disjoint intervals of this type.

It follows from the theorem above that the collection  of finite disjoint unions of intervals in  is an algebra. Recall also that 
 is the Borel -algebra of , named for Émile Borel. We can generalize all of this to  for 

The collection  is a semi-algebra of subsets of .

Recall also that  is the -algebra of Borel sets of .

Product Spaces

The examples in this discussion are important for constructing positive measures on product spaces.

Suppose that  is a semi-algebra of subsets of a set  and that  is a semi-algebra of subsets of a set . Then

is a semi-algebra of subsets of .

Proof
1. Suppose that , so that  and . Recall that 

. But  and  so .
2. Suppose that  so that  and . Then

There exists a finite, disjoint collection  of sets in  and a finite, disjoint collection  of sets in 
such that  and . Hence

All of the product sets in this union are in  and the product sets are disjoint.

This result extends in a completely straightforward way to a product of a finite number of sets.

Suppose that  and that  is a semi-algebra of subsets of a set  for . Then

is a semi-algebra of subsets of .

Note that the semi-algebra of products of intervals in  described above is a special case of this result. For the product of an
infinite sequence of sets, the result is bit more tricky.

Suppose that  is a semi-algebra of subsets of a set  for . Then

R

B = {(a, b] : a, b ∈ R, a < b} ∪ {(−∞, b] : b ∈ R} ∪ {(a, ∞) : a ∈ R} (1.12.3)
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is a semi-algebra of subsets of .

Proof

The proof is very much like the previous ones.

1. Suppose that  and , so that  for  and  for all but finitely
many  and  for all but finitely many . Then . Also,  for 

 and  for all but finitely many . So .
2. Suppose that , where  for  and  for , for some . Then 

 where

Note that the product sets in this union are disjoint. But for each  there exists a finite disjoint collection 
 such that . Substituting and distributing then gives  as a finite, disjoint union of sets in

.

Note that this result would not be true with . In general, the complement of a set in 
cannot be written as a finite disjoint union of sets in .

This page titled 1.12: Special Set Structures is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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1

CHAPTER OVERVIEW

2: Probability Spaces
The basic topics in this chapter are fundamental to probability theory, and should be accessible to new students of probability. We
start with the paradigm of the random experiment and its mathematical model, the probability space. The main objects in this
model are sample spaces, events, random variables, and probability measures. We also study several concepts of fundamental
importance: conditional probability and independence.

The advanced topics can be skipped if you are a new student of probability, or can be studied later, as the need arises. These topics
include the convergence of random variables, the measure-theoretic foundations of probability theory, and the existence and
construction of probability measures and random processes.

2.1: Random Experiments
2.2: Events and Random Variables
2.3: Probability Measures
2.4: Conditional Probability
2.5: Independence
2.6: Convergence
2.7: Measure Spaces
2.8: Existence and Uniqueness
2.9: Probability Spaces Revisited
2.10: Stochastic Processes
2.11: Filtrations and Stopping Times

This page titled 2: Probability Spaces is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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2.1: Random Experiments

Experiments

Probability theory is based on the paradigm of a random experiment; that is, an experiment whose outcome cannot be predicted
with certainty, before the experiment is run. In classical or frequency-based probability theory, we also assume that the experiment
can be repeated indefinitely under essentially the same conditions. The repetitions can be in time (as when we toss a single coin
over and over again) or in space (as when we toss a bunch of similar coins all at once). The repeatability assumption is important
because the classical theory is concerned with the long-term behavior as the experiment is replicated. By contrast, subjective or
belief-based probability theory is concerned with measures of belief about what will happen when we run the experiment. In this
view, repeatability is a less crucial assumption. In any event, a complete description of a random experiment requires a careful
definition of precisely what information about the experiment is being recorded, that is, a careful definition of what constitutes an
outcome.

The term parameter refers to a non-random quantity in a model that, once chosen, remains constant. Many probability models of
random experiments have one or more parameters that can be adjusted to fit the physical experiment being modeled.

The subjects of probability and statistics have an inverse relationship of sorts. In probability, we start with a completely specified
mathematical model of a random experiment. Our goal is perform various computations that help us understand the random
experiment, help us predict what will happen when we run the experiment. In statistics, by contrast, we start with an incompletely
specified mathematical model (one or more parameters may be unknown, for example). We run the experiment to collect data, and
then use the data to draw inferences about the unknown factors in the mathematical model.

Compound Experiments

Suppose that we have  experiments . We can form a new, compound experiment by performing the 
experiments in sequence,  first, and then  and so on, independently of one another. The term independent means, intuitively,
that the outcome of one experiment has no influence over any of the other experiments. We will make the term mathematically
precise later.

In particular, suppose that we have a basic experiment. A fixed number (or even an infinite number) of independent replications of
the basic experiment is a new, compound experiment. Many experiments turn out to be compound experiments and moreover, as
noted above, (classical) probability theory itself is based on the idea of replicating an experiment.

In particular, suppose that we have a simple experiment with two outcomes. Independent replications of this experiment are
referred to as Bernoulli trials, named for Jacob Bernoulli. This is one of the simplest, but most important models in probability.
More generally, suppose that we have a simple experiment with  possible outcomes. Independent replications of this experiment
are referred to as multinomial trials.

Sometimes an experiment occurs in well-defined stages, but in a dependent way, in the sense that the outcome of a given stage is
influenced by the outcomes of the previous stages.

Sampling Experiments

In most statistical studies, we start with a population of objects of interest. The objects may be people, memory chips, or acres of
corn, for example. Usually there are one or more numerical measurements of interest to us—the height and weight of a person, the
lifetime of a memory chip, the amount of rain, amount of fertilizer, and yield of an acre of corn.

Although our interest is in the entire population of objects, this set is usually too large and too amorphous to study. Instead, we
collect a random sample of objects from the population and record the measurements of interest of for each object in the sample.

There are two basic types of sampling. If we sample with replacement, each item is replaced in the population before the next draw;
thus, a single object may occur several times in the sample. If we sample without replacement, objects are not replaced in the
population. The chapter on Finite Sampling Models explores a number of models based on sampling from a finite population.

Sampling with replacement can be thought of as a compound experiment, based on independent replications of the simple
experiment of drawing a single object from the population and recording the measurements of interest. Conversely, a compound
experiment that consists of  independent replications of a simple experiment can usually be thought of as a sampling experiment.
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On the other hand, sampling without replacement is an experiment that consists of dependent stages, because the population
changes with each draw.

Examples and Applications
Probability theory is often illustrated using simple devices from games of chance: coins, dice, card, spinners, urns with balls, and so
forth. Examples based on such devices are pedagogically valuable because of their simplicity and conceptual clarity. On the other
hand, it would be a terrible shame if you were to think that probability is only about gambling and games of chance. Rather, try to
see problems involving coins, dice, etc. as metaphors for more complex and realistic problems.

Coins and Dice

In terms of probability, the important fact about a coin is simply that when tossed it lands on one side or the other. Coins in Western
societies, dating to antiquity, usually have the head of a prominent person engraved on one side and something of lesser importance
on the other. In non-Western societies, coins often did not have a head on either side, but did have distinct engravings on the two
sides, one typically more important than the other. Nonetheless, heads and tails are the ubiquitous terms used in probability theory
to distinguish the front or obverse side of the coin from the back or reverse side of the coin.

Figure : Obverse and reverse sides of a Roman coin, about 241 CE, from Wikipedia

Consider the coin experiment of tossing a coin  times and recording the score (1 for heads or 0 for tails) for each toss.

1. Identify a parameter of the experiment.
2. Interpret the experiment as a compound experiment.
3. Interpret the experiment as a sampling experiment.
4. Interpret the experiment as  Bernoulli trials.

Answer
1. The number of coins  is the parameter.
2. The experiment consists of  independent replications of the simple experiment of tossing the coin one time.
3. The experiment can be thought of as selecting a sample of size  with replacement from he population .
4. There are two outcomes on each toss and the tosses are independent.

In the simulation of the coin experiment, set . Run the simulation 100 times and observe the outcomes.

Dice are randomizing devices that, like coins, date to antiquity and come in a variety of sizes and shapes. Typically, the faces of a
die have numbers or other symbols engraved on them. Again, the important fact is that when a die is thrown, a unique face is
chosen (usually the upward face, but sometimes the downward one). For more on dice, see the introductory section in the chapter
on Games of Chance.

Consider the dice experiment of throwing a -sided die (with faces numbered 1 to ),  times and recording the scores for each
throw.

1. Identify the parameters of the experiment.
2. Interpret the experiment as a compound experiment.
3. Interpret the experiment as a sampling experiment.
4. Identify the experiment as  multinomial trials.

Answer
1. The parameters are the number of dice  and the number of faces .
2. The experiment consists of  independent replications of the simple experiment of throwing one die.
3. The experiment can be thought of as selecting a sample of size  with replacement form the population .
4. The same  outcomes occur for each die the throws are independent.
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In reality, most dice are Platonic solids (named for Plato of course) with 4, 6, 8, 12, or 20 sides. The six-sided die is the standard
die.

Figure : Blue Platonic dice

In the simulation of the dice experiment, set . Run the simulation 100 times and observe the outcomes.

In the die-coin experiment, a standard die is thrown and then a coin is tossed the number of times shown on the die. The
sequence of coin scores is recorded (1 for heads and 0 for tails). Interpret the experiment as a compound experiment.

Answer

The first stage consists rolling the die and the second stage consists of tossing the coin. The stages are dependent because the
number of tosses depends on the outcome of the die throw.

Note that this experiment can be obtained by randomizing the parameter  in the basic coin experiment in (1).

Run the simulation of the die-coin experiment 100 times and observe the outcomes.

In the coin-die experiment, a coin is tossed. If the coin lands heads, a red die is thrown and if the coin lands tails, a green die is
thrown. The coin score (1 for heads and 0 for tails) and the die score are recorded. Interpret the experiment as a compound
experiment.

Answer

The first stage consists of tossing the coin and the second stage consists of rolling the die. The stages are dependent because
different dice (that may behave differently) are thrown, depending on the outcome of the coin toss.

Run the simulation of the coin-die experiment 100 times and observe the outcomes.

Cards

Playing cards, like coins and dice, date to antiquity. From the point of view of probability, the important fact is that a playing card
encodes a number of properties or attributes on the front of the card that are hidden on the back of the card. (Later in this chapter,
these properties will become random variables.) In particular, a standard card deck can be modeled by the Cartesian product set

where the first coordinate encodes the denomination or kind (ace, 2–10, jack, queen, king) and where the second coordinate
encodes the suit (clubs, diamonds, hearts, spades). Sometimes we represent a card as a string rather than an ordered pair (for
example  rather than  for the queen of hearts). Some other properties, derived from the two main ones, are color
(diamonds and hearts are red, clubs and spades are black), face (jacks, queens, and kings have faces, the other cards do not), and
suit order (from least to highest rank: ).

Consider the card experiment that consists of dealing  cards from a standard deck (without replacement).

1. Identify a parameter of the experiment.
2. Interpret the experiment as a compound experiment.
3. Interpret the experiment as a sampling experiment.

Answer
1. The parameter is , the number of cards dealt.
2. At each stage, we draw a card from a deck, but the deck changes from one draw to the next, so the stages are dependent.
3. The experiment is to select a sample of size  from the population , without replacement.

In the simulation of the card experiment, set . Run the simulation 100 times and observe the outcomes.

2.1.2
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The special case  is the poker experiment and the special case  is the bridge experiment.

Open each of the following to see depictions of card playing in some famous paintings.

1. Cheat with the Ace of Clubs by Georges de La Tour
2. The Cardsharps by Michelangelo Carravagio
3. The Card Players by Paul Cézanne
4. His Station and Four Aces by CM Coolidge
5. Waterloo by CM Coolidge

Urn Models

Urn models are often used in probability as simple metaphors for sampling from a finite population.

An urn contains  distinct balls, labeled from 1 to . The experiment consists of selecting  balls from the urn, without
replacement, and recording the sequence of ball numbers.

1. Identify the parameters of the experiment.
2. Interpret the experiment as a compound experiment.
3. Interpret the experiment as a sampling experiment.

Answer
1. The parameters are the number of balls  and the sample size .
2. At each stage, we draw a ball from the urn, but the contents of the urn change from one draw to the next, so the stages are

dependent
3. The experiment is to select a sample of size  from the balls in the urn (the population), without replacement.

Consider the basic urn model of the previous exercise. Suppose that  of the  balls are red and the remaining  balls are
green. Identify an additional parameter of the model. This experiment is a metaphor for sampling from a general dichotomous
population

Answer

The parameters are the population size , the sample size , and the number of red balls .

In the simulation of the urn experiment, set , , and . Run the experiment 100 times and observe the
results.

An urn initially contains  balls;  are red and  are green. A ball is selected from the urn and removed, and then
replaced with  balls of the same color. The process is repeated. This is known as Pólya's urn model, named after George
Pólya.

1. Identify the parameters of the experiment.
2. Interpret the case  as a sampling experiment.
3. Interpret the case  as a sampling experiment.

Answer
1. The parameters are the population size , the initial number of red balls , and the number new balls added .
2. When , each ball drawn is removed and no new balls are added, so the experiment is to select a sample of size  from

the urn, without replacement.
3. When , each ball drawn is replaced with another ball of the same color. So at least in terms of the colors of the balls,

the experiment is equivalent to selecting a sample of size  from the urn, with replacement.

Open the image of the painting Allegory of Fortune by Dosso Dossi. Presumably the young man has chosen lottery tickets
from an urn.
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Buffon's Coin Experiment

Buffon's coin experiment consists of tossing a coin with radius  on a floor covered with square tiles of side length 1. The
coordinates of the center of the coin are recorded, relative to axes through the center of the square, parallel to the sides. The
experiment is named for comte de Buffon.

1. Identify a parameter of the experiment
2. Interpret the experiment as a compound experiment.
3. Interpret the experiment as sampling experiment.

Answer
1. The parameter is the coin radius .
2. The experiment can be thought of as selecting the coordinates of the coin center independently of one another.
3. The experiment is equivalent to selecting a sample of size 2 from the population , with replacement.

In the simulation of Buffon's coin experiment, set . Run the experiment 100 times and observe the outcomes.

Reliability

In the usual model of structural reliability, a system consists of  components, each of which is either working or failed. The states
of the components are uncertain, and hence define a random experiment. The system as a whole is also either working or failed,
depending on the states of the components and how the components are connected. For example, a series system works if and only
if each component works, while a parallel system works if and only if at least one component works. More generally, a  out of 
system works if at least  components work.

Consider the  out of  reliability model.

1. Identify two parameters.
2. What value of  gives a series system?
3. What value of  gives a parallel system?

Answer
1. The parameters are  and 
2.  gives a series system.
3.  gives a parallel system.

The reliability model above is a static model. It can be extended to a dynamic model by assuming that each component is initially
working, but has a random time until failure. The system as a whole would also have a random time until failure that would depend
on the component failure times and the structure of the system.

Genetics

In ordinary sexual reproduction, the genetic material of a child is a random combination of the genetic material of the parents.
Thus, the birth of a child is a random experiment with respect to outcomes such as eye color, hair type, and many other physical
traits. We are often particularly interested in the random transmission of traits and the random transmission of genetic disorders.

For example, let's consider an overly simplified model of an inherited trait that has two possible states (phenotypes), say a pea
plant whose pods are either green or yellow. The term allele refers to alternate forms of a particular gene, so we are assuming that
there is a gene that determines pod color, with two alleles:  for green and  for yellow. A pea plant has two alleles for the trait
(one from each parent), so the possible genotypes are

, alleles for green pods from each parent.
, an allele for green pods from one parent and an allele for yellow pods from the other (we usually cannot observe which

parent contributed which allele).
, alleles for yellow pods from each parent.

The genotypes  and  are called homozygous because the two alleles are the same, while the genotype  is called heterozygous
because the two alleles are different. Typically, one of the alleles of the inherited trait is dominant and the other recessive. Thus, for
example, if  is the dominant allele for pod color, then a plant with genotype  or  has green pods, while a plant with genotype 
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 has yellow pods. Genes are passed from parent to child in a random manner, so each new plant is a random experiment with
respect to pod color.

Pod color in peas was actually one of the first examples of an inherited trait studied by Gregor Mendel, who is considered the father
of modern genetics. Mendel also studied the color of the flowers (yellow or purple), the length of the stems (short or long), and the
texture of the seeds (round or wrinkled).

For another example, the  blood type in humans is controlled by three alleles: , , and . Thus, the possible genotypes are 
, , , ,  and . The alleles  and  are co-dominant and  is recessive. Thus there are four possible blood types

(phenotypes):

Type : genotype  or 
Type : genotype  or 
Type : genotype 
type : genotype 

Of course, blood may be typed in much more extensive ways than the simple  typing. The RH factor (positive or negative) is
the most well-known example.

For our third example, consider a sex-linked hereditary disorder in humans. This is a disorder due to a defect on the X chromosome
(one of the two chromosomes that determine gender). Suppose that  denotes the healthy allele and  the defective allele for the
gene linked to the disorder. Women have two X chromosomes, and typically  is recessive. Thus, a woman with genotype  is
completely normal with respect to the condition; a woman with genotype  does not have the disorder, but is a carrier, since she
can pass the defective allele to her children; and a woman with genotype  has the disorder. A man has only one X chromosome
(his other sex chromosome, the Y chromosome, typically plays no role in the disorder). A man with genotype  is normal and a
man with genotype  has the disorder. Examples of sex-linked hereditary disorders are dichromatism, the most common form of
color-blindness, and hemophilia, a bleeding disorder. Again, genes are passed from parent to child in a random manner, so the birth
of a child is a random experiment in terms of the disorder.

Point Processes

There are a number of important processes that generate “random points in time”. Often the random points are referred to as
arrivals. Here are some specific examples:

times that a piece of radioactive material emits elementary particles
times that customers arrive at a store
times that requests arrive at a web server
failure times of a device

To formalize an experiment, we might record the number of arrivals during a specified interval of time or we might record the
times of successive arrivals.

There are other processes that produce “random points in space”. For example,

flaws in a piece of sheet metal
errors in a string of symbols (in a computer program, for example)
raisins in a cake
misprints on a page
stars in a region of space

Again, to formalize an experiment, we might record the number of points in a given region of space.

Statistical Experiments

In 1879, Albert Michelson constructed an experiment for measuring the speed of light with an interferometer. The velocity of
light data set contains the results of 100 repetitions of Michelson's experiment. Explore the data set and explain, in a general
way, the variability of the data.

Answer

The variablility is due to measurement and other experimental errors beyond the control of Michelson.
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In 1998, two students at the University of Alabama in Huntsville designed the following experiment: purchase a bag of M&Ms
(of a specified advertised size) and record the counts for red, green, blue, orange, and yellow candies, and the net weight (in
grams). Explore the M&M data. set and explain, in a general way, the variability of the data.

Answer

The variability in weight is due to measurement error on the part of the students and to manufacturing errors on the part of the
company. The variability in color counts is less clear and may be due to purposeful randomness on the part of the company.

In 1999, two researchers at Belmont University designed the following experiment: capture a cicada in the Middle Tennessee
area, and record the body weight (in grams), the wing length, wing width, and body length (in millimeters), the gender, and the
species type. The cicada data set contains the results of 104 repetitions of this experiment. Explore the cicada data and explain,
in a general way, the variability of the data.

Answer

The variability in body measurements is due to differences in the three species, to all sorts of envirnomental factors, and to
measurement errors by the researchers.

On June 6, 1761, James Short made 53 measurements of the parallax of the sun, based on the transit of Venus. Explore the
Short data set and explain, in a general way, the variability of the data.

Answer

The variability is due to measurement and other experimental errors beyond the control of Short.

In 1954, two massive field trials were conducted in an attempt to determine the effectiveness of the new vaccine developed by
Jonas Salk for the prevention of polio. In both trials, a treatment group of children were given the vaccine while a control
group of children were not. The incidence of polio in each group was measured. Explore the polio field trial data set and
explain, in a general way, the underlying random experiment.

Answer

The basic random experiment is to observe whether a given child, in the treatment group or control group, comes down with
polio in a specified period of time. Presumabley, a lower incidence of polio in the treatment group compared with the control
group would be evidence that the vaccine was effective.

Each year from 1969 to 1972 a lottery was held in the US to determine who would be drafted for military service. Essentially,
the lottery was a ball and urn model and became famous because many believed that the process was not sufficiently random.
Explore the Vietnam draft lottery data set and speculate on how one might judge the degree of randomness.

Answer

This is a difficult problem, but presumably in a sufficiently random lottery, one would not expect to see dates in the same
month clustered too closely together. Observing such clustering, then, would be evidence that the lottery was not random.

Deterministic Versus Probabilistic Models

One could argue that some of the examples discussed above are inherently deterministic. In tossing a coin, for example, if we know
the initial conditions (involving position, velocity, rotation, etc.), the forces acting on the coin (gravity, air resistance, etc.), and the
makeup of the coin (shape, mass density, center of mass, etc.), then the laws of physics should allow us to predict precisely how the
coin will land. This is true in a technical, theoretical sense, but false in a very real sense. Coins, dice, and many more complicated
and important systems are chaotic in the sense that the outcomes of interest depend in a very sensitive way on the initial conditions
and other parameters. In such situations, it might well be impossible to ever know the initial conditions and forces accurately
enough to use deterministic methods.

In the coin experiment, for example, even if we strip away most of the real world complexity, we are still left with an essentially
random experiment. Joseph Keller in his article “The Probability of Heads” deterministically analyzed the toss of a coin under a
number of ideal assumptions:

1. The coin is a perfect circle and has negligible thickness
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2. The center of gravity of the coin is the geometric center.
3. The coin is initially heads up and is given an initial upward velocity  and angular velocity .
4. In flight, the coin rotates about a horizontal axis along a diameter of the coin.
5. In flight, the coin is governed only by the force of gravity. All other possible forces (air resistance or wind, for example) are

neglected.
6. The coin does not bounce or roll after landing (as might be the case if it lands in sand or mud).

Of course, few of these ideal assumptions are valid for real coins tossed by humans. Let  where  is the acceleration of
gravity (in appropriate units). Note that the  just has units of time (in seconds) and hence is independent of how distance is
measured. The scaled parameter  actually represents the time required for the coin to reach its maximum height.

Keller showed that the regions of the parameter space  where the coin lands either heads up or tails up are separated by the
curves

The parameter  is the total number of revolutions in the toss. A plot of some of these curves is given below. The largest region, in
the lower left corner, corresponds to the event that the coin does not complete even one rotation, and so of course lands heads up,
just as it started. The next region corresponds to one rotation, with the coin landing tails up. In general, the regions alternate
between heads and tails.

Figure : Regions of heads and tails

The important point, of course, is that for even moderate values of  and , the curves are very close together, so that a small
change in the initial conditions can easily shift the outcome from heads up to tails up or conversely. As noted in Keller's article, the
probabilist and statistician Persi Diaconis determined experimentally that typical values of the initial conditions for a real coin toss
are  seconds and  radians per second. These values correspond to  revolutions in the toss. Of course,
this parameter point is far beyond the region shown in our graph, in a region where the curves are exquisitely close together.

This page titled 2.1: Random Experiments is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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2.2: Events and Random Variables
  

The purpose of this section is to study two basic types of objects that form part of the model of a random experiment. If you are a
new student of probability, just ignore the measure-theoretic terminology and skip the technical details.

Sample Spaces

The Set of Outcomes

Recall that in a random experiment, the outcome cannot be predicted with certainty, before the experiment is run. On the other
hand:

We assume that we can identify a fixed set  that includes all possible outcomes of a random experiment. This set plays the
role of the universal set when modeling the experiment.

For simple experiments,  may be precisely the set of possible outcomes. More often, for complex experiments,  is a
mathematically convenient set that includes the possible outcomes and perhaps other elements as well. For example, if the
experiment is to throw a standard die and record the score that occurs, we would let , the set of possible
outcomes. On the other hand, if the experiment is to capture a cicada and measure its body weight (in milligrams), we might
conveniently take , even though most elements of this set are impossible (we hope!). The problem is that we may not
know exactly the outcomes that are possible. Can a light bulb burn without failure for one thousand hours? For one thousand days?
for one thousand years?

Often the outcome of a random experiment consists of one or more real measurements, and thus, the  consists of all possible
measurement sequences, a subset of  for some . More generally, suppose that we have  experiments and that  is the
set of outcomes for experiment . Then the Cartesian product  is the natural set of outcomes
for the compound experiment that consists of performing the  experiments in sequence. In particular, if we have a basic
experiment with  as the set of outcomes, then  is the natural set of outcomes for the compound experiment that consists of 
replications of the basic experiment. Similarly, if we have an infinite sequence of experiments and  is the set of outcomes for
experiment , then then  is the natural set of outcomes for the compound experiment that consists of
performing the given experiments in sequence. In particular, the set of outcomes for the compound experiment that consists of
indefinite replications of a basic experiment is . This is an essential special case, because (classical) probability
theory is based on the idea of replicating a given experiment.

Events

Consider again a random experiment with  as the set of outcomes. Certain subsets of  are referred to as events. Suppose that
 is a given event, and that the experiment is run, resulting in outcome .

1. If  then we say that  occurs.
2. If  then we say that  does not occur.

Intuitively, you should think of an event as a meaningful statement about the experiment: every such statement translates into an
event, namely the set of outcomes for which the statement is true. In particular,  itself is an event; by definition it always occurs.
At the other extreme, the empty set  is also an event; by definition it never occurs.

For a note on terminology, recall that a mathematical space consists of a set together with other mathematical structures defined on
the set. An example you may be familiar with is a vector space, which consists of a set (the vectors) together with the operations of
addition and scalar multiplication. In probability theory, many authors use the term sample space for the set of outcomes of a
random experiment, but here is the more careful definition:

The sample space of an experiment is  where  is the set of outcomes and  is the collection of events.

Details

Sometimes not every subset of  can be allowed as an event, but the collection of events  is required to be a -algebra, so
that the sample space  is a measurable space. The axioms of a -algebra ensure that new sets that are constructed in a
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reasonable way from given events, using the set operations, are themselves valid events. Most of the sample spaces that occur
in elementary probability fall into two general categories.

1. Discrete:  is countable and  is the collection of all subsets of . In this case, the sample space  is
discrete.

2. Euclidean:  is a measurable subset of  for some  and  is the collection of measurable subsets of .

In (b), the mearuable subsets of  include all of the sets encountered in calculus and in standard applications of probability
theory, and many more besides. Nonetheless, for technical reasons, certain very weird subsets must be excluded. Typically  is
a set defined by a finite number of inequalities involving elementary functions.

The Algebra of Events

The standard algebra of sets leads to a grammar for discussing random experiments and allows us to construct new events from
given events. In the following results, suppose that  is the set of outcomes of a random experiment, and that  and  are events.

 if and only if the occurrence of  implies the occurrence of .

Proof

Recall that  is the subset relation. So by definition,  means that  implies .

 is the event that occurs if and only if  occurs or  occurs.

Proof

Recall that  is the union of  and . So by defintion,  if and only if  or .

 is the event that occurs if and only if  occurs and  occurs.

Proof

Recall that  is the intersection of  and . So by definiton,  if and only if  and .

 and  are disjoint if and only if they are mutually exclusive; they cannot both occur on the same run of the experiment.

Proof

By definition,  and  disjoint means that .

 is the event that occurs if and only if  does not occur.

Proof

Recall that  is the complement of , so  if and only if .

 is the event that occurs if and only if  occurs and  does not occur.

Proof

Recall that . Hence  if and only if  and .

 is the event that occurs if and only if one but not both of the given events occurs.

Proof

The events in the union are disjoint. So for  is in the given event if and only if either  and , or  and .

Recall that the event in (10) is the symmetric difference of  and , and is sometimes denoted . This event corresponds to
exclusive or, as opposed to the ordinary union  which corresponds to inclusive or.

 is the event that occurs if and only if both or neither of the given events occurs.

Proof

The events in the union are disjoint. Thus  is in the given event if and only if either  and , or  and .
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In the Venn diagram app, observe the diagram of each of the 16 events that can be constructed from  and .

Suppose now that  is a collection of events for the random experiment, where  is a countable index set.

 is the event that occurs if and only if at least one event in the collection occurs.

Proof

Note that  if and only if  for some .

 is the event that occurs if and only if every event in the collection occurs:

Proof

Note that  if and only if  for every .

 is a pairwise disjoint collection if and only if the events are mutually exclusive; at most one of the events could occur on a
given run of the experiment.

Proof

By definition,  for distinct .

Suppose now that ) is an infinite sequence of events.

 is the event that occurs if and only if infinitely many of the given events occur. This event is sometimes called
the limit superior of .

Proof

Note that  is in the given event if and only if for every  there exists  with  such that . In turn this
means that  for infinitely many .

 is the event that occurs if and only if all but finitely many of the given events occur. This event is sometimes
called the limit inferior of .

Proof

Note that  is in the given event if and only if there exists  such that  for every  with . In turn, this
means that  for all but finitely many .

Limit superiors and inferiors are discussed in more detail in the section on convergence.

Random Variables
Intuitively, a random variable is a measurement of interest in the context of the experiment. Simple examples include the number
of heads when a coin is tossed several times, the sum of the scores when a pair of dice are thrown, the lifetime of a device subject
to random stress, the weight of a person chosen from a population. Many more examples are given below in the exercises below.
Mathematically, a random variable is a function defined on the set of outcomes.

A function  from  into a set  is a random variable for the experiment with values in .

Details

The set  will also come with a -algebra  of admissible subsets, so that  is a measurable space, just like .
The function  is required to be measurable, an assumption which ensures that meaningful statements involving  define
events. In the discussion below, all subsets of  are assumed to be in .

Probability has its own notation, very different from other branches of mathematics. As a case in point, random variables, even
though they are functions, are usually denoted by capital letters near the end of the alphabet. The use of a letter near the end of the
alphabet is intended to emphasize the idea that the object is a variable in the context of the experiment. The use of a capital letter is
intended to emphasize the fact that it is not an ordinary algebraic variable to which we can assign a specific value, but rather a
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random variable whose value is indeterminate until we run the experiment. Specifically, when we run the experiment an outcome 
 occurs, and random variable  takes the value .

Figure : A random variable as a function defined on the set of outcomes.

If , we use the notation  for the inverse image , rather than . Again, the notation is
more natural since we think of  as a variable in the experiment. Think of  as a statement about , which then translates
into the event 

Figure : The event  corresponding to 

Again, every statement about a random variable  with values in  translates into an inverse image of the form  for
some . So, for example, if  then . If  is a real-valued random
variable and  with  then .

Suppose that  is a random variable taking values in , and that . Then

1. 
2. 
3. 
4. 
5. If  and  are disjoint, then so are  and .

Proof

This is a restatement of the fact that inverse images of a function preserve the set operations; only the notation changes (and is
simpler).

1.  if and only if  if and only if  or  if and only if  or 
 if and only if .

2. The proof is exactly the same as (a), with and replacing or.
3. The proof is also exactly the same as (a), with but not replacing or.
4. If  then  so  and hence .
5. This follows from part (b).

As with a general function, the result in part (a) holds for the union of a countable collection of subsets, and the result in part (b)
holds for the intersection of a countable collection of subsets. No new ideas are involved; only the notation is more complicated.

Often, a random variable takes values in a subset  of  for some . We might express such a random variable as 
 where  is a real-valued random variable for each . In this case, we usually refer to 

as a random vector, to emphasize its higher-dimensional character. A random variable can have an even more complicated
structure. For example, if the experiment is to select  objects from a population and record various real measurements for each
object, then the outcome of the experiment is a vector of vectors:  where  is the vector of measurements
for the th object. There are other possibilities; a random variable could be an infinite sequence, or could be set-valued. Specific
examples are given in the computational exercises below. However, the important point is simply that a random variable is a
function defined on the set of outcomes .

The outcome of the experiment itself can be thought of as a random variable. Specifically, let  and let  denote the identify
function on  so that  for . Then trivially  is a random variable, and the events that can be defined in terms of 
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s ∈ {X ∈ B} s ∈ {X ∈ A} ∪{X ∈ B}

s ∈ {X ∈ A} X(s) ∈ A X(s) ∈ B s ∈ {X ∈ B}

T R

k

k ∈ N

+

X = ( , ,… , )X

1

X

2

X

k

X

i

i ∈ {1, 2,… , k} X

n

X = ( , ,… , )X

1

X

2

X

n

X

i

i

S

T = S X

S X(s) = s s ∈ S X X
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are simply the original events of the experiment. That is, if  is an event then . Conversely, every random variable
effectively defines a new random experiment.

In the general setting above, a random variable  defines a new random experiment with  as the new set of outcomes and
subsets of  as the new collection of events.

Details

Technically, the -algebra  would be the new collection of events.

In fact, often a random experiment is modeled by specifying the random variables of interest, in the language of the experiment.
Then, a mathematical definition of the random variables specifies the sample space. A function (or transformation) of a random
variable defines a new random variable.

Suppose that  is a random variable for the experiment with values in  and that  is a function from  into another set .
Then  is a random variable with values in .

Details

Technically,  and  both come with -algebras of admissible subsets  and , respectively. The function , just like the
function , is required to be measurable. This assumption ensures that  is a measurable function from  into , and
hence is a valid random variable.

Note that, as functions, , the composition of  with . But again, thinking of  and  as variables in the context of
the experiment, the notation  is much more natural.

Indicator Variables

For an event , the indicator function of  is called the indicator variable of .

The value of this random variables tells us whether or not  has occurred:

That is, as a function on ,

If  is a random variable that takes values 0 and 1, then  is the indicator variable of the event .

Proof

Note that for ,  if  and  otherwise.

Recall also that the set algebra of events translates into the arithmetic algebra of indicator variables.

Suppose that  and  are events.

1. 
2. 
3. 
4. 
5.  if and only if 

The results in part (a) extends to arbitrary intersections and the results in part (b) extends to arbitrary unions. If the event  has a
complicated description, sometimes we use  for the indicator variable rather that .

A {X ∈ A} =A

X T

T

σ T

X T g T U

Y = g(X) U

T U σ T U g

X Y = g(X) S U

g(X) = g∘X g X X Y

Y = g(X)

A A A

A

={1

A

1,

0,

A occurs

A does not occur

(2.2.1)

S

(s) ={1

A

1,

0,

s ∈ A

s ∉ A

(2.2.2)

X X {X = 1}

s ∈ S X(s) = 1 s ∈ {X = 1} X(s) = 0

A B

= = min{ , }1

A∩B

1

A

1

B

1

A

1

B

= 1 −(1 − ) (1 − ) = max { , }1

A∪B

1

A

1

B

1

A

1

B

= (1 − )1

B∖A

1

B

1

A

= 1 −1

A

c

1

A

A ⊆B ≤1

A

1

B

A

1(A) 1

A
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Examples and Applications
Recall that probability theory is often illustrated using simple devices from games of chance: coins, dice, cards, spinners, urns with
balls, and so forth. Examples based on such devices are pedagogically valuable because of their simplicity and conceptual clarity.
On the other hand, remember that probability is not only about gambling and games of chance. Rather, try to see problems
involving coins, dice, etc. as metaphors for more complex and realistic problems.

Coins and Dice

The basic coin experiment consists of tossing a coin  times and recording the sequence of scores  (where 1
denotes heads and 0 denotes tails). This experiment is a generic example of  Bernoulli trials, named for Jacob Bernoulli.

Consider the coin experiment with , and Let  denote the number of heads.

1. Give the set of outcomes  in list form.
2. Give the event  in list form for each .

Answer

To simplify the notation, we represent outcomes a bit strings rather than ordered sequences.

1. 

2. 

In the simulation of the coin experiment, set . Run the experiment 100 times and count the number of times that the
event  occurs.

Now consider the general coin experiment with the coin tossed  times, and let  denote the number of heads.

1. Give the set of outcomes  in Cartesian product form, and give the cardinality of .
2. Express  as a function on .
3. Find  (as a subset of ) for 

Answer
1.  and .
2. . The set of possible values is 
3. 

The basic dice experiment consists of throwing  distinct -sided dice (with faces numbered from 1 to ) and recording the
sequence of scores . This experiment is a generic example of  multinomial trials. The special case 
corresponds to standard dice.

Consider the dice experiment with  standard dice. Let  denote the set of outcomes,  the event that the first die score is
1, and  the event that the sum of the scores is 7. Give each of the following events in the form indicated:

1.  in Cartesian product form
2.  in list form
3.  in list form
4.  in list form
5.  in list form
6.  in predicate form

Answer
1. 
2. 

n ( , ,… , )X

1

X

2

X

n

n

n= 4 Y

S

{Y = k} k ∈ {0, 1, 2, 3, 4}

S = {1111, 1110, 1101, 1011, 0111, 1100, 1010, 1001, 0110, 0101, 0011, 1000, 0100, 0010, 0001, 0000}

{Y = 0}

{Y = 1}

{Y = 2}

{Y = 3}

{Y = 4}

= {0000}

= {1000, 0100, 0010, 0001}

= {1100, 1010, 1001, 0110, 0101, 0011}

= {1110, 1101, 1011, 0111}

= {1111}

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)

(2.2.7)

n= 4

{Y = 2}

n Y

S S

Y S

#{Y = k} S k ∈ {0, 1,… ,n}

S = {0, 1}

n

#(S) = 2

n

Y ( , ,… , ) = + +⋯+x

1

x

2

x

n

x

1

x

2

x

n

{0, 1,… ,n}

#{Y = k} = ( )

n

k

n k k

( , ,… , )X

1

X

2

X

n

n k= 6

n= 2 S A

B

S

A

B

A∪B

A∩B

∩A

c

B

c

S = {1, 2, 3, 4, 5, 6}

2

A= {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}
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3. 
4. 
5. 
6. 

In the simulation of the dice experiment, set . Run the experiment 100 times and count the number of times each event in
the previous exercise occurs.

Consider the dice experiment with  standard dice, and let  denote the set of outcomes,  the sum of the scores,  the
minimum score, and  the maximum score.

1. Express  as a function on  and give the set of possible values in list form.
2. Express  as a function on  and give the set of possible values in list form.
3. Express  as a function on the  and give the set of possible values in list form.
4. Give the set of possible values of  in predicate from

Answer

Note that . The following functions are defined on .

1. . The set of values is 
2. . The set of values is 
3. . The set of values is 
4. 

Consider again the dice experiment with  standard dice, and let  denote the set of outcomes,  the sum of the scores, 
the minimum score, and  the maximum score. Give each of the following as subsets of , in list form.

1. 
2. 
3. 
4. 
5. 

Answer
1. 
2. 
3. 
4. 
5. 

In the dice experiment, set . Run the experiment 100 times. Count the number of times each event in the previous
exercise occurred.

In the general dice experiment with  distinct -sided dice, let  denote the sum of the scores,  the minimum score, and 
the maximum score.

1. Give the set of outcomes  and find .
2. Express  as a function on , and give the set of possible values in list form.
3. Express  as a function on , and give the set of possible values in list form.
4. Express  as a function on , and give the set of possible values in list form.
5. Give the set of possible values of  in predicate from.

Answer
1.  and 
2. . The set of possible values is 
3. . The set of possible values is .

B= {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}

A∪B= {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}

A∩B= {(1, 6)}

∩ = {(x, y) ∈ S : x+y ≠ 7 and x ≠ 1}A

c

B

c

n= 2

n= 2 S Y U

V

Y S

U S

V S

(U,V )

S = {1, 2, 3, 4, 5, 6}

2

S

Y ( , ) = +x

1

x

2

x

1

x

2

{2, 3,… , 12}

U( , ) =min{ , }x

1

x

2

x

1

x

2

{1, 2,… , 6}

V ( , ) =max{ , }x

1

x

2

x

1

x

2

{1, 2,… , 6}

{(u, v) ∈ {1, 2, 3, 4, 5, 6 : u ≤ v}}

2

n= 2 S Y U

V S

{ < 3, > 4}X

1

X

2

{Y = 7}

{U = 2}

{V = 4}

{U = V }

{(1, 5), (2, 5), (1, 6), (2, 6)}

{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}

{(2, 2), (2, 3), (3, 2), (2, 4), (4, 2), (2, 5), (5, 2), (2, 6), (6, 2)}

{(4, 1), (1, 4), (2, 4), (4, 2), (4, 3), (3, 4), (4, 4)}

{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}

n= 2

n k Y U V

S #(S)

Y S

U S

V S

(U,V )

S = {1, 2,… , k}

n

#(S) = k

n

Y ( , ,… , ) = + +⋯+x

1

x

2

x

n

x

1

x

2

x

n

{n,n+1,… ,nk}

U( , ,… , ) =min{ , ,… , }x

1

x

2

x

n

x

1

x

2

x

n

{1, 2,… , k}
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4. . The set of possible values is 
5. 

The set of outcomes of a random experiment depends of course on what information is recorded. The following exercise is an
illustration.

An experiment consists of throwing a pair of standard dice repeatedly until the sum of the two scores is either 5 or 7. Let 
denote the event that the sum is 5 rather than 7 on the final throw. Experiments of this type arise in the casino game craps.

1. Suppose that the pair of scores on each throw is recorded. Define the set of outcomes of the experiment and describe  as a
subset of this set.

2. Suppose that the pair of scores on the final throw is recorded. Define the set of outcomes of the experiment and describe 
as a subset of this set.

Answer

Let , , , and 

1. , 
2. , 

Suppose that 3 standard dice are rolled and the sequence of scores  is recorded. A person pays $1 to play. If some
of the dice come up 6, then the player receives her $1 back, plus $1 for each 6. Otherwise she loses her $1. Let  denote the
person's net winnings. This is the game of chuck-a-luck and is treated in more detail in the chapter on Games of Chance.

1. Give the set of outcomes  in Cartesian product form.
2. Express  as a function on  and give the set of possible values in list form.

Answer
1. 
2. . The set of possible values is 

Play the chuck-a-luck experiment a few times and see how you do.

In the die-coin experiment, a standard die is rolled and then a coin is tossed the number of times shown on the die. The
sequence of coin scores  is recorded (0 for tails, 1 for heads). Let  denote the die score and  the number of heads.

1. Give the set of outcomes  in terms of Cartesian powers and find .
2. Express  as a function on  and give the set of possible values in list form.
3. Express  as a function on  and give the set of possible values in list form.
4. Give the event  that all tosses result in heads in list form.

Answer

1. , 
2.  for . The set of values is .
3.  for . The set of possible values is .
4. 

Run the simulation of the die-coin experiment 10 times. For each run, give the values of the random variables , , and  of
the previous exercise. Count the number of times the event  occurs.

In the coin-die experiment, we have a coin and two distinct dice, say one red and one green. First the coin is tossed, and then if
the result is heads the red die is thrown, while if the result is tails the green die is thrown. The coin score  and the score of the
chosen die  are recorded. Suppose now that the red die is a standard 6-sided die, and the green die a 4-sided die.

1. Give the set of outcomes  in list form.
2. Express  as a function on .

V ( , ,… , ) =max{ , … , }x

1

x

2

x

n

x

1

x

2

x

n

{1, 2,… , k}

{(u, v) ∈ {1, 2,… , k : u ≤ v}}

2

A

A

A

= {(1, 4), (2, 3), (3, 2), (4, 1)}D

5

= {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}D

7

D= ∪D

5

D

7

C =D

c

S =D∪ (C×D)∪ ( ×D)∪⋯C

2

A= ∪(C× )∪ ( × )∪⋯D

5

D

5

C

2

D

5

S =D A=D

5

( , , )X

1

X

2

X

3

W
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W S

S = {1, 2, 3, 4, 5, 6}

3

W ( , , ) = 1 ( = 6)+1 ( = 6)+1 ( = 6)−1 ( ≠ 6, ≠ 6, ≠ 6)x
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x
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x

3

x

1

x

2

x

3

{−1, 1, 2, 3}

X N Y

S #(S)

N S

Y S

A

S = {0, 1⋃

6

n=1

}

n

#(S) = 126

N( , ,… , ) = nx

1

x

2
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n

( , ,… , ) ∈ Sx

1
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n

{1, 2, 3, 4, 5, 6}
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i

( , ,… , ) ∈ Sx
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x

n

{0, 1, 2, 3, 4, 5, 6}

A= {1, 11, 111, 1111, 11111, 111111}
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3. Express  as a function on .
4. Give the event  as a subset of  in list form.

Answer
1. 
2.  for 
3.  for 
4. 

Run the coin-die experiment 100 times, with various types of dice.

Sampling Models

Recall that many random experiments can be thought of as sampling experiments. For the general finite sampling model, we start
with a population  with  (distinct) objects. We select a sample of  objects from the population. If the sampling is done in a
random way, then we have a random experiment with the sample as the basic outcome. Thus, the set of outcomes of the experiment
is literally the set of samples; this is the historical origin of the term sample space. There are four common types of sampling from
a finite population, based on the criteria of order and replacement. Recall the following facts from the section on combinatorial
structures:

Samples of size  chosen from a population with  elements.

1. If the sampling is with replacement and with regard to order, then the set of samples is the Cartesian power . The
number of samples is .

2. If the sampling is without replacement and with regard to order, then the set of samples is the set of all permutations of size 
 from . The number of samples is .

3. If the sampling is without replacement and without regard to order, then the set of samples is the set of all combinations (or
subsets) of size  from . The number of samples is .

4. If the sampling is with replacement and without regard to order, then the set of samples is the set of all multisets of size 
from . The number of samples is .

If we sample with replacement, the sample size  can be any positive integer. If we sample without replacement, the sample size
cannot exceed the population size, so we must have .

The basic coin and dice experiments are examples of sampling with replacement. If we toss a coin  times and record the sequence
of scores (where as usual, 0 denotes tails and 1 denotes heads), then we generate an ordered sample of size  with replacement
from the population . If we throw  (distinct) standard dice and record the sequence of scores, then we generate an ordered
sample of size  with replacement from the population .

Suppose that the sampling is without replacement (the most common case). If we record the ordered sample 
, then the unordered sample  is a random variable (that is, a function of ). On

the other hand, if we just record the unordered sample  in the first place, then we cannot recover the ordered sample. Note also
that the number of ordered samples of size  is simply  times the number of unordered samples of size . No such simple
relationship exists when the sampling is with replacement. This will turn out to be an important point when we study probability
models based on random samples, in the next section.

Consider a sample of size  chosen without replacement from the population .

1. Give , the set of unordered samples in list form.
2. Give in list form the set of all ordered samples that correspond to the unordered sample .
3. Note that for every unordered sample, there are 6 ordered samples.
4. Give the cardinality of , the set of ordered samples.

Answer
1. 
2. 
4. 60

Y S

{Y ≥ 3} S

{(0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}

X(i, j) = i (i, j) ∈ S

Y (i, j) = j (i, j) ∈ S

{(0, 3), (0, 4), (1, 3), (1, 4), (1, 5), (1, 6)}

D m n

n m

D

n

m

n

n D =m(m−1)⋯ [m−(n−1)]m

(n)

n D ( )

m

n

n

D ( )

m+n−1

n

n

n ∈ {1, 2,… ,m}

n

n

{0, 1} n

n {1, 2, 3, 4, 5, 6}

X = ( , ,… , )X

1

X

2

X

n

W = { , ,… , }X

1

X

2

X

n

X

W

n n! n

n= 3 {a, b, c, d, e}

T

{b, c, e}

S

T = {{a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}}

{(b, c, e), (b, e, c), (c, b, e), (c, e, b), (e, b, c), (e, c, b)}
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Traditionally in probability theory, an urn containing balls is often used as a metaphor for a finite population.

Suppose that an urn contains 50 (distinct) balls. A sample of 10 balls is selected from the urn. Find the number of samples in
each of the following cases:

1. Ordered samples with replacement
2. Ordered samples without replacement
3. Unordered samples without replacement
4. Unordered samples with replacement

Answer
1. 
2. 
3. 
4. 

Suppose again that we have a population  with  (distinct) objects, but suppose now that each object is one of two types—either
type 1 or type 0. Such populations are said to be dichotomous. Here are some specific examples:

The population consists of persons, each either male or female.
The population consists of voters, each either democrat or republican.
The population consists of devices, each either good or defective.
The population consists of balls, each either red or green.

Suppose that the population  has  type 1 objects and hence  type 0 objects. Of course, we must have .
Now suppose that we select a sample of size  without replacement from the population. Note that this model has three parameters:
the population size , the number of type 1 objects in the population , and the sample size .

Let  denote the number of type 1 objects in the sample. Then

1.  for each , if the event is considered as a subset of , the set of
ordered samples.

2.  for each , if the event is considered as a subset of , the set of unordered
samples.

3. The expression in (a) is  times the expression in (b).

Proof
1.  is the number of ways to pick the coordinates (in the ordered sample) where the type 1 objects will go,  is the

number of ways to select a permutation of  type 1 objects, and  is the number of ways to select a
permutation of  type 0 objects. The result follows from the multiplication principle.

2.  is the number of ways to select a combatination of  type 1 objects and  is the number of ways to select a
combination of  type 0 objects. The result again follows from the multiplication principle.

3. This result can be shown algebraically, but a combinatorial argument is better. For every combination of size  there are 
permutations of those objects.

A batch of 50 components consists of 40 good components and 10 defective components. A sample of 5 components is
selected, without replacement. Let  denote the number of defectives in the sample.

1. Let  denote the set of ordered samples. Find .
2. Let  denote the set of unordered samples. Find .
3. As a subset of , find  for each .

Answer
1. 
2. 
3. , , , , , 

97 656 250 000 000 000

37 276 043 023 296 000

10 272 278 170

62 828 356 305

D m

D r m−r r ∈ {0, 1,… ,m}

n

m r n

Y

#{Y = k} = ( ) (m−r

n

k

r

(k)

)

(n−k)

k ∈ {0, 1,… ,n} S

#{Y = k} = ( )( )

r

k

m−r

n−k

k ∈ {0, 1,… ,n} T

n!

( )

n

k

r

(k)

k (m−r)

(n−k)

n−k

( )

r

k

k ( )

m−r

n−k

n−k

n n!

Y

S #(S)

T #(T )

T #{Y = k} k ∈ {0, 1, 2, 3, 4, 5}

254 251 200

2 118 760

#{Y = 0} = 658 008 #{Y = 1} = 913 900 #{Y = 2} = 444 600 #{Y = 3} = 93 600 #{Y = 4} = 8 400

#{Y = 5} = 252
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Run the simulation of the ball and urn experiment 100 times for the parameter values in the last exercise: , , 
. Note the values of the random variable .

Cards

Recall that a standard card deck can be modeled by the Cartesian product set

where the first coordinate encodes the denomination or kind (ace, 2–10, jack, queen, king) and where the second coordinate
encodes the suit (clubs, diamonds, hearts, spades). Sometimes we represent a card as a string rather than an ordered pair (for
example  rather than  for the queen of hearts).

Most card games involve sampling without replacement from the deck , which plays the role of the population. Thus, the basic
card experiment consists of dealing  cards from a standard deck without replacement; in this special context, the sample of cards
is often referred to as a hand. Just as in the general sampling model, if we record the ordered hand , then
the unordered hand  is a random variable (that is, a function of ). On the other hand, if we just record
the unordered hand  in the first place, then we cannot recover the ordered hand. Finally, recall that  is the poker
experiment and  is the bridge experiment. The game of poker is treated in more detail in the chapter on Games of Chance.

Suppose that a single card is dealt from a standard deck. Let  denote the event that the card is a queen and  the event that
the card is a heart. Give each of the following events in list form:

1. 
2. 
3. 
4. 
5. 

Answer
1. 
2. 
3. 
4. 
5. 

In the card experiment, set . Run the experiment 100 times and count the number of times each event in the previous
exercise occurs.

Suppose that two cards are dealt from a standard deck and the sequence of cards recorded. Let  denote the set of outcomes,
and let  denote the event that the th card is a queen and  the event that the th card is a heart for . Find the
number of outcomes in each of the following events:

1. 
2. 
3. 
4. 
5. 
6. 
7. 

Answer
1. 2652
2. 663
3. 663
4. 156
5. 51

m = 50 r= 10

n= 5 Y

D= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, k}×{♣,♢,♡,♠} (2.2.8)

q♡ (q,♡)

D

n

X = ( , ,… , )X

1

X

2

X

n

W = { , ,… , }X

1

X

2

X

n

X

W n= 5
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6. 51
7. 1170

Consider the general card experiment in which  cards are dealt from a standard deck, and the ordered hand  is recorded.

1. Give cardinality of , the set of values of the ordered hand .
2. Give the cardinality of , the set of values of the unordered hand .
3. How many ordered hands correspond to a given unordered hand?
4. Explicitly compute the numbers in (a) and (b) when  (poker).
5. Explicitly compute the numbers in (a) and (b) when  (bridge).

Answer

3. 
4. 
5. 
6. , 
7. , 

Consider the bridge experiment of dealing 13 cards from a deck and recording the unordered hand. In the most common point
counting system, an ace is worth 4 points, a king 3 points, a queen 2 points, and a jack 1 point. The other cards are worth 0
points. Let  denote the set of outcomes of the experiment and  the point value of the hand.

1. Find the set of possible values of .
2. Find the cardinality of the event  as a subset of .

Answer
1. 
2. 

In the card experiment, set  and run the experiment 100 times. For each run, compute the value of each of the random
variable  in the previous exercise.

Consider the poker experiment of dealing 5 cards from a deck. Find the cardinality of each of the events below, as a subset of
the set of unordered hands.

1. : the event that the hand is a full house (3 cards of one kind and 2 of another kind).
2. : the event that the hand has 4 of a kind (4 cards of one kind and 1 of another kind).
3. : the event that all cards in the hand are in the same suit (the hand is a flush or a straight flush).

Answer
1. 
2. 
3. 

Run the poker experiment 1000 times. Note the number of times that the events , , and  in the previous exercise occurred.

Consider the bridge experiment of dealing 13 cards from a standard deck. Let  denote the set of unordered hands,  the
number of hearts in the hand, and  the number of queens in the hand.

1. Find the cardinality of the event  as a subset of  for each .
2. Find the cardinality of the event  as a subset of  for each .

Answer

1.  for 
2.  for 

n X

S X

T W

n= 5

n= 13

#(S) = 52

(n)

#(T ) = ( )

52

n

n!

311 875 2002 598 960

3 954 242 643 911 239 680 000635 013 559 600

S V

V

{V = 0} S

{0, 1,… , 37}

#{V = 0} = 2 310 789 600

n= 13

V

A

B

C

#(A) = 3744

#(B) = 624

#(C) = 5148

A B C

S Y

Z

{Y = y} S y ∈ {0, 1,… , 13}

{Z = z} S z ∈ {0, 1, 2, 3, 4}
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13
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39
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Geometric Models

In the experiments that we have considered so far, the sample spaces have all been discrete (so that the set of outcomes is finite or
countably infinite). In this subsection, we consider Euclidean sample spaces where the set of outcomes  is continuous in a sense
that we will make clear later. The experiments we consider are sometimes referred to as geometric models because they involve
selecting a point at random from a Euclidean set.

We first consider Buffon's coin experiment, which consists of tossing a coin with radius  randomly on a floor covered with
square tiles of side length 1. The coordinates  of the center of the coin are recorded relative to axes through the center of the
square in which the coin lands. Buffon's experiments are studied in more detail in the chapter on Geometric Models and are named
for Compte de Buffon

Figure : Buffon's coin experiment

In Buffon's coin experiment, let  denote the set of outcomes,  the event that the coin does not touch the sides of the square,
and let  denote the distance form the center of the coin to the center of the square.

1. Describe  as a Cartesian product.
2. Describe  as a subset of .
3. Describe  as a subset of .
4. Express  as a function on .
5. Express the event  as a subset of .
6. Express the event  as a subset of .

Answer

1. 

2. 
3. 
4.  for 
5. 
6. 

Run Buffon's coin experiment 100 times with . For each run, note whether event  occurs and compute the value of
random variable .

A point  is chosen at random in the circular region of radius 1 in  centered at the origin. Let  denote the set of
outcomes. Let  denote the event that the point is in the inscribed square region centered at the origin, with sides parallel to
the coordinate axes. Let  denote the event that the point is in the inscribed square with vertices , .

1. Describe  mathematically and sketch the set.
2. Describe  mathematically and sketch the set.
3. Describe  mathematically and sketch the set.
4. Sketch 
5. Sketch 
6. Sketch 

Answer
1. 

S
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2. 

3. 

Reliability

In the simple model of structural reliability, a system is composed of  components, each of which is either working or failed. The
state of component  is an indicator random variable , where 1 means working and 0 means failure. Thus, 

 is a vector of indicator random variables that specifies the states of all of the components, and therefore
the set of outcomes of the experiment is . The system as a whole is also either working or failed, depending only on
the states of the components and how the components are connected together. Thus, the state of the system is also an indicator
random variable and is a function of . The state of the system (working or failed) as a function of the states of the components is
the structure function.

A series system is working if and only if each component is working. The state of the system is

A parallel system is working if and only if at least one component is working. The state of the system is

More generally, a  out of  system is working if and only if at least  of the  components are working. Note that a parallel
system is a 1 out of  system and a series system is an  out of  system. A  out of  system is a majority rules system.

The state of the  out of  system is . The structure function can also be expressed as a polynomial
in the variables.

Explicitly give the state of the  out of 3 system, as a polynomial function of the component states , for each 
.

Answer
1. 
2. 
3. 

In some cases, the system can be represented as a graph or network. The edges represent the components and the vertices the
connections between the components. The system functions if and only if there is a working path between two designated vertices,
which we will denote by  and .

Find the state of the Wheatstone bridge network shown below, as a function of the component states. The network is named for
Charles Wheatstone.

Answer

Figure : The Wheatstone bridge network

Not every function  makes sense as a structure function. Explain why the following properties might be
desirable:

1.  and 
2.  is an increasing function, where  is given the ordinary order and  the corresponding product order.
3. For each , there exist  and  in  all of whose coordinates agree, except  and , and 

 while .

Answer
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(2.2.9)
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1. This means that if all components have failed then the system has failed, and if all components are working then the system
is working.

2. This means that if a particular component is changed from failed to working, then the system may also go from failed to
working, but not from working to failed. That is, the system can only improve.

3. This means that every component is relevant to the system, that is, there exists a configuration in which changing
component  from failed to working changes the system from failed to working.

The model just discussed is a static model. We can extend it to a dynamic model by assuming that component  is initially working,
but has a random time to failure , taking values in , for each . Thus, the basic outcome of the experiment
is the random vector of failure times , and so the set of outcomes is .

Consider the dynamic reliability model for a system with structure function  (valid in the sense of the previous exercise).

1. The state of component  at time  is .
2. The state of the system at time  is .
3. The time to failure of the system is .

Suppose that we have two devices and that we record , where  is the failure time of device 1 and  is the failure time
of device 2. Both variables take values in the interval , where the units are in hundreds of hours. Sketch each of the
following events:

1. The set of outcomes 
2. 
3. 

Answer
1. , the first quadrant of the coordinate plane.
2. . This is the region below the diagonal line .
3. . This is the region above (or to the right) of the line .

Genetics

Please refer to the discussion of genetics in the section on random experiments if you need to review some of the definitions in this
section.

Recall first that the ABO blood type in humans is determined by three alleles: , , and . Furthermore,  is recessive and  and 
are co-dominant.

Suppose that a person is chosen at random and his genotype is recorded. Give each of the following in list form.

1. The set of outcomes S
2. The event that the person is type 
3. The event that the person is type 
4. The event that the person is type 
5. The event that the person is type 

Answer
1. 
2. 
3. 
4. 
5. 

Suppose next that pod color in certain type of pea plant is determined by a gene with two alleles:  for green and  for yellow, and
that  is dominant.

Suppose that  (distinct) pea plants are collected and the sequence of pod color genotypes is recorded.
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1. Give the set of outcomes  in Cartesian product form and find .
2. Let  denote the number of plants with green pods. Find  (as a subset of ) for each .

Answer
1. , 
2. 

Next consider a sex-linked hereditary disorder in humans (such as colorblindness or hemophilia). Let  denote the healthy allele
and  the defective allele for the gene linked to the disorder. Recall that  is recessive for women.

Suppose that  women are sampled and the sequence of genotypes is recorded.

1. Give the set of outcomes  in Cartesian product form and find .
2. Let  denote the number of women who are completely healthy (genotype ). Find  (as a subset of ) for

each .

Answer
1. , 
2. 

Radioactive Emissions

The emission of elementary particles from a sample of radioactive material occurs in a random way. Suppose that the time of
emission of the th particle is a random variable  taking values in . If we measure these arrival times, then basic outcome
vector is  and so the set of outcomes is .

Run the simulation of the gamma experiment in single-step mode for different values of the parameters. Observe the arrival
times.

Now let  denote the number of emissions in the interval . Then

1. .
2.  if and only if .

Run the simulation of the Poisson experiment in single-step mode for different parameter values. Observe the arrivals in the
specified time interval.

Statistical Experiments

In the basic cicada experiment, a cicada in the Middle Tennessee area is captured and the following measurements recorded:
body weight (in grams), wing length, wing width, and body length (in millimeters), species type, and gender. The cicada data
set gives the results of 104 repetitions of this experiment.

1. Define the set of outcomes  for the basic experiment.
2. Let  be the event that a cicada is female. Describe  as a subset of . Determine whether  occurs for each cicada in the

data set.
3. Let  denote the ratio of wing length to wing width. Compute  for each cicada.
4. Give the set of outcomes for the compound experiment that consists of 104 repetitions of the basic experiment.

Answer

For gender, let 0 denote female and 1 male, for species, let 1 denote tredecula, 2 tredecim, and 3 tredecassini.

1. 
2. 
5. 

In the basic M&M experiment, a bag of M&Ms (of a specified size) is purchased and the following measurements recorded:
the number of red, green, blue, yellow, orange, and brown candies, and the net weight (in grams). The M&M data set gives the
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results of 30 repetitions of this experiment.

1. Define the set of outcomes  for the basic experiment.
2. Let  be the event that a bag contains at least 57 candies. Describe  as a subset of .
3. Determine whether  occurs for each bag in the data set.
4. Let  denote the total number of candies. Compute  for each bag in the data set.
5. Give the set of outcomes for the compound experiment that consists of 30 repetitions of the basic experiment.

Answer
1. 
2. 
5. 

This page titled 2.2: Events and Random Variables is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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2.3: Probability Measures
   

This section contains the final and most important ingredient in the basic model of a random experiment. If you are a new student
of probability, skip the technical detials.

Definitions and Interpretations
Suppose that we have a random experiment with sample space , so that  is the set of outcomes of the experiment and  is
the collection of events. When we run the experiment, a given event  either occurs or does not occur, depending on whether the
outcome of the experiment is in  or not. Intuitively, the probability of an event is a measure of how likely the event is to occur
when we run the experiment. Mathematically, probability is a function on the collection of events that satisfies certain axioms.

Definition

A probability measure (or probability distribution)  on the sample space  is a real-valued function defined on the
collection of events  that satisifes the following axioms:

1.  for every event .
2. .
3. If  is a countable, pairwise disjoint collection of events then

Details

Recall that the collection of events  is required to be a -algebra, which guarantees that the union of the events in (c) is itself
an event. A probability measure is a special case of a positive measure.

Axiom (c) is known as countable additivity, and states that the probability of a union of a finite or countably infinite collection of
disjoint events is the sum of the corresponding probabilities. The axioms are known as the Kolmogorov axioms, in honor of Andrei
Kolmogorov who was the first to formalize probability theory in an axiomatic way. More informally, we say that  is a probability
measure (or distribution) on , the collection of events  usually being understood.

Axioms (a) and (b) are really just a matter of convention; we choose to measure the probability of an event with a number between
0 and 1 (as opposed, say, to a number between  and ). Axiom (c) however, is fundamental and inescapable. It is required for
probability for precisely the same reason that it is required for other measures of the “size” of a set, such as cardinality for finite
sets, length for subsets of , area for subsets of , and volume for subsets of . In all these cases, the size of a set that is
composed of countably many disjoint pieces is the sum of the sizes of the pieces.

Figure :The union of 4 disjoint events

On the other hand, uncountable additivity (the extension of axiom (c) to an uncountable index set ) is unreasonable for probability,
just as it is for other measures. For example, an interval of positive length in  is a union of uncountably many points, each of
which has length 0.

We now have defined the three essential ingredients for the model a random experiment:

A probability space  consists of

1. A set of outcomes 
2. A collection of events 
3. A probability measure  on the sample space 
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Details

Again, the collection of events  is a -algebra, so that the sample space  is a measurable space. The probability space
 is a special case of a positive measure space.

The Law of Large Numbers

Intuitively, the probability of an event is supposed to measure the long-term relative frequency of the event—in fact, this concept
was taken as the definition of probability by Richard Von Mises. Here are the relevant definitions:

Suppose that the experiment is repeated indefinitely, and that  is an event. For ,

1. Let  denote the number of times that  occurred. This is the frequency of  in the first  runs.
2. Let . This is the relative frequency or empirical probability of  in the first  runs.

Note that repeating the original experiment indefinitely creates a new, compound experiment, and that  and  are
random variables for the new experiment. In particular, the values of these variables are uncertain until the experiment is run 
times. The basic idea is that if we have chosen the correct probability measure for the experiment, then in some sense we expect
that the relative frequency of an event should converge to the probability of the event. That is,

regardless of the uncertainty of the relative frequencies on the left. The precise statement of this is the law of large numbers or law
of averages, one of the fundamental theorems in probability. To emphasize the point, note that in general there will be lots of
possible probability measures for an experiment, in the sense of the axioms. However, only the probability measure that models the
experiment correctly will satisfy the law of large numbers.

Given the data from  runs of the experiment, the empirical probability function  is a probability measure on .

Proof

If we run the experiment  times, we generate  points in  (although of course, some of these points may be the same). The
function  for  is simply counting measure corresponding to the  points. Clearly  for an event 

 and . Countable additivity holds by the addition rule for counting measure.

The Distribution of a Random Variable

Suppose now that  is a random variable for the experiment, taking values in a set . Recall that mathematically,  is a function
from  into , and  denotes the event  for . Intuitively,  is a variable of interest for the
experiment, and every meaningful statement about  defines an event.

The function  for  defines a probability measure on .

Proof

Figure : A set  corresponds to the event 

The probability measure in (5) is called the probability distribution of , so we have all of the ingredients for a new probability
space.

A random variable  with values in  defines a new probability space:

1.  is the set of outcomes.
2. Subsets of  are the events.
3. The probability distribution of  is the probability measure on .

S σ (S,S )

(S,S ,P)

A n ∈ N

+

(A)N

n

A A n

(A) = (A)/nP

n

N

n

A n

(A)N

n

(A)P

n

n

(A) → P(A) as n→∞, A ∈SP

n

(2.3.2)

n P

n

S

n n S

A↦ (A)N

n

A⊆ S n (A) ≥ 0P

n

A (S) = n/n= 1P

n

X T X

S T {X ∈ B} {s ∈ S :X(s) ∈ B} B⊆ T X

X

B↦ P(X ∈ B) B⊆ T T

2.3.2 B ∈ T {X ∈ B} ∈S

X

X T

T

T

X T
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This probability space corresponds to the new random experiment in which the outcome is . Moreover, recall that the outcome of
the experiment itself can be thought of as a random variable. Specifically, if we let  we let  be the identity function on ,
so that  for . Then  is a random variable with values in  and  for each event . Thus, every
probability measure can be thought of as the distribution of a random variable.

Constructions

Measures

How can we construct probability measures? As noted briefly above, there are other measures of the “size” of sets; in many cases,
these can be converted into probability measures. First, a positive measure  on the sample space  is a real-valued function
defined on  that satisfies axioms (a) and (c) in (1), and then  is a measure space. In general,  is allowed to be
infinite. However, if  is positive and finite (so that  is a finite positive measure), then  can easily be re-scaled into a
probability measure.

If  is a positive measure on  with  then  defined below is a probability measure.

Proof
1.  since  and .
2. 
3. If  is a countable collection of disjoint events then

In this context,  is called the normalizing constant. In the next two subsections, we consider some very important special
cases.

Discrete Distributions

In this discussion, we assume that the sample space  is discrete. Recall that this means that the set of outcomes  is
countable and that  is the collection of all subsets of , so that every subset is an event. The standard measure on a
discrete space is counting measure , so that  is the number of elements in  for . When  is finite, the probability
measure corresponding to counting measure as constructed in above is particularly important in combinatorial and sampling
experiments.

Suppose that  is a finite, nonempty set. The discrete uniform distribution on  is given by

The underlying model is refereed to as the classical probability model, because historically the very first problems in probability
(involving coins and dice) fit this model.

In the general discrete case, if  is a probability measure on , then since  is countable, it follows from countable additivity that 
 is completely determined by its values on the singleton events. Specifically, if we define  for , then 

 for every . By axiom (a),  for  and by axiom (b), . Conversely, we can
give a general construction for defining a probability measure on a discrete space.

Suppose that . Then  defined by  for  is a positive measure on . If 
 then  defined as follows is a probability measure on .

X

T = S X S

X(s) = s s ∈ S X S P(X ∈ A) = P(A) A

μ (S,S )

S (S,S ,μ) μ(A)

μ(S) μ μ

μ S 0 < μ(S) <∞ P

P(A) = , A ∈S

μ(A)

μ(S)

(2.3.3)

P(A) ≥ 0 μ(A) ≥ 0 0 < μ(S) <∞

P(S) = μ(S)/μ(S) = 1

{ : i ∈ I}A

i

P( ) = μ( ) = μ( ) = = P( )⋃

i∈I

A

i

1

μ(S)

⋃

i∈I

A

i

1

μ(S)

∑

i∈I

A

i

∑

i∈I

μ( )A

i

μ(S)

∑

i∈I

A

i

(2.3.4)

μ(S)

(S,S ) S

S =P(S) S

# #(A) A A⊆ S S

S S

P(A) = , A⊆ S

#(A)

#(S)

(2.3.5)

P S S

P f(x) = P ({x}) x ∈ S

P(A) = f(x)∑

x∈A

A⊆ S f(x) ≥ 0 x ∈ S f(x) = 1∑

x∈S

g : S→ [0,∞) μ μ(A) = g(x)∑

x∈A

A⊆ S S

0 < μ(S) <∞ P S

P(A) = = , A⊆ S

μ(A)

μ(S)

g(x)∑

x∈A

g(x)∑

x∈S

(2.3.6)
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Proof

Trivially  for  since  is nonnegative. The countable additivity property holds since the terms in a sum of
nonnegative numbers can be rearranged in any way without altering the sum. Thus let  be a countable collection of
disjoint subsets of , and let  then

If  then  is a probability measure by scaling result above.

In the context of our previous remarks,  for . Distributions of this type are said to be
discrete. Discrete distributions are studied in detail in the chapter on Distributions.

If  is finite and  is a constant function, then the probability measure  associated with  is the discrete uniform distribution
on .

Proof

Suppose that  for  where . Then  and hence  for 
.

Continuous Distributions

The probability distributions that we will construct next are continuous distributions on  for  and require some calculus.

For , the standard measure  on  is given by

In particular,  is the length of ( A \subseteq \R \),  is the area of , and  is the volume of 
.

Details

Technically,  is Lebesgue measure on the measurable subsets of , named for Henri Lebesgue. The representation above in
terms of the ordinary Riemann integral of calculus is valid for the subsets that typically occur in applications. As usual, all
subsets of  in the discussion below are assumed to be mearuable.

When ,  is sometimes called the -dimensional volume of . The probability measure associated with  on a
set with positive, finite -dimensional volume is particularly important.

Suppose that  with . The continuous uniform distribution on  is defined by

Note that the continuous uniform distribution is analogous to the discrete uniform distribution defined in (8), but with Lebesgue
measure  replacing counting measure . We can generalize this construction to produce many other distributions.

Suppose again that  and that . Then  defined by  for  is a positive measure
on . If , then  defined as follows is a probability measure on .

Proof

Technically, the integral in the definition of  is the Lebesgue integral, but this integral agrees with the ordinary Riemann
integral of calculus when  and  are sufficiently nice. The function  is assumed to be measurable and is the density function
of  with respect to . Technicalities aside, the proof is straightforward:

μ(A) ≥ 0 A⊆ S g

{ : i ∈ I}A

i

S A=⋃

i∈I

A

i

μ(A) = g(x) = g(x) = μ( )∑

x∈A

∑

i∈I

∑

x∈A

i

∑

i∈I

A

i

(2.3.7)

0 < μ(S) <∞ P

f(x) = g(x)/μ(S) = g(x)/ g(y)∑

y∈S

x ∈ S

S g P g

S

g(x) = c x ∈ S c > 0 μ(A) = c#(A) P(A) = μ(A)/μ(S) =#(A)/#(S)

A⊆ S

R

n

n ∈ N

+

n ∈ N

+

λ

n

R

n

(A) = 1 dx, A⊆λ

n

∫

A

R

n

(2.3.8)

(A)λ

1

lambd (A)a

2

A⊆R

2

(A)λ

3

A⊆R

3

λ

n

R

n

R

n

n> 3 (A)λ

n

n A⊆R

n

λ

n

n

S ⊆R

n

0 < (S) <∞λ

n

S

P(A) = , A⊆ S

(A)λ

n

(S)λ

n

(2.3.9)

λ

n

#

S ⊆R

n

g : S→ [0,∞) μ μ(A) = g(x)dx∫

A

A⊆ S

S 0 < μ(S) <∞ P S

P(A) = = , A ∈S

μ(A)

μ(S)

g(x)dx∫

A

g(x)dx∫

S

(2.3.10)
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1.  for  since  is nonnegative.
2. If  is a countable disjoint collection of subsets of  and , then by a basic property of the integral,

If  then  is a probability measure on  by the scaling result above.

Distributions of this type are said to be continuous. Continuous distributions are studied in detail in the chapter on Distributions.
Note that the continuous distribution above is analogous to the discrete distribution in (9), but with integrals replacing sums. The
general theory of integration allows us to unify these two special cases, and many others besides.

Rules of Probability

Basic Rules

Suppose again that we have a random experiment modeled by a probability space , so that  is the set of outcomes, 
the collection of events, and  the probability measure. In the following theorems,  and  are events. The results follow easily
from the axioms of probability in (1), so be sure to try the proofs yourself before reading the ones in the text.

. This is known as the complement rule.

Proof

Figure : The complement rule

.

Proof

This follows from the the complement rule applied to .

. This is known as the difference rule.

Proof

Figure : The difference rule

If  then .

Proof

This result is a corollary of the difference rule. Note that .

Recall that if  we sometimes write  for the set difference, rather than . With this notation, the difference rule
has the nice form .

If  then .

Proof

This result is a corollary of the previous result. Note that  and hence .

μ(A) ≥ 0 A⊆ S g

{ : i ∈ I}A

i

S A=⋃

i∈I

A

i

μ(A) = g(x)dx = g(x)dx = μ( )∫

A

∑

i∈I

∫

A

i

∑

i∈I

A

i

(2.3.11)

0 < μ(S) <∞ P S

(S,S ,P) S S

P A B

P( ) = 1−P(A)A

c

2.3.3

P(∅) = 0

A= S

P(B∖A) = P(B)−P(A∩B)

2.3.4

A⊆B P(B∖A) = P(B)−P(A)

A∩B=A

A⊆B B−A B∖A

P(B−A) = P(B)−P(A)

A⊆B P(A) ≤ P(B)

P(B∖A) ≥ 0 P(B)−P(A) ≥ 0
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Thus,  is an increasing function, relative to the subset partial order on the collection of events , and the ordinary order on . In
particular, it follows that  for any event .

Figure : The increasing property

Suppose that .

1. If  then .
2. If  then .

Proof

This follows immediately from the increasing property in the last theorem.

The Boole and Bonferroni Inequalities

The next result is known as Boole's inequality, named after George Boole. The inequality gives a simple upper bound on the
probability of a union.

If  is a countable collection of events then

Proof

Figure : Boole's inequality

Intuitively, Boole's inequality holds because parts of the union have been measured more than once in the sum of the probabilities
on the right. Of course, the sum of the probabilities may be greater than 1, in which case Boole's inequality is not helpful. The
following result is a simple consequence of Boole's inequality.

If  is a countable collection of events with  for each , then

An event  with  is said to be null. Thus, a countable union of null events is still a null event.

The next result is known as Bonferroni's inequality, named after Carlo Bonferroni. The inequality gives a simple lower bound for
the probability of an intersection.

If  is a countable collection of events then

Proof

By De Morgan's law, . Hence by Boole's inequality,

P S R

P(A) ≤ 1 A

2.3.5

A⊆B

P(B) = 0 P(A) = 0

P(A) = 1 P(B) = 1

{ : i ∈ I}A

i

P( ) ≤ P( )⋃

i∈I

A

i

∑

i∈I

A

i

(2.3.12)

2.3.6

{ : i ∈ I}A

i

P( ) = 0A

i

i ∈ I

P( ) = 0⋃

i∈I

A

i

(2.3.13)

A P(A) = 0

{ : i ∈ I}A

i

P( ) ≥ 1− [1−P( )]⋂

i∈I

A

i

∑

i∈I

A

i

(2.3.14)
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i
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Using the complement rule again gives Bonferroni's inequality.

Of course, the lower bound in Bonferroni's inequality may be less than or equal to 0, in which case it's not helpful. The following
result is a simple consequence of Bonferroni's inequality.

If  is a countable collection of events with  for each , then

An event  with  is sometimes called almost sure or almost certain. Thus, a countable intersection of almost sure events
is still almost sure.

Suppose that  and  are events in an experiment.

1. If , then .
2. If , then .

Proof
1. Using the increasing property and Boole's inequality we have 
2. Using the increasing property and Bonferonni's inequality we have 

The Partition Rule

Suppose that  is a countable collection of events that partition . Recall that this means that the events are disjoint
and their union is . For any event ,

Proof

Figure : The partition rule
Naturally, this result is useful when the probabilities of the intersections are known. Partitions usually arise in connection with a
random variable. Suppose that  is a random variable taking values in a countable set , and that  is an event. Then

In this formula, note that the comma acts like the intersection symbol in the previous formula.

The Inclusion-Exclusion Rule

The inclusion-exclusion formulas provide a method for computing the probability of a union of events in terms of the probabilities
of the various intersections of the events. The formula is useful because often the probabilities of the intersections are easier to
compute. Interestingly, however, the same formula works for computing the probability of an intersection of events in terms of the
probabilities of the various unions of the events. This version is rarely stated, because it's simply not that useful. We start with two
events.

If  are events thatn .

P[ ] ≤ P( ) = [1−P( )]( )⋂

i∈I

A

i

c

∑

i∈I

A

c

i

∑

i∈I

A

i

(2.3.15)

{ : i ∈ I}A

i

P( ) = 1A

i

i ∈ I

P( ) = 1⋂

i∈I

A

i

(2.3.16)

A P(A) = 1

A B

P(A) = 0 P(A∪B) = P(B)

P(A) = 1 P(A∩B) = P(B)

P(B) ≤ P(A∪B) ≤ P(A)+P(B) = P(B)

P(B) = P(A)+P(B)−1 ≤ P(A∩B) ≤ P (B)

{ : i ∈ I}A

i

S

S B

P(B) = P( ∩B)∑

i∈I

A

i

(2.3.17)

2.3.7

X T B

P(B) = P(X = x,B)∑

x∈T

(2.3.18)

A, B P(A∪B) = P(A)+P(B)−P(A∩B)
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Proof

Figure : The probability of the union of two events

Here is the complementary result for the intersection in terms of unions:

If  are events then .

Proof

This follows immediately from the previous formula be rearranging the terms

Next we consider three events.

If  are events then 
.

Analytic Proof

First note that . The event in parentheses and the event in square brackets are disjoint.
Thus, using the additivity axiom and the difference rule,

Using the inclusion-exclusion rule for two events (twice) we have

Proof by accounting

Figure : The probability of the union of three events

Here is the complementary result for the probability of an intersection in terms of the probabilities of the unions:

If  are events then 
.

Proof

This follows from solving for  in the previous result, and then using the result for two events on , 
, and .

The inclusion-exclusion formulas for two and three events can be generalized to  events. For the remainder of this discussion,
suppose that  is a collection of events where  is an index set with .

The general inclusion-exclusion formula for the probability of a union.

Proof by induction

The proof is by induction on . We have already established the formula for  and . Thus, suppose that the
inclusion-exclusion formula holds for a given , and suppose that  is a sequence of  events. Then

2.3.8

A, B P(A∩B) = P(A)+P(B)−P(A∪B)

A, B, C

P(A∪B∪C) = P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)

A∪B∪C = (A∪B)∪ [C ∖ (A∪B)]

P(A∪B∪C) = P(A∪B)+P(C)−P [C ∩ (A∪B)] = P(A∪B)+P(C)−P [(C ∩A)∪ (C ∩B)] (2.3.19)

P(A∪B∪C) = P(A)+P(B)−P(A∩B)+P(C)−[P(C ∩A)+P(C ∩B)−P(A∩B∩C)] (2.3.20)

2.3.8

A, B, C

P(A∩B∩C) = P(A)+P(B)+P(C)−P(A∪B)−P(A∪C)−P(B∪C)+P(A∪B∪C)

P(A∩B∩C) P(A∩B)

P(B∩C) P(A∩C)

n

{ : i ∈ I}A

i

I #(I) = n

P( ) = (−1 P( )⋃

i∈I

A

i

∑

k=1

n

)

k−1

∑

J⊆I, #(J)=k

⋂

j∈J
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(2.3.21)

n n= 2 n= 3
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As before, the event in parentheses and the event in square brackets are disjoint. Thus using the additivity axiom, the difference
rule, and the distributive rule we have

By the induction hypothesis, the inclusion-exclusion formula holds for each union of  events on the right. Applying the
formula and simplifying gives the inclusion-exclusion formula for  events.

Proof by accounting

This is the general version of the same argument we used above for 3 events.  is the union of the disjoint events of the
form  where  is a nonempty subset of the index set . In the inclusion-exclusion formula, the

event corresponding to a given  is measured in  for every nonempty . Suppose that .

Accounting for the positive and negative signs, the net measurement is .

Here is the complementary result for the probability of an intersection in terms of the probabilities of the various unions:

The general inclusion-exclusion formula for the probability of an intersection.

The general inclusion-exclusion formulas are not worth remembering in detail, but only in pattern. For the probability of a union,
we start with the sum of the probabilities of the events, then subtract the probabilities of all of the paired intersections, then add the
probabilities of the third-order intersections, and so forth, alternating signs, until we get to the probability of the intersection of all
of the events.

The general Bonferroni inequalities (for a union) state that if sum on the right in the general inclusion-exclusion formula is
truncated, then the truncated sum is an upper bound or a lower bound for the probability on the left, depending on whether the last
term has a positive or negative sign. Here is the result stated explicitly:

Suppose that . Then

1.  if  is odd.

2.  if  is event.

Proof

Let , the absolute value of the th term in the inclusion-exclusion formula. The result

follows since the inclusion-exclusion formula is an alternating series, and  is decreasing in .

More elegant proofs of the inclusion-exclusion formula and the Bonferroni inequalities can be constructed using expected value.

Note that there is a probability term in the inclusion-exclusion formulas for every nonempty subset  of the index set , with either
a positive or negative sign, and hence there are  such terms. These probabilities suffice to compute the probability of any
event that can be constructed from the given events, not just the union or the intersection.

The probability of any event that can be constructed from  can be computed from either of the following
collections of  probabilities:

1.  where  is a nonempty subset of .

2.  where  is a nonempty subset of .
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⋃
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⋃
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Remark

If you go back and look at your proofs of the rules of probability above, you will see that they hold for any finite measure , not
just probability. The only change is that the number 1 is replaced by . In particular, the inclusion-exclusion rule is as important
in combinatorics (the study of counting measure) as it is in probability.

Examples and Applications

Probability Rules

Suppose that  and  are events in an experiment with , , . Express each of the
following events in the language of the experiment and find its probability:

1. 
2. 
3. 
4. 
5. 

Answer

1.  occurs but not . 
2.  or  occurs. 
3. One of the events does not occur. 
4. Neither event occurs. 
5. Either  occurs or  does not occur. 

Suppose that , , and  are events in an experiment with , , , , 
, , . Express each of the following events in set notation and find its

probability:

1. At least one of the three events occurs.
2. None of the three events occurs.
3. Exactly one of the three events occurs.
4. Exactly two of the three events occur.

Answer
1. 
2. 
3. 
4. 

Suppose that  and  are events in an experiment with , , and . Find the
probability of each of the following events:

1. 
2. 
3. 
4. 
5. 

Answer
1. 
2. 
3. 
4. 

μ

μ(S)

A B P(A) =

1

3

P(B) =

1

4

P(A∩B) =

1

10

A ∖B

A∪B

∪A

c

B

c

∩A

c

B

c

A∪B

c

A B

7

30

A B

29

60

9

10

31

60

A B

17

20

A B C P(A) = 0.3 P(B) = 0.2 P(C) = 0.4 P(A∩B) = 0.04

P(A∩C) = 0.1 P(B∩C) = 0.1 P(A∩B∩C) = 0.01

P(A∪B∪C) = 0.67

P[(A∪B∪C ] = 0.37)

c

P[(A∩ ∩ )∪ ( ∩B∩ )∪ ( ∩ ∩C)] = 0.45B

c

C

c

A

c

C

c

A

c

B

c

P[(A∩B∩ )∪ (A∩ ∩C)∪ ( ∩B∩C)] = 0.21C

c

B

c

A

c

A B P(A ∖B) =

1

6

P(B∖A) =

1

4

P(A∩B) =

1

12

A

B

A∪B

∪A

c

B

c

∩A

c

B

c

1

4

1

3

1

2

11

12
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5. 

Suppose that  and  are events in an experiment with , , and . Find the probability
of each of the following events:

1. 
2. 
3. 
4. 
5. 

Answer

1. 
2. 
3. 
4. 
5. 

Suppose that , , and  are events in an experiment with , , .

1. Use Boole's inequality to find an upper bound for .
2. Use Bonferronis's inequality to find a lower bound for .

Answer

1. 
2. , not helpful.

Open the simple probability experiment.

1. Note the 16 events that can be constructed from  and  using the set operations of union, intersection, and complement.
2. Given , , and  in the table, use the rules of probability to verify the probabilities of the other events.
3. Run the experiment 1000 times and compare the relative frequencies of the events with the probabilities of the events.

Suppose that , , and  are events in a random experiment with , , , 
, , , and . Find the probabilities of the various

unions:

1. 
2. 
3. 
4. 

Answer
1. 
2. 
3. 
4. 

Suppose that , , and  are events in a random experiment with , , , 
, , , and . Find the probabilities of the

various intersections:

1. 
2. 
3. 

1

2

A B P(A) =

2

5

P(A∪B) =

7

10

P(A∩B) =

1

6

B

A ∖B

B∖A

∪A

c

B

c

∩A

c

B

c

7

15

7

30

3

10

5

6

3

10

A B C P(A) =

1

3

P(B) =

1

4

P(C) =

1

5

P(A∪B∪C)

P(A∩B∩C)

47

60

−

83

60

A B

P(A) P(B) P(A∩B)

A B C P(A) = 1/4 P(B) = 1/3 P(C) = 1/6

P(A∩B) = 1/18 P(A∩C) = 1/16 P(B∩C) = 1/12 P(A∩B∩C) = 1/24

A∪B

A∪C

B∪C

A∪B∪C

19/36

17/48

5/12

85/144

A B C P(A) = 1/4 P(B) = 1/4 P(C) = 5/16

P(A∪B) = 7/16 P(A∪C) = 23/48 P(B∪C) = 11/24 P(A∪B∪C) = 7/12

A∩B

A∩C

B∩C
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4. 

Answer
1. 
2. 
3. 
4. 

Suppose that , , and  are events in a random experiment. Explicitly give all of the Bonferroni inequalities for 

Proof
1. 
2. 
3. 

Coins

Consider the random experiment of tossing a coin  times and recording the sequence of scores  (where 1
denotes heads and 0 denotes tails). This experiment is a generic example of  Bernoulli trials, named for Jacob Bernoulli. Note that
the set of outcomes is , the set of bit strings of length . If the coin is fair, then presumably, by the very meaning of the
word, we have no reason to prefer one point in  over another. Thus, as a modeling assumption, it seems reasonable to give  the
uniform probability distribution in which all outcomes are equally likely.

Suppose that a fair coin is tossed 3 times and the sequence of coin scores is recorded. Let  be the event that the first coin is
heads and  the event that there are exactly 2 heads. Give each of the following events in list form, and then compute the
probability of the event:

1. 
2. 
3. 
4. 
5. 
6. 
7. 

Answer

1. , 
2. , 
3. , 
4. , 
5. , 
6. , 
7. , 

In the Coin experiment, select 3 coins. Run the experiment 1000 times, updating after every run, and compute the empirical
probability of each event in the previous exercise.

Suppose that a fair coin is tossed 4 times and the sequence of scores is recorded. Let  denote the number of heads. Give the
event  (as a subset of the sample space) in list form, for each , and then give the probability of the
event.

Answer
1. , 
2. , 

A∩B∩C

1/16

1/12

5/48

1/48

A B C

P(A∪B∪C)

P(A∪B∪C) ≤ P(A)+P(B)+P(C)

P(A∪B∪C) ≥ P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)

P(A∪B∪C) = P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)

n X = ( , ,… , )X

1

X

2

X

n

n

S = {0, 1}

n

n

S S

A

B

A

B

A∩B

A∪B

∪A

c

B

c

∩A

c

B

c

A∪B

c

{100, 101, 110, 111}

1

2

{110, 101, 011}

3

8

{110, 101}

1

4

{100, 101, 110, 111, 011}

5

8

{000, 001, 010, 100, 011, 111}

3

4

{000, 001, 010}

3

8

{100, 101, 110, 111, 000, 010, 001}

7

8

Y

{Y = k} k ∈ {0, 1, 2, 3, 4}

{Y = 0} = {0000} P(Y = 0) =

1

16

{Y = 1} = {1000, 0100, 0010, 0001}P(Y = 1) =

4

16

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10131?pdf


2.3.13 https://stats.libretexts.org/@go/page/10131

3. , 
4. , 
5. , 

Suppose that a fair coin is tossed  times and the sequence of scores is recorded. Let  denote the number of heads.

Proof

The number of bit strings of length  is , and since the coin is fair, these are equally likely. The number of bit strings of
length  with exactly  1's is . Hence the probability of 1 occurring exactly  times is .

The distribution of  in the last exercise is a special case of the binomial distribution. The binomial distribution is studied in more
detail in the chapter on Bernoulli Trials.

Dice

Consider the experiment of throwing  distinct, -sided dice (with faces numbered from 1 to ) and recording the sequence of
scores . We can record the outcome as a sequence because of the assumption that the dice are distinct; you
can think of the dice as somehow labeled from 1 to , or perhaps with different colors. The special case  corresponds to
standard dice. In general, note that the set of outcomes is . If the dice are fair, then again, by the very meaning
of the word, we have no reason to prefer one point in  over another, so as a modeling assumption it seems reasonable to give 
the uniform probability distribution.

Suppose that two fair, standard dice are thrown and the sequence of scores recorded. Let  denote the event that the first die
score is less than 3 and  the event that the sum of the dice scores is 6. Give each of the following events in list form and then
find the probability of the event.

1. 
2. 
3. 
4. 
5. 

Answer

1. , 
2. , 
3. , 
4. , 
5. , 

In the dice experiment, set . Run the experiment 100 times and compute the empirical probability of each event in the
previous exercise.

Consider again the dice experiment with  fair dice. Let  denote the set of outcomes,  the sum of the scores,  the
minimum score, and  the maximum score.

1. Express  as a function on  and give the set of values.
2. Find  for each  in the set in part (a).
3. Express  as a function on  and give the set of values.
4. Find  for each  in the set in part (c).
5. Express  as a function on  and give the set of values.
6. Find  for each  in the set in part (e).
7. Find the set of values of .

{Y = 2} = {1100, 1010, 1001, 0110, 0101, 0011}P(Y = 2) =

6

16

{Y = 3} = {1110, 1101, 1011, 0111}P(Y = 3) =

4

16

{Y = 4} = {1111} P(Y = 4) =

1

16

n Y

P(Y = k) =( ) , k ∈ {0, 1,… ,n}

n

k

( )

1

2

n

(2.3.25)

n 2

n

n k ( )

n

k

k ( )/

n

k

2

n

Y

n k k

X = ( , ,… , )X

1

X

2

X

n

n k= 6

S = {1, 2,… , k}

n

S S

A

B

A

B

A∩B

A∪B

B∖A

{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)}

12

36

{(1, 5), (5, 1), (2, 4), (4, 2), (3, 3)}

5

36

{(1, 5), (2, 4)}

2

36

{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (5, 1), (4, 2), (3, 3)}

15

36

{(5, 1), (4, 2), (3, 3)}

3

36

n= 2

n= 2 S Y U

V

Y S

P(Y = y) y

U S

P(U = u) u

V S

P(V = v) v

(U,V )
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8. Find  for each  in the set in part (g).

Answer

Note that .

1.  for . The set of values is 

2. 2 3 4 5 6 7 8 9 10 11 12

3.  for . The set of values is 

4. 1 2 3 4 5 6

5.  for . The set of values is 

6. 1 2 3 4 5 6

7. 

8. 

In the previous exercise, note that  could serve as the outcome vector for the experiment of rolling two standard, fair dice if
we do not bother to distinguish the dice (so that we might as well record the smaller score first and then the larger score). Note that
this random vector does not have a uniform distribution. On the other hand, we might have chosen at the beginning to just record
the unordered set of scores and, as a modeling assumption, imposed the uniform distribution on the corresponding set of outcomes.
Both models cannot be right, so which model (if either) describes real dice in the real world? It turns out that for real (fair) dice, the
ordered sequence of scores is uniformly distributed, so real dice behave as distinct objects, whether you can tell them apart or not.
In the early history of probability, gamblers sometimes got the wrong answers for events involving dice because they mistakenly
applied the uniform distribution to the set of unordered scores. It's an important moral. If we are to impose the uniform distribution
on a sample space, we need to make sure that it's the right sample space.

A pair of fair, standard dice are thrown repeatedly until the sum of the scores is either 5 or 7. Let  denote the event that the
sum of the scores on the last throw is 5 rather than 7. Events of this type are important in the game of craps.

1. Suppose that we record the pair of scores on each throw. Give the set of outcomes  and express  as a subset of .
2. Compute the probability of  in the setting of part (a).
3. Now suppose that we just record the pair of scores on the last throw. Give the set of outcomes  and express  as a subset

of .
4. Compute the probability of  in the setting of parts (c).

Answer

Let , , , 

1. , 
2. 
3. , 
4. 

The previous problem shows the importance of defining the set of outcomes appropriately. Sometimes a clever choice of this set
(and appropriate modeling assumptions) can turn a difficult problem into an easy one.

P(U = u,V = v) (u, v)

S = {1, 2, 3, 4, 5, 6}

2

Y ( , ) = +x

1

x

2

x

1

x

2

( , ) ∈ Sx

1

x

2

{2, 3,… , 12}

y

P(Y = y)

1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36

U( , ) =min{ , }x

1

x

2

x

1

x

2

( , ) ∈ Sx

1

x

2

{1, 2, 3, 4, 5, 6}

u

P(U = u)

11

36

9

36

7

36

5

36

3

36

1

36

V ( , ) =max{ , }x

1

x

2

x

1

x

2

( , ) ∈ Sx

1

x

2

{1, 2, 3, 4, 5, 6}

v

P(V = v)

1

36

3

36

5

36

7

36

9

36

11

36

{(u, v) ∈ S : u ≤ v}

P(U = u,V = v) ={

,

2

36

,

1

36

u < v

u = v

(U,V )

A

S A S

A

T A

T

A

= {(1, 4), (2, 3), (3, 2), (4, 1)}D

5

= {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}D

7

D= ∪D

5

D

7

C = {1, 2, 3, 4, 5, 6 ∖D}

2

S =D∪ (C×D)∪ ( ×D)∪⋯C

2

A= ∪(C× )∪ ( × )∪⋯D

5

D

5

C

2

D

5

2

5

T =D A=D

5

2

5
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Sampling Models

Recall that many random experiments can be thought of as sampling experiments. For the general finite sampling model, we start
with a population  with  (distinct) objects. We select a sample of  objects from the population, so that the sample space  is
the set of possible samples. If we select a sample at random then the outcome  (the random sample) is uniformly distributed on 

:

Recall from the section on Combinatorial Structures that there are four common types of sampling from a finite population, based
on the criteria of order and replacement.

If the sampling is with replacement and with regard to order, then the set of samples is the Cartesian power . The number of
samples is .
If the sampling is without replacement and with regard to order, then the set of samples is the set of all permutations of size 
from . The number of samples is .
If the sampling is without replacement and without regard to order, then the set of samples is the set of all combinations (or
subsets) of size  from . The number of samples is .
If the sampling is with replacement and without regard to order, then the set of samples is the set of all multisets of size  from 

. The number of samples is .

If we sample with replacement, the sample size  can be any positive integer. If we sample without replacement, the sample size
cannot exceed the population size, so we must have .

The basic coin and dice experiments are examples of sampling with replacement. If we toss a fair coin  times and record the
sequence of scores  (where as usual, 0 denotes tails and 1 denotes heads), then  is a random sample of size  chosen with order
and with replacement from the population . Thus,  is uniformly distributed on . If we throw  (distinct) standard
fair dice and record the sequence of scores, then we generate a random sample  of size  with order and with replacement from
the population . Thus,  is uniformly distributed on . Of an analogous result would hold for fair, 

-sided dice.

Suppose that the sampling is without replacement (the most common case). If we record the ordered sample 
, then the unordered sample  is a random variable (that is, a function of ). On the

other hand, if we just record the unordered sample  in the first place, then we cannot recover the ordered sample.

Suppose that  is a random sample of size  chosen with order and without replacement from , so that  is uniformly
distributed on the space of permutations of size  from . Then , the unordered sample, is uniformly distributed on the
space of combinations of size  from . Thus,  is also a random sample.

Proof

Let  be a combination of size  from . Then there are  permutations of the elements in . If  denotes this set of
permutations, then .

The result in the last exercise does not hold if the sampling is with replacement (recall the exercise above and the discussion that
follows). When sampling with replacement, there is no simple relationship between the number of ordered samples and the number
of unordered samples.

Sampling From a Dichotomous Population

Suppose again that we have a population  with  (distinct) objects, but suppose now that each object is one of two types—either
type 1 or type 0. Such populations are said to be dichotomous. Here are some specific examples:

The population consists of persons, each either male or female.
The population consists of voters, each either democrat or republican.
The population consists of devices, each either good or defective.
The population consists of balls, each either red or green.

D m n S

X

S

P(X ∈ A) = , A⊆ S

#(A)

#(S)

(2.3.26)

D

n

m

n

n

D =m(m−1)⋯(m−n+1)m

(n)

n D ( )= /n!

m

n

m

(n)

n

D ( )

m+n−1

n

n

n ∈ {1, 2,… ,m}

n

X X n

{0, 1} X {0, 1}

n

n

X n

{1, 2, 3, 4, 5, 6} X {1, 2, 3, 4, 5, 6}

n

k

X = ( , ,… , )X

1

X

2

X

n

W = { , ,…}X

1

X

2

X

W

X n D X

n D W

n D W

w n D n! w A

P(W =w) = P(X ∈ A) = n!/ = 1/( )m

(n)

m

n

D m

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10131?pdf


2.3.16 https://stats.libretexts.org/@go/page/10131

Suppose that the population  has  type 1 objects and hence  type 0 objects. Of course, we must have .
Now suppose that we select a sample of size  at random from the population. Note that this model has three parameters: the
population size , the number of type 1 objects in the population , and the sample size . Let  denote the number of type 1
objects in the sample.

If the sampling is without replacement then

Proof

Recall that the unordered sample is uniformly distributed over the set of combinations of size  chosen from the population.
There are  such samples. By the multiplication principle, the number of samples with exactly  type 1 objects and 
type 0 objects is .

In the previous exercise, random variable  has the hypergeometric distribution with parameters , , and . The hypergeometric
distribution is studied in more detail in the chapter on Findite Sampling Models.

If the sampling is with replacement then

Proof

Recall that the ordered sample is uniformly distributed over the set  and there are  elements in this set. To count the
number of samples with exactly  type 1 objects, we use a three-step procedure: first, select the coordinates for the type 1
objects; there are  choices. Next select the  type 1 objects for these coordinates; there are  choices. Finally select the 

 type 0 objects for the remaining coordinates of the sample; there are  choices. The result now follows from
the multiplication principle.

In the last exercise, random variable  has the binomial distribution with parameters  and . The binomial distribution is
studied in more detail in the chapter on Bernoulli Trials.

Suppose that a group of voters consists of 40 democrats and 30 republicans. A sample 10 voters is chosen at random. Find the
probability that the sample contains at least 4 democrats and at least 4 republicans, each of the following cases:

1. The sampling is without replacement.
2. The sampling is with replacement.

Answer

1. 
2. 

Look for other specialized sampling situations in the exercises below.

Urn Models

Drawing balls from an urn is a standard metaphor in probability for sampling from a finite population.

Consider an urn with 30 balls; 10 are red and 20 are green. A sample of 5 balls is chosen at random, without replacement. Let 
 denote the number of red balls in the sample. Explicitly compute  for each .

answer

0 1 2 3 4 5

D r m−r r ∈ {0, 1,… ,m}

n

m r n Y

P(Y = y) = , y ∈ {0, 1,… ,n}

( )( )

r

y

m−r

n−y

( )

m

n

(2.3.27)

n

( )

m

n

y n−y

( )( )

r

y

m−r

n−y

Y m r n

P(Y = y) =( ) =( ) , y ∈ {0, 1,… ,n}

n

y

(m−rr

y

)

n−y

m

n

n

y

( )

r

m

y

(1− )

r

m

n−y

(2.3.28)

D

n

m

n

y

( )

n

y

y r

y

n−y (m−r)

n−y

Y n p =

r

m

≈ 0.6382

1 391 351 589

2 176 695 188

≈ 0.6074

24 509 952

40 353 607

Y P(Y = y) y ∈ {0, 1, 2, 3, 4, 5}

y

P(Y = y)

2584

23751

8075

23751

8550

23751

3800

23751

700

23751/

42

23751
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In the simulation of the ball and urn experiment, select 30 balls with 10 red and 20 green, sample size 5, and sampling without
replacement. Run the experiment 1000 times and compare the empirical probabilities with the true probabilities that you
computed in the previous exercise.

Consider again an urn with 30 balls; 10 are red and 20 are green. A sample of 5 balls is chosen at random, with replacement.
Let  denote the number of red balls in the sample. Explicitly compute  for each .

Answer

0 1 2 3 4 5

In the simulation of the ball and urn experiment, select 30 balls with 10 red and 20 green, sample size 5, and sampling with
replacement. Run the experiment 1000 times and compare the empirical probabilities with the true probabilities that you
computed in the previous exercise.

An urn contains 15 balls: 6 are red, 5 are green, and 4 are blue. Three balls are chosen at random, without replacement.

1. Find the probability that the chosen balls are all the same color.
2. Find the probability that the chosen balls are all different colors.

Answer

1. 
2. 

Suppose again that an urn contains 15 balls: 6 are red, 5 are green, and 4 are blue. Three balls are chosen at random, with
replacement.

1. Find the probability that the chosen balls are all the same color.
2. Find the probability that the chosen balls are all different colors.

Answer

1. 
2. 

Cards

Recall that a standard card deck can be modeled by the product set

where the first coordinate encodes the denomination or kind (ace, 2–10, jack, queen, king) and where the second coordinate
encodes the suit (clubs, diamonds, hearts, spades). Sometimes we represent a card as a string rather than an ordered pair (for
example  for the queen of hearts).

Card games involve choosing a random sample without replacement from the deck , which plays the role of the population. Thus,
the basic card experiment consists of dealing  cards from a standard deck without replacement; in this special context, the sample
of cards is often referred to as a hand. Just as in the general sampling model, if we record the ordered hand 

, then the unordered hand  is a random variable (that is, a function of ). On the
other hand, if we just record the unordered hand  in the first place, then we cannot recover the ordered hand. Finally, recall that 

 is the poker experiment and  is the bridge experiment. The game of poker is treated in more detail in the chapter on
Games of Chance. By the way, it takes about 7 standard riffle shuffles to randomize a deck of cards.

Suppose that 2 cards are dealt from a well-shuffled deck and the sequence of cards is recorded. For , let  denote
the event that card  is a heart. Find the probability of each of the following events.

1. 

Y P(Y = y) y ∈ {0, 1, 2, 3, 4, 5}

y

P(Y = y)

32

243

80

243

80

243

40

243

10

243

1

243

34

455

120

455

405

3375

720

3375

D= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, k}×{♣,♢,♡,♠} (2.3.29)

q♡

D

n

X = ( , ,… , )X

1

X

2

X

n

W = { , ,… , }X

1

X

2

X

n

X

W

n= 5 n= 13

i ∈ {1, 2} H

i

i

H

1
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2. 
3. 
4. 
5. 
6. 

Answer

1. 
2. 
3. 
4. 
5. 
6. 

Think about the results in the previous exercise, and suppose that we continue dealing cards. Note that in computing the probability
of , you could conceptually reduce the experiment to dealing a single card. Note also that the probabilities do not depend on the
order in which the cards are dealt. For example, the probability of an event involving the 1st, 2nd and 3rd cards is the same as the
probability of the corresponding event involving the 25th, 17th, and 40th cards. Technically, the cards are exchangeable. Here's
another way to think of this concept: Suppose that the cards are dealt onto a table in some pattern, but you are not allowed to view
the process. Then no experiment that you can devise will give you any information about the order in which the cards were dealt.

In the card experiment, set . Run the experiment 100 times and compute the empirical probability of each event in the
previous exercise

In the poker experiment, find the probability of each of the following events:

1. The hand is a full house (3 cards of one kind and 2 cards of another kind).
2. The hand has four of a kind (4 cards of one kind and 1 of another kind).
3. The cards are all in the same suit (thus, the hand is either a flush or a straight flush).

Answer

1. 
2. 
3. 

Run the poker experiment 10000 times, updating every 10 runs. Compute the empirical probability of each event in the
previous problem.

Find the probability that a bridge hand will contain no honor cards that is, no cards of denomination 10, jack, queen, king, or
ace. Such a hand is called a Yarborough, in honor of the second Earl of Yarborough.

Answer

Find the probability that a bridge hand will contain

1. Exactly 4 hearts.
2. Exactly 4 hearts and 3 spades.
3. Exactly 4 hearts, 3 spades, and 2 clubs.

Answer

1. 
2. 
3. 

∩H

1

H

2

∖H

2

H

1

H

2

∖H

1

H

2

∪H

1

H

2

1

4

1

17

13

68

1

4

13

68

15

34

H

i

n= 2

≈ 0.001441

3744

2 598 960

≈ 0.000240

624

2 598 960

≈ 0.001981

5148

2 598 960

≈ 0.000547

347 373 600

635 013 559 600

≈ 0.2386

151 519 319 380

635 013 559 600

≈ 0.0741

47 079 732 700

635 013 559 600

≈ 0.0179

11 404 407 300

635 013 559 600
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A card hand that contains no cards in a particular suit is said to be void in that suit. Use the inclusion-exclusion rule to find the
probability of each of the following events:

1. A poker hand is void in at least one suit.
2. A bridge hand is void in at least one suit.

Answer

1. 
2. 

Birthdays

The following problem is known as the birthday problem, and is famous because the results are rather surprising at first.

Suppose that  persons are selected and their birthdays recorded (we will ignore leap years). Let  denote the event that the
birthdays are distinct, so that  is the event that there is at least one duplication in the birthdays.

1. Define an appropriate sample space and probability measure. State the assumptions you are making.
2. Find  and  in terms of the parameter .
3. Explicitly compute  and  for 

Answer
1. Tthe set of outcomes is  where  is the set of days of the year. We assume that the outcomes are equally likely, so

that  has the uniform distribution.
2. , so  and 

3. 

10 0.883 0.117

20 0.589 0.411

30 0.294 0.706

40 0.109 0.891

50 0.006 0.994

The small value of  for relatively small sample sizes  is striking, but is due mathematically to the fact that  grows much
faster than  as  increases. The birthday problem is treated in more generality in the chapter on Finite Sampling Models.

Suppose that 4 persons are selected and their birth months recorded. Assuming an appropriate uniform distribution, find the
probability that the months are distinct.

Answer

Continuous Uniform Distributions

Recall that in Buffon's coin experiment, a coin with radius  is tossed “randomly” on a floor with square tiles of side
length 1, and the coordinates  of the center of the coin are recorded, relative to axes through the center of the square in
which the coin lands (with the axes parallel to the sides of the square, of course). Let  denote the event that the coin does not
touch the sides of the square.

1. Define the set of outcomes  mathematically and sketch .
2. Argue that  is uniformly distributed on .
3. Express  in terms of the outcome variables  and sketch .
4. Find .

≈ 0.7363

1 913 496

2 598 960

≈ 0.051

32 427 298 180

635 013 559 600
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5. Find .

Answer

1. 
2. Since the coin is tossed “randomly”, no region of  should be preferred over any other.
3. 
4. 
5. 

In Buffon's coin experiment, set . Run the experiment 100 times and compute the empirical probability of each event in
the previous exercise.

A point  is chosen at random in the circular region  of radius 1, centered at the origin. Let  denote the event
that the point is in the inscribed square region centered at the origin, with sides parallel to the coordinate axes, and let  denote
the event that the point is in the inscribed square with vertices , . Sketch each of the following events as a subset
of , and find the probability of the event.

1. 
2. 
3. 
4. 
5. 
6. 

Answer
1. 
2. 
3. 
4. 
5. 
6. 

Suppose a point  is chosen at random in the circular region  of radius 12, centered at the origin. Let  denote
the distance from the origin to the point. Sketch each of the following events as a subset of , and compute the probability of
the event. Is  uniformly distributed on the interval ?

1. 
2. 
3. 
4. 

Answer

No,  is not uniformly distributed on .

1. 
2. 
3. 
4. 

In the simple probability experiment, points are generated according to the uniform distribution on a rectangle. Move and
resize the events  and  and note how the probabilities of the various events change. Create each of the following
configurations. In each case, run the experiment 1000 times and compare the relative frequencies of the events to the
probabilities of the events.

1.  and  in general position

P( )A

c

S = [− , ]

1

2

1

2

2

S

{r− <X < −r, r− < Y < −r}

1

2

1

2

1

2

1

2

P(A) = (1−2 r)

2

P( ) = 1−(1−2 rA

c

)

2

r= 0.2

(X,Y ) S ⊂R

2

A

B

(±1, 0) (0, ±1)

S

A

B

A∩B

c

B∩A

c

A∩B

A∪B

2/π

2/π

(6−4 )/π2

–

√

(6−4 )/π2

–

√

4( −1)/π2

–

√

4(2− )/π2

–

√

(X,Y ) S ⊆R

2

R

S

R [0, 12]

{R≤ 3}

{3 <R≤ 6}

{6 <R≤ 9}
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2.  and  disjoint
3. 
4. 

Genetics

Please refer to the discussion of genetics in the section on random experiments if you need to review some of the definitions in this
subsection.

Recall first that the ABO blood type in humans is determined by three alleles: , , and . Furthermore,  and  are co-dominant
and  is recessive. Suppose that the probability distribution for the set of blood genotypes in a certain population is given in the
following table:

Genotype

Probability 0.050 0.038 0.310 0.007 0.116 0.479

A person is chosen at random from the population. Let , , , and  be the events that the person is type , type , type 
, and type  respectively. Let  be the event that the person is homozygous and  the event that the person has an 

allele. Find the probability of the following events:

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

Answer
1. 0.360
2. 0.123
3. 0.038
4. 0.479
5. 0.536
6. 0.905
7. 0.962
8. 0.095

Suppose next that pod color in certain type of pea plant is determined by a gene with two alleles:  for green and  for yellow, and
that  is dominant.

Let  be the event that a child plant has green pods. Find  in each of the following cases:

1. At least one parent is type .
2. Both parents are type .
3. Both parents are type .
4. One parent is type  and the other is type .

Answer
1. 
2. 
3. 
4. 

A B

A⊆B

B⊆A

a b o a b

o

aa ab ao bb bo oo

A B AB O A B

AB O H D o

A

B

AB

O

H

D

H ∪D

D

c

g y

g

G P(G)

gg

yy

gy

yy gy

1

0

3

4

1

2
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Next consider a sex-linked hereditary disorder in humans (such as colorblindness or hemophilia). Let  denote the healthy allele
and  the defective allele for the gene linked to the disorder. Recall that  is recessive for women.

Let  be the event that a son has the disorder,  the event that a daughter is a healthy carrier, and  the event that a daughter
has the disease. Find ,  and  in each of the following cases:

1. The mother and father are normal.
2. The mother is a healthy carrier and the father is normal.
3. The mother is normal and the father has the disorder.
4. The mother is a healthy carrier and the father has the disorder.
5. The mother has the disorder and the father is normal.
6. The mother and father both have the disorder.

Answer
1. , , 
2. , 0, 
3. , , 
4. , , 
5. , , 
6. , , 

From this exercise, note that transmission of the disorder to a daughter can only occur if the mother is at least a carrier and the
father has the disorder. In ordinary large populations, this is a unusual intersection of events, and thus sex-linked hereditary
disorders are typically much less common in women than in men. In brief, women are protected by the extra X chromosome.

Radioactive Emissions

Suppose that  denotes the time between emissions (in milliseconds) for a certain type of radioactive material, and that  has
the following probability distribution, defined for measurable  by

1. Show that this really does define a probability distribution.
2. Find .
3. Find .

Answer
1. Note that 
2. 
3. 

Suppose that  denotes the number of emissions in a one millisecond interval for a certain type of radioactive material, and
that  has the following probability distribution:

1. Show that this really does define a probability distribution.
2. Find .
3. Find .

Answer

1. Note that 
2. 
3. 

h

d d

B C D

P(B) P(C) P(D)

0 0 0

1/2 1/2

0 1/2 0

1/2 1/2 1/2

1 1/2 0

1 0 1

T T

A⊆ [0,∞)

P(T ∈ A) = dt∫

A

e

−t

(2.3.30)

P(T > 3)

P(2 < T < 4)

dt = 1∫

∞
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e
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e
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N

N
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n∈A

e
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(2.3.31)
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The probability distribution that governs the time between emissions is a special case of the exponential distribution, while the
probability distribution that governs the number of emissions is a special case of the Poisson distribution, named for Simeon
Poisson. The exponential distribution and the Poisson distribution are studied in more detail in the chapter on the Poisson process.

Matching

Suppose that at an absented-minded secretary prepares 4 letters and matching envelopes to send to 4 different persons, but then
stuffs the letters into the envelopes randomly. Find the probability of the event  that at least one letter is in the proper
envelope.

Solution

Note first that the set of outcomes  can be taken to be the set of permutations of . For ,  is the number of
the envelope containing the th letter. Clearly  should be given the uniform probability distribution. Next note that 

 where  is the event that the th letter is inserted into the th envelope. Using the inclusion-
exclusion rule gives .

This exercise is an example of the matching problem, originally formulated and studied by Pierre Remond Montmort. A complete
analysis of the matching problem is given in the chapter on Finite Sampling Models.

In the simulation of the matching experiment select . Run the experiment 1000 times and compute the relative frequency
of the event that at least one match occurs.

Data Analysis Exercises

For the M&M data set, let  denote the event that a bag has at least 10 red candies,  the event that a bag has at least 57
candies total, and  the event that a bag weighs at least 50 grams. Find the empirical probability the following events:

1. 
2. 
3. 
4. 
5. 

Answer

1. 
2. 
3. 
4. 
5. 

For the cicada data, let  denote the event that a cicada weighs at least 0.20 grams,  the event that a cicada is female, and 
the event that a cicada is type tredecula. Find the empirical probability of each of the following:

1. 
2. 
3. 
4. 
5. 

Answer

1. 
2. 
3. 
4. 
5. 
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2.4: Conditional Probability
  

The purpose of this section is to study how probabilities are updated in light of new information, clearly an absolutely essential topic.
If you are a new student of probability, you may want to skip the technical details.

Definitions and Interpretations

The Basic Definition

As usual, we start with a random experiment modeled by a probability space . Thus,  is the set of outcomes,  the
collection of events, and  the probability measure on the sample space . Suppose now that we know that an event  has
occurred. In general, this information should clearly alter the probabilities that we assign to other events. In particular, if  is another
event then  occurs if and only if  and  occur; effectively, the sample space has been reduced to . Thus, the probability of ,
given that we know  has occurred, should be proportional to .

Figure : Events  and 

However, conditional probability, given that  has occurred, should still be a probability measure, that is, it must satisfy the axioms
of probability. This forces the proportionality constant to be . Thus, we are led inexorably to the following definition:

Let  and  be events with . The conditional probability of  given  is defined to be

The Law of Large Numbers

The definition above was based on the axiomatic definition of probability. Let's explore the idea of conditional probability from the
less formal and more intuitive notion of relative frequency (the law of large numbers). Thus, suppose that we run the experiment
repeatedly. For  and an event , let  denote the number of times  occurs (the frequency of ) in the first  runs.
Note that  is a random variable in the compound experiment that consists of replicating the original experiment. In particular,
its value is unknown until we actually run the experiment  times.

If  is large, the conditional probability that  has occurred, given that  has occurred, should be close to the conditional
relative frequency of  given , namely the relative frequency of  for the runs on which  occurred: . But
note that

The numerator and denominator of the main fraction on the right are the relative frequencies of  and , respectively. So by the
law of large numbers again,  as  and  as . Hence

and we are led again to the definition above.

In some cases, conditional probabilities can be computed directly, by effectively reducing the sample space to the given event. In
other cases, the formula in the mathematical definition is better. In some cases, conditional probabilities are known from modeling
assumptions, and then are used to compute other probabilities. We will see examples of all of these situations in the computational
exercises below.

It's very important that you not confuse , the probability of  given , with , the probability of  given .
Making that mistake is known as the fallacy of the transposed conditional. (How embarrassing!)

(S,S ,P) S S

P (S,S ) B
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Conditional Distributions

Suppose that  is a random variable for the experiment with values in . Mathematically,  is a function from  into , and 
 denotes the event  for . Intuitively,  is a variable of interest in the experiment, and every

meaningful statement about  defines an event. Recall that the probability distribution of  is the probability measure on  given
by

This has a natural extension to a conditional distribution, given an event.

If  is an event with , then the conditional distribution of  given  is the probability measure on  given by

Details

Recall that  will come with a -algebra of admissible subsets so that  is a measurable space, just like the sample space 
. Random variable  is required to be measurable as a function from  into . This ensures that  is a valid

event for each , so that the definition makes sense.

Basic Theory

Preliminary Results

Our first result is of fundamental importance, and indeed was a crucial part of the argument for the definition of conditional
probability.

Suppose again that  is an event with . Then  is a probability measure on .

Proof

Clearly  for every event , and . Thus, suppose that  is a countable collection of
pairwise disjoint events. Then

But the collection of events  is also pairwise disjoint, so

It's hard to overstate the importance of the last result because this theorem means that any result that holds for probability measures
in general holds for conditional probability, as long as the conditioning event remains fixed. In particular the basic probability rules
in the section on Probability Measure have analogs for conditional probability. To give two examples,

By the same token, it follows that the conditional distribution of a random variable with values in , given in above, really does
define a probability distribution on . No further proof is necessary. Our next results are very simple.

Suppose that  and  are events with .

1. If  then .
2. If  then .
3. If  and  are disjoint then .

Proof

These results follow directly from the definition of conditional probability. In part (a), note that . In part (b) note that 
. In part (c) note that .

X T X S T
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X X T
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Parts (a) and (c) certainly make sense. Suppose that we know that event  has occurred. If  then  becomes a certain event.
If  then  becomes an impossible event. A conditional probability can be computed relative to a probability measure that
is itself a conditional probability measure. The following result is a consistency condition.

Suppose that , , and  are events with . The probability of  given , relative to , is the same as the
probability of  given  and  (relative to ). That is,

Proof

From the definition,

Correlation

Our next discussion concerns an important concept that deals with how two events are related, in a probabilistic sense.

Suppose that  and  are events with  and .

1.  if and only if  if and only if . In this case,  and  are
positively correlated.

2.  if and only if  if and only if . In this case,  and  are
negatively correlated.

3.  if and only if  if and only if . In this case,  and  are
uncorrelated or independent.

Proof

These properties following directly from the definition of conditional probability and simple algebra. Recall that multiplying or
dividing an inequality by a positive number preserves the inequality.

Intuitively, if  and  are positively correlated, then the occurrence of either event means that the other event is more likely. If 
and  are negatively correlated, then the occurrence of either event means that the other event is less likely. If  and  are
uncorrelated, then the occurrence of either event does not change the probability of the other event. Independence is a fundamental
concept that can be extended to more than two events and to random variables; these generalizations are studied in the next section
on Independence. A much more general version of correlation, for random variables, is explored in the section on Covariance and
Correlation in the chapter on Expected Value.

Suppose that  and  are events. Note from (4) that if  or  then  and  are positively correlated. If  and  are
disjoint then  and  are negatively correlated.

Suppose that  and  are events in a random experiment.

1.  and  have the same correlation (positive, negative, or zero) as  and .
2.  and  have the opposite correlation as  and  (that is, positive-negative, negative-positive, or 0-0).

Proof
1. Using DeMorgan's law and the complement law.

Using the inclusion-exclusion law and algebra,

2. Using the difference rule and the complement law:

B B⊆A A

A∩B= ∅ A

A B C P(B∩C) > 0 A B P(⋅ ∣ C)

A B C P

= P(A ∣ B∩C)

P(A∩B ∣ C)

P(B ∣ C)

(2.4.10)

= = = P(A ∣ B∩C)

P(A∩B ∣ C)

P(B ∣ C)

P(A∩B∩C)/P(C)

P(B∩C)/P(C)

P(A∩B∩C)

P(B∩C)

(2.4.11)

A B P(A) > 0 P(B) > 0

P(A ∣ B) > P(A) P(B ∣ A) > P(B) P(A∩B) > P(A)P(B) A B

P(A ∣ B) < P(A) P(B ∣ A) < P(B) P(A∩B) < P(A)P(B) A B

P(A ∣ B) = P(A) P(B ∣ A) = P(B) P(A∩B) = P(A)P(B) A B

A B A

B A B

A B A⊆B B⊆A A B A B

A B

A B

A B A

c

B

c

A B A B

c

P( ∩ )−P( )P( ) = P [(A∪B ] −P( )P( ) = [1−P(A∪B)] −[1−P(A)] [1−P(B)]A

c

B

c

A

c

B

c

)

c

A

c

B

c

(2.4.12)

P( ∩ )−P( )P( ) = P(A∩B)−P(A)P(B)A

c

B

c

A

c

B

c

(2.4.13)

P(A∩ )−P(A)P( ) = P(A)−P(A∩B)−P(A) [1−P(B)] =−[P(A∩B)−P(A)P(B)]B

c

B

c

(2.4.14)
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The Multiplication Rule

Sometimes conditional probabilities are known and can be used to find the probabilities of other events. Note first that if  and 
are events with positive probability, then by the very definition of conditional probability,

The following generalization is known as the multiplication rule of probability. As usual, we assume that any event conditioned on
has positive probability.

Suppose that  is a sequence of events. Then

Proof

The product on the right a collapsing product in which only the probability of the intersection of all  events survives. The
product of the first two factors is , and hence the product of the first three factors is , and so
forth. The proof can be made more rigorous by induction on .

The multiplication rule is particularly useful for experiments that consist of dependent stages, where  is an event in stage .
Compare the multiplication rule of probability with the multiplication rule of combinatorics.

As with any other result, the multiplication rule can be applied to a conditional probability measure. In the context above, if  is
another event, then

Conditioning and Bayes' Theorem

Suppose that  is a countable collection of events that partition the sample space , and that  for each 
.

Figure : A partition of  induces a partition of .

The following theorem is known as the law of total probability.

If  is an event then

Proof

Recall that  is a partition of . Hence

The following theorem is known as Bayes' Theorem, named after Thomas Bayes:

If  is an event then

Proof

Again the numerator is  while the denominator is  by the law of total probability.

A B

P(A∩B) = P(A)P(B ∣ A) = P(B)P(A ∣ B) (2.4.15)

( , ,… , )A

1

A

2

A

n

P ( ∩ ∩⋯∩ ) = P ( )P ( ∣ )P ( ∣ ∩ )⋯P ( ∣ ∩ ∩⋯∩ )A

1

A

2

A

n

A

1

A

2

A

1

A

3

A

1

A

2

A

n

A

1

A

2

A

n−1

(2.4.16)

n

P ( ∩ )A

1

A

2

P ( ∩ ∩ )A

1

A

2

A

3

n

A

i

i

E

P ( ∩ ∩⋯∩ ∣ E) = P ( ∣ E)P ( ∣ ∩E)P ( ∣ ∩ ∩E)A

1

A

2

A

n

A

1

A

2

A

1

A

3

A

1

A

2

⋯P ( ∣ ∩ ∩⋯∩ ∩E)A

n

A

1

A

2

A

n−1

(2.4.17)

A = { : i ∈ I}A

i

S P( ) > 0A

i

i ∈ I

2.4.2 S B

B

P(B) = P( )P(B ∣ )∑

i∈I

A

i

A

i

(2.4.18)

{ ∩B : i ∈ I}A

i

B

P(B) = P( ∩B) = P( )P(B ∣ )∑

i∈I

A

i

∑

i∈I

A

i

A

i

(2.4.19)

B

P( ∣ B) = , j∈ IA

j

P( )P(B ∣ )A

j

A

j

P( )P(B ∣ )∑

i∈I

A

i

A

i

(2.4.20)

P( ∩B)A

j

P(B)
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These two theorems are most useful, of course, when we know  and  for each . When we compute the
probability of  by the law of total probability, we say that we are conditioning on the partition . Note that we can think of the
sum as a weighted average of the conditional probabilities  over , where ,  are the weight factors. In the
context of Bayes theorem,  is the prior probability of  and  is the posterior probability of  for . We will
study more general versions of conditioning and Bayes theorem in the section on Discrete Distributions in the chapter on
Distributions, and again in the section on Conditional Expected Value in the chapter on Expected Value.

Once again, the law of total probability and Bayes' theorem can be applied to a conditional probability measure. So, if  is another
event with  for  then

Examples and Applications

Basic Rules

Suppose that  and  are events in an experiment with , , . Find each of the following:

1. 
2. 
3. 
4. 
5. 

Answer

1. 
2. 
3. 
4. 
5. 

Suppose that , , and  are events in a random experiment with , , and . Find
each of the following:

1. 
2. 
3. 
4. 
5. 
6. 

Answer

1. 
2. 
3. 
4. 
5. 
6. 

Suppose that  and  are events in a random experiment with , , and .

1. Find 
2. Find 

P( )A

i

P(B ∣ )A

i

i ∈ I

P(B) A

P(B ∣ )A

i

i ∈ I P( )A

i

i ∈ I

P( )A

j

A

j

P( ∣ B)A

j

A

j

j∈ I

E

P( ∩E) > 0A

i

i ∈ I

P(B ∣ E)

P( ∣ B∩E)A

j

= P( ∣ E)P(B ∣ ∩E)∑

i∈I

A

i

A

i

= , j∈ I

P( ∣ E)P(B ∣ ∩E)A

j

A

j

P( ∩E)P(B ∣ ∩E)∑

i∈I

A

i

A

i

(2.4.21)

(2.4.22)

A B P(A) =

1

3

P(B) =

1

4

P(A∩B) =

1

10

P(A ∣ B)

P(B ∣ A)

P( ∣ B)A

c

P( ∣ A)B

c

P( ∣ )A

c

B

c

2

5

3

10

3

5

7

10

31

45

A B C P(A ∣ C) =

1

2

P(B ∣ C) =

1

3

P(A∩B ∣ C) =

1

4

P(B∖A ∣ C)

P(A∪B ∣ C)

P( ∩ ∣ C)A

c

B

c

P( ∪ ∣ C)A

c

B

c

P( ∪B  ∣ C)A

c

P(A ∣ B∩C)

1

12

7

12

5

12

3

4

3

4

3

4

A B P(A) =

1

2

P(B) =

1

3

P(A ∣ B) =

3

4

P(A∩B)

P(A∪B)
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3. Find 
4. Find 
5. Are  and  positively correlated, negatively correlated, or independent?

Answer

1. 
2. 
3. 
4. 
5. positively correlated.

Open the conditional probability experiment.

1. Given , , and , in the table, verify all of the other probabilities in the table.
2. Run the experiment 1000 times and compare the probabilities with the relative frequencies.

Simple Populations

In a certain population, 30% of the persons smoke cigarettes and 8% have COPD (Chronic Obstructive Pulmonary Disease).
Moreover, 12% of the persons who smoke have COPD.

1. What percentage of the population smoke and have COPD?
2. What percentage of the population with COPD also smoke?
3. Are smoking and COPD positively correlated, negatively correlated, or independent?

Answer
1. 3.6%
2. 45%
3. positively correlated.

A company has 200 employees: 120 are women and 80 are men. Of the 120 female employees, 30 are classified as managers,
while 20 of the 80 male employees are managers. Suppose that an employee is chosen at random.

1. Find the probability that the employee is female.
2. Find the probability that the employee is a manager.
3. Find the conditional probability that the employee is a manager given that the employee is female.
4. Find the conditional probability that the employee is female given that the employee is a manager.
5. Are the events female and manager positively correlated, negatively correlated, or indpendent?

Answer

1. 
2. 
3. 
4. 
5. independent

Dice and Coins

Consider the experiment that consists of rolling 2 standard, fair dice and recording the sequence of scores . Let 
denote the sum of the scores. For each of the following pairs of events, find the probability of each event and the conditional
probability of each event given the other. Determine whether the events are positively correlated, negatively correlated, or
independent.

1. , 
2. , 
3. , 
4. , 

P(B∪ )A

c

P(B ∣ A)

A B

1

4

7

12

3

4

1

2

P(A) P(B) P(A∩B)

120

200

50

200

30

120

30

50

X = ( , )X

1

X

2

Y

{ = 3}X

1

{Y = 5}

{ = 3}X

1

{Y = 7}

{ = 2}X

1

{Y = 5}

{ = 3}X

1

{ = 2}X

1
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Answer

In each case below, the answers are for , , , and 

1. , , , . Positively correlated.
2. , , , . Independent.
3. , , , . Positively correlated.
4. , , , . Negatively correlated.

Note that positive correlation is not a transitive relation. From the previous exercise, for example, note that  and 
are positively correlated,  and  are positively correlated, but  and  are negatively correlated
(in fact, disjoint).

In dice experiment, set . Run the experiment 1000 times. Compute the empirical conditional probabilities corresponding to
the conditional probabilities in the last exercise.

Consider again the experiment that consists of rolling 2 standard, fair dice and recording the sequence of scores .
Let  denote the sum of the scores,  the minimum score, and  the maximum score.

1. Find  for the appropriate values of .
2. Find  for the appropriate values of .
3. Find  for appropriate values of .
4. Find  for the appropriate values of .
5. Find  for the appropriate values of .

Answer

1.  for ,  for 
2.  for ,  for 
3.  for ,  for 
4.  for ,  for 
5.  for 

In the die-coin experiment, a standard, fair die is rolled and then a fair coin is tossed the number of times showing on the die. Let
 denote the die score and  the event that all coin tosses result in heads.

1. Find .
2. Find  for .
3. Compare the results in (b) with  for . In each case, note whether the events  and 

are positively correlated, negatively correlated, or independent.

Answer
1. 
2.  for 
3. positively correlated for  and negatively correlated for 

Run the die-coin experiment 1000 times. Let  and  be as defined in the previous exercise.

1. Compute the empirical probability of . Compare with the true probability in the previous exercise.
2. Compute the empirical probability of  given , for . Compare with the true probabilities in the

previous exercise.

Suppose that a bag contains 12 coins: 5 are fair, 4 are biased with probability of heads ; and 3 are two-headed. A coin is chosen
at random from the bag and tossed.

1. Find the probability that the coin is heads.
2. Given that the coin is heads, find the conditional probability of each coin type.

P(A) P(B) P(A ∣ B) P(B ∣ A)

1

6

1

9

1

4

1

6

1

6

1

6

1

6

1

6

1

6

1

9

1

4

1

6

1

6

1

6

0 0

{ = 3}X

1

{Y = 5}

{Y = 5} { = 2}X

1

{ = 3}X

1

{ = 2}X

1

n= 2

X = ( , )X

1

X

2

Y U V

P(U = u ∣ V = 4) u

P(Y = y ∣ V = 4) y

P(V = v ∣ Y = 8) v

P(U = u ∣ Y = 8) u

P[( , ) = ( , ) ∣ Y = 8]X

1

X

2

x

1

x

2

( , )x

1

x

2

2

7

u ∈ {1, 2, 3}

1

7

u = 4

2

7

y ∈ {5, 6, 7}

1

7

y = 8

1

5

v= 4

2

5

v∈ {5, 6}

2

5

u ∈ {2, 3}

1

5

u = 4

1

5

( , ) ∈ {(2, 6), (6, 2), (3, 5), (5, 3), (4, 4)}x

1

x

2

N H

P(H)

P(N = n ∣H) n ∈ {1, 2, 3, 4, 5, 6}

P(N = n) n ∈ {1, 2, 3, 4, 5, 6} H {N = n}

21

128

64

63

1

2

n

n ∈ {1, 2, 3, 4, 5, 6}

n ∈ {1, 2} n ∈ {3, 4, 5, 6}

H N

H

{N = n} H n ∈ {1, 2, 3, 4, 5, 6}

1

3
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Answer

1. 
2.  that the coin is fair,  that the coin is biased,  that the coin is two-headed

Compare die-coin experiment and bag of coins experiment. In the die-coin experiment, we toss a coin with a fixed probability of
heads a random number of times. In the bag of coins experiment, we effectively toss a coin with a random probability of heads a
fixed number of times. The random experiment of tossing a coin with a fixed probability of heads  a fixed number of times  is
known as the binomial experiment with parameters  and . This is a very basic and important experiment that is studied in more
detail in the section on the binomial distribution in the chapter on Bernoulli Trials. Thus, the die-coin and bag of coins experiments
can be thought of as modifications of the binomial experiment in which a parameter has been randomized. In general, interesting new
random experiments can often be constructed by randomizing one or more parameters in another random experiment.

In the coin-die experiment, a fair coin is tossed. If the coin lands tails, a fair die is rolled. If the coin lands heads, an ace-six flat
die is tossed (faces 1 and 6 have probability  each, while faces 2, 3, 4, and 5 have probability  each). Let  denote the event
that the coin lands heads, and let  denote the score when the chosen die is tossed.

1. Find  for .
2. Find  for .
3. Compare each probability in part (b) with . In each case, note whether the events  and  are positively

correlated, negatively correlated, or independent.

Answer

1.  for ,  for 
2.  for ,  for 
3. Positively correlated for , negatively correlated for 

Run the coin-die experiment 1000 times. Let  and  be as defined in the previous exercise.

1. Compute the empirical probability of , for each , and compare with the true probability in the previous exercise
2. Compute the empirical probability of  given  for each , and compare with the true probability in the previous

exercise.

Cards

Consider the card experiment that consists of dealing 2 cards from a standard deck and recording the sequence of cards dealt. For
, let  be the event that card  is a queen and  the event that card  is a heart. For each of the following pairs of

events, compute the probability of each event, and the conditional probability of each event given the other. Determine whether
the events are positively correlated, negatively correlated, or independent.

1. , 
2. , 
3. , 
4. , 

Answer

The answers below are for , , , and  where  and  are the given events

1. , , , , independent.
2. , , , , negatively correlated.
3. , , , , independent.
4. , , , , independent.

In the card experiment, set . Run the experiment 500 times. Compute the conditional relative frequencies corresponding to
the conditional probabilities in the last exercise.

41

72

15

41

8

41

18

41

p n

n p

1

4

1

8

H

Y

P(Y = y) y ∈ {1, 2, 3, 4, 5, 6}

P(H ∣ Y = y) y ∈ {1, 2, 3, 4, 5, 6, }

P(H) H {Y = y}

5

24

y ∈ {1, 6}

7

48

y ∈ {2, 3, 4, 5}

3

5

y ∈ {1, 6}

3

7

y ∈ {2, 3, 4, 5}

y ∈ {1, 6} y ∈ {2, 3, 4, 5}

H Y

{Y = y} y

H {Y = y} y

i ∈ {1, 2} Q

i

i H

i

i

Q

1

H

1

Q

1

Q

2

Q

2

H

2

Q

1

H

2

P(A) P(B) P(A ∣ B) P(B ∣ A) A B

1

13

1

4

1

13

1

4

1

13

1

13

3

51

3

51

1

13

1

4

1

13

1

4

1

13

1

4

1

13

1

4

n= 2
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Consider the card experiment that consists of dealing 3 cards from a standard deck and recording the sequence of cards dealt.
Find the probability of the following events:

1. All three cards are all hearts.
2. The first two cards are hearts and the third is a spade.
3. The first and third cards are hearts and the second is a spade.

Proof

1. 
2. 
3. 

In the card experiment, set  and run the simulation 1000 times. Compute the empirical probability of each event in the
previous exercise and compare with the true probability.

Bivariate Uniform Distributions

Recall that Buffon's coin experiment consists of tossing a coin with radius  randomly on a floor covered with square tiles of
side length 1. The coordinates  of the center of the coin are recorded relative to axes through the center of the square, parallel
to the sides. Since the needle is dropped randomly, the basic modeling assumption is that  is uniformly distributed on the
square .

Figure : Buffon's coin experiment

In Buffon's coin experiment,

1. Find 
2. Find the conditional distribution of  given that the coin does not touch the sides of the square.

Answer

1. 
2. Given ,  is uniformly distributed on this set.

Run Buffon's coin experiment 500 times. Compute the empirical probability that  given that  and compare with the
probability in the last exercise.

In the conditional probability experiment, the random points are uniformly distributed on the rectangle . Move and resize
events  and  and note how the probabilities change. For each of the following configurations, run the experiment 1000 times
and compare the relative frequencies with the true probabilities.

1.  and  in general position
2.  and  disjoint
3. 
4. 

Reliability

A plant has 3 assembly lines that produces memory chips. Line 1 produces 50% of the chips and has a defective rate of 4%; line
2 has produces 30% of the chips and has a defective rate of 5%; line 3 produces 20% of the chips and has a defective rate of 1%.
A chip is chosen at random from the plant.

11

850

13

850

13

850

n= 3

r≤

1

2

(X,Y )

(X,Y )

[−1/2, 1/2]

2

2.4.3

P(Y > 0 ∣X < Y )

(X,Y )

3

4

(X,Y ) ∈ [r− , −r

1

2

1

2

]

2

(X,Y )

Y > 0 X < Y

S

A B

A B

A B

A⊆B

B⊆A
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1. Find the probability that the chip is defective.
2. Given that the chip is defective, find the conditional probability for each line.

Answer
1. 0.037
2. 0.541 for line 1, 0.405 for line 2, 0.054 for line 3

Suppose that a bit (0 or 1) is sent through a noisy communications channel. Because of the noise, the bit sent may be received
incorrectly as the complementary bit. Specifically, suppose that if 0 is sent, then the probability that 0 is received is 0.9 and the
probability that 1 is received is 0.1. If 1 is sent, then the probability that 1 is received is 0.8 and the probability that 0 is received
is 0.2. Finally, suppose that 1 is sent with probability 0.6 and 0 is sent with probability 0.4. Find the probability that

1. 1 was sent given that 1 was received
2. 0 was sent given that 0 was received

Answer
1. 
2. 

Suppose that  denotes the lifetime of a light bulb (in 1000 hour units), and that  has the following exponential distribution,
defined for measurable :

1. Find 
2. Find 

Answer
1. 
2. 

Suppose again that  denotes the lifetime of a light bulb (in 1000 hour units), but that  is uniformly distributed on the interal 
.

1. Find 
2. Find 

Answer

1. 
2. 

Genetics

Please refer to the discussion of genetics in the section on random experiments if you need to review some of the definitions in this
section.

Recall first that the ABO blood type in humans is determined by three alleles: , , and . Furthermore,  and  are co-dominant and 
 is recessive. Suppose that the probability distribution for the set of blood genotypes in a certain population is given in the following

table:

Genotype

Probability 0.050 0.038 0.310 0.007 0.116 0.479

Suppose that a person is chosen at random from the population. Let , , , and  be the events that the person is type ,
type , type , and type  respectively. Let  be the event that the person is homozygous, and let  denote the event that the
person has an  allele. Find each of the following:

1. , , , , , 

12/13

3/4

T T

A⊆ [0,∞)

P(T ∈ A) = dt∫

A

e

−t

(2.4.23)

P(T > 3)

P(T > 5 ∣ T > 2)

e

−3

e

−3

T T

[0, 10]

P(T > 3)

P(T > 5 ∣ T > 2)

7

10

5

8

a b o a b

o

aa ab ao bb bo oo

A B AB O A

B AB O H D

o

P(A) P(B) P(AB) P(O) P(H) P(D)
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2. , , . Are the events  and  positively correlated, negatively correlated, or independent?
3. , , . Are the events  and  positively correlated, negatively correlated, or independent?
4. , , . Are the events  and  positively correlated, negatively correlated, or independent?
5. , , . Are the events  and  positively correlated, negatively correlated, or independent?
6. , , . Are the events  and  positively correlated, negatively correlated, or independent?

Answer
1. 0.360, 0.123, 0.038, 0.479, 0.536, 0.905
2. 0.050, 0.093, 0.139.  and  are negatively correlated.
3. 0.007, 0.013, 0.057.  and  are negatively correlated.
4. 0.310, 0.343, 0.861.  and  are negatively correlated.
5. 0.116, 0.128, 0.943.  and  are positivley correlated.
6. 0.479, 0.529, 0.894.  and  are negatively correlated.

Suppose next that pod color in certain type of pea plant is determined by a gene with two alleles:  for green and  for yellow, and
that  is dominant and  recessive.

Suppose that a green-pod plant and a yellow-pod plant are bred together. Suppose further that the green-pod plant has a 
chance of carrying the recessive yellow-pod allele.

1. Find the probability that a child plant will have green pods.
2. Given that a child plant has green pods, find the updated probability that the green-pod parent has the recessive allele.

Answer

1. 
2. 

Suppose that two green-pod plants are bred together. Suppose further that with probability  neither plant has the recessive
allele, with probability  one plant has the recessive allele, and with probability  both plants have the recessive allele.

1. Find the probability that a child plant has green pods.
2. Given that a child plant has green pods, find the updated probability that both parents have the recessive gene.

Answer

1. 
2. 

Next consider a sex-linked hereditary disorder in humans (such as colorblindness or hemophilia). Let  denote the healthy allele and 
 the defective allele for the gene linked to the disorder. Recall that  is dominant and  recessive for women.

Suppose that in a certain population, 50% are male and 50% are female. Moreover, suppose that 10% of males are color blind
but only 1% of females are color blind.

1. Find the percentage of color blind persons in the population.
2. Find the percentage of color blind persons that are male.

Answer
1. 5.5%
2. 90.9%

Since color blindness is a sex-linked hereditary disorder, note that it's reasonable in the previous exercise that the probability that a
female is color blind is the square of the probability that a male is color blind. If  is the probability of the defective allele on the 
chromosome, then  is also the probability that a male will be color blind. But since the defective allele is recessive, a woman would
need two copies of the defective allele to be color blind, and assuming independence, the probability of this event is .

A man and a woman do not have a certain sex-linked hereditary disorder, but the woman has a  chance of being a carrier.

1. Find the probability that a son born to the couple will be normal.

P (A∩H) P (A ∣H) P (H ∣ A) A H

P (B∩H) P (B ∣H) P (H ∣ B) B H

P (A∩D) P (A ∣D) P (D ∣ A) A D

P (B∩D) P (B ∣D) P (D ∣ B) B D

P (H ∩D) P (H ∣D) P (D ∣H) H D

A H

B H

A D

B D

H D

g y

g y

1

4

7

8

1

7

1

3

1

2

1

6

23

24

3

23

h

d h d

p X

p

p

2

1

3
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2. Find the probability that a daughter born to the couple will be a carrier.
3. Given that a son born to the couple is normal, find the updated probability that the mother is a carrier.

Answer

1. 
2. 
3. 

Urn Models

Urn 1 contains 4 red and 6 green balls while urn 2 contains 7 red and 3 green balls. An urn is chosen at random and then a ball is
chosen at random from the selected urn.

1. Find the probability that the ball is green.
2. Given that the ball is green, find the conditional probability that urn 1 was selected.

Answer

1. 
2. 

Urn 1 contains 4 red and 6 green balls while urn 2 contains 6 red and 3 green balls. A ball is selected at random from urn 1 and
transferred to urn 2. Then a ball is selected at random from urn 2.

1. Find the probability that the ball from urn 2 is green.
2. Given that the ball from urn 2 is green, find the conditional probability that the ball from urn 1 was green.

Answer

1. 
2. 

An urn initially contains 6 red and 4 green balls. A ball is chosen at random from the urn and its color is recorded. It is then
replaced in the urn and 2 new balls of the same color are added to the urn. The process is repeated. Find the probability of each
of the following events:

1. Balls 1 and 2 are red and ball 3 is green.
2. Balls 1 and 3 are red and ball 2 is green.
3. Ball 1 is green and balls 2 and 3 are red.
4. Ball 2 is red.
5. Ball 1 is red given that ball 2 is red.

Answer

1. 
2. 
3. 
4. 
5. 

Think about the results in the previous exercise. Note in particular that the answers to parts (a), (b), and (c) are the same, and that the
probability that the second ball is red in part (d) is the same as the probability that the first ball is red. More generally, the
probabilities of events do not depend on the order of the draws. For example, the probability of an event involving the first, second,
and third draws is the same as the probability of the corresponding event involving the seventh, tenth and fifth draws. Technically,
the sequence of events  is exchangeable. The random process described in this exercise is a special case of Pólya's urn
scheme, named after George Pólya. We sill study Pólya's urn in more detail in the chapter on Finite Sampling Models

An urn initially contains 6 red and 4 green balls. A ball is chosen at random from the urn and its color is recorded. It is then
replaced in the urn and two new balls of the other color are added to the urn. The process is repeated. Find the probability of

5
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6
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5

9
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3
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each of the following events:

1. Balls 1 and 2 are red and ball 3 is green.
2. Balls 1 and 3 are red and ball 2 is green.
3. Ball 1 is green and balls 2 and 3 are red.
4. Ball 2 is red.
5. Ball 1 is red given that ball 2 is red.

Answer

1. 
2. 
3. 
4. 
5. 

Think about the results in the previous exercise, and compare with Pólya's urn. Note that the answers to parts (a), (b), and (c) are not
all the same, and that the probability that the second ball is red in part (d) is not the same as the probability that the first ball is red. In
short, the sequence of events  is not exchangeable.

Diagnostic Testing

Suppose that we have a random experiment with an event  of interest. When we run the experiment, of course, event  will either
occur or not occur. However, suppose that we are not able to observe the occurrence or non-occurrence of  directly. Instead we
have a diagnostic test designed to indicate the occurrence of event ; thus the test that can be either positive for  or negative for .
The test also has an element of randomness, and in particular can be in error. Here are some typical examples of the type of situation
we have in mind:

The event is that a person has a certain disease and the test is a blood test for the disease.
The event is that a woman is pregnant and the test is a home pregnancy test.
The event is that a person is lying and the test is a lie-detector test.
The event is that a device is defective and the test consists of a sensor reading.
The event is that a missile is in a certain region of airspace and the test consists of radar signals.
The event is that a person has committed a crime, and the test is a jury trial with evidence presented for and against the event.

Let  be the event that the test is positive for the occurrence of . The conditional probability  is called the sensitivity of
the test. The complementary probability

is the false negative probability. The conditional probability  is called the specificity of the test. The complementary
probability

is the false positive probability. In many cases, the sensitivity and specificity of the test are known, as a result of the development of
the test. However, the user of the test is interested in the opposite conditional probabilities, namely , the probability of the
event of interest, given a positive test, and , the probability of the complementary event, given a negative test. Of course,
if we know  then we also have , the probability of the complementary event given a positive
test. Similarly, if we know  then we also have , the probability of the event given a negative test. Computing
the probabilities of interest is simply a special case of Bayes' theorem.

The probability that the event occurs, given a positive test is

The probability that the event does not occur, given a negative test is

6

35
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35
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c

(2.4.24)
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c

A

c

(2.4.26)

P( ∣ ) =A

c

T

c

P( )P( ∣ )A

c

T

c

A

c

P(A)P( ∣ A)+P( )P( ∣ )T

c

A

c

T

c

A

c

(2.4.27)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10132?pdf


2.4.14 https://stats.libretexts.org/@go/page/10132

There is often a trade-off between sensitivity and specificity. An attempt to make a test more sensitive may result in the test being
less specific, and an attempt to make a test more specific may result in the test being less sensitive. As an extreme example, consider
the worthless test that always returns positive, no matter what the evidence. Then  so the test has sensitivity 1, but specificity
0. At the opposite extreme is the worthless test that always returns negative, no matter what the evidence. Then  so the test has
specificity 1 but sensitivity 0. In between these extremes are helpful tests that are actually based on evidence of some sort.

Suppose that the sensitivity  and the specificity  are fixed. Let  denote the
prior probability of the event  and  the posterior probability of  given a positive test.

 as a function of  is given by

1.  increases continuously from 0 to 1 as  increases from 0 to 1.
2.  is concave downward if . In this case  and  are positively correlated.
3.  is concave upward if . In this case  and  are negatively correlated.
4.  if . In this case,  and  are uncorrelated (independent).

Proof

The formula for  in terms of  follows from (42) and algebra. For part (a), note that

For parts (b)-(d), note that

If ,  so  is concave downward on  and hence  for . If , 
so  is concave upward on  and hence  for . Trivially if ,  for .

Of course, part (b) is the typical case, where the test is useful. In fact, we would hope that the sensitivity and specificity are close to
1. In case (c), the test is worse than useless since it gives the wrong information about . But this case could be turned into a useful
test by simply reversing the roles of positive and negative. In case (d), the test is worthless and gives no information about . It's
interesting that the broad classification above depends only on the sum of the sensitivity and specificity.

Figure :  as a function of  in the three cases

Suppose that a diagnostic test has sensitivity 0.99 and specificity 0.95. Find  for each of the following values of :

1. 0.001
2. 0.01
3. 0.2
4. 0.5
5. 0.7
6. 0.9

T = S

T = ∅

a= P(T ∣ A) ∈ (0, 1) b = P( ∣ ) ∈ (0, 1)T

c

A

c

p = P(A)

A P = P(A ∣ T ) A

P p

P = , p ∈ [0, 1]

ap

(a+b−1)p+(1−b)

(2.4.28)

P p

P a+b > 1 A T
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Answer
1. 0.0194
2. 0.1667
3. 0.8319
4. 0.9519
5. 0.9788
6. 0.9944

With sensitivity 0.99 and specificity 0.95, the test in the last exercise superficially looks good. However the small value of 
for small values of  is striking (but inevitable given the properties above). The moral, of course, is that  depends
critically on  not just on the sensitivity and specificity of the test. Moreover, the correct comparison is  with , as
in the exercise, not  with —Beware of the fallacy of the transposed conditional! In terms of the correct
comparison, the test does indeed work well;  is significantly larger than  in all cases.

A woman initially believes that there is an even chance that she is or is not pregnant. She takes a home pregnancy test with
sensitivity 0.95 and specificity 0.90 (which are reasonable values for a home pregnancy test). Find the updated probability that
the woman is pregnant in each of the following cases.

1. The test is positive.
2. The test is negative.

Answer
1. 0.905
2. 0.053

Suppose that 70% of defendants brought to trial for a certain type of crime are guilty. Moreover, historical data show that juries
convict guilty persons 80% of the time and convict innocent persons 10% of the time. Suppose that a person is tried for a crime
of this type. Find the updated probability that the person is guilty in each of the following cases:

1. The person is convicted.
2. The person is acquitted.

Answer
1. 0.949
2. 0.341

The “Check Engine” light on your car has turned on. Without the information from the light, you believe that there is a 10%
chance that your car has a serious engine problem. You learn that if the car has such a problem, the light will come on with
probability 0.99, but if the car does not have a serious problem, the light will still come on, under circumstances similar to yours,
with probability 0.3. Find the updated probability that you have an engine problem.

Answer

0.268

The standard test for HIV is the ELISA (Enzyme-Linked Immunosorbent Assay) test. It has sensitivity and specificity of 0.999.
Suppose that a person is selected at random from a population in which 1% are infected with HIV, and given the ELISA test.
Find the probability that the person has HIV in each of the following cases:

1. The test is positive.
2. The test is negative.

Answer
1. 0.9098
2. 0.00001

The ELISA test for HIV is a very good one. Let's look another test, this one for prostate cancer, that's rather bad.

P(A ∣ T )

P(A) P(A ∣ T )

P(A) P(A ∣ T ) P(A)

P(A ∣ T ) P(T ∣ A)

P(A ∣ T ) P(A)
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The PSA test for prostate cancer is based on a blood marker known as the Prostate Specific Antigen. An elevated level of PSA is
evidence for prostate cancer. To have a diagnostic test, in the sense that we are discussing here, we must decide on a definite
level of PSA, above which we declare the test to be positive. A positive test would typically lead to other more invasive tests
(such as biopsy) which, of course, carry risks and cost. The PSA test with cutoff 2.6 ng/ml has sensitivity 0.40 and specificity
0.81. The overall incidence of prostate cancer among males is 156 per 100000. Suppose that a man, with no particular risk
factors, has the PSA test. Find the probability that the man has prostate cancer in each of the following cases:

1. The test is positive.
2. The test is negative.

Answer
1. 0.00328
2. 0.00116

Diagnostic testing is closely related to a general statistical procedure known as hypothesis testing. A separate chapter on hypothesis
testing explores this procedure in detail.

Data Analysis Exercises

For the M&M data set, find the empirical probability that a bag has at least 10 reds, given that the weight of the bag is at least 48
grams.

Answer

.

Consider the Cicada data.

1. Find the empirical probability that a cicada weighs at least 0.25 grams given that the cicada is male.
2. Find the empirical probability that a cicada weighs at least 0.25 grams given that the cicada is the tredecula species.

Answer
1. 
2. 

This page titled 2.4: Conditional Probability is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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2.5: Independence
 

In this section, we will discuss independence, one of the fundamental concepts in probability theory. Independence is frequently invoked
as a modeling assumption, and moreover, (classical) probability itself is based on the idea of independent replications of the experiment.
As usual, if you are a new student of probability, you may want to skip the technical details.

Basic Theory
As usual, our starting point is a random experiment modeled by a probability space  so that  is the set of outcomes,  the
collection of events, and  the probability measure on the sample space . We will define independence for two events, then for
collections of events, and then for collections of random variables. In each case, the basic idea is the same.

Independence of Two Events

Two events  and  are independent if

If both of the events have positive probability, then independence is equivalent to the statement that the conditional probability of one
event given the other is the same as the unconditional probability of the event:

This is how you should think of independence: knowledge that one event has occurred does not change the probability assigned to the
other event. Independence of two events was discussed in the last section in the context of correlation. In particular, for two events,
independent and uncorrelated mean the same thing.

The terms independent and disjoint sound vaguely similar but they are actually very different. First, note that disjointness is purely a set-
theory concept while independence is a probability (measure-theoretic) concept. Indeed, two events can be independent relative to one
probability measure and dependent relative to another. But most importantly, two disjoint events can never be independent, except in the
trivial case that one of the events is null.

Suppose that  and  are disjoint events, each with positive probability. Then  and  are dependent, and in fact are negatively
correlated.

Proof

Note that  but .

If  and  are independent events then intuitively it seems clear that any event that can be constructed from  should be independent of
any event that can be constructed from . This is the case, as the next result shows. Moreover, this basic idea is essential for the
generalization of independence that we will consider shortly.

If  and  are independent events, then each of the following pairs of events is independent:

1. , 
2. , 
3. , 

Proof

Suppose that  and  are independent. Then by the difference rule and the complement rule,

Hence  and  are equivalent. Parts (b) and (c) follow from (a).

An event that is “essentially deterministic”, that is, has probability 0 or 1, is independent of any other event, even itself.

Suppose that  and  are events.

1. If  or , then  and  are independent.
2.  is independent of itself if and only if  or .

Proof

(S,S ,P) S S

P (S,S )

A B

P(A∩B) = P(A)P(B) (2.5.1)

P(A ∣ B) = P(A)⟺ P(B ∣ A) = P(B)⟺ P(A∩B) = P(A)P(B) (2.5.2)

A B A B

P(A∩B) = P(∅) = 0 P(A)P(B) > 0

A B A

B

A B

A

c

B

B A

c

A

c

B

c

A B

P( ∩B) = P(B)−P(A∩B) = P(B)−P(A)P(B) = P(B) [1−P(A)] = P(B)P( )A

c

A

c

(2.5.3)
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1. Recall that if  then , and if  then . In either case we have 
.

2. The independence of  with itself gives  and hence either  or .

General Independence of Events

To extend the definition of independence to more than two events, we might think that we could just require pairwise independence, the
independence of each pair of events. However, this is not sufficient for the strong type of independence that we have in mind. For
example, suppose that we have three events , , and . Mutual independence of these events should not only mean that each pair is
independent, but also that an event that can be constructed from  and  (for example ) should be independent of . Pairwise
independence does not achieve this; an exercise below gives three events that are pairwise independent, but the intersection of two of the
events is related to the third event in the strongest possible sense.

Another possible generalization would be to simply require the probability of the intersection of the events to be the product of the
probabilities of the events. However, this condition does not even guarantee pairwise independence. An exercise below gives an example.
However, the definition of independence for two events does generalize in a natural way to an arbitrary collection of events.

Suppose that  is an event for each  in an index set . Then the collection  is independent if for every finite 
,

Independence of a collection of events is much stronger than mere pairwise independence of the events in the collection. The basic
inheritance property in the following result follows immediately from the definition.

Suppose that  is a collection of events.

1. If  is independent, then  is independent for every .
2. If  is independent for every finite  then  is independent.

For a finite collection of events, the number of conditions required for mutual independence grows exponentially with the number of
events.

There are  non-trivial conditions in the definition of the independence of  events.

1. Explicitly give the 4 conditions that must be satisfied for events , , and  to be independent.
2. Explicitly give the 11 conditions that must be satisfied for events , , , and  to be independent.

Answer

There are  subcollections of the  events. One is empty and  involve a single event. The remaining  subcollections
involve two or more events and correspond to non-trivial conditions.

1. , ,  are independent if and only if

2. , , ,  are independent if and only if

P(A) = 0 P(A∩B) = 0 P(A) = 1 P(A∩B) = P(B)

P(A∩B) = P(A)P(B)

A P(A) = [P(A)]

2

P(A) = 0 P(A) = 1

A B C

A B A∪B

c

C

A

i

i I A = { : i ∈ I}A

i

J ⊆ I

P( ) = P( )⋂

j∈J

A

j

∏

j∈J

A

j

(2.5.4)
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n n −n−12
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A B C

P(A∩B) = P(A)P(B)

P(A∩C) = P(A)P(C)
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If the events  are independent, then it follows immediately from the definition that

This is known as the multiplication rule for independent events. Compare this with the general multiplication rule for conditional
probability.

The collection of essentially deterministic events  is independent.

Proof

Suppose that . If  for some  then . If  for
every  then . In either case, .

The next result generalizes the theorem above on the complements of two independent events.

Suppose that  and  are two collections of events with the property that for each , either 
 or . Then  is independent if and only if  is an independent.

Proof

The proof is actually very similar to the proof for two events, except for more complicated notation. First, by the symmetry of the
relation between  and , it suffices to show  indpendent implies  independent. Next, by the inheritance property, it suffices to
consider the case where the index set  is finite.

1. Fix  and define  and  for . Suppose now that . If  then trivially, 

. If , then using the difference rule,

Hence  is a collection of independent events.
2. Suppose now that  is a general collection of events where  or  for each . Then  can be

obtained from  by a finite sequence of complement changes of the type in (a), each of which preserves independence.

The last theorem in turn leads to the type of strong independence that we want. The following exercise gives examples.

If , , , and  are independent events, then

1. , ,  are independent.
2. ,  are independent.

Proof

P(A∩B) = P(A)P(B)

P(A∩C) = P(A)P(C)

P(A∩D) = P(A)P(D)

P(B∩C) = P(B)P(C)

P(B∩D) = P(B)P(D)

P(C ∩D) = P(C)P(D)

P(A∩B∩C) = P(A)P(B)P(C)

P(A∩B∩D) = P(A)P(B)P(D)

P(A∩C ∩D) = P(A)P(C)P(D)

P(B∩C ∩D) = P(B)P(C)P(D)

P(A∩B∩C ∩D) = P(A)P(B)P(C)P(D)
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n
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We will give proofs that use the complement theorem, but to do so, some additional notation is helpful. If  is an event, let 
and .

1. Note that  where  and note that the events in the union are disjoint. By the
distributive property,  and again the events in the union are disjoint. By additivity and
complement theorem,

By exactly the same type of argument,  and .
Directly from the result above on complements, .

2. Note that  where  and note that the events in the union are disjoint. Similarly
 where , and again the events in the union are disjoint. By the distributive

rule for set operations,

and once again, the events in the union are disjoint. By additivity and the complement theorem,

But also by additivity, the complement theorem, and the distributive property of arithmetic,

The complete generalization of these results is a bit complicated, but roughly means that if we start with a collection of indpendent events,
and form new events from disjoint subcollections (using the set operations of union, intersection, and complment), then the new events are
independent. For a precise statement, see the section on measure spaces. The importance of the complement theorem lies in the fact that
any event that can be defined in terms of a finite collection of events  can be written as a disjoint union of events of the form 

 where  or  for each .

Another consequence of the general complement theorem is a formula for the probability of the union of a collection of independent events
that is much nicer than the inclusion-exclusion formula.

If  are independent events, then

Proof

From DeMorgan's law and the independence of  we have

Independence of Random Variables

Suppose now that  is a random variable for the experiment with values in a set  for each  in a nonempty index set . Mathematically, 
 is a function from  into , and recall that  denotes the event  for . Intuitively,  is a

variable of interest in the experiment, and every meaningful statement about  defines an event. Intuitively, the random variables are
independent if information about some of the variables tells us nothing about the other variables. Mathematically, independence of a
collection of random variables can be reduced to the independence of collections of events.

The collection of random variables  is independent if the collection of events  is independent
for every choice of  for . Equivalently then,  is independent if for every finite , and for every choice of 
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for  we have

Details

Recall that  will have a -algebra  of admissible subsets so that  is a measurable space just like the sample space 
for each . Also  is measurable as a function from  into  for each . These technical assumptions ensure that the
definition makes sense.

Suppose that  is a collection of random variables.

1. If  is independent, then  is independent for every 
2. If  is independent for every finite  then  is independent.

It would seem almost obvious that if a collection of random variables is independent, and we transform each variable in deterministic way,
then the new collection of random variables should still be independent.

Suppose now that  is a function from  into a set  for each . If  is independent, then  is also
independent.

Proof

Except for the abstract setting, the proof of independence is easy. Suppose that  for each . Then 
 for . By the independence of , the collection of events 

 is independent.

Technically, the set  will have a -algebra  of admissible subsets so that  is a measurable space just like  and just
like the sample space . The function  is required to be measurable as a function from  into  just as  is measurable as a
function form  into . In the proof above,  so that  and hence .

As with events, the (mutual) independence of random variables is a very strong property. If a collection of random variables is
independent, then any subcollection is also independent. New random variables formed from disjoint subcollections are independent. For a
simple example, suppose that , , and  are independent real-valued random variables. Then

1. , , and  are independent.
2.  and  are independent.
3.  and  are independent.
4.  and  are independent.
5.  and  are independent.

In particular, note that statement 2 in the list above is much stronger than the conjunction of statements 4 and 5. Contrapositively, if  and 
 are dependent, then  and  are also dependent. Independence of random variables subsumes independence of events.

A collection of events  is independent if and only if the corresponding collection of indicator variables  is
independent.

Proof

Let  where  is a nonempty index set. For , the only non-trivial events that can be defined in terms of  are 
 and . So  is independent if and only if every collection of the form  is

independent, where for each , either  or . But by the complement theorem, this is equivalent to the
independence of .

Many of the concepts that we have been using informally can now be made precise. A compound experiment that consists of “independent
stages” is essentially just an experiment whose outcome is a sequence of independent random variables  where  is
the outcome of the th stage.

In particular, suppose that we have a basic experiment with outcome variable . By definition, the outcome of the experiment that consists
of “independent replications” of the basic experiment is a sequence of independent random variables  each with the
same probability distribution as . This is fundamental to the very concept of probability, as expressed in the law of large numbers. From
a statistical point of view, suppose that we have a population of objects and a vector of measurements  of interest for the objects in the
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sample. The sequence  above corresponds to sampling from the distribution of ; that is,  is the vector of measurements for the th
object drawn from the sample. When we sample from a finite population, sampling with replacement generates independent random
variables while sampling without replacement generates dependent random variables.

Conditional Independence and Conditional Probability

As noted at the beginning of our discussion, independence of events or random variables depends on the underlying probability measure.
Thus, suppose that  is an event with positive probability. A collection of events or a collection of random variables is conditionally
independent given  if the collection is independent relative to the conditional probability measure . For example, a
collection of events  is conditionally independent given  if for every finite ,

Note that the definitions and theorems of this section would still be true, but with all probabilities conditioned on .

Conversely, conditional probability has a nice interpretation in terms of independent replications of the experiment. Thus, suppose that we
start with a basic experiment with  as the set of outcomes. We let  denote the outcome random variable, so that mathematically  is
simply the identity function on . In particular, if  is an event then trivially, . Suppose now that we replicate the
experiment independently. This results in a new, compound experiment with a sequence of independent random variables ,
each with the same distribution as . That is,  is the outcome of the th repetition of the experiment.

Suppose now that  and  are events in the basic experiment with . In the compound experiment, the event that “when 
occurs for the first time,  also occurs” has probability

Proof

In the compound experiment, if we record  then the new set of outcomes is . The event that “when 
 occurs for the first time,  also occurs” is

The events in the union are disjoint. Also, since  is a sequence of independent variables, each with the distribution of 
we have

Hence, using geometric series, the probability of the union is

Heuristic Argument

Suppose that we create a new experiment by repeating the basic experiment until  occurs for the first time, and then record the
outcome of just the last repetition of the basic experiment. Now the set of outcomes is simply  and the appropriate probability
measure on the new experiment is .

Suppose that  and  are disjoint events in a basic experiment with  and . In the compound experiment obtained
by replicating the basic experiment, the event that “  occurs before ” has probability

Proof

Note that the event “  occurs before ” is the same as the event “when  occurs for the first time,  occurs”.
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l Total2000

l Total2000

l Total2000

l Total2000

Examples and Applications

Basic Rules

Suppose that , , and  are independent events in an experiment with , , and . Express each of
the following events in set notation and find its probability:

1. All three events occur.
2. None of the three events occurs.
3. At least one of the three events occurs.
4. At least one of the three events does not occur.
5. Exactly one of the three events occurs.
6. Exactly two of the three events occurs.

Answer
1. 
2. 
3. 
4. 
5. 
6. 

Suppose that , , and  are independent events for an experiment with , , and . Find the probability
of each of the following events:

1. 
2. 
3. 

Answer

1. 
2. 
3. 

Simple Populations

A small company has 100 employees; 40 are men and 60 are women. There are 6 male executives. How many female executives
should there be if gender and rank are independent? The underlying experiment is to choose an employee at random.

Answer

9

Suppose that a farm has four orchards that produce peaches, and that peaches are classified by size as small, medium, and large. The
table below gives total number of peaches in a recent harvest by orchard and by size. Fill in the body of the table with counts for the
various intersections, so that orchard and size are independent variables. The underlying experiment is to select a peach at random
from the farm.

Frequency Size Small Medium Large Total

Orchard 1    400

2    600

3    300

4    700

Total 400 1000 600 2000

Answer
Frequency Size Small Medium Large Total

A B C P(A) = 0.3 P(B) = 0.4 P(C) = 0.8

P(A∩B∩C) = 0.096

P( ∩ ∩ ) = 0.084A

c

B

c

C

c

P(A∪B∪C) = 0.916

P( ∪ ∪ ) = 0.904A

c

B

c

C

c

P[(A∩ ∩ )∪ ( ∩B∩ )∪ ( ∩ ∩C)] = 0.428B

c
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c
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c
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c
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Orchard 1 80 200 120 400

2 120 300 180 600

3 60 150 90 300

4 140 350 210 700

total 400 1000 600 2000

Note from the last two exercises that you cannot “see” independence in a Venn diagram. Again, independence is a measure-theoretic
concept, not a set-theoretic concept.

Bernoulli Trials

A Bernoulli trials sequence is a sequence  of independent, identically distributed indicator variables. Random variable 
 is the outcome of trial , where in the usual terminology of reliability theory, 1 denotes success and 0 denotes failure. The canonical

example is the sequence of scores when a coin (not necessarily fair) is tossed repeatedly. Another basic example arises whenever we start
with an basic experiment and an event  of interest, and then repeat the experiment. In this setting,  is the indicator variable for event 
on the th run of the experiment. The Bernoulli trials process is named for Jacob Bernoulli, and has a single basic parameter 

. This random process is studied in detail in the chapter on Bernoulli trials.

For ,

Proof

If  is a generic Bernoulli trial, then by definition,  and . Equivalently, 
 for . Thus the result follows by independence.

Note that the sequence of indicator random variables  is exchangeable. That is, if the sequence  in the previous result is
permuted, the probability does not change. On the other hand, there are exchangeable sequences of indicator random variables that are
dependent, as Pólya's urn model so dramatically illustrates.

Let  denote the number of successes in the first  trials. Then

Proof

Note that , where  is the outcome of trial , as in the previous result. For , the event 
occurs if and only if exactly  of the  trials result in success (1). The number of ways to choose the  trials that result in success is 

, and by the previous result, the probability of any particular sequence of  successes and  failures is . Thus the
result follows by the additivity of probability.

The distribution of  is called the binomial distribution with parameters  and . The binomial distribution is studied in more detail in the
chapter on Bernoulli Trials.

More generally, a multinomial trials sequence is a sequence  of independent, identically distributed random variables,
each taking values in a finite set . The canonical example is the sequence of scores when a -sided die (not necessarily fair) is thrown
repeatedly. Multinomial trials are also studied in detail in the chapter on Bernoulli trials.

Cards

Consider the experiment that consists of dealing 2 cards at random from a standard deck and recording the sequence of cards dealt. For
, let  be the event that card  is a queen and  the event that card  is a heart. Compute the appropriate probabilities to

verify the following results. Reflect on these results.

1.  and  are independent.
2.  and  are independent.
3.  and  are negatively correlated.
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4.  and  are negatively correlated.
5.  and  are independent.
6.  and  are independent.

Answer

1. 
2. 
3. , 
4. , 
5. 
6. 

In the card experiment, set . Run the simulation 500 times. For each pair of events in the previous exercise, compute the product
of the empirical probabilities and the empirical probability of the intersection. Compare the results.

Dice

The following exercise gives three events that are pairwise independent, but not (mutually) independent.

Consider the dice experiment that consists of rolling 2 standard, fair dice and recording the sequence of scores. Let  denote the event
that first score is 3,  the event that the second score is 4, and  the event that the sum of the scores is 7. Then

1. , ,  are pairwise independent.
2.  implies (is a subset of)  and hence these events are dependent in the strongest possible sense.

Answer

Note that , and the probability of the common intersection is . On the other hand, 
.

In the dice experiment, set . Run the experiment 500 times. For each pair of events in the previous exercise, compute the product
of the empirical probabilities and the empirical probability of the intersection. Compare the results.

The following exercise gives an example of three events with the property that the probability of the intersection is the product of the
probabilities, but the events are not pairwise independent.

Suppose that we throw a standard, fair die one time. Let , . Then

1. .
2.  and  are the same event, and hence are dependent in the strongest possbile sense.

Answer

Note that , so . On the other hand,  and .

Suppose that a standard, fair die is thrown 4 times. Find the probability of the following events.

1. Six does not occur.
2. Six occurs at least once.
3. The sum of the first two scores is 5 and the sum of the last two scores is 7.

Answer

1. 

2. 

3. 

Suppose that a pair of standard, fair dice are thrown 8 times. Find the probability of each of the following events.

1. Double six does not occur.
2. Double six occurs at least once.
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3. Double six does not occur on the first 4 throws but occurs at least once in the last 4 throws.

Answer

1. 

2. 

3. 

Consider the dice experiment that consists of rolling , -sided dice and recording the sequence of scores 
.The following conditions are equivalent (and correspond to the assumption that the dice are fair):

1.  is uniformly distributed on .
2.  is a sequence of independent variables, and  is uniformly distributed on  for each .

Proof

Let  and note that  has  points. Suppose that  is uniformly distributed on . Then  for
each  so  for each . Hence  is uniformly distributed on . Moreover,

so  is an independent sequence. Conversely, if  is an independent sequence and  is uniformly distributed on  for each  then 
 for each  and hence  for each . Thus  is uniformly distributed on .

A pair of standard, fair dice are thrown repeatedly. Find the probability of each of the following events.

1. A sum of 4 occurs before a sum of 7.
2. A sum of 5 occurs before a sum of 7.
3. A sum of 6 occurs before a sum of 7.
4. When a sum of 8 occurs the first time, it occurs “the hard way” as .

Answer

1. 
2. 
3. 
4. 

Problems of the type in the last exercise are important in the game of craps. Craps is studied in more detail in the chapter on Games of
Chance.

Coins

A biased coin with probability of heads  is tossed 5 times. Let  denote the outcome of the tosses (encoded as a bit string) and let 
denote the number of heads. Find each of the following:

1.  for each .
2.  for each .
3. 

Answer

1.  if ,  if  has exactly one 1 (there are 5 of these),  if  has exactly two 1s (there are 10 of these),  if  has
exactly three 1s (there are 10 of these),  if  has exactly four 1s (there are 5 of these),  if 

2.  if ,  if ,  if ,  if ,  if ,  if 
3. 

A box contains a fair coin and a two-headed coin. A coin is chosen at random from the box and tossed repeatedly. Let  denote the
event that the fair coin is chosen, and let  denote the event that the th toss results in heads. Then

1.  are conditionally independent given , with  for each .
2.  are conditionally independent given , with  for each .
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3.  for each .
4. .
5.  are dependent.
6. .
7.  as .

Proof

Parts (a) and (b) are essentially modeling assumptions, based on the design of the experiment. If we know what kind of coin we have,
then the tosses are independent. Parts (c) and (d) follow by conditioning on the type of coin and using parts (a) and (b). Part (e)
follows from (c) and (d). Note that the expression in (d) is not . Part (f) follows from part (d) and Bayes' theorem. Finally part
(g) follows from part (f).

Consider again the box in the previous exercise, but we change the experiment as follows: a coin is chosen at random from the box
and tossed and the result recorded. The coin is returned to the box and the process is repeated. As before, let  denote the event that
toss  results in heads. Then

1.  are independent.
2.  for each .
3. .

Proof

Again, part (a) is essentially a modeling assumption. Since we return the coin and draw a new coin at random each time, the results of
the tosses should be independent. Part (b) follows by conditioning on the type of the th coin. Part (c) follows from parts (a) and (b).

Think carefully about the results in the previous two exercises, and the differences between the two models. Tossing a coin produces
independent random variables if the probability of heads is fixed (that is, non-random even if unknown). Tossing a coin with a random
probability of heads generally does not produce independent random variables; the result of a toss gives information about the probability
of heads which in turn gives information about subsequent tosses.

Uniform Distributions

Recall that Buffon's coin experiment consists of tossing a coin with radius  randomly on a floor covered with square tiles of side
length 1. The coordinates  of the center of the coin are recorded relative to axes through the center of the square in which the
coin lands. The following conditions are equivalent:

1.  is uniformly distributed on .
2.  and  are independent and each is uniformly distributed on .

Figure : Buffon's coin experiment

Proof

Let , and let  denote length measure on  and  area measure on . Note that . Suppose that 
 is uniformly distributed on , so that  for . For ,

Hence  is uniformly distributed on . By a similar argument,  is also uniformly distributed on . Moreover, for  and 
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so  and  are independent. Conversely, if  and  are independent and each is uniformly distributed on , then for  and 
,

It then follows that  for every . For more details about this last step, see the advanced section on
existence and uniqueness of measures.

Compare this result with the result above for fair dice.

In Buffon's coin experiment, set . Run the simulation 500 times. For the events  and , compute the product
of the empirical probabilities and the empirical probability of the intersection. Compare the results.

The arrival time  of the  train is uniformly distributed on the interval , while the arrival time  of the  train is uniformly
distributed on the interval . (The arrival times are in minutes, after 8:00 AM). Moreover, the arrival times are independent.
Find the probability of each of the following events:

1. The  train arrives first.
2. Both trains arrive sometime after 20 minutes.

Answer

1. 
2. 

Reliability

Recall the simple model of structural reliability in which a system is composed of  components. Suppose in addition that the components
operate independently of each other. As before, let  denote the state of component , where 1 means working and 0 means failure. Thus,
our basic assumption is that the state vector  is a sequence of independent indicator random variables. We assume
that the state of the system (either working or failed) depends only on the states of the components. Thus, the state of the system is an
indicator random variable

where  is the structure function. Generally, the probability that a device is working is the reliability of the device.
Thus, we will denote the reliability of component  by  so that the vector of component reliabilities is 

. By independence, the system reliability  is a function of the component reliabilities:

Appropriately enough, this function is known as the reliability function. Our challenge is usually to find the reliability function, given the
structure function. When the components all have the same probability  then of course the system reliability  is just a function of . In
this case, the state vector  forms a sequence of Bernoulli trials.

Comment on the independence assumption for real systems, such as your car or your computer.

Recall that a series system is working if and only if each component is working.

1. The state of the system is .
2. The reliability is .

Recall that a parallel system is working if and only if at least one component is working.

1. The state of the system is .
2. The reliability is .

Recall that a  out of  system is working if and only if at least  of the  components are working. Thus, a parallel system is a 1 out of 
system and a series system is an  out of  system. A  out of  system is a majority rules system. The reliability function of a
general  out of  system is a mess. However, if the component reliabilities are the same, the function has a reasonably simple form.

For a  out of  system with common component reliability , the system reliability is
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Consider a system of 3 independent components with common reliability . Find the reliability of each of the following:

1. The parallel system.
2. The 2 out of 3 system.
3. The series system.

Answer
1. 0.992
2. 0.896
3. 0.512

Consider a system of 3 independent components with reliabilities , , . Find the reliability of each of the
following:

1. The parallel system.
2. The 2 out of 3 system.
3. The series system.

Answer
1. 0.994
2. 0.902
3. 0.504

Consider an airplane with an odd number of engines, each with reliability . Suppose that the airplane is a majority rules system, so
that the airplane needs a majority of working engines in order to fly.

1. Find the reliability of a 3 engine plane as a function of .
2. Find the reliability of a 5 engine plane as a function of .
3. For what values of  is a 5 engine plane preferable to a 3 engine plane?

Answer
1. 
2. 
3. The 5-engine plane would be preferable if  (which one would hope would be the case). The 3-engine plane would be

preferable if . If , the 3-engine and 5-engine planes are equally reliable.

The graph below is known as the Wheatstone bridge network and is named for Charles Wheatstone. The edges represent components,
and the system works if and only if there is a working path from vertex  to vertex .

1. Find the structure function.
2. Find the reliability function.

Figure : The Wheatstone bridge netwok

Answer
1. 
2. 

A system consists of 3 components, connected in parallel. Because of environmental factors, the components do not operate
independently, so our usual assumption does not hold. However, we will assume that under low stress conditions, the components are
independent, each with reliability 0.9; under medium stress conditions, the components are independent with reliability 0.8; and under
high stress conditions, the components are independent, each with reliability 0.7. The probability of low stress is 0.5, of medium stress
is 0.3, and of high stress is 0.2.
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1. Find the reliability of the system.
2. Given that the system works, find the conditional probability of each stress level.

Answer
1. 0.9917. Condition on the stress level.
2. 0.5037 for low, 0.3001 for medium, 0.1962 for high. Use Bayes' theorem and part (a).

Suppose that bits are transmitted across a noisy communications channel. Each bit that is sent, independently of the others, is received
correctly with probability 0.9 and changed to the complementary bit with probability 0.1. Using redundancy to improve reliability,
suppose that a given bit will be sent 3 times. We naturally want to compute the probability that we correctly identify the bit that was
sent. Assume we have no prior knowledge of the bit, so we assign probability  each to the event that 000 was sent and the event that
111 was sent. Now find the conditional probability that 111 was sent given each of the 8 possible bit strings received.

Answer

Let  denote the string sent and  the string received.

111

110

101

011

100

010

001

000

Diagnostic Testing

Recall the discussion of diagnostic testing in the section on Conditional Probability. Thus, we have an event  for a random experiment
whose occurrence or non-occurrence we cannot observe directly. Suppose now that we have  tests for the occurrence of , labeled from
1 to . We will let  denote the event that test  is positive for . The tests are independent in the following sense:

If  occurs, then  are (conditionally) independent and test  has sensitivity .
If  does not occur, then  are (conditionally) independent and test  has specificity .

Note that unconditionally, it is not reasonable to assume that the tests are independent. For example, a positive result for a given test
presumably is evidence that the condition  has occurred, which in turn is evidence that a subsequent test will be positive. In short, we
expect that  and  should be positively correlated.

We can form a new, compound test by giving a decision rule in terms of the individual test results. In other words, the event  that the
compound test is positive for  is a function of . The typical decision rules are very similar to the reliability structures
discussed above. A special case of interest is when the  tests are independent applications of a given basic test. In this case,  and 

 for each .

Consider the compound test that is positive for  if and only if each of the  tests is positive for .

1. 
2. The sensitivity is .
3. The specificity is 

Consider the compound test that is positive for  if and only if each at least one of the  tests is positive for .

1. 
2. The sensitivity is .
3. The specificity is .
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More generally, we could define the compound  out of  test that is positive for  if and only if at least  of the individual tests are
positive for . The series test is the  out of  test, while the parallel test is the 1 out of  test. The  out of  test is the majority
rules test.

Suppose that a woman initially believes that there is an even chance that she is or is not pregnant. She buys three identical pregnancy
tests with sensitivity 0.95 and specificity 0.90. Tests 1 and 3 are positive and test 2 is negative.

1. Find the updated probability that the woman is pregnant.
2. Can we just say that tests 2 and 3 cancel each other out? Find the probability that the woman is pregnant given just one positive

test, and compare the answer with the answer to part (a).

Answer
1. 0.834
2. No: 0.905.

Suppose that 3 independent, identical tests for an event  are applied, each with sensitivity  and specificity . Find the sensitivity
and specificity of the following tests:

1. 1 out of 3 test
2. 2 out of 3 test
3. 3 out of 3 test

Answer
1. sensitivity , specificity 
2. sensitivity , specificity 
3. sensitivity , specificity 

In a criminal trial, the defendant is convicted if and only if all 6 jurors vote guilty. Assume that if the defendant really is guilty, the
jurors vote guilty, independently, with probability 0.95, while if the defendant is really innocent, the jurors vote not guilty,
independently with probability 0.8. Suppose that 70% of defendants brought to trial are guilty.

1. Find the probability that the defendant is convicted.
2. Given that the defendant is convicted, find the probability that the defendant is guilty.
3. Comment on the assumption that the jurors act independently.

Answer
1. 0.5148
2. 0.99996
3. The independence assumption is not reasonable since jurors collaborate.

Genetics

Please refer to the discussion of genetics in the section on random experiments if you need to review some of the definitions in this
section.

Recall first that the ABO blood type in humans is determined by three alleles: , , and . Furthermore,  and  are co-dominant and  is
recessive. Suppose that in a certain population, the proportion of , , and  alleles are , , and  respectively. Of course we must have 

, ,  and .

Suppose that the blood genotype in a person is the result of independent alleles, chosen with probabilities , , and  as above.

1. The probability distribubtion of the geneotypes is given in the following table:

Genotype oo

Probability

2. The probability distribution of the blood types is given in the following table:
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Proof

Part (a) follows from the independence assumption and basic rules of probability. Even though genotypes are listed as unordered pairs,
note that there are two ways that a heterozygous genotype can occur, since either parent could contribute either of the two distinct
alleles. Part (b) follows from part (a) and basic rules of probability.

The discussion above is related to the Hardy-Weinberg model of genetics. The model is named for the English mathematician Godfrey
Hardy and the German physician Wilhelm Weiberg

Suppose that the probability distribution for the set of blood types in a certain population is given in the following table:

Blood type

Probability 0.360 0.123 0.038 0.479

Find , , and .

Answer

, , 

Suppose next that pod color in certain type of pea plant is determined by a gene with two alleles:  for green and  for yellow, and that  is
dominant and  recessive.

Suppose that 2 green-pod plants are bred together. Suppose further that each plant, independently, has the recessive yellow-pod allele
with probability .

1. Find the probability that 3 offspring plants will have green pods.
2. Given that the 3 offspring plants have green pods, find the updated probability that both parents have the recessive allele.

Answer

1. 
2. 

Next consider a sex-linked hereditary disorder in humans (such as colorblindness or hemophilia). Let  denote the healthy allele and  the
defective allele for the gene linked to the disorder. Recall that  is dominant and  recessive for women.

Suppose that a healthy woman initially has a  chance of being a carrier. (This would be the case, for example, if her mother and
father are healthy but she has a brother with the disorder, so that her mother must be a carrier).

1. Find the probability that the first two sons of the women will be healthy.
2. Given that the first two sons are healthy, compute the updated probability that she is a carrier.
3. Given that the first two sons are healthy, compute the conditional probability that the third son will be healthy.

Answer

1. 
2. 
3. 

Laplace's Rule of Succession

Suppose that we have  coins, labeled . Coin  lands heads with probability  for each . The experiment is to
choose a coin at random (so that each coin is equally likely to be chosen) and then toss the chosen coin repeatedly.

1. The probability that the first  tosses are all heads is 
2.  as 
3. The conditional probability that toss  is heads given that the previous  tosses were all heads is 

4.  as 

Proof

A B AB O
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Part (a) follows by conditioning on the chosen coin. For part (b), note that  is an approximating sum for . Part (c)
follows from the definition of conditional probability, and part (d) is a trivial consequence of (b), (c).

Note that coin 0 is two-tailed, the probability of heads increases with , and coin  is two-headed. The limiting conditional probability in
part (d) is called Laplace's Rule of Succession, named after Simon Laplace. This rule was used by Laplace and others as a general principle
for estimating the conditional probability that an event will occur on time , given that the event has occurred  times in succession.

Suppose that a missile has had 10 successful tests in a row. Compute Laplace's estimate that the 11th test will be successful. Does this
make sense?

Answer

. No, not really.

This page titled 2.5: Independence is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services)
via source content that was edited to the style and standards of the LibreTexts platform.
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2.6: Convergence
    

This is the first of several sections in this chapter that are more advanced than the basic topics in the first five sections. In this
section we discuss several topics related to convergence of events and random variables, a subject of fundamental importance in
probability theory. In particular the results that we obtain will be important for:

Properties of distribution functions,
The weak law of large numbers,
The strong law of large numbers.

As usual, our starting point is a random experiment modeled by a probability space . So to review,  is the set of
outcomes,  the -algebra of events, and  the probability measure on the sample space .

Basic Theory

Sequences of events

Our first discussion deals with sequences of events and various types of limits of such sequences. The limits are also event. We
start with two simple definitions.

Suppose that  is a sequence of events.

1. The sequence is increasing if  for every .
2. The sequence is decreasing if  for every .

Note that these are the standard definitions of increasing and decreasing, relative to the ordinary total order  on the index set 
and the subset partial order  on the collection of events. The terminology is also justified by the corresponding indicator
variables.

Suppose that  is a sequence of events, and let  denote the indicator variable of the event  for .

1. The sequence of events is increasing if and only if the sequence of indicator variables is increasing in the ordinary sense.
That is,  for each .

2. The sequence of events is decreasing if and only if the sequence of indicator variables is decreasing in the ordinary sense.
That is,  for each .

Proof

Figure : A sequence of increasing events and their union

Figure : A sequence of decreasing events and their intersection

If a sequence of events is either increasing or decreasing, we can define the limit of the sequence in a way that turns out to be quite
natural.

Suppose that  is a sequence of events.

1. If the sequence is increasing, we define .
2. If the sequence is decreasing, we define .
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Once again, the terminology is clarified by the corresponding indicator variables.

Suppose again that  is a sequence of events, and let  denote the indicator variable of  for .

1. If the sequence of events is increasing, then  is the indicator variable of 
2. If the sequence of events is decreasing, then  is the indicator variable of 

Proof
1. If  then  for some . Since the events are increasing,  for every . In this case, 

 for every  and hence . On the other hand, if  then  for every 
. In this case,  for every  and hence .

2. If  then  for each . In this case,  for each  and hence . If 
 then  for some . Since the events are decreasing,  for all . In this case, 

 for  and hence .

An arbitrary union of events can always be written as a union of increasing events, and an arbitrary intersection of events can
always be written as an intersection of decreasing events:

Suppose that  is a sequence of events. Then

1.  is increasing in  and .
2.  is decreasing in  and .

Proof

1. Trivially . The second statement simply means that .
2. Trivially . The second statement simply means that .

There is a more interesting and useful way to generate increasing and decreasing sequences from an arbitrary sequence of events,
using the tail segment of the sequence rather than the initial segment.

Suppose that  is a sequence of events. Then

1.  is decreasing in .
2.  is increasing in .

Proof
1. Clearly 
2. Clearly 

Since the new sequences defined in the previous results are decreasing and increasing, respectively, we can take their limits. These
are the limit superior and limit inferior, respectively, of the original sequence.

Suppose that  is a sequence of events. Define

1. . This is the event that occurs if an only if  occurs for infinitely
many values of .

2. . This is the event that occurs if an only if  occurs for all but
finitely many values of .

Proof
1. From the definition, the event  occurs if and only if for each  there exists  such that 

occurs.
2. From the definition, the event  occurs if and only if there exists  such that  occurs for every 

.

Once again, the terminology and notation are clarified by the corresponding indicator variables. You may need to review limit
inferior and limit superior for sequences of real numbers in the section on Partial Orders.
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Suppose that  is a sequence of events, and et  denote the indicator variable of  for . Then

1.  is the indicator variable of .
2.  is the indicator variable of .

Proof
1. By the result above,  is the indicator variable of . But 

 and hence .
2. By the result above,  is the indicator variable of . But 

 and hence .

Suppose that  is a sequence of events. Then .

Proof

If  occurs for all but finitely many  then certainly  occurs for infinitely many .

Suppose that  is a sequence of events. Then

1. 
2. .

Proof

These results follows from DeMorgan's laws.

The Continuity Theorems

Generally speaking, a function is continuous if it preserves limits. Thus, the following results are the continuity theorems of
probability. Part (a) is the continuity theorem for increasing events and part (b) the continuity theorem for decreasing events.

Suppose that  is a sequence of events.

1. If the sequence is increasing then 
2. If the sequence is decreasing then 

Proof
1. Let  and let  for . Note that the collection of events  is pairwise

disjoint and has the same union as . From countable additivity and the definition of infinite series,

But  and  for . Therefore  and hence we
have .

The construction in the continuity theorem for increasing events
The construction in the continuity theorem

2. The sequence of complements  is increasing. Hence using part (a), DeMorgan's law, and the complement rule
we have

The continuity theorems can be applied to the increasing and decreasing sequences that we constructed earlier from an arbitrary
sequence of events.

Suppose that  is a sequence of events.

1. 
2. 
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Proof

These results follow immediately from the continuity theorems.

Suppose that  is a sequence of events. Then

1. 
2. 

Proof

These results follows directly from the definitions, and the continuity theorems.

The next result shows that the countable additivity axiom for a probability measure is equivalent to finite additivity and the
continuity property for increasing events.

Temporarily, suppose that  is only finitely additive, but satisfies the continuity property for increasing events. Then  is
countably additive.

Proof

Suppose that  is a sequence of pairwise disjoint events. Since we are assuming that  is finitely additive we have

If we let , the left side converges to  by the continuity assumption and the result above, while the right side
converges to  by the definition of an infinite series.

There are a few mathematicians who reject the countable additivity axiom of probability measure in favor of the weaker finite
additivity axiom. Whatever the philosophical arguments may be, life is certainly much harder without the continuity theorems.

The Borel-Cantelli Lemmas

The Borel-Cantelli Lemmas, named after Emil Borel and Francessco Cantelli, are very important tools in probability theory. The
first lemma gives a condition that is sufficient to conclude that infinitely many events occur with probability 0.

First Borel-Cantelli Lemma. Suppose that  is a sequence of events. If  then 
.

Proof

From the result above on limit superiors, we have . But from Boole's inequality, 
. Since , we have  as .

The second lemma gives a condition that is sufficient to conclude that infinitely many independent events occur with probability 1.

Second Borel-Cantelli Lemma. Suppose that  is a sequence of independent events. If  then 
.

Proof

Note first that  for every , and hcnce  for each . From the results above
on limit superiors and complements,

But by independence and the inequality above,
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For independent events, both Borel-Cantelli lemmas apply of course, and lead to a zero-one law.

If  is a sequence of independent events then  has probability 0 or 1:

1. If  then .
2. If  then .

This result is actually a special case of a more general zero-one law, known as the Kolmogorov zero-one law, and named for Andrei
Kolmogorov. This law is studied in the more advanced section on measure. Also, we can use the zero-one law to derive a calculus
theorem that relates infinite series and infinte products. This derivation is an example of the probabilistic method—the use of
probability to obtain results, seemingly unrelated to probability, in other areas of mathematics.

Suppose that  for each . Then

Proof

We can easily construct a probability space with a sequence of independent events  such that  for
each . The result then follows from the proofs of the two Borel-Cantelli lemmas.

Our next result is a simple application of the second Borel-Cantelli lemma to independent replications of a basic experiment.

Suppose that  is an event in a basic random experiment with . In the compound experiment that consists of
independent replications of the basic experiment, the event “  occurs infinitely often” has probability 1.

Proof

Let  denote the probability of  in the basic experiment. In the compound experiment, we have a sequence of independent
events  with  for each  (these are “independent copies” of ). But  since 

 so the result follows from the second Borel-Cantelli lemma.

Convergence of Random Variables

Our next discussion concerns two ways that a sequence of random variables defined for our experiment can “converge”. These are
fundamentally important concepts, since some of the deepest results in probability theory are limit theorems involving random
variables. The most important special case is when the random variables are real valued, but the proofs are essentially the same for
variables with values in a metric space, so we will use the more general setting.

Thus, suppose that  is a metric space, and that  is the corresponding Borel -algebra (that is, the -algebra generated by
the topology), so that our measurable space is . Here is the most important special case:

For , is the -dimensional Euclidean space is  where

Euclidean spaces are named for Euclid, of course. As noted above, the one-dimensional case where  for 
is particularly important. Returning to the general metric space, recall that if  is a sequence in  and , then 

 as  means that  as  (in the usual calculus sense). For the rest of our discussion, we assume
that  is a sequence of random variable with values in  and  is a random variable with values in , all defined on
the probability space .

We say that  as  with probability 1 if the event that  as  has probability 1. That is,
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( , , …)x

1

x

2

S x ∈ S

→ xx

n

n → ∞ d( , x) → 0x

n

n → ∞

( , , …)X

1

X

2

S X S

(Ω,F ,P)

→ XX

n

n → ∞ → XX

n

n → ∞

P{ω ∈ S : (ω) → X(ω) as n → ∞} = 1X

n

(2.6.8)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10134?pdf


2.6.6 https://stats.libretexts.org/@go/page/10134

We need to make sure that the definition makes sense, in that the statement that  converges to  as  defines a valid
event. Note that  does not converge to  as  if and only if for some ,  for infinitely many 

. Note that if the this condition holds for a given  then it holds for all smaller . Moreover, there are
arbitrarily small rational  so  does not converge to  as  if and only if for some rational , 
for infinitely many . Hence

where  is the set of positive rational numbers. A critical point to remember is that this set is countable. So, building a little
at a time, note that  is an event for each  and  since  and  are random variables. Next, the
limit superior of a sequence of events is an event. Finally, a countable union of events is an event.

As good probabilists, we usually suppress references to the sample space and write the definition simply as 
. The statement that an event has probability 1 is usually the strongest affirmative statement that we

can make in probability theory. Thus, convergence with probability 1 is the strongest form of convergence. The phrases almost
surely and almost everywhere are sometimes used instead of the phrase with probability 1.

Recall that metrics  and  on  are equivalent if they generate the same topology on . Recall also that convergence of a
sequence is a topological property. That is, if  is a sequence in  and , and if  are equivalent metrics on ,
then  as  relative to  if and only if  as  relative to . So for our random variables as defined above,
it follows that  as  with probability 1 relative to  if and only if  as  with probability 1 relative to

.

The following statements are equivalent:

1.  as  with probability 1.
2.  for every rational .
3.  for every .
4.  as  for every .

Proof

From the details in the definition above,  if and only if

where again  is the set of positive rational numbers. But by Boole's inequality, a countable union of events has probability 0
if and only if every event in the union has probability 0. Thus, (a) is equivalent to (b). Statement (b) is clearly equivalent to (c)
since there are arbitrarily small positive rational numbers. Finally, (c) is equivalent to (d) by the continuity result in above.

Our next result gives a fundamental criterion for convergence with probability 1:

If  for every  then  as  with probability 1.

Proof

By the first Borel-Cantelli lemma, if  then 
. Hence the result follows from the previous theorem.

Here is our next mode of convergence.

We say that  as  in probability if

The phrase in probability sounds superficially like the phrase with probability 1. However, as we will soon see, convergence in
probability is much weaker than convergence with probability 1. Indeed, convergence with probability 1 is often called strong
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convergence, while convergence in probability is often called weak convergence.

If  as  with probability 1 then  as  in probability.

Proof

Let . Then . But if  as  with probability 1, then
the expression on the right converges to 0 as  by part (d) of the result above. Hence  as  in
probability.

The converse fails with a passion. A simple counterexample is given below. However, there is a partial converse that is very useful.

If  as  in probability, then there exists a subsequence  of  such that  as 
with probability 1.

Proof

Suppose that  as  in probability. Then for each  there exists  such that 
. We can make the choices so that  for each . It follows that 

 for every . By the result above,  as  with probability 1.

Note that the proof works because  as  and . Any two sequences with these properties would
work just as well.

There are two other modes of convergence that we will discuss later:

Convergence in distribution.
Convergence in mean,

Examples and Applications

Coins

Suppose that we have an infinite sequence of coins labeled  Moreover, coin  has probability of heads  for each 
, where  is a parameter. We toss each coin in sequence one time. In terms of , find the probability of the

following events:

1. infinitely many heads occur
2. infinitely many tails occur

Answer

Let  be the event that toss  results in heads, and  the event that toss  results in tails.

1. ,  if 
2. ,  if 

The following exercise gives a simple example of a sequence of random variables that converge in probability but not with
probability 1. Naturally, we are assuming the standard metric on .

Suppose again that we have a sequence of coins labeled , and that coin  lands heads up with probability  for each .
We toss the coins in order to produce a sequence  of independent indicator random variables with

1. , so that infinitely many tails occur with probability 1.
2. , so that infinitely many heads occur with probability 1.
3. .
4.  as  in probability.

Proof
1. This follow from the second Borel-Cantelli lemma, since 
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2. This also follows from the second Borel-Cantelli lemma, since .
3. This follows from parts (a) and (b). Recall that the intersection of two events with probability 1 still has probability 1.
4. Suppose . Then  as .

Discrete Spaces

Recall that a measurable space  is discrete if  is countable and  is the collection of all subsets of  (the power set of ).
Moreover,  is the Borel -algebra corresponding to the discrete metric  on  given by  for  and 
for distinct . How do convergence with probability 1 and convergence in probability work for the discrete metric?

Suppose that  is a discrete space. Suppose further that  is a sequence of random variables with values in 
and  is a random variable with values in , all defined on the probability space . Relative to the discrete metric ,

1.  as  with probability 1 if and only if .
2.  as  in probability if and only if  as .

Proof
1. If  is a sequence of points in  and , then relative to metric ,  as  if and only if 

for all but finitely many .
2. If  then . If  then .

Of course, it's important to realize that a discrete space can be the Borel space for metrics other than the discrete metric.

This page titled 2.6: Convergence is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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2.7: Measure Spaces
     

In this section we discuss positive measure spaces (which include probability spaces) from a more advanced point of view. The
sections on Measure Theory and Special Set Structures in the chapter on Foundations are essential prerequisites. On the other hand, if
you are not interested in the measure-theoretic aspects of probability, you can safely skip this section.

Positive Measure

Definitions

Suppose that  is a set, playing the role of a universal set for a mathematical theory. As we have noted before,  usually comes with
a -algebra  of admissible subsets of , so that  is a measurable space. In particular, this is the case for the model of a
random experiment, where  is the set of outcomes and  the -algebra of events, so that the measurable space  is the
sample space of the experiment. A probability measure is a special case of a more general object known as a positive measure.

A positive measure on  is a function  that satisfies the following axioms:

1. 
2. If  is a countable, pairwise disjoint collection of sets in  then

The triple  is a measure space.

Axiom (b) is called countable additivity, and is the essential property. The measure of a set that consists of a countable union of
disjoint pieces is the sum of the measures of the pieces. Note also that since the terms in the sum are positive, there is no issue with
the order of the terms in the sum, although of course,  is a possible value.

Figure : A union of four disjoint sets

So perhaps the term measurable space for  makes a little more sense now—a measurable space is one that can have a positive
measure defined on it.

Suppose that  is a measure space.

1. If  then  is a finite measure space.
2. If  then  is a probability space.

So probability measures are positive measures, but positive measures are important beyond the application to probability. The
standard measures on the Euclidean spaces are all positive measures: the extension of length for measurable subsets of , the
extension of area for measurable subsets of , the extension of volume for measurable subsets of , and the higher dimensional
analogues. We will actually construct these measures in the next section on Existence and Uniqueness. In addition, counting measure 

 is a positive measure on the subsets of a set . Even more general measures that can take positive and negative values are explored
in the chapter on Distributions.

Properties

The following results give some simple properties of a positive measure space . The proofs are essentially identical to the
proofs of the corresponding properties of probability, except that the measure of a set may be infinite so we must be careful to avoid
the dreaded indeterminate form .

If , then .
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Note that , and the sets in the union are disjoint.

If  and  then

1. 
2. 

Proof

Part (a) follows from the previous theorem, since . Part (b) follows from part (a).

Thus  is an increasing function, relative to the subset partial order  on  and the ordinary order  on . In particular, if  is
a finite measure, then  for every . Note also that if  and  then 

. In the special case that , this becomes . In particular, these results
holds for a finite measure and are just like the difference rules for probability. If  is a finite measure, then .
This is the analogue of the complement rule in probability, with but with  replacing 1.

The following result is the analogue of Boole's inequality for probability. For a general positive measure, the result is referred to as
the subadditive property.

Suppose that  for  in a countable index set . Then

Proof

The proof is exaclty like the one for Boole's inequality. Assume that . Let  and 
for . Then  is a disjoint collection of sets in  with the same union as . Also  for
each  so . Hence

For a union of sets with finite measure, the inclusion-exclusion formula holds, and the proof is just like the one for probability.

Suppose that  for each  where , and that  for . Then

Proof

The proof is by induction on . The proof for  is simple: . The union on the right is disjoint,
so using additivity and the difference rule,

Suppose now that the inclusion-exclusion formula holds for a given , and consider the case . Then

As before, the set in parentheses and the set in square brackets are disjoint. Thus using the additivity axiom, the difference rule,
and the distributive rule we have

By the induction hypothesis, the inclusion-exclusion formula holds for each union of  sets on the right. Applying the formula
and simplifying gives the inclusion-exclusion formula for  sets.
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The continuity theorem for increasing sets holds for a positive measure. The continuity theorem for decreasing events holds also, if
the sets have finite measure. Again, the proofs are similar to the ones for a probability measure, except for considerations of infinite
measure.

Suppose that  is a sequence of sets in .

1. If the sequence is increasing then .
2. If sequence is decreasing and  then .

Proof
1. Note that if  for some  then  for  and . Thus, suppose that  for

each . Let  and  for . Then  is a disjoint sequence with the same union
as . Also,  and by the proper difference rule,  for .
Hence

But .
2. Note that  is increasing in . Hence using the continuity result for increasing sets,

Recall that if  is increasing,  is denoted , and if  is decreasing,  is denoted 
. In both cases, the continuity theorem has the form . The continuity theorem for

decreasing events fails without the additional assumption of finite measure. A simple counterexample is given below.

The following corollary of the inclusion-exclusion law gives a condition for countable additivity that does not require that the sets be
disjoint, but only that the intersections have measure 0. The result is used below in the theorem on completion.

Suppose that  for each  in a countable index set  and that  for  and  for distinct 
. Then

Proof

We will assume that . For ,

as an immediate consequence of the inclusion-exclusion law, under the assumption that  for distinct 
. Next  as , and hence by the continuity theorem for increasing events, 

 as . On the other hand,  as  by the definition of an
infinite series of nonnegative terms.

More Definitions

If a positive measure is not finite, then the following definition gives the next best thing.

The measure space  is -finite if there exists a countable collection  with  and 
 for each .
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μ( ∩ ) = 0A

i

A

j

i, j∈ {1, 2,… ,n} ↑⋃

n

i=1

A

i

⋃

∞

i=1

A

i

n→∞

μ ( ) → μ ( )⋃

n

i=1

A

i

⋃

∞

i=1

A

i

n→∞ μ( ) → μ( )∑

n

i=1

A

i

∑

∞

i=1

A

i

n→∞

(S,S ,μ) σ { : i ∈ I} ⊆SA

i

= S⋃

i∈I

A

i

μ( ) <∞A

i

i ∈ I

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10135?pdf


2.7.4 https://stats.libretexts.org/@go/page/10135

So of course, if  is a finite measure on  then  is -finite, but not conversely in general. On the other hand, for , let 
. Then  is a -algebra of subsets of  and  restricted to  is a finite measure. The point of this (and

the reason for the definition) is that often nice properties of finite measures can be extended to -finite measures. In particular, -
finite measure spaces play a crucial role in the construction of product measure spaces, and for the completion of a measure space
considered below.

Suppose that  is a -finite measure space.

1. There exists an increasing sequence satisfying the -finite definition
2. There exists a disjoint sequence satisfying the -finite definition.

Proof

Without loss of generality, we can take  as the index set in the definition. So there exists  for  such that 
 for each  and . The proof uses some of the same tricks that we have seen before.

1. Let . Then  for  and this sequence is increasing. Moreover,  for 
 and .

2. Let  and let  for . Then  for each  and this sequence is disjoint.
Moreover,  so  and .

Our next definition concerns sets where a measure is concentrated, in a certain sense.

Suppose that  is a measure space. An atom of the space is a set  with the following properties:

1. 
2. If  and  then either  or .

A measure space that has no atoms is called non-atomic or diffuse.

In probability theory, we are often particularly interested in atoms that are singleton sets. Note that  is an atom if and only if 
, since the only subsets of  are  itself and .

Constructions

There are several simple ways to construct new positive measures from existing ones. As usual, we start with a measurable space 
.

Suppose that  is a measurable subspace of . If  is a positive measure on  then  restricted to  is a
positive measure on . If  is a finite measure on  then  is a finite measure on .

Proof

The assumption is that  is a -algebra of subsets of  and . In particular . Since the additivity property of 
holds for a countable, disjoint collection of events in , it trivially holds for a countable, disjoint collection of events in .
Finally, by the increasing property,  so if  then .

However, if  is -finite on , it is not necessarily true that  is -finite on . A counterexample is given below. The
previous theorem would apply, in particular, when  so that  is a sub -algebra of . Next, a positive multiple of a positive
measure gives another positive measure.

If  is a positive measure on  and , then  is also a positive measure on . If  is finite ( -finite) then 
 is finite ( -finite) respectively.

Proof

Clearly . Also . Next if  is a countable, disjoint collection of events in 
then
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μ({x}) > 0 {x} {x} ∅

(S,S )
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R σ R R ⊆S R ∈S μ

S R
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R= S R σ S
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cμ σ
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Finally, since  if and only if  for , the finiteness and -finiteness properties are trivially
preserved.

A nontrivial finite positive measure  is practically just like a probability measure, and in fact can be re-scaled into a probability
measure , as was done in the section on Probability Measures:

Suppose that  is a positive measure on  with . Then  defined by  for  is a
probability measure on .

Proof

 is a measure by the previous result, and trivially .

Sums of positive measures are also positive measures.

If  is a positive measure on  for each  in a countable index set  then  is also a positive measure on 
.

1. If  is finite and  is finite for each  then  is finite.
2. If  is finite and  is -finite for each  then  is -finite.

Proof

Clearly . First . Next if  is a countable, disjoint collection of events in 
then

The interchange of sums is permissible since the terms are nonnegative. Suppose now that  is finite.

1. If  is finite for each  then  so  is finite.
2. Suppose that  is -finite for each . Then for each  there exists a collection  such that 

 and  for each . For , let . Then  for each  and

Moreover,

so  is -finnite.

In the context of the last result, if  is countably infinite and  is finite for each , then  is not necessarily -finite. A
counterexample is given below. In this case,  is said to be -finite, but we've had enough definitions, so we won't pursue this one.
From scaling and sum properties, note that a positive linear combination of positive measures is a positive measure. The next method
is sometimes referred to as a change of variables.

Suppose that  is a measure space. Suppose also that  is another measurable space and that  is
measurable. Then  defined as follows is a positive measure on 

If  is finite then  is finite.

Proof

Clearly . The proof is easy since inverse images preserve all set operations. First  so . Next,
if  is a countable, disjoint collection of sets in , then  is a countable, disjoint collection of sets
in , and . Hence

μ(A) <∞ (cμ)(A) <∞ A ∈S σ
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−1

(2.7.17)
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Finally, if  is finite then  so  is finite.

In the context of the last result, if  is -finite on , it is not necessarily true that  is -finite on , even if  is one-to-
one. A counterexample is given below. The takeaway is that -finiteness of  depends very much on the nature of the -algebra .
Our next result shows that it's easy to explicitly construct a positive measure on a countably generated -algebra, that is, a -algebra
generated by a countable partition. Such -algebras are important for counterexamples and to gain insight, and also because many -
algebras that occur in applications can be constructed from them.

Suppose that  is a countable partition of  into nonempty sets, and that , the -algebra generated
by the partition. For , define  arbitrarily. For  where , define

Then  is a positive measure on .

1. The atoms of the measure are the sets of the form  where  and where  for one and only one 
.

2. If  for  and  is finite then  is finite.
3. If  for  and  is countably infinite then  is -finite.

Proof

Recall that every  has a unique representation of the form  where . In particular,  in this
representation gives . The sum over an empty index set is 0, so . Next suppose that  is a countable,
disjoint collection of sets in . Then there exists a disjoint collection  of subsets of  such that .
Hence

The fact that the terms are all nonnegative means that we do not have to worry about the order of summation.

1. Again, every  has the unique representation  where . The subsets of  that are in  are 
 ahere . Hence  is an atom if and only if  for one and only one .

2. If  is finite and  then , so  is finite.
3. If  is countabley infinite and  for  then  satisfies the condition for  to be -finite.

One of the most general ways to construct new measures from old ones is via the theory of integration with respect to a positive
measure, which is explored in the chapter on Distributions. The construction of positive measures more or less “from scratch” is
considered in the next section on Existence and Uniqueness. We close this discussion with a simple result that is useful for
counterexamples.

Suppose that the measure space  has an atom  with . Then the space is not -finite.

Proof

Let  be a countable disjoint collection of sets in  that partitions . Then  partitions . Since 
, we must have  for some . Since  is an atom and  it follows that 

. Hence also therefore .

Measure and Topology

Often the spaces that occur in probability and stochastic processes are topological spaces. Recall that a topological space 
consists of a set  and a topology  on  (the collection of open sets). The topology as well as the measure theory plays an
important role, so it's natural to want these two types of structures to be compatible. We have already seen the most important step in
this direction: Recall that , the -algebra generated by the topology, is the Borel -algebra on , named for Émile Borel.
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Since the complement of an open set is a closed set,  is also the -algebra generated by the collection of closed sets. Moreover, 
contains countable intersections of open sets (called  sets) and countable unions of closed sets (called  sets).

Suppose that  is a topological space and let  be the Borel -algebra. A positive measure  on  is a
Borel measure and then  is a Borel measure space.

The next definition concerns the subset on which a Borel measure is concentrated, in a certain sense.

Suppose that  is a Borel measure space. The support of  is

The set  is closed.

Proof

Let . For , there exists an open neighborhood  of  such that . If , then  is also an
open neighborhood of , so . Hence  for every  and so  is open.

The term Borel measure has different definitions in the literature. Often the topological space is required to be locally compact,
Hausdorff, and with a countable base (LCCB). Then a Borel measure  is required to have the additional condition that  if 

 is compact. In this text, we use the term Borel measures in this more restricted sense.

Suppose that  is a Borel measure space corresponding to an LCCB topolgy. Then the space is -finite.

Proof

Since the topological space is locally compact and has a countable base,  where  is a countable
collection of compact sets. Since  is a Borel measure,  and hence  is -finite.

Here are a couple of other definitions that are important for Borel measures, again linking topology and measure in natural ways.

Suppose again that  is a Borel measure space.

1.  is inner regular if  for .
2.  is outer regular if  for .
3.  is regular if it is both inner regular and outer regular.

The measure spaces that occur in probability and stochastic processes are usually regular Borel spaces associated with LCCB
topologies.

Null Sets and Equivalence

Sets of measure 0 in a measure space turn out to be very important precisely because we can often ignore the differences between
mathematical objects on such sets. In this disucssion, we assume that we have a fixed measure space .

A set  is null if .

Consider a measurable “statement” with  as a free variable. (Technically, such a statement is a predicate on .) If the statement
is true for all  except for  in a null set, we say that the statement holds almost everywhere on . This terminology is used often
in measure theory and captures the importance of the definition.

Let , the collection of null and co-null sets. Then  is a sub -algebra of .

Proof

Trivially  since  and . Next if  then  by the symmetry of the definition. Finally, suppose
that  for  where  is a countable index set. If  for every  then  by
the subadditive property. On the other hand, if  for some  then .
In either case, .

S σ S

G

δ

F

σ

(S,T ) S = σ(T ) σ μ (S,S )

(S,S ,μ)

(S,S ,μ) μ
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Of course  restricted to  is not very interesting since  or  for every . Our next definition is a type of
equivalence between sets in . To make this precise, recall first that the symmetric difference between subsets  and  of  is 

. This is the set that consists of points in one of the two sets, but not both, and corresponds to exclusive
or.

Sets  are equivalent if , and we denote this by .

Thus  if and only if  if and only if . In the predicate
terminology mentioned above, the statement

is true for almost every . As the name suggests, the relation  really is an equivalence relation on  and hence  is
partitioned into disjoint classes of mutually equivalent sets. Two sets in the same equivalence class differ by a set of measure 0.

The relation  is an equivalence relation on . That is, for ,

1.  (the reflexive property).
2. If  then  (the symmetric property).
3. If  and  then  (the transitive property).

Proof
1. The reflexive property is trivial since .
2. The symmetric property is also trivial since .
3. For the transitive property, suppose that  and . Note that , and hence 

. By a symmetric argument, .

Equivalence is preserved under the standard set operations.

If  and  then .

Proof

Note that  and , so .

Suppose that  and that  for  in a countable index set . Then

1. 
2. 

Proof
1. Note that

To see this, note that if  is in the set on the left then either  for some  and  for every , or  for
every  and  for some . In either case,  for some .

2. Similarly

If  is in the set on the left then  for every  and  for some , or  for every  or  for
some . In either case,  for some 

In both parts, the proof is completed by noting that the common set on the right in the displayed equations is null:
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x ∈ A if and only if x ∈ B (2.7.22)
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i

i ∈ I x ∉ A

j

j∈ I x ∈ △A

j

B

j

j∈ I

μ[ ( △ )] ≤ μ( △ ) = 0⋃

i∈I

A

i

B

i

∑

i∈I

A

i

B

i

(2.7.25)
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Equivalent sets have the same measure.

If  and  then .

Proof

Note again that . If  then . By a symmetric argument, .

The converse trivially fails, and a counterexample is given below. However, the collection of null sets and the collection of co-null
sets do form equivalence classes.

Suppose that .

1. If  then  if and only if .
2. If  then  if and only if .

Proof
1. Suppose that  and . Then  by the result above. Conversely, note that  and 

so if  then  so .
2. Part (b) follows from part (a) and the result above on complements.

We can extend the notion of equivalence to measruable functions with a common range space. Thus suppose that  is another
measurable space. If  are measurable, then  is measurable with respect the usual product -algebra 

. We assume that the diagonal set , which is almost always true in applications.

Measurable functions  are equivalent if . Again we write .

Details

Note that  by our assumption, so the definition makes sense.

In the terminology discussed earlier,  means that  almost everywhere on . As with measurable sets, the relation 
really does define an equivalence relation on the collection of measurable functions from  to . Thus, the collection of such
functions is partitioned into disjoint classes of mutually equivalent variables.

The relation  is an equivalence relation on the collection of measurable functions from  to . That is, for measurable 
,

1.  (the reflexive property).
2. If  then  (the symmetric property).
3. If  and  then  (the transitive property).

Proof

Parts (a) and (b) are trivially. For (c) note that  and  implies  for . Negating this
statement gives  implies  or . So

Since  and , the two sets on the right have measure 0. Hence, so does the set on the left.

Suppose agaom that  are measurable and that . Then for every , the sets .

Proof

Note that .

Thus if  are measurable and , then by the previous result,  where  are the measures on 
associated with  and , as above. Again, the converse fails with a passion.

It often happens that a definition for functions subsumes the corresponding definition for sets, by considering the indicator functons
of the sets. So it is with equivalence. In the following result, we can take  with  the collection of all subsets.

Suppose that . Then  if and only if .

A, B ∈S A≡B μ(A) = μ(B)

A= (A∩B)∪ (A ∖B) A≡B μ(A) = μ(A∩B) μ(B) = μ(A∩B)

A ∈S

μ(A) = 0 A≡B μ(B) = 0

μ( ) = 0A

c

A≡B μ( ) = 0B

c

μ(A) = 0 A≡B μ(B) = 0 A ∖B⊆A B∖A⊆B

μ(A) = μ(B) = 0 μ(A△ B) = 0 A≡B

(T ,T )

f , g : S→ T (f , g) : S→ T ×T σ

T ⊗T D= {(y, y) : y ∈ T} ∈ T ⊗T

f , g : S→ T μ{x ∈ S : f(x) ≠ g(x)} = 0 f ≡ g

{x ∈ S : f(x) ≠ g(x)} = {x ∈ S : (f(x), g(x)) ∈D ∈S}

c

f ≡ g f(x) = g(x) S ≡

S T

≡ S T

f , g, h : S→ T

f ≡ f

f ≡ g g≡ f

f ≡ g g≡ h f ≡ h

f(x) = g(x) g(x) = h(x) f(x) = h(x) x ∈ S

f(x) ≠ h(x) f(x) ≠ g(x) g(x) ≠ h(x)

{x ∈ S : f(x) ≠ h(x)} ⊆ {x ∈ S : f(x) ≠ g(x)} ∪ {x ∈ S : g(x) ≠ h(x)} (2.7.26)

f ≡ g g≡ h

f , g : S→ T f ≡ g B ∈ T (B) ≡ (B)f

−1

g

−1

(B)△ (B) ⊆ {x ∈ S : f(x) ≠ g(x)}f

−1

g

−1

f , g : S→ T f ≡ g =ν

f

ν

g

,ν

f

ν

g

(T ,T )

f g

T = {0, 1} T

A, B ∈S A≡B ≡1

A

1

B
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Proof

Note that .

Equivalence is preserved under composition. For the next result, suppose that  is yet another measurable space.

Suppose that  are measurable and that  is measurable. If  then .

Proof

Note that .

Suppose again that  is a measure space. Let  denote the collection of all measurable real-valued random functions from 
into . (As usual,  is given the Borel -algebra.) From our previous discussion of measure theory, we know that with the usual
definitions of addition and scalar multiplication,  is a vector space. However, in measure theory, we often do not want to
distinguish between functions that are equivalent, so it's nice to know that the vector space structure is preserved when we identify
equivalent functions. Formally, let  denote the equivalence class generated by , and let  denote the collection of all such
equivalence classes. In modular notation,  is . We define addition and scalar multiplication on  by

 is a vector space.

Proof

All that we have to show is that addition and scalar multiplication are well defined. That is, we must show that the definitions do
not depend on the particularly representative of the equivalence class. Then the other properties that define a vector space are
inherited from . Thus we must show that if  and , and if , then  and .
For the first problem, note that  and  are measurable functions from  to . (  is given the product -algebra
which also happens to be the Borel -algebra corresponding to the standard Euclidean topolgy). Moreover, 
since

But the function  from  into  is measurable and hence from composition property, it follows that 
. The second problem is easier. The function  from  into  is measurable so again it follos from

composition property that .

Often we don't bother to use the special notation for the equivalence class associated with a function. Rather, it's understood that
equivalent functions represent the same object. Spaces of functions in a measure space are studied further in the chapter on
Distributions.

Completion

Suppose that  is a measure space and let  denote the collection of null sets of the space. If 
 and  is a subset of , then we know that  so  also. However, in general there might be subsets of 

 that are not in . This leads naturally to the following definition.

The measure space  is complete if  and  imply  (and hence ).

Our goal in this discussion is to show that if  is a -finite measure that is not complete, then it can be completed. That is 
can be extended to -algebra that includes all of the sets in  and all subsets of null sets. The first step is to extend the equivalence
relation defined in our previous discussion to .

For , define  if and only if there exists  such that . The relation  is an equivalence
relation on : For ,

1.  (the reflexive property).
2. If  then  (the symmetric property).
3. If  and  then  (the transitive property).

Proof

{x ∈ S : (x) ≠ (x)} =A△ B1

A

1

B

(U,U )

f , g : S→ T h : T →U f ≡ g h ∘ f ≡ h ∘ g

{x ∈ S : h[f(x)] ≠ h[g(x)]} ⊆ {x ∈ S : f(x) ≠ g(x)}

(S,S ,μ) V S

R R σ

(V , +, ⋅)

[f ] f ∈ V W

W V / ≡ W

[f ] + [g] = [f +g], c[f ] = [cf ]; f , g ∈ V , c ∈ R (2.7.27)

(W , +, ⋅)

(V , +, ⋅) ≡f

1

f

2

≡g

1

g

2

c ∈ R + ≡ +f

1

g

1

f

2

g

2

c ≡ cf

1

f

2

( , )f

1

g

1

( , )f

2

g

2

S R

2

R

2

σ

σ ( , ) ≡ ( , )f

1

g

1

f

2

g

2

{x ∈ S : ( (x), (x)) ≠ ( (x), (x))} = {x ∈ S : (x) ≠ (x)} ∪ {x ∈ S : (x) ≠ (x)}f

1

g

1

f

2

g

2

f

1

f

2

g

1

g

2

(2.7.28)

(a, b) ↦ a+b R

2

R

+ ≡ +f

1

g

1

f

2

g

2

a↦ ca R R

c ≡ cf

1

f

2

(S,S ,μ) N = {A ∈S : μ(A) = 0}

A ∈N B ∈S A μ(B) = 0 B ∈N

A S

(S,S ,μ) A ∈N B⊆A B ∈S B ∈N

(S,S ,μ) σ μ

σ S

P(S)

A, B⊆ S A≡B N ∈N A△ B⊆N ≡

P(S) A, B, C ⊆ S

A≡A

A≡B B≡A

A≡B B≡C A≡C
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1. Note that  and .
2. Suppose that  where . Then .
3. Suppose that  and  where . Then ,

and .

So the equivalence relation  partitions  into mutually disjoint equivalence classes. Two sets in an equivalence class differ by a
subset of a null set. In particular,  if and only if  for some . The extended relation  is preserved under the set
operations, just as before. Our next step is to enlarge the -algebra  by adding any set that is equivalent to a set in .

Let . Then  is a -algebra of subsets of , and in fact is the -algebra generated
by .

Proof

Note that if  then  so . In particular, . Also,  so if  then . Suppose that 
 so that  for some . Then  and  so . Next suppose that  for  in a

countable index set . Then for each  there exists  such that . But then  and 
, so . Therefore  is a -algebra of subsets of . Finally, suppose that  is a -algebra of

subsets of  and that . We need to show that . Thus, suppose that  Then there
exists  such that . But  and  so . Also , so 

.

Our last step is to extend  to a positive measure on the enlarged -algebra .

Suppose that  so that  for some . Define . Then

1.  is well defined.
2.  for .
3.  is a positive measure on .

The measure space  is complete and is known as the completion of .

Proof
1. Suppose that  and that  and  where . Then  so by the result above 

. Thus,  is well-defined.
2. Next, if  then of course  so .
3. Trivially  for . Thus we just need to show the countable additivity property. To understand the proof you

need to keep several facts in mind: the functions  and  agree on  (property (b)); equivalence is preserved under set
operations; equivalent sets have the same value under  (property (a)). Since the measure space  is -finite, there
exists a countable disjoint collection  of sets in  such that  and  for each .
Suppose first that , so that there exists  with . Then

Suppose next that  is a sequence of pairwise disjoint sets in  so that there exists a sequence  of
sets in  such that  for each . For fixed ,

The next-to-the-last equality use the inclusion-exclusion law, since we don't know (and it's probably not true) that the
sequence  is disjoint. The use of inclusion-exclusion is why we need  to be -finite. Finally, using the
previous displayed equations,

A△ A = ∅ ∅ ∈N

A△ B ⊆N N ∈N B△ A =A△ B ⊆N

A△ B ⊆N

1

B△ C ⊆N

2

, ∈NN

1

N

2

A△ C ⊆ (A△ B) ∪ (B△ C) ⊆ ∪N

1

N

2

∪ ∈NN

1

N

2

≡ P(S)

A ≡ ∅ A ⊆N N ∈N ≡

σ S S

= {A ⊆ S : A ≡B for some B ∈S }S

0

S

0

σ S σ

S ∪ {A ⊆ S : A ≡ ∅}

A ∈S A ≡A A ∈S

0

S ∈S

0

∅ ∈S A ≡ ∅ A ∈S

0

A ∈S

0

A ≡B B ∈S ∈SB

c

≡A

c

B

c

∈A

c

S

0

∈A

i

S

0

i

I i ∈ I ∈SB

i

≡A

i

B

i

∈S⋃

i∈I

B

i

≡⋃

i∈I

A

i

⋃

i∈I

B

i

∈⋃

i∈I

A

i

S

0

S

0

σ S T σ

S S ∪ {A ⊆ S : A ≡ ∅} ⊆T ⊆TS

0

A ∈S

0

B ∈S A ≡B B ∈ T A△ B ∈ T A∩B =B∖ (A△ B) ∈ T A ∖B ∈ T

A = (A∩B) ∪ (A ∖B) ∈ T

μ σ S

0

A ∈S

0

A ≡B B ∈S (A) = μ(B)μ

0

μ

0

(A) = μ(A)μ

0

A ∈S

μ

0

S

0

(S, , )S

0

μ

0

(S,S ,μ)

A ∈S

0

A ≡B

1

A ≡B

2

, ∈SB

1

B

2

≡B

1

B

2

μ( ) = μ( )B

1

B

2

μ

0

A ∈S A ≡A (A) = μ(A)μ

0

(A) ≥ 0μ

0

A ∈S

0

μ μ

0

S

μ

0

(S,S ,μ) σ

{ : i ∈ I}C

i

S S =⋃

i∈I

C

i

μ( ) < ∞C

i

i ∈ I

A ∈S

0

B ∈S A ≡B

(A) = [ (A∩ )] = μ[ (B∩ )] = μ(B∩ ) = (A∩ )μ

0

μ

0

⋃

i∈I

C

i

⋃

i∈I

C

i

∑

i∈I

C

i

∑

i∈I

μ

0

C

i

(2.7.29)

( , , …)A

1

A

2

S

0

( , , …)B

1

B

2

S ≡A

i

B

i

i ∈ N

+

i ∈ I

[ ( ∩ )] = [ ( ∩ )] = μ[ ( ∩ )] = μ( ∩ ) = ( ∩ )μ

0

⋃

n=1

∞

A

n

C

i

μ

0

⋃

n=1

∞

B

n

C

i

⋃

n=1

∞

B

n

C

i

∑

in=1

∞

B

n

C

i

∑

n=1

∞

μ

0

A

n

C

i

(2.7.30)

( , , …)B

1

B

2

(S,S ,μ) σ
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Examples and Exercises
As always, be sure to try the computational exercises and proofs yourself before reading the answers and proofs in the text. Recall
that a discrete measure space consists of a countable set, with the -algebra of all subsets, and with counting measure .

Counterexamples

The continuity theorem for decreasing events can fail if the events do not have finite measure.

Consider  with counting measure  on the -algebra of all subsets. Let  for . The continuity
theorem fails for .

Proof

The sequence is decreasing and  for each , but .

Equal measure certainly does not imply equivalent sets.

Suppose that  is a measure space with the property that there exist disjoint sets  such that 
. Then  and  are not equivalent.

Proof

Note that  and .

For a concrete example, we could take  with counting measure  on -algebra of all subsets, and , .

The -finite property is not necessarily inherited by a sub-measure space. To set the stage for the counterexample, let  denote the
Borel -algebra of , that is, the -algebra generated by the standard Euclidean topology. There exists a positive measure  on 

 that generalizes length. The measure , known as Lebesgue measure, is constructed in the section on Existence. Next let 
denote the -algebra of countable and co-countable sets:

That  is a -algebra was shown in the section on measure theory in the chapter on foundations.

 is a subspace of . Moreover,  is -finite but  is not.

Proof

If , then the singleton  is closed and hence is in . A countable set is a countable union of singletons, so if  is
countable then . It follows that . Next, let  denote the interval  for . Then  for 
and , so  is -finite. On the other hand,  for  (since the set is an interval of length 0).
Therefore  if  is countable and  if  is countable. It follows that  cannot be written as a countable
union of sets in , each with finite measure.

A sum of finite measures may not be -finite.

Let  be a nonempty, finite set with the -algebra  of all subsets. Let  be counting measure on  for .
Then  is a finite measure for each , but  is not -finite.

Proof

Note that  is the trivial measure on  given by  if  (and of course ).

( )μ

0

⋃

n=1

∞

A

n

= [( )∩ ] = ( ∩ )∑

i∈I

μ

0

⋃

n=1

∞

A

n

C

i

∑

i∈I

μ

0

⋃

n=1

∞

A

n

C

i

= ( ∩ ) = ( ∩ ) = ( )∑

i∈I

∑

n=1

∞

μ

0

A

n

C

i

∑

n=1

∞

∑

i∈I

μ

0

A

n

C

i

∑

n=1

∞

μ

0

A

n

σ #

Z # σ = {z ∈ Z : z ≤ −n}A

n

n ∈ N

+

( , , …)A

1

A

2

#( ) = ∞A

n

n # ( ) = #(∅) = 0⋂

∞

i=1

A

i

(S,S ,μ) A, B ∈S

μ(A) = μ(B) > 0 A B

A△ B =A∪B μ(A∪B) > 0

S = {0, 1} # σ A = {0} B = {1}

σ R

σ R σ λ

(R,R) λ C

σ

C = {A ⊆R : A is countable or   is countable}A

c

(2.7.31)

C σ

(R,C ) (R,R) (R,R,λ) σ (R,C ,λ)

x ∈ R {x} R A

A ∈R C ⊂R I

n

[n,n+1) n ∈ Z λ( ) = 1I

n

n ∈ Z

R =⋃

n∈Z

I

n

(R,R,λ) σ λ{x} = 0 x ∈ R

λ(A) = 0 A λ(A) = ∞ A

c

R

C

σ

S σ S = #μ

n

(S,S ) n ∈ N

+

μ

n

n ∈ N

+

μ =∑

n∈N

+

μ

n

σ

μ (S,S ) μ(A) = ∞ A ≠ ∅ μ(∅) = 0
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Basic Properties

In the following problems,  is a positive measure on the measurable space .

Suppose that  and that  with , , . Find the measure of each of the
following sets:

1. 
2. 
3. 
4. 
5. 

Answer
1. 3
2. 9
3. 18
4. 11
5. 16

Suppose that  and that  with , , and . Find the measure of each
of the following sets:

1. 
2. 
3. 
4. 
5. 

Answer
1. 6
2. 7
3. 9
4. 
5. 

Suppose that  and that  with , , and . Find the measure of each of
the following events:

1. 
2. 
3. 
4. 
5. 

Answer
1. 6
2. 1
3. 4
4. 8
5. 3

Suppose that  with , , , , , , and 
. Find the probabilities of the various unions:

1. 
2. 
3. 

μ (S,S )

μ(S) = 20 A,B ∈S μ(A) = 5 μ(B) = 6 μ(A∩B) = 2

A ∖B

A∪B

∪A

c

B

c

∩A

c

B

c

A∪B

c

μ(S) =∞ A, B ∈S μ(A ∖B) = 2 μ(B∖A) = 3 μ(A∩B) = 4

A

B

A∪B

∩A

c

B

c

∪A

c

B

c

∞

∞

μ(S) = 10 A, B ∈S μ(A) = 3 μ(A∪B) = 7 μ(A∩B) = 2

B

A ∖B

B∖A

∪A

c

B

c

∩A

c

B

c

A, B, C ∈S μ(A) = 10 μ(B) = 12 μ(C) = 15 μ(A∩B) = 3 μ(A∩C) = 4 μ(B∩C) = 5

μ(A∩B∩C) = 1S

A∪B

A∪C

B∪C
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4. 

Answer
1. 21
2. 23
3. 22
4. 28
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2.8: Existence and Uniqueness
     

Suppose that  is a set and  a -algebra of subsets of , so that  is a measurable space. In many cases, it is impossible to
define a positive measure  on  explicitly, by giving a “formula” for computing  for each . Rather, we often know
how the measure  should work on some class of sets  that generates . We would then like to know that  can be extended to a
positive measure on , and that this extension is unique. The purpose of this section is to discuss the basic results on this topic. To
understand this section you will need to review the sections on Measure Theory and Special Set Structures in the chapter on
Foundations, and the section on Measure Spaces in this chapter. If you are not interested in questions of existence and uniqueness
of positive measures, you can safely skip this section.

Basic Theory

Positive Measures on Algebras

Suppose first that  is an algebra of subsets of . Recall that this means that  is a collection of subsets that contains  and is
closed under complements and finite unions (and hence also finite intersections). Here is our first definition:

A positive measure on  is a function  that satisfies the following properties:

1. 
2. If  is a countable, disjoint collection of sets in  and if  then

Clearly the definition of a positive measure on an algebra is very similar to the definition for a -algebra. If the collection of sets in
(b) is finite, then  must be in the algebra . Thus,  is finitely additive. If the collection is countably infinite, then there is
no guarantee that the union is in . If it is however, then  must be additive over this collection. Given the similarity, it is not
surprising that  shares many of the basic properties of a positive measure on a -algebra, with proofs that are almost identical.

If , then .

Proof

Note that , and the sets in the union are in the algebra  and are disjoint.

If  and  then

1. 
2. 

Proof

Part (a) follows from the previous theorem, since . Part (b) follows from part (a).

Thus  is increasing, relative to the subset partial order  on  and the ordinary order  on . Note also that if 
and  then . In the special case that , this becomes . If 

 then . These are the familiar difference and complement rules.

The following result is the subadditive property for a positive measure  on an algebra .

Suppose that  is a countable collection of sets in  and that . Then

Proof

S S σ S (S,S )

μ S μ(A) A ∈S

μ B S μ

S

A S A S
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i∈I
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i
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The proof is just like before. Assume that . Let  and  for . Then 
 is a disjoint collection of sets in  with the same union as . Also  for each  so 

. Hence if the union is in  then

For a finite union of sets with finite measure, the inclusion-exclusion formula holds, and the proof is just like the one for a
probability measure.

Suppose that  is a finite collection of sets in  where , and that  for . Then

The continuity theorems hold for a positive measure  on an algebra , just as for a positive measure on a -algebra, assuming
that the appropriate union and intersection are in the algebra. The proofs are just as before.

Suppose that  is a sequence of sets in .

1. If the sequence is increasing, so that  for each , and , then 
.

2. If the sequence is decreasing, so that  for each , and  and , then 
.

Proof
1. Note that if  for some  then  for  and  if this union is in . Thus,

suppose that  for each . Let  and  for . Then  is a disjoint
sequence in  with the same union as . Also,  and  for 

. Hence if the union is in ,

But .
2. Note that  and this sequence is increasing. Moreover, . Hence if 

 then . Thus using the continuity result for increasing sets,

Recall that if the sequence  is increasing, then we define , and if the sequence is decreasing
then we define . Thus the conclusion of both parts of the continuity theorem is

Finite additivity and continuity for increasing events imply countable additivity:

If  satisfies the properties below then  is a positive measure on .

1. 
2.  if  is a finite disjoint collection of sets in 
3.  if  is an increasing sequence of events in  and .

Proof
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All that is left to prove is additivitiy over a countably infinite collection of sets in  when the union is also in . Thus
suppose that  is a disjoint collection of sets in  with . Let  for . Then 

 and . Hence using the finite additivity and the continuity property we have

Many of the basic theorems in measure theory require that the measure not be too far removed from being finite. This leads to the
following definition, which is just like the one for a positive measure on a -algebra.

A measure  on an algebra  of subsets of  is -finite if there exists a sequence of sets  in  such that 
 and  for each . The sequence is called a -finite sequence for .

Suppose that  is a -finite measure on an algebra  of subsets of .

1. There exists an increasing -finite sequence.
2. There exists a disjoint -finite sequence.

Proof

We use the same tricks that we have used before. Suppose that  is a -finite sequence for .

1. Let . Then  for  and this sequence is increasing. Moreover, 
for  and .

2. Let  and let  for . Then  for each  and this sequence is
disjoint. Moreover,  so  and .

Extension and Uniqueness Theorems

The fundamental theorem on measures states that a positive, -finite measure  on an algebra  can be uniquely extended to 
. The extension part is sometimes referred to as the Carathéodory extension theorem, and is named for the Greek

mathematician Constantin Carathéodory.

If  is a positive, -finte measure on an algebra , then  can be extended to a positive measure on .

Proof

The proof is complicated, but here is a broad outline. First, for , we define a cover of  to be a countable collection 
 of sets in  such that . Next, we define a new set function , the outer measure, on all subsets of 

:

Outer measure satifies the following properties.

1.  for , so  is nonnegative.
2.  for , so  extends .
3. If  then , so  is increasing
4. If  for each  in a countable index set  then , so  is countably subadditive.

Next,  is said to be measurable if

Thus,  is measurable if  is additive with respect to the partition of  induced by , for every . We let 
denote the collection of measurable subsets of . The proof is finished by showing that ,  is a -algebra of subsets
of , and  is a positive measure on . It follows that  and hence  is a measure on  that extends 
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Our next goal is the basic uniqueness result, which serves as the complement to the basic extension result. But first we need another
variation of the term -finite.

Suppose that  is a measure on a -algebra  of subsets of  and . Then  is -finite on  if there exists a countable
collection  such that  for  and .

The next result is the uniqueness theorem. The proof, like others that we have seen, uses Dynkin's -  theorem, named for Eugene
Dynkin.

Suppose that  is a -system and that . If  and  are positive measures on  and are -finite on , and if 
 for all , then  for all .

Proof

Suppose that  and that . Let . Then  since 
. If  then  so 

 and hence . Finally, suppose that 
 is a countable, disjoint collection of events in . Then  for each  and hence

Therefore , and so  is a -system. By assumption,  and therefore by the -  theorem, 
.

Next, by assumption there exists  with  for each  and . If  then
the inclusion-exclusion rule can be applied to

where  and . But the inclusion-exclusion formula only has terms of the form 

 where . But  since  is a -system, so by the

previous paragraph, . It then follows that for each 

Finally, letting  and using the continuity theorem for increasing sets gives .

An algebra  of subsets of  is trivially a -system. Hence, if  and  are positive measures on  and are -finite on
, and if  for , then  for . This completes the second part of the fundamental

theorem.

Of course, the results of this subsection hold for probability measures. Formally, a probability measure  on an algebra  of
subsets of  is a positive measure on  with the additional requirement that . Probability measures are trivially -finite,
so a probability measure  on an algebra  can be uniquely extended to .

However, usually we start with a collection that is more primitive than an algebra. The next result combines the definition with the
main theorem associated with the definition. For a proof see the section on Special Set Structures in the chapter on Foundations.

Suppose that  is a nonempty collection of subsets of  and let
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If the following conditions are satisfied, then  is a semi-algebra of subsets of , and then  is the algebra generated by .

1. If  then .
2. If  then .

Suppose now that we know how a measure  should work on a semi-algebra  that generates an algebra  and then a -algebra 
. That is, we know  for each . Because of the additivity property, there is no question as

to how we should extend  to . We must have

if  for some finite, disjoint collection  of sets in  (so that ). However, we cannot assign the
values  for  arbitrarily. The following extension theorem states that, subject just to some essential consistency
conditions, the extension of  from the semi-algebra  to the algebra  does in fact produce a measure on . The consistency
conditions are that  be finitely additive and countably subadditive on .

Suppose that  is a semi-algebra of subsets of  and that  is the algebra of subsets of  generated by . A function 
 can be uniquely extended to a measure on  if and only if  satisfies the following properties:

1. If  then .
2. If  is a finite, disjoint collection of sets in  and  then .
3. If  and  where  is a countable collection of sets in  then 

If the measure  on the algebra  is -finite, then the extension theorem and the uniqueness theorem apply, so  can be extended
uniquely to a measure on the -algebra . This chain of extensions, starting with a semi-algebra , is often
how measures are constructed.

Examples and Applications

Product Spaces

Suppose that  and  are measurable spaces. For the Cartesian product set , recall that the product -algebra is

the -algebra generated by the Cartesian products of measurable sets, sometimes referred to as measurable rectangles.

Suppose that  and  are -finite measure spaces. Then there exists a unique -finite measure  on 
 such that

The measure space  is the product measure space associated with  and .

Proof

Recall that the collection  is a semi-algebra: the intersection of two product sets is another
product set, and the complement of a product set is the union of two disjoint product sets. We define  by 

. The consistency conditions hold, so  can be extended to a measure on the algebra  generated by 
. The algebra  is the collection of all finite, disjoint unions of products of measurable sets. We will now show that the

extended measure  is -finite on . Since  is -finite, there exists, an increasing sequence  of sets in  with 
 and . Similarly, there exists an increasing sequence  of sets in  with  and

. Then , and since the sets are increasing, .
The standard extension theorem and uniqueness theorem uniqueness theorem now apply, so  can be extended uniquely to a
measure on .
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Recall that for , the cross section of  in the first coordinate at  is . Similarly, the
cross section of  in the second coordinate at  is . We know that the cross sections of a
measurable set are measurable. The following result shows that the measures of the cross sections of a measurable set form
measurable functions.

Suppose again that  and  are -finite measure spaces. If  then

1.  is a measurable function from  to .
2.  is a measurable function from  to .

Proof

We prove part (a), since of course the proof for part (b) is symmetric. Suppose first that the measure spaces are finite. Let 
 denote the set of measurable rectangles. Let 

. If , then , since .
Next, suppose . Then , so  and this is a measurable function of .
Hence . Next, suppose that  is a countable, disjoint collection of sets in  and let . Then 

 is a countable, disjoint collection of sets in , and . Hence , and
this is a measurable function of . Hence . It follows that  is a -system that contains , which in turn is a -
system. It follows from Dynkins -  theorem, that . Thus .

Consider now the general case where the measure spaces are -finite. There exists a countable, increasing sequence of sets 
 for  with  for . If , then  is increasing in , and 

. Hence, for ,  is increasing in  and . Therefore 
. But  is a measurable function of  for each  by the previous

argument, so  is a measurable function of .

In the next chapter, where we study integration with respect to a measure, we will see that for , the product measure 
 can be computed by integrating  over  with respect to  or by integrating  over  with respect

to . These results, generalizing the definition of the product measure, are special cases of Fubini's theorem, named for the Italian
mathematician Guido Fubini.

Except for more complicated notation, these results extend in a perfectly straightforward way to the product of a finite number of 
-finite measure spaces.

Suppose that  and that  is a -finite measure space for . Let  and let 
denote the corresponding product -algebra. There exists a unique -finite measure  on  satisfying

The measure space  is the product measure space associated with the given measure spaces.

Lebesgue Measure

The next discussion concerns our most important and essential application. Recall that the Borel -algebra on , named for Émile
Borel, is the -algebra  generated by the standard Euclidean topology on . Equivalently,  where  is the collection
of intervals of  (of all types—bounded and unbounded, with any type of closure, and including single points and the empty set).
Next recall how the length of an interval is defined. For  with , each of the intervals , , , and 
has length . For , each of the intervals , , ,  has length , as does  itself. The standard
measure on  generalizes the length measurement for intervals.

There exists a unique measure  on  such that  for . The measure  is Lebesgue measure on 
.

Proof

Recall that  is a semi-algebra: The intersection of two intervals is another interval, and the complement of an interval is
either another interval or the union of two disjoint intervals. Define  on  by  for . Then  satisfies

C ⊆ S×T C x ∈ S = {y ∈ T : (x, y) ∈ C}C

x

C y ∈ T = {x ∈ S : (x, y) ∈ C}C

y

(S,S ,μ) (T ,T , ν) σ C ∈S ⊗T
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x
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∏
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(S,S ,μ)

σ R

σ R R R = σ(I ) I

R

a, b ∈ R a ≤ b (a, b) [a, b) (a, b] [a, b]

b−a a ∈ R (a, ∞) [a, ∞) (−∞, a) (−∞, a] ∞ R

R

λ R λ(I) = length(I) I ∈I λ
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the consistency condition and hence  can be extended to a measure on the algebra  generated by , namely the collection
of finite, disjoint unions of intervals. The measure  on  is clearly -finite, since  can be written as a countably infinite
union of bounded intervals. Hence the standard extension theorem and uniqueness theorem apply, so  can be extended to a
measure on .

The is name in honor of Henri Lebesgue, of course. Since  is -finite, the -algebra of Borel sets  can be completed with
respect to .

The completion of the Borel -algebra  with respect to  is the Lebesgue -algebra .

Recall that completed means that if ,  and , then  (and then ). The Lebesgue measure 
on , with either the Borel -algebra , or its completion  is the standard measure that is used for the real numbers. Other
properties of the measure space  are given below, in the discussion of Lebesgue measure on .

For , let  denote the Borel -algebra corresponding to the the standard Euclidean topology on , so that  is
the -dimensional Euclidean measurable space. The -algebra,  is also the -fold power of , the Borel -algebra of . That
is,  (  times). It is also the -algebra generated by the products of intervals:

As above, let  denote Lebesgue measure on .

For  the -fold power of , denoted  is Lebesgue measure on . In particular,

Specializing further, if  is an interval for  then

In particular,  extends the area measure on  and  extends the volume measure on . In general,  is sometimes
referred to as -dimensional volume of . As in the one-dimensional case,  can be completed with respect to ,
essentially adding all subsets of sets of measure 0 to . The completed -algebra is the -algebra of Lebesgue measurable sets.
Since  if  is open, the support of  is all of . In addition, Lebesgue measure has the regularity properties
that are concerned with approximating the measure of a set, from below with the measure of a compact set, and from above with
the measure of an open set.

The measure space  is regular. That is, for ,

1. , (inner regularity)
2.  (outer regulairty).

The following theorem describes how the measure of a set is changed under certain basic transformations. These are essential
properties of Lebesgue measure. To setup the notation, suppose that , , ,  and that  is an 
matrix. Define

Suppose that .

1. If  then  (translation invariance)
2. If  then  (dialation property)
3. If  is an  matrix then  (the scaling property)

Lebesgue-Stieltjes Measures on 

The construction of Lebesgue measure on  can be generalized. Here is the definition that we will need.

A function  that satisfis the following properties is a distribution function on 
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1.  is increasing: if  then .
2.  is continuous from the right:  for all .

Since  is increasing, the limit from the left at  exists in  and is denoted . Similarly 
 exists, as a real number or , and  exists, as a real number or .

If  is a distribution function on , then there exists a unique measure  on  that satisfies

The measure  is called the Lebesgue-Stieltjes measure associated with , named for Henri Lebesgue and Thomas Joannes
Stieltjes. Distribution functions and the measures associated with them are studied in more detail in the chapter on Distributions.
When the function  takes values in , the associated measure  is a probability measure, and the function  is the probability
distribution function of . Probability distribution functions are also studied in much more detail (but with less technicality) in the
chapter on Distributions.

Note that the identity function  for  is a distribution function, and the measure associated with this function is ordinary
Lebesgue measure on  constructed in(15).

This page titled 2.8: Existence and Uniqueness is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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2.9: Probability Spaces Revisited
     

In this section we discuss probability spaces from the more advanced point of view of measure theory. The previous two sections on positive
measures and existence and uniqueness are prerequisites. The discussion is divided into two parts: first those concepts that are shared rather
equally between probability theory and general measure theory, and second those concepts that are for the most part unique to probability
theory. In particular, it's a mistake to think of probability theory as a mere branch of measure theory. Probability has its own notation,
terminology, point of view, and applications that makes it an incredibly rich subject on its own.

Basic Concepts
Our first discussion concerns topics that were discussed in the section on positive measures. So no proofs are necessary, but you will notice that
the notation, and in some cases the terminology, is very different.

Definitions

We can now give a precise definition of the probability space, the mathematical model of a random experiment.

A probability space , consists of three essential parts:

1. A set of outcomes .
2. A -algebra of events .
3. A probability measure  on the sample space .

Often the special notation  is used for a probability space in the literature—the symbol  for the set of outcomes is intended to remind
us that these are all possible outcomes. However in this text, we don't insist on the special notation, and use whatever notation seems most
appropriate in a given context.

In probability, -algebras are not just important for theoretical and foundational purposes, but are important for practical purposes as well. A -
algebra can be used to specify partial information about an experiment—a concept of fundamental importance. Specifically, suppose that  is
a collection of events in the experiment, and that we know whether or not  occurred for each . Then in fact, we can determine whether
or not  occurred for each , the -algebra generated by .

Technically, a random variable for our experiment is a measurable function from the sample space into another measurable space.

Suppose that  is a probability space and that  is another measurable space. A random variable  with values in  is a
measurable function from  into .

1. The probability distribution of  is the mapping on  given by .
2. The collection of events  is a sub -algebra of , and is the -algebra generated by , denoted .

Details

Figure : The event  associated with 

If we observe the value of , then we know whether or not each event in  has occurred. More generally, we can construct the -algebra
associated with any collection of random variables.

suppose that  is a measurable space for each  in an index set , and that  is a random variable taking values in  for each .
The -algebra generated by  is

If we observe the value of  for each  then we know whether or not each event in  has occurred. This idea is very important
in the study of stochastic processes.

Null Events, Almost Sure Events, and Equivalence

Suppose that  is a probability space.

Define the following collections of events:
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1. , the collection of null events
2. , the collection of almost sure events
3. , the collection of essentially deterministic events

The collection of essentially deterministic events  is a sub -algebra of .

In the section on independence, we showed that  is also a collection of independent events.

Intuitively, equivalent events or random variables are those that are indistinguishable from a probabilistic point of view. Recall first that the
symmetric difference between events  and  is ; it is the event that occurs if and only if one of the events
occurs, but not the other, and corresponds to exclusive or. Here is the definition for events:

Events  and  are equivalent if , and we denote this by . The relation  is an equivalence relation on . That is, for
,

1.  (the reflexive property).
2. If  then  (the symmetric property).
3. If  and  then  (the transitive property).

Thus  if and only if  if and only if . The equivalence relation 
partitions  into disjoint classes of mutually equivalent events. Equivalence is preserved under the set operations.

Suppose that . If  then .

Suppose that  for  in a countable index set . If  for  then

1. 
2. 

Equivalent events have the same probability.

If  and  then .

The converse trivially fails, and a counterexample is given below However, the null and almost sure events do form equivalence classes.

Suppose that .

1. If  then  if and only if .
2. If  then  if and only if .

We can extend the notion of equivalence to random variables taking values in the same space. Thus suppose that  is another measurable
space. If  and  are random variables with values in , then  is a random variable with values in , which is given the usual
product -algebra . We assume that the diagonal set , which is almost always true in applications.

Random variables  and  taking values in  are equivalent if . Again we write . The relation  is an equivalence
relation on the collection of random variables that take values in . That is, for random variables , , and  with values in ,

1.  (the reflexive property).
2. If  then  (the symmetric property).
3. If  and  then  (the transitive property).

So the collection of random variables with values in  is partitioned into disjoint classes of mutually equivalent variables.

Suppose that  and  are random variables taking values in  and that . Then

1.  for every .
2.  and  have the same probability distribution on .

Again, the converse to part (b) fails with a passion, and a counterexample is given below. It often happens that a definition for random variables
subsumes the corresponding definition for events, by considering the indicator variables of the events. So it is with equivalence.

Suppose that . Then  if and only if .

N = {A ∈S : P(A) = 0}

M = {A ∈S : P(A) = 1}

D =N ∪M = {A ∈S : P(A) = 0 or P(A) = 1}

D σ S

D

A B A△ B= (A ∖B)∪ (B∖A)
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A≡B P(A△ B) = P(A ∖B)+P(B∖A) = 0 P(A ∖B) = P(B∖A) = 0 ≡
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Equivalence is preserved under a deterministic transformation of the variables. For the next result, suppose that  is yet another
measurable space, along with .

Suppose  are random variables with values in  and that  is measurable. If  then .

Suppose again that  is a probability space corresponding to a random experiment. Let  denote the collection of all real-valued
random variables for the experiment, that is, all measurable functions from  into . With the usual definitions of addition and scalar
multiplication,  is a vector space. However, in probability theory, we often do not want to distinguish between random variables that
are equivalent, so it's nice to know that the vector space structure is preserved when we identify equivalent random variables. Formally, let 
denote the equivalence class generated by a real-valued random variable , and let  denote the collection of all such equivalence
classes. In modular notation,  is the set . We define addition and scalar multiplication on  by

 is a vector space.

Often we don't bother to use the special notation for the equivalence class associated with a random variable. Rather, it's understood that
equivalent random variables represent the same object. Spaces of functions in a general measure space are studied in the chapter on
Distributions, and spaces of random variables are studied in more detail in the chapter on Expected Value.

Completion

Suppose again that  is a probability space, and that  denotes the collection of null events, as above. Suppose that  so that 
. If  and , then we know that  so  also. However, in general there might be subsets of  that are not

in . This leads naturally to the following definition.

The probability space  is complete if  and  imply  (and hence ).

So the probability space is complete if every subset of an event with probability 0 is also an event (and hence also has probability 0). We know
from our work on positive measures that every -finite measure space that is not complete can be completed. So in particular a probability
space that is not complete can be completed. To review the construction, recall that the equivalence relation  that we used above on  is
extended to  (the power set of ).

For , define  if and only if there exists  such that . The relation  is an equivalence relation on 
.

Here is how the probability space is completed:

Let . For , define  where  and . Then

1.  is a -algebra of subsets of  and .
2.  is a probability measure on .
3.  is complete, and is the completion of .

Product Spaces

Our next discussion concerns the construction of probability spaces that correspond to specified distributions. To set the stage, suppose that 
 is a probability space. If we let  denote the identity function on , so that  for , then  for 

and hence . That is,  is the probability distribution of . We have seen this before—every probability measure can be
thought of as the distribution of a random variable. The next result shows how to construct a probability space that corresponds to a sequence of
independent random variables with specified distributions.

Suppose  and that  is a probability space for . The corresponding product measure space  is
a probability space. If  is the th coordinate function on  so that  for  then 

 is a sequence of independent random variables on , and  has distribution  on  for each 
.

Proof

Of course, the existence of the product space  follows immediately from the more general result for products of positive measure
spaces. Recall that  and that  is the -algebra generated by sets of the from  where  for each 

. Finally,  is the unique positive measre on  satisfying
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where again,  for each . Clearly  is a probability measure since . Suppose that 
 for . Then . Hence

If we fix  and let  for , then the displayed equation give , so  has distribution 
on . Returning to the displayed equation we have

so  are independent.

Intuitively, the given probability spaces correspond to  random experiments. The product space then is the probability space that corresponds
to the experiments performed independently. When modeling a random experiment, if we say that we have a finite sequence of independent
random variables with specified distributions, we can rest assured that there actually is a probability space that supports this statement

We can extend the last result to an infinite sequence of probability spaces. Suppose that  is a measurable space for each . Recall
that the product space  consists of all sequences  such that  for each . The corresponding product -
algebra  is generated by the collection of cylinder sets. That is,  where

Suppose that  is a probability space for . Let  denote the product measurable space so that  where 
is the collection of cylinder sets. Then there exists a unique probability measure  on  that satisfies

If  is the th coordinate function on  for , so that  for , then  is a
sequence of independent random variables on , and  has distribution  on  for each .

Proof

The proof is similar to the one in for positive measure spaces in the section on existence and uniqueness. First recall that the collection of
cylinder sets  is a semi-algebra. We define  as in the statement of the theorem. Note that all but finitely many factors are 1.
The consistency conditions are satisfied, so  can be extended to a probability measure on the algebra  generated by . That is,  is the
collection of all finite, disjoint unions of cylinder sets. The standard extension theorem and uniqueness theorem now apply, so  can be
extended uniquely to a measure on . The proof that  are independent and that  has distribution  for each 

 is just as in the previous theorem.

Once again, if we model a random process by starting with an infinite sequence of independent random variables, we can be sure that there
exists a probability space that supports this sequence. The particular probability space constructed in the last theorem is called the canonical
probability space associated with the sequence of random variables. Note also that it was important that we had probability measures rather than
just general positive measures in the construction, since the infinite product  is always well defined. The next section on Stochastic
Processes continues the discussion of how to construct probability spaces that correspond to a collection of random variables with specified
distributional properties.

Probability Concepts
Our next discussion concerns topics that are unique to probability theory and do not have simple analogies in general measure theory.

Independence

As usual, suppose that  is a probability space. We have already studied the independence of collections of events and the
independence of collections of random variables. A more complete and general treatment results if we define the independence of collections of
collections of events, and most importantly, the independence of collections of -algebras. This extension actually occurred already, when we
went from independence of a collection of events to independence of a collection of random variables, but we did not note it at the time. In spite
of the layers of set theory, the basic idea is the same.
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Suppose that  is a collection of events for each  in an index set . Then  is independent if and only if for every choice
of  for , the collection of events  is independent. That is, for every finite ,

As noted above, independence of random variables, as we defined previously, is a special case of our new definition.

Suppose that  is a measurable space for each  in an index set , and that  is a random variable taking values in a set  for each 
. The independence of  is equivalent to the independence of .

Independence of events is also a special case of the new definition, and thus our new definition really does subsume our old one.

Suppose that  is an event for each . The independence of  is equivalent to the independence of  where 
 for each .

For every collection of objects that we have considered (collections of events, collections of random variables, collections of collections of
events), the notion of independence has the basic inheritance property.

Suppose that  is a collection of collections of events.

1. If  is independent then  is independent for every .
2. If  is independent for every finite  then  is independent.

Our most important collections are -algebras, and so we are most interested in the independence of a collection of -algebras. The next result
allows us to go from the independence of certain types of collections to the independence of the -algebras generated by these collections. To
understand the result, you will need to review the definitions and theorems concerning -systems and -systems. The proof uses Dynkin's -
theorem, named for Eugene Dynkin.

Suppose that  is a collection of events for each  in an index set , and that  is a -system for each . If  is
independent, then  is independent.

Proof

In light of the previous result, it suffices to consider a finite set of collections. Thus, suppose that  is independent. Now,
fix  for  and let . Let . Trivially  since 

. Next suppose that . Then

Thus . Finally, suppose that  is a countable collection of disjoint sets in . Then

Therefore  and so  is a -system. Trivially  by the original independence assumption, so by the -  theorem, 
. Thus, we have that for every  and  for ,

Thus we have shown that  is independent. Repeating the argument  additional times, we get that 
 is independent.

The next result is a rigorous statement of the strong independence that is implied the independence of a collection of events.

Suppose that  is an independent collection of events, and that  is a partition of . That is,  for  and 
. Then  is independent.

Proof

Let  denote the set of all finite intersections of sets in , for each . Then clearly  is a -system for each , and 
is independent. By the previous theorem,  is independent. But clearly  for .
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Let's bring the result down to earth. Suppose that  are independent events. In our elementary discussion of independence, you were
asked to show, for example, that  and  are independent. This is a consequence of the much stronger statement that the -
algebras  and  are independent.

Exchangeability

As usual, suppose that  is a probability space corresponding to a random experiment Roughly speaking, a sequence of events or a
sequence of random variables is exchangeable if the probability law that governs the sequence is unchanged when the order of the events or
variables is changed. Exchangeable variables arise naturally in sampling experiments and many other settings, and are a natural generalization
of a sequence of independent, identically distributed (IID) variables. Conversely, it turns out that any exchangeable sequence of variables can be
constructed from an IID sequence. First we give the definition for events:

Suppose that  is a collection of events, where  is a nonempty index set. Then  is exchangeable if the probability of
the intersection of a finite number of the events depends only on the number of events. That is, if  and  are finite subsets of  and 

 then

Exchangeability has the same basic inheritance property that we have seen before.

Suppose that  is a collection of events.

1. If  is exchangeable then  is exchangeable for every .
2. Conversely, if  is exchangeable for every finite  then  is exchangeable.

For a collection of exchangeable events, the inclusion exclusion law for the probability of a union is much simpler than the general version.

Suppose that  is an exchangeable collection of events. For  with , let .

Then

Proof

The inclusion-exclusion rule gives

But  for every  with , and there are  such subsets.

The concept of exchangeablility can be extended to random variables in the natural way. Suppose that  is a measurable space.

Suppose that  is a collection of random variables, each taking values in . The collection  is exchangeable if for any 
, the distribution of the random vector  depends only on .

Thus, the distribution of the random vector is unchanged if the coordinates are permuted. Once again, exchangeability has the same basic
inheritance property as a collection of independent variables.

Suppose that  is a collection of random variables, each taking values in .

1. If  is exchangeable then  is exchangeable for every .
2. Conversely, if  is exchangeable for every finite  then  is exchangeable.

Suppose that  is a collection of random variables, each taking values in , and that  is exchangeable. Then trivially the variables are
identically distributed: if  and , then . Also, the definition of exchangeable variables subsumes the
definition for events:

Suppose that  is a collection of events, and let  denote the corresponding collection of indicator random variables.
Then  is exchangeable if and only if  is exchangeable.
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Tail Events and Variables

Suppose again that we have a random experiment modeled by a probability space .

Suppose that  be a sequence of random variables. The tail sigma algebra of the sequence is

1. An event  is a tail event for the sequence.
2. A random variable  that is measurable with respect to  is a tail random variable for the sequence.

Informally, a tail event (random variable) is an event (random variable) that can be defined in terms of  for each . The
tail sigma algebra for a sequence of events  is defined analogously (or simply let , the indicator variable of , for
each ). For the following results, you may need to review some of the definitions in the section on Convergence.

Suppose that  is a sequence of events.

1. If the sequence is increasing then  is a tail event of the sequence.
2. If the sequence is decreasing then  is a tail event of the sequence.

Proof
1. If the sequence is increasing then  for every .
2. If the sequence is decreasing then  for every 

Suppose again that  is a sequence of events. Each of the following is a tail event of the sequence:

1. 
2. 

Proof
1. The events  are decreasing in  and hence  by the previous result.
2. The events  are increasing in  and hence  by the previous result.

Suppose that  is a sequence of real-valued random variables.

1.  is a tail event for .
2.  is a tail random variable for .
3.  is a tail random variable for .

Proof
1. The Cauchy criterion for convergence (named for Augustin Cauchy of course) states that  converges as  if an only if for

every  there exists  (depending on ) such that if  then . In this criterion, we can without loss
of generality take  to be rational, and for a given  we can insist that . With these restrictions, the Cauchy criterion is a
countable intersection of events, each of which is in .

2. Recall that .
3. Similarly, recall that .

The random variable in part (b) may take the value , and the random variable in (c) may take the value . From parts (b) and (c) together,
note that if  as  on the sample space , then  is a tail random variable for .

There are a number of zero-one laws in probability. These are theorems that give conditions under which an event will be essentially
deterministic; that is, have probability 0 or probability 1. Interestingly, it can sometimes be difficult to determine which of these extremes is
actually the case. The following result is the Kolmogorov zero-one law, named for Andrey Kolmogorov. It states that an event in the tail -
algebra of an independent sequence will have probability 0 or 1.

Suppose that  is an independent sequence of random variables

1. If  is a tail event for  then  or .
2. If  is a real-valued tail random variable for  then  is constant with probability 1.

Proof
1. By definition  for each , and hence  is an independent set of random variables.

Thus  is an independent set of random variables. But , so it follows that the event  is
independent of itself. Therefore  or .
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2. The function  on  is the (cumulative) distribution function of . This function is clearly increasing. Moreover, simple
applications of the continuity theorems show that it is right continuous and that  as  and  as 

. (Explicit proofs are given in the section on distribution functions in the chapter on Distributions.) But since  is a tail random
variable,  is a tail event and hence  for each . It follows that there exists  such that 

 for  and  for . Hence .

From the Komogorov zero-one law and the result above, note that if  is a sequence of independent events, then 
must have probability 0 or 1. The Borel-Cantelli lemmas give conditions for which of these is correct:

Suppose that  is a sequence of independent events.

1. If  then .
2. If  then .

Another proof of the Kolmogorov zero-one law will be given using the martingale convergence theorem.

Examples and Exercises
As always, be sure to try the computational exercises and proofs yourself before reading the answers and proofs in the text.

Counterexamples

Equal probability certainly does not imply equivalent events.

Consider the simple experiment of tossing a fair coin. The event that the coin lands heads and the event that the coin lands tails have the
same probability, but are not equivalent.

Proof

Let  denote the sample space, and  the event of heads, so that  is the event of tails. Since the coin is fair, . But 
, so , so  and  are as far from equivalent as possible.

Similarly, equivalent distributions does not imply equivalent random variables.

Consider the experiment of rolling a standard, fair die. Let  denote the score and . Then  and  have the same distribution
but are not equivalent.

Proof

Since the die is fair,  is uniformly distributed on . Also  for , so  also has

the uniform distribution on . But , so  and  are as far from equivalent as possible.

Consider the experiment of rolling two standard, fair dice and recording the sequence of scores . Then  and  are independent and
have the same distribution, but are not equivalent.

Proof

Since the dice are fair,  has the uniform distribution on . Equivalently,  and  are independent, and each has the
uniform distribution on . But , so  and  are not equivalent.
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2.10: Stochastic Processes
        

Introduction

This section requires measure theory, so you may need to review the advanced sections in the chapter on Foundations and in this chapter. In particular,
recall that a set  almost always comes with a -algebra  of admissible subsets, so that  is a measurable space. Usually in fact,  has a
topology and  is the corresponding Borel -algebra, that is, the -algebra generated by the topology. If  is countable, we almost always take  to be
the collection of all subsets of , and in this case  is a discrete space. The other common case is when  is an uncountable measurable subset of 

 for some , in which case  is the collection of measurable subsets of . If  are measurable spaces for some 
, then the Cartesian product  is given the product -algebra . As a special case, the Cartesian power 

 is given the corresponding power -algebra .

With these preliminary remarks out of the way, suppose that  is a probability space, so that  is the set of outcomes,  the -algebra of
events, and  is the probability measure on the sample space . Suppose also that  and  are measurable spaces. Here is our main
definition:

A random process or stochastic process on  with state space  and index set  is a collection of random variables 
 such that  takes values in  for each .

Sometimes it's notationally convenient to write  instead of  for . Often  or  and the elements of  are interpreted as
points in time (discrete time in the first case and continuous time in the second). So then  is the state of the random process at time , and
the index space  becomes the time space.

Since  is itself a function from  into , it follows that ultimately, a stochastic process is a function from  into . Stated another way, 
is a random function on the probability space . To make this precise, recall that  is the notation sometimes used for the collection of
functions from  into . Recall also that a natural -algebra used for  is the one generated by sets of the form

This -algebra, denoted , generalizes the ordinary power -algebra  mentioned in the opening paragraph and will be important in the discussion
of existence below.

Suppose that  is a stochastic process on the probability space  with state space  and index set . Then the
mapping that takes  into the function  is measurable with respect to  and .

Proof

Recall that a mapping with values in  is measurable if and only if each of its “coordinate functions” is measurable. In the present context that
means that we must show that the function  is measurable with respect to  and  for each . But of course, that follows from
the very meaning of the term random variable.

For , the function  is known as a sample path of the process. So , the set of functions from  into , can be thought of as a set of
outcomes of the stochastic process , a point we will return to in our discussion of existence below.

As noted in the proof of the last theorem,  is a measurable function from  into  for each , by the very meaning of the term random variable.
But it does not follow in general that  is measurable as a function from  into . In fact, the -algebra on  has played no role in
our discussion so far. Informally, a statement about  for a fixed  or even a statement about  for countably many  defines an event. But it
does not follow that a statement about  for uncountably many  defines an event. We often want to make such statements, so the following
definition is inevitable:

A stochastic process  defined on the probability space  and with index space  and state space  is
measurable if  is a measurable function from  into .

Every stochastic process indexed by a countable set  is measurable, so the definition is only important when  is uncountable, and in particular for 
.

Equivalent Processes
Our next goal is to study different ways that two stochastic processes, with the same state and index spaces, can be “equivalent”. We will assume that the
diagonal , an assumption that almost always holds in applications, and in particular for the discrete and Euclidean spaces
that are most important to us. Sufficient conditions are that  have a sub -algebra that is countably generated and contains all of the singleton sets,
properties that hold for the Borel -algebra when the topology on  is locally compact, Hausdorff, and has a countable base.

First, we often feel that we understand a random process  well if we know the finite dimensional distributions, that is, if we know the
distribution of  for every choice of  and . Thus, we can compute  for
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every , , and . Using various rules of probability, we can compute the probabilities of many events involving
infinitely many values of the index parameter  as well. With this idea in mind, we have the following definition:

Random processes  and  with state space  and index set  are equivalent in distribution if they have
the same finite dimensional distributions. This defines an equivalence relation on the collection of stochastic processes with this state space and
index set. That is, if , , and  are such processes then

1.  is equivalent in distribution to  (the reflexive property)
2. If  is equivalent in distribution to  then  is equivalent in distribution to  (the symmetric property)
3. If  is equivalent in distribution to  and  is equivalent in distribution to  then  is equivalent in distribution to  (the transitive property)

Note that since only the finite-dimensional distributions of the processes  and  are involved in the definition, the processes need not be defined on
the same probability space. Thus, equivalence in distribution partitions the collection of all random processes with a given state space and index set into
mutually disjoint equivalence classes. But of course, we already know that two random variables can have the same distribution but be very different as
variables (functions on the sample space). Clearly, the same statement applies to random processes.

Suppose that  is a sequence of Bernoulli trials with success parameter . Let  for . Then 
 is equivalent in distribution to  but

Proof

By the meaning of Bernoulli trials,  is a sequence of independent indicator random variables with  for each . It follows
that  is also a Bernoulli trials sequence with success parameter , so  and  are equivalent in distribution. Also, of course, the state set is 

 and  if and only if .

Motivated by this example, let's look at another, stronger way that random processes can be equivalent. First recall that random variables  and  on 
, with values in , are equivalent if .

Suppose that  and  are stochastic processes defined on the same probability space  and both with
state space  and index set . Then  is a versions of  if  is equivalent to  (so that ) for every . This defines an
equivalence relation on the collection of stochastic processes on the same probability space and with the same state space and index set. That is, if 

, , and  are such processes then

1.  is a version of  (the reflexive property)
2. If  is a version of  then  is ia version of  (the symmetric property)
3. If  is a version of  and  is of  then  is a version of  (the transitive property)

Proof

Note that  is a random variable with values in  (and so the function  is measurable). The event  is the
inverse image of the diagonal  under this mapping, and so the definition makes sense.

So the version of relation partitions the collection of stochastic processes on a given probability space and with a given state space and index set into
mutually disjoint equivalence classes.

Suppose again that  and  are random processes on  with state space  and index set . If  is
a version of  then  and  are equivalent in distribution.

Proof

Suppose that  and that . Recall that the intersection of a finite (or even countably infinite) collection of events with
probability 1 still has probability 1. Hence

As noted in the proof, a countable intersection of events with probability 1 still has probability 1. Hence if  is countable and random processes  is a
version of  then

so  and  really are essentially the same random process. But when  is uncountable the result in the displayed equation may not be true, and  and 
 may be very different as random functions on . Here is a simple example:

Suppose that ,  is the -algebra of Borel measurable subsets of , and  is any continuous probability measure on 
. Let  (with all subsets measurable, of course). For  and , define  and . Then 

 is a version of , but .
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Proof

For ,  since  is a continuous measure. But .

Motivated by this example, we have our strongest form of equivalence:

Suppose that  and  are measurable random processes on the probability space  and with state space 
 and index space . Then  is indistinguishable from  if . This defines an equivalence relation on the

collection of measurable stochastic processes defined on the same probability space and with the same state and index spaces. That is, if , , and 
 are such processes then

1.  is indistinguishable from  (the reflexive property)
2. If  is indistinguishable from  then  is indistinguishable from  (the symmetric property)
3. If  is indistinguishable from  and  is indistinguishable from  then  is indistinguishable from  (the transitive property)

Details

The measurability requirement for the stochastic processes is needed to ensure that  is a valid event. To see this, note that 
 is measurable, as a function from  into . As before, let  denote the diagonal. Then 

 and the inverse image of  under our mapping is

The projection of this set onto 

since the projection of a measurable set in the product space is also measurable. Hence the complementary event

So the indistinguishable from relation partitions the collection of measurable stochastic processes on a given probability space and with given state space
and index space into mutually disjoint equivalence classes. Trivially, if  is indistinguishable from , then  is a version of . As noted above, when 

 is countable, the converse is also true, but not, as our previous example shows, when  is uncountable. So to summarize, indistinguishable from
implies version of implies equivalent in distribution, but none of the converse implications hold in general.

The Kolmogorov Construction

In applications, a stochastic process is often modeled by giving various distributional properties that the process should satisfy. So the basic existence
problem is to construct a process that has these properties. More specifically, how can we construct random processes with specified finite dimensional
distributions? Let's start with the simplest case, one that we have seen several times before, and build up from there. Our simplest case is to construct a
single random variable with a specified distribution.

Suppose that  is a probability space. Then there exists a random variable  on probability space  such that  takes values in 
and has distribution .

Proof

The proof is utterly trivial. Let  and define  by , so that  is the identity function. Then 
 and so  for .

In spite of its triviality the last result contains the seeds of everything else we will do in this discussion. Next, let's see how to construct a sequence of
independent random variables with specified distributions.

Suppose that  is a probability measure on the measurable space  for . Then there exists an independent sequence of random
variables  on a probability space  such that  takes values in  and has distribution  for .

Proof

Let . Next let , the corresponding product -algebra. Recall that this is the -algebra generated by sets of the
form

Finally, let , the corresponding product measure on . Recall that this is the unique probability measure that satisfies

where  is a set of the type in the first displayed equation. Now define  on  by , for , so that  is
simply the coordinate function for index . If  is a set of the type in the first displayed equation then
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and so by the definition of the product measure,

It follows that  is a sequence of independent variables and that  has distribution  for .

If you looked at the proof of the last two results you might notice that the last result can be viewed as a special case of the one before, since 
 is simply the identity function on . The important step is the existence of the product measure  on .

The full generalization of these results is known as the Kolmogorov existence theorem (named for Andrei Kolmogorov). We start with the state space 
 and the index set . The theorem states that if we specify the finite dimensional distributions in a consistent way, then there exists a stochastic

process defined on a suitable probability space that has the given finite dimensional distributions. The consistency condition is a bit clunky to state in
full generality, but the basic idea is very easy to understand. Suppose that  and  are distinct elements in  and that we specify the distribution
(probability measure)  of ,  of ,  of , and  of . Then clearly we must specify these so that

For all . Clearly we also must have  for all measurable , where .

To state the consistency conditions in general, we need some notation. For , let  denote the set of -tuples of distinct elements of ,
and let  denote the set of all finite sequences of distinct elements of . If ,  and  is a permutation of

, let  denote the element of  with coordinates . That is, we permute the coordinates of  according to . If , let

finally, if , let  denote the vector 

Now suppose that  is a probability measure on  for each  and . The idea, of course, is that we want the collection 
 to be the finite dimensional distributions of a random process with index set  and state space . Here is the critical

definition:

The collection of probability distributions  relative to  and  is consistent if

1.  for every , , permutation  of , and measurable .
2.  for every , , and measurable 

With the proper definition of consistence, we can state the fundamental theorem.

Kolmogorov Existence Theorem. If  is a consistent collection of probability distributions relative to the index set  and the state space ,
then there exists a probability space  and a stochastic process  on this probability space such that  is the collection
of finite dimensional distribution of .

Proof sketch

Let , the set of functions from  to . Such functions are the outcomes of the stochastic process. Let , the product -algebra,
generated by sets of the form

where  for all  and  for all but finitely many . We know how our desired probability measure  should work on the sets
that generate . Specifically, suppose that  is a set of the type in the displayed equation, and  except for .
Then we want

Basic existence and uniqueness theorems in measure theory that we discussed earlier, and the consistency of , guarantee that  can be extended to
a probability measure on all of . Finally, for  we define  by  for , so that  is simply the coordinate
function of index . Thus, we have a stochastic process  with state space , defined on the probability space ,
with  as the collection of finite dimensional distributions.

Note that except for the more complicated notation, the construction is very similar to the one for a sequence of independent variables. Again,  is
essentially the identity function on . The important and more difficult part is the construction of the probability measure  on .

Applications
Our last discussion is a summary of the stochastic processes that are studied in this text. All are classics and are immensely important in applications.

Random processes are associated with Bernoulli trials include

1. the Bernoulli trials sequence itself
2. the sequence of binomial variables
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3. the sequence of geometric variables
4. the sequence of negative binomial variables
5. the simple random walk

Construction

The Bernoulli trials sequence in (a) is a sequence of independent, identically distributed indicator random variables, and so can be constructed as in
(). The random processes in (b)–(e) are constructed from the Bernoulli trials sequence.

Random process associated with the Poisson model include

1. the sequence of inter-arrival times
2. the sequence of arrival times
3. the counting process on , both in the homogeneous and non-homogeneous cases.
4. A compound Poisson process.
5. the counting process on a general measure space

Constructions

The random process in (a) is a sequence of independent random variable with a common exponential distribution, and so can be constructed as in ().
The processes in (b) and (c) can be constructed from the sequence in (a).

Random processes associated with renewal theory include

1. the sequence of inter-arrival times
2. the sequence of arrival times
3. the counting process on 

Markov chains form a very important family of random processes as do Brownian motion and related processes. We will study these in subsequent
chapters.

This page titled 2.10: Stochastic Processes is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via
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2.11: Filtrations and Stopping Times
         

Introduction

Suppose that  is a stochastic process with state space  defined on an underlying probability space 
. To review,  is the set of outcomes,  the -algebra of events, and  the probability measure on . Also  is the set

of states, and  the -algebra of admissible subsets of . Usually,  is a topological space and  the Borel -algebra generated by
the open subsets of . A standard set of assumptions is that the topology is locally compact, Hausdorff, and has a countable base,
which we will abbreviate by LCCB. For the index set, we assume that either  or that  and as usual in these cases, we
interpret the elements of  as points of time. The set  is also given a topology, the discrete topology in the first case and the standard
Euclidean topology in the second case, and then the Borel -algebra . So in discrete time with , , the power set
of , so every subset of  is measurable, as is every function from  into a another measurable space. Finally,  is a random
variable and so by definition is measurable with respect to  and  for each . We interpret  is the state of some random
system at time . Many important concepts involving  are based on how the future behavior of the process depends on the past
behavior, relative to a given current time.

For , let , the -algebra of events that can be defined in terms of the process up to time . Roughly
speaking, for a given , we can tell whether or not  has occurred if we are allowed to observe the process up to time . The
family of -algebras  has two critical properties: the family is increasing in , relative to the subset partial
order, and all of the -algebras are sub -algebras of . That is for  with , we have .

Filtrations

Basic Definitions

Sometimes we need -algebras that are a bit larger than the ones in the last paragraph. For example, there may be other random
variables that we get to observe, as time goes by, besides the variables in . Sometimes, particularly in continuous time, there are
technical reasons for somewhat different -algebras. Finally, we may want to describe how our information grows, as a family of -
algebras, without reference to a random process. For the remainder of this section, we have a fixed measurable space  which
we again think of as a sample space, and the time space  as described above.

A family of -algebras  is a filtration on  if  and  imply . The object 
 is a filtered sample space. If  is a probability measure on , then  is a filtered probability space.

So a filtration is simply an increasing family of sub- -algebras of , indexed by . We think of  as the -algebra of events up to
time . The larger the -algebras in a filtration, the more events that are available, so the following relation on filtrations is
natural.

Suppose that  and  are filtrations on . We say that  is coarser than  and  is finer
than , and we write , if  for all . The relation  is a partial order on the collection of filtrations on .
That is, if , , and  are filtrations then

1. , the reflexive property.
2. If  and  then , the antisymmetric property.
3. If  and  then , the transitive property.

Proof

The proof is a simple consequence of the fact that the subset relation defines a partial order.

1.  for each  so .
2. If  and  then  and  for each . Hence  for each  and so .
3. If  and  then  and  for each . Hence  for each  and so 

So the coarsest filtration on  is the one where  for every  while the finest filtration is the one where 
 for every . In the first case, we gain no information as time evolves, and in the second case, we have complete

information from the beginning of time. Usually neither of these is realistic.

It's also natural to consider the -algebra that encodes our information over all time.
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For a filtration  on , define . Then

1.  for .
2.  for .

Proof

These results follows since the -algebras in a filtration are increasing in time.

Of course, it may be the case that , but not necessarily. Recall that the intersection of a collection of -algebras on  is
another -algebra. We can use this to create new filtrations from a collection of given filtrations.

Suppose that  is a filtration on  for each  in a nonempty index set . Then  where 

 for  is also a filtration on . This filtration is sometimes denoted , and is the finest
filtration that is coarser than  for every .

Proof

Suppose  with . Then  for each  so it follows that .

Unions of -algebras are not in general -algebras, but we can construct a new filtration from a given collection of filtrations using
unions in a natural way.

Suppose again that  is a filtration on  for each  in a nonempty index set . Then 

where  for  is also a filtration on . This filtration is sometimes denoted , and is the

coarsest filtration that is finer than  for every .

Proof

Suppose  with . Then  for each  so it follows that , and hence 

.

Stochastic Processes

Note again that we can have a filtration without an underlying stochastic process in the background. However, we usually do have a
stochastic process , and in this case the filtration  where  is the
natural filtration associated with . More generally, the following definition is appropriate.

A stochastic process  on  is adapted to a filtration  on  if  is measureable
with respect to  for each .

Equivalently,  is adapted to  if  is finer than , the natural filtration associated with . That is, 
for each . So clearly, if  is adapted to a filtration, then it is adapted to any finer filtration, and  is the coarsest filtration to
which  is adapted. The basic idea behind the definition is that if the filtration  encodes our information as time goes by, then the
process  is observable. In discrete time, there is a related definition.

Suppose that . A stochastic process  is predictable by the filtration  if  is
measurable with respect to  for all .

Clearly if  is predictable by  then  is adapted to . But predictable is better than adapted, in the sense that if  encodes our
information as time goes by, then we can look one step into the future in terms of : at time  we can determine . The concept
of predictability can be extended to continuous time, but the definition is much more complicated.

Note that ultimately, a stochastic process  with sample space  and state space  can be viewed a
function from  into , so  is the state at time  corresponding to the outcome . By definition, 
is measurable for each , but it is often necessary for the process to be jointly measurable in  and .

Suppose that  is a stochastic process with sample space  and state space . Then  is measurable
if  is measurable with respect to  and .
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When we have a filtration, as we usually do, there is a stronger condition that is natural. Let  for , and let 
 be the corresponding induced -algebra.

Suppose that  is a stochastic process with sample space  and state space , and that 
 is a filtration. Then  is progressively measurable relative to  if  is measurable with

respect to  and  for each .

Clearly if  is progressively measurable with respect to a filtration, then it is progressively measurable with respect to any finer
filtration. Of course when  is discrete , then any process  is measurable, and any process  adapted to  progressively
measurable, so these definitions are only of interest in the case of continuous time.

Suppose again that  is a stochastic process with sample space  and state space , and that 
 is a filtration. If  is progressively measurable relative to  then

1.  is measurable.
2.  is adapted to .

Proof

Suppose that  is progressively measurable relative to .

1. If  then

By assumption, the th term in the union is in , so the union is in .
2. Suppose that . Then  is measurable with respect to  and . But  is just the cross

section of this function at  and hence is measurable with respect to  and .

When the state space is a topological space (which is usually the case), then as you might guess, there is a natural link between
continuity of the sample paths and progressive measurability.

Suppose that  has an LCCB topology and that  is the -algebra of Borel sets. Suppose also that  is
right continuous. Then  is progressively measurable relative to the natural filtration .

So if  is right continuous, then  is progressively measurable with respect to any filtration to which  is adapted. Recall that in the
previous section, we studied different ways that two stochastic processes can be equivalent. The following example illustrates some of
the subtleties of processes in continuous time.

Suppose that ,  is the -algebra of Borel measurable subsets of , and  is any continuous
probability measure on . Let  and . For  and , define 

 and . Then

1.  is a version of 
2.  is not adapted to the natural filtration of .

Proof
1. This was shown in the previous section, but here it is again: For , .
2. Trivially,  for every , so . But .

Completion

Suppose now that  is a probability measure on . Recall that  is complete with respect to  if , , and 
 imply  (and hence ). That is, if  is an event with probability 0 and , then  is also an event (and

also has probability 0). For a filtration, the following definition is appropriate.

The filtration  is complete with respect to a probability measure  on  if

1.  is complete with respect to 
2. If  and  then .
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Suppose  is a probability measure on  and that the filtration  is complete with respect to . If  is a
null event ( ) or an almost certain event ( ) then  for every .

Proof

This follows since almost certain events are complements of null events and since the -algebras are increasing in .

Recall that if  is a probability measure on , but  is not complete with respect to , then  can always be completed. Here's
a review of how this is done: Let

So  is the collection of null sets. Then we let  and extend  to  is the natural way: if  and 
differs from  by a null set, then . Filtrations can also be completed.

Suppose that  is a filtration on  and that  is a probability measure on . As above, let  denote

the collection of null subsets of , and for , let . Then  is a filtration on 

that is finer than  and is complete relative to .

Proof

If  with  then  and hence

and so . The probability measure  can be extended to  as described above, and hence is defined on 
for each . By construction, if  and  then  so  is complete with respect to .

Naturally,  is the completion of  with respect to . Sometimes we need to consider all probability measures on .

Let  denote the collection of probability measures on , and suppose that  is a filtration on . Let
, and let . Then  is a filtration on , known as the universal

completion of .

Proof

Note that  is a filtration on  for each , so  is a filtration on .

The last definition must seem awfully obscure, but it does have a place. In the theory of Markov processes, we usually allow arbitrary
initial distributions, which in turn produces a large collection of distributions on the sample space.

Right Continuity

In continuous time, we sometimes need to refine a given filtration somewhat.

Suppose that  is a filtration on . For , define . Then 
 is also a filtration on  and is finer than .

Proof

For  note that  is a -algebra since it is the intersection of -algebras, and clearly . Next, if 
 with , then , so it follows that

Finally, for ,  for every  so .

Since the -algebras in a filtration are increasing, it follows that for ,  for every .
So if the filtration  encodes the information available as time goes by, then the filtration  allows an “infinitesimal peak into the
future” at each . In light of the previous result, the next definition is natural.

A filtration  is right continuous if , so that  for every .
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Right continuous filtrations have some nice properties, as we will see later. If the original filtration is not right continuous, the slightly
refined filtration is:

Suppose again that  is a filtration. Then  is a right continuous filtration.

Proof

For 

For a stochastic process  in continuous time, often the filtration  that is most useful is the right-continuous
refinement of the natural filtration. That is, , so that  for .

Stopping Times

Basic Properties

Suppose again that we have a fixed sample space . Random variables taking values in the time set  are important, but often as
we will see, it's necessary to allow such variables to take the value  as well as finite times. So let . We extend order
to  by the obvious rule that  for every . We also extend the topology on  to  by the rule that for each , the
set  is an open neighborhood of . That is,  is the one-point compactification of . The reason for this is to
preserve the meaning of time converging to infinity. That is, if  is a sequence in  then  as  if and only if,
for every  there exists  such that  for . We then give  the Borel -algebra  as before. In discrete
time, this is once again the discrete -algebra, so that all subsets are measurable. In both cases, we now have an enhanced time space
is . A random variable  taking values in  is called a random time.

Suppose that  is a filtration on . A random time  is a stopping time relative to  if  for
each .

In a sense, a stopping time is a random time that does not require that we see into the future. That is, we can tell whether or not 
from our information at time . The term stopping time comes from gambling. Consider a gambler betting on games of chance. The
gambler's decision to stop gambling at some point in time and accept his fortune must define a stopping time. That is, the gambler can
base his decision to stop gambling on all of the information that he has at that point in time, but not on what will happen in the future.
The terms Markov time and optional time are sometimes used instead of stopping time. If  is a stopping time relative to a filtration,
then it is also a stoping time relative to any finer filtration:

Suppose that  and  are filtrations on , and that  is finer than . If a random time  is
a stopping time relative to  then  is a stopping time relative to .

Proof

This is very simple. If  then  and hence  since .

So, the finer the filtration, the larger the collection of stopping times. In fact, every random time is a stopping time relative to the finest
filtration  where  for every . But this filtration corresponds to having complete information from the beginning of
time, which of course is usually not sensible. At the other extreme, for the coarsest filtration  where  for every ,
the only stopping times are constants. That is, random times of the form  for every , for some .

Suppose again that  is a filtration on . A random time  is a stopping time relative to  if and only if 
 for each .

Proof

This result is trivial since  for .

Suppose again that  is a filtration on , and that  is a stopping time relative to . Then

1.  for every .
2.  for every .
3.  for every .
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Proof
1. Suppose first that . Then  for . Next suppose that . Fix 

 and let  be a strictly increasing sequence in  with  as . Then 
. But  for each , so .

2. This follows from (a) since  for .
3. For  note that . Both events in the set difference are in .

Note that when , we actually showed that  and . The converse to part (a) (or equivalently (b))
is not true, but in continuous time there is a connection to the right-continuous refinement of the filtration.

Suppose that  and that  is a filtration on . A random time  is a stopping time relative to
 if and only if  for every .

Proof

So restated, we need to show that  for every  if and only if  for every . (Note
by the way, that this not the same as the statement that for every ,  if and only if , which is not
true.) Suppose first that  is a stopping time relative to . Fix  and let  be a strictly decreasing sequence in 

 with  as . Then for each , . If  then there exists  such that 
 for each . Hence  for , and so it follows that . Since this is true for

every  it follows . Conversely, suppose that  for every . Fix  and let 
 be a strictly increasing sequence in  with  as . Then . But for every 

Hence .

If  is a filtration and  is a random time that satisfies  for every , then some authors call 
a weak stopping time or say that  is weakly optional for the filtration . But to me, the increase in jargon is not worthwhile, and it's
better to simply say that  is a stopping time for the filtration . The following corollary now follows.

Suppose that  and that  is a right-continuous filtration. A random time  is a stopping time
relative to  if and only if  for every .

The converse to part (c) of the result above holds in discrete time.

Suppose that  and that  is a filtration on . A random time  is a stopping time for  if and only if
 for every .

Proof

If  is a stopping time then as shown above,  for every . Conversely, suppose that this condition holds. For 
, . But  for  so .

Basic Constructions

As noted above, a constant element of  is a stopping time, but not a very interesting one.

Suppose  and that  for all . The  is a stopping time relative to any filtration on .

Proof

For  note that  if  and  if .

If the filtration  is complete, then a random time that is almost certainly a constant is also a stopping time. The following
theorems give some basic ways of constructing new stopping times from ones we already have.

Suppose that  is a filtration on  and that  and  are stopping times relative to . Then each of the
following is also a stopping time relative to :
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1. 
2. 
3. 

Proof
1. Note that  for , so the result follows from the definition.
2. Note that  for , so the result follows from the result above.
3. This is simple when . In this case, . But for , 

 and . Hence . Suppose instead that  and 
. Then  if and only if either  and  or . Of course  so we just need to

show that the first event is also in . Note that  and  if and only if there exists a rational  such that
 and . Each of these events is in  and hence so is the union of the events over the countable collection

of rational .

It follows that if  is a finite sequence of stopping times relative to , then each of the following is also a stopping time
relative to :

We have to be careful when we try to extend these results to infinite sequences.

Suppose that  is a filtration on , and that  is a sequence of stopping times relative to .
Then  is also a stopping time relative to .

Proof

Let . Note that  exists in  and is a random time. For , . But each
event in the intersection is in  and hence so is the intersection.

Suppose that  is a filtration on , and that  is an increasing sequence of stopping times
relative to . Then  is a stopping time relative to .

Proof

This is a corollary of the previous theorem. Since the sequence is increasing, .

Suppose that  and that  is a filtration on . If  is a sequence of stopping times
relative to , then each of the following is a stopping time relative to :

1. 
2. 
3. 

Proof
1. Let . Then  for . Hence  is a stopping time relative to  by

the result above.
2. Recall that  and so this is a stopping time relative to  by part (a) and the

result above on supremums.
3. Similarly note that  and so this is a stopping time relative to  by part (a)

and the result above on supremums.

As a simple corollary, we have the following results:

Suppose that  and that  is a right-continuous filtration on . If  is a sequence of
stopping times relative to , then each of the following is a also a stopping time relative to :
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3. 

The -Algebra of a Stopping Time

Consider again the general setting of a filtration  on the sample space , and suppose that  is a stopping time
relative to . We want to define the -algebra  of events up to the random time , analagous to  the -algebra of events up to a
fixed time . Here is the appropriate definition:

Suppose that  is a filtration on  and that  is a stopping time relative to . Define 
. Then  is a -algebra.

Proof

First  since  for . If  then 
for . Finally, suppose that  for  in a countable index set . Then 

 for .

Thus, an event  is in  if we can determine if  and  both occurred given our information at time . If  is constant, then 
reduces to the corresponding member of the original filtration, which clealry should be the case, and is additional motivation for the
definition.

Suppose again that  is a filtration on . Fix  and define  for all . Then .

Proof

Suppose that . Then  and for ,  if  and  if . In either case, 
 and hence . Conversely, suppose that . Then .

Clearly, if we have the information available in , then we should know the value of  itself. This is also true:

Suppose again that  is a filtration on  and that  is a stopping time relative to . Then  is measureable
with respect to .

Proof

It suffices to show that  for each . For ,

Hence .

Here are other results that relate the -algebra of a stopping time to the original filtration.

Suppose again that  is a filtration on  and that  is a stopping time relative to . If  then for 
,

1. 
2. 

Proof
1. By definition, . But  and . Hence 

.
2. similarly  and . Hence 

The -algebra of a stopping time relative to a filtration is related to the -algebra of the stopping time relative to a finer filtration in
the natural way.

Suppose that  and  are filtrations on  and that  is finer than . If  is a stopping time
relative to  then .

Proof

From the result above,  is also a stopping time relative to , so the statement makes sense. If  then for , 
, so .
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When two stopping times are ordered, their -algebras are also ordered.

Suppose that  is a filtration on  and that  and  are stopping times for  with . Then .

Proof

Suppose that  and . Note that . By definition,  and . Hence 
, so .

Suppose again that  is a filtration on , and that  and  are stopping times for . Then each of the
following events is in  and in .

1. 
2. 
3. 
4. 
5. 

Proof

The proofs are easy when .

1. Let . Then

But each event in the union is in .
2. Similarly, let . Then

and again each event in the union is in .
3. This follows from symmetry, reversing the roles of  and  in part (a).
4. Note that .
5. Similarly, note that .

We can “stop” a filtration at a stopping time. In the next subsection, we will stop a stochastic process in the same way.

Suppose again that  is a filtration on , and that  is a stopping times for . For  define 
. Then  is a filtration and is coarser than .

Proof

The random time  is a stopping time for each  by the result above, so  is a sub -algebra of . If , then by
definition,  if and only if  for every . But for ,  if  and 

 if . Hence  if and only if  for  and . So in particular, 
is coarser than . Further, suppose  with , and that . Let . If  then . If 

 then  and  so again . Finally if  then . Hence 
.

Stochastic Processes

As usual, the most common setting is when we have a stochastic process  defined on our sample space  and
with state space . If  is a random time, we are often interested in the state  at the random time. But there are two issues.
First,  may take the value infinity, in which case  is not defined. The usual solution is to introduce a new “death state” , and
define . The -algebra  on  is extended to  in the natural way, namely .

Our other problem is that we naturally expect  to be a random variable (that is, measurable), just as  is a random variable for a
deterministic . Moreover, if  is adapted to a filtration , then we would naturally also expect  to be
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measurable with respect to , just as  is measurable with respect to  for deterministic . But this is not obvious, and in fact
is not true without additional assumptions. Note that  is a random state at a random time, and so depends on an outcome  in
two ways: .

Suppose that  is a stochastic process on the sample space  with state space , and that  is
measurable. If  is a finite random time, then  is measurable. That is,  is a random variable with values in .

Proof

Note that  is the composition of the function  from  to  with the function 
from  to . The first function is measurable because the two coordinate functions are measurable. The second function is
measurable by assumption.

This result is one of the main reasons for the definition of a measurable process in the first place. Sometimes we literally want to stop
the random process at a random time . As you might guess, this is the origin of the term stopping time.

Suppose again that  is a stochastic process on the sample space  with state space , and that  is
measurable. If  is a random time, then the process  defined by  for  is the process 
stopped at .

Proof

For each , note that  is a finite random time, and hence  is measurable by the previous result. Thus  is a well-
defined stochastic process on  with state space .

When the original process is progressively measurable, so is the stopped process.

Suppose again that  is a stochastic process on the sample space  with state space , and that  is
progressively measurable with respect to a filtration . If  is a stopping time relative to , then the stopped
process  is progressively measurable with respect to the stopped filtration .

Since  is finer than , it follows that  is also progressively measurable with respect to .

Suppose again that  is a stochastic process on the sample space  with state space , and that  is
progressively measurable with respect to a filtration  on . If  is a finite stopping time relative to  then 

 is measurable with respect to .

For many random processes, the first time that the process enters or hits a set of states is particularly important. In the discussion that
follows, let , the set of positive times.

Suppose that  is a stochastic process on  with state space . For , define

1. , the first entry time to .
2. , the first hitting time to .

As usual,  so  if  for all , so that the process never enters , and  if  for all ,
so that the process never hits . In discrete time, it's easy to see that these are stopping times.

Suppose that  is a stochastic process on  with state space . If  then  and  are stopping
times relative to the natural filtration .

Proof

Let . Note that . Similarly, 
.

So of course in discrete time,  and  are stopping times relative to any filtration  to which  is adapted. You might think that 
and  should always be a stopping times, since  if and only if  for some  with , and  if and only if

 for some  with . It would seem that these events are known if one is allowed to observe the process up to time .
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The problem is that when , these are uncountable unions, so we need to make additional assumptions on the stochastic
process  or the filtration , or both.

Suppose that  has an LCCB topology, and that  is the -algebra of Borel sets. Suppose also that  is
right continuous and has left limits. Then  and  are stopping times relative to  for every open .

Here is another result that requires less of the stochastic process , but more of the filtration .

Suppose that  is a stochastic process on  that is progressively measurable relative to a complete,
right-continuous filtration . If  then  and  are stopping times relative to .

This page titled 2.11: Filtrations and Stopping Times is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

3: Distributions
Recall that a probability distribution is just another name for a probability measure. Most distributions are associated with random
variables, and in fact every distribution can be associated with a random variable. In this chapter we explore the basic types of
probability distributions (discrete, continuous, mixed), and the ways that distributions can be defined using density functions,
distribution functions, and quantile functions. We also study the relationship between the distribution of a random vector and the
distributions of its components, conditional distributions, and how the distribution of a random variable changes when the variable
is transformed.

In the advanced sections, we study convergence in distribution, one of the most important types of convergence. We also construct
the abstract integral with respect to a positive measure and study the basic properties of the integral. This leads in turn to general
(signed measures), absolute continuity and singularity, and the existence of density functions. Finally, we study various vector
spaces of functions that are defined by integral pro
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3.1: Discrete Distributions
   

Basic Theory

Definitions and Basic Properties

As usual, our starting point is a random experiment modeled by a probability space . So to review,  is the set of
outcomes,  the collection of events, and  the probability measure on the sample space . We use the terms probability
measure and probability distribution synonymously in this text. Also, since we use a general definition of random variable, every
probability measure can be thought of as the probability distribution of a random variable, so we can always take this point of view
if we like. Indeed, most probability measures naturally have random variables associated with them.

Recall that the sample space  is discrete if  is countable and  is the collection of all subsets of . In this
case,  is a discrete distribution and  is a discrete probabiity space.

For the remainder or our discussion we assume that  is a discrete probability space. In the picture below, the blue dots are
intended to represent points of positive probability.

Figure : A discrete distribution

It's very simple to describe a discrete probability distribution with the function that assigns probabilities to the individual points in 
.

The function  on  defined by  for  is the probability density function of , and satisfies the following
properties:

1. 
2. 
3.  for 

Proof

These properties follow from the axioms of a probability measure.

1.  since probabilities are nonnegative.
2.  by the countable additivity axiom.
3.  for  again, by the countable additivity axiom.

Property (c) is particularly important since it shows that a discrete probability distribution is completely determined by its
probability density function. Conversely, any function that satisfies properties (a) and (b) can be used to construct a discrete
probability distribution on  via property (c).

A nonnegative function  on  that satisfies  is a (discrete) probability density function on , and then 
defined as follows is a probability measure on .

Proof
1.  since  is nonnegative.
2. \) by property (b)
3. Suppose that  is a countable, disjoint collection of subsets of , and let . Then

(S,S ,P) S

S P (S,S )

(S,S ) S S =P(S) S

P (S,S ,P)

(S,S ,P)

3.1.1

S

f S f(x) = P({x}) x ∈ S P

f(x) ≥ 0, x ∈ S

f(x) = 1∑

x∈S

f(x) = P(A)∑

x∈A

A⊆ S

f(x) = P({x}) ≥ 0

f(x) = P({x}) = P(S) = 1∑

x∈S

∑

x∈S

f(x) = P({x}) = P(A)∑

x∈A

∑

x∈A

A⊆ S

S

f S f(x) = 1∑

x∈S

S P

S

P(A) = f(x), A⊆ S∑

x∈A

(3.1.1)

P(A) = f(x) ≥ 0∑

x∈A

f

P(S) = f(x) = 1∑

x∈S
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Note that since  is nonnegative, the order of the terms in the sum do not matter.

Technically,  is the density of  relative to counting measure  on . The technicalities are discussed in detail in the advanced
section on absolute continuity and density functions.

Figure : A discrete distribution is completely determined by its probability density function.

The set of outcomes  is often a countable subset of some larger set, such as  for some . But not always. We might want
to consider a random variable with values in a deck of cards, or a set of words, or some other discrete population of objects. Of
course, we can always map a countable set  one-to-one into a Euclidean set, but it might be contrived or unnatural to do so. In any
event, if  is a subset of a larger set, we can always extend a probability density function , if we want, to the larger set by defining

 for . Sometimes this extension simplifies formulas and notation. Put another way, the “set of values” is often a
convenience set that includes the points with positive probability, but perhaps other points as well.

Suppose that  is a probability density function on . Then  is the support set of the distribution.

Values of  that maximize the probability density function are important enough to deserve a name.

Suppose again that  is a probability density function on . An element  that maximizes  is a mode of the distribution.

When there is only one mode, it is sometimes used as a measure of the center of the distribution.

A discrete probability distribution defined by a probability density function  is equivalent to a discrete mass distribution, with
total mass 1. In this analogy,  is the (countable) set of point masses, and  is the mass of the point at . Property (c) in (2)
above simply means that the mass of a set  can be found by adding the masses of the points in .

But let's consider a probabilistic interpretation, rather than one from physics. We start with a basic random variable  for an
experiment, defined on a probability space . Suppose that  has a discrete distribution on  with probability density
function . So in this setting,  for . We create a new, compound experiment by conducting independent
repetitions of the original experiment. So in the compound experiment, we have a sequence of independent random variables 

 each with the same distribution as ; in statistical terms, we are sampling from the distribution of . Define

Note that  is the relative frequency of outcome  in the first  runs. Note also that  is a random variable for the
compound experiment for each . By the law of large numbers,  should converge to , in some sense, as .
The function  is called the empirical probability density function, and it is in fact a (random) probability density function, since it
satisfies properties (a) and (b) of (2). Empirical probability density functions are displayed in most of the simulation apps that deal
with discrete variables.

It's easy to construct discrete probability density functions from other nonnegative functions defined on a countable set.

Suppose that  is a nonnegative function defined on , and let

If , then the function  defined by  for  is a discrete probability density function on .

Proof

P(A) = f(x) = f(x) = P( )∑

x∈A

∑

i∈I

∑

x∈A

i
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i

(3.1.2)
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Clearly  for . also

Note that since we are assuming that  is nonnegative,  if and only if  for every . At the other extreme, 
could only occur if  is infinite (and the infinite series diverges). When  (so that we can construct the probability
density function ),  is sometimes called the normalizing constant. This result is useful for constructing probability density
functions with desired functional properties (domain, shape, symmetry, and so on).

Conditional Densities

Suppose again that  is a random variable on a probability space  and that  takes values in our discrete set . The
distributionn of  (and hence the probability density function of ) is based on the underlying probability measure on the sample
space . This measure could be a conditional probability measure, conditioned on a given event  (with ).
The probability density function in this case is

Except for notation, no new concepts are involved. Therefore, all results that hold for discrete probability density functions in
general have analogies for conditional discrete probability density functions.

For fixed  with  the function  is a discrete probability density function on  That is,

1.  for .
2. 
3.  for 

Proof

This is a consequence of the fact that  is a probability measure on . The function  plays
the same role for the conditional probabliity measure that  does for the original probability measure .

In particular, the event  could be an event defined in terms of the random variable  itself.

Suppose that  and . The conditional probability density function of  given  is the function on 
defined by

Proof

This follows from the previous theorem. . The numerator is  if 
and is 0 if .

Note that the denominator is simply the normalizing constant for  restricted to . Of course,  for .

Conditioning and Bayes' Theorem

Suppose again that  is a random variable defined on a probability space  and that  has a discrete distribution on ,
with probability density function . We assume that  for  so that the distribution has support . The versions of the
law of total probability and Bayes' theorem given in the following theorems follow immediately from the corresponding results in
the section on Conditional Probability. Only the notation is different.

Law of Total Probability. If  is an event then

Proof

f(x) ≥ 0 x ∈ S

f(x) = g(x) = = 1∑

x∈S

1

c
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x∈S

c
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(3.1.5)
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f P
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Note that  is a countable partition of the sample space . That is, these events are disjoint and their union
is the entire sample space . Hence

This result is useful, naturally, when the distribution of  and the conditional probability of  given the values of  are known.
When we compute  in this way, we say that we are conditioning on . Note that , as expressed by the formula, is a
weighted average of , with weight factors , over .

Bayes' Theorem. If  is an event with  then

Proof

Note that the numerator of the fraction on the right is . The denominator is 
 by the previous theorem. Hence the ratio is .

Bayes' theorem, named for Thomas Bayes, is a formula for the conditional probability density function of  given . Again, it is
useful when the quantities on the right are known. In the context of Bayes' theorem, the (unconditional) distribution of  is
referred to as the prior distribution and the conditional distribution as the posterior distribution. Note that the denominator in
Bayes' formula is  and is simply the normalizing constant for the function .

Examples and Special Cases

We start with some simple (albeit somewhat artificial) discrete distributions. After that, we study three special parametric models—
the discrete uniform distribution, hypergeometric distributions, and Bernoulli trials. These models are very important, so when
working the computational problems that follow, try to see if the problem fits one of these models. As always, be sure to try the
problems yourself before looking at the answers and proofs in the text.

Simple Discrete Distributions

Let  be the function defined by  for .

1. Find the probability density function  that is proportional to  as in .
2. Sketch the graph of  and find the mode of the distribution.
3. Find  where  has probability density function .

Answer

1.  for 
2. mode 
3. 

Let  be the function defined by  for .

1. Find the probability density function  that is proportional to .
2. Sketch the graph of  and find the mode of the distribution.
3. Find  where  has probability density function .

Answer
1.  for 
2. mode 
3. 

Let  be the function defined by  for .

1. Sketch the domain of .

{{X = x} : x ∈ S} Ω

Ω

P(E) = P(E∩{X = x}) = P(X = x)P(E ∣X = x) = f(x)P(E ∣X = x)∑

x∈S

∑

x∈S

∑

x∈S

(3.1.9)

X E X
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(3.1.10)
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P(E) P(X = x ∣ E) = f(x ∣ E)
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X

P(E) x↦ f(x)P(E ∣X = x)
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2. Find the probability density function  that is proportional to .
3. Find the mode of the distribution.
4. Find  where  has probability density function .

Answer

1.  for 
2. mode 
3. 

Let  be the function defined by  for .

1. Sketch the domain of .
2. Find the probability density function  that is proportional to .
3. Find the mode of the distribution.
4. Find  where  has probability density function .

Answer
1.  for 
2. mode 
3. 

Consider the following game: An urn initially contains one red and one green ball. A ball is selected at random, and if the ball
is green, the game is over. If the ball is red, the ball is returned to the urn, another red ball is added, and the game continues. At
each stage, a ball is selected at random, and if the ball is green, the game is over. If the ball is red, the ball is returned to the
urn, another red ball is added, and the game continues. Let  denote the length of the game (that is, the number of selections
required to obtain a green ball). Find the probability density function of .

Solution

Note that  takes values in . Using the multiplication rule for conditional probabilities, the PDF  of  is given by

and in general,  for . By partial fractions,  for  so we can check that  is a

valid PDF:

Discrete Uniform Distributions

An element  is chosen at random from a finite set . The distribution of  is the discrete uniform distribution on .

1.  has probability density function  given by  for .
2.  for .

Proof

The phrase at random means that all outcomes are equally likely.

Many random variables that arise in sampling or combinatorial experiments are transformations of uniformly distributed variables.
The next few exercises review the standard methods of sampling from a finite population. The parameters  and  are positive
inteters.

Suppose that  elements are chosen at random, with replacement from a set  with  elements. Let  denote the ordered
sequence of elements chosen. Then  is uniformly distributed on the Cartesian power set , and has probability density
function  given by

f g

P(X > Y ) (X,Y ) f

f(x, y) = (x+y)

1

36

(x, y) ∈ {1, 2, 3}

2

(3, 3)

2

9

g g(x, y) = xy (x, y) ∈ {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}

g

f g

P [(X,Y ) ∈ {(1, 2), (1, 3), (2, 2), (2, 3)}] (X,Y ) f

f(x, y) = xy

1

25

(x, y) ∈ {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}

(3, 3)

3

5

X

X

X N

+

f X

f(1) = = , f(2) = = , f(3) = =

1

2

1

1 ⋅ 2

1

2

1

3

1

2 ⋅ 3

1

2

2

3

1

4

1

3 ⋅ 4

(3.1.11)

f(x) =

1

x(x+1)

x ∈ N

+

f(x) = −

1

x

1

x+1

x ∈ N

+

f

( − ) = ( − ) = (1− ) = 1∑

x=1

∞

1

x

1

x+1

lim

n→∞

∑

x=1

n

1

x

1

x+1

lim

n→∞

1

n+1

(3.1.12)

X S X S

X f f(x) = 1/#(S) x ∈ S

P(X ∈ A) =#(A)/#(S) A⊆ S

m n

n D m X

X S =D

n

f
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Proof

Recall that .

Suppose that  elements are chosen at random, without replacement from a set  with  elements (so ). Let  denote
the ordered sequence of elements chosen. Then  is uniformly distributed on the set  of permutations of size  chosen from 

, and has probability density function  given by

Proof

Recall that the number of permutations of size  from  is .

Suppose that  elements are chosen at random, without replacement, from a set  with  elements (so ). Let 
denote the unordered set of elements chosen. Then  is uniformly distributed on the set  of combinations of size  chosen
from , and has probability density function  given by

Proof

Recall that the number of combinations of size  from  is .

Suppose that  is uniformly distributed on a finite set  and that  is a nonempty subset of . Then the conditional
distribution of  given  is uniform on .

Proof

From (7), the conditional probability density function of  given  is

Hypergeometric Models

Suppose that a dichotomous population consists of  objects of two different types:  of the objects are type 1 and  are type
0. Here are some typical examples:

The objects are persons, each either male or female.
The objects are voters, each either a democrat or a republican.
The objects are devices of some sort, each either good or defective.
The objects are fish in a lake, each either tagged or untagged.
The objects are balls in an urn, each either red or green.

A sample of  objects is chosen at random (without replacement) from the population. Recall that this means that the samples,
either ordered or unordered are equally likely. Note that this probability model has three parameters: the population size , the
number of type 1 objects , and the sample size . Each is a nonnegative integer with  and . Now, suppose that we
keep track of order, and let  denote the type of the th object chosen, for . Thus,  is an indicator variable
(that is, a variable that just takes values 0 and 1).

 has probability density function  given by

Proof

f(x) = , x ∈ S

1

m

n

(3.1.13)

#( ) =D

n

m

n

n D m n≤m X

X S n

D f

f(x) = , x ∈ S

1

m

(n)

(3.1.14)

n D m

(n)

n D m n≤m W

W T n

D f

f(w) = , w ∈ T

1

( )

m

n

(3.1.15)

n D ( )

m

n

X S B S

X X ∈ B B

X X ∈ B

f(x ∣ B) = = = , x ∈ B

f(x)

P(X ∈ B)

1/#(S)

#(B)/#(S)

1

#(B)

(3.1.16)

m r m−r

n

m

r n r≤m n≤m

X

i

i i ∈ {1, 2,… ,n} X

i

X = ( , ,… , )X

1

X

2

X

n

f

f( , ,… , ) = , ( , ,… , ) ∈ {0, 1  where y = + +⋯+x

1

x

2

x

n

(m−rr

(y)

)

(n−y)

m

(n)

x

1

x

2

x

n

}

n

x

1

x

2

x
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(3.1.17)
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Recall again that the ordered samples are equally likely, and there are  such samples. The number of ways to select the 
type 1 objects and place them in the positions where  is . The number of ways to select the  type 0 objects and
place them in the positions where  is . Thus the result follows from the multiplication principle.

Note that the value of  depends only on , and hence is unchanged if  is
permuted. This means that  is exchangeable. In particular, the distribution of  is the same as the distribution of

, so . Thus, the variables are identically distributed. Also the distribution of  is the same as the

distribution of , so . Thus,  and  are not independent, and in fact are negatively

correlated.

Now let  denote the number of type 1 objects in the sample. Note that . Any counting variable can be written as a
sum of indicator variables.

 has probability density function  given by.

1.  if and only if  where .
2. If  is not a positive integer, there is a single mode at .
3. If  is a positive integer, then there are two modes, at  and .

Proof

Recall again that the unordered samples of size  chosen from the population are equally likely. By the multiplication
principle, the number of samples with exactly  type 1 objects and  type 0 objects is . The total number of
samples is .

1. Note that  if and only if . Writing the binomial coefficients in terms of factorials
and canceling terms gives  if and only if , where  is given above.

2. By the same argument,  if and only if . If  is not an integer then this cannot happen. Letting ,
it follows from (a) that  if  or .

3. If  is a positive integer, then by (b),  and by (a)  if  and  if .

The distribution defined by the probability density function in the last result is the hypergeometric distributions with parameters ,
, and . The term hypergeometric comes from a certain class of special functions, but is not particularly helpful in terms of

remembering the model. Nonetheless, we are stuck with it. The set of values  is a convenience set: it contains all of
the values that have positive probability, but depending on the parameters, some of the values may have probability 0. Recall our
convention for binomial coefficients: for ,  if . Note also that the hypergeometric distribution is unimodal:
the probability density function increases and then decreases, with either a single mode or two adjacent modes.

We can extend the hypergeometric model to a population of three types. Thus, suppose that our population consists of  objects; 
of the objects are type 1,  are type 2, and  are type 0. Here are some examples:

The objects are voters, each a democrat, a republican, or an independent.
The objects are cicadas, each one of three species: tredecula, tredecassini, or tredecim
The objects are peaches, each classified as small, medium, or large.
The objects are faculty members at a university, each an assistant professor, or an associate professor, or a full professor.

Once again, a sample of  objects is chosen at random (without replacement). The probability model now has four parameters: the
population size , the type sizes  and , and the sample size . All are nonnegative integers with  and .
Moreover, we now need two random variables to keep track of the counts for the three types in the sample. Let  denote the
number of type 1 objects in the sample and  the number of type 2 objects in the sample.

 has probability density function  given by
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(3.1.18)

g(y−1) < g(y) y < t t = (r+1)(n+1)/(m+2)
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Proof

Once again, by the multiplication principle, the number of samples of size  from the population with exactly  type 1 objects, 
 type 2 objects, and  type 0 objects is . The total number of samples of size  is .

The distribution defined by the density function in the last exericse is the bivariate hypergeometric distribution with parameters ,
, , and . Once again, the domain given is a convenience set; it includes the set of points with positive probability, but depending

on the parameters, may include points with probability 0. Clearly, the same general pattern applies to populations with even more
types. However, because of all of the parameters, the formulas are not worthing remembering in detail; rather, just note the pattern,
and remember the combinatorial meaning of the binomial coefficient. The hypergeometric model will be revisited later in this
chapter, in the section on joint distributions and in the section on conditional distributions. The hypergeometric distribution and the
multivariate hypergeometric distribution are studied in detail in the chapter on Finite Sampling Models. This chapter contains a
variety of distributions that are based on discrete uniform distributions.

Bernoulli Trials

A Bernoulli trials sequence is a sequence  of independent, identically distributed indicator variables. Random
variable  is the outcome of trial , where in the usual terminology of reliability, 1 denotes success while 0 denotes failure, The
process is named for Jacob Bernoulli. Let  denote the success parameter of the process. Note that the
indicator variables in the hypergeometric model satisfy one of the assumptions of Bernoulli trials (identical distributions) but not
the other (independence).

 has probability density function  given by

Proof

By definition,  and . Equivalently,  for . The
formula for  then follows by independence.

Now let  denote the number of successes in the first  trials. Note that , so we see again that a complicated random
variable can be written as a sum of simpler ones. In particular, a counting variable can always be written as a sum of indicator
variables.

 has probability density function  given by

1.  if and only if , wher .
2. If  is not a positive integer, there is a single mode at .
3. If  is a positive integer, then there are two modes, at  and .

Proof

From the previous result, any particular sequence of  Bernoulli trials with  successes and  failures has probability 
. The number of such sequences is , so the formula for  follows by the additivity of probability.

1. Note that  if and only if . Writing the binomial coefficients in
terms of factorials and canceling gives  if and only if  where .

2. By the same argument,  if and only if . If  is not an integer, this cannot happen. Letting , it
follows from (a) that  if  or .

3. If  is a positive integer, then by (b),  and by (a)  if  and  if .

h(y, z) = , (y, z) ∈ {0, 1,… ,n  with y+z≤ n

( )( )( )

r

y

s

z

m−r−s

n−y−z

( )

m

n

}

2

(3.1.19)
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(3.1.20)
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(3.1.21)

g(y−1) < g(y) y < t t = (n+1)p
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The distribution defined by the probability density function in the last theorem is called the binomial distribution with parameters 
and . The distribution is unimodal: the probability density function at first increases and then decreases, with either a single mode
or two adjacent modes. The binomial distribution is studied in detail in the chapter on Bernoulli Trials.

Suppose that  and let  denote the trial number of the first success. Then  has probability density function  given by

The probability density function  is decreasing and the mode is .

Proof

For , the event  means that the first  trials were failures and trial  was a success. Each trial results in
failure with probability  and success with probability , and the trials are independent, so .
Using geometric series, we can check that

The distribution defined by the probability density function in the last exercise is the geometric distribution on  with parameter 
. The geometric distribution is studied in detail in the chapter on Bernoulli Trials.

Sampling Problems

In the following exercises, be sure to check if the problem fits one of the general models above.

An urn contains 30 red and 20 green balls. A sample of 5 balls is selected at random, without replacement. Let  denote the
number of red balls in the sample.

1. Compute the probability density function of  explicitly and identify the distribution by name and parameter values.
2. Graph the probability density function and identify the mode(s).
3. Find .

Answer
1. , , , , , . Hypergeometric with 

, , 
2. mode: 
3. 

In the ball and urn experiment, select sampling without replacement and set , , and . Run the experiment
1000 times and note the agreement between the empirical density function of  and the probability density function.

An urn contains 30 red and 20 green balls. A sample of 5 balls is selected at random, with replacement. Let  denote the
number of red balls in the sample.

1. Compute the probability density function of  explicitly and identify the distribution by name and parameter values.
2. Graph the probability density function and identify the mode(s).
3. Find .

Answer
1. , , , , , . Binomial with , 

2. mode: 
3. 

In the ball and urn experiment, select sampling with replacement and set , , and . Run the experiment
1000 times and note the agreement between the empirical density function of  and the probability density function.

n

p

p > 0 N N h

h(n) = (1−p p, n ∈)

n−1

N
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(3.1.22)
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∞
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(3.1.23)
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f(0) = 0.0073 f(1) = 0.0686 f(2) = 0.2341 f(3) = 0.3641 f(4) = 0.2587 f(5) = 0.0673

m = 50 r= 30 n= 5

y = 3

P(Y > 3) = 0.3260

m = 50 r= 30 n= 5

Y

Y

Y

P(Y > 3)

f(0) = 0.0102 f(1) = 0.0768 f(2) = 0.2304 f(3) = 0.3456 f(4) = 0.2592 f(5) = 0.0778 n= 5

p = 3/5

y = 3

P(Y > 3) = 0.3370
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A group of voters consists of 50 democrats, 40 republicans, and 30 independents. A sample of 10 voters is chosen at random,
without replacement. Let  denote the number of democrats in the sample and  the number of republicans in the sample.

1. Give the probability density function of .
2. Give the probability density function of .
3. Give the probability density function of .
4. Find the probability that the sample has at least 4 democrats and at least 4 republicans.

Answer

1.  for . This is the hypergeometric distribution with parameters ,  and 

.

2.  for . This is the hypergeometric distribution with parameters ,  and 

.

3.  for  with . This is the bivariate hypergeometric distribution

with parameters , ,  and .
4. 

The Math Club at Enormous State University (ESU) has 20 freshmen, 40 sophomores, 30 juniors, and 10 seniors. A committee
of 8 club members is chosen at random, without replacement to organize -day activities. Let  denote the number of
freshman in the sample,  the number of sophomores, and  the number of juniors.

1. Give the probability density function of .
2. Give the probability density function of .
3. Give the probability density function of .
4. Give the probability density function of .
5. Give the probability density function of .
6. Find the probability that the committee has no seniors.

Answer

1.  for . This is the hypergeometric distribution with parameters , , and 

.

2.  for . This is the hypergeometric distribution with parameters , , and 

.

3.  for . This is the hypergeometric distribution with parameters , , and 

.

4.  for  with . This is the bivariate hypergeometric distribution

with parameters , ,  and .

5.  for  with . This is the tri-variate

hypergeometric distribution with parameters , , , , and .
6. 

Coins and Dice

Suppose that a coin with probability of heads  is tossed repeatedly, and the sequence of heads and tails is recorded.
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1. Identify the underlying probability model by name and parameter.
2. Let  denote the number of heads in the first  tosses. Give the probability density function of  and identify the

distribution by name and parameters.
3. Let  denote the number of tosses needed to get the first head. Give the probability density function of  and identify the

distribution by name and parameter.

Answer
1. Bernoulli trials with success parameter .
2.  for . This is the binomial distribution with trial parameter  and success

parameter .
3.  for . This is the geometric distribution with success parameter .

Suppose that a coin with probability of heads  is tossed 5 times. Let  denote the number of heads.

1. Compute the probability density function of  explicitly.
2. Graph the probability density function and identify the mode.
3. Find .

Answer
1. , , , , , 
2. mode: 
3. 

In the binomial coin experiment, set  and . Run the experiment 1000 times and compare the empirical density
function of  with the probability density function.

Suppose that a coin with probability of heads  is tossed until heads occurs. Let  denote the number of tosses.

1. Find the probability density function of .
2. Find .

Answer
1.  for 
2. 

In the negative binomial experiment, set  and . Run the experiment 1000 times and compare the empirical
density function with the probability density function.

Suppose that two fair, standard dice are tossed and the sequence of scores  recorded. Let  denote the
sum of the scores,  the minimum score, and  the maximum score.

1. Find the probability density function of . Identify the distribution by name.
2. Find the probability density function of .
3. Find the probability density function of .
4. Find the probability density function of .
5. Find the probability density function of .

Answer

We denote the PDFs by , , , , and  respectively.

1.  for . This is the uniform distribution on .
2. , , , , , 
3. , , , , , 
4. , , , , , 
5.  if ,  if  where  with 
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n= 5 p = 0.4

Y

p = 0.2 N

N

P(N ≤ 5)

f(n) = (0.8 0.2)

n−1

n ∈ N

+

P(N ≤ 5) = 0.67232

k= 1 p = 0.2
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Note that  in the last exercise could serve as the outcome of the experiment that consists of throwing two standard dice if we
did not bother to record order. Note from the previous exercise that this random vector does not have a uniform distribution when
the dice are fair. The mistaken idea that this vector should have the uniform distribution was the cause of difficulties in the early
development of probability.

In the dice experiment, select  fair dice. Select the following random variables and note the shape and location of the
probability density function. Run the experiment 1000 times. For each of the following variables, compare the empirical
density function with the probability density function.

1. , the sum of the scores.
2. , the minimum score.
3. , the maximum score.

In the die-coin experiment, a fair, standard die is rolled and then a fair coin is tossed the number of times showing on the die.
Let  denote the die score and  the number of heads.

1. Find the probability density function of . Identify the distribution by name.
2. Find the probability density function of .

Answer

1.  for . This is the uniform distribution on .
2. , , , , , , 

Run the die-coin experiment 1000 times. For the number of heads, compare the empirical density function with the probability
density function.

Suppose that a bag contains 12 coins: 5 are fair, 4 are biased with probability of heads ; and 3 are two-headed. A coin is
chosen at random from the bag and tossed 5 times. Let  denote the probability of heads of the selected coin and let  denote
the number of heads.

1. Find the probability density function of .
2. Find the probability density function of .

Answer
1. , , 
2. , , , , , 

Compare thedie-coin experiment with the bag of coins experiment. In the first experiment, we toss a coin with a fixed probability of
heads a random number of times. In second experiment, we effectively toss a coin with a random probability of heads a fixed
number of times. In both cases, we can think of starting with a binomial distribution and randomizing one of the parameters.

In the coin-die experiment, a fair coin is tossed. If the coin lands tails, a fair die is rolled. If the coin lands heads, an ace-six flat
die is tossed (faces 1 and 6 have probability  each, while faces 2, 3, 4, 5 have probability  each). Find the probability
density function of the die score .

Answer

 for ,  for 

Run the coin-die experiment 1000 times, with the settings in the previous exercise. Compare the empirical density function
with the probability density function.

Suppose that a standard die is thrown 10 times. Let  denote the number of times an ace or a six occurred. Give the probability
density function of  and identify the distribution by name and parameter values in each of the following cases:

1. The die is fair.

(U,V )

n= 2

Y

U

V

N Y

N

Y

g(n) =

1

6

n ∈ {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6}

h(0) =

63

384

h(1) =

120

384

h(2) =

90

384

h(3) =

64

384

h(4) =

29

384

h(5) =

8

384

h(6) =

1

384

1

3

V Y

V

Y

g(1/2) = 5/12 g(1/3) = 4/12 g(1) = 3/12

h(0) = 5311/93312h(1) = 16315/93312h(2) = 22390/93312h(3) = 17270/93312h(4) = 7355/93312

h(5) = 24671/93312

1

4

1

8

Y

f(y) = 5/24 y ∈ {1, 6} f(y) = 7/24 y ∈ {2, 3, 4, 5}

Y

Y
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2. The die is an ace-six flat.

Answer

1.  for . This is the binomial distribution with trial parameter  and success
parameter 

2.  for . This is the binomial distribution with trial parameter  and success
parameter 

Suppose that a standard die is thrown until an ace or a six occurs. Let  denote the number of throws. Give the probability
density function of  and identify the distribution by name and parameter values in each of the following cases:

1. The die is fair.
2. The die is an ace-six flat.

Answer

1.  for . This is the geometric distribution with success parameter 
2.  for . This is the geometric distribution with success parameter 

Fred and Wilma takes turns tossing a coin with probability of heads : Fred first, then Wilma, then Fred again, and so
forth. The first person to toss heads wins the game. Let  denote the number of tosses, and  the event that Wilma wins.

1. Give the probability density function of  and identify the distribution by name.
2. Compute  and sketch the graph of this probability as a function of .
3. Find the conditional probability density function of  given .

Answer
1.  for . This is the geometric distribution with success parameter .
2. 
3.  for 

The alternating coin tossing game is studied in more detail in the section on The Geometric Distribution in the chapter on Bernoulli
trials.

Suppose that  players each have a coin with probability of heads , where  and where .

1. Suppose that the players toss their coins at the same time. Find the probability that there is an odd man, that is, one player
with a different outcome than all the rest.

2. Suppose now that the players repeat the procedure in part (a) until there is an odd man. Find the probability density
function of , the number of rounds played, and identify the distribution by name.

Answer
1. The probability is  if , and is  if .
2. Let  denote the probability in part (a).  has PDF  for , and has the geometric distribution

with parameter .

The odd man out game is treated in more detail in the section on the Geometric Distribution in the chapter on Bernoulli Trials.

Cards

Recall that a poker hand consists of 5 cards chosen at random and without replacement from a standard deck of 52 cards. Let 
 denote the number of spades in the hand and  the number of hearts in the hand. Give the probability density function of

each of the following random variables, and identify the distribution by name:

1. 
2. 
3. 

f(k) = ( )
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k

( )

1

3

k
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+
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+
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Answer

1.  for . This is the hypergeometric distribution with population size , type

parameter , and sample size 

2.  for . This is the same hypergeometric distribution as in part (a).

3.  for  with . This is a bivariate hypergeometric distribution.

Recall that a bridge hand consists of 13 cards chosen at random and without replacement from a standard deck of 52 cards. An
honor card is a card of denomination ace, king, queen, jack or 10. Let  denote the number of honor cards in the hand.

1. Find the probability density function of  and identify the distribution by name.
2. Find the probability that the hand has no honor cards. A hand of this kind is known as a Yarborough, in honor of Second

Earl of Yarborough.

Answer

1.  for . This is the hypergeometric distribution with population size , type

parameter  and sample size .
2. 0.00547

In the most common high card point system in bridge, an ace is worth 4 points, a king is worth 3 points, a queen is worth 2
points, and a jack is worth 1 point. Find the probability density function of , the point value of a random bridge hand.

Reliability

Suppose that in a batch of 500 components, 20 are defective and the rest are good. A sample of 10 components is selected at
random and tested. Let  denote the number of defectives in the sample.

1. Find the probability density function of  and identify the distribution by name and parameter values.
2. Find the probability that the sample contains at least one defective component.

Answer

1.  for . This is the hypergeometric distribution with population size , type

parameter , and sample size .

2. 

A plant has 3 assembly lines that produce a certain type of component. Line 1 produces 50% of the components and has a
defective rate of 4%; line 2 has produces 30% of the components and has a defective rate of 5%; line 3 produces 20% of the
components and has a defective rate of 1%. A component is chosen at random from the plant and tested.

1. Find the probability that the component is defective.
2. Given that the component is defective, find the conditional probability density function of the line that produced the

component.

Answer

Let  the event that the item is defective, and  the PDF of the line number given .

1. 
2. , , 

g(x) =

( )( )

13

x

39

5−x

( )

52

5

x ∈ {0, 1, 2, 3, 4, 5} m = 52

r= 13 n= 5

h(y) =

( )( )

13

y

39

5−y

( )

52

5

y ∈ {0, 1, 2, 3, 4, 5}

f(x, y) =

( )( )( )

13

x

13

y

26

5−x−y

( )

52

5

(x, y) ∈ {0, 1, 2, 3, 4, 5}

2

x+y ≤ 5

N

N

f(n) =

( )( )

20

n

32

13−n

( )

52

13

n ∈ {0, 1,… , 13} m = 52

r= 20 n= 13

V

X

X

f(x) =

( )( )

20

x

480

10−x

( )

500

10

x ∈ {0, 1,… , 10} m = 500

r= 20 n= 10

P(X ≥ 1) = 1− ≈= 0.3377

( )

480

10

( )

500

10

D f(⋅ ∣D) D

P(D) = 0.037

f(1 ∣D) = 0.541 f(2 ∣D) = 0.405 f(3 ∣D) = 0.054

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10141?pdf


3.1.15 https://stats.libretexts.org/@go/page/10141

Recall that in the standard model of structural reliability, a systems consists of  components, each of which, independently of the
others, is either working for failed. Let  denote the state of component , where 1 means working and 0 means failed. Thus, the
state vector is . The system as a whole is also either working or failed, depending only on the states of the
components. Thus, the state of the system is an indicator random variable  that depends on the states of the components
according to a structure function . In a series system, the system works if and only if every components works.
In a parallel system, the system works if and only if at least one component works. In a  out of  system, the system works if and
only if at least  of the  components work.

The reliability of a device is the probability that it is working. Let  denote the reliability of component , so that 
 is the vector of component reliabilities. Because of the independence assumption, the system reliability

depends only on the component reliabilities, according to a reliability function . Note that when all component
reliabilities have the same value , the states of the components form a sequence of  Bernoulli trials. In this case, the system
reliability is, of course, a function of the common component reliability .

Suppose that the component reliabilities all have the same value . Let  denote the state vector and  denote the number of
working components.

1. Give the probability density function of .
2. Give the probability density function of  and identify the distribution by name and parameter.
3. Find the reliability of the  out of  system.

Answer
1.  for  where 
2.  for . This is the binomial distribution with trial parameter  and success

parameter .
3. 

Suppose that we have 4 independent components, with common reliability . Let  denote the number of working
components.

1. Find the probability density function of  explicitly.
2. Find the reliability of the parallel system.
3. Find the reliability of the 2 out of 4 system.
4. Find the reliability of the 3 out of 4 system.
5. Find the reliability of the series system.

Answer
1. , , , 
2. 
3. 
4. 
5. 

Suppose that we have 4 independent components, with reliabilities , , , and . Let  denote
the number of working components.

1. Find the probability density function of .
2. Find the reliability of the parallel system.
3. Find the reliability of the 2 out of 4 system.
4. Find the reliability of the 3 out of 4 system.
5. Find the reliability of the series system.

Answer
1. , , , , 
2. 
3. 
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Y

g(0) = 0.0016 g(1) = 0.0256 g(2) = 0.1536 g(3) = g(4) = 0.4096

= 0.9984r

4,1

= 0.9729r

4,2

= 0.8192r

4,3

= 0.4096r

4,4

= 0.6p

1

= 0.7p

2

= 0.8p

3

= 0.9p

4

Y

Y

g(0) = 0.0024 g(1) = 0.0404 g(2) = 0.2.144 g(3) = 0.4404 g(4) = 0.3024
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4. 
5. 

The Poisson Distribution

Suppose that . Define  by

1.  is a probability density function.
2.  if and only if .
3. If  is not a positive integer, there is a single mode at 
4. If  is a positive integer, there are two modes at  and .

Proof
1. Recall from calculus, the exponential series

Hence  is a probability density function.
2. Note that  if and only if  if and only if .

3. By the same argument,  if and only if . If  is not a positive integer this cannot happen. Hence,
letting , it follows from (b) that  if  or .

4. If  is a positive integer, then . From (b),  if  and  if .

The distribution defined by the probability density function in the previous exercise is the Poisson distribution with parameter ,
named after Simeon Poisson. Note that like the other named distributions we studied above (hypergeometric and binomial), the
Poisson distribution is unimodal: the probability density function at first increases and then decreases, with either a single mode or
two adjacent modes. The Poisson distribution is studied in detail in the Chapter on Poisson Processes, and is used to model the
number of “random points” in a region of time or space, under certain ideal conditions. The parameter  is proportional to the size
of the region of time or space.

Suppose that the customers arrive at a service station according to the Poisson model, at an average rate of 4 per hour. Thus,
the number of customers  who arrive in a 2-hour period has the Poisson distribution with parameter 8.

1. Find the modes.
2. Find .

Answer
1. modes: 7, 8
2. 

In the Poisson experiment, set  and . Run the simulation 1000 times and compare the empirical density function to
the probability density function.

Suppose that the number of flaws  in a piece of fabric of a certain size has the Poisson distribution with parameter 2.5.

1. Find the mode.
2. Find .

Answer
1. mode: 2
2. 

Suppose that the number of raisins  in a piece of cake has the Poisson distribution with parameter 10.

= 0.7428r

4,3

= 0.3024r

4,4
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f
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1. Find the modes.
2. Find .

Answer
1. modes: 9, 10
2. 

A Zeta Distribution

Let  be the function defined by  for .

1. Find the probability density function  that is proportional to .
2. Find the mode of the distribution.
3. Find  where  has probability density function .

Answer

1.  for . Recall that 
2. Mode 
3. 

The distribution defined in the previous exercise is a member of the zeta family of distributions. Zeta distributions are used to
model sizes or ranks of certain types of objects, and are studied in more detail in the chapter on Special Distributions.

Benford's Law

Let  be the function defined by  for . (The logarithm function is
the base 10 common logarithm, not the base  natural logarithm.)

1. Show that  is a probability density function.
2. Compute the values of  explicitly, and sketch the graph.
3. Find  where  has probability density function .

Answer

1. Note that . The sum collapses.

2. 1 2 3 4 5 6 7 8 9

0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0458

3. 

The distribution defined in the previous exercise is known as Benford's law, and is named for the American physicist and engineer
Frank Benford. This distribution governs the leading digit in many real sets of data. Benford's law is studied in more detail in the
chapter on Special Distributions.

Data Analysis Exercises

In the M&M data, let  denote the number of red candies and  the total number of candies. Compute and graph the
empirical probability density function of each of the following:

1. 
2. 
3.  given 

Answer

We denote the PDF of  by  and the PDF of  by 

1. 3 4 5 6 8 9 10 11 12 14 15 20

P(8 ≤N ≤ 12)

P(8 ≤N ≤ 12) = 0.5713

g g(n) =
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n
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n ∈ N

+

f g

P(N ≤ 5) N f
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n
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n ∈ N

+

=∑

∞

n=1

1

n

2

π

2
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n= 1

P(N ≤ 5) =

5269

600π

2

f f(d) = log(d+1)−log(d) = log(1+ )

1

d

d ∈ {1, 2,… , 9}

e

f

f

P(X ≤ 3) X f

f(d) = log(10) = 1∑

9

d=1

d

f(d)

log(4) ≈ 0.6020
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2. 50 53 54 55 56 57 58 59 60 61

3. 3 4 6 8 9 11 12 14 15

In the Cicada data, let  denotes gender,  species type, and  body weight (in grams). Compute the empirical probability
density function of each of the following:

1. 
2. 
3. 
4.  given  grams.

Answer

We denote the PDF of  by , the PDF of  by  and the PDF of  by .

1. , 
2. , , 
3. , , , , , 
4. , 

This page titled 3.1: Discrete Distributions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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3.2: Continuous Distributions
   

In the previous section, we considered discrete distributions. In this section, we study a complementary type of distribution. As
usual, if you are a new student of probability, you may want to skip the technical details.

Basic Theory

Definitions and Basic Properties

As usual, our starting point is a random experiment modeled by a probability space . So to review,  is the set of
outcomes,  the collection of events, and  the probability measure on the sample space . We use the terms probability
measure and probability distribution synonymously in this text. Also, since we use a general definition of random variable, every
probability measure can be thought of as the probability distribution of a random variable, so we can always take this point of view
if we like. Indeed, most probability measures naturally have random variables associated with them.

In this section, we assume that  for some .

Details

Technically,  is a measurable subset of  and  is the -algebra measurable subsets of . Typically in applications,  is
defined by a finite number of inequalities involving elementary function.

Here is our first fundamental definition.

The probability measure  is continuous if  for all .

The fact that each point is assigned probability 0 might seem impossible or paradoxical at first, but soon we will see very familiar
analogies.

If  is a continuous distribtion then  for every countable .

Proof

Since  is countable, it follows from the additivity axiom of probability that

Thus, continuous distributions are in complete contrast with discrete distributions, for which all of the probability mass is
concentrated on the points in a discrete set. For a continuous distribution, the probability mass is continuously spread over  in
some sense. In the picture below, the light blue shading is intended to suggest a continuous distribution of probability.

Figure : A continuous probability distribution on 

Typically,  is a region of  defined by inequalities involving elementary functions, for example an interval in , a circular
region in , and a conical region in . Suppose that  is a continuous probability measure on . The fact that each point in 
has probability 0 is conceptually the same as the fact that an interval of  can have positive length even though it is composed of
points each of which has 0 length. Similarly, a region of  can have positive area even though it is composed of points (or curves)
each of which has area 0. In the one-dimensional case, continuous distributions are used to model random variables that take values
in intervals of , variables that can, in principle, be measured with any degree of accuracy. Such variables abound in applications
and include

length, area, volume, and distance

(S,S ,P) S

S P (S,S )

S ⊆R
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S R

n

S σ S S

P P({x}) = 0 x ∈ S

P P(C) = 0 C ⊆ S

C

P(C) = P({x}) = 0∑

x∈C

(3.2.1)
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time
mass and weight
charge, voltage, and current
resistance, capacitance, and inductance
velocity and acceleration
energy, force, and work

Usually a continuous distribution can usually be described by certain type of function.

Suppose again that  is a continuous distribution on . A function  is a probability density function for  if

Details

Technically,  must be measurable and is a probability density function of  with respect to Lebesgue measure, the standard
measure on . Moreover, the integral is the Lebesgue integral, but the ordinary Riemann integral of calculus suffices for the
sets that occur in typical applications.

So the probability distribution  is completely determined by the probability density function . As a special case, note that 
. Conversely, a nonnegative function on  with this property defines a probability measure.

A function  that satisfies  is a probability density function on  and then  defined as follows is
a continuous probability measure on :

Proof

Figure : A continuous distribution is completely determined by its probability density function

Note that we can always extend  to a probability density function on a subset of  that contains , or to all of , by defining 
 for . This extension sometimes simplifies notation. Put another way, we can be a bit sloppy about the “set of

values” of the random variable. So for example if  with  and  has a continuous distribution on the interval ,
then we could also say that  has a continuous distribution on  or , or .

The points  that maximize the probability density function  are important, just as in the discrete case.

Suppose that  is a continuous distribution on  with probability density function . An element  that maximizes  is a
mode of the distribution.

If there is only one mode, it is sometimes used as a measure of the center of the distribution.

You have probably noticed that probability density functions for continuous distributions are analogous to probability density
functions for discrete distributions, with integrals replacing sums. However, there are essential differences. First, every discrete
distribution has a unique probability density function  given by  for . For a continuous distribution, the
existence of a probability density function is not guaranteed. The advanced section on absolute continuity and density functions has
several examples of continuous distribution that do not have density functions, and gives conditions that are necessary and
sufficient for the existence of a probability density function. Even if a probability density function  exists, it is never unique. Note
that the values of  on a finite (or even countably infinite) set of points could be changed to other nonnegative values and the new
function would still be a probability density function for the same distribution. The critical fact is that only integrals of  are
important. Second, the values of the PDF  for a discrete distribution are probabilities, and in particular  for . For a

P S f : S→ [0,∞) P

P(A) = f(x)dx, A ∈S∫

A

(3.2.2)

f P

R

n

P f

f(x)dx = P(S) = 1∫

S

S

f : S→ [0,∞) f(x)dx = 1∫

S

S P

S

P(A) = f(x)dx, A ∈S∫

A

(3.2.3)

3.2.2

f R
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S R
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continuous distribution the values are not probabilities and in fact it's possible that  for some or even all . Further, 
can be unbounded on . In the typical calculus interpretation,  really is probability density at . That is,  is
approximately the probability of a “small” region of size  about .

Constructing Probability Density Functions

Just as in the discrete case, a nonnegative function on  can often be scaled to produce a produce a probability density function.

Suppose that  and let

If  then  defined by  for  defines a probability density function for a continuous distribution
on .

Proof

Technically, the function  is measurable. Technicalities aside, the proof is trivial. Clearly  for  and

Note again that  is just a scaled version of . So this result can be used to construct probability density functions with desired
properties (domain, shape, symmetry, and so on). The constant  is sometimes called the normalizing constant of .

Conditional Densities

Suppose now that  is a random variable defined on a probability space  and that  has a continuous distribution on .
A probability density function for  is based on the underlying probability measure on the sample space . This measure
could be a conditional probability measure, conditioned on a given event  with . Assuming that the conditional
probability density function exists, the usual notation is

Note, however, that except for notation, no new concepts are involved. The defining property is

and all results that hold for probability density functions in general hold for conditional probability density functions. The event 
could be an event described in terms of the random variable  itself:

Suppose that  has a continuous distribution on  with probability density function  and that  with .
The conditional probability density function of  given  is the function on  given by

Proof

For  with ,

Of course,  and hence is the normaliziang constant for the restriction of  to , as in (8)

Examples and Applications

As always, try the problems yourself before looking at the answers.

f(x) > 1 x ∈ S f

S f(x) x f(x)dx

dx x

S

g : S→ [0,∞)

c = g(x)dx∫

S

(3.2.4)

0 < c <∞ f f(x) = g(x)

1

c

x ∈ S

S

g f(x) ≥ 0 x ∈ S

f(x)dx = g(x)dx = = 1∫

S

1

c

∫

S

c

c

(3.2.5)

f g

c g

X (Ω,F ,P) X S

X (Ω,F)

E ∈F P(E) > 0

f(x ∣ E), x ∈ S (3.2.6)

f(x ∣ E)dx = P(X ∈ A ∣ E), A ∈S∫

A

(3.2.7)

E

X

X S f B ∈S P(X ∈ B) > 0

X X ∈ B B

f(x ∣X ∈ B) = , x ∈ B

f(x)

P(X ∈ B)

(3.2.8)

A ∈S A⊆B

dx = f(x)dx = = P(X ∈ A ∣X ∈ B)∫

A
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A
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The Exponential Distribution

Let  be the function defined by  for , where  is a parameter.

1. Show that  is a probability density function.
2. Draw a careful sketch of the graph of , and state the important qualitative features.

Proof

1. Note that  for . Also  so  is a PDF.
2.  is decreasing and concave upward so the mode is 0.  as .

The distribution defined by the probability density function in the previous exercise is called the exponential distribution with rate
parameter . This distribution is frequently used to model random times, under certain assumptions. Specifically, in the Poisson
model of random points in time, the times between successive arrivals have independent exponential distributions, and the
parameter  is the average rate of arrivals. The exponential distribution is studied in detail in the chapter on Poisson Processes.

The lifetime  of a certain device (in 1000 hour units) has the exponential distribution with parameter . Find

1. 
2. 

Answer
1. 
2. 

In the gamma experiment, set  to get the exponential distribution. Vary the rate parameter  and note the shape of the
probability density function. For various values of , run the simulation 1000 times and compare the the empirical density
function with the probability density function.

A Random Angle

In Bertrand's problem, a certain random angle  has probability density function  given by  for .

1. Show that  is a probability density function.
2. Draw a careful sketch of the graph , and state the important qualitative features.
3. Find .

Answer

1. Note that  for  and .
2.  is increasing and concave downward so the mode is .
3. 

Bertand's problem is named for Joseph Louis Bertrand and is studied in more detail in the chapter on Geometric Models.

In Bertrand's experiment, select the model with uniform distance. Run the simulation 1000 times and compute the empirical
probability of the event . Compare with the true probability in the previous exercise.

Gamma Distributions

Let  be the function defined by  for  where  is a parameter.

1. Show that  is a probability density function for each .
2. Draw a careful sketch of the graph of , and state the important qualitative features.

Proof
1. Note that  for . Also,  is the probability density function of the exponential distribution with parameter 1.

For , integration by parts with  and  gives . Hence it follows
by induction that  is a PDF for each .

f f(t) = re
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2.  is decreasing and concave downward, with mode . For ,  increases and then decreases, with mode . 
 is concave downward and then upward, with inflection point at . For ,  is concave upward, then

downward, then upward again, with inflection points at . For all ,  as .

Interestingly, we showed in the last section on discrete distributions, that  is a probability density function on  for
each  (it's the Poisson distribution with parameter ). The distribution defined by the probability density function  belongs
to the family of Erlang distributions, named for Agner Erlang;  is known as the shape parameter. The Erlang distribution is
studied in more detail in the chapter on the Poisson Process. In turn the Erlang distribution belongs to the more general family of
gamma distributions. The gamma distribution is studied in more detail in the chapter on Special Distributions.

In the gamma experiment, keep the default rate parameter . Vary the shape parameter and note the shape and location of
the probability density function. For various values of the shape parameter, run the simulation 1000 times and compare the
empirical density function with the probability density function.

Suppose that the lifetime of a device  (in 1000 hour units) has the gamma distribution above with . Find each of the
following:

1. .
2. 
3. 

Answer

1. 
2. 
3. 

Beta Distributions

Let  be the function defined by  for .

1. Show that  is a probability density function.
2. Draw a careful sketch of the graph of , and state the important qualitative features.

Answer

1. Note that  for . Also, , so  is a PDF
2.  increases and then decreases, with mode at .  is concave downward.  is symmetric about  (in fact, the

graph is a parabola).

Let  be the function defined by  for .

1. Show that  is a probability density function.
2. Draw a careful sketch the graph of , and state the important qualitative features.

Answer

1. Note that  for . Also , so  is a PDF.
2.  increases and then decreases, with mode at .  is concave upward and then downward, with inflection point at 

.

The distributions defined in the last two exercises are examples of beta distributions. These distributions are widely used to model
random proportions and probabilities, and physical quantities that take values in bounded intervals (which, after a change of units,
can be taken to be ). Beta distributions are studied in detail in the chapter on Special Distributions.

In the special distribution simulator, select the beta distribution. For the following parameter values, note the shape of the
probability density function. Run the simulation 1000 times and compare the empirical density function with the probability
density function.
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1. , . This gives the first beta distribution above.
2. , . This gives the second beta distribuiton above.

Suppose that  is a random proportion. Find  in each of the following cases:

1.  has the first beta distribution above.
2.  has the second beta distribution above.

Answer

1. 
2. 

Let  be the function defined by

1. Show that  is a probability density function.
2. Draw a careful sketch of the graph of , and state the important qualitative features.

Answer
1. Note that  for . Using the substitution  givens

Thus  is a PDF.
2.  is symmetric about .  decreases and then increases, with minimum at .  as  and as 

so the distribution has no mode.  is concave upward.

The distribution defined in the last exercise is also a member of the beta family of distributions. But it is also known as the
(standard) arcsine distribution, because of the arcsine function that arises in the proof that  is a probability density function. The
arcsine distribution has applications to a very important random process known as Brownian motion, named for the Scottish
botanist Robert Brown. Arcsine distributions are studied in more generality in the chapter on Special Distributions.

In the special distribution simulator, select the (continuous) arcsine distribution and keep the default parameter values. Run the
simulation 1000 times and compare the empirical density function with the probability density function.

Suppose that  represents the change in the price of a stock at time , relative to the value at an initial reference time 0. We
treat  as a continuous variable measured in weeks. Let , the last time during the first week that
the stock price was unchanged over its initial value. Under certain ideal conditions,  will have the arcsine distribution. Find
each of the following:

1. 
2. 
3. 

Answer

1. 
2. 
3. 

Open the Brownian motion experiment and select the last zero variable. Run the experiment in single step mode a few times.
The random process that you observe models the price of the stock in the previous exercise. Now run the experiment 1000
times and compute the empirical probability of each event in the previous exercise.
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f(x) = , x ∈ (0, 1)

1

π x(1−x)

− −−−−−−

√
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The Pareto Distribution

Let  be the function defined by  for , where  is a parameter.

1. Draw a careful sketch the graph of , and state the important qualitative features.
2. Find the values of  for which there exists a probability density function  (8)proportional to . Identify the mode.

Answer
1.  is decreasing and concave upward, with  as .
2. Note that if 

When  we have . Thus, when , there is no PDF proportional to . When ,

the PDF proportional to  is  for . The mode is 1.

Note that the qualitative features of  are the same, regardless of the value of the parameter , but only when  can  be
normalized into a probability density function. In this case, the distribution is known as the Pareto distribution, named for Vilfredo
Pareto. The parameter , so that , is known as the shape parameter. Thus, the Pareto distribution with shape
parameter  has probability density function

The Pareto distribution is widely used to model certain economic variables and is studied in detail in the chapter on Special
Distributions.

In the special distribution simulator, select the Pareto distribution. Leave the scale parameter fixed, but vary the shape
parameter, and note the shape of the probability density function. For various values of the shape parameter, run the simulation
1000 times and compare the empirical density function with the probability density function.

Suppose that the income  (in appropriate units) of a person randomly selected from a population has the Pareto distribution
with shape parameter . Find each of the following:

1. 
2. 
3. 

Answer

1. 
2. 
3. 

The Cauchy Distribution

Let  be the function defined by

1. Show that  is a probability density function.
2. Draw a careful sketch the graph of , and state the important qualitative features.

Answer
1. Note that  for . Also

g g(x) = 1/x
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x ∈ [1,∞) b ∈ (0,∞)
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and hence  is a PDF.
2.  increases and then decreases, with mode .  is concave upward, then downward, then upward again, with inflection

points at .  is symmetric about .

The distribution constructed in the previous exercise is known as the (standard) Cauchy distribution, named after Augustin Cauchy
It might also be called the arctangent distribution, because of the appearance of the arctangent function in the proof that  is a
probability density function. In this regard, note the similarity to the arcsine distribution above. The Cauchy distribution is studied
in more generality in the chapter on Special Distributions. Note also that the Cauchy distribution is obtained by normalizing the
function ; the graph of this function is known as the witch of Agnesi, in honor of Maria Agnesi.

In the special distribution simulator, select the Cauchy distribution with the default parameter values. Run the simulation 1000
times and compare the empirical density function with the probability density function.

A light source is 1 meter away from position 0 on an infinite, straight wall. The angle  that the light beam makes with the
perpendicular to the wall is randomly chosen from the interval . The position  of the light beam on the
wall has the standard Cauchy distribution. Find each of the following:

1. .

2. 

3. 

Answer

1. 
2. 
3. 

The Cauchy experiment (with the default parameter values) is a simulation of the experiment in the last exercise.

1. Run the experiment a few times in single step mode.
2. Run the experiment 1000 times and compare the empirical density function with the probability density function.
3. Using the data from (b), compute the relative frequency of each event in the previous exercise, and compare with the true

probability.

The Standard Normal Distribution

Let  be the function defined by  for .

1. Show that  is a probability density function.
2. Draw a careful sketch the graph of , and state the important qualitative features.

Proof

2. Note that  for . Let . Then

Change to polar coordinates: ,  where  and . Then  and 
. Hence

Using the simple substitution , the inner integral is . Then the outer integral is . Hence
 and so  is a PDF.

3. Note that  is symmetric about 0.  increases and then decreases, with mode .  is concave upward, then downward,
then upward again, with inflection points at .  as  and as .
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The distribution defined in the last exercise is the standard normal distribution, perhaps the most important distribution in
probability and statistics. It's importance stems largely from the central limit theorem, one of the fundamental theorems in
probability. In particular, normal distributions are widely used to model physical measurements that are subject to small, random
errors. The family of normal distributions is studied in more generality in the chapter on Special Distributions.

In the special distribution simulator, select the normal distribution and keep the default parameter values. Run the simulation
1000 times and compare the empirical density function and the probability density function.

The function  is a notorious example of an integrable function that does not have an antiderivative that can be expressed
in closed form in terms of other elementary functions. (That's why we had to resort to the polar coordinate trick to show that  is a
probability density function.) So probabilities involving the normal distribution are usually computed using mathematical or
statistical software.

Suppose that the error  in the length of a certain machined part (in millimeters) has the standard normal distribution. Use
mathematical software to approximate each of the following:

1. 
2. 
3. 

Answer
1. 0.6827
2. 0.0228
3. 0.0013

The Extreme Value Distribution

Let  be the function defined by  for .

1. Show that  is a probability density function.
2. Draw a careful sketch of the graph of , and state the important qualitative features.
3. Find , where  has probability density function .

Answer
1. Note that  for . Using the substitution ,

(note that the integrand in the last integral is the exponential PDF with parameter 1.
2.  increases and then decreases, with mode .  is concave upward, then downward, then upward again, with inflection

points at . Note however that  is not symmetric about 0.  as  and as .
3. 

The distribution in the last exercise is the (standard) type 1 extreme value distribution, also known as the Gumbel distribution in
honor of Emil Gumbel. Extreme value distributions are studied in more generality in the chapter on Special Distributions.

In the special distribution simulator, select the extreme value distribution. Keep the default parameter values and note the shape
and location of the probability density function. Run the simulation 1000 times and compare the empirical density function
with the probability density function.

The Logistic Distribution

Let  be the function defined by

z↦ e

− /2z

2

ϕ

Z

P(−1 ≤Z ≤ 1)

P(Z > 2)

P(Z <−3)

f f(x) = e

−x

e

−e

−x

x ∈ R

f

f

P(X > 0) X f

f(x) > 0 x ∈ R u = e

−x

dx = du = 1∫

∞

−∞

e

−x

e

−e

−x

∫

∞

0

e

−u

(3.2.18)

f x = 0 f

x =±ln[(3+ )/2]5

–

√ f f(x) → 0 x→∞ x→−∞

1− ≈ 0.6321e

−1

f

f(x) = , x ∈ R

e

x

(1+e

x

)

2

(3.2.19)
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1. Show that  is a probability density function.
2. Draw a careful sketch the graph of , and state the important qualitative features.
3. Find , where  has probability density function .

Answer
1. Note that  for . The substitution  gives

2.  is symmetric about 0.  increases and then decreases with mode .  is concave upward, then downward, then
upward again, with inflection points at .  as  and as .

3. 

The distribution in the last exercise is the (standard) logistic distribution. Logistic distributions are studied in more generality in the
chapter on Special Distributions.

In the special distribution simulator, select the logistic distribution. Keep the default parameter values and note the shape and
location of the probability density function. Run the simulation 1000 times and compare the empirical density function with the
probability density function.

Weibull Distributions

Let  be the function defined by  for .

1. Show that  is a probability density function.
2. Draw a careful sketch the graph of , and state the important qualitative features.

Answer
1. Note that  for . The substitution  gives .
2.  increases and then decreases, with mode .  is concave downward and then upward, with inflection point at 

.  as .

Let  be the function defined by  for .

1. Show that  is a probability density function.
2. Draw a careful sketch the graph of , and state the important qualitative features.

Answer
1. Note that  for . The substitution  gives

2.  increases and then decreases, with mode .  is concave upward, then downward, then upward again, with

inflection points at .  as .

The distributions in the last two exercises are examples of Weibull distributions, name for Waloddi Weibull. Weibull distributions
are studied in more generality in the chapter on Special Distributions. They are often used to model random failure times of devices
(in appropriately scaled units).

In the special distribution simulator, select the Weibull distribution. For each of the following values of the shape parameter ,
note the shape and location of the probability density function. Run the simulation 1000 times and compare the empirical
density function with the probability density function.

1. . This gives the first Weibull distribution above.
2. . This gives the second Weibull distribution above.

f

f

P(X > 1) X f

f(x) > 0 x ∈ R u = e

x

f(x)dx = du = 1∫

∞

−∞

∫

∞

0

1

(1+u)

2

(3.2.20)

f f x = 0 f

x =±ln(2+ )3

–

√ f(x) → 0 x→∞ x→−∞

≈0.2689

1

1+e

f f(t) = 2te

−t

2

t ∈ [0,∞)

f

f

f(t) ≥ 0 t ≥ 0 u = t

2

f(t)dt = du = 1∫

∞

0

∫

∞

0

e

−u

f t = 1/ 2

–

√

f

t = 3/2

−−−

√ f(t) → 0 t→∞

f f(t) = 3t

2

e

−t

3

t ≥ 0

f

f

f(t) ≥ 0 t ≥ 0 u = t

3

f(t)dt = du = 1∫

∞

0

∫

∞

0

e

−u

(3.2.21)

f t = ( )

2

3

1/3

f

t = (1± )

1

3

7

–

√

1/3

f(t) → 0 t→∞

k

k= 2

k= 3
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Suppose that  is the failure time of a device (in 1000 hour units). Find  in each of the following cases:

1.  has the first Weibull distribution above.
2.  has the second Weibull distribution above.

Answer

1. 
2. 

Additional Examples

Let  be the function defined by  for .

1. Show that  is a probability density function.
2. Draw a careful sketch of the graph of , and state the important qualitative features.
3. Find  where  has the probability density function in (a).

Answer
1. Note that  for . Integration by parts with  and  gives

2.  is decreasing and concave upward, with  as , so there is no mode.
3. 

Let  be the function defined by  for .

1. Show that  is a probability density function.
2. Draw a careful sketch of the graph of , and give the important qualitative features.
3. Find  where  has the probability density function in (a).

Answer

1. Note that  for . Also, , so  is a PDF.
2.  increases and then decreases, with mode .  is concave downward and then upward, with an inflection point at 

.  as .
3. 

The following problems deal with two and three dimensional random vectors having continuous distributions. The idea of
normalizing a function to form a probability density function is important for some of the problems. The relationship between the
distribution of a vector and the distribution of its components will be discussed later, in the section on joint distributions.

Let  be the function defined by  for , .

1. Show that  is a probability density function, and identify the mode.
2. Find  where  has the probability density function in (a).
3. Find the conditional density of  given .

Answer
1. mode 
2. 
3.  for , 

Let  be the function defined by  for .

1. Find the probability density function  that is proportional to .
2. Find  where  has the probability density function in (a).

Answer

T P (T > )

1

2

T

T

≈ 0.7788e

−1/4

≈ 0.8825e

−1/8

f f(x) =−lnx x ∈ (0, 1]

f

f

P ( ≤X ≤ )

1

3

1

2

X

−lnx ≥ 0 0 < x ≤ 1 u =−lnx dv= dx

−lnx dx =−x lnx + 1 dx = 1∫

1

0

∣

∣

∣

1

0

∫

1

0

(3.2.22)

f f(x) →∞ x ↓ 0

ln2− ln3+ ≈ 0.147

1

2

1

3

1

6

f f(x) = 2 (1− )e

−x

e

−x

x ∈ [0,∞)

f

f

P(X ≥ 1) X

f(x) > 0 0 < x <∞. ( − ) dx =∫

∞

0

e

−x

e

−2x

1

2

f

f x = ln(2) f

x = ln(4) f(x) → 0 x→∞

2 − ≈ 0.6004e

−1

e

−2

f f(x, y) = x+y 0 ≤ x ≤ 1 0 ≤ y ≤ 1

f

P(Y ≥X) (X,Y )

(X,Y ) {X < ,Y < }

1

2

1

2

(1, 1)

1

2

f (x, y X < ,Y < )= 8(x+y)

∣

∣

1

2

1

2

0 < x <

1

2

0 < y <

1

2

g g(x, y) = x+y 0 ≤ x ≤ y ≤ 1

f g

P(Y ≥ 2X) (X,Y )
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1. , 
2. 

Let  be the function defined by  for , .

1. Find the probability density function  that is proportional to .
2. Find  where  has the probability density function in (a).

Answer
1.  for , 
2. 

Let  be the function defined by  for .

1. Find the probability density function  that is proportional to .
2. Find  where  has the probability density function in (a).

Answer
1.  for 
2. 

Let  be the function defined by  for , , .

1. Find the probability density function  that is proportional to .
2. Find  where  has the probability density function in (a).

Answer

1.  for , , 
2. 

Let  be the function defined by  for .

1. Find the probability density function  that is proportional to .
2. Find  where  has the probability density function in (a).

Answer
1. , 
2. 

Continuous Uniform Distributions

Our next discussion will focus on an important class of continuous distributions that are defined purely in terms of geometry. We
need a preliminary definition.

For , the standard measure  on  is given by

In particular,  is the length of ,  is the area of , and  is the volume of .

Details

Technically,  is Lebesgue measure on the -algebra of measurable subsets of . The name is in honor of Henri Lebesgue.
The representation above in terms of the standard Riemann integral of calculus works for the sets that occur in typical
applications. For the remainder of this discussion, we assume that all subsets of  that are mentioned are measurable

Note that if , the integral above is a multiple integral. Generally,  is referred to as the -dimensional volumve of 
.

f(x, y) = 2(x+y) 0 ≤ x ≤ y ≤ 1

5

12

g g(x, y) = yx

2

0 ≤ x ≤ 1 0 ≤ y ≤ 1

f g

P(Y ≥X) (X,Y )

f(x, y) = 6 yx

2

0 ≤ x ≤ 1 0 ≤ y ≤ 1

2

5

g g(x, y) = yx

2

0 ≤ x ≤ y ≤ 1

f g

P (Y ≥ 2X) (X,Y )

f(x, y) = 15 yx

2

0 ≤ x ≤ y ≤ 1

1

8

g g(x, y, z) = x+2y+3z 0 ≤ x ≤ 1 0 ≤ y ≤ 1 0 ≤ z≤ 1

f g

P(X ≤ Y ≤Z) (X,Y ,Z)

f(x, y, z) = (x+2y+3z)

1

3

0 ≤ x ≤ 1 0 ≤ y ≤ 1 0 ≤ z≤ 1

7

36

g g(x, y) = e

−x

e

−y

0 ≤ x ≤ y <∞

f g

P(X+Y < 1) (X,Y )

f(x, y) = 2e

−x

e

−y

0 < x < y <∞

1−2 ≈ 0.2642e

−1

n ∈ N

+

λ

n

R

n

(A) = 1 dx, A⊆λ

n

∫

A

R

n

(3.2.23)

(A)λ

1

A⊆R (A)λ

2

A⊆R

2

(A)λ

3

A⊆R

3

λ

n
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n

R

n
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Suppose that  for some  with .

1. the function  defined by  for  is a probability density function on .
2. The probability measure associated with  is given by  for , and is known as the uniform

distribution on .

Proof

The proof is simple: Clearly  for  and

In particular, when  we have .

Note that the probability assigned to a set  is proportional to the size of , as measured by . Note also that in both the
discrete and continuous cases, the uniform distribution on a set  has constant probability density function on . The uniform
distribution on a set  governs a point  chosen “at random” from , and in the continuous case, such distributions play a
fundamental role in various Geometric Models. Uniform distributions are studied in more generality in the chapter on Special
Distributions.

The most important special case is the uniform distribution on an interval  where  and . In this case, the
probability density function is

This distribution models a point chosen “at random” from the interval. In particular, the uniform distribution on  is known as
the standard uniform distribution, and is very important because of its simplicity and the fact that it can be transformed into a
variety of other probability distributions on . Almost all computer languages have procedures for simulating independent,
standard uniform variables, which are called random numbers in this context.

Conditional distributions corresponding to a uniform distribution are also uniform.

Suppose that  for some , and that  and . If  is the uniform distribution on , then
the conditional distribution given  is uniform on .

Proof

The proof is very simple: For ,

The last theorem has important implications for simulations. If we can simulate a random variable that is uniformly distributed on a
set, we can simulate a random variable that is uniformly distributed on a subset.

Suppose again that  for some , and that  and . Suppose further that 
 is a sequence of independent random variables, each uniformly distributed on . Let 

. Then

1.  has the geometric distribution on  with success parameter .
2.  is uniformly distributed on .

Proof
1. Since the variables are unifromly distributed on ,  for each . Since the variables are

independent, each point is in  or not independently. Hence , the index of the first point to fall in , has the geometric
distribution on  with success probability . That is,  for .

2. Note that , so  and hence  is well defined. We know from our work on independence and
conditional probability that the distribution of  is the same as the conditional distribution of  given , which by
the previous theorem, is uniformly distributed on .

S ⊆R

n

n ∈ N

+

0 < (S) <∞λ

n

f f(x) = 1/ (S)λ

n

x ∈ S S

f P(A) = (A)/ (S)λ

n

λ

n

A⊆ S

S

f(x) > 0 x ∈ S

f(x)dx = 1 dx = , A⊆ S∫

A

1

(S)λ

n

∫

A

(A)λ

n

(S)λ

n

(3.2.24)

A= S f(x)dx = 1∫

S

A⊆R

n

A λ

n

S S

S X S

[a, b] a, b ∈ R a< b

f(x) = , a≤ x ≤ b

1

b−a

(3.2.25)

[0, 1]
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n

n ∈ N

+

(R) > 0λ

n

(S) <∞λ

n

P S

R R

A⊆R

P(A ∣ R) = = = =

P(A∩R)

P(R)

P(A)

P(R)

(A)/ (S)λ

n

λ

n

(R)/ (S)λ

n

λ

n

(A)λ

n

(R)λ

n

(3.2.26)
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(R) > 0λ
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(S) <∞λ

n
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2
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+
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k
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+
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n
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n
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N

R
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+
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+
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Suppose in particular that  is a Cartesian product of  bounded intervals. It turns out to be quite easy to simulate a sequence of
independent random variables  each of which is uniformly distributed on . Thus, the last theorem give an
algorithm for simulating a random variable that is uniformly distributed on an irregularly shaped region  (assuming that we
have an algorithm for recognizing when a point  falls in ). This method of simulation is known as the rejection method,
and as we will see in subsequent sections, is more important that might first appear.

Figure : With a sequence of independent, uniformly distributed points in , the first one to fall in  is uniformly distributed
on .

In the simple probability experiment, random points are uniformly distributed on the rectangular region . Move and resize the
events  and  and note how the probabilities of the 16 events that can be constructed from  and  change. Run the
experiment 1000 times and note the agreement between the relative frequencies of the events and the probabilities of the
events.

Suppose that  is uniformly distributed on the circular region of radius 5, centered at the origin. We can think of 
as the position of a dart thrown “randomly” at a target. Let , the distance from the center to .

1. Give the probability density function of .
2. Find  for .

Answer

1.  for 
2.  for 

Suppose that  is uniformly distributed on the cube . Find  in two ways:

1. Using the probability density function.
2. Using a combinatorial argument.

Answer

1. 
2. Each of the 6 strict orderings of  are equally likely, so 

The time  (in minutes) required to perform a certain job is uniformly distributed over the interval .

1. Find the probability that the job requires more than 30 minutes
2. Given that the job is not finished after 30 minutes, find the probability that the job will require more than 15 additional

minutes.

Answer

1. 
2. 

Data Analysis Exercises

If  is a data set from a variable  with a continuous distribution, then an empirical density function can be computed by
partitioning the data range into subsets of small size, and then computing the probability density of points in each subset. Empirical
probability density functions are studied in more detail in the chapter on Random Samples.

S n

X = ( , ,…)X
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For the cicada data,  denotes body weight (in grams),  body length (in millimeters), and  gender (0 for female and 1
for male). Construct an empirical density function for each of the following and display each as a bar graph:

1. 
2. 
3.  given 

Answer

1. BW

Density 0.8654 5.8654 3.0769 0.1923

2. BL

Density 0.0058 0.1577 0.0346 0.0019

3. BW

Density given 0.3390 4.4068 5.0847 0.1695

This page titled 3.2: Continuous Distributions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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3.3: Mixed Distributions
  

In the previous two sections, we studied discrete probability meausres and continuous probability measures. In this section, we will
study probability measure that that are combinations of the two types. Once again, if you are a new student of probability you may
want to skip the technical details.

Basic Theory

Definitions and Basic Properties

Our starting point is a random experiment modeled by a probability space . So to review,  is the set of outcomes,  the
collection of events, and  the probability measure on the sample space . We use the terms probability measure and
probability distribution synonymously in this text. Also, since we use a general definition of random variable, every probability
measure can be thought of as the probability distribution of a random variable, so we can always take this point of view if we like.
Indeed, most probability measures naturally have random variables associated with them. Here is the main definition:

The probability measure  is of mixed type if  can be partitioned into events  and  with the following properties:

1.  is countable,  and  for every .
2.  for some  and  for every .

Details

Recall that the term partition means that  and  are disjoint and . As alwasy, the collection of events  is
required to be a -algebra. The set  is a measurable subset of  and then the elements of  have the form  where 

 and  is a measurable subset of . Typically in applications,  is defined by a finite number of inequalities involving
elementary functions.

Often the discrete set  is a subset of  also, but that's not a requirement. Note that since  and  are complements, 
 also. Thus, part of the distribution is concentrated at points in a discrete set ; the rest of the distribution is

continuously spread over . In the picture below, the light blue shading is intended to represent a continuous distribution of
probability while the darker blue dots are intended to represents points of positive probability.

Figure : A mixed distribution on 

The following result is essentially equivalent to the definition.

Suppose that  is a probability measure on  of mixed type as in (1).

1. The conditional probability measure  for  is a discrete distribution on 
2. The conditional probability measure  for  is a continuous distribution on .

Proof

In general, conditional probability measures really are probability measures, so the results are obvious since 
for  in the countable set , and  for . From another point of view,  restricted to subsets of  and 
restricted to subsets of  are both finite measures and so can be normalized to producte probability measures.

Note that

Thus, the probability measure  really is a mixture of a discrete distribution and a continuous distribution. Mixtures are studied in
more generality in the section on conditional distributions. We can define a function on  that is a partial probability density

(S,S ,P) S S

P (S,S )

P S D C

D 0 < P(D) < 1 P({x}) > 0 x ∈D

C ⊆R

n

n ∈ N

+

P({x}) = 0 x ∈ C

D C S =D∪C S

σ C R

n

S A∪B

A⊆D B C C

D R

n

D C

0 < P(C) < 1 D

C

3.3.1 S

P S

A↦ P(A ∣D) = P(A)/P (D) A⊆D D

A↦ P(A ∣ C) = P(A)/P(C) A⊆C C

P({x} ∣D) > 0

x D P({x} ∣ C) = 0 x ∈ C P D P

C

P(A) = P(D)P(A ∣D)+P(C)P(A ∣ C), A ∈S (3.3.1)
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function for the discrete part of the distribution.

Suppose that  is a probability measure on  of mixed type as in (1). Let  be the function defined by  for 
. Then

1.  for 
2. 
3.  for 

Proof

These results follow from the axioms of probability.

1.  since probabilities are nonnegative.
2.  by countable additivity.
3.  for , again by countable additivity.

Technically,  is a density function with respect to counting measure  on , the standard measure used for discrete spaces.

Clearly, the normalized function  is the probability density function of the conditional distribution given ,
discussed in (2). Often, the continuous part of the distribution is also described by a partial probability density function.

A partial probability density function for the continuous part of  is a nonnegative function  such that

Details

Technically,  is require to be measurable, and is a density function with respect to Lebesgue measure  on , the standard
measure on .

Clearly, the normalized function  is the probability density function of the conditional distribution given 
discussed in (2). As with purely continuous distributions, the existence of a probability density function for the continuous part of a
mixed distribution is not guaranteed. And when it does exist, a density function for the continuous part is not unique. Note that the
values of  could be changed to other nonnegative values on a countable subset of , and the displayed equation above would still
hold, because only integrals of  are important. The probability measure  is completely determined by the partial probability
density functions.

Suppose that  has partial probability density functions  and  for the discrete and continuous parts, respectively. Then

Proof

Figure : A mixed distribution is completely determined by its partial density functions.

Truncated Variables

Distributions of mixed type occur naturally when a random variable with a continuous distribution is truncated in a certain way.
For example, suppose that  is the random lifetime of a device, and has a continuous distribution with probability density function 

 that is positive on . In a test of the device, we can't wait forever, so we might select a positive constant  and record the
random variable , defined by truncating  at , as follows:

P S g g(x) = P({x})

x ∈D

g(x) ≥ 0 x ∈D

g(x) = P(D)∑

x∈D

P(A) = g(x)∑

x∈A

A⊆D

g(x) = P({x}) ≥ 0

g(x) = P({x}) = P(D)∑

x∈D

∑

x∈D

g(x) = P({x}) = P(A)∑

x∈A

∑

x∈A

A⊆D

g # D

x↦ g(x)/P(D) D

P h : C → [0,∞)

P(A) = h(x)dx, A ∈ C∫

A

(3.3.2)

h λ

n

C

R

n

x↦ h(x)/P(C) C

h C

h P

P g h

P(A) = g(x)+ h(x)dx, A ∈S∑

x∈A∩D

∫

A∩C

(3.3.3)

3.3.2

T

f [0,∞) a

U T a
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 has a mixed distribution. In the notation above,

1.  and 
2.  and  for 

Suppose next that random variable  has a continuous distribution on , with probability density function  that is positive on .
Suppose also that  with . The variable is truncated on the interval  to create a new random variable  as
follows:

 has a mixed distribution. In the notation above,

1. , , 
2.  and  for 

Another way that a “mixed” probability distribution can occur is when we have a pair of random variables  for our
experiment, one with a discrete distribution and the other with a continuous distribution. This setting is explored in the next section
on Joint Distributions.

Examples and Applications

Suppose that  has probability  uniformly distributed on the set  and has probability  uniformly distributed on
the interval . Find .

Answer

Suppose that  has probability  uniformly distributed on  and has probability  uniformly distributed on 
. Find .

Answer

Suppose that the lifetime  of a device (in 1000 hour units) has the exponential distribution with probability density function 
 for . A test of the device is terminated after 2000 hours; the truncated lifetime  is recorded. Find each

of the following:

1. 
2. 

Answer
1. 
2. 

This page titled 3.3: Mixed Distributions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

U ={

T ,

a,

T < a

T ≥ a

(3.3.4)

U

D= {a} g(a) = f(t)dt∫

∞

a

C = [0, a) h(t) = f(t) t ∈ [0, a)

X R f R

a, b ∈ R a< b [a, b] Y

Y =

⎧

⎩

⎨

a,

X,

b,

X ≤ a

a<X < b

X ≥ b

(3.3.5)

Y

D= {a, b} g(a) = f(x)dx∫

a

−∞

g(b) = f(x)dx∫

∞

b

C = (a, b) h(x) = f(x) x ∈ (a, b)

(X,Y )

X

1

2

{1, 2,… , 8}

1

2

[0, 10] P(X > 6)

13

40

(X,Y )

1

3

{0, 1, 2}

2

2

3

[0, 2]

2

P(Y >X)

4

9

T

f(t) = e

−t

0 ≤ t <∞ U

P(U < 1)

P(U = 2)

1− ≈ 0.6321e

−1

≈ 0.1353e

−2
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3.4: Joint Distributions
   

The purpose of this section is to study how the distribution of a pair of random variables is related to the distributions of the variables individually.
If you are a new student of probability you may want to skip the technical details.

Basic Theory

Joint and Marginal Distributions

As usual, we start with a random experiment modeled by a probability space . So to review,  is the set of outcomes,  is the collection
of events, and  is the probability measure on the sample space . Suppose now that  and  are random variables for the experiment, and
that  takes values in  while  takes values in . We can think of  as a random variable taking values in the product set . The
purpose of this section is to study how the distribution of  is related to the distributions of  and  individually.

Recall that

1. The distribution of  is the probability measure on  given by  for .
2. The distribution of  is the probability measure on  given by  for .
3. The distribution of  is the probability measure on  given by  for .

In this context, the distribution of  is called the joint distribution, while the distributions of  and of  are referred to as marginal
distributions.

Details

The sets  and  come with -algebras of admissible subssets  and , respectively, just as the collection of events  is a -algebra. The
Cartesian product set  is given the product -algebra  generated by products  where  and . The random
variables  and  are measurable, which ensures that  is also a random variable (that is, measurable). Moreover, the distribution of 

 is uniquely determined by probabilities of the form  where  and . As usual
the spaces  and  each fall into the two classes we have studied in the previous sections:

1. Discrete: the set is countable and the -algebra consists of all subsets.
2. Euclidean: the set is a measurable subset of  for some  and the -algebra consists of the measurable subsets.

The first simple but very important point, is that the marginal distributions can be obtained from the joint distribution.

Note that

1.  for 
2.  for 

The converse does not hold in general. The joint distribution contains much more information than the marginal distributions separately. However,
the converse does hold if  and  are independent, as we will show below.

Joint and Marginal Densities

Recall that probability distributions are often described in terms of probability density functions. Our goal is to study how the probability density
functions of  and  individually are related to probability density function of . But first we need to make sure that we understand our
starting point.

We assume that  has density function  in the following sense:

1. If  and  have discrete distributions on the countable sets  and  respectively, then  is defined by

2. If  and  have continuous distributions on  and  respectively, then  is defined by the condition

3. In the mixed case where  has a discrete distribution on the countable set  and  has a continuous distribution on , then  is
defined by the condition

4. In the mixed case where  has a continuous distribution on  and  has a discrete distribution on the countable set , then  is
defined by the condition

(Ω,F ,P) Ω F

P (Ω,F) X Y

X S Y T (X,Y ) S×T

(X,Y ) X Y

(X,Y ) S×T P [(X,Y ) ∈ C] C ⊆ S×T

X S P(X ∈ A) A⊆ S

Y T P(Y ∈ B) B⊆ T

(X,Y ) X Y

S T σ S T F σ

S×T σ S ⊗T A×B A ∈S B ∈ T

X Y (X,Y )

(X,Y ) P[(X,Y ) ∈ A×B] = P(X ∈ A,Y ∈ B) A ∈S B ∈ T

(S,S ) (T ,T )

σ

R

n

n ∈ N

+

σ

P(X ∈ A) = P [(X,Y ) ∈ A×T ] A⊆ S

P(Y ∈ B) = P [(X,Y ) ∈ S×B] B⊆ T

X Y

X Y (X,Y )

(X,Y ) f : S×T →(0,∞)

X Y S T f

f(x, y) = P(X = x,Y = y), (x, y) ∈ S×T (3.4.1)

X Y S ⊆R

j

T ⊆R

k

f

P[(X,Y ) ∈ C] = f(x, y)d(x, y), C ⊆ S×T∫

C

(3.4.2)

X S Y T ⊆R

k

f

P(X = x,Y ∈ B) = f(x, y)dy, x ∈ S, B⊆ T∫

B

(3.4.3)

X S ⊆R

j

Y T f
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Details
1. In this case,  has a discrete distribution on the countable set  and  is the density function with respect to counting measure 

on .
2. In this case,  has a continuous distribution on  and  is the density function with respect to Lebesgue measure 

on . Lebesgue measure, named for Henri Lebesgue is the standard measure on Euclidean spaces.
3. In this case,  actually has a continuous distribution:

The function  is the density function with respect to the product measure formed from counting measure  on  and Lebesgue measure 
on .

4. This case is just like (c) but with the roles of  and  reversed. Once again,  has a continuous distribution and  is the density
function with respect to the product measure on  formed by Lebesgue measure  on  and counting measure  on .

In cases (b), (c), and (d), the existence of a probability density function is not guaranteed, but is an assumption that we are making. All four
cases (and many others) can be unified under the general theories of measure and integration.

First we will see how to obtain the probability density function of one variable when the other has a discrete distribution.

Suppose that  has probability density function  as described above.

1. If  has a discrete distribution on the countable set , then  has probability density function  given by  for 
2. If  has a discrete distribution on the countable set , then  has probability density function  given by 

Proof

The two results are symmetric, so we will prove (a). The main tool is the countable additivity property of probability. Suppose first that  also
has a discrete distribution on the countable set . Then for ,

Suppose next that  has a continuous distribution on . Then for ,

The interchange of sum and integral is allowed since  is nonnegative. By the meaning of the term,  has probability density function  given
by  for 

Next we will see how to obtain the probability density function of one variable when the other has a continuous distribution.

Suppose again that  has probability density function  as described above.

1. If  has a continuous distribution on  then  has probability density function  given by 
2. If  has a continuous distribution on  then  has probability density function  given by 

Proof

Again, the results are symmetric, so we show (a). Suppose first that  has a discrete distribution on the countable set . Then for 

Next suppose that  has a continuous distribution on . Then for ,

Hence by the very meaning of the term,  has probability density function  given by  for . Writing the double
integral as an iterated integral is a special case of Fubini's theorem, named for Guido Fubini.

In the context of the previous two theorems,  is called the joint probability density function of , while  and  are called the marginal
density functions of  and of , respectively. Some of the computational exercises below will make the term marginal clear.

P(X ∈ A,Y = y) = f(x, y), dx, A⊆ S, y ∈ T∫

A

(3.4.4)

(X,Y ) S×T f #

S×T

(X,Y ) S×T ⊆R

j+k

f λ

j+k

S×T

(X,Y )

P[(X,Y ) = (x, y) = P(X = x,Y = y) ≤ P(Y = y) = 0, (x, y) ∈ S×T (3.4.5)

f # S λ

k

T

S T (X,Y ) f

S×T λ

j

S # T

(X,Y ) f

Y T X g g(x) = f(x, y)∑

y∈T

x ∈ S

X S Y h h(y) = f(x, y), y ∈ T∑

x∈S

X

S x ∈ S

g(x) = P(X = x) = P(X = x,Y ∈ T ) = P(X = x,Y = y) = f(x, y)∑

y∈T

∑

y∈T

(3.4.6)

X S ⊆R

j

A⊆R

j

P(X ∈ A) = P(X ∈ A,Y ∈ T ) = P(X ∈ A,Y = y) = f(x, y)dx = f(x, y), dx∑

y∈T

∑

y∈T

∫

A

∫

A

∑

y∈T

(3.4.7)

f X g

g(x) = f(x, y)∑

y∈T

x ∈ S

(X,Y ) f

Y T ⊆R

k

X g g(x) = f(x, y)dy, x ∈ S∫

T

X S ⊆R

k

Y h h(y) = f(x, y)dx, y ∈ T∫

S

X S x ∈ S

g(x) = P(X = x) = P(X = x,Y ∈ T ) = f(x, y)dy∫

T

(3.4.8)

X S ⊆R

j

A⊆ S

P(X ∈ A) = P(X ∈ A,Y ∈ T ) = P [(X,Y ) ∈ A×T ] = f(x, y)d(x, y) = f(x, y)dy∫

A×T

∫

A

∫

T

(3.4.9)

X g g(x) = f(x, y)dy∫

T

x ∈ S

f (X,Y ) g h

X Y
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Independence

When the variables are independent, the marginal distributions determine the joint distribution.

If  and  are independent, then the distribution of  and the distribution of  determine the distribution of .

Proof

If  and  are independent then,

and as noted in the details for (1), this completely determines the distribution  on .

When the variables are independent, the joint density is the product of the marginal densities.

Suppose that  and  are independent and have probability density function  and  respectively. Then  has probability density
function  given by

Proof

The main tool is the fact that an event defined in terms of  is independent of an event defined in terms of .

1. Suppose that  and  have discrete distributions on the countable sets  and  respectively. Then for ,

2. Suppose next that  and  have continuous distributions on  and  respectively. Then for  and .

As noted in the details for (1), a probability measure on  is completely determined by its values on product sets, so it follows that 
 for general . Hence  has PDF .

3. Suppose next that  has a discrete distribution on the countable set  and that  has a continuous distribution on . If  and 
,

so again it follows that  has PDF . The case where  has a continuous distribution on  and  has a discrete distribution on
the countable set  is analogous.

The following result gives a converse to the last result. If the joint probability density factors into a function of  only and a function of  only, then 
 and  are independent, and we can almost identify the individual probability density functions just from the factoring.

Factoring Theorem. Suppose that  has probability density function  of the form

where  and . Then  and  are independent, and there exists a positve constant  such that  and  have
probability density functions  and , respectively, given by

Proof

Note that the proofs in the various cases are essentially the same, except for sums in the discrete case and integrals in the continuous case.

1. Suppose that  and  have discrete distributions on the countable sets  and , respectively, so that  has a discrete distribution on 
. In this case, the assumption is

Summing over  in the displayed equation gives  for  where . Similarly, summing
over  in the displayed equation gives  for  where . Summing over 
in the displayed equation gives  so . Finally, substituting gives  for 

 so  and  are independent.
2. Suppose next that  and  have continuous distributions on  and  respectively. For  and ,

X Y X Y (X,Y )

X Y

P [(X,Y ) ∈ A×B] = P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B) A ∈S , B ∈ T (3.4.10)

(X,Y ) S×T

X Y g h (X,Y )

f

f(x, y) = g(x)h(y), (x, y) ∈ S×T (3.4.11)

X Y

X Y S T (x, y) ∈ S×T

P [(X,Y ) = (x, y)] = P(X = x,Y = y) = P(X = x)P(Y = y) = g(x)h(y) (3.4.12)

X Y S ⊆R

j

T ⊆R

k

A⊆ S B⊆ T

P [(X,Y ) ∈ A×B] = P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B) = g(x)dx h(y)dy = g(x)h(y)d(x, y)∫

A

∫

B

∫

A×B

(3.4.13)

S×T

P [(X,Y ) ∈ C] = f(x, y)d(x, y)∫

C

C ⊆ S×T (X,Y ) f

X S Y T ⊆R

k

x ∈ S

B⊆ T

P(X = x,Y ∈ B) = P(X = x)P(Y ∈ B) = g(x) h(y)dy = g(x)h(y)dy∫

B

∫

B

(3.4.14)

(X,Y ) f X S ⊆R

j

Y

T

x y

X Y

(X,Y ) f

f(x, y) = u(x)v(y), (x, y) ∈ S×T (3.4.15)

u : S→ [0,∞) v : T → [0,∞) X Y c X Y

g h

g(x) =

h(y) =

c u(x), x ∈ S

v(y), y ∈ T

1

c

(3.4.16)

(3.4.17)

X Y S T (X,Y )

S×T

P(X = x,Y = y) = u(x)v(y), (x, y) ∈ S×T (3.4.18)

y ∈ T g(x) = P(X = x) = cu(x) x ∈ S c = v(y)∑

y∈T

x ∈ S h(y) = P(Y = y) = kv(y) y ∈ T k= u(y)∑

x∈S

(x, y) ∈ S×T

1 = ck k= 1/c P(X = x,Y = y) = P(X = x)P(Y = y)

(x, y) ∈ S×T X Y

X Y S ⊆R

j

T ⊆R

k

A⊆ S B⊆ T
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Letting  in the displayed equation gives  for , where . By definition,  has PDF 
. Next, letting  in the displayed equation gives  for , where . Thus,  has

PDF . Next, letting  and  in the displayed equation gives , so . Now note that the displayed equation
holds with  replaced by  and  replaced by , and this in turn gives , so  and  are
independent.

3. Suppose next that  has a discrete distribution on the countable set  and that  has a continuous distributions on . For  and 
,

Letting  in the displayed equation gives  for , where . So  has PDF . Next,
summing over  in the displayed equation gives  for , where . Thus,  has PDF 

. Next, summing over  and letting  in the displayed equation gives , so . Now note that the displayed
equation holds with  replaced by  and  replaced by , and this in turn gives , so  and 
are independent. The case where where  has a continuous distribution on  and  has a discrete distribution on the countable set 
is analogous.

The last two results extend to more than two random variables, because  and  themselves may be random vectors. Here is the explicit statement:

Suppose that  is a random variable taking values in a set  with probability density funcion  for , and that the random
variables are independent. Then the random vector  taking values in  has probability density
function  given by

The special case where the distributions are all the same is particularly important.

Suppose that  is a sequence of independent random variables, each taking values in a set  and with common
probability density function . Then the probability density function  of  on  is given by

In probability jargon,  is a sequence of independent, identically distributed variables, a phrase that comes up so often that it is often abbreviated as
IID. In statistical jargon,  is a random sample of size  from the common distribution. As is evident from the special terminology, this situation is
very impotant in both branches of mathematics. In statistics, the joint probability density function  plays an important role in procedures such as
maximum likelihood and the identification of uniformly best estimators.

Recall that (mutual) independence of random variables is a very strong property. If a collection of random variables is independent, then any
subcollection is also independent. New random variables formed from disjoint subcollections are independent. For a simple example, suppose that 

, , and  are independent real-valued random variables. Then

1. , , and  are independent.
2.  and  are independent.
3.  and  are independent.
4.  and  are independent.
5.  and  are independent.

In particular, note that statement 2 in the list above is much stronger than the conjunction of statements 4 and 5. Restated, if  and  are dependent,
then  and  are also dependent.

Examples and Applications

Dice

Recall that a standard die is an ordinary six-sided die, with faces numbered from 1 to 6. The answers in the next couple of exercises give the joint
distribution in the body of a table, with the marginal distributions literally in the magins. Such tables are the reason for the term marginal
distibution.

Suppose that two standard, fair dice are rolled and the sequence of scores  recorded. Our ususal assumption is that the variables 
and  are independent. Let  and  denote the sum and difference of the scores, respectively.

1. Find the probability density function of .

P(X ∈ A,Y ∈ B) = P [(X,Y ) ∈ A×B] = f(x, y)d(x, y) = u(x)dx v(y)dy∫

A×B

∫

A

∫

B

(3.4.19)

B= T P(X ∈ A) = c u(x)dx∫

A

A⊆ S c = v(y)dy∫

T

X

g= c u A= S P(Y ∈ B) = k v(y)dy∫

B

B⊆ T k= u(x)dx∫

S

Y

g= k v A= S B= T 1 = c k k= 1/c

u g v h P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B) X Y

X S Y T ⊆R

k

x ∈ S

B⊆ T

P(X = x,Y ∈ B) = f(x, y)dy = u(x) v(y)dy∫

B

∫

B

(3.4.20)

B= T P(X ∈ x) = c u(x) x ∈ S c = v(y)dy∫

T

X g= c u

x ∈ S P(Y ∈ B) = k v(y)dy∫

B

B⊆ T k= u(x)∑

x∈S

Y

g= k v x ∈ S B= T 1 = c k k= 1/c

u g v h P(X = x,Y ∈ B) = P(X = x)P(Y ∈ B) X Y

X S ⊆R

j

Y T

X Y

X

i

R

i

g

i

i ∈ {1, 2,… ,n}

X = ( , ,… , )X

1

X

2

X

n

S = × ×⋯×R

1

R

2

R

n

f

f( , ,… , ) = ( ) ( )⋯ ( ), ( , ,… , ) ∈ Sx

1

x

2

x

n

g

1

x

1

g

2

x

2

g

n

x

n

x

1

x

2

x

n

(3.4.21)

X = ( , ,… , )X

1

X

2

X

n

R

g f X S =R

n

f( , ,… , ) = g( )g( )⋯ g( ), ( , ,… , ) ∈ Sx

1

x

2

x

n

x

1

x

2

x

n

x

1

x

2

x

n

(3.4.22)

X

X n

f

X Y Z

sin(X) cos(Y ) e

Z

(X,Y ) Z

+X

2

Y

2

arctan(Z)

X Z

Y Z

X Z

(X,Y ) Z

( , )X

1

X

2

X

1

X

2

Y = +X

1

X

2

Z = −X

1

X

2

(Y ,Z)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10144?pdf


3.4.5 https://stats.libretexts.org/@go/page/10144

2. Find the probability density function of .
3. Find the probability density function of .
4. Are  and  independent?

Answer

Let  denote the PDF of ,  the PDF of  and  the PDF of . The PDFs are give in the following table. Random variables  and 
are dependent

3 4 5 6 7 8 9 0 11 12

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0

1

Suppose that two standard, fair dice are rolled and the sequence of scores  recorded. Let  and 
denote the minimum and maximum scores, respectively.

1. Find the probability density function of .
2. Find the probability density function of .
3. Find the probability density function of .
4. Are  and  independent?

Answer

Let  denote the PDF of ,  the PDF of , and  the PDF of . The PDFs are given in the following table. Random variables  and 
are dependent.

2 3 4 5 6

0 0 0 0 0

2 0 0 0 0

3 0 0 0

4 0 0

5 0

6

1

The previous two exercises show clearly how little information is given with the marginal distributions compared to the joint distribution. With the
marginal PDFs alone, you could not even determine the support set of the joint distribution, let alone the values of the joint PDF.

Simple Continuous Distributions

Suppose that  has probability density function  given by  for , .

Y

Z

Y Z

f (Y ,Z) g Y h Z Y Z

f(y, z)

y= 2

h(z)

z = −5

1

36

1

36

−4

1

36

1

36

2

36

−3

1

36

1

36

1

36

3

36

−2

1

36

1

36

1

36

1

36

4

36

−1

1

36

1

36

1

36

1

36

1

36

5

36

1

36

1

36

1

36

1

36

1

36

1

36

6

36

1

36

1

36

1

36

1

36

1

36

5

36

1

36

1

36

1

36

1

36

4

36

1

36

1

36

1

36

3

36

1

36

1

36

2

36

1

36

1

36

g(y)

1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36

( , )X

1

X

2

U =min{ , }X

1

X

2

V =max{ , }X

1

X

2

(U,V )

U

V

U V

f (U,V ) g U h V U V

f(u, v)

u= 1

h(v)

v= 1

1

36

1

36

2

36

1

36

3

36

2

36

2

36

1

36

5

36

2

36

2

36

2

36

1

36

7

36

2

36

2

36

2

36

2

36

1

36

9

36

2

36

2

36

2

36

2

36

2

36

1

36

11

36

g(u)

11

36

9

36

7

36

5

36

3

36

1

36

(X,Y ) f f(x, y) = x+y 0 ≤ x ≤ 1 0 ≤ y ≤ 1
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1. Find the probability density function of .
2. Find the probability density function of .
3. Are  and  independent?

Answer

1.  has PDF  given by  for 
2.  has PDF  given by  for 
3.  and  are dependent.

Suppose that  has probability density function  given by  for .

1. Find the probability density function of .
2. Find the probability density function of .
3. Are  and  independent?

Answer
1.  has PDF  given by  for .
2.  has PDF  given by  for .
3.  and  are dependent.

Suppose that  has probability density function  given by  for , .

1. Find the probability density function of .
2. Find the probability density function of .
3. Are  and  independent?

Answer
1.  has PDF  given by  for .
2.  has PDF  given by  for .
3.  and  are independent.

The last exercise is a good illustration of the factoring theorem. Without any work at all, we can tell that the PDF of  is proportional to  on
the interval , the PDF of  is proportional to  on the interval , and that  and  are independent. The only thing unclear is how the
constant 6 factors.

Suppose that  has probability density function  given by  for .

1. Find the probability density function of .
2. Find the probability density function of .
3. Are  and  independent?

Answer

1.  has PDF  given by  for .
2.  has PDF  given by  for .
3.  and  are dependent.

Note that in the last exercise, the factoring theorem does not apply. Random variables  and  each take values in , but the joint PDF factors
only on part of .

Suppose that  has probability density function  given  for , , .

1. Find the probability density function of each pair of variables.
2. Find the probability density function of each variable.
3. Determine the dependency relationships between the variables.

Proof
1.  has PDF  given by  for , .
2.  has PDF  given by  for , .
3.  had PDF  given by  for , .
4.  has PDF  given by  for .
5.  has PDF  given by  for .
6.  has PDF  given by  for .
7.  and  are independent;  and  are dependent.

X

Y

X Y

X g g(x) = x+

1

2

0 ≤ x ≤ 1

Y h h(y) = y+

1

2

0 ≤ y ≤ 1

X Y

(X,Y ) f f(x, y) = 2(x+y) 0 ≤ x ≤ y ≤ 1

X

Y

X Y

X g g(x) = (1+3x)(1−x) 0 ≤ x ≤ 1

Y h h(h) = 3y

2

0 ≤ y ≤ 1

X Y

(X,Y ) f f(x, y) = 6 yx

2

0 ≤ x ≤ 1 0 ≤ y ≤ 1

X

Y

X Y

X g g(x) = 3x

2

0 ≤ x ≤ 1

Y h h(y) = 2y 0 ≤ y ≤ 1

X Y

X x↦ x

2

[0, 1] Y y↦ y [0, 1] X Y

(X,Y ) f f(x, y) = 15 yx

2

0 ≤ x ≤ y ≤ 1

X

Y

X Y

X g g(x) = (1− )

15

2

x

2

x

2

0 ≤ x ≤ 1

Y h h(y) = 5y

4

0 ≤ y ≤ 1

X Y

X Y [0, 1]

[0, 1]

2

(X,Y ,Z) f f(x, y, x) = 2(x+y)z 0 ≤ x ≤ 1 0 ≤ y ≤ 1 0 ≤ z≤ 1

(X,Y ) f

1,2

(x, y) = x+yf

1,2

0 ≤ x ≤ 1 0 ≤ y ≤ 1

(X,Z) f

1,3

(x, z) = 2z (x+ )f

1,3

1

2

0 ≤ x ≤ 1 0 ≤ z≤ 1

(Y ,Z) f

2,3

(y, z) = 2z (y+ )f

2,3

1

2

0 ≤ y ≤ 1 0 ≤ z≤ 1

X f

1

(x) = x+f

1

1

2

0 ≤ x ≤ 1

Y f

2

(y) = y+f

2

1

2

0 ≤ y ≤ 1

Z f

3

(z) = 2zf

3

0 ≤ z≤ 1

Z (X,Y ) X Y
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Suppose that  has probability density function  given by  for .

1. Find the probability density function of .
2. Find the probability density function of .
3. Are  and  independent?

Answer
1.  has PDF  given by  for .
2.  has PDF  given by  for .
3.  and  are dependent.

In the previous exercise,  has an exponential distribution with rate parameter 2. Recall that exponential distributions are widely used to model
random times, particularly in the context of the Poisson model.

Suppose that  and  are independent, and that  has probability density function  given by  for , and that 
has probability density function  given by  for .

1. Find the probability density function of .
2. Find .

Answer
1.  has PDF  given by  for , .
2. 

In the previous exercise,  and  have beta distributions, which are widely used to model random probabilities and proportions. Beta distributions
are studied in more detail in the chapter on Special Distributions.

Suppose that  and  are independent random angles, with common probability density function  given by  for .

1. Find the probability density function of .
2. Find .

Answer
1.  has PDF  given by  for , .
2. 

The common distribution of  and  in the previous exercise governs a random angle in Bertrand's problem.

Suppose that  and  are independent, and that  has probability density function  given by  for , and that  has
probability density function  given by  for .

1. Find the probability density function of .
2. Find .

Answer

1.  has PDF  given by  for , .

2. 

Both  and  in the previous exercise have Pareto distributions, named for Vilfredo Pareto. Recall that Pareto distributions are used to model
certain economic variables and are studied in more detail in the chapter on Special Distributions.

Suppose that  has probability density function  given by  for , and that  has probability density
function  given by  for , and that  and  are independent.

1. Find the probability density function of .
2. Find the probability density function of .
3. Find the probability density function of .
4. Find .

Answer
1.  has PDF  given by  for , .
2.  has PDF  given by  for , .
3.  has PDF  given by  for , .
4. 

(X,Y ) f f(x, y) = 2e

−x

e

−y

0 ≤ x ≤ y <∞

X

Y

X Y

X g g(x) = 2e

−2x

0 ≤ x <∞

Y h h(y) = 2 ( − )e

−y

e

−2y

0 ≤ y <∞

X Y

X

X Y X g g(x) = 6x(1−x) 0 ≤ x ≤ 1 Y

h h(y) = 12 (1−y)y

2

0 ≤ y ≤ 1

(X,Y )

P(X+Y ≤ 1)

(X,Y ) f f(x, y) = 72x(1−x) (1−y)y

2

0 ≤ x ≤ 1 0 ≤ y ≤ 1

P(X+Y ≤ 1) =

13

35

X Y

Θ Φ g g(t) = sin(t) 0 ≤ t ≤

π

2

(Θ,Φ)

P(Θ≤Φ)

(Θ,Φ) f f(θ,ϕ) = sin(θ) sin(ϕ) 0 ≤ θ≤

π

2

0 ≤ ϕ≤

π

2

P(Θ≤Φ) =

1

2

X Y

X Y X g g(x) =

2

x

3

1 ≤ x <∞ Y

h h(y) =

3

y

4

1 ≤ y <∞

(X,Y )

P(X ≤ Y )

(X,Y ) f f(x, y) =

6

x

3

y

4

1 ≤ x <∞ 1 ≤ y <∞

P(X ≤ Y ) =

2

5

X Y

(X,Y ) g g(x, y) = 15 yx

2

0 ≤ x ≤ y ≤ 1 Z

h h(z) = 4z

3

0 ≤ z≤ 1 (X,Y ) Z

(X,Y ,Z)

(X,Z)

(Y ,Z)

P(Z ≤XY )

(X,Y ,Z) f f(x, y, z) = 60 yx

2

z

3

0 ≤ x ≤ y ≤ 1 0 ≤ z≤ 1

(X,Z) f

1,3

(x, z) = 30 (1− )f

1,3

x

2

x

2

z

3

0 ≤ x ≤ 1 0 ≤ z≤ 1

(Y ,Z) f

2,3

(y, z) = 20f

2,3

y

4

z

3

0 ≤ y ≤ 1 0 ≤ z≤ 1

P(Z ≤XY ) =

15

92
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Multivariate Uniform Distributions

Multivariate uniform distributions give a geometric interpretation of some of the concepts in this section.

Recall first that for , the standard measure on  is

In particular,  is the length of ,  is the area of , and  is the volume of .

Details

Technically  is Lebesgue measure on the measurable subsets of . The integral representation is valid for the types of sets that occur in
applications. In the discussion below, all subsets are assumed to be measurable.

Suppose now that  takes values in ,  takes values in , and that  is uniformly distributed on a set . So 
and the joint probability density function  of  is given by  for . Recall that uniform distributions always
have constant density functions. Now let  and  be the projections of  onto  and  respectively, defined as follows:

Note that . Next we denote the cross sections at  and at , respectively by

Figure : The projections  and , and the cross sections at  and 

 takes values in  and  takes values in . The probability density functions  and  of  and  are proportional to the cross-sectional
measures:

1.  for 
2.  for 

Proof

From our general theory,  has PDF  given by

Technically, it's possible that  for some , but the set of such  has measure 0. That is, . The
result for  is analogous.

In particular, note from previous theorem that  and  are neither independent nor uniformly distributed in general. However, these properties do
hold if  is a Cartesian product set.

Suppose that .

1.  is uniformly distributed on .
2.  is uniformly distributed on .
3.  and  are independent.

Proof

In this case,  and  for every  and . Also, , so for  and , 
, , .

In each of the following cases, find the joint and marginal probabilit density functions, and determine if  and  are independent.

1.  is uniformly distributed on the square .
2.  is uniformly distributed on the triangle .

n ∈ N

+

R

n

(A) = 1dx, A ⊆λ

n

∫

A

R

n

(3.4.23)

(A)λ

1

A ⊆R (A)λ

2

A ⊆R

2

(A)λ

3

A ⊆R

3

λ

n

R

n

X R

j

Y R

k

(X,Y ) R ⊆R

j+k

0 < (R) < ∞λ

j+k

f (X,Y ) f(x, y) = 1/ (R)λ

j+k

(x, y) ∈ R

S T R R

j

R

k

S = {x ∈ : (x, y) ∈ R for some y ∈ } , T = {y ∈ : (x, y) ∈ R for some x ∈ }R

j

R

k

R

k

R

j

(3.4.24)

R ⊆ S×T x ∈ S y ∈ T

= {t ∈ T : (x, t) ∈ R}, = {s ∈ S : (s, y) ∈ R}T

x

S

y

(3.4.25)

3.4.1 S T x y

X S Y T g h X Y

g(x) = ( )/ (R)λ

k

T

x

λ

j+k

x ∈ S

h(y) = ( )/ (R)λ

j

S

y

λ

j+k

y ∈ T

X g

g(x) = f(x, y)dy = dy = , x ∈ S∫

T

x

∫

T

x

1

(R)λ

j+k

( )λ

k

T

x

(R)λ

j+k

(3.4.26)

( ) = ∞λ

k

T

x

x ∈ S x {x ∈ S : ( ) = ∞} = 0λ

j

λ

k

T

x

Y

X Y

R

R = S×T

X S

Y T

X Y

= TT

x

= SS

y

x ∈ S y ∈ T (R) = (S) (T )λ

j+k

λ

j

λ

k

x ∈ S y ∈ T

f(x, y) = 1/[ (S) (T )]λ

j

λ

k

g(x) = 1/ (S)λ

j

h(y) = 1/ (T )λ

k

X Y

(X,Y ) R = [−6, 6]

2

(X,Y ) R = {(x, y) : −6 ≤ y ≤ x ≤ 6}
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3.  is uniformly distributed on the circle .

Answer

In the following,  is the PDF of ,  the PDF of , and  the PDF of .

1.  for , 
 for 
 for 

 and  are independent.

2.  for 
 for 
 for 

 and  are dependent.

3.  for 
 for 
 for 

 and  are dependent.

In the bivariate uniform experiment, run the simulation 1000 times for each of the following cases. Watch the points in the scatter plot and the
graphs of the marginal distributions. Interpret what you see in the context of the discussion above.

1. square
2. triangle
3. circle

Suppose that  is uniformly distributed on the cube .

1. Give the joint probability density function of .
2. Find the probability density function of each pair of variables.
3. Find the probability density function of each variable
4. Determine the dependency relationships between the variables.

Answer
1.  has PDF  given by  for , ,  (the uniform distribution on )
2. , , and  have common PDF  given by  for ,  (the uniform distribution on )
3. , , and  have common PDF  given by  for  (the uniform distribution on )
4. , ,  are independent.

Suppose that  is uniformly distributed on .

1. Give the joint density function of .
2. Find the probability density function of each pair of variables.
3. Find the probability density function of each variable
4. Determine the dependency relationships between the variables.

Answer
1.  has PDF  given by  for 
2.  has PDF  given by  for 

 has PDF  given by  for 
 has PDF  given by  for 

3.  has PDF  given by  for 
 has PDF  given by  for 
 has PDF  given by  for 

4. Each pair of variables is dependent.

The Rejection Method

The following result shows how an arbitrary continuous distribution can be obtained from a uniform distribution. This result is useful for simulating
certain continuous distributions, as we will see. To set up the basic notation, suppose that  is a probability density function for a continuous
distribution on . Let

(X,Y ) R= {(x, y) : + ≤ 36}x

2

y

2

f (X,Y ) g X h Y

f(x, y) =

1

144

−6 ≤ x ≤ 6 −6 ≤ y ≤ 6

g(x) =

1

12

−6 ≤ x ≤ 6

h(y) =

1

12

−6 ≤ y ≤ 6

X Y

f(x, y) =

1

72

−6 ≤ y ≤ x ≤ 6

g(x) = (x+6)

1

72

−6 ≤ x ≤ 6

h(y) = (y+6)

1

72

−6 ≤ y ≤ 6

X Y

f(x, y) =

1

36π

+ ≤ 36x

2

y

2

g(x) =

1

18π

36−x

2

− −−−−−

√

−6 ≤ x ≤ 6

h(y) =

1

18π

36−y

2

− −−−−−

√

−6 ≤ y ≤ 6

X Y

(X,Y ,Z) [0, 1]

3

(X,Y ,Z)

(X,Y ,Z) f f(x, y, z) = 1 0 ≤ x ≤ 1 0 ≤ y ≤ 1 0 ≤ z≤ 1 [0, 1]

3

(X,Y ) (X,Z) (Y ,Z) g g(u, v) = 1 0 ≤ u ≤ 1 0 ≤ v≤ 1 [0, 1]

2

X Y Z h h(u) = 1 0 ≤ u ≤ 1 [0, 1]

X Y Z

(X,Y ,Z) {(x, y, z) : 0 ≤ x ≤ y ≤ z≤ 1}

(X,Y ,Z)

(X,Y ,Z) f f(x, y, z) = 6 0 ≤ x ≤ y ≤ z≤ 1

(X,Y ) f

1,2

(x, y) = 6(1−y)f

1,2

0 ≤ x ≤ y ≤ 1

(X,Z) f

1,3

(x, z) = 6(z−x)f

1,3

0 ≤ x ≤ z≤ 1

(Y ,Z) f

2,3

(y, z) = 6yf

2,3

0 ≤ y ≤ z≤ 1

X f

1

(x) = 3(1−xf

1

)

2

0 ≤ x ≤ 1

Y f

2

(y) = 6y(1−y)f

2

0 ≤ y ≤ 1

Z f

3

(z) = 3f

3

z

2

0 ≤ z≤ 1

g

S ⊆R

n

R= {(x, y) : x ∈ S and 0 ≤ y ≤ g(x)} ⊆R

n+1

(3.4.27)
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If  is uniformly distributed on , then  has probability density function .

Proof

Note that since  is a probability density function on .

Hence the probability density function  of  is given by  for . Thus, the probability density function of  is 
 for .

A picture in the case  is given below:

Figure : If  is uniformly distributed on , then  has density function .

The next result gives the rejection method for simulating a random variable with the probability density function .

Suppose now that  where  with  and that  is a sequence of independent random
variables with , , and  uniformly distributed on  for each . Let

1.  has the geometric distribution on  with success parameter .
2.  is uniformly distributed on .
3.  has probability density function .

Proof

Figure : With a sequence of independent points, uniformly distributed on , the  coordinate of the first point to land in  has probability
density function .

The point of the theorem is that if we can simulate a sequence of independent variables that are uniformly distributed on , then we can simulate a
random variable with the given probability density function . Suppose in particular that  is bounded as a subset of , which would mean that
the domain  is bounded as a subset of  and that the probability density function  is bounded on . In this case, we can find  that is the
Cartesian product of  bounded intervals with . It turns out to be very easy to simulate a sequence of independent variables, each
uniformly distributed on such a product set, so the rejection method always works in this case. As you might guess, the rejection method works best
if the size of , namely , is small, so that the success parameter  is large.

The rejection method app simulates a number of continuous distributions via the rejection method. For each of the following distributions, vary
the parameters and note the shape and location of the probability density function. Then run the experiment 1000 times and observe the results.

1. The beta distribution
2. The semicircle distribution
3. The triangle distribution
4. The U-power distribution

The Multivariate Hypergeometric Distribution

Suppose that a population consists of  objects, and that each object is one of four types. There are  type 1 objects,  type 2 objects,  type 3
objects and  type 0 objects. We sample  objects from the population at random, and without replacement. The parameters , , , 
, and  are nonnegative integers with  and . Denote the number of type 1, 2, and 3 objects in the sample by , , and ,

(X,Y ) R X g

g S

(R) = 1 d(x, y) = 1 dy dx = g(x)dx = 1λ

n+1

∫

R

∫

S

∫

g(x)

0

∫

S

(3.4.28)

f (X,Y ) f(x, y) = 1 (x, y) ∈ R X

x↦ 1 dy = g(x)∫

g(x)

0

x ∈ S

n= 1

3.4.2 (X,Y ) R X g

g

R⊆ T T ⊆R

n+1

(T ) <∞λ

n+1

(( , ), ( , ),…)X

1

Y

1

X

2

Y

2

∈X

k

R

n

∈ RY

k

( , )X

k

Y

k

T k ∈ N

+

N =min{k ∈ : ( , ) ∈ R} =min{k ∈ : ∈ S, 0 ≤ ≤ g ( )}N

+

X

k

Y

k

N

+

X

k

Y

k

X

k

(3.4.29)

N N

+

p = 1/ (T )λ

n+1

( , )X

N

Y

N

R

X

N

g

3.4.3 T x R

g

T

g R R

n+1

S R

n

g S T

n+1 R⊆ T

T (T )λ
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respectively. Hence, the number of type 0 objects in the sample is . In the problems below, the variables , , and  take values in 
.

 has a (multivariate) hypergeometric distribution with probability density function  given by

Proof

From the basic theory of combinatorics, the numerator is the number of ways to select an unordered sample of size  from the population with 
 objects of type 1,  objects of type 2,  objects of type 3, and  objects of type 0. The denominator is the total number of ways

to select the unordered sample.

 also has a (multivariate) hypergeometric distribution, with the probability density function  given by

Proof

This result could be obtained by summing the joint PDF over  for fixed . However, there is a much nicer combinatorial argument. Note
that we are selecting a random sample of size  from a population of  objects, with  objects of type 1,  objects of type 2, and 
objects of other types.

 has an ordinary hypergeometric distribution, with probability density function  given by

Proof

Again, the result could be obtained by summing the joint PDF for  over  for fixed , or by summing the joint PDF for 
over  for fixed . But as before, there is a much more elegant combinatorial argument. Note that we are selecting a random sample of size 
from a population of size  objects, with  objects of type 1 and  objects of other types.

These results generalize in a straightforward way to a population with any number of types. In brief, if a random vector has a hypergeometric
distribution, then any sub-vector also has a hypergeometric distribution. In other words, all of the marginal distributions of a hypergeometric
distribution are themselves hypergeometric. Note however, that it's not a good idea to memorize the formulas above explicitly. It's better to just note
the patterns and recall the combinatorial meaning of the binomial coefficient. The hypergeometric distribution and the multivariate hypergeometric
distribution are studied in more detail in the chapter on Finite Sampling Models.

Suppose that a population of voters consists of 50 democrats, 40 republicans, and 30 independents. A sample of 10 voters is chosen at random
from the population (without replacement, of course). Let  denote the number of democrats in the sample and  the number of republicans in
the sample. Find the probability density function of each of the following:

1. 
2. 
3. 

Answer

In the formulas for the PDFs below, the variables  and  are nonnegative integers.

1.  has PDF  given by  for 

2.  has PDF  given by  for 

3.  has PDF  given by  for 

Suppose that the Math Club at Enormous State University (ESU) has 50 freshmen, 40 sophomores, 30 juniors and 20 seniors. A sample of 10
club members is chosen at random to serve on the -day committee. Let  denote the number freshmen on the committee,  the number of
sophomores, and  the number of juniors.

1. Find the probability density function of 
2. Find the probability density function of each pair of variables.

n−X−Y −Z x y z

N

(X,Y ,Z) f

f(x, y, z) = , x+y+z≤ n

( )( )( )( )

a

x

b

y

c

z

m−a−b−c

n−x−y−z

( )

m

n

(3.4.30)

n

x y z n−x−y−z

(X,Y ) g

g(x, y) = , x+y ≤ n

( )( )( )

a

x

b

y

m−a−b

n−x−y

( )

m

n

(3.4.31)

z (x, y)

n m a b m−a−b

X h

h(x) = , x ≤ n

( )( )

a

x

m−a

n−x

( )

m

n

(3.4.32)

(X,Y ,Z) (y, z) x (X,Y )

y x n

m a m−a

X Y

(X,Y )

X

Y

x y

(X,Y ) f f(x, y) = ( )( )( )

1

( )

120

10

50

x

40

y

30

10−x−y

x+y ≤ 10

X g g(x) = ( )( )

1

( )

120

10

50

x

70

10−x

x ≤ 10

Y h h(y) = ( )( )

1

( )

120

10

40

y
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10−y

y ≤ 10

π X Y

Z
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3. Find the probability density function of each individual variable.

Answer

In the formulas for the PDFs below, the variables , , and  are nonnegative integers.

1.  has PDF  given by  for .

2.  has PDF  given by  for .

 has PDF  given by  for .

 has PDF  given by  for .

3.  has PDF  given by  for .

 has PDF  given by  for .

 has PDF  given by  for 

Multinomial Trials

Suppose that we have a sequence of  independent trials, each with 4 possible outcomes. On each trial, outcome 1 occurs with probability ,
outcome 2 with probability , outcome 3 with probability , and outcome 0 occurs with probability . The parameters , , and  are
nonnegative numbers with , and . Denote the number of times that outcome 1, outcome 2, and outcome 3 occurred in the 
trials by , , and  respectively. Of course, the number of times that outcome 0 occurs is . In the problems below, the variables 

, , and  take values in .

 has a multinomial distribution with probability density function  given by

Proof

The multinomial coefficient is the number of sequences of length  with 1 occurring  times, 2 occurring  times, 3 occurring  times, and 0
occurring  times. The result then follows by independence.

 also has a multinomial distribution with the probability density function  given by

Proof

This result could be obtained from the joint PDF above, by summing over  for fixed . However there is a much better direct argument.
Note that we have  independent trials, and on each trial, outcome 1 occurs with probability , outcome 2 with probability , and some other
outcome with probability .

 has a binomial distribution, with the probability density function  given by

Proof

Again, the result could be obtained by summing the joint PDF for  over  for fixed  or by summing the joint PDF for 
over  for fixed . But as before, there is a much better direct argument. Note that we have  independent trials, and on each trial, outcome 1
occurs with probability  and some other outcome with probability .

These results generalize in a completely straightforward way to multinomial trials with any number of trial outcomes. In brief, if a random vector
has a multinomial distribution, then any sub-vector also has a multinomial distribution. In other terms, all of the marginal distributions of a
multinomial distribution are themselves multinomial. The binomial distribution and the multinomial distribution are studied in more detail in the
chapter on Bernoulli Trials.

Suppose that a system consists of 10 components that operate independently. Each component is working with probability , idle with
probability , or failed with probability . Let  denote the number of working components and  the number of idle components. Give the
probability density function of each of the following:

x y z

(X,Y ,Z) f f(x, y, z) = ( )( )( )( )

1

( )

140

10

50

x

40

y

30

z

20

10−x−y−z

x+y+z≤ 10

(X,Y ) f

1,2

(x, y) = ( )( )( )f

1,2

1

( )

140
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50

x

40

y
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x+y ≤ 10

(X,Z) f
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(y, z) = ( )( )( )f

1,3

1

( )
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50

x

30

z
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(Y ,Z) f
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1
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40

y
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z
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X f

1

(x) = ( )( )f

1

1
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x

90

10−x

x ≤ 10

Y f

2

(y) = ( )( )f

2

1
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y
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Z f
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(z) = ( )( )f

3

1
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z
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10−z
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n p

q r 1−p−q−r p q r

p+q+r≤ 1 n ∈ N

+

n

X Y Z n−X−Y −Z

x y z N

(X,Y ,Z) f

f(x, y, z) =( ) (1−p−q−r , x+y+z≤ n

n

x, y, z

p

x

q

y

r

z

)

n−x−y−z

(3.4.33)

n x y z

n−x−y−z

(X,Y ) g

g(x, y) =( ) (1−p−q , x+y ≤ n

n

x, y

p

x

q

y

)

n−x−y

(3.4.34)

z (x, y)

n p q

1−p−q

X h

h(x) =( ) (1−p , x ≤ n

n

x

p
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(3.4.35)
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1. 
2. 
3. 

Answer

In the formulas below, the variables  and  are nonnegative integers.

1.  has PDF  given by  for .

2.  has PDF  given by  for .

3.  has PDF  given by  for .

Suppose that in a crooked, four-sided die, face  occurs with probability  for . The die is thrown 12 times; let  denote the
number of times that score 1 occurs,  the number of times that score 2 occurs, and  the number of times that score 3 occurs.

1. Find the probability density function of 
2. Find the probability density function of each pair of variables.
3. Find the probability density function of each individual variable.

Answer

In the formulas for the PDFs below, the variables ,  and  are nonnegative integers.

1.  has PDF , 

2.  has PDF  given by  for .

 has PDF  given by  for .

 has PDF  given by  for .

3.  has PDF  given by  for .

 has PDF  given by  for .

 has PDF  given by  for .

Bivariate Normal Distributions

Suppose that  has probability the density function  given below:

1. Find the probability density function of .
2. Find the probability density function of .
3. Are  and  independent?

Answer

1.  has PDF  given by  for .

2.  has PDF  given by  for .

3.  and  are independent.

Suppose that  has probability density function  given below:

1. Find the density function of .
2. Find the density function of .
3. Are  and  independent?

Answer

1.  has PDF  given by  for .

2.  has PDF  given by  for .

(X,Y )

X

Y

x y

(X,Y ) f f(x, y) = ( )

10

x, y

( )

1

2

x

( )
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1
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x
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1
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Y Z
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x y z
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5
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1
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1
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x
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1
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x
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9
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Y f

2

(y) = ( )f

2
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y
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2
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y
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8
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12−y

y ≤ 12
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3
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3
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z
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3
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3.  and  are dependent.

The joint distributions in the last two exercises are examples of bivariate normal distributions. Normal distributions are widely used to model
physical measurements subject to small, random errors. In both exercises, the marginal distributions of  and  also have normal distributions, and
this turns out to be true in general. The multivariate normal distribution is studied in more detail in the chapter on Special Distributions.

Exponential Distributions

Recall that the exponential distribution has probability density function

where  is the rate parameter. The exponential distribution is widely used to model random times, and is studied in more detail in the
chapter on the Poisson Process.

Suppose  and  have exponential distributions with parameters  and , respectively, and are independent. Then 
.

Suppose , , and  have exponential distributions with parameters , , and , respectively, and are
independent. Then

1. 
2. 

If , , and  are the lifetimes of devices that act independently, then the results in the previous two exercises give probabilities of various failure
orders. Results of this type are also very important in the study of continuous-time Markov processes. We will continue this discussion in the section
on transformations of random variables.

Mixed Coordinates

Suppose  takes values in the finite set ,  takes values in the interval , and that  has probability density function  given
by

1. Find the probability density function of .
2. Find the probability density function of .
3. Are  and  independent?

Answer
1.  has PDF  given by  for  (the uniform distribution on ).

2.  has PDF  given by .

3.  and  are dependent.

Suppose that  takes values in the interval ,  takes values in the finite set , and that  has probability density function 
given by

1. Find the probability density function of .
2. Find the probability density function of .
3. Are  and  independent?

Answer
1.  has PDF  given by  for .
2.  has PDF  given by , 
3.  and  are dependent.

X Y

X Y

f(x) = r , x ∈ [0,∞)e

−rt

(3.4.38)

r ∈ (0,∞)

X Y a ∈ (0,∞) b ∈ (0,∞)
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a
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a
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a
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⎧
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⎪

⎪
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(3.4.39)
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As we will see in the section on conditional distributions, the distribution in the last exercise models the following experiment: a random probability
 is selected, and then a coin with this probability of heads is tossed 3 times;  is the number of heads. Note that  has a beta distribution.

Random Samples

Recall that the Bernoulli distribution with parameter  has probability density function  given by  for 
. Let  be a random sample of size  from the distribution. Give the probability density funcion of 

in simplified form.

Answer

 has PDF  given by  for , where 

The Bernoulli distribution is name for Jacob Bernoulli, and governs an indicator random varible. Hence if  is a random sample of size  from the
distribution then  is a sequence of  Bernoulli trials. A separate chapter studies Bernoulli trials in more detail.

Recall that the geometric distribution on  with parameter  has probability density function  given by  for 
. Let  be a random sample of size  from the distribution. Give the probability density function of  in

simplified form.

Answer

 has pdf  given by  for , where .

The geometric distribution governs the trial number of the first success in a sequence of Bernoulli trials. Hence the variables in the random sample
can be interpreted as the number of trials between successive successes.

Recall that the Poisson distribution with parameter  has probability density function  given by  for . Let 
 be a random sample of size  from the distribution. Give the probability density funcion of  in simplified

form.

Answer

 has PDF  given by  for , where .

The Poisson distribution is named for Simeon Poisson, and governs the number of random points in a region of time or space under appropriate
circumstances. The parameter  is proportional to the size of the region. The Poisson distribution is studied in more detail in the chapter on the
Poisson process.

Recall again that the exponential distribution with rate parameter  has probability density function  given by  for 
. Let  be a random sample of size  from the distribution. Give the probability density funcion of 

in simplified form.

Answer

 has PDF  given by  for , where .

The exponential distribution governs failure times and other types or arrival times under appropriate circumstances. The exponential distribution is
studied in more detail in the chapter on the Poisson process. The variables in the random sample can be interpreted as the times between successive
arrivals in the Poisson process.

Recall that the standard normal distribution has probability density function  given by  for . Let 

 be a random sample of size  from the distribution. Give the probability density funcion of  in simplified form.

Answer

 has PDF  given by  for , where .

The standard normal distribution governs physical quantities, properly scaled and centered, subject to small, random errors. The normal distribution
is studied in more generality in the chapter on the Special Distributions.

Data Analysis Exercises

For the cicada data,  denotes gender and  denotes species type.

1. Find the empirical density of .
2. Find the empirical density of .
3. Find the empirical density of .

P X P

p ∈ [0, 1] g g(x) = (1−pp
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4. Do you believe that  and  are independent?

Answer

The empirical joint and marginal empirical densities are given in the table below. Gender and species are probably dependent (compare the joint
density with the product of the marginal densities).

1

1

2

1

For the cicada data, let  denote body weight (in grams) and  body length (in millimeters).

1. Construct an empirical density for .
2. Find the corresponding empirical density for .
3. Find the corresponding empirical density for .
4. Do you believe that  and  are independent?

Answer

The empirical joint and marginal densities, based on simple partitions of the body weight and body length ranges, are given in the table below.
Body weight and body length are almost certainly dependent.

Density Density 

0 0.0385 0.0192 0 0.0058

0.1731 0.9808 0.4231 0 0.1577

0 0.1538 0.1731 0.0192 0.0346

0 0 0 0.0192 0.0019

Density 0.8654 5.8654 3.0769 0.1923

For the cicada data, let  denote gender and  body weight (in grams).

1. Construct and empirical density for .
2. Find the empirical density for .
3. Find the empirical density for .
4. Do you believe that  and  are independent?

Answer

The empirical joint and marginal densities, based on a simple partition of the body weight range, are given in the table below. Body weight and
gender are almost certainly dependent.

Density Density 

0.1923 2.5000 2.8846 0.0962 0.5673

1 0.6731 3.3654 0.1923 0.0962 0.4327

Density 0.8654 5.8654 3.0769 0.1923

This page titled 3.4: Joint Distributions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via
source content that was edited to the style and standards of the LibreTexts platform.
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3.5: Conditional Distributions
  

In this section, we study how a probability distribution changes when a given random variable has a known, specified value. So this is an
essential topic that deals with hou probability measures should be updated in light of new information. As usual, if you are a new student or
probability, you may want to skip the technical details.

Basic Theory
Our starting point is a random experiment modeled by a probability space . So to review,  is the set of outcomes,  is the
collection of events, and  is the probability measure on the underlying sample space .

Suppose that  is a random variable defined on the sample space (that is, defined for the experiment), taking values in a set .

Details

Technically, the collection of events  is a -algebra, so that the sample space  is a measurable space. Similarly,  will have a 
-algebra of admissible subsets, so that  is also a measurable space. Random variable  is measurable, so that 

for every . The distribution of  is the probability measure  for .

The purpose of this section is to study the conditional probability measure given  for . That is, if  is an event, we would like
to define and study the probability of  given , denoted . If  has a discrete distribution, the conditioning event has
positive probability, so no new concepts are involved, and the simple definition of conditional probability suffices. When  has a
continuous distribution, however, the conditioning event has probability 0, so a fundamentally new approach is needed.

The Discrete Case

Suppose first that  has a discrete distribution with probability density function . Thus  is countable and we can assume that 
 for .

If  is an event and  then

Proof

The meaning of discrete distribution is that  is countable and  is the collection of all subsets of . Technically,  is the
probability density function of  with respct to counting measure  on , the standard measure for discrete spaces. In the diplayed
equation above, the comma separating the events in the numerator of the fraction means and, and thus functions just like the
intersection symbol. This result follows immediately from the definition of conditional probability:

The next result is a sepcial case of the law of total probability. and will be the key to the definition when  has a continuous distribution.

If  is an event then

Conversely, this condition uniquely determines .

Proof

As noted, the displayed equation is just a special case of the law of total probability. For , the countable collection of events 
 partitions  so

Conversely, suppose that the function , defined for  and , satisfies

(Ω,F ,P) Ω F

P (Ω,F)

X S

F σ (Ω,F) S

σ (S,S ) X {X ∈ A} ∈F

A ∈S X A↦ P(X ∈ A) A ∈S

X = x x ∈ S E

E X = x P(E ∣X = x) X

X

X g S

g(x) = P(X = x) > 0 x ∈ S

E x ∈ S

P(E ∣X = x) =

P(E,X = x)

g(x)

(3.5.1)

S S =P(S) S g

X # S

P(E ∣X = x) = =

P(E,X = x)

P(X = x)

P(E,X = x)

g(x)

(3.5.2)

X

E

P(E,X ∈ A) = g(x)P(E ∣X = x), A⊆ S∑

x∈A

(3.5.3)

P(E ∣X = x)

A⊆ S

{{X = x} : x ∈ A} {X ∈ A}

P(E,X ∈ A) = P(E,X = x) = P(E ∣X = x)P(X = x) = P(E ∣X = x)g(x)∑

x∈A

∑

x∈A

∑

x∈A

(3.5.4)

Q(x,E) x ∈ S E ∈F

P(E,X ∈ A) = g(x)Q(x,E), A⊆ S∑

x∈A

(3.5.5)
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Letting  for  gives , so .

The Continuous Case

Suppose now that  has a continuous distribution on  for some , with probability density function . We assume that 
 for . Unlike the discrete case, we cannot use simple conditional probability to define  for an event  and 

 because the conditioning event has probability 0. Nonetheless, the concept should make sense. If we actually run the experiment, 
will take on some value  (even though a priori, this event occurs with probability 0), and surely the information that  should in
general alter the probabilities that we assign to other events. A natural approach is to use the results obtained in the discrete case as
definitions in the continuous case.

If  is an event and , the conditional probability  is defined by the requirement that

Details

Technically,  is a measurable subset of  and the -algebra  consists of the subsets of  that are also measurable as subsets of 
. The function  is also required to be measurable, and is the density function of  with respect to Lebesgue measure . Lebesgue

measure is named for Henri Lebesgue and is the standard measure on .

We will accept the fact that  can be defined uniquely, up to a set of measure 0, by the condition above, but we will return
to this point in the section on Conditional Expectation in the chapter on Expected Value. Essentially the condition means that 

 is defined so that  is a density function for the finite measure .

Conditioning and Bayes' Theorem

Suppose again that  is a random variable with values in  and probability density function , as described above. Our discussions above
in the discrete and continuous cases lead to basic formulas for computing the probability of an event by conditioning on .

The law of total probability. If  is an event, then  can be computed as follows:

1. If X has a discrete distribution then

2. If X has a continuous distribution then

Proof
1. This follows from the discrete theorem with .
2. This follows from the fundamental definition with .

Naturally, the law of total probability is useful when  and  are known for . Our next result is, Bayes' Theorem,
named after Thomas Bayes.

Bayes' Theorem. Suppose that  is an event with . The conditional probability density function  of  given 
 can be computed as follows:

1. If  has a discrete distribution then

2. If  has a continuous distribution then

Proof

A= {x} x ∈ S P(E,X = x) = g(x)Q(x,E) Q(x,E) = P(E,X = x)/g(x) = P(E ∣X = x)

X S ⊆R

n

n ∈ N

+

g

g(x) > 0 x ∈ S P(E ∣X = x) E

x ∈ S X

x X = x

E x ∈ S P(E ∣X = x)

 P(E,X ∈ A) = g(x)P(E ∣X = x)dx, A⊆ S∫

A

(3.5.6)

S R

n

σ S S

R

n

g X λ

n

R

n

P(E ∣X = x)

P(E ∣X = x) x↦ g(x)P(E ∣X = x) A↦ P(E,X ∈ A)

X S g

X

E P(E)

P(E) = g(x)P(E ∣X = x)∑

x∈S

(3.5.7)

P(E) = g(x)P(E ∣X = x)dx∫

S

(3.5.8)

A= S

A= S

P(E ∣X = x) g(x) x ∈ S

E P(E) > 0 x↦ g(x ∣ E) X

E

X

g(x ∣ E) = , x ∈ S

g(x)P(E ∣X = x)

g(s)P(E ∣X = s)∑

s∈S

(3.5.9)

X

g(x ∣ E) = , x ∈ S

g(x)P(E ∣X = x)

g(s)P(E ∣X = s)ds∫

S

(3.5.10)
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1. In the discrete case, as usual, the ordinary simple definition of conditional probability suffices. The numerator in the displayed
equation is . The denominator is  by part (a) of the law of total probability. Hence
the fraction is .

2. In the continuous case, as usual, the argument is more subtle. We need to show that the expression in the displayed equation
satisfies the defining property of a PDF for the conditinal distribution. Once again, the denominator is  by part (b) of the law
of total probability. If  then using the fundamental definition,

By the meaning of the term,  is the conditional probability density function of  given .

In the context of Bayes' theorem,  is called the prior probability density function of  and  is the posterior probability
density function of  given . Note also that the conditional probability density function of  given  is proportional to the function 

, the sum or integral of this function that occurs in the denominator is simply the normalizing constant. As with the
law of total probability, Bayes' theorem is useful when  and  are known for .

Conditional Probability Density Functions

The definitions and results above apply, of course, if  is an event defined in terms of another random variable for our experiment. Here is
the setup:

Suppose that  and  are random variables on the probability space, with values in sets  and , respectively, so that  is a
random variable with values in . We assume that  has probability density function , as discussed in the section on Joint
Distributions. Recall that  has probability density function  defined as follows:

1. If  has a discrete distribution on the countable set  then

2. If  has a continuous distribution on  then

Similary, the probability density function  of  can be obtained by summing  over  if  has a discrete distribution or integrating 
over  if  has a continuous distribution.

Suppose that  and that . The function  defined below is a probability density function on :

Proof

The result is simple, since  is the normalizing constant for . Specifically, fix . Then . If  has a
discrete distribution then

Similarly, if  has a continuous distribution then

The distribution that corresponds to this probability density function is what you would expect:

For , the function  is the conditional probability density function of  given . That is,

1. If  has a discrete distribution then

P(X = x)P(E ∣X = x) = P(E,X = x) P(E)

P(E,X = x)/P(E) = P(X = x ∣ E)

P(E)

A⊆ S

g(x ∣ E)dx = g(x)P(E ∣X = x)dx = = P(X ∈ A ∣ E)∫

A

1

P(E)

∫

A

P(E,X ∈ A)

P(E)

(3.5.11)

x↦ g(x ∣ E) X E

g X x↦ g(x ∣ E)

X E X E

x↦ g(x)P(E ∣X = x)

P(E ∣X = x) g(x) x ∈ S

E

X Y S T (X,Y )

S×T (X,Y ) f

X g

Y T

g(x) = f(x, y), x ∈ S∑

y∈T

(3.5.12)

Y T ⊆R

k

g(x) = f(x, y)dy, x ∈ S∫

T

(3.5.13)

h Y f x ∈ S X f

S X

x ∈ S g(x) > 0 y↦ h(y ∣ x) T

h(y ∣ x) = , y ∈ T

f(x, y)

g(x)

(3.5.14)

g(x) y↦ h(y ∣ x) x ∈ S h(y ∣ x) ≥ 0 Y

h(y ∣ x) = f(x, y) = = 1∑

y∈T

1

g(x)

∑

y∈T

g(x)

g(x)

(3.5.15)

Y

h(y ∣ x)dy = f(x, y)dy = = 1∫

T

1

g(x)

∫

T

g(x)

g(x)

(3.5.16)

x ∈ S y↦ h(y ∣ x) Y X = x

Y
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2. If  has a continuous distribution then

Proof

There are four cases, depending on the type of distribution of  and , but the computations are identical, except for sums in the
discrete case and integrals in the continuous case. The main tool is the basic theorem when  has a discrete distribution and the
fundamental definition when  has a continuous distribution, with the event  replaced by  for . The other main
element is the fact that  is the PDF of the (joint) distribution of .

1. Suppose that  has a discrete distribution on the countable set . If  also has a discrete distribution on the countable set  then

In this jointly discrete case, there is a simpler argument of course:

If  has a continuous distribution on  then

2. Suppose that  has continuous distributions on . If  has a discrete distribution on the countable set  then

If  has a continuous distribution  then

The following theorem gives Bayes' theorem for probability density functions. We use the notation established above.

Bayes' Theorem. For , the conditional probability density function  of  given  can be computed as follows:

1. If  has a discrete distribution then

2. If  has a continuous distribution then

Proof

In both cases the numerator is  while the denominator is .

In the context of Bayes' theorem,  is the prior probability density function of  and  is the posterior probability density
function of  given  for . Note that the posterior probability density function  is proportional to the function 

. The sum or integral in the denominator is the normalizing constant.

Independence

Intuitively,  and  should be independent if and only if the conditional distributions are the same as the corresponding unconditional
distributions.

P(Y ∈ B ∣X = x) = h(y ∣ x), B⊆ T∑

y∈B

(3.5.17)

Y

P(Y ∈ B ∣X = x) = h(y ∣ x)dy, B⊆ T∫

B

(3.5.18)

X Y

X

X E {Y ∈ B} B⊆ T

f (X,Y )

Y T X S

g(x) h(y ∣ x) = g(x)h(y ∣ x) = f(x, y) = P(X ∈ A,Y ∈ B), A⊆ S∑

x∈A

∑

y∈B

∑

x∈A

∑

y∈B

∑

x∈A

∑

y∈B

(3.5.19)

h(y ∣ x) = = = P(Y = y ∣X = x), y ∈ T

f(x, y)

g(x)

P(X = x,Y = y)

P (X = x)

(3.5.20)

X S ⊆R

j

g(x) h(y ∣ x)dx = g(x)h(y ∣ x)dx = f(x, y) = P(X ∈ A,Y ∈ B), A⊆ S∫

A

∑

y∈B

∫

A

∑

y∈B

∫

A

∑

y∈B

(3.5.21)

Y T ⊆R

k

X S

g(x) h(y ∣ x)dy = g(x)h(y ∣ x)dy = f(x, y)dy = P(X ∈ A,Y ∈ B), A⊆ S∑

x∈A

∫

B

∑

x∈A

∫

B

∑

x∈A

∫

B

(3.5.22)

X S ⊆R

j

g(x) h(y ∣ x)dy dx = g(x)h(y ∣ x)dy dx = f(x, y)dy dx = P(X ∈ A,Y ∈ B), A⊆ S∫

A

∫

B

∫

A

∫

B

∫

A

∫

B

(3.5.23)

y ∈ T x↦ g(x ∣ y) X y = y

X

g(x ∣ y) = , x ∈ S

g(x)h(y ∣ x)

g(s)h(y ∣ s)∑

s∈S

(3.5.24)

X

g(x ∣ y) = , x ∈ S

g(x)h(y ∣ x)

g(s)h(y ∣ s)ds∫

S

(3.5.25)

f(x, y) h(y)

g X x↦ g(x ∣ y)

X Y = y y ∈ T x↦ g(x ∣ y)

x↦ g(x)h(y ∣ x)

X Y
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The following conditions are equivalent:

1.  and  are independent.
2.  for , 
3.  for , 
4.  for , 

Proof

The equivalence of (a) and (b) was established in the section on joint distributions. Parts (c) and (d) are equivalent to (b). For a
continuous distribution as described in the details in (4), a probability density function is not unique. The values of a PDF can be
changed to other nonnegative values on a set of measure 0 and the resulting function is still a PDF. So if  or  has a continuous
distribution, the equations above have to be interpreted as holding for  or , respectively, except on a set of measure 0.

Examples and Applications
In the exercises that follow, look for special models and distributions that we have studied. A special distribution may be embedded in a
larger problem, as a conditional distribution, for example. In particular, a conditional distribution sometimes arises when a parameter of a
standard distribution is randomized.

A couple of special distributions will occur frequently in the exercises. First, recall that the discrete uniform distribution on a finite,
nonempty set  has probability density function  given by  for . This distribution governs an element selected at
random from .

Recall also that Bernoulli trials (named for Jacob Bernoulli) are independent trials, each with two possible outcomes generically called
success and failure. The probability of success  is the same for each trial, and is the basic parameter of the random process. The
number of successes in  Bernoulli trials has the binomial distribution with parameters  and . This distribution has probability
density function  given by  for . The binomial distribution is studied in more detail in the
chapter on Bernoulli trials

Coins and Dice

Suppose that two standard, fair dice are rolled and the sequence of scores  is recorded. Let  and 
 denote the minimum and maximum scores, respectively.

1. Find the conditional probability density function of  given  for each .
2. Find the conditional probability density function of  given  for each .

Answer

1. 2 3 4 5 6

1 0 0 0 0 0

2 0 0 0 0

3 0 0 0

4 0 0

5 0

6

2. 2 3 4 5 6

0 0 0 0 0

2 0 0 0 0

3 0 0 0

4 0 0

5 0

X Y

f(x, y) = g(x)h(y) x ∈ S y ∈ T

h(y ∣ x) = h(y) x ∈ S y ∈ T

g(x ∣ y) = g(x) x ∈ S y ∈ T

X Y

x y

S f f(x) = 1/#(S) x ∈ S

S

p ∈ [0, 1]

n ∈ N

+

n p

f f(x) = ( ) (1−p

n

x

p

x

)

n−x

x ∈ {0, 1,… ,n}

( , )X

1

X

2

U =min{ , }X

1

X

2

V =max{ , }X

1

X

2

U V = v v∈ {1, 2, 3, 4, 5, 6}

V U = u u ∈ {1, 2, 3, 4, 5, 6}

g(u ∣ v)

u= 1

v= 1

2

3

1

3

2

5

2

5

1

5

2

7

2

7

2

7

1

7

2

9

2

9

2

9

2

9

1

9

2

11

2

11

2

11

2

11

2

11

1

11

h(v ∣ u)

u= 1

v= 1

1

11

2

11

1

9

2

11

2

9

1

7

2

11

2

9

2

7

1

5

2

11

2

9

2

7

2

5

1

3
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2 3 4 5 6

6

In the die-coin experiment, a standard, fair die is rolled and then a fair coin is tossed the number of times showing on the die. Let 
denote the die score and  the number of heads.

1. Find the joint probability density function of .
2. Find the probability density function of .
3. Find the conditional probability density function of  given  for each .

Answer
1. and b.

2 3 4 5 6

1

2 0

3 0 0

4 0 0 0

5 0 0 0 0

6 0 0 0 0 0

1

3. 2 3 4 5 6

1

2 0

3 0 0

4 0 0 0

5 0 0 0 0

6 0 0 0 0 0 1

In the die-coin experiment, select the fair die and coin.

1. Run the simulation of 1000 times and compare the empirical density function of  with the true probability density function in the
previous exercise

2. Run the simulation 1000 times and compute the empirical conditional density function of  given . Compare with the
conditional probability density functions in the previous exercise.

In the coin-die experiment, a fair coin is tossed. If the coin is tails, a standard, fair die is rolled. If the coin is heads, a standard, ace-six
flat die is rolled (faces 1 and 6 have probability  each and faces 2, 3, 4, 5 have probability  each). Let  denote the coin score (0 for
tails and 1 for heads) and  the die score.

1. Find the joint probability density function of .
2. Find the probability density function of .
3. Find the conditional probability density function of  given  for each .

h(v ∣ u)

u= 1

2

11

2

9

2

7

2

5

2

3

1

N

Y

(N ,Y )

Y

N Y = y y ∈ {0, 1, 2, 3, 4, 5, 6}

f(n, y)

n = 1

h(y)

y= 0

1

12

1

24

1

48

1

96

1

102

1

384

63

384

1

12

1

12

1

16

1

24

5

192

1

64

120

384

1

24

1

16

1

16

5

96

5

128

99

384

1

48

1

24

5

96

5

96

64

384

1

96

5

192

5

128

29

384

1

192

1

64

8

384

1

384

1

384

g(n)

1

6

1

6

1

6

1

6

1

6

1

6

g(n ∣ y)

n = 1

y= 0

32

63

16

63

8

63

4

63

2

63

1

63

16

60

16

60

12

60

8

60

5

60

3

60

16

99

24

99

24

99

20

99

15

99

2

16

4

16

5

16

5

16

4

29

10

29

15

29

1

4

3

4

Y

N Y = 3

1

4

1

8

X

Y

(X,Y )

Y

X Y = y y ∈ {1, 2, 3, 4, 5, 6}
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Answer
1. and b.

2 3 4 5 6

1

1

3. 2 3 4 5 6

1

In the coin-die experiment, select the settings of the previous exercise.

1. Run the simulation 1000 times and compare the empirical density function of  with the true probability density function in the
previous exercise.

2. Run the simulation 100 times and compute the empirical conditional probability density function of  given . Compare with
the conditional probability density function in the previous exercise.

Suppose that a box contains 12 coins: 5 are fair, 4 are biased so that heads comes up with probability , and 3 are two-headed. A coin
is chosen at random and tossed 2 times. Let  denote the probability of heads of the selected coin, and  the number of heads.

1. Find the joint probability density function of .
2. Find the probability density function of .
3. Find the conditional probability density function of  given  for .

Answer
1. and b.

1 2

1 0 0

1

3. 1 2

1 0 0

Compare the die-coin experiment with the box of coins experiment. In the first experiment, we toss a coin with a fixed probability of heads
a random number of times. In the second experiment, we effectively toss a coin with a random probability of heads a fixed number of
times.

Suppose that  has probability density function  for . Given , a coin with probability of heads  is
tossed 3 times. Let  denote the number of heads.

1. Find the joint probability density function of .
2. Find the probability density of function of .
3. Find the conditional probability density of  given  for . Graph these on the same axes.

f(x, y)

y= 1

g(x)

x= 0

1

12

1

12

1

12

1

12

1

12

1

12

1

2

1

8

1

16

1

16

1

16

1

16

1

8

1

2

h(y)

5

24

7

24

7

48

7

48

7

48

5

24

g(x ∣ y)

y= 1

x= 0

2

5

4

7

4

7

4

7

4

7

2

5

3

5

3

7

3

7

3

7

3

7

3

5

Y

X Y = 2

1

3

P X

(P ,X)

X

P X = x x ∈ {0, 1, 2}

f(p, x)

x= 0

g(p)

p=

1

2

5

48

10

48

5

48

5

12

1

3

4

27

4

27

1

27

4

12

1

4

3

12

h(x)

109

432

154

432

169

432

g(p ∣ x)

x= 0

p=

1

2

45

109

45

77

45

169

1

3

64

109

32

77

16

169

108

169

P g(p) = 6p(1−p) p ∈ [0, 1] P = p p

X

(P ,X)

X

P X = x x ∈ {0, 1, 2, 3}
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Answer

1.  for  and 
2. , .
3. , , , , in each case for 

Compare the box of coins experiment with the last experiment. In the second experiment, we effectively choose a coin from a box with a
continuous infinity of coin types. The prior distribution of  and each of the posterior distributions of  in part (c) are members of the
family of beta distributions, one of the reasons for the importance of the beta family. Beta distributions are studied in more detail in the
chapter on Special Distributions.

In the simulation of the beta coin experiment, set  and  to get the experiment studied in the previous exercise. For
various “true values” of , run the experiment in single step mode a few times and observe the posterior probability density function on
each run.

Simple Mixed Distributions

Recall that the exponential distribution with rate parameter  has probability density function  given by  for 
. The exponential distribution is often used to model random times, under certain assumptions. The exponential distribution is

studied in more detail in the chapter on the Poisson Process. Recall also that for  with , the continuous uniform distribution
on the interval  has probability density function  given by  for . This distribution governs a point selected at
random from the interval.

Suppose that there are 5 light bulbs in a box, labeled 1 to 5. The lifetime of bulb  (in months) has the exponential distribution with
rate parameter . A bulb is selected at random from the box and tested.

1. Find the probability that the selected bulb will last more than one month.
2. Given that the bulb lasts more than one month, find the conditional probability density function of the bulb number.

Answer

Let  denote the bulb number and  the lifetime.

1. 

2. 1 2 3 4 5

0.6364 0.2341 0.0861 0.0317 0.0117

Suppose that  is uniformly distributed on , and given , random variable  is uniformly distributed on the
interval .

1. Find the joint probability density function of .
2. Find the probability density function of .
3. Find the conditional probability density function of  given  for .

Answer

1.  for  and .

2. 

3. For , , ,  
For , , ,  
For , , .

The Poisson Distribution

Recall that the Poisson distribution with parameter  has probability density function  for . This distribution
is widely used to model the number of “random points” in a region of time or space; the parameter  is proportional to the size of the
region. The Poisson distribution is named for Simeon Poisson, and is studied in more detail in the chapter on the Poisson Process.

f(p, x) = 6( ) (1−p

3

x

p

x+1

)

4−x

p ∈ [0, 1] x ∈ {0, 1, 2, 3, 4}

h(0) = h(3) =

1

5

h(1) = h(2) =

3

10

g(p ∣ 0) = 30p(1−p)

4

g(p ∣ 1) = 60 (1−pp

2

)

3

g(p ∣ 2) = 60 (1−pp

3

)

2

g(p ∣ 3) = 30 (1−p)p

4

p ∈ [0, 1]

P P

a= b = 2 n= 3

p

r ∈ (0,∞) f f(t) = re

−rt

t ∈ [0,∞)

a, b ∈ R a< b

[a, b] f f(x) =

1

b−a

x ∈ [a, b]

n

n

N T

P(T > 1) = 0.1156

n

g(n ∣ T > 1)

X {1, 2, 3} X = x ∈ {1, 2, 3} Y

[0, x]

(X,Y )

Y

X Y = y y ∈ [0, 3]

f(x, y) =

1

3x

y ∈ [0, x] x ∈ {1, 2, 3}

h(y) =

⎧

⎩

⎨

⎪

⎪

⎪

⎪

,

11

18

,

5

18

,

2

18

0 ≤ y ≤ 1

1 < y ≤ 2

2 < y ≤ 3

y ∈ [0, 1] g(1 ∣ y) =

6

11

g(2 ∣ y) =

3

11

g(3 ∣ y) =

2

11

y ∈ (1, 2] g(1 ∣ y) = 0 g(2 ∣ y) =

3

5

g(3 ∣ y) =

2

5

y ∈ (2, 3] g(1 ∣ y) = g(2 ∣ y) = 0 g(3 ∣ y) = 1

a ∈ (0,∞) g(n) = e

−a

a

n

n!

n ∈ N

a
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Suppose that  is the number of elementary particles emitted by a sample of radioactive material in a specified period of time, and has
the Poisson distribution with parameter . Each particle emitted, independently of the others, is detected by a counter with probability 

 and missed with probability . Let  denote the number of particles detected by the counter.

1. For , argue that the conditional distribution of  given  is binomial with parameters  and .
2. Find the joint probability density function of .
3. Find the probability density function of .
4. For , find the conditional probability density function of  given .

Answer
1. Each particle, independently, is detected (success) with probability . This is the very definition of Bernoulli trials, so given 

, the number of detected particles has the binomial distribution with parameters  and 
2. The PDF  of  is defined by

3. The PDF  of  is defined by

This is the Poisson distribution with parameter .
4. The conditional PDF of  given  is defined by

This is the Poisson distribution with parameter , shifted to start at .

The fact that  also has a Poisson distribution is an interesting and characteristic property of the distribution. This property is explored in
more depth in the section on thinning the Poisson process.

Simple Continuous Distributions

Suppose that  has probability density function  defined by  for .

1. Find the conditional probability density function of  given  for 
2. Find the conditional probability density function of  given  for 
3. Find .
4. Are  and  independent?

Answer

1. For ,  for 

2. For ,  for 

3. 
4.  and  are dependent.

Suppose that  has probability density function  defined by  for .

1. Find the conditional probability density function of  given  for .
2. Find the conditional probability density function of  given  for .
3. Find .
4. Are  and  independent?

Answer

1. For ,  for .

2. For ,  for .

3. 
4.  and  are dependent.

N

a

p ∈ (0, 1) 1−p Y

n ∈ N Y N = n n p

(N ,Y )

Y

y ∈ N N Y = y

p

N = n n p

f (N ,Y )

f(n, y) = , n ∈ N, y ∈ {0, 1,… ,n}e

−a

a

n

p

y

y!

(1−p)

n−y

(n−y)!

(3.5.26)

h Y

h(y) = , y ∈ Ne

−pa

(pa)

y

y!

(3.5.27)

pa

N Y = y

g(n ∣ y) = , n ∈ {y, y+1,…}e

−(1−p)a

[(1−p)a]

n−y

(n−y)!

(3.5.28)

(1−p)a y

Y

(X,Y ) f f(x, y) = x+y (x, y) ∈ (0, 1)

2

X Y = y y ∈ (0, 1)

Y X = x x ∈ (0, 1)

P ( ≤ Y ≤ X = )

1

4

3

4

∣

∣

1

3

X Y

y ∈ (0, 1) g(x ∣ y) =

x+y

y+1/2

x ∈ (0, 1)

x ∈ (0, 1) h(y ∣ x) =

x+y

x+1/2

y ∈ (0, 1)

1

2

X Y

(X,Y ) f f(x, y) = 2(x+y) 0 < x < y < 1

X Y = y y ∈ (0, 1)

Y X = x x ∈ (0, 1)

P (Y ≥ X = )

3

4

∣

∣

1

2

X Y

y ∈ (0, 1) g(x ∣ y) =

x+y

3y

2

x ∈ (0, y)

x ∈ (0, 1) h(y ∣ x) =

x+y

(1+3x)(1−x)

y ∈ (x, 1)

3

10

X Y
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Suppose that  has probability density function  defined by  for .

1. Find the conditional probability density function of  given  for .
2. Find the conditional probability density function of  given  for .
3. Find .
4. Are  and  independent?

Answer

1. For ,  for .

2. For ,  for .

3. 
4.  and  are dependent.

Suppose that  has probability density function  defined by  for  and .

1. Find the conditional probability density function of  given  for .
2. Find the conditional probability density function of  given  for .
3. Are  and  independent?

Answer
1. For ,  for .
2. For ,  for .
3.  and  are independent.

Suppose that  has probability density function  defined by  for .

1. Find the conditional probability density function of  given  for .
2. Find the conditional probability density function of  given  for .
3. Are  and  independent?

Answer

1. For ,  for .
2. For ,  for .
3.  and  are dependent.

Suppose that  is uniformly distributed on the interval , and that given ,  is uniformly distributed on the interval .

1. Find the joint probability density function of .
2. Find the probability density function of .
3. Find the conditional probability density function of  given  for .
4. Are  and  independent?

Answer

1.  for 
2.  for 
3. For ,  for .
4.  and  are dependent.

Suppose that  has probability density function  defined by  for . The conditional probability density function

of  given  is  for .

1. Find the joint probability density function of .
2. Find the probability density function of .
3. Find the conditional probability density function of  given .
4. Are  and  independent?

Answer

1.  for .
2.  for .

(X,Y ) f f(x, y) = 15 yx

2

0 < x < y < 1

X Y = y y ∈ (0, 1)

Y X = x x ∈ (0, 1)

P (X ≤ Y = )

1

4

∣

∣

1

3

X Y

y ∈ (0, 1) g(x ∣ y) =

3x

2

y

3

x ∈ (0, y)

x ∈ (0, 1) h(y ∣ x) =

2y

1−x

2

y ∈ (x, 1)

27

64

X Y

(X,Y ) f f(x, y) = 6 yx

2

0 < x < 1 0 < y < 1

X Y = y y ∈ (0, 1)

Y X = x x ∈ (0, 1)

X Y

y ∈ (0, 1) g(x ∣ y) = 3x

2

y ∈ (0, 1)

x ∈ (0, 1) h(y ∣ x) = 2y y ∈ (0, 1)

X Y

(X,Y ) f f(x, y) = 2e

−x

e

−y

0 < x < y <∞

X Y = y y ∈ (0,∞)

Y X = x x ∈ (0,∞)

X Y

y ∈ (0,∞) g(x ∣ y) =

e

−x

1−e

−y

x ∈ (0, y)

x ∈ (0,∞) h(y ∣ x) = e

x−y

y ∈ (x,∞)

X Y

X (0, 1) X = x Y (0, x)

(X,Y )

Y

X Y = y y ∈ (0, 1)

X Y

f(x, y) =

1

x

0 < y < x < 1

h(y) =−lny y ∈ (0, 1)

y ∈ (0, 1) g(x ∣ y) =−

1

x ln y

x ∈ (y, 1)

X Y

X g g(x) = 3x

2

x ∈ (0, 1)

Y X = x h(y ∣ x) =

3y

2

x

3

y ∈ (0, x)

(X,Y )

Y

X Y = y

X Y

f(x, y) =

9y

2

x

0 < y < x < 1

h(y) =−9 lnyy

2

y ∈ (0, 1)
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3. For ,  for .
4.  and  are dependent.

Multivariate Uniform Distributions

Multivariate uniform distributions give a geometric interpretation of some of the concepts in this section.

Recall that For , the standard measure  on  is given by

In particular,  is the length of ,  is the area of  and  is the volume of .

Details

Technically,  is Lebesgue measure defined on the -algebra of measurable subsets of . In the disccusion below, we assume that
all sets are measurable. The integral representation is valid for the sets that occur in typical applications.

Suppose now that  takes values in ,  takes values in , and that  is uniformly distributed on a set . So 
 and then the joint probability density function  of  is given by  for . Now let 

 and  be the projections of  onto  and  respectively, defined as follows:

Note that . Next we denote the cross sections at  and at , respectively by

Figure : The projections  and , and the cross sections at  and 

In the last section on Joint Distributions, we saw that even though  is uniformly distributed, the marginal distributions of  and 
are not uniform in general. However, as the next theorem shows, the conditional distributions are always uniform.

Suppose that  is uniformly distributed on . Then

1. The conditional distribution of  given  is uniformly on  for each .
2. The conditional distribution of  given  is uniformly on  for each .

Proof

The results are symmetric, so we will prove (a). Recall that  has PDF  given by

Hence for , the conditional PDF of  given  is

and this is the PDF of the uniform distribution on .

Find the conditional density of each variable given a value of the other, and determine if the variables are independent, in each of the
following cases:

1.  is uniformly distributed on the square .

y ∈ (0, 1) g(x ∣ y) = −

1

x ln y

x ∈ (y, 1)

X Y

n ∈ N

+

λ

n

R

n

(A) = 1 dx, A ⊆λ

n

∫

A

R

n

(3.5.29)

(A)λ

1

A ⊆R (A)λ

2

A ⊆R

2

(A)λ

3

A ⊆R

3

λ

n

σ R

n

X R

j

Y R

k

(X,Y ) R ⊆R

j+k

0 < (R) < ∞λ

j+k

f (X,Y ) f(x, y) = 1/ (R)λ

j+k

(x, y) ∈ R

S T R R

j

R

k

S = {x ∈ : (x, y) ∈ R for some y ∈ } , T = {y ∈ : (x, y) ∈ R for some x ∈ }R

j

R

k

R

k

R

j

(3.5.30)

R ⊆ S×T x ∈ S y ∈ T

= {t ∈ T : (x, t) ∈ R}, = {s ∈ S : (s, y) ∈ R}T

x

S

y

(3.5.31)

3.5.1 S T x y

(X,Y ) X Y

(X,Y ) R

Y X = x T

x

x ∈ S

X Y = y S

y

y ∈ T

X g

g(x) = f(x, y)dy = dy = , x ∈ S∫

T

x

∫

T

x

1

(R)λ

j+k

( )λ

k

T

x

(R)λ

j+k

(3.5.32)

x ∈ S Y X = x

h(y ∣ x) = = , y ∈

f(x, y)

g(x)

1

( )λ

k

T

x

T

x

(3.5.33)

T

x

(X,Y ) R = (−6, 6)

2
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2.  is uniformly distributed on the triangle .
3.  is uniformly distributed on the circle .

Answer

The conditional PDF of  given  is denoted . The conditional PDF of  given  is denoted .

1. For ,  for .
For ,  for .

,  are independent.

2. For ,  for 

For ,  for 
,  are dependent.

3. For ,  for 

For ,  for 

,  are dependent.

In the bivariate uniform experiment, run the simulation 1000 times in each of the following cases. Watch the points in the scatter plot
and the graphs of the marginal distributions.

1. square
2. triangle
3. circle

Suppose that  is uniformly distributed on .

1. Find the conditional density of each pair of variables given a value of the third variable.
2. Find the conditional density of each variable given values of the other two.

Answer

The subscripts 1, 2, and 3 correspond to the variables , , and , respectively. Note that the conditions on  in each case are
those in the definition of the domain . They are stated differently to emphasize the domain of the conditional PDF as opposed to the
given values, which function as parameters. Note also that each distribution is uniform on the appropriate region.

1. For ,  for 

2. For ,  for  and 

3. For ,  for 

4. For ,  for 
5. For ,  for 
6. For ,  for 

The Multivariate Hypergeometric Distribution

Recall the discussion of the (multivariate) hypergeometric distribution given in the last section on joint distributions. As in that discussion,
suppose that a population consists of  objects, and that each object is one of four types. There are  objects of type 1,  objects of type 2,
and  objects of type 3, and  objects of type 0. We sample  objects from the population at random, and without
replacement. The parameters , , , and  are nonnegative integers with  and . Denote the number of type 1, 2, and
3 objects in the sample by , , and , respectively. Hence, the number of type 0 objects in the sample is . In the
following exercises, .

Suppose that  and . Then the conditional distribution of  given  is hypergeometric, and has the
probability density function defined by

Proof

(X,Y ) R= {(x, y) ∈ : −6 < y < x < 6}R

2

(X,Y ) R= {(x, y) ∈ : + < 36}R

2

x

2

y

2

X Y = y x↦ g(x ∣ y) Y X = x y↦ h(y ∣ x)

y ∈ (−6, 6) g(x ∣ y) =

1

12

x ∈ (−6, 6)

x ∈ (−6, 6) h(y ∣ x) =

1

12

y ∈ (−6, 6)

X Y

y ∈ (−6, 6) g(x ∣ y) =

1

6−y

x ∈ (y, 6)

x ∈ (−6, 6) h(y ∣ x) =

1

x+6

y ∈ (−6, x)

X Y

y ∈ (−6, 6) g(x ∣ y) =

1

2 36−y

2

√

x ∈ (− , )36−y

2

− −−−−−

√ 36−y

2

− −−−−−

√

x ∈ (−6, 6) g(x ∣ y) =

1

2 36−x

2

√

y ∈ (− , )36−x

2

− −−−−−

√

36−x

2

− −−−−−

√

X Y

(X,Y ,Z) R= {(x, y, z) ∈ : 0 < x < y < z< 1}R

3

X Y Z (x, y, z)

R

0 < z< 1 (x, y ∣ z) =f

1,2∣3

2

z

2

0 < x < y < z

0 < y < 1 (x, z ∣ y) =f

1,3∣2

1

y(1−y)

0 < x < y y < z< 1

0 < x < 1 (y, z ∣ x) =f

2,3∣1

2

(1−x)

2

x < y < z< 1

0 < y < z< 1 (x ∣ y, z) =f

1∣2,3

1

y

0 < x < y

0 < x < z< 1 (y ∣ x, z) =f

2∣1,3

1

z−x

x < y < z

0 < x < y < 1 (z ∣ x, y) =f

3∣1,2

1

1−y

y < z< 1

m a b

c m−a−b−c n

a b c n a+b+c ≤m n≤m

X Y Z n−X−Y −Z

x, y, z ∈ N

z≤ c n−m+c ≤ z≤ n (X,Y ) Z = z

g(x, y ∣ z) = , x+y ≤ n−z

( )( )( )

a

x

b

y

m−a−b−c

n−x−y−z

( )

m−c

n−z

(3.5.34)
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This result can be proved analytically but a combinatorial argument is better. The essence of the argument is that we are selecting a
random sample of size  without replacement from a population of size , with  objects of type 1,  objects of type 2, and 

 objects of type 0. The conditions on  ensure that , or equivalently, that the new parameters make sense.

Suppose that , , and . Then the conditional distribution of  given  and  is
hypergeometric, and has the probability density function defined by

Proof

Again, this result can be proved analytically, but a combinatorial argument is better. The essence of the argument is that we are
selecting a random sample of size  from a population of size , with  objects of type 1 and  objects
type 0. The conditions on  and  ensure that , or equivalently that the new parameters make sense.

These results generalize in a completely straightforward way to a population with any number of types. In brief, if a random vector has a
hypergeometric distribution, then the conditional distribution of some of the variables, given values of the other variables, is also
hypergeometric. Moreover, it is clearly not necessary to remember the hideous formulas in the previous two theorems. You just need to
recognize the problem as sampling without replacement from a multi-type population, and then identify the number of objects of each type
and the sample size. The hypergeometric distribution and the multivariate hypergeometric distribution are studied in more detail in the
chapter on Finite Sampling Models.

In a population of 150 voters, 60 are democrats and 50 are republicans and 40 are independents. A sample of 15 voters is selected at
random, without replacement. Let  denote the number of democrats in the sample and  the number of republicans in the sample.
Give the probability density function of each of the following:

1. 
2. 
3.  given 

Answer

1.  for 

2.  for 

3.  for 

Recall that a bridge hand consists of 13 cards selected at random and without replacement from a standard deck of 52 cards. Let , ,
and  denote the number of spades, hearts, and diamonds, respectively, in the hand. Find the probability density function of each of
the following:

1. 
2. 
3. 
4.  given 
5.  given  and 

Answer

1.  for .

2.  for 

3.  for 

4.  for 

5.  for 

n−z m−c a b

m−a−b z P(Z = z) > 0

y ≤ b z≤ c n−m+b ≤ y+z≤ n X Y = y Z = z

g(x ∣ y, z) = , x ≤ n−y−z

( )( )

a

x

m−a−b−c

n−x−y−z

( )

m−b−c

n−y−z

(3.5.35)

n−y−z m−b−c a m−a−b−c

y z P(Y = y,Z = z) > 0

X Y

(X,Y )

X

Y X = 5

f(x, y) = ( )( )( )

1

( )

150

15

60

x

50

y

40

15−x−y

x+y ≤ 15

g(x) = ( )( )

1

( )

150

15

60

x

90

15−x

x ≤ 15

h(y ∣ 5) = ( )( )

1

( )

90

10

50

y

40

10−y

y ≤ 10

X Y

Z

(X,Y ,Z)

(X,Y )

X

(X,Y ) Z = 3

X Y = 3 Z = 2

f(x, y, z) = ( )( )( )( )

1

( )

52

13

13

x

13

y

13

z

13

13−x−y−z

x+y+z≤ 13

g(x, y) = ( )( )( )

1

( )

52

13

13

x

13

y

26

13−x−y

x+y ≤ 13

h(x) = ( )( )

1

( )

52

13

13

x

39

13−x

x ≤ 13

g(x, y ∣ 3) = ( )( )( )

1

( )

39

10

13

x

13

y

13

10−x−y

x+y ≤ 10

h(x ∣ 3, 2) = ( )( )

1

( )

26

8

13

x

13

8−x

x ≤ 8
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Multinomial Trials

Recall the discussion of multinomial trials in the last section on joint distributions. As in that discussion, suppose that we have a sequence
of  independent trials, each with 4 possible outcomes. On each trial, outcome 1 occurs with probability , outcome 2 with probability ,
outcome 3 with probability , and outcome 0 with probability . The parameters , with , and 

. Denote the number of times that outcome 1, outcome 2, and outcome 3 occurs in the  trials by , , and  respectively. Of
course, the number of times that outcome 0 occurs is . In the following exercises, .

For , the conditional distribution of  given  is also multinomial, and has the probability density function.

Proof

This result can be proved analytically, but a probability argument is better. First, let  denote the outcome of a generic trial. Then 
. Similarly,  and 

. Now, the essence of the argument is that effectively, we have  independent
trials, and on each trial, outcome 1 occurs with probability  and outcome 2 with probability .

For , the conditional distribution of  given  and  is binomial, with the probability density function

Proof

Again, this result can be proved analytically, but a probability argument is better. As before, let  denote the outcome of a generic trial.
Then  and . Thus, the essence of the
argument is that effectively, we have  independent trials, and on each trial, outcome 1 occurs with probability 

.

These results generalize in a completely straightforward way to multinomial trials with any number of trial outcomes. In brief, if a random
vector has a multinomial distribution, then the conditional distribution of some of the variables, given values of the other variables, is also
multinomial. Moreover, it is clearly not necessary to remember the specific formulas in the previous two exercises. You just need to
recognize a problem as one involving independent trials, and then identify the probability of each outcome and the number of trials. The
binomial distribution and the multinomial distribution are studied in more detail in the chapter on Bernoulli Trials.

Suppose that peaches from an orchard are classified as small, medium, or large. Each peach, independently of the others is small with
probability , medium with probability , and large with probability . In a sample of 20 peaches from the orchard, let  denote the
number of small peaches and  the number of medium peaches. Give the probability density function of each of the following:

1. 
2. 
3.  given 

Answer

1.  for 

2.  for 

3.  for 

For a certain crooked, 4-sided die, face 1 has probability , face 2 has probability , face 3 has probability , and face 4 has
probability . Suppose that the die is thrown 50 times. Let , , and  denote the number of times that scores 1, 2, and 3 occur,
respectively. Find the probability density function of each of the following:

1. 
2. 
3. 
4.  given 

n p q

r 1−p−q−r p, q, r ∈ (0, 1) p+q+r< 1

n ∈ N

+

n X Y Z

n−X−Y −Z x, y, z ∈ N

z≤ n (X,Y ) Z = z

g(x, y ∣ z) =( ) , x+y ≤ n−z

n−z

x, y

( )

p

1−r

x

( )

q

1−r

y

(1− − )

p

1−r

q

1−r

n−x−y−z

(3.5.36)

I

P(I = 1 ∣ I ≠ 3) = P(I = 1)/P(I ≠ 3) = p/(1−r) P(I = 2 ∣ I ≠ 3) = q/(1−r)

P(I = 0 ∣ I ≠ 3) = (1−p−q−r)/(1−r) n−z

p/(1−r) q/(1−r)

y+z≤ n X Y = y Z = z

h(x ∣ y, z) =( ) , x ≤ n−y−z

n−y−z

x

( )

p

1−q−r

x

(1− )

p

1−q−r

n−x−y−z

(3.5.37)

I

P(I = 1 ∣ I ∉ {2, 3}) = p/(1−q−r) P(I = 0 ∣ I ∉ {2, 3}) = (1−p−q−r)/(1−q−r)

n−y−z

p/(1−q−r)

3

10

1

2

1

5

X

Y

(X,Y )

X

Y X = 5

f(x, y) = ( )

20

x, y

( )

3

10

x

( )

1

2

y

( )

1

5

20−x−y

x+y ≤ 20

g(x) = ( )

20

x

( )

3

10

x

( )

7

10

20−x

x ≤ 20

h(y ∣ 5) = ( )

15

y

( )

5

7

y

( )

2

7

15−y

y ≤ 15

2

5

3

10

1

5

1

10

X Y Z

(X,Y ,Z)

(X,Y )

X

(X,Y ) Z = 5
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5.  given  and 

Answer

1.  for 

2.  for 

3.  for 

4.  for 

5.  for 

Bivariate Normal Distributions

The joint distributions in the next two exercises are examples of bivariate normal distributions. The conditional distributions are also
normal, an important property of the bivariate normal distribution. In general, normal distributions are widely used to model physical
measurements subject to small, random errors. The bivariate normal distribution is studied in more detail in the chapter on Special
Distributions.

Suppose that  has the bivariate normal distribution with probability density function  defined by

1. Find the conditional probability density function of  given  for .
2. Find the conditional probability density function of  given  for .
3. Are  and  independent?

Answer

1. For ,  for . This is the PDF of the normal distribution with mean 0 and variance 4.

2. For ,  for . This is the PDF of the normal distribution with mean 0 and variance 9.

3.  and  are independent.

Suppose that  has the bivariate normal distribution with probability density function  defined by

1. Find the conditional probability density function of  given  for .
2. Find the conditional probability density function of  given  for .
3. Are  and  independent?

Answer

1. For ,  for . This is the PDF of the normal distribution with mean  and variance .

2. For ,  for . This is the PDF of the normal distribution with mean  and variance .

3.  and  are dependent.

Mixtures of Distributions

With our usual sets  and , as above, suppose that  is a probability measure on  for each . Suppose also that  is a probability
density function on . We can obtain a new probability measure on  by averaging (or mixing) the given distributions according to .

First suppose that  is the probability density function of a discrete distribution on the countable set . Then the function  defined
below is a probability measure on :

Proof

X Y = 10 Z = 5

f(x, y, z) = ( )

50

x, y, z

( )

2

5

x

( )

3

10

y

( )

1

5

z

( )

1

10

50−x−y−z

x+y+z≤ 50

g(x, y) = ( )

50

x, y

( )

2

5

x

( )

3

10

y

( )

3

10

50−x−y

x+y ≤ 50

h(x) = ( )

50

x

( )

2

5

x

( )

3

5

50−x

x ≤ 50

g(x, y ∣ 5) = ( )

45

x, y

( )

1

2

x

( )

3

8

y

( )

1

8

45−x−y

x+y ≤ 45

h(x ∣ 10, 5) = ( )

35

x

( )

4

5

x

( )

1

4

10−x

x ≤ 35

(X,Y ) f

f(x, y) = exp[−( + )], (x, y) ∈

1

12π

x

2

8

y

2

18

R

2

(3.5.38)

X Y = y y ∈ R

Y X = x x ∈ R

X Y

y ∈ R g(x ∣ y) =

1

2 2π√

e

− /8x

2

x ∈ R

x ∈ R h(y ∣ x) =

1

3 2π√

e

− /18y

2

y ∈ R

X Y

(X,Y ) f

f(x, y) = exp[− ( −xy+ )], (x, y) ∈

1

π3

–

√

2

3

x

2

y

2

R

2

(3.5.39)

X Y = y y ∈ R

Y X = x x ∈ R

X Y

y ∈ R g(x ∣ y) =

2

3π

−−

√ e

− (x−y/2

2

3

)

2

x ∈ R y/2 3/4

x ∈ R h(y ∣ x) =

2

3π

−−

√

e

− (y−x/2

2

3

)

2

y ∈ R x/2 3/4

X Y

S T P

x

T x ∈ S g

S T g

g S P

T

P(B) = g(x) (B), B⊆ T∑

x∈S

P

x

(3.5.40)
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Clearly  for  and . Suppose that  is a countable, disjoint collection of subsets
of . Then

Reversing the order of summation is justified since the terms are nonnegative.

In the setting of the previous theorem, suppose that  has probability density function  for each . Then  has probability
density function  given by

Proof

As usual, we will consider the discrete and continuous cases for the distributions on  separately.

1. Suppose that  is countable so that  is a discrete probability measure for each . By definition, for each , 
 for . So the probability density function  of  is given by

2. Suppose now that  has a continuous distribution on , with PDF  for each , For ,

So by definition,  is the PDF of . Again, the interchange of sum and integral is justified because the functions are nonnegative.
Technically, we also need  to be measurable for  so that the integral makes sense.

Conversely, given a probability density function  on  and a probability density function  on  for each , the function  defined
in the previous theorem is a probability density function on .

Suppose now that  is the probability density function of a continuous distribution on . Then the function  defined below is a
probability measure on :

Proof

The proof is just like the proof of Theorem (45) with integrals over  replacing the sums over . Clearly  for  and 
. Suppose that  is a countable, disjoint collection of subsets of . Then

Reversing the integral and the sum is justified since the terms are nonnegative. Technically, we need the subsets of  and the mapping 
 to be measurable.

In the setting of the previous theorem, suppose that  is a discrete (respectively continuous) distribution with probability density
function  for each . Then  is also discrete (respectively continuous) with probability density function  given by

Proof

The proof is just like the proof of Theorem (46) with integrals over  replacing the sums over .

1. Suppose that  is countable so that  is a discrete probability measure for each . By definition, for each , 
 for . So the probability density function  of  is given by

P(B) ≥ 0 B⊆ T P(T ) = g(x) 1 = 1∑

x∈S

{ : i ∈ I}B

i

T

P( ) = g(x) ( ) = g(x) ( ) = g(x) ( ) = P( )⋃

i∈I

B

i

∑

x∈S

P

x

⋃

i∈I

B

i

∑

x∈S

∑

i∈I

P

x

B

i

∑

i∈I

∑

x∈S

P

x

B

i

∑

i∈I

B

i

(3.5.41)

P

x

h

x

x ∈ S P

h

h(y) = g(x) (y), y ∈ T∑

x∈S

h

x

(3.5.42)

T

T P

x

x ∈ S x ∈ S

(y) = ({y})h

x

P

x

y ∈ T h P

h(y) = P ({y}) = g(x) ({y}) = g(x) (y), y ∈ T∑

x∈S

P

x

∑

x∈S

h

x

(3.5.43)

P

x

T ⊆R

k

g

x

x ∈ S B⊆ T

P(B) = g(x) (B) = g(x) (y)dy = g(x) (y)dy = h(y)dy∑

x∈S

P

x

∑

x∈S

∫

B

h

x

∫

B

∑

x∈S

h

x

∫

B

(3.5.44)

h P

y ↦ (y)h

x

x ∈ S

g S h

x

T x ∈ S h

T

g S ⊆R

j

P

T

P(B) = g(x) (B)dx, B⊆ T∫

S

P

x

(3.5.45)

S S P(B) ≥ 0 B⊆ T

P(T ) = g(x) (T )dx = g(x)dx = 1∫

S

P

x

∫

S

{ : i ∈ I}B

i

T

P( ) = g(x) ( ) = g(x) ( ) = g(x) ( ) = P( )⋃

i∈I

B

i

∫

S

P

x

⋃

i∈I

B

i

∫

S

∑

i∈I

P

x

B

i

∑

i∈I

∫

S

P

x

B

i

∑

i∈I

B

i

(3.5.46)

T

x↦ (B)P

x

P

x

h

x

x ∈ S P h

h(y) = g(x) (y)dx, y ∈ T∫

S

h

x

(3.5.47)

S S

T P

x

x ∈ S x ∈ S

(y) = ({y})h

x

P

x

y ∈ T h P
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Technically, we need  to be measurable for .
2. Suppose now that  has a continuous distribution on , with PDF  for each , For ,

So by definition,  is the PDF of . Again, the interchange of sum and integral is justified because the functions are nonnegative.
Technically, we also need  to be measurable so that the integral makes sense.

In both cases, the distribution  is said to be a mixture of the set of distributions , with mixing density .

One can have a mixture of distributions, without having random variables defined on a common probability space. However, mixtures are
intimately related to conditional distributions. Returning to our usual setup, suppose that  and  are random variables for an experiment,
taking values in  and  respectively and that  probability density function . The following result is simply a restatement of the law of
total probability.

The distribution of  is a mixture of the conditional distributions of  given , over , with mixing density .

Proof

Only the notation is different.

1. If  has a discrete distribuion on the countable set  then

2. If  has a continuous distribution  then

Finally we note that a mixed distribution (with discrete and continuous parts) really is a mixture, in the sense of this discussion.

Suppose that  is a mixed distribution on a set . Then  is a mixture of a discrete distribution and a continuous distribution.

Proof

Recall that mixed distribution means that  can be partitioned into a countable set  and a set  for some  with the
properties that  for ,  for , and . Let  and define the PDF  on  by 

 and . Recall that the conditional distribution  defined by  for  is a discrete
distribution on  and similarly the conditional distribution  defined by  for  is a continuous
distribution on . Clearly with this setup,

This page titled 3.5: Conditional Distributions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.

h(y) = P ({y}) = g(x) ({y})dx = g(x) (y)dx, y ∈ T∫

S

P

x

∫

S

h

x

(3.5.48)

x↦ ({y}) = (y)P

x

h

x

y ∈ T

P

x

T ⊆R

k

g

x

x ∈ S B⊆ T

P(B) = g(x) (B)dx = g(x) (y)dy dx = g(x) (y)dx dy = h(y)dy∫

S

P

x

∫

S

∫

B

h

x

∫

B

∫

S

h

x

∫

B

(3.5.49)

h P

(x, y) ↦ (y)h

x

P { : x ∈ S}P

x

g

X Y

S T X g

Y Y X = x x ∈ S g

X S

P(Y ∈ B) = g(x)P(Y ∈ B ∣X = x), B⊆ T∑

x∈S

(3.5.50)

X S ⊆R

j

P(Y ∈ B) = g(x)P(Y ∈ B ∣X = x)dx, B⊆ T∫

S

(3.5.51)

P T P

T D C ⊆R

n

n ∈ N

+

P({x}) > 0 x ∈D P({x}) = 0 x ∈ C p = P(D) ∈ (0, 1) S = {d, c} g S

g(d) = p g(c) = 1−p P

d

(A) = P(A∩D)/P(D)P

d

A⊆ T

T P

c

(A) = P(A∩C)/P(C)P

c

A⊆ T

T

P(A) = g(c) (A)+g(d) (A), A⊆ TP

c

P

d

(3.5.52)
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3.6: Distribution and Quantile Functions
   

As usual, our starting point is a random experiment modeled by a with probability space . So to review,  is the set of
outcomes,  is the collection of events, and  is the probability measure on the sample space . In this section, we will
study two types of functions that can be used to specify the distribution of a real-valued random variable.

Distribution Functions

Definition

Suppose that  is a random variable with values in . The (cumulative) distribution function of  is the function 
 defined by

The distribution function is important because it makes sense for any type of random variable, regardless of whether the
distribution is discrete, continuous, or even mixed, and because it completely determines the distribution of . In the picture below,
the light shading is intended to represent a continuous distribution of probability, while the darker dots represents points of positive
probability;  is the total probability mass to the left of (and including) .

Figure :  is the total probability to the left of (and including) 

Basic Properties

A few basic properties completely characterize distribution functions. Notationally, it will be helpful to abbreviate the limits of 
from the left and right at , and at  and  as follows:

Suppose that  is the distribution function of a real-valued random variable .

1.  is increasing: if  then .
2.  for . Thus,  is continuous from the right.
3.  for . Thus,  has limits from the left.
4. .
5. .

Proof

Figure : The graph of a distribution function

The following result shows how the distribution function can be used to compute the probability that  is in an interval. Recall that
a probability distribution on  is completely determined by the probabilities of intervals; thus, the distribution function determines

(Ω,F ,P) Ω

F P (Ω,F)

X R X

F : R→ [0, 1]

F (x) = P(X ≤ x), x ∈ R (3.6.1)

X

F (x) x

3.6.1 F (x) x

F

x ∈ R ∞ −∞

F ( ) = F (t), F ( ) = F (t), F (∞) = F (t), F (−∞) = F (t)x

+

lim

t↓x

x

−

lim

t↑x

lim

t→∞

lim

t→−∞

(3.6.2)

F X

F x ≤ y F (x) ≤ F (y)

F ( ) = F (x)x

+

x ∈ R F

F ( ) = P(X < x)x

−

x ∈ R F

F (−∞) = 0

F (∞) = 1

3.6.2

X

R
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the distribution of .

Suppose again that  is the distribution function of a real-valued random variable . If  with  then

1. 
2. 
3. 
4. 
5. 

Proof

These results follow from the definition, the basic properties, and the difference rule:  if  are
events and .

1. , so .
2. , so .
3. , so .
4. , so .
5. , so .

Conversely, if a Function  satisfies the basic properties, then the formulas above define a probability distribution on 
, with  as the distribution function. For more on this point, read the section on Existence and Uniqueness.

If  has a continuous distribution, then the distribution function  is continuous.

Proof

If  has a continuous distribution, then by definition,  so  for . Hence from part
(a) of the previous theorem, .

Thus, the two meanings of continuous come together: continuous distribution and continuous function in the calculus sense. Next
recall that the distribution of a real-valued random variable  is symmetric about a point  if the distribution of  is the
same as the distribution of .

Suppose that  has a continuous distribution on  that is symmetric about a point . Then the distribution function  satisfies 
 for .

Proof

Since  and  have the same distribution,

Relation to Density Functions

There are simple relationships between the distribution function and the probability density function. Recall that if  takes value in
 and has probability density function , we can extend  to all of  by the convention that  for . As in

Definition (1), it's customary to define the distribution function  on all of , even if the random variable takes values in a subset.

Suppose that  has discrete distribution on a countable subset . Let  denote the probability density function and  the
distribution function.

1.  for 
2.  for 

Proof
1. This follows from the definition of the PDF of ,  for , and the additivity of probability.
2. This is a restatement of part (a) of the theorem above.

Thus,  is a step function with jumps at the points in ; the size of the jump at  is .

X

F X a, b ∈ R a< b

P(X = a) = F (a)−F ( )a

−

P(a<X ≤ b) = F (b)−F (a)

P(a<X < b) = F ( )−F (a)b

−

P(a≤X ≤ b) = F (b)−F ( )a

−

P(a≤X < b) = F ( )−F ( )b

−

a

−

P(B∖A) = P(B)−P(A) A, B

A⊆B

{X = a} = {X ≤ a} ∖ {X < a} P(X = a) = P(X ≤ a)−P(X < a) = F (a)−F ( )a

−

{a<X ≤ b} = {X ≤ b} ∖ {X ≤ a} P(a<X ≤ b) = P(X ≤ b)−P(X ≤ a) = F (b)−F (a)

{a<X < b} = {X < b} ∖ {X ≤ a} P(a<X < b) = P(X < b)−P(X ≤ a) = F ( )−F (a)b

−

{a≤X ≤ b} = {X ≤ b} ∖ {X < a} P(a≤X ≤ b) = P(X ≤ b)−P(X < a) = F (b)−F ( )a

−

{a≤X < b} = {X < b} ∖ {X < a} P(a≤X < b) = P(X < b)−P(X < a) = F ( )−F ( )b

−

a

−

F : R→ [0, 1]

R F

X F

X P(X = x) = 0 P(X < x) = P(X ≤ x) x ∈ R

F ( ) = F ( ) = F (x)x

−

x

+

X a ∈ R X−a

a−X

X R a F

F (a− t) = 1−F (a+ t) t ∈ R

X−a a−X

F (a− t) = P(X ≤ a− t) = P(X−a≤−t) = P(a−X ≤−t) = P(X ≥ a+ t) = 1−F (a+ t) (3.6.3)

X

S ⊆R f f R f(x) = 0 x ∈ S

c

F R

X S ⊆R f F

F (x) = f(t)∑

t∈S, t≤x

x ∈ R

f(x) = F (x)−F ( )x

−

x ∈ S

X f(t) = P(X = t) t ∈ S

F S x f(x)
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Figure : The distribution function of a a discrete distribution

There is an analogous result for a continuous distribution with a probability density function.

Suppose that  has a continuous distribution on  with probability density function  and distribution function .

1.  for .
2.  if  is continuous at .

Proof

Figure : The distribution function of a continuous distribution

The last result is the basic probabilistic version of the fundamental theorem of calculus. For mixed distributions, we have a
combination of the results in the last two theorems.

Suppose that  has a mixed distribution, with discrete part on a countable subset , and continuous part on . Let 
denote the partial probability density function of the discrete part and assume that the continuous part has partial probability
density function . Let  denote the distribution function.

1.  for 
2.  for 
3.  if  and  is continuous at 

Go back to the graph of a general distribution function. At a point of positive probability, the probability is the size of the jump. At
a smooth point of the graph, the continuous probability density is the slope.

Recall that the existence of a probability density function is not guaranteed for a continuous distribution, but of course the
distribution function always makes perfect sense. The advanced section on absolute continuity and density functioons has an
example of a continuous distribution on the interval  that has no probability density function. The distribution function is
continuous and strictly increases from 0 to 1 on the interval, but has derivative 0 at almost every point!

Naturally, the distribution function can be defined relative to any of the conditional distributions we have discussed. No new
concepts are involved, and all of the results above hold.

3.6.3

X R f F

F (x) = f(t)dt∫

x

−∞

x ∈ R

f(x) = (x)F

′

f x

3.6.4

X D⊆R R ∖D g

h F

F (x) = g(t)+ h(t)dt∑

t∈D, t≤x

∫

x

−∞

x ∈ R

g(x) = F (x)−F ( )x

−

x ∈D

h(x) = (x)F

′

x ∉D h x

(0, 1)
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Reliability

Suppose again that  is a real-valued random variable with distribution function . The function in the following definition clearly
gives the same information as .

The function  defined by

is the right-tail distribution function of . Give the mathematical properties of  analogous to the properties of  in (2).

Answer
1.  is decreasing.
2.  as  for , so  is continuous from the right.
3.  as  for , so  has left limits.
4.  as .
5.  as .

So  might be called the left-tail distribution function. But why have two distribution functions that give essentially the same
information? The right-tail distribution function, and related functions, arise naturally in the context of reliability theory. For the
remainder of this subsection, suppose that  is a random variable with values in  and that  has a continuous distribution
with probability density function . Here are the important defintions:

Suppose that  represents the lifetime of a device.

1. The right tail distribution function  is the reliability function of .
2. The function  defined by  for  is the failure rate function of .

To interpret the reliability function, note that  is the probability that the device lasts at least  time units. To
interpret the failure rate function, note that if  is “small” then

So  is the approximate probability that the device will fail in the interval , given survival up to time . Moreover,
like the distribution function and the reliability function, the failure rate function also completely determines the distribution of .

The reliability function can be expressed in terms of the failure rate function by

Proof

At the points of continuity of  we have . Hence

The failure rate function  satisfies the following properties:

1.  for 
2. 

Proof
1. This follows from the definition.
2. This follows from the previous result and the fact that  as .

Conversely, a function that satisfies these properties is the failure rate function for a continuous distribution on :

X F

F

F

c

(x) = 1−F (x) = P(X > x), x ∈ RF

c

(3.6.4)

X F

c

F

F

c

(t) → (x)F

c

F

c

t ↓ x x ∈ R F

c

(t) → P(X ≥ x)F

c

t ↑ x x ∈ R F

c

(x) → 0F

c

x→∞

(x) → 1F

c

x→−∞

F

T [0,∞) T

f

T

F

c

T

h h(t) = f(t)/ (t)F

c

t ≥ 0 T

(t) = P(T > t)F

c

t

dt

P(t < T < t+dt ∣ T > t) = ≈ = h(t)dt

P(t < T < t+dt)

P(T > t)

f(t)dt

(t)F

c

(3.6.5)

h(t)dt (t, t+dt) t

T

(t) = exp(− h(s)ds), t ≥ 0F

c

∫

t

0

(3.6.6)

f (t) =−f(t)

d

dt

F

c

h(s)ds= ds= − ds=−ln[ (t)]∫

t

0

∫

t

0

f(s)

(s)F

c

∫

t

0

(s)

d

ds

F

c

(s)F

c

F

c

(3.6.7)

h

h(t) ≥ 0 t ≥ 0

h(t)dt =∞∫

∞

0

(t) → 0F

c

t→∞

[0,∞)
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Suppose that  is piecewise continuous and . Then the function  defined by

is a reliability function for a continuous distribution on 

Proof

The function  is continuous, decreasing, and satisfies  and  as . Hence  is the
distribution function for a continuous distribution on .

Multivariate Distribution Functions

Suppose now that  and  are real-valued random variables for an experiment (that is, defined on the same probability space), so
that  is random vector taking values in a subset of .

The distribution function of  is the function  defined by

Figure :  is the total probability below and to the left of .

In the graph above, the light shading is intended to suggest a continuous distribution of probability, while the darker dots represent
points of positive probability. Thus,  is the total probability mass below and to the left (that is, southwest) of the point 

. As in the single variable case, the distribution function of  completely determines the distribution of .

Suppose that  with  and . Then

Proof

Note that . The intersection of the first
two events is  while the first and third events and the second and third events are disjoint. Thus, from the
inclusion-exclusion rule we have

A probability distribution on  is completely determined by its values on rectangles of the form , so just as in the
single variable case, it follows that the distribution function of  completely determines the distribution of . See the
advanced section on existence and uniqueness of positive measures in the chapter on Probability Measures for more details.

In the setting of the previous result, give the appropriate formula on the right for all possible combinations of weak and strong
inequalities on the left.

The joint distribution function determines the individual (marginal) distribution functions.

Let  denote the distribution function of , and let  and  denote the distribution functions of  and , respectively.
Then

1.  for 

h : [0,∞)→ [0,∞) h(t)dt =∞∫

∞

0

G

(t) = exp(− h(s)ds), t ≥ 0F

c

∫

t

0

(3.6.8)

[0,∞)

F

c

(0) = 1F

c

(t) → 0F

c

t→∞ F = 1−F

c

[0,∞)

X Y

(X,Y ) R

2

(X,Y ) F

F (x, y) = P(X ≤ x,Y ≤ y), (x, y) ∈ R

2

(3.6.9)

3.6.5 F (x,y) (x,y)

F (x, y)

(x, y) (X,Y ) (X,Y )

a, b, c, d ∈ R a< b c < d

P(a<X ≤ b, c < Y ≤ d) = F (b, d)−F (a, d)−F (b, c)+F (a, c) (3.6.10)

{X ≤ a,Y ≤ d} ∪{X ≤ b,Y ≤ c} ∪{a<X ≤ b, c < Y ≤ d} = {X ≤ b,Y ≤ d}

{X ≤ a,Y ≤ c}

F (a, d)+F (b, c)+P(a<X ≤ b, c < Y ≤ d)−F (a, c) = F (b, d) (3.6.11)

R

2

(a, b] ×(c, d]

(X,Y ) (X,Y )

F (X,Y ) G H X Y

G(x) = F (x,∞) x ∈ R
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2.  for 

Proof

These results follow from the continuity theorem for increasing events. For example, in (a)

On the other hand, we cannot recover the distribution function of  from the individual distribution functions, except when
the variables are independent.

Random variables  and  are independent if and only if

Proof

If  and  are independent then  for .
Conversely, suppose  for . If  with  and  then from (15),

so it follows that  and  are independent. (Recall again that a probability distribution on  is completely determined by its
values on rectangles.)

All of the results of this subsection generalize in a straightforward way to -dimensional random vectors. Only the notation is more
complicated.

The Empirical Distribution Function

Suppose now that  is a real-valued random variable for a basic random experiment and that we repeat the experiment  times
independently. This generates (for the new compound experiment) a sequence of independent variables  each
with the same distribution as . In statistical terms, this sequence is a random sample of size  from the distribution of . In
statistical inference, the observed values  of the random sample form our data.

The empirical distribution function, based on the data , is defined by

Thus,  gives the proportion of values in the data set that are less than or equal to . The function  is a statistical estimator
of , based on the given data set. This concept is explored in more detail in the section on the sample mean in the chapter on
Random Samples. In addition, the empirical distribution function is related to the Brownian bridge stochastic process which is
studied in the chapter on Brownian motion.

Quantile Functions

Definitions

Suppose again that  is a real-valued random variable with distribution function .

For , a value of  such that  and  is called a quantile of order  for
the distribution.

Roughly speaking, a quantile of order  is a value where the graph of the distribution function crosses (or jumps over) . For
example, in the picture below,  is the unique quantile of order  and  is the unique quantile of order . On the other hand, the
quantiles of order  form the interval , and moreover,  is a quantile for all orders in the interval . Note also that if  has
a continuous distribution (so that  is continuous) and  is a quantile of order , then .

H(y) = F (∞, y) y ∈ R

P(X ≤ x) = P(X ≤ x,Y <∞)= P(X ≤ x,Y ≤ y) = F (x, y)lim

y→∞

lim

y→∞

(3.6.12)

(X,Y )

X Y

F (x, y) =G(x)H(y), (x, y) ∈ R

2

(3.6.13)

X Y F (x, y) = P(X ≤ x,Y ≤ y) = P(X ≤ x)P(Y ≤ y) =G(x)H(y) (x, y) ∈ R

2

F (x, y) =G(x)H(y) (x, y) ∈ R

2

a, b, c, d ∈ R a< b c < d

P(a<X ≤ b, c < Y ≤ d) =G(b)H(d)−G(a)H(d)−G(b)H(c)+G(a)H(c)

= [G(b)−G(a)][H(d)−H(c)] = P(a<X ≤ b)P(c < Y ≤ d)

(3.6.14)

(3.6.15)

X Y R

2

n

X n

( , ,… , )X

1

X

2

X

n

X n X

( , ,… , )x

1

x

2

x

n

( , ,… , )x

1

x

2

x

n

(x) = #{i ∈ {1, 2,… ,n} : ≤ x} = 1( ≤ x), x ∈ RF

n

1

n

x

i

1

n

∑

i=1

n

x

i

(3.6.16)

(x)F

n

x F

n

F

X F

p ∈ (0, 1) x F ( ) = P(X < x) ≤ px

−

F (x) = P(X ≤ x) ≥ p p

p p

a p b q

r [c, d] d [r, s] X

F x p ∈ (0, 1) F (x) = p
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Figure : Quantiles of various orders

Note that there is an inverse relation of sorts between the quantiles and the cumulative distribution values, but the relation is more
complicated than that of a function and its ordinary inverse function, because the distribution function is not one-to-one in general.
For many purposes, it is helpful to select a specific quantile for each order; to do this requires defining a generalized inverse of the
distribution function .

The quantile function  of  is defined by

 is well defined

Since  is right continuous and increasing,  is an interval of the form . Thus, the minimum of the
set is .

Note that if  strictly increases from 0 to 1 on an interval  (so that the underlying distribution is continuous and is supported on 
), then  is the ordinary inverse of . We do not usually define the quantile function at the endpoints 0 and 1. If we did, note

that  would always be .

Properties

The following exercise justifies the name:  is the minimum of the quantiles of order .

Let .

1.  is a quantile of order .
2. If  is a quantile of order  then .

Proof

Let .

1. Note that  by definition, and if  then . Hence . Therefore  is a quantile of order .
2. Suppose that  is a quantile of order . Then  so by definition, .

Other basic properties of the quantile function are given in the following theorem.

 satisfies the following properties:

1.  is increasing on .
2.  for any  with .
3.  for any .
4.  for . Thus  is continuous from the left.
5.  for . Thus  has limits from the right.

Proof
1. Note that if  with , then .
2. This follows from the definition:  is the smallest  with .

3.6.6

F

F

−1

X

(p) =min{x ∈ R : F (x) ≥ p}, p ∈ (0, 1)F

−1

(3.6.17)

F

−1

F {x ∈ R : F (x) ≥ p} [a,∞)

a

F S

S F

−1

F

(0)F

−1

−∞

(p)F

−1

p

p ∈ (0, 1)

(p)F

−1

p

x p (p) ≤ xF

−1

y = (p)F

−1

F (y) ≥ p x < y F (x) < p F ( ) ≤ py

−

y p

x p F (x) ≥ p y ≤ x

F

−1

F

−1

(0, 1)

[F (x)] ≤ xF

−1

x ∈ R F (x) < 1

F [ (p)] ≥ pF

−1

p ∈ (0, 1)

( ) = (p)F

−1

p

−

F

−1

p ∈ (0, 1) F

−1

( ) = inf{x ∈ R : F (x) > p}F

−1

p

+

p ∈ (0, 1) F

−1

p, q ∈ (0, 1) p ≤ q {x ∈ R : F (x) ≥ q} ⊆ {x ∈ R : F (x) ≥ p}

[F (x)]F

−1

y ∈ R F (y) ≥ F (x)
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3. This also follows from the definition:  is a value  satisfying .
4. This follows from the fact that  is continuous from the right
5. This follows from the fact that  has limits from the left.

As always, the inverse of a function is obtained essentially by reversing the roles of independent and dependent variables. In the
graphs below, note that jumps of  become flat portions of  while flat portions of  become jumps of . For ,
the set of quantiles of order  is the closed, bounded interval . Thus,  is the smallest quantile of order 

, as we noted earlier, while  is the largest quantile of order .

Figure : Graph of the distribution function

Figure : Graph of the quantile function

The following basic property will be useful in simulating random variables, a topic explored in the section on transformations of
random variables.

For  and ,  if and only if .

Proof

Suppose that . Then, since  is increasing, . But  by part (c) of the
previous result, so . Conversely, suppose that . Then, since  is increasing, .
But  by part (b) of the previous result, so .

Special Quantiles

Certain quantiles are important enough to deserve special names.

Suppose that  is a real-valued random variable.

1. A quantile of order  is a first quartile of the distribution.
2. A quantile of order  is a median or second quartile of the distribution.
3. A quantile of order  is a third quartile of the distribution.

(p)F

−1

y ∈ R F (y) ≥ p

F

F

F F

−1

F F

−1

p ∈ (0, 1)

p [ (p), ( )]F

−1

F

−1

p

+

(p)F

−1

p ( )F

−1

p

+

p

3.6.7

3.6.8

x ∈ R p ∈ (0, 1) (p) ≤ xF

−1

p ≤ F (x)

(p) ≤ xF

−1

F F [ (p)] ≤ F (x)F

−1

p ≤ F [ (p)]F

−1

p ≤ F (x) p ≤ F (x) F

−1

(p) ≤ [F (x)]F

−1

F

−1

[F (x)] ≤ xF

−1

(p) ≤ xF

−1

X

1

4

1

2

3

4
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When there is only one median, it is frequently used as a measure of the center of the distribution, since it divides the set of values
of  in half, by probability. More generally, the quartiles can be used to divide the set of values into fourths, by probability.

Assuming uniqueness, let , , and  denote the first, second, and third quartiles of , respectively, and let 
and .

1. The interquartile range is defined to be .
2. The five parameters  are referred to as the five number summary of the distribution.

Note that the interval  roughly gives the middle half of the distribution, so the interquartile range, the length of the interval,
is a natural measure of the dispersion of the distribution about the median. Note also that  and  are essentially the minimum and
maximum values of , respectively, although of course, it's possible that  or  (or both). Collectively, the five
parameters give a great deal of information about the distribution in terms of the center, spread, and skewness. Graphically, the five
numbers are often displayed as a boxplot or box and whisker plot, which consists of a line extending from the minimum value  to
the maximum value , with a rectangular box from  to , and “whiskers” at , the median , and . Roughly speaking, the five
numbers separate the set of values of  into 4 intervals of approximate probability  each.

Figure : The probability density function and boxplot for a continuous distribution

Suppose that  has a continuous distribution that is symmetric about a point . If  is a quantile of order 
then  is a quantile of order .

Proof

Note that this is the quantile function version of symmetry result for the distribution function. If  is a qantile of order 
then (since  has a continuous distribution) . But then  so  is a
quantile of order .

Examples and Applications

Distributions of Different Types

Let  be the function defined by

1. Sketch the graph of  and show that  is the distribution function for a discrete distribution.
2. Find the corresponding probability density function  and sketch the graph.
3. Find  where  has this distribution.
4. Find the quantile function and sketch the graph.
5. Find the five number summary and sketch the boxplot.

Answer
1. Note that  increases from 0 to 1, is a step function, and is right continuous.

X

q

1

q

2

q

3

X a= ( )F

−1

0

+

b = (1)F

−1

−q

3

q

1

(a, , , , b)q

1

q

2

q

3

[ , ]q

1

q

3

a b

X a=−∞ b =∞

a

b q

1

q

3

a q

2

b

X

1

4

3.6.9

X a ∈ R a+ t p ∈ (0, 1)

a− t 1−p

a+ t p

X F (a+ t) = p F (a− t) = 1−F (a+ t) = 1−p a− t

1−p

F

F (x) =

⎧

⎩

⎨

⎪
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⎪

⎪

⎪

⎪
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⎪
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⎪

⎪

0,

,

1

10

,

3

10

,

6

10

,

9

10

1,

x < 1

1 ≤ x <

3

2

≤ x < 2

3

2

2 ≤ x <

5

2

≤ x < 3

5

2

x ≥ 3;

(3.6.18)
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2. 

3. 

4. 

5. 

Let  be the function defined by

1. Sketch the graph of  and show that  is the distribution function for a continuous distribution.
2. Find the corresponding probability density function  and sketch the graph.
3. Find  where  has this distribution.
4. Find the quantile function and sketch the graph.
5. Find the five number summary and sketch the boxplot.

Answer
1. Note that  is continuous and increases from 0 to 1.
2. 

3. 
4. 

5. 

The expression  that occurs in the quantile function in the last exercise is known as the odds ratio associated with ,
particularly in the context of gambling.

Let  be the function defined by

1. Sketch the graph of  and show that  is the distribution function of a mixed distribution.
2. Find the partial probability density function of the discrete part and sketch the graph.
3. Find the partial probability density function of the continuous part and sketch the graph.
4. Find  where  has this distribution.
5. Find the quantile function and sketch the graph.
6. Find the five number summary and sketch the boxplot.

Answer
1. Note that  is piece-wise continuous, increases from 0 to 1, and is right continuous.
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f(x) = , x > 0
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2. 

3. 

4. 

5. 

6. 

The Uniform Distribution

Suppose that  has probability density function  for , where  and .

1. Find the distribution function and sketch the graph.
2. Find the quantile function and sketch the graph.
3. Compute the five-number summary.
4. Sketch the graph of the probability density function with the boxplot on the horizontal axis.

Answer
1. 
2. 

3. 

The distribution in the last exercise is the uniform distribution on the interval . The left endpoint  is the location parameter
and the length of the interval  is the scale parameter. The uniform distribution models a point chose “at random” from
the interval, and is studied in more detail in the chapter on Special Distributions.

In the special distribution calculator, select the continuous uniform distribution. Vary the location and scale parameters and
note the shape of the probability density function and the distribution function.

The Exponential Distribution

Suppose that  has probability density function  for , where  is a parameter.

1. Find the distribution function and sketch the graph.
2. Find the reliability function and sketch the graph.
3. Find the failure rate function and sketch the graph.
4. Find the quantile function and sketch the graph.
5. Compute the five-number summary.
6. Sketch the graph of the probability density function with the boxplot on the horizontal axis.

Answer
1. 
2. 
3. 
4. 
5. 
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1

12
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⎪
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4
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⎨
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⎪

⎪

⎪

⎪
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⎪
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√

3
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b−a

x ∈ [a, b] a, b ∈ R a< b
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c
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The distribution in the last exercise is the exponential distribution with rate parameter . Note that this distribution is characterized
by the fact that it has constant failure rate (and this is the reason for referring to  as the rate parameter). The reciprocal of the rate
parameter is the scale parameter. The exponential distribution is used to model failure times and other random times under certain
conditions, and is studied in detail in the chapter on The Poisson Process.

In the special distribution calculator, select the exponential distribution. Vary the scale parameter  and note the shape of the
probability density function and the distribution function.

The Pareto Distribution

Suppose that  has probability density function  for  where  is a parameter.

1. Find the distribution function.
2. Find the reliability function.
3. Find the failure rate function.
4. Find the quantile function.
5. Compute the five-number summary.
6. In the case , sketch the graph of the probability density function with the boxplot on the horizontal axis.

Answer

1. 
2. 
3. 
4. 

5. 

The distribution in the last exercise is the Pareto distribution with shape parameter , named after Vilfredo Pareto. The Pareto
distribution is a heavy-tailed distribution that is sometimes used to model income and certain other economic variables. It is studied
in detail in the chapter on Special Distributions.

In the special distribution calculator, select the Pareto distribution. Keep the default value for the scale parameter, but vary the
shape parameter and note the shape of the density function and the distribution function.

The Cauchy Distribution

Suppose that  has probability density function  for .

1. Find the distribution function and sketch the graph.
2. Find the quantile function and sketch the graph.
3. Compute the five-number summary and the interquartile range.
4. Sketch the graph of the probability density function with the boxplot on the horizontal axis.

Answer

1. 
2. 
3. , 

The distribution in the last exercise is the Cauchy distribution, named after Augustin Cauchy. The Cauchy distribution is studied in
more generality in the chapter on Special Distributions.

In the special distribution calculator, select the Cauchy distribution and keep the default parameter values. Note the shape of
the density function and the distribution function.

r

r

b

X f(x) =

a

x

a+1

1 ≤ x <∞ a> 0

a= 2

F (x) = 1− , 1 ≤ x <∞

1

x

a

(x) = , 1 ≤ x <∞F

c

1

x

a

h(x) = , 1 ≤ x <∞

a

x

(p) = (1−p , 0 ≤ p < 1F

−1
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−1/a

(1, , , ,∞)( )

3

4

−1/a
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1

2

−1/a

( )

1

4

−1/a

a

X f(x) =

1

π(1+ )x

2

x ∈ R

F (x) = + arctanx, x ∈ R

1

2

1

π

(p) = tan[π (p− )], 0 < p < 1F
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1

2

(−∞,−1, 0, 1,∞) IQR = 2

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10146?pdf


3.6.13 https://stats.libretexts.org/@go/page/10146

The Weibull Distribution

Let  for  where  is a parameter.

1. Sketch the graph of  in the cases , , , , and .
2. Show that  is a failure rate function.
3. Find the reliability function and sketch the graph.
4. Find the distribution function and sketch the graph.
5. Find the probability density function and sketch the graph.
6. Find the quantile function and sketch the graph.
7. Compute the five-number summary.

Answer
1.  is decreasing and concave upward if ;  (constant) if ;  is increasing and concave downward if 

;  (linear) if ;  is increasing and concave upward if ;
2.  for  and 
3. 
4. 
5. 
6. 
7. 

The distribution in the previous exercise is the Weibull distributions with shape parameter , named after Walodi Weibull. The
Weibull distribution is studied in detail in the chapter on Special Distributions. Since this family includes increasing, decreasing,
and constant failure rates, it is widely used to model the lifetimes of various types of devices.

In the special distribution calculator, select the Weibull distribution. Keep the default scale parameter, but vary the shape
parameter and note the shape of the density function and the distribution function.

Beta Distributions

Suppose that  has probability density function  for .

1. Find the distribution function of  and sketch the graph.
2. Find .
3. Compute the five number summary and the interquartile range. You will have to approximate the quantiles.
4. Sketch the graph of the density function with the boxplot on the horizontal axis.

Answer
1. 
2. 
3. , 

Suppose that  has probability density function  for .

1. Find the distribution function of  and sketch the graph.
2. Compute .
3. Find the quantile function and sketch the graph.
4. Compute the five number summary and the interquartile range.
5. Sketch the graph of the probability density function with the boxplot on the horizontal axis.

Answer

1. 
2. 
3. 

h(t) = kt

k−1

0 < t <∞ k> 0

h 0 < k< 1 k= 1 1 < k< 2 k= 2 k> 2

h
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∞

0
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c
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4. , 

The distributions in the last two exercises are examples of beta distributions. The particular beta distribution in the last exercise is
also known as the arcsine distribution; the distribution function explains the name. Beta distributions are used to model random
proportions and probabilities, and certain other types of random variables, and are studied in detail in the chapter on Special
Distributions.

In the special distribution calculator, select the beta distribution. For each of the following parameter values, note the location
and shape of the density function and the distribution function.

1. , . This gives the first beta distribution above.
2. . This gives the arcsine distribution above

Logistic Distribution

Let  for .

1. Show that  is a distribution function for a continuous distribution, and sketch the graph.
2. Compute  where  is a random variable with distribution function .
3. Find the quantile function and sketch the graph.
4. Compute the five-number summary and the interquartile range.
5. Find the probability density function and sketch the graph with the boxplot on the horizontal axis.

Answer
1. Note that  is continuous, and increases from 0 to 1.
2. 

3. 

4. 
5. 

The distribution in the last exercise is an logistic distribution and the quantile function is known as the logit function. The logistic
distribution is studied in detail in the chapter on Special Distributions.

In the special distribution calculator, select the logistic distribution and keep the default parameter values. Note the shape of the
probability density function and the distribution function.

Extreme Value Distribution

Let  for .

1. Show that  is a distribution function for a continuous distribution, and sketch the graph.
2. Compute  where  is a random variable with distribution function .
3. Find the quantile function and sketch the graph.
4. Compute the five-number summary.
5. Find the probability density function and sketch the graph with the boxplot on the horizontal axis.

Answer
1. Note that  is continuous, and increases from 0 to 1.
2. 
3. 
4. 
5. 

The distribution in the last exercise is the type 1 extreme value distribution, also known as the Gumbel distribution in honor of Emil
Gumbel. Extreme value distributions are studied in detail in the chapter on Special Distributions.
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In the special distribution calculator, select the extreme value distribution and keep the default parameter values. Note the
shape and location of the probability density function and the distribution function.

The Standard Normal Distribution

Recall that the standard normal distribution has probability density function  given by

This distribution models physical measurements of all sorts subject to small, random errors, and is one of the most important
distributions in probability. The normal distribution is studied in more detail in the chapter on Special Distributions. The
distribution function , of course, can be expressed as

but  and the quantile function  cannot be expressed, in closed from, in terms of elementary functions. Because of the
importance of the normal distribution  and  are themselves considered special functions, like , , and many others.
Approximate values of these functions can be computed using most mathematical and statistical software packages. Because the
distribution is symmetric about 0,  for , and equivalently, . In particular, the
median is 0.

Open the sepcial distribution calculator and choose the normal distribution. Keep the default parameter values and select CDF
view. Note the shape and location of the distribution/quantile function. Compute each of the following:

1. The first and third quartiles
2. The quantiles of order 0.9 and 0.1
3. The quantiles of order 0.95 and 0.05

Miscellaneous Exercises

Suppose that  has probability density function  for .

1. Sketch the graph of .
2. Find the distribution function  and sketch the graph.
3. Find .

Answer

2. 
3. 

Suppose that a pair of fair dice are rolled and the sequence of scores  is recorded.

1. Find the distribution function of , the sum of the scores.
2. Find the distribution function of , the maximum score.
3. Find the conditional distribution function of  given .

Answer

The random variables are discrete, so the CDFs are step functions, with jumps at the values of the variables. The following
tables give the values of the CDFs at the values of the random variables.

1. 2 3 4 5 6 7 8 9 10 11 12

1

2. 1 2 3 4 5 6

1

ϕ

ϕ(z) = , z ∈ R

1

2π

−−

√

e

−

1

2

z

2

(3.6.21)

Φ

Φ(z) = ϕ(x)dx, z ∈ R∫

z

−∞

(3.6.22)

Φ Φ
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Φ Φ
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3. 6 7 8 9 10

1

Suppose that  has probability density function  for , .

1. Find the distribution function of .
2. Compute .
3. Find the distribution function of .
4. Find the distribution function of .
5. Find the conditional distribution function of  given  for .
6. Find the conditional distribution function of  given  for .
7. Are  and  independent?

Answer
1. 
2. 
3. 
4. 

5. 

6. 

Statistical Exercises

For the M&M data, compute the empirical distribution function of the total number of candies.

Answer

Let  denote the total number of candies. The empirical distribution function of  is a step function; the following table gives
the values of the function at the jump points.

50 53 54 55 56 57 58 59 60 61

1

For the cicada data, let  denotes body length and let  denote gender. Compute the empirical distribution function of the
following variables:

1. 
2.  given  (male)
3.  given  (female).
4. Do you believe that  and  are independent?

For statistical versions of some of the topics in this section, see the chapter on Random Samples, and in particular, the sections on
empirical distributions and order statistics.

This page titled 3.6: Distribution and Quantile Functions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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3.7: Transformations of Random Variables
     

This section studies how the distribution of a random variable changes when the variable is transfomred in a deterministic way. If
you are a new student of probability, you should skip the technical details.

Basic Theory

The Problem

As usual, we start with a random experiment modeled by a probability space . So to review,  is the set of outcomes,  is
the collection of events, and  is the probability measure on the sample space . Suppose now that we have a random variable

 for the experiment, taking values in a set , and a function  from  into another set . Then  is a new random
variable taking values in . If the distribution of  is known, how do we find the distribution of ? This is a very basic and
important question, and in a superficial sense, the solution is easy. But first recall that for ,  is
the inverse image of  under .

 for .

Proof

Figure : A function . How is a probability distribution on  transformed by  to a distribution on ?

However, frequently the distribution of  is known either through its distribution function  or its probability density function ,
and we would similarly like to find the distribution function or probability density function of . This is a difficult problem in
general, because as we will see, even simple transformations of variables with simple distributions can lead to variables with
complex distributions. We will solve the problem in various special cases.

Transformed Variables with Discrete Distributions

When the transformed variable  has a discrete distribution, the probability density function of  can be computed using basic
rules of probability.

Suppose that  has a discrete distribution on a countable set , with probability density function . Then  has a discrete
distribution with probability density function  given by

Proof

Figure : A transformation of a discrete probability distribution.

Suppose that  has a continuous distribution on a subset  with probability density function , and that  is countable.
Then  has a discrete distribution with probability density function  given by

Proof

(Ω,F ,P) Ω F

P (Ω,F)

X S r S T Y = r(X)

T X Y

B⊆ T (B) = {x ∈ S : r(x) ∈ B}r

−1

B r

P(Y ∈ B) = P [X ∈ (B)]r

−1

B⊆ T

3.7.1 r : S→ T S r T

X F f

Y

Y Y

X S f Y

g

g(y) = f(x), y ∈ T∑

x∈ {y}r

−1

(3.7.1)

3.7.2

X S ⊆R

n

f T

Y g

g(y) = f(x)dx, y ∈ T∫

{y}r

−1

(3.7.2)
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Figure : A continuous distribution on  transformed by a discrete function 

So the main problem is often computing the inverse images  for . The formulas above in the discrete and continuous
cases are not worth memorizing explicitly; it's usually better to just work each problem from scratch. The main step is to write the
event  in terms of , and then find the probability of this event using the probability density function of .

Transformed Variables with Continuous Distributions

Suppose that  has a continuous distribution on a subset  and that  has a continuous distributions on a subset 
. Suppose also that  has a known probability density function . In many cases, the probability density function of  can

be found by first finding the distribution function of  (using basic rules of probability) and then computing the appropriate
derivatives of the distribution function. This general method is referred to, appropriately enough, as the distribution function
method.

Suppose that  is real valued. The distribution function  of  is given by

Proof

Again, this follows from the definition of  as a PDF of . For ,

As in the discrete case, the formula in (4) not much help, and it's usually better to work each problem from scratch. The main step is
to write the event  in terms of , and then find the probability of this event using the probability density function of .

The Change of Variables Formula

When the transformation  is one-to-one and smooth, there is a formula for the probability density function of  directly in terms of
the probability density function of . This is known as the change of variables formula. Note that since  is one-to-one, it has an
inverse function .

We will explore the one-dimensional case first, where the concepts and formulas are simplest. Thus, suppose that random variable 
 has a continuous distribution on an interval , with distribution function  and probability density function . Suppose that 

 where  is a differentiable function from  onto an interval . As usual, we will let  denote the distribution function of
 and  the probability density function of .

Suppose that  is strictly increasing on . For ,

1. 
2. 

Proof
1.  for . Note that the inquality is preserved since 

 is increasing.
2. This follows from part (a) by taking derivatives with respect to  and using the chain rule. Recall that .

Suppose that  is strictly decreasing on . For ,

1. 
2. 

Proof

3.7.3 S r : S→ T

{y}r

−1

y ∈ T

{Y = y} X X

X S ⊆R

n

Y = r(X)

T ⊆R

m

X f Y

Y

Y G Y

G(y) = f(x)dx, y ∈ R∫

(−∞,y]r

−1

(3.7.3)

f X y ∈ R

G(y) = P(Y ≤ y) = P [r(X) ∈ (−∞, y]] = P [X ∈ (−∞, y]] = f(x)dxr

−1

∫

(−∞,y]r

−1

(3.7.4)
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Y = r(X) r S T G

Y g Y

r S y ∈ T

G(y) = F [ (y)]r

−1

g(y) = f [ (y)] (y)r

−1

d

dy

r

−1

G(y) = P(Y ≤ y) = P[r(X) ≤ y] = P [X ≤ (y)] = F [ (y)]r

−1

r

−1

y ∈ T

r

y = fF

′

r S y ∈ T

G(y) = 1−F [ (y)]r

−1

g(y) =−f [ (y)] (y)r

−1

d

dy

r

−1
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1.  for . Note that the inquality is reversed
since  is decreasing.

2. This follows from part (a) by taking derivatives with respect to  and using the chain rule. Recall again that .

The formulas for the probability density functions in the increasing case and the decreasing case can be combined:

If  is strictly increasing or strictly decreasing on  then the probability density function  of  is given by

Letting , the change of variables formula can be written more compactly as

Although succinct and easy to remember, the formula is a bit less clear. It must be understood that  on the right should be written in
terms of  via the inverse function. The images below give a graphical interpretation of the formula in the two cases where  is
increasing and where  is decreasing.

Figure : The change of variables theorems in the increasing and decreasing cases

The generalization of this result from  to  is basically a theorem in multivariate calculus. First we need some notation. Suppose
that  is a one-to-one differentiable function from  onto . The first derivative of the inverse function  is
the  matrix of first partial derivatives:

The Jacobian (named in honor of Karl Gustav Jacobi) of the inverse function is the determinant of the first derivative matrix

With this compact notation, the multivariate change of variables formula is easy to state.

Suppose that  is a random variable taking values in , and that  has a continuous distribution with probability
density function . Suppose also  where  is a differentiable function from  onto . Then the probability
density function  of  is given by

Proof

The result follows from the multivariate change of variables formula in calculus. If  then

G(y) = P(Y ≤ y) = P[r(X) ≤ y] = P [X ≥ (y)] = 1−F [ (y)]r

−1

r

−1

y ∈ T

r

y = fF

′

r S g Y

g(y) = f [ (y)] (y)r

−1

∣

∣

∣

d

dy

r

−1

∣

∣

∣ (3.7.5)

x = (y)r

−1

g(y) = f(x)

∣

∣

∣

dx

dy

∣

∣

∣ (3.7.6)

x

y r

r

3.7.4

R R

n

r S ⊆R

n

T ⊆R

n

x = (y)r

−1

n×n

=( )

dx

dy

ij

∂x

i

∂y

j

(3.7.7)

det( )

dx

dy

(3.7.8)

X S ⊆R

n

X

f Y = r(X) r S T ⊆R

n

g Y

g(y) = f(x) det( ) , y ∈ T

∣

∣

∣

dx

dy

∣

∣

∣ (3.7.9)

B⊆ T
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Using the change of variables ,  we have

So it follows that  defined in the theorem is a PDF for .

The Jacobian is the infinitesimal scale factor that describes how -dimensional volume changes under the transformation.

Figure : The multivariate change of variables theorem

Special Transformations

Linear Transformations

Linear transformations (or more technically affine transformations) are among the most common and important transformations.
Moreover, this type of transformation leads to simple applications of the change of variable theorems. Suppose first that  is a
random variable taking values in an interval  and that  has a continuous distribution on  with probability density function 

. Let  where  and . Note that  takes values in , which is also an
interval.

 has probability density function  given by

Proof

The transformation is . Hence the inverse transformation is  and . The result now
follows from the change of variables theorem.

When  (which is often the case in applications), this transformation is known as a location-scale transformation;  is the
location parameter and  is the scale parameter. Scale transformations arise naturally when physical units are changed (from feet to
meters, for example). Location transformations arise naturally when the physical reference point is changed (measuring time relative
to 9:00 AM as opposed to 8:00 AM, for example). The change of temperature measurement from Fahrenheit to Celsius is a location
and scale transformation. Location-scale transformations are studied in more detail in the chapter on Special Distributions.

The multivariate version of this result has a simple and elegant form when the linear transformation is expressed in matrix-vector
form. Thus suppose that  is a random variable taking values in  and that  has a continuous distribution on  with
probability density function . Let  where  and  is an invertible  matrix. Note that  takes values in 

.

 has probability density function  given by

Proof

The transformation  maps  one-to-one and onto . The inverse transformation is . The
Jacobian of the inverse transformation is the constant function . The result now follows from the
multivariate change of variables theorem.

P(Y ∈ B) = P[r(X) ∈ B] = P[X ∈ (B)] = f(x)dxr

−1

∫

(B)r

−1

(3.7.10)

x = (y)r

−1

dx = det( ) dy

∣

∣

dx

dy

∣

∣

P(Y ∈ B) = f [ (y)] det( ) dy∫

B

r

−1

∣

∣

∣

dx

dy

∣

∣

∣ (3.7.11)

g Y

n

3.7.5

X

S ⊆R X S

f Y = a+bX a ∈ R b ∈ R ∖ {0} Y T = {y = a+bx : x ∈ S}

Y g

g(y) = f ( ) , y ∈ T

1

|b|

y−a

b

(3.7.12)

y = a+b x x = (y−a)/b dx/dy = 1/b

b > 0 a

b

X S ⊆R

n

X S

f Y = a+BX a∈ R

n

B n×n Y

T = {a+Bx : x ∈ S} ⊆R

n

Y g

g(y) = f [ (y−a)] , y ∈ T

1

|det(B)|

B

−1

(3.7.13)

y = a+Bx R

n

R

n

x = (y−a)B

−1

det( ) = 1/ det(B)B

−1
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Sums and Convolution

Simple addition of random variables is perhaps the most important of all transformations. Suppose that  and  are random
variables on a probability space, taking values in  and , respectively, so that  takes values in a subset of .
Our goal is to find the distribution of . Note that  takes values in .
For , let .

Suppose that  probability density function .

1. If  has a discrete distribution then  has a discrete distribution with probability density function  given
by

2. If  has a continuous distribution then  has a continuous distribution with probability density function 
given by

Proof
1. 
2. For , let . Then

Now use the change of variables . Then the inverse transformation is  and the
Jacobian is 1. Using the change of variables theorem (8) we have

It follows that  has probability density function .

In the discrete case,  and  are countable, so  is also countable as is  for each . In the continuous case,  and  are
typically intervals, so  is also an interval as is  for . In both cases, determining  is often the most difficult step. By far
the most important special case occurs when  and  are independent.

Suppose that  and  are independent and have probability density functions  and  respectively.

1. If  and  have discrete distributions then  has a discrete distribution with probability density function 
given by

2. If  and  have continuous distributions then  has a continuous distribution with probability density function 
 given by

In both cases, the probability density function  is called the convolution of  and .

Proof

Both results follows from the previous result above since  is the probability density function of .

As before, determining this set  is often the most challenging step in finding the probability density function of . However,
there is one case where the computations simplify significantly.

X Y

R ⊆R S ⊆R (X,Y ) R×S

Z = X+Y Z T = {z ∈ R : z = x+y for some x ∈ R, y ∈ S}

z ∈ T = {x ∈ R : z−x ∈ S}D

z

(X,Y ) f

(X,Y ) Z = X+Y u

u(z) = f(x, z−x), z ∈ T∑

x∈D

z

(3.7.14)

(X,Y ) Z = X+Y u

u(z) = f(x, z−x)dx, z ∈ T∫

D

z

(3.7.15)

P(Z = z) = P (X = x,Y = z−x for some x ∈ ) = f(x, z−x)D

z

∑

x∈D

z

A ⊆ T C = {(u, v) ∈ R×S : u+v∈ A}

P(Z ∈ A) = P(X+Y ∈ A) = f(u, v)d(u, v)∫

C

(3.7.16)

x = u, z = u+v u = x, v= z−x

P(Z ∈ A) = f(x, z−x)d(x, z) = f(x, z−x)dx dz∫

×AD

z

∫

A

∫

D

z

(3.7.17)

Z z ↦ f(x, z−x)dx∫

D

z

R S T D

z

z ∈ T R S

T D

z

z ∈ T D

z

X Y

X Y g h

X Y Z = X+Y g∗ h

(g∗ h)(z) = g(x)h(z−x), z ∈ T∑

x∈D

z

(3.7.18)

X Y Z = X+Y

g∗ h

(g∗ h)(z) = g(x)h(z−x)dx, z ∈ T∫

D

z

(3.7.19)

g∗ h g h

f(x, y) = g(x)h(y) (X,Y )

D

z

Z
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Suppose again that  and  are independent random variables with probability density functions  and , respectively.

1. In the discrete case, suppose  and  take values in . Then  has probability density function

2. In the continuous case, suppose that  and  take values in . Then  and has probability density function

Proof
1. In this case,  for .
2. In this case,  for .

Convolution is a very important mathematical operation that occurs in areas of mathematics outside of probability, and so involving
functions that are not necessarily probability density functions. The following result gives some simple properties of convolution.

Convolution (either discrete or continuous) satisfies the following properties, where , , and  are probability density
functions of the same type.

1.  (the commutative property)
2.  (the associative property)

Proof

An analytic proof is possible, based on the definition of convolution, but a probabilistic proof, based on sums of independent
random variables is much better. Thus, suppose that , , and  are independent random variables with PDFs , , and ,
respectively.

1. The commutative property of convolution follows from the commutative property of addition: .
2. The associative property of convolution follows from the associate property of addition: .

Thus, in part (b) we can write  without ambiguity. Of course, the constant 0 is the additive identity so 
for every random variable . Also, a constant is independent of every other random variable. It follows that the probability density
function  of 0 (given by ) is the identity with respect to convolution (at least for discrete PDFs). That is, 

. The next result is a simple corollary of the convolution theorem, but is important enough to be highligted.

Suppose that  is a sequence of independent and identically distributed real-valued random variables, with
common probability density function . Then  has probability density function 

, the -fold convolution power of , for .

In statistical terms,  corresponds to sampling from the common distribution.By convention, , so naturally we take .
When appropriately scaled and centered, the distribution of  converges to the standard normal distribution as . The
precise statement of this result is the central limit theorem, one of the fundamental theorems of probability. The central limit
theorem is studied in detail in the chapter on Random Samples. Clearly convolution power satisfies the law of exponents: 

 for .

Convolution can be generalized to sums of independent variables that are not of the same type, but this generalization is usually
done in terms of distribution functions rather than probability density functions.

Products and Quotients

While not as important as sums, products and quotients of real-valued random variables also occur frequently. We will limit our
discussion to continuous distributions.

Suppose that  has a continuous distribution on  with probability density function .

1. Random variable  has probability density function

X Y g h

X Y N Z

(g∗ h)(z) = g(x)h(z−x), z ∈ N∑

x=0

z

(3.7.20)

X Y [0,∞) Z

(g∗ h)(z) = g(x)h(z−x)dx, z ∈ [0,∞)∫

z

0

(3.7.21)

= {0, 1,… , z}D

z

z ∈ N

= [0, z]D

z

z ∈ [0,∞)

f g h

f ∗ g= g∗ f

(f ∗ g) ∗ h = f ∗ (g∗ h)

X Y Z f g h

X+Y = Y +X

(X+Y )+Z =X+(Y +Z)

f ∗ g∗ h X+0 = 0+X = 0

X

δ δ(0) = 1

f ∗ δ = δ ∗ f = f

X = ( , ,…)X

1

X

2

f = + +⋯+Y

n

X

1

X

2

X

n

= f ∗ f ∗⋯∗ ff

∗n

n f n ∈ N

X = 0Y

0

= δf

∗0

Y

n

n→∞

∗ =f

∗n

f

∗m

f

∗(n+m)

m, n ∈ N

(X,Y ) R

2

f

V =XY
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2. Random variable  has probability density function

Proof

We introduce the auxiliary variable  so that we have bivariate transformations and can use our change of variables
formula.

1. We have the transformation ,  and so the inverse transformation is , . Hence

and so the Jacobian is . Using the change of variables theorem, the joint PDF of  is .
Hence the PDF of  is

2. We have the transformation ,  and so the inverse transformation is , . Hence

and so the Jacobian is . Using the change of variables formula, the joint PDF of  is . Hence
the PDF of W is

If  takes values in a subset , then for a given , the integral in (a) is over , and for a
given , the integral in (b) is over . As usual, the most important special case of this result is when 
and  are independent.

Suppose that  and  are independent random variables with continuous distributions on  having probability density
functions  and , respectively.

1. Random variable  has probability density function

2. Random variable  has probability density function

Proof

These results follow immediately from the previous theorem, since  for .

If  takes values in  and  takes values in , then for a given , the integral in (a) is over , and
for a given , the integral in (b) is over . As with convolution, determining the domain of integration is
often the most challenging step.

Minimum and Maximum

Suppose that  is a sequence of independent real-valued random variables. The minimum and maximum
transformations

v↦ f(x, v/x) dx∫

∞

−∞

1

|x|

(3.7.22)

W = Y /X

w↦ f(x,wx)|x|dx∫

∞

−∞

(3.7.23)

U =X

u = x v= xy x = u y = v/u

= [ ]

∂(x, y)

∂(u, v)

1

−v/u

2

0

1/u

(3.7.24)

1/u (U,V ) (u, v) ↦ f(u, v/u)|1/|u|

V

v↦ f(u, v/u) du∫

∞

−∞

1

|u|

(3.7.25)

u = x w = y/x x = u y = uw

= [ ]

∂(x, y)

∂(u,w)

1

w

0

u

(3.7.26)

u (U,W ) (u,w) ↦ f(u, uw)|u|

w↦ f(u, uw)|u|du∫

∞

−∞

(3.7.27)

(X,Y ) D⊆R

2

v∈ R {x ∈ R : (x, v/x) ∈D}

w ∈ R {x ∈ R : (x,wx) ∈D} X

Y

X Y R

g h

V =XY

v↦ g(x)h(v/x) dx∫

∞

−∞

1

|x|

(3.7.28)

W = Y /X

w↦ g(x)h(wx)|x|dx∫

∞

−∞

(3.7.29)

f(x, y) = g(x)h(y) (x, y) ∈ R

2

X S ⊆R Y T ⊆R v∈ R {x ∈ S : v/x ∈ T}

w ∈ R {x ∈ S : wx ∈ T}

( , ,… , )X

1

X

2

X

n
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are very important in a number of applications. For example, recall that in the standard model of structural reliability, a system
consists of  components that operate independently. Suppose that  represents the lifetime of component . Then 

 is the lifetime of the series system which operates if and only if each component is operating. Similarly,  is the lifetime of the
parallel system which operates if and only if at least one component is operating.

A particularly important special case occurs when the random variables are identically distributed, in addition to being independent.
In this case, the sequence of variables is a random sample of size  from the common distribution. The minimum and maximum
variables are the extreme examples of order statistics. Order statistics are studied in detail in the chapter on Random Samples.

Suppose that  is a sequence of indendent real-valued random variables and that  has distribution function 
 for .

1.  has distribution function  given by  for .
2.  has distribution function  given by  for 

.

Proof
1. Note that since  is the maximum of the variables, . Hence by

independence,

2. Note that since  as the minimum of the variables, . Hence by independence,

From part (a), note that the product of  distribution functions is another distribution function. From part (b), the product of  right-
tail distribution functions is a right-tail distribution function. In the reliability setting, where the random variables are nonnegative,
the last statement means that the product of  reliability functions is another reliability function. If  has a continuous distribution
with probability density function  for each , then  and  also have continuous distributions, and their
probability density functions can be obtained by differentiating the distribution functions in parts (a) and (b) of last theorem. The
computations are straightforward using the product rule for derivatives, but the results are a bit of a mess.

The formulas in last theorem are particularly nice when the random variables are identically distributed, in addition to being
independent

Suppose that  is a sequence of independent real-valued random variables, with common distribution function 
.

1.  has distribution function  given by  for .
2.  has distribution function  given by  for .

In particular, it follows that a positive integer power of a distribution function is a distribution function. More generally, it's easy to
see that every positive power of a distribution function is a distribution function. How could we construct a non-integer power of a
distribution function in a probabilistic way?

Suppose that  is a sequence of independent real-valued random variables, with a common continuous
distribution that has probability density function .

1.  has probability density function  given by  for .
2.  has probability density function  given by  for .

Coordinate Systems

For our next discussion, we will consider transformations that correspond to common distance-angle based coordinate systems—
polar coordinates in the plane, and cylindrical and spherical coordinates in 3-dimensional space. First, for , let 

U =min{ , ,… , }, V =max{ , ,… , }X

1

X

2

X

n

X

1

X

2

X

n

(3.7.30)

n X

i

i ∈ {1, 2,… ,n}

U V

n

( , ,… , )X

1

X

2

X

n

X

i

F

i

i ∈ {1, 2,… ,n}

V =max{ , ,… , }X

1

X

2

X

n

H H(x) = (x) (x)⋯ (x)F

1

F

2

F

n

x ∈ R

U =min{ , ,… , }X

1

X

2

X

n

G G(x) = 1−[1− (x)] [1− (x)]⋯ [1− (x)]F

1

F

2

F

n

x ∈ R

V {V ≤ x} = { ≤ x, ≤ x,… , ≤ x}X

1

X

2

X

n

H(x) = P(V ≤ x) = P( ≤ x)P( ≤ x)⋯P( ≤ x) = (x) (x)⋯ (x), x ∈ RX

1

X

2

X

n

F

1

F

2

F

n

(3.7.31)

U {U > x} = { > x, > x,… , > x}X

1

X

2

X

n

G(x) = P(U ≤ x) = 1−P(U > x) = 1−P( > x)P( > x)⋯P ( > x)X

1

X

2

X

n

= 1−[1− (x)][1− (x)]⋯ [1− (x)], x ∈ RF

1

F

2

F

n

n n

n X

i

f

i

i ∈ {1, 2,… ,n} U V

( , ,… , )X

1

X

2

X

n

F

V =max{ , ,… , }X

1

X

2

X

n

H H(x) = (x)F

n

x ∈ R

U =min{ , ,… , }X

1

X

2

X

n

G G(x) = 1−[1−F (x)]

n

x ∈ R

( , ,… , )X

1

X

2

X

n

f

V =max{ , ,… , }X

1

X

2

X

n

h h(x) = n (x)f(x)F

n−1

x ∈ R

U =min{ , ,… , }X

1

X

2

X

n

g g(x) = n f(x)[1−F (x)]

n−1

x ∈ R

(x, y) ∈ R

2

(r, θ)
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denote the standard polar coordinates corresponding to the Cartesian coordinates , so that  is the radial distance
and  is the polar angle.

Figure : Polar coordinates. Stover, Christopher and Weisstein, Eric W. "Polar Coordinates." From MathWorld—A Wolfram
Web Resource. http://mathworld.wolfram.com/PolarCoordinates.html

It's best to give the inverse transformation: , . As we all know from calculus, the Jacobian of the
transformation is . Hence the following result is an immediate consequence of our change of variables theorem:

Suppose that  has a continuous distribution on  with probability density function , and that  are the polar
coordinates of . Then  has probability density function  given by

Next, for , let  denote the standard cylindrical coordinates, so that  are the standard polar coordinates of 
 as above, and coordinate  is left unchanged. Given our previous result, the one for cylindrical coordinates should come as no

surprise.

Suppose that  has a continuous distribution on  with probability density function , and that  are the
cylindrical coordinates of . Then  has probability density function  given by

Finally, for , let  denote the standard spherical coordinates corresponding to the Cartesian coordinates 
, so that  is the radial distance,  is the azimuth angle, and  is the polar angle. (In spite of our

use of the word standard, different notations and conventions are used in different subjects.)

Figure : Spherical coordinates, By Dmcq—Own work, CC BY-SA 3.0, Wikipedia

Once again, it's best to give the inverse transformation: , , . As we remember from
calculus, the absolute value of the Jacobian is . Hence the following result is an immediate consequence of the change of
variables theorem (8):

Suppose that  has a continuous distribution on  with probability density function , and that  are the
spherical coordinates of . Then  has probability density function  given by

Sign and Absolute Value

Our next discussion concerns the sign and absolute value of a real-valued random variable.

Suppose that  has a continuous distribution on  with distribution function  and probability density function .

1.  has distribution function  given by  for .
2.  has probability density function  given by  for .

Proof

(x, y) r ∈ [0,∞)

θ ∈ [0, 2π)

3.7.6

x = r cosθ y = r sinθ

r

(X,Y ) R

2

f (R, Θ)

(X,Y ) (R, Θ) g

g(r, θ) = f(r cosθ, r sinθ)r, (r, θ) ∈ [0,∞)×[0, 2π) (3.7.32)

(x, y, z) ∈ R

3

(r, θ, z) (r, θ)

(x, y) z

(X,Y ,Z) R

3

f (R, Θ,Z)

(X,Y ,Z) (R, Θ,Z) g

g(r, θ, z) = f(r cosθ, r sinθ, z)r, (r, θ, z) ∈ [0,∞)×[0, 2π)×R (3.7.33)

(x, y, z) ∈ R

3

(r, θ,ϕ)

(x, y, z) r ∈ [0,∞) θ ∈ [0, 2π) ϕ ∈ [0, π]

3.7.7

x = r sinϕ cosθ y = r sinϕ sinθ z= r cosϕ

sinϕr

2

(X,Y ,Z) R

3

f (R, Θ, Φ)

(X,Y ,Z) (R, Θ, Φ) g

g(r, θ,ϕ) = f(r sinϕ cosθ, r sinϕ sinθ, r cosϕ) sinϕ, (r, θ,ϕ) ∈ [0,∞)×[0, 2π)×[0, π]r

2

(3.7.34)

X R F f

|X| G G(y) = F (y)−F (−y) y ∈ [0,∞)

|X| g g(y) = f(y)+f(−y) y ∈ [0,∞)
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1.  for .
2. This follows from part (a) by taking derivatives with respect to .

Recall that the sign function on  (not to be confused, of course, with the sine function) is defined as follows:

Suppose again that  has a continuous distribution on  with distribution function  and probability density function , and
suppose in addition that the distribution of  is symmetric about 0. Then

1.  has distribution function  given by  for .
2.  has probability density function  given by  for .
3.  is uniformly distributed on .
4.  and  are independent.

Proof
1. This follows from the previous theorem, since  for  by symmetry.
2. This follows from part (a) by taking derivatives.
3. Note that  and so  also.
4. If  then

Examples and Applications
This subsection contains computational exercises, many of which involve special parametric families of distributions. It is always
interesting when a random variable from one parametric family can be transformed into a variable from another family. It is also
interesting when a parametric family is closed or invariant under some transformation on the variables in the family. Often, such
properties are what make the parametric families special in the first place. Please note these properties when they occur.

Dice

Recall that a standard die is an ordinary 6-sided die, with faces labeled from 1 to 6 (usually in the form of dots). A fair die is one in
which the faces are equally likely. An ace-six flat die is a standard die in which faces 1 and 6 occur with probability  each and the
other faces with probability  each.

Suppose that two six-sided dice are rolled and the sequence of scores  is recorded. Find the probability density
function of , the sum of the scores, in each of the following cases:

1. Both dice are standard and fair.
2. Both dice are ace-six flat.
3. The first die is standard and fair, and the second is ace-six flat
4. The dice are both fair, but the first die has faces labeled 1, 2, 2, 3, 3, 4 and the second die has faces labeled 1, 3, 4, 5, 6, 8.

Answer

Let  denote the sum of the scores.

1. 2 3 4 5 6 7 8 9 10 11 12

2. 2 3 4 5 6 7 8 9 10 11 12

P (|X| ≤ y) = P(−y ≤X ≤ y) = F (y)−F (−y) y ∈ [0,∞)

y

R

sgn(x) =

⎧

⎩

⎨

−1,

0,

1,

x < 0

x = 0

x > 0

(3.7.35)

X R F f

X

|X| G G(y) = 2F (y)−1 y ∈ [0,∞)

|X| g g(y) = 2f(y) y ∈ [0,∞)

sgn(X) {−1, 1}

|X| sgn(X)

F (−y) = 1−F (y) y > 0

P [sgn(X) = 1] = P(X > 0) =

1

2

P [sgn(X) =−1] =

1

2

A⊆ (0,∞)

P [|X| ∈ A, sgn(X) = 1] = P(X ∈ A) = f(x)dx = 2 f(x)dx = P[sgn(X) = 1]P (|X| ∈ A)∫

A

1

2

∫

A

(3.7.36)

1

4

1

8

( , )X

1

X

2

Y = +X

1

X

2

Y = +X

1

X

2

y

P(Y = y)

1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36

y

P(Y = y)

1

16

1

16

5

64

3

32

7

64

3

16

7

64

3

32

3

32

1

16

1

16
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3. 2 3 4 5 6 7 8 9 10 11 12

4. The distribution is the same as for two standard, fair dice in (a).

In the dice experiment, select two dice and select the sum random variable. Run the simulation 1000 times and compare the
empirical density function to the probability density function for each of the following cases:

1. fair dice
2. ace-six flat dice

Suppose that  standard, fair dice are rolled. Find the probability density function of the following variables:

1. the minimum score
2. the maximum score.

Answer

Let  denote the minimum score and  the maximum score.

1. 

2. 

In the dice experiment, select fair dice and select each of the following random variables. Vary  with the scroll bar and note the
shape of the density function. With , run the simulation 1000 times and note the agreement between the empirical density
function and the probability density function.

1. minimum score
2. maximum score.

Uniform Distributions

Recall that for , the standard measure of the size of a set  is

In particular,  is the length of  for ,  is the area of  for , and  is the volume of  for .
See the technical details in (1) for more advanced information.

Now if  with , recall that the uniform distribution on  is the continuous distribution with constant
probability density function  defined by  for . Uniform distributions are studied in more detail in the
chapter on Special Distributions.

Let . Find the probability density function of  and sketch the graph in each of the following cases:

1.  is uniformly distributed on the interval .
2.  is uniformly distributed on the interval .
3.  is uniformly distributed on the interval .

Answer

1. 

2. 

3. 

y

P(Y = y)

2

48

3

48

4

48

5

48

6

48

8

48

6

48

5

48

4

48

3

48

2

48

n

U V

f(u) = − , u ∈ {1, 2, 3, 4, 5, 6}(1− )

u−1

6

n

(1− )

u

6

n

g(v) = − , v∈ {1, 2, 3, 4, 5, 6}( )

v

6

n

( )

v−1

6

n

n

n= 4

n ∈ N

+

A⊆R

n

(A) = 1 dxλ

n

∫

A

(3.7.37)

(A)λ

1

A A⊆R (A)λ

2

A A⊆R

2

(A)λ

3

A A⊆R

3

S ⊆R

n

0 < (S) <∞λ

n

S

f f(x) = 1/ (S)λ

n

x ∈ S

Y =X

2

Y

X [0, 4]

X [−2, 2]

X [−1, 3]

g(y) = , 0 < y < 16

1

8 y

√

g(y) = , 0 < y < 4

1

4 y

√

g(y) =

⎧

⎩

⎨

,

1

4 y

√

,

1

8 y

√

0 < y < 1

1 < y < 9
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Compare the distributions in the last exercise. In part (c), note that even a simple transformation of a simple distribution can produce
a complicated distribution. In this particular case, the complexity is caused by the fact that  is one-to-one on part of the
domain  and two-to-one on the other part .

On the other hand, the uniform distribution is preserved under a linear transformation of the random variable.

Suppose that  has the continuous uniform distribution on . Let , where  and  is an invertible 
 matrix. Then  is uniformly distributed on .

Proof

This follows directly from the general result on linear transformations in (10). Note that the PDF  of  is constant on .

For the following three exercises, recall that the standard uniform distribution is the uniform distribution on the interval .

Suppose that  and  are independent and that each has the standard uniform distribution. Let , , 
, . Find the probability density function of each of the follow:

1. 
2. 
3. 
4. 
5. 

Answer

1.  for  in the square region  with vertices . So  is uniformly
distributed on .

2. 

3. 

4.  for 

5. 

Suppose that , , and  are independent, and that each has the standard uniform distribution. Find the probability density
function of .

Answer

 for  in the rectangular region  with vertices 
. So  is uniformly distributed on .

Suppose that  is a sequence of independent random variables, each with the standard uniform distribution.
Find the distribution function and probability density function of the following variables.

1. 
2. 

Answer
1.  and , both for 
2.  and , both for 

Both distributions in the last exercise are beta distributions. More generally, all of the order statistics from a random sample of
standard uniform variables have beta distributions, one of the reasons for the importance of this family of distributions. Beta
distributions are studied in more detail in the chapter on Special Distributions.

In the order statistic experiment, select the uniform distribution.

x↦ x

2

{0} ∪ (1, 3] [−1, 1] ∖ {0}

X S ⊆R

n

Y = a+BX a∈ R

n

B

n×n Y T = {a+Bx : x ∈ S}

g Y T

[0, 1]

X Y U =X+Y V =X−Y

W =XY Z = Y /X

(U,V )

U

V

W

Z

g(u, v) =

1

2

(u, v) T ⊂R

2

{(0, 0), (1, 1), (2, 0), (1, −1)} (U,V )

T

(u) ={g

1

u,

2 −u,

0 < u < 1

1 < u < 2

(v) ={g

2

1−v,

1 +v,

0 < v< 1

−1 < v< 0

(w) =−lnwh

1

0 <w ≤ 1

(z) ={h

2

1

2

,

1

2z

2

0 ≤ z≤ 1

1 ≤ z<∞

X Y Z

(U,V ,W ) = (X+Y ,Y +Z,X+Z)

g(u, v,w) =

1

2

(u, v,w) T ⊂R

3

{(0, 0, 0), (1, 0, 1), (1, 1, 0), (0, 1, 1), (2, 1, 1), (1, 1, 2), (1, 2, 1), (2, 2, 2)} (U,V ,W ) T

( , ,… , )X

1

X

2

X

n

U =min{ , … , }X

1

X

2

X

n

V =max{ , ,… , }X

1

X

2

X

n

G(t) = 1−(1− t)

n

g(t) = n(1− t)

n−1

t ∈ [0, 1]

H(t) = t

n

h(t) = nt

n−1

t ∈ [0, 1]
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1. Set  (this gives the minimum ). Vary  with the scroll bar and note the shape of the probability density function.
With , run the simulation 1000 times and note the agreement between the empirical density function and the true
probability density function.

2. Vary  with the scroll bar, set  each time (this gives the maximum ), and note the shape of the probability density
function. With  run the simulation 1000 times and compare the empirical density function and the probability density
function.

Let  denote the probability density function of the standard uniform distribution.

1. Compute 
2. Compute 
3. Graph , , and on the same set of axes.

Answer

1. 

2. 

In the last exercise, you can see the behavior predicted by the central limit theorem beginning to emerge. Recall that if 
 is a sequence of independent random variables, each with the standard uniform distribution, then , , and  are

the probability density functions of , , and , respectively. More generally, if  is a
sequence of independent random variables, each with the standard uniform distribution, then the distribution of  (which has
probability density function ) is known as the Irwin-Hall distribution with parameter . The Irwin-Hall distributions are studied
in more detail in the chapter on Special Distributions.

Open the Special Distribution Simulator and select the Irwin-Hall distribution. Vary the parameter  from 1 to 3 and note the
shape of the probability density function. (These are the density functions in the previous exercise). For each value of , run the
simulation 1000 times and compare the empricial density function and the probability density function.

Simulations

A remarkable fact is that the standard uniform distribution can be transformed into almost any other distribution on . This is
particularly important for simulations, since many computer languages have an algorithm for generating random numbers, which are
simulations of independent variables, each with the standard uniform distribution. Conversely, any continuous distribution supported
on an interval of  can be transformed into the standard uniform distribution.

Suppose first that  is a distribution function for a distribution on  (which may be discrete, continuous, or mixed), and let 
denote the quantile function.

Suppose that  has the standard uniform distribution. Then  has distribution function .

Proof

The critical property satisfied by the quantile function (regardless of the type of distribution) is  if and only if 
 for  and . Hence for , .

Assuming that we can compute , the previous exercise shows how we can simulate a distribution with distribution function .
To rephrase the result, we can simulate a variable with distribution function  by simply computing a random quantile. Most of the
apps in this project use this method of simulation. The first image below shows the graph of the distribution function of a rather
complicated mixed distribution, represented in blue on the horizontal axis. In the second image, note how the uniform distribution
on , represented by the thick red line, is transformed, via the quantile function, into the given distribution.

k= 1 U n

n= 5

n k= n V

n= 5

f
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∗2

f

∗3

f f

∗2

f

∗3

(z) ={f
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2 −z,
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⎧
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⎪

⎪
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1
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1
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1
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1
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1

X
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X
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∑

n

i=1

X

i

f

∗n

n

n

n

R

R

F R F

−1

U X = (U)F

−1

F

(p) ≤ xF

−1

p ≤ F (x) p ∈ (0, 1) x ∈ R x ∈ R P(X ≤ x) = P [ (U) ≤ x] = P[U ≤ F (x)] = F (x)F

−1
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Figure : The random quantile method of simulation

There is a partial converse to the previous result, for continuous distributions.

Suppose that  has a continuous distribution on an interval  Then  has the standard uniform distribution.

Proof

For  recall that  is a quantile of order . Since  has a continuous distribution,

Hence  is uniformly distributed on .

Show how to simulate the uniform distribution on the interval  with a random number. Using your calculator, simulate 5
values from the uniform distribution on the interval .

Answer

 where  is a random number.

Beta Distributions

Suppose that  has the probability density function  given by  for . Find the probability density
function of each of the following:

1. 
2. 
3. 

Proof

1. , for 
2.  for 
3.  for 

Random variables , , and  in the previous exercise have beta distributions, the same family of distributions that we saw in the
exercise above for the minimum and maximum of independent standard uniform variables. In general, beta distributions are widely
used to model random proportions and probabilities, as well as physical quantities that take values in closed bounded intervals
(which after a change of units can be taken to be ). On the other hand,  has a Pareto distribution, named for Vilfredo Pareto.
The family of beta distributions and the family of Pareto distributions are studied in more detail in the chapter on Special
Distributions.

Suppose that the radius  of a sphere has a beta distribution probability density function  given by  for 
. Find the probability density function of each of the following:

1. The circumference 
2. The surface area 
3. The volume 

3.7.8

X S ⊆R U = F (X)

u ∈ (0, 1) (u)F

−1

u X

P(U ≥ u) = P[F (X) ≥ u] = P[X ≥ (u)] = 1−F [ (u)] = 1−uF

−1

F

−1

(3.7.38)

U (0, 1)

[a, b]

[2, 10]

X = a+U(b−a) U

X f f(x) = 3x

2

0 ≤ x ≤ 1

U =X

2

V = X

−−

√

W =

1

X

g(u) =

3

2

u

1/2

0 < u ≤ 1

h(v) = 6v

5

0 ≤ v≤ 1

k(w) =

3

w

4

1 ≤w <∞

X U V

[0, 1] W

R f f(r) = 12 (1−r)r

2

0 ≤ r≤ 1

C = 2πR

A= 4πR

2

V = π

4

3

R

3
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Answer

1.  for 

2.  for 

3.  for 

Suppose that the grades on a test are described by the random variable  where  has the beta distribution with
probability density function  given by  for . The grades are generally low, so the teacher
decides to “curve” the grades using the transformation . Find the probability density function of

1. 
2. 

Answer

1.  for .

2.  for 

Bernoulli Trials

Recall that a Bernoulli trials sequence is a sequence  of independent, identically distributed indicator random
variables. In the usual terminology of reliability theory,  means failure on trial , while  means success on trial . The
basic parameter of the process is the probability of success , so . The random process is named for Jacob
Bernoulli and is studied in detail in the chapter on Bernoulli trials.

For , the probability density function  of the trial variable  is  for .

Proof

By definition,  and . These can be combined succinctly with the formula  for 
.

Now let  denote the number of successes in the first  trials, so that  for .

 has the probability density function  given by

Proof

We have seen this derivation before. The number of bit strings of length  with 1 occurring exactly  times is  for 
. By the Bernoulli trials assumptions, the probability of each such bit string is .

The distribution of  is the binomial distribution with parameters  and . The binomial distribution is stuided in more detail in
the chapter on Bernoulli trials

For 

1. .
2. .

Proof

Part (a) can be proved directly from the definition of convolution, but the result also follows simply from the fact that 
.

From part (b) it follows that if  and  are independent variables, and that  has the binomial distribution with parameters 
and  while  has the binomial distribution with parameter  and , then  has the binomial distribution with
parameter  and .

g(c) = (2π−c)

3

4π

4
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2
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3
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−−
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−−

√
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√
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(3.7.39)
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Find the probability density function of the difference between the number of successes and the number of failures in 
Bernoulli trials with success parameter 

Answer

 for 

The Poisson Distribution

Recall that the Poisson distribution with parameter  has probability density function  given by

This distribution is named for Simeon Poisson and is widely used to model the number of random points in a region of time or
space; the parameter  is proportional to the size of the regtion. The Poisson distribution is studied in detail in the chapter on The
Poisson Process.

If  then .

Proof

Let . Using the definition of convolution and the binomial theorem we have

The last result means that if  and  are independent variables, and  has the Poisson distribution with parameter  while 
has the Poisson distribution with parameter , then  has the Poisson distribution with parameter . In terms of the
Poisson model,  could represent the number of points in a region  and  the number of points in a region  (of the appropriate
sizes so that the parameters are  and  respectively). The independence of  and  corresponds to the regions  and  being
disjoint. Then  is the number of points in .

The Exponential Distribution

Recall that the exponential distribution with rate parameter  has probability density function  given by  for
. This distribution is often used to model random times such as failure times and lifetimes. In particular, the times

between arrivals in the Poisson model of random points in time have independent, identically distributed exponential distributions.
The Exponential distribution is studied in more detail in the chapter on Poisson Processes.

Show how to simulate, with a random number, the exponential distribution with rate parameter . Using your calculator,
simulate 5 values from the exponential distribution with parameter .

Answer

 where  is a random number. Since  is also a random number, a simpler solution is .

For the next exercise, recall that the floor and ceiling functions on  are defined by

Suppose that  has the exponential distribution with rate parameter . Find the probability density function of each of
the following random variables:

1. 
2. 

Answer
1.  for 
2.  for 

n ∈ N

p ∈ [0, 1]

f(k) = ( ) (1−p

n

(n+k)/2

p

(n+k)/2

)

(n−k)/2

k ∈ {−n, 2 −n,… ,n−2,n}

t ∈ (0,∞) f

(n) = , n ∈ Nf

t

e

−t

t

n

n!

(3.7.40)
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(3.7.41)

(3.7.42)

X Y X a> 0 Y

b > 0 X+Y a+b

X A Y B

a b X Y A B

X+Y A∪B

r ∈ (0,∞) f f(t) = re

−rt

t ∈ [0,∞)

r

r= 3

X =− ln(1−U)

1

r

U 1−U X =− lnU

1

r

R

⌊x⌋=max{n ∈ Z : n≤ x}, ⌈x⌉ =min{n ∈ Z : n≥ x}, x ∈ R (3.7.43)
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Note that the distributions in the previous exercise are geometric distributions on  and on , respectively. In many respects, the
geometric distribution is a discrete version of the exponential distribution.

Suppose that  has the exponential distribution with rate parameter . Find the probability density function of each of
the following random variables:

1. 
2. 
3. 

Answer
1.  for 
2.  for 
3.  for 

In the previous exercise,  has a Pareto distribution while  has an extreme value distribution. Both of these are studied in more
detail in the chapter on Special Distributions.

Suppose that  and  are independent random variables, each having the exponential distribution with parameter 1. Let 
.

1. Find the distribution function of .
2. Find the probability density function of .

Answer
1. 
2. 

Suppose that  has the exponential distribution with rate parameter ,  has the exponential distribution with rate
parameter , and that  and  are independent. Find the probability density function of  in each of the
following cases.

1. 
2. 

Answer
1.  for 
2.  for 

Suppose that  is a sequence of independent random variables, and that  has the exponential distribution with
rate parameter  for each .

1. Find the probability density function of .
2. Find the distribution function of .
3. Find the probability density function of  in the special case that  for each .

Answer
1.  for  where 
2.  for 
3.  for 

Note that the minimum  in part (a) has the exponential distribution with parameter . In particular, suppose that
a series system has independent components, each with an exponentially distributed lifetime. Then the lifetime of the system is also
exponentially distributed, and the failure rate of the system is the sum of the component failure rates.

In the order statistic experiment, select the exponential distribution.
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1. Set  (this gives the minimum ). Vary  with the scroll bar and note the shape of the probability density function.
With , run the simulation 1000 times and compare the empirical density function and the probability density function.

2. Vary  with the scroll bar and set  each time (this gives the maximum ). Note the shape of the density function. With
, run the simulation 1000 times and compare the empirical density function and the probability density function.

Suppose again that  is a sequence of independent random variables, and that  has the exponential distribution
with rate parameter  for each . Then

Proof

When , the result was shown in the section on joint distributions. Returning to the case of general , note that  for
all  if and only if . Note that he minimum on the right is independent of  and by the result above,
has an exponential distribution with parameter .

The result in the previous exercise is very important in the theory of continuous-time Markov chains. If we have a bunch of
independent alarm clocks, with exponentially distributed alarm times, then the probability that clock  is the first one to sound is 

.

The Gamma Distribution

Recall that the (standard) gamma distribution with shape parameter  has probability density function

With a positive integer shape parameter, as we have here, it is also referred to as the Erlang distribution, named for Agner Erlang.
This distribution is widely used to model random times under certain basic assumptions. In particular, the th arrival times in the
Poisson model of random points in time has the gamma distribution with parameter . The Erlang distribution is studied in more
detail in the chapter on the Poisson Process, and in greater generality, the gamma distribution is studied in the chapter on Special
Distributions.

Let , and note that this is the probability density function of the exponential distribution with parameter 1, which was the
topic of our last discussion.

If  then

1. 
2. 

Proof

Part (a) hold trivially when . Also, for ,

Part (b) follows from (a).

Part (b) means that if  has the gamma distribution with shape parameter  and  has the gamma distribution with shape
parameter , and if  and  are independent, then  has the gamma distribution with shape parameter . In the context
of the Poisson model, part (a) means that the th arrival time is the sum of the  independent interarrival times, which have a
common exponential distribution.

Suppose that  has the gamma distribution with shape parameter . Find the probability density function of .

Answer

 for 
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∫
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The Pareto Distribution

Recall that the Pareto distribution with shape parameter  has probability density function  given by

Members of this family have already come up in several of the previous exercises. The Pareto distribution, named for Vilfredo
Pareto, is a heavy-tailed distribution often used for modeling income and other financial variables. The Pareto distribution is studied
in more detail in the chapter on Special Distributions.

Suppose that  has the Pareto distribution with shape parameter . Find the probability density function of each of the
following random variables:

1. 
2. 
3. 

Answer

1.  for 
2.  for 
3.  for 

In the previous exercise,  also has a Pareto distribution but with parameter ;  has the beta distribution with parameters  and 
; and  has the exponential distribution with rate parameter .

Show how to simulate, with a random number, the Pareto distribution with shape parameter . Using your calculator, simulate 5
values from the Pareto distribution with shape parameter .

Answer

Using the random quantile method,  where  is a random number. More simply, , since  is also a

random number.

The Normal Distribution

Recall that the standard normal distribution has probability density function  given by

Suppose that  has the standard normal distribution, and that  and .

1. Find the probability density function  of 
2. Sketch the graph of , noting the important qualitative features.

Answer

1.  for 

2.  is symmetric about .  increases and then decreases, with mode .  is concave upward, then downward, then
upward again, with inflection points at .  as  and as 

Random variable  has the normal distribution with location parameter  and scale parameter . The normal distribution is
perhaps the most important distribution in probability and mathematical statistics, primarily because of the central limit theorem,
one of the fundamental theorems. It is widely used to model physical measurements of all types that are subject to small, random
errors. The normal distribution is studied in detail in the chapter on Special Distributions.

Suppose that  has the standard normal distribution. Find the probability density function of  and sketch the graph.

Answer

a ∈ (0,∞) f

f(x) = , 1 ≤ x <∞

a

x

a+1

(3.7.47)
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 for 

Random variable  has the chi-square distribution with 1 degree of freedom. Chi-square distributions are studied in detail in the
chapter on Special Distributions.

Suppose that  and  are independent random variables, each with the standard normal distribution, and let  be the
standard polar coordinates . Find the probability density function of

1. 
2. 
3. 

Answer

Note that the joint PDF of  is

From the result above polar coordinates, the PDF of  is

From the factorization theorem for joint PDFs, it follows that  has probability density function  for 
,  is uniformly distributed on , and that  and  are independent.

The distribution of  is the (standard) Rayleigh distribution, and is named for John William Strutt, Lord Rayleigh. The Rayleigh
distribution is studied in more detail in the chapter on Special Distributions.

The standard normal distribution does not have a simple, closed form quantile function, so the random quantile method of
simulation does not work well. However, the last exercise points the way to an alternative method of simulation.

Show how to simulate a pair of independent, standard normal variables with a pair of random numbers. Using your calculator,
simulate 6 values from the standard normal distribution.

Answer

The Rayleigh distribution in the last exercise has CDF  for , and hence quantle function 
 for . Thus we can simulate the polar radius  with a random number  by 

, or a bit more simply by , since  is also a random number. We can simulate the
polar angle  with a random number  by . Then, a pair of independent, standard normal variables can be simulated
by , .

The Cauchy Distribution

Suppose that  and  are independent random variables, each with the standard normal distribution. Find the probability
density function of .

Answer

As usual, let  denote the standard normal PDF, so that  for . Using the theorem on quotient above, the

PDF  of  is given by

Using symmetry and a simple substitution,

g(v) =

1

2πv√

e

− v

1

2

0 < v<∞

V

X Y (R, Θ)
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(R, Θ)

g(r, θ) = f(r cosθ, r sinθ)r= r , (r, θ) ∈ [0,∞)×[0, 2π)
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f(t) = x dx = , t ∈ R
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Random variable  has the (standard) Cauchy distribution, named after Augustin Cauchy. The Cauchy distribution is studied in
detail in the chapter on Special Distributions.

Suppose that a light source is 1 unit away from position 0 on an infinite straight wall. We shine the light at the wall an angle 
to the perpendicular, where  is uniformly distributed on . Find the probability density function of the position of the
light beam  on the wall.

Answer

The PDF of  is  for . The transformation is  so the inverse transformation is .
Recall that , so by the change of variables formula,  has PDF  given by

Thus,  also has the standard Cauchy distribution. Clearly we can simulate a value of the Cauchy distribution by 
 where  is a random number. This is the random quantile method.

Open the Cauchy experiment, which is a simulation of the light problem in the previous exercise. Keep the default parameter
values and run the experiment in single step mode a few times. Then run the experiment 1000 times and compare the empirical
density function and the probability density function.

This page titled 3.7: Transformations of Random Variables is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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3.8: Convergence in Distribution
       

This section is concenred with the convergence of probability distributions, a topic of basic importance in probability theory. Since
we will be almost exclusively concerned with the convergences of sequences of various kinds, it's helpful to introduce the notation 

.

Distributions on 

Definition

We start with the most important and basic setting, the measurable space , where  is the set of real numbers of course, and 
 is the Borel -algebra of subsets of . Recall that if  is a probability measure on , then the function 

defined by  for  is the (cumulative) distribution function of . Recall also that  completely determines 
. Here is the definition for convergence of probability measures in this setting:

Suppose  is a probability measure on  with distribution function  for each . Then  converges (weakly)
to  as  if  as  for every  where  is continuous. We write  as .

Recall that a distribution function  is continuous at  if and only if , so that  is not an atom of the
distribution (a point of positive probability). We will see shortly why this condition on  is appropriate. Of course, a probability
measure on  is usually associated with a real-valued random variable for some random experiment that is modeled by a
probability space . So to review,  is the set of outcomes,  is the -algebra of events, and  is the probability measure
on the sample space . If  is a real-valued random variable defined on the probability space, then the distribution of  is
the probability measure  on  defined by  for , and then of course, the distribution function of 

 is the function  defined by  for . Here is the convergence terminology used in this setting:

Suppose that  is a real-valued random variable with distribution  for each . If  as  then we say
that  converges in distribution to  as . We write  as  in distribution.

So if  is the distribution function of  for , then  as  in distribution if  at every
point  where  is continuous. On the one hand, the terminology and notation are helpful, since again most probability
measures are associated with random variables (and every probability measure can be). On the other hand, the terminology and
notation can be a bit misleading since the random variables, as functions, do not converge in any sense, and indeed the random
variables need not be defined on the same probability spaces. It is only the distributions that converge. However, often the random
variables are defined on the same probability space , in which case we can compare convergence in distribution with the
other modes of convergence we have or will study:

Convergence with probability 1
Convergence in probability
Convergence in mean

We will show, in fact, that convergence in distribution is the weakest of all of these modes of convergence. However, strength of
convergence should not be confused with importance. Convergence in distribution is one of the most important modes of
convergence; the central limit theorem, one of the two fundamental theorems of probability, is a theorem about convergence in
distribution.

Preliminary Examples

The examples below show why the definition is given in terms of distribution functions, rather than probability density functions,
and why convergence is only required at the points of continuity of the limiting distribution function. Note that the distributions
considered are probability measures on , even though the support of the distribution may be a much smaller subset. For the
first example, note that if a deterministic sequence converges in the ordinary calculus sense, then naturally we want the sequence
(thought of as random variables) to converge in distribution. Expand the proof to understand the example fully.

Suppose that  for . Define random variable  with probability 1 for each . Then  as 
 if and only if  as  in distribution.
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Proof

For , the CDF  of  is given by  for  and  for .

1. Suppose that  as . If  then , and hence , for all but finitely many , and
so  as . If  then ,and hence , for all but finitely many , and so 

 as . Nothing can be said about the limiting behavior of  as  without more information.
For example, if  for all but finitely many  then  as . If  for all but finitely
many  then  as . If  for infinitely many  and  for infinitely many 

 then  does not have a limit as . But regardless, we have  as  for every 
 except perhaps , the one point of discontinuity of . Hence  as  in distribution.

2. Conversely, suppose that  as  in distribution. If  then  as  and hence 
for all but finitely many . If  then  as  and hence  for all but finitely many 

. So, for every ,  for all but finitely many , and hence  as .

The proof is finished, but let's look at the probability density functions to see that these are not the proper objects of study. For 
, the PDF  of  is given by  and  for . Only when  for all but

finitely many  do we have  for .

For the example below, recall that  denotes the set of rational numbers. Once again, expand the proof to understand the example
fully

For , let  denote the discrete uniform distribution on  and let  denote the continuous uniform

distribution on the interval . Then

1.  as 
2.  for each  but .

Proof

As usual, let  denote the CDF of  for .

1. For  note that  is given by  for . But  so  as 
 for . Of course,  for  and  for . So  as  for all

.
2. Note that by definition, so  for . On the other hand,  is a continuous distribution and  is countable,

so .

The proof is finished, but let's look at the probability density functions. For , the PDF  of  is given by 

for  and  otherwise. Hence  for  and , so  as 

 for every .

The point of the example is that it's reasonable for the discrete uniform distribution on  to converge to the

continuous uniform distribution on , but once again, the probability density functions are evidently not the correct objects of
study.

Probability Density Functions

As the previous example shows, it is quite possible to have a sequence of discrete distributions converge to a continuous
distribution (or the other way around). Recall that probability density functions have very different meanings in the discrete and
continuous cases: density with respect to counting measure in the first case, and density with respect to Lebesgue measure in the
second case. This is another indication that distribution functions, rather than density functions, are the correct objects of study.
However, if probability density functions of a fixed type converge then the distributions converge. Recall again that we are
thinnking of our probability distributions as measures on  even when supported on a smaller subset.

Convergence in distribution in terms of probability density functions.
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1. Suppose that  is a probability density function for a discrete distribution  on a countable set  for each .
If  as  for each  then  as .

2. Suppose that  is a probability density function for a continuous distribution  on  for each  If 
as  for all  (except perhaps on a set with Lebesgue measure 0) then  as .

Proof
1. Fix . Then  for  and . It follows from Scheffé's

theorem with the measure space  that  as .
2. Fix . Then  for  and . It follows from Scheffé's

theorem with the measure space  that  as .

Convergence in Probability

Naturally, we would like to compare convergence in distribution with other modes of convergence we have studied.

Suppose that  is a real-valued random variable for each , all defined on the same probability space. If 
as  in probability then  as  in distribution.

Proof

Let  denote the distribution function of  for . Fix . Note first that 
. Hence .

Next, note that . Hence 
. From the last two results it follows that

Letting  and using convergence in probability gives

Finally, letting  we see that if  is continuous at  then  as .

Our next example shows that even when the variables are defined on the same probability space, a sequence can converge in
distribution, but not in any other way.

Let  be an indicator variable with , so that  is the result of tossing a fair coin. Let 
 for . Then

1.  as  in distribution.
2. .
3.  does not converge to  as  in probability.
4.  does not converge to  as  in mean.

Proof
1. This trivially holds since  has the same distribution as .
2. This follows since  for every .
3. This follows since  for each .
4. This follows since  for each .

The critical fact that makes this counterexample work is that  has the same distribution as . Any random variable with this
property would work just as well, so if you prefer a counterexample with continuous distributions, let  have probability density
function  given by  for . The distribution of  is an example of a beta distribution.

The following summary gives the implications for the various modes of convergence; no other implications hold in general.

Suppose that  is a real-valued random variable for each , all defined on a common probability space.

1. If  as  with probability 1 then  as  in probability.
2. If  as  in mean then  as  in probability.
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3. If  as  in probability then  as  in distribtion.

It follows that convergence with probability 1, convergence in probability, and convergence in mean all imply convergence in
distribution, so the latter mode of convergence is indeed the weakest. However, our next theorem gives an important converse to
part (c) in (7), when the limiting variable is a constant. Of course, a constant can be viewed as a random variable defined on any
probability space.

Suppose that  is a real-valued random variable for each , defined on the same probability space, and that . If 
 as  in distribution then  as  in probability.

Proof

Assume that the probability space is . Note first that  as  if  and  as 
 if . It follows that  as  for every .

The Skorohod Representation

As noted in the summary above, convergence in distribution does not imply convergence with probability 1, even when the random
variables are defined on the same probability space. However, the next theorem, known as the Skorohod representation theorem,
gives an important partial result in this direction.

Suppose that  is a probability measure on  for each  and that  as . Then there exist real-
valued random variables  for , defined on the same probability space, such that

1.  has distribution  for .
2.  as  with probability 1.

Proof

Let  be a probability space and  a random variable defined on this space that is uniformly distributed on the
interval . For a specific construction, we could take ,  the -algebra of Borel measurable subsets of ,
and  Lebesgue measure on  (the uniform distribution on ). Then let  be the identity function on  so that 

 for , so that  has probability distribution . We have seen this construction many times before.

1. For , let  denote the distribution function of  and define  where  is the quantile functions
of . Recall that  has distribution function  and therefore  has distribution  for . Of course, these
random variables are also defined on .

2. Let  and let . Pick a continuity point  of  such that . Then 
and hence  for all but finitely many . It follows that  for all but finitely
many . Let  and  to conclude that . Next, let  satisfy 
and let . Pick a continuity point  of  such that . Then  and hence 

 for all but finitely many . It follows that  for all but finitely many .
Let  and  to conclude that . Letting  it follows that 

 if  is a point of continuity of . Therefore  as  if  is a
point of continuity of . Recall from analysis that since  is increasing, the set  of discontinuities of 

 is countable. Since  has a continuous distribution, . Finally, it follows that 
.

The following theorem illustrates the value of the Skorohod representation and the usefulness of random variable notation for
convergence in distribution. The theorem is also quite intuitive, since a basic idea is that continuity should preserve convergence.

Suppose that  is a real-valued random variable for each  (not necessarily defined on the same probability space).
Suppose also that  is measurable, and let  denote the set of discontinuities of , and  the distribution of .
If  as  in distribution and , then  as  in distribution.

Proof

By Skorohod's theorem, there exists random variables  for , defined on the same probability space , such
that  has the same distribution as  for , and  as  with probability 1. Since 
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 it follows that  as  with probability 1. Hence by the theorem above, 
 as  in distribution. But  has the same distribution as  for each .

As a simple corollary, if  converges  as  in distribution, and if  then  converges to  as 
 in distribution. But we can do a little better:

Suppose that  is a real-valued random variable and that  for each . If  as  in
distribution and if  and  as , then  as  in distribution.

Proof

Again by Skorohod's theorem, there exist random variables  for , defined on the same probability space 
such that  has the same distribution as  for  and  as  with probability 1. Hence also 

 as  with probability 1. By the result above,  as  in
distribution. But  has the same distribution as  for .

The definition of convergence in distribution requires that the sequence of probability measures converge on sets of the form 
 for  when the limiting distrbution has probability 0 at . It turns out that the probability measures will converge on

lots of other sets as well, and this result points the way to extending convergence in distribution to more general spaces. To state the
result, recall that if  is a subset of a topological space, then the boundary of  is  where  is the
closure of  (the smallest closed set that contains ) and  is the interior of  (the largest open set contained in ).

Suppose that  is a probability measure on  for . Then  as  if and only if 
as  for every  with .

Proof

Suppose that  as . Let  be a random variable with distribution  for . (We don't care about the
underlying probability spaces.) If  then the set of discontinuities of , the indicator function of , is . So, suppose 

. By the continuity theorem above,  as  in distribution. Let  denote the CDF of 
 for . The only possible points of discontinuity of  are 0 and 1. Hence  as .

But  for . Hence  and so also  as .

Conversely, suppose that the condition in the theorem holds. If , then the boundary of  is , so if 
then  as . So by definition,  as .

In the context of this result, suppose that  with . If , then as  we have 
, , , and . Of course, the limiting values are all the

same.

Examples and Applications
Next we will explore several interesting examples of the convergence of distributions on . There are several important cases
where a special distribution converges to another special distribution as a parameter approaches a limiting value. Indeed, such
convergence results are part of the reason why such distributions are special in the first place.

The Hypergeometric Distribution

Recall that the hypergeometric distribution with parameters , , and  is the distribution that governs the number of type 1
objects in a sample of size , drawn without replacement from a population of  objects with  objects of type 1. It has discrete
probability density function  given by

The pramaters , , and  are positive integers with  and . The hypergeometric distribution is studied in more detail
in the chapter on Finite Sampling Models
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Recall next that Bernoulli trials are independent trials, each with two possible outcomes, generically called success and failure. The
probability of success  is the same for each trial. The binomial distribution with parameters  and  is the
distribution of the number successes in  Bernoulli trials. This distribution has probability density function  given by

The binomial distribution is studied in more detail in the chapter on Bernoulli Trials. Note that the binomial distribution with
parameters  and  is the distribution that governs the number of type 1 objects in a sample of size , drawn with
replacement from a population of  objects with  objects of type 1. This fact is motivation for the following result:

Suppose that  for each  and that  as . For fixed , the hypergeometric
distribution with parameters , , and  converges to the binomial distribution with parameters  and  as .

Proof

Recall that for  and , we let  denote the falling power of  of order . The
hypergeometric PDF can be written as

In the fraction above, the numerator and denominator both have  fractors. Suppose that we group the  factors in  with the
first  factors of  and the  factors of  with the last  factors of  to form a product of 
fractions. The first  fractions have the form  for some  that does not depend on . Each of these
converges to  as . The last  fractions have the form  for some  that does not
depend on . Each of these converges to  as . Hence

The result now follows from the theorem above on density functions.

From a practical point of view, the last result means that if the population size  is “large” compared to sample size , then the
hypergeometric distribution with parameters , , and  (which corresponds to sampling without replacement) is well
approximated by the binomial distribution with parameters  and  (which corresponds to sampling with replacement).
This is often a useful result, not computationally, but rather because the binomial distribution has fewer parameters than the
hypergeometric distribution (and often in real problems, the parameters may only be known approximately). Specifically, in the
limiting binomial distribution, we do not need to know the population size  and the number of type 1 objects  individually, but
only in the ratio .

In the ball and urn experiment, set  and . For each of the following values of  (the sample size), switch
between sampling without replacement (the hypergeometric distribution) and sampling with replacement (the binomial
distribution). Note the difference in the probability density functions. Run the simulation 1000 times for each sampling mode
and compare the relative frequency function to the probability density function.

1. 10
2. 20
3. 30
4. 40
5. 50

The Binomial Distribution

Recall again that the binomial distribution with parameters  and  is the distribution of the number successes in 
Bernoulli trials, when  is the probability of success on a trial. This distribution has probability density function  given by
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Recall also that the Poisson distribution with parameter  has probability density function  given by

The distribution is named for Simeon Poisson and governs the number of “random points” in a region of time or space, under
certain ideal conditions. The parameter  is proportional to the size of the region of time or space. The Poisson distribution is
studied in more detail in the chapter on the Poisson Process.

Suppose that  for  and that  as . Then the binomial distribution with parameters 
 and  converges to the Poisson distribution with parameter  as .

Proof

For  with , the binomial PDF can be written as

First,  as  for . Next, by a famous limit from calculus, 
 as . Hence also  as  for fixed . Therefore 

 as  for each . The result now follows from the theorem above on density functions.

From a practical point of view, the convergence of the binomial distribution to the Poisson means that if the number of trials  is
“large” and the probability of success  “small”, so that  is small, then the binomial distribution with parameters  and  is well
approximated by the Poisson distribution with parameter . This is often a useful result, again not computationally, but rather
because the Poisson distribution has fewer parameters than the binomial distribution (and often in real problems, the parameters
may only be known approximately). Specifically, in the approximating Poisson distribution, we do not need to know the number of
trials  and the probability of success  individually, but only in the product . As we will see in the next chapter, the condition
that  be small means that the variance of the binomial distribution, namely  is approximately ,
which is the variance of the approximating Poisson distribution.

In the binomial timeline experiment, set the parameter values as follows, and observe the graph of the probability density
function. (Note that  in each case.) Run the experiment 1000 times in each case and compare the relative frequency
function and the probability density function. Note also the successes represented as “random points” in discrete time.

1. , 
2. , 
3. , 

In the Poisson experiment, set  and , to get the Poisson distribution with parameter 5. Note the shape of the
probability density function. Run the experiment 1000 times and compare the relative frequency function to the probability
density function. Note the similarity between this experiment and the one in the previous exercise.

The Geometric Distribution

Recall that the geometric distribution on  with success parameter  has probability density function  given by

The geometric distribution governs the trial number of the first success in a sequence of Bernoulli trials.

Suppose that  has the geometric distribution on  with success parameter . For , the conditional
distribution of  given  converges to the uniform distribution on  as .

Proof

The CDF  of  is given by  for . Hence for , the conditional CDF of  given 
is

r ∈ (0,∞) g

g(k) = , k ∈ Ne
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r

k
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(3.8.8)
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Using L'Hospital's rule, gives  as  for . As a function of  this is the CDF of the uniform
distribution on .

Next, recall that the exponential distribution with rate parameter  has distribution function  given by

The exponential distribution governs the time between “arrivals” in the Poisson model of random points in time.

Suppose that  has the geometric distribution on  with success parameter  for , and that 
 as . The distribution of  converges to the exponential distribution with parameter  as 

.

Proof

Let  denote the CDF of . Then for 

We showed in the proof of the convergence of the binomial distribution that  as , and hence 
 as . But by definition,  or equivalently,  so it

follows from the squeeze theorem that  as . Hence  as . As a function
of .

Note that the limiting condition on  and  in the last result is precisely the same as the condition for the convergence of the
binomial distribution to the Poisson distribution. For a deeper interpretation of both of these results, see the section on the Poisson
distribution.

In the negative binomial experiment, set  to get the geometric distribution. Then decrease the value of  and note the
shape of the probability density function. With  run the experiment 1000 times and compare the relative frequency
function to the probability density function.

In the gamma experiment, set  to get the exponential distribution, and set . Note the shape of the probability density
function. Run the experiment 1000 times and compare the empirical density function and the probability density function.
Compare this experiment with the one in the previous exercise, and note the similarity, up to a change in scale.

The Matching Distribution

For , consider a random permutation  of the elements in the set . We say that a match
occurs at position  if .

 for each .

Proof

The number of permutations of  is . For , the number of such permutations with  in position 
is . Hence . A more direct argument is that  is no more or less likely to end up in
position  as any other number.

So the matching events all have the same probability, which varies inversely with the number of trials.

 for  with .

Proof

(k) = P(U ≤ k ∣ U ≤ n) = = , k ∈ {1, 2,… n}F

n

P(U ≤ k)

P(U ≤ n)
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Again, the number of permutations of  is . For distinct , the number of such permutations
with  in position  and  in position  is . Hence .

So the matching events are dependent, and in fact are positively correlated. In particular, the matching events do not form a
sequence of Bernoulli trials. The matching problem is studied in detail in the chapter on Finite Sampling Models. In that section we
show that the number of matches  has probability density function  given by:

The distribution of  converges to the Poisson distribution with parameter 1 as .

Proof

For ,

As a function of , this is the PDF of the Poisson distribution with parameter 1. So the result follows from the theorem
above on density functions.

In the matching experiment, increase  and note the apparent convergence of the probability density function for the number of
matches. With selected values of , run the experiment 1000 times and compare the relative frequency function and the
probability density function.

The Extreme Value Distribution

Suppose that  is a sequence of independent random variables, each with the standard exponential distribution
(parameter 1). Thus, recall that the common distribution function  is given by

As , the distribution of  converges to the distribution with distribution function 
given by

Proof

Let  and recall that  has CDF . Let  denote the CDF of . For 

By our famous limit from calculus again,  as .

The limiting distribution in Exercise (27) is the standard extreme value distribution, also known as the standard Gumbel
distribution in honor of Emil Gumbel. Extreme value distributions are studied in detail in the chapter on Special Distributions.

The Pareto Distribution

Recall that the Pareto distribution with shape parameter  has distribution function  given by

The Pareto distribution, named for Vilfredo Pareto, is a heavy-tailed distribution sometimes used to model financial variables. It is
studied in more detail in the chapter on Special Distributions.

Suppose that  has the Pareto distribution with parameter  for each . Then

{1, 2,… ,n} n! i, j∈ {1, 2,… ,n}
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1.  as  in distribution (and hence also in probability).
2. The distribution of  converges to the standard exponential distribution as .

Proof
1. The CDF of  is  for . Hence  for  and  while  as 

for . Thus the limit of  agrees with the CDF of the constant 1, except at , the point of discontinuity.
2. Let  denote the CDF of . For ,

By our famous theorem from calculus again, it follows that  as . As a function of 
, this is the CDF of the standard exponential distribution.

Fundamental Theorems

The two fundamental theorems of basic probability theory, the law of large numbers and the central limit theorem, are studied in
detail in the chapter on Random Samples. For this reason we will simply state the results in this section. So suppose that 

 is a sequence of independent, identically distributed, real-valued random variables (defined on the same probability
space) with mean  and standard deviation . For , let  denote the sum of the first 
variables,  the average of the first  variables, and  the standard score of .

The fundamental theorems of probability

1.  as  with probability 1 (and hence also in probability and in distribution). This is the law of large numbers.
2. The distribution of  converges to the standard normal distribution as . This is the central limit theorem.

In part (a), convergence with probability 1 is the strong law of large numbers while convergence in probability and in distribution
are the weak laws of large numbers.

General Spaces
Our next goal is to define convergence of probability distributions on more general measurable spaces. For this discussion, you
may need to refer to other sections in this chapter: the integral with respect to a positive measure, properties of the integral, and
density functions. In turn, these sections depend on measure theory developed in the chapters on Foundations and Probability
Measures.

Definition and Basic Properties

First we need to define the type of measurable spaces that we will use in this subsection.

We assume that  is a complete, separable metric space and let  denote the Borel -algebra of subsets of , that is, the 
-algebra generated by the topology. The standard spaces that we often use are special cases of the measurable space :

1. Discrete:  is countable and is given the discrete metric so  is the collection of all subsets of .
2. Euclidean:  is given the standard Euclidean metric so  is the usual -algebra of Borel measurable subsets of .

Additional details

Recall that the metric space  is complete if every Cauchy sequence in  converges to a point in . The space is separable
if there exists a coutable subset that is dense. A complete, separable metric space is sometimes called a Polish space because
such spaces were extensively studied by a group of Polish mathematicians in the 1930s, including Kazimierz Kuratowski.

As suggested by our setup, the definition for convergence in distribution involves both measure theory and topology. The
motivation is the theorem above for the one-dimensional Euclidean space .

Convergence in distribution:

1. Suppose that  is a probability measure on  for each . Then  converges (weakly) to  as  if 
 as  for every  with . We write  as .

→1X

n

n→∞

= n −nY

n

X

n

n→∞

X

n

(x) = 1−1/F

n

x

n

x ≥ 1 (x) = 0F

n

n ∈ N

+

x ≤ 1 (x) → 1F

n

n→∞

x > 1 F

n

x = 1

G

n

Y

n

x ≥ 0

(x) = P( ≤ x) = P( ≤ 1+x/n) = 1−G

n

Y

n

X

n

1

(1+x/n)

n

(3.8.20)

(x) → 1−1/ = 1−G

n

e

x

e

−x

n→∞

x ∈ [0,∞

( , ,…)X

1

X

2

μ ∈ (−∞.∞) σ ∈ (0,∞) n ∈ N

+

=Y

n

∑

n

i=1

X

i

n

= /nM

n

Y

n

n = ( −nμ)/ σZ

n

Y

n

n

−−

√

Y

n

→ μM

n

n→∞

Z

n

n→∞

(S, d) S σ S

σ (S,S )

S S S

R

n

R

n

σ R

n

(S, d) S S

(R,R)

P

n

(S,S ) n ∈ N

∗

+

P

n

P

∞

n→∞

(A) → (A)P

n

P

∞

n→∞ A ∈S (∂A) = 0P

∞

⇒P

n

P

∞

n→∞

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10148?pdf


3.8.11 https://stats.libretexts.org/@go/page/10148

2. Suppose that  is a random variable with distribution  on  for each . Then  converges in distribution
to  as  if  as . We write  as  in distribution.

Notes
1. The definition makes sense since  implies . Specifically,  because  is closed, and 

 because  is open.
2. The random variables need not be defined on the same probability space.

Let's consider our two special cases. In the discrete case, as usual, the measure theory and topology are not really necessary.

Suppose that  is a probability measures on a discrete space  for each . Then  as  if and
only if  as  for every .

Proof

This follows from the definition. Every subset is both open and closed so  for every .

In the Euclidean case, it suffices to consider distribution functions, as in the one-dimensional case. If  is a probability measure on 
, recall that the distribution function  of  is given by

Suppose that  is a probability measures on  with distribution function  for each . Then  as 
 if and only if  as  for every  where  is continuous.

Convergence in Probability

As in the case of , convergence in probability implies convergence in distribution.

Suppose that  is a random variable with values in  for each , all defined on the same probability space. If 
 as  in probability then  as  in distribution.

Notes

Assume that the common probability space is . Recall that convergence in probability means that 
 as  for every ,

So as before, convergence with probability 1 implies convergence in probability which in turn implies convergence in distribution.

Skorohod's Representation Theorem

As you might guess, Skorohod's theorem for the one-dimensional Euclidean space  can be extended to the more general
spaces. However the proof is not nearly as straightforward, because we no longer have the quantile function for constructing
random variables on a common probability space.

Suppose that  is a probability measures on  for each  and that  as . Then there exists a
random variable  with values in  for each , defined on a common probability space, such that

1.  has distribution  for 
2.  as  with probability 1.

One of the main consequences of Skorohod's representation, the preservation of convergence in distribution under continuous
functions, is still true and has essentially the same proof. For the general setup, suppose that  and  are spaces of
the type described above.

Suppose that  is a random variable with values in  for each  (not necessarily defined on the same probability
space). Suppose also that  is measurable, and let  denote the set of discontinuities of , and  the distribution of

. If  as  in distribution and , then  as  in distribution.

Proof

X

n

P

n

(S,S ) n ∈ N

∗

+

X

n

X

∞

n→∞ ⇒P

n

P

∞

n→∞ →X

n

X

∞

n→∞

A ∈S ∂A ∈S cl(A) ∈S cl(A)

int(A) ∈S int(A)

P

n

(S,S ) n ∈ N

∗

+

⇒P

n

P

∞

n→∞

(A) → (A)P

n

P

∞

n→∞ A⊆ S

∂A= ∅ A⊆ S

P

( , )R

n

R

n

F P

F ( , ,… , ) = P ((−∞, ]×(−∞, ]×⋯×(−∞, ]) , ( , ,… , ) ∈x

1

x

2

x

n

x

1

x

2

x

n

x

1

x

2

x

n

R

n

(3.8.21)

P

n

( , )R

n

R

n

F

n

n ∈ N

∗

+

⇒P

n

P

∞

n→∞ (x) → (x)F

n

F

∞

n→∞ x ∈ R

n

F

∞

(R,R)

X

n

S n ∈ N

∗

+

→X

n

X

∞

n→∞ →X

n

X

∞

n→∞

(Ω,F ,P)

P[d( , ) > ϵ] → 0X

n

X

∞

n→∞ ϵ> 0

(R,R)

P

n

(S,S ) n ∈ N

∗

+

⇒P

n

P

∞

n→∞

X

n

S n ∈ N

∗

+

X

n

P

n

n ∈ N

∗

+

→X

n

X

∞

n→∞

(S, d,S ) (T , e,T )

X

n

S n ∈ N

∗

+

g : S→ T D

g

g P

∞

X

∞

→X

n

X

∞

n→∞ ( ) = 0P

∞

D

g

g( ) → g( )X

n

X

∞

n→∞

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10148?pdf


3.8.12 https://stats.libretexts.org/@go/page/10148

By Skorohod's theorem, there exists random variables  with values in  for , defined on the same probability space 
, such that  has the same distribution as  for , and  as  with probability 1. Since 

 it follows that  as  with probability 1. Hence  as 
 in distribution. But  has the same distribution as  for each .

A simple consequence of the continuity theorem is that if a sequence of random vectors in  converge in distribution, then the
sequence of each coordinate also converges in distribution. Let's just consider the two-dimensional case to keep the notation
simple.

Suppose that  is a random variable with values in  for  and that  as  in
distribution. Then

1.  as  in distribution.
2.  as  in distribution.

Scheffé's Theorem

Our next discussion concerns an important result known as Scheffé's theorem, named after Henry Scheffé. To state our theorem,
suppose that  is a measure space, so that  is a set,  is a -algebra of subsets of , and  is a positive measure on 

. Further, suppose that  is a probability measure on  that has density function  with respect to  for each 
, and that  is a probability measure on  that has density function  with respect to .

If  as  for almost all  (with respect to ) then  as  uniformly in .

Proof

From basic properties of the integral it follows that for ,

Let , and let  denote the positive part of  and  the negative part of . Note that  and  as 
 almost everywhere on . Since  is a probability density function, it is trivially integrable, so by the dominated

convergence theorem,  as . But  so . Therefore 
 as . Hence  as  uniformly in .

Of course, the most important special cases of Scheffé's theorem are to discrete distributions and to continuous distributions on a
subset of , as in the theorem above on density functions.

Expected Value

Generating functions are studied in the chapter on Expected Value. In part, the importance of generating functions stems from the
fact that ordinary (pointwise) convergence of a sequence of generating functions corresponds to the convergence of the
distributions in the sense of this section. Often it is easier to show convergence in distribution using generating functions than
directly from the definition.

In addition, converence in distribution has elegant characterizations in terms of the convergence of the expected values of certain
types of functions of the underlying random variables.

This page titled 3.8: Convergence in Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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3.9: General Distribution Functions
    

Our goal in this section is to define and study functions that play the same role for positive measures on  that (cumulative)
distribution functions do for probability measures on . Of course probability measures on  are usually associated with real-
valued random variables. These general distribution functions are useful for constructing measures on  and will appear in our
study of integrals with respect to a measure in the next section, as well as non-homogeneous Poisson processes and general renewal
processes.

Basic Theory
Throughout this section, our basic measurable space is , where  is the -algebra of Borel measurable subsets of , and as
usual, we will let  denote Lebesgue measure on . As with cumulative distribution functions, it's convenient to have
compact notation for the limits of a function  from the left and right at , and at  and  (assuming of course
that these limits exist):

Distribution Functions and Their Measures

A function  that satisfies the following properties is a distribution function on 

1.  is increasing: if  then .
2.  is continuous from the right:  for all .

Since  is increasing,  exists in . Similarly  exists, as a real number or , and  exists, as a real number or 
.

If  is a distribution function on , then there exists a unique positive measure  on  that satisfies

Proof

Let  denote the collection of subsets of  consisting of intervals of the form  where  with , and intervals
of the form  and  where . Then  is a semi-algebra. That is, if  then , and if 

 then  is the union of a finite number (actually one or two) sets in . We define  on  by ,
 and . Note that  contains the empty set via intervals of the form 

 where , but the definition gives . Next,  is finitely additive on . That is, if  is a finite,
disjoint collection of sets in  and , then

Next,  is countably subadditive on . That is, if  and  where  is a countable collection of
sets in  then

Finally,  is clearly -finite on  since  for  with , and  is a countable, disjoint union of intervals
of this form. Hence it follows from the basic extension and uniqueness theorems that  can be extended uniquely to a measure
on the .

For the final uniqueness part, suppose that  is a measure on  satisfying  for  with .
Then by the continuity theorem for increasing sets,  and  for .
Hence  is the unique measure constructed above.

R

R R

R

(R,R) R σ R

λ (R,R)

F : R→R x ∈ R ∞ −∞

F ( ) = F (t), F ( ) = F (t), F (∞) = F (t), F (−∞) = F (t)x

+

lim

t↓x

x

−

lim

t↑x

lim

t→∞

lim

t→−∞

(3.9.1)

F : R→R R

F x ≤ y F (x) ≤ F (y)

F F ( ) = F (x)x

+

x ∈ R

F F ( )x

−

R F (∞) ∞ F (−∞)

−∞

F R μ R

μ(a, b] = F (b)−F (a), a, b ∈ R, a≤ b (3.9.2)

I R (a, b] a, b ∈ R a≤ b

(−∞, a] (a,∞) a ∈ R I A, B ∈I A∩B ∈I

A ∈I A

c

I μ I μ(a, b] = F (b)−F (a)

μ(−∞, a] = F (a)−F (−∞) μ(a,∞) = F (∞)−F (a) I

(a, a] a ∈ R μ(∅) = 0 μ I { : i ∈ I}A

i

I ∈I⋃

i∈I

A

i

μ( ) = μ( )⋃

i∈I

A

i

∑

i∈I

A

i

(3.9.3)

μ I A ∈I A⊆⋃

i∈I

A

i

{ : i ∈ I}A

i

I

μ(A) ≤ μ( )∑

i∈I

A

i

(3.9.4)

μ σ I μ(a, b] <∞ a, b ∈ R a< b R

μ

R = σ(I )

μ R μ(a, b] = F (b)−F (a) a, b ∈ R a< b

μ(−∞, a] = F (a)−F (−∞) μ(a,∞) = F (∞)−F (a) a ∈ R

μ
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The measure  is called the Lebesgue-Stieltjes measure associated with , named for Henri Lebesgue and Thomas Joannes
Stieltjes. A very rich variety of measures on  can be constructed in this way. In particular, when the function  takes values in 

, the associated measure  is a probability measure. Another special case of interest is the distribution function defined by 
 for , in which case  is the length of the interval  and therefore , Lebesgue measure on . But

although the measure associated with a distribution function is unique, the distribution function itself is not. Note that if  then
the distribution function defined by  for  also generates Lebesgue measure. This example captures the general
situation.

Suppose that  and  are distribution functions that generate the same measure  on . Then there exists  such that 
.

Proof

For , note that . The common value is  if  and  if . Thus 
 for .

Returning to the case of a probability measure  on , the cumulative distribution function  that we studied in this chapter is the
unique distribution function satisfying . More generally, having constructed a measure from a distribution function,
let's now consider the complementary problem of finding a distribution function for a given measure. The proof of the last theorem
points the way.

Suppose that  is a positive measure on  with the property that  if  is bounded. Then there exists a
distribution function that generates .

Proof

Define  on  by

Then  by the assumption on . Also  is increasing: if  then  by the increasing
property of a positive measure. Similarly, if , the , so . Finally, if ,
then  and . Next,  is continuous from the right: Suppose that  for  and  as 

. If  then  by the continuity theorem for decreasing sets, which applies since the measures are
finite. If  then  by the continuity theorem for increasing sets. So in both cases,  as 

. Hence  is a distribution function, and it remains to show that it generates . Let  with . If  then
 by the difference property of a positive measure. Similarly, if  then 

. Finally, if  and , then 

.

In the proof of the last theorem, the use of 0 as a “reference point” is arbitrary, of course. Any other point in  would do as well,
and would produce a distribution function that differs from the one in the proof by a constant. If  has the property that 

 for , then it's easy to see that  defined by  for  is a distribution function that
generates , and is the unique distribution function with . Of course, in the case of a probability measure, this is the
cumulative distribution function, as noted above.

Properties

General distribution functions enjoy many of the same properties as the cumulative distribution function (but not all because of the
lack of uniqueness). In particular, we can easily compute the measure of any interval from the distribution function.

Suppose that  is a distribution function and  is the positive measure on  associated with . For  with ,

1. 
2. 
3. 
4. 

Proof

μ F

R F

[0, 1] P

F (x) = x x ∈ R μ(a, b] (a, b] μ= λ R

c ∈ R

F (x) = x+c x ∈ R

F G μ R c ∈ R

G= F +c

x ∈ R F (x)−F (0) =G(x)−G(0) μ(0, x] x ≥ 0 −μ(x, 0] x < 0

G(x) = F (x)−F (0)+G(0) x ∈ R

P R F

F (−∞) = 0

μ (R,R) μ(A) <∞ A

μ

F R

F (x) ={

μ(0, x],

−μ(x, 0],

x ≥ 0

x < 0

(3.9.5)

F : R→R μ F 0 ≤ x ≤ y μ(0, x] ≤ μ(0, y]

x ≤ y ≤ 0 μ(x, 0] ≥ μ(y, 0] −μ(x, 0] ≤−μ(y, 0] x ≤ 0 ≤ y

−μ(x, 0] ≤ 0 μ(0, y] ≥ 0 F ∈ Rx

n

n ∈ N

+

↓ xx

n

n→∞ x ≥ 0 μ(0, ] ↓ μ(0, x]x

n

x < 0 μ( , 0] ↑ μ(x, 0]x

n

F ( ) ↓ F (x)x

n

n→∞ F μ a, b ∈ R a≤ b a≥ 0

μ(a, b] = μ(0, b] −μ(0, a] = F (b)−F (a) b ≤ 0

μ(a, b] = μ(a, 0] −μ(b, 0] =−F (a)+F (b) a≤ 0 b ≥ 0

μ(a, b] = μ(a, 0] +μ(0, b] = −F (a)+F (b)

R

μ

μ(−∞, x] <∞ x ∈ R F F (x) = μ(−∞, x] x ∈ R

μ F (−∞) = 0

F μ (R,R) F a, b ∈ R a< b

μ[a, b] = F (b)−F ( )a

−

μ{a} = F (a)−F ( )a

−

μ(a, b) = F ( )−F (a)b

−

μ[a, b) = F ( )−F ( )b

−

a

−

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10149?pdf


3.9.3 https://stats.libretexts.org/@go/page/10149

All of these results follow from the continuity theorems for a positive measure. Suppose that  is a sequence of
distinct points in .

1. If  as  then  so  as . But also 
 as .

2. This follows from (a) by taking 
3. If  as  then  so  as . But also 

 as .
4. From (a) and (b) and the difference rule,

Note that  is continuous at  if and only if . In particular,  is a continuous measure (recall that this means that 
 for all ) if and only if  is continuous on . On the other hand,  is discontinuous at  if and only if 
, so that  has an atom at . So  is a discrete measure (recall that this means that  has countable support) if and only if

 is a step function.

Suppose again that  is a distribution function and  is the positive measure on  associated with . If  then

1. 
2. 
3. 
4. 
5. 

Proof

The proofs, as before, just use the continuity theorems. Suppose that  is a sequence of distinct points in 

1. If  as  then  so  as . But also 
 as 

2. Similarly, if  as  then  so  as . But also 
 as 

3. If  as  then  so  as . But also 
 as 

4. Similarly, if  as  then  so  as . But also 
 as 

5. .

Distribution Functions on 

Positive measures and distribution functions on  are particularly important in renewal theory and Poisson processes, because
they model random times.

The discrete case. Suppose that  is discrete, so that there exists a countable set  with . Let 
 for  so that  is the density function of  with respect to counting measure on . If  is

locally bounded then

Figure : A discrete measure

In the discrete case, the distribution is often arithmetic. Recall that this means that the countable set  is of the form 
for some . In the following results,

( , ,…)x
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x

2

R

↑ ax

n

n→∞ ( , b] ↑ [a, b]x
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μ( , b] ↑ μ[a, b]x

n

n→∞
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n

x

n
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−
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↑ bx

n

n→∞ (a, ] ↑ (a, b)x
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n

n→∞
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x

n

b
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n→∞
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−

b

−
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−

a

−

(3.9.6)

F x ∈ R μ{x} = 0 μ

μ{x} = 0 x ∈ R F R F x ∈ R

μ{x} > 0 μ x μ μ

F

F μ (R,R) F a ∈ R

μ(a,∞) = F (∞)−F (a)

μ[a,∞) = F (∞)−F ( )a

−

μ(−∞, a] = F (a)−F (−∞)

μ(−∞, a) = F ( )−F (−∞)a
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μ(R) = F (∞)−F (−∞)
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[0,∞)

[0,∞)

G C ⊂ [0,∞) G( ) = 0C

c

g(t) =G{t} t ∈ C g G C u : [0,∞)→R

u(s)dG(s) = u(s)g(s)∫

t

0

∑
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The continuous case. Suppose that  is absolutely continuous with respect to Lebesgue measure on  with density
function . If  is locally bounded then

Figure : A continuous measure

The mixed case. Suppose that there exists a countable set  with  and , and that  restricted
to subsets of  is absolutely continuous with respect to Lebesgue measure. Let  for  and let  be a density
with respect to Lebesgue measure of  restricted to subsets of . If  is locally bounded then,

Figure : A mixed measure

The three special cases do not exhaust the possibilities, but are by far the most common cases in applied problems.

This page titled 3.9: General Distribution Functions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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∫

t

0

(3.9.8)

3.9.2
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3.10: The Integral With Respect to a Measure
      

Probability density functions have very different interpretations for discrete distributions as opposed to continuous distributions. For a discrete
distribution, the probability of an event is computed by summing the density function over the outcomes in the event, while for a continuous
distribution, the probability is computed by integrating the density function over the outcomes. For a mixed distributions, we have partial discrete
and continuous density functions and the probability of an event is computed by summing and integrating. The various types of density functions
can unified under a general theory of integration, which is the subject of this section. This theory has enormous importance in probability, far
beyond just density functions. Expected value, which we consider in the next chapter, can be interpreted as an integral with respect to a
probability measure. Beyond probability, the general theory of integration is of fundamental importance in many areas of mathematics.

Basic Theory

Definitions

Our starting point is a measure space . That is,  is a set,  is a -algebra of subsets of , and  is a positive measure on . As
usual, the most important special cases are

Euclidean space:  for some , , the -algebra of Lebesgue measurable subsets of , and , standard -
dimensional Lebesgue measure.
Discrete space:  is a countable set,  is the collection of all subsets of , and , counting measure.
Probability space:  is the set of outcomes of a random experiment,  is the -algebra of events, and , a probability measure.

The following definition reflects the fact that in measure theory, sets of measure 0 are often considered unimportant.

Consider a statement with  as a free variable. Technically such a statement is a predicate on . Suppose that .

1. The statement holds on  if it is true for every .
2. The statement holds almost everywhere on  (with respect to ) if there exists  with  such that the statement holds on 

and .

A typical statement that we have in mind is an equation or an inequality with  as a free variable. Our goal is to define the integral of certain
measurable functions , with respect to the measure . The integral may exist as a number in  (in which case we say that  is
integrable), or may exist as  or , or may not exist at all. When it exists, the integral is denoted variously by

We will use the first two.

Since the set of extended real numbers  plays an important role in the theory, we need to recall the arithmetic of  and 
. Here are the conventions that are appropriate for integration:

Arithmetic on 

1. If  then  and 
2. If  then  and 
3.  and 
4. If  then  and 
5. 
6. 

However,  is not defined (because it does not make consistent sense) and we must be careful never to produce this indeterminate form.
You might recall from calculus that  is also an indeterminate form. However, for the theory of integration, the convention that  is
convenient and consistent. In terms of order of course,  for .

We also need to extend topology and measure to . In terms of the first,  is an open neighborhood of  and  is an open
neighborhood of  for every . This ensures that if  for  then  or  as  has its usual calculus
meaning. Technically this topology results in the two-point compactification of . Now we can give  the Borel -algebra , that is, the -
algebra generated by the topology. Basically, this simply means that if  then , , and  are all in .

Desired Properties

As motivation for the definition, every version of integration should satisfy some basic properties. First, the integral of the indicator function of a
measurable set should simply be the size of the set, as measured by . This gives our first definition:

(S,S ,μ) S S σ S μ S

S =R

n

n ∈ N

+

S =R

n

σ R

n

μ= λ

n

n

S S S μ=#

S S σ μ= P

x ∈ S S A ∈S

A x ∈ A

A μ B ∈S B⊆A B

μ(A ∖B) = 0

x ∈ S

f : S→R μ R f

∞ −∞

f dμ, f(x)dμ(x), f(x)μ(dx)∫

S

∫

S

∫

S

(3.10.1)
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If  then .

This definition hints at the intimate relationship between measure and integration. We will construct the integral from the measure  in this
section, but this first property shows that if we started with the integral, we could recover the measure. This property also shows why we need 
as a possible value of the integral, and coupled with some of the properties below, why  is also needed. Here is a simple corollary of our first
definition.

Proof

Note that .

We give three more essential properties that we want. First are the linearity properties in two parts—part (a) is the additive property and part (b)
is the scaling property.

If  are measurable functions whose integrals exist, and , then

1.  as long as the right side is not of the form 
2. .

The additive property almost implies the scaling property

The steps below do not constitute a proof because questions of the existence of the integrals are ignored and because the limit interchange in
the last step is not justified. Still, the argument shows the close relationship between the additive property and the scaling property.

1. If , then by (a) and induction, .
2. From step (1), if  then  so .
3. If  then from steps (1) and (2) .
4.  so .
5. By steps (3) and (4),  for every  (the set of rational real numbers).
6. If  there exists  for  with  as . By step (5), .
7. Taking limits in step (6) suggests .

To be more explicit, we want the additivity property (a) to hold if at least one of the integrals on the right is finite, or if both are  or if both are 
. What is ruled out are the two cases where one integral is  and the other is , and this is what is meant by the indeterminate form 

. Our next essential properties are the order properties, again in two parts—part (a) is the positive property and part (b) is the increasing
property.

Suppose that  are measurable.

1. If  on  then .
2. If the integrals of  and  exist and  on  then 

The positive property and the additive property imply the increasing property

Implicit in part (a) is that the integral of a nonnegative, measurable function always exists in . Suppose that the integrals of  and 
exist and  on . Then  on  and . If , then trivially. . Otherwise, by the
additivity property,

But  (so in particular the right side is not ), and hence 

Our last essential property is perhaps the least intuitive, but is a type of continuity property of integration, and is closely related to the continuity
property of positive measure. The official name is the monotone convergence theorem.

Suppose that  is measurable for  and that  is increasing in . Then

Note that since  is increasing in ,  exists in  for each  (and the limit defines a measurable function). This
property shows that it is sometimes convenient to allow nonnegative functions to take the value . Note also that by the increasing property, 

 is increasing in  and hence also has a limit in .
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To see the connection with measure, suppose that  is an increasing sequence of sets in , and let . Note that  is
increasing in  and  as . For this reason, the union  is sometimes called the limit of  as . The continuity
theorem of positive measure states that  as . Equivalently,  as , so the continuity theorem
of positive measure is a special case of the monotone convergence theorem.

Armed with the properties that we want, the definition of the integral is fairly straightforward, and proceeds in stages. We give the definition
successively for

1. Nonnegative simple functions
2. Nonnegative measurable functions
3. Measurable real-valued functions

Of course, each definition should agree with the previous one on the functions that are in both collections.

Simple Functions

A simple function on  is simply a measurable, real-valued function with finite range. Simple functions are usually expressed as linear
combinations of indicator functions.

Representations of simple functions

1. Suppose that  is a finite index set,  for each , and  is a collection of sets in  that partition . Then 
 is a simple function. Expressing a simple function in this form is a representation of .

2. A simple function  has a unique representation as  where  is a finite index set,  is a set of distinct real
numbers, and  is a collection of nonempty sets in  that partition . This representation is known as the canonical
representation.

Proof
1. Note that  is measurable since  for each . Also  has finite range since  is finite. Specifically, the range of  consists of

the distinct  for  with .
2. Suppose that  is simple. Let  denote the (distinct) values in the range of  and let  for . Then  is finite,

 is a collection of nonempty sets in  that partition , and . Conversely, suppose that  has a
representation of this form. Then  is the range of  and  so the representation is unique.

You might wonder why we don't just always use the canonical representation for simple functions. The problem is that even if we start with
canonical representations, when we combine simple functions in various ways, the resulting representations may not be canonical. The collection
of simple functions is closed under the basic arithmetic operations, and in particular, forms a vector space.

Suppose that  and  are simple functions with representations  and , and that . Then

1.  is simple, with representation .
2.  is simple, with representation .
3.  is simple, with representation .

Proof

Since  and  are measurable, so are , , and . Moreover, since  and  have finite range, so do , , and . For the
representations in parts (a) and (b), note that  is finite,  is a collection of sets in  that partition , and on 

,  and .

As we alluded to earlier, note that even if the representations of  and  are canonical, the representations for  and  may not be. The next
result treats composition, and will be important for the change of variables theorem in the next section.

Suppose that  is another measurable space, and that  is measurable. If  is a simple function on  with representation 
, then  is a simple function on  with representation .

Proof

Recall that  and  so  has finite range.  is measurable, and inverse images preserve all set
operations, so  is a measurable partition of . Finally, if  then  so .

Given the definition of the integral of an indicator function in (3) and that we want the linearity property (5) to hold, there is no question as to
how we should define the integral of a nonnegative simple function.

Suppose that  is a nonnegative simple function, with the representation  where  for . We define
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The definition is consistent

Consistency refers to the fact that a simple function can have more than one representation as a linear combination of indicator functions, and
hence we must show that all such representations lead to the same value for the integral. Let  denote the set of distinct elements
among the numbers  where  and . For , let  and let . Thus, , and
this is the canonical representation. Note that

The first sum is the integral defined in terms of the general representation  while the last sum is the integral defined in terms
of the unique canonical representation . Thus, any representation of a simple function  leads to the same value for the
integral.

Note that if  is a nonnegative simple function, then  exists in , so the order properties holds. We next show that the linearity
properties are satisfied for nonnegative simple functions.

Suppose that  and  are nonnegative simple functions, and that . Then

1. 
2. 

Proof

Suppose that  and  are nonnegative simple functions with the representations  and . Thus  for 
,  for , and  and .

1. As noted above,  has the representation

Note that  is a partition of  for each , and similarly  is a partition of  for each .
Hence

Note that all the terms are nonnegative (although some may be ), so there are no problems with rearranging the order of the terms.
2. This part is easer. For , recall that  has the representation  so

The increasing property holds for nonnegative simple functions.

Suppose that  and  are nonnegative simple functions and  on . Then 

Proof

The proof from the additive property above works. Note that  is a nonnegative simple function, and . By the additivity
property, .

Next we give a version of the continuity theorem in (7) for simple functions. It's not completely general, but will be needed for the next
subsection where we do prove the general version.

Suppose that  is a nonnegative simple function and that  is an increasing sequence of sets in  with . then
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Proof

Suppose that  has the representation . Then  and similarly, 
. But for each ,  is increasing in  and . By the continuity theorem for

positive measures,  as  for each . Since  is finite,

Note that  is increasing in  and  as , so this really is a special case of the monotone convergence theorem.

Nonnegative Functions

Next we will consider nonnegative measurable functions on . First we note that a function of this type is the limit of nonnegative simple
functions.

Suppose that  is measurable. Then there exists an increasing sequence  of nonnegative simple functions with 
 on  as .

Proof

For  and  Let  and . Note that

1.  is a partition of  for each .
2.  for .

3.  for .

Note that the th partition divides the interval  into  subintervals of length . Thus, (b) follows because the st partition
divides each of the first  intervals of the th partition in half, and (c) follows because the st partition divides the interval 

 into subintervals of length . Now let  and  for  and . Since
inverse images preserve all set operations, (a), (b), and (c) hold with  replacing  everywhere, and  replacing  in (a). Moreover,
since  is measurable,  and  for each  and . Now, define

Then  is a simple function and  for each . To show convergence, fix . If  then 
and hence  as . All that remains is to show that  is increasing in . Let  and . If  for some 

, then . But either  or . If  then 
. But either  for some  or . In all cases, 

.

The last result points the way towards the definition of the integral of a measurable function  in terms of the integrals of simple
functions. If  is a nonnegative simple function with , then by the order property, we need . On the other hand, there
exists a sequence of nonnegative simple function converging to . Thus the continuity property suggests the following definition:

If  is measurable, define

Note that  exists in  so the positive property holds. Note also that if  is simple, the new definition agrees with the old one. As
always, we need to establish the essential properties. First, the increasing property holds.

If  are measurable and  on  then .

Proof

Note that . therefore
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We can now prove the continuity property known as the monotone convergence theorem in full generality.

Suppose that  is measurable for  and that  is increasing in . Then

Proof

Let . By the order property, note that  is increasing in  and hence has a limit in , which we will denote by
. Note that  on  for , so by the order property again,  for . Letting  gives .

To show that  we need to show that  for every simple function  with . Fix  and let 
. Since  is increasing in , . Moreover, since  as  on  and  on , 

. But by definition,  on  so

Letting  in the extreme parts of the displayed inequality and using the version of the monotone convergence theorem for simple
functions, we have  for every . Finally, letting  gives 

If  is measurable, then by the theorem above, there exists an increasing sequence  of simple functions with  as
. By the monotone convergence theorem in (18),  as . These two facts can be used to establish other

properties of the integral of a nonnegative function based on our knowledge that the properties hold for simple functions. This type of argument
is known as bootstrapping. We use bootstrapping to show that the linearity properties hold:

If  are measurable and , then

1. 
2. 

Proof
1. Let  and  be increasing sequences of nonnegative simple functions with  and  as . Then 

 is also an increasing sequence of simple functions, and  as . By the monotone
convergence theorem, , , and  as . But 

 for each  so taking limits gives .
2. Similarly,  is an increasing sequence of nonnegative simple functions with  as . Again, by the MCT, 

 and  as . But  so taking limits gives .

General Functions

Our final step is to define the integral of a measurable function . First, recall the positive and negative parts of :

Note that , , , and . Given that we want the integral to have the linearity properties in (5), there is no
question as to how we should define the integral of  in terms of the integrals of  and , which being nonnegative, are defined by the
previous subsection.

If  is measurable, we define

assuming that at least one of the integrals on the right is finite. If both are finite, then  is said to be integrable.

Assuming that either the integral of the positive part or the integral of the negative part is finite ensures that we do not get the dreaded
indeterminate form .

Suppose that  is measurable. Then  is integrable if and only if .

Proof

Suppose that  is integrable. Recall that . By the additive property for nonnegative functions, 
. Conversely, suppose that . Then  and  so by the increasing

property for nonnegative functions,  and .
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g

1

f

2

g

2

+ → f +gf

n

g

n

n→∞

dμ→ f dμ∫

S

f

n

∫

S

dμ→ gdμ∫

S

g

n

∫

S

( + )dμ→ (f +g)dμ∫

S

f

n

g

n

∫

S

n→∞

( + )dμ= dμ+ dμ∫

S

f

n

g

n

∫

S

f

n

∫

S

g

n

n ∈ N

+

(f +g)dμ= f dμ+ gdμ∫

S

∫

S

∫

S

(c , c ,…)f

1

f

2

c → cff

n

n→∞

dμ→ f dμ∫

S

f

n

∫

S

c dμ→ cf dμ∫

S

f

n

∫

S

n→∞ c dμ= c dμ∫

S

f

n

∫

S

f

n

cf dμ= c f dμ∫

S

∫

S

f : S→R x ∈ R

=max{x, 0}, =max{−x, 0}x

+

x

−

(3.10.19)

≥ 0x

+

≥ 0x

−

x = −x

+

x

−

|x| = +x

+

x

−

f f

+

f

−

f : S→R

f dμ= dμ− dμ∫

S

∫

S

f

+

∫

S

f

−

(3.10.20)

f

∞−∞

f : S→R f |f | dμ<∞∫

S

f |f | = +f

+

f

−

|f | dμ= dμ+ dμ<∞∫

S

∫

S

f

+

∫

S

f

−

|f | dμ<∞∫

S

≤ |f |f

+

≤ |f |f

−

dμ≤ |f | dμ<∞∫

S

f

+

∫

S

dμ≤ |f | dμ<∞∫

S

f

−

∫

S
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Note that if  is nonnegative, then our new definition agrees with our old one, since  and . For simple functions the integral has
the same basic form as for nonnegative simple functions:

Suppose that  is a simple function with the representation . Then

assuming that the sum does not have both  and  terms.

Proof

Note that  and  are also simple, with the representations  and . hence

as long as one of the sums is finite. Given that this is the case, we can recombine the sums to get

Once again, we need to establish the essential properties. Our first result is an intermediate step towards linearity.

If  are measurable then  as long as at least one of the integrals on the right is finite.

Proof

We take cases. Suppose first that  and . Note that  and . By the increasing property
for nonnegative functions,  and . Thus  is integrable. Next we have 

 and therefore . All four of the functions in the last equation are nonnegative,
and therefore by additivity property for nonnegative functions, we have

All of these integrals are finite, and hence

Next suppose that  and . Then  and hence . Using the additivity and
increasing properties for nonnegative functions, we have . Since  we must have 

. On the other hand,  so . Hence 

Finally, suppose that  and . By the argument in the last paragraph, we have  and 
. Equivalently,  and . Hence .

We finally have the linearity properties in full generality.

If  are measurable functions whose integrals exist, and , then

1.  as long as the right side is not of the form .
2. 

Proof
1. Note that  and the two functions in parentheses in the last expression are

nonnegative. By the previous lemma and the additivity property for nonnegative functions, we have

assuming that either both integrals in the first parentheses are finite or both integrals in the second parentheses are finite. In either case,
we can group the terms (without worrying about the dreaded ) to get

f = ff

+

= 0f

−

f f =∑

i∈I

a

i

1

A

i

f dμ= μ( )∫

S

∑

i∈I

a

i

A

i

(3.10.21)

∞ −∞

f

+

f

−

=f

+

∑

i∈I

a

+

i

1

A

i

=f

−

∑

i∈I

a

−

i

1

A

i

f dμ= μ( )− μ( )∫

S

∑

i∈I

a

+

i

A

i

∑

i∈I

a

−

i

A

i

(3.10.22)

f dμ= μ( )∫

S

∑

i∈I

a

i

A

i

(3.10.23)

f , g : S→ [0,∞) (f −g)dμ= f dμ− gdμ∫

S

∫

S

∫

S

f dμ<∞∫

S

gdμ<∞∫

S

(f −g ≤ f)

+

(f −g ≤ g)

−

(f −g dμ≤ f dμ<∞∫

S

)

+

∫

S

(f −g dμ≤ gdμ<∞∫

S

)

−

∫

S

f −g

f −g= (f −g −(f −g)

+

)

−

f +(f −g = g+(f −g)

−

)

+

f dμ+ (f −g dμ= gdμ+ (f −g dμ∫

S

∫

S

)

−

∫

S

∫

S

)

+

(3.10.24)

(f −g)dμ= (f −g dμ− (f −g dμ= f dμ− gdμ∫

S

∫

S

)

+

∫

S

)

−

∫

S

∫

S

(3.10.25)

f dμ=∞∫

S

gdμ<∞∫

S

f −g≤ (f −g)

+

f ≤ (f −g +g)

+

∞= f dμ≤ (f −g dμ+ gdμ∫

S

∫

S

)

+

∫

S

gdμ<∞∫

S

(f −g dμ=∞∫

S

)

+

(f −g ≤ g)

−

(f −g dμ≤ gdμ<∞∫

S

)

−

∫

S

(f −g)dμ=∞= f dμ− gdμ∫

S

∫

S

∫

S

f dμ<∞∫

S

gdμ=∞∫

S

(g−f dμ=∞∫

S

)

+

(g−f dμ<∞∫

S

)

−

(f −g dμ<∞∫

S

)

+

(f −g dμ=∞∫

S

)

−

(f −g)dμ=−∞= f dμ− gdμ∫

S

∫

S

∫

S

f , g : S→R c ∈ R

(f +g)dμ= f dμ+ gdμ∫

S

∫

S

∫

S

∞−∞

cf dμ= c f dμ∫

S

∫

S

f +g= ( − )+( − ) = ( + )−( + )f

+

f

−

g

+

g

−

f

+

g

+

f

−

g

−

(f +g)dμ∫

S

= ( + )dμ− ( + )dμ∫

S

f

+

g

+

∫

S

f

−

g

−

=( dμ+ dμ)−( dμ+ dμ)∫

S

f

+

∫

S

g

+

∫

S

f

−

∫

S

g

−

(3.10.26)

(3.10.27)

∞−∞
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2. Note that if  then  and . Hence using the scaling property for nonnegative functions,

On the other hand, if ,  and . Again using the scaling property for nonnegative functions,

In particular, note that if  and  are integrable, then so are  and  for . Thus, the set of integrable functions on  forms a
vector space, which is denoted . The  is in honor of Henri Lebesgue, who first developed the theory. This vector space, and other
related ones, will be studied in more detail in the section on function spaces.

We also have the increasing property in full generality.

If  are measurable functions whose integrals exist, and if  on  then 

Proof

We can use the proof based on the additive property from (6). First  and  on . If  then trivially, 
. Otherwise  and therefore .

The Integral Over a Set

Now that we have defined the integral of a measurable function  over all of , there is a natural extension to the integral of  over a measurable
subset

If  is measurable and , we define

assuming that the integral on the right exists.

If  is a measurable function whose integral exists and , then the integral of  over  exists.

Proof

Note that  and . Also  and . If  exists, then either  or 
. By the increasing property, it follows that either  or , so  exists.

On the other hand, it's clearly possible for  to exist for some , but not .

We could also simply think of  as the integral of a measurable function  over the measure space , where 
 is the -algebra of measurable subsets of , and where  is the restriction of  to . It

follows that all of the essential properties hold for integrals over : the linearity properties, the order properties, and the monotone convergence
theorem. The following property is a simple consequence of the general additive property, and is known as additive property for disjoint
domains.

Suppose that  is a measurable function whose integral exists, and that  are disjoint. then

Proof

Recall that . Hence by the additive property and the previous result,

By induction, the additive property holds for a finite collection of disjoint domains. The extension to a countably infinite collection of disjoint
domains will be considered in the next section on properties of the integral.

(f +g)dμ=( dμ− dμ)+( dμ− dμ) = f dμ+ gdμ∫

S

∫

S

f

+

∫

S

f

−

∫

S

g

+

∫

S

g

−

∫

S

∫

S

(3.10.28)

c ≥ 0 (cf = c)

+

f

+

(cf = c)

−

f

−

cf dμ= (cf dμ− (cf dμ= c dμ− c dμ= c dμ−c dμ= c f dμ∫

S

∫

S

)

+

∫

S

)

−

∫

S

f

+

∫

S

f

−

∫

S

f

+

∫

S

f

−

∫

S

(3.10.29)

c < 0 (cf =−c)

+

f

−

(cf =−c)

−

f

+

cf dμ= (cf dμ− (cf dμ= −c dμ− −c dμ=−c dμ+c dμ= c f dμ∫

S

∫

S

)

+

∫

S

)

−

∫

S

f

−

∫

S

f

+

∫

S

f

−

∫

S

f

+

∫

S

(3.10.30)

f g f +g cf c ∈ R (S,S ,μ)

L (S,S ,μ) L

f , g : S→R f ≤ g S f dμ≤ gdμ∫

S

∫

S

g= f +(g−f) g−f ≥ 0 S f dμ=−∞∫

S

f dμ≤ gdμ∫

S

∫

S

(g−f)dμ≥ 0∫

S

gdμ= f dμ+ (g−f)dμ≥ f dμ∫

S

∫

S

∫

S

∫

S

f S f

f : S→R A ∈S

f dμ= f dμ∫

A

∫

S

1

A

(3.10.31)

f : S→R A ∈S f A

=( f)1

A

+

1

A

f

+

=( f)1

A

−

1

A

f

−

≤1

A

f

+

f

+

≤1

A

f

−

f

−

f dμ∫

S

dμ<∞∫

S

f

+

dμ<∞∫

S

f

−

dμ<∞∫

S

1

A

f

+

dμ<∞∫

S

1

A

f

−

f dμ∫

A

f dμ∫

A

A ∈S f dμ∫

S

f dμ∫

A

f : A→R (A, , )S

A

μ

A

= {B ∈S : B⊆A} = {C ∩A : C ∈S }S

A

σ A μ

A

μ S

A

A

f : S→R A, B ∈S

f dμ= f dμ+ f dμ∫

A∪B

∫

A

∫

B

(3.10.32)

= +1

A∪B

1

A

1

B

f dμ= f dμ= ( f + f) dμ= f dμ+ f dμ= f dμ+ f dμ∫

A∪B

∫

S

1

A∪B

∫

S

1

A

1

B

∫

S

1

A

∫

S

1

B

∫

A

∫

B

(3.10.33)
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Special Cases

Discrete Spaces

Recall again that the measure space  is discrete if  is countable,  is the collection of all subsets of , and  is counting measure on
. Thus all functions  are measurable, and and as we will see, integrals with respect to  are simply sums.

If  then

as long as either the sum of the positive terms or the sum of the negative terms in finite.

Proof

The proof is a bootstrapping argument.

1. Suppose first that  is finite. In this case, every function  is simple and has the representation  where  is
an abbreviation of . Thus the result follows from the definition of the integral.

2. Next suppose that  is countable infinite and . Let  be an increasing sequence of finite subsets of  with 
. Define . Then  is an increasing sequence of simple functions with  as .

Thus

But by definition, the last limit on the right is just .
3. Finally consider the general case where  is countable and . In this case the result follows from the definition of the integral as

 as long as one of the integrals on the right is finite. By (b),  is the sum of the positive terms
and  is the sum of the negative terms.

If the sum of the positive terms and the sum of the negative terms are both finite, then  is integrable with respect to , but the usual term from
calculus is that the series  is absolutely convergent. The result will look more familiar in the special case . Functions on  are
simply sequences, so we can use the more familiar notation  rather than  for a function . Part (b) of the proof (with 

) is just the definition of an infinite series of nonnegative terms as the limit of the partial sums:

Part (c) of the proof is just the definition of a general infinite series

as long as one of the series on the right is finite. Again, when both are finite, the series is absolutely convergent. In calculus we also consider
conditionally convergent series. This means that , , but  exists in . Such series have no place in
general integration theory. Also, you may recall that such series are pathological in the sense that, given any number in , there exists a
rearrangement of the terms so that the rearranged series converges to the given number.

The Lebesgue and Riemann Integrals on 

Consider the one-dimensional Euclidean space  where  is the usual -algebra of Lebesgue measurable sets and  is Lebesgue
measure. The theory developed above applies, of course, for the integral  of a measurable function  over a set . It's not
surprising that in this special case, the theory of integration is referred to as Lebesgue integration in honor of our good friend Henri Lebesgue,
who first developed the theory.

On the other hand, we already have a theory of integration on , namely the Riemann integral of calculus, named for our other good friend
Georg Riemann. For a suitable function  and domain  this integral is denoted , as we all remember from calculus. How are the two
integrals related? As we will see, the Lebesgue integral generalizes the Riemann integral.

To understand the connection we need to review the definition of the Riemann integral. Consider first the standard case where the domain of
integration is a closed, bounded interval. Here are the preliminary definitions that we will need.

Suppose that , where  and .

1. A partition  of  is a finite collection of disjoint subintervals whose union is .

(S,S , #) S S S #

S f : S→R #

f : S→R

f d#= f(x)∫

S

∑

x∈S

(3.10.34)

S f : S→R f = f(x)∑

x∈S

1

x

1

x

1

{x}

S f : S→ [0,∞) ( , ,…)A

1

A

2

S

= S⋃

∞

i=1

A

i

= f(x)f

n

∑

x∈A

n

1

x

( , ,…)f

1

f

2

→ ff

n

n→∞

f d#= d#= f(x)∫

S

lim

n→∞

∫

S

f

n

lim

n→∞

∑

x∈A

n

(3.10.35)

f(x)∑

x∈S

S f : S→R

f d#= d#− d#∫

S

∫

S

f

+

∫

S

f

−

d#∫

S

f

+

− d#∫

S

f

−

f #

f(x)∑

x∈S

S =N

+

S

a

i

a(i) a : S→R

= {1, 2,… ,n}A

n

=∑

i=1

∞

a

i

lim

n→∞

∑

i=1

n

a

i

(3.10.36)

= −∑

i=1

∞

a

i

∑

i=1

∞

a

+

i

∑

i=1

∞

a

−

i

(3.10.37)

=∞∑

∞

i=1

a

+

i

=∞∑

∞

i=1

a

−

i

lim

n→∞

∑

n

i=1

a

i

R

R

∗

R

(R,R,λ) R σ λ

f dμ∫

A

f : R→R A ∈R

R

f A f(x)dx∫

A

f : [a, b] →R a, b ∈ R a< b

A = { : i ∈ I}A

i

[a, b] [a, b]
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2. The norm of a partition  is , the length of the largest subinterval of .
3. A set of points  where  for each  is said to be associated with the partition .
4. The Riemann sum of  corresponding to a partition  and and a set  associated with  is

Note that the Riemann sum is simply the integral of the simple function . Moreover, since  is an interval for each , 
is a step function, since it is constant on a finite collection of disjoint intervals. Moreover, again since  is an interval for each ,  is
simply the length of the subinterval , so of course measure theory per se is not needed for Riemann integration. Now for the definition from
calculus:

 is Riemann integrable on  if there exists  with the property that for every  there exists  such that if  is a partition
of  with  then  for every set of points  associated with . Then of course we define the integral by

Here is our main theorem of this subsection.

If  is Riemann integrable on  then  is Lebesgue integrable on  and

On the other hand, there are lots of functions that are Lebesgue integrable but not Riemann integrable. In fact there are indicator functions of this
type, the simplest of functions from the point of view of Lebesgue integration.

Consider the function  where as usual,  is the set of rational number in . Then

1. .
2.  is not Riemann integrable on any interval  with .

Proof

Part (a) follows from the definition of the Lebesgue integral:

For part (b), note that there are rational and irrational numbers in every interval of  of positive length (the rational numbers and the
irrational numbers are dense in ). Thus, given any partition  of , no matter how small the norm, there are Riemann
sums that are 0 (take  irrational for each ), and Riemann sums that are  (take  rational for each )

The following fundamental theorem completes the picture.

 is Riemann integrable on  if and only if  is bounded on  and  is continuous almost everywhere on .

Now that the Riemann integral is defined for a closed bounded interval, it can be extended to other domains.

Extensions of the Riemann integral.

1. If  is defined on  and Riemann integrable on  for , we define  if the limit exists in 
.

2. If  is defined on  and Riemann integrable on  for , we define  if the limit exists in 
.

3. If  is defined on , we select  and define  if the integrals on the right exist in 
by (a) and (b), and are not of the form .

4. If  is defined an  and Riemann integrable on  for  we define .
5. if  is defined on  and Riemann integrable on  for  we define  if the limit

exists in 
6. if  is defined on  we select  and define  if both integrals on the right exist by (d)

and (e), and are not of the form .

A ∥A∥ =max{λ( ) : i ∈ I}A

i

A

B= { : i ∈ I}x

i

∈x

i

A

i

i ∈ I A

f A B A

R (f ,A ,B) = f( )λ( )∑

i∈I

x

i

A

i

(3.10.38)

g= f( )∑

i∈I

x

i

1

A

i

A

i

i ∈ I g

A

i

i ∈ I λ( )A

i

A

i

f [a, b] r ∈ R ϵ> 0 δ > 0 A

[a, b] ∥A∥ < δ |r−R (f ,A ,B)| < ϵ B A

f(x)dx = r∫

b

a

(3.10.39)

f : [a, b] →R [a, b] f [a, b]

f dλ = f(x)dx∫

[a,b]

∫

b

a

(3.10.40)

1

Q

Q R

dλ = 0∫

R

1

Q

1

Q

[a, b] a< b

dλ = λ(Q) = 0∫

R

1

Q

(3.10.41)

R

R A = { : i ∈ I}A

i

[a, b]

∈x

i

A

i

i ∈ I b−a ∈x

i

A

i

i ∈ I

f : [a, b] →R [a, b] f [a, b] f [a, b]

f [a, b) [a, t] a< t < b f(x)dx = f(x)dx∫

b

a

lim

t↑b

∫

t

a

R

∗

f (a, b] [t, b] a< t < b f(x)dx = f(x)dx∫

b

a

lim

t↓a

∫

b

t

R

∗

f (a, b) c ∈ (a, b) f(x)dx = f(x)dx+ f(x), dx∫

b

a

∫

c

a

∫

b

c

R

∗

∞−∞

f [a,∞) [a, t] a< t <∞ f(x)dx = f(x)dx∫

∞

a

lim

t→∞

∫

t

a

f (−∞, b] [t, b] −∞< t < b f(x)dx = f(x)dx∫

b

−∞

lim

t→−∞

∫

b

t

R

∗

f R c ∈ R f(x)dx = f(x)dx+ f(x)dx∫

∞

−∞

∫

c

−∞

∫

∞

c

∞−∞
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7. The integral is be defined for a domain that is the union of a finite collection of disjoint intervals by the requirement that the integral be
additive over disjoint domains

As another indication of its superiority, note that none of these convolutions is necessary for the Lebesgue integral. Once and for all, we have
defined  for a general measurable function  and a general domain 

The Lebesgue-Stieltjes Integral

Consider again the measurable space  where  is the usual -algebra of Lebesgue measurable subsets of . Suppose that  is a
general distribution function, so that by definition,  is increasing and continuous from the right. Recall that the Lebesgue-Stieltjes measure 
associated with  is the unique measure on  that satisfies

Recall that  satisfies some, but not necessarily all of the properties of a probability distribution function. The properties not necessarily satisfied
are the normalizing properties

 as 
 as 

If  does satisfy these two additional properties, then  is a probability measure and  its probability distribution function.

The integral with respect to the measure  is, appropriately enough, referred to as the Lebesgue-Stieltjes integral with respect to , and like the
measure, is named for the ubiquitous Henri Lebesgue and for Thomas Stieltjes. In addition to our usual notation , the Lebesgue-Stieltjes
integral is also denoted  and .

Probability Spaces

Suppose that  is a probability space, so that  is the set of outcomes of a random experiment,  is the -algebra of events, and  the
probability measure on the sample space . A measurable, real-valued function  on  is, of course, a real-valued random variable. The
integral with respect to , if it exists, is the expected value of  and is denoted

This concept is of fundamental importance in probability theory and is studied in detail in a separate chapter on Expected Value, mostly from an
elementary point of view that does not involve abstract integration. However an advanced section treats expected value as an integral over the
underlying probability measure, as above.

Suppose next that  is a discrete space and that  is a random variable for the experiment, taking values in . In this case  has a
discrete distribution and the probability density function  of  is given by  for . More generally,

On the other hand, suppose that  is a random variable with values in , where as usual,  is -dimensional Euclidean space. If 
has a continuous distribution, then  is a probability density function of  if

Technically,  is the density function of  with respect to counting measure  in the discrete case, and  is the density function of  with
respect to Lebesgue measure  in the continuous case. In both cases, the probability of an event  is computed by integrating the density
function, with respect to the appropriate measure, over . There are still differences, however. In the discrete case, the existence of the density
function with respect to counting measure is guaranteed, and indeed we have an explicit formula for it. In the continuous case, the existence of a
density function with respect to Lebesgue measure is not guaranteed, and indeed there might not be one. More generally, suppose that we have a
measure space  and a random variable  with values in . A measurable function  is a probability density function of 

 (or more precisely, the distribution of ) with respect to  if

This fundamental question of the existence of a density function will be clarified in the section on absolute continuity and density functions.

Suppose again that  is a real-valued random variable with distribution function . Then, by definition, the distribution of  is the Lebesgue-
Stieltjes measure associated with :

f(x)dx∫

A

f : R→R A ∈R

(R,R) R σ R F : R→R

F μ

F R

μ(a, b] = F (b)−F (a); a, b ∈ R, a< b (3.10.42)

F

F (x) → 0 x→−∞

F (x) → 1 x→∞

F μ F

μ F

f dμ∫

S

f dF∫

S

f(x)dF (x)∫

S

(S,S ,P) S S σ P

(S,S ) X S

P X

E(X) = XdP∫

S

(3.10.43)

(T ,T , #) X T X

f X f(x) = P(X = x) x ∈ T

P(X ∈ A) = f(x) = f d#, A⊆ T∑

x∈A

∫

A

(3.10.44)

X R

n

( , , )R

n

R

n

λ

n

n X

f : T → [0,∞) X

P(X ∈ A) = f d , A ∈∫

A

λ

n

R

n

(3.10.45)

f X # f X

λ

n

A

A

(T ,T ,μ) X T f : T → [0,∞)

X X μ

P(X ∈ A) = f dμ, A ∈ T∫

A

(3.10.46)

X F X

F

P(a<X ≤ b) = F (b)−F (a), a, b ∈ R, a< b (3.10.47)
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regardless of whether the distribution is discrete, continuous, or mixed. Trivially,  for  and the expected value of 
 defined above can also be written as . Again, all of this will be explained in much more detail in the next chapter on

Expected Value.

Computational Exercises

Let  for .

1. Find .
2. Show that  does not exist.

Answer
1. 

2. , 

You may recall that the function  in the last exercise is important in the study of the Cauchy distribution, named for Augustin Cauchy. You may
also remember that the graph of  is known as the witch of Agnesi, named for Maria Agnesi.

Let  for  where  is a parameter. Find 

Answer

You may recall that the function  in the last exercise is important in the study of the Pareto distribution, named for Vilfredo Pareto.

Suppose that  if  and  if .

1. Find 
2. Does  exist?

Answer
1. 2
2. No

This page titled 3.10: The Integral With Respect to a Measure is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

P(X ∈ A) = dF∫

S

1

A

A ∈R

X E(X) = x dF (x)∫

R

g(x) =

1

1+x

2

x ∈ R

g(x)dx∫

∞

−∞

xg(x)dx∫

∞

−∞

g(x)dx = π∫

∞

−∞

xg(x)dx =∞∫

∞

0

xg(x)dx =−∞∫

0

−∞

g

g

g(x) =

1

x

b

x ∈ [1,∞) b > 0 g(x)dx∫

∞

1

g(x)dx ={∫

∞

1

∞,

,

1

b−1

0 < b ≤ 1

b > 1

g

f(x) = 0 x ∈ Q f(x) = sin(x) x ∈ R−Q

f(x)dλ(x)∫

[0,π]

f(x)dx∫

π

0

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10150?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/03%3A_Distributions/3.10%3A_The_Integral_With_Respect_to_a_Measure
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random


3.11.1 https://stats.libretexts.org/@go/page/10151

3.11: Properties of the Integral
      

Basic Theory

Again our starting point is a measure space . That is,  is a set,  is a -algebra of subsets of , and  is a positive
measure on .

Definition

In the last section we defined the integral of certain measurable functions  with respect to the measure . Recall that the
integral, denoted , may exist as a number in  (in which case  is integrable), or may exist as  or , or may fail to
exist. Here is a review of how the definition is built up in stages:

Definition of the integral

1. If  is a nonnegative simple function, so that  where  is a finite index set,  for , and 
 is measurable partition of , then

2. If  is measurable, then

3. If  is measurable, then

as long as the right side is not of the form , and where  and  denote the positive and negative parts of .
4. If  is measurable and , then the integral of  over  is defined by

assuming that the integral on the right exists.

Consider a statement on the elements of , for example an equation or an inequality with  as a free variable. (Technically
such a statement is a predicate on .) For , we say that the statement holds on  if it is true for every . We say that
the statement holds almost everywhere on  (with respect to ) if there exists  with  such that the statement holds
on  and .

Basic Properties

A few properties of the integral that were essential to the motivation of the definition were given in the last section. In this section,
we extend some of those properties and we study a number of new ones. As a review, here is what we know so far.

Properties of the integral

1. If  are measurable functions whose integrals exist, then  as long as the
right side is not of the form .

2. If  is a measurable function whose integral exists and , then .
3. If  is measurable and  on  then .
4. If  are measurable functions whose integrals exist and  on  then 
5. If  is measurable for  and  is increasing in  on  then .
6.  is measurable and the the integral of  on  exists, where  are disjoint, then 

.

(S,S ,μ) S S σ S μ

S

f : S →R μ

f dμ∫

S

R f ∞ −∞

f f =∑

i∈I

a

i

1

A

i

I ∈ [0, ∞)a

i

i ∈ I

{ : i ∈ I}A

i

S

f dμ = μ( )∫

S

∑

i∈I

a

i

A

i

(3.11.1)

f : S → [0, ∞)

f dμ = sup{ gdμ : g is simple and 0 ≤ g ≤ f}∫

S

∫

S

(3.11.2)

f : S →R

f dμ = dμ− dμ∫

S

∫

S

f

+

∫

S

f

−

(3.11.3)

∞ −∞ f

+

f

−

f

f : S →R A ∈S f A

f dμ = f dμ∫

A

∫

S

1

A

(3.11.4)

S x ∈ S

S A ∈S A x ∈ A

A μ B ∈S B ⊆ A

B μ(A ∖B) = 0

f , g : S →R (f +g)dμ = f dμ+ gdμ∫

S

∫

S

∫

S

∞ −∞

f : S →R c ∈ R cf dμ = c f dμ∫

S

∫

S

f : S →R f ≥ 0 S f dμ ≥ 0∫

S

f , g : S →R f ≤ g S f dμ ≤ gdμ∫

S

∫

S

: S → [0, ∞)f

n

n ∈ N

+

f

n

n S dμ = dμ∫

S

lim

n→∞

f

n

lim

n→∞

∫

S

f

n

f : S →R f A∪B A, B ∈S

f dμ = f dμ+ f dμ∫

A∪B

∫

A

∫

B
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Parts (a) and (b) are the linearity properties; part (a) is the additivity property and part (b) is the scaling property. Parts (c) and (d)
are the order properties; part (c) is the positive property and part (d) is the increasing property. Part (e) is a continuity property
known as the monotone convergence theorem. Part (f) is the additive property for disjoint domains. Properties (a)–(e) hold with 
replaced by .

Equality and Order

Our first new results are extensions dealing with equality and order. The integral of a function over a null set is 0:

Suppose that  is measurable and  with . Then .

Proof

The proof proceeds in stages via the definition of the integral.

1. Suppose that  is a nonnegative simple function with  on . Then  has the representation  where 
 and  for for . But  for each  and so 

2. Suppose that  is measurable. If  is a nonnegative simple function with , then  on  so by
(a), . Hence by part (b) of (1), .

3. Finally, suppose that  is measurable. Then . But both integrals on the right are
0 by part (b).

Two functions that are indistinguishable from the point of view of  must have the same integral.

Suppose that  is a measurable function whose integral exists. If  is measurable and  almost
everywhere on , then .

Proof

Note that  if and only if  and . Let . Then  and .
Hence by the additivity property and (3),

Similarly . Hence the integral of  exists and 

Next we have a simple extension of the positive property.

Suppose that  is measurable and  almost everywhere on . Then

1. 
2.  if and only if  almost everywhere on .

Proof
1. Let . Then  and . By the additivity of the integral over disjoint sets we have

But  by the positive property and  by the null property, so .
2. Note first that if  then both integrals in the displayed equation are 0 so . For the converse, let 

 for  and . Then  is increasing in  and . If
 then  for some . But  on , so by the increasing property, 

.

So, if  almost everywhere on  then  if and only if . The simple extension of the
positive property in turn leads to a simple extension of the increasing property.

Suppose that  are measurable functions whose integrals exist, and that  almost everywhere on . Then

1. 

S

A ∈S

f : S→R A ∈S μ(A) = 0 f dμ= 0∫

A

g g= 0 A

c

g g=∑

i∈I

a

i

1

A

i

∈ (0,∞)a

i

⊆AA

i

i ∈ I μ( ) = 0A

i

i ∈ I gdμ= μ( ) = 0∫

S

∑

i∈I

a

i

A

i

f : S→ [0,∞) g g≤ f1

A

g= 0 A

c

gdμ= 0∫

S

f dμ= f dμ= 0∫

A

∫

S

1

A

f : S→R f dμ= dμ− dμ∫

A

∫

A

f

+

∫

A

f

−

μ

f : S→R g : S→R g= f

S gdμ= f dμ∫

S

∫

S

g= f =g

+

f

+

=g

−

f

−

A= {x ∈ S : (x) = (x)}g

+

f

+

A ∈S μ( ) = 0A

c

dμ= dμ+ dμ= dμ+0 = dμ+ dμ= dμ∫

S

g

+

∫

A

g

+

∫

A

c

g

+

∫

A

f

+

∫

A

f

+

∫

A

c

f

+

∫

S

f

+

(3.11.5)

dμ= dμ∫

S

g

−

∫

S

f

−

g gdμ= f dμ∫

S

∫

S

f : S→R f ≥ 0 S

f dμ≥ 0∫

S

f = 0∫

S

f = 0 S

A= {x ∈ S : f(x) ≥ 0} A ∈S μ( ) = 0A

c

f dμ= f dμ+ f dμ∫

S

∫

A

∫

A

c

(3.11.6)

f dμ≥ 0∫

A

f dμ= 0∫

A

c

f dμ≥ 0∫

S

μ(A) = 0 f dμ= 0∫

S

= {x ∈ S : f(x) ≥ }B

n

1

n

n ∈ N

+

B= {x ∈ S : f(x) > 0} B

n

n =B⋃

∞

n=1

B

n

μ(B) > 0 μ( ) > 0B

n

n ∈ N

+

f ≥

1

n

1

B

n

A

f dμ= f dμ≥ dμ= μ( ) > 0∫

S

∫

A

∫

A

1

n

1

B

n

1

n

B

n

f ≥ 0 S f dμ> 0∫

S

μ{x ∈ S : f(x) > 0} > 0

f , g : S→R f ≤ g S

f ≤ g∫

S

∫

S
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2. Except in the case that both integrals are  or both ,  if and only if  almost everywhere on .

Proof
1. Note that  and  almost everywhere on . If  then trivially .

Otherwise, by the additive property,

By the positive property,  so .
2. Except in the case that both integrals are  or both are  we have

By assumption  almost everywhere on , and hence by the positive property, the integral on the right is 0 if and
only if  almost everywhere on .

So if  almost everywhere on  then, except in the two cases mentioned,  if and only if 
. The exclusion when both integrals are  or  is important. A counterexample when this

condition does not hold is given below. The next result is the absolute value inequality.

Suppose that  is a measurable function whose integral exists. Then

If  is integrable, then equality holds if and only if  almost everywhere on  or  almost everywhere on .

Proof

First note that  on . The integrals of all three functions exist, so the increasing property and scaling properties
give

which is equivalent to the inequality above. If  is integrable, then by the increasing property, equality holds if and only if 
 almost everywhere on  or  almost everywhere on . In the first case,  almost everywhere on  and in

the second case,  almost everywhere on .

Change of Variables

Suppose that  is another measurable space and that  is measurable. As we saw in our first study of positive
measures,  defined by

is a positive measure on . The following result is known as the change of variables theorem.

If  is measurable then, assuming that the integrals exist,

Proof

We will show that if either of the integrals exist then they both do, and are equal. The proof is a classical bootstrapping
argument that parallels the definition of the integral.

1. Suppose first that  is a nonnegative simple function on  with the representation  where  is a finite
index set,  is a measurable partition of , and  for . Recall that  is a nonnegative simple
function on , with representation . Hence

∞ −∞ f dμ= gdμ∫

S

∫

S

f = g S

g= f +(g−f) g−f ≥ 0 S f dμ=−∞∫

S

f dμ≤ gdμ∫

S

∫

S

gdμ= f dμ+ (g−f)dμ∫

S

∫

S

∫

S

(3.11.7)

(g−f)dμ≥ 0∫

S

gdμ≥ f dμ∫

S

∫

S

∞ −∞

gdμ− f dμ= (g−f)dμ∫

S

∫

S

∫

S

(3.11.8)

g−f ≥ 0 S

g−f = 0 S

f ≤ g S f dμ< gdμ∫

S

∫

S

μ{x ∈ S : f(x) < g(x)} > 0 ∞ −∞

f : S→R

f dμ ≤ |f | dμ

∣

∣

∣∫

S

∣

∣

∣ ∫

S

(3.11.9)

f f ≥ 0 S f ≤ 0 S

−|f | ≤ f ≤ |f | S

− |f | dμ≤ f dμ≤ |f | dμ∫

S

∫

S

∫

S

(3.11.10)

f

f =−|f | S f = |f | S f ≤ 0 S

f ≥ 0 S

(T ,T ) u : S→ T

ν

ν(B) = μ [ (B)] , B ∈ Tu

−1

(3.11.11)

(T ,T )

f : T →R

f dν = (f ∘ u)dμ∫

T

∫

S

(3.11.12)

f T f =∑

i∈I

b

i

1

B

i

I

{ : i ∈ I}B

i

T ∈ [0,∞)b

i

i ∈ I f ∘ u

S f ∘ u =∑

i∈I

b

i

1

( )u

−1

B

i
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2. Next suppose that  is measurable, so that  is also measurable. There exists an increasing
sequence  of nonnegative simple functions on  with  as . Then  is an
increasing sequence of simple functions on  with  as . By step (a),  for
each . But by the monotone convergence theorem,  as  and 

 so we conclude that 
3. Finally, suppose that  is measurable, so that  is also measurable. Note that 

and . By part (b),

Assuming that at least one of the integrals in the displayed equations is finite, we have

The change of variables theorem will look more familiar if we give the variables explicitly. Thus, suppose that we want to evaluate

where again,  and . One way is to use the substitution , find the new measure , and then evaluate

Convergence Properties

We start with a simple but important corollary of the monotone convergence theorem that extends the additivity property to a
countably infinite sum of nonnegative functions.

Suppose that  is measurable for . Then

Proof

Let  for . Then  is measurable and  is increasing in . Moreover, by definition, 
 as . Hence by the MCT,  as . But we know the additivity property

holds for finite sums, so  and again, by definition, this sum converges to  as .

A theorem below gives a related result that relaxes the assumption that  be nonnegative, but imposes a stricter integrability
requirement. Our next result is the additivity of the integral over a countably infinite collection of disjoint domains.

Suppose that  is a measurable function whose integral exists, and that  is a disjoint collection of sets
in . Let . Then

Proof

Suppose first that  is nonnegative. Note that  and hence . Thus from the theorem above,

f dν = ν( ) = μ [ ( )] = (f ∘ u)dμ∫

T

∑

i∈I

b

i

B

i

∑

i∈I

b

i

u

−1

B

i

∫

S

(3.11.13)

f : T → [0,∞) f ∘ u : S→ [0,∞)

( , ,…)f

1

f

2

T → ff

n

n→∞ ( ∘ u, ∘ u,…)f

1

f

2

S ∘ u→ f ∘ uf

n

n→∞ dν = ( ∘ u)dμ∫

T

f

n

∫

S

f

n

n ∈ N

+

dν → f dν∫

T

f

n

∫

T

n→∞

( ∘ u)dμ→ (f ∘ u)dμ∫

S

f

n

∫

S

f dν = (f ∘ u)dμ∫

T

∫

S

f : T →R f ∘ u : S→R (f ∘ u = ∘ u)

+

f

+

(f ∘ u = ∘ u)

−

f

−

dν∫

T

f

+

dν∫

T

f

−

= ( ∘ u)dμ= (f ∘ u dμ∫

S

f

+

∫

S

)

+

= ( ∘ u)dμ= (f ∘ u dμ∫

S

f

−

∫

S

)

−

(3.11.14)

(3.11.15)

f dν = dν− dν = (f ∘ u dμ− (f ∘ u dμ= (f ∘ u)dμ∫

T

∫

T

f

+

∫

T

f

−

∫

S

)

+

∫

S

)

−

∫

S

(3.11.16)

f [u(x)] dμ(x)∫

S

(3.11.17)

u : S→ T f : T →R u = u(x) ν

g(u)dν(u)∫

T

(3.11.18)

: S→ [0,∞)f

n

n ∈ N

+

dμ= dμ∫

S

∑

n=1

∞

f

n

∑

n=1

∞

∫

S

f

n

(3.11.19)

=g

n

∑

n

i=1

f

i

n ∈ N

+

: S→ [0,∞)g

n

g

n

n

→g

n

∑

∞

i=1

f

i

n→∞ dμ→ dμ∫

S

g

n

∫

S

∑

∞

i=1

f

i

n→∞

dμ= dμ∫

S

g

n

∑

n

i=1

∫

S

f

i

dμ∑

∞

i=1

∫

S

f

i

n→∞

f

f : S→R { : n ∈ }A

n

N

+

S A=⋃

∞

n=1

A

n

f dμ= f dμ∫

A

∑

n=1

∞

∫

A

n

(3.11.20)

f =1

A

∑

∞

n=1

1

A

n

f = f1

A

∑

∞

n=1

1

A

n
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Suppose now that  is measurable and  exists. Note that for ,  and 
. Hence from the previous argument,

Both of these are sums of nonnegative terms, and one of the sums, at least, is finite. Hence we can group the terms to get

Of course, the previous theorem applies if  is nonnegative or if  is integrable. Next we give a minor extension of the monotone
convergence theorem that relaxes the assumption that the functions be nonnegative.

Monotone Convergence Theorem. Suppose that  is a measurable function whose integral exists for each 
and that  is increasing in  on . If  then

Proof

Let  for  which exists in  since  is increasing in . If , then
by the increasing property,  for all  and , so the conclusion of the MCT trivially holds.
Thus suppose that  is integrable. Let  for  and let . Then  is nonnegative and increasing in 

 on , and  as  on . By the ordinary MCT,  as . But since  is finite, 
 and . Again since  is finite, it follows that 

 as .

Here is the complementary result for decreasing functions.

Suppose that  is a measurable function whose integral exists for each  and that  is decreasing in  on .
If  then

Proof

The functions  for  satisfy the hypotheses of the MCT for increasing functions and hence 
. By the scaling property, .

The additional assumptions on the integral of  in the last two extensions of the monotone convergence theorem are necessary. An
example is given in below.

Our next result is also a consequence of the montone convergence theorem, and is called Fatou's lemma in honor of Pierre Fatou.
Its usefulness stems from the fact that no assumptions are placed on the integrand functions, except that they be nonnegative and
measurable.

Fatou's Lemma. Suppose that  is measurable for . Then

Proof

f dμ= f dμ= f dμ= f dμ= f dμ∫
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∫
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∞
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∞
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∞
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f : S→R f dμ∫

S

B ∈S =( f)1
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=( f)1
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∞
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f dμ= dμ− dμ= ( − )dμ= f dμ∫
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∞
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f f

: S→Rf
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f(x) = (x)lim

n→∞

f
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dμ=∞∫
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Let  for . Then  is measurable for ,  is increasing in ,
and by definition, . By the MCT,

But  on  for  and  so by the increasing property,  for  and 
. Hence  for  and therefore

Given the weakness of the hypotheses, it's hardly surprising that strict inequality can easily occur in Fatou's lemma. An example is
given below.

Our next convergence result is one of the most important and is known as the dominated convergence theorem. It's sometimes also
known as Lebesgue's dominated convergence theorem in honor of Henri Lebesgue, who first developed all of this stuff in the
context of . The dominated convergence theorem gives a basic condition under which we may interchange the limit and
integration operators.

Dominated Convergence Theorem. Suppose that  is measurable for  and that  exists on .
Suppose also that  for  where  is integrable. Then

Proof

First note that by the increasing property,  and hence  is integrable for . Let 
. Then  is measurable, and by the increasing property again, , so  is integrable.

Now for , let  and let . Then 
for ,  is increasing in ,  is decreasing in , and  and  as . Moreover, 

 so by the version of the MCT above,  as . Similarly, 
, so by the MCT in (11),  as . But by the increasing property, 

 for  so by the squeeze theorem for limits,  as .

As you might guess, the assumption that  is uniformly bounded in  by an integrable function is critical. A counterexample
when this assumption is missing is given below when this assumption is missing. The dominated convergence theorem remains
true if  exists almost everywhere on . The follow corollary of the dominated convergence theorem gives a condition
for the interchange of infinite sum and integral.

Suppose that  is measurable for  and that  is integrable. then

Proof

The assumption that  is integrable implies that  almost everywhere on . In turn, this means that 
is absolutely convergent almost everywhere on . Let  if , and for completeness, let 
if . Since only the integral of  appears in the theorem, it doesn't matter how we define  on the null set where 

. Now let . Then  as  almost everywhere on  and  on . Hence by the
dominated convergence theorem,  as . But we know the additivity property holds for finite sums,
so , and in turn this converges to  as . Thus we have 

.

The following corollary of the dominated convergence theorem is known as the bounded convergence theorem.
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| | dμ≤ gdμ<∞∫
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g= | |∑
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Bounded Convergence Theorem. Suppose that  is measurable for  and there exists  such that 
,  exists on , and  is bounded in  on . Then

Proof

Suppose that  is bounded in  on  by . The constant  is integrable on  since , and 
 on  for . Thus the result follows from the dominated convergence theorem.

Again, the bounded convergence remains true if  exists almost everywhere on . For a finite measure space (and in
particular for a probability space), the condition that  automatically holds.

Product Spaces

Suppose now that  and  are -finite measure spaces. Please recall the basic facts about the product -algebra 
 of subsets of , and the product measure  on . The product measure space  is

the standard one that we use for product spaces. If  is measurable, there are three integrals we might consider. First,
of course, is the integral of  with respect to the product measure 

sometimes called a double integral in this context. But also we have the nested or iterated integrals where we integrate with
respect to one variable at a time:

How are these integrals related? Well, just as in calculus with ordinary Riemann integrals, under mild conditions the three integrals
are the same. The resulting important theorem is known as Fubini's Theorem in honor of the Italian mathematician Guido Fubini.

Fubini's Theorem. Suppose that  is measurable. If the double integral on the left exists, then

Proof

We will show that

The proof with the other iterated integral is symmetric. The proof proceeds in stages, paralleling the definition of the integral.

1. Suppose that  where  and . The equation holds by definition of the product measure, since the
double integral is  and the iterated integral is

2. Consider  where . The double integral is , and so as a function of  defines
the measure . On the other hand, the iterated integral is

where  is the cross-section of  at . Recall that  is a nonnegative,
measurable function of , so  makes sense. Moreover, as a function of , this integral
also forms a measure: If  is a countable, disjoint collection sets in , then  is a countable,
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| |f
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(S,S ,μ) (T ,T , ν) σ σ

S ⊗T S×T μ⊗ν S ⊗T (S×T ,S ⊗T ,μ⊗ν)

f : S×T →R

f μ⊗ν

f(x, y)d(μ⊗ν)(x, y)∫

S×T
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( f(x, y)dν(y)) dμ(x), ( f(x, y)dμ(x)) dν(y)∫
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∫
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∫
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f : S×T →R

f(x, y)d(μ⊗ν)(x, y) = f(x, y)dν(y)dμ(x) = f(x, y)dμ(x)dν(y)∫
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∫
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f(x, y)d(μ⊗ν)(x, y) = f(x, y)dν(y)dμ(x)∫

S×T
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f = 1

A×B
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f = 1

C

C ∈S ⊗T (μ⊗ν)(C) C ∈S ⊗T
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T

1

C

∫

S

∫

T

1

C
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= {y ∈ T : (x, y) ∈ C}C
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disjoint collection of sets in . Cross-sections preserve set operations, so if  then . By the
additivity of the measure  and the integral we have

To summarize, the double integral and the iterated integral define positive measures on . By (a), these measure
agree on the measurable rectangles. By the uniqueness theorem, they must be the same measure. Thus the double integral
and the iterated integral agree with integrand  for every .

3. Suppose  is a nonnegative simple function on . Thus,  is a finite index set,  for ,
and  is a disjoint collection of sets in . The double integral and the iterated integral satisfy the linearity
properties, and hence by (b), agree with integrand .

4. Suppose that  is measurable. Then there exists a sequence of nonnegative simple functions 
such that  is increasing in  on , and  as  on . By the monotone convergence
theorem, . But for fixed ,  is increasing in  on  and has limit 

 as . By another application of the montone convergence theorem,  as
. But  is measurable and is increasing in  on , so by yet another application of the

monotone convergence theorem,  as . But the double
integral and the iterated integral agree with integrand  by (c) for each , so it follows that the double integral and
the iterated integral agree with integrand .

5. Suppose that  is measurable. By (d), the double integral and the iterated integral agree with integrand
functions  and . Assuming that at least one of these is finite, then by the additivity property, they agree with integrand
function .

Of course, the double integral exists, and so Fubini's theorem applies, if either  is nonnegative or integrable with respect to .
When  is nonnegative, the result is sometimes called Tonelli's theorem in honor of another Italian mathematician, Leonida Tonelli.
On the other hand, the iterated integrals may exist, and may be different, when the double integral does not exist. A
counterexample and a second counterexample are given below.

A special case of Fubini's theorem (and indeed part of the proof) is that we can compute the measure of a set in the product space
by integrating the cross-sectional measures.

If  then

where  for , and  for .

In particular, if  have the property that  for all , or  for all  (that is, 
 and  have the same cross-sectional measures with respect to one of the variables), then . In  with

area, and in  with volume (Lebesgue measure in both cases), this is known as Cavalieri's principle, named for Bonaventura
Cavalieri, yet a third Italian mathematician. Clearly, Italian mathematicians cornered the market on theorems of this sort.

A simple corollary of Fubini's theorem is that the double integral of a product function over a product set is the product of the
integrals. This result has important applications to independent random variables.

Suppose that  and  are measurable, and are either nonnegative or integrable with respect to  and ,
respectively. Then

Recall that a discrete measure space consists of a countable set with the -algebra of all subsets and with counting measure. In such
a space, integrals are simply sums and so Fubini's theorem allows us to rearrange the order of summation in a double sum.
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g : S→R h : T →R μ ν
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Suppose that  and  are countable and that  for  and . If the sum of the positive terms or the sum of the
negative terms is finite, then

Often , and in this case,  can be viewed as an infinite array, with  the row number and  the column
number:

The significant point is that  is totally ordered. While there is no implied order of summation in the double sum ,
the iterated sum  is obtained by summing over the rows in order and then summing the results by column in order,
while the iterated sum  is obtained by summing over the columns in order and then summing the results by row in
order.

Of course, only one of the product spaces might be discrete. Theorems (9) and (15) which give conditions for the interchange of
sum and integral can be viewed as applications of Fubini's theorem, where one of the measure spaces is  and the other is 

 with counting measure.

Examples and Applications

Probability Spaces

Suppose that  is a probability space, so that  is the set of outcomes of a random experiment,  is the -algebra of
events, and  is a probability measure on the sample space . Suppose also that  is another measurable space, and that

 is a random variable for the experiment, taking values in . Of course, this simply means that  is a measurable function from 
 to . Recall that the probability distribution of  is the probability measure  on  defined by

Since  is just probability notation for the inverse image of  under ,  is simply a special case of constructing a new
positive measure from a given positive measure via a change of variables. Suppose now that  is measurable, so that 
is a real-valued random variable. The integral of  (assuming that it exists) is known as the expected value of  and is of
fundamental importance. We will study expected values in detail in the next chapter. Here, we simply note different ways to write
the integral. By the change of variables formula (8) we have

Now let  denote the distribution function of . By another change of variables,  has a probability distribution  on 
, which is also a Lebesgue-Stieltjes measure, named for Henri Lebesgue and Thomas Stiletjes. Recall that this probability

measure is characterized by

With another application of our change of variables theorem, we can add to our chain of integrals:

Of course, the last two integrals are simply different notations for exactly the same thing. In the section on absolute continuity and
density functions, we will see other ways to write the integral.
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P

Y

∫

R

F

Y

(3.11.45)
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Counterexamples

In the first three exercises below,  is the standard one-dimensional Euclidean space, so  is -algebra of
Lebesgue measurabel sets and  is Lebesgue measure.

Let  and . Show that

1.  on 
2. 
3. 

This example shows that the strict increasing property can fail when the integrals are infinite.

Let  for . Show that

1.  is decreasing in  on .
2.  as  on .
3.  for each .

This example shows that the monotone convergence theorem can fail if the first integral is infinite. It also illustrates strict
inequality in Fatou's lemma.

Let  for . Show that

1.  on  so 
2.  for  so 
3.  on 

This example shows that the dominated convergence theorem can fail if  is not bounded by an integrable function. It also
shows that strict inequality can hold in Fatou's lemma.

Consider the product space  with the usual Lebesgue measurable subsets and Lebesgue measure. Let  be
defined by

Show that

1.  does not exist.

2. 
3. 

This example shows that Fubini's theorem can fail if the double integral does not exist.

For  define the sequence  as follows:  and  for ,  otherwise.

1. Give  in array form with  as the row number and  as the column number
2. Show that  does not exist
3. Show that 
4. Show that 

This example shows that the iterated sums can exist and be different when the double sum does not exist, a counterexample to
the corollary to Fubini's theorem for sums when the hypotheses are not satisfied.

Computational Exercises

Compute  in each case below for the given  and .

1. , 

(R,R,λ) mathscrR σ

λ

f = 1

[1,∞)

g= 1

[0,∞)

f ≤ g R

λ{x ∈ R : f(x) < g(x)} = 1

f dλ = gdλ =∞∫

R

∫

R

=f

n

1

[n,∞)

n ∈ N

+

f

n

n ∈ N

+

R

→0f

n

n→∞ R

dλ =∞∫

R

f

n

n ∈ N

+

=f

n

1

[n,n+1]

n ∈ N

+

= 0lim

n→∞

f

n

R dμ= 0∫

R

lim

n→∞

f

n

dλ = 1∫

R

f

n

n ∈ N

+

dλ = 1lim

n→∞

∫

R

f

n

sup{ : n ∈ } =f

n

N

+

1

[1,∞)

R

| |f

n

[0, 1]

2

f : [0, 1 →R]

2

f(x, y) =

−x

2

y

2

( +x

2

y

2

)

2

(3.11.46)

f(x, y)d(x, y)∫

[0,1]

2

f(x, y)dx dy =−∫

1

0

∫

1

0

π

4

f(x, y)dy dx =∫

1

0

∫

1

0

π

4

i, j∈ N

+

a

ij

= 1a

ii

=−1a

i+1,i

i ∈ N

+

= 0a

ij

a

ij

i ∈ N

+

j∈ N

+

∑

(i,j)∈N

2

+

a

ij

= 1∑

∞

i=1

∑

∞

j=1

a

ij

= 0∑

∞

j=1

∑

∞

i=1

a

ij

f(x, y)d(x, y)∫

D

D⊆R

2

f :D→R

f(x, y) = e

−2x

e

−3y

D= [0,∞)×[0,∞)
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2. , 

Integrals of the type in the last exercise are useful in the study of exponential distributions.

This page titled 3.11: Properties of the Integral is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

f(x, y) = e

−2x

e

−3y

D= {(x, y) ∈ : 0 ≤ x ≤ y <∞}R
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3.12: General Measures
     

Basic Theory

Our starting point in this section is a measurable space . That is,  is a set and  is a -algebra of subsets of . So far, we
have only considered positive measures on such spaces. Positive measures have applications, as we know, to length, area, volume,
mass, probability, counting, and similar concepts of the nonnegative “size” of a set. Moreover, we have defined the integral of a
measurable function  with respect to a positive measure, and we have studied properties of the integral.

Definition

But now we will consider measures that can take negative values as well as positive values. These measures have applications to
electric charge, monetary value, and other similar concepts of the “content” of a set that might be positive or negative. Also, this
generalization will help in our study of density functions in the next section. The definition is exactly the same as for a positive
measure, except that values in  are allowed.

A measure on  is a function  that satisfies the following properties:

1. 
2. If  is a countable, disjoint collection of sets in  then 

As before, (b) is known as countable additivity and is the critical assumption: the measure of a set that consists of a countable
number of disjoint pieces is the sum of the measures of the pieces. Implicit in the statement of this assumption is that the sum in (b)
exists for every countable disjoint collection . That is, either the sum of the positive terms is finite or the sum of the
negative terms is finite. In turn, this means that the order of the terms in the sum does not matter (a good thing, since there is no
implied order). The term signed measure is used by many, but we will just use the simple term measure, and add appropriate
adjectives for the special cases. Note that if  for all , then  is a positive measure, the kind we have already
studied (and so the new definition really is a generalization). In this case, the sum in (b) always exists in . If  for all

 then  is a finite measure. Note that in this case, the sum in (b) is absolutely convergent for every countable disjoint
collection . If  is a positive measure and  then  is a probability measure, our favorite kind. Finally, as with
positive measures,  is -finite if there exists a countable collection  of sets in  such that  and 

 for .

Basic Properties

We give a few simple properties of general measures; hopefully many of these will look familiar. Throughout, we assume that  is
a measure on . Our first result is that although  can take the value  or , it turns out that it cannot take both of these
values.

Either  for all  or  for all .

Proof

Suppose that there exist  with  and . Then  and the sets in the
union are disjoint. By the additivity assumption, . Similarly, .
The only way that both of these equations can make sense is for , , and . But
then  is undefined, and so we have a contradiction.

We will say that two measures are of the same type if neither takes the value  or if neither takes the value . Being of the same
type is trivially an equivalence relation on the collection of measures on .

The difference rule holds, as long as the sets have finite measure:

Suppose that . If  then .

Proof

Note that  and the sets in the union are disjoint. Thus . Since 
, we must have  and  also, and then the difference rule holds by subtraction.

(S,S ) S S σ S

f : S→R

=R∪{−∞,∞}R

∗

(S,S ) μ :S →R

∗

μ(∅) = 0

{ : i ∈ I}A

i

S μ ( )= μ( )⋃

i∈I

A

i

∑

i∈I

A

i

{ : i ∈ I}A

i

μ(A) ≥ 0 A ∈S μ

[0,∞] μ(A) ∈ R

A ∈S μ

{ : i ∈ I}A

i

μ μ(S) = 1 μ

μ σ { : i ∈ I}A

i

S S =⋃

i∈I

A

i

μ( ) ∈ RA

i

i ∈ I

μ

(S,S ) μ ∞ −∞

μ(A) >−∞ A ∈S μ(A) <∞ A ∈S

A, B ∈S μ(A) =∞ μ(B) =−∞ A= (A∩B)∪ (A ∖B)

μ(A) = μ(A∩B)+μ(A ∖B) μ(B) = μ(A∩B)+μ(B∖A)

μ(A ∖B) =∞ μ(B∖A) =−∞ μ(A∩B) ∈ R

μ(A△ B) = μ(A ∖B)+μ(B∖A)

∞ −∞

(S,S )

A, B ∈S μ(B) ∈ R μ(B∖A) = μ(B)−μ(A∩B)

B= (A∩B)∪ (B∖A) μ(B) = μ(A∩B)+μ(B∖A)

μ(B) ∈ R μ(A∩B) ∈ R μ(B∖A) ∈ R
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The following corollary is the difference rule for subsets, and will be needed below.

Suppose that  and . If  then  and .

Proof

Note that  and the sets in the union are disjoint. Thus . Since , we
must have  and  also, and then the difference rule holds by subtraction.

As a consequence, suppose that  and . If , then by the infinity rule we cannot have  and
by the difference rule we cannot have , so we must have . Similarly, if  then . The
inclusion-exclusion rules hold for general measures, as long as the sets have finite measure.

Suppose that  for each  where , and that  for . Then

Proof

For , note that  and the sets in the last union are disjoint. By the additivity axiom and the
difference rule (3),

The general result then follows by induction, just like the proof for probability measures.

The continuity properties hold for general measures. Part (a) is the continuity property for increasing sets, and part (b) is the
continuity property for decreasing sets.

Suppose that  for .

1. If  for  then .
2. If  for  and , then 

Proof

The proofs are almost the same as for positive measures, except for technicalities involving  and .

1. Let . From the infinity rule and the difference rule, if  (respectively ) for some ,
then  ( ) for  and  ( ), so the result trivially holds. Thus, assume that  for
all . Let  and let  for . Then  is a disjoint collection of sets
and also has union . Moreover, from the difference rule,  for . Thus

2. Let  for . Then  for  and . Part (a) applies, so 
. But by the difference rule,  for  and 

. All of these are real numbers, so subtracting  gives the result.

Recall that a positive measure is an increasing function, relative to the subset partial order on  and the ordinary order on ,
and this property follows from the difference rule. But for general measures, the increasing property fails, and so do other
properties that flow from it, including the subadditive property (Boole's inequality in probability) and the Bonferroni inequalities.

Constructions

It's easy to construct general measures as differences of positive measures.

Suppose that  and  are positive measures on  and that at least one of them is finite. Then  is a measure.

Proof

A, B ∈S A⊆B μ(B) ∈ R μ(A) ∈ R μ(B∖A) = μ(B)−μ(A)

B=A∪ (B∖A) μ(B) = μ(A)+μ(B∖A) μ(B) ∈ R

μ(A) ∈ R μ(B∖A) ∈ R

A, B ∈S A⊆B μ(A) =∞ μ(B) =−∞

μ(B) ∈ R μ(B) =∞ μ(A) =−∞ μ(B) =−∞

∈SA

i

i ∈ I #(I) = n μ( ) ∈ RA

i

i ∈ I

μ( ) = (−1 μ( )⋃

i∈I

A

i

∑

k=1

n

)

k−1

∑

J⊆I, #(J)=k

⋂

j∈J

A

j

(3.12.1)

n= 2 ∪ = ∪( ∖ )A

1

A

2

A

1

A

2

A

1

μ( ∪ ) = μ( )+μ( ∖ ) = μ( )+μ( )−μ( ∩ )A

1

A

2

A

1

A

2

A

1

A

1

A

2

A

1

A

2

(3.12.2)

∈SA

n

n ∈ N

+

⊆A

n

A

n+1

n ∈ N

+

μ( ) = μ ( )lim

n→∞

A

n

⋃

∞

i=1

A

i

⊆A

n+1

A

n

n ∈ N

+

μ( ) ∈ RA

1

μ( ) = μ ( )lim

n→∞

A

n

⋂

∞

i=1

A

i

∞ −∞

A=⋃

∞

i=1

A

i

μ( ) =∞A

m

−∞ m ∈ N

+

μ( ) =∞A

n

−∞ n≥m μ(A) =∞ −∞ μ( ) ∈ RA

n

n ∈ N

+

=B

1

A

1

= ∖B

i

A

i

A

i−1

i ∈ {2, 3,…} { : i ∈ }B

i

N

+

A μ( ) = μ( )−μ( )B

i

A

i+1

A

i

i ∈ {2, 3,…}

μ(A) = μ( ) = μ( ) = (μ( )+ [μ( )−μ( )]) = μ( )∑

i=1

∞

B

i

lim

n→∞

∑

i=1

n

B

i

lim

n→∞

A

1

∑

i=2

n

A

i

A

i−1

lim

n→∞

A

n
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= ∖C

n

A

1

A

n

n ∈ N

+

⊆C

n

C

n+1

n ∈ N

+

= ∖⋃

∞

i=1

C

i

A

1

⋂

∞

i=1

A

i

μ( ) = μ ( )lim

n→∞

C

n

⋃

∞

i=1

C

i

μ( ) = μ( )−μ( )C

n

A

1

A

n

n ∈ N

+

μ ( ) = μ( )−μ ( )⋃

∞

i=1

C

i

A

1

⋂

∞

i=1

A

i

μ( )A

1

S [0,∞]

μ ν (S,S ) δ = μ−ν
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Suppose that  is a finite measure; the proof when  is finite is similar. First, . Suppose that 
 is a countable, disjoint collection of sets in  and let . Then

Since  for , we can combine terms to get

The collection of measures on our space is closed under scalar multiplication.

If  is a measure on  and , then  is a measure on 

Proof

First, . Next suppose that  is a countable, disjoint collection of sets in . Then

The last step is the important one, and holds since the sum exists.

If  is a finite measure, then so is  for . If  is not finite then  and  are of the same type if  and are of opposite
types if . We can add two measures to get another measure, as long as they are of the same type. In particular, the collection
of finite measures is closed under addition as well as scalar multiplication, and hence forms a vector space.

If  and  are measures on  of the same type then  is a measure on .

Proof

First, . Next suppose that  is a countable, disjoint collection of sets in .
Then

The sums can be combined because the measures are of the same type. That is, either the sum of all of the positive terms is
finite or the sum of all the negative terms is finite. In short, we don't have to worry about the dreaded indeterminate form 

.

Finally, it is easy to explicitly construct measures on a -algebra generated by a countable partition. Such -algebras are important
for counterexamples and to gain insight, and also because many -algebras that occur in applications can be constructed from
them.

Suppose that  is a countable partition of  into nonempty sets, and that . For , define 
 arbitrarily, subject only to the condition that the sum of the positive terms is finite, or the sum of the negative

terms is finite. For  where , define

Then  is a measure on .

Proof

Recall that every  has a unique representation of the form  where .

1.  in the representation gives . The sum over an empty index set is 0, so .

ν μ δ(∅) = μ(∅)−ν(∅) = 0

{ : i ∈ I}A

i

S A=⋃

i∈I

A

i

δ(A) = μ(A)−ν(A) = μ( )− ν( )∑

i∈I

A

i

∑

i∈I

A

i

(3.12.4)

ν( ) <∞A

i

i ∈ I

δ(A) = [μ( )−ν( )] = δ( )∑

i∈I

A

i

A

i

∑

i∈I

A

i

(3.12.5)

μ (S,S ) c ∈ R cμ (S,S )

(cμ)(∅) = cμ(∅) = c0 = 0 { : i ∈ I}A

i

S

(cμ)( ) = cμ( ) = c μ( ) = cμ( ) = (cμ)( )⋃

i∈I

A

i

⋃

i∈I

A

i

∑

i∈I

A

i

∑

i∈I

A

i

∑

i∈I

A

i

(3.12.6)

μ cμ c ∈ R μ μ cμ c > 0

c < 0

μ ν (S,S ) μ+ν (S,S )

(μ+ν)(∅) = μ(∅)+ν(∅) = 0+0 = 0 { : i ∈ I}A

i

S

(μ+ν)( )⋃

i∈I

A

i

= μ( )+ν( )⋃

i∈I

A

i

⋃

i∈I

A

i

= μ( )+ ν( ) = [μ( )+ν( ) = (μ+ν)( )∑

i∈I

A

i

∑

i∈I

A

i

∑

i∈I

A

i

A

i

∑

i∈I

A

i

∞−∞

σ σ

σ

A = { : i ∈ I}A

i

S S = σ(A ) i ∈ I

μ( ) ∈A

i

R

∗

A=⋃

j∈J

A

j

J ⊆ I

μ(A) = μ( )∑

j∈J

A

j
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μ (S,S )

A ∈S A=⋃

j∈J

A

j

J ⊆ I

J = ∅ A= ∅ μ(∅) = 0
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2. Suppose that  is a countable, disjoint collection of events in . Then for each  there exists 

and  such that . Hence

The fact that either the sum of all positive terms is finite or the sum of all the negative terms is finite means that we do not
have to worry about the order of summation.

Positive, Negative, and Null Sets

To understand the structure of general measures, we need some basic definitions and properties. As before, we assume that  is a
measure on .

Definitions

1.  is a positive set for  if  for every  with .
2.  is a negative set for  if  for every  with .
3.  is a null set for  if  for every  with .

Note that positive and negative are used in the weak sense (just as we use the terms increasing and decreasing in this text). Of
course, if  is a positive measure, then every  is positive for , and  is negative for  if and only if  is null for  if
and only if . For a general measure,  is both positive and negative for  if and only if  is null for . In
particular,  is null for . A set  is a support set for  if and only if  is a null set for . A support set is a set where the
measure “lives” in a sense. Positive, negative, and null sets for  have a basic inheritance property that is essentially equivalent to
the definition.

Suppose .

1. If  is positive for  then  is positive for  for every  with .
2. If  is negative for  then  is negative for  for every  with .
3. If  is null for  then  is null for  for every  with .

The collections of positive sets, negative sets, and null sets for  are closed under countable unions.

Suppose that  is a countable collection of sets in .

1. If  is positive for  for  then  is positive for .
2. If  is negative for  for  then  is negative for .
3. If  is null for  for  then  is null for .

Proof

We will prove (a); the proofs for (b) and (c) are analogous. Without loss of generality, we can suppose that . Let 

. Now let  and  for . Them  is a countable,

disjoint collection in , and . If  then  and the sets in this union are disjoint. Hence
by additivity, . But  so . Hence .

It's easy to see what happens to the positive, negative, and null sets when a measure is multiplied by a non-zero constant.

Suppose that  is a measure on , , and .

1. If  then  is positive (negative) for  if and only if  is positive (negative) for .
2. If  then  is positive (negative) for  if and only if  is negative (positive) for .
3. If  then  is null for  if and only if  is null for 

Positive, negative, and null sets are also preserved under countable sums, assuming that the measures make senes.

{ : k ∈K}B

k

S k ∈K ⊆ IJ

k

{ : j∈ } ⊆AA

k

j

J

k

=B

k

⋃

j∈J

k

A

k

j

μ( ) = μ( ) = μ( ) = μ( )⋃

k∈K

B

k

⋃

k∈K

⋃

j∈J

k

A

k

j

∑

k∈k

∑

j∈J

k

A

k

j

∑

k∈K

B

k
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μ

(S,S )

A ∈S μ μ(B) ≥ 0 B ∈S B⊆A

A ∈S μ μ(B) ≤ 0 B ∈S B⊆A

A ∈S μ μ(B) = 0 B ∈S B⊆A

μ A ∈S μ A ∈S μ A μ

μ(A) = 0 A ∈S μ A μ

∅ μ A ∈S μ A

c

μ

μ

A ∈S

A μ B μ B ∈S B⊆A

A μ B μ B ∈S B⊆A

A μ B μ B ∈S B⊆A

μ

{ : i ∈ I}A
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n
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n

μ(C ∩ ) ≥ 0B
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μ(C) ≥ 0

μ (S,S ) c ∈ R A ∈S

c > 0 A μ A cμ

c < 0 A μ A cμ

c ≠ 0 A μ A cμ
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Suppose that  is a measure on  for each  in a countable index set , and that  is a well-defined measure
on . Let .

1. If  is positive for  for every  then  is positive for .
2. If  is negative for  for every  then  is negative for .
3. If  is null for  for every  then  is null for .

In particular, note that  is a well-defined measure if  is a positive measure for each , or if  is finite and  is a
finite measure for each . It's easy to understand the positive, negative, and null sets for a -algebra generated by a countable
partition.

Suppose that  is a countable partition of  into nonempty sets, and that . Suppose that  is a
measure on . Define

Let , so that  for some  (and this representation is unique). Then

1.  is positive for  if and only if .
2.  is negative for  if and only if .
3.  is null for  if and only if .

The Hahn Decomposition

The fundamental results in this section and the next are two decomposition theorems that show precisely the relationship between
general measures and positive measures. First we show that if a set has finite, positive measure, then it has a positive subset with at
least that measure.

If  and  then there exists  with  such that  is positive for  and .

Proof

The proof is recursive, and works by successively removing sets of negative measure from . For the initialization step, let 
. Then trivially,  and . For the recursive step, suppose that  has been defined with 
 and . If  is positive for , let . Otherwise let 

. Note that since  is not positive for , the set in the infimum is nonempty
and hence  (and possibly ). Let  if  and let  if . Since , by
definition of the infimum, there exists  with . Let . Then  and

Now, if the recursive process terminates after a finite number of steps,  is well defined and is positive for . Otherwise, we
have a disjoint sequence of sets . Let . Then , and by countable additivity and the
difference rule,

Suppose that  and . Then  and by definition,  for every . It follows that 
 or  for every . Hence  and therefore , a contradiction since 

. Hence we must have  and thus  is positive for .

The assumption that  is critical; a counterexample is given below. Our first decomposition result is the Hahn
decomposition theorem, named for the Austrian mathematician Hans Hahn. It states that  can be partitioned into a positive set and
a negative set, and this decomposition is essentially unique.

Hahn Decomposition Theorem. There exists  such that  is positive for  and  is negative for . The pair 
is a Hahn decomposition of . If  is another Hahn decomposition, then  is null for .

Proof
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i
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Suppose first that  does not take the value . As with the previous result, the proof is recursive. For the initialization step, let
. Then trivially,  is positive for . For the recursive step, suppose that  is positive for . If  is negative for

, let . Otherwise let . Since  is not negative for , it follows that  (and
possibly ). Let  if  and  if . Then  so there exists  with 
and . By the previous lemma, there exists  with ,  positive for , and .
Let . Then  is positive for .

If the recursive process ends after a finite number of steps, then  is well-defined and  is a Hahn decomposition.
Otherwise we generate an infinite sequence  of disjoint sets in , each positive for . Let . Then 

 is positive for  by the closure result above. Let . If  then  for every . Hence 
 or  for every . But then

a contradiction. Hence  so  is negative for  and thus  is a Hahn decomposition.

Suppose that  is another Hahn decomposition of . Then  and  are both positive and negative for  and
hence are null for . Hence  is null for .

Finally, suppose that  takes the value . Then  does not take the value  by the infinity rule and hence  does not take
the value . By our proof so far, there exists a Hahn decomposition  for  that is essentially unique. But then 

 is a Hahn decomposition for .

It's easy to see the Hahn decomposition for a measure on a -algebra generated by a countable partition.

Suppose that  is a countable partition of  into nonempty sets, and that . Suppose that  is a
measure on . Let  and . Then  is a Hahn decomposition of 

 if and only if the positive set  has the form  where  and .

The Jordan Decomposition

The Hahn decomposition leads to another decomposition theorem called the Jordan decomposition theorem, named for the French
mathematician Camille Jordan. This one shows that every measure is the difference of positive measures. Once again we assume
that  is a measure on .

Jordan Decomposition Theorem. The measure  can be written uniquely in the form  where  and  are
positive measures, at least one finite, and with the property that if  is any Hahn decomposition of , then  is a null
set of  and  is a null set of . The pair  is the Jordan decomposition of .

Proof

Let  be a Hahn decomposition of  relative to . Define  and  for 
. Then  and  are positive measures and . Moreover, since  cannot take both  and  as values

by the infinity rule, one of these two positive measures is finite.

Suppose that  is an arbitrary Hahn decomposition. If , then  since  is a null
set of  by the Hahn decomposition theorem. Similarly if  then  since  is a null set
of .

Suppose that  is another decomposition with the same properties. If  then 
. But also 

. Hence  and therefore also .

The Jordan decomposition leads to an important set of new definitions.

Suppose that  has Jordan decomposition .

1. The positive measure  is called the positive variation measure of .
2. The positive measure  is called the negative variation measure of .
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3. The positive measure  is called the total variation measure of .
4.  is the total variation of .

Note that, in spite of the similarity in notation,  and  are not simply the positive and negative parts of the (extended)
real number , nor is  the absolute value of . Also, be careful not to confuse the total variation of , a number in 

, with the total variation measure. The positive, negative, and total variation measures can be written directly in terms of .

For ,

1. 
2. 
3. 
4. 

The total variation measure is related to sum and scalar multiples of measures in a natural way.

Suppose that  and  are measures of the same type and that . Then

1.  if and only if  (the zero measure).
2. 
3. 

Proof
1. Since ,  and  are positive measures,  if and only if  if and only if .
2. If  then  and . If  then  and . Of course, if  then 

. In all cases,

3. From the theorem above,  and . So

You may have noticed that the properties in the last result look a bit like norm properties. In fact, total variation really is a norm on
the vector space of finite measures on :

Suppose that  and  are measures of the same type and that . Then

1.  if and only if  (the zero property)
2.  (the scaling property)
3.  (the triangle inequality)

Proof
1. Since  is a positive measure,  if and only if . From part (a) of the previous theorem,  if

and only if .
2. From part (b) of the previous theorem, .
3. From part (c) of the previous theorem, .

Every norm on a vector space leads to a corresponding measure of distance (a metric). Let  denote the collection of finite
measures on . Then , under the usual definition of addition and scalar multiplication of measures, is a vector space, and
as the last theorem shows,  is a norm on . Here are the corresponding metric space properties:

Suppose that  and . Then

1. , the symmetric property
2.  if and only if , the zero property
3. , the triangle inequality
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Now that we have a metric, we have a corresponding criterion for convergence.

Suppose that  for  and . We say that  as  in total variation if  as 
.

Of course,  includes the probability measures on , so we have a new notion of convergence to go along with the others
we have studied or will study. Here is a list:

convergence with probability 1
convergence in probability
convergence in distribution
convergence in th mean
convergence in total variation

The Integral

Armed with the Jordan decomposition, the integral can be extended to general measures in a natural way.

Suppose that  is a measure on  and that  is measurable. We define

assuming that the integrals on the right exist and that the right side is not of the form .

We will not pursue this extension, but as you might guess, the essential properties of the integral hold.

Complex Measures

Again, suppose that  is a measurable space. The same axioms that work for general measures can be used to define complex
measures. Recall that  denotes the set of complex numbers, where  is the imaginary unit.

A complex measure on  is a function  that satisfies the following properties:

1. 
2. If  is a countable, disjoint collection of sets in  then 

Clearly a complex measure  can be decomposed as  where  and  are finite (real) measures on . We will have
no use for complex measures in this text, but from the decomposition into finite measures, it's easy to see how to develop the
theory.

Computational Exercises

Counterexamples

The lemma needed for the Hahn decomposition theorem can fail without the assumption that .

Let  be a set with subsets  and  satisfying . Let  be the -algebra generated by .
Define , , .

1. Draw the Venn diagram of , , .
2. List the sets in .
3. Using additivity, give the value of  on each set in .
4. Show that  does not have a positive subset  with .

This page titled 3.12: General Measures is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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3.13: Absolute Continuity and Density Functions
       

Basic Theory

Our starting point is a measurable space . That is  is a set and  is a -algebra of subsets of . In the last section, we discussed general
measures on  that can take positive and negative values. Special cases are positive measures, finite measures, and our favorite kind,
probability measures. In particular, we studied properties of general measures, ways to construct them, special sets (positive, negative, and null),
and the Hahn and Jordan decompositions.

In this section, we see how to construct a new measure from a given positive measure using a density function, and we answer the fundamental
question of when a measure has a density function relative to the given positive measure.

Relations on Measures

The answer to the question involves two important relations on the collection of measures on  that are defined in terms of null sets. Recall
that  is null for a measure  on  if  for every  with . At the other extreme,  is a support set for 
if  is a null set. Here are the basic definitions:

Suppose that  and  are measures on .

1.  is absolutely continuous with respect to  if every null set of  is also a null set of . We write .
2.  and  are mutually singular if there exists  such that  is null for  and  is null for . We write .

Thus  if every support support set of  is a support set of . At the opposite end,  if  and  have disjoint support sets.

Suppose that , , and  are measures on . Then

1. , the reflexive property.
2. If  and  then , the transitive property.

Recall that every relation that is reflexive and transitive leads to an equivalence relation, and then in turn, the original relation can be extended to
a partial order on the collection of equivalence classes. This general theorem on relations leads to the following two results.

Measures  and  on  are equivalent if  and , and we write . The relation  is an equivalence relation on the
collection of measures on . That is, if , , and  are measures on  then

1. , the reflexive property
2. If  then , the symmetric property
3. If  and  then , the transitive property

Thus,  and  are equivalent if they have the same null sets and thus the same support sets. This equivalence relation is rather weak: equivalent
measures have the same support sets, but the values assigned to these sets can be very different. As usual, we will write  for the equivalence
class of a measure  on , under the equivalence relation .

If  and  are measures on , we write  if . The definition is consistent, and defines a partial order on the collection of
equivalence classes. That is, if , , and  are measures on  then

1. , the reflexive property.
2. If  and  then , the antisymmetric property.
3. If  and  then , the transitive property

The singularity relation is trivially symmetric and is almost anti-reflexive.

Suppose that  and  are measures on . Then

1. If  then , the symmetric property.
2.  if and only if , the zero measure.

Proof

Part (a) is trivial from the symmetry of the definition. For part (b), note that  is null for  and  is null for , so . Conversely, suppose
that  is a measure and . Then there exists  such that  is null for  and  is null for . But then  is null for ,
so  for every .

Absolute continuity and singularity are preserved under multiplication by nonzero constants.
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Suppose that  and  are measures on  and that . Then

1.  if and only if .
2.  if and only if .

Proof

Recall that if , then  is null for  if and only if  is null for .

There is a corresponding result for sums of measures.

Suppose that  is a measure on  and that  is a measure on  for each  in a countable index set . Suppose also that 
 is a well-defined measure on .

1. If  for every  then .
2. If  for every  then .

Proof

Recall that if  is null for  for each , then  is null for , assuming that this is a well-defined measure.

As before, note that  is well-defined if  is a positive measure for each  or if  is finite and  is a finite measure for each 
. We close this subsection with a couple of results that involve both the absolute continuity relation and the singularity relation

Suppose that , , and  are measures on . If  and  then .

Proof

Since , there exists  such that  is null for  and  is null for . But  so  is null for . Hence .

Suppose that  and  are measures on . If  and  then .

Proof

From the previous theorem (with ) we have  and hence by (5), .

Density Functions

We are now ready for our study of density functions. Throughout this subsection, we assume that  is a positive, -finite measure on our
measurable space . Recall that if  is measurable, then the integral of  with respect to  may exist as a number in 

 or may fail to exist.

Suppose that  is a measurable function whose integral with respect to  exists. Then function  defined by

is a -finite measure on  that is absolutely continuous with respect to . The function  is a density function of  relative to .

Proof

To say that the integral exists means that either  or , where as usual,  and  are the positive and negative
parts of . So  for  where  and . Both  and  are
positive measures by basic properties of the integral: Generically, suppose  is measurable. The integral over the empty set is
always 0, so . Next, if  is a countable, disjoint collection of sets in  and , then by the additivity
property of the integral over disjoint domains,

By the assumption that the integral exists, either  or  is a finite positive measure, and hence  is a measure. As you might guess, 
and  form the Jordan decomposition of , a point that we will revisit below.

Again, either  or  is a finite measure. By symmetry, let's suppose that  is finite. Then to show that  is -finite, we just need to show
that  is -finite. Since  has this property, there exists a collection  with , , and . Let 

 for . Then  for  and . Hence  is a
countable collection of measurable sets whose union is also . Moreover,

μ ν (S,S ) a, b ∈ R ∖ {0}

ν ≪ μ aν ≪ bμ

ν ⊥ μ aν ⊥ bμ

c ≠ 0 A ∈S μ A cμ

μ (S,S ) ν

i

(S,S ) i I

ν =∑

i∈I

ν

i

(S,S )

≪ μν

i

i ∈ I ν ≪ μ

⊥ μν

i

i ∈ I ν ⊥ μ

A ∈S ν

i

i ∈ I A ν =∑

i∈I

ν

i

ν =∑

i∈I

ν

i

ν

i

i ∈ I I ν

i

i ∈ I

μ ν ρ (S,S ) ν ≪ μ μ⊥ ρ ν ⊥ ρ

μ⊥ ρ A ∈S A μ A

c

ρ ν ≪ μ A ν ν ⊥ ρ

μ ν (S,S ) ν ≪ μ ν ⊥ μ ν = 0

ρ = ν ν ⊥ ν ν = 0

μ σ

(S,S ) f : S→R f μ

=R∪{−∞,∞}R

∗

f : S→R μ ν

ν(A) = f dμ, A ∈S∫

A
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σ (S,S ) μ f ν μ

dμ<∞∫

S

f

+

dμ<∞∫

S

f

−

f

+

f

−

f ν(A) = (A)− (A)ν

+

ν

−

A ∈S (A) = (A)dμν

+

∫

A

f

+

(A) = (A)dμν

−

∫

A

f

−

ν

+

ν

−

g : S→ [0,∞)

gdμ= 0∫

∅

{ : i ∈ I}A

i

S A=⋃

i∈I

A

i

gdμ= gdμ∫

A

∑

i∈I

∫

A

i
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+
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−

ν
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+
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ν σ

ν

+
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∞
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n

f

+

n ∈ N

+
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n

n ∈ N

+

= S⋃

∞

n=1

B

n
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m

A

n

N

2

+

S

( ∩ ) = dμ≤ nμ( ∩ ) <∞ν
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Finally, suppose  is a null set of . If  and  then  so . Hence .

The following three special cases are the most important:

1. If  is nonnegative (so that the integral exists in ) then  is a positive measure since  for .
2. If  is integrable (so that the integral exists in ), then  is a finite measure since  for .
3. If  is nonnegative and  then  is a probability measure since  for  and .

In case 3,  is the probability density function of  relative to , our favorite kind of density function. When they exist, density functions are
essentially unique.

Suppose that  is a -finite measure on  and that  has density function  with respect to . Then  is a density function of 
 with respect to  if and only if  almost everywhere on  with respect to .

Proof

These results also follow from basic properties of the integral. Suppose that  are measurable functions whose integrals with
respect to  exist. If  almost everywhere on  with respect to  then  for every . Hence if  is a density
function for  with respect to  then so is . For the converse, if  for every , then since  is -finite, it follows
that  almost everywhere on  with respect to .

The essential uniqueness of density functions can fail if the positive measure space  is not -finite. A simple example is given below.
Our next result answers the question of when a measure has a density function with respect to , and is the fundamental theorem of this section.
The theorem is in two parts: Part (a) is the Lebesgue decomposition theorem, named for our old friend Henri Lebesgue. Part (b) is the Radon-
Nikodym theorem, named for Johann Radon and Otto Nikodym. We combine the theorems because our proofs of the two results are inextricably
linked.

Suppose that  is a -finite measure on .

1. Lebesgue Decomposition Theorem.  can be uniquely decomposed as  where  and .
2. Radon-Nikodym Theorem.  has a density function with respect to .

Proof

The proof proceeds in stages. we first prove the result for finite, positive measures, then for -finite, positive measures, and finally for
general -finite measures. The first stage is the most complicated.

Part 1, suppose that  and  are positive, finite measures. Let  denote the collection of measurable functions  with 
 for all . Note that  since the constant function  is in . The proof works by finding a maximal element of 

 and using this function as the density function of the absolutely continuous part of .

Our first step is to show that  is closed under the max operator. Let . For , let  and 
. Then  partition  so

Hence .

Our next step is to show that  is closed with respect to increasing limits. Thus suppose that  for  and that  is increasing
in  on . Let . Then  is measurable, and by the monotone convergence theorem, 

 for every . But  for every  so . In particular, 
 so  almost everywhere on  with respect to . Thus, by redefining  on a -null set if necessary, we can

assume  on . Hence .

Now let . Note that . By definition of the supremum, for each  there exist  such
that . Now let  for . Then  and  is increasing in  on . Hence 

 and . But  for each  and hence .

Define  and  for . Then  and  are finite, positive measures and by our previous
theorem,  is absolutely continuous with respect to  and has density function . Our next step is to show that  is singular with respect to

. For , let  denote a Hahn decomposition of the measure . Then

A ∈S μ B ∈S B⊆A μ(B) = 0 ν(B) = f dμ= 0∫

B
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f R∪{∞} ν ν(A) ≥ 0 A ∈S

f R ν ν(A) ∈ R A ∈S
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f ν μ
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∫

A
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∫

A

A ∈S μ σ

f = g S μ
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∫
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max{ , } ∈Fg
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∫
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S
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∫
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But  since  is a positive measure and  is positive for . Thus we
have  for every , so  for every . If  then 

, which contradicts the definition of . Hence we must have  for every . Now
let . Then . If  then  for  sufficiently large. But this is a contradiction since 

 which is negative for  for every . Thus we must have , so  and  are singular.

Part 2. Suppose that  and  are -finite, positive measures. Then there exists a countable partition  of  where  for 
, and  and  for . Let  and  for . Then  and  are finite,

positive measures for , and  and . By part 1, for each , there exists a measurable function 
 such that  where  for  and . Let . Then 

is measurable. Define  and  for . Note that  and . Then 
 and has density function  and .

Part 3. Suppose that  is a -finite measure (not necessarily positive). By the Jordan decomposition theorem,  where  and 
 are -finite, positive measures, and at least one is finite. By part 2, there exist measurable functions  and 

 such that  and  where ,  for , and 
, . Let , ,  for . Then  and 

.

Uniqueness. Suppose that  where  and  for . Then . But 
 and  so  by the theorem above

In particular, a measure  on  has a density function with respect to  if and only if . The density function in this case is also
referred to as the Radon-Nikodym derivative of  with respect to  and is sometimes written in derivative notation as . This notation,
however, can be a bit misleading because we need to remember that a density function is unique only up to a -null set. Also, the Radon-
Nikodym theorem can fail if the positive measure space  is not -finite. A couple of examples are given below. Next we characterize
the Hahn decomposition and the Jordan decomposition of  in terms of the density function.

Suppose that  is a measure on  with , and that  has density function  with respect to . Let , and
let  and  denote the positive and negative parts of .

1. A Hahn decomposition of  is .
2. The Jordan decomposition is  where  and , for .

Proof

Of course . The proofs are simple.

1. Suppose that . If  then  for  and hence . If  then .
2. This follows immediately from (a) and the Jordan decomposition theorem, since  and  for 

. Note that  and .

The following result is a basic change of variables theorem for integrals.

Suppose that  is a positive measure on  with  and that  has density function  with respect to . If  is a
measurable function whose integral with respect to  exists, then

Proof

The proof is a classical bootstrapping argument. Suppose first that  is a nonnegative simple function. That is,  is a finite
index set,  for , and  is a disjoint collection of sets in . Then . But 

 for each  so

Suppose next that  is measurable. There exists a sequence of nonnegative simple functions  such that  is
increasing in  on  and  as  on . Since  is nonnegative,  is increasing in  on  and  as 

 on . By the first step,  for each . But by the monotone convergence theorem, 
and  as . Hence .
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Finally, suppose that  is a measurable function whose integral with respect to  exists. By the previous step, 
 and , and at least one of these integrals is finite. Hence by the additive property

In differential notation, the change of variables theorem has the familiar form , and this is really the justification for the derivative
notation  in the first place. The following result gives the scalar multiple rule for density functions.

Suppose that  is a measure on  with  and that  has density function  with respect to . If , then  has density
function  with respect to .

Proof

If  then .

Of course, we already knew that  implies  for , so the new information is the relation between the density functions. In
derivative notation, the scalar multiple rule has the familiar form

The following result gives the sum rule for density functions. Recall that two measures are of the same type if neither takes the value  or if
neither takes the value .

Suppose that  and  are measures on  of the same type with  and , and that  and  have density functions  and 
with respect to , respectively. Then  has density function  with respect to .

Proof

If  then

The additive property holds because we know that the integrals in the middle of the displayed equation are not of the form .

Of course, we already knew that  and  imply , so the new information is the relation between the density functions. In
derivative notation, the sum rule has the familiar form

The following result is the chain rule for density functions.

Suppose that  is a positive measure on  with  and that  has density function  with respect to . Suppose  is a measure on 
 with  and that  has density function  with respect to . Then  has density function  with respect to .

Proof

This is a simple consequence of the change of variables theorem above. If  then .

Of course, we already knew that  and  imply , so once again the new information is the relation between the density
functions. In derivative notation, the chan rule has the familiar form

The following related result is the inverse rule for density functions.

Suppose that  is a positive measure on  with  and  (so that ). If  has density function  with respect to  then 
has density function  with respect to .

Proof

Let  be a density function of  with respect to  and let . Then  so  is a null set of  and
hence is also a null set of . Thus, we can assume that  on . Let  be a density of  with respect to . Since , it follows
from the chain rule that  is a density of  with respect to . But of course the constant function  is also a density of  with respect to
itself so we have  almost everywhere on . Thus  is a density of  with respect to .
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In derivative notation, the inverse rule has the familiar form

Examples and Special Cases

Discrete Spaces

Recall that a discrete measure space  consists of a countable set  with the -algebra  of all subsets of , and with
counting measure . Of course  is a positive measure and is trivially -finite since  is countable. Note also that  is the only set that is null
for . If  is a measure on , then by definition, , so  is absolutely continuous relative to . Thus, by the Radon-Nikodym theorem, 
can be written in the form

for a unique . Of course, this is obvious by a direct argument. If we define  for  then the displayed equation
follows by the countable additivity of .

Spaces Generated by Countable Partitions

We can generalize the last discussion to spaces generated by countable partitions. Suppose that  is a set and that  is a
countable partition of  into nonempty sets. Let  and recall that every  has a unique representation of the form 
where . Suppse now that  is a positive measure on  with  for every . Then once again, the measure space 

 is -finite and  is the only null set. Hence if  is a measure on  then  is absolutely continuous with respect to  and hence
has unique density function  with respect to :

Once again, we can construct the density function explicitly.

In the setting above, define  by  for  and . Then  is the density of  with respect to .

Proof

Suppose that  so that  for some . Then

Often positive measure spaces that occur in applications can be decomposed into spaces generated by countable partitions. In the section on
Convergence in the chapter on Martingales, we show that more general density functions can be obtained as limits of density functions of the
type in the last theorem.

Probability Spaces

Suppose that  is a probability space and that  is a random variable taking values in a measurable space . Recall that the
distribution of  is the probability measure  on  given by

If  is a positive measure, -finite measure on , then the theory of this section applies, of course. The Radon-Nikodym theorem tells us
precisely when (the distribution of)  has a probability density function with respect to : we need the distribution to be absolutely continuous
with respect to : if  then  for .

Suppose that  is measurable, so that  is a real-valued random variable. The integral of  (assuming that it exists) is of
fundamental importance, and is knowns as the expected value of . We will study expected values in detail in the next chapter, but here we
just note different ways to write the integral. By the change of variables theorem in the last section we have

Assuming that , the distribution of , is absolutely continuous with respect to , with density function , we can add to our chain of
integrals using Theorem (14):

=

dμ

dν

1

dν/dμ

(3.13.13)

(S,S , #) S σ S =P(S) S

# # σ S ∅

# ν S ν(∅) = 0 ν μ ν

ν(A) = f(x), A⊆ S∑

x∈A

(3.13.14)

f : S→R f(x) = ν{x} x ∈ S

ν

S A = { : i ∈ I}A

i

S S = σ(A ) A ∈S A=⋃

j∈J

A

j

J ⊆ I μ S 0 < μ( ) <∞A

i

i ∈ I

(S,S ,μ) σ ∅ ν (S,S ) ν μ

f μ

ν(A) = f dμ, A ∈S∫

A

(3.13.15)

f : S→R f(x) = ν( )/μ( )A

i

A

i

x ∈ A

i

i ∈ I f ν μ

A ∈S A=⋃

j∈J

A

j

J ⊆ I

f dμ= f dμ= μ( ) = ν( ) = ν(A)∫

A

∑

j∈J

∫

A

j

∑

j∈J

ν( )A

j

μ( )A

j

A

j

∑

j∈J

A

j

(3.13.16)

(Ω,F ,P) X (S,S )

X P

X

(S,S )

(A) = P(X ∈ A), A ∈SP

X

(3.13.17)

μ σ (S,S )

X μ

μ μ(A) = 0 (A) = P(X ∈ A) = 0P

X

A ∈S

r : S→R r(X) r(X)

r(X)

r[X(ω)]dP(ω) = r(x)d (x)∫

Ω

∫

S

P

X

(3.13.18)

P

X

X μ f
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Specializing, suppose that  is a discrete measure space. Thus  has a discrete distribution and (as noted in the previous subsection),
the distribution of  is absolutely continuous with respect to , with probability density function  given by  for . In
this case the integral simplifies:

Recall next that for , the -dimensional Euclidean measure space is  where  is the -algebra of Lebesgue measurable
sets and  is Lebesgue measure. Suppose now that  and that  is the -algebra of Lebesgue measurable subsets of , and that once
again,  is a random variable with values in . By definition,  has a continuous distribution if  for . But we now know
that this is not enough to ensure that the distribution of  has a density function with respect to . We need the distribution to be absolutely
continuous, so that if  then  for . Of course  for , so absolute continuity implies continuity,
but not conversely. Continuity of the distribution is a (much) weaker condition than absolute continuity of the distribution. If the distribution of 

 is continuous but not absolutely so, then the distribution will not have a density function with respect to .

For example, suppose that . Then the distribution of  and  are mutually singular since  and so  will not have a
density function with respect to . This will always be the case if  is countable, so that the distribution of  is discrete. But it is also possible
for  to have a continuous distribution on an uncountable set  with . In such a case, the continuous distribution of  is said
to be degenerate. There are a couple of natural ways in which this can happen that are illustrated in the following exercises.

Suppose that  is uniformly distributed on the interval . Let , .

1.  has a continuous distribution on the circle .
2. The distribution of  and  are mutually singular.
3. Find .

Solution
1. If  then there exist a unique  with  and . Hence .
2.  but .
3. 

The last example is artificial since  has a one-dimensional distribution in a sense, in spite of taking values in . And of course  has a
probability density function  with repsect  given by  for .

Suppose that  is uniformly distributed on the set ,  is uniformly distributed on the interval , and that  and  are
independent.

1.  has a continuous distribution on the product set .
2. The distribution of  and  are mutually singular.
3. Find .

Solution
1. The variables are independent and  has a continuous distribution so  for .
2. \P[(X, Y) \in S] = 1\) but 
3. 

The last exercise is artificial since  has a discrete distribution on  (with all subsets measureable and with ), and  a continuous
distribution on the Euclidean space  (with Lebesgue mearuable subsets and with ). Both are absolutely continuous;  has density function

 given by  for  and  has density function  given by  for . So really, the proper measure space
on  is the product measure space formed from these two spaces. Relative to this product space  has a density  given by 
for .

It is also possible to have a continuous distribution on  with , yet still with no probability density function, a much more
interesting situation. We will give a classical construction. Let  be a sequence of Bernoulli trials with success parameter .
We will indicate the dependence of the probability measure  on the parameter  with a subscript. Thus, we have a sequence of independent
indicator variables with

We interpret  as the th binary digit (bit) of a random variable  taking values in . That is, . Conversely, recall that
every number  can be written in binary form as  where  for each . This representation is unique

r[X(ω)]dP(ω) = r(x)d (x) = r(x)f(x)dμ(x)∫

Ω

∫

S

P

X

∫

S

(3.13.19)

(S,S , #) X

X # f f(x) = P(X = x) x ∈ S

r[X(ω)]dP(ω) = r(x)f(x)∫

Ω

∑

x∈S

(3.13.20)

n ∈ N

+

n ( , , )R

n

R

n

λ

n

R

n

σ

λ

n

S ∈R

n

S σ S

X S X P(X = x) = 0 x ∈ S

X λ

n

(A) = 0λ

n

P(X ∈ A) = 0 A ∈S {x} = 0λ

n

x ∈ S

X λ

n

(S) = 0λ

n

X λ

n

P(X ∈ S) = 1 X

λ

n

S X

X S ∈R

n

(S) = 0λ

n

X

Θ [0, 2π) X = cosΘ Y = sinΘ

(X,Y ) C = {(x, y) : + = 1}x

2

y

2

(X,Y ) λ

2

P(Y >X)

(x, y) ∈ C θ ∈ [0, 2π) x = cosθ y = sinθ P[(X,Y ) = (x, y)] = P(Θ= θ) = 0

P[(X,Y ) ∈ C] = 1 (C) = 0λ

2

1

2

(X,Y ) R

2

Θ

f λ

1

f(θ) = 1/2π θ ∈ [0, 2π)

X {0, 1, 2} Y [0, 2] X Y

(X,Y ) S = {0, 1, 2}×[0, 2]

(X,Y ) λ

2

P(Y >X)

Y P[(X,Y ) = (x, y)] = P(X = 2)P(Y = y) = 0 (x, y) ∈ S

(S) = 0λ

2

1

2

X {0, 1, 2} # Y

[0, 2] λ X

g g(x) = 1/3 x ∈ {0, 1, 2} Y h h(y) = 1/2 y ∈ [0, 2]

S (X,Y ) f f(x, y) = 1/6

(x, y) ∈ S

S ⊆R

n

(S) > 0λ

n

( , ,…)X

1

X

2

p ∈ (0, 1)

P p

( = 1) = p, ( = 0) = 1−pP

p

X

i

P

p

X

i

(3.13.21)

X

i

i X (0, 1) X = /∑

∞

i=1

X

i

2

i

x ∈ (0, 1) x = /∑

∞

i=1

x

i

2

i

∈ {0, 1}x

i

i ∈ N

+
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except when  is a binary rational of the form  for  and . In this case, there are two representations, one
in which the bits are eventually 0 and one in which the bits are eventually 1. Note, however, that the set of binary rationals is countable. Finally,
note that the uniform distribution on  is the same as Lebesgue measure on .

 has a continuous distribution on  for every value of the parameter . Moreover,

1. If  and  then the distribution of  with parameter  and the distribution of  with parameter  are mutually singular.
2. If ,  has the uniform distribution on .
3. If , then the distribution of  is singular with respect to Lebesgue measure on , and hence has no probability density

function in the usual sense.

Proof

If  is not a binary rational, then

where . Let . Then  as . Hence, . If  is a binary
rational, then there are two bit strings that represent , say  (with bits eventually 0) and  (with bits eventually 1).
Hence . But both of these probabilities are 0 by the same
argument as before.

Next, we define the set of numbers for which the limiting relative frequency of 1's is . Let 
. Note that since limits are unique,  for . Next, by the strong law of

large numbers, . Although we have not yet studied the law of large numbers, The basic idea is simple: in a sequence of
Bernoulli trials with success probability , the long-term relative frequency of successes is . Thus the distributions of , as  varies from 0
to 1, are mutually singular; that is, as  varies,  takes values with probability 1 in mutually disjoint sets.

Let  denote the distribution function of , so that  for . If  is not a binary
rational, then  if and only if there exists  such that  for  and  while . Hence 

. Since the distribution function of a continuous distribution is continuous, it follows that  for all 
. This means that  has the uniform distribution on . If , the distribution of  and the uniform distribution are

mutually singular, so in particular,  does not have a probability density function with respect to Lebesgue measure.

For an application of some of the ideas in this example, see Bold Play in the game of Red and Black.

Counterexamples

The essential uniqueness of density functions can fail if the underlying positive measure  is not -finite. Here is a trivial counterexample:

Suppose that  is a nonempty set and that  is the trivial -algebra. Define the positive measure  on  by , 
. Let  denote the measure on  with constant density function  with respect to .

1.  is not -finite.
2.  for every .

The Radon-Nikodym theorem can fail if the measure  is not -finite, even if  is finite. Here are a couple of standard counterexample:

Suppose that  is an uncountable set and  is the -algebra of countable and co-countable sets:

As usual, let  denote counting measure on , and define  on  by  if  is countable and  if  is countable. Then

1.  is not -finite.
2.  is a finite, positive measure on .
3.  is absolutely continuous with respect to .
4.  does not have a density function with respect to .

Proof
1. Recall that a countable union of countable sets is countable, and so  cannot be written as such a union.
2. Note that . Suppose that  is a countable, disjoint collection of sets in . If  is countable for every  then 

 is countable. Hence  and  for every . Next suppose that  and  are countable for distinct 
. Since , we have . But then  would be countable, which is a contradiction. Hence it is only

possible for to have  countable for a single . In this case,  and  for . But also 

x x = k/2

n

n ∈ N

+

k ∈ {1, 3, … −1}2

n

(0, 1) (0, 1)

X (0, 1) p ∈ (0, 1)

p, q ∈ (0, 1) p ≠ q X p X q

p =

1

2

X (0, 1)

p ≠

1

2

X (0, 1)

x ∈ (0, 1)

(X = x) = ( =  for all i ∈ ) = ( =  for i = 1, 2 … , n) = (1 −pP

p

P

p

X

i

x

i

N

+

lim

n→∞

P

p

X

i

x

i

lim

n→∞

p

y

)

n−y

(3.13.22)

y =∑

n

i=1

x

i

q = max{p, 1 −p} (1 −p ≤ → 0p

y

)

n−y

q

n

n → ∞ (X = x) = 0P

p

x ∈ (0, 1)

x ( , , …)x

1

x

2

( , , …)y

1

y

2

(X = x) = ( =  for all i ∈ ) + ( =  for all i ∈ )P

p

P

p

X

i

x

i

N

+

P

p

X

i

y

i

N

+

p

= {x ∈ (0, 1) : → p as n → ∞}C

p

1

n

∑

n

i=1

x

i

∩ = ∅C

p

C

q

p ≠ q

(X ∈ ) = 1P

p

C

p

p p X p

p X

F X F (x) = (X ≤ x) = (X < x)P

p

P

p

x ∈ (0, 1) x ∈ (0, 1)

X < x n ∈ N

+

=X

i

x

i

i ∈ {1, 2, … ,n−1} = 0X

n

= 1x

n

(X < x) = = xP

1/2

∑

∞

n=1

x

n

2

n

F (x) = x

x ∈ [0, 1] X (0, 1) p ≠

1

2

X

X

μ σ

S S = {S, ∅} σ μ (S,S ) μ(∅) = 0

μ(S) = ∞ ν

c

(S,S ) c ∈ R μ

(S,S ,μ) σ

= μν

c

c ∈ (0, ∞)

μ σ ν

S S σ

S = {A ⊆ S : A is countable or   is countable}A

c

(3.13.23)

# S ν S ν(A) = 0 A ν(A) = 1 A

c

(S,S , #) σ

ν (S,S )

ν #

ν #

S

ν(∅) = 0 { : i ∈ I}A

i

S A

i

i ∈ I

⋃

i∈I

A

i

ν ( )= 0⋃

i∈I

A

i

ν( ) = 0A

i

i ∈ I A

c

j

A

c

k

j, k ∈ I ∩ = ∅A

j

A

k

∪ = SA

c

j

A

c

k

S

A

c

j

j∈ I ν( ) = 1A

j

ν( ) = 0A

i

i ≠ j =( )⋃

i∈I

A

i

c

⋂

i∈I

A

c

i
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is countable, so . Hence in all cases,  so  is a measure on . It is clearly positive and
finite.

3. Recall that any measure is absolutely continuous with respect to counting measure, since  if and only if .
4. Suppose that  has density function  with respect to . Then  for every . But then 

, which is a contradiction.

Let  denote the standard Borel -algebra on . Let  and  denote counting measure and Lebesgue measure on , respectively.
Then

1.  is not -finite.
2.  is absolutely continuous with respect to .
3.  does not have a density function with respect to .

Proof
1.  is uncountable and hence cannot be written as a countable union of finite sets.
2. Since  is the only null set of , .
3. Suppose that  has density function  with respect to . Then

But then also , a contradiction.

This page titled 3.13: Absolute Continuity and Density Functions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

ν ( )= 1⋃

i∈I

A

i

ν ( )= ν( )⋃

i∈I

A

i

∑

i∈I

A

i

ν (S,S )

#(A) = 0 A= ∅

ν f # 0 = ν{x} = f d#= f(x)∫

{x}

x ∈ S

ν(S) = f d#= 0∫

S

R σ R # λ (R,R)

(R,R, #) σ

λ #

λ #

R

∅ # λ≪#

λ f #

0 = λ{x} = f d#= f(x), x ∈ R∫

{x}

(3.13.24)

λ(R) = f d#= 0∫

R
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3.14: Function Spaces
      

Basic Theory

Our starting point is a positive measure space . That is  is a set,  is a -algebra of subsets of , and  is a positive
measure on . As usual, the most important special cases are

Euclidean space:  is a Lebesgue measurable subset of  for some ,  is the -algebra of Lebesgue measurable
subsets of , and  is -dimensional Lebesgue measure.
Discrete space:  is a countable set,  is the collection of all subsets of , and  is counting measure.
Probability space:  is the set of outcomes of a random experiment,  is the -algebra of events, and  is a probability
measure.

In previous sections, we defined the integral of certain measurable functions  with respect to , and we studied
properties of the integral. In this section, we will study vector spaces of functions that are defined in terms of certain integrability
conditions. These function spaces are of fundamental importance in all areas of analysis, including probability. In particular, the
results of this section will reappear in the form of spaces of random variables in our study of expected value.

Definitions and Basic Properties

Consider a statement on the elements of , for example an equation or an inequality with  as a free variable. (Technically
such a statement is a predicate on .) For , we say that the statement holds on  if it is true for every . We say that
the statement holds almost everywhere on  (with respect to ) if there exists  with  such that the statement holds
on  and .

Measurable functions  are equivalent if  almost everywhere on , in which case we write . The
relation  is an equivalence relation on the collection of measurable functions from  to . That is, if  are
measurable then

1. , the reflexive property.
2. If  then , the symmetric property.
3. If  and  then , the transitive property.

Thus, equivalent functions are indistinguishable from the point of view of the measure . As with any equivalence relation, 
partitions the underlying set (in this case the collection of real-valued measurable functions on ) into equivalence classes of
mutually equivalent elements. As we will see, we often view these equivalence classes as the basic objects of study. Our next task
is to define measures of the “size” of a function; these will become norms in our spaces.

Suppose that  is measurable. For  we define

We also define .

Since  is a nonnegative, measurable function for ,  exists in , and hence so does . Clearly 
 also exists in  and is known as the essential supremum of . A number  such that  almost

everywhere on  is an essential bound of  and so, appropriately enough, the essential supremum of  is the infimum of the
essential bounds of . Thus, we have defined  for all . The definition for  is special, but we will see that it's
the appropriate one.

For , let  denote the collection of measurable functions  such 

So for ,  if and only if  is integrable. The symbol  is in honor of Henri Lebesgue, who first developed the
theory. If we want to indicate the dependence on the underlying measure space, we write . Of course,  is simply the

(S,S ,μ) S S σ S μ

(S,S )

S R

n

n ∈ N

+

S σ

S μ = λ

n

n

S S =P(S) S μ = #

S S σ μ = P

f : S →R μ

S x ∈ S

S A ∈S A x ∈ A

A μ B ∈S B ⊆ A

B μ(A ∖B) = 0

f , g : S →R f = g S f ≡ g

≡ S R f , g, h : S →R

f ≡ f

f ≡ g g ≡ f

f ≡ g g ≡ h f ≡ h

μ ≡

S

f : S →R p ∈ (0, ∞)

∥f =∥

p

( dμ)∫

S

|f |

p

1/p

(3.14.1)

∥f = inf {b ∈ [0, ∞] : |f | ≤ b almost everywhere on S}∥

∞

|f |

p

p ∈ (0, ∞) dμ∫

S

|f |

p

[0, ∞] ∥f∥

p

∥f∥

∞

[0, ∞] f b ∈ [0, ∞] |f | ≤ b

S f f

f ∥f∥

p

p ∈ (0, ∞] p = ∞

p ∈ (0, ∞] L

p

f : S →R ∥f < ∞∥

p

p ∈ (0, ∞) f ∈ L

p

|f |

p

L

(S,S ,μ)L

p

L

1
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collection of functions that are integrable with respect to . Our goal is to study the spaces  for . We start with some
simple properties.

Suppose that  is measurable. Then for ,

1. 
2.  if and only if  almost everywhere on , so that .

Proof
1. This is obvious from the definitions.
2. For , this follows from properties of the integral that we already have. First of course, 

so . Conversely if  then  and hence  almost everywhere on  and so 
almost everywhere on . Suppose . Clearly . Conversely suppose that . Then for each 
there exists  with  as  and  almost everywhere on . Hence  almost everywhere
on .

Suppose that  is measurable and . Then  for .

Proof

Again, when , this result follow easily from properties of the integral that we already have:

Taking the th root of both sides gives the result. For , the result is trivially true if . For , note that 
 is an essential bound of  if and only if  is an essential bound if .

In particular, if  and  then .

Conjugate Indices and Hölder's inequality

Certain pairs of our function spaces turn out to be dual or complimentary to one another in a sense. To understand this, we need the
following definition.

Indices  are said to be conjugate if . In addition,  and  are conjugate indices.

For justification of the last case, note that if , then the index conjugate to  is

and  as . Note that  are conjugate indices, and this is the only case where the indices are the same. Ultimately,
the importance of conjugate indices stems from the following inequality:

If  and if  are conjugate indices, then

Moreover, equality occurs if and only if .

Proof 1

From properties of the natural logarithm function,

But the natural logarithm function is concave and  so

μ L

p

p ∈ (0,∞]

f : S→R p ∈ (0,∞]

∥f ≥ 0∥

p

∥f = 0∥

p

f = 0 S f ≡ 0

p ∈ (0,∞) dμ= 0 dμ= 0∫

S

0

p

∫

S

∥0 = 0∥

p

∥f = 0∥

p

dμ= 0∫

S

|f |

p

= 0|f |

p
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Taking exponentials we have

Proof 2

Fix  and define  by

Then  and  for . Hence  has a single critical point at 
 and  for . It follows that the minimum value of  on  occurs at  and 

. Hence  for  with equality only at  (that is, ).

our next major result is Hölder's inequality, named for Otto Hölder, which clearly indicates the importance of conjugate indices.

Suppose that  are measurable and that  and  are conjugate indices. Then

Proof

The result is obvious if  or , so suppose that  and . For our first case, suppose that 
and . Note that  almost everywhere on . Hence

For the second case, suppose . By part (b) of the positive property, the result holds if  or , so
assume that  and . By the additivity of the integral over disjoint domains, we can restrict the integrals to the
set , or simply assume that  and  on . From the basic inequality,

Suppose first that . From the increasing and linearity properties of the integral,

For the general case where  and , let  and . Then  so 
. So by the scaling property,

In particular, if  and  then . The most important special case of Hölder's inequality is when , in
which case we have the Cauchy-Schwartz inequality, named for Augustin Louis Cauchy and Karl Hermann Schwarz:

Minkowski's Inequality

Our next major result is Minkowski's inequality, named for Hermann Minkowski. This inequality will help show that  is a vector
space and that  is a norm (up to equivalence) when .

Suppose that  are measurable and that . Then

Proof
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Again, the result is trivial if  or , so assume that . When , the result is the simple triangle
inequality for the integral:

For the case , note that if  is an essential bound for  and  is an essential bound for  then  is
an essential bound for . Hence . For the last case, suppose that  and let  be the
index conjugate to . Then

Integrating over  and using the additive and increasing properties of the integral gives

But by Höder's inequality,

Combining this with the previous inequality we have

But  and  so

Hence we have

and therefore .

Vector Spaces

We can now discuss various vector spaces of functions. First, we know from our previous work with measure spaces, that the set 
of all measurable functions  is a vector space under our standard (pointwise) definitions of sum and scalar multiple. The
spaces we are studying in this section are subspaces:

 is a subspace of  for every .

Proof

We just need to show that  is closed under addition and scalar multiplication. From the positive property, if  and 
 then . From Minkowski's inequality, if  then .

However, we usually want to identify functions that are equal almost everywhere on  (with respect to ). Recalling the
equivalence relation  defined above, here are the definitions:

Let  denote the equivalence class of  under the equivalence relation , and let . If  and 
 we define

1. 
2. 

Then  is a vector space.
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we know from our previous work that these definitions are consistent in the sense that they do not depend on the particular
representatives of the equivalence classes. That is if  and  then  and . That  is a
vector space then follows from the fact that  is a vector space.

Now we can define the Lebesgue vector spaces precisely.

For , let . For  define . Then  is a subspace of  and  is a
norm on . That is, for  and 

1.  and  if and only if , the positive property
2. , the scaling property
3. , the triangle inequality

Proof

That  is a subspace of  follows immediately from the fact that  is a subspace of . The fact that  is a norm on 
also follows from our previous work.

We have stated these results precisely, but on the other hand, we don't want to be overly pedantic. It's more natural and intuitive to
simply work with the space  and the subspaces  for , and just remember that functions that are equal almost
everywhere on  are regarded as the same vector. This will be our point of view for the rest of this section.

Every norm on a vector space naturally leads to a metric. That is, we measure the distance between vectors as the norm of their
difference. Stated in terms of the norm , here are the properties of the metric on .

For ,

1.  and  if and only if , the positive property
2. , the symmetric property
3. , the triangle inequality

Once we have a metric, we naturally have a criterion for convergence.

Suppose that  for  and . Then by definition,  as  in  if and only if  as
.

Limits are unique, up to equivalence. (That is, limits are unique in .)

Suppose again that  for . Recall that this sequence is said to be a Cauchy sequence if for every  there exists 
 such that if  and  then . Needless to say, the Cauchy criterion is named for our ubiquitous

friend Augustin Cauchy. A metric space in which every Cauchy sequence converges (to an element of the space) is said to be
complete. Intuitively, one expects a Cauchy sequence to converge, so a complete space is literally one that is not missing any
elements that should be there. A complete, normed vector space is called a Banach space, after the Polish mathematician Stefan
Banach. Banach spaces are of fundamental importance in analysis, in large part because of the following result:

 is a Banach space for every .

The Space 

The norm  is special because it corresponds to an inner product.

For , define

Note that the integral is well-defined by the Cauchy-Schwarz inequality. As with all of our other definitions, this one is consistent
with the equivalence relation. That is, if  and  then  so  and hence 

. Note also that  for , so this definition generates the 2-norm.
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 is an inner product space. That is, if  and  then

1.  and  if and only if , the positive property
2. , the symmetric property
3. , the scaling property
4. , the additive property

Proof

Part (a) is a restatement of the positive property of the norm . Part (b) is obvious and parts (c) and (d) follow from the
linearity of the integral.

From parts (c) and (d), the inner product is linear in the first argument, with the second argument fixed. By the symmetric property
(b), it follows that the inner product is also linear in the second argument with the first argument fixed. That is, the inner product is
bi-linear. A complete. inner product space is known as a Hilbert space, named for the German mathematician David Hilbert. Thus,
the following result follows immediately from the previous two.

 is a Hilbert space.

All inner product spaces lead naturally to the concept of orthogonality;  is no exception.

Functions  are orthogonal if , in which case we write . Equivalently  if

Of course, all of the basic theorems of general inner product spaces hold in . For example, the following result is the
Pythagorean theorem, named of course for Phythagoras.

If  and  then .

Proof

The proof just uses basic properties of inner product in (17). No special properties of  are used. If  and  then

Examples and Special Cases

Discrete Spaces

Recall again that the measure space  is discrete if  is countable,  is the -algebra of all subsets of , and of
course,  is counting measure. In this case, recall that integrals are sums. The exposition will look more familiar if we use the
notation of sequences rather than functions. Thus, let , and denote the value of  at  by  rather than . For 

, the -norm is

On the other hand, . The only null set for  is , so the equivalence relation  is simply equality, and so
the spaces  and  are the same. For ,  if and only if

When  (as is often the case), this condition means that  is absolutely convergent. On the other hand,  if
and only if  is bounded. When , the space  is often denoted . The inner produce on  is
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When ,  is simply the vector space  with the usual addition, scalar multiplication, inner product, and norm
that we study in elementary linear algebra. Orthogonal vector are perpendicular in the usual sense.

Probability Spaces

Suppose that  is a probability space, so that  is the set of outcomes of a random experiment,  is the -algebra of
events, and  is a probability measure on the sample space . Of course, a measurable function  is simply a real-
valued random variable. For , the integral  is the expected value of , and is denoted . Thus in this
case,  is the collection of real-valued random variables  with . We will study these spaces in more detail in the
chapter on expected value.

This page titled 3.14: Function Spaces is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

4: Expected Value
Expected value is one of the fundamental concepts in probability, in a sense more general than probability itself. The expected
value of a real-valued random variable gives a measure of the center of the distribution of the variable. More importantly, by taking
the expected value of various functions of a general random variable, we can measure many interesting features of its distribution,
including spread, skewness, kurtosis, and correlation. Generating functions are certain types of expected value that completely
determine the distribution of the variable. Conditional expected value, which incorporates known information in the computation,
is one of the fundamental concepts in probability.

In the advanced topics, we define expected value as an integral with respect to the underlying probability measure. We also revisit
conditional expected value from a measure-theoretic point of view. We study vector spaces of random variables with certain
expected values as the norms of the spaces, which in turn leads to modes of convergence for random variables.

4.1: Definitions and Basic Properties
4.2: Additional Properties
4.3: Variance
4.4: Skewness and Kurtosis
4.5: Covariance and Correlation
4.6: Generating Functions
4.7: Conditional Expected Value
4.8: Expected Value and Covariance Matrices
4.9: Expected Value as an Integral
4.10: Conditional Expected Value Revisited
4.11: Vector Spaces of Random Variables
4.12: Uniformly Integrable Variables
4.13: Kernels and Operators

This page titled 4: Expected Value is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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4.1: Definitions and Basic Properties
    

Expected value is one of the most important concepts in probability. The expected value of a real-valued random variable gives the center
of the distribution of the variable, in a special sense. Additionally, by computing expected values of various real transformations of a
general random variable, we con extract a number of interesting characteristics of the distribution of the variable, including measures of
spread, symmetry, and correlation. In a sense, expected value is a more general concept than probability itself.

Basic Concepts

Definitions

As usual, we start with a random experiment modeled by a probability space . So to review,  is the set of outcomes,  the
collection of events and  the probability measure on the sample space . In the following definitions, we assume that  is a random
variable for the experiment, taking values in .

If  has a discrete distribution with probability density function  (so that  is countable), then the expected value of  is defined as
follows (assuming that the sum is well defined):

The sum defining the expected value makes sense if either the sum over the positive  is finite or the sum over the negative  is
finite (or both). This ensures the that the entire sum exists (as an extended real number) and does not depend on the order of the terms. So as
we will see, it's possible for  to be a real number or  or  or to simply not exist. Of course, if  is finite the expected value
always exists as a real number.

If  has a continuous distribution with probability density function  (and so  is typically an interval or a union of disjoint intervals),
then the expected value of  is defined as follows (assuming that the integral is well defined):

The probability density functions in basic applied probability that describe continuous distributions are piecewise continuous. So the
integral above makes sense if the integral over positive  is finite or the integral over negative  is finite (or both). This ensures
that the entire integral exists (as an extended real number). So as in the discrete case, it's possible for  to exist as a real number or as 

 or as  or to not exist at all. As you might guess, the definition for a mixed distribution is a combination of the definitions for the
discrete and continuous cases.

If  has a mixed distribution, with partial discrete density  on  and partial continuous density  on , where  and  are disjoint, 
 is countable,  is typically an interval, and . The expected value of  is defined as follows (assuming that the

expression on the right is well defined):

For the expected value above to make sense, the sum must be well defined, as in the discrete case, the integral must be well defined, as in
the continuous case, and we must avoid the dreaded indeterminate form . In the next section on additional properties, we will see
that the various definitions given here can be unified into a single definition that works regardless of the type of distribution of . An even
more general definition is given in the advanced section on expected value as an integral.

Interpretation

The expected value of  is also called the mean of the distribution of  and is frequently denoted . The mean is the center of the
probability distribution of  in a special sense. Indeed, if we think of the distribution as a mass distribution (with total mass 1), then the
mean is the center of mass as defined in physics. The two pictures below show discrete and continuous probability density functions; in
each case the mean  is the center of mass, the balance point.

(Ω,F ,P) Ω F

P (Ω,F) X

S ⊆R

X f S X

E(X) = xf(x)∑

x∈S

(4.1.1)

x ∈ S x ∈ S

E(X) ∞ −∞ S

X f S

X

E(X) = xf(x)dx∫

S

(4.1.2)

x ∈ S x ∈ S

E(X)

∞ −∞

X g D h C D C

D C S =D∪C X

E(X) = xg(x)+ xh(x)dx∑

x∈D

∫

C

(4.1.3)

∞−∞

X

X X μ

X

μ
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Figure : The mean  as the center of mass of a discrete distribution.

Figure : The mean  as the center of mass of a continuous distribution.

Recall the other measures of the center of a distribution that we have studied:

A mode is any  that maximizes .
A median is any  that satisfies  and .

To understand expected value in a probabilistic way, suppose that we create a new, compound experiment by repeating the basic experiment
over and over again. This gives a sequence of independent random variables , each with the same distribution as . In
statistical terms, we are sampling from the distribution of . The average value, or sample mean, after  runs is

Note that  is a random variable in the compound experiment. The important fact is that the average value  converges to the expected
value  as . The precise statement of this is the law of large numbers, one of the fundamental theorems of probability. You will
see the law of large numbers at work in many of the simulation exercises given below.

Extensions

If  and , the moment of  about  of order  is defined to be

(assuming of course that this expected value exists).

The moments about 0 are simply referred to as moments (or sometimes raw moments). The moments about  are the central moments. The
second central moment is particularly important, and is studied in detail in the section on variance. In some cases, if we know all of the
moments of , we can determine the entire distribution of . This idea is explored in the section on generating functions.

The expected value of a random variable  is based, of course, on the probability measure  for the experiment. This probability measure
could be a conditional probability measure, conditioned on a given event  for the experiment (with ). The usual notation is

, and this expected value is computed by the definitions given above, except that the conditional probability density function 
 replaces the ordinary probability density function . It is very important to realize that, except for notation, no new concepts

are involved. All results that we obtain for expected value in general have analogues for these conditional expected values. On the other
hand, we will study a more general notion of conditional expected value in a later section.

Basic Properties
The purpose of this subsection is to study some of the essential properties of expected value. Unless otherwise noted, we will assume that
the indicated expected values exist, and that the various sets and functions that we use are measurable. We start with two simple but still
essential results.

4.1.1 μ

4.1.2 μ

x ∈ S f

x ∈ R P(X < x) ≤

1

2

P(X ≤ x) ≥

1

2

( , ,…)X

1

X

2

X

X n

=M

n

1

n

∑

i=1

n

X

i

(4.1.4)

M

n

M

n

E(X) n→∞

a ∈ R n ∈ N X a n

E [(X−a ])

n

(4.1.5)

μ

X X

X P

A ∈F P(A) > 0

E(X ∣ A)

x↦ f(x ∣ A) f
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Simple Variables

First, recall that a constant  can be thought of as a random variable (on any probability space) that takes only the value  with
probability 1. The corresponding distribution is sometimes called point mass at .

If  is a constant random variable, then .

Proof

As a random variable,  has a discrete distribution, so .

Next recall that an indicator variable is a random variable that takes only the values 0 and 1.

If  is an indicator variable then .

Proof

 is discrete so by definition, .

In particular, if  is the indicator variable of an event , then , so in a sense, expected value subsumes probability. For a
book that takes expected value, rather than probability, as the fundamental starting concept, see the book Probability via Expectation, by
Peter Whittle.

Change of Variables Theorem

The expected value of a real-valued random variable gives the center of the distribution of the variable. This idea is much more powerful
than might first appear. By finding expected values of various functions of a general random variable, we can measure many interesting
features of its distribution.

Thus, suppose that  is a random variable taking values in a general set , and suppose that  is a function from  into . Then  is a
real-valued random variable, and so it makes sense to compute  (assuming as usual that this expected value exists). However, to
compute this expected value from the definition would require that we know the probability density function of the transformed variable 

 (a difficult problem, in general). Fortunately, there is a much better way, given by the change of variables theorem for expected value.
This theorem is sometimes referred to as the law of the unconscious statistician, presumably because it is so basic and natural that it is often
used without the realization that it is a theorem, and not a definition.

If  has a discrete distribution on a countable set  with probability density function . then

Proof

Figure : The change of variables theorem when  has a discrete distribution.

The next result is the change of variables theorem when  has a continuous distribution. We will prove the continuous version in stages,
first when  has discrete range below and then in the next section in full generality. Even though the complete proof is delayed, however,
we will use the change of variables theorem in the proofs of many of the other properties of expected value.

Suppose that  has a continuous distribution on  with probability density function , and that . Then

Proof when  has discrete range

Figure : The change of variables theorem when  has a continuous distribution and  has countable range.

c ∈ R c

c

c E(c) = c

c E(c) = c ⋅ 1 = c

X E(X) = P(X = 1)

X E(X) = 1 ⋅P(X = 1)+0 ⋅P(X = 0) = P(X = 1)

1

A

A E ( ) = P(A)1

A

X S r S R r(X)

E [r(X)]

r(X)

X S f

E [r(X)] = r(x)f(x)∑

x∈S

(4.1.6)

4.1.3 X

X

r

X S ⊆R

n

f r : S→R

E [r(X)] = r(x)f(x)dx∫

S

(4.1.7)
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The results below gives basic properties of expected value. These properties are true in general, but we will restrict the proofs primarily to
the continuous case. The proofs for the discrete case are analogous, with sums replacing integrals. The change of variables theorem is the
main tool we will need. In these theorems  and  are real-valued random variables for an experiment (that is, defined on an underlying
probability space) and  is a constant. As usual, we assume that the indicated expected values exist. Be sure to try the proofs yourself before
reading the ones in the text.

Linearity

Our first property is the additive property.

Proof

We apply the change of variables theorem with the function . Suppose that  has a continuous distribution with
PDF , and that  takes values in  and  takes values in . Recall that  has PDF  given by  for 

 and  has PDF  given by  for . Thus

Writing the double integrals as iterated integrals is a special case of Fubini's theorem. The proof in the discrete case is the same, with
sums replacing integrals.

Our next property is the scaling property.

Proof

We apply the change of variables formula with the function . Suppose that  has a continuous distribution on  with
PDF . Then

Again, the proof in the discrete case is the same, with sums replacing integrals.

Here is the linearity of expected value in full generality. It's a simple corollary of the previous two results.

Suppose that  is a sequence of real-valued random variables defined on the underlying probability space and that 
 is a sequence of constants. Then

Thus, expected value is a linear operation on the collection of real-valued random variables for the experiment. The linearity of expected
value is so basic that it is important to understand this property on an intuitive level. Indeed, it is implied by the interpretation of expected
value given in the law of large numbers.

Suppose that  is a sequence of real-valued random variables with common mean .

1. Let , the sum of the variables. Then .
2. Let , the average of the variables. Then .

Proof
1. By the additive property,

2. Note that . Hence from the scaling property and part (a), .

X Y

c

E(X+Y ) =E(X)+E(Y )

r(x, y) = x+y (X,Y )

f X S ⊆R Y T ⊆R X g g(x) = f(x, y)dy∫

T

x ∈ S Y h h(y) = f(x, y)dx∫

S

y ∈ T

E(X+Y ) = (x+y)f(x, y)d(x, y) = xf(x, y)d(x, y)+ yf(x, y)d(x, y)∫

S×T

∫

S×T

∫

S×T

= x( f(x, y)dy) dx+ y( f(x, y)dx) dy = xg(x)dx+ yh(y)dy =E(X)+E(Y )∫

S

∫

T

∫

T

∫

S

∫

S

∫

T

(4.1.8)

(4.1.9)

E(cX) = cE(X)

r(x) = cx X S ⊆R

f

E(cX) = c xf(x)dx = c xf(x)dx = cE(X)∫

S

∫

S

(4.1.10)
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n

E( ) = E( )∑

i=1
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a

i
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i=1
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a

i
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i

(4.1.11)
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1

X

2

X

n

μ

Y =∑

n

i=1

X

i

E(Y ) = nμ
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1

n

∑

n

i=1

X

i

E(M) = μ

E(Y ) =E( ) = E( ) = μ= nμ∑

i=1

n

X

i

∑

i=1

n

X

i

∑
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M = Y /n E(M) =E(Y )/n= μ
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If the random variables in the previous result are also independent and identically distributed, then in statistical terms, the sequence is a
random sample of size  from the common distribution, and  is the sample mean.

In several important cases, a random variable from a special distribution can be decomposed into a sum of simpler random variables, and
then part (a) of the last theorem can be used to compute the expected value.

Inequalities

The following exercises give some basic inequalities for expected value. The first, known as the positive property is the most obvious, but
is also the main tool for proving the others.

Suppose that . Then

1. 
2. If  then .

Proof
1. This result follows from the definition, since we can take the set of values  of  to be a subset of .
2. Suppose that  (in addition to ). By the continuity theorem for increasing events, there exists 

such that . Therefore  (with probability 1). By part (a), linearity, and Theorem 2, 
 so .

Next is the increasing property, perhaps the most important property of expected value, after linearity.

Suppose that . Then

1. 
2. If  then .

Proof
1. The assumption is equivalent to . Thus  by part (a) of the positive property. But then 

 by the linearity of expected value.
2. Similarly, this result follows from part (b) of the positive property.

Absolute value inequalities:

1. 
2. If  and  then .

Proof
1. Note that  (with probability 1) so by part (a) of the increasing property, . By

linearity,  which implies .
2. If  then , and if  then . Hence by part (b) of the increasing

property,  and therefore .

Only in Lake Woebegone are all of the children above average:

If  then

1. 
2. 

Proof
1. We prove the contrapositive. Thus suppose that  so that . If  then by the

increasing property we have , a contradiction. Thus .
2. Similarly, if  then .

Thus, if  is not a constant (with probability 1), then  must take values greater than its mean with positive probability and values less
than its mean with positive probability.

Symmetry

Again, suppose that  is a random variable taking values in . The distribution of  is symmetric about  if the distribution of 
is the same as the distribution of .

n M

P(X ≥ 0) = 1

E(X) ≥ 0

P(X > 0) > 0 E(X) > 0

S X [0,∞)

P(X > 0) > 0 P(X ≥ 0) = 1 ϵ> 0

P(X ≥ ϵ) > 0 X− ϵ1(X ≥ ϵ) ≥ 0

E(X)− ϵP(X ≥ ϵ) > 0 E(X) ≥ ϵP(X ≥ ϵ) > 0

P(X ≤ Y ) = 1

E(X) ≤E(Y )

P(X < Y ) > 0 E(X) <E(Y )

P(Y −X ≥ 0) = 1 E(Y −X) ≥ 0

E(Y )−E(X) ≥ 0

|E(X)| ≤E (|X|)

P(X > 0) > 0 P(X < 0) > 0 |E(X)| <E (|X|)

−|X| ≤X ≤ |X| E (−|X|) ≤E(X) ≤E (|X|)

−E (|X|) ≤E(X) ≤E (|X|) |E(X)| ≤E (|X|)

P(X > 0) > 0 P (−|X| <X) > 0 P(X < 0) > 0 P (X < |X|) > 0

−E (|X|) <E(X) <E (|X|) |E(X)| <E (|X|)

P [X ≠E(X)] > 0

P [X >E(X)] > 0

P [X <E(X)] > 0

P [X >E(X)] = 0 P [X ≤E(X)] = 1 P [X <E(X)] > 0

E(X) <E(X) P [X =E(X)] = 1

P [X <E(X)] = 0 P [X =E(X)] = 1

X X

X R X a ∈ R a−X

X−a
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Suppose that the distribution of  is symmetric about . If  exists, then .

Proof

By assumption, the distribution of  is the same as the distribution of . Since  exists we have 
 so by linearity . Equivalently .

The previous result applies if  has a continuous distribution on  with a probability density  that is symmetric about ; that is, 
 for .

Independence

If  and  are independent real-valued random variables then .

Proof

Suppose that  has a continuous distribution on  with PDF  and that  has a continuous distribution on  with PDF .
Then  has PDF  on . We apply the change of variables theorem with the function .

The proof in the discrete case is similar with sums replacing integrals.

It follows from the last result that independent random variables are uncorrelated (a concept that we will study in a later section). Moreover,
this result is more powerful than might first appear. Suppose that  and  are independent random variables taking values in general
spaces  and  respectively, and that  and . Then  and  are independent, real-valued random variables and
hence

Examples and Applications

As always, be sure to try the proofs and computations yourself before reading the proof and answers in the text.

Uniform Distributions

Discrete uniform distributions are widely used in combinatorial probability, and model a point chosen at random from a finite set.

Suppose that  has the discrete uniform distribution on a finite set .

1.  is the arithmetic average of the numbers in .
2. If the points in  are evenly spaced with endpoints , then , the average of the endpoints.

Proof
1. Let , the number of points in . Then  has PDF  for  so

2. Suppose that  and let , the right endpoint. As in (a),  has  points so
using (a) and the formula for the sum of the first  positive integers, we have

The previous results are easy to see if we think of  as the center of mass, since the discrete uniform distribution corresponds to a finite
set of points with equal mass.

Open the special distribution simulator, and select the discrete uniform distribution. This is the uniform distribution on  points,
starting at , evenly spaced at distance . Vary the parameters and note the location of the mean in relation to the probability density
function. For selected values of the parameters, run the simulation 1000 times and compare the empirical mean to the distribution
mean.

X a ∈ R E(X) E(X) = a

X−a a−X E(X)

E(a−X) =E(X−a) a−E(X) =E(X)−a 2E(X) = 2a

X R f a

f(a+x) = f(a−x) x ∈ R

X Y E(XY ) =E(X)E(Y )

X S ⊆R g Y T ⊆R h

(X,Y ) f(x, y) = g(x)h(y) S×T r(x, y) = xy

E(XY ) = xyf(x, y)d(x, y) = xyg(x)h(y)d(x, y) = xg(x)dx yh(y)dy =E(X)E(Y )∫

S×T

∫

S×T

∫

S

∫

T

(4.1.13)

X Y

S T u : S→R v : T →R u(X) v(Y )

E [u(X)v(Y )] =E [u(X)]E [v(Y )] (4.1.14)

X S ⊆R

E(X) S

S a, b E(X) =

a+b

2

n=#(S) S X f(x) = 1/n x ∈ S

E(X) = x = x∑

x∈S

1

n

1

n

∑

x∈S

(4.1.15)

S = {a, a+h, a+2h,… a+(n−1)h} b = a+(n−1)h S n

n−1

E(X) = (a+ ih) = (na+h ) = a+ =

1

n

∑

i=0

n−1

1

n

(n−1)n

2

(n−1)h

2

a+b

2

(4.1.16)
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Next, recall that the continuous uniform distribution on a bounded interval corresponds to selecting a point at random from the interval.
Continuous uniform distributions arise in geometric probability and a variety of other applied problems.

Suppose that  has the continuous uniform distribution on an interval , where  and .

1. , the midpoint of the interval.
2.  for .

Proof

1. Recall that  has PDF . Hence

2. By the change of variables formula,

Part (a) is easy to see if we think of the mean as the center of mass, since the uniform distribution corresponds to a uniform distribution of
mass on the interval.

Open the special distribution simulator, and select the continuous uniform distribution. This is the uniform distribution the interval 
. Vary the parameters and note the location of the mean in relation to the probability density function. For selected values of

the parameters, run the simulation 1000 times and compare the empirical mean to the distribution mean.

Next, the average value of a function on an interval, as defined in calculus, has a nice interpretation in terms of the uniform distribution.

Suppose that  is uniformly distributed on the interval , and that  is an integrable function from  into . Then  is
the average value of  on :

Proof

This result follows immediately from the change of variables theorem, since  has PDF  for .

Find the average value of the following functions on the given intervals:

1.  on 
2.  on 
3.  on .

Answer
1. 
2. 
3. 

The next exercise illustrates the value of the change of variables theorem in computing expected values.

Suppose that  is uniformly distributed on .

1. Give the probability density function of .
2. Find the probability density function of .
3. Find  using the probability density function in (b).
4. Find  using the change of variables theorem.

Answer
1.  for 

2. 

X [a, b] a, b ∈ R a< b

E(X) =

a+b

2

E ( ) = ( + b+⋯+a + )X

n

1

n+1

a

n

a

n−1

b

n−1

b

n

n ∈ N

X f(x) =

1

b−a

E(X) = x dx = =∫

b

a

1

b−a

1

b−a

−b

2

a

2

2

a+b

2

(4.1.17)

E ( ) = dx = = ( + b+⋯ a + )X

n

∫

b

a

1

b−a

x

n

−b

n+1

a

n+1

(n+1)‘(b−a)

1

n+1

a

n

a

n−1

b

n−1

b

n

(4.1.18)

[a, a+w]

X [a, b] g [a, b] R E [g(X)]

g [a, b]

E [g(X)] = g(x)dx

1

b−a

∫

b

a

(4.1.19)

X f(x) = 1/(b−a) a≤ x ≤ b

f(x) = x [2, 4]

g(x) = x

2

[0, 1]

h(x) = sin(x) [0, π]

3

1

3

2

π

X [−1, 3]

X

X

2

E ( )X

2

E ( )X

2

f(x) =

1

4

−1 ≤ x ≤ 3

g(y) ={

,

1

4

y

−1/2

,

1

8

y

−1/2

0 < y < 1

1 < y < 9
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3. 

4. 

The discrete uniform distribution and the continuous uniform distribution are studied in more detail in the chapter on Special Distributions.

Dice

Recall that a standard die is a six-sided die. A fair die is one in which the faces are equally likely. An ace-six flat die is a standard die in
which faces 1 and 6 have probability  each, and faces 2, 3, 4, and 5 have probability  each.

Two standard, fair dice are thrown, and the scores  recorded. Find the expected value of each of the following variables.

1. , the sum of the scores.
2. , the average of the scores.
3. , the product of the scores.
4. , the minimum score
5. , the maximum score.

Answer
1. 
2. 
3. 
4. 
5. 

In the dice experiment, select two fair die. Note the shape of the probability density function and the location of the mean for the sum,
minimum, and maximum variables. Run the experiment 1000 times and compare the sample mean and the distribution mean for each
of these variables.

Two standard, ace-six flat dice are thrown, and the scores  recorded. Find the expected value of each of the following
variables.

1. , the sum of the scores.
2. , the average of the scores.
3. , the product of the scores.
4. , the minimum score
5. , the maximum score.

Answer
1. 
2. 
3. 
4. 
5. 

In the dice experiment, select two ace-six flat die. Note the shape of the probability density function and the location of the mean for
the sum, minimum, and maximum variables. Run the experiment 1000 times and compare the sample mean and the distribution mean
for each of these variables.

Bernoulli Trials

Recall that a Bernoulli trials process is a sequence  of independent, identically distributed indicator random variables. In
the usual language of reliability,  denotes the outcome of trial , where 1 denotes success and 0 denotes failure. The probability of
success  is the basic parameter of the process. The process is named for Jacob Bernoulli. A separate chapter on the
Bernoulli Trials explores this process in detail.

For , the number of successes in the first  trials is . Recall that this random variable has the binomial distribution
with parameters  and , and has probability density function  given by
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If  has the binomial distribution with parameters  and  then 

Proof from the definition

The critical tools that we need involve binomial coefficients: the identity  for , and the binomial theorem:

Proof using the additive property

Since , the result follows immediately from the expected value of an indicator variable and the additive property, since 
 for each .

Note the superiority of the second proof to the first. The result also makes intuitive sense: in  trials with success probability , we expect 
 successes.

In the binomial coin experiment, vary  and  and note the shape of the probability density function and the location of the mean. For
selected values of  and , run the experiment 1000 times and compare the sample mean to the distribution mean.

Suppose that , and let  denote the trial number of the first success. This random variable has the geometric distribution on 
with parameter , and has probability density function  given by

If  has the geometric distribution on  with parameter  then .

Proof

The key is the formula for the deriviative of a geometric series:

Again, the result makes intuitive sense. Since  is the probability of success, we expect a success to occur after  trials.

In the negative binomial experiment, select  to get the geometric distribution. Vary  and note the shape of the probability density
function and the location of the mean. For selected values of , run the experiment 1000 times and compare the sample mean to the
distribution mean.

The Hypergeometric Distribution

Suppose that a population consists of  objects;  of the objects are type 1 and  are type 0. A sample of  objects is chosen at
random, without replacement. The parameters  with  and . Let  denote the type of the th object selected.
Recall that  is a sequence of identically distributed (but not independent) indicator random variable with 

 for each .

Let  denote the number of type 1 objects in the sample, so that . Recall that  has the hypergeometric distribution, which
has probability density function  given by

If  has the hypergeometric distribution with parameters , , and  then .

Proof from the definition

Using the hypergeometric PDF,

f(y) =( ) (1−p , y ∈ {0, 1,… ,n}

n
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Note that the  term is 0. For the other terms, we can use the identity  to get

But substituting  and using another fundamental identity,

So substituting and doing a bit of algebra gives .

Proof using the additive property

A much better proof uses the additive property and the representation of  as a sum of indicator variables. The result follows
immediately since  for each .

In the ball and urn experiment, vary , , and  and note the shape of the probability density function and the location of the mean.
For selected values of the parameters, run the experiment 1000 times and compare the sample mean to the distribution mean.

Note that if we select the objects with replacement, then  would be a sequence of Bernoulli trials, and hence  would have the binomial
distribution with parameters  and . Thus, the mean would still be .

The Poisson Distribution

Recall that the Poisson distribution has probability density function  given by

where  is a parameter. The Poisson distribution is named after Simeon Poisson and is widely used to model the number of
“random points” in a region of time or space; the parameter  is proportional to the size of the region. The Poisson distribution is studied in
detail in the chapter on the Poisson Process.

If  has the Poisson distribution with parameter  then . Thus, the parameter of the Poisson distribution is the mean of the
distribution.

Proof

The proof depends on the standard series for the exponential function

In the Poisson experiment, the parameter is . Vary the parameter and note the shape of the probability density function and the
location of the mean. For various values of the parameter, run the experiment 1000 times and compare the sample mean to the
distribution mean.

The Exponential Distribution

Recall that the exponential distribution is a continuous distribution with probability density function  given by

where  is the rate parameter. This distribution is widely used to model failure times and other “arrival times”; in particular, the
distribution governs the time between arrivals in the Poisson model. The exponential distribution is studied in detail in the chapter on the
Poisson Process.

Suppose that  has the exponential distribution with rate parameter . Then .

Proof
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This result follows from the definition and an integration by parts:

Recall that the mode of  is 0 and the median of  is . Note how these measures of center are ordered: 

In the gamma experiment, set  to get the exponential distribution. This app simulates the first arrival in a Poisson process. Vary 
with the scroll bar and note the position of the mean relative to the graph of the probability density function. For selected values of ,
run the experiment 1000 times and compare the sample mean to the distribution mean.

Suppose again that  has the exponential distribution with rate parameter  and suppose that . Find .

Answer

The Gamma Distribution

Recall that the gamma distribution is a continuous distribution with probability density function  given by

where  is the shape parameter and  is the rate parameter. This distribution is widely used to model failure times and
other “arrival times”, and in particular, models the th arrival in the Poisson process. Thus it follows that if  is a
sequence of independent random variables, each having the exponential distribution with rate parameter , then  has the
gamma distribution with shape parameter  and rate parameter . The gamma distribution is studied in more generality, with non-integer
shape parameters, in the chapter on the Special Distributions.

Suppose that  has the gamma distribution with shape parameter  and rate parameter . Then .

Proof from the definition

The proof is by induction on , so let  denote the mean when the shape parameter is . When , we have the exponential
distribution with rate parameter , so we know  by our result above. Suppose that  for a given . Then

Integrate by parts with ,  so that  and . Then

But the last integral is , so by the induction hypothesis, .

Proof using the additive property

The result follows immediately from the additive property and the fact that  can be represented in the form  where 
has the exponential distribution with parameter  for each .

Note again how much easier and more intuitive the second proof is than the first.

Open the gamma experiment, which simulates the arrival times in the Poisson process. Vary the parameters and note the position of the
mean relative to the graph of the probability density function. For selected parameter values, run the experiment 1000 times and
compare the sample mean to the distribution mean.

Beta Distributions

The distributions in this subsection belong to the family of beta distributions, which are widely used to model random proportions and
probabilities. The beta distribution is studied in detail in the chapter on Special Distributions.

Suppose that  has probability density function  given by  for .

1. Find the mean of .
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2. Find the mode of .
3. Find the median of .
4. Sketch the graph of  and show the location of the mean, median, and mode on the -axis.

Answer

1. 
2. 

3. 

In the special distribution simulator, select the beta distribution and set  and  to get the distribution in the last exercise. Run
the experiment 1000 times and compare the sample mean to the distribution mean.

Suppose that a sphere has a random radius  with probability density function  given by  for . Find the
expected value of each of the following:

1. The circumference 
2. The surface area 
3. The volume 

Answer

1. 
2. 
3. 

Suppose that  has probability density function  given by  for .

1. Find the mean of .
2. Find median of .
3. Note that  is unbounded, so  does not have a mode.
4. Sketch the graph of  and show the location of the mean and median on the -axis.

Answer
1. 
2. 

The particular beta distribution in the last exercise is also known as the (standard) arcsine distribution. It governs the last time that the
Brownian motion process hits 0 during the time interval . The arcsine distribution is studied in more generality in the chapter on
Special Distributions.

Open the Brownian motion experiment and select the last zero. Run the simulation 1000 times and compare the sample mean to the
distribution mean.

Suppose that the grades on a test are described by the random variable  where  has the beta distribution with probability
density function  given by  for . The grades are generally low, so the teacher decides to “curve” the
grades using the transformation . Find the expected value of each of the following variables

1. 
2. 
3. 

Answer

1. 
2. 
3. 

The Pareto Distribution

Recall that the Pareto distribution is a continuous distribution with probability density function  given by
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where  is a parameter. The Pareto distribution is named for Vilfredo Pareto. It is a heavy-tailed distribution that is widely used to
model certain financial variables. The Pareto distribution is studied in detail in the chapter on Special Distributions.

Suppose that  has the Pareto distribution with shape parameter . Then

1.  if 
2.  if 

Proof
1. If ,

since the exponent . If , .

2. If  then

The previous exercise gives us our first example of a distribution whose mean is infinite.

In the special distribution simulator, select the Pareto distribution. Note the shape of the probability density function and the location of
the mean. For the following values of the shape parameter , run the experiment 1000 times and note the behavior of the empirical
mean.

1. 
2. 
3. .

The Cauchy Distribution

Recall that the (standard) Cauchy distribution has probability density function  given by

This distribution is named for Augustin Cauchy. The Cauchy distributions is studied in detail in the chapter on Special Distributions.

If  has the Cauchy distribution then  does not exist.

Proof

By definition,

which evaluates to the meaningless expression .

Note that the graph of  is symmetric about 0 and is unimodal. Thus, the mode and median of  are both 0. By the symmetry result, if 
had a mean, the mean would be 0 also, but alas the mean does not exist. Moreover, the non-existence of the mean is not just a pedantic
technicality. If we think of the probability distribution as a mass distribution, then the moment to the right of  is 
and the moment to the left of  is  for every . The center of mass simply does not exist.
Probabilisitically, the law of large numbers fails, as you can see in the following simulation exercise:

In the Cauchy experiment (with the default parameter values), a light sources is 1 unit from position 0 on an infinite straight wall. The
angle that the light makes with the perpendicular is uniformly distributed on the interval , so that the position of the light beam
on the wall has the Cauchy distribution. Run the simulation 1000 times and note the behavior of the empirical mean.
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The Normal Distribution

Recall that the standard normal distribution is a continuous distribution with density function  given by

Normal distributions are widely used to model physical measurements subject to small, random errors and are studied in detail in the
chapter on Special Distributions.

If  has the standard normal distribution then .

Proof

Using a simple change of variables, we have

The standard normal distribution is unimodal and symmetric about . Thus, the median, mean, and mode all agree. More generally, for 
 and , recall that  has the normal distribution with location parameter  and scale parameter . 

has probability density function  given by

The location parameter is the mean of the distribution:

If  has the normal distribution with location parameter  and scale parameter , then 

Proof

Of course we could use the definition, but a proof using linearity and the representation in terms of the standard normal distribution is
trivial: .

In the special distribution simulator, select the normal distribution. Vary the parameters and note the location of the mean. For selected
parameter values, run the simulation 1000 times and compare the sample mean to the distribution mean.

Additional Exercises

Suppose that  has probability density function  given by  for . Find the following
expected values:

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

Suppose that  has a discrete distribution with probability density function  given by  for . Find
each of the following:

1. The median of .
2. The mode of 
3. .
4. 
5. .
6. .
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Answer
1. 3
2. 3
3. 
4. 
5. 
6. 

Suppose that  and  are real-valued random variables with  and . Find .

Answer

0

Suppose that  and  are real-valued, independent random variables, and that  and . Find 
.

Answer

33

Suppose that there are 5 duck hunters, each a perfect shot. A flock of 10 ducks fly over, and each hunter selects one duck at random and
shoots. Find the expected number of ducks killed.

Solution

Number the ducks from 1 to 10. For , let  be the indicator variable that takes the value 1 if duck  is killed and 0

otherwise. Duck  is killed if at least one of the hunters selects her, so . The number of ducks

killed is  so 

For a more complete analysis of the duck hunter problem, see The Number of Distinct Sample Values in the chapter on Finite Sampling
Models.

Consider the following game: An urn initially contains one red and one green ball. A ball is selected at random, and if the ball is green,
the game is over. If the ball is red, the ball is returned to the urn, another red ball is added, and the game continues. At each stage, a ball
is selected at random, and if the ball is green, the game is over. If the ball is red, the ball is returned to the urn, another red ball is added,
and the game continues. Let  denote the length of the game (that is, the number of selections required to obtain a green ball). Find 

.

Solution

The probability density function  of  was found in the section on discrete distributions:  for . The expected

length of the game is infinite:

This page titled 4.1: Definitions and Basic Properties is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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1
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x ∈ N

+
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∞
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∞
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4.2: Additional Properties
    

In this section, we study some properties of expected value that are a bit more specialized than the basic properties considered in the previous
section. Nonetheless, the new results are also very important. They include two fundamental inequalities as well as special formulas for the
expected value of a nonnegative variable. As usual, unless otherwise noted, we assume that the referenced expected values exist.

Basic Theory

Markov's Inequality

Our first result is known as Markov's inequality (named after Andrei Markov). It gives an upper bound for the tail probability of a nonnegative
random variable in terms of the expected value of the variable.

If  is a nonnegative random variable, then

Proof

For , note that . Taking expected values through this inequality gives .

The upper bound in Markov's inequality may be rather crude. In fact, it's quite possible that , in which case the bound is worthless.
However, the real value of Markov's inequality lies in the fact that it holds with no assumptions whatsoever on the distribution of  (other than that

 be nonnegative). Also, as an example below shows, the inequality is tight in the sense that equality can hold for a given . Here is a simple
corollary of Markov's inequality.

If  is a real-valued random variable and  then

Proof

Since , the function  is strictly increasing on . Hence using Markov's inequality,

In this corollary of Markov's inequality, we could try to find  so that  is minimized, thus giving the tightest bound on 

.

Right Distribution Function

Our next few results give alternative ways to compute the expected value of a nonnegative random variable by means of the right-tail distribution
function. This function also known as the reliability function if the variable represents the lifetime of a device.

If  is a nonnegative random variable then

Proof

A proof can be constructed by expressing  in terms of the probability density function of , as a sum in the discrete case or an
integral in the continuous case. Then in the expression  interchange the integral and the sum (in the discrete case) or the two
integrals (in the continuous case). There is a much more elegant proof if we use the fact that we can interchange expected values and integrals
when the integrand is nonnegative:

This interchange is a special case of Fubini's theorem, named for the Italian mathematician Guido Fubini. See the advanced section on expected
value as an integral for more details.

Here is a slightly more general result:

X

P(X ≥ x) ≤ , x > 0

E(X)

x

(4.2.1)

x > 0 x ⋅ 1(X ≥ x) ≤X xP(X ≥ x) ≤E(X)

E(X)/x ≥ 1

X

X x

X k ∈ (0,∞)

P(|X| ≥ x) ≤ x > 0

E( )|X|

k

x

k

(4.2.2)

k≥ 0 x↦ x

k

[0,∞)

P(|X| ≥ x) = P( ≥ )≤|X|

k

x

k

E( )|X|

k

x

k

(4.2.3)

k> 0 E( )/|X|

k

x

k

P (|X|) ≥ x)

X

E(X) = P(X > x)dx∫

∞

0

(4.2.4)

P(X > x) X

P(X > x)dx∫

∞

0

P(X > x)dx = E [1(X > x)] dx =E( 1(X > x)dx) =E( 1 dx) =E(X)∫

∞

0

∫

∞

0

∫

∞

0

∫

X

0

(4.2.5)
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If  is a nonnegative random variable and  then

Proof

The same basic proof works:

The following result is similar to the theorem above, but is specialized to nonnegative integer valued variables:

Suppose that  has a discrete distribution, taking values in . Then

Proof

First, the two sums on the right are equivalent by a simple change of variables. A proof can be constructed by expressing  as a sum
in terms of the probability density function of . Then in the expression  interchange the two sums. Here is a more elegant
proof:

This interchange is a special case of a general rule that allows the interchange of expected value and an infinite series, when the terms are
nonnegative. See the advanced section on expected value as an integral for more details.

A General Definition

The special expected value formula for nonnegative variables can be used as the basis of a general formulation of expected value that would work
for discrete, continuous, or even mixed distributions, and would not require the assumption of the existence of probability density functions. First,
the special formula is taken as the definition of  if  is nonnegative.

If  is a nonnegative random variable, define

Next, for , recall that the positive and negative parts of  are  and .

For ,

1. , 
2. 
3. 

Now, if  is a real-valued random variable, then  and , the positive and negative parts of , are nonnegative random variables, so their
expected values are defined as above. The definition of  is then natural, anticipating of course the linearity property.

If  is a real-valued random variable, define , assuming that at least one of the expected values on the right is
finite.

The usual formulas for expected value in terms of the probability density function, for discrete, continuous, or mixed distributions, would now be
proven as theorems. We will not go further in this direction, however, since the most complete and general definition of expected value is given in
the advanced section on expected value as an integral.

The Change of Variables Theorem

Suppose that  takes values in  and has probability density function . Suppose also that , so that  is a real-valued random
variable. The change of variables theorem gives a formula for computing  without having to first find the probability density function of 

. If  is countable, so that  has a discrete distribution, then

X k ∈ (0,∞)

E( ) = k P(X > x)dxX

k

∫

∞

0

x

k−1

(4.2.6)

k P(X > x)dx = k E [1(X > x)] dx =E( k 1(X > x)dx) =E( k dx) =E( )∫

∞

0

x

k−1

∫

∞

0

x

k−1

∫

∞

0

x

k−1

∫

X

0

x

k−1

X

k

(4.2.7)

N N

E(N) = P(N > n) = P(N ≥ n)∑

n=0

∞

∑

n=1

∞

(4.2.8)

P(N > n)

N P(N > n)∑

∞

n=0

P(N ≥ n) = E [1(N ≥ n)] =E( 1(N ≥ n)) =E( 1) =E(N)∑

n=1

∞

∑

n=1

∞

∑

n=1

∞

∑

n=1

N

(4.2.9)

E(X) X

X

E(X) = P(X > x)dx∫

∞

0

(4.2.10)

x ∈ R x =max{x, 0}x

+

=max{0,−x}x

−

x ∈ R

≥ 0x

+

≥ 0x

−

x = −x

+

x

−

|x| = +x

+

x

−

X X

+

X

−

X

E(X)

X E(X) =E ( )−E ( )X

+

X

−

X S f r : S→R r(X)

E [r(X)]

r(X) S X

E [r(X)] = r(x)f(x)∑

x∈S

(4.2.11)
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If  and  has a continuous distribution on  then

In both cases, of course, we assume that the expected values exist. In the previous section on basic properties, we proved the change of variables
theorem when  has a discrete distribution and when  has a continuous distribution but  has countable range. Now we can finally finish our
proof in the continuous case.

Suppose that  has a continuous distribution on  with probability density function , and . Then

Proof

Suppose first that  is nonnegative. From the theorem above,

For general , we decompose into positive and negative parts, and use the result just established.

Jensens's Inequality

Our next sequence of exercises will establish an important inequality known as Jensen's inequality, named for Johan Jensen. First we need a
definition.

A real-valued function  defined on an interval  is said to be convex (or concave upward) on  if for each , there exist numbers 
and  (that may depend on ), such that

1. 
2.  for all 

The graph of  is called a supporting line for  at .

Thus, a convex function has at least one supporting line at each point in the domain

Figure : A convex function and several supporting lines

You may be more familiar with convexity in terms of the following theorem from calculus: If  has a continuous, non-negative second derivative on
, then  is convex on  (since the tangent line at  is a supporting line at  for each ). The next result is the single variable version of

Jensen's inequality

If  takes values in an interval  and  is convex on , then

Proof

Note that  so let  be a supporting line for  at . Thus  and . Taking
expected values through the inequality gives

S ⊆R

n

X S

E [r(X)] = r(x)f(x)dx∫

S

(4.2.12)

X X r

X S f r : S→R

E [r(X)] = r(x)f(x)dx∫

S

(4.2.13)

r

E [r(X)] = P [r(X) > t] dt = f(x)dx dt = f(x)dt dx = r(x)f(x)dx∫

∞

0

∫

∞

0

∫

(t,∞)r

−1

∫

S

∫

r(x)

0

∫

S

(4.2.14)

r

E [r(X)] =E [ (X)− (X)] =E [ (X)]−E [ (X)]r

+

r

−

r

+

r

−

= (x)f(x)dx− (x)f(x)dx = [ (x)− (x)] f(x)dx = r(x)f(x)dx∫

S

r

+

∫

S

r

−

∫

S

r

+

r

−

∫

S

(4.2.15)

(4.2.16)

g S ⊆R S t ∈ S a

b t

a+bt = g(t)

a+bx ≤ g(x) x ∈ S

x↦ a+bx g t

4.2.1

g

S g S t t t ∈ S

X S g : S→R S

E [g(X)] ≥ g [E(X)] (4.2.17)

E(X) ∈ S y = a+bx g E(X) a+bE(X) = g[E(X)] a+bX ≤ g(X)

a+bE(X) = g [E(X)] ≤E [g(X)] (4.2.18)
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Jensens's inequality extends easily to higher dimensions. The 2-dimensional version is particularly important, because it will be used to derive
several special inequalities in the section on vector spaces of random variables. We need two definitions.

A set  is convex if for every pair of points in , the line segment connecting those points also lies in . That is, if  and 
 then .

Figure : A convex subset of 

Suppose that  is convex. A function  on  is convex (or concave upward) if for each , there exist  and 
(depending on ) such that

1. 
2.  for all 

The graph of  is called a supporting hyperplane for  at .

In  a supporting hyperplane is an ordinary plane. From calculus, if  has continuous second derivatives on  and has a positive non-definite
second derivative matrix, then  is convex on . Suppose now that  takes values in , and let 

. The following result is the general version of Jensen's inequlaity.

If  is convex and  is convex on  then

Proof

First , so let  be a supporting hyperplane for  at . Thus  and .
Taking expected values through the inequality gives

We will study the expected value of random vectors and matrices in more detail in a later section. In both the one and -dimensional cases, a
function  is concave (or concave downward) if the inequality in the definition is reversed. Jensen's inequality also reverses.

Expected Value in Terms of the Quantile Function

If  has a continuous distribution with support on an interval of , then there is a simple (but not well known) formula for the expected value of 
as the integral the quantile function of . Here is the general result:

Suppose that  has a continuous distribution with support on an interval . Let  denote the cumulative distribution function of  so
that  is the quantile function of . If  then (assuming that the expected value exists),

Proof

Suppose that  has probability density function , although the theorem is true without this assumption. Under the assumption that  has a
continuous distribution with support on the interval , the distribution function  is strictly increasing on , and the quantile function 

 is the ordinary inverse of . Substituting ,  we have

So in particular, .

Examples and Applications

Let  and let , so that  is a constant random variable. Show that Markov's inequality is in fact equality at .

Solution

S ⊆R

n

S S x, y ∈ S

p ∈ [0, 1] px+(1−p)y ∈ S

4.2.2 R

2

S ⊆R

n

g : S→R S t ∈ S a ∈ R b ∈ R

n

t

a+b ⋅ t = g(t)

a+b ⋅x ≤ g(x) x ∈ S

x↦ a+b ⋅x g t

R

2

g S

g S X = ( , ,… , )X

1

X

2

X

n

S ⊆R

n

E(X) = (E( ),E( ),… ,E( ))X

1

X

2

X

n

S g : S→R S

E [g(X)] ≥ g [E(X)] (4.2.19)

E(X) ∈ S y = a+b ⋅x g E(X) a+b ⋅E(X) = g[E(X)] a+b ⋅X ≤ g(X)

a+b ⋅E(X) = g [E(X)] ≤E [g(X)] (4.2.20)

n

g : S→R

X R X

X

X (a, b) ⊆R F X

F

−1

X g : (a, b) →R

E[g(X)] = g [ (p)] dp, n ∈ N∫

1

0

F

−1

(4.2.21)

X f X

(a, b) F (a, b)

F

−1

F p = F (x) dp = (x)dx = f(x)dxF

′

g [ (p)] dp = g( [F (x)])f(x)dx = g(x)f(x)dx =E[g(X)]∫

1

0

F

−1

∫

b

a

F

−1

∫

b

a

(4.2.22)

E(X) = (p)dp∫

1

0

F

−1

a ∈ (0,∞) P(X = a) = 1 X x = a
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Of course . Hence  and .

The Exponential Distribution

Recall that the exponential distribution is a continuous distribution with probability density function  given by

where  is the rate parameter. This distribution is widely used to model failure times and other “arrival times”; in particular, the
distribution governs the time between arrivals in the Poisson model. The exponential distribution is studied in detail in the chapter on the Poisson
Process.

Suppose that  has exponential distribution with rate parameter .

1. Find  using the right distribution formula.
2. Find  using the quantile function formula.
3. Compute both sides of Markov's inequality.

Answer

1. 
2. 
3.  for 

Open the gamma experiment. Keep the default value of the stopping parameter ( ), which gives the exponential distribution. Vary the rate
parameter  and note the shape of the probability density function and the location of the mean. For various values of the rate parameter, run
the experiment 1000 times and compare the sample mean with the distribution mean.

The Geometric Distribution

Recall that Bernoulli trials are independent trials each with two outcomes, which in the language of reliability, are called success and failure. The
probability of success on each trial is . A separate chapter on Bernoulli Trials explores this random process in more detail. It is named for
Jacob Bernoulli. If , the trial number  of the first success has the geometric distribution on  with success parameter . The
probability density function  of  is given by

Suppose that  has the geometric distribution on  with parameter .

1. Find  using the right distribution function formula.
2. Compute both sides of Markov's inequality.
3. Find .

Answer

1. 
2. 

3. 

Open the negative binomial experiment. Keep the default value of the stopping parameter ( ), which gives the geometric distribution. Vary
the success parameter  and note the shape of the probability density function and the location of the mean. For various values of the success
parameter, run the experiment 1000 times and compare the sample mean with the distribution mean.

The Pareto Distribution

Recall that the Pareto distribution is a continuous distribution with probability density function  given by

where  is a parameter. The Pareto distribution is named for Vilfredo Pareto. It is a heavy-tailed distribution that is widely used to model
certain financial variables. The Pareto distribution is studied in detail in the chapter on Special Distributions.

Suppose that  has the Pareto distribution with parameter .

1. Find  using the right distribution function formula.
2. Find  using the quantile function formula.
3. Find .

E(X) = a P(X ≥ a) = 1 E(X)/a = 1

f

f(t) = r , t ∈ [0, ∞)e

−rt

(4.2.23)

r ∈ (0, ∞)

X r

E(X)

E(X)

dt =∫

∞

0

e

−rt

1

r

− ln(1 −p)dp =∫

1

0

1

r

1

r

<e

−rt 1

rt

t > 0

n = 1

r

p ∈ [0, 1]

p ∈ (0, 1) N N

+

p

f N

f(n) = p(1 −p , n ∈)

n−1

N

+

(4.2.24)

N N

+

p ∈ (0, 1)

E(N)

E(N ∣ N  is even )

(1 −p =∑

∞

n=0

)

n

1

p

(1 −p < , n ∈)

n−1

1

np

N

+

2(1−p)

2

p(2−p)

2

k = 1

p

f

f(x) = , x ∈ [1, ∞)

a

x

a+1

(4.2.25)

a ∈ (0, ∞)

X a > 1

E(X)

E(X)

E(1/X)
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4. Show that  is convex on .
5. Verify Jensen's inequality by comparing  and .

Answer

1. 

2. 
3. 

4. The convexity of  is clear from the graph. Note also that  for .

5. 

Open the special distribution simulator and select the Pareto distribution. Keep the default value of the scale parameter. Vary the shape
parameter and note the shape of the probability density function and the location of the mean. For various values of the shape parameter, run
the experiment 1000 times and compare the sample mean with the distribution mean.

A Bivariate Distribution

Suppose that  has probability density function  given by  for .

1. Show that the domain of  is a convex set.
2. Show that  is convex on the domain of .
3. Compute .
4. Compute .
5. Verify Jensen's inequality by comparing (b) and (c).

Answer
1. Note that the domain is a triangular region.

2. The second derivative matrix is .

3. 
4. 
5. 

The Arithmetic and Geometric Means

Suppose that  is a set of positive numbers. The arithmetic mean is at least as large as the geometric mean:

Proof

Let  be uniformly distributed on . We apply Jensen's inequality with the natural logarithm function, which is concave on 
:

Taking exponentials of each side gives the inequality.

This page titled 4.2: Additional Properties is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via
source content that was edited to the style and standards of the LibreTexts platform.
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X { , ,… , }x

1

x

2

x

n

(0,∞)

E (lnX) = ln = ln ≤ ln[E(X)] = ln( )

1

n

∑

i=1

n

x

i

⎡

⎣
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⎦

1

n
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n

x

i
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4.3: Variance
      

Recall the expected value of a real-valued random variable is the mean of the variable, and is a measure of the center of the distribution. Recall also
that by taking the expected value of various transformations of the variable, we can measure other interesting characteristics of the distribution. In
this section, we will study expected values that measure the spread of the distribution about the mean.

Basic Theory

Definitions and Interpretations

As usual, we start with a random experiment modeled by a probability space . So to review,  is the set of outcomes,  the collection of
events, and  the probability measure on the sample space . Suppose that  is a random variable for the experiment, taking values in .
Recall that , the expected value (or mean) of  gives the center of the distribution of .

The variance and standard deviation of  are defined by

1. 

2. 

Implicit in the definition is the assumption that the mean  exists, as a real number. If this is not the case, then  (and hence also )
are undefined. Even if  does exist as a real number, it's possible that . For the remainder of our discussion of the basic theory, we
will assume that expected values that are mentioned exist as real numbers.

The variance and standard deviation of  are both measures of the spread of the distribution about the mean. Variance (as we will see) has nicer
mathematical properties, but its physical unit is the square of that of . Standard deviation, on the other hand, is not as nice mathematically, but has
the advantage that its physical unit is the same as that of . When the random variable  is understood, the standard deviation is often denoted by 

, so that the variance is .

Recall that the second moment of  about  is . Thus, the variance is the second moment of  about the mean , or
equivalently, the second central moment of . In general, the second moment of  about  can also be thought of as the mean square error if
the constant  is used as an estimate of . In addition, second moments have a nice interpretation in physics. If we think of the distribution of  as
a mass distribution in , then the second moment of  about  is the moment of inertia of the mass distribution about . This is a measure of
the resistance of the mass distribution to any change in its rotational motion about . In particular, the variance of  is the moment of inertia of the
mass distribution about the center of mass .

Figure : The moment of inertia about .

The mean square error (or equivalently the moment of inertia) about  is minimized when :

Let  for . Then  is minimized when , and the minimum value is .

Proof

Figure :  is minimized when .

The relationship between measures of center and measures of spread is studied in more detail in the advanced section on vector spaces of random
variables.

Properties

The following exercises give some basic properties of variance, which in turn rely on basic properties of expected value. As usual, be sure to try the
proofs yourself before reading the ones in the text. Our first results are computational formulas based on the change of variables formula for
expected value

Let .

(Ω,F ,P) Ω F

P (Ω,F) X S ⊆R

E(X) X X

X

var(X) =E( )[X−E(X)]

2

sd(X) = var(X)

− −−−−−

√

E(X) var(X) sd(X)

E(X) var(X) =∞

X

X

X X

σ σ

2

X a ∈ R E [(X−a ])

2

X μ=E(X)

X X a ∈ R

a X X

R X a ∈ R a

a X

μ

4.3.1 a

a a= μ

mse(a) =E [(X−a ])

2

a ∈ R mse a= μ σ

2

4.3.2 mse(a) a= μ

μ=E(X)
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1. If  has a discrete distribution with probability density function , then .
2. If  has a continuous distribution with probability density function , then 

Proof
1. This follows from the discrete version of the change of variables formula.
2. Similarly, this follows from the continuous version of the change of variables formula.

Our next result is a variance formula that is usually better than the definition for computational purposes.

.

Proof

Let . Using the linearity of expected value we have

Of course, by the change of variables formula,  if  has a discrete distribution, and  if  has a
continuous distribution. In both cases,  is the probability density function of .

Variance is always nonnegative, since it's the expected value of a nonnegative random variable. Moreover, any random variable that really is random
(not a constant) will have strictly positive variance.

The nonnegative property.

1. 
2.  if and only if  for some constant  (and then of course, ).

Proof

These results follow from the basic positive property of expected value. Let . First  with probability 1 so 
. In addition,  if and only if .

Our next result shows how the variance and standard deviation are changed by a linear transformation of the random variable. In particular, note that
variance, unlike general expected value, is not a linear operation. This is not really surprising since the variance is the expected value of a nonlinear
function of the variable: .

If  then

1. 
2. 

Proof
1. Let . By linearity, . Hence .
2. This result follows from (a) by taking square roots.

Recall that when , the linear transformation  is called a location-scale transformation and often corresponds to a change of
location and change of scale in the physical units. For example, the change from inches to centimeters in a measurement of length is a scale
transformation, and the change from Fahrenheit to Celsius in a measurement of temperature is both a location and scale transformation. The previous
result shows that when a location-scale transformation is applied to a random variable, the standard deviation does not depend on the location
parameter, but is multiplied by the scale factor. There is a particularly important location-scale transformation.

Suppose that  is a random variable with mean  and variance . The random variable  defined as follows is the standard score of .

1. 
2. 

Proof

1. From the linearity of expected value, 
2. From the scaling property, .

Since  and its mean and standard deviation all have the same physical units, the standard score  is dimensionless. It measures the directed
distance from  to  in terms of standard deviations.

Let  denote the standard score of , and suppose that  where  and .

X f var(X) = (x−μ f(x)∑

x∈S

)

2

X f var(X) = (x−μ f(x)dx∫

S

)

2

var(X) =E( )−[E(X)X

2

]

2

μ=E(X)

var(X) =E[(X−μ ] =E( −2μX+ ) =E( )−2μE(X)+ =E( )−2 + =E( )−)

2

X

2

μ

2

X

2

μ

2

X

2

μ

2

μ

2

X

2

μ

2

(4.3.1)

E ( )= f(x)X

2

∑

x∈S

x

2

X E ( )= f(x)dxX

2

∫

S

x

2

X

f X

var(X) ≥ 0

var(X) = 0 P(X = c) = 1 c E(X) = c

μ=E(X) (X−μ ≥ 0)

2

E [(X−μ ] ≥ 0)

2

E [(X−μ ] = 0)

2

P(X = μ) = 1

x↦(x−μ)

2

a, b ∈ R

var(a+bX) = var(X)b

2

sd(a+bX) = |b| sd(X)

μ=E(X) E(a+bX) = a+bμ var(a+bX) =E ([(a+bX)−(a+bμ) )=E [ (X−μ ] = var(X)]

2

b

2

)

2

b

2

b > 0 x↦ a+bx

X μ σ

2

Z X

Z =

X−μ

σ

(4.3.2)

E(Z) = 0

var(Z) = 1

E(Z) = [E(X)−μ] = 0

1

σ

var(Z) = var(X) = 1

1

σ

2

X Z

E(X) X

Z X Y = a+bX a, b ∈ R b ≠ 0
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1. If , the standard score of  is .
2. If , the standard score of  is .

Proof

 and . Hence

As just noted, when , the variable  is a location-scale transformation and often corresponds to a change of physical units. Since
the standard score is dimensionless, it's reasonable that the standard scores of  and  are the same. Here is another standardized measure of
dispersion:

Suppose that  is a random variable with . The coefficient of variation is the ratio of the standard deviation to the mean:

The coefficient of variation is also dimensionless, and is sometimes used to compare variability for random variables with different means. We will
learn how to compute the variance of the sum of two random variables in the section on covariance.

Chebyshev's Inequality

Chebyshev's inequality (named after Pafnuty Chebyshev) gives an upper bound on the probability that a random variable will be more than a
specified distance from its mean. This is often useful in applied problems where the distribution is unknown, but the mean and variance are known
(at least approximately). In the following two results, suppose that  is a real-valued random variable with mean  and standard
deviation .

Chebyshev's inequality 1.

Proof

Figure : Chebyshev's inequality

Here's an alternate version, with the distance in terms of standard deviation.

Chebyshev's inequality 2.

Proof

Let  in the first version of Chebyshev's inequality.

The usefulness of the Chebyshev inequality comes from the fact that it holds for any distribution (assuming only that the mean and variance exist).
The tradeoff is that for many specific distributions, the Chebyshev bound is rather crude. Note in particular that the first inequality is useless when 

, and the second inequality is useless when , since 1 is an upper bound for the probability of any event. On the other hand, it's easy to
construct a distribution for which Chebyshev's inequality is sharp for a specified value of . Such a distribution is given in an exercise
below.

Examples and Applications

As always, be sure to try the problems yourself before looking at the solutions and answers.

b > 0 Y Z

b < 0 Y −Z

E(Y ) = a+bE(X) sd(Y ) = |b| sd(X)

=

Y −E(Y )

sd(Y )

b

|b|

X−E(X)

sd(X)

(4.3.3)

b > 0 Y = a+bX

X Y

X E(X) ≠ 0

cv(X) =

sd(X)

E(X)

(4.3.4)

X μ=E(X) ∈ R

σ = sd(X) ∈ (0,∞)

P (|X−μ| ≥ t) ≤ , t > 0

σ

2

t

2

(4.3.5)

4.3.3

P (|X−μ| ≥ kσ) ≤ , k> 0

1

k

2

(4.3.6)

t = kσ

t ≤ σ k≤ 1

t ∈ (0,∞)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10158?pdf


4.3.4 https://stats.libretexts.org/@go/page/10158

Indicator Variables

Suppose that  is an indicator variable with , where . Then

1. 
2. 

Proof
1. We proved this in the section on basic properties, although the result is so simple that we can do it again: .
2. Note that  since  only takes values 0 and 1. Hence  and therefore .

The graph of  as a function of  is a parabola, opening downward, with roots at 0 and 1. Thus the minimum value of  is 0, and occurs
when  and  (when  is deterministic, of course). The maximum value is  and occurs when .

Figure : The variance of an indicator variable as a function of .

Uniform Distributions

Discrete uniform distributions are widely used in combinatorial probability, and model a point chosen at random from a finite set. The mean and
variance have simple forms for the discrete uniform distribution on a set of evenly spaced points (sometimes referred to as a discrete interval):

Suppose that  has the discrete uniform distribution on  where , , and . Let 
, the right endpoint. Then

1. .
2. .

Proof
1. We proved this in the section on basic properties. Here it is again, using the formula for the sum of the first  positive integers:

2. Note that

Using the formulas for the sum of the frist  positive integers, and the sum of the squares of the first  positive integers, we have

Using computational formula and simplifying gives the result.

Note that mean is simply the average of the endpoints, while the variance depends only on difference between the endpoints and the step size.

Open the special distribution simulator, and select the discrete uniform distribution. Vary the parameters and note the location and size of the
mean  standard deviation bar in relation to the probability density function. For selected values of the parameters, run the simulation 1000
times and compare the empirical mean and standard deviation to the distribution mean and standard deviation.

Next, recall that the continuous uniform distribution on a bounded interval corresponds to selecting a point at random from the interval. Continuous
uniform distributions arise in geometric probability and a variety of other applied problems.

Suppose that  has the continuous uniform distribution on the interval  where  with . Then

1. 
2. 

Proof

X p = P(X = 1) p ∈ [0, 1]

E(X) = p

var(X) = p(1−p)

E(X) = 1 ⋅ p+0 ⋅ (1−p) = p

=XX

2

X E ( )= pX

2

var(X) = p− = p(1−p)p

2

var(X) p var(X)

p = 0 p = 1 X

1

4

p =

1

2

4.3.4 p

X {a, a+h,… , a+(n−1)h} a ∈ R h ∈ (0,∞) n ∈ N

+

b = a+(n−1)h

E(X) = (a+b)

1

2

var(X) = (b−a)(b−a+2h)

1

12

n−1

E(X) = (a+ ih) = (na+h ) = a+ =

1

n

∑

i=0

n−1

1

n

(n−1)n

2

(n−1)h

2

a+b

2

(4.3.7)

E ( )= (a+ ih = ( +2ahi+ )X

2

1

n

∑

i=0

n−1

)

2

1

n−1

∑

i=0

n−1

a

2

h

2

i

2

(4.3.8)

n−1 n−1

E ( )= [n +2ah + ]X

2

1

n

a

2

(n−1)n

2

h

2

(n−1)n(2n−1)

6

(4.3.9)

±

X [a, b] a, b ∈ R a< b

E(X) = (a+b)

1

2

var(X) = (b−a

1

12

)

2
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1. 

2. . The variance result then follows from (a), the computational formula and simple algebra.

Note that the mean is the midpoint of the interval and the variance depends only on the length of the interval. Compare this with the results in the
discrete case.

Open the special distribution simulator, and select the continuous uniform distribution. This is the uniform distribution the interval .
Vary the parameters and note the location and size of the mean  standard deviation bar in relation to the probability density function. For
selected values of the parameters, run the simulation 1000 times and compare the empirical mean and standard deviation to the distribution
mean and standard deviation.

Dice

Recall that a fair die is one in which the faces are equally likely. In addition to fair dice, there are various types of crooked dice. Here are three:

An ace-six flat die is a six-sided die in which faces 1 and 6 have probability  each while faces 2, 3, 4, and 5 have probability  each.
A two-five flat die is a six-sided die in which faces 2 and 5 have probability  each while faces 1, 3, 4, and 6 have probability  each.
A three-four flat die is a six-sided die in which faces 3 and 4 have probability  each while faces 1, 2, 5, and 6 have probability  each.

A flat die, as the name suggests, is a die that is not a cube, but rather is shorter in one of the three directions. The particular probabilities that we use
(  and ) are fictitious, but the essential property of a flat die is that the opposite faces on the shorter axis have slightly larger probabilities that the
other four faces. Flat dice are sometimes used by gamblers to cheat. In the following problems, you will compute the mean and variance for each of
the various types of dice. Be sure to compare the results.

A standard, fair die is thrown and the score  is recorded. Sketch the graph of the probability density function and compute each of the
following:

1. 
2. 

Answer

1. 
2. 

An ace-six flat die is thrown and the score  is recorded. Sketch the graph of the probability density function and compute each of the
following:

1. 
2. 

Answer

1. 
2. 

A two-five flat die is thrown and the score  is recorded. Sketch the graph of the probability density function and compute each of the
following:

1. 
2. 

Answer

1. 
2. 

A three-four flat die is thrown and the score  is recorded. Sketch the graph of the probability density function and compute each of the
following:

1. 
2. 

Answer

1. 
2. 

E(X) = x dx = =∫

b

a

1

b−a

−b

2

a

2

2(b−a)

a+b

2

E( ) = =X

2

∫

b

a

x

2

1

b−a

−b

3

a

3

3(b−a)

[a, a+w]

±

1

4

1

8

1

4

1

8

1

4

1

8

1

4

1

8

X

E(X)

var(X)

7

2

35

12

X

E(X)

var(X)

7

2

15

4

X

E(X)

var(X)

7

2

11

4

X

E(X)

var(X)

7

2

9

4

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10158?pdf


4.3.6 https://stats.libretexts.org/@go/page/10158

In the dice experiment, select one die. For each of the following cases, note the location and size of the mean  standard deviation bar in
relation to the probability density function. Run the experiment 1000 times and compare the empirical mean and standard deviation to the
distribution mean and standard deviation.

1. Fair die
2. Ace-six flat die
3. Two-five flat die
4. Three-four flat die

The Poisson Distribution

Recall that the Poisson distribution is a discrete distribution on  with probability density function  given by

where  is a parameter. The Poisson distribution is named after Simeon Poisson and is widely used to model the number of “random
points” in a region of time or space; the parameter  is proportional to the size of the region. The Poisson distribution is studied in detail in the
chapter on the Poisson Process.

Suppose that  has the Poisson distribution with parameter . Then

1. 
2. 

Proof
1. We did this computation in the previous section. Here it is again:

2. First we compute the second factorial moment:

Hence,  and so .

Thus, the parameter of the Poisson distribution is both the mean and the variance of the distribution.

In the Poisson experiment, the parameter is . Vary the parameter and note the size and location of the mean  standard deviation bar in
relation to the probability density function. For selected values of the parameter, run the experiment 1000 times and compare the empirical mean
and standard deviation to the distribution mean and standard deviation.

The Geometric Distribution

Recall that Bernoulli trials are independent trials each with two outcomes, which in the language of reliability, are called success and failure. The
probability of success on each trial is . A separate chapter on Bernoulli Trials explores this random process in more detail. It is named for
Jacob Bernoulli. If , the trial number  of the first success has the geometric distribution on  with success parameter . The probability
density function  of  is given by

Suppose that  has the geometric distribution on  with success parameter . Then

1. 

2. 

Proof
1. We proved this in the section on basic properties. Here it is again:

2. First we compute the second factorial moment:

±

N f

f(n) = , n ∈ Ne

−a

a

n

n!

(4.3.10)

a ∈ (0,∞)

a

N a

E(N) = a

var(N) = a

E(N) = n = = a = a = a.∑

n=0

∞

e

−a

a

n

n!

e

−a

∑

n=1

∞

a

n

(n−1)!

e

−a

∑

n=1

∞

a

n−1

(n−1)!

e

−a

e

a

(4.3.11)

E[N(N −1)] = n(n−1) = = = =∑

n=1

∞

e

−a

a

n

n!

∑

n=2

∞

e

−a

a

n

(n−2)!

e

−a

a

2

∑

n=2

∞

a

n−2

(n−2)!

a

2

e

−a

e

a

a

2

(4.3.12)

E ( )=E[N(N −1)]+E(N) = +aN

2

a

2

var(N) = ( +a)− = aa

2

a

2

a= rt ±

p ∈ [0, 1]

p ∈ (0, 1] N N

+

p

f N

f(n) = p(1−p , n ∈)

n−1

N

+

(4.3.13)

N N

+

p ∈ (0, 1]

E(N) =

1

p

var(N) =

1−p

p

2

E(N) = np(1−p =−p (1−p =−p = p =∑

n=1

∞

)

n−1

d

dp

∑

n=0

∞

)

n

d

dp

1

p

1

p

2

1

p

(4.3.14)

E[N(N −1)] = n(n−1)(1−p p = p(1−p) (1−p = p(1−p) = p(1−p) =∑

n=2

∞

)

n−1

d

2

dp

2

∑

n=0

∞

)

n

d

2

dp

2

1

p

2

p

3

2(1−p)

p

2

(4.3.15)
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Hence  and hence .

Note that the variance is 0 when , not surprising since  is deterministic in this case.

In the negative binomial experiment, set  to get the geometric distribution . Vary  with the scroll bar and note the size and location of the
mean  standard deviation bar in relation to the probability density function. For selected values of , run the experiment 1000 times and
compare the empirical mean and standard deviation to the distribution mean and standard deviation.

Suppose that  has the geometric distribution with parameter . Compute the true value and the Chebyshev bound for the probability that 
 is at least 2 standard deviations away from the mean.

Answer

1. 
2. 

The Exponential Distribution

Recall that the exponential distribution is a continuous distribution on  with probability density function  given by

where  is the with rate parameter. This distribution is widely used to model failure times and other “arrival times”. The exponential
distribution is studied in detail in the chapter on the Poisson Process.

Suppose that  has the exponential distribution with rate parameter . Then

1. .
2. .

Proof
1. We proved this in the section on basic properties. Here it is again, using integration by parts:

2. Integrating by parts again and using (a), we have

Hence 

Thus, for the exponential distribution, the mean and standard deviation are the same.

In the gamma experiment, set  to get the exponential distribution. Vary  with the scroll bar and note the size and location of the mean 
standard deviation bar in relation to the probability density function. For selected values of , run the experiment 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation.

Suppose that  has the exponential distribution with rate parameter . Compute the true value and the Chebyshev bound for the probability
that  is at least  standard deviations away from the mean.

Answer

1. 
2. 

The Pareto Distribution

Recall that the Pareto distribution is a continuous distribution on  with probability density function  given by

where  is a parameter. The Pareto distribution is named for Vilfredo Pareto. It is a heavy-tailed distribution that is widely used to model
financial variables such as income. The Pareto distribution is studied in detail in the chapter on Special Distributions.

Suppose that  has the Pareto distribution with shape parameter . Then

1.  if  and  if 

E( ) =E[N(N −1)]+E(N) = 2/ −1/pN

2

p

2

var(X) = 2/ −1/p−1/ = 1/ −1/pp

2
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2

p = 1 X
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[0,∞) f
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−rt

(4.3.16)

r ∈ (0,∞)

T r
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1

r

var(T ) =

1

r

2
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∣

∣

∞
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∫

∞
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−rt
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∣

∣

∞
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(4.3.17)

E ( )= r dt =− + 2t dt = 0+T
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(4.3.18)

var(T ) = − =

2

r
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1

r
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1

r

2

k= 1 r ±

r

X r> 0

X k

e

−(k+1)

1

k

2

[1,∞) f

f(x) = , x ∈ [1,∞)
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(4.3.19)

a ∈ (0,∞)

X a

E(X) =∞ 0 < a≤ 1 E(X) =
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2.  is undefined if ,  if , and  if 

Proof
1. We proved this in the section on basic properties. Here it is again:

When , 

2. If  then  and so  is undefined. On the other hand,

When , . Hence  if  and  if .

In the special distribution simuator, select the Pareto distribution. Vary  with the scroll bar and note the size and location of the mean 
standard deviation bar. For each of the following values of , run the experiment 1000 times and note the behavior of the empirical mean and
standard deviation.

1. 
2. 
3. 

The Normal Distribution

Recall that the standard normal distribution is a continuous distribution on  with probability density function  given by

Normal distributions are widely used to model physical measurements subject to small, random errors and are studied in detail in the chapter on
Special Distributions.

Suppose that  has the standard normal distribution. Then

1. 
2. 

Proof
1. We proved this in the section on basic properties. Here it is again:

2. From (a), . Integrate by parts with  and . Thus,  and . Hence

More generally, for  and , recall that the normal distribution with location parameter  and scale parameter  is a continuous
distribution on  with probability density function  given by

Moreover, if  has the standard normal distribution, then  has the normal distribution with location parameter  and scale parameter .
As the notation suggests, the location parameter is the mean of the distribution and the scale parameter is the standard deviation.

Suppose that  has the normal distribution with location parameter  and scale parameter . Then

1. 
2. 

Proof

We could use the probability density function, of course, but it's much better to use the representation of  in terms of the standard normal
variable , and use properties of expected value and variance.

var(X) 0 < a≤ 1 var(X) =∞ 1 < a≤ 2 var(X) =

a

(a−1 (a−2))

2

2 < a<∞

E(X) = x dx = dx = ={∫

∞

1

a

x

a+1

∫

∞

1

a

x

a

a

−a+1

x

−a+1

∣

∣

∣

∞

1

∞,

,

a

a−1

0 < a< 1

a> 1

(4.3.20)

a= 1 E(X) = = lnx =∞∫

∞

1

1

x

∣

∣

∣

∞

1

0 < a≤ 1 E(X) =∞ var(X)

E ( )= dx = dx = a ={X

2

∫

∞

1

x

2

a

x

a+1

∫

∞

1

a

x

a−1

x

−a+2

∣

∣

∣

∞

1

∞,

,

a

a−2

0 < a< 2

a> 2

(4.3.21)

a= 2 E ( )= dx =∞X

2

∫

∞

1

2

x

var(X) =∞ 1 < a≤ 2 var(X) = −

a

a−2

( )

a

a−1

2

a> 2

a ±

a

a= 1

a= 2

a= 3

R ϕ

ϕ(z) = , z ∈ R

1

2π

−−

√

e

−

1

2

z

2

(4.3.22)

Z

E(Z) = 0

var(Z) = 1

E(Z) = z dz=− = 0−0∫

∞

−∞

1

2π

−−

√

e

−

1

2

z

2

1

2π

−−

√

e

−

1

2

z

2

∣

∣

∣

∞

−∞

(4.3.23)

var(Z) =E( ) = ϕ(z)dzZ

2

∫

∞

−∞

z

2

u = z dv= zϕ(z)dz du = dz v=−ϕ(z)

var(Z) =−zϕ(z) + ϕ(z)dz= 0+1

∣

∣

∣

∞

−∞

∫

∞

−∞

(4.3.24)

μ ∈ R σ ∈ (0,∞) μ σ

R f

f(x) = exp[− ], x ∈ R

1

σ2π

−−

√

1

2

( )

x−μ

σ

2

(4.3.25)

Z X = μ+σZ μ σ

X μ σ

E(X) = μ

var(X) = σ

2

X

Z
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1. 
2. .

So to summarize, if  has a normal distribution, then its standard score  has the standard normal distribution.

In the special distribution simulator, select the normal distribution. Vary the parameters and note the shape and location of the mean  standard
deviation bar in relation to the probability density function. For selected parameter values, run the experiment 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation.

Beta Distributions

The distributions in this subsection belong to the family of beta distributions, which are widely used to model random proportions and probabilities.
The beta distribution is studied in detail in the chapter on Special Distributions.

Suppose that  has a beta distribution with probability density function . In each case below, graph  below and compute the mean and
variance.

1.  for 
2.  for 
3.  for 

Answer

1. , 
2. , 
3. , 

In the special distribution simulator, select the beta distribution. The parameter values below give the distributions in the previous exercise. In
each case, note the location and size of the mean  standard deviation bar. Run the experiment 1000 times and compare the empirical mean and
standard deviation to the distribution mean and standard deviation.

1. , 
2. , 
3. , 

Suppose that a sphere has a random radius  with probability density function  given by  for . Find the mean and
standard deviation of each of the following:

1. The circumference 
2. The surface area 
3. The volume 

Answer

1. , 

2. , 

3. , 

Suppose that  has probability density function  given by  for . Find

1. 
2. 

Answer
1. 
2. 

The particular beta distribution in the last exercise is also known as the (standard) arcsine distribution. It governs the last time that the Brownian
motion process hits 0 during the time interval . The arcsine distribution is studied in more generality in the chapter on Special Distributions.

Open the Brownian motion experiment and select the last zero. Note the location and size of the mean  standard deviation bar in relation to the
probability density function. Run the simulation 1000 times and compare the empirical mean and standard deviation to the distribution mean and
standard deviation.

E(X) = μ+σE(Z) = μ+0 = μ

var(X) = var(Z) = ⋅ 1 =σ

2

σ

2

σ

2

X Z

±

X f f

f(x) = 6x(1−x) x ∈ [0, 1]

f(x) = 12 (1−x)x

2
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2

x ∈ [0, 1]

E(X) =

1

2

var(X) =

1

20

E(X) =

3

5

var(X) =

1

25

E(X) =

2

6

var(X) =

1
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±

a= 2 b = 2

a= 3 b = 2

a= 2 b = 3

R f f(r) = 12 (1−r)r

2
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C = 2πR

A= 4πR

2

V = π

4

3

R

3

π

6

5

π

2

5

π

8

5

π

2

5
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7

−−

√

π

8
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π

8

3
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− −−−

√

X f f(x) =

1
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√

x ∈ (0, 1)

E(X)

var(X)
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2

1
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Suppose that the grades on a test are described by the random variable  where  has the beta distribution with probability density
function  given by  for . The grades are generally low, so the teacher decides to “curve” the grades using the
transformation . Find the mean and standard deviation of each of the following variables:

1. 
2. 
3. 

Answer

1. , 
2. , 
3. , 

Exercises on Basic Properties

Suppose that  is a real-valued random variable with  and . Find each of the following:

1. 
2. 

Answer
1. 
2. 

Suppose that  is a real-valued random variable with  and . Find each of the following:

1. 
2. 

Answer
1. 
2. 

The expected value  is an example of a factorial moment.

Suppose that  and  are independent, real-valued random variables with  and  for . Then

1. 
2. 

Proof
1. This is an important, basic result that was proved in the section on basic properties.
2. Since  and  are also independent, we have . The result then follows from the

computational formula and algebra.

Marilyn Vos Savant has an IQ of 228. Assuming that the distribution of IQ scores has mean 100 and standard deviation 15, find Marilyn's
standard score.

Answer

Fix . Suppose that  is the discrete random variable with probability density function defined by , 
, where . Then equality holds in Chebyshev's inequality at .

Proof

Note that  and . So  and .

This page titled 4.3: Variance is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via source content
that was edited to the style and standards of the LibreTexts platform.

Y = 100X X
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4.4: Skewness and Kurtosis
       

As usual, our starting point is a random experiment, modeled by a probability space . So to review,  is the set of outcomes, 
the collection of events, and  the probability measure on the sample space . Suppose that  is a real-valued random variable for
the experiment. Recall that the mean of  is a measure of the center of the distribution of . Furthermore, the variance of  is the second
moment of  about the mean, and measures the spread of the distribution of  about the mean. The third and fourth moments of  about
the mean also measure interesting (but more subtle) features of the distribution. The third moment measures skewness, the lack of
symmetry, while the fourth moment measures kurtosis, roughly a measure of the fatness in the tails. The actual numerical measures of
these characteristics are standardized to eliminate the physical units, by dividing by an appropriate power of the standard deviation. As
usual, we assume that all expected values given below exist, and we will let  and . We assume that , so that
the random variable is really random.

Basic Theory

Skewness

The skewness of  is the third moment of the standard score of :

The distribution of  is said to be positively skewed, negatively skewed or unskewed depending on whether  is positive,
negative, or 0.

In the unimodal case, if the distribution is positively skewed then the probability density function has a long tail to the right, and if the
distribution is negatively skewed then the probability density function has a long tail to the left. A symmetric distribution is unskewed.

Suppose that the distribution of  is symmetric about . Then

1. 
2. .

Proof

By assumption, the distribution of  is the same as the distribution of . We proved part (a) in the section on properties of
expected Value. Thus, . But by symmetry and linearity, 

, so it follows that .

The converse is not true—a non-symmetric distribution can have skewness 0. Examples are given in Exercises (30) and (31) below.

 can be expressed in terms of the first three moments of .

Proof

Note tht . From the linearity of expected value we have

The second expression follows from substituting .

Since skewness is defined in terms of an odd power of the standard score, it's invariant under a linear transformation with positve slope (a
location-scale transformation of the distribution). On the other hand, if the slope is negative, skewness changes sign.

Suppose that  and . Then

1.  if 
2.  if 

Proof

(Ω,F ,P ) Ω F

P (Ω,F) X

X X X

X X X

μ=E(X) = var(X)σ

2

σ > 0

X X

skew(X) =E[ ]( )

X−μ

σ

3

(4.4.1)

X skew(X)

X a

E(X) = a

skew(X) = 0

a−X X−a

skew(X) =E [(X−a ] /)

3

σ

3

E [(X−a ] =E [(a−X ] =−E [(X−a ])

3

)

3

)

3

E [(X−a ] = 0)

3

skew(X) X

skew(X) = =

E ( )−3μE ( )+2X

3

X

2

μ

3

σ

3

E ( )−3μ −X

3

σ

2

μ

3

σ

3

(4.4.2)

(X−μ = −3 μ+3X −)

3

X

3

X

2

μ

2

μ

3

E [(X−μ ] =E ( )−3μE ( )+3 E(X)− =E ( )−3μE ( )+2)

3

X

3

X

2

μ

2

μ

3

X

3

X

2

μ

3

(4.4.3)

E ( )= +X

2

σ

2

μ

2

a ∈ R b ∈ R ∖ {0}

skew(a+bX) = skew(X) b > 0

skew(a+bX) =−skew(X) b < 0
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Let , the standard score of . Recall from the section on variance that the standard score of  is  if 
and is  if .

Recall that location-scale transformations often arise when physical units are changed, such as inches to centimeters, or degrees
Fahrenheit to degrees Celsius.

Kurtosis

The kurtosis of  is the fourth moment of the standard score:

Kurtosis comes from the Greek word for bulging. Kurtosis is always positive, since we have assumed that  (the random variable
really is random), and therefore . In the unimodal case, the probability density function of a distribution with large kurtosis
has fatter tails, compared with the probability density function of a distribution with smaller kurtosis.

 can be expressed in terms of the first four moments of .

Proof

Note that . From linearity of expected value, we have

The second expression follows from the substitution .

Since kurtosis is defined in terms of an even power of the standard score, it's invariant under linear transformations.

Suppose that  and . Then .

Proof

As before, let  denote the standard score of . Then the standard score of  is  if  and is  if .

We will show in below that the kurtosis of the standard normal distribution is 3. Using the standard normal distribution as a benchmark,
the excess kurtosis of a random variable  is defined to be . Some authors use the term kurtosis to mean what we have
defined as excess kurtosis.

Computational Exercises
As always, be sure to try the exercises yourself before expanding the solutions and answers in the text.

Indicator Variables

Recall that an indicator random variable is one that just takes the values 0 and 1. Indicator variables are the building blocks of many
counting random variables. The corresponding distribution is known as the Bernoulli distribution, named for Jacob Bernoulli.

Suppose that  is an indicator variable with  where . Then

1. 
2. 
3. 

4. 

Proof

Parts (a) and (b) have been derived before. All four parts follow easily from the fact that  and hence  for 
.

Z = (X−μ)/σ X a+bX Z b > 0

−Z b < 0

X

kurt(X) =E[ ]( )

X−μ

σ

4

(4.4.4)

σ > 0

P(X ≠ μ) > 0

kurt(X) X

kurt(X) = =

E ( )−4μE ( )+6 E ( )−3X

4
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2
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μ
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σ

4

E ( )−4μE ( )+6 +3X

4
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μ
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σ
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(4.4.5)

(X−μ = −4 μ+6 −4X +)

4

X

4
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3

X

2

μ

2

μ

3

μ

4
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μ
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(4.4.6)

E ( )= +X

2

σ

2

μ

2

a ∈ R b ∈ R ∖ {0} kurt(a+bX) = kurt(X)

Z = (X−μ)/σ X a+bX Z b > 0 −Z b < 0

X kurt(X)−3

X P(X = 1) = p p ∈ (0, 1)

E(X) = p

var(X) = p(1−p)

skew(X) =

1−2p

p(1−p)

√

kurt(X) =

1−3p+3p

2

p(1−p)

=XX

n

E ( ) = pX

n

n ∈ N

+
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Open the binomial coin experiment and set  to get an indicator variable. Vary  and note the change in the shape of the
probability density function.

Dice

Recall that a fair die is one in which the faces are equally likely. In addition to fair dice, there are various types of crooked dice. Here are
three:

An ace-six flat die is a six-sided die in which faces 1 and 6 have probability  each while faces 2, 3, 4, and 5 have probability  each.
A two-five flat die is a six-sided die in which faces 2 and 5 have probability  each while faces 1, 3, 4, and 6 have probability  each.
A three-four flat die is a six-sided die in which faces 3 and 4 have probability  each while faces 1, 2, 5, and 6 have probability 
each.

A flat die, as the name suggests, is a die that is not a cube, but rather is shorter in one of the three directions. The particular probabilities
that we use (  and ) are fictitious, but the essential property of a flat die is that the opposite faces on the shorter axis have slightly larger
probabilities that the other four faces. Flat dice are sometimes used by gamblers to cheat.

A standard, fair die is thrown and the score  is recorded. Compute each of the following:

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

An ace-six flat die is thrown and the score  is recorded. Compute each of the following:

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

A two-five flat die is thrown and the score  is recorded. Compute each of the following:

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

A three-four flat die is thrown and the score  is recorded. Compute each of the following:

1. 
2. 

n= 1 p

1

4

1

8

1

4

1

8

1

4

1

8

1

4

1

8

X

E(X)

var(X)

skew(X)

kurt(X)

7

2

35

12

0

303

175

X

E(X)

var(X)

skew(X)

kurt(X)

7

2

15

4

0

37

25

X

E(X)

var(X)

skew(X)

kurt(X)

7

2

11

4

0

197

121

X

E(X)

var(X)
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3. 
4. 

Answer

1. 
2. 
3. 
4. 

All four die distributions above have the same mean  and are symmetric (and hence have skewness 0), but differ in variance and
kurtosis.

Open the dice experiment and set  to get a single die. Select each of the following, and note the shape of the probability density
function in comparison with the computational results above. In each case, run the experiment 1000 times and compare the empirical
density function to the probability density function.

1. fair
2. ace-six flat
3. two-five flat
4. three-four flat

Uniform Distributions

Recall that the continuous uniform distribution on a bounded interval corresponds to selecting a point at random from the interval.
Continuous uniform distributions arise in geometric probability and a variety of other applied problems.

Suppose that  has uniform distribution on the interval , where  and . Then

1. 
2. 
3. 
4. 

Proof

Parts (a) and (b) we have seen before. For parts (c) and (d), recall that  where  has the uniform distribution on 
 (the standard uniform distribution). Hence it follows from the formulas for skewness and kurtosis under linear transformations

that  and . Since  for , it's easy to compute the skewness and
kurtosis of  from the computational formulas skewness and kurtosis. Of course, the fact that  also follows trivially
from the symmetry of the distribution of  about the mean.

Open the special distribution simulator, and select the continuous uniform distribution. Vary the parameters and note the shape of the
probability density function in comparison with the moment results in the last exercise. For selected values of the parameter, run the
simulation 1000 times and compare the empirical density function to the probability density function.

The Exponential Distribution

Recall that the exponential distribution is a continuous distribution on with probability density function  given by

where  is the with rate parameter. This distribution is widely used to model failure times and other “arrival times”. The
exponential distribution is studied in detail in the chapter on the Poisson Process.

Suppose that  has the exponential distribution with rate parameter . Then

1. 
2. 
3. 
4. 

Proof

skew(X)

kurt(X)
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1

12

)

2

skew(X) = 0

kurt(X) =

9

5

X = a+(b−a)U U

[0, 1]

skew(X) = skew(U) kurt(X) = kurt(U) E( ) = 1/(n+1)U

n

n ∈ N

+

U skew(X) = 0

X

[0,∞) f

f(t) = r , t ∈ [0,∞)e

−rt

(4.4.7)

r ∈ (0,∞)

X r> 0
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1

r

var(X) =

1

r

2
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These results follow from the computational formulas for skewness and kurtosis and the general moment formula 
for .

Note that the skewness and kurtosis do not depend on the rate parameter . That's because  is a scale parameter for the exponential
distribution

Open the gamma experiment and set  to get the exponential distribution. Vary the rate parameter and note the shape of the
probability density function in comparison to the moment results in the last exercise. For selected values of the parameter, run the
experiment 1000 times and compare the empirical density function to the true probability density function.

Pareto Distribution

Recall that the Pareto distribution is a continuous distribution on  with probability density function  given by

where  is a parameter. The Pareto distribution is named for Vilfredo Pareto. It is a heavy-tailed distribution that is widely used
to model financial variables such as income. The Pareto distribution is studied in detail in the chapter on Special Distributions.

Suppose that  has the Pareto distribution with shape parameter . Then

1.  if 
2.  if 

3.  if 

4.  if 

Proof

These results follow from the standard computational formulas for skewness and kurtosis and the general moment formula 
 if  and .

Open the special distribution simulator and select the Pareto distribution. Vary the shape parameter and note the shape of the
probability density function in comparison to the moment results in the last exercise. For selected values of the parameter, run the
experiment 1000 times and compare the empirical density function to the true probability density function.

The Normal Distribution

Recall that the standard normal distribution is a continuous distribution on  with probability density function  given by

Normal distributions are widely used to model physical measurements subject to small, random errors and are studied in detail in the
chapter on Special Distributions.

Suppose that  has the standard normal distribution. Then

1. 
2. 
3. 
4. 

Proof

Parts (a) and (b) were derived in the previous sections on expected value and variance. Part (c) follows from symmetry. For part (d),
recall that .

More generally, for  and , recall that the normal distribution with mean  and standard deviation  is a continuous
distribution on  with probability density function  given by

E ( ) = n!/X

n

r

n

n ∈ N

r 1/r

n= 1

[1,∞) f

f(x) = , x ∈ [1,∞)

a

x

a+1

(4.4.8)

a ∈ (0,∞)

X a> 0

E(X) =

a

a−1

a> 1

var(X) =

a

(a−1 (a−2))

2

a> 2

skew(X) =

2(1+a)

a−3

1−

2

a

− −−−−

√

a> 3

kurt(X) =

3(a−2)(3 +a+2)a

2

a(a−3)(a−4)

a> 4

E ( ) =X

n

a

a−n

n ∈ N n< a

R ϕ

ϕ(z) = , z ∈ R

1

2π

−−

√

e

−

1

2

z

2

(4.4.9)

Z

E(Z) = 0

var(Z) = 1

skew(Z) = 0

kurt(Z) = 3

E( ) = 3E( ) = 3Z

4

Z

2

μ ∈ R σ ∈ (0,∞) μ σ

R f

f(x) = exp[− ], x ∈ R

1

σ2π

−−

√

1

2

( )

x−μ

σ

2

(4.4.10)
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However, we also know that  and  are location and scale parameters, respectively. That is, if  has the standard normal distribution
then  has the normal distribution with mean  and standard deviation .

If  has the normal distribution with mean  and standard deviation , then

1. 
2. 

Proof

The results follow immediately from the formulas for skewness and kurtosis under linear transformations and the previous result.

Open the special distribution simulator and select the normal distribution. Vary the parameters and note the shape of the probability
density function in comparison to the moment results in the last exercise. For selected values of the parameters, run the experiment
1000 times and compare the empirical density function to the true probability density function.

The Beta Distribution

The distributions in this subsection belong to the family of beta distributions, which are continuous distributions on  widely used to
model random proportions and probabilities. The beta distribution is studied in detail in the chapter on Special Distributions.

Suppose that  has probability density function  given by  for . Find each of the following:

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

Suppose that  has probability density function  given by  for . Find each of the following:

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

Suppose that  has probability density function  given by  for . Find each of the following:

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

μ σ Z

X = μ+σZ μ σ

X μ ∈ R σ ∈ (0,∞)

skew(X) = 0

kurt(X) = 3

[0, 1]

X f f(x) = 6x(1−x) x ∈ [0, 1]

E(X)

var(X)

skew(X)

kurt(X)

1

2

1

20

0

15

7

X f f(x) = 12 (1−x)x

2

x ∈ [0, 1]

E(X)

var(X)

skew(X)

kurt(X)

3

5

1

25

−

2

7

33

14

X f f(x) = 12x(1−x)

2

x ∈ [0, 1]

E(X)

var(X)

skew(X)

kurt(X)

2

5

1

25

2

7

33

14
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Open the special distribution simulator and select the beta distribution. Select the parameter values below to get the distributions in
the last three exercises. In each case, note the shape of the probability density function in relation to the calculated moment results.
Run the simulation 1000 times and compare the empirical density function to the probability density function.

1. , 
2. , 
3. , 

Suppose that  has probability density function  given by  for . Find

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 0
4. 96

The particular beta distribution in the last exercise is also known as the (standard) arcsine distribution. It governs the last time that the
Brownian motion process hits 0 during the time interval . The arcsine distribution is studied in more generality in the chapter on
Special Distributions.

Open the Brownian motion experiment and select the last zero. Note the shape of the probability density function in relation to the
moment results in the last exercise. Run the simulation 1000 times and compare the empirical density function to the probability
density function.

Counterexamples

The following exercise gives a simple example of a discrete distribution that is not symmetric but has skewness 0.

Suppose that  is a discrete random variable with probability density function  given by , , . Find
each of the following and then show that the distribution of  is not symmetric.

1. 
2. 
3. 
4. 

Answer
1. 0
2. 3
3. 0
4. 

The PDF  is clearly not symmetric about 0, and the mean is the only possible point of symmetry.

The following exercise gives a more complicated continuous distribution that is not symmetric but has skewness 0. It is one of a collection
of distributions constructed by Erik Meijer.

Suppose that , , and  are independent random variables, and that  is normally distributed with mean  and variance 
,  is normally distributed with mean  and variance , and  is an indicator variable with . Let 

. Find each of the following and then show that the distribution of  is not symmetric.

1. 
2. 
3. 
4. 

a= 2 b = 2

a= 3 b = 2

a= 2 b = 3

X f f(x) =

1

π x(1−x)

√

x ∈ (0, 1)

E(X)

var(X)

skew(X)

kurt(X)

1

2

1

8

[0, 1]

X f f(−3) =

1

10

f(−1) =

1

2

f(2) =

2

5

X

E(X)

var(X)

skew(X)

kurt(X)

5

3

f

U V I U μ=−2

= 1σ

2

V ν = 1 = 2τ

2

I P(I = 1) = p =

1

3

X = IU+(1−I)V X

E(X)

var(X)

skew(X)

kurt(X)
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Solution

The distribution of  is a mixture of normal distributions. The PDF is  where  is the normal PDF of  and  is
the normal PDF of . However, it's best to work with the random variables. For , note that  and 
and note also that the random variable  just takes the value 0. It follows that

So now, using standard results for the normal distribution,

1. .
2. 
3.  so 
4.  so 

The graph of the PDF  of  is given below. Note that  is not symmetric about 0. (Again, the mean is the only possible point of
symmetry.)

The PDF of 
PDF

This page titled 4.4: Skewness and Kurtosis is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.

X f = pg+(1−p)h g U h

V n ∈ N
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= II

n

(1−I = 1−I)

n

I(1−I)

= I +(1−I) , n ∈X

n

U

n

V

n

N

+

(4.4.11)

E(X) = pμ+(1−p)ν = 0

var(X) =E( ) = p( + )+(1−p)( + ) =X
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2
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11
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3

σ

2

μ

3

τ

2

ν

3

skew(X) = 0

E( ) = p(3 +6 + )+(1−p)(3 +6 + ) = 31X
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μ
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ν
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4.5: Covariance and Correlation
         

Recall that by taking the expected value of various transformations of a random variable, we can measure many interesting characteristics of the
distribution of the variable. In this section, we will study an expected value that measures a special type of relationship between two real-valued
variables. This relationship is very important both in probability and statistics.

Basic Theory

Definitions

As usual, our starting point is a random experiment modeled by a probability space . Unless otherwise noted, we assume that all expected
values mentioned in this section exist. Suppose now that  and  are real-valued random variables for the experiment (that is, defined on the
probability space) with means ,  and variances , , respectively.

The covariance of  is defined by

and, assuming the variances are positive, the correlation of  is defined by

1. If  then  and  are positively correlated.
2. If  then  and  are negatively correlated.
3. If  then  and  are uncorrelated.

Correlation is a scaled version of covariance; note that the two parameters always have the same sign (positive, negative, or 0). Note also that
correlation is dimensionless, since the numerator and denominator have the same physical units, namely the product of the units of  and .

As these terms suggest, covariance and correlation measure a certain kind of dependence between the variables. One of our goals is a deeper
understanding of this dependence. As a start, note that  is the center of the joint distribution of , and the vertical and horizontal
lines through this point separate  into four quadrants. The function  is positive on the first and third quadrants and
negative on the second and fourth.

Figure : A joint distribution with  as the center of mass

Properties of Covariance

The following theorems give some basic properties of covariance. The main tool that we will need is the fact that expected value is a linear operation.
Other important properties will be derived below, in the subsection on the best linear predictor. As usual, be sure to try the proofs yourself before
reading the ones in the text. Once again, we assume that the random variables are defined on the common sample space, are real-valued, and that the
indicated expected values exist (as real numbers).

Our first result is a formula that is better than the definition for computational purposes, but gives less insight.

.

Proof

Let  and . Then

From (2), we see that  and  are uncorrelated if and only if , so here is a simple but important corollary:

If  and  are independent, then they are uncorrelated.

(Ω,F ,P)

X Y

E(X) E(Y ) var(X) var(Y )

(X,Y )

cov(X,Y ) =E ([X−E(X)] [Y −E(Y )]) (4.5.1)

(X,Y )

cor(X,Y ) =

cov(X,Y )

sd(X)sd(Y )

(4.5.2)

cov(X,Y ) > 0 X Y

cov(X,Y ) < 0 X Y

cov(X,Y ) = 0 X Y

X Y

(E(X),E(Y )) (X,Y )

R

2

(x, y) ↦ [x−E(X)] [y−E(Y )]

4.5.1 (E(X),E(Y ))

cov(X,Y ) =E(XY )−E(X)E(Y )

μ=E(X) ν =E(Y )

cov(X,Y ) =E [(X−μ)(Y −ν)] =E(XY −μY −νX+μν) =E(XY )−μE(Y )−νE(X)+μν =E(XY )−μν (4.5.3)

X Y E(XY ) =E(X)E(Y )

X Y
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Proof

We showed in Section 1 that if  and  are indepedent then .

However, the converse fails with a passion: Exercise (31) gives an example of two variables that are functionally related (the strongest form of
dependence), yet uncorrelated. The computational exercises give other examples of dependent yet uncorrelated variables also. Note also that if one of
the variables has mean 0, then the covariance is simply the expected product.

Trivially, covariance is a symmetric operation.

.

As the name suggests, covariance generalizes variance.

.

Proof

Let . Then .

Covariance is a linear operation in the first argument, if the second argument is fixed.

If , ,  are random variables, and  is a constant, then

1. 
2. 

Proof

We use the computational formula in (2)

1. 

2. 

By symmetry, covariance is also a linear operation in the second argument, with the first argument fixed. Thus, the covariance operator is bi-linear.
The general version of this property is given in the following theorem.

Suppose that  and  are sequences of random variables, and that  and  are
constants. Then

The following result shows how covariance is changed under a linear transformation of one of the variables. This is simply a special case of the basic
properties, but is worth stating.

If  then .

Proof

A constant is independent of any random variable. Hence .

Of course, by symmetry, the same property holds in the second argument. Putting the two together we have that if  then 
.

Properties of Correlation

Next we will establish some basic properties of correlation. Most of these follow easily from corresponding properties of covariance above. We assume
that  and , so that the random variable really are random and hence the correlation is well defined.

The correlation between  and  is the covariance of the corresponding standard scores:

Proof

From the definitions and the linearity of expected value,

X Y E(XY ) =E(X)E(Y )

cov(X,Y ) = cov(Y ,X)

cov(X,X) = var(X)

μ=E(X) cov(X,X) =E [(X−μ ] = var(X))

2

X Y Z c

cov(X+Y ,Z) = cov(X,Z)+cov(Y ,Z)

cov(cX,Y ) = c cov(X,Y )

cov(X+Y ,Z) =E [(X+Y )Z] −E(X+Y )E(Z) =E(XZ+Y Z)−[E(X)+E(Y )]E(Z)

= [E(XZ)−E(X)E(Z)] +[E(Y Z)−E(Y )E(Z)] = cov(X,Z)+cov(Y ,Z)

(4.5.4)

(4.5.5)

cov(cX,Y ) =E(cXY )−E(cX)E(Y ) = cE(XY )−cE(X)E(Y ) = c[E(XY )−E(X)E(Y ) = c cov(X,Y ) (4.5.6)

( , ,… , )X
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2
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( , ,… , )Y
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m

( , ,… , )a

1
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2

a

n

( , ,… , )b

1

b

2

b

m

cov( , ) = cov( , )∑

i=1

n

a

i

X

i

∑

j=1

m

b

j

Y

j

∑

i=1

n

∑

j=1

m

a

i

b

j

X

i

Y

j

(4.5.7)

a, b ∈ R cov(a+bX,Y ) = b cov(X,Y )

cov(a+bX,Y ) = cov(a,Y )+b cov(X,Y ) = b cov(X,Y )

a, b, c, d ∈ R

cov(a+bX, c+dY ) = bd cov(X,Y )

var(X) > 0 var(Y ) > 0

X Y

cor(X,Y ) = cov( , ) =E( )

X−E(X)

sd(X)

Y −E(Y )

sd(Y )

X−E(X)

sd(X)

Y −E(Y )

sd(Y )

(4.5.8)
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Since the standard scores have mean 0, this is also the covariance of the standard scores.

This shows again that correlation is dimensionless, since of course, the standard scores are dimensionless. Also, correlation is symmetric:

.

Under a linear transformation of one of the variables, the correlation is unchanged if the slope is positve and changes sign if the slope is negative:

If  and  then

1.  if 
2.  if 

Proof

Let  denote the standard score of . If , the standard score of  is also . If , the standard score of  is . Hence the
result follows from the result above for standard scores.

This result reinforces the fact that correlation is a standardized measure of association, since multiplying the variable by a positive constant is
equivalent to a change of scale, and adding a contant to a variable is equivalent to a change of location. For example, in the Challenger data, the
underlying variables are temperature at the time of launch (in degrees Fahrenheit) and O-ring erosion (in millimeters). The correlation between these
two variables is of fundamental importance. If we decide to measure temperature in degrees Celsius and O-ring erosion in inches, the correlation is
unchanged. Of course, the same property holds in the second argument, so if  with  and , then 

 if  and  if .

The most important properties of covariance and correlation will emerge from our study of the best linear predictor below.

The Variance of a Sum

We will now show that the variance of a sum of variables is the sum of the pairwise covariances. This result is very useful since many random
variables with special distributions can be written as sums of simpler random variables (see in particular the binomial distribution and hypergeometric
distribution below).

If  is a sequence of real-valued random variables then

Proof

From the variance property on (5), and the linear property (7),

The second expression follows since  for each  and  for  by the symmetry property (4)

Note that the variance of a sum can be larger, smaller, or equal to the sum of the variances, depending on the pure covariance terms. As a special case
of (12), when , we have

The following corollary is very important.

If  is a sequence of pairwise uncorrelated, real-valued random variables then

Proof

This follows immediately from (12), since  for .

Note that the last result holds, in particular, if the random variables are independent. We close this discussion with a couple of minor corollaries.

If  and  are real-valued random variables then .

Proof

cor(X,Y ) = = =E( )

cov(X,Y )

sd(X)sd(Y )

E ([X−E(X)] [Y −E(Y )])

sd(X)sd(Y )

X−E(X)

sd(X)

Y −E(Y )

sd(Y )

(4.5.9)

cor(X,Y ) = cor(Y ,X)

a, b ∈ R b ≠ 0

cor(a+bX,Y ) = cor(X,Y ) b > 0

cor(a+bX,Y ) =−cor(X,Y ) b < 0

Z X b > 0 a+bX Z b < 0 a+bX −Z

a, b, c, d ∈ R b ≠ 0 d ≠ 0

cor(a+bX, c+dY ) = cor(X,Y ) bd > 0 cor(a+bX, c+dY ) =−cor(X,Y ) bd < 0
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n
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(4.5.10)

var( ) = cov( , ) = cov( , )∑

i=1

n

X

i

∑

i=1

n

X

i

∑

j=1

n

X

j

∑

i=1

j

∑

j=1

n

X

i

X

j

(4.5.11)

cov( , ) = var( )X

i

X

i

X

i

i cov( , ) = cov( , )X

i

X

j

X

j

X

i

i ≠ j

n= 2

var(X+Y ) = var(X)+var(Y )+2 cov(X,Y ) (4.5.12)

( , ,… , )X

1

X

2

X

n

var( ) = var( )∑

i=1

n

X

i

∑

i=1

n

X
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(4.5.13)

cov( , ) = 0X

i

X

j

i ≠ j

X Y var(X+Y )+var(X−Y ) = 2 [var(X)+var(Y )]
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From (12),

Similarly,

Adding gives the result.

If  and  are real-valued random variables with  then  and  are uncorrelated.

Proof

From the linear property (7) and the symmetry property (4), 

Random Samples

In the following exercises, suppose that  is a sequence of independent, real-valued random variables with a common distribution that has
mean  and standard deviation . In statistical terms, the variables form a random sample from the common distribution.

For , let .

1. 
2. 

Proof
1. This follows from the additive property of expected value.
2. This follows from the additive property of variance (`(13) for independent variables

For , let , so that  is the sample mean of .

1. 
2. 
3.  as 
4.  as  for every .

Proof
1. This follows from part (a) of the (16) and the scaling property of expected value.
2. This follows from part (b) of the (16) and the scaling property of variance.
3. This is an immediate consequence of (b).
4. This follows from (c) and Chebyshev's inequality:  as 

Part (c) of (17) means that  as  in mean square. Part (d) means that  as  in probability. These are both versions of the
weak law of large numbers, one of the fundamental theorems of probability.

The standard score of the sum  and the standard score of the sample mean  are the same:

1. 
2. 

Proof

The equality of the standard score of  and of  is a result of simple algebra. But recall more generally that the standard score of a variable is
unchanged by a linear transformation of the variable with positive slope (a location-scale transformation of the distribution). Of course, parts (a)
and (b) are true for any standard score.

The central limit theorem, the other fundamental theorem of probability, states that the distribution of  converges to the standard normal distribution
as .

Events

If  and  are events in our random experiment then the covariance and correlation of  and  are defined to be the covariance and correlation,
respectively, of their indicator random variables.

If  and  are events, define  and . Equivalently,

var(X+Y ) = var(X)+var(Y )+2cov(X,Y ) (4.5.14)

var(X−Y ) = var(X)+var(−Y )+2cov(X, −Y ) = var(X)+var(Y )−2cov(X,Y ) (4.5.15)

X Y var(X) = var(Y ) X+Y X−Y

cov(X+Y ,X−Y ) = cov(X,X)−cov(X,Y )+cov(Y ,X)−cov(Y ,Y ) = var(X)−var(Y )
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(4.5.16)

E( ) = 0Z

n

var( ) = 1Z

n

Y

n

Z

n

Z

n

n→∞

A B A B

A B cov(A,B) = cov( , )1

A

1

B

cor(A,B) = cor( , )1

A

1

B
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1. 
2. 

Proof

Recall that if  is an indicator variable with , then  and . Also, if  and  are indicator variables
then  is an indicator variable and . The results then follow from the definitions.

In particular, note that  and  are positively correlated, negatively correlated, or independent, respectively (as defined in the section on conditional
probability) if and only if the indicator variables of  and  are positively correlated, negatively correlated, or uncorrelated, as defined in this section.

If  and  are events then

1. 
2. 

Proof

These results follow from linear property (7) and the fact that that .

If  and  are events with  then

1. 

2. 

Proof

These results follow from (19), since .

In the language of the experiment,  means that  implies . In such a case, the events are positively correlated, not surprising.

The Best Linear Predictor

What linear function of  (that is, a function of the form  where ) is closest to  in the sense of minimizing mean square error? The
question is fundamentally important in the case where random variable  (the predictor variable) is observable and random variable  (the response
variable) is not. The linear function can be used to estimate  from an observed value of . Moreover, the solution will have the added benefit of
showing that covariance and correlation measure the linear relationship between  and . To avoid trivial cases, let us assume that  and 

, so that the random variables really are random. The solution to our problem turns out to be the linear function of  with the same
expected value as , and whose covariance with  is the same as that of .

The random variable  defined as follows is the only linear function of  satisfying properties (a) and (b).

1. 
2. 

Proof

By the linearity of expected value,

Next, by the linearity of covariance and the fact that a constant is independent (and hence uncorrelated) with any random variable,

Conversely, suppose that  satisfies  and . Again using linearity of covariance and the
uncorrelated property of constants, the second equation gives  so . Then the first equation
gives , so .

Note that in the presence of part (a), part (b) is equivalent to . Here is another minor variation, but one that will be very
useful:  is the only linear function of  with the same mean as  and with the property that  is uncorrelated with every linear
function of .

 is the only linear function of  that satisfies

1. 
2.  for every linear function  of .

cov(A,B) = P(A∩B)−P(A)P(B)

cor(A,B) = [P(A∩B)−P(A)P(B)]/ P(A) [1−P(A)]P(B) [1−P(B)]

− −−−−−−−−−−−−−−−−−−−−−−−−

√

X P(X = 1) = p E(X) = p var(X) = p(1−p) X Y

XY P(XY = 1) = P(X = 1,Y = 1)

A B

A B

A B

cov(A, ) =−cov(A,B)B

c

cov( , ) = cov(A,B)A

c

B

c

= 1−1

A

c

1

A

A B A⊆B

cov(A,B) = P(A)[1−P(B)]

cor(A,B) = P(A) [1−P(B)]/P(B) [1−P(A)]

− −−−−−−−−−−−−−−−−−−−−−−−−−

√

A∩B=A

A⊆B A B

X a+bX a, b ∈ R Y

X Y

Y X

X Y var(X) > 0

var(Y ) > 0 X

Y X Y

L(Y ∣X) X

L(Y ∣X) =E(Y )+ [X−E(X)]

cov(X,Y )

var(X)

(4.5.17)

E [L(Y ∣X)] =E(Y )

cov [X,L(Y ∣X)] = cov(X,Y )

E [L(Y ∣X)] =E(Y )+ [E(X)−E(X)] =E(Y )

cov(X,Y )

var(X)

(4.5.18)

cov [X,L(Y ∣X)] = cov(X,X) = var(X) = cov(X,Y )

cov(X,Y )

var(X)

cov(X,Y )

var(X)

(4.5.19)

U = a+bX E(U) =E(Y ) cov(X,U) = cov(Y ,U)

b cov(X,X) = cov(X,Y ) b = cov(X,Y )/var(X)

a=E(Y )−bE(X) U =L(Y ∣X)

E [XL(Y ∣X)] =E(XY )

L(Y ∣X) X Y Y −L(Y ∣X)

X

L(Y ∣X) X

E [L(Y ∣X)] =E(Y )

cov [Y −L(Y ∣X),U] = 0 U X
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Proof

Of course part (a) is the same as part (a) of (22). Suppose that  where . From basic properties of covariance and the previous
result,

Conversely, suppose that  is a linear function of  and that  and  for every linear function  of . Letting 
 we have  so . Hence  by (22).

The variance of  and its covariance with  turn out to be the same.

Additional properties of :

1. 
2. 

Proof
1. From basic properties of variance,

2. From basic properties of covariance,

We can now prove the fundamental result that  is the linear function of  that is closest to  in the mean square sense. We give two proofs;
the first is more straightforward, but the second is more interesting and elegant.

Suppose that  is a linear function of . Then

1. 

2. Equality occurs in (a) if and only if  with probability 1.

Proof from calculus

Let  denote the mean square error when  is used as an estimator of , as a function of the parameters :

Expanding the square and using the linearity of expected value gives

In terms of the variables  and , the first three terms are the second-order terms, the next two are the first-order terms, and the last is the zero-
order term. The second-order terms define a quadratic form whose standard symmetric matrix is

The determinant of this matrix is  and the diagonal terms are positive. All of this means that the graph of  is a
paraboloid opening upward, so the minimum of  will occur at the unique critical point. Setting the first derivatives of  to 0 we have

Solving the first equation for  gives . Substituting this into the second equation and solving gives .

Proof using properties
1. We abbreviate  by  for simplicity. Suppose that  is a linear function of . Then

Since  has mean 0, the middle term is . But  and  are linear functions of  and hence so is . Thus 
 by (23). Hence

2. Equality occurs in (a) if and only if , if and only if .

U = a+bX a, b ∈ R

cov [Y −L(Y ∣X),U] = b cov [Y −L(Y ∣X),X] = b (cov(Y ,X)−cov [L(Y ∣X),X]) = 0 (4.5.20)

V X E(V ) =E(Y ) cov(Y −V ,U) = 0 U X

U =X cov(Y −V ,X) = 0 cov(V ,X) = cov(Y ,X) V =L(Y ∣X)

L(Y ∣X) Y

L(Y ∣X)

var [L(Y ∣X)] = (X,Y )/var(X)cov

2

cov [L(Y ∣X),Y ] = (X,Y )/var(X)cov

2

var [L(Y ∣X)] = var(X) =[ ]

cov(X,Y )

var(X)

2

(X,Y )cov

2

var(X)

(4.5.21)

cov [L(Y ∣X),Y ] = cov(X,Y ) =

cov(X,Y )

var(X)

(X,Y )cov

2

var(X)

(4.5.22)

L(Y ∣X) X Y

U X

E( )≤E [(Y −U ][Y −L(Y ∣X)]

2

)

2

U =L(Y ∣X)

mse(a, b) U = a+bX Y a, b ∈ R

mse(a, b) =E( )[Y −(a+bX)]

2

(4.5.23)

mse(a, b) = + E( )+2abE(X)−2aE(Y )−2bE(XY )+E( )a

2

b

2

X

2

Y

2

(4.5.24)

a b

[ ]

1

E(X)

E(X)

E( )X

2

(4.5.25)

E( )−[E(X) = var(X)X

2

]

2

mse

mse mse

−2E(Y )+2bE(X)+2a

−2E(XY )+2bE ( )+2aE(X)X

2

= 0

= 0

(4.5.26)

(4.5.27)

a a=E(Y )−bE(X) b = cov(X,Y )/var(X)

L(Y ∣X) L U X

E [(Y −U ] =E( )=E [(Y −L ]+2E [(Y −L)(L−U)] +E [(L−U ])

2

[(Y −L)+(L−U)]

2

)

2

)

2

(4.5.28)

Y −L cov(Y −L,L−U) L U X L−U

cov(Y −L,L−U) = 0

E [(Y −U ] =E [(Y −L ]+E [(L−U ] ≥E [(Y −L ])

2

)

2

)

2

)

2

(4.5.29)

E [(L−U ] = 0)

2

P(L=U) = 1
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The mean square error when  is used as a predictor of  is

Proof

Again, let  for convenience. Since  has mean 0,

But  by (24). Hence

Our solution to the best linear perdictor problems yields important properties of covariance and correlation.

Additional properties of covariance and correlation:

1. 
2. 
3.  if and only if, with probability 1,  is a linear function of  with positive slope.
4.  if and only if, with probability 1,  is a linear function of  with negative slope.

Proof

Since mean square error is nonnegative, it follows from (26) that . This gives parts (a) and (b). For parts (c) and (d), note that if 
 then  with probability 1, and that the slope in  has the same sign as .

The last two results clearly show that  and  measure the linear association between  and . The equivalent inequalities (a) and
(b) above are referred to as the correlation inequality. They are also versions of the Cauchy-Schwarz inequality, named for Augustin Cauchy and Karl
Schwarz

Recall from our previous discussion of variance that the best constant predictor of , in the sense of minimizing mean square error, is  and the
minimum value of the mean square error for this predictor is . Thus, the difference between the variance of  and the mean square error above
for  is the reduction in the variance of  when the linear term in  is added to the predictor:

Thus  is the proportion of reduction in  when  is included as a predictor variable. This quantity is called the (distribution)
coefficient of determination. Now let

The function  is known as the distribution regression function for  given , and its graph is known as the distribution regression
line. Note that the regression line passes through , the center of the joint distribution.

Figure : The distribution regression line

However, the choice of predictor variable and response variable is crucial.

The regression line for  given  and the regression line for  given  are not the same line, except in the trivial case where the variables are
perfectly correlated. However, the coefficient of determination is the same, regardless of which variable is the predictor and which is the response.

Proof

The two regression lines are

L(Y ∣X) Y

E( )= var(Y ) [1− (X,Y )][Y −L(Y ∣X)]

2

cor

2

(4.5.30)

L=L(Y ∣X) Y −L

E [(Y −L ] = var(Y −L) = var(Y )−2cov(L,Y )+var(L))

2

(4.5.31)

cov(L,Y ) = var(L) = (X,Y )/var(X)cov

2

E [(Y −L ] = var(Y )− = var(Y )[1− ] = var(Y ) [1− (X,Y )])

2

(X,Y )cov

2

var(X)

(X,Y )cov

2

var(X)var(Y )

cor

2

(4.5.32)

−1 ≤ cor(X,Y ) ≤ 1

−sd(X)sd(Y ) ≤ cov(X,Y ) ≤ sd(X)sd(Y )

cor(X,Y ) = 1 Y X

cor(X,Y ) =−1 Y X

(X,Y ) ≤ 1cor

2

(X,Y ) = 1cor

2

Y =L(Y ∣X) L(Y ∣X) cor(X,Y )

cov(X,Y ) cor(X,Y ) X Y

Y E(Y )

var(Y ) Y

L(Y ∣X) Y X

var(Y )−E( )= var(Y ) (X,Y )[Y −L(Y ∣X)]

2

cor

2

(4.5.33)

(X,Y )cor

2

var(Y ) X

L(Y ∣X = x) =E(Y )+ [x−E(X)] , x ∈ R

cov(X,Y )

var(X)

(4.5.34)

x↦L(Y ∣X = x) Y X

(E(X),E(Y ))

4.5.2

Y X X Y
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The two lines are the same if and only if . But this is equivalent to .

Suppose that  and  are events with  and . Then

1.  if and only . (That is,  and  are equivalent events.)
2.  if and only . (That is,  and  are equivalent events.)

Proof

Recall from (19) that , so if  then from (27),  with probability 1. But  and  each
takes values 0 and 1 only. Hence the only possible regression lines are , ,  and . The first two correspond to 
and , respectively, which are excluded by the hypotheses.

1. In this case, the slope is positive, so the regression line is . That is,  with probability 1.
2. In this case, the slope is negative, so the regression line is . That is,  with probability 1.

The concept of best linear predictor is more powerful than might first appear, because it can be applied to transformations of the variables. Specifically,
suppose that  and  are random variables for our experiment, taking values in general spaces  and , respectively. Suppose also that  and  are
real-valued functions defined on  and , respectively. We can find , the linear function of  that is closest to  in the mean
square sense. The results of this subsection apply, of course, with  replacing  and  replacing . Of course, we must be able to compute the
appropriate means, variances, and covariances.

We close this subsection with two additional properties of the best linear predictor, the linearity properties.

Suppose that , , and  are random variables and that  is a constant. Then

1. 
2. 

Proof from the definitions

These results follow easily from the linearity of expected value and covariance.

1. 

2. 

Proof by characterizing properties
1. We show that  satisfy the properties that characterize .

2. Similarly, we show that  satisfies the properties that characterize 

There are several extensions and generalizations of the ideas in the subsection:

The corresponding statistical problem of estimating  and , when these distribution parameters are unknown, is considered in the section on
Sample Covariance and Correlation.
The problem finding the function of  that is closest to  in the mean square error sense (using all reasonable functions, not just linear functions)
is considered in the section on Conditional Expected Value.
The best linear prediction problem when the predictor and response variables are random vectors is considered in the section on Expected Value
and Covariance Matrices.

The use of characterizing properties will play a crucial role in these extensions.

y−E(Y )

x−E(X)

= [x−E(X)]

cov(X,Y )

var(X)

= [y−E(Y )]

cov(X,Y )

var(Y )

(4.5.35)

(4.5.36)

(X,Y ) = var(X)var(Y )cov

2

(X,Y ) = 1cor

2

A B 0 < P(A) < 1 0 < P(B) < 1

cor(A,B) = 1 P(A ∖B)+P(B∖A) = 0 A B

cor(A,B) =−1 P(A ∖ )+P( ∖A) = 0B

c

B

c

A B

c

cor(A,B) = cor( , )1

A

1

B

(A,B) = 1cor

2

=L( ∣ )1

B

1

B

1

A

1

A

1

B

y = 0 y = 1 y = x y = 1−x P(B) = 0

P(B) = 1

y = x =1

B

1

A

y = 1−x = 1− =1

B

1

A

1

A

c

X Y S T g h

S T L [h(Y ) ∣ g(X)] g(X) h(Y )

g(X) X h(Y ) Y

X Y Z c

L(Y +Z ∣X) =L(Y ∣X)+L(Z ∣X)

L(cY ∣X) = cL(Y ∣X)

L(Y +Z ∣X) =E(Y +Z)+ [X−E(X)]

cov(X,Y +Z)

var(X)

=(E(Y )+ [X−E(X)])+(E(Z)+ [X−E(X)])

cov(X,Y )

var(X)

cov(X,Z)

var(X)

=E(Y ∣X)+E(Z ∣X)

(4.5.37)

(4.5.38)

(4.5.39)

L(cY ∣X) =E(cY )+ [X−E(X)] = cE(Y )+c [X−E(X)] = cL(Y ∣X)

cov(X, cY )

var(X)

cov(X,Y )

var(X)

(4.5.40)

L(Y ∣X)+L(Z ∣X) L(Y +Z ∣X)

E [L(Y ∣X)+L(Z ∣X)]

cov [X,L(Y ∣X)+L(Z ∣X)]

=E [L(Y ∣X)] +E [L(Z ∣X)] =E(Y )+E(Z) =E(Y +Z)

= cov [X,L(Y ∣X)] +cov [X,L(Z ∣X)] = cov(X,Y )+cov(X,Z) = cov(X,Y +Z)

(4.5.41)

(4.5.42)

cL(Y ∣X) L(cY ∣X)

E [cL(Y ∣X)]

cov [X, cL(Y ∣X)]

= cE [L(Y ∣X)] = cE(Y ) =E(cY )

= c cov [X,L(Y ∣X)] = c cov(X,Y ) = cov(X, cY )

(4.5.43)

(4.5.44)

a b

X Y
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Examples and Applications

Uniform Distributions

Suppose that  is uniformly distributed on the interval  and . Then  and  are uncorrelated even though  is a function of 
(the strongest form of dependence).

Proof

Note that  and  and . Hence .

Suppose that  is uniformly distributed on the region . Find  and  and determine whether the variables are
independent in each of the following cases:

1.  where  and , so  is a rectangle.
2.  where , so  is a triangle
3.  where , so  is a circle

Answer
1. , .  and  are independent.
2. , .  and  are dependent.
3. , .  and  are dependent.

In the bivariate uniform experiment, select each of the regions below in turn. For each region, run the simulation 2000 times and note the value of
the correlation and the shape of the cloud of points in the scatterplot. Compare with the results in the last exercise.

1. Square
2. Triangle
3. Circle

Suppose that  is uniformly distributed on the interval  and that given ,  is uniformly distributed on the interval .
Find each of the following:

1. 
2. 
3. 
4. 

Answer

1. 

2. 

3. 
4. 

Dice

Recall that a standard die is a six-sided die. A fair die is one in which the faces are equally likely. An ace-six flat die is a standard die in which faces 1
and 6 have probability  each, and faces 2, 3, 4, and 5 have probability  each.

A pair of standard, fair dice are thrown and the scores  recorded. Let  denote the sum of the scores, 
the minimum scores, and  the maximum score. Find the covariance and correlation of each of the following pairs of variables:

1. 
2. 
3. 
4. 
5. 

Answer
1. , 
2. , 

3. , 
4. , 
5. , 

X [−1, 1] Y =X

2

X Y Y X

E(X) = 0 E(Y ) =E ( )= 1/3X

2

E(XY ) =E ( )= 0X

3

cov(X,Y ) =E(XY )−E(X)E(Y ) = 0

(X,Y ) S ⊆R

2

cov(X,Y ) cor(X,Y )

S = [a, b] × [c, d] a< b c < d S

S = {(x, y) ∈ : −a≤ y ≤ x ≤ a}R

2

a> 0 S

S = {(x, y) ∈ : + ≤ }R

2

x

2

y

2

r

2

r> 0 S

cov(X,Y ) = 0 cor(X,Y ) = 0 X Y

cov(X,Y ) =

a

2

9

cor(X,Y ) =

1

2

X Y

cov(X,Y ) = 0 cor(X,Y ) = 0 X Y

X (0, 1) X = x ∈ (0, 1) Y (0, x)

cov(X,Y )

cor(X,Y )

L(Y ∣X)

L(X ∣ Y )

1

24

3

7

−−

√

X

1

2

+ Y

2

7

6

7

1

4

1

8

( , )X

1

X

2

Y = +X

1

X

2

U =min{ , }X

1

X

2

V =max{ , }X

1

X

2

( , )X

1

X

2

( ,Y )X

1

( ,U)X

1

(U,V )

(U,Y )

0 0

35

12

= 0.7071

1

2√

35

24

0.6082

1369

1296

= 0.5358

1369

2555

35

12

0.8601
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Suppose that  fair dice are thrown. Find the mean and variance of each of the following variables:

1. , the sum of the scores.
2. , the average of the scores.

Answer

1. , 
2. , 

In the dice experiment, select fair dice, and select the following random variables. In each case, increase the number of dice and observe the size
and location of the probability density function and the mean  standard deviation bar. With  dice, run the experiment 1000 times and
compare the sample mean and standard deviation to the distribution mean and standard deviation.

1. The sum of the scores.
2. The average of the scores.

Suppose that  ace-six flat dice are thrown. Find the mean and variance of each of the following variables:

1. , the sum of the scores.
2. , the average of the scores.

Answer

1. , 
2. , 

In the dice experiment, select ace-six flat dice, and select the following random variables. In each case, increase the number of dice and observe
the size and location of the probability density function and the mean  standard deviation bar. With  dice, run the experiment 1000 times
and compare the sample mean and standard deviation to the distribution mean and standard deviation.

1. The sum of the scores.
2. The average of the scores.

A pair of fair dice are thrown and the scores  recorded. Let  denote the sum of the scores,  the
minimum score, and  the maximum score. Find each of the following:

1. 
2. 
3. 

Answer

1. 
2. 
3. 

Bernoulli Trials

Recall that a Bernoulli trials process is a sequence  of independent, identically distributed indicator random variables. In the usual
language of reliability,  denotes the outcome of trial , where 1 denotes success and 0 denotes failure. The probability of success  is
the basic parameter of the process. The process is named for Jacob Bernoulli. A separate chapter on the Bernoulli Trials explores this process in detail.

For , the number of successes in the first  trials is . Recall that this random variable has the binomial distribution with
parameters  and , which has probability density function  given by

The mean and variance of  are

1. 
2. 

Proof

These results could be derived from the PDF of , of course, but a derivation based on the sum of IID variables is much better. Recall that 
 and  so the results follow immediately from theorem (16).

In the binomial coin experiment, select the number of heads. Vary  and  and note the shape of the probability density function and the size and
location of the mean  standard deviation bar. For selected values of the parameters, run the experiment 1000 times and compare the sample mean

n

Y

n

M

n

E ( ) = nY

n

7

2

var ( ) = nY

n

35

12

E ( ) =M

n

7

2

var ( ) =M

n

35

12n

± n= 20

n

Y

n

M

n

n

7

2

n

15

4

7

2

15

4n

± n= 20

( , )X

1

X

2

Y = +X

1

X

2

U =min{ , }X

1

X

2

V =max{ , }X

1

X

2

L(Y ∣ )X

1

L(U ∣ )X

1

L(V ∣ )X

1

+

7

2

X

1

+

7

9

1

2

X

1

+

49

19

1

2

X

1

X = ( , ,…)X

1

X

2

X

i

i p = P( = 1)X

i

n ∈ N

+

n =Y

n

∑

n

i=1

X

i

n p f

(y) =( ) (1−p , y ∈ {0, 1,… ,n}f

n

n

y

p

y

)

n−y

(4.5.45)

Y

n

E( ) = npY

n

var( ) = np(1−p)Y

n

Y

n

E( ) = pX

i

var( ) = p(1−p)X

i

n p

±
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and standard deviation to the distribution mean and standard deviation.

For , the proportion of successes in the first  trials is . This random variable is sometimes used as a statistical estimator of the
parameter , when the parameter is unknown.

The mean and variance of  are

1. 
2. 

Proof

Recall that  and  so the results follow immediately from theorem (17).

In the binomial coin experiment, select the proportion of heads. Vary  and  and note the shape of the probability density function and the size
and location of the mean  standard deviation bar. For selected values of the parameters, run the experiment 1000 times and compare the sample
mean and standard deviation to the distribution mean and standard deviation.

As a special case of (17) note that  as  in mean square and in probability.

The Hypergeometric Distribution

Suppose that a population consists of  objects;  of the objects are type 1 and  are type 0. A sample of  objects is chosen at random, without
replacement. The parameters  and  with  and . For , let  denote the type of the th object selected.
Recall that  is a sequence of identically distributed (but not independent) indicator random variables.

Let  denote the number of type 1 objects in the sample, so that . Recall that this random variable has the hypergeometric distribution,
which has probability density function  given by

For distinct ,

1. 
2. 
3. 
4. 

Proof

Recall that  for each  and  for each . Technically, the sequence of
indicator variables is exchangeable. The results now follow from the definitions and simple algebra.

Note that the event of a type 1 object on draw  and the event of a type 1 object on draw  are negatively correlated, but the correlation depends only
on the population size and not on the number of type 1 objects. Note also that the correlation is perfect if . Think about these result intuitively.

The mean and variance of  are

1. 
2. 

Proof

Again, a derivation from the representation of  as a sum of indicator variables is far preferable to a derivation based on the PDF of . These
results follow immediately from (45), the additive property of expected value, and Theorem (12).

Note that if the sampling were with replacement,  would have a binomial distribution, and so in particular  and 
. The additional factor  that occurs in the variance of the hypergeometric distribution is sometimes called the finite

population correction factor. Note that for fixed ,  is decreasing in , and is 0 when . Of course, we know that we must have 
 if , since we would be sampling the entire population, and so deterministically, . On the other hand, for fixed , 

as . More generally, the hypergeometric distribution is well approximated by the binomial when the population size  is large compared to
the sample size . These ideas are discussed more fully in the section on the hypergeometric distribution in the chapter on Finite Sampling Models.

In the ball and urn experiment, select sampling without replacement. Vary , , and  and note the shape of the probability density function and
the size and location of the mean  standard deviation bar. For selected values of the parameters, run the experiment 1000 times and compare the
sample mean and standard deviation to the distribution mean and standard deviation.
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r

m

r

m

m−n

m−1

Y Y

Y E(Y ) = n

r

m

var(Y ) = n (1− )

r

m

r

m

m−n

m−1

m

m−n

m−1

n n=m

var(Y ) = 0 n=m Y = r n →1

m−n

m−1

m→∞ m

n

m r n

±

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10160?pdf


4.5.12 https://stats.libretexts.org/@go/page/10160

Exercises on Basic Properties

Suppose that  and  are real-valued random variables with . Find .

Answer

24

Suppose  and  are real-valued random variables with , , and . Find

1. 
2. 
3. 
4. 

Answer

1. 

2. 65
3. 45
4. 

Suppose that  and  are independent, real-valued random variables with  and . Find .

Answer

182

Suppose that  and  are events in an experiment with , , and . Find each of the following:

1. 
2. 

Answer

1. 
2. 

Suppose that , , and  are real-valued random variables for an experiment, and that  and . Find 
.

Answer

Suppose that  and  are real-valued random variables for an experiment, and that , , and . Find each
of the following:

1. 
2. 

Answer
1. 
2. 

Simple Continuous Distributions

Suppose that  has probability density function  given by  for , . Find each of the following

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

X Y cov(X,Y ) = 3 cov(2X−5, 4Y +2)

X Y var(X) = 5 var(Y ) = 9 cov(X,Y ) =−3

cor(X,Y )

var(2X+3Y −7)

cov(5X+2Y −3, 3X−4Y +2)

cor(5X+2Y −3, 3X−4Y +2)

− ≈−0.4472

1

5√

≈ 0.2772

15

2929√

X Y var(X) = 6 var(Y ) = 8 var(3X−4Y +5)

A B P(A) =

1

2

P(B) =

1

3

P(A∩B) =

1

8

cov(A,B)

cor(A,B)

−

1

24

− /82

–

√

X Y Z L(Y ∣X) = 2−3X L(Z ∣X) = 5+4X

L(6Y −2Z ∣X)

2−26X

X Y E(X) = 3 var(X) = 4 L(Y ∣X) = 5−2X

E(Y )

cov(X,Y )

−1

−8

(X,Y ) f f(x, y) = x+y 0 ≤ x ≤ 1 0 ≤ y ≤ 1

cov(X,Y )

cor(X,Y )

L(Y ∣X)

L(X ∣ Y )

−

1

144

− ≈−0.0909

1

11

− X

7

11

1

11

= Y

7

11

1

11
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Suppose that  has probability density function  given by  for . Find each of the following:

1. 
2. 
3. 
4. 

Answer

1. 
2. 

3. 
4. 

Suppose again that  has probability density function  given by  for .

1. Find .
2. Find .
3. Find .
4. Which predictor of  is better, the one based on  or the one based on ?

Answer

1. 
2. 
3. 
4. The predictor based on  is slightly better.

Suppose that  has probability density function  given by  for , . Find each of the following:

1. 
2. 
3. 
4. 

Answer

Note that  and  are independent.

1. 
2. 
3. 
4. 

Suppose that  has probability density function  given by  for . Find each of the following:

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

Suppose again that  has probability density function  given by  for .

1. Find .
2. Find .
3. Find .
4. Which of the predictors of  is better, the one based on  of the one based on ?

Answer

1. 
2. 

(X,Y ) f f(x, y) = 2(x+y) 0 ≤ x ≤ y ≤ 1

cov(X,Y )

cor(X,Y )

L(Y ∣X)

L(X ∣ Y )

1

48

≈ 0.4402

5

129√

+ X

26

43

15

43

Y

5

9

(X,Y ) f f(x, y) = 2(x+y) 0 ≤ x ≤ y ≤ 1

cov ( ,Y )X

2

cor( ,Y )X

2

L (Y ∣ )X

2

Y X X

2

7

360

0.448

+ X

1255

1920

245

634

X

2

(X,Y ) f f(x, y) = 6 yx

2

0 ≤ x ≤ 1 0 ≤ y ≤ 1

cov(X,Y )

cor(X,Y )

L(Y ∣X)

L(X ∣ Y )

X Y

0

0

2

3

3

4

(X,Y ) f f(x, y) = 15 yx

2

0 ≤ x ≤ y ≤ 1

cov(X,Y )

cor(X,Y )

L(Y ∣X)

L(X ∣ Y )

5

336

0.05423

+ X

30

51

20

51

Y

3

4

(X,Y ) f f(x, y) = 15 yx

2

0 ≤ x ≤ y ≤ 1

cov ( ,Y )X

−−

√

cor( ,Y )X

−−

√

L (Y ∣ )X

−−

√

Y X X

−−

√

10

1001

24

169

14

−−

√
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3. 
4. The predictor based on  is slightly better.
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4.6: Generating Functions
     

As usual, our starting point is a random experiment modeled by a probability sace . A generating function of a real-valued
random variable is an expected value of a certain transformation of the random variable involving another (deterministic) variable.
Most generating functions share four important properties:

1. Under mild conditions, the generating function completely determines the distribution of the random variable.
2. The generating function of a sum of independent variables is the product of the generating functions
3. The moments of the random variable can be obtained from the derivatives of the generating function.
4. Ordinary (pointwise) convergence of a sequence of generating functions corresponds to the special convergence of the

corresponding distributions.

Property 1 is perhaps the most important. Often a random variable is shown to have a certain distribution by showing that the
generating function has a certain form. The process of recovering the distribution from the generating function is known as inversion.
Property 2 is frequently used to determine the distribution of a sum of independent variables. By contrast, recall that the probability
density function of a sum of independent variables is the convolution of the individual density functions, a much more complicated
operation. Property 3 is useful because often computing moments from the generating function is easier than computing the moments
directly from the probability density function. The last property is known as the continuity theorem. Often it is easer to show the
convergence of the generating functions than to prove convergence of the distributions directly.

The numerical value of the generating function at a particular value of the free variable is of no interest, and so generating functions
can seem rather unintuitive at first. But the important point is that the generating function as a whole encodes all of the information in
the probability distribution in a very useful way. Generating functions are important and valuable tools in probability, as they are in
other areas of mathematics, from combinatorics to differential equations.

We will study the three generating functions in the list below, which correspond to increasing levels of generality. The fist is the most
restrictive, but also by far the simplest, since the theory reduces to basic facts about power series that you will remember from calculus.
The third is the most general and the one for which the theory is most complete and elegant, but it also requires basic knowledge of
complex analysis. The one in the middle is perhaps the one most commonly used, and suffices for most distributions in applied
probability.

1. the probability generating function
2. the moment generating function
3. the characteristic function

We will also study the characteristic function for multivariate distributions, although analogous results hold for the other two types. In
the basic theory below, be sure to try the proofs yourself before reading the ones in the text.

Basic Theory

The Probability Generating Function

For our first generating function, assume that  is a random variable taking values in .

The probability generating function  of  is defined by

for all  for which the expected value exists in .

That is,  is defined when . The probability generating function can be written nicely in terms of the probability

density function.

Suppose that  has probability density function  and probability generating function . Then

where  is the radius of convergence of the series.

(Ω,F ,P)

N N

P N

P (t) =E ( )t

N

(4.6.1)

t ∈ R R

P (t) E(|t )<∞|

N

N f P

P (t) = f(n) , t ∈ (−r, r)∑

n=0

∞

t

n

(4.6.2)
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Proof

The expansion follows from the discrete change of variables theorem for expected value. Note that the series is a power series in ,
and hence by basic calculus, converges absolutely for  where  is the radius of convergence. But since 

 we must have , and the series converges absolutely at least for .

In the language of combinatorics,  is the ordinary generating function of . Of course, if  just takes a finite set of values in  then 
. Recall from calculus that a power series can be differentiated term by term, just like a polynomial. Each derivative series has

the same radius of convergence as the original series (but may behave differently at the endpoints of the interval of convergence). We
denote the derivative of order  by . Recall also that if  and  with , then the number of permutations of size 
chosen from a population of  objects is

The following theorem is the inversion result for probability generating functions: the generating function completely determines the
distribution.

Suppose again that  has probability density function  and probability generating function . Then

Proof

This is a standard result from the theory of power series. Differentiating  times gives  for 
. Hence 

Our next result is not particularly important, but has a certain curiosity.

.

Proof

Note that

We can combine the two sum since we know that the series converge absolutely at 1 and .

Recall that the factorial moment of  of order  is . The factorial moments can be computed from the derivatives of the
probability generating function. The factorial moments, in turn, determine the ordinary moments about 0 (sometimes referred to as raw
moments).

Suppose that the radius of convergence . Then  for . In particular,  has finite moments of all
orders.

Proof

As before,  for . Hence if  then 

Suppose again that . Then

1. 
2. 

Proof
1. .
2. . Hence from (a), 

.

t

t ∈ (−r, r) r ∈ [0, ∞]

f(n) = 1∑

∞

n=0

r ≥ 1 t ∈ [−1, 1]

P f N N

r = ∞

n P

(n)

n ∈ N k ∈ N k ≤ n k

n

= n(n−1) ⋯ (n−k+1)n

(k)

(4.6.3)

N f P

f(k) = , k ∈ N

(0)P

(k)

k!

(4.6.4)

k (t) = f(n)P

(k)

∑

∞

n=k

n

(k)

t

n−k

t ∈ (−r, r) (0) = f(k) = k!f(k)P

(k)

k

(k)

P(N  is even) = [1 +P (−1)]

1

2

P (1) +P (−1) = f(n) + (−1 f(n) = 2 f(2k) = 2P(N  is even )∑

n=0

∞

∑

n=0

∞

)

n

∑

k=0

∞

(4.6.5)
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Suppose that  and  are independent random variables taking values in , with probability generating functions  and 
having radii of convergence  and , respectively. Then the probability generating function  of  is given by 

 for .

Proof

Recall that the expected product of independent variables is the product of the expected values. Hence

The Moment Generating Function

Our next generating function is defined more generally, so in this discussion we assume that the random variables are real-valued.

The moment generating function of  is the function  defined by

Note that since  with probability 1,  exists, as a real number or , for any . But as we will see, our interest will be
in the domain where .

Suppose that  has a continuous distribution on  with probability density function . Then

Proof

This follows from the change of variables theorem for expected value.

Thus, the moment generating function of  is closely related to the Laplace transform of the probability density function . The
Laplace transform is named for Pierre Simon Laplace, and is widely used in many areas of applied mathematics, particularly
differential equations. The basic inversion theorem for moment generating functions (similar to the inversion theorem for Laplace
transforms) states that if  for  in an open interval about 0, then  completely determines the distribution of . Thus, if
two distributions on  have moment generating functions that are equal (and finite) in an open interval about 0, then the distributions
are the same.

Suppose that  has moment generating function  that is finite in an open interval  about 0. Then  has moments of all orders
and

Proof

Under the hypotheses, the expected value operator can be interchanged with the infinite series for the exponential function:

The interchange is a special case of Fubini's theorem, named for Guido Fubini. For more details see the advanced section on
properties of the integral in the chapter on Distributions.

So under the finite assumption in the last theorem, the moment generating function, like the probability generating function, is a power
series in .

Suppose again that  has moment generating function  that is finite in an open interval about 0. Then  for 

Proof

This follows by the same argument as above for the PGF:  is the coefficient of order  in the power series above,
namely . Hence .
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X M
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(4.6.7)
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Thus, the derivatives of the moment generating function at 0 determine the moments of the variable (hence the name). In the language
of combinatorics, the moment generating function is the exponential generating function of the sequence of moments. Thus, a random
variable that does not have finite moments of all orders cannot have a finite moment generating function. Even when a random variable
does have moments of all orders, the moment generating function may not exist. A counterexample is constructed below.

For nonnegative random variables (which are very common in applications), the domain where the moment generating function is
finite is easy to understand.

Suppose that  takes values in  and has moment generating function . If  for  then  for 
.

Proof

Since , if  then  and hence . Hence .

So for a nonnegative random variable, either  for all  or there exists  such that  for . Of
course, there are complementary results for non-positive random variables, but such variables are much less common. Next we
consider what happens to the moment generating function under some simple transformations of the random variables.

Suppose that  has moment generating function  and that . The moment generating function  of  is
given by  for .

Proof

 for \(t \in \R).

Recall that if  and  then the transformation  is a location-scale transformation on the distribution of , with
location parameter  and scale parameter . Location-scale transformations frequently arise when units are changed, such as length
changed from inches to centimeters or temperature from degrees Fahrenheit to degrees Celsius.

Suppose that  and  are independent random variables with moment generating functions  and  respectively. The
moment generating function  of  is given by  for .

Proof

As with the PGF, the proof for the MGF relies on the law of exponents and the fact that the expected value of a product of
independent variables is the product of the expected values:

The probability generating function of a variable can easily be converted into the moment generating function of the variable.

Suppose that  is a random variable taking values in  with probability generating function  having radius of convergence .
The moment generating function  of  is given by  for .

Proof

 for .

The following theorem gives the Chernoff bounds, named for the mathematician Herman Chernoff. These are upper bounds on the tail
events of a random variable.

If  has moment generating function  then

1.  for 
2.  for 

Proof
1. From Markov's inequality,  if .
2. Similarly,  if .
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Naturally, the best Chernoff bound (in either (a) or (b)) is obtained by finding  that minimizes .

The Characteristic Function

Our last generating function is the nicest from a mathematical point of view. Once again, we assume that our random variables are real-
valued.

The characteristic function of  is the function  defined by by

Note that  is a complex valued function, and so this subsection requires some basic knowledge of complex analysis. The function  is
defined for all  because the random variable in the expected value is bounded in magnitude. Indeed,  for all .
Many of the properties of the characteristic function are more elegant than the corresponding properties of the probability or moment
generating functions, because the characteristic function always exists.

If  has a continuous distribution on  with probability density function  and characteristic function  then

Proof

This follows from the change of variables theorem for expected value, albeit a complex version.

Thus, the characteristic function of  is closely related to the Fourier transform of the probability density function . The Fourier
transform is named for Joseph Fourier, and is widely used in many areas of applied mathematics.

As with other generating functions, the characteristic function completely determines the distribution. That is, random variables  and 
 have the same distribution if and only if they have the same characteristic function. Indeed, the general inversion formula given next

is a formula for computing certain combinations of probabilities from the characteristic function.

Suppose again that  has characteristic function . If  and  then

The probability combinations on the right side completely determine the distribution of . A special inversion formula holds for
continuous distributions:

Suppose that  has a continuous distribution with probability density function  and characteristic function . At every point 
 where  is differentiable,

This formula is essentially the inverse Fourrier transform. As with the other generating functions, the characteristic function can be
used to find the moments of . Moreover, this can be done even when only some of the moments exist.

Suppose again that  has characteristic function . If  and . Then

and therefore .

Details

Recall that the last term is a generic function that satisfies  as .

Next we consider how the characteristic function is changed under some simple transformations of the variables.

t M(t)e

−tx

X χ

χ(t) =E ( )=E [cos(tX)] + iE [sin(tX)] , t ∈ Re

itX

(4.6.12)

χ χ

t ∈ R = 1

∣

∣

e

itX

∣

∣

t ∈ R

X R f χ

χ(t) = f(x)dx, t ∈ R∫

∞

−∞

e

itx

(4.6.13)

X f

X

Y

X χ a, b ∈ R a< b

χ(t)dt→ P(a<X < b)+ [P(X = b)−P(X = a)]  as n→∞∫

n

−n

−e

−iat

e

−ibt

2πit

1

2

(4.6.14)

X

X f χ

x ∈ R f

f(x) = χ(t)dt

1

2π

∫

∞

−∞

e

−itx

(4.6.15)

X

X χ n ∈ N

+

E (| |) <∞X

n

χ(t) = (it +o( )∑

k=0

n

E ( )X

k

k!

)

k

t

n

(4.6.16)

(0) = E ( )χ

(n)

i

n

X

n

o( )/ → 0t

n

t

n

t→∞
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Suppose that  has characteristic function  and that . The characteristic function  of  is given by 
 for .

Proof

The proof is just like the one for the MGF:  for .

Suppose that  and  are independent random variables with characteristic functions  and  respectively. The characteristic
function  of  is given by  for .

Proof

Again, the proof is just like the one for the MGF:

The characteristic function of a random variable can be obtained from the moment generating function, under the basic existence
condition that we saw earlier.

Suppose that  has moment generating function  that satisfies  for  in an open interval  about 0. Then the
characteristic function  of  satisfies  for .

The final important property of characteristic functions that we will discuss relates to convergence in distribution. Suppose that 
 is a sequence of real-valued random with characteristic functions  respectively. Since we are only concerned

with distributions, the random variables need not be defined on the same probability space.

The Continuity Theorem

1. If the distribution of  converges to the distribution of a random variable  as  and  has characteristic function ,
then  as  for all .

2. Conversely, if  converges to a function  as  for  in an open interval about 0, and if  is continuous at 0, then 
 is the characteristic function of a random variable , and the distribution of  converges to the distribution of  as 

.

There are analogous versions of the continuity theorem for probability generating functions and moment generating functions. The
continuity theorem can be used to prove the central limit theorem, one of the fundamental theorems of probability. Also, the continuity
theorem has a straightforward generalization to distributions on .

The Joint Characteristic Function

All of the generating functions that we have discussed have multivariate extensions. However, we will discuss the extension only for
the characteristic function, the most important and versatile of the generating functions. There are analogous results for the other
generating functions. So in this discussion, we assume that  is a random vector for our experiment, taking values in .

The (joint) characteristic function  of  is defined by

Once again, the most important fact is that  completely determines the distribution: two random vectors taking values in  have the
same characteristic function if and only if they have the same distribution.

The joint moments can be obtained from the derivatives of the characteristic function.

Suppose that  has characteristic function . If  and  then

The marginal characteristic functions and the characteristic function of the sum can be easily obtained from the joint characteristic
function:

X χ a, b ∈ R ψ Y = a+bX

ψ(t) = χ(bt)e

iat

t ∈ R

ψ(t) =E [ ] =E ( )= E [ ] = χ(bt)e

it(a+bX)

e

ita

e

itbX

e

ita

e

i(tb)X

e

iat

t ∈ R

X

1

X

2

χ

1

χ

2

χ Y = +X

1

X

2

χ(t) = (t) (t)χ

1

χ

2

t ∈ R

χ(t) =E [ ]=E ( )=E ( )E ( )= (t) (t), t ∈ Re

it( + )X

1

X

2

e

itX

1

e

itX

2

e

itX

1

e

itX

2

χ

1

χ

2

(4.6.17)

X M M(t) <∞ t I

χ X χ(t) =M(it) t ∈ I

( , ,…)X

1

X

2

( , ,…)χ

1

χ

2

X

n

X n→∞ X χ

(t) → χ(t)χ

n

n→∞ t ∈ R

(t)χ

n

χ(t) n→∞ t χ

χ X X

n

X

n→∞

R

n

(X,Y ) R

2

χ (X,Y )

χ(s, t) =E [exp(isX+ itY )] , (s, t) ∈ R

2

(4.6.18)

χ R

2

(X,Y ) χ m, n ∈ N E (| |) <∞X

m

Y

n

(0, 0) = E ( )χ

(m,n)

e

i (m+n)

X

m

Y

n

(4.6.19)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10161?pdf


4.6.7 https://stats.libretexts.org/@go/page/10161

Suppose again that  has characteristic function , and let , , and  denote the characteristic functions of , , and 
, respectively. For 

1. 
2. 
3. 

Proof

All three results follow immediately from the definitions.

Suppose again that , , and  are the characteristic functions of , , and  respectively. Then  and  are independent
if and only if  for all .

Naturally, the results for bivariate characteristic functions have analogies in the general multivariate case. Only the notation is more
complicated.

Examples and Applications
As always, be sure to try the computational problems yourself before expanding the solutions and answers in the text.

Dice

Recall that an ace-six flat die is a six-sided die for which faces numbered 1 and 6 have probability  each, while faces numbered 2, 3,
4, and 5 have probability  each. Similarly, a 3-4 flat die is a six-sided die for which faces numbered 3 and 4 have probability  each,
while faces numbered 1, 2, 5, and 6 have probability  each.

Suppose that an ace-six flat die and a 3-4 flat die are rolled. Use probability generating functions to find the probability density
function of the sum of the scores.

Solution

Let  and  denote the score on the ace-six die and 3-4 flat die, respectively. Then  and  have PGFs  and  given by

Hence  has PGF . Expanding (a computer algebra program helps) gives

Thus the PDF  of  is given by , , , 
 and .

Two fair, 6-sided dice are rolled. One has faces numbered  and the other has faces numbered .
Use probability generating functions to find the probability density function of the sum of the scores, and identify the distribution.

Solution

Let  and  denote the score on the first die and the second die described, respectively. Then  and  have PGFs  and  given
by

Hence  has PGF . Simplifying gives

(X,Y ) χ χ

1

χ

2

χ

+

X Y

X+Y t ∈ R

χ(t, 0) = (t)χ

1

χ(0, t) = (t)χ

2

χ(t, t) = (t)χ

+

χ

1

χ

2

χ X Y (X,Y ) X Y

χ(s, t) = (s) (t)χ

1

χ

2

(s, t) ∈ R

2

1

4

1

8

1

4

1

8

X Y X Y P Q

P (t)

Q(t)

= t+ + + + + , t ∈ R

1

4

1

8

t

2

1

8

t

3

1

8

t

4

1

8

t

5

1

4

t

6

= t+ + + + + , t ∈ R

1

8

1

8

t

2

1

4

t

3

1

4

t

4

1

8

t

5

1

8

t

6

X+Y PQ

P (t)Q(t) = + + + + + + + + + + , t ∈ R

1

32

t

2

3

64

t

3

3

32

t

4

1

8

t

5

1

8

t

6

5

32

t

7

1

8

t

8

1

8

t

9

3

32

t

10

3

64

t

11

1

32

t

12

(4.6.20)

f X+Y f(2) = f(12) =

1

32

f(3) = f(11) =

3

64

f(4) = f(10) =

3

32

f(5) = f(6) = f(8) = f(9) =

1

8

f(7) =

5

32

(0, 1, 2, 3, 4, 5) (0, 6, 12, 18, 24, 30)

X Y X Y P Q

P (t)

Q(t)

= t ∈ R

1

6

∑

k=0

5

t

k

= t ∈ R

1

6

∑

j=0

5

t

6j

X+Y PQ
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Hence  is uniformly distributed on .

Suppose that random variable  has probability generating function  given by

1. Interpret  in terms of rolling dice.
2. Use the probability generating function to find the first two factorial moments of .
3. Use (b) to find the variance of .

Answer

1. A four-sided die has faces numbered  with respective probabilities .  is the sum of the scores when

the die is rolled 5 times.
2. , 
3. 

Bernoulli Trials

Suppose  is an indicator random variable with , where  is a parameter. Then  has probability
generating function  for .

Proof

 for .

Recall that a Bernoulli trials process is a sequence  of independent, identically distributed indicator random variables. In
the usual language of reliability,  denotes the outcome of trial , where 1 denotes success and 0 denotes failure. The probability of
success  is the basic parameter of the process. The process is named for Jacob Bernoulli. A separate chapter on the
Bernoulli Trials explores this process in more detail.

For , the number of successes in the first  trials is . Recall that this random variable has the binomial
distribution with parameters  and , which has probability density function  given by

Random variable  has probability generating function  given by  for .

Proof

This follows immediately from the PGF of an indicator variable and the result for sums of independent variables.

Rando variable  has the following parameters:

1. 

2. 
3. 
4. 

Proof

1. Repeated differentiation gives . Hence , which is  by the moment
result above.

2. This follows from the formula for mean.
3. This follows from the formula for variance.
4. This follows from the even value formula.

P (t)Q(t) = = , t ∈ R

1

36

∑

j=0

5

∑

k=0

5

t

6j+k

1

36

∑

n=0

35

t

n

(4.6.21)

X+Y {0, 1, 2, … , 35}

Y P

P (t) = , t ∈ R( t+ + + )

2

5

3

10

t

2

1

5

t

3

1

10

t

4

5

(4.6.22)

Y

Y

Y

(1, 2, 3, 4) ( , , , )

2

5

3

10

1

5

1

10

Y

E(Y ) = (1) = 10P

′

E[Y (Y −1)] = (1) = 95P

′′

var(Y ) = 5

X p = P(X = 1) p ∈ [0, 1] X

P (t) = 1 −p+pt t ∈ R

P (t) =E ( ) = (1 −p) + p = 1 −p+ptt

X

t

0

t

1

t ∈ R

( , , …)X

1

X

2

X

i

i

p = P( = 1)X

i

n ∈ N

+

n =Y

n

∑

n

i=1

X

i

n p f

n

(y) =( ) (1 −p , y ∈ {0, 1, … ,n}f

n

n

y

p

y

)

n−y

(4.6.23)

Y

n

P

n

(t) = (1 −p+ptP

n

)

n

t ∈ R

Y

n

E [ ]=Y

(k)

n

n

(k)

p

k

E ( ) = npY

n

var ( ) = np(1 −p)Y

n

P(  is even) = [1 −(1 −2p ]Y

n

1

2

)

n

(t) = (1 −p+ptP

(k)

n

(k)

p

k

)

n−k

(1) =P

(k)
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(k)

p
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Suppose that  has the binomial distribution with parameters  and ,  has the binomial distribution with
parameters  and , and that  and  are independent.

1. If  then  has the binomial distribution with parameters  and .
2. If  then  does not have a binomial distribution.

Proof

From the result for sums of independent variables and the PGF of the binomial distribution, note that the probability generating
function of  is  for .

1. If  then  has PGF , which is the PGF of the binomial distribution with parameters 
 and .

2. On the other hand, if , the PGF  does not have the functional form of a binomial PGF.

Suppose now that . The trial number  of the first success in the sequence of Bernoulli trials has the geometric distribution
on  with success parameter . The probability density function  is given by

The geometric distribution is studied in more detail in the chapter on Bernoulli trials.

Let  denote the probability generating function of . Then

1.  for 

2.  for 

3. 

4. 

5. 

Proof
1. Using the formula for the sum of a geometric series,

2. Repeated differentiation gives  and then the result follows from the inversion
formula.

3. This follows from (b) and the formula for mean.
4. This follows from (b) and the formula for variance.
5. This follows from even value formula.

The probability that  is even comes up in the alternating coin tossing game with two players.

The Poisson Distribution

Recall that the Poisson distribution has probability density function  given by

where  is a parameter. The Poisson distribution is named after Simeon Poisson and is widely used to model the number of
“random points” in a region of time or space; the parameter is proportional to the size of the region of time or space. The Poisson
distribution is studied in more detail in the chapter on the Poisson Process.

Suppose that  has Poisson distribution with parameter . Let  denote the probability generating function of . Then

1.  for 
2. 
3. 
4. 

U m ∈ N

+

p ∈ [0, 1] V

n ∈ N

+

q ∈ [0, 1] U V

p = q U +V m+n p

p ≠ q U +V

U +V P (t) = (1 −p+pt (1 −q+qt)

m

)

n

t ∈ R

p = q U +V P (t) = (1 −p+pt)

m+n

m+n p

p ≠ q P

p ∈ (0, 1] N

N

+

p h

h(n) = p(1 −p , n ∈)

n−1

N

+

(4.6.24)

Q N

Q(t) =

pt

1−(1−p)t

− < t <

1

1−p

1

1−p

E [ ] = k!N

(k)

(1−p)

k−1

p

k

k ∈ N

E(N) =

1

p

var(N) =

1−p

p

2

P(N  is even) =

1−p

2−p

Q(t) = (1 −p p = pt [(1 −p)t = , |(1 −p)t| < 1∑

n=1

∞

)

n−1

t

n

∑

n=1

∞

]

n−1

pt

1 −(1 −p)t

(4.6.25)

(t) = k!p(1 −pH

(k)

)

k−1

[1 −(1 −p)t]

−(k+1)

N

f

f(n) = , n ∈ Ne

−a

a

n

n!

(4.6.26)

a ∈ (0, ∞)

N a ∈ (0, ∞) P

a

N

(t) =P

a

e

a(t−1)

t ∈ R

E [ ] =N

(k)

a

k
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5. 

Proof
1. Using the exponential series,

2. Repeated differentiation gives , so the result follows from inversion formula.
3. This follows from (b) and the formula for mean.
4. This follows from (b) and the formula for variance.
5. This follows from even value formula.

The Poisson family of distributions is closed with respect to sums of independent variables, a very important property.

Suppose that  have Poisson distributions with parameters , respectively, and that  and  are independent.
Then  has the Poisson distribution with parameter .

Proof

In the notation of the previous result, note that .

The right distribution function of the Poisson distribution does not have a simple, closed-form expression. The following exercise gives
an upper bound.

Suppose that  has the Poisson distribution with parameter . Then

Proof

The PGF of  is  and hence the MGF is . From the Chernov bounds we have

If  the expression on the right is minimized when . Substituting gives the upper bound.

The following theorem gives an important convergence result that is explored in more detail in the chapter on the Poisson process.

Suppose that  for  and that  as . Then the binomial distribution with parameters 
and  converges to the Poisson distribution with parameter  as .

Proof

Let  denote the probability generating function of the binomial distribution with parameters  and . From the PGF of the
binomial distribution we have

Using a famous theorem from calculus,  as . But this is the PGF of the Poisson distribution with parameter
, so the result follows from the continuity theorem for PGFs.

The Exponential Distribution

Recall that the exponential distribution is a continuous distribution on  with probability density function  given by

where  is the rate parameter. This distribution is widely used to model failure times and other random times, and in
particular governs the time between arrivals in the Poisson model. The exponential distribution is studied in more detail in the chapter
on the Poisson Process.

P(N  is even) = (1 + )

1

2

e

−2a

(t) = = = , t ∈ RP

a

∑

n=0

∞

e
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∑
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∞

(at)

n
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e
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(4.6.27)

(t) =P

(k)

a

e

a(t−1)

a

k

X, Y a, b ∈ (0, ∞) X Y

X+Y a+b
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a

P

b
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N a > 0

P(N ≥ n) ≤ , n > ae
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( )
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n
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(4.6.28)

N P (t) = e

a(t−1)

P ( ) = exp(a −a)e

t

e

t

P(N ≥ n) ≤ exp(a −a) = exp(a −a− tn)e

−tn

e

t

e
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(4.6.29)

n > a t = ln(n/a)

∈ (0, 1)p

n

n ∈ N

+

n → a ∈ (0, ∞)p
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n → ∞ n
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n

a n → ∞
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(4.6.30)

(t) →P

n

e

a(t−1)

n → ∞

a

[0, ∞) f

f(t) = r , t ∈ (0, ∞)e

−rt
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Suppose that  has the exponential distribution with rate parameter  and let  denote the moment generating function
of . Then

1.  for .
2.  for 

Proof
1.  for .
2.  for 

Suppose that  is a sequence of independent random variables, each having the exponential distribution with rate
parameter . For , the moment generating function  of  is given by

Proof

This follows from the previous result and the result for sums of independent variables.

Random variable  has the Erlang distribution with shape parameter  and rate parameter , named for Agner Erlang. This
distribution governs the th arrival time in the Poisson model. The Erlang distribution is a special case of the gamma distribution and
is studied in more detail in the chapter on the Poisson Process.

Uniform Distributions

Suppose that  and . Recall that the continuous uniform distribution on the interval  has probability density function 
 given by

The distribution corresponds to selecting a point at random from the interval. Continuous uniform distributions arise in geometric
probability and a variety of other applied problems.

Suppose that  is uniformly distributed on the interval  and let  denote the moment generating function of . Then

1.  if  and 

2.  for 

Proof

1.  if . Trivially 

2. This is a case where the MGF is not helpful, and it's much easier to compute the moments directly: 

Suppose that  is uniformly distributed on the triangle . Compute each of the following:

1. The joint moment generating function of .
2. The moment generating function of .
3. The moment generating function of .
4. The moment generating function of .

Answer

1.  if . 

2.  if . 

3.  if . 

4.  if . 
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∞
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(4.6.32)
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E ( ) = dx =X

n

∫

b

a

x

n 1

b−a

−b

n+1

a

n+1

(n+1)(b−a)

(X,Y ) T = {(x, y) ∈ : 0 ≤ x ≤ y ≤ 1}R

2

(X,Y )

X

Y

X+Y

M(s, t) = 2 −2

−1e

s+t

s(s+t)

−1e

t

st

s≠ 0, t ≠ 0 M(0, 0) = 1

(s) = 2( − − )M

1

e

2

s

2

1

s

2

1

s

s≠ 0 (0) = 1M

1

(t) = 2M

2

t − +1e

t

e

t

t

2

t ≠ 0 (0) = 1M

2

(t) = −2M

+

−1e

2t

t

2

−1e

t

t

2
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A Bivariate Distribution

Suppose that  has probability density function  given by  for . Compute each of the
following:

1. The joint moment generating function .
2. The moment generating function of .
3. The moment generating function of .
4. The moment generating function of .

Answer

1.  if . 

2.  if . 

3.  if . 

4.  if . 

The Normal Distribution

Recall that the standard normal distribution is a continuous distribution on  given by

Normal distributions are widely used to model physical measurements subject to small, random errors and are studied in more detail in
the chapter on Special Distributions.

Suppose that  has the standard normal distribution and let  denote the moment generating function of . Then

1.  for 
2.  if  is even and  if  is odd.

Proof
1. First,

Completing the square in  gives . hence

because the function of  in the last integral is the probability density function for the normal distribution with mean  and
variance 1.

2. Note that . Thus, repeated differentiation gives  for , where  is a polynomial of
degree  satisfying . Since , it's easy to see that  has only even or only odd terms,
depending on whether  is even or odd, respectively. Thus, . This is 0 if  is odd, and is the constant term 

 if  is even. Of course, we can also see that the odd order moments must be 0 by symmetry.

More generally, for  and , recall that the normal distribution with mean  and standard deviation  is a continuous
distribution on  with probability density function  given by

Moreover, if  has the standard normal distribution, then  has the normal distribution with mean  and standard deviation
. Thus, we can easily find the moment generating function of :

Suppose that  has the normal distribution with mean  and standard deviation . The moment generating function of  is

(X,Y ) f f(x, y) = x+y (x, y) ∈ [0, 1]

2

(X,Y )

X

Y

X+Y

M(s, t) =

(−2st+s+t)+ (st−s−t)+s+te

s+t

e

s

s

2

t

2

s≠ 0, t ≠ 0 M(0, 0) = 1

(s) =M

1

3s −2 −s+2e

2

e

2

2s

2

s≠ 0 (0) = 1M

1

(t) =M

2

3t −2 −t+2e

t

e

t

2t

2

t ≠ 0 (0) = 1M

2

(t) =M

+

[ (1−t)+ (t−2)+1]e

2t

e

t

t

3

t ≠ 0 (0) = 1M

+

R)withprobabilitydensityfunction\(ϕ

ϕ(z) = , z ∈ R

1

2π

−−

√

e

−

1

2

z

2

(4.6.34)

Z M Z

M(t) = e

1

2

t

2

t ∈ R

E ( ) = 1 ⋅ 3⋯ (n−1)Z

n

n E ( ) = 0Z

n

n

M(t) =E ( )= dz= exp(− + tz) dze

tZ

∫

∞

−∞

e

tz

1

2π

−−

√

e

− /2z

2

∫

∞

−∞

1

2π

−−

√

z

2

2

(4.6.35)

z exp(− + tz)= exp[ − (z− t ] = exp[− (z− t ]

z

2

2

1

2

t

2 1

2

)

2

e

1

2

t

2

1

2

)

2

M(t) = exp[− (z− t ] dz=e

1

2

t

2

∫

∞

−∞

1

2π

−−

√

1

2

)

2

e

1

2

t

2

(4.6.36)

z t

(t) = tM(t)M

′

(t) = (t)M(t)M

(n)

p

n

n ∈ N p

n

n (t) = t (t)+ (t)p

′

n+1

p

n

p

′

n

= 1p

0

p

n

n E ( ) = (0)X

n

p

n

n

1 ⋅ 3⋯ (n−1) n

μ ∈ R σ ∈ (0,∞) μ σ

R f

f(x) = exp[− ], x ∈ R

1

σ2π

−−

√

1

2

( )

x−μ

σ

2

(4.6.37)

Z X = μ+σZ μ

σ X

X μ σ X
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Proof

This follows easily the previous result and the result for linear transformations:  where  has the standard normal
distribution. Hence

So the normal family of distributions in closed under location-scale transformations. The family is also closed with respect to sums of
independent variables:

If  and  are independent, normally distributed random variables then  has a normal distribution.

Proof

Suppose that  has the normal distribution with mean  and standard deviation , and that  has the normal
distribution with mean  and standard deviation . By (14), the MGF of  is

which we recognize as the MGF of the normal distribution with mean  and variance . Of course, we already knew
that , and since  and  are independent, , so the new
information is that the distribution is also normal.

The Pareto Distribution

Recall that the Pareto distribution is a continuous distribution on  given by

where  is the shape parameter. The Pareto distribution is named for Vilfredo Pareto. It is a heavy-tailed distribution that is
widely used to model financial variables such as income. The Pareto distribution is studied in more detail in the chapter on Special
Distributions.

Suppose that  has the Pareto distribution with shape parameter , and let  denote the moment generating function of . Then

1.  if  and  if 
2.  for 

Proof
1. We have seen this computation before. . The integral evaluates to  if 

and  if .
2. This follows from part (a). Since ,  is increasing in . Thus  if . If  for some , then

 would be finite for  in an open interval about 0, in which case  would have finite moments of all orders. Of course, it's
also easy to see directly from the integral that  for 

On the other hand, like all distributions on , the Pareto distribution has a characteristic function. However, the characteristic function
of the Pareto distribution does not have a simple, closed form.

The Cauchy Distribution

Recall that the (standard) Cauchy distribution is a continuous distribution on  with probability density function  given by

and is named for Augustin Cauchy. The Cauch distribution is studied in more generality in the chapter on Special Distributions. The
graph of  is known as the Witch of Agnesi, named for Maria Agnesi.

Suppose that  has the standard Cauchy distribution, and let  denote the moment generating function of . Then

M(t) = exp(μt+ ), t ∈ R

1

2

σ

2

t

2

(4.6.38)

X = μ+σZ Z

M(t) =E ( )= E ( )= , t ∈ Re

tX

e

μt

e

σtZ

e

μt

e

1

2

σ

2

t

2

(4.6.39)

X Y X+Y

X μ ∈ R σ ∈ (0,∞) Y

ν ∈ R τ ∈ (0,∞) X+Y

(t) = (t) (t) = exp(μt+ ) exp(νt+ ) = exp[(μ+ν)t+ ( + ) ]M

X+Y

M

X

M

Y

1

2

σ

2

t

2

1

2

τ

2

t

2

1

2

σ

2

τ

2

t

2

(4.6.40)

μ+ν +σ

2

τ

2

E(X+Y ) =E(X)+E(Y ) X Y var(X+Y ) = var(X)+var(Y )

[1,∞)withprobabilitydensityfunction\(f

f(x) = , x ∈ [1,∞)

a

x

a+1

(4.6.41)

a ∈ (0,∞)

X a M X

E ( ) =X

n a

a−n

n< a E ( ) =∞X

n

n≥ a

M(t) =∞ t > 0

E ( ) = dx = dxX

n

∫

∞

1

x

n

a

x

a+1

∫

∞

1

x

n−a−1

a

a−n

n< a

∞ n≥ a

X ≥ 1 M(t) t M(t) ≤ 1 t < 0 M(t) <∞ t > 0

M(t) t X

M(t) =∞ t > 0

R

R f

f(x) = , x ∈ R

1

π (1+ )x

2

(4.6.42)
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1.  does not exist.
2.  for .

Proof
1. We have seen this computation before.  and  for every , so 

does not exist.
2. Note that  if  and  if .

Once again, all distributions on  have characteristic functions, and the standard Cauchy distribution has a particularly simple one.

Let  denote the characteristic function of . Then  for .

Proof

The proof of this result requires contour integrals in the complex plane, and is given in the section on the Cauchy distribution in the
chapter on special distributions.

Counterexample

For the Pareto distribution, only some of the moments are finite; so course, the moment generating function cannot be finite in an
interval about 0. We will now give an example of a distribution for which all of the moments are finite, yet still the moment generating
function is not finite in any interval about 0. Furthermore, we will see two different distributions that have the same moments of all
orders.

Suppose that Z has the standard normal distribution and let . The distribution of  is known as the (standard) lognormal
distribution. The lognormal distribution is studied in more generality in the chapter on Special Distributions. This distribution has finite
moments of all orders, but infinite moment generating function.

 has probability density function  given by

1.  for .
2.  for .

Proof

We use the change of variables theorem. The transformation is  so the inverse transformation is  for 
and . Letting  denote the PDF of , it follows that the PDF of  is  for .

1. We use the moment generating function of the standard normal distribution given above: .
2. Note that

The interchange of expected value and sum is justified since  is nonnegative. See the advanced section on properties of the
integral in the chapter on Distributions for more details.

Next we construct a different distribution with the same moments as .

Let  be the function defined by  for  and let  be the function defined by  for 
. Then

1.  is a probability density function.
2. If  has probability density function  then  for 

Proof

E(X)

M(t) =∞ t ≠ 0

dx =∞∫

∞

a

x

π(1+ )x

2

dx =−∞∫

a

−∞

x

π(1+ )x

2

a ∈ R dx∫

∞

−∞

x

π(1+ )x

2

dx =∞∫

∞

0

e

tx

π(1+ )x

2

t ≥ 0 dx =∞∫

0

−∞

e

tx

π(1+ )x

2

t ≤ 0

R

χ X χ(t) = e

−|t|

t ∈ R

X = e

Z

X

X f

f(x) = exp(− (x)), x > 0

1

x2π

−−

√

1

2
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2

(4.6.43)
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n
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n ∈ N
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tX

t > 0
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n
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∞
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h h(x) = sin(2π lnx) x > 0 g g(x) = f(x) [1+h(x)]
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Figure : The graphs of  and , probability density functions for two distributions with the same moments of all orders.
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4.7: Conditional Expected Value
         

As usual, our starting point is a random experiment modeled by a probability space . So to review,  is the set of outcomes,  the collection of events, and 
the probability measure on the sample space . Suppose next that  is a random variable taking values in a set  and that  is a random variable taking values in 

. We assume that either  has a discrete distribution, so that  is countable, or that  has a continuous distribution so that  is an interval (or perhaps a union of
intervals). In this section, we will study the conditional expected value of  given , a concept of fundamental importance in probability. As we will see, the expected
value of  given  is the function of  that best approximates  in the mean square sense. Note that  is a general random variable, not necessarily real-valued, but as
usual, we will assume that either  has a discrete distribution, so that  is countable or that  has a continuous distribution on  for some . In the latter
case,  is typically a region defined by inequalites involving elementary functions. We will also assume that all expected values that are mentioned exist (as real
numbers).

Basic Theory

Definitions

Note that we can think of  as a random variable that takes values in the Cartesian product set . We need recall some basic facts from our work with joint
distributions and conditional distributions.

We assume that  has joint probability density function  and we let  denote the (marginal) probability density function . Recall that if  has a discrte
distribution then

and if  has a continuous distribution then

In either case, for , the conditional probability density function of  given  is defined by

We are now ready for the basic definitions:

For , the conditional expected value of  given  is simply the mean computed relative to the conditional distribution. So if  has a discrete
distribution then

and if  has a continuous distribution then

1. The function  defined by  for  is the regression function of  based on .
2. The random variable  is called the conditional expected value of  given  and is denoted .

Intuitively, we treat  as known, and therefore not random, and we then average  with respect to the probability distribution that remains. The advanced section on
conditional expected value gives a much more general definition that unifies the definitions given here for the various distribution types.

Properties

The most important property of the random variable  is given in the following theorem. In a sense, this result states that  behaves just like  in terms
of other functions of , and is essentially the only function of  with this property.

The fundamental property

1.  for every function .
2. If  satisfies  for every  then .

Proof

We give the proof in the continuous case. The discrete case is analogous, with sums replacing integrals.

1. From the change of variables theorem for expected value,

2. Suppose that  and  satisfy the condition in (b). Define  by . Then by assumption, 
 But if  then , a contradiction. Hence we must have 

 and by a symmetric argument, .

(Ω,F ,P) Ω F P

(Ω,F) X S Y

T ⊆R Y T Y T

Y X

Y X X Y X

X S X S ⊆R

n

n ∈ N

+

S

(X,Y ) S×T

(X,Y ) f g X Y

g(x) = f(x, y), x ∈ S∑

y∈T

(4.7.1)

Y

g(x) = f(x, y)dy, x ∈ S∫

T

(4.7.2)

x ∈ S Y X = x

h(y ∣ x) = , y ∈ T

f(x, y)

g(x)

(4.7.3)

x ∈ S Y X = x ∈ S Y

E(Y ∣X = x) = yh(y ∣ x), x ∈ S∑

y∈T

(4.7.4)

Y

E(Y ∣X = x) = yh(y ∣ x)dy, x ∈ S∫

T

(4.7.5)

v : S→R v(x) =E(Y ∣X = x) x ∈ S Y X

v(X) Y X E(Y ∣X)

X Y

E(Y ∣X) E(Y ∣X) Y

X X

E [r(X)E(Y ∣X)] =E [r(X)Y ] r : S→R

u : S→R E[r(X)u(X)] =E[r(X)Y ] r : S→R P [u(X) =E(Y ∣X)] = 1

E [r(X)E(Y ∣X)] = r(x)E(Y ∣X = x)g(x)dx = r(x)( yh(y ∣ x)dy) g(x)dx∫

S

∫

S

∫

T

= r(x)yh(y ∣ x)g(x)dy dx = r(x)yf(x, y)d(x, y) =E[r(X)Y ]∫

S

∫

T

∫

S×T

(4.7.6)

(4.7.7)

: S→Ru

1

: S→Ru

2

r : S→R r(x) = 1[ (x) > (x)]u

1

u

2

E [r(X) (X)] =E [r(X)Y ] =E [r(X) (X)]u

1

u

2

P [ (X) > (X)] > 0u

1

u

2

E [r(X) (X)] >E [r(X) (X)]u

1

u

2

P [ (X) > (X)] = 0u

1

u

2

P[ (X) < (X)] = 0u

1

u
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Two random variables that are equal with probability 1 are said to be equivalent. We often think of equivalent random variables as being essentially the same object, so
the fundamental property above essentially characterizes . That is, we can think of  as any random variable that is a function of  and satisfies this
property. Moreover the fundamental property can be used as a definition of conditional expected value, regardless of the type of the distribution of . If you are
interested, read the more advanced treatment of conditional expected value.

Suppose that  is also real-valued. Recall that the best linear predictor of  based on  was characterized by property (a), but with just two functions:  and 
. Thus the characterization in the fundamental property is certainly reasonable, since (as we show below)  is the best predictor of  among all

functions of , not just linear functions.

The basic property is also very useful for establishing other properties of conditional expected value. Our first consequence is the fact that  and  have the same
mean.

.

Proof

Let  be the constant function 1 in the basic property.

Aside from the theoretical interest, this theorem is often a good way to compute  when we know the conditional distribution of  given . We say that we are
computing the expected value of  by conditioning on .

For many basic properties of ordinary expected value, there are analogous results for conditional expected value. We start with two of the most important: every type of
expected value must satisfy two critical properties: linearity and monotonicity. In the following two theorems, the random variables  and  are real-valued, and as
before,  is a general random variable.

Linear Properties

1. .
2. 

Proof
1. Note that  is a function of . If  then

Hence the result follows from the basic property.
2. Note that  is a function of . If  then

Hence the result follows from the basic property

Part (a) is the additive property and part (b) is the scaling property. The scaling property will be significantly generalized below in (8).

Positive and Increasing Properties

1. If  then .
2. If  then .
3. 

Proof
1. This follows directly from the definition.
2. Note that if  then  so by (a) and linearity,

3. Note that  and hence by (b) and linearity, .

Our next few properties relate to the idea that  is the expected value of  given . The first property is essentially a restatement of the fundamental property.

If , then  and  are uncorrelated.

Proof

Note that  has mean 0 by the mean property. Hence, by the basic property,

The next result states that any (deterministic) function of  acts like a constant in terms of the conditional expected value with respect to .

If  then

Proof

Note that  is a function of . If  then

So the result now follow from the basic property.

E(Y ∣X) E(Y ∣X) X

(X,Y )

X Y X r(x) = 1

r(x) = x E(Y ∣X) Y

X

Y E(Y ∣X)

E [E(Y ∣X)] =E(Y )

r

E(Y ) Y X

Y X

Y Z

X

E(Y +Z ∣X) =E(Y ∣X)+E(Z ∣X)

E(c Y ∣X) = cE(Y ∣X)

E(Y ∣X)+E(Z ∣X) X r : S→R

E (r(x) [E(Y ∣X)+E(Z ∣X)]) =E [r(X)E(Y ∣X)] +E [r(X)E(Z ∣X)] =E [r(X)Y ] +E [r(X)Z] =E [r(X)(Y +Z)] (4.7.8)

cE(Y ∣X) X r : S→R

E [r(X)cE(Y ∣X)] = cE [r(X)E(Y ∣X)] = cE [r(X)Y ] =E [r(X)(cY )] (4.7.9)

Y ≥ 0 E(Y ∣X) ≥ 0

Y ≤Z E(Y ∣X) ≤E(Z ∣X)

|E(Y ∣X)| ≤E (|Y | ∣X)

Y ≤Z Y −Z ≥ 0

E(Y −Z ∣X) =E(Y ∣X)−E(Z ∣X) ≥ 0 (4.7.10)

−|Y | ≤ Y ≤ |Y | −E (|Y | ∣X) ≤E(Y ∣X) ≤E (|Y | ∣X)

E(Y ∣X) Y X

r : S→R Y −E(Y ∣X) r(X)

Y −E(Y ∣X)

cov [Y −E(Y ∣X), r(X)] =E {[Y −E(Y ∣X)] r(X)} =E [Y r(X)] −E [E(Y ∣X)r(X)] = 0 (4.7.11)

X X

s : S→R

E [s(X)Y ∣X] = s(X)E(Y ∣X) (4.7.12)

s(X)E(Y ∣X) X r : S→R

E [r(X)s(X)E(Y ∣X)] =E [r(X)s(X)Y ] (4.7.13)
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The following rule generalizes theorem (8) and is sometimes referred to as the substitution rule for conditional expected value.

If  then

In particular, it follows from (8) that . At the opposite extreme, we have the next result: If  and  are independent, then knowledge of  gives no
information about  and so the conditional expected value with respect to  reduces to the ordinary (unconditional) expected value of .

If  and  are independent then

Proof

Trivially,  is a (constant) function of . If  then , the last equality by independence. Hence the result
follows from the basic property.

Suppose now that  is real-valued and that  and  are random variables (all defined on the same probability space, of course). The following theorem gives a
consistency condition of sorts. Iterated conditional expected values reduce to a single conditional expected value with respect to the minimum amount of information. For
simplicity, we write  rather than .

Consistency

1. 
2. 

Proof
1. Suppose that  takes values in  and  takes values in , so that  takes values in . By definition,  is a function of . If  then

trivially  can be thought of as a function on  as well. Hence

It follows from the basic property that .
2. Note that since  is a function of , it is trivially a function of . Hence from (8), .

Finally we show that  has the same covariance with  as does , not surprising since again,  behaves just like  in its relations with .

.

Proof

. But  by basic property, and  by the mean property.
Hence .

Conditional Probability

The conditional probability of an event , given random variable  (as above), can be defined as a special case of the conditional expected value. As usual, let  denote
the indicator random variable of .

If  is an event, defined

Here is the fundamental property for conditional probability:

The fundamental property

1.  for every function .
2. If  and  satisfies  for every function , then .

For example, suppose that  has a discrete distribution on a countable set  with probability density function . Then (a) becomes

But this is obvious since  and . Similarly, if  has a continuous distribution on  then (a) states that

The properties above for conditional expected value, of course, have special cases for conditional probability.

.

Proof

This is a direct result of the mean property, since .

Again, the result in the previous exercise is often a good way to compute  when we know the conditional probability of  given . We say that we are computing
the probability of  by conditioning on . This is a very compact and elegant version of the conditioning result given first in the section on Conditional Probability in the

s : S×T →R

E [s(X,Y ) ∣X = x] =E [s(x,Y ) ∣X = x] (4.7.14)

E[s(X) ∣X] = s(X) X Y X

Y X Y

X Y

E(Y ∣X) =E(Y ) (4.7.15)

E(Y ) X r : S→R E [E(Y )r(X)] =E(Y )E [r(X)] =E [Y r(X)]

Z X Y

E(Z ∣X,Y ) E [Z ∣ (X,Y )]

E [E(Z ∣X,Y ) ∣X] =E(Z ∣X)

E [E(Z ∣X) ∣X,Y ] =E(Z ∣X)

X S Y T (X,Y ) S×T E(Z ∣X) X r : S→R

r S×T

E [r(X)E(Z ∣X)] =E [r(X)Z] =E [r(X)E(Z ∣X,Y )] (4.7.16)

E [E(Z ∣X,Y ) ∣X] =E(Z ∣X)

E(Z ∣X) X (X,Y ) E [E(Z ∣X) ∣X,Y ] =E(Z ∣X)

E(Y ∣X) X Y E(Y ∣X) Y X

cov [X,E(Y ∣X)] = cov(X,Y )

cov [X,E(Y ∣X)] =E [XE(Y ∣X)] −E(X)E [E(Y ∣X)] E [XE(Y ∣X)] =E(XY ) E [E(Y ∣X)] =E(Y )

cov [X,E(Y ∣X)] =E(XY )−E(X)E(Y ) = cov(X,Y )

A X 1

A

A

A

P(A ∣X) =E ( ∣X)1

A

(4.7.17)

E [r(X)P(A ∣X)] =E [r(X) ]1

A

r : S→R

u : S→R u(X) E[r(X)u(X)] =E [r(X) ]1

A

r : S→R P [u(X) = P(A ∣X)] = 1

X S g

r(x)P(A ∣X = x)g(x) = r(x)P(A,X = x)∑

x∈S

∑

x∈S

(4.7.18)

P(A ∣X = x) = P(A,X = x)/P(X = x) g(x) = P(X = x) X S ⊆R

n

E [r(X) ] = r(x)P(A ∣X = x)g(x)dx1

A

∫

S

(4.7.19)

P(A) =E [P(A ∣X)]

E( ) = P(A)1

A

P(A) A X

A X
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chapter on Probability Spaces and later in the section on Discrete Distributions in the Chapter on Distributions.

The following result gives the conditional version of the axioms of probability.

Axioms of probability

1.  for every event .
2. 
3. If  is a countable collection of disjoint events then .

Details

There are some technical issues involving the countable additivity property (c). The conditional probabilities are random variables, and so for a given collection 
, the left and right sides are the same with probability 1. We will return to this point in the more advanced section on conditional expected value

From the last result, it follows that other standard probability rules hold for conditional probability given . These results include

the complement rule
the increasing property
Boole's inequality
Bonferroni's inequality
the inclusion-exclusion laws

The Best Predictor

The next result shows that, of all functions of ,  is closest to , in the sense of mean square error. This is fundamentally important in statistical problems
where the predictor vector  can be observed but not the response variable . In this subsection and the next, we assume that the real-valued random variables have
finite variance.

If , then

1. 

2. Equality holds in (a) if and only if  with probability 1.

Proof
1. Note that

But  has mean 0, so the middle term on the right is . Moreover,  is a function of 
and hence is uncorrelated with  by the general uncorrelated property. Hence the middle term is 0, so

and therefore .

2. Equality holds if and only if , if and only if .

Suppose now that  is real-valued. In the section on covariance and correlation, we found that the best linear predictor of  given  is

On the other hand,  is the best predictor of  among all functions of . It follows that if  happens to be a linear function of  then it must be the case
that . However, we will give a direct proof also:

If  for constants  and  then ; that is,

1. 
2. 

Proof

First, , so . Next,  and therefore 
.

Conditional Variance

The conditional variance of  given  is defined like the ordinary variance, but with all expected values conditioned on .

The conditional variance of  given  is defined as

Thus,  is a function of , and in particular, is a random variable. Our first result is a computational formula that is analogous to the one for standard variance
—the variance is the mean of the square minus the square of the mean, but now with all expected values conditioned on :

P(A ∣X) ≥ 0 A

P(Ω ∣X) = 1

{ : i ∈ I}A

i

P ( X)= P( ∣X)⋃

i∈I

A

i

∣

∣

∑

i∈I

A

i

{ : i ∈ I}A

i

X

X E(Y ∣X) Y

X Y

u : S→R

E( )≤E( )[E(Y ∣X)−Y ]

2

[u(X)−Y ]

2

u(X) =E(Y ∣X)

E( )[Y −u(X)]

2

=E( )[Y −E(Y ∣X)+E(Y ∣X)−u(X)]

2

=E( )+2E ([Y −E(Y ∣X)] [E(Y ∣X)−u(X)])+E( )[Y −E(Y ∣X)]

2

[E(Y ∣X)−u(X)]

2

(4.7.20)

(4.7.21)

Y −E(Y ∣X) 2cov [Y −E(Y ∣X),E(Y ∣X)−u(X)] E(Y ∣X)−u(X) X

Y −E(Y ∣X)

E( )=E( )+E( )[Y −u(X)]

2

[Y −E(Y ∣X)]

2

[E(Y ∣X)−u(X)]

2

(4.7.22)

E( )≤E( )[Y −E(Y ∣X)]

2

[Y −u(X)]

2

E( )= 0[E(Y ∣X)−u(X)]

2

P [u(X) =E(Y ∣X)] = 1

X Y X

L(Y ∣X) =E(Y )+ [X−E(X)]

cov(X,Y )

var(X)

(4.7.23)

E(Y ∣X) Y X E(Y ∣X) X

E(Y ∣X) =L(Y ∣X)

E(Y ∣X) = a+bX a b E(Y ∣X) =L(Y ∣X)

b = cov(X,Y )/var(X)

a=E(Y )−E(X)cov(X,Y )/var(X)

E(Y ) =E [E(Y ∣X)] = a+bE(X) a=E(Y )−bE(X) cov(X,Y ) = cov[XE(Y ∣X)] = cov(X, a+bX) = bvar(X)

b = cov(X,Y )/var(X)

Y X X

Y X

var(Y ∣X) =E( X)[Y −E(Y ∣X)]

2

∣

∣

∣ (4.7.24)

var(Y ∣X) X

X
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.

Proof

Expanding the square in the definition and using basic properties of conditional expectation, we have

Our next result shows how to compute the ordinary variance of  by conditioning on .

.

Proof

From the previous theorem and properties of conditional expected value we have . But 

and similarly, . But also,  so subsituting we get 

.

Thus, the variance of  is the expected conditional variance plus the variance of the conditional expected value. This result is often a good way to compute  when
we know the conditional distribution of  given . With the help of (21) we can give a formula for the mean square error when  is used a predictor of .

Mean square error

Proof

From the definition of conditional variance, and using mean property and variance formula we have

Let us return to the study of predictors of the real-valued random variable , and compare the three predictors we have studied in terms of mean square error.

Suppose that  is a real-valued random variable.

1. The best constant predictor of  is  with mean square error .
2. If  is another real-valued random variable, then the best linear predictor of  given  is

with mean square error .
3. If  is a general random variable, then the best overall predictor of  given  is  with mean square error .

Conditional Covariance

Suppose that  and  are real-valued random variables, and that  is a general random variable, all defined on our underlying probability space. Analogous to variance,
the conditional covariance of  and  given  is defined like the ordinary covariance, but with all expected values conditioned on .

The conditional covariance of  and  given  is defined as

Thus,  is a function of , and in particular, is a random variable. Our first result is a computational formula that is analogous to the one for standard
covariance—the covariance is the mean of the product minus the product of the means, but now with all expected values conditioned on :

.

Proof

Expanding the product in the definition and using basic properties of conditional expectation, we have

Our next result shows how to compute the ordinary covariance of  and  by conditioning on .

.

Proof

From (25) and properties of conditional expected value we have

var(Y ∣X) =E ( ∣X)−Y

2

[E(Y ∣X)]

2

var(Y ∣X) =E( −2Y E(Y ∣X)+ X) =E( ∣X)−2E [Y E(Y ∣X) ∣X] +E( ∣X)Y

2

[E(Y ∣X)]

2 ∣

∣

∣ Y

2

[E(Y ∣X)]

2

=E ( ∣X)−2E(Y ∣X)E(Y ∣X)+ =E ( ∣X)−Y

2

[E(Y ∣X)]

2

Y

2

[E(Y ∣X)]

2

(4.7.25)

(4.7.26)

Y X

var(Y ) =E [var(Y ∣X)] +var [E(Y ∣X)]

E [var(Y ∣X)] =E ( )−E( )Y

2

[E(Y ∣X)]

2

E ( )= var(Y )+Y

2

[E(Y )]

2

E( )= var [E(Y ∣X)] +[E(Y ∣X)]

2

(E [E(Y ∣X)])

2

E [E(Y ∣X)] =E(Y )

E [var(Y ∣X)] = var(Y )−var [E(Y ∣X)]

Y var(Y )

Y X E(Y ∣X) Y

E( )= var(Y )−var [E(Y ∣X)][Y −E(Y ∣X)]

2

(4.7.27)

E( )=E [var(Y ∣X)] = var(Y )−var [E(Y ∣X)][Y −E(Y ∣X)]

2

(4.7.28)

Y

Y

Y E(Y ) var(Y )

X Y X

L(Y ∣X) =E(Y )+ [X−E(X)]

cov(X,Y )

var(X)

(4.7.29)

var(Y ) [1− (X,Y )]cor

2

X Y X E(Y ∣X) var(Y )−var [E(Y ∣X)]

Y Z X

Y Z X X

Y Z X

cov(Y ,Z ∣X) =E([Y −E(Y ∣X)][Z−E(Z ∣X) X)

∣

∣

∣ (4.7.30)

cov(Y ,Z ∣X) X

X

cov(Y ,Z ∣X) =E (Y Z ∣X)−E(Y ∣X)E(Z ∣X)

cov(Y ,Z ∣X) =E(Y Z−Y E(Z ∣X)−ZE(Y ∣X)+E(Y ∣X)E(Z ∣X) X) =E(Y Z ∣X)−E [Y E(Z ∣X) ∣X] −E [ZE(Y ∣X) ∣X]

∣

∣

∣

+E [E(Y ∣X)E(Z ∣X) ∣X]

=E (Y Z ∣X)−E(Y ∣X)E(Z ∣X)−E(Y ∣X)E(Z ∣X)+E(Y ∣X)E(Z ∣X) =E (Y Z ∣X)−E(Y ∣X)E(Z ∣X)

(4.7.31)

(4.7.32)

Y Z X

cov(Y ,Z) =E [cov(Y ,Z ∣X)] +cov [E(Y ∣X),E(Z ∣X)]
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But  and similarly,

But also,  and  so subsituting we get

Thus, the covariance of  and  is the expected conditional covariance plus the covariance of the conditional expected values. This result is often a good way to compute
 when we know the conditional distribution of  given .

Examples and Applications
As always, be sure to try the proofs and computations yourself before reading the ones in the text.

Simple Continuous Distributions

Suppose that  has probability density function  defined by  for , .

1. Find .
2. Find .
3. Graph  and  as functions of , on the same axes.
4. Find .
5. Find .
6. Find .

Answer

1. 
2. 

4. 
5. 
6. 

Suppose that  has probability density function  defined by  for .

1. Find .
2. Find .
3. Graph  and  as functions of , on the same axes.
4. Find .
5. Find .
6. Find .

Answer

1. 

2. 

4. 
5. 
6. 

Suppose that  has probability density function  defined by  for , .

1. Find .
2. Find .
3. Graph  and  as functions of , on the same axes.
4. Find .
5. Find .
6. Find .

Answer

Note that  and  are independent.

1. 
2. 
4. 
5. 
6. 

Suppose that  has probability density function  defined by  for .

1. Find .
2. Find .

E [cov(Y ,Z ∣X)] =E(Y Z)−E [E(Y ∣X)E(Z ∣X)] (4.7.33)

E(Y Z) = cov(Y ,Z)+E(Y )E(Z)

E [E(Y ∣X)E(Z ∣X)] = cov[E(Y ∣X),E(Z ∣X)+E[E(Y ∣X)]E[E(Z ∣X)] (4.7.34)

E[E(Y ∣X)] =E(Y ) E[E(Z ∣X)] =E(Z)

E [cov(Y ,Z ∣X)] = cov(Y ,Z)−cov [E(Y ∣X),E(Z ∣X)] (4.7.35)

Y Z

cov(Y ,Z) (Y ,Z) X

(X,Y ) f f(x, y) = x+y 0 ≤ x ≤ 1 0 ≤ y ≤ 1

L(Y ∣X)

E(Y ∣X)

L(Y ∣X = x) E(Y ∣X = x) x

var(Y )

var(Y ) [1− (X,Y )]cor

2

var(Y )−var [E(Y ∣X)]

− X

7

11

1

11

3X+2

6X+3

= 0.0764

11

144

= 0.0758

5

66

− ln3 = 0.0757

1

12

1

144

(X,Y ) f f(x, y) = 2(x+y) 0 ≤ x ≤ y ≤ 1

L(Y ∣X)

E(Y ∣X)

L(Y ∣X = x) E(Y ∣X = x) x

var(Y )

var(Y ) [1− (X,Y )]cor

2

var(Y )−var [E(Y ∣X)]

+ X

26

43

15

43

5 +5X+2X

2

9X+3

= 0.0375

3

80

= 0.0302

13

430

− ln(2) = 0.0299

1837

21 870

512

6561

(X,Y ) f f(x, y) = 6 yx

2

0 ≤ x ≤ 1 0 ≤ y ≤ 1

L(Y ∣X)

E(Y ∣X)

L(Y ∣X = x) E(Y ∣X = x) x

var(Y )

var(Y ) [1− (X,Y )]cor

2

var(Y )−var [E(Y ∣X)]

X Y

2

3

2

3

1

18

1

18

1

18

(X,Y ) f f(x, y) = 15 yx

2

0 ≤ x ≤ y ≤ 1

L(Y ∣X)

E(Y ∣X)
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3. Graph  and  as functions of , on the same axes.
4. Find .
5. Find .
6. Find .

Answer

1. 

2. 

4. 
5. 
6. 

Exercises on Basic Properties

Suppose that , , and  are real-valued random variables with  and . Find .

Answer

Uniform Distributions

As usual, continuous uniform distributions can give us some geometric insight.

Recall first that for , the standard measure on  is

In particular,  is the length of ,  is the area of , and  is the volume of .

Details

Technically  is Lebesgue measure on the measurable subsets of . The integral representation is valid for the types of sets that occur in applications. In the
discussion below, all subsets are assumed to be measurable.

With our usual setup, suppose that  takes values in ,  takes values in , and that  is uniformly distributed on . So 
, and the joint probability density function  of  is given by  for . Recall that uniform distributions, whether

discrete or continuous, always have constant densities. Finally, recall that the cross section of  at  is .

In the setting above, suppose that  is a bounded interval with midpoint  and length  for each . Then

1. 
2. 

Proof

This follows immediately from the fact that the conditional distribution of  given  is uniformly distributed on  for each .

So in particular, the regression curve  follows the midpoints of the cross-sectional intervals.

In each case below, suppose that  is uniformly distributed on the give region. Find  and 

1. The rectangular region  where  and .
2. The triangular region  where .
3. The circular region  where .

Answer

1. , . Note that  and  are independent.
2. , 
3. , 

In the bivariate uniform experiment, select each of the following regions. In each case, run the simulation 2000 times and note the relationship between the cloud of
points and the graph of the regression function.

1. square
2. triangle
3. circle

Suppose that  is uniformly distributed on the interval , and that given , random variable  is uniformly distributed on . Find each of the following:

1. 
2. 
3. 
4. 

Answer

L(Y ∣X = x) E(Y ∣X = x) x

var(Y )

var(Y ) [1− (X,Y )]cor

2

var(Y )−var [E(Y ∣X)]

+ X

30

51

20

51

2( +X+1)X

2

3(X+1)

= 0.0198

5

252

= 0.0140

5

357

− ln(2) = 0.0139

292

63

20

3

X Y Z E(Y ∣X) =X

3

E(Z ∣X) =

1

1+X

2

E (Y −Z sinX ∣X)e

X

−X

3

e

X

sinX

1+X

2

n ∈ N

+

R

n

(A) = 1dx, A⊆λ

n

∫

A

R

n

(4.7.36)

(A)λ

1

A⊆R (A)λ

2

A⊆R

2

(A)λ

3

A⊆R

3

λ

n

R

n

X S ⊆R

n

Y T ⊆R (X,Y ) R⊆ S×T ⊆R

n+1

0 < (R) <∞λ

n+1

f (X,Y ) f(x, y) = 1/ (R)λ

n+1

(x, y) ∈ R

R x ∈ S = {y ∈ T : (x, y) ∈ R}T

x

T

x

m(x) l(x) x ∈ S

E(Y ∣X) =m(X)

var(Y ∣X) = (X)

1

12

l

2

Y X = x T

x

x ∈ S

x↦ E(Y ∣X = x)

(X,Y ) E(Y ∣X) var(Y ∣X)

R= [a, b] × [c, d] a< b c < d

T = {(x, y) ∈ : −a≤ x ≤ y ≤ a}R

2

a> 0

C = {(x, y) ∈ : + ≤ r}R

2

x

2

y

2

r> 0

E(Y ∣X) = (c+d)

1

2

var(Y ∣X) = (d−c

1

12

)

2

X Y

E(Y ∣X) = (a+X)

1

2

var(Y ∣X) = (a−X

1

12

)

2

E(Y ∣X) = 0 var(Y ∣X) = 4( − )r

2

X

2

X (0, 1) X Y (0,X)

E(Y ∣X)

E(Y )

var(Y ∣X)

var(Y )
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1. 
2. 
3. 
4. 

The Hypergeometric Distribution

Suppose that a population consists of  objects, and that each object is one of three types. There are  objects of type 1,  objects of type 2, and  objects of
type 0. The parameters  and  are positive integers with . We sample  objects from the population at random, and without replacement, where 

. Denote the number of type 1 and 2 objects in the sample by  and , so that the number of type 0 objects in the sample is . In the in the
chapter on Distributions, we showed that the joint, marginal, and conditional distributions of  and  are all hypergeometric—only the parameters change. Here is the
relevant result for this section:

In the setting above,

1. 

2. 

3. 

Proof

Recall that  has the (multivariate) hypergeometric distribution with parameters , , , and . Marginally,  has the hypergeometric distribution with
parameters , , and , and  has the hypergeometric distribution with parameters , , and . Given , the remaining  objects are
chosen at random from a population of  objects, of which  are type 2 and  are type 0. Hence, the conditional distribution of  given  is
hypergeometric with parameters , , and . Parts (a) and (b) then follow from the standard formulas for the mean and variance of the hypergeometric
distribution, as functions of the parameters. Part (c) is the mean square error, and in this case can be computed most easily as

Simplifying gives the result.

Note that  is a linear function of  and hence .

In a collection of 120 objects, 50 are classified as good, 40 as fair and 30 as poor. A sample of 20 objects is selected at random and without replacement. Let 
denote the number of good objects in the sample and  the number of poor objects in the sample. Find each of the following:

1. 
2. 
3. The predicted value of  given 

Answer

1. 
2. 
3. 

The Multinomial Trials Model

Suppose that we have a sequence of  independent trials, and that each trial results in one of three outcomes, denoted 0, 1, and 2. On each trial, the probability of outcome
1 is , the probability of outcome 2 is , so that the probability of outcome 0 is . The parameters  with , and of course . Let 
denote the number of trials that resulted in outcome 1,  the number of trials that resulted in outcome 2, so that  is the number of trials that resulted in
outcome 0. In the in the chapter on Distributions, we showed that the joint, marginal, and conditional distributions of  and  are all multinomial—only the parameters
change. Here is the relevant result for this section:

In the setting above,

1. 

2. 

3. 

Proof

Recall that  has the multinomial distribution with parameters , , and . Marginally,  has the binomial distribution with parameters  and , and  has the
binomial distribution with parameters  and . Given , the remaining  trials are independent, but with just two outcomes: outcome 2
occurs with probability  and outcome 0 occurs with probability . (These are the conditional probabilities of outcomes 2 and 0, respectively,
given that outcome 1 did not occur.) Hence the conditional distribution of  given  is binomial with parameters  and . Parts (a) and (b) then
follow from the standard formulas for the mean and variance of the binomial distribution, as functions of the parameters. Part (c) is the mean square error and in this
case can be computed most easily from

Note again that  is a linear function of  and hence .

X

1

2

1

4

1

12

X

2

7

144

m a b m−a−b

a b a+b <m n

n ∈ {0, 1,… ,m} X Y n−X−Y

X Y

E(Y ∣X) = (n−X)

b

m−a

var(Y ∣X) = (n−X)(m−a−n+X)

b(m−a−b)

(m−a (m−a−1))

2

E ([Y −E(Y ∣X) )=]

2

n(m−n)b(m−a−b)

m(m−1)(m−a)

(X,Y ) m a b n X

m a n Y m b n X = x ∈ {0, 1,… ,n} n−x

m−a b m−a−b Y X = x

m−a b n−x

var(Y )−var[E(Y ∣X)] = var(Y )− var(X) = n − n( )

b

m−a

2

b

m

m−b

m

m−n

m−1

( )

b

m−a

2

a

m

m−a

m

m−n

m−1

(4.7.37)

E(Y ∣X) X E(Y ∣X) =L(Y ∣X)

X

Y

E(Y ∣X)

var(Y ∣X)

Y X = 8

E(Y ∣X) = − X

80

7

4

7

var(Y ∣X) = (20−X)(50+X)

4

1127

48

7

n

p q 1−p−q p, q ∈ (0, 1) p+q < 1 n ∈ N

+

X

Y n−X−Y

X Y

E(Y ∣X) = (n−X)

q

1−p

var(Y ∣X) = (n−X)

q(1−p−q)

(1−p)

2

E ([Y −E(Y ∣X) )= n]

2

q(1−p−q)

1−p

(X,Y ) n p q X n p Y

n q X = x ∈ {0, 1,… ,n} n−x

q/(1−p) 1−q/(1−p)

Y X = x n−x q/(1−p)

E[var(Y ∣X)] = [n−E(X)] = (n−np) = n

q(1−p−q)

(1−p)

2

q(1−p−q)

(1−p)

2

q(1−p−q)

1−p

(4.7.38)

E(Y ∣X) X E(Y ∣X) =L(Y ∣X)
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Suppose that a fair, 12-sided die is thrown 50 times. Let  denote the number of throws that resulted in a number from 1 to 5, and  the number of throws that
resulted in a number from 6 to 9. Find each of the following:

1. 
2. 
3. The predicted value of  given 

Answer

1. 
2. 
3. 

The Poisson Distribution

Recall that the Poisson distribution, named for Simeon Poisson, is widely used to model the number of “random points” in a region of time or space, under certain ideal
conditions. The Poisson distribution is studied in more detail in the chapter on the Poisson Process. The Poisson distribution with parameter  has probability
density function  defined by

The parameter  is the mean and variance of the distribution.

Suppose that  and  are independent random variables, and that  has the Poisson distribution with parameter  and  has the Poisson distribution with
parameter . Let . Then

1. 
2. 

3. 

Proof

We have shown before that the distribution of  is also Poisson, with parameter , and that the conditional distribution of  given  is binomial with
parameters  and . Hence parts (a) and (b) follow from the standard formulas for the mean and variance of the binomial distribution, as functions of the
parameters. Part (c) is the mean square error, and in this case can be computed most easily as

Once again,  is a linear function of  and so . If we reverse the roles of the variables, the conditional expected value is trivial from our
basic properties:

Coins and Dice

A pair of fair dice are thrown, and the scores  recorded. Let  denote the sum of the scores and  the minimum score. Find
each of the following:

1. 
2. 
3. 
4. 

Answer

1. 

2. 1 2 3 4 5 6

1 3

3. 1 2 3 4 5 6

12

4. 

A box contains 10 coins, labeled 0 to 9. The probability of heads for coin  is . A coin is chosen at random from the box and tossed. Find the probability of heads.

Answer

This problem is an example of Laplace's rule of succession, named for Pierre Simon Laplace.

X Y

E(Y ∣X)

var(Y ∣X)

Y X = 20

E(Y ∣X) = (50−X)

4

7

var(Y ∣X) = (50−X)

12

49

120

7

r ∈ (0,∞)

f

f(x) = , x ∈ Ne

−r

r

x

x!

(4.7.39)

r

X Y X a ∈ (0,∞) Y

b ∈ (0,∞) N =X+Y

E(X ∣ N) = N

a

a+b

var(X ∣ N) = N

ab

(a+b)

2

E ([X−E(X ∣ N) )=]

2

ab

a+b

N a+b X N = n ∈ N

n a/(a+b)

E[var(X ∣ N)] = E(N) = (a+b) =

ab

(a+b)

2

ab

(a+b)

2

ab

a+b

(4.7.40)

E(X ∣ N) N E(X ∣ N) =L(X ∣ N)

E(N ∣X) =E(X+Y ∣X) =X+b (4.7.41)

( , )X

1

X

2

Y = +X

1

X

2

U =min{ , }X

1
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1

E (U ∣ )X

1

E (Y ∣ U)

E ( ∣ )X

2

X

1

+

7

2

X

1

x

E(U ∣ = x)X

1
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6

5

2
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3

7

2

u
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11

56

9

54

7
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5

32

3

7

2
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i
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Random Sums of Random Variables

Suppose that  is a sequence of independent and identically distributed real-valued random variables. We will denote the common mean, variance, and
moment generating function, respectively, by , , and . Let

so that  is the partial sum process associated with . Suppose now that  is a random variable taking values in , independent of . Then

is a random sum of random variables; the terms in the sum are random, and the number of terms is random. This type of variable occurs in many different contexts. For
example,  might represent the number of customers who enter a store in a given period of time, and  the amount spent by the customer , so that  is the total
revenue of the store during the period.

The conditional and ordinary expected value of  are

1. 
2. 

Proof
1. Using the substitution rule and the independence of  and  we have

so .
2. From (a) and conditioning, .

Wald's equation, named for Abraham Wald, is a generalization of the previous result to the case where  is not necessarily independent of , but rather is a stopping
time for . Roughly, this means that the event  depends only . Wald's equation is discussed in the chapter on Random Samples. An elegant
proof of and Wald's equation is given in the chapter on Martingales. The advanced section on stopping times is in the chapter on Probability Measures.

The conditional and ordinary variance of  are

1. 
2. 

Proof
1. Using the substitution rule, the independence of  and , and the fact that  is an IID sequence, we have

so .
2. From (a) and the previous result,

Let  denote the probability generating function of . The conditional and ordinary moment generating function of  are

1. 
2. 

Proof
1. Using the substitution rule, the independence of  and , and the fact that  is an IID sequence, we have

(Recall that the MGF of the sum of independent variables is the product of the individual MGFs.)
2. From (a) and conditioning, .

Thus the moment generating function of  is , the composition of the probability generating function of  with the common moment generating function of , a
simple and elegant result.

In the die-coin experiment, a fair die is rolled and then a fair coin is tossed the number of times showing on the die. Let  denote the die score and  the number of
heads. Find each of the following:

1. The conditional distribution of  given .
2. 
3. 
4. 
5. 

Answer

X = ( , ,…)X

1

X

2

μ=E( )X

i

= var( )σ

2

X

i

G(t) =E ( )e

t X

i

= , n ∈ NY

n

∑

i=1

n

X

i

(4.7.42)

( , ,…)Y

0

Y

1

X N N X

=Y

N

∑

i=1

N

X

i

(4.7.43)

N X

i

i Y

N

Y

N

E ( ∣ N) =NμY

N

E ( ) =E(N)μY

N

N X

E ( ∣ N = n) =E ( ∣ N = n) =E( ) = E( ) = nμY

N

Y

n

Y

n

∑

i=1

n

X

i

(4.7.44)

E ( ∣ N) =NμY

N

E ( ) =E [E ( ∣ N)] =E(Nμ) =E(N)μY

N

Y

N

N X

X N = n ( , ,… , )X

1

X

2

X

n

Y

N

var ( ∣ N) =NY

N

σ

2

var ( ) =E(N) +var(N)Y

N

σ

2

μ

2

N X X

var ( ∣ N = n) = var ( ∣ N = n) = var ( ) = var( ) = nY

N

Y

n

Y

n

∑

i=1

n

X

i

σ

2

(4.7.45)

var ( ∣ N) =NY

N

σ

2

var ( ) =E [var ( ∣ N)] +var [E( ∣ N)] =E( N)+var(μN) =E(N) + var(N)Y

N

Y

N

Y

N

σ

2

σ

2

μ

2

(4.7.46)

H N Y

N

E ( ∣ N)=e

tY

N

[G(t)]

N

E ( )=H (G(t))e

tN

N X X

E ( ∣ N = n)=E ( ∣ N = n)=E ( )=e

tY

N

e

tY

n

e

tY

n

[G(t)]

n

(4.7.47)

E ( )=E [E ( ∣ N)] =E (G(t )=H(G(t))e

tN

e

tN

)

N

Y

N

H ∘G N X

N Y

Y N

E (Y ∣ N)

var (Y ∣ N)

E ( )Y

i
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1. Binomial with parameters  and 
2. 
3. 
4. 
5. 

Run the die-coin experiment 1000 times and compare the empirical mean and standard deviation to the distribution mean and standard deviation.

The number of customers entering a store in a given hour is a random variable with mean 20 and standard deviation 3. Each customer, independently of the others,
spends a random amount of money with mean $50 and standard deviation $5. Find the mean and standard deviation of the amount of money spent during the hour.

Answer
1. 
2. 

A coin has a random probability of heads  and is tossed a random number of times . Suppose that  is uniformly distributed on ;  has the Poisson
distribution with parameter ; and  and  are independent. Let  denote the number of heads. Compute the following:

1. 
2. 
3. 
4. 
5. 
6. 

Answer
1. 
2. 
3. 
4. 
5. 
6. 

Mixtures of Distributions

Suppose that  is a sequence of real-valued random variables. Denote the mean, variance, and moment generating function of  by , 
, and , for . Suppose also that  is a random variable taking values in , independent of . Denote the probability density

function of  by  for . The distribution of the random variable  is a mixture of the distributions of , with the distribution
of  as the mixing distribution.

The conditional and ordinary expected value of  are

1. 
2. 

Proof
1. Using the substitution rule and the independence of  and , we have 
2. From (a) and the conditioning rule,

The conditional and ordinary variance of  are

1. 
2. .

Proof
1. Using the substitution rule and the independence of  and , we have 
2. From (a) we have

The conditional and ordinary moment generating function of  are

1. 
2. .

Proof
1. Using the substitution rule and the independence of  and , we have 

N p =

1

2

N

1

2
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1

4

7

4

7

3

$1000

$30.82
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+
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(4.7.50)
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2. From (a) and the conditioning rule, 

In the coin-die experiment, a biased coin is tossed with probability of heads . If the coin lands tails, a fair die is rolled; if the coin lands heads, an ace-six flat die is
rolled (faces 1 and 6 have probability  each, and faces 2, 3, 4, 5 have probability  each). Find the mean and standard deviation of the die score.

Answer

1. 
2. 

Run the coin-die experiment 1000 times and note the apparent convergence of the empirical mean and standard deviation to the distribution mean and standard
deviation.

This page titled 4.7: Conditional Expected Value is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via source content that
was edited to the style and standards of the LibreTexts platform.
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4.8: Expected Value and Covariance Matrices
        

The main purpose of this section is a discussion of expected value and covariance for random matrices and vectors. These topics are somewhat specialized, but are
particularly important in multivariate statistical models and for the multivariate normal distribution. This section requires some prerequisite knowledge of linear
algebra.

We assume that the various indices  that occur in this section are positive integers. Also we assume that expected values of real-valued random variables
that we reference exist as real numbers, although extensions to cases where expected values are  or  are straightforward, as long as we avoid the dreaded
indeterminate form .

Basic Theory

Linear Algebra

We will follow our usual convention of denoting random variables by upper case letters and nonrandom variables and constants by lower case letters. In this section,
that convention leads to notation that is a bit nonstandard, since the objects that we will be dealing with are vectors and matrices. On the other hand, the notation we
will use works well for illustrating the similarities between results for random matrices and the corresponding results in the one-dimensional case. Also, we will try to
be careful to explicitly point out the underlying spaces where various objects live.

Let  denote the space of all  matrices of real numbers. The  entry of  is denoted  for  and . We will
identify  with , so that an ordered -tuple can also be thought of as an  column vector. The transpose of a matrix  is denoted —the 
matrix whose  entry is the  entry of . Recall the definitions of matrix addition, scalar multiplication, and matrix multiplication. Recall also the standard
inner product (or dot product) of :

The outer product of  and  is , the  matrix whose  entry is . Note that the inner product is the trace (sum of the diagonal entries) of the outer
product. Finally recall the standard norm on , given by

Recall that inner product is bilinear, that is, linear (preserving addition and scalar multiplication) in each argument separately. As a consequence, for ,

Expected Value of a Random Matrix

As usual, our starting point is a random experiment modeled by a probability space . So to review,  is the set of outcomes,  the collection of events, and
 the probability measure on the sample space . It's natural to define the expected value of a random matrix in a component-wise manner.

Suppose that  is an  matrix of real-valued random variables, whose  entry is denoted . Equivalently,  is as a random  matrix, that is, a
random variable with values in . The expected value  is defined to be the  matrix whose  entry is , the expected value of .

Many of the basic properties of expected value of random variables have analogous results for expected value of random matrices, with matrix operation replacing
the ordinary ones. Our first two properties are the critically important linearity properties. The first part is the additive property—the expected value of a sum is the
sum of the expected values.

 if  and  are random  matrices.

Proof

This is true by definition of the matrix expected value and the ordinary additive property. Note that . The left side is the 
entry of  and the right side is the  entry of .

The next part of the linearity properties is the scaling property—a nonrandom matrix factor can be pulled out of the expected value.

Suppose that  is a random  matrix.

1.  if .
2.  if .

Proof

1. By the ordinary linearity and scaling properties, . The left side is the  entry of  and the right side is the 

 entry of .
2. The proof is similar to (a).

Recall that for independent, real-valued variables, the expected value of the product is the product of the expected values. Here is the analogous result for random
matrices.

 if  is a random  matrix,  is a random  matrix, and  and  are independent.

Proof

By the ordinary linearity properties and by the independence assumption,

m, n, p, k

∞ −∞

∞−∞
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The left side is the  entry of  and the right side is the  entry of .

Actually the previous result holds if  and  are simply uncorrelated in the sense that  and  are uncorrelated for each ,  and 
. We will study covariance of random vectors in the next subsection.

Covariance Matrices

Our next goal is to define and study the covariance of two random vectors.

Suppose that  is a random vector in  and  is a random vector in .

1. The covariance matrix of  and  is the  matrix  whose  entry is  the ordinary covariance of  and .
2. Assuming that the coordinates of  and  have positive variance, the correlation matrix of  and  is the  matrix  whose  entry is 

, the ordinary correlation of  and 

Many of the standard properties of covariance and correlation for real-valued random variables have extensions to random vectors. For the following three results, 
is a random vector in  and  is a random vector in .

Proof

By the definition of the expected value of a random vector and by the defintion of matrix multiplication, the  entry of  is simply 
. The expected value of this entry is , which in turn, is the  entry of 

Thus, the covariance of  and  is the expected value of the outer product of  and . Our next result is the computational formula for
covariance: the expected value of the outer product of  and  minus the outer product of the expected values.

.

Proof

The  entry of  is , which by the standard computational formula, is , which in turn is
the  entry of .

The next result is the matrix version of the symmetry property.

.

Proof

The  entry of  is , which is the  entry of .

In the following result,  denotes the  zero matrix.

 if and only if  for each  and , so that each coordinate of  is uncorrelated with each coordinate of .

Proof

This follows immediately from the definition of .

Naturally, when , we say that the random vectors  and  are uncorrelated. In particular, if the random vectors are independent, then they are
uncorrelated. The following results establish the bi-linear properties of covariance.

The additive properties.

1.  if  and  are random vectors in  and  is a random vector in .
2.  if  is a random vector in , and  and  are random vectors in .

Proof
1. From the ordinary additive property of covariance, . The left side is the  entry of 

and the right side is the  entry of .
2. The proof is similar to (a), using the additivity of covariance in the second argument.

The scaling properties

1.  if  is a random vector in ,  is a random vector in , and .
2.  if  is a random vector in ,  is a random vector in , and .

Proof
1. Using the ordinary linearity properties of covariance in the first argument, we have

E( ) = E ( ) = E ( )E ( )∑

j=1

n

X

ij

Y

jk

∑

j=1

n

X

ij

Y

jk

∑

j=1

n

X

ij

Y

jk

(4.8.4)

(i, k) E(XY ) (i, k) E(X)E(Y )

X Y X

ij

Y

jk

i ∈ {1,… ,m} j∈ {1, 2,… ,n}

k ∈ {1, 2,… p}

X R

m

Y R

n

X Y m×n cov(X,Y ) (i, j) cov ( , )X

i

Y

j

X

i

Y

j

X Y X Y m×n cor(X,Y ) (i, j)

cor ( , )X

i

Y

j

X

i

Y

j

X

R

m

Y R

n

cov(X,Y ) =E([X−E(X)] )[Y −E(Y )]

T

(i, j) [X−E(X)] [Y −E(Y )]

T

[ −E ( )] [ −E ( )]X

i

X

i

Y

j

Y

j

cov ( , )X

i

Y

j

(i, j) cov(X,Y )

X Y X−E(X) Y −E(Y )

X Y

cov(X,Y ) =E (X )−E(X)Y

T

[E(Y )]

T

(i, j) E (X )−E(X)Y

T

[E(Y )]

T

E ( , )−E ( )E ( )X

i

Y

j

X

i

Y

j

cov ( , )X

i

Y

j

(i, j) cov(X,Y )

cov(Y ,X) = [cov(X,Y )]

T

(i, j) cov(X,Y ) cov ( , )X

i

Y

j

(j, i) cov(Y ,X)

0 m×n

cov(X,Y ) = 0 cov ( , ) = 0X

i

Y

j

i j X Y

cov(X,Y )

cov(X,Y ) = 0 X Y

cov(X+Y ,Z) = cov(X,Z)+cov(Y ,Z) X Y R

m

Z R

n

cov(X,Y +Z) = cov(X,Y )+cov(X,Z) X R

m

Y Z R

n

cov ( + , ) = cov ( , )+cov ( , )X

i

Y

i

Z

j

X

i

Z

j

Y

i

Z

j

(i, j) cov(X+Y ,Z)

(i, j) cov(X,Z)+cov(Y ,Z)

cov(aX,Y ) = acov(X,Y ) X R

n

Y R

p

a∈ R

m×n

cov(X,aY ) = cov(X,Y )a

T

X R

m

Y R

n

a∈ R

k×n
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The left side is the  entry of  and the right side is the  entry of .
2. The proof is similar to (a), using the linearity of covariance in the second argument.

Variance-Covariance Matrices

Suppose that  is a random vector in . The covariance matrix of  with itself is called the variance-covariance matrix of :

Recall that for an ordinary real-valued random variable , . Thus the variance-covariance matrix of a random vector in some sense plays the
same role that variance does for a random variable.

 is a symmetric  matrix with  on the diagonal.

Proof

Recall that . Also, the  entry of  is .

The following result is the formula for the variance-covariance matrix of a sum, analogous to the formula for the variance of a sum of real-valued variables.

 if  and  are random vectors in .

Proof

This follows from the additive property of covariance:

Recall that  if  is a real-valued random variable and . Here is the analogous result for the variance-covariance matrix of a random
vector.

 if  is a random vector in  and .

Proof

This follows from the scaling property of covariance:

Recall that if  is a random variable, then , and  if and only if  is a constant (with probability 1). Here is the analogous result for a random
vector:

Suppose that  is a random vector in .

1.  is either positive semi-definite or positive definite.
2.  is positive semi-definite but not positive definite if and only if there exists  and  such that, with probability 1, 

Proof
1. From the previous result,  for every . Thus, by definition,  is either positive semi-definite or

positive definite.
2. In light of (a),  is positive semi-definite but not positive definite if and only if there exists  such that . But in

turn, this is true if and only if  is constant with probability 1.

Recall that since  is either positive semi-definite or positive definite, the eigenvalues and the determinant of  are nonnegative. Moreover, if  is
positive semi-definite but not positive definite, then one of the coordinates of  can be written as a linear transformation of the other coordinates (and hence can
usually be eliminated in the underlying model). By contrast, if  is positive definite, then this cannot happen;  has positive eigenvalues and determinant
and is invertible.

Best Linear Predictor

Suppose that  is a random vector in  and that  is a random vector in . We are interested in finding the function of  of the form , where 
and , that is closest to  in the mean square sense. Functions of this form are analogous to linear functions in the single variable case. However, unless 

, such functions are not linear transformations in the sense of linear algebra, so the correct term is affine function of . This problem is of fundamental
importance in statistics when random vector , the predictor vector is observable, but not random vector , the response vector. Our discussion here generalizes the
one-dimensional case, when  and  are random variables. That problem was solved in the section on Covariance and Correlation. We will assume that  is
positive definite, so that  is invertible, and none of the coordinates of  can be written as an affine function of the other coordinates. We write  for
the inverse instead of the clunkier .

As with the single variable case, the solution turns out to be the affine function that has the same expected value as , and whose covariance with  is the same as
that of .

Define . Then  is the only affine function of  in  satisfying

cov( , ) = cov ( , )∑

j=1

n

a

ij

X

j

Y

k

∑

j=1

n

a

ij

X

j

Y

k

(4.8.5)

(i, k) cov(aX,Y ) (i, k) acov(X,Y )

X R

n

X X

vc(X) = cov(X,X) =E([X−E(X)] )[X−E(X)]

T

(4.8.6)

X var(X) = cov(X,X)

vc(X) n×n (var( ), var( ),… , var( ))X

1

X

2

X

n

cov ( , ) = cov ( , )X

i

X

j

X

j

X

i

(i, i) vc(X) cov ( , ) = var ( )X

i

X

i

X

i

vc(X+Y ) = vc(X)+cov(X,Y )+cov(Y ,X)+vc(Y ) X Y R

n

vc(X+Y ) = cov(X+Y ,X+Y ) = cov(X,X)+cov(X,Y )+cov(Y ,X)+cov(Y ,Y ) (4.8.7)

var(aX) = var(X)a

2

X a ∈ R

vc(aX) = avc(X)a

T

X R

n

a∈ R

m×n

vc(aX) = cov(aX,aX) = acov(X,X)a

T

(4.8.8)

X var(X) ≥ 0 var(X) = 0 X

X R

n

vc(X)

vc(X) a∈ R

n

c ∈ R X = = ca

T

∑

n

i=1

a

i

X

i

0 ≤ var( X)= vc ( X)= vc(X)aa

T

a

T

a

T

a∈ R

n

vc(X)

vc(X) a∈ R

n

vc(X)a= var( X)= 0a

T

a

T

Xa

T

vc(X) vc(X) vc(X)

X

vc(X) vc(X)

X R

m

Y R

n

X a+bX a∈ R

n

b ∈ R

n×m

Y

a= 0 X

X Y

X Y vc(X)

vc(X) X (X)vc

−1

[vc(X)]

−1

Y X

Y

L(Y ∣X) =E(Y )+cov(Y ,X) (X) [X−E(X)]vc

−1

L(Y ∣X) X R

n
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1. 
2. 

Proof

From linearity,

From linearity and the fact that a constant vector is independent (and hence uncorrelated) with any random vector,

Conversely, suppose that  for some  and , and that  and . From the second equation,
again using linearity and the uncorrelated property of constant vectors, we get  and therefore . Then from
the first equation,  so .

A simple corollary is the  is uncorrelated with any affine function of :

If  is an affine function of  then

1. 
2. 

Proof

Suppose that  where  and . For simplicity, let 

1. From the previous result, . Hence using linearity,

2. Recall that  is the trace of  and hence has expected value 0 by part (a).

The variance-covariance matrix of , and its covariance matrix with  turn out to be the same, again analogous to the single variable case.

Additional properties of :

1. 
2. 

Proof

Recall that 

1. Using basic properties of covariance,

2. Using basic properties of variance-covariance,

Next is the fundamental result that  is the affine function of  that is closest to  in the mean square sense.

Suppose that  is an affine function of . Then

1. 
2. Equality holds in (a) if and only if  with probability 1.

Proof

Again, let  for simplicity and let  be an affine function of .

1. Using the linearity of expected value, note that

But  is an affine function of  and hence the middle term is 0 by our previous corollary. Hence 

2. From (a), equality holds in the inequality if and only if  if and only if .

The variance-covariance matrix of the difference between  and the best affine approximation is given in the next theorem.

Proof

Again, we abbreviate  by . Using basic properties of variance-covariance matrices,

But . Substituting gives the result.

E [L(Y ∣X)] =E(Y )

cov [L(Y ∣X),X] = cov(Y ,X)

E [L(Y ∣X)] =E(Y )+cov(Y ,X) (X) [E(X)−E(X)] = 0vc

−1

(4.8.9)

cov [L(Y ∣X),X] = cov(Y ,X) (X)cov(X,X) = cov(Y ,X) (X)vc(X) = cov(Y ,X)vc

−1

vc

−1

(4.8.10)

U = a+bX a∈ R

n

b ∈ R

m×n

E(U) =E(Y ) cov(U ,X) = cov(Y ,X)

bcov(X,X) = cov(Y ,X) b= cov(Y ,X) (X)vc

−1

a+bE(X) =Y a=E(Y )−bE(X)

Y −L(Y ∣X) X

U X

cov [Y −L(Y ∣X),U ] = 0

E (⟨Y −L(Y ∣X),U⟩) = 0

U = a+bX a∈ R

n

b ∈ R

m×n

L=L(Y ∣X)

cov(Y ,X) = cov(L,X)

cov (Y −L,U) = cov(Y −L,a)+cov(Y −L,X) = 0+[cov(Y ,X)−cov(L,X)] = 0b

T

(4.8.11)

⟨Y −L,U⟩ cov(Y −L,U)

L(Y ∣X) Y

L(Y ∣X)

cov [Y ,L(Y ∣X)] = cov(Y ,X) (X)cov(X,Y )vc

−1

vc [L(Y ∣X)] = cov(Y ,X) (X)cov(X,Y )vc

−1

L(Y ∣X) =E(Y )+cov(Y ,X) (X) [X−E(X)]vc

−1

cov [Y ,L(Y ∣X)] = cov [Y ,X−E(X)] = cov(Y ,X) (X)cov(X,Y )[cov(Y ,X) (X)]vc

−1

T

vc

−1

(4.8.12)

vc [L(Y ∣X)] = vc [cov(Y ,X) (X)X] = cov(Y ,X) (X)vc(X) = cov(Y ,X) (X)cov(X,Y )vc

−1

vc

−1

[cov(Y ,X) (X)]vc

−1

T

vc

−1

(4.8.13)

L(Y ∣X) X Y

U ∈ R

n

X

E (∥Y −L(Y ∣X) )≤E (∥Y −U )∥

2

∥

2

U =L(Y ∣X)

L=L(Y ∣X) U ∈ R

n

X

E (∥Y −U )=E [∥(Y −L)+(L−U) ] =E (∥Y −L )+2E(⟨Y −L,L−U⟩)+E (∥L−U )∥

2

∥

2

∥

2

∥

2

(4.8.14)

L−U X

E (∥Y −U )=E (∥L−Y )+E (∥L−U )≥E (∥L−Y )∥

2

∥

2

∥

2

∥

2

E (∥L−U )= 0∥

2

P(L=U) = 1

Y

vc [Y −L(Y ∣X)] = vc(Y )−cov(Y ,X) (X)cov(X,Y )vc

−1

L(Y ∣X) L

vc(Y −L) = vc(Y )−cov(Y ,L)−cov(L,Y )+vc(L) (4.8.15)

cov(Y ,L) = cov(L,Y ) = vc(L) = cov(Y ,X) (X)cov(Y ,X)vc

−1
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The actual mean square error when we use  to approximate , namely , is the trace (sum of the diagonal entries) of the variance-

covariance matrix above. The function of  given by

is known as the (distribution) linear regression function. If we observe  then  is our best affine prediction of .

Multiple linear regression is more powerful than it may at first appear, because it can be applied to non-linear transformations of the random vectors. That is, if 
 and  then  is the affine function of  that is closest to  in the mean square sense. Of course, we must be able to

compute the appropriate means, variances, and covariances.

Moreover, Non-linear regression with a single, real-valued predictor variable can be thought of as a special case of multiple linear regression. Thus, suppose that  is
the predictor variable,  is the response variable, and that  is a sequence of real-valued functions. We can apply the results of this section to find the
linear function of  that is closest to  in the mean square sense. We just replace  with  for each . Again, we must be able to
compute the appropriate means, variances, and covariances to do this.

Examples and Applications

Suppose that  has probability density function  defined by  for , . Find each of the following:

1. 
2. 

Answer

1. 

2. 

Suppose that  has probability density function  defined by  for . Find each of the following:

1. 
2. 

Answer

1. 

2. 

Suppose that  has probability density function  defined by  for , . Find each of the following:

1. 
2. 

Answer

Note that  and  are independent.

1. 

2. 

Suppose that  has probability density function  defined by  for . Find each of the following:

1. 
2. 
3. 
4. 
5. Sketch the regression curves on the same set of axes.

Answer

1. 

2. 

3. 
4. 

Suppose that  is uniformly distributed on the region . Find each of the following:

1. 
2. 

L(Y ∣X) Y E( )∥Y −L(Y ∣X)∥

2

x

L(Y ∣X = x) =E(Y )+cov(Y ,X) (X) [x−E(X)]vc

−1

(4.8.16)

x L(Y ∣X = x) Y

g : →R

m

R

j

h : →R

n

R

k

L [h(Y ) ∣ g(X)] g(X) h(Y )

X

Y ( , ,… , )g

1

g

2

g

n

( (X), (X),… , (X))g

1

g

2

g

n

Y X

i

(X)g

i

i

(X,Y ) f f(x, y) = x+y 0 ≤ x ≤ 1 0 ≤ y ≤ 1

E(X,Y )

vc(X,Y )

( , )

7

12

7

12

[ ]

11

144

−

1

144

−

1

144

11

144

(X,Y ) f f(x, y) = 2(x+y) 0 ≤ x ≤ y ≤ 1

E(X,Y )

vc(X,Y )

( , )

5

12

3

4

[ ]

43

720

1

48

1

48

3

80

(X,Y ) f f(x, y) = 6 yx

2

0 ≤ x ≤ 1 0 ≤ y ≤ 1

E(X,Y )

vc(X,Y )

X Y

( , )

3

4

2

3

[ ]

3

80

0

0

1

18

(X,Y ) f f(x, y) = 15 yx

2

0 ≤ x ≤ y ≤ 1

E(X,Y )

vc(X,Y )

L(Y ∣X)

L [Y ∣ (X, )]X

2

( , )

5

8

5

6

[ ]

17

448

5

336

5

336

5

252

+ X

10

17

20

51

+ X+

49

76

10

57

7

38

X

2

(X,Y ,Z) {(x, y, z) ∈ : 0 ≤ x ≤ y ≤ z≤ 1}R

3

E(X,Y ,Z)

vc(X,Y ,Z)
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3. 
4. 
5. 
6. 

Answer

1. 

2. 

3. . Note that there is no  term.
4. . Note that this is the midpoint of the interval .
5. . Note that there is no  term.

6. 

Suppose that  is uniformly distributed on , and that given , random variable  is uniformly distributed on . Find each of the following:

1. 
2. 

Answer

1. 

2. 

This page titled 4.8: Expected Value and Covariance Matrices is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via
source content that was edited to the style and standards of the LibreTexts platform.

L [Z ∣ (X,Y )]

L [Y ∣ (X,Z)]

L [X ∣ (Y ,Z)]

L [(Y ,Z) ∣X]

( , , )

1

4

1

2

3

4

⎡

⎣

⎢

⎢

⎢

3

80

1

40

1

80

1

40

1

20

1

40

1

80

1

40

3

80

⎤

⎦

⎥

⎥

⎥

+ Y

1

2

1

2

X

X+ Z

1

2

1

2

[X,Z]

Y

1

2

Z

[ ]

+ X

1

3

2

3

+ X

2

3

1

3

X (0, 1) X Y (0,X)

E(X,Y )

vc(X,Y )

( , )

1

2

1

4

[ ]

1

12

1

24

1

24

7

144

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10164?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/04%3A_Expected_Value/4.08%3A_Expected_Value_and_Covariance_Matrices
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random


4.9.1 https://stats.libretexts.org/@go/page/10165

4.9: Expected Value as an Integral
        

In the introductory section, we defined expected value separately for discrete, continuous, and mixed distributions, using density functions. In the section on
additional properties, we showed how these definitions can be unified, by first defining expected value for nonnegative random variables in terms of the right-tail
distribution function. However, by far the best and most elegant definition of expected value is as an integral with respect to the underlying probability measure.
This definition and a review of the properties of expected value are the goals of this section. No proofs are necessary (you will be happy to know), since all of the
results follow from the general theory of integration. However, to understand the exposition, you will need to review the advanced sections on the integral with
respect to a positive measure and the properties of the integral. If you are a new student of probability, or are not interested in the measure-theoretic detail of the
subject, you can safely skip this section.

Definitions
As usual, our starting point is a random experiment modeled by a probability space . So  is the set of outcomes,  is the -algebra of events, and  is
the probability measure on the sample space .

Recall that a random variable  for the experiment is simply a measurable function from  into another measurable space . When , we
assume that  is Lebesgue measurable, and we take  to the -algebra of Lebesgue measurable subsets of . As noted above, here is the measure-theoretic
definition:

If  is a real-valued random variable on the probability space, the expected value of  is defined as the integral of  with respect to , assuming that the
integral exists:

Let's review how the integral is defined in stages, but now using the notation of probability theory.

Let  denote the support set of , so that  is a measurable subset of .

1. If  is finite, then .
2. If , then 
3. For general ,  as long as the right side is not of the form , and where  and  denote the positive and

negative parts of .
4. If , then , assuming that the expected value on the right exists.

Thus, as with integrals generally, an expected value can exist as a number in  (in which case  is integrable), can exist as  or , or can fail to exist. In
reference to part (a), a random variable with a finite set of values in  is a simple function in the terminology of general integration. In reference to part (b), note
that the expected value of a nonnegative random variable always exists in . In reference to part (c),  exists if and only if either  or 

.

Our next goal is to restate the basic theorems and properties of integrals, but in the notation of probability. Unless otherwise noted, all random variables are
assumed to be real-valued.

Basic Properties

The Linear Properties

Perhaps the most important and basic properties are the linear properties. Part (a) is the additive property and part (b) is the scaling property.

Suppose that  and  are random variables whose expected values exist, and that . Then

1.  as long as the right side is not of the form .
2. 

Thus, part (a) holds if at least one of the expected values on the right is finite, or if both are , or if both are . What is ruled out are the two cases where one
expected value is  and the other is , and this is what is meant by the indeterminate form .

Equality and Order

Our next set of properties deal with equality and order. First, the expected value of a random variable over a null set is 0.

If  is a random variable and  is an event with . Then .

Random variables that are equivalent have the same expected value

If  is a random variable whose expected value exists, and  is a random variable with , then .

Our next result is the positive property of expected value.

Suppose that  is a random variable and . Then

1. 
2.  if and only if .

(Ω,F ,P) Ω F σ P

(Ω,F)

X (Ω,F) (S,S ) S ⊆R

n

S S σ S

X X X P

E(X) = XdP∫

Ω

(4.9.1)

S X S R

S E(X) = x P(X = x)∑

x∈S

S ⊆ [0, ∞) E(X) = sup{E(Y ) : Y  has finite range and 0 ≤ Y ≤ X}

S ⊆R E(X) =E ( ) −E ( )X

+

X

−

∞ −∞ X

+

X

−

X

A ∈F E(X;A) =E (X )1

A

R X ∞ −∞

R

[0, ∞] E(X) E ( ) < ∞X

+

E ( ) < ∞X

−

X Y c ∈ R

E(X+Y ) =E(X) +E(Y ) ∞ −∞

E(cX) = cE(X)

∞ −∞

∞ −∞ ∞ −∞

X A P(A) = 0 E(X;A) = 0

X Y P(X = Y ) = 1 E(X) =E(Y )

X P(X ≥ 0) = 1

E(X) ≥ 0

E(X) = 0 P(X = 0) = 1
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So, if  is a nonnegative random variable then  if and only if . The next result is the increasing property of expected value, perhaps the
most important property after linearity.

Suppose that  are random variables whose expected values exist, and that . Then

1. 
2. Except in the case that both expected values are  or both ,  if and only if .

So if  with probability 1 then, except in the two cases mentioned,  if and only if . The next result is the absolute value
inequality.

Suppose that  is a random variable whose expected value exists. Then

1. 
2. If  is finite, then equality holds in (a) if and only if  or .

Change of Variables and Density Functions

The Change of Variables Theorem

Suppose now that  is a general random variable on the probability space , taking values in a measurable space . Recall that the probability
distribution of  is the probability measure  on  given by  for . This is a special case of a new positive measure induced by a
given positive measure and a measurable function. If  is measurable, then  is a real-valued random variable. The following result shows how to
computed the expected value of  as an integral with respect to the distribution of , and is known as the change of variables theorem.

If  is measurable then, assuming that the expected value exists,

So, using the original definition and the change of variables theorem, and giving the variables explicitly for emphasis, we have

The Radon-Nikodym Theorem

Suppose now  is a positive measure on , and that the distribution of  is absolutely continuous with respect to . Recall that this means that 
implies  for . By the Radon-Nikodym theorem, named for Johann Radon and Otto Nikodym,  has a probability density function 
with respect to . That is,

In this case, we can write the expected value of  as an integral with respect to the probability density function.

If  is measurable then, assuming that the expected value exists,

Again, giving the variables explicitly for emphasis, we have the following chain of integrals:

There are two critically important special cases.

Discrete Distributions

Suppose first that  is a discrete measure space, so that  is countable,  is the collection of all subsets of , and  is counting measure on 
. Thus,  has a discrete distribution on , and this distribution is always absolutely continuous with respect to . Specifically,  if and only if 

 and of course . The probability density function  of  with respect to , as we know, is simply  for . Moreover,
integrals with respect to  are sums, so

assuming that the expected value exists. Existence in this case means that either the sum of the positive terms is finite or the sum of the negative terms is finite, so
that the sum makes sense (and in particular does not depend on the order in which the terms are added). Specializing further, if  itself is real-valued and  we
have

which was our original definition of expected value in the discrete case.

X E(X) > 0 P(X > 0) > 0

X,Y P(X ≤ Y ) = 1

E(X) ≤E(Y )

∞ −∞ E(X) =E(Y ) P(X = Y ) = 1

X ≤ Y E(X) <E(Y ) P(X < Y ) > 0

X

|E(X)| ≤E (|X|)

E(X) P(X ≥ 0) = 1 P(X ≤ 0) = 1

X (Ω,F ,P) (S,S )

X P (S,S ) P (A) = P(X ∈ A) A ∈S

g : S→R g(X)

g(X) X

g : S→R

E [g(X)] = g(x)dP (x)∫

S

(4.9.2)

E [g(X)] = g [X(ω)] dP(ω) = g(x)dP (x)∫

Ω

∫

S

(4.9.3)

μ (S,S ) X μ μ(A) = 0

P (A) = P(X ∈ A) = 0 A ∈S X f

μ

P (A) = P(X ∈ A) = f dμ, A ∈S∫

A

(4.9.4)

g(X)

g : S→R

E [g(X)] = gf dμ∫

S

(4.9.5)

E [g(X)] = g [X(ω)] dP(ω) = g(x)dP (x) = g(x)f(x)dμ(x)∫

Ω

∫

S

∫

S

(4.9.6)

(S,S , #) S S =P(S) S #

(S,S ) X S # #(A) = 0

A= ∅ P(X ∈ ∅) = 0 f X # f(x) = P(X = x) x ∈ S

#

E [g(X)] = g(x)f(x)∑

x∈S

(4.9.7)

X g= 1

E(X) = xf(x)∑

x∈S

(4.9.8)
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Continuous Distributions

For the second special case, suppose that  is a Euclidean measure space, so that  is a Lebesgue measurable subset of  for some ,  is the 
-algebra of Lebesgue measurable subsets of , and  is Lebesgue measure on . The distribution of  is absolutely continuous with respect to  if 

 implies  for . If this is the case, then a probability density function  of  has its usual meaning. Thus,

assuming that the expected value exists. When  is a typically nice function, this integral reduces to an ordinary -dimensional Riemann integral of calculus.
Specializing further, if  is itself real-valued and  then

which was our original definition of expected value in the continuous case.

Interchange Properties

In this subsection, we review properties that allow the interchange of expected value and other operations: limits of sequences, infinite sums, and integrals. We
assume again that the random variables are real-valued unless otherwise specified.

Limits

Our first set of convergence results deals with the interchange of expected value and limits. We start with the expected value version of Fatou's lemma, named in
honor of Pierre Fatou. Its usefulness stems from the fact that no assumptions are placed on the random variables, except that they be nonnegative.

Suppose that  is a nonnegative random variable for . Then

Our next set of results gives conditions for the interchange of expected value and limits.

Suppose that  is a random variable for each . then

in each of the following cases:

1.  is nonnegative for each  and  is increasing in .
2.  exists for each , , and  is increasing in .
3.  exists for each , , and  is decreasing in .
4.  exists, and  for  where  is a nonnegative random variable with .
5.  exists, and  for  where  is a positive constant.

Statements about the random variables in the theorem above (nonnegative, increasing, existence of limit, etc.) need only hold with probability 1. Part (a) is the
monotone convergence theorem, one of the most important convergence results and in a sense, essential to the definition of the integral in the first place. Parts (b)
and (c) are slight generalizations of the monotone convergence theorem. In parts (a), (b), and (c), note that  exists (with probability 1), although the
limit may be  in parts (a) and (b) and  in part (c) (with positive probability). Part (d) is the dominated convergence theorem, another of the most important
convergence results. It's sometimes also known as Lebesgue's dominated convergence theorem in honor of Henri Lebesgue. Part (e) is a corollary of the dominated
convergence theorem, and is known as the bounded convergence theorem.

Infinite Series

Our next results involve the interchange of expected value and an infinite sum, so these results generalize the basic additivity property of expected value.

Suppose that  is a random variable for . Then

in each of the following cases:

1.  is nonnegative for each .
2. 

Part (a) is a consequence of the monotone convergence theorem, and part (b) is a consequence of the dominated convergence theorem. In (b), note that 
 and hence  is absolutely convergent with probability 1. Our next result is the additivity of the expected value over a countably infinite

collection of disjoint events.

Suppose that  is a random variable whose expected value exists, and that  is a disjoint collection events. Let . Then
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Of course, the previous theorem applies in particular if  is nonnegative.

Integrals

Suppose that  is a -finite measure space, and that  is a real-valued random variable for each . Thus we can think of  is a stochastic
process indexed by . We assume that  is measurable, as a function from the product space  into . Our next result involves the
interchange of expected value and integral, and is a consequence of Fubini's theorem, named for Guido Fubini.

Under the assumptions above,

in each of the following cases:

1.  is nonnegative for each .
2. 

Fubini's theorem actually states that the two iterated integrals above equal the joint integral

where of course,  is the product measure on . However, our interest is usually in evaluating the iterated integral above on the left in terms
of the iterated integral on the right. Part (a) is the expected value version of Tonelli's theorem, named for Leonida Tonelli.

Examples and Exercises
You may have worked some of the computational exercises before, but try to see them in a new light, in terms of the general theory of integration.

The Cauchy Distribution

Recall that the Cauchy distribution, named for Augustin Cauchy, is a continuous distribution with probability density function  given by

The Cauchy distribution is studied in more generality in the chapter on Special Distributions.

Suppose that  has the Cauchy distribution.

1. Show that  does not exist.
2. Find 

Answer
1. 
2. 

Open the Cauchy Experiment and keep the default parameters. Run the experiment 1000 times and note the behaior of the sample mean.

The Pareto Distribution

Recall that the Pareto distribution, named for Vilfredo Pareto, is a continuous distribution with probability density function  given by

where  is the shape parameter. The Pareto distribution is studied in more generality in the chapter on Special Distributions.

Suppose that  has the Pareto distribution with shape parameter . Find  is the following cases:

1. 
2. 

Answer
1. 
2. 

Open the special distribution simulator and select the Pareto distribution. Vary the shape parameter and note the shape of the probability density function and
the location of the mean. For various values of the parameter, run the experiment 1000 times and compare the sample mean with the distribution mean.

Suppose that  has the Pareto distribution with shape parameter . Find  for .

Answer

X

(T ,T ,μ) σ X

t

t ∈ T { : t ∈ T}X

t
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E [ dμ(t)]= E ( ) dμ(t)∫

T

X

t

∫

T

X

t
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T
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t
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X

t

(4.9.16)
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f
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Special Results for Nonnegative Variables

For a nonnegative variable, the moments can be obtained from integrals of the right-tail distribution function.

If  is a nonnegative random variable then

Proof

By Fubini's theorem we can interchange an expected value and integral when the integrand is nonnegative. Hence

When  we have . We saw this result before in the section on additional properties of expected value, but now we can understand
the proof in terms of Fubini's theorem.

For a random variable taking nonnegative integer values, the moments can be computed from sums involving the right-tail distribution function.

Suppose that  has a discrete distribution, taking values in . Then

Proof

By the theorem above, we can interchange expected value and infinite series when the terms are nonnegative. Hence

When  we have . We saw this result before in the section on additional properties of expected value, but now we can understand
the proof in terms of the interchange of sum and expected value.

This page titled 4.9: Expected Value as an Integral is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via source
content that was edited to the style and standards of the LibreTexts platform.
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4.10: Conditional Expected Value Revisited
         

Conditional expected value is much more important than one might at first think. In fact, conditional expected value is at the core of modern probability theory because it
provides the basic way of incorporating known information into a probability measure.

Basic Theory

Definition

As usual, our starting point is a random experiment modeled by a probability space , so that  is the set of outcomes,,  is the -algebra of events, and  is the
probability measure on the sample space . In our first elementary discussion, we studied the conditional expected value of a real-value random variable  given a
general random variable . The more general approach is to condition on a sub -algebra  of . The sections on -algebras and measure theory are essential
prerequisites for this section.

Before we get to the definition, we need some preliminaries. First, all random variables mentioned are assumed to be real valued. next the notion of equivalence plays a
fundamental role in this section. Next recall that random variables  and  are equivalent if . Equivalence really does define an equivalence relation on
the collection of random variables defined on the sample space. Moreover, we often regard equivalent random variables as being essentially the same object. More precisely
from this point of view, the objects of our study are not individual random variables but rather equivalence classes of random variables under this equivalence relation.
Finally, for , recall the notation for the expected value of  on the event 

assuming of course that the expected value exists. For the remainder of this subsection, suppose that  is a sub -algebra of .

Suppose that  is a random variable with . The conditional expected value of  given  is the random variable  defined by the following
properties:

1.  is measurable with repsect to .
2. If  then 

The basic idea is that  is the expected value of  given the information in the -algebra . Hopefully this idea will become clearer during our study. The
conditions above uniquely define  up to equivalence. The proof of this fact is a simple application of the Radon-Nikodym theorem, named for Johann Radon and
Otto Nikodym

Suppose again that  is a random variable with .

1. There exists a random variable  satisfying the definition.
2. If  and  satisfy the definition, then  so that  and  are equivalent.

Proof
1. Note that  for  defines a (signed) measure on . Moreover, if  and  then . Hence  is absolutely continuous with

respect to the restriction of  to . By the Radon-Nikodym theorem, there exists a random variable  that is measurable with respect to  such that 
 for . That is,  is the density or derivative of  with respect to  on .

2. This follows from the uniqueness of the Radon-Nikodym derivative, up to equivalence.

The following characterization might seem stronger but in fact in equivalent to the definition.

Suppose again that  is a random variable with . Then  is characterized by the following properties:

1.  is measurable with respect to 
2. If  is measurable with respect to  and  then .

Proof

We have to show that part (b) in the definition is equivalent to part (b) here. First (b) here implies (b) in the definition since  is -measurable if . Conversely
suppose that (b) in the definition holds. We will show that (b) here holds by a classical bootstrapping argument.. First  if  for some 

. Next suppose that  is a simple random variable that is -measurable. That is,  where  is a finite index set,  for , and 
for . then

Next suppose that  is nonnegative and -measurable. Then there exists a sequence of simple -measurable random variables  with  as .
Then by the previous step,  for each . Letting  and using the monotone convergence theorem we have .
Finally, suppose that  is a general -measurable random variable. Then  where  and  are the usual positive and negative parts of . These
parts are nonnegative and -measurable, so by the previous step,  and . hence

Properties

Our next discussion concerns some fundamental properties of conditional expected value. All equalities and inequalities are understood to hold modulo equivalence, that is,
with probability 1. Note also that many of the proofs work by showing that the right hand side satisfies the properties in the definition for the conditional expected value on
the left side. Once again we assume that  is a sub -algebra of .

Our first property is a simple consequence of the definition:  and  have the same mean.

Suppose that  is a random variable with . Then .
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Proof

This follows immediately by letting  in the definition.

The result above can often be used to compute , by choosing the -algebra  in a clever way. We say that we are computing  by conditioning on . Our next
properties are fundamental: every version of expected value must satisfy the linearity properties. The first part is the additive property and the second part is the scaling
property.

Suppose that  and  are random variables with  and , and that . Then

1. 
2. 

Proof
1. Note that  so  is defined. We show that  satisfies the conditions in the definition for 

. Note first that  is -measurable since both terms are. If  then

2. Note that  so  is defined. We show that  satisfy the conditions in the definition for . Note first that 
 is -measurable since the second factor is. If  then

The next set of properties are also fundamental to every notion of expected value. The first part is the positive property and the second part is the increasing property.

Suppose again that  and  are random variables with  and .

1. If  then 
2. If  then 

Proof
1. Let . Note that  and hence . Since  with probability 1 we have . On the other hand, if 

 then  which is a contradiction. Hence we must have .
2. Note that if  then . Hence by (a) and the additive property,  so .

The next few properties relate to the central idea that  is the expected value of  given the information in the -algebra .

Suppose that  and  are random variables with  and  and that  is measurable with respect to . Then .

Proof

We show that  satisfy the in properties that characterize . First,  is -measurable since both factors are. If  is -measurable with 
 then  is also -measurable and hence

Compare this result with the scaling property. If  is measurable with respect to  then  is like a constant in terms of the conditional expected value given . On the other
hand, note that this result implies the scaling property, since a constant can be viewed as a random variable, and as such, is measurable with respect to any -algebra. As a
corollary to this result, note that if  itself is measurable with respect to  then . The following result gives the other extreme.

Suppose that  is a random variable with . If  and  are independent then .

Proof

We show that  satisfy the properties in the definiton for . First of course,  is -measurable as a constant random variable. If  then  and 
 are independent and hence

Every random variable  is independent of the trivial -algebra  so it follows that .

The next properties are consistency conditions, also known as the tower properties. When conditioning twice, with respect to nested -algebras, the smaller one
(representing the least amount of information) always prevails.

Suppose that  is a random variable with  and that  is a sub -algebra of . Then

1. 
2. 

Proof
1. Note first that  is -measurable and hence also -measurable. Thus by (7), .
2. We show that  satisfies the coonditions in the definition for . Note again that  is -measurable. If  then 

and hence

The next result gives Jensen's inequality for conditional expected value, named for Johan Jensen.

Suppose that  takes values in an interval  and that  is convex. If  and  then

A=Ω
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X Y E(|X|) <∞ E(|Y |) <∞ c ∈ R
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E(X+Y ∣ G ) E(X ∣ G )+E(Y ∣ G ) G A ∈ G

E{[E(X ∣ G )+E(Y ∣ G )];A} =E[E(X ∣ G );A] +E[E(Y ∣ G );A] =E(X;A)+E(Y ;A) =E[X+Y ;A] (4.10.4)

E(|cX|) = |c|E(|X|) <∞ E(cX ∣ G ) cE(X ∣ G ) E(cX ∣ G )

cE(X ∣ G ) G A ∈ G

E[cE(X ∣ G );A] = cE[E(X ∣ G );A] = cE(X;A) =E(cX;A) (4.10.5)

X Y E(|X|) <∞ E(|Y |) <∞

X ≥ 0 E(X ∣ G ) ≥ 0

X ≤ Y E(X ∣ G ) ≤E(Y ∣ G )

A= {E(X ∣ G ) < 0} A ∈ G E(X;A) =E[E(X ∣ G );A] X ≥ 0 E(X;A) ≥ 0

P(A) > 0 E[E(X ∣ G );A] < 0 P(A) = 0

X ≤ Y Y −X ≥ 0 E(Y −X ∣ G ) =E(Y ∣ G )−E(X ∣ G ) ≥ 0 E(Y ∣ G ) ≥E(X ∣ G )

E(X ∣ G ) X σ G

X V E(|X|) <∞ E(|XV |) <∞ V G E(VX ∣ G ) = V E(X ∣ G )

V E(X ∣ G ) E(VX ∣ G ) V E(X ∣ G ) G U G

E(|UVX|) <∞ UV G

E[UV E(X ∣ G )] =E(UVX) =E[U(VX)] (4.10.6)

V G V G

σ

X G E(X ∣ G ) =X

X E(|X|) <∞ X G E(X ∣ G ) =E(X)

E(X) E(X ∣ G ) E(X) G A ∈ G X

1

A

E(X;A) =E(X)P(A) =E[E(X);A] (4.10.7)

X σ {∅, Ω} E(X ∣ {∅, Ω}) =E(X)

σ

X E(|X|) <∞ H σ G

E[E(X ∣H ) ∣ G ] =E(X ∣H )

E[E(X ∣ G ) ∣H ] =E(X ∣H )

E(X ∣H ) H G E[E(X ∣H ) ∣ G ] =E(X ∣H )

E(X ∣H ) E[E(X ∣ G ) ∣H ] E(X ∣H ) H A ∈H A ∈ G

E[E(X ∣ G );A] =E(X;A) =E[E(X ∣H );A] (4.10.8)

X S ⊆R g : S→R E(|X|) <∞ E(|g(X)| <∞
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Proof

As with Jensen's inequality for ordinary expected value, the best proof uses the characterization of convex functions in terms of supporting lines: For each  there
exist numbers  and  (depending on ) such that

 for 

A convex function and several supporting lines
Convex function

Random variables  and  takes values in . We can construct a random supporting line at . That is, there exist random variables  and ,
measurable with respect to , such that

1. 
2. 

We take conditional expected value through the inequality in (b) and then use properties of conditional expected value and property (a):

Note that the second step uses the fact that  and  are measurable with respect to .

Conditional Probability

For our next discussion, suppose as usual that  is a sub -algebra of . The conditional probability of an event  given  can be defined as a special case of conditional
expected value. As usual, let  denote the indicator random variable of .

For  we define

Thus, we have the following characterizations of conditional probability, which are special cases of the definition and the alternate version:

If  then  is characterized (up to equivalence) by the following properties

1.  is measurable with respect to .
2. If  then 

Proof

For part (b), note that

If  then  is characterized (up to equivalence) by the following properties

1.  is measurable with respect to .
2. If  is measurable with respect to  and  then 

The properties above for conditional expected value, of course, have special cases for conditional probability. In particular, we can compute the probability of an event by
conditioning on a -algebra:

If  then .

Proof

This is a direct result of the mean property since .

Again, the last theorem is often a good way to compute  when we know the conditional probability of  given . This is a very compact and elegant version of the
law of total probability given first in the section on Conditional Probability in the chapter on Probability Spaces and later in the section on Discrete Distributions in the
Chapter on Distributions. The following theorem gives the conditional version of the axioms of probability.

The following properties hold (as usual, modulo equivalence):

1.  for every 
2. 
3. If  is a countable disjoint subset of  then 

Proof
1. This is a direct consequence of (6).
2. This is trivial since .
3. We show that the right side satisfies the conditions in (11) that define the left side. Note that  is -measurable since each term in the sum has this

property. Let . then

From the last result, it follows that other standard probability rules hold for conditional probability given  (as always, modulo equivalence). These results include

the complement rule

E[g(X) ∣ G ] ≥ g[E(X ∣ G )] (4.10.9)

t ∈ S

a b t

a+bt = g(t)

a+bx ≤ g(x) x ∈ S

X E(X ∣ G ) S E(X ∣ G ) A B

G

A+BE(X ∣ G ) = g[E(X ∣ G )]

A+BX ≤ g(X)

E[g(X) ∣ G ] ≥E(A+BX ∣ G ) =A+BE(X ∣ G ) = g[E(X ∣ G ] (4.10.10)

A B G

G σ F A G

1

A

A

A ∈F

P(A ∣ G ) =E( ∣ G )1

A

(4.10.11)

A ∈F P(A ∣ G )

P(A ∣ G ) G

B ∈ G E[P(A ∣ G );B] = P(A∩B)

E[ P(A ∣ G )] =E[ E( ∣ G )] =E( ) =E( ) = P(A∩B)1

B

1

B

1

A

1

A

1

B

1

A∩B

(4.10.12)

A ∈F P(A ∣ G )

P(A ∣ G ) G

U G E(|U|) <∞ E[UP(A ∣ G )] =E(U;A)

σ

A ∈F P(A) =E[P(A ∣ G )]

E( ) = P(A)1

A

P(A) A G

P(A ∣ G ) ≥ 0 A ∈F

P(Ω ∣ G ) = 1

{ : i ∈ I}A

i

F P( G ) = P( ∣ G )⋃

i∈I

A

i

∣

∣

∑

i∈I

A

i

= 11

Ω

P( ∣ G )∑

i∈I

A

i

G

B ∈ G

E[ P( ∣ G );B] = E[P( ∣ G );B] = P( ∩B) = P(B∩ )∑

i∈I

A

i

∑

i∈I

A

i

∑

i∈I

A

i

⋃

i∈I

A

i

(4.10.13)

G
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the increasing property
Boole's inequality
Bonferroni's inequality
the inclusion-exclusion laws

However, it is not correct to state that  is a probability measure, because the conditional probabilities are only defined up to equivalence, and so the mapping
does not make sense. We would have to specify a particular version of  for each  for the mapping to make sense. Even if we do this, the mapping may not
define a probability measure. In part (c), the left and right sides are random variables and the equation is an event that has probability 1. However this event depends on the
collection . In general, there will be uncountably many such collections in , and the intersection of all of the corresponding events may well have probability
less than 1 (if it's measurable at all). It turns out that if the underlying probability space  is sufficiently “nice” (and most probability spaces that arise in
applications are nice), then there does in fact exist a regular conditional probability. That is, for each , there exists a random variable  satisfying the
conditions in (12) and such that with probability 1,  is a probability measure.

The following theorem gives a version of Bayes' theorem, named for the inimitable Thomas Bayes.

Suppose that  and . then

Proof

The proof is absolutely trivial. By definition of conditional probability given , the numerator is  and the denominator is . Nonetheless, Bayes' theorem
is useful in settings where the expected values in the numerator and denominator can be computed directly

Basic Examples

The purpose of this discussion is to tie the general notions of conditional expected value that we are studying here to the more elementary concepts that you have seen
before. Suppose that  is an event (that is, a member of ) with . If  is another event, then of course, the conditional probability of  given  is

If  is a random variable then the conditional distribution of  given  is the probability measure on  given by

If  then the conditional expected value of  given , denoted , is simply the mean of this conditional distribution.

Suppose now that  is a countable partition of the sample space  into events with positive probability. To review the jargon, ; the index set  is
countable;  for distinct ; ; and  for . Let , the -algebra generated by . The elements of  are of the form 

 for . Moreover, the random variables that are measurable with respect to  are precisely the variables that are constant on  for each . The -algebra 
 is said to be countably generated.

If  then  is the random variable whose value on  is  for each .

Proof

Let  denote the random variable that takes the value  on  for each . First,  is measurable with respect to  since  is constant on  for each 
. So we just need to show that  for each . Thus, let  where . Then

In this setting, the version of Bayes' theorem in (15) reduces to the usual elementary formulation: For ,  and 
. Hence

If  is a random variable with , then  is the random variable whose value on  is  for each .

Proof

Let  denote the random variable that takes the value  on  for each . First,  is measurable with respect to  since  is constant on  for each 
. So we just need to show that  for each . Thus, let  where . Then

The previous examples would apply to  if  is a discrete random variable taking values in a countable set . In this case, the partition is simply 
. On the other hand, suppose that  is a random variable taking values in a general set  with -algebra . The real-valued random variables

that are measurable with respect to  are (up to equivalence) the measurable, real-valued functions of .

Specializing further, Suppose that  takes values in ,  takes values in  (where  and  are Lebesgue measurable) and that  has a joint continuous
distribution with probability density function . Then  has probability density function  given by

A ↦ P(A ∣ G )

E(A ∣ G ) A ∈F

{ : i ∈ I}A

i

F

(Ω,F ,P)

A ∈F P(A ∣ G )

A ↦ P(A ∣ G )

A ∈ G B ∈F

P(A ∣ B) =

E[P(B ∣ G );A]

E[P(B ∣ G )]

(4.10.14)

G P(A∩B) P (B)

A F P(A) > 0 B B A

P(B ∣ A) =

P(A∩B)

P(A)

(4.10.15)

X X A R

R ↦ P(X ∈ R ∣ A) =  for measurable R ⊆R

P({X ∈ R} ∩A)

P(A)

(4.10.16)

E(|X|) < ∞ X A E(X ∣ A)

A = { : i ∈ I}A

i

Ω A ⊆F I

∩ = ∅A

i

A

j

i, j∈ I = Ω⋃

i∈I

A

i

P( ) > 0A

i

i ∈ I G = σ(A ) σ A G

⋃

j∈J

A

j

J ⊆ I G A

i

i ∈ I σ

G

B ∈F P(B ∣ G ) A

i

P(B ∣ )A

i

i ∈ I

U P(B ∣ )A

i

A

i

i ∈ I U G U A

i

i ∈ I E(U;A) = P(A∩B) A ∈ G A =⋃

j∈J

A

j

J ⊆ I

E(U;A) = E(U; ) = P(B ∣ )P( ) = P(A∩B)∑

j∈J

A

j

∑

j∈J

A

j

A

j

(4.10.17)

i ∈ I E[P(B ∣ G ); ] = P( )P(B ∣ )A

i

A

i

A

i

E[P(B ∣ G )] = P( )P(B ∣ )∑

j∈I

A

j

A

j

P( ∣ B) =A

i

P( )P(B ∣ )A

i

A

i

P( )P(B ∣ )∑

j∈I

A

j

A

j

(4.10.18)

X E(|X|) < ∞ E(X ∣ G ) A

i

E(X ∣ )A

i

i ∈ I

U E(X ∣ )A

i

A

i

i ∈ I U G U A

i

i ∈ I E(U;A) =E(X;A) A ∈ G A =⋃

j∈J

A

j

J ⊆ I

E(U;A) = E(U; ) = E(X ∣ )P( ) = E(X;A)∑

j∈J

A

j

∑

j∈J

A

j

A

j

(4.10.19)

G = σ(Y ) Y T

A = {{Y = y} : y ∈ T} Y T σ T

G = σ(Y ) Y

X S ⊆R Y T ⊆R

n

S T (X,Y )

f Y h

h(y) = f(x, y)dx, y ∈ T∫

S

(4.10.20)
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Assume that  for . Then for , a conditional probability density function of  given  is defined by

This is precisely the setting of our elementary discussion of conditional expected value. If  then we usually write  instead of the clunkier 
.

In this setting above suppose that . Then

Proof

Once again, we show that the integral on the right satisfies the properties in the definition for . First,  is measurable as a
function from  into  and hence the random variable  is a measurable function of  and so is measurable with respect to . Next suppose that 

. Then  for some . Then

Best Predictor

In our elementary treatment of conditional expected value, we showed that the conditional expected value of a real-valued random variable  given a general random
variable  is the best predictor of , in the least squares sense, among all real-valued functions of . A more careful statement is that  is the best predictor of 
among all real-valued random variables that are measurable with respect to . Thus, it should come as not surprise that if  is a sub -algebra of , then  is
the best predictor of , in the least squares sense, among all real-valued random variables that are measurable with respect to . We will show that this is indeed the case
in this subsection. The proofs are very similar to the ones given in the elementary section. For the rest of this discussion, we assume that  is a sub -algebra of  and that
all random variables mentioned are real valued.

Suppose that  and  are random variables with  and  and that  is measurable with respect to . Then  and  are
uncorrelated.

Proof

Note that  has mean 0 by the mean property. Using the properties that characterize  we have

The next result is the main one:  is closer to  in the mean square sense than any other random variable that is measurable with respect to . Thus, if  represents
the information that we have, then  is the best we can do in estimating .

Suppose that  and  are random variables with  and  and that  is measurable with respect to . Then

1. .
2. Equality holds if and only if , so  and  are equivalent.

Proof
1. Note that

By mean property,  has mean 0, so the middle term in the displayed equation is . But  is -
measurable and hence this covariance is 0 by uncorrelated proerty. Therefore

2. Equality holds if and only if  if and only if 

Conditional Variance

Once again, we assume that  is a sub -algebra of  and that all random variables mentioned are real valued, unless otherwise noted. It's natural to define the conditional
variance of a random variable given  in the same way as ordinary variance, but witl all expected values conditioned on .

Suppose that  is a random variable with . The conditional variance of  given  is

Like all conditional expected values relative to ,  is a random variable that is measurable with respect to  and is unique up to equivalence. The first property
is analogous to the computational formula for ordinary variance.

Suppose again that  is a random variable with . Then

h(y) > 0 y ∈ T y ∈ T X Y = y

g(x ∣ y) = , x ∈ S

f(x, y)

h(y)

(4.10.21)

E(|X|) <∞ E(X ∣ Y )

E[X ∣ σ(Y )]

E(|X|) <∞

E(X ∣ Y ) = xg(x ∣ Y )dx∫

S

(4.10.22)

E(X ∣ Y ) =E[X ∣ σ(Y )] y ↦ xg(x ∣ y)dx∫

S

T R g(x ∣ Y )dx∫

x

Y σ(Y )

B ∈ σ(Y ) B= {Y ∈ A} A ∈F

E [ xg(x ∣ Y )dx;B]∫

S

=E [ xg(x ∣ Y )dx;Y ∈ A]∫

S

=E [ x dx;Y ∈ A]= x h(y)dx dy∫

S

f(x, y)

h(y)

∫

A

∫

S

f(x, y)

h(y)

= xf(x, y)d(x, y) =E(X;Y ∈ A) =E(X;B)∫

S×A

X

Y X Y E(X ∣ Y ) X

σ(Y ) G σ F E(X ∣ G )

X G )

G σ F

X U E(|X|) <∞ E(|XU|) <∞ U G X−E(X ∣ G ) U

X−E(X ∣ G ) E(X ∣ G )

cov[X−E(X ∣ G ),U] =E(U[X−E(X ∣ G )]) =E(UX)−E[UE(X ∣ G ] =E(UX)−E(UX) = 0 (4.10.23)

E(X ∣ G ) X G G

E(X ∣ G ) X

X U E( ) <∞X

2

E( ) <∞U

2

U G

E([X−E(X ∣ G ) ) ≤E[(X−U ]]

2

)

2

P[U =E(X ∣ G )] = 1 U E(X ∣ G )

E[(X−U ])

2

=E([X−E(X ∣ G )+E(X ∣ G )−U )]

2

=E([X−E(X ∣ G ) )+2E([X−E(X ∣ G )][E(X ∣ G )−U])+E([E(X ∣ G )−U )]

2

]

2

(4.10.24)

(4.10.25)

X−E(X ∣ G ) 2cov[X−E(X ∣ G ),E(X ∣ G )−U] E(X ∣ G )−U G

E[(X−U ] =E([X−E(X ∣ G ) )+E([E(X ∣ G )−U ) ≥E([X−E(X ∣ G ) ))

2

]

2

]

2

]

2

(4.10.26)

E([E(X ∣ G )−U ) = 0]

2

P[U =E(X ∣ G )] = 1

G σ F

G G

X E( ) <∞X

2

X G

var(X ∣ G ) =E([X−E(X ∣ G ) G)]

2

∣

∣

∣ (4.10.27)

G var(X ∣ G ) G

X E( ) <∞X

2
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Proof

Expanding the square in the definition and using basic properties of conditional expectation, we have

Next is a formula for the ordinary variance in terms of conditional variance and expected value.

Suppose again that  is a random variable with . Then

Proof

From the previous theorem and properties of conditional expected value we have . But  and
similarly, . But also,  so subsituting we get .

So the variance of  is the expected conditional variance plus the variance of the conditional expected value. This result is often a good way to compute  when we
know the conditional distribution of  given . In turn, this property leads to a formula for the mean square error when  is thought of as a predictor of .

Suppose again that  is a random variable with .

Proof

From the definition and from the mean property and variance formula,

Let us return to the study of predictors of the real-valued random variable , and compare them in terms of mean square error.

Suppose again that  is a random variable with .

1. The best constant predictor of  is  with mean square error .
2. If  is another random variable with , then the best predictor of  among linear functions of  is

with mean square error .
3. If  is a (general) random variable, then the best predictor of  among all real-valued functions of  with finite variance is  with mean square error 

.
4. If  is a sub -algebra of , then the best predictor of  among random variables with finite variance that are measurable with respect to  is  with mean

square error .

Of course, (a) is a special case of (d) with  and (c) is a special case of (d) with . Only (b), the linear case, cannot be interpreted in terms of
conditioning with respect to a -algebra.

Conditional Covariance

Suppose again that  is a sub -algebra of . The conditional covariance of two random variables is defined like the ordinary covariance, but with all expected values
conditioned on .

Suppose that  and  are random variables with  and . The conditional covariance of  and  given  is defined as

So  is a random variable that is measurable with respect to  and is unique up to equivalence. As should be the case, conditional covariance generalizes
conditional variance.

Suppose that  is a random variable with . Then .

Proof

This follows immediately from the two definitions.

Our next result is a computational formula that is analogous to the one for standard covariance—the covariance is the mean of the product minus the product of the means,
but now with all expected values conditioned on :

Suppose again that  and  are random variables with  and . Then

Proof

Expanding the product in the definition and using basic properties of conditional expectation, we have

var(X ∣ G ) =E( ∣ G )−[E(X ∣ G )X

2

]

2

(4.10.28)

var(X ∣ G ) =E( −2XE(X ∣ G )+[E(X ∣ G ) G ) =E( ∣ G )−2E[XE(X ∣ G ) ∣ G ] +E([E(X ∣ G ) ∣ G )X

2

]

2

∣

∣

∣ X

2

]

2

=E( ∣ G )−2E(X ∣ G )E(X ∣ G )+[E(X ∣ G ) =E( ∣ G )−[E(X ∣ G )X

2

]

2

X

2

]

2

(4.10.29)

(4.10.30)

X E( ) <∞X

2

var(X) =E[var(X ∣ G )] +var[E(X ∣ G )] (4.10.31)

E[var(X ∣ G )] =E( )−E([E(X ∣ G ) )X

2

]

2

E( ) = var(X)+[E(X)X

2

]

2

E([E(X ∣ G ) ) = var[E(X ∣ G )] +(E[E(X ∣ G )]]

2

)

2

E[E(X ∣ G )] =E(X) E[var(X ∣ G )] = var(X)−var[E(X ∣ G )]

X var(X)

X G E(X ∣ G ) X

X E( ) <∞X

2

E([X−E(X ∣ G ) ) = var(X)−var[E(X ∣ G )]]

2

(4.10.32)

E([X−E(X ∣ G ) ) =E[var(X ∣ G )] = var(X)−var[E(X ∣ G )]]

2

(4.10.33)

X

X E( ) <∞X

2

X E(X) var(X)

Y E( ) <∞Y

2

X Y

L(X ∣ Y ) =E(X)+ [Y −E(Y )]

cov(X,Y )

var(Y )

(4.10.34)

var(X)[1− (X,Y )]cor

2

Y X Y E(X ∣ Y )

var(X)−var[E(X ∣ Y )]

G σ F X G E(X ∣ G )

var(X)−var[E(X ∣ G )]

G = {∅, Ω} G = σ(Y )

σ

G σ F

G

X Y E( ) <∞X

2

E( ) <∞Y

2

X Y G

cov(X,Y ∣ G ) =E([X−E(X ∣ G )][Y −E(Y ∣ G )] G)

∣

∣

∣ (4.10.35)

cov(X,Y ∣ G ) G

X E( ) <∞X

2

cov(X,X ∣ G ) = var(X ∣ G )

G

X Y E( ) <∞X

2

E( ) <∞Y

2

cov(X,Y ∣ G ) =E(XY ∣ G )−E(X ∣ G )E(Y ∣ G ) (4.10.36)
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Our next result shows how to compute the ordinary covariance of  and  by conditioning on .

Suppose again that  and  are random variables with  and . Then

Proof

From (29) and properties of conditional expected value we have

But  and similarly,

But also,  and  so subsituting we get

Thus, the covariance of  and  is the expected conditional covariance plus the covariance of the conditional expected values. This result is often a good way to compute 
 when we know the conditional distribution of  given .

This page titled 4.10: Conditional Expected Value Revisited is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via source
content that was edited to the style and standards of the LibreTexts platform.

cov(X,Y ∣ G ) =E(XY −XE(Y ∣ G )−Y E(X ∣ G )+E(X ∣ G )E(Y ∣ G ) G) =E(XY ∣ G )−E [XE(Y ∣ G ) ∣ G ] −E [Y E(X ∣ G ) ∣ G ]

∣

∣

∣
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4.11: Vector Spaces of Random Variables
       

Basic Theory

Many of the concepts in this chapter have elegant interpretations if we think of real-valued random variables as vectors in a vector space. In
particular, variance and higher moments are related to the concept of norm and distance, while covariance is related to inner product. These
connections can help unify and illuminate some of the ideas in the chapter from a different point of view. Of course, real-valued random
variables are simply measurable, real-valued functions defined on the sample space, so much of the discussion in this section is a special case of
our discussion of function spaces in the chapter on Distributions, but recast in the notation of probability.

As usual, our starting point is a random experiment modeled by a probability space . Thus,  is the set of outcomes,  is the -
algebra of events, and  is the probability measure on the sample space . Our basic vector space  consists of all real-valued random
variables defined on  (that is, defined for the experiment). Recall that random variables  and  are equivalent if 

, in which case we write . We consider two such random variables as the same vector, so that technically, our vector
space consists of equivalence classes under this equivalence relation. The addition operator corresponds to the usual addition of two real-valued
random variables, and the operation of scalar multiplication corresponds to the usual multiplication of a real-valued random variable by a real
(non-random) number. These operations are compatible with the equivalence relation in the sense that if  and  then 

 and  for . In short, the vector space  is well-defined.

Norm

Suppose that . The  norm of  is defined by

Thus,  is a measure of the size of  in a certain sense, and of course it's possible that . The following theorems establish the
fundamental properties. The first is the positive property.

Suppose again that . For ,

1. 
2.  if and only if  (so that ).

Proof

These results follow from the basic inequality properties of expected value. First  with probability 1, so . In

addition,  if and only if .

The next result is the scaling property.

Suppose again that . Then  for  and .

Proof

The next result is Minkowski's inequality, named for Hermann Minkowski, and also known as the triangle inequality.

Suppose again that . Then  for .

Proof

The first quadrant  is a convex set and  is concave on . From Jensen's
inequality, if  and  are nonnegative random variables, then

Letting  and  and simplifying gives the result. To show that  really is concave on , we can compute the second partial
derivatives. Let  so that . Then
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2
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2
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2
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k ∈ [1,∞) k X ∈ V

∥X =∥
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Clearly  and  for  and , so and , the diagonal entries of the second derivative matrix, are
nonpositive on . A little algebra shows that the determinant of the second derivative matrix  on . Thus, the second
derivative matrix of  is negative semi-definite.

It follows from the last three results that the set of random variables (again, modulo equivalence) with finite  norm forms a subspace of our
parent vector space , and that the  norm really is a norm on this vector space.

For ,  denotes the vector space of  with , and with norm .

In analysis,  is often used as the index rather than  as we have used here, but  seems too much like a probability, so we have broken with
tradition on this point. The  is in honor of Henri Lebesgue, who developed much of this theory. Sometimes, when we need to indicate the
dependence on the underlying -algebra , we write . Our next result is Lyapunov's inequality, named for Aleksandr Lyapunov. This
inequality shows that the -norm of a random variable is increasing in .

Suppose that  with . Then  for .

Proof

Note that  is convex and  is convex on . From Jensen's inequality, if  is a nonnegative random
variable then . Letting  and simplifying gives the result.

Lyapunov's inequality shows that if  and  then . Thus,  is a subspace of .

Metric

The  norm, like any norm on a vector space, can be used to define a metric, or distance function; we simply compute the norm of the difference
between two vectors.

For , the  distance (or  metric) between  is defined by

The following properties are analogous to the properties in norm properties (and thus very little additional work is required for the proofs).
These properties show that the  metric really is a metric on  (as always, modulo equivalence). The first is the positive property.

Suppose again that  . Then

1. 
2.  if and only if  (so that  and ).

Proof

These results follow directly from the positive property.

Next is the obvious symmetry property:

 for .

Next is the distance version of the triangle inequality.

 for 

Proof

From Minkowski's inequality,
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The last three properties mean that  is indeed a metric on  for . In particular, note that the standard deviation is simply the 2-distance
from  to its mean :

and the variance is the square of this. More generally, the th moment of  about  is simply the th power of the -distance from  to . The
2-distance is especially important for reasons that will become clear below, in the discussion of inner product. This distance is also called the
root mean square distance.

Center and Spread Revisited

Measures of center and measures of spread are best thought of together, in the context of a measure of distance. For a real-valued random
variable , we first try to find the constants  that are closest to , as measured by the given distance; any such  is a measure of center
relative to the distance. The minimum distance itself is the corresponding measure of spread.

Let us apply this procedure to the 2-distance.

For , define the root mean square error function by

For ,  is minimized when  and the minimum value is .

Proof

Note that the minimum value of  occurs at the same points as the minimum value of  (this is the mean
square error function). Expanding and taking expected values term by term gives

This is a quadratic function of  and hence the graph is a parabola opening upward. The minimum occurs at , and the minimum
value is . Hence the minimum value of  also occurs at  and the minimum value is .

We have seen this computation several times before. The best constant predictor of  is , with mean square error . The physical
interpretation of this result is that the moment of inertia of the mass distribution of  about  is minimized when , the center of mass.
Next, let us apply our procedure to the 1-distance.

For , define the mean absolute error function by

We will show that  is minimized when  is any median of . (Recall that the set of medians of  forms a closed, bounded interval.) We
start with a discrete case, because it's easier and has special interest.

Suppose that  has a discrete distribution with values in a finite set . Then  is minimized when  is any median of .

Proof

Note first that . Hence , where  and
where . Note that  is a continuous, piecewise linear function of , with corners at the values in .
That is, the function is a linear spline. Let  be the smallest median of . If  and , then the slope of the linear piece at  is
negative. Let  be the largest median of . If  and , then the slope of the linear piece at  is positive. If  then the
slope of the linear piece at  is 0. Thus  is minimized for every  in the median interval .

The last result shows that mean absolute error has a couple of basic deficiencies as a measure of error:

The function may not be smooth (differentiable).
The function may not have a unique minimizing value of .

Indeed, when  does not have a unique median, there is no compelling reason to choose one value in the median interval, as the measure of
center, over any other value in the interval.

Suppose now that  has a general distribution on . Then  is minimized when  is any median of .

Proof

Let . Suppose first that . Computing the expected value over the events , , and , and simplifying gives

d
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Suppose next that . Using similar methods gives

Note that the last terms on the right in these equations are nonnegative. If we take  to be a median of , then the middle terms on the right
in the equations are also nonnegative. Hence if  is a median of  and  is any other number then .

Convergence

Whenever we have a measure of distance, we automatically have a criterion for convergence.

Suppose that  for  and that , where . Then  as  in th mean if  as 
in the vector space . That is,

or equivalently  as .

When , we simply say that  as  in mean; when , we say that  as  in mean square. These are the
most important special cases.

Suppose that . If  as  in th mean then  as  in th mean.

Proof

This follows from Lyanpuov's inequality. Note that  as .

Convergence in th mean implies that the  norms converge.

Suppose that  for  and that , where . If  as  in th mean then  as 
. Equivalently, if  as  then  as .

Proof

This is a simple consequence of the reverse triangle inequality, which holds in any normed vector space. The general result is that if a
sequence of vectors in a normed vector space converge then the norms converge. In our notation here,

so if the right side converges to 0 as , then so does the left side.

The converse is not true; a counterexample is given below. Our next result shows that convergence in mean is stronger than convergence in
probability.

Suppose that  for  and that . If  as  in mean, then  as  in probability.

Proof

This follows from Markov's inequality. For ,  as .

The converse is not true. That is, convergence with probability 1 does not imply convergence in th mean; a counterexample is given below.
Also convergence in th mean does not imply convergence with probability 1; a counterexample to this is given below. In summary, the
implications in the various modes of convergence are shown below; no other implications hold in general.

Convergence with probability 1 implies convergence in probability.
Convergence in th mean implies convergence in th mean if .
Convergence in th mean implies convergence in probability.
Convergence in probability implies convergence in distribution.

However, the next section on uniformly integrable variables gives a condition under which convergence in probability implies convergence in
mean.

Inner Product

The vector space  of real-valued random variables on  (modulo equivalence of course) with finite second moment is special,
because it's the only one in which the norm corresponds to an inner product.

The inner product of  is defined by

E (|X− t|) =E (|X−s|)+(t−s) [2 P(X ≤ s)−1]+2E(t−X, s<X ≤ t) (4.11.13)

t < s

E (|X− t|) =E (|X−s|)+(t−s) [2 P(X < s)−1]+2E(X− t, t ≤X < s) (4.11.14)
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The following results are analogous to the basic properties of covariance, and show that this definition really does give an inner product on the
vector space

For  and ,

1. , the symmetric property.
2.  and  if and only if  (so that ), the positive property.
3. , the scaling property.
4. , the additive property.

Proof
1. This property is trivial from the definition.
2. Note that  and  if and only if .
3. This follows from the scaling property of expected value: 
4. This follows from the additive property of expected value: .

From parts (a), (c), and (d) it follows that inner product is bi-linear, that is, linear in each variable with the other fixed. Of course bi-linearity
holds for any inner product on a vector space. Covariance and correlation can easily be expressed in terms of this inner product. The covariance
of two random variables is the inner product of the corresponding centered variables. The correlation is the inner product of the corresponding
standard scores.

For ,

1. 
2. 

Proof
1. This is simply a restatement of the definition of covariance.
2. This is a restatement of the fact that the correlation of two variables is the covariance of their corresponding standard scores.

Thus, real-valued random variables  and  are uncorrelated if and only if the centered variables  and  are perpendicular
or orthogonal as elements of .

For , .

Thus, the norm associated with the inner product is the 2-norm studied above, and corresponds to the root mean square operation on a random
variable. This fact is a fundamental reason why the 2-norm plays such a special, honored role; of all the -norms, only the 2-norm corresponds
to an inner product. In turn, this is one of the reasons that root mean square difference is of fundamental importance in probability and statistics.
Technically, the vector space  is a Hilbert space, named for David Hilbert.

The next result is Hölder's inequality, named for Otto Hölder.

Suppose that  and . For  and ,

Proof

Note that  is a convex set and  is concave on . From Jensen's inequality, if  and 
 are nonnegative random variables then . Substituting  and  gives the result.

To show that  really is concave on , we compute the second derivative matrix:

Since  and , the diagonal entries are negative on . The determinant simplifies to

In the context of the last theorem,  and  are called conjugate exponents. If we let  in Hölder's inequality, then we get the Cauchy-
Schwarz inequality, named for Augustin Cauchy and Karl Schwarz: For ,

⟨X,Y ⟩=E(XY ) (4.11.17)
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In turn, the Cauchy-Schwarz inequality is equivalent to the basic inequalities for covariance and correlations: For ,

If  are conjugate exponents then

1. .
2.  as .

The following result is an equivalent to the identity  that we studied in the section on
covariance and correlation. In the context of vector spaces, the result is known as the parallelogram rule:

If  then

Proof

This result follows from the bi-linearity of inner product:

The following result is equivalent to the statement that the variance of the sum of uncorrelated variables is the sum of the variances, which again
we proved in the section on covariance and correlation. In the context of vector spaces, the result is the famous Pythagorean theorem, named for
Pythagoras of course.

If  is a sequence of random variables in  with  for  then

Proof

Again, this follows from the bi-linearity of inner product:

The terms with  are 0 by the orthogonality assumption, so

Projections

The best linear predictor studied in the section on covariance and correlation and conditional expected values have nice interpretation in terms of
projections onto subspaces of . First let's review the concepts. Recall that  is a subspace of  if  and  is also a vector space
(under the same operations of addition and scalar multiplication). To show that  is a subspace, we just need to show the closure
properties (the other axioms of a vector space are inherited).

If  then .
If  and  then .

Suppose now that  is a subspace of  and that . Then the projection of  onto  (if it exists) is the vector  with the
property that  is perpendicular to :

The projection has two critical properties: It is unique (if it exists) and it is the vector in  closest to . If you look at the proofs of these
results, you will see that they are essentially the same as the ones used for the best predictors of  mentioned at the beginning of this subsection.
Moreover, the proofs use only vector space concepts—the fact that our vectors are random variables on a probability space plays no special role.

E (|X| |Y |) ≤ E ( )X

2

− −−−−−

√ E ( )Y

2

− −−−−−

√ (4.11.21)

X, Y ∈L

2

|cov(X,Y )| ≤ sd(X)sd(Y ), |cor(X,Y )| ≤ 1 (4.11.22)

j, k ∈ [1,∞)

k=

j

j−1

k ↓ 1 j ↑ ∞

var(X+Y )+var(X−Y ) = 2 [var(X)+var(Y )]

X, Y ∈L

2

∥X+Y +∥X−Y = 2∥X +2∥Y∥

2

2

∥

2

2

∥

2

2

∥

2

2

(4.11.23)

∥X+Y +∥X−Y∥

2

2

∥

2

2

= ⟨X+Y ,X+Y ⟩+ ⟨X−Y ,X−Y ⟩

= (⟨X,X⟩+2⟨X,Y ⟩+ ⟨Y ,Y ⟩)+(⟨X,X⟩−2⟨X,Y ⟩+ ⟨Y ,Y ⟩) = 2∥X +2∥Y∥

2

∥

2

(4.11.24)

(4.11.25)

( , ,… , )X

1

X

2

X

n

L

2

⟨ , ⟩= 0X

i

X

j

i ≠ j

= ∥

∥

∥

∥∑

i=1

n

X

i

∥

∥

∥

2

2

∑

i=1

n

X

i

∥

2

2

(4.11.26)

=⟨ , ⟩ = ⟨ , ⟩

∥

∥

∥∑

i=1

n

X

i

∥

∥

∥

2

2

∑

i=1

n

X

i

∑

j=1

n

X

j

∑

i=1

n

∑

j=1

n

X

i

X

j

(4.11.27)

i ≠ j

= ⟨ , ⟩= ∥

∥

∥

∥∑

i=1

n

X

i

∥

∥

∥

2

2

∑

i=1

n

X

i

X

i

∑

i=1

n

X

i

∥

2

2

(4.11.28)

L

2

U L

2

U ⊆L

2

U

U ⊆L

2

U, V ∈U U+V ∈U

U ∈U c ∈ R cU ∈U

U L

2

X ∈L

2

X U V ∈U

X−V U

⟨X−V ,U⟩= 0, U ∈U (4.11.29)

U X

X
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The projection of  onto  (if it exists) is unique.

Proof

Suppose that  and  satisfy the definition. then

Hence . The last equality in the displayed equation holds by assumption and the fact that 

Suppose that  is the projection of  onto . Then

1.  for all .
2. Equality holds in (a) if and only if 

Proof
1. If  then

But the middle terms is 0 so

2. Equality holds if and only if , if and only if .

Now let's return to our study of best predictors of a random variable.

If  then the set  is a subspace of . In fact, it is the subspace generated by  and 1.

Proof

Note that  is the set of all linear combinations of the vectors  and . If  then . If  and  then 
.

Recall that for , the best linear predictor of  based on  is

Here is the meaning of the predictor in the context of our vector spaces.

If  then  is the projection of  onto .

Proof

Note first that . Thus, we just need to show that  is perpendicular to . For this, it suffices to show

1. 
2. 

We have already done this in the earlier sections, but for completeness, we do it again. Note that . Hence 
. This gives (a). By linearity,  so (b) holds as well.

The previous result is actually just the random variable version of the standard formula for the projection of a vector onto a space spanned by
two other vectors. Note that  is a unit vector and that  is perpendicular to . Thus,  is just the sum
of the projections of  onto  and :

Suppose now that  is a sub -algebra of . Of course if  is -measurable then  is -measurables, so  is a subspace of 
.

If  then  is the projection of  onto .

Proof

This is essentially the definition of  as the only (up to equivalence) random variable in  with  for
every .

X U

V

1

V

2

= ⟨ − , − ⟩= ⟨ −X+X− , − ⟩= ⟨ −X, − ⟩+ ⟨X− , − ⟩= 0∥ − ∥V

1

V

2

2

2

V

1

V

2

V

1

V

2

V

1

V

2

V

1

V

2

V

1

V

1

V

2

V

2

V

1

V

2

(4.11.30)

≡V

1

V

2

− ∈UV

1

V

2

V X U

≤∥X−V ∥

2

2

∥X−U∥

2

2

U ∈U

U ≡ V

U ∈U

= = +2⟨X−V ,V −U⟩+∥X−U∥

2

2

∥X−V +V −U∥

2

2

∥X−V ∥

2

2

∥V −U∥

2

2

(4.11.31)

= + ≥∥X−U∥

2

2

∥X−V ∥

2

2

∥V −U∥

2

2

∥X−V ∥

2

2
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= 0∥V −U∥

2

2

V ≡U

X ∈L

2

= {a+bX : a ∈ R, b ∈ R}W

X

L

2

X

W

X

1 X U, V ∈W

X

U+V ∈W

X

U ∈W

X

c ∈ R

cU ∈W

X

X, Y ∈L

2

Y X

L(Y ∣X) =E(Y )+ [X−E(X)]

cov(X,Y )

var(X)

(4.11.33)

X, Y ∈L

2

L(Y ∣X) Y W

X

L(Y ∣X) ∈W

X

Y −L(Y ∣X) W

X

⟨Y −L(Y ∣X),X⟩= 0

⟨Y −L(Y ∣X), 1⟩= 0

E (X [X−E(X)]) = var(X)

E [XL(Y ∣X)] =E(X)E(Y )+cov(X,Y ) =E(XY ) E [L(Y ∣X)] =E(Y )

1 =X−E(X) =X− ⟨X, 1⟩1X

0

1 L(Y ∣X)

Y 1 X

0

L(Y ∣X) = ⟨Y , 1⟩1+

⟨Y , ⟩X

0

⟨ , ⟩X

0

X

0

X

0

(4.11.34)

G σ F X : Ω →R G X F (G )L

2

(F)L

2

X ∈ (F)L

2

E(X ∣ G ) X (G )L

2

E(X ∣ G ) (G )L

2

E [E(X ∣ G )U] =E(XU)

U ∈ (G )L

2
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But remember that  is defined more generally for . Our final result in this discussion concerns convergence.

Suppose that  and that  is a sub -algebra of .

1. If  then 
2. If  for , , and  as  in  then  as  in 

Proof
1. Note that . Since  is increasing and convex on  we have

The last step uses Jensen's inequality. Taking expected values gives

2. Using the same ideas,

By assumption, the right side converges to 0 as  and hence so does the left side.

Examples and Applications

App Exercises

In the error function app, select the root mean square error function. Click on the -axis to generate an empirical distribution, and note the
shape and location of the graph of the error function.

In the error function app, select the mean absolute error function. Click on the -axis to generate an empirical distribution, and note the
shape and location of the graph of the error function.

Computational Exercises

Suppose that  is uniformly distributed on the interval .

1. Find  for .
2. Graph  as a function of .
3. Find .

Answer

1. 

3. 1

Suppose that  has probability density function  for , where  is a parameter. Thus,  has the Pareto
distribution with shape parameter .

1. Find  for .
2. Graph  as a function of .
3. Find .

Answer

1.  if ,  if 

3. 

Suppose that  has probability density function  for , . Verify Minkowski's inequality.

Answer

1. 

2. 

E(X ∣ G ) X ∈ (F)L

1

k ∈ [1,∞) G σ F

X ∈ (F)L

k

E(X ∣ G ) ∈ (G )L

k

∈ (F)X

n

L

k

n ∈ N

+

X ∈ (F)L

k

→XX

n

n→∞ (F)L

k

E( ∣ G ) → E(X ∣ G )X

n

n→∞ (G )L

k

|E(X ∣ G )| ≤E(|X| ∣ G ) t↦ t

k

[0,∞)

|E(X ∣ G ) ≤ [E(|X| ∣ G ) ≤E(|X ∣ G)|

k

]

k

|

k

(4.11.35)

E[|E(X ∣ G ) ] ≤E(|X ) <∞|

k

|

k

(4.11.36)

E [ ]=E [ ]≤E[| −X ]|E( ∣ G )−E(X ∣ G )|X

n

k

|E( −X ∣ G )|X

n

k

X

n

|

k

(4.11.37)

n→∞

x

x

X [0, 1]

∥X∥

k

k ∈ [1,∞)

∥X∥

k

k ∈ [1,∞)

∥Xlim

k→∞

∥

k

1

(k+1)

1/k

X f(x) =

a

x

a+1

1 ≤ x <∞ a> 0 X

a

∥X∥

k

k ∈ [1,∞)

∥X∥

k

k ∈ (1, a)

∥Xlim

k↑a

∥

k

( )

a

a−k

1/k

k< a ∞ k≥ a

∞

(X,Y ) f(x, y) = x+y 0 ≤ x ≤ 1 0 ≤ y ≤ 1

∥X+Y =∥

k

( )

−22

k+2

(k+2)(k+3)

1/k

∥X +∥Y = 2∥

k

∥

k

( + )

1

k+2

1

2(k+1)

1/k
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Let  be an indicator random variable with , where . Graph  as a function of  in each of the
cases below. In each case, find the minimum value of the function and the values of  where the minimum occurs.

1. 
2. 
3. 

Answer
1. The minimum is  and occurs at .
2. The minimum is  and occurs for 
3. The minimum is  and occurs at 

Suppose that  is uniformly distributed on the interval . Find  as a function of  and sketch the graph. Find the
minimum value of the function and the value of  where the minimum occurs.

Suppose that  is uniformly distributed on the set . Find  as a function of  and sketch the graph. Find
the minimum value of the function and the values of  where the minimum occurs.

Suppose that  has probability density function  for , . Verify Hölder's inequality in the
following cases:

1. 
2. , 

Answer

1. 
2. 

Counterexamples

The following exercise shows that convergence with probability 1 does not imply convergence in mean.

Suppose that  is a sequence of independent random variables with

1.  as  with probability 1.
2.  as  in probability.
3.  as .

Proof
1. This follows from the basic characterization of convergence with probability 1:  for .
2. This follows since convergence with probability 1 implies convergence in probability.
3. Note that  for .

The following exercise shows that convergence in mean does not imply convergence with probability 1.

Suppose that  is a sequence of independent indicator random variables with

1. .
2. .
3. .
4.  as  in th mean for every .

Proof
1. This follows from the second Borel-Cantelli lemma since 
2. This also follows from the second Borel-Cantelli lemma since .
3. This follows from parts (a) and (b).
4. Note that  as .

X P(X = 1) = p 0 ≤ p ≤ 1 E (|X− t|) t ∈ R

t

p <

1

2

p =

1

2

p >

1

2

p t = 0

1

2

t ∈ [0, 1]

1 −p t = 1

X [0, 1] (X, t) =E (|X− t|)d

1

t

t

X [0, 1] ∪ [2, 3] (X, t) =E (|X− t|)d

1

t

t

(X,Y ) f(x, y) = x+y 0 ≤ x ≤ 1 0 ≤ y ≤ 1

j= k = 2

j= 3 k =

3

2

∥X ∥Y =∥

2

∥

2

5

12

∥X +∥Y ≈ 0.4248∥

3

∥

3/2

( , , …)X

1

X

2

P (X = )= , P( = 0) = 1 − ; n ∈n

3

1

n

2

X

n

1

n

2

N

+
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→ 0X

n

n → ∞

→ 0X

n

n → ∞

E( ) → ∞X

n

n → ∞

P( > ϵ) = 1/ < ∞∑

∞

n=1

X

n

∑

∞

n=1

n

2

0 < ϵ < 1

E( ) = / = nX

n

n

3

n

2

n ∈ N

+

( , , …)X

1

X

2

P( = 1) = , P( = 0) = 1 − ; n ∈X

n

1

n

X

n

1

n

N

+
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P( = 0 for infinitely many n) = 1X

n

P( = 1 for infinitely many n) = 1X

n

P(  does not converge as n → ∞) = 1X

n

→ 0X

n

n → ∞ k k ≥ 1

P( = 1) = 1/n = ∞∑

∞

n=1

X

n

∑

∞

n=1

P( = 0) = (1 −1/n) = ∞∑

∞

n=1

X

n

∑

∞

n=1

E( ) = 1/n → 0X

n

n → ∞
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The following exercise show that convergence of the th means does not imply convergence in th mean.

Suppose that  has the Bernoulli distribution with parmaeter , so that . Let  for  and let 
. Let . Then

1.  for , so  as 
2.  for  so  does not converge to  as  in .

Proof
1. Note that  for , since  just takes values 0 and 1. Also,  and  have the same distribution so 

.
2. Note that  for . Again,  just takes values 0 and 1, so .

This page titled 4.11: Vector Spaces of Random Variables is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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4.12: Uniformly Integrable Variables
        

Two of the most important modes of convergence in probability theory are convergence with probability 1 and convergence in mean. As we
have noted several times, neither mode of convergence implies the other. However, if we impose an additional condition on the sequence of
variables, convergence with probability 1 will imply convergence in mean. The purpose of this brief, but advanced section, is to explore the
additional condition that is needed. This section is particularly important for the theory of martingales.

Basic Theory
As usual, our starting point is a random experiment modeled by a probability space . So  is the set of outcomes,  is the -
algebra of events, and  is the probability measure on the sample space . In this section, all random variables that are mentioned are
assumed to be real valued, unless otherwise noted. Next, recall from the section on vector spaces that for ,  is the vector space
of random variables  with , endowed with the norm . In particular,  simply means that 

 so that  exists as a real number. From the section on expected value as an integral, recall the following notation,
assuming of course that the expected value makes sense:

Definition

The following result is motivation for the main definition in this section.

If  is a random variable then  if and only if  as .

Proof

Note that that  is nonnegative, increasing in  and  as . From the monotone
convergence theorem,  as . On the other hand,

If  then taking limits in the displayed equation shows that  as . On the other hand, 
. So if  then  for every .

Suppose now that  is a random variable for each  in a nonempty index set  (not necessarily countable). The critical definition for this
section is to require the convergence in the previous theorem to hold uniformly for the collection of random variables .

The collection  is uniformly integrable if for each  there exists  such that for all ,

Equivalently  as  uniformly in .

Properties

Our next discussion centers on conditions that ensure that the collection of random variables  is uniformly integrable.
Here is an equivalent characterization:

The collection  is uniformly integrable if and only if the following conditions hold:

1.  is bounded.
2. For each  there exists  such that if  and  then  for all .

Proof

Suppose that  is uniformly integrable. With  there exists  such that  for all . Hence

so (a) holds. For (b), let . There exists  such that  for all . Let . If  and 
 then

(Ω,F ,P) Ω F σ

P (Ω,F)

k ∈ [1,∞) L

k

X E(|X ) <∞|

k

∥X =∥

k

[E( )]X

k

1/k

X ∈L

1

E(|X|) <∞ E(X)

E(X;A) =E(X ) = XdP1

A

∫

A

(4.12.1)

X E(|X|) <∞ E(|X|; |X| ≥ x) → 0 x→∞

|X|1(|X| ≤ x) x ∈ [0,∞) |X|1(|X| ≤ x) → |X| x→∞

E(|X|; |X| ≤ x) → E(|X|) x→∞

E(|X|) =E(|X|; |X| ≤ x)+E(|X|; |X| > x) (4.12.2)

E(|X|) <∞ E(|X| : |X| > x) → 0 x→∞

E(|X|; |X| ≤ x) ≤ x E(|X|) =∞ E(|X|; |X| > x) =∞ x ∈ [0,∞)

X

i

i I

X = { : i ∈ I}X

i

X = { : i ∈ I}X

i

ϵ> 0 x > 0 i ∈ I

E(| |; | | > x) < ϵX

i

X

i

(4.12.3)

E(| |; | | > x) → 0X

i

X

i

x→∞ i ∈ I

X = { : i ∈ I}X

i

X = { : i ∈ I}X

i

{E(| |) : i ∈ I}X

i

ϵ> 0 δ > 0 A ∈F P(A) < δ E(| |;A) < ϵX

i

i ∈ I

X ϵ= 1 x > 0 E(| |; | | > x) < 1X

i

X

i

i ∈ I

E(| |) =E(| |; | | ≤ x)+E(| |; | | > x) ≤ x+1, i ∈ IX

i

X

i

X

i

X

i

X

i

(4.12.4)

ϵ> 0 x > 0 E(| |; | | > x) < ϵ/2X

i

X

i

i ∈ I δ = ϵ/2x A ∈F

P(A) < δ

E(| |;A) =E(| |;A∩{|X| ≤ x})+E(| |;A∩{|X| > x}) ≤ xP(A)+E(| |; |X| > x) < ϵ/2+ ϵ/2 = ϵX

i

X

i

X

i

X

i

(4.12.5)
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Conversely, suppose that (a) and (b) hold. By (a), there exists  such that  for all . Let . By (b) there exists 
 such that if  with  then  for all . Next, by Markov's inequality,

Pick  such that , so that  for each . Then for each ,  for all  and
so in particular,  for all . Hence  is uniformly integrable.

Condition (a) means that  is bounded (in norm) as a subset of the vector space . Trivially, a finite collection of integrable random
variables is uniformly integrable.

Suppose that  is finite and that  for each . Then  is uniformly integrable.

A subset of a uniformly integrable set of variables is also uniformly integrable.

If  is uniformly integrable and  is a nonempty subset of , then  is uniformly integrable.

If the random variables in the collection are dominated in absolute value by a random variable with finite mean, then the collection is
uniformly integrable.

Suppose that  is a nonnegative random variable with  and that  for each . Then  is
uniformly integrable.

Proof

Clearly  for  and for all . The right side is independent of , and by the
theorem above, converges to 0 as . Hence  is uniformly integrable.

The following result is more general, but essentially the same proof works.

Suppose that  is uniformly integrable, and  is a set of variables with the property that for each 
 there exists  such that . Then  is uniformly integrable.

As a simple corollary, if the variables are bounded in absolute value then the collection is uniformly integrable.

If there exists  such that  for all  then  is uniformly integrable.

Just having  bounded in  (condition (a) in the characterization above) is not sufficient for  to be uniformly
integrable; a counterexample is given below. However, if  is bounded in  for some , then  is uniformly integrable.
This condition means that  is bounded (in norm) as a subset of the vector space .

If  is bounded for some , then  is uniformly integrable.

Proof

Suppose that for some  and ,  for all . Then  and so  is increasing on . So if 
 for  then

Hence  on the event . Therefore

The last expression is independent of  and converges to 0 as . Hence  is uniformly integrable.

Uniformly integrability is closed under the operations of addition and scalar multiplication.

Suppose that  and  are uniformly integrable and that . Then each of the following collections
is also uniformly integrable.

c > 0 E(| |) ≤ cX

i

i ∈ I ϵ> 0

δ > 0 A ∈F P(A) < δ E(| |;A) < ϵX

i

i ∈ I

P(| | > x) ≤ ≤ , i ∈ IX

i

E(| |)X

i

x

c

x

(4.12.6)

x > 0 c/x < δ P(| | > x) < δX

i

i ∈ I j∈ I E(| |; | | > x) < ϵX

i

X

j

i ∈ I

E(| |; | | > x) < ϵX

i

X

i

i ∈ I X

X L

1

I E(| |) <∞X

i

i ∈ I X = { : i ∈ I}X

i

{ : i ∈ I}X

i

J I { : j∈ J}X

j

Y E(Y ) <∞ | | ≤ YX

i

i ∈ I X = { : i ∈ I}X

i

E(| |; | | > x) ≤E(Y ;Y > x)X

i

X

i

x ∈ [0,∞) i ∈ I i ∈ I

x→∞ X

Y = { : j∈ J}X

j

X = { : i ∈ I}X

i

i ∈ I j∈ J | | ≤ | |X

i

Y

j

X

c > 0 | | ≤ cX

i

i ∈ I X = { : i ∈ I}X

i

E(| |)X

i

i ∈ I X = { : i ∈ I}X

i

E(| )X

i

|

k

i ∈ I k> 1 X

X L

k

{E(| : i ∈ I}X

i

|

k

k> 1 { : i ∈ I}X

i

k> 1 c > 0 E(| ) ≤ cX

i

|

k

i ∈ I k−1 > 0 t↦ t

k−1

(0,∞)

| | > xX

i

x > 0

| = | || ≥ | |X

i

|

k

X

i

X

i

|

k−1

X

i

x

k−1

(4.12.7)

| | ≤ | /X

i

X

i

|

k

x

k−1

| | > xX

i

E(| |; | | > x) ≤E( ; | | > x) ≤ ≤X

i

X

i

|X

i

|

k

x

k−1

X

i

E(| )X

i

|

k

x

k−1

c

x

k−1

(4.12.8)

i ∈ I x→∞ X

X = { : i ∈ I}X

i

Y = { : i ∈ I}Y

i

c ∈ R
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1. 
2. 

Proof

We use the characterization above. The proofs use standard techniques, so try them yourself.

1. There exists  such that  and  for all . Hence

Next let . There exists  such that if  with  then  for all , and similarly, there
exists  such that if  with  then  for all . Hence if  with  then

2. There exists  such that  for all . Hence

The second condition is trivial if , so suppose . For  there exists  such that if  and  then 
 for all . Hence .

The following corollary is trivial, but will be needed in our discussion of convergence below.

Suppose that  is uniformly integrable and that  is a random variable with . Then  is
uniformly integrable.

Proof

Let  for each . Then  is uniformly integrable, so the result follows from the previous theorem.

Convergence

We now come to the main results, and the reason for the definition of uniform integrability in the first place. To set up the notation, suppose
that  is a random variable for  and that  is a random variable. We know that if  as  in mean then  as 

 in probability. The converse is also true if and only if the sequence is uniformly integrable. Here is the first half:

If  as  in mean, then  is uniformly integrable.

Proof

The hypothesis means that  as  in the vector space . That is,  for , , and 
 as . From the last section, we know that this implies that  as , so  is

bounded in . Let . Then there exists  such that if  then . Since all of our variables are
in , for each  there exists  such that if  and  then . Similarly, there exists 

 such that if  and  then . Let  so . If  and 
 then

If  then  since . If  then . For all , 
 since . So for all ,  and hence  is uniformly integrable.

Here is the more important half, known as the uniform integrability theorem:

If  is uniformly integrable and  as  in probability, then  as  in mean.

Proof

Since  as  in probability, we know that there exists a subsequence  of  such that 
 as  with probability 1. By the uniform integrability,  is bounded in . Hence by Fatou's lemma

Let  for . From the corollary above, we know that  is uniformly integrable, and we also know that
 converges to 0 as  in probability. Hence we need to show that  as  in mean. Let . By uniform

X+Y = { + : i ∈ I}X

i

Y

i

cX = {c : i ∈ I}X

i

a, b ∈ (0,∞) E(| |) ≤ aX

i

E(| |) ≤ bY

i

i ∈ I

E(| + |) ≤E(| | + | |) ≤E(| |)+E(| |) ≤ a+b, i ∈ IX

i

Y

i

X

i

Y

i

X

i

Y

i

(4.12.9)

ϵ> 0 > 0δ

1

A ∈F P(A) < δ

1

E(| |;A) < ϵ/2X

i

i ∈ I

> 0δ

2

A ∈F P(A) < δ

2

E(| |;A) < ϵ/2Y

i

i ∈ I A ∈F P(A) < ∧δ

1

δ

2

E(| + |;A) ≤E(| | + | |;A) =E(| |;A)+E(| |;A) < ϵ/2+ ϵ/2 = ϵ, i ∈ IX

i

Y

i

X

i

Y

i

X

i

Y

i

(4.12.10)

a ∈ (0,∞) E(| |) ≤ aX

i

i ∈ I

E(|c |) = |c|E(| |) ≤ ca, i ∈ IX

i

X

i

(4.12.11)

c = 0 c ≠ 0 ϵ> 0 δ > 0 A ∈F P(A) < δ

E(| |;A) < ϵ/cX

i

i ∈ I E(|c |;A) = |c|E(| |;A) < ϵX

i

X

i

{ : i ∈ I}X

i

X E(|X|) <∞ { −X : i ∈ I}X

i

=XY

i

i ∈ I { : i ∈ I}Y

i

X

n

n ∈ N

+

X →XX

n

n→∞ →XX

n

n→∞

→XX

n

n→∞ { : n ∈ N}X

n

→XX

n

n→∞ L

1

E(| |) <∞X

n

n ∈ N

+

E(|X|) <∞

E(| −X|) → 0X

n

n→∞ E(| |) → E(|X|)X

n

n→∞ E(| |)X

n

n ∈ N ϵ> 0 N ∈ N

+

n>N E(| −X|) < ϵ/2X

n

L

1

n ∈ N

+

> 0δ

n

A ∈F P(A) < δ

n

E(| −X|;A) < ϵ/2X

n

> 0δ

0

A ∈F P(A) < δ

0

E(|X|;A) < ϵ/2 δ =min{ : n ∈ {0, 1,… ,N}}δ

n

δ > 0 A ∈F

P(A) < δ

E(| |;A) =E(| −X+X|;A) ≤E(| −X|;A)+E(|X|;A), n ∈X

n

X

n

X

n

N

+

(4.12.12)

n≤N E(| −X|;A) ≤ ϵ/2X

n

δ ≤ δ

n

n>N E(| −X|;A) ≤E(| −X|) < ϵ/2X

n

X

n

n

E(|X|;A) < ϵ/2 δ ≤ δ

0

n ∈ N

+

E(| | : A) < ϵX

n

{ : n ∈ }X

n

N

+

{ : n ∈ }X

n

N

+

→XX

n

n→∞ →XX

n

n→∞

→XX

n

n→∞ ( : k ∈ )X

n

k

N

+

( : n ∈ )X

n

N

+

→XX

n

k

k→∞ E(| |)X

n

n ∈ N

+

E(|X|) =E( | |) ≤ E (| |) ≤ E (| |) <∞lim inf

k→∞

X

n

k

lim inf

n→∞

X

n

k

lim sup

n→∞

X

n

k
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= −XY

n

X

n

n ∈ N

+

{ : n ∈ }Y

n

N

+

Y

n

n→∞ →0Y

n

n→∞ ϵ> 0
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integrability, there exists  such that if  and  then  for all . Since  as  in
probability, there exists  such that if  then . Hence if  then

Hence  as  in mean.

As a corollary, recall that if  as  with probability 1, then  as  in probability. Hence if 
 is uniformly integrable then  as  in mean.

Examples
Our first example shows that bounded  norm is not sufficient for uniform integrability.

Suppose that  is uniformly distributed on the interval  (so  has the standard uniform distribution). For , let 
. Then

1.  for all 
2.  for ,  with 

Proof

First note that  since .

1. By definition,  for .
2. If  then  if and only if  if and only if . Hence  as

before.

By part (b),  does not converge to 0 as  uniformly in , so  is not uniformly
integrable.

The next example gives an important application to conditional expected value. Recall that if  is a random variable with  and
 is a sub -algebra of  then  is the expected value of  given the information in , and is the -measurable random variable

closest to  in a sense. Indeed if  then  is the projection of  onto . The collection of all conditional expected
values of  is uniformly integrable:

Suppose that  is a real-valued random variable with . Then  is uniformly
integrable.

Proof

We use the characterization above. Let  be a sub -algebra of . Recall that  and hence

So property (a) holds. Next let . Since , there exists  such that if  and  then .
Suppose that  with . Then  so

So condition (b) holds. Note that the first equality in the displayed equation holds since .

Note that the collection of sub -algebras of , and so also the collection of conditional expected values above, might well be uncountable.
The conditional expected values range from , when  to  itself, when .

This page titled 4.12: Uniformly Integrable Variables is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

δ > 0 A ∈F P(A) < δ E(| | : A) < ϵ/2Y

n

n ∈ N → 0Y

n

n → ∞

N ∈ N

+

n >N P(| | > ϵ/2) < δY

n

n >N

E(| |) =E(| |; | | ≤ ϵ/2) +E(| |; | | > ϵ/2) < ϵ/2 + ϵ/2 = ϵY
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n
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n
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→ 0Y
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→XX
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→XX
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L
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n
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n

n ∈ N

+
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n

X

n
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+

n > x
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n

X

n
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n
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n

n ∈ N

+

n > x > 0 > xX

n

= nX

n

U ≤ 1/n E( ; > x) = nP(U ≤ 1/n) = 1X

n

X

n

E(| |; | | > x)X

n

X

n

x → ∞ n ∈ N

+

X = { : n ∈ }X

n

N

+

X E(|X|) < ∞

G σ F E(X ∣ G ) X G G

X X ∈ (F)L

2

E(X ∣ G ) X (G )L

2

X

X E(|X|) < ∞ {E(X ∣ G ) : G  is a sub σ-algebra of F}

G σ F |E(X ∣ G )| ≤E(|X| ∣ G )

E[|E(X ∣ G )|] ≤E[E(|X| ∣ G )] =E(|X|) (4.12.15)

ϵ> 0 E(|X|) < ∞ δ > 0 A ∈F P(A) < δ E(|X|;A) < ϵ

A ∈ G P(A) < δ |E(X ∣ G )| ≤E(|X| ∣ G )1

A

1

A

E[|E(X ∣ G )|;A] ≤E[E(|X| ∣ G );A] =E[E(|X| ∣ G ] =E(|X|;A) < ϵ1

A
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4.13: Kernels and Operators
        

The goal of this section is to study a type of mathematical object that arises naturally in the context of conditional expected value
and parametric distributions, and is of fundamental importance in the study of stochastic processes, particularly Markov processes.
In a sense, the main object of study in this section is a generalization of a matrix, and the operations generalizations of matrix
operations. If you keep this in mind, this section may seem less abstract.

Basic Theory

Definitions

Recall that a measurable space  consists of a set  and a -algebra  of subsets of . If  is a positive measure on 
, then  is a measure space. The two most important special cases that we have studied frequently are

1. Discrete:  is countable,  is the collection of all subsets of , and  is counting measure on .
2. Euclidean:  is a measurable subset of  for some ,  is the collection of subsets of  that are also measurable,

and  is -dimensional Lebesgue measure on .

More generally,  usually comes with a topology that is locally compact, Hausdorff, with a countable base (LCCB), and  is the
Borel -algebra, the -algebra generated by the topology (the collection of open subsets of ). The measure  is usually a Borel
measure, and so satisfies  if  is compact. A discrete measure space is of this type, corresponding to the discrete
topology. A Euclidean measure space is also of this type, corresponding to the Euclidean topology, if  is open or closed (which is
usually the case). In the discrete case, every function from  to another measurable space is measurable, and every from function
from  to another topological space is continuous, so the measure theory is not really necessary.

Recall also that the measure space  is -finite if there exists a countable collection  such that 
 for  and . If  is a Borel measure space corresponding to an LCCB topology, then it is -

finite.

If  is measurable, define . Of course we may well have . Let  denote the
collection of bounded measurable functions . Under the usual operations of pointwise addition and scalar multiplication,

 is a vector space, and  is the natural norm on this space, known as the supremum norm. This vector space plays an
important role.

In this section, it is sometimes more natural to write integrals with respect to the positive measure  with the differential before the
integrand, rather than after. However, rest assured that this is mere notation, the meaning of the integral is the same. So if 

 is measurable then we may write the integral of  with respect to  in operator notation as

assuming, as usual, that the integral exists. This will be the case if  is nonnegative, although  is a possible value. More
generally, the integral exists in  if  or  where  and  are the positive and negative parts of 

. If both are finite, the integral exists in  (and  is integrable with respect to ). If If  is a probability measure and we think of 
 as the sample space of a random experiment, then we can think of  as a real-valued random variable, in which case our

new notation is not too far from our traditional expected value . Our main definition comes next.

Suppose that  and  are measurable spaces. A kernel from  to  is a function 
such that

1.  is a measurable function from  into  for each .
2.  is a positive measure on  for each .

If , then  is said to be a kernel on .

There are several classes of kernels that deserve special names.

Suppose that  is a kernel from  to . Then

(S,S ) S σ S S μ

(S,S ) (S,S ,μ)

S S =P(S) S μ=# (S,S )

S R

n

n ∈ N

+

S S

μ= λ

n

n (S,S )

S S

σ σ S μ

μ(C) <∞ C ⊆ S

S

S

S

(S,S ,μ) σ { : i ∈ I} ⊆SA

i

μ( ) <∞A

i

i ∈ I S =⋃

i∈I

A

i

(S,S ,μ) σ

f : S→R ∥f∥ = sup{|f(x)| : x ∈ S} ∥f∥ =∞ B(S)

f : S→R

B(S) ∥ ⋅ ∥

μ

f : S→R f μ

μf = μ(dx)f(x)∫

S

(4.13.1)

f ∞

R∪{−∞,∞} μ <∞f

+

μ <∞f

−

f

+

f

−

f R f μ μ

(S,S ) f

E(f)

(S,S ) (T ,T ) (S,S ) (T ,T ) K : S×T → [0,∞]

x↦K(x,A) S [0,∞] A ∈ T

A↦K(x,A) T x ∈ S

(T ,T ) = (S,S ) K (S,S )

K (S,S ) (T ,T )
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1.  is -finite if the measure  is -finite for every .
2.  is finite if  for every .
3.  is bounded if  is bounded in .
4.  is a probability kernel if  for every .

Define , so that  if  is a bounded kernel and  if  is a probability kernel.

So a probability kernel is bounded, a bounded kernel is finite, and a finite kernel is -finite. The terms stochastic kernel and
Markov kernel are also used for probability kernels, and for a probability kernel  of course. The terms are consistent with
terms used for measures:  is a finite kernel if and only if  is a finite measure for each , and  is a probability kernel
if and only if  is a probability measure for each . Note that  is simply the supremum norm of the function 

.

A kernel defines two natural integral operators, by operating on the left with measures, and by operating on the right with
functions. As usual, we are often a bit casual witht the question of existence. Basically in this section, we assume that any integrals
mentioned exist.

Suppose that  is a kernel from  to .

1. If  is a positive measure on , then  defined as follows is a positive measure on :

2. If  is measurable, then  defined as follows is measurable (assuming that the integrals exist in ):

Proof
1. Clearly  for . Suppose that  is a countable collection of disjoint sets in  and 

. Then

The interchange of sum and integral is justified since the terms are nonnegative.
2. The measurability of  follows from the measurability of  and of  for , and from basic properties

of the integral.

Thus, a kernel transforms measures on  into measures on , and transforms certain measurable functions from  to 
into measurable functions from  to . Again, part (b) assumes that  is integrable with respect to the measure  for every 

. In particular, the last statement will hold in the following important special case:

Suppose that  is a kernel from  to  and that .

1. If  is finite then  is defined and .
2. If  is bounded then .

Proof
1. If  is finite then

K σ K(x, ⋅) σ x ∈ S

K K(x,T ) <∞ x ∈ S

K K(x,T ) x ∈ S

K K(x,T ) = 1 x ∈ S

∥K∥ = sup{K(x,T ) : x ∈ S} ∥K∥ <∞ K ∥K∥ = 1 K

σ

∥K∥ = 1

K K(x, ⋅) x ∈ S K

K(x, ⋅) x ∈ S ∥K∥

x↦K(x,T )

K (S,S ) (T ,T )

μ (S,S ) μK (T ,T )

μK(A) = μ(dx)K(x,A), A ∈ T∫

S

(4.13.2)

f : T →R Kf : S→R R

Kf(x) = K(x, dy)f(y), x ∈ S∫

T

(4.13.3)

μK(A) ≥ 0 A ∈ T { : i ∈ J}A

j

T

A=⋃

j∈J

A

j

μK(A) = μ(dx)K(x,A) = μ(dx)( K(x, ))∫

S

∫

S

∑

j∈J

A

j

= μ(dx)K(x, ) = μK( )∑

j∈J

∫

S

A

j

∑

j∈J

A

j

Kf f x↦K(x,A) A ∈S

(S,S ) (T ,T ) T R

S R f K(x, ⋅)

x ∈ S

K (S,S ) (T ,T ) f ∈B(T )

K Kf ∥Kf∥ = ∥K∥∥f∥

K Kf ∈B(T )

K

K |f | (x) = K(x, dy) |f(y)| ≤ K(x, dy)∥f∥ = ∥f∥K(x,T ) <∞ x ∈ S∫

T

∫

T

(4.13.4)
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Hence  is integrable with respect to  for each  so  is defined. Continuing with our inequalities, we have 
 so . Moreover equality holds when , the

constant function 1 on .
2. If  is bounded then  so from (a), .

The identity kernel  on the measurable space  is defined by  for  and .

Thus,  if  and  if . So  is the indicator function of , while 
is point mass at . Clearly the identity kernel is a probability kernel. If we need to indicate the dependence on the particular
space, we will add a subscript. The following result justifies the name.

Let  denote the identity kernel on .

1. If  is a positive measure on  then .
2. If  is measurable, then .

Constructions

We can create a new kernel from two given kernels, by the usual operations of addition and scalar multiplication.

Suppose that  and  are kernels from  to , and that . Then  and  defined below are also
kernels from  to .

1.  for  and .
2.  for  and .

If  and  are -finite (finite) (bounded) then  and  are -finite (finite) (bounded), respectively.

Proof

These results are simple.

1. Since  is measurable for , so is . Since  is a positive measure on 
 for , so is  since .

2. Since  and  are measurable for , so is . Since 
and  are positive measures on  for , so is .

A simple corollary of the last result is that if  then  is a kerneal from  to . In particular, if 
 are probability kernels and  then  is a probability kernel. A more interesting and important way to

form a new kernel from two given kernels is via a “multiplication” operation.

Suppose that  is a kernel from  to  and that  is a kernel from  to . Then  defined as follows
is a kernel from  to :

1. If  is finite and  is bounded then  is finite.
2. If  and  are bounded then  is bounded.
3. If  and  are stochastic then  is stochastic

Proof

The measurability of  for  follows from basic properties of the integral. For the second property, fix 
. Clearly  for . Suppose that  is a countable collection of disjoint sets in  and 

. Then

f K(x, ⋅) x ∈ S Kf

|Kf(x)| ≤K|f |(x) ≤ ∥f∥K(x,T ) ≤ ∥f∥∥K∥ ∥Kf∥ ≤ ∥K∥∥f∥ f = 1

T

T

K ∥K∥ <∞ ∥Kf∥ <∞

I (S,S ) I(x,A) = 1(x ∈ A) x ∈ S A ∈S

I(x,A) = 1 x ∈ A I(x,A) = 0 x ∉ A x↦ I(x,A) A ∈S A↦ I(x,A)

x ∈ S

I (S,S )

μ (S,S ) μI = μ

f : S→R If = f

K L (S,S ) (T ,T ) c ∈ [0,∞) cK K+L

(S,S ) (T ,T )

(cK)(x,A) = cK(x,A) x ∈ S A ∈ T

(K+L)(x,A) =K(x,A)+L(x,A) x ∈ S A ∈ T

K L σ cK K+L σ

x↦K(x,A) A ∈ T x↦ cK(x,A) A↦K(x,A)

(T ,T ) x ∈ S A↦ cK(x,A) c ≥ 0

x↦K(x,A) x↦L(x,A) A ∈ T x↦K(x,A)+L(x,A) A↦K(x,A)

A↦L(x,A) (T ,T ) x ∈ S A↦K(x,A)+L(x,A)

a, b ∈ [0,∞) aK+bL (S,S ) (T ,T )

K, L p ∈ (0, 1) pK+(1−p)L

K (R,R) (S,S ) L (S,S ) (T ,T ) KL

(R,R) (T ,T )

KL(x,A) = K(x, dy)L(y,A), x ∈ R, A ∈ T∫

S

(4.13.5)

K L KL

K L KL

K L KL

x↦(KL)(x,A) A ∈ T

x ∈ R KL(x,A) ≥ 0 A ∈ T { : j∈ J}A

j

T

A=⋃

j∈J

A

j

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10499?pdf


4.13.4 https://stats.libretexts.org/@go/page/10499

The interchange of sum and integral is justified since the terms are nonnegative.

Once again, the identity kernel lives up to its name:

Suppose that  is a kernel from  to . Then

1. 
2. 

The next several results show that the operations are associative whenever they make sense.

Suppose that  is a kernel from  to ,  is a positive measure on , , and  is measurable.
Then, assuming that the appropriate integrals exist,

1. 
2. 
3. 

Proof

These results follow easily from the definitions.

1. The common measure on  is  for .
2. The common function from  to  is  for , assuming that the integral exists for 

.
3. The common real number is , assuming that the integrals exist.

Suppose that  is a kernel from  to  and  is a kernel from  to . Suppose also that  is a positive
measure on ,  is measurable, and . Then, assuming that the appropriate integrals exist,

1. 
2. 
3. 

Proof

These results follow easily from the definitions.

1. The common measure on  is  for .
2. The common measurable function from  to  is  for , assuming that the

integral exists for .
3. The common kernel from  to  is  for  and .

Suppose that  is a kernel from  to ,  is a kernel from  to , and  is a kernel from  to 
. Then .

Proof

This results follow easily from the definitions. The common kernel from  to  is

The next several results show that the distributive property holds whenever the operations makes sense.

KL(x,A) = K(x, dy)L(x,A) = K(x, dy)( L(y, ))∫

S

∫

S

∑

j∈J

A

j

= K(x, dy)L(y, ) = KL(x, )∑

j∈J

∫

S

A

j

∑

j∈J

A

j

K (S,S ) (T ,T )

K =KI

S

K =KI

T

K (S,S ) (T ,T ) μ S c ∈ [0,∞) f : T →R

c(μK) = (cμ)K

c(Kf) = (cK)f

(μK)f = μ(Kf)

T cμK(A) = c μ(dx)K(x,A)∫

S

A ∈ T

S R cKf(x) = c K(x, dy)f(y)∫

S

x ∈ S

x ∈ S

μKf = μ(dx) K(x, dy)f(y)∫

S

∫

T

K (R,R) (S,S ) L (S,S ) (T ,T ) μ

(R,R) f : T →R c ∈ [0,∞)

(μK)L= μ(KL)

K(Lf) = (KL)f

c(KL) = (cK)L

(T ,T ) μKL(A) = μ(dx) K(x, dy)L(y,A)∫

R

∫

S

A ∈ T

R R KLf(x) = K(x, dy) L(y, dz)f(z)∫

S

∫

T

x ∈ R

x ∈ S

(R,R) (T ,T ) cKL(x,A) = c K(x, dy)L(y,A)∫

S

x ∈ R A ∈ T

K (R,R) (S,S ) L (S,S ) (T ,T ) M (T ,T )

(U,U ) (KL)M =K(LM)

(R,R) (U,U )

KLM(x,A) = K(x, dy) L(y, dz)M(z,A), x ∈ R, A ∈U∫

S

∫

T

(4.13.6)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10499?pdf


4.13.5 https://stats.libretexts.org/@go/page/10499

Suppose that  and  are kernels from  to  and that  and  are kernels from  to . Suppose
also that  is a positive measure on  and that  is measurable. Then, assuming that the appropriate integrals
exist,

1. 
2. 
3. 
4. 

Suppose that  is a kernel from  to , and that  and  are positive measures on , and that  and  are
measurable functions from  to . Then, assuming that the appropriate integrals exist,

1. 
2. 
3. 
4. 

In particular, note that if  is a kernel from  to , then the transformation  defined for positive measures on 
, and the transformation  defined for measurable functions  (for which  exists), are both linear

operators. If  is a positive measure on , then the integral operator  defined for measurable  (for which 
 exists) is also linear, but of course, we already knew that. Finally, note that the operator  is positive: if  then 

. Here is the important summary of our results when the kernel is bounded.

If  is a bounded kernel from  to , then  is a bounded, linear transformation from  to  and 
 is the norm of the transformation.

The commutative property for the product of kernels fails with a passion. If  and  are kernels, then depending on the measurable
spaces,  may be well defined, but not . Even if both products are defined, they may be kernels from or to different
measurable spaces. Even if both are defined from and to the same measurable spaces, it may well happen that . Some
examples are given below

If  is a kernel on  and , we let , the -fold power of . By convention, , the identity
kernel on .

Fixed points of the operators associated with a kernel turn out to be very important.

Suppose that  is a kernel from  to .

1. A positive measure  on  such that  is said to be invariant for .
2. A measurable function  such that  is said to be invariant for 

So in the language of linear algebra (or functional analysis), an invariant measure is a left eigenvector of the kernel, while an
invariant function is a right eigenvector of the kernel, both corresponding to the eigenvalue 1. By our results above, if  and  are
invariant measures and , then  and  are also invariant. Similarly, if  and  are invariant functions and ,
the  and  are also invariant.

Of couse we are particularly interested in probability kernels.

Suppose that  is a probability kernel from  to  and that  is a probability kernel from  to .
Suppose also that  is a probability measure on . Then

1.  is a probability kernel from  to .
2.  is a probability measure on .

Proof
1. We know that  is a kernel from  to . So we just need to note that

K L (R,R) (S,S ) M N (S,S ) (T ,T )

μ (R,R) f : S→R

(K+L)M =KM +LM

K(M +N) =KM +KN

μ(K+L) = μK+μL

(K+L)f =Kf +Lf

K (S,S ) (T ,T ) μ ν (S,S ) f g

T R

(μ+ν)K = μK+νK

K(f +g) =Kf +Kg

μ(f +g) = μf +μg

(μ+ν)f = μf +νf

K (S,S ) (T ,T ) μ↦ μK

(S,S ) f ↦Kf f : T →R Kf

μ (S,S ) f ↦ μf f : S→R

μf f ↦Kf f ≥ 0

Kf ≥ 0

K (S,S ) (T ,T ) f ↦Kf B(T ) B(S)

∥K∥

K L

KL LK

KL≠LK

K (S,S ) n ∈ N =KK⋯KK

n

n K = IK

0

S

K (S,S ) (T ,T )

μ (S,S ) μK = μ K

f : T →R Kf = f K

μ ν

c ∈ [0,∞) μ+ν cμ f g c ∈ R

f +g cf

P (R,R) (S,S ) Q (S,S ) (T ,T )

μ (R,R)

PQ (R,R) (T ,T )

μP (S,S )

PQ (R,R) (T ,T )

PQ(T ) = P (x, dy)Q(y,T ) = P (x, dy) = P (x,S) = 1, x ∈ R∫

S

∫

S

(4.13.7)
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2. We know that  is a positive measure on . So we just need to note that

As a corollary, it follows that if  is a probability kernel on , then so is  for .

The operators associated with a kernel are of fundamental importance, and we can easily recover the kernel from the operators.
Suppose that  is a kernel from  to , and let  and . Then trivially,  where as usual,

 is the indicator function of . Trivially also  where  is point mass at .

Kernel Functions

Usually our measurable spaces are in fact measure spaces, with natural measures associated with the spaces, as in the special cases
described in (1). When we start with measure spaces, kernels are usually constructed from density functions in much the same way
that positive measures are defined from density functions.

Suppose that  and  are measure spaces. As usual,  is given the product -algebra . If 
 is measurable, then the function  defined as follows is a kernel from  to :

Proof

The measurability of  for  follows from a basic property of the integral. The fact that
 is a positive measure on  for  also follows from a basic property of the integral. In

fact,  is the density of this measure with respect to .

Clearly the kernel  depends on the positive measure  on  as well as the function , while the measure  on  plays
no role (and so is not even necessary). But again, our point of view is that the spaces have fixed, natural measures. Appropriately
enough, the function  is called a kernel density function (with respect to ), or simply a kernel function.

Suppose again that  and  are measure spaces. Suppose also  is a kernel from  to  with
kernel function . If  is measurable, then, assuming that the integrals exists,

Proof

This follows since the function  is the density of the measure  with respect to :

A kernel function defines an operator on the left with functions on  in a completely analogous way to the operator on the right
above with functions on .

Suppose again that  and  are measure spaces, and that  is a kernel from  to  with kernel
function . If  is measurable, then the function  defined as follows is also measurable, assuming that
the integrals exists

The operator defined above depends on the measure  on  as well as the kernel function , while the measure  on 
playes no role (and so is not even necessary). But again, our point of view is that the spaces have fixed, natural measures. Here is
how our new operation on the left with functions relates to our old operation on the left with measures.

μP (S,S ))

μP (S) = μ(dx)P (x,S) = μ(dx) = μ(R) = 1∫

R

∫

R

(4.13.8)

P (S,S ) P

n

n ∈ N

K (S,S ) (T ,T ) x ∈ S A ∈ T K (x) =K(x,A)1

A

1

A

A K(A) =K(x,A)δ

x

δ

x

x

(S,S ,λ) (T ,T ,μ) S×T σ S ⊗T

k : S×T → [0,∞) K (S,S ) (T ,T )

K(x,A) = k(x, y)μ(dy), x ∈ S, A ∈ T∫

A

(4.13.9)

x↦K(x,A) = k(x, y)μ(dy)∫

A

A ∈ T

A↦K(x,A) = k(x, y)μ(dy)∫

A

T x ∈ S

y↦ k(x, y) μ

K μ (T ,T ) k λ (S,S )

k μ

(S,S ,λ) (T ,T ,μ) K (S,S ) (T ,T )

k f : T →R

Kf(x) = k(x, y)f(y)μ(dy), x ∈ S∫

S

(4.13.10)

y↦ k(x, y) A↦K(x,A) μ

Kf(x) = K(x, dy)f(y) = k(x, y)f(y)μ(dy), x ∈ S∫

S

∫

S

(4.13.11)

S

T

(S,S ,λ) (T ,T ,μ) K (S,S ) (T ,T )

k f : S→R fK : T →R

fK(y) = λ(dx)f(x)k(x, y), y ∈ T∫

S

(4.13.12)

λ (S,S ) k μ (T ,T )
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Suppose again that  and  are measure spaces, and that  is a kernel from  to  with kernel
function . Suppose also that  is measurable, and let  denote the measure on  that has density  with
respect to . Then  is the density of the measure  with respect to .

Proof

The main tool, as usual, is an interchange of integrals. For ,

As always, we are particularly interested in stochastic kernels. With a kernel function, we can have doubly stochastic kernels.

Suppose again that  and  are measure spaces and that  is measurable. Then  is a
double stochastic kernel function if

1.  for 
2.  for 

Of course, condition (a) simply means that the kernel associated with  is a stochastic kernel according to our original definition.

The most common and important special case is when the two spaces are the same. Thus, if  is a measure space and 
 is measurable, then we have an operator  that operates on the left and on the right with measurable

functions :

If  is nonnegative and  is the measure on with density function , then  is the density function of the measure  (both with
respect to ).

Suppose again that  is a measure space and  is measurable. Then  is symmetric if 
 for all .

Of course, if  is a symmetric, stochastic kernel function on  then  is doubly stochastic, but the converse is not true.

Suppose that , , and  are measure spaces. Suppose also that  is a kernel from  to 
with kernel function , and that  is a kernel from  to  with kernel function . Then the kernel  from 
to  has density  given by

Proof

Once again, the main tool is an interchange of integrals via Fubini's theorem. Let  and . Then

Examples and Special Cases

(S,S ,λ) (T ,T ,μ) K (S,S ) (T ,T )

k f : S→ [0,∞) ρ (S,S ) f

λ fK ρK μ

B ∈ T

ρK(B) = ρ(dx)K(x,B) = f(x)K(x,B)λ(dx) = f(x)[ k(x, y)μ(dy)]λ(dx)∫

S

∫

S

∫

S

∫

B

= [ f(x)k(x, y)λ(dx)]μ(dy) = fK(y)μ(dy)∫

B

∫

S

∫

B

(S,S ,λ) (T ,T ,μ) k : S×T → [0,∞) k

k(x, y)μ(dy) = 1∫

T

x ∈ S

λ(dx)k(x, y) = 1∫

S

y ∈ S

k

(S,S ,λ)

k : S×S→ [0,∞) K

f : S→R

fK(y)

Kf(x)

= λ(dx)f(x)k(x, y), y ∈ S∫

S

= k(x, y)f(y)λ(dy), x ∈ S∫

S

f μ f fK μK

λ

(S,S ,λ) k : S×S→ [0,∞) k

k(x, y) = k(y, x) (x, y) ∈ S

2

k (S,S ,λ) k

(R,R,λ) (S,S ,μ) (T ,T , ρ) K (R,R) (S,S )

k L (S,S ) (T ,T ) l KL (R,R)

(T ,T ) kl

kl(x, z) = k(x, y)l(y, z)μ(dy), (x, z) ∈ R×T∫

S

(4.13.13)

x ∈ R B ∈ T

KL(x,B) = K(x, dy)L(y,B) = k(x, y)L(y,B)μ(dy)∫

S

∫

S

= k(x, y)[ l(y, z)ρ(dz)]μ(dy) = [ k(x, y)l(y, z)μ(dy)]ρ(dz) = kl(x, z)μ(dz)∫

S

∫

B

∫

B

∫

S

∫

B
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The Discrete Case

In this subsection, we assume that the measure spaces are discrete, as described in (1). Since the -algebra (all subsets) and the
measure (counting measure) are understood, we don't need to reference them. Recall that integrals with respect to counting measure
are sums. Suppose now that  is a kernel from the discrete space  to the discrete space . For  and , let 

. Then more generally,

The function  is simply the kernel function of the kernel , as defined above, but in this case we usually don't
bother with using a different symbol for the function as opposed to the kernel. The function  can be thought of as a matrix, with
rows indexed by  and columns indexed by  (and so an infinite matrix if  or  is countably infinite). With this interpretation, all
of the operations defined above can be thought of as matrix operations. If  and  is thought of as a column vector
indexed by , then  is simply the ordinary product of the matrix  and the vector ; the product is a column vector indexed by 

:

Similarly, if  and  is thought of as a row vector indexed by , then  is simple the ordinary product of the vector 
and the matrix ; the product is a row vector indexed by :

If  is another kernel from  to another discrete space , then as functions,  is the simply the matrix product of  and :

Let  and . Define the kernel  from  to  by  for . Define the
function  on  by  for , and define the function  on  by  for . Compute each of the
following using matrix algebra:

1. 
2. 

Answer

In matrix form,

1. As a row vector indexed by , the product is 
2. As a column vector indexed by ,

Let , , and . Define the kernel  from  to , the kernel  from  to  and the kernel 
from  to  in matrix form as follows:

Compute each of the following kernels, or explain why the operation does not make sense:

σ

K S T x ∈ S y ∈ T

K(x, y) =K(x, {y})

K(x,A) = K(x, y), x ∈ S, A⊆ T∑

y∈A

(4.13.14)

(x, y) ↦K(x, y) K

K

S T S T

f : T →R f

T Kf K f

S

Kf(x) = K(x, y)f(y), x ∈ S∑

y∈S

(4.13.15)

f : S→R f S fK f

K T

fK(y) = f(x)K(x, y), y ∈ T∑

x∈S

(4.13.16)

L T U KL K L

KL(x, z) = K(x, y)L(x, z), (x, z) ∈ S×L∑

y∈T

(4.13.17)

S = {1, 2, 3} T = {1, 2, 3, 4} K S T K(x, y) = x+y (x, y) ∈ S×T

f S f(x) = x! x ∈ S g T g(y) = y

2

y ∈ T

fK

Kg

K = , f = [ ] , g=

⎡

⎣

⎢

2

3

4

3

4

5

4

5

6

5

6

7

⎤

⎦

⎥ 1 2 6

⎡

⎣

⎢

⎢

⎢

1

4

9

16

⎤

⎦

⎥

⎥

⎥

(4.13.18)

T fK = [ ]

32 41 50 59

S

Kg=

⎡

⎣

⎢

130

160

190

⎤

⎦

⎥

(4.13.19)

R= {0, 1} S = {a, b} T = {1, 2, 3} K R S L S S M

S T

K = [ ] , L= [ ] , M = [ ]

1

2

4

3

2

1

2

5

1

0

0

3

2

1

(4.13.20)
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1. 
2. 
3. 
4. 
5. 
6. 

Proof

Note that these are not just abstract matrices, but rather have rows and columns indexed by the appropriate spaces. So the
products make sense only when the spaces match appropriately; it's not just a matter of the number of rows and columns.

1.  is the kernel from  to  given by

2.  is not defined since the column space  of  is not the same as the row space  of .
3.  is not defined since the row space  is not the same as the column space .
4.  is the kernel from  to  given by

5.  is the kernel from  to  given by

6.  is the kernel from  to  given by

Conditional Probability

An important class of probability kernels arises from the distribution of one random variable, conditioned on the value of another
random variable. In this subsection, suppose that  is a probability space, and that  and  are measurable
spaces. Further, suppose that  and  are random variables defined on the probability space, with  taking values in  and that 
taking values in . Informally,  and  are random variables defined on the same underlying random experiment.

The function  defined as follows is a probability kernel from  to , known as the conditional probability kernel
of  given .

Proof

Recall that for , the conditional probability  is itself a random variable, and is measurable with respect to
. That is,  for some measurable function  from  to . Then, by definition, 

. Trivially, of course,  is a probability measure on  for .

The operators associated with this kernel have natural interpretations.

Let  be the conditional probability kernel of  given .

1. If  is measurable, then  for  (assuming as usual that the expected value exists).
2. If  is the probability distribution of  then  is the probability distribution of .

Proof

These are basic results that we have already studied, dressed up in new notation.

KL

LK

K

2

L

2

KM

LM

KL R S

KL= [ ]

6

7

22

19

(4.13.21)

LK S L R K

K

2

R S

L

2

S S

= [ ]L

2

6

7

14

27

(4.13.22)

KM R T

KM = [ ]

1

2

12

9

6

7

(4.13.23)

LM S T

LM = [ ]

2

1

6

15

6

7

(4.13.24)

(Ω,F ,P) (S,S ) (T ,T )

X Y X S Y

T X Y

P (S,S ) (T ,T )

Y X

P (x,A) = P(Y ∈ A ∣X = x), x ∈ S, A ∈ T (4.13.25)

A ∈ T P(Y ∈ A ∣X)

σ(X) P(Y ∈ A ∣X) = P (X,A) x↦ P (x,A) S [0, 1]

P(Y ∈ A ∣X = x) = P (x,A) A↦ P (x,A) (T ,T ) x ∈ S

P Y X

f : T →R Pf(x) =E[f(Y ) ∣X = x] x ∈ S

μ X μP Y
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1. Since  is the conditional distribution of  given ,

2. Let . Conditioning on  gives

As in the general discussion above, the measurable spaces  and  are usually measure spaces with natural measures
attached. So the conditional probability distributions are often given via conditional probability density functions, which then play
the role of kernel functions. The next two exercises give examples.

Suppose that  and  are random variables for an experiment, taking values in . For , the conditional distribution of 
 given  is normal with mean  and standard deviation 1. Use the notation and operations of this section for the

following computations:

1. Give the kernel function for the conditional distribution of  given .
2. Find .
3. Suppose that  has the standard normal distribution. Find the probability density function of .

Answer
1. The kernel function (with respect to Lebesgue measure, of course) is

2. Let  for . Then  for 
3. The standard normal PDF  is given  for . Thus  has PDF .

This is the PDF of the normal distribution with mean 0 and variance 2.

Suppose that  and  are random variables for an experiment, with  taking values in  and  taking values in 
. The kernel function of  given  is as follows: , , and , each for 

.

1. Give the kernel  in matrix form and verify that it is a probability kernel.
2. Find  where . The result is the density function of  given that  is uniformly distributed.
3. Find  where  for . The resulting function is  for .

Answer
1.  is given in matrix form below. Note that the row sums are 1.

2. In matrix form,  and .

3. In matrix form,

A↦ P (x,A) Y X = x

E[f(Y ) ∣X = x] = P (x, dy)f(y) = Pf(x)∫

S

(4.13.26)

A ∈ T X

P(Y ∈ A) =E[P(Y ∈ A ∣X)] = μ(dx)P (Y ∈ A ∣X = x) = μ(dx)P (x,A) = μP (A)∫

S

∫

S

(4.13.27)

(S,S ) (T ,T )

X Y R x ∈ R

Y X = x x

Y X

E ( X = x)Y

2

∣

∣

X Y

p(x, y) = , x, y ∈ R

1

2π

−−

√

e

− (y−x

1

2

)

2

(4.13.28)

g(y) = y

2

y ∈ R E ( X = x)= Pg(x) = 1+Y

2

∣

∣

x

2

x ∈ R

f f(x) =

1

2π√

e

− /2x

2

x ∈ R Y fP

fP (y) f(x)p(x, y)dx = , y ∈ R∫

∞

−∞

1

2 π

−−

√

e

−

1

4

y

2

(4.13.29)

X Y X {a, b, c} Y

{1, 2, 3, 4} Y X P (a, y) = 1/4 P (b, y) = y/10 P (c, y) = /30y

2

y ∈ {1, 2, 3, 4}

P

fP f(a) = f(b) = f(c) = 1/3 Y X

Pg g(y) = y y ∈ {1, 2, 3, 4} E(Y ∣X = x) x ∈ {a, b, c}

P

P =

⎡

⎣

⎢

⎢

⎢

1

4

1

10

1

30

1

4

2

10

4

30

1

4

3

10

9

30

1

4

4

10

16

30

⎤

⎦

⎥

⎥

⎥

(4.13.30)

f = [ ]

1

3

1

3

1

3

fP = [ ]

23

180

35

180

51

180

71

180

g= , Pg=

⎡

⎣

⎢

⎢

⎢

1

2

3

4

⎤

⎦

⎥

⎥

⎥

⎡

⎣

⎢

⎢

5

2

3

10

3

⎤

⎦

⎥

⎥

(4.13.31)
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Parametric Distributions

A parametric probability distribution also defines a probability kernel in a natural way, with the parameter playing the role of the
kernel variable, and the distribution playing the role of the measure. Such distributions are usually defined in terms of a parametric
density function which then defines a kernel function, again with the parameter playing the role of the first argument and the
variable the role of the second argument. If the parameter is thought of as a given value of another random variable, as in Bayesian
analysis, then there is considerable overlap with the previous subsection. In most cases, (and in particular in the examples below),
the spaces involved are either discrete or Euclidean, as described in (1).

Consider the parametric family of exponential distributions. Let  denote the identity function on .

1. Give the probability density function as a probability kernel function  on .
2. Find .
3. Find .
4. Find , the kernel function corresponding to the product kernel .

Answer
1.  for .
2. For ,

This is the mean of the exponential distribution.
3. For ,

4. For ,

Consider the parametric family of Poisson distributions. Let  be the identity function on  and let  be the identity function
on .

1. Give the probability density function  as a probability kernel function from  to .
2. Show that .
3. Show that .

Answer

1.  for  and .
2. For ,  is the mean of the Poisson distribution with parameter :

3. For ,

Clearly the Poisson distribution has some very special and elegant properties. The next family of distributions also has some very
special properties. Compare this exercise with the exercise (30).

Consider the family of normal distributions, parameterized by the mean and with variance 1.

1. Give the probability density function as a probability kernel function  on .

f (0,∞)

p (0,∞)

Pf

fP

p

2

P

2

p(r, x) = re

−rx

r, x ∈ (0,∞)

r ∈ (0,∞)

Pf(r) = p(r, x)f(x)dx = xr dx =∫

∞

0

∫

∞

0

e

−rx

1

r

(4.13.32)

x ∈ (0,∞)

fP (x) = f(r)p(r, x)dr= dr=∫

∞

0

∫

∞

0

r

2

e

−rx

2

x

3

(4.13.33)

r, y ∈ (0,∞)

(r, y) = p(r, x)p(x, y)dx = = rx dx =p

2

∫

∞

0

∫

∞

0

∫

∞

0

e

−(r+y)x

r

(r+y)

2

(4.13.34)

f N g

(0,∞)

p (0,∞) N

Pf = g

gP = f

p(r,n) = e

−r

r

n

n!

r ∈ (0,∞) n ∈ N

r ∈ (0,∞) Pf(r) r

Pf(r) = p(r,n)f(n) = n = r∑

n=0

∞

∑

n=0

∞

e

−r

r

n

n!

(4.13.35)

n ∈ N

gP (n) = g(r)p(r,n)dr= dr= n∫

∞

0

∫

∞

0

e

−r

r

n+1

n!

(4.13.36)
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2. Show that  is symmetric.
3. Let  be the identity function on . Show that  and .
4. For , find  the kernel function for the operator .

Answer
1. For ,

That is,  is the normal probability density function with mean  and variance 1.
2. Note that  for . So  is the normal probability density function with mean  and

variance 1.
3. Since  for , this follows from the previous two parts:  for  and  for 
4. For ,

so that  is the normal PDF with mean  and variance 2. By induction,

for  and . Thus  is the normal PDF with mean  and variance .

For each of the following special distributions, express the probability density function as a probability kernel function. Be sure
to specify the parameter spaces.

1. The general normal distribution on .
2. The beta distribution on .
3. The negative binomial distribution on .

Answer
1. The normal distribution with mean  and standard deviation  defines a kernel function  from  to  given by

2. The beta distribution with left parameter  and right parameter  defines a kernel function  from  to  given
by

where  is the beta function.
3. The negative binomial distribution with stopping parameter  and success parameter  defines a kernel function  from 

 to  given by

This page titled 4.13: Kernels and Operators is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

p

f R Pf = f fP = f

n ∈ N p

n

P

n

μ, x ∈ R

p(μ, x) =

1

2π

−−

√

e

− (x−μ

1

2

)

2
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x↦ p(x,μ) μ

p(μ, x) = p(x,μ) μ, x ∈ R μ↦ p(μ, x) x

f(x) = x x ∈ R Pf(μ) = μ μ ∈ R fP (x) = x x ∈ R

μ, y ∈ R

(μ, x) = p(μ, t)p(t, y)dt =p

2

∫

∞

−∞

1

4π

−−

√

e

− (x−μ

1

4

)

2
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x↦ (μ, x)p

2

μ

(μ, x) =p

n

1

2πn

−−−

√

e

− (x−μ

1

2n

)

2
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n ∈ N

+

μ, x ∈ R x↦ (μ, x)p

n

μ n

R

(0, 1)

N

μ σ p R×(0,∞) R

p[(μ, σ), x] = exp[− ]

1

σ2π

−−

√

( )

x−μ

σ

2

(4.13.40)

a b p (0,∞)

2

(0, 1)

p[(a, b), x] =

1

B(a, b)

x

a−1

y

b−1
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B

k α p

(0,∞)×(0, 1) N

p[(n,α), k] =( ) (1−α

n+k−1

n

α

k

)

n
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CHAPTER OVERVIEW

5: Special Distributions
In this chapter, we study several general families of probability distributions and a number of special parametric families of
distributions. Unlike the other expository chapters in this text, the sections are not linearly ordered and so this chapter serves
primarily as a reference. You may want to study these topics as the need arises.

First, we need to discuss what makes a probability distribution special in the first place. In some cases, a distribution may be
important because it is connected with other special distributions in interesting ways (via transformations, limits, conditioning,
etc.). In some cases, a parametric family may be important because it can be used to model a wide variety of random phenomena.
This may be the case because of fundamental underlying principles, or simply because the family has a rich collection of
probability density functions with a small number of parameters (usually 3 or less). As a general philosophical principle, we try to
model a random process with as few parameters as possible; this is sometimes referred to as the principle of parsimony of
parameters. In turn, this is a special case of Ockham's razor, named in honor of William of Ockham, the principle that states that
one should use the simplest model that adequately describes a given phenomenon. Parsimony is important because often the
parameters are not known and must be estimated.

In many cases, a special parametric family of distributions will have one or more distinguished standard members, corresponding
to specified values of some of the parameters. Usually the standard distributions will be mathematically simplest, and often other
members of the family can be constructed from the standard distributions by simple transformations on the underlying standard
random variable.

An incredible variety of special distributions have been studied over the years, and new ones are constantly being added to the
literature. To truly deserve the adjective special, a distribution should have a certain level of mathematical elegance and economy,
and should arise in interesting and diverse applications.

5.1: Location-Scale Families
5.2: General Exponential Families
5.3: Stable Distributions
5.4: Infinitely Divisible Distributions
5.5: Power Series Distributions
5.6: The Normal Distribution
5.7: The Multivariate Normal Distribution
5.8: The Gamma Distribution
5.9: Chi-Square and Related Distribution
5.10: The Student t Distribution
5.11: The F Distribution
5.12: The Lognormal Distribution
5.13: The Folded Normal Distribution
5.14: The Rayleigh Distribution
5.15: The Maxwell Distribution
5.16: The Lévy Distribution
5.17: The Beta Distribution
5.18: The Beta Prime Distribution
5.19: The Arcsine Distribution
5.20: General Uniform Distributions
5.21: The Uniform Distribution on an Interval
5.22: Discrete Uniform Distributions
5.23: The Semicircle Distribution
5.24: The Triangle Distribution
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5.25: The Irwin-Hall Distribution
5.26: The U-Power Distribution
5.27: The Sine Distribution
5.28: The Laplace Distribution
5.29: The Logistic Distribution
5.30: The Extreme Value Distribution
5.31: The Hyperbolic Secant Distribution
5.32: The Cauchy Distribution
5.33: The Exponential-Logarithmic Distribution
5.34: The Gompertz Distribution
5.35: The Log-Logistic Distribution
5.36: The Pareto Distribution
5.37: The Wald Distribution
5.38: The Weibull Distribution
5.39: Benford's Law
5.40: The Zeta Distribution
5.41: The Logarithmic Series Distribution
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5.1: Location-Scale Families
       

General Theory

As usual, our starting point is a random experiment modeled by a probability space , so that  is the set of outcomes, 
the collection of events, and  the probability measure on the sample space . In this section, we assume that we fixed
random variable  defined on the probability space, taking values in .

Definition

For  and , let . The two-parameter family of distributions associated with  is called the
location-scale family associated with the given distribution of . Specifically,  is the location parameter and  the scale
parameter.

Thus a linear transformation, with positive slope, of the underlying random variable  creates a location-scale family for the
underlying distribution. In the special case that , the one-parameter family is called the location family associated with the
given distribution, and in the special case that , the one-parameter family is called the scale family associated with the given
distribution. Scale transformations, as the name suggests, occur naturally when physical units are changed. For example, if a
random variable represents the length of an object, then a change of units from meters to inches corresponds to a scale
transformation. Location transformations often occur when the zero reference point is changed, in measuring distance or time, for
example. Location-scale transformations can also occur with a change of physical units. For example, if a random variable
represents the temperature of an object, then a change of units from Fahrenheit to Celsius corresponds to a location-scale
transformation.

Distribution Functions

Our goal is to relate various functions that determine the distribution of  to the corresponding functions for . First we
consider the (cumulative) distribution function.

If  has distribution function  then  has distribution function  given by

Proof

For 

Next we consider the probability density function. The results are a bit different for discrete distributions and continuous
distribution, not surprising since the density function has different meanings in these two cases.

If  has a discrete distribution with probability density function  then  also has a discrete distribution, with probability
density function  given by

Proof

 takes values in a countable subset  and hence  takes values in , which is also countable.
Moreover

(Ω,F ,P) Ω F

P (Ω,F)

Z R

a ∈ R b ∈ (0,∞) X = a+b Z X

Z a b

Z

b = 1

a= 0

X = a+bZ Z

Z G X F

F (x) =G( ) , x ∈ R

x−a

b

(5.1.1)

x ∈ R

F (x) = P(X ≤ x) = P(a+bZ ≤ x) = P(Z ≤ ) =G( )

x−a

b

x−a

b

(5.1.2)

Z g X

f

f(x) = g( ) , x ∈ R

x−a

b

(5.1.3)

Z S ⊂R X T = {a+bz : z ∈ S}

f(x) = P(X = x) = P(Z = ) = g( ) , x ∈ R

x−a

b

x−a

b

(5.1.4)
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If  has a continuous distribution with probability density function , then  also has a continuous distribution, with
probability density function  given by

1. For the location family associated with , the graph of  is obtained by shifting the graph of ,  units to the right if 
and  units to the left if .

2. For the scale family associated with , if , the graph of  is obtained from the graph of  by stretching horizontally
and compressing vertically, by a factor of . If , the graph of  is obtained from the graph of  by compressing
horizontally and stretching vertically, by a factor of .

Proof

First note that , so  has a continuous distribution. Typically,  takes values in an interval of

 and thus so does . The formula for the density function follows by taking derivatives of the distribution function above,
since  and .

If  has a mode at , then  has a mode at .

Proof

This follows from density function in the discrete case or the density function in the continuous case. If  has a maximum at 
then  has a maximum at 

Next we relate the quantile functions of  and .

If  and  are the distribution functions of  and , respectively, then

1.  for 
2. If  is a quantile of order  for  then  is a quantile of order  for .

Proof

These results follow from the distribution function above.

Suppose now that  has a continuous distribution on , and that we think of  as the failure time of a device (or the time of
death of an organism). Let  where , so that the distribution of  is the scale family associated with the
distribution of . Then  also has a continuous distribution on  and can also be thought of as the failure time of a device
(perhaps in different units).

Let  and  denote the reliability functions of  and  respectively, and let  and  denote the failure rate functions of 
and , respectively. Then

1.  for 
2.  for 

Proof

Recall that , , , and . Thus the results follow from the distribution function and the
density function above.

Moments

The following theorem relates the mean, variance, and standard deviation of  and .

As before, suppose that . Then

1. 
2. 
3. 
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f

f(x) = g( ) , x ∈ R
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(5.1.5)
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Proof

These result follow immediately from basic properties of expected value and variance.

Recall that the standard score of a random variable is obtained by subtracting the mean and dividing by the standard deviation. The
standard score is dimensionless (that is, has no physical units) and measures the distance from the mean to the random variable in
standard deviations. Since location-scale familes essentially correspond to a change of units, it's not surprising that the standard
score is unchanged by a location-scale transformation.

The standard scores of  and  are the same:

Proof

From the mean and variance above:

Recall that the skewness and kurtosis of a random variable are the third and fourth moments, respectively, of the standard score.
Thus it follows from the previous result that skewness and kurtosis are unchanged by location-scale transformations: 

, .

We can represent the moments of  (about 0) to those of  by means of the binomial theorem:

Of course, the moments of  about the location parameter  have a simple representation in terms of the moments of  about 0:

The following exercise relates the moment generating functions of  and .

If  has moment generating function  then  has moment generating function  given by

Proof

Type

As we noted earlier, two probability distributions that are related by a location-scale transformation can be thought of as governing
the same underlying random quantity, but in different physical units. This relationship is important enough to deserve a name.

Suppose that  and  are probability distributions on  with distribution functions  and , respectively. Then  and  are
of the same type if there exist constants  and  such that

Being of the same type is an equivalence relation on the collection of probability distributions on . That is, if , , and  are
probability distribution on  then

1.  is the same type as  (the reflexive property).
2. If  is the same type as  then  is the same type as  (the symmetric property).
3. If  is the same type as , and  is the same type as , then  is the same type as  (the transitive property).

X Z

=

X−E(X)

sd(X)

Z−E(Z)

sd(Z)

(5.1.6)

= =

X−E(X)

sd(X)
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sd(Z)
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Proof

Let , , and  denote the distribution functions of , , and  respectively.

1. This is trivial, of course, since we can take  and .

2. Suppose there exists  and  such that  for . Then 

 for .

3. Suppose there exists  and  such that  and  for . Then 

 for .

So, the collection of probability distributions on  is partitioned into mutually exclusive equivalence classes, where the
distributions in each class are all of the same type.

Examples and Applications

Special Distributions

Many of the special parametric families of distributions studied in this chapter and elsewhere in this text are location and/or scale
families.

The arcsine distribution is a location-scale family.

The Cauchy distribution is a location-scale family.

The exponential distribution is a scale family.

The exponential-logarithmic distribution is a scale family for each value of the shape parameter.

The extreme value distribution is a location-scale family.

The gamma distribution is a scale family for each value of the shape parameter.

The Gompertz distribution is a scale family for each value of the shape parameter.

The half-normal distribution is a scale family.

The hyperbolic secant distribution is a location-scale family.

The Lévy distribution is a location scale family.

The logistic distribution is a location-scale family.

The log-logistic distribution is a scale family for each value of the shape parameter.

The Maxwell distribution is a scale family.

The normal distribution is a location-scale family.

The Pareto distribution is a scale family for each value of the shape parameter.

The Rayleigh distribution is a scale family.

The semicircle distribution is a location-scale family.
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The triangle distribution is a location-scale family for each value of the shape parameter.

The uniform distribution on an interval is a location-scale family.

The U-power distribution is a location-scale family for each value of the shape parameter.

The Weibull distribution is a scale family for each value of the shape parameter.

The Wald distribution is a scale family, although in the usual formulation, neither of the parameters is a scale parameter.

This page titled 5.1: Location-Scale Families is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.2: General Exponential Families
        

Basic Theory

Definition

We start with a probability space  as a model for a random experiment. So as usual,  is the set of outcomes,  the -
algebra of events, and  the probability measure on the sample space . For the general formulation that we want in this
section, we need two additional spaces, a measure space  (where the probability distributions will live) and a measurable
space  (serving the role of a parameter space). Typically, these spaces fall into our two standard categories. Specifically, the
measure space is usually one of the following:

Discrete.  is countable,  is the collection of all subsets of , and  is counting measure.
Euclidean.  is a sufficiently nice Borel measurable subset of  for some ,  is the -algebra of Borel measurable
subsets of , and  is -dimensional Lebesgue measure.

Similarly, the parameter space  is usually either discrete, so that  is countable and  the collection of all subsets of , or
Euclidean so that  is a sufficiently nice Borel measurable subset of  for some  and  is the -algebra of Borel
measurable subsets of .

Suppose now that  is random variable defined on the probability space, taking values in , and that the distribution of  depends
on a parameter . For  we assume that the distribution of  has probability density function  with respect to .

for , the family of distributions of  is a -parameter exponential family if

where  and  are measurable functions from  into , and where  and  are measurable
functions from  into . Moreover,  is assumed to be the smallest such integer.

1. The parameters  are called the natural parameters of the distribution.
2. the random variables  are called the natural statistics of the distribution.

Although the definition may look intimidating, exponential families are useful because many important theoretical results in
statistics hold for exponential families, and because many special parametric families of distributions turn out to be exponential
families. It's important to emphasize that the representation of  given in the definition must hold for all  and . If
the representation only holds for a set of  that depends on the particular , then the family of distributions is not a
general exponential family.

The next result shows that if we sample from the distribution of an exponential family, then the distribution of the random sample
is itself an exponential family with the same natural parameters.

Suppose that the distribution of random variable  is a -parameter exponential family with natural parameters 
, and natural statistics . Let  be a sequence of 

independent random variables, each with the same distribution as . Then  is a -parameter exponential family with natural
parameters , and natural statistics

Proof

Let  denote the PDF of  corresponding to the parameter value , so that  has the representation given in the
definition for  and . Then for ,  has PDF  given by

Substituting and simplifying gives the result.
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Examples and Special Cases

Special Distributions

Many of the special distributions studied in this chapter are general exponential families, at least with respect to some of their
parameters. On the other hand, most commonly, a parametric family fails to be a general exponential family because the support set
depends on the parameter. The following theorems give a number of examples. Proofs will be provided in the individual sections.

The Bernoulli distribution is a one parameter exponential family in the success parameter 

The beta distiribution is a two-parameter exponential family in the shape parameters , .

The beta prime distribution is a two-parameter exponential family in the shape parameters , .

The binomial distribution is a one-parameter exponential family in the success parameter  for a fixed value of the trial
parameter .

The chi-square distribution is a one-parameter exponential family in the degrees of freedom .

The exponential distribution is a one-parameter exponential family (appropriately enough), in the rate parameter .

The gamma distribution is a two-parameter exponential family in the shape parameter  and the scale parameter 
.

The geometric distribution is a one-parameter exponential family in the success probability .

The half normal distribution is a one-parameter exponential family in the scale parameter 

The Laplace distribution is a one-parameter exponential family in the scale parameter  for a fixed value of the
location parameter .

The Lévy distribution is a one-parameter exponential family in the scale parameter  for a fixed value of the location
parameter .

The logarithmic distribution is a one-parameter exponential family in the shape parameter 

The lognormal distribution is a two parameter exponential family in the shape parameters , .

The Maxwell distribution is a one-parameter exponential family in the scale parameter .

The -dimensional multinomial distribution is a -parameter exponential family in the probability parameters 
for a fixed value of the trial parameter .

The -dimensional multivariate normal distribution is a -parameter exponential family with respect to the mean
vector  and the variance-covariance matrix .

The negative binomial distribution is a one-parameter exponential family in the success parameter  for a fixed value
of the stopping parameter .

The normal distribution is a two-parameter exponential family in the mean  and the standard deviation .

The Pareto distribution is a one-parameter exponential family in the shape parameter for a fixed value of the scale parameter.
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The Poisson distribution is a one-parameter exponential family.

The Rayleigh distribution is a one-parameter exponential family.

The U-power distribution is a one-parameter exponential family in the shape parameter, for fixed values of the location and
scale parameters.

The Weibull distribution is a one-parameter exponential family in the scale parameter for a fixed value of the shape parameter.

The zeta distribution is a one-parameter exponential family.

The Wald distribution is a two-parameter exponential family.

This page titled 5.2: General Exponential Families is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.3: Stable Distributions
           

This section discusses a theoretical topic that you may want to skip if you are a new student of probability.

Basic Theory
Stable distributions are an important general class of probability distributions on  that are defined in terms of location-scale
transformations. Stable distributions occur as limits (in distribution) of scaled and centered sums of independent, identically
distributed variables. Such limits generalize the central limit theorem, and so stable distributions generalize the normal distribution
in a sense. The pioneering work on stable distributions was done by Paul Lévy.

Definition

In this section, we consider real-valued random variables whose distributions are not degenerate (that is, not concentrated at a
single value). After all, a random variable with a degenerate distribution is not really random, and so is not of much interest.

Random variable  has a stable distribution if the following condition holds: If  and  is a sequence
of independent variables, each with the same distribution as , then  has the same distribution as 

 for some  and . If  for  then the distribution of  is strictly stable.

1. The parameters  for  are the centering parameters.
2. The parameters  for  are the norming parameters.

Details

Since the distribution of  is not point mass at 0, note that if the distribution of  is the same as the distribution of 
 for some  and , then  and . Thus, the centering parameters  and the norming

parameters  are uniquely defined for .

Recall that two distributions on  that are related by a location-scale transformation are said to be of the same type, and that being
of the same type defines an equivalence relation on the class of distributions on . With this terminology, the definition of stability
has a more elegant expression:  has a stable distribution if the sum of a finite number of independent copies of  is of the same
type as . As we will see, the norming parameters are more important than the centering parameters, and in fact, only certain
norming parameters can occur.

Basic Properties

We start with some very simple results that follow easily from the definition, before moving on to the deeper results.

Suppose that  has a stable distribution with mean  and finite variance. Then the norming parameters are  and the
centering parameters are  for .

Proof

As usual, let  and  denote the centering and norming parameters of  for , and let  denote the (finite) variance
of . Suppose that  and that  is a sequence of independent variables, each with the distribution of 

. Then  has the same distribution as . Taking variances gives  and hence 
. Taking expected values now gives .

It will turn out that the only stable distribution with finite variance is the normal distribution, but the result above is useful as an
intermediate step. Next, it seems fairly clear from the definition that the family of stable distributions is itself a location-scale
family.

Suppose that the distribution of  is stable, with centering parameters  and norming parameters for 
. If  and , then the distribution of  is also stable, with centering parameters 

 and norming parameters  for .

Proof
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Suppose that  and that  is a sequence of independent variables, each with the same distribution as .
Then  has the same distribution  where  is a sequence of
independent variables, each with the same distribution as . By stability,  has the same distribution as 

. Hence  has the same distribution as , which in turn has the same
distribution as .

An important point is the the norming parameters are unchanged under a location-scale transformation.

Suppose that the distribution of  is stable, with centering parameters  and norming parameters  for 
. Then the distribution of  is stable, with centering parameters  and norming parameters  for .

Proof

If  and  is a sequence of independent variables, each with the same distribution as  then 
 is a sequence of independent variables each with the same distribution as . By stability, 

 has the same distribution as .

From the last two results, if  has a stable distribution, then so does , with the same norming parameters, for every 
 with . Stable distributions are also closed under convolution (corresponding to sums of independent variables) if the

norming parameters are the same.

Suppose that  and  are independent variables. Assume also that  has a stable distribution with centering parameters 
 and norming parameters  for , and that  has a stable distribution with centering parameters 
 and the same norming parameters  for . Then  has a stable distribution with centering

paraemters  and norming parameters  for .

Proof

Suppose that  and that  is a sequence of independent variables, each with the same distribution as .
Then  has the same distribution as  where  is a sequence of independent
variables, each with the same distribution as , and  is a sequence of independent variables, each with
the same distribution as , and where  and  are independent. By stability, this is the same as the distribution of 

.

We can now give another characterization of stability that just involves two independent copies of .

Random variable  has a stable distribution if and only if the following condition holds: If  are independent variables,
each with the same distribution as  and  then  has the same distribution as  for some 

 and .

Proof

Suppose that the condition in the theorem holds. We will show by induction that the condition in the definition holds. For 
, the stability condition is a special case of the condition in the theorem, with . Suppose that the stability

condition holds for a given . Suppose that  is a sequence of independent random variables,
each with the distribution of . By the induction hypothesis,  has the same distribution as 

 for some  and . By independence,  has the same
distribution as . By another application of the condition above,  has the same distribution as

 for some  and . But then  has the same distribution as .

As a corollary of a couple of the results above, we have the following:

Suppose that  and  are independent with the same stable distribution. Then the distribution of  is strictly stable, with
the same norming parameters.

Note that the distribution of  is symmetric (about 0). The last result is useful because it allows us to get rid of the centering
parameters when proving facts about the norming parameters. Here is the most important of those facts:
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Suppose that  has a stable distribution. Then the norming parameters have the form  for , for some 
. The parameter  is known as the index or characteristic exponent of the distribution.

Proof

The proof is in several steps, and is based on the proof in An Introduction to Probability Theory and Its Applications, Volume
II, by William Feller. The proof uses the basic trick of writing a sum of independent copies of  in different ways in order to
obtain relationships between the norming constants .

First we can assume from our last result that the distribution of  is symmetric and strictly stable. Let  be a
sequence of independent variables, each with the distribution of . Let  for . Now let  and
consider . Directly from stability,  has the same distribution as . On the other hand,  can be thought of as a
sum of  “blocks”, where each block is a sum of  independent copies of . Each block has the same distribution as ,
and since the blocks are independent, it follows that  has the same distribution as

But by another application of stability, the random variable on the right has the same distribution as . It then follows
that  for all  which in turn leads to  for all .

We use the same trick again, this time with a sum. Let  and consider . Directly from stability,  has the
same distribution as . On the other hand,  can be thought of as the sum of two blocks. The first is the sum of 
independent copies of  and hence has the same distribution as , while the second is the sum of  independent copies of 

 and hence has the same distribution as . Since the blocks are independent, it follows that  has the same
distribution as , or equivalently,  has the same distribution as

Next note that for ,

and so by independence,

But by symmetry, . Also  and  have the same distribution as , so we conclude that

It follows that the ratios  are bounded for . If that were not the case, we could find a sequence of integers 
 with , in which case the displayed equation above would give the contradiction  for all 
. Restating, the ratios  are bounded for  with .

Fix . There exists a unique  with . It then follows from step 1 above that  for every 
 with . Similarly, if , there exists  with  and then  for every 

with . For our next step, we show that  and it then follows that  for every . Towards that end,
note that if  with  there exists  with  with . Hence

Therefore

Since the coefficients  are unbounded in , but the ratios  are bounded for  with , the last
inequality implies that . Reversing the roles of  and  then gives  and hence .
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All that remains to show is that . We will do this by showing that if , then  must have finite variance, in which
case the finite variance property above leads to the contradiction . Since  is nonnegative,

So the idea is to find bounds on the integrals on the right so that the sum converges. Towards that end, note that for  and 

Hence we can choose  so that . On the other hand, using a special inequality for symmetric distributions,

This implies that  is bounded in  or otherwise the two inequalities together would lead to . Substituting
 leads to  for some . It then follows that

If , the series with the terms on the right converges and we have .

Every stable distribution is continuous.

Proof

As in the proof of the previous theorem, suppose that  has a symmetric stable distribution with norming parameters  for 
. As a special case of the last proof, for ,  has the same distribution as

where  and  are independent and also have this distribution. Suppose now that  for some  where 
. Then

If the index , the points

are distinct, which gives us infinitely many atoms, each with probability at least —clearly a contradiction.

Next, suppose that the only atom is  and that  where . Then  has the same distribution
as . But  while , another contradiction.

The next result is a precise statement of the limit theorem alluded to in the introductory paragraph.

Suppose that  is a sequence of independent, identically distributed random variables, and let  for 
. If there exist constants  and  for  such that  has a (non-degenerate) limiting

distribution as , then the limiting distribution is stable.

The following theorem completely characterizes stable distributions in terms of the characteristic function.

Suppose that  has a stable distribution. The characteristic function of  has the following form, for some , 
, , and 
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where  is the usual sign function, and where

1. The parameter  is the index, as before.
2. The parameter  is the skewness parameter.
3. The parameter  is the location parameter.
4. The parameter  is the scale parameter.

Thus, the family of stable distributions is a 4 parameter family. The index parameter  and and the skewness parameter  can be
considered shape parameters. When the location parameter  and the scale parameter , we get the standard form of the
stable distributions, with characteristic function

The characteristic function gives another proof that stable distributions are closed under convolution (corresponding to sums of
independent variables), if the index is fixed.

Suppose that  and  are independent random variables, and that  and  have the stable distribution with common
index , skewness parameter , location parameter , and scale parameter . Then 

 has the stable distribution with index , location parameter , scale parameter , and
skewness parameter

Proof

Let  denote the characteristic function of  for . Then  has characteristic function . The
result follows from using the form of the characteristic function above and some algebra.

Special Cases

Three special parametric families of distributions studied in this chapter are stable. In the proofs in this subsection, we use the
definition of stability and various important properties of the distributions. These properties, in turn, are verified in the sections
devoted to the distributions. We also give proofs based on the characteristic function, which allows us to identify the skewness
parameter.

The normal distribution is stable with index . There is no skewness parameter.

Proof

If  and  is a sequence of independent variables, each with the standard normal distribution, then 
 has the normal distribution with mean 0 and variance . But this is also the distribution of  where 

 has the standard normal distribution. Hence the standard normal distribution is strictly stable, with index . The normal
distribution with mean  and standard deviation  is the distribution of . From our basic properties
above, this distribution is stable with index  and centering parameters  for .

In terms of the characteristic function, note that if  then  so the skewness parameter  drops out
completely. The characteristic function in standard form  for , which is the characteristic function of the
normal distribution with mean 0 and variance 2.

Of course, the normal distribution has finite variance, so once we know that it is stable, it follows from the finite variance property
above that the index must be 2. Moreover, the characteristic function shows that the normal distribution is the only stable
distribution with index 2, and hence the only stable distribution with finite variance.
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Open the special distribution simulator and select the normal distribution. Vary the parameters and note the shape and location
of the probability density function. For various values of the parameters, run the simulation 1000 times and compare the
empirical density function to the probability density function.

The Cauchy distribution is stable with index  and skewness parameter .

Proof

If  and  is a sequence of independent variables, each with the standard Cauchy distribution, then 
 has the Cauchy distribution scale parameter . By definition this is the same as the distribution of 

where  has the standard Cauchy distribution. Hence the standard Cauchy distribution is strictly stable, with index . The
Cauchy distribution with location parameter  and scale parameter  is the distribution of . From our
basic properties above, this distribution is strictly stable with index .

When  and  the characteristic function in standard form is  for , which is the characteristic
function of the standard Cauchy distribution.

Open the special distribution simulator and select the Cauchy distribution. Vary the parameters and note the shape and location
of the probability density function. For various values of the parameters, run the simulation 1000 times and compare the
empirical density function to the probability density function.

The Lévy distribution is stable with index  and skewness parameter .

Proof

If  and  is a sequence of independent variables, each with the standard Lévy distribution, then 
 has the Lévy distribution scale parameter . By definition this is the same as the distribution of 

where  has the standard Lévy distribution. Hence the standard Lévy distribution is strictly stable, with index . The
Lévy distribution with location parameter  and scale parameter  is the distribution of . From our basic
properties above, this distribution is stable with index  and centering parameters  for .

When  note that . So the characteristic function in standard form with  and  is

which is the characteristic function of the standard Lévy distribution.

Open the special distribution simulator and select the Lévy distribution. Vary the parameters and note the shape and location of
the probability density function. For various values of the parameters, run the simulation 1000 times and compare the empirical
density function to the probability density function.

The normal, Cauchy, and Lévy distributions are the only stable distributions for which the probability density function is known in
closed form.

This page titled 5.3: Stable Distributions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.4: Infinitely Divisible Distributions
           

This section discusses a theoretical topic that you may want to skip if you are a new student of probability.

Basic Theory
Infinitely divisible distributions form an important class of distributions on  that includes the stable distributions, the compound
Poisson distributions, as well as several of the most important special parametric families of distribtions. Basically, the distribution
of a real-valued random variable is infinitely divisible if for each , the variable can be decomposed into the sum of 
independent copies of another variable. Here is the precise definition.

The distribution of a real-valued random variable  is infinitely divisible if for every , there exists a sequence of
independent, identically distributed variables  such that  has the same distribution as 

.

If the distribution of  is stable then the distribution is infinitely divisible.

Proof

Let  and let  be a sequence of independent variables, each with the same distribution as . By the
definition of stability, there exists  and  such that  has the same distribution as . But
then

has the same distribution as . But  is an IID sequence, and hence the distribution of  is

infinitely divisible.

Suppose now that  is a sequence of independent, identically distributed random variables, and that  has a
Poisson distribution and is independent of . Recall that the distribution of  is said to be compound Poisson. Like the
stable distributions, the compound Poisson distributions form another important class of infinitely divisible distributions.

Suppose that  is a random variable.

1. If  is compound Poisson then  is infinitely divisible.
2. If  is infinitely divisible and takes values in  then  is compound Poisson.

Proof

1. Suppose that  is compound Poisson, so that we can take  where  is a sequence of
independent, identically distributed random variables with common characteristic function , and where  is independent
of  and has the Poisson distribution with parameter . The characteristic function  of  is given by 

 for . But then for ,

But  is the characteristic function of the compound Poisson distribution corresponding to  but

with Poisson parameter . Restated in terms of random variables,  where  has the compound Poisson
distribution corresponding to  with Poisson parameter .

2. The proof is from An Introduction to Probability Theory and Its Applications by William Feller, and requires some
additional notation. Recall that the symbol  is used to connect functions that are asymptotically the same in the sense that
that the ratio converges to 1. Suppose now that  takes values in  and is infinitely divisible. In this case we can use
probability generating functions rather than characteristic functions, so let  denote the PGF of . By definition, 

 where  for . Since  is infinitely divisible,  is also a PGF for every 
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, so let  where  for  and  and  for . As with all
PGFs, the series for  and for  converge at least for , and this interval is sufficient for a PGF to
completely determine the underlying distribution. For , we have

Expanding the series on the right and then equating coefficients of the two series term by term, we see that if  then 
 which in turn would imply . Since this is true for all , we would have  identically

0, which is a contradiction. Hence  and so  for  and therefore  as  for 
. Next recall that  as . It follows that for ,

As a special case, when , we have  as . Hence using properties of logarithms

and a bit of algebra,

The power series (about 0) for the expression on the right has positive coefficients, and the expression takes the value 1
when . Thus, the expression on the right is a PGF for each . By the continuity theorem for convergence in
distribution, it follows that the left side, which we will denote by , is also a PGF. Solving we have

where . This is the PGF of the distribution obtained by compounding the distribution with PGF Q with the
Poisson distribution with parameter .

Special Cases

A number of special distributions are infinitely divisible. Proofs of the results stated below are given in the individual sections.

Stable Distributions

First, the normal distribution, the Cauchy distribution, and the Lévy distribution are stable, so they are infinitely divisible.
However, direct arguments give more information, because we can identify the distribution of the component variables.

The normal distribution is infinitely divisible. If  has the normal distribution with mean  and standard deviation 
, then for ,  has the same distribution as  where  are

independent, and  has the normal distribution with mean  and standard deviation  for each .

The Cauchy distribution is infinitely divisible. If  has the Cauchy distribution with location parameter  and scale
parameter , then for ,  has the same distribution as  where  are
independent, and  has the Cauchy distribution with location parameter  and scale parameter  for each 

.

Other Special Distributions

On the other hand, there are distributions that are infinitely divisible but not stable.

The gamma distribution is infinitely divisible. If  has the gamma distribution with shape parameter  and scale
parameter , then for ,  has the same distribution as  where  are
independent, and  has the gamma distribution with shape parameter  and scale parameter  for each 
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The chi-square distribution is infinitely divisible. If  has the chi-square distribution with  degrees of freedom,
then for ,  has the same distribution as  where  are independent, and  has
the chi-square distribution with  degrees of freedom for each .

The Poisson distribution distribution is infinitely divisible. If  has the Poisson distribution with rate parameter ,
then for ,  has the same distribution as  where  are independent, and  has
the Poisson distribution with rate parameter  for each .

The general negative binomial distribution on  is infinitely divisible. If  has the negative binomial distribution on  with
parameters  and , then for ,  has the same distribution as  were 

 are independent, and  has the negative binomial distribution on  with parameters  and  for each 
.

Since the Poisson distribution and the negative binomial distributions are distributions on , it follows from the characterization
above that these distributions must be compound Poisson. Of course it is completely trivial that the Poisson distribution is
compound Poisson, but it's far from obvious that the negative binomial distribution has this property. It turns out that the negative
binomial distribution can be obtained by compounding the logarithmic series distribution with the Poisson distribution.

The Wald distribution is infinitely divisible. If  has the Wald distribution with shape parameter  and mean 
, then for ,  has the same distribution as  where  are

independent, and  has the Wald distribution with shape parameter  and mean  for each .

This page titled 5.4: Infinitely Divisible Distributions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.5: Power Series Distributions
     

Power Series Distributions are discrete distributions on (a subset of)  constructed from power series. This class of distributions is
important because most of the special, discrete distributions are power series distributions.

Basic Theory

Power Series

Suppose that  is a sequence of nonnegative real numbers. We are interested in the power series with  as the
sequence of coefficients. Recall first that the partial sum of order  is

The power series  is then defined by  for  for which the limit exists, and is denoted

Note that the series converges when , and . Beyond this trivial case, recall that there exists  such that the
series converges absolutely for  and diverges for . The number  is the radius of convergence. From now on, we
assume that . If , the series may converge (absolutely) or may diverge to  at the endpoint . At , the series may
converge absolutely, may converge conditionally, or may diverge.

Distributions

From now on, we restrict  to the interval ; this interval is our parameter space. Some of the results below may hold when 
 and , but dealing with this case explicitly makes the exposition unnecessarily cumbersome.

Suppose that  is a random variable with values in . Then  has the power series distribution associated with the function 
(or equivalently with the sequence ) and with parameter  if  has probability density function  given by

Proof

To show that  is a valid discrete probability density function, note that  is nonnegative for each  and , by
definition, is the normalizing constant for the sequence .

Note that when , the distribution is simply the point mass distribution at ; that is, .

The distribution function  is given by

Proof

This follows immediately from the definitions since  for 

Of course, the probability density function  is most useful when the power series  can be given in closed form, and similarly
the distribution function  is most useful when the power series and the partial sums can be given in closed form

Moments

The moments of  can be expressed in terms of the underlying power series function , and the nicest expression is for the
factorial moments. Recall that the permutation formula is  for  and , and the factorial
moment of  of order  is .

N

a= ( , , ,…)a

0

a

1

a

2

a

n ∈ N

(θ) = , θ ∈ Rg

n

∑

k=0

n

a

k

θ

k

(5.5.1)

g g(θ) = (θ)lim

n→∞

g

n

θ ∈ R

g(θ) =∑

n=0

∞

a

n

θ

n

(5.5.2)

θ= 0 g(0) = a

0

r ∈ [0,∞]

|θ| < r |θ| > r r

r> 0 r<∞ ∞ r −r

θ [0, r)

r<∞ θ= r

N N N g

a θ ∈ [0, r) N f

θ

(n) = , n ∈ Nf

θ

a

n

θ

n

g(θ)

(5.5.3)

f

θ

a

n

θ

n

n ∈ N g(θ)

( : n ∈ N)a

n

θ

n

θ= 0 0 (0) = 1f

0

F

θ

(n) = , n ∈ NF

θ

(θ)g

n

g(θ)

(5.5.4)

(n) = (k)F

θ

∑

n

k=0

f

θ

n ∈ N

f

θ

g(θ)

F

θ

N g

= t(t−1)⋯(t−k+1)t

(k)

t ∈ R k ∈ N

N k ∈ N E ( )N

(k)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10171?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/05%3A_Special_Distributions/5.05%3A_Power_Series_Distributions


5.5.2 https://stats.libretexts.org/@go/page/10171

For , the factorial moments of  are as follows, where  is the th derivative of .

Proof

Recall that a power series is infinitely differentiable in the open interval of convergence, and that the derivatives can be taken
term by term. Thus

The mean and variance of  are

1. 

2. 

Proof
1. This follows from the previous result on factorial moments with .
2. This also follows from the previous result since .

The probability generating function of  also has a simple expression in terms of .

For , the probability generating function  of  is given by

Proof

For ,

Relations

Power series distributions are closed with respect to sums of independent variables.

Suppose that  and  are independent, and have power series distributions relative to the functions  and , respectively,
each with parameter value . Then  has the power series distribution relative to the function ,
with parameter value .

Proof

A direct proof is possible, but there is an easy proof using probability generating functions. Recall that the PGF of the sum of
independent variables is the product of the PGFs. Hence the PGF of  is

The last expression is the PGF of the power series distribution relative to the function , at .

Here is a simple corollary.

Suppose that  is a sequence of independent variables, each with the same power series distribution, relative
to the function  and with parameter value . Then  has the power series distribution relative to the
function  and with parameter .
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In the context of this result, recall that  is a random sample of size  from the common distribution.

Examples and Special Cases

Special Distributions

The Poisson distribution with rate parameter  is a power series distribution relative to the function  for 
.

Proof

This follows directly from the definition, since the PDF of the Poisson distribution with parameter  is  for 
.

The geometric distribution on  with success parameter  is a power series distribution relative to the function 
 for , where .

Proof

This follows directly from the definition, since the PDF of the geometric distribution on  is 
for .

For fixed , the negative binomial distribution on  with with stopping parameter  and success parameter 
 is a power series distribution relative to the function  for , where .

Proof

This follows from the result above on sums of IID variables, but can also be seen directly, since the PDF is

For fixed , the binomial distribution with trial parameter  and success parameter  is a power series
distribution relative to the function  for , where .

Proof

Note that the PDF of the binomial distribution is

where . This shows that the distribution is a power series distribution corresponding to the function 
.

The logarithmic distribution with parameter  is a power series distribution relative to the function 
 for .

Proof

This follows directly from the definition, since the PDF is

This page titled 5.5: Power Series Distributions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.6: The Normal Distribution
       

The normal distribution holds an honored role in probability and statistics, mostly because of the central limit theorem, one of the
fundamental theorems that forms a bridge between the two subjects. In addition, as we will see, the normal distribution has many
nice mathematical properties. The normal distribution is also called the Gaussian distribution, in honor of Carl Friedrich Gauss,
who was among the first to use the distribution.

The Standard Normal Distribution

Distribution Functions

The standard normal distribution is a continuous distribution on  with probability density function  given by

Proof that  is a probability density function

Let . We need to show that . That is,  is the normalzing constant for the function .
The proof uses a nice trick:

We now convert the double integral to polar coordinates: ,  where  and . So, 
 and . Thus, converting back to iterated integrals,

Substituting  in the inner integral gives  and then the outer integral is . Thus, 
and so .

The standard normal probability density function has the famous “bell shape” that is known to just about everyone.

The standard normal density function  satisfies the following properties:

1.  is symmetric about .
2.  increases and then decreases, with mode .
3.  is concave upward and then downward and then upward again, with inflection points at .
4.  as  and as .

Proof

These results follow from standard calculus. Note that  (which gives (b)) and hence also 
 (which gives (c)).

In the Special Distribution Simulator, select the normal distribution and keep the default settings. Note the shape and location
of the standard normal density function. Run the simulation 1000 times, and compare the empirical density function to the
probability density function.

The standard normal distribution function , given by

and its inverse, the quantile function , cannot be expressed in closed form in terms of elementary functions. However
approximate values of these functions can be obtained from the special distribution calculator, and from most mathematics and
statistics software. Indeed these functions are so important that they are considered special functions of mathematics.
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The standard normal distribution function  satisfies the following properties:

1.  for 
2.  for 
3. , so the median is 0.

Proof

Part (a) follows from the symmetry of . Part (b) follows from part (a). Part (c) follows from part (a) with .

In the special distribution calculator, select the normal distribution and keep the default settings.

1. Note the shape of the density function and the distribution function.
2. Find the first and third quartiles.
3. Compute the interquartile range.

In the special distribution calculator, select the normal distribution and keep the default settings. Find the quantiles of the
following orders for the standard normal distribution:

1. , 
2. , 
3. , 

Moments

Suppose that random variable  has the standard normal distribution.

The mean and variance of  are

1. 
2. 

Proof
1. Of course, by symmetry, if  has a mean, the mean must be 0, but we have to argue that the mean exists. Actually it's not

hard to compute the mean directly. Note that

The integrals on the right can be evaluated explicitly using the simple substitution . The result is 
.

2. Note that

Integrate by parts, using the parts  and . Thus  and . Note that  as 
 and as . Thus, the integration by parts formula gives .

3. 

In the Special Distribution Simulator, select the normal distribution and keep the default settings. Note the shape and size of
the mean  standard deviation bar.. Run the simulation 1000 times, and compare the empirical mean and standard deviation to
the true mean and standard deviation.

More generally, we can compute all of the moments. The key is the following recursion formula.

For , 

Proof

First we use the differential equation in the proof of the PDF properties above, namely .
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Now we integrate by parts, with  and  to get

The moments of the standard normal distribution are now easy to compute.

For ,

1. 
2. 

Proof

The result follows from the mean and variance and recursion relation above.

1. Since  it follows that  for every odd .
2. Since , it follows that  and then , and so forth. You can use induction, if you

like, for a more formal proof.

Of course, the fact that the odd-order moments are 0 also follows from the symmetry of the distribution. The following theorem
gives the skewness and kurtosis of the standard normal distribution.

The skewness and kurtosis of  are

1. 
2. 

Proof
1. This follows immediately from the symmetry of the distribution. Directly, since  has mean 0 and variance 1, 

.
2. Since  and , .

Because of the last result, (and the use of the standard normal distribution literally as a standard), the excess kurtosis of a random
variable is defined to be the ordinary kurtosis minus 3. Thus, the excess kurtosis of the normal distribution is 0.

Many other important properties of the normal distribution are most easily obtained using the moment generating function or the
characteristic function.

The moment generating function  and characteristic function  of  are given by

1.  for .
2.  for .

Proof
1. Note that

We complete the square in  to get . Thus we have

In the integral, if we use the simple substitution  then the integral becomes . Hence 

,
2. This follows from (a) since .
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Thus, the standard normal distribution has the curious property that the characteristic function is a multiple of the probability
density function:

The moment generating function can be used to give another derivation of the moments of , since we know that 
.

The General Normal Distribution

The general normal distribution is the location-scale family associated with the standard normal distribution.

Suppose that  and  and that  has the standard normal distribution. Then  has the normal
distribution with location parameter  and scale parameter .

Distribution Functions

Suppose that  has the normal distribution with location parameter  and scale parameter . The basic properties of
the density function and distribution function of  follow from general results for location scale families.

The probability density function  of  is given by

Proof

This follows from the change of variables formula corresponding to the transformation .

The probability density function  satisfies the following properties:

1.  is symmetric about .
2.  increases and then decreases with mode .
3.  is concave upward then downward then upward again, with inflection points at .
4.  as  and as .

Proof

These properties follow from the corresponding properties of .

In the special distribution simulator, select the normal distribution. Vary the parameters and note the shape and location of the
probability density function. With your choice of parameter settings, run the simulation 1000 times and compare the empirical
density function to the true probability density function.

Let  denote the distribution function of , and as above, let  denote the standard normal distribution function.

The distribution function  and quantile function  satsify the following properties:

1.  for .

2.  for .
3.  so the median occurs at .

Proof

Part (a) follows since . Parts (b) and (c) follow from (a).

In the special distribution calculator, select the normal distribution. Vary the parameters and note the shape of the density
function and the distribution function.
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Moments

Suppose again that  has the normal distribution with location parameter  and scale parameter . As the notation
suggests, the location and scale parameters are also the mean and standard deviation, respectively.

The mean and variance of  are

1. 
2. 

Proof

This follows from the representation  and basic properties of expected value and variance.

So the parameters of the normal distribution are usually referred to as the mean and standard deviation rather than location and
scale. The central moments of  can be computed easily from the moments of the standard normal distribution. The ordinary (raw)
moments of  can be computed from the central moments, but the formulas are a bit messy.

For ,

1. 
2. 

All of the odd central moments of  are 0, a fact that also follows from the symmetry of the probability density function.

In the special distribution simulator select the normal distribution. Vary the mean and standard deviation and note the size and
location of the mean/standard deviation bar. With your choice of parameter settings, run the simulation 1000 times and
compare the empirical mean and standard deviation to the true mean and standard deviation.

The following exercise gives the skewness and kurtosis.

The skewness and kurtosis of  are

1. 
2. 

Proof

The skewness and kurtosis of a variable are defined in terms of the standard score, so these results follows from the
corresponding result for .

The moment generating function  and characteristic function  of  are given by

1.  for .
2.  for 

Proof
1. This follows from the representation , basic properties of expected value, and the MGF of  in (12):

2. This follows from (a) since .

Relations

The normal family of distributions satisfies two very important properties: invariance under linear transformations of the variable
and invariance with respect to sums of independent variables. The first property is essentially a restatement of the fact that the
normal distribution is a location-scale family.

Suppose that  is normally distributed with mean  and variance . If  and , then  is normally
distributed with mean  and variance .

Proof
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The MGF of  is

which we recognize as the MGF of the normal distribution with mean  and variance .

Recall that in general, if  is a random variable with mean  and standard deviation , then  is the standard
score of . A corollary of the last result is that if  has a normal distribution then the standard score  has a standard normal
distribution. Conversely, any normally distributed variable can be constructed from a standard normal variable.

Standard score.

1. If  has the normal distribution with mean  and standard deviation  then  has the standard normal distribution.
2. If  has the standard normal distribution and if  and , then  has the normal distribution with

mean  and standard deviation .

Suppose that  and  are independent random variables, and that  is normally distributed with mean  and variance 
for . Then  is normally distributed with

1. 
2. 

Proof

The MGF of  is the product of the MGFs, so

which we recognize as the MGF of the normal distribution with mean  and variance .

This theorem generalizes to a sum of  independent, normal variables. The important part is that the sum is still normal; the
expressions for the mean and variance are standard results that hold for the sum of independent variables generally. As a
consequence of this result and the one for linear transformations, it follows that the normal distribution is stable.

The normal distribution is stable. Specifically, suppose that  has the normal distribution with mean  and variance 
. If  are independent copies of , then  has the same distribution as 

, namely normal with mean  and variance .

Proof

As a consequence of the result for sums  has the normal distribution with mean  and variance .
As a consequence of the result for linear transforamtions,  has the normal distribution with mean 

 and variance .

All stable distributions are infinitely divisible, so the normal distribution belongs to this family as well. For completeness, here is
the explicit statement:

The normal distribution is infinitely divisible. Specifically, if  has the normal distribution with mean  and variance 
, then for ,  has the same distribution as  where  are

independent, and each has the normal distribution with mean  and variance .

Finally, the normal distribution belongs to the family of general exponential distributions.

Suppose that  has the normal distribution with mean  and variance . The distribution is a two-parameter exponential

family with natural parameters , and natural statistics .

Proof

Expanding the square, the normal PDF can be written in the form
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so the result follows from the definition of the general exponential family.

A number of other special distributions studied in this chapter are constructed from normally distributed variables. These include

The lognormal distribution
The folded normal distribution, which includes the half normal distribution as a special case
The Rayleigh distribution
The Maxwell distribution
The Lévy distribution

Also, as mentioned at the beginning of this section, the importance of the normal distribution stems in large part from the central
limit theorem, one of the fundamental theorems of probability. By virtue of this theorem, the normal distribution is connected to
many other distributions, by means of limits and approximations, including the special distributions in the following list. Details
are given in the individual sections.

The binomial distribution
The negative binomial distribution
The Poisson distribution
The gamma distribution
The chi-square distribution
The student  distribution
The Irwin-Hall distribution

Computational Exercises

Suppose that the volume of beer in a bottle of a certain brand is normally distributed with mean 0.5 liter and standard deviation
0.01 liter.

1. Find the probability that a bottle will contain at least 0.48 liter.
2. Find the volume that corresponds to the 95th percentile

Answer

Let  denote the volume of beer in liters

1. 
2. 

A metal rod is designed to fit into a circular hole on a certain assembly. The radius of the rod is normally distributed with mean
1 cm and standard deviation 0.002 cm. The radius of the hole is normally distributed with mean 1.01 cm and standard deviation
0.003 cm. The machining processes that produce the rod and the hole are independent. Find the probability that the rod is to
big for the hole.

Answer

Let  denote the radius of the rod and  the radius of the hole. 

The weight of a peach from a certain orchard is normally distributed with mean 8 ounces and standard deviation 1 ounce. Find
the probability that the combined weight of 5 peaches exceeds 45 ounces.

Answer

Let  denote the combined weight of the 5 peaches, in ounces. 

A Further Generlization
In some settings, it's convenient to consider a constant as having a normal distribution (with mean being the constant and variance
0, of course). This convention simplifies the statements of theorems and definitions in these settings. Of course, the formulas for

f(x) = exp(− ) exp( x− ), x ∈ R

1
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2
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2
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2

1
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2
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the probability density function and the distribution function do not hold for a constant, but the other results involving the moment
generating function, linear transformations, and sums are still valid. Moreover, the result for linear transformations would hold for
all  and .

This page titled 5.6: The Normal Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.7: The Multivariate Normal Distribution
         

The multivariate normal distribution is among the most important of multivariate distributions, particularly in statistical inference and the study of
Gaussian processes such as Brownian motion. The distribution arises naturally from linear transformations of independent normal variables. In
this section, we consider the bivariate normal distribution first, because explicit results can be given and because graphical interpretations are
possible. Then, with the aid of matrix notation, we discuss the general multivariate distribution.

The Bivariate Normal Distribution

The Standard Distribution

Recall that the probability density function  of the standard normal distribution is given by

The corresponding distribution function is denoted  and is considered a special function in mathematics:

Finally, the moment generating function  is given by

Suppose that  and  are independent random variables, each with the standard normal distribution. The distribution of  is known as
the standard bivariate normal distribution.

The basic properties of the standard bivariate normal distribution follow easily from independence and properties of the (univariate) normal
distribution. Recall first that the graph of a function  is a surface. For , the set of points  is the level
curve of  at level . The graph of  can be understood by means of the level curves.

The probability density function  of the standard bivariate normal distribution is given by

1. The level curves of  are circles centered at the origin.
2. The mode of the distribution is .
3.  is concave downward on 

Proof

By independence,  for . Parts (a) and (b) are clear. For part (c), the second derivative matrix of  is

with determinant . The determinant is positive and the diagonal entries negative on the circular region 
, so the matrix is negative definite on this region.

Clearly  has a number of symmetry properties as well:  is symmetric in  about 0 so that ;  is symmetric
in  about 0 so that ;  is symmetric in  so that . In short,  has the classical “bell
shape” that we associate with normal distributions.

Open the bivariate normal experiment, keep the default settings to get the standard bivariate normal distribution. Run the experiment 1000
times. Observe the cloud of points in the scatterplot, and compare the empirical density functions to the probability density functions.

Suppose that  has the standard bivariate normal distribution. The moment generating function  of  is given by

Proof

By independence,  for  where  is the standard normal MGF.

ϕ

ϕ(z) = , z ∈ R

1
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Φ
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The General Distribution

The general bivariate normal distribution can be constructed by means of an affine transformation on a standard bivariate normal vector. The
distribution has 5 parameters. As we will see, two are location parameters, two are scale parameters, and one is a correlation parameter.

Suppose that  has the standard bivariate normal distribution. Let ; ; and , and let  and  be new
random variables defined by

The joint distribution of  is called the bivariate normal distribution with parameters .

We can use the change of variables formula to find the joint probability density function.

Suppose that  has the bivariate normal distribution with the parameters  as specified above. The joint probability density
function  of  is given by

1. The level curves of  are ellipses centered at .
2. The mode of the distribution is .

Proof

Consider the transformation that defines  from  in the definition. The inverse transformation is given by

The Jacobian of the inverse transformation is

Note that the Jacobian is a constant, because the transformation is affine. The result now follows from the independence of  and , and the
change of variables formula

1. Note that  has the form  where  and  are positive constants and

The graph of  is a paraboloid opening upward. The level curves of  are the same as the level curves of  (but at different levels of
course).

2. The maximum of  occurs at the minimum of , at the point .

The following theorem gives fundamental properties of the bivariate normal distribution.

Suppose that  has the bivariate normal distribution with parameters  as specified above. Then

1.  is normally distributed with mean  and standard deviation .
2.  is normally distributed with mean  and standard deviation .
3. .
4.  and  are independent if and only if .

Proof

These result can be proved from the probability density function, but it's easier and more helpful to use the transformation definition. So,
assume that  is defined in terms of the standard bivariate normal pair  as in the definition.

1.  so  has the normal distribution with mean  and standard deviation . This is a basic property of the normal distribution,
and indeed is the way that the general normal variable is constructed from a standard normal variable.
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2. Since  and  are independent and each has the standard normal distribution,  is normally distributed by
another basic property. Because  and  have mean 0, it follows from the linear property of expected value that . Similarly,
since  and  have variance 1, it follows from basic properties of variance that .

3. Using the bi-linear property of covariance and independence we have , and hence from (a) and (b), 
.

4. As a general property, recall that if  and  are independent then . Conversely, if  then  and 
. Since  and  are independent, so are  and .

Thus, two random variables with a joint normal distribution are independent if and only if they are uncorrelated.

In the bivariate normal experiment, change the standard deviations of  and  with the scroll bars. Watch the change in the shape of the
probability density functions. Now change the correlation with the scroll bar and note that the probability density functions do not change. For
various values of the parameters, run the experiment 1000 times. Observe the cloud of points in the scatterplot, and compare the empirical
density functions to the probability density functions.

In the case of perfect correlation (  or ), the distribution of  is also said to be bivariate normal, but degenerate. In this case, we
know from our study of covariance and correlation that  takes values on the regression line , and
hence does not have a probability density function (with respect to Lebesgue measure on ). Degenerate normal distributions will be discussed in
more detail below.

In the bivariate normal experiment, run the experiment 1000 times with the values of  given below and selected values of  and . Observe
the cloud of points in the scatterplot and compare the empirical density functions to the probability density functions.

1. 
2. 

The conditional distributions are also normal.

Suppose that  has the bivariate normal distribution with parameters  as specified above.

1. For , the conditional distribution of  given  is normal with mean  and variance 
.

2. For , the conditional distribution of  given  is normal with mean  and variance 
.

Proof from density functions

By symmetry, we need only prove (a). The conditional PDF of  given  is  where  is the joint PDF, and where  is
the PDF of , namely the normal PDF with mean  and standard deviation . The result then follows after some algebra.

Proof from random variables

Again, we only need to prove (a). We can assume that  is defined in terms of a standard normal pair  as in the definition. Hence

Since that  and  are independent, the conditional distribution of  given  is the distribution of . The
latter distribution is normal, with mean and variance specified in the theorem.

Note that the conditional variances do not depend on the value of the given variable.

In the bivariate normal experiment, set the standard deviation of  to 1.5, the standard deviation of  to 0.5, and the correlation to 0.7.

1. Run the experiment 100 times.
2. For each run, compute  the predicted value of  for the given the value of .
3. Over all 100 runs, compute the square root of the average of the squared errors between the predicted value of  and the true value of .

You may be perplexed by the lack of symmetry in how  is defined in terms of  in the original definition. Note however that the
distribution is completely determined by the 5 parameters. If we define  and  then  has the
same distribution as , namely the bivariate normal distribution with parameters  (although, of course  and  are
different random vectors). There are other ways to define the same distribution as an affine transformation of —the situation will be
clarified in the next subsection.
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Suppose that  has the bivariate normal distribution with parameters . Then  has moment generating function 
given by

Proof

Using the representation of  in terms of the standard bivariate normal vector  in the definition and collecting terms gives

Hence from independence we have

where  is the standard normal MGF. Substituting and simplifying gives the result.

We showed above that if  has a bivariate normal distribution then the marginal distributions of  and  are also normal. The converse is
not true.

Suppose that  has probability density function  given by

1.  and  each have standard normal distributions.
2.  does not have a bivariate normal distribution.

Proof

Note that  for , where  is the bivariate standard normal PDF and where  is given by 
 for . From simple calculus,  is symmetric about 0, has a local maximum at , and  as . In

particular,  for  and hence  for . Next, a helpful trick is that we can write integrals of  as expected
values of functions of a standard normal pair . In particular,

since  by the symmetry of the standard normal distribution and the symmetry of  about 0. Hence  is a valid PDF
on . Suppose now that  has PDF .

1. The PDF of  at  is

where as usual,  is the standard normal PDF on . By symmetry,  also has the standard normal distribution.
2.  does not have the form of a bivariate normal PDF and hence  does not have a bivariate normal distribution.

Transformations

Like its univariate counterpart, the family of bivariate normal distributions is preserved under two types of transformations on the underlying
random vector: affine transformations and sums of independent vectors. We start with a preliminary result on affine transformations that should
help clarify the original definition. Throughout this discussion, we assume that the parameter vector  satisfies the usual conditions: 

, and , and .

Suppose that  has the standard bivariate normal distribution. Let  and  where the
coefficients are in  and . Then  has a bivariate normal distribution with parameters given by

1. 
2. 
3. 
4. 
5. 
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Proof

A direct proof using the change of variables formula is possible, but our goal is to show that  can be written in the form given above in
the definition. First, parts (a)–(e) follow from basic properties of expected value, variance, and covariance. So, in the notation used in the

definition, we have , , , , and

(Note from the assumption on the coefficients that  and ). Simple algebra shows that

Next we define

The transformation that defines  from  is its own inverse, and has Jacobian 1. Hence it follows that  has the same joint
distribution as , namely the standard bivariate normal distribution. Simple algebra shows that

This is the form given in the definition, so it follows that  has a bivariate normal distribution.

Now it is easy to show more generally that the bivariate normal distribution is closed with respect to affine transformations.

Suppose that  has the bivariate normal distribution with parameters . Define  and 
, where the coefficients are in  and . Then  has a bivariate normal distribution with parameters

as follows:

1. 
2. 
3. 
4. 
5. 

Proof

From our original construction, we can write  and  where  has the standard bivariate
normal distribution. Then by simple substitution,  and  where , 

,  for . By simple algebra,

Hence  has a bivariate normal distribution from the previous theorem. Parts (a)–(e) follow from basic properties of expected value,
variance, and covariance.

The bivariate normal distribution is preserved with respect to sums of independent variables.

Suppose that  has the bivariate normal distribution with parameters  for , and that  and 
are independent. Then  has the bivariate normal distribution with parameters given by
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5.  = 

Proof

Let  denote the MGF of  for  and let  denote the MGF of . By independence, 
 for . Using the bivariate normal MGF, and basic properties of the exponential function,

Of course from basic properties of expected value, variance, and covariance,

Substituting gives the result.

The following result is important in the simulation of normal variables.

Suppose that  has the standard bivariate normal distribution. Define the polar coordinates  of  by the equations 
,  where  and . Then

1.  has probability density function  given by  for .
2.  is uniformly distributed on .
3.  and  are independent.

Proof

The Jacobian of the polar coordinate transformation that gives  from  is , as we all remember from calculus. Hence by the change
of variables theorem, the PDF  of  in terms of the from standard normal PDF  is given by

The result then follows from the factorization theorem for independent random variables.

The distribution of  is known as the standard Rayleigh distribution, named for William Strutt, Lord Rayleigh. The Rayleigh distribution studied
in more detail in a separate section.

Since the quantile function  of the normal distribution cannot be given in a simple, closed form, we cannot use the usual random quantile
method of simulating a normal random variable. However, the quantile method works quite well to simulate a Rayleigh variable, and of course
simulating uniform variables is trivial. Hence we have a way of simulating a standard bivariate normal vector with a pair of random numbers
(which, you will recall are independent random variables, each with the standard uniform distribution, that is, the uniform distribution on ).

Suppose that  and  are independent random variables, each with the standard uniform distribution. Let  and .
Define  and . Then  has the standard bivariate normal distribution.

Proof

The Rayleigh distribution function  is given by  for  and hence the quantile function is given by 
 for . Hence if  has the standard uniform distribution, then  has the Rayleigh

distribution. But  also has the standard uniform distribution so  also has the Rayleigh distribution. If  has the standard
uniform distribution then of course  is uniformly distributed on . If  and  are independent, then so are  and . By the
previous theorem, if  and , then  has the standard bivariate normal distribution.

Of course, if we can simulate  with a standard bivariate normal distribution, then we can simulate  with the general bivariate normal
distribution, with parameter  by definition (5), namely , .

The General Multivariate Normal Distribution

The general multivariate normal distribution is a natural generalization of the bivariate normal distribution studied above. The exposition is very
compact and elegant using expected value and covariance matrices, and would be horribly complex without these tools. Thus, this section requires
some prerequisite knowledge of linear algebra. In particular, recall that  denotes the transpose of a matrix  and that we identify a vector in 

 with the corresponding  column vector.

The Standard Distribution

Suppose that  is a vector of independent random variables, each with the standard normal distribution. Then  is said
to have the -dimensional standard normal distribution.
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1.  (the zero vector in ).
2.  (the  identity matrix).

 has probability density function  given by

where as usual,  is the standard normal PDF.

Proof

By independence, .

 has moment generating function  given by

Proof

By independence,  where  is the standard normal MGF.

The General Distribution

Suppose that  has the -dimensional standard normal distribution. Suppose also that  and that  is invertible. The random
vector  is said to have an -dimensional normal distribution.

1. .
2. .

Proof
1. From the linear property of expected value, .
2. From basic properties of the variance-covariance matrix, .

In the context of this result, recall that the variance-covariance matrix  is symmetric and positive definite (and hence also
invertible). We will now see that the multivariate normal distribution is completely determined by the expected value vector  and the variance-
covariance matrix , and hence these give the basic parameters of the distribution.

Suppose that  has an -dimensional normal distribution with expected value vector  and variance-covariance matrix . The probability
density function  of  is given by

Proof

From the definition can assume that  where  is invertible and  has the -dimensional standard normal distribution,
so that  The inverse of the transformation  is  and hence the Jacobian of the inverse
transformation is . Using the multivariate change of variables theorem,

But  and hence . Also,

Suppose again that  has an -dimensional normal distribution with expected value vector  and variance-covariance matrix . The
moment generating function  of  is given by
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Proof

Once again we start with the definition and assume that  where  is invertible. we have 
. But  so using the MGF of  we have

Of course, the moment generating function completely determines the distribution. Thus, if a random vector  in  has a moment generating
function of the form given above, for some  and symmetric, positive definite , then  has the -dimensional normal
distribution with mean  and variance-covariance matrix .

Note again that in the representation , the distribution of  is uniquely determined by the expected value vector  and the
variance-covariance matrix , but not by  and . In general, for a given positive definite matrix , there are many invertible matrices 

 such that  (the matrix  is a bit like a square root of ). A theorem in matrix theory states that there is a unique lower triangular
matrix  with this property. The representation  is known as the canonical representation of .

If  has bivariate normal distribution with parameters , then the lower triangular matrix  such that 
is

Proof

Note that

Note that the matrix  above gives the canonical representation of  in terms of the standard normal vector  in the original
definition, namely , .

If the matrix  in the definition is not invertible, then the variance-covariance matrix  is symmetric, but only positive semi-
definite. The random vector  takes values in a lower dimensional affine subspace of  that has measure 0 relative to -
dimensional Lebesgue measure . Thus,  does not have a probability density function relative to , and so the distribution is degenerate.
However, the formula for the moment generating function still holds. Degenerate normal distributions are discussed in more detail below.

Transformations

The multivariate normal distribution is invariant under two basic types of transformations on the underlying random vectors: affine
transformations (with linearly independent rows), and concatenation of independent vectors. As simple corollaries of these two results, the normal
distribution is also invariant with respect to subsequences of the random vector, re-orderings of the terms in the random vector, and sums of
independent random vectors. The main tool that we will use is the moment generating function. We start with the first main result on affine
transformations.

Suppose that  has the -dimensional normal distribution with mean vector  and variance-covariance matrix . Suppose also that 
and that  has linearly independent rows (thus, ). Then  has an -dimensional normal distribution, with

1. 
2. 

Proof

For , . but , so using the MGF of  we have

But  and , so letting  and  and putting the pieces
together, we have .

A clearly important special case is , which generalizes the definition. Thus, if  and  is invertible, then 
has an -dimensional normal distribution. Here are some other corollaries:

Suppose that  has an -dimensional normal distribution. If  is a set of distinct indices, then 
 has an -dimensional normal distribution.
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Proof

Let  be the matrix defined by the condition that for , row  has 1 in position  and has 0 in all other positions.
Then  has linearly independent rows (since the  are distinct in ) and . Thus the result follows from the general theorem on
affine transformations.

In the context of the previous result, if  has mean vector  and variance-covariance matrix , then  has mean vector  and variance-
covariance matrix , where  is the 0-1 matrix defined in the proof. As simple corollaries, note that if  has an -
dimensional normal distribution, then any permutation of the coordinates of  also has an -dimensional normal distribution, and 

 has an -dimensional normal distribution for any . Here is a slight extension of the last statement.

Suppose that  is a random vector in ,  is a random vector in , and that  has an -dimensional normal distribution.
Then

1.  has an -dimensional normal distribution.
2.  has an -dimensional normal distribution.
3.  and  are independent if and only if  (the  zero matrix).

Proof

As we already noted, parts (a) and (b) are a simple consequence of the previous theorem. Thus, we just need to verify (c). In block form, note
that

Now let  denote the moment generating function of ,  the MGF of , and  the MGF of . From the form of the MGF, note
that  for all ,  if and only if , the  zero matrix.

Next is the converse to part (c) of the previous result: concatenating independent normally distributed vectors produces another normally
distributed vector.

Suppose that  has the -dimensional normal distribution with mean vector  and variance-covariance matrix ,  has the -dimensional
normal distribution with mean vector  and variance-covariance matrix , and that  and  are independent. Then  has the 

-dimensional normal distribution with

1. 

2.  where  is the  zero matrix.

Proof

For , write  in block form as  where  and . By independence, the MGF of  is

Using the formula for the normal MGF we have

But  and  so the proof is complet

Just as in the univariate case, the normal family of distributions is closed with respect to sums of independent variables. The proof follows easily
from the previous result.

Suppose that  has the -dimensional normal distribution with mean vector  and variance-covariance matrix ,  has the -dimensional
normal distribution with mean vector  and variance-covariance matrix , and that  and  are independent. Then  has the -
dimensional normal distribution with

1. 
2. 

Proof

From the previous result  has a -dimensional normal distribution. Moreover,  where  is the  matrix
defined by the condition that for , row  has 1 in positions  and  and  in all other positions. The matrix  has linearly
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independent rows and thus the result follows from the general theorem on affine transformations. Parts (a) and (b) are standard results for
sums of independent random vectors.

We close with a trivial corollary to the general result on affine transformation, but this corollary points the way to a further generalization of the
multivariate normal distribution that includes the degenerate distributions.

Suppose that  has an -dimensional normal distribution with mean vector  and variance-covariance matrix , and that  with 
. Then  has a (univariate) normal distribution with

1. 
2. 

Proof

Note again that . Since , the single row of  is linearly independent and hence the result follows from the general
theorem on affine transformations.

A Further Generalization
The last result can be used to give a simple, elegant definition of the multivariate normal distribution that includes the degenerate distributions as
well as the ones we have considered so far. First we will adopt our general definition of the univariate normal distribution that includes constant
random variables.

A random variable  that takes values in  has an -dimensional normal distribution if and only if  has a univariate normal
distribution for every .

Although an -dimensional normal distribution may not have a probability density function with respect to -dimensional Lebesgue measure ,
the form of the moment generating function is unchanged.

Suppose that  has mean vector  and variance-covariance matrix , and that  has an -dimensional normal distribution. The moment
generating function of  is given by

Proof

If , then by definition,  has a univariate normal distribution. Thus  is simply the moment generating function of 
, evaluated at the argument 1. The results then follow from the univariate MGF.

Our new general definition really is a generalization.

Suppose that  has an -dimensional normal distribution in the sense of the general definition, and that the distribution of  has a
probability density function on  with respect to Lebesgue measure . Then  has an -dimensional normal distribution in the sense of
our original definition.

Proof

This follows from our previous results, since both the MGF and the PDF completely determine the distribution of .

This page titled 5.7: The Multivariate Normal Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.8: The Gamma Distribution
       

In this section we will study a family of distributions that has special importance in probability and statistics. In particular, the
arrival times in the Poisson process have gamma distributions, and the chi-square distribution in statistics is a special case of the
gamma distribution. Also, the gamma distribution is widely used to model physical quantities that take positive values.

The Gamma Function
Before we can study the gamma distribution, we need to introduce the gamma function, a special function whose values will play
the role of the normalizing constants.

Definition

The gamma function  is defined as follows

The function is well defined, that is, the integral converges for any . On the other hand, the integral diverges to  for 
.

Proof

Note that

For the first integral on the right,

For the second integral, let . Then

The last integral can be evaluated explicitly by integrating by parts, and is finite for every .

Finally, if , note that

The gamma function was first introduced by Leonhard Euler.

Figure : The graph of the gamma function on the interval 

The (lower) incomplete gamma function is defined by
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Properties

Here are a few of the essential properties of the gamma function. The first is the fundamental identity.

 for .

Proof

This follows from integrating by parts, with  and :

Applying this result repeatedly gives

It's clear that the gamma function is a continuous extension of the factorial function.

 for .

Proof

This follows from the fundmental identity and the fact that .

The values of the gamma function for non-integer arguments generally cannot be expressed in simple, closed forms. However,
there are exceptions.

.

Proof

By definition,

Substituting  gives

But the last integrand is the PDF of the standard normal distribution, and so the integral evaluates to 

We can generalize the last result to odd multiples of .

For ,

Proof

This follows from the previous result and the fundamental identity.

Stirling's Approximation

One of the most famous asymptotic formulas for the gamma function is Stirling's formula, named for James Stirling. First we need
to recall a definition.

Suppose that  where  or . Then  as  means that

Γ(k, x) = dt, k, x ∈ (0,∞)∫

x

0

t

k−1

e

−t

(5.8.6)

Γ(k+1) = kΓ(k) k ∈ (0,∞)

u = x

k

dv= dxe

−x

Γ(k+1) = dx = + k dx = 0+kΓ(k)∫

∞

0

x

k

e

−x

(− )x

k

e

−x

∞

0

∫

∞

0

x

k−1

e

−x

(5.8.7)

Γ(k+n) = k(k+1)⋯(k+n−1)Γ(k), n ∈ N

+

(5.8.8)

Γ(k+1) = k! k ∈ N

Γ(1) = 1

Γ( )=

1

2

π

−−

√

Γ( ) = dx

1

2

∫

∞

0

x

−1/2

e

−x

(5.8.9)

x = /2z

2

Γ( ) = dz= 2 dz

1

2

∫

∞

0

2

–

√ e

− /2z

2

π

−−

√

∫

∞

0

1

2π

−−

√

e

− /2z

2

(5.8.10)

1

2

1

2

n ∈ N

Γ( ) = =

2n+1

2

1 ⋅ 3⋯ (2n−1)

2

n

π

−−

√

(2n)!

n!4

n

π

−−

√

(5.8.11)

f , g :D→(0,∞) D= (0,∞) D=N

+

f(x) ≈ g(x) x→∞
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Stirling's formula

As a special case, Stirling's result gives an asymptotic formula for the factorial function:

The Standard Gamma Distribution

Distribution Functions

The standard gamma distribution with shape parameter  is a continuous distribution on  with probability
density function  given by

Clearly  is a valid probability density function, since  for , and by definition,  is the normalizing constant for
the function  on . The following theorem shows that the gamma density has a rich variety of shapes, and
shows why  is called the shape parameter.

The gamma probability density function  with shape parameter  satisfies the following properties:

1. If ,  is decreasing with  as .
2. If ,  is decreasing with .
3. If ,  increases and then decreases, with mode at .
4. If ,  is concave upward.
5. If ,  is concave downward and then upward, with inflection point at .
6. If ,  is concave upward, then downward, then upward again, with inflection points at .

Proof

These results follow from standard calculus. For ,

The special case  gives the standard exponential distribuiton. When , the distribution is unimodal.

In the simulation of the special distribution simulator, select the gamma distribution. Vary the shape parameter and note the
shape of the density function. For various values of , run the simulation 1000 times and compare the empirical density
function to the true probability density function.

The distribution function and the quantile function do not have simple, closed representations for most values of the shape
parameter. However, the distribution function has a trivial representation in terms of the incomplete and complete gamma
functions.

The distribution function  of the standard gamma distribution with shape parameter  is given by

→1 as x→∞

f(x)

g(x)

(5.8.12)

Γ(x+1) ≈  as x→∞( )

x

e

x

2πx

−−−

√ (5.8.13)

n! ≈  as n→∞( )

n

e

n

2πn

−−−

√ (5.8.14)

k ∈ (0,∞) (0,∞)

f

f(x) = , x ∈ (0,∞)

1

Γ(k)

x

k−1

e

−x

(5.8.15)

f f(x) > 0 x > 0 Γ(k)

x↦ x

k−1

e

−x

(0,∞)

k

f k ∈ (0,∞)

0 < k< 1 f f(x) →∞ x ↓ 0

k= 1 f f(0) = 1

k> 1 f k−1

0 < k≤ 1 f

1 < k≤ 2 f k−1+ k−1

− −−−

√

k> 2 f k−1± k−1

− −−−

√

x > 0

(x)f

′

(x)f

′′

= [(k−1)−x]

1

Γ(k)

x

k−2

e

−x

= [(k−1)(k−2)−2(k−1)x+ ]

1

Γ(k)

x

k−3

e

−x

x

2

k= 1 k≥ 1

k

F k ∈ (0,∞)

F (x) = , x ∈ (0,∞)

Γ(k, x)

Γ(k)

(5.8.16)
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Approximate values of the distribution and quantile functions can be obtained from special distribution calculator, and from most
mathematical and statistical software packages.

Using the special distribution calculator, find the median, the first and third quartiles, and the interquartile range in each of the
following cases:

1. 
2. 
3. 

Moments

Suppose that  has the standard gamma distribution with shape parameter . The mean and variance are both simply the
shape parameter.

The mean and variance of  are

1. 
2. 

Proof
1. From the fundamental identity,

2. From the fundamental identity again

and hence 

In the simulation of the special distribution simulator, select the gamma distribution. Vary the shape parameter and note the
size and location of the mean  standard deviation bar. For selected values of , run the simulation 1000 times and compare
the empirical mean and standard deviation to the distribution mean and standard deviation.

More generally, the moments can be expressed easily in terms of the gamma function:

The moments of  are

1.  if 
2.  if 

Proof
1. For ,

2. If , then by the fundamental identity, , so the result follows from (a).

Note also that  if . We can now also compute the skewness and the kurtosis.

The skewness and kurtosis of  are

1. 

2. 

Proof

These results follows from the previous moment results and the computational formulas for skewness and kurtosis.

k= 1

k= 2

k= 3

X k ∈ (0,∞)

X

E(X) = k

var(X) = k

E(X) = x dx = = k∫

∞

0

1

Γ(k)

x

k−1

e

−x

Γ(k+1)

Γ(k)

(5.8.17)

E ( )= dx = = (k+1)kX

2

∫

∞

0

x

2

1

Γ(k)

x

k−1

e

−x

Γ(k+2)

Γ(k)

(5.8.18)

var(X) =E ( )−[E(X) = kX

2

]

2

± k

X

E( ) = Γ(a+k)/Γ(k)X

a

a>−k

E( ) = = k(k+1)⋯(k+n−1)X

n

k

[n]

n ∈ N

a>−k

E( ) = dx = dx =X

a

∫

∞

0

x

a

1

Γ(k)

x

k−1

e

−x

1

Γ(k)

∫

∞

0

x

a+k

e

−x

Γ(a+k)

Γ(k)

(5.8.19)

n ∈ N Γ(k+n) = k(k+1)⋯(k+n−1)Γ(k)

E( ) =∞X

a

a≤−k

X

skew(X) =

2

k

√

kurt(X) = 3+

6

k
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In particular, note that  and  as . Note also that the excess kurtosis  as 
.

In the simulation of the special distribution simulator, select the gamma distribution. Increase the shape parameter and note the
shape of the density function in light of the previous results on skewness and kurtosis. For various values of , run the
simulation 1000 times and compare the empirical density function to the true probability density function.

The following theorem gives the moment generating function.

The moment generating function of  is given by

Proof

For ,

Substituting  so that  and  gives

The General Gamma Distribution

The gamma distribution is usually generalized by adding a scale parameter.

If  has the standard gamma distribution with shape parameter  and if , then  has the gamma
distribution with shape parameter  and scale parameter .

The reciprocal of the scale parameter,  is known as the rate parameter, particularly in the context of the Poisson process.
The gamma distribution with parameters  and  is called the exponential distribution with scale parameter  (or rate
parameter ). More generally, when the shape parameter  is a positive integer, the gamma distribution is known as the
Erlang distribution, named for the Danish mathematician Agner Erlang. The exponential distribution governs the time between
arrivals in the Poisson model, while the Erlang distribution governs the actual arrival times.

Basic properties of the general gamma distribution follow easily from corresponding properties of the standard distribution and
basic results for scale transformations.

Distribution Functions

Suppose that  has the gamma distribution with shape parameter  and scale parameter .

 has probability density function  given by

Proof

Recall that if  is the PDF of the standard gamma distribution with shape parameter  then  for .

Recall that the inclusion of a scale parameter does not change the shape of the density function, but simply scales the graph
horizontally and vertically. In particular, we have the same basic shapes as for the standard gamma density function.

The probability density function  of  satisfies the following properties:

skew(X) → 0 kurt(X) → 3 k→∞ kurt(X)−3 → 0

k→∞

k

X

E ( )= , t < 1e

tX

1

(1− t)

k

(5.8.20)

t < 1

E ( )= dx = dxe

tX

∫

∞

0

e

tx

1

Γ(k)

x

k−1

e

−x

∫

∞

0

1

Γ(k)

x

k−1

e

−x(1−t)

(5.8.21)

u = x(1− t) x = u/(1− t) dx = du/(1− t)

E ( )= du =e

tX

1

(1− t)

k

∫

∞

0

1

Γ(k)

u

k−1

e

−u

1

(1− t)

k

(5.8.22)

Z k ∈ (0,∞) b ∈ (0,∞) X = bZ

k b

r= 1/b

k= 1 b b

r= 1/b k

X k ∈ (0,∞) b ∈ (0,∞)

X f

f(x) = , x ∈ (0,∞)

1

Γ(k)b

k

x

k−1

e

−x/b

(5.8.23)

g k f(x) = g( )

1

b

x

b

x > 0

f X
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1. If ,  is decreasing with  as .
2. If ,  is decreasing with .
3. If ,  increases and then decreases, with mode at .
4. If ,  is concave upward.
5. If ,  is concave downward and then upward, with inflection point at .
6. If ,  is concave upward, then downward, then upward again, with inflection points at .

In the simulation of the special distribution simulator, select the gamma distribution. Vary the shape and scale parameters and
note the shape and location of the probability density function. For various values of the parameters, run the simulation 1000
times and compare the empirical density function to the true probability density function.

Once again, the distribution function and the quantile function do not have simple, closed representations for most values of the
shape parameter. However, the distribution function has a simple representation in terms of the incomplete and complete gamma
functions.

The distribution function  of  is given by

Proof

From the defintion we can take  where  has the standard gamma distribution with shape parameter . Then 
 for , so the result follows from the distribution function of .

Approximate values of the distribution and quanitle functions can be obtained from special distribution calculator, and from most
mathematical and statistical software packages.

Open the special distribution calculator. Vary the shape and scale parameters and note the shape and location of the distribution
and quantile functions. For selected values of the parameters, find the median and the first and third quartiles.

Moments

Suppose again that  has the gamma distribution with shape parameter  and scale parameter .

The mean and variance of  are

1. 
2. 

Proof

From the definition, we can take  where  has the standard gamma distribution with shape parameter . Then using
the mean and variance of ,

1. 
2. 

In the special distribution simulator, select the gamma distribution. Vary the parameters and note the shape and location of the
mean  standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare the empirical
mean and standard deviation to the distribution mean and standard deviation.

The moments of  are

1.  for 
2.  if 

Proof

0 < k< 1 f f(x) →∞ x ↓ 0

k= 1 f f(0) = 1

k> 1 f (k−1)b

0 < k≤ 1 f

1 < k≤ 2 f b (k−1+ )k−1

− −−−

√

k> 2 f b (k−1± )k−1

− −−−

√

F X

F (x) = , x ∈ (0,∞)

Γ(k, x/b)

Γ(k)

(5.8.24)

X = bZ Z k

P(X ≤ x) = P(Z ≤ x/b) x ∈ (0,∞) Z

X k ∈ (0,∞) b ∈ (0,∞)

X

E(X) = bk

var(X) = kb

2

X = bZ Z k

Z

E(X) = bE(Z) = bk

var(X) = var(Z) = kb

2

b

2

±

X

E( ) = Γ(a+k)/Γ(k)X

a

b

a

a>−k

E( ) = = k(k+1)⋯(k+n−1)X

n

b

n

k

[n]

b

n

n ∈ N
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Again, from the definition, we can take  where  has the standard gamma distribution with shape parameter . The
results follow from the moment results for , since .

Note also that  if . Recall that skewness and kurtosis are defined in terms of the standard score, and hence are
unchanged by the addition of a scale parameter.

The skewness and kurtosis of  are

1. 

2. 

The moment generating function of  is given by

Proof

From the definition, we can take  where  has the standard gamma distribution with shape parameter . Then 
, so the result follows from the moment generating function of .

Relations

Our first result is simply a restatement of the meaning of the term scale parameter.

Suppose that  has the gamma distribution with shape parameter  and scale parameter . If ,
then  has the gamma distribution with shape parameter  and scale parameter .

Proof

From the definition, we can take  where  has the standard gamma distribution with shape parameter . Then 
.

More importantly, if the scale parameter is fixed, the gamma family is closed with respect to sums of independent variables.

Suppose that  and  are independent random variables, and that  has the gamma distribution with shape parameter 
 and scale parameter  for . Then  has the gamma distribution with shape parameter 

 and scale parameter .

Proof

Recall that the MGF of  is the product of the MGFs of  and , so

From the previous result, it follows that the gamma distribution is infinitely divisible:

Suppose that  has the gamma distribution with shape parameter  and scale parameter . For , 
has the same distribution as , where  is a sequence of independent random variables, each with the
gamma distribution with with shape parameter  and scale parameter .

From the sum result and the central limit theorem, it follows that if  is large, the gamma distribution with shape parameter  and
scale parameter  can be approximated by the normal distribution with mean  and variance . Here is the precise statement:

Suppose that  has the gamma distribution with shape parameter  and fixed scale parameter . Then the
distribution of the standardized variable below converges to the standard normal distribution as :

X = bZ Z k

Z E( ) = E( )X

a

b

a

Z

a

E( ) =∞X

a

a≤−k

X

skew(X) =

2

k√

kurt(X) = 3+

6

k

X

E ( )= , t <e

tX

1

(1−bt)

k

1

b

(5.8.25)

X = bZ Z k

E ( )=E [ ]e

tX

e

(tb)Z

Z

X k ∈ (0,∞) b ∈ (0,∞) c ∈ (0,∞)

cX k bc

X = bZ Z k

cX = cbZ

X

1

X

2

X

i

∈ (0,∞)k

i

b ∈ (0,∞) i ∈ {1, 2} +X

1

X

2

+k

1

k

2

b

X = +X

1

X

2

X

1

X

2

E ( )= = , t <e

tX

1

(1−bt)

k

1

1

(1−bt)

k

2

1

(1−bt)

+k

1

k

2

1

b

(5.8.26)

X k ∈ (0,∞) b ∈ (0,∞) n ∈ N

+

X

∑

n

i=1

X

i

( , ,… , )X

1

X

2

X

n

k/n b

k k

b kb kb

2

X

k

k ∈ (0,∞) b ∈ (0,∞)

k→∞

=Z

k

−kbX

k

bk

−−

√

(5.8.27)
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In the special distribution simulator, select the gamma distribution. For various values of the scale parameter, increase the
shape parameter and note the increasingly “normal” shape of the density function. For selected values of the parameters, run
the experiment 1000 times and compare the empirical density function to the true probability density function.

The gamma distribution is a member of the general exponential family of distributions:

The gamma distribution with shape parameter  and scale parameter  is a two-parameter exponential
family with natural parameters , and natural statistics .

Proof

This follows from the definition of the general exponential family. The gamma PDF can be written as

For , the gamma distribution with shape parameter  and scale parameter 2 is known as the chi-square distribution
with  degrees of freedom. The chi-square distribution is important enough to deserve a separate section.

Computational Exercise

Suppose that the lifetime of a device (in hours) has the gamma distribution with shape parameter  and scale parameter 
.

1. Find the probability that the device will last more than 300 hours.
2. Find the mean and standard deviation of the lifetime.

Answer

Let  denote the lifetime in hours.

1. 
2. , 

Suppose that  has the gamma distribution with parameters  and . For each of the following, compute the true
value using the special distribution calculator and then compute the normal approximation. Compare the results.

1. 
2. The 80th percentile of 

Answer
1. , 
2. , 

This page titled 5.8: The Gamma Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

k ∈ (0,∞) b ∈ (0,∞)

(k−1,−1/b) (lnX,X)

f(x) = exp[(k−1) lnx− x], x ∈ (0,∞)

1

Γ(k)b

k

1

b

(5.8.28)

n ∈ (0,∞) n/2

n

k= 4

b = 100

X

P(X > 300) = 13 ≈ 0.6472e

−3

E(X) = 400 sd(X) = 200

Y k= 10 b = 2

P(18 <X < 25)

Y

P(18 <X < 25) = 0.3860 P(18 <X < 25) ≈ 0.4095

= 25.038y

0.8

≈ 25.325y

0.8
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5.9: Chi-Square and Related Distribution
        

In this section we will study a distribution, and some relatives, that have special importance in statistics. In particular, the chi-
square distribution will arise in the study of the sample variance when the underlying distribution is normal and in goodness of fit
tests.

The Chi-Square Distribution

Distribution Functions

For , the gamma distribution with shape parameter  and scale parameter 2 is called the chi-square distribution
with  degrees of freedom. The probability density function  is given by

So the chi-square distribution is a continuous distribution on . For reasons that will be clear later,  is usually a positive
integer, although technically this is not a mathematical requirement. When  is a positive integer, the gamma function in the
normalizing constant can be be given explicitly.

If  then

1.  if  is even.

2.  if  is odd.

The chi-square distribution has a rich collection of shapes.

The chi-square probability density function with  degrees of freedom satisfies the following properties:

1. If ,  is decreasing with  as .
2. If ,  is decreasing with .
3. If ,  increases and then decreases with mode at .
4. If ,  is concave downward.
5. If ,  is concave downward and then upward, with inflection point at 
6. If  then  is concave upward then downward and then upward again, with inflection points at 

In the special distribution simulator, select the chi-square distribution. Vary  with the scroll bar and note the shape of the
probability density function. For selected values of , run the simulation 1000 times and compare the empirical density
function to the true probability density function.

The distribution function and the quantile function do not have simple, closed-form representations for most values of the
parameter. However, the distribution function can be given in terms of the complete and incomplete gamma functions.

Suppose that  has the chi-square distribution with  degrees of freedom. The distribution function  of  is given
by

Approximate values of the distribution and quantile functions can be obtained from the special distribution calculator, and from
most mathematical and statistical software packages.

In the special distribution calculator, select the chi-square distribution. Vary the parameter and note the shape of the probability
density, distribution, and quantile functions. In each of the following cases, find the median, the first and third quartiles, and
the interquartile range.

n ∈ (0,∞) n/2

n f

f(x) = , x ∈ (0,∞)

1

Γ(n/2)2

n/2

x

n/2−1

e

−x/2

(5.9.1)

(0,∞) n

n

n ∈ N

+

Γ(n/2) = (n/2−1)! n

Γ(n/2) =

(n−1)!

(n/2−1/2)!2

n−1

π

−−

√

n

n ∈ (0,∞)

0 < n< 2 f f(x) →∞ x ↓ 0

n= 2 f f(0) =

1

2

n> 2 f n−2

0 < n≤ 2 f

2 < n≤ 4 f n−2+ 2n−4

− −−−−

√

n> 4 f n−2± 2n−4

− −−−−

√

n

n

X n ∈ (0,∞) F X

F (x) = , x ∈ (0,∞)

Γ(n/2, x/2)

Γ(n/2)
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1. 
2. 
3. 
4. 

Moments

The mean, variance, moments, and moment generating function of the chi-square distribution can be obtained easily from general
results for the gamma distribution.

If  has the chi-square distribution with  degrees of freedom then

1. 
2. 

In the simulation of the special distribution simulator, select the chi-square distribution. Vary  with the scroll bar and note the
size and location of the mean  standard deviation bar. For selected values of , run the simulation 1000 times and compare
the empirical moments to the distribution moments.

The skewness and kurtosis of the chi-square distribution are given next.

If  has the chi-square distribution with  degrees of freedom, then

1. 
2. 

Note that  and  as . In particular, the excess kurtosis  as .

In the simulation of the special distribution simulator, select the chi-square distribution. Increase  with the scroll bar and note
the shape of the probability density function in light of the previous results on skewness and kurtosis. For selected values of ,
run the simulation 1000 times and compare the empirical density function to the true probability density function.

The next result gives the general moments of the chi-square distribution.

If  has the chi-square distribution with  degrees of freedom, then for ,

In particular, if  then

Note also  if .

If  has the chi-square distribution with  degrees of freedom, then  has moment generating function

Relations

The chi-square distribution is connected to a number of other special distributions. Of course, the most important relationship is the
definition—the chi-square distribution with  degrees of freedom is a special case of the gamma distribution, corresponding to
shape parameter  and scale parameter 2. On the other hand, any gamma distributed variable can be re-scaled into a variable
with a chi-square distribution.
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If  has the gamma distribution with shape parameter  and scale parameter  then  has the chi-
square distribution with  degrees of freedom.

Proof

Since the gamma distribution is a scale family,  has a gamma distribution with shape parameter  and scale parameter 
. Hence  has the chi-square distribution with  degrees of freedom.

The chi-square distribution with 2 degrees of freedom is the exponential distribution with scale parameter 2.

Proof

The chi-square distribution with 2 degrees of freedom is the gamma distribution with shape parameter 1 and scale parameter 2,
which we already know is the exponential distribution with scale parameter 2.

If  has the standard normal distribution then  has the chi-square distribution with 1 degree of freedom.

Proof

As usual, let  and  denote the PDF and CDF of the standard normal distribution, respectivley Then for ,

Differentiating with respect to  gives the density function  of :

which we recognize as the chi-square PDF with 1 degree of freedom.

Recall that if we add independent gamma variables with a common scale parameter, the resulting random variable also has a
gamma distribution, with the common scale parameter and with shape parameter that is the sum of the shape parameters of the
terms. Specializing to the chi-square distribution, we have the following important result:

If  has the chi-square distribution with  degrees of freedom,  has the chi-square distribution with 
degrees of freedom, and  and  are independent, then  has the chi-square distribution with  degrees of
freedom.

The last two results lead to the following theorem, which is fundamentally important in statistics.

Suppose that  and that  is a sequence of independent standard normal variables. Then the sum of the
squares

has the chi-square distribution with  degrees of freedom:

This theorem is the reason that the chi-square distribution deserves a name of its own, and the reason that the degrees of freedom
parameter is usually a positive integer. Sums of squares of independent normal variables occur frequently in statistics.

From the central limit theorem, and previous results for the gamma distribution, it follows that if  is large, the chi-square
distribution with  degrees of freedom can be approximated by the normal distribution with mean  and variance . Here is the
precise statement:

If  has the chi-square distribution with  degrees of freedom, then the distribution of the standard score

converges to the standard normal distribution as .
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In the simulation of the special distribution simulator, select the chi-square distribution. Start with  and increase . Note
the shape of the probability density function in light of the previous theorem. For selected values of , run the experiment 1000
times and compare the empirical density function to the true density function.

Like the gamma distribution, the chi-square distribution is infinitely divisible:

Suppose that  has the chi-square distribution with  degrees of freedom. For ,  has the same distribution
as , where  is a sequence of independent random variables, each with the chi-square distribution
with  degrees of freedom.

Also like the gamma distribution, the chi-square distribution is a member of the general exponential family of distributions:

The chi-square distribution with with  degrees of freedom is a one-parameter exponential family with natural
parameter , and natural statistic .

Proof

This follows from the definition of the general exponential family. The PDF can be written as

The Chi Distribution
The chi distribution, appropriately enough, is the distribution of the square root of a variable with the chi-square distribution

Suppose that  has the chi-square distribution with  degrees of freedom. Then  has the chi distribution
with  degrees of freedom.

So like the chi-square distribution, the chi distribution is a continuous distribution on .

Distribution Functions

The distribution function  of the chi distribution with  degrees of freedom is given by

Proof

Suppose that  has the chi distribution with  degrees of freedom so that  has the chi-square distribution with 
degrees of freedom. For ,

where  is the chi-square distribution function with  degrees of freedom.

The probability density function  of the chi distribution with  degrees of freedom is given by

Proof

Suppose again that  has the chi distribution with  degrees of freedom so that  has the chi-square distribution with 
degrees of freedom. The transformation  maps  one-to-one onto . The inverse transformation is 
with . Hence by the standard change of variables formula,
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where  is the chi-square PDF.

The chi probability density function also has a variety of shapes.

The chi probability density function with  degrees of freedom satisfies the following properties:

1. If ,  is decreasing with  as .
2. If ,  is decreasing with  as .
3. If ,  increases and then decreases with mode 
4. If ,  is concave upward.

5. If ,  is concave downward and then upward with inflection point at 

6. If ,  is concave upward then downward then upward again with inflection points at 

Moments

The raw moments of the chi distribution are easy to comput in terms of the gamma function.

Suppose that  has the chi distribution with  degrees of freedom. Then

Proof

By definition

The change of variables , so that  and  gives (after simplification)

The last integral is .

Curiously, the second moment is simply the degrees of freedom parameter.

Suppose again that  has the chi distribution with  degrees of freedom. Then

1. 

2. 

3. 

Proof

For part (b), using the fundamental identity of the gamma function we have

The other parts follow from direct substitution.

Relations

The fundamental relationship of course is the one between the chi distribution and the chi-square distribution given in the
definition. In turn, this leads to a fundamental relationship between the chi distribution and the normal distribution.

Suppose that  and that  is a sequence of independent variables, each with the standard normal
distribution. Then
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has the chi distribution with  degrees of freedom.

Note that the random variable  in the last result is the standard Euclidean norm of , thought of as a vector in .
Note also that the chi distribution with 1 degree of freedom is the distribution of , the absolute value of a standard normal
variable, which is known as the standard half-normal distribution.

The Non-Central Chi-Square Distribution
Much of the importance of the chi-square distribution stems from the fact that it is the distribution that governs the sum of squares
of independent, standard normal variables. A natural generalization, and one that is important in statistical applications, is to
consider the distribution of a sum of squares of independent normal variables, each with variance 1 but with different means.

Suppose that  and that  is a sequence of independent variables, where  has the normal
distribution with mean  and variance 1 for . The distribution of  is the non-central chi-
square distribution with  degrees of freedom and non-centrality parameter .

Note that the degrees of freedom is a positive integer while the non-centrality parameter , but we will soon generalize
the degrees of freedom.

Distribution Functions

Like the chi-square and chi distributions, the non-central chi-square distribution is a continuous distribution on . The
probability density function and distribution function do not have simple, closed expressions, but there is a fascinating connection
to the Poisson distribution. To set up the notation, let  and  denote the probability density and distribution functions of the chi-
square distribution with  degrees of freedom. Suppose that  has the non-central chi-square distribution with 
degrees of freedom and non-centrality parameter . The following fundamental theorem gives the probability density
function of  as an infinite series, and shows that the distribution does in fact depend only on  and .

The probability density function  of  is given by

Proof

Suppose that  is a sequence of independent random variables, where  has the normal distribution
with mean  and variance 1, and where . So by definition,  has the non-central chi-square
distribution with  degrees of freedom and non-centrality parameter . The random vector  has a multivariate normal
distribution with mean vector  and variance-covariance matrix  (the  identity matrix). The (joint)
PDF  of  is symmetric about :  for . Because of this symmetry, the distribution of 
depends on  only through the parameter . It follows that  has the same distribution as  where 
are independent,  has the normal distribution with mean  and variance 1, and  are standard normal.

The distribution of  is found by the usual change of variables methods. Let  and  denote the standard normal PDF and
CDF, respectively, so that  has CDF given by  for . Thus,

Taking derivatives, the PDF  of  is given by

But  for , so substituting and simplifying gives
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Next, recall that the Taylor series for the hyperbolic cosine function is

which leads to

After a bit more algebra, we get the representation in the theorem, with . That is,

Or in functional form, .

To complete the proof, we know that  has the chi-square distribution with  degrees of freedom, and hence has
PDF , and is independent of . Therefore the distribution of  is

where  denotes convolution as usual, and where we have used the fundamental result above on the sum of independent chi-
square variables.

The function  on  is the probability density function of the Poisson distribution with parameter . So it
follows that if  has the Poisson distribution with parameter  and the conditional distribution of  given  is chi-square with
parameter , then  has the distribution discussed here—non-central chi-square with  degrees of freedom and non-
centrality parameter . Moreover, it's clear that  is a valid probability density function for any , so we can generalize
our definition a bit.

For  and , the distribution with probability density function  above is the non-central chi-square
distribution with  degrees of freedom and non-centrality parameter .

The distribution function  is given by

Proof

This follows immediately from the result for the PDF, since  and .

Moments

In this discussion, we assume again that  has the non-central chi-square distribution with  degrees of freedom and
non-centrality parameter .

The moment generating function  of  is given by

Proof

We will use the fundamental relationship mentioned above. Thus, suppose that  has the Poisson distribution with parameter 
, and that given ,  has the chi-square distribution with  degrees of freedom. Conditioning and using the MGF

of the chi-square distribution above gives
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The last expected value is the probability generating function of , evaluated at . Hence

The mean and variance of  are

1. 
2. 

Proof

These results can be obtained by taking derivatives of the MGF, but the derivation using the connection with the Poisson
distribution is more interesting. So suppose again that  has the Poisson distribution with parameter  and that the
conditional distribution of  given  is chi-square with  degrees of freedom. Conditioning and using the means and
variances of the chi-square and Poisson distributions, we have

1. 
2. 

The skewness and kurtosis of  are

1. 

2. 

Note that  as  or as . Note also that the excess kurtosis is . So 

 (the kurtosis of the normal distribution) as  or as .

Relations

Trivially of course, the ordinary chi-square distribution is a special case of the non-central chi-square distribution, with non-
centrality parameter 0. The most important relation is the orignal definition above. The non-central chi-square distribution with 

 degrees of freedom and non-centrality parameter  is the distribution of the sum of the squares of  independent
normal variables with variance 1 and whose means satisfy . The next most important relation is the one that arose in
the probability density function and was so useful for computing moments. We state this one again for emphasis.

Suppose that  has the Poisson distribution with parameter , where , and that the conditional distribution of 
given  is chi-square with  degrees of freedom, where . Then the (unconditional) distribution of  is non-
central chi-square with  degree of freedom and non-centrality parameter .

Proof

For , let  denote the chi-square PDF with  degrees of freedom. Then from the assumptions, the PDF  of  is given
by

which is the PDF of the non-central chi-square distribution with  degrees of freedom and non-centrality parameter , derived
above.

As the asymptotic results for the skewness and kurtosis suggest, there is also a central limit theorem.

Suppose that  has the non-central chi-square distribution with  degrees of freedom and non-centrality parameter 
. Then the distribution of the standard score
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converges to the standard normal distribution as  or as .

Computational Exercises

Suppose that a missile is fired at a target at the origin of a plane coordinate system, with units in meters. The missile lands at 
 where  and  are independent and each has the normal distribution with mean 0 and variance 100. The missile will

destroy the target if it lands within 20 meters of the target. Find the probability of this event.

Answer

Let  denote the distance from the missile to the target. 

Suppose that  has the chi-square distribution with  degrees of freedom. For each of the following, compute the true
value using the special distribution calculator and then compute the normal approximation. Compare the results.

1. 
2. The 75th percentile of .

Answer
1. , 
2. , 

This page titled 5.9: Chi-Square and Related Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.10: The Student t Distribution
       

In this section we will study a distribution that has special importance in statistics. In particular, this distribution will arise in the study of a
standardized version of the sample mean when the underlying distribution is normal.

Basic Theory

Definition

Suppose that  has the standard normal distribution,  has the chi-squared distribution with  degrees of freedom, and that  and 
 are independent. Random variable

has the student  distribution with  degrees of freedom.

The student  distribution is well defined for any , but in practice, only positive integer values of  are of interest. This distribution was
first studied by William Gosset, who published under the pseudonym Student.

Distribution Functions

Suppose that  has the  distribution with  degrees of freedom. Then  has a continuous distribution on  with probability
density function  given by

Proof

For , the conditional distribution of  given  is normal with mean 0 and variance . By definition,  has the chi-square
distribution with  degrees of freedom. Hence, the joint PDF of  is

The PDF of  is

Except for the missing normalizing constant, the integrand is the gamma PDF with shape parameter  and scale parameter 
. Hence

Simplifying gives the result.

The proof of this theorem provides a good way of thinking of the  distribution: the distribution arises when the variance of a mean 0 normal
distribution is randomized in a certain way.

In the special distribution simulator, select the student  distribution. Vary  and note the shape of the probability density function. For
selected values of , run the simulation 1000 times and compare the empirical density function to the true probability density function.

The Student probability density function  with  degrees of freedom has the following properties:

1.  is symmetric about .
2.  is increasing and then decreasing with mode .
3.  is concave upward, then downward, then upward again with inflection points at .
4.  as  and as .

In particular, the distribution is unimodal with mode and median at . Note also that the inflection points converge to  as .
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The distribution function and the quantile function of the general  distribution do not have simple, closed-form representations. Approximate
values of these functions can be obtained from the special distribution calculator, and from most mathematical and statistical software packages.

In the special distribution calculator, select the student distribution. Vary the parameter and note the shape of the probability density,
distribution, and quantile functions. In each of the following cases, find the first and third quartiles:

1. 
2. 
3. 
4. 

Moments

Suppose that  has a  distribution. The representation in the definition can be used to find the mean, variance and other moments of . The
main point to remember in the proofs that follow is that since  has the chi-square distribution with  degrees of freedom,  if 

, while if ,

Suppose that  has the  distribution with  degrees of freedom. Then

1.  is undefined if 
2.  if 

Proof

By independence, . Of course . On the other hand,  if  and 
if .

Suppose again that  has the  distribution with  degrees of freedom then

1.  is undefined if 
2.  if 
3.  if 

Proof

By independence, . Of course . On the other hand,  if  and 
 if . The results now follow from the previous result on the mean.

Note that  as .

In the simulation of the special distribution simulator, select the student  distribution. Vary  and note the location and shape of the mean 
standard deviation bar. For selected values of , run the simulation 1000 times and compare the empirical mean and standard deviation to the
distribution mean and standard deviation.

Next we give the general moments of the  distribution.

Suppose again that  has the  distribution with  degrees of freedom and . Then

1.  is undefined if  is odd and 
2.  if  is even and 
3.  if  is odd and 
4. If  is even and  then

Proof

By independence, . Recall that  if  is odd, while

if  is even. Also,  if , while

t
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if . The results now follow by considering the various cases.

From the general moments, we can compute the skewness and kurtosis of .

Suppose again that  has the  distribution with  degrees of freedom. Then

1.  if 
2.  if 

Proof
1. This follows from the symmetry of the distribution of , although  only exists if  exists.
2. For ,

But . Simplifying gives the result.

Note that  as  and hence the excess kurtosis  as .

In the special distribution simulator, select the student  distribution. Vary  and note the shape of the probability density function in light of
the previous results on skewness and kurtosis. For selected values of , run the simulation 1000 times and compare the empirical density
function to the true probability density function.

Since  does not have moments of all orders, there is no interval about 0 on which the moment generating function of  is finite. The
characteristic function exists, of course, but has no simple representation, except in terms of special functions.

Relations

The  distribution with 1 degree of freedom is known as the Cauchy distribution. The probability density function is

The Cauchy distribution is named after Augustin Cauchy and is studied in more detail in a separate section.

You probably noticed that, qualitatively at least, the  probability density function is very similar to the standard normal probability density
function. The similarity is quantitative as well:

Let  denote the  probability density function with  degrees of freedom. Then for fixed ,

Proof

From a basic limit theorem in calculus,

An application of Stirling's approximation shows that

Note that the function on the right is the probability density function of the standard normal distribution. We can also get convergence of the 
distribution to the standard normal distribution from the basic random variable representation in the definition.

Suppose that  has the  distribution with  degrees of freedom, so that we can represent  as

E( )=V
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where  has the standard normal distribution,  has the chi-square distribution with  degrees of freedom, and  and  are independent.
Then  as  with probability 1.

Proof

We can represent  as  where  are independent, standard normal variables, independent of .
Note that  as  with probability 1 by the strong law of large numbers.

The  distribution has more probability in the tails, and consequently less probability near 0, compared to the standard normal distribution.

The Non-Central  Distribution

One natural way to generalize the student  distribution is to replace the standard normal variable  in the definition above with a normal
variable having an arbitrary mean (but still unit variance). The reason this particular generalization is important is because it arises in hypothesis
tests about the mean based on a random sample from the normal distribution, when the null hypothesis is false. For details see the sections on
tests in the normal model and tests in the bivariate normal model in the chapter on Hypothesis Testing.

Suppose that  has the standard normal distribution, ,  has the chi-squared distribution with  degrees of freedom, and
that  and  are independent. Random variable

has the non-central student  distribution with  degrees of freedom and non-centrality parameter .

The standard functions that characterize a distribution—the probability density function, distribution function, and quantile function—do not
have simple representations for the non-central  distribution, but can only be expressed in terms of other special functions. Similarly, the
moments do not have simple, closed form expressions either. For the beginning student of statistics, the most important fact is that the probability
density function of the non-central  distribution is similar (but not exactly the same) as that of the standard  distribution (with the same degrees
of freedom), but shifted and scaled. The density function is shifted to the right or left, depending on whether  or .

Computational Exercises

Suppose that  has the  distribution with  degrees of freedom. For each of the following, compute the true value using the special
distribution calculator and then compute the normal approximation. Compare the results.

1. 
2. The 90th percentile of .

Answer
1. , 
2. , 

This page titled 5.10: The Student t Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.11: The F Distribution
       

In this section we will study a distribution that has special importance in statistics. In particular, this distribution arises from ratios of sums of squares when sampling from
a normal distribution, and so is important in estimation and in the two-sample normal model and in hypothesis testing in the two-sample normal model.

Basic Theory

Definition

Suppose that  has the chi-square distribution with  degrees of freedom,  has the chi-square distribution with  degrees of freedom, and that 
 and  are independent. The distribution of

is the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator.

The  distribution was first derived by George Snedecor, and is named in honor of Sir Ronald Fisher. In practice, the parameters  and  are usually positive integers, but
this is not a mathematical requirement.

Distribution Functions

Suppose that  has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator. Then  has a
continuous distribution on  with probability density function  given by

where  is the gamma function.

Proof

The trick, once again, is conditioning. The conditional distribution of  given  is gamma with shape parameter  and scale parameter .
Hence the conditional PDF is

By definition,  has the chi-square distribution with  degrees of freedom, and so has PDF

The joint PDF of  is the product of these functions:

The PDF of  is therefore

Except for the normalizing constant, the integrand in the last integral is the gamma PDF with shape parameter  and scale parameter . Hence
the integral evaluates to

Simplifying gives the result.

Recall that the beta function  can be written in terms of the gamma function by

Hence the probability density function of the  distribution above can also be written as

When , the probability density function is defined at , so the support interval is  is this case.

In the special distribution simulator, select the  distribution. Vary the parameters with the scroll bars and note the shape of the probability density function. For
selected values of the parameters, run the simulation 1000 times and compare the empirical density function to the probability density function.

Both parameters influence the shape of the  probability density function, but some of the basic qualitative features depend only on the numerator degrees of freedom. For
the remainder of this discussion, let  denote the  probability density function with  degrees of freedom in the numerator and  degrees of freedom
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in the denominator.

Probability density function  satisfies the following properties:

1. If ,  is decreasing with  as .
2. If ,  is decreasing with mode at .
3. If ,  increases and then decreases, with mode at .

Proof

These properties follow from standard calculus. The first derivative of  is

Qualitatively, the second order properties of  also depend only on , with transitions at  and .

For , define

The probability density function  satisfies the following properties:

1. If ,  is concave upward.
2. If ,  is concave downward and then upward, with inflection point at .
3. If ,  is concave upward, then downward, then upward again, with inflection points at  and .

Proof

These results follow from standard calculus. The second derivative of  is

The distribution function and the quantile function do not have simple, closed-form representations. Approximate values of these functions can be obtained from the
special distribution calculator and from most mathematical and statistical software packages.

In the special distribution calculator, select the  distribution. Vary the parameters and note the shape of the probability density function and the distribution function.
In each of the following cases, find the median, the first and third quartiles, and the interquartile range.

1. , 
2. , 
3. , 
4. , 

The general probability density function of the  distribution is a bit complicated, but it simplifies in a couple of special cases.

Special cases.

1. If ,

2. If ,

3. If ,

4. If ,

Moments

The random variable representation in the definition, along with the moments of the chi-square distribution can be used to find the mean, variance, and other moments of
the  distribution. For the remainder of this discussion, suppose that  has the  distribution with  degrees of freedom in the numerator and 
degrees of freedom in the denominator.
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F

n= 5 d = 5

n= 5 d = 10

n= 10 d = 5

n= 10 d = 10

F

n= 2

f(x) = , x ∈ (0,∞)

1

(1+2x/d)

1+d/2

(5.11.14)

n= d ∈ (0,∞)

f(x) = , x ∈ (0,∞)

Γ(n)

(n/2)Γ

2

x

n/2−1

(1+x)

n
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n= d = 2

f(x) = , x ∈ (0,∞)

1

(1+x)

2

(5.11.16)

n= d = 1

f(x) = , x ∈ (0,∞)

1

π (1+x)x

−−

√
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Mean

1.  if 
2.  if 

Proof

By independence, . Recall that . Similarly if ,  while if ,

Thus, the mean depends only on the degrees of freedom in the denominator.

Variance

1.  is undefined if 
2.  if 
3. If  then

Proof

By independence, . Recall that

Similarly if ,  while if ,

Hence  if  while if ,

The results now follow from the previous result on the mean and the computational formula .

In the simulation of the special distribution simulator, select the  distribution. Vary the parameters with the scroll bar and note the size and location of the mean 
standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare the empirical mean and standard deviation to the distribution
mean and standard deviation..

General moments. For ,

1.  if 
2. If  then

Proof

By independence, . Recall that

On the other hand,  if  while if ,

If , then using the fundamental identity of the gamma distribution and some algebra,

From the general moment formula, we can compute the skewness and kurtosis of the  distribution.

Skewness and kurtosis

1. If ,

E(X) =∞ 0 < d ≤ 2

E(X) =

d

d−2

d > 2

E(X) = E(U)E ( )

d

n

V

−1

E(U) = n d ≤ 2 E ( )=∞V

−1

d > 2

E ( )= =V

−1

Γ(d/2−1)

2Γ(d/2)

1

d−2

(5.11.18)

var(X) 0 < d ≤ 2

var(X) =∞ 2 < d ≤ 4

d > 4

var(X) = 2( )

d

d−2

2

n+d−2

n(d−4)

(5.11.19)

E ( )= E ( )E ( )X

2

d

2

n

2

U

2

V

−2

E(( )= 4 = (n+2)nU

2

Γ(n/2+2)

Γ(n/2)

(5.11.20)

d ≤ 4 E ( )=∞V

−2

d > 4

E ( )= =V

−2

Γ(d/2−2)

4Γ(d/2)

1

(d−2)(d−4)

(5.11.21)

E ( )=∞X

2

d ≤ 4 d > 4

E ( )=X

2

(n+2)d

2

n(d−2)(d−4)

(5.11.22)

var(X) =E ( )−X

2

[E(X)]

2

F ±

k> 0

E ( )=∞X

k

0 < d ≤ 2k

d > 2k

E ( )=X

k

( )

d

n

k

Γ(n/2+k) Γ(d/2−k)

Γ(n/2)Γ(d/2)

(5.11.23)

E ( )= E ( )E ( )X

k

( )

d

n

k

U

k

V

−k

E ( )=U

k

Γ(n/2+k)2

k

Γ(n/2)
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E ( )=∞V

−k

d/2 ≤ k d/2 > k

E ( )=V

−k

Γ(d/2−k)2

−k

Γ(d/2)
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k ∈ N

E ( )=X

k

( )

d

n

k

n(n+2)⋯ [n+2(k−1)]

(d−2)(d−4)⋯(d−2k)
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2. If ,

Proof

These results follow from the formulas for  for  and the standard computational formulas for skewness and kurtosis.

Not surprisingly, the  distribution is positively skewed. Recall that the excess kurtosis is

In the simulation of the special distribution simulator, select the  distribution. Vary the parameters with the scroll bar and note the shape of the probability density
function in light of the previous results on skewness and kurtosis. For selected values of the parameters, run the simulation 1000 times and compare the empirical
density function to the probability density function.

Relations

The most important relationship is the one in the definition, between the  distribution and the chi-square distribution. In addition, the  distribution is related to several
other special distributions.

Suppose that  has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator. Then  has
the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator.

Proof

This follows easily from the random variable interpretation in the definition. We can write

where  and  are independent and have chi-square distributions with  and  degrees of freedom, respectively. Hence

Suppose that  has the  distribution with  degrees of freedom. Then  has the  distribution with 1 degree of freedom in the numerator and 
degrees of freedom in the denominator.

Proof

This follows easily from the random variable representations of the  and  distributions. We can write

where  has the standard normal distribution,  has the chi-square distribution with  degrees of freedom, and  and  are independent. Hence

Recall that  has the chi-square distribution with 1 degree of freedom.

Our next relationship is between the  distribution and the exponential distribution.

Suppose that  and  are independent random variables, each with the exponential distribution with rate parameter . Then . has the 
distribution with  degrees of freedom in both the numerator and denominator.

Proof

We first find the distribution function  of  by conditioning on :

But  for  so . Also,  has PDF  for  so

Differentiating gives the PDF of 

which we recognize as the PDF of the  distribution with 2 degrees of freedom in the numerator and the denominator.

skew(X) =

(2n+d−2) 8(d−4)

− −−−−−−

√

(d−6) n(n+d−2)

− −−−−−−−−−

√

(5.11.27)

d > 8

kurt(X) = 3+12

n(5d−22)(n+d−2)+(d−4)(d−2)

2

n(d−6)(d−8)(n+d−2)

(5.11.28)

E ( )X

k

k ∈ {1, 2, 3, 4}

F

kurt(X)−3 = 12

n(5d−22)(n+d−2)+(d−4)(d−2)

2

n(d−6)(d−8)(n+d−2)

(5.11.29)

F

F F

X F n ∈ (0,∞) d ∈ (0,∞) 1/X

F d n

X =

U/n

V /d

(5.11.30)

U V n d

=

1

X

V /d

U/n

(5.11.31)

T t n ∈ (0,∞) X = T

2

F n

t F

T =

Z

V /n

− −−−

√

(5.11.32)

Z V n Z V

=T

2

Z

2

V /n

(5.11.33)

Z

2

F

X Y r ∈ (0,∞) Z =X/Y F

2

F Z X

F (z) = P(Z ≤ z) = P(Y ≥X/z) =E [P(Y ≥X/z ∣X)] (5.11.34)

P(Y ≥ y) = e

−ry

y ≥ 0 F (z) =E ( )e

−rX/z

X g(x) = re

−rx

x ≥ 0

F (z) = r dx = r dx = = , z ∈ (0,∞)∫

∞

0

e

−rx/z

e

−rx

∫

∞

0

e

−rx(1+1/z)

1

1+1/z

z

1+z
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Z

f(z) = , z ∈ (0,∞)

1

(1+z)

2

(5.11.36)
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A simple transformation can change a variable with the  distribution into a variable with the beta distribution, and conversely.

Connections between the  distribution and the beta distribution.

1. If  has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator, then

has the beta distribution with left parameter  and right parameter .
2. If  has the beta distribution with left parameter  and right parameter  then

has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator.

Proof

The two statements are equivalent and follow from the standard change of variables formula. The function

maps  one-to-one onto (0, 1), with inverse

Let  denote the PDF of the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator, and let  denote the PDF of the
beta distribution with left parameter  and right parameter . Then  and  are related by

1. 

2. 

The  distribution is closely related to the beta prime distribution by a simple scale transformation.

Connections with the beta prime distributions.

1. If  has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator, then  has the
beta prime distribution with parameters  and .

2. If  has the beta prime distribution with parameters  and  then  has the  distribution with  degrees of the freedom in the
numerator and  degrees of freedom in the denominator.

Proof

Let  denote the PDF of  and  the PDF of .

1. By the change of variables formula,

Substituting into the beta  PDF shows that  has the appropriate beta prime distribution.
2. Again using the change of variables formula,

Substituting into the beta prime PDF shows that  has the appropriate  PDF.

The Non-Central  Distribution
The  distribution can be generalized in a natural way by replacing the ordinary chi-square variable in the numerator in the definition above with a variable having a non-
central chi-square distribution. This generalization is important in analysis of variance.

Suppose that  has the non-central chi-square distribution with  degrees of freedom and non-centrality parameter ,  has the chi-square
distribution with  degrees of freedom, and that  and  are independent. The distribution of

is the non-central  distribution with  degrees of freedom in the numerator,  degrees of freedom in the denominator, and non-centrality parameter .

One of the most interesting and important results for the non-central chi-square distribution is that it is a Poisson mixture of ordinary chi-square distributions. This leads to
a similar result for the non-central  distribution.

Suppose that  has the Poisson distribution with parameter , and that the conditional distribution of  given  is the  distribution with  degrees of
freedom in the numerator and  degrees of freedom in the denominator, where  and . Then  has the non-central  distribution with 
degrees of freedom in the numerator,  degrees of freedom in the denominator, and non-centrality parameter .

Proof

F

F

X F n ∈ (0,∞) d ∈ (0,∞)

Y =

(n/d)X

1+(n/d)X

(5.11.37)

n/2 d/2

Y a ∈ (0,∞) b ∈ (0,∞)

X =

bY

a(1−Y )

(5.11.38)

F 2a 2b

y =

(n/d)x

1+(n/d)x

(5.11.39)

(0,∞)

x =

d

n

y

1−y

(5.11.40)

f F n d g

n/2 d/2 f g

g(y) = f(x)

dx

dy

f(x) = g(y)

dy

dx

F

X F n ∈ (0,∞) d ∈ (0,∞) Y = X

n

d

n/2 d/2

Y a ∈ (0,∞) b ∈ (0,∞) X = X

b

a

F 2a

2b

f X g Y

g(y) = f ( y) , y ∈ (0,∞)

d

n

d

n

(5.11.41)

F Y

f(x) = g( x) , x ∈ (0,∞)

a

b

a

b

(5.11.42)

X F

F

F

U n ∈ (0,∞) λ ∈ [0,∞) V

d ∈ (0,∞) U V

X =

U/n

V /d

(5.11.43)

F n d λ

F
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As in the theorem, let  have the Poisson distribution with parameter , and suppose also that the conditional distribution of  given  is chi-square with 
degrees of freedom, and that  has the chi-square distribution with  degrees of freedom and is independent of . Let . Since  is
independent of , the variable  satisfies the condition in the theorem; that is, the conditional distribution of  given  is the  distribution with 
degrees of freedom in the numerator and  degrees of freedom in the denominator. But then also, (unconditionally)  has the non-central chi-square distribution with 

 degrees of freedom in the numerator and non-centrality parameter ,  has the chi-square distribution with  degrees of freedom, and  and  are independent. So
by definition  has the  distribution with  degrees of freedom in the numerator,  degrees of freedom in the denominator, and non-centrality parameter .

From the last result, we can express the probability density function and distribution function of the non-central  distribution as a series in terms of ordinary  density
and distribution functions. To set up the notation, for  let  be the probability density function and  the distribution function of the  distribution with 
degrees of freedom in the numerator and  degrees of freedom in the denominator. For the rest of this discussion,  and  as usual.

The probability density function  of the non-central  distribution with  degrees of freedom in the numerator,  degrees of freedom in the denominator, and non-
centrality parameter  is given by

The distribution function  of the non-central  distribution with  degrees of freedom in the numerator,  degrees of freedom in the denominator, and non-centrality
parameter  is given by

This page titled 5.11: The F Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via source content that was
edited to the style and standards of the LibreTexts platform.

N λ/2 U N n+2N

V d (N ,U) X = (U/n)/(V /d) V
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X F n d λ

F F
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jk

F

jk
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λ
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5.12: The Lognormal Distribution
         

Basic Theory

Definition

Suppose that  has the normal distribution with mean  and standard deviation . Then  has the lognormal
distribution with parameters  and .

1. The parameter  is the shape parameter of the distribution.
2. The parameter  is the scale parameter of the distribution.

If  has the standard normal distribution then  has the standard lognormal distribution.

So equivalently, if  has a lognormal distribution then  has a normal distribution, hence the name. The lognormal distribution is a
continuous distribution on  and is used to model random quantities when the distribution is believed to be skewed, such as certain
income and lifetime variables. It's easy to write a general lognormal variable in terms of a standard lognormal variable. Suppose that  has the
standard normal distribution and let  so that  has the standard lognormal distribution. If  and  then 
has the normal distribution with mean  and standard deviation  and hence  has the lognormal distribution with parameters  and .
But

Distribution Functions

Suppose that  has the lognormal distribution with parameters  and .

The probability density function  of  is given by

1.  increases and then decreases with mode at .

2.  is concave upward then downward then upward again, with inflection points at 

3.  as  and as .

Proof

The form of the PDF follows from the change of variables theorem. Let  denote the PDF of the normal distribution with mean  and
standard deviation , so that

The mapping  maps  one-to-one onto  with inverse . Hence the PDF  of  is

Substituting gives the result. Parts (a)–(d) follow from standard calculus.

In the special distribution simulator, select the lognormal distribution. Vary the parameters and note the shape and location of the
probability density function. For selected values of the parameters, run the simulation 1000 times and compare the empirical density
function to the true probability density function.

Let  denote the standard normal distribution function, so that  is the standard normal quantile function. Recall that values of  and 
can be obtained from the special distribution calculator, as well as standard mathematical and statistical software packages, and in fact these
functions are considered to be special functions in mathematics. The following two results show how to compute the lognormal distribution
function and quantiles in terms of the standard normal distribution function and quantiles.

The distribution function  of  is given by

Y μ ∈ R σ ∈ (0,∞) X = e

Y

μ σ

σ

e

μ

Z W = e

Z

X lnX

(0,∞)

Z

W = e

Z

W μ ∈ R σ ∈ (0,∞) Y = μ+σZ

μ σ X = e

Y

μ σ

X = = = =e

Y

e

μ+σZ

e

μ

( )e

Z

σ

e

μ

W

σ

(5.12.1)

X μ ∈ R σ ∈ (0,∞)

f X

f(x) = exp[− ], x ∈ (0,∞)

1

σx2π

−−

√

(lnx−μ)

2

2σ

2

(5.12.2)

f x = exp(μ− )σ

2

f x = exp(μ− ± σ )

3

2

σ

2

1

2

+4σ

2

− −−−−

√

f(x) → 0 x ↓ 0 x→∞

g μ

σ

g(y) = exp[− ], y ∈ R

1

σ2π

−−

√

1

2

( )

y−μ

σ

2
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x = e

y

R (0,∞) y = lnx f X = e

Y

f(x) = g(y) = g (lnx)

dy

dx
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x

(5.12.4)

Φ Φ

−1

Φ Φ

−1

F X

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10352?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/05%3A_Special_Distributions/5.12%3A_The_Lognormal_Distribution


5.12.2 https://stats.libretexts.org/@go/page/10352

Proof

Once again, write  where  has the standard normal distribution. For ,

The quantile function of  is given by

Proof

This follows by solving  for  in terms of .

In the special distribution calculator, select the lognormal distribution. Vary the parameters and note the shape and location of the
probability density function and the distribution function. With  and , find the median and the first and third quartiles.

Moments

The moments of the lognormal distribution can be computed from the moment generating function of the normal distribution. Once again, we
assume that  has the lognormal distribution with parameters  and .

For ,

Proof

Recall that if  has the normal distribution with mean  and standard deviation , then  has moment generating function
given by

Hence the result follows immediately since .

In particular, the mean and variance of  are

1. 
2. 

In the simulation of the special distribution simulator, select the lognormal distribution. Vary the parameters and note the shape and
location of the mean standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare the
empirical moments to the true moments.

From the general formula for the moments, we can also compute the skewness and kurtosis of the lognormal distribution.

The skewness and kurtosis of  are

1. 

2. 

Proof

These result follow from the first 4 moments of the lognormal distribution and the standard computational formulas for skewness and
kurtosis.

The fact that the skewness and kurtosis do not depend on  is due to the fact that  is a scale parameter. Recall that skewness and kurtosis are
defined in terms of the standard score and so are independent of location and scale parameters. Naturally, the lognormal distribution is
positively skewed. Finally, note that the excess kurtosis is

F (x) = Φ( ) , x ∈ (0,∞)

lnx−μ

σ

(5.12.5)

X = e

μ+σZ

Z x > 0

F (x) = P(X ≤ x) = P(Z ≤ ) =Φ( )

lnx−μ

σ

lnx−μ

σ

(5.12.6)

X

(p) = exp[μ+σ (p)], p ∈ (0, 1)F

−1

Φ

−1

(5.12.7)

p = F (x) x p

μ= 0 σ = 1

X μ ∈ R σ ∈ (0,∞)
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Y μ ∈ R σ ∈ (0,∞) Y
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Even though the lognormal distribution has finite moments of all orders, the moment generating function is infinite at any positive number.
This property is one of the reasons for the fame of the lognormal distribution.

 for every .

Proof

By definition,  where  has the normal distribution with mean  and standard deviation . Using the change of variables formula
for expected value we have

If  the integrand in the last integral diverges to  as , so there is no hope that the integral converges.

Related Distributions

The most important relations are the ones between the lognormal and normal distributions in the definition: if  has a lognormal distribution
then  has a normal distribution; conversely if  has a normal distribution then  has a lognormal distribution. The lognormal distribution
is also a scale family.

Suppose that  has the lognormal distribution with parameters  and  and that . Then  has the lognormal
distribution with parameters  and .

Proof

From the definition, we can write  where  has the normal distribution with mean  and standard deviation . Hence

But  has the normal distribution with mean  and standard deviation .

The reciprocal of a lognormal variable is also lognormal.

If  has the lognormal distribution with parameters  and  then  has the lognormal distribution with parameters 
and .

Proof

Again from the definition, we can write  where  has the normal distribution with mean  and standard deviation . Hence 
. But  has the normal distribution with mean  and standard deviation .

The lognormal distribution is closed under non-zero powers of the underlying variable. In particular, this generalizes the previous result.

Suppose that  has the lognormal distribution with parameters  and  and that . Then  has the lognormal
distribution with parameters with parameters  and .

Proof

Again from the definition, we can write  where  has the normal distribution with mean  and standard deviation . Hence 
. But  has the normal distribution with mean  and standard deviation .

Since the normal distribution is closed under sums of independent variables, it's not surprising that the lognormal distribution is closed under
products of independent variables.

Suppose that  and that  is a sequence of independent variables, where  has the lognormal distribution with
parameters  and  for . Then  has the lognormal distribution with parameters  and  where 

 and .

Proof

Again from the definition, we can write  where  has the normal distribution with mean  and standard deviation  for 
 and where  is an independent sequence. Hence . But  has the normal

distribution with mean  and variance .

Finally, the lognormal distribution belongs to the family of general exponential distributions.
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Suppose that  has the lognormal distribution with parameters  and . The distribution of  is a 2-parameter exponential
family with natural parameters and natural statistics, respectively, given by

1. 
2. 

Proof

This follows from the definition of the general exponential family, since we can write the lognormal PDF in the form

Computational Exercises

Suppose that the income  of a randomly chosen person in a certain population (in $1000 units) has the lognormal distribution with
parameters  and . Find .

Answer

Suppose that the income  of a randomly chosen person in a certain population (in $1000 units) has the lognormal distribution with
parameters  and . Find each of the following:

1. 
2. 

Answer
1. 
2. 

This page titled 5.12: The Lognormal Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.13: The Folded Normal Distribution
          

The General Folded Normal Distribution

Introduction

The folded normal distribution is the distribution of the absolute value of a random variable with a normal distribution. As has been
emphasized before, the normal distribution is perhaps the most important in probability and is used to model an incredible variety
of random phenomena. Since one may only be interested in the magnitude of a normally distributed variable, the folded normal
arises in a very natural way. The name stems from the fact that the probability measure of the normal distribution on  is
“folded over” to . Here is the formal definition:

Suppose that  has a normal distribution with mean  and standard deviation . Then  has the folded
normal distribution with parameters  and .

So in particular, the folded normal distribution is a continuous distribution on .

Distribution Functions

Suppose that  has the standard normal distribution. Recall that  has probability density function  and distribution function 
given by

The standard normal distribution is so important that  is considered a special function and can be computed using most
mathematical and statistical software. If  and , then  has the normal distribution with mean  and
standard deviation , and therefore  has the folded normal distribution with parameters  and . For the
remainder of this discussion we assume that  has this folded normal distribution.

 has distribution function  given by

Proof

For ,

which gives the first expression. The second expression follows since  for . Finally, the integral
formula follows from the form of  given above and simple substitution.

We cannot compute the quantile function  in closed form, but values of this function can be approximated.

Open the special distribution calculator and select the folded normal distribution, and set the view to CDF. Vary the parameters
and note the shape of the distribution function. For selected values of the parameters, compute the median and the first and
third quartiles.

 has probability density function  given by
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Proof

This follows from differentiating the CDF with respect to , since  and .

Open the special distribution simulator and select the folded normal distribution. Vary the parameters  and  and note the
shape of the probability density function. For selected values of the parameters, run the simulation 1000 times and compae the
empirical density function to the true probability density function.

Note that the folded normal distribution is unimodal for some values of the parameters and decreasing for other values. Note also
that  is not a location parameter nor is  a scale parameter; both influence the shape of the probability density function.

Moments

We cannot compute the the mean of the folded normal distribution in closed form, but the mean can at least be given in terms of .
Once again, we assume that  has the folded normal distribution with parmaeters  and .

The first two moments of  are

1. 
2. 

Proof

From the definition, we can assume  where  has the standard normal distribution. Then

So we just need to compute the last expected value. Using the change of variables  we get

Substituting gives the result in (a). For (b), let  have the normal distribution with mean  and standard deviation  so that we
can take . Then .

In particular, the variance of  is

Open the special distribution simulator and select the folded normal distribution. Vary the parameters and note the size and
location of the mean standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare
the empirical mean and standard deviation to the true mean and standard deviation.

Related Distributions

The most important relation is the one between the folded normal distribution and the normal distribution in the definition: If  has
a normal distribution then  has a folded normal distribution. The folded normal distribution is also related to itself through
a symmetry property that is perhaps not completely obvious from the initial definition:

For  and , the folded normal distribution with parameters  and  is the same as the folded normal
distribution with parameters  and .

Proof 1
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The PDF is unchanged if  is replaced with .

Proof 2

Suppose that  has the normal distribution with mean  and standard deviation  so that  has the folded normal
distribution with parameters  and . Then  has the normal distribution with mean  and standard deviation  so that 

 has the folded normal distribution with parameters  and . But .

The folded normal distribution is also closed under scale transformations.

Suppose that  has the folded normal distribution with parameters  and  and that . Then  has
the folded normal distribution with parameters  and .

Proof

Once again from the definition, we can assume  where  has the normal distribution with mean  and standard
deviation . But then , and  has the normal distribution with mean  and standard deviation .

The Half-Normal Distribution
When , results for the folded normal distribution are much simpler, and fortunately this special case is the most important
one. We are more likely to be interested in the magnitude of a normally distributed variable when the mean is 0, and moreover, this
distribution arises in the study of Brownian motion.

Suppose that  has the standard normal distribution and that . Then  has the half-normal distribution
with scale parameter . If  so that , then  has the standard half-normal distribution.

Distribution Functions

For our next discussion, suppose that  has the half-normal distribution with parameter . Once again,  and 
denote the distribution function and quantile function, respectively, of the standard normal distribution.

The distribution function  and quantile function  of  are

Proof

The result for the CDF follows from the CDF of the folded normal distribution with . Recall that  for
. The result for the quantile function follows from the result for the CDF and simple algebra.

Open the special distribution calculator and select the folded normal distribution. Select CDF view and keep . Vary  and
note the shape of the CDF. For various values of , compute the median and the first and third quartiles.

The probability density function  of  is given by

1.  is decreasing with mode at .
2.  is concave downward and then upward, with inflection point at .

Proof

The formula for  follows from differentiating the CDF above. Properties (a) and (b) follow from standard calculus.

Open the special distribution simulator and select the folded normal distribution. Keep  and vary , and note the shape of
the probability density function. For selected values of , run the simulation 1000 times and compare the empricial density
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function to the true probability density function.

Moments

The moments of the half-normal distribution can be computed explicitly. Once again we assume that  has the half-normal
distribution with parameter .

For 

Proof

As in the definition, we can take  where  has the standard normal distribution. The even order moments of  are
the same as the even order moments of . These were computed in the section on the normal distribution. For the odd order
moments we again use the simple substitution  to get

In particular, we have  and 

Open the special distribution simulator and select the folded normal distribution. Keep  and vary , and note the size and
location of the mean standard deviation bar. For selected values of , run the simulation 1000 times and compare the mean
and standard deviation to the true mean and standard deviation.

Next are the skewness and kurtosis of the half-normal distribution.

Skewness and kurtosis

1. The skewness of  is

2. The kurtosis of  is

Proof

Skewness and kurtosis are functions of the standard score and so do not depend on the scale parameter . The results then
follow by letting  and using the standard computational formulas for skewness and kurtosis in terms of the moments of
the half-normal distribution.

Related Distributions

Once again, the most important relation is the one in the definition: If  has a normal distribution with mean 0 then  has a
half-normal distribution. Since the half normal distribution is a scale family, it is trivially closed under scale transformations.

Suppose that  has the half-normal distribution with parameter  and that . Then  has the half-normal
distribution with parameter .

Proof

As in the definition, let  where  is standard normal. Then .

The standard half-normal distribution is also a special case of the chi distribution.
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The standard half-normal distribution is the chi distribution with 1 degree of freedom.

Proof

If  is a standard normal variable, then  has the chi-square distribution with 1 degree of freedom, and hence 
has the chi distribution with 1 degree of freedom.

This page titled 5.13: The Folded Normal Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.14: The Rayleigh Distribution
         

The Rayleigh distribution, named for William Strutt, Lord Rayleigh, is the distribution of the magnitude of a two-dimensional
random vector whose coordinates are independent, identically distributed, mean 0 normal variables. The distribution has a number
of applications in settings where magnitudes of normal variables are important.

The Standard Rayleigh Distribution

Definition

Suppose that  and  are independent random variables with standard normal distributions. The magnitude 

 of the vector  has the standard Rayleigh distribution.

So in this definition,  has the standard bivariate normal distribution

Distribution Functions

We give five functions that completely characterize the standard Rayleigh distribution: the distribution function, the probability
density function, the quantile function, the reliability function, and the failure rate function. For the remainder of this discussion,
we assume that  has the standard Rayleigh distribution.

 has distribution function  given by  for .

Proof

 has joint PDF  on . Hence

where . Convert to polar coordinates with ,  to get

The result now follows by simple integration.

 has probability density function  given by  for .

1.  increases and then decreases with mode at .
2.  is concave downward and then upward with inflection point at .

Proof

The formula for the PDF follows immediately from the distribution function since .

1. 
2. .

Open the Special Distribution Simulator and select the Rayleigh distribution. Keep the default parameter value and note the
shape of the probability density function. Run the simulation 1000 times and compare the emprical density function to the
probability density function.

 has quantile function  given by  for . In particular, the quartiles of  are

1. , the first quartile
2. , the median
3. , the third quartile

Proof
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The formula for the quantile function follows immediately from the distribution function by solving  for  in terms
of .

Open the Special Distribution Calculator and select the Rayleigh distribution. Keep the default parameter value. Note the shape
and location of the distribution function. Compute selected values of the distribution function and the quantile function.

 has reliability function  given by  for .

Proof

Recall that the reliability function is simply the right-tail distribution function, so .

 has failure rate function  given by  for . In particular,  has increasing failure rate.

Proof

Recall that the failure rate function is .

Moments

Once again we assume that  has the standard Rayleigh distribution. We can express the moment generating function of  in
terms of the standard normal distribution function . Recall that  is so commonly used that it is a special function of
mathematics.

 has moment generating function  given by

Proof

By definition . Combining the exponential and completing the square in  gives

But  is the PDF of the normal distribution with mean  and variance 1. The rest of the derivation follows

from basic calculus.

The mean, variance of  are

1. 
2. 

Proof
1. Note that

But  is the PDF of the standard normal distribution. Hence the second integral is  (since the variance of

the standard normal distribution is 1).
2. An integration by parts gives

Numerically,  and .

Open the Special Distribution Simulator and select the Rayleigh distribution. Keep the default parameter value. Note the size
and location of the mean standard deviation bar. Run the simulation 1000 times and compare the empirical mean and stadard
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E(R) ≈ 1.2533 sd(R) ≈ 0.6551

±

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10354?pdf


5.14.3 https://stats.libretexts.org/@go/page/10354

deviation to the true mean and standard deviation.

The general moments of  can be expressed in terms of the gamma function .

 for .

Proof

The substitution  gives

The last integral is  by definition.

Of course, the formula for the general moments gives an alternate derivation of the mean and variance above, since 
 and . On the other hand, the moment generating function can be also be used to derive the formula for

the general moments.

The skewness and kurtosis of  are

1. 
2. 

Proof

These results follow from the standard formulas for the skewness and kurtosis in terms of the moments, since , 
, , and .

Related Distributions

The fundamental connection between the standard Rayleigh distribution and the standard normal distribution is given in the very
definition of the standard Rayleigh, as the distribution of the magnitude of a point with independent, standard normal coordinates.

Connections to the chi-square distribution.

1. If  has the standard Rayleigh distribution then  has the chi-square distribution with 2 degrees of freedom.
2. If  has the chi-square distribution with 2 degrees of freedom then  has the standard Rayleigh distribution.

Proof

This follows directly from the definition of the standard Rayleigh variable , where  and  are

independent standard normal variables.

Recall also that the chi-square distribution with 2 degrees of freedom is the same as the exponential distribution with scale
parameter 2.

Since the quantile function is in closed form, the standard Rayleigh distribution can be simulated by the random quantile method.

Connections between the standard Rayleigh distribution and the standard uniform distribution.

1. If  has the standard uniform distribution (a random number) then  has the standard
Rayleigh distribution.

2. If  has the standard Rayleigh distribution then  has the standard uniform distribution

In part (a), note that  has the same distribution as  (the standard uniform). Hence  also has the standard
Rayleigh distribution.

Open the random quantile simulator and select the Rayleigh distribution with the default parameter value (standard). Run the
simulation 1000 times and compare the empirical density function to the true density function.
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There is another connection with the uniform distribution that leads to the most common method of simulating a pair of
independent standard normal variables. We have seen this before, but it's worth repeating. The result is closely related to the
definition of the standard Rayleigh variable as the magnitude of a standard bivariate normal pair, but with the addition of the polar
coordinate angle.

Suppose that  has the standard Rayleigh distribution,  is uniformly distributed on , and that  and  are
independent. Let , . Then  have the standard bivariate normal distribution.

Proof

By independence, the joint PDF  of  is given by

As we recall from calculus, the Jacobian of the transformation ,  is , and hence the Jacobian of the
inverse transformation that takes  into  is . Moreover, . From the change of variables theorem,
the PDF  of  is given by . This leads to

Hence  has the standard bivariate normal distribution.

The General Rayleigh Distribution

Definition

The standard Rayleigh distribution is generalized by adding a scale parameter.

If  has the standard Rayleigh distribution and  then  has the Rayleigh distribution with scale parameter .

Equivalently, the Rayleigh distribution is the distribution of the magnitude of a two-dimensional vector whose components have
independent, identically distributed mean 0 normal variables.

If  and  are independent normal variables with mean 0 and standard deviation  then  has the

Rayleigh distribution with scale parameter .

Proof

We can take  and  where  and  are independent standard normal variables. Then 

 where  has the standard Rayleigh distribution.

Distribution Functions

In this section, we assume that  has the Rayleigh distribution with scale parameter .

 has cumulative distribution function  given by  for .

Proof

Recall that  where  is the standard Rayleigh CDF.

 has probability density function  given by  for .

1.  increases and then decreases with mode at .
2.  is concave downward and then upward with inflection point at .

Proof

Recall that  where  is the standard Rayleigh PDF.
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Open the Special Distribution Simulator and select the Rayleigh distribution. Vary the scale parameter and note the shape and
location of the probability density function. For various values of the scale parameter, run the simulation 1000 times and
compare the emprical density function to the probability density function.

 has quantile function  given by  for . In particular, the quartiles of  are

1. , the first quartile
2. , the median
3. , the third quartile

Proof

Recall that  where  is the standard Rayleigh quantile function.

Open the Special Distribution Calculator and select the Rayleigh distribution. Vary the scale parameter and note the location
and shape of the distribution function. For various values of the scale parameter, compute selected values of the distribution
function and the quantile function.

 has reliability function  given by  for .

Proof

Recall that .

 has failure rate function  given by  for . In particular,  has increasing failure rate.

Proof

Recall that .

Moments

Again, we assume that  has the Rayleigh distribution with scale parameter , and recall that  denotes the standard normal
distribution function.

 has moment generating function  given by

Proof

Recall that  where  is the standard Rayleigh MGF.

The mean and variance of  are

1. 
2. 

Proof

These result follow from standard mean and variance and basic properties of expected value and variance.

Open the Special Distribution Simulator and select the Rayleigh distribution. Vary the scale parameter and note the size and
location of the mean standard deviation bar. For various values of the scale parameter, run the simulation 1000 times and
compare the empirical mean and stadard deviation to the true mean and standard deviation.

Again, the general moments can be expressed in terms of the gamma function .

 for .

Proof
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This follows from the standard moments and basic properties of expected value.

The skewness and kurtosis of  are

1. 
2. 

Proof

Recall that skewness and kurtosis are defined in terms of the standard score, and hence are unchanged by a scale
transformation. Thus the results follow from the standard skewness and kurtosis.

Related Distributions

The fundamental connection between the Rayleigh distribution and the normal distribution is the defintion, and of course, is the
primary reason that the Rayleigh distribution is special in the first place. By construction, the Rayleigh distribution is a scale
family, and so is closed under scale transformations.

If  has the Rayleigh distribution with scale parameter  and if  then  has the Rayleigh distribution
with scale parameter .

The Rayleigh distribution is a special case of the Weibull distribution.

The Rayleigh distribution with scale parameter  is the Weibull distribution with shape parameter  and scale
parameter .

The following result generalizes the connection between the standard Rayleigh and chi-square distributions.

If  has the Rayleigh distribution with scale parameter  then  has the exponential distribution with scale
parameter .

Proof

We can take  where  has the standard Rayleigh distribution. Then , and  has the exponential
distribution with scale parameter 2. Hence  has the exponential distribution with scale parameter .

Since the quantile function is in closed form, the Rayleigh distribution can be simulated by the random quantile method.

Suppose that .

1. If  has the standard uniform distribution (a random number) then  has the Rayleigh
distribution with scale parameter .

2. If  has the Rayleigh distribution with scale parameter  then  has the standard uniform
distribution

In part (a), note that  has the same distribution as  (the standard uniform). Hence  also has the Rayleigh
distribution with scale parameter .

Open the random quantile simulator and select the Rayleigh distribution. For selected values of the scale parameter, run the
simulation 1000 times and compare the empirical density function to the true density function.

Finally, the Rayleigh distribution is a member of the general exponential family.

If  has the Rayleigh distribution with scale parameter  then  has a one-parameter exponential distribution with
natural parameter  and natural statistic .

Proof

This follows directly from the definition of the general exponential distribution.
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5.15: The Maxwell Distribution
         

The Maxwell distribution, named for James Clerk Maxwell, is the distribution of the magnitude of a three-dimensional random
vector whose coordinates are independent, identically distributed, mean 0 normal variables. The distribution has a number of
applications in settings where magnitudes of normal variables are important, particularly in physics. It is also called the Maxwell-
Boltzmann distribution in honor also of Ludwig Boltzmann. The Maxwell distribution is closely related to the Rayleigh
distribution, which governs the magnitude of a two-dimensional random vector whose coordinates are independent, identically
distributed, mean 0 normal variables.

The Standard Maxwell Distribution

Definition

Suppose that , , and  are independent random variables with standard normal distributions. The magnitude 

 of the vector  has the standard Maxwell distribution.

So in the context of the definition,  has the standard trivariate normal distribution. The Maxwell distribution is a
continuous distribution on .

Distribution Functions

In this discussion, we assume that  has the standard Maxwell distribution. The distribution function of  can be expressed in
terms of the standard normal distribution function . Recall that  occurs so frequently that it is considered a special function in
mathematics.

 has distribution function  given by

Proof

 has joint PDF  on . Hence

where , the spherical region of radius  centered at the origin. Convert to
spherical coordinates with , ,  to get

The result now follows by simple integration.

 has probability density function  given by

1.  increases and then decreases with mode at .

2.  is concave upward, then downward, then upward again, with inflection points at  and 

Proof

The formula for the PDF follows immediately from the distribution function since .
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1. 
2. 

Open the Special Distribution Simulator and select the Maxwell distribution. Keep the default parameter value and note the
shape of the probability density function. Run the simulation 1000 times and compare the emprical density function to the
probability density function.

The quantile function has no simple closed-form expression.

Open the Special Distribution Calculator and select the Maxwell distribution. Keep the default parameter value. Find
approximate values of the median and the first and third quartiles.

Moments

Suppose again that  has the standard Maxwell distribution. The moment generating function of , like the distribution function,
can be expressed in terms of the standard normal distribution function .

 has moment generating function  given by

Proof

Completing the square in  gives

The substitution  gives

Integrating by parts or by simple substitution, using the fact that  is the standard normal PDF, and that 

 we have

Simplifying gives the result.

The mean and variance of  can be found from the moment generating function, but direct computations are also easy.

The mean and variance of  are

1. 
2. 

Proof

The integration methods are by parts and by simple substitution.
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Numerically,  and 

Open the Special Distribution Simulator and select the Maxwell distribution. Keep the default parameter value. Note the size
and location of the mean standard deviation bar. Run the simulation 1000 times and compare the empirical mean and standard
deviation to the true mean and standard deviation.

The general moments of  can be expressed in terms of the gamma function 

For ,

Proof

The substitution  gives

The last integral is  by definition.

Of course, the formula for the general moments gives an alternate derivation for the mean and variance above since  and 
. On the other hand, the moment generating function can be also be used to derive the formula for the general

moments. Finally, we give the skewness and kurtosis of .

The skewness and kurtosis of  are

1. 
2. 

Proof

These results follow from the standard formulas for the skewness and kurtosis in terms of the moments, since 
, , , and .

Related Distributions

The fundamental connection between the standard Maxwell distribution and the standard normal distribution is given in the very
definition of the standard Maxwell, as the distribution of the magnitude of a vector in  with independent, standard normal
coordinates.

Connections to the chi-square distribution.

1. If  has the standard Maxwell distribution then  has the chi-square distribution with 3 degrees of freedom.
2. If  has the chi-square distribution with 3 degrees of freedom then  has the standard Maxwell distribution.

Proof

This follows directly from the definition of the standard Maxwell variable , where , , and  are

independent standard normal variables.

Equivalently, the Maxwell distribution is simply the chi distribution with 3 degrees of freedom.

The General Maxwell Distribution
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Definition

The standard Maxwell distribution is generalized by adding a scale parameter.

If  has the standard Maxwell distribution and  then  has the Maxwell distribution with scale parameter .

Equivalently, the Maxwell distribution is the distribution of the magnitude of a three-dimensional vector whose components have
independent, identically distributed, mean 0 normal variables.

If ,  and  are independent normal variables with mean 0 and standard deviation  then 

 has the Maxwell distribution with scale parameter .

Proof

We can take  for  where , , and  are independent standard normal variables. Then 

 where  has the standard Maxwell distribution.

Distribution Functions

In this section, we assume that  has the Maxwell distribution with scale parameter . We can give the distribution
function of  in terms of the standard normal distribution function .

 has distribution function  given by

Proof

Recall that  where  is the standard Maxwell CDF.

 has probability density function  given by

1.  increases and then decreases with mode at .

2.  is concave upward, then downward, then upward again, with inflection points at .

Proof

Recall that  where  is the standard Maxwell PDF.

Open the Special Distribution Simulator and select the Maxwell distribution. Vary the scale parameter and note the shape and
location of the probability density function. For various values of the scale parameter, run the simulation 1000 times and
compare the emprical density function to the probability density function.

Again, the quantile function does not hava a simple, closed-form expression.

Open the Special Distribution Calculator and select the Maxwell distribution. For various values of the scale parameter,
compute the median and the first and third quartiles.

Moments

Again, we assume that  has the Maxwell distribution with scale parameter . As before, the moment generating
function of  can be written in terms of the standard normal distribution function .

 has moment generating function  given by
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Proof

Recall that  where  is the standard Maxwell MGF.

The mean and variance of  are

1. 
2. 

Proof

These result follow from the standard mean and variance and basic properties of expected value and variance.

Open the Special Distribution Simulator and select the Maxwell distribution. Vary the scale parameter and note the size and
location of the mean standard deviation bar. For various values of the scale parameter, run the simulation 1000 times compare
the empirical mean and standard deviation to the true mean and standard deviation.

As before, the general moments can be expressed in terms of the gamma function .

For ,

Proof

This follows from the standard moments and basic properties of expected value.

Finally, the skewness and kurtosis are unchanged.

The skewness and kurtosis of  are

1. 
2. 

Proof

Recall that skewness and kurtosis are defined in terms of the standard score, and hence are unchanged by a scale
transformation. Thus the results follow from the standard skewness and kurtosis.

Related Distributions

The fundamental connection between the Maxwell distribution and the normal distribution is given in the definition, and of course,
is the primary reason that the Maxwell distribution is special in the first place.

By construction, the Maxwell distribution is a scale family, and so is closed under scale transformations.

If  has the Maxwell distribution with scale parameter  and if  then  has the Maxwell distribution
with scale parameter .

Proof

By definition, we can assume that  where  has the standard Maxwell distribution. Hence  has the
Maxwell distribution with scale parameter .

The Maxwell distribution is a generalized exponential distribution.

If  has the Maxwell distribution with scale parameter  then  is a one-parameter exponential family with natural
parameter  and natural statistic .

Proof
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This follows directly from the definition of the general exponential distribution. and the form of the PDF.
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5.16: The Lévy Distribution
    

The Lévy distribution, named for the French mathematician Paul Lévy, is important in the study of Brownian motion, and is one of
only three stable distributions whose probability density function can be expressed in a simple, closed form.

The Standard Lévy Distribution

Definition

If  has the standard normal distribution then  has the standard Lévy distribution.

So the standard Lévy distribution is a continuous distribution on .

Distribution Functions

We assume that  has the standard Lévy distribution. The distribution function of  has a simple expression in terms of the
standard normal distribution function , not surprising given the definition.

 has distribution function  given by

Proof

For ,

Similarly, the quantile function of  has a simple expression in terms of the standard normal quantile function .

 has quantile function  given by

The quartiles of  are

1. , the first quartile.

2. , the median.

3. , the third quartile.

Proof

The quantile function can be obtained from the distribution function by solving  for .

Open the Special Distribution Calculator and select the Lévy distribution. Keep the default parameter values. Note the shape
and location of the distribution function. Compute a few values of the distribution function and the quantile function.

Finally, the probability density function of  has a simple closed expression.

 has probability density function  given by

1.  increases and then decreasing with mode at .
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2.  is concave upward, then downward, then upward again, with inflection points at  and at 

.

Proof

The formula for  follows from differentiating the CDF given above:

But , the standard normal PDF. Substitution and simplification then gives the results. Parts (a) and

(b) also follow from standard calculus:

Open the Special Distribtion Simulator and select the Lévy distribution. Keep the default parameter values. Note the shape of
the probability density function. Run the simulation 1000 times and compare the empirical density function to the probability
density function.

Moments

We assume again that  has the standard Lévy distribution. After exploring the graphs of the probability density function and
distribution function above, you probably noticed that the Lévy distribution has a very heavy tail. The 99th percentile is about
6400, for example. The following result is not surprising.

Proof

Note that  is increasing. Hence

Of course, the higher-order moments are infinite as well, and the variance, skewness, and kurtosis do not exist. The moment
generating function is infinite at every positive value, and so is of no use. On the other hand, the characteristic function of the
standard Lévy distribution is very useful. For the following result, recall that the sign function  is given by  for 

,  for , and .

 has characteristic function  given by

Related Distributions

The most important relationship is the one in the definition: If  has the standard normal distribution then  has the
standard Lévy distribution. The following result is bascially the converse.

If  has the standard Lévy distribution, then  has the standard half-normal distribution.

Proof

From the definition, we can take  where  has the standard normal distribution. Then , and  has the
standard half-normal distribution.
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The General Lévy Distribution
Like so many other “standard distributions”, the standard Lévy distribution is generalized by adding location and scale parameters.

Definition

Suppose that  has the standard Lévy distribution, and  and . Then  has the Lévy distribution
with location parameter  and scale parameter .

Note that  has a continuous distribution on the interval .

Distribution Functions

Suppose that  has the Lévy distribution with location parameter  and scale parameter . As before, the
distribution function of  has a simple expression in terms of the standard normal distribution function .

 has distribution function  given by

Proof

Recall that  where  is the standard Lévy CDF.

Similarly, the quantile function of  has a simple expression in terms of the standard normal quantile function .

 has quantile function  given by

The quartiles of  are

1. , the first quartile.

2. , the median.

3. , the third quartile.

Proof

Recall that , where  is the standard Lévy quantile function.

Open the Special Distribution Calculator and select the Lévy distribution. Vary the parameter values and note the shape of the
graph of the distribution function function. For various values of the parameters, compute a few values of the distribution
function and the quantile function.

Finally, the probability density function of  has a simple closed expression.

 has probability density function  given by

1.  increases and then decreases with mode at .

2.  is concave upward, then downward, then upward again with inflection points at .

Proof

Recall that  where  is the standard Lévy PDF, so the formula for  follow from the definition of  and

simple algebra. Parts (a) and (b) follow from the corresponding results for .
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Open the Special Distribtion Simulator and select the Lévy distribution. Vary the parameters and note the shape and location of
the probability density function. For various parameter values, run the simulation 1000 times and compare the empirical
density function to the probability density function.

Moments

Assume again that  has the Lévy distribution with location parameter  and scale parameter . Of course, since the
standard Lévy distribution has infinite mean, so does the general Lévy distribution.

Also as before, the variance, skewness, and kurtosis of  are undefined. On the other hand, the characteristic function of  is very
important.

 has characteristic function  given by

Proof

This follows from the standard characteristic function since . Note that  since .

Related Distributions

Since the Lévy distribution is a location-scale family, it is trivially closed under location-scale transformations.

Suppose that  has the Lévy distribution with location parameter  and scale parameter , and that  and 
. Then  has the Lévy distribution with location parameter  and scale parameter .

Proof

From the definition, we can take  where  has the standard Lévy distribution. Hence 
 has the Lévy distribution with location parameter  and scale parameter .

Of more interest is the fact that the Lévy distribution is closed under convolution (corresponding to sums of independent variables).

Suppose that  and  are independent, and that,  has the Lévy distribution with location parameter  and scale
parameter  for . Then  has the Lévy distribution with location parameter  and scale
parameter .

Proof

The characteristic function of  is

for . Hence the characteristic function of  is

where  is the location parameter and  is the scale parameter.

As a corollary, the Lévy distribution is a stable distribution with index :

Suppose that  and that  is a sequence of independent random variables, each having the Lévy
distribution with location parameter  and scale parameter . Then  has the Lévy
distribution with location parameter  and scale parameter .
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Stability is one of the reasons for the importance of the Lévy distribution. From the characteristic function, it follows that the
skewness parameter is .
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5.17: The Beta Distribution
         

In this section, we will study the beta distribution, the most important distribution that has bounded support. But before we can study
the beta distribution we must study the beta function.

The Beta Function

Definition

The beta function  is defined as follows:

Proof that  is well defined

We need to show that  for every . The integrand is positive on , so the integral exists, either as a
real number or . If  and , the integrand is continuous on , so of course the integral is finite. Thus, the only
cases of interest are when  or . Note that

If ,  is bounded on  and . Hence the first integral on the right in the displayed

equation is finite. Similarly, If ,  is bounded on  and . Hence the second integral

on the right in the displayed equation is also finite.

The beta function was first introduced by Leonhard Euler.

Properties

The beta function satisfies the following properties:

1.  for , so  is symmetric.
2.  for 
3.  for 

Proof
1. Using the substitution  we have

2. 
3. This follows from (a) and (b).

The beta function has a simple expression in terms of the gamma function:

If  then

Proof

From the definitions, we can express  as a double integral:
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1

2

(1−u du =∫

1

1/2

)

b−1

1

b2

b

B(a, b) =B(b, a) a, b ∈ (0,∞) B

B(a, 1) =

1

a

a ∈ (0,∞)

B(1, b) =

1

b

b ∈ (0,∞)

v= 1−u

B(a, b) = (1−u du = (1−v dv=B(b, a)∫

1

0

u
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)

b−1

∫

1

0

)

a−1

v

b−1
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B(a, 1) = du =∫

1

0

u

a−1

1

a

a, b ∈ (0,∞)

B(a, b) =

Γ(a)Γ(b)

Γ(a+b)

(5.17.4)

Γ(a+b)B(a, b)
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∞

0

x
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e
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∫
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Next we use the transformation ,  which maps  one-to-one onto . The
inverse transformation is ,  and the absolute value of the Jacobian is

Thus, using the change of variables theorem for multiple integrals, the integral above becomes

which after simplifying is .

Recall that the gamma function is a generalization of the factorial function. Here is the corresponding result for the beta function:

If  then

Proof

Recall that  for , so this result follows from the previous one.

Let's generalize this result. First, recall from our study of combinatorial structures that for  and , the ascending power of
base  and order  is

If , and , then

Proof

Recall that , so the result follows from the representation above for the beta function in terms of the gamma
function.

.

Proof

Figure : The graph of  on the square , 

The Incomplete Beta Function

The integral that defines the beta function can be generalized by changing the interval of integration from  to  where 
.

The incomplete beta function is defined as follows

w = xy z= x(1−y) (0,∞)×(0, 1) (0,∞)×(0,∞)

x =w+z y =w/(w+z)

det =

∣

∣

∣

∂(x, y)

∂(w, z)

∣

∣

∣

1

(w+z)

(5.17.6)

(w+z) dw dz∫

∞

0

∫

∞

0

w

a−1

z

b−1

e

−(w+z)

1

w+z

(5.17.7)

Γ(a)Γ(b)

j, k ∈ N

+

B(j, k) =

(j−1)!(k−1)!

(j+k−1)!

(5.17.8)

Γ(n) = (n−1)! n ∈ N

+

a ∈ R j∈ N

a j

= a(a+1)⋯ [a+(j−1)]a

[j]

(5.17.9)

a, b ∈ (0,∞) j, k ∈ N

=

B(a+j, b+k)

B(a, b)

a

[j]

b

[k]

(a+b)

[j+k]

(5.17.10)

Γ(a+j) = Γ(a)a

[j]

B ( , )= π

1

2

1

2

5.17.1 B(a, b) 0 < a< 5 0 < b < 5

(0, 1) (0, x)

x ∈ [0, 1]

B(x; a, b) = (1−u du, x ∈ (0, 1); a, b ∈ (0,∞)∫

x

0

u
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)

b−1
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Of course, the ordinary (complete) beta function is  for .

The Standard Beta Distribution

Distribution Functions

The beta distributions are a family of continuous distributions on the interval .

The (standard) beta distribution with left parameter  and right parameter  has probability density function
 given by

Of course, the beta function is simply the normalizing constant, so it's clear that  is a valid probability density function. If , 
is defined at 0, and if ,  is defined at 1. In these cases, it's customary to extend the domain of  to these endpoints. The beta
distribution is useful for modeling random probabilities and proportions, particularly in the context of Bayesian analysis. The
distribution has just two parameters and yet a rich variety of shapes (so in particular, both parameters are shape parameters).
Qualitatively, the first order properties of  depend on whether each parameter is less than, equal to, or greater than 1.

For  with , define

1. If  and ,  decreases and then increases with minimum value at  and with  as  and as 
.

2. If  and ,  is constant.
3. If  and ,  is decreasing with  as .
4. If  and ,  is increasing with  as .
5. If  and ,  is decreasing with mode at .
6. If  and ,  is increasing with mode at .
7. If  and ,  increases and then decreases with mode at .

Proof

These results follow from standard calculus. The first derivative is

From part (b), note that the special case  and  gives the continuous uniform distribution on the interval  (the
standard uniform distribution). Note also that when  or , the probability density function is unbounded, and hence the
distribution has no mode. On the other hand, if , , and one of the inequalites is strict, the distribution has a unique mode
at . The second order properties are more complicated.

For  with  and , define

For  and  or for  and , define .

1. If  and , or if  and , or if  and ,  is concave upward.
2. If  and ,  is concave upward and then downward with inflection point at .
3. If  and ,  is concave downward and then upward with inflection point at .
4. If  and ,  is concave downward.
5. If  and ,  is concave downward and then upward with inflection point at .

B(a, b) =B(1; a, b) a, b ∈ (0,∞)

(0, 1)

a ∈ (0,∞) b ∈ (0,∞)

f

f(x) = (1−x , x ∈ (0, 1)

1

B(a, b)

x

a−1

)

b−1

(5.17.12)

f a≥ 1 f

b ≥ 1 f f

f

a, b ∈ (0,∞) a+b ≠ 2

=x

0

a−1

a+b−2

(5.17.13)

0 < a< 1 0 < b < 1 f x

0

f(x) →∞ x ↓ 0

x ↑ 1

a= 1 b = 1 f

0 < a< 1 b ≥ 1 f f(x) →∞ x ↓ 0

a≥ 1 0 < b < 1 f f(x) →∞ x ↑ 1

a= 1 b > 1 f x = 0

a> 1 b = 1 f x = 1

a> 1 b > 1 f x

0

(x) = (1−x [(a−1)−(a+b−2)x], 0 < x < 1f

′

1

B(a, b)

x

a−2

)

b−2
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a= 1 b = 1 (0, 1)

a< 1 b < 1

a≥ 1 b ≥ 1

x

0

a, b ∈ (0,∞) a+b ∉ {2, 3} (a−1)(b−1)(a+b−3) ≥ 0

x

1

x

2

=

(a−1)(a+b−3)− (a−1)(b−1)(a+b−3)

− −−−−−−−−−−−−−−−−−−

√

(a+b−3)(a+b−2)

=

(a−1)(a+b−3)+ (a−1)(b−1)(a+b−3)

− −−−−−−−−−−−−−−−−−−

√

(a+b−3)(a+b−2)

(5.17.15)

(5.17.16)

a< 1 a+b = 2 b < 1 a+b = 2 = = 1−a/2x

1

x

2

a≤ 1 b ≤ 1 a≤ 1 b ≥ 2 a≥ 2 b ≤ 1 f

a≤ 1 1 < b < 2 f x

1

1 < a< 2 b ≤ 1 f x

2

1 < a≤ 2 1 < b ≤ 2 f

1 < a≤ 2 b > 2 f x
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6. If  and ,  is concave upward and then downward with inflection point at .
7. If  and ,  is concave upward, then downward, then upward again, with inflection points at  and .

Proof

These results follow from standard (but very tedious) calculus. The second derivative is

In the special distribution simulator, select the beta distribution. Vary the parameters and note the shape of the beta density
function. For selected values of the parameters, run the simulation 1000 times and compare the empirical density function to the
true density function.

The special case ,  is the arcsine distribution, with probability density function given by

This distribution is important in a number of applications, and so the arcsine distribution is studied in a separate section.

The beta distribution function  can be easily expressed in terms of the incomplete beta function. As usual  denotes the left
parameter and  the right parameter.

The beta distribution function  with parameters  is given by

The distribution function  is sometimes known as the regularized incomplete beta function. In some special cases, the distribution
function  and its inverse, the quantile function , can be computed in closed form, without resorting to special functions.

If  and  then

1.  for 
2.  for 

If  and  then

1.  for 
2.  for 

If  (the arcsine distribution) then

1.  for 
2.  for 

There is an interesting relationship between the distribution functions of the beta distribution and the binomial distribution, when the
beta parameters are positive integers. To state the relationship we need to embellish our notation to indicate the dependence on the
parameters. Thus, let  denote the beta distribution function with left parameter  and right parameter , and
let  denote the binomial distribution function with trial parameter  and success parameter .

If  and  then

Proof

By definition

a> 2 1 < b ≤ 2 f x

1

a> 2 b > 2 f x

1

x

2

(x) = (1−x [(a+b−2)(a+b−3) −2(a−1)(a+b−3)x+(a−1)(a−2)]f

′′

1

B(a, b)

x

a−3

)

b−3

x

2

(5.17.17)

a=

1

2

b =

1

2

f(x) = , x ∈ (0, 1)

1

π x(1−x)

− −−−−−−

√

(5.17.18)

F a

b

F a, b ∈ (0,∞)

F (x) = , x ∈ (0, 1)

B(x; a, b)

B(a, b)

(5.17.19)

F

F F

−1

a ∈ (0,∞) b = 1

F (x) = x

a

x ∈ (0, 1)

(p) =F

−1

p

1/a

p ∈ (0, 1)

a= 1 b ∈ (0,∞)

F (x) = 1−(1−x)

b

x ∈ (0, 1)

(p) = 1−(1−pF

−1

)

1/b

p ∈ (0, 1)

a= b =

1

2

F (x) = arcsin( )

2

π

x

−−

√

x ∈ (0, 1)

(p) = ( p)F

−1

sin

2

π

2

p ∈ (0, 1)

F

a,b

a ∈ (0,∞) b ∈ (0,∞)

G

n,p

n ∈ N

+

p ∈ (0, 1)

j, k ∈ N

+

x ∈ (0, 1)

(x) = (k−1)F

j,k

G

j+k−1,1−x
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Integrate by parts with  and , so that  and . The result is

But by the property of the beta function above, . Hence  and 
. Thus, the last displayed equation can be rewritten as

Recall from the special case above that . Iterating the last displayed equation gives the result.

In the special distribution calculator, select the beta distribution. Vary the parameters and note the shape of the density function
and the distribution function. In each of the following cases, find the median, the first and third quartiles, and the interquartile
range. Sketch the boxplot.

1. , 
2. , 
3. , 
4. , 
5. , 
6. , 

Moments

The moments of the beta distribution are easy to express in terms of the beta function. As before, suppose that  has the beta
distribution with left parameter  and right parameter .

If  then

In particular, if  then

Proof

Note that

If , the formula simplifies by the property of the beta function above.

From the general formula for the moments, it's straightforward to compute the mean, variance, skewness, and kurtosis.

The mean and variance of  are

Proof

(x) = (1− t dtF

j,k

1

B(j, k)

∫

x

0

t

j−1

)

k−1

(5.17.21)

u = (1− t)

k−1

dv= dtt

j−1

du =−(k−1)(1− t)

k−2

v= /jt

j

(x) = (1−x + (1− t dtF

j,k

1

jB(j, k)

)

k−1

x

j

k−1

jB(j, k)

∫

x

0

t

j

)

k−2
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B(j, k) = (j−1)!(k−1)!/(j+k−1)! 1/jB(j, k) = ( )

j+k−1

k−1

(k−1)/jB(j, k) = 1/B(j+1, k−1)

(x) =( )(1−x + (x)F

j,k

j+k−1

k−1

)

k−1

x

j

F

j+1,k−1
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(x) =F

j+k−1,1

x

j+k−1

a= 1 b = 1

a= 1 b = 3

a= 3 b = 1

a= 2 b = 4

a= 4 b = 2

a= 4 b = 4

X

a ∈ (0,∞) b ∈ (0,∞)

k ∈ [0,∞)

E ( )=X

k

B(a+k, b)

B(a, b)

(5.17.24)

k ∈ N

E ( )=X

k

a

[k]

(a+b)

[k]

(5.17.25)

E ( )= (1−x dx = (1−x dx =X

k

∫

1

0

x

k

1

B(a, b)

x

a−1

)

b−1

1

B(a, b)

∫

1

0

x

a+k−1

)

b−1

B(a+k, b)

B(a, b)
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k ∈ N

X

E(X)

var(X)

=

a

a+b

=

ab

(a+b (a+b+1))

2
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The formula for the mean and variance follow from the formula for the moments and the computational formula 

Note that the variance depends on the parameters  and  only through the product  and the sum .

Open the special distribution simulator and select the beta distribution. Vary the parameters and note the size and location of the
mean standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare the sample
mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

Proof

These results follow from the computational formulas that give the skewness and kurtosis in terms of  for ,
and the formula for the moments above.

In particular, note that the distribution is positively skewed if , unskewed if  (the distribution is symmetric about 
in this case) and negatively skewed if .

Open the special distribution simulator and select the beta distribution. Vary the parameters and note the shape of the probability
density function in light of the previous result on skewness. For various values of the parameters, run the simulation 1000 times
and compare the empirical density function to the true probability density function.

Related Distributions

The beta distribution is related to a number of other special distributions.

If  has the beta distribution with left parameter  and right parameter  then  has the beta
distribution with left parameter  and right parameter .

Proof

This follows from the standard change of variables formula. If  and  denote the PDFs of  and  respectively, then

The beta distribution with right parameter 1 has a reciprocal relationship with the Pareto distribution.

Suppose that .

1. If  has the beta distribution with left parameter  and right parameter 1 then  has the Pareto distribution with
shape parameter .

2. If  has the Pareto distribution with shape parameter  then  has the beta distribution with left parameter  and
right parameter 1.

Proof

The two results are equivalent. In (a), suppose that  has the beta distribution with parameters  and 1. The transformation 
 maps  one-to-one onto . The inverse is  with . Recall also that .

By the change of variables formula, the PDF  of  is given by

We recognize  as the PDF of the Pareto distribution with shape parameter .

var(X) =E( )−[E(X)X

2

]

2

a b ab a+b

±

X

skew(X)

kurt(X)

=

2(b−a) a+b+1

− −−−−−−

√

(a+b+2) ab

−−

√

=

3 b+3a +6 + + +13 b+13a + + +14aba

3

b

3

a

2

b

2

a

3

b

3

a

2

b

2

a

2

b

2

ab(a+b+2)(a+b+3)
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(5.17.30)

E( )X

k

k ∈ {1, 2, 3, 4}

a< b a= b x =

1

2

a> b

X a ∈ (0,∞) b ∈ (0,∞) Y = 1−X

b a

f g X Y

g(y) = f(1−y) = (1−y = (1−y , y ∈ (0, 1)

1

B(a, b)

)

a−1

y

b−1

1

B(b, a)

y

b−1

)

a−1
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a ∈ (0,∞)

X a Y = 1/X

a

Y a X = 1/Y a

X a

y = 1/x (0, 1) (0,∞) x = 1/y dx/dy =−1/y

2

B(a, 1) = 1/a

g Y = 1/X

g(y) = f ( ) = a = , y ∈ (0,∞)

1

y

1

y

2

( )

1

y

a−1

1

y

2

a

y
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The following result gives a connection between the beta distribution and the gamma distribution.

Suppose that  has the gamma distribution with shape parameter  and rate parameter ,  has the gamma
distribution with shape parameter  and rate parameter , and that  and  are independent. Then 
has the beta distribution with left parameter  and right parameter .

Proof

Let  and . We will actually prove stronger results:  and  are independent,  has the gamma
distribution with shape parameter  and rate parameter , and  has the beta distribution with parameters  and . First note
that  has joint PDF  given by

The transformation  and  maps  one-to-one onto . The inverse is 
,  and the absolute value of the Jacobian is

Hence by the multivariate change of variables theorem, the PDF  of  is given by

The results now follow from the factorization theorem. The factor in  is the gamma PDF with shape parameter  and rate
parameter  while the factor in  is the beta PDF with parameters  and .

The following result gives a connection between the beta distribution and the  distribution. This connection is a minor variation of
the previous result.

If  has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the
denominator then

has the beta distribution with left parameter  and right parameter .

Proof

If  has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator
then  can be written as

where  has the chi-square distribution with  degrees of freedom,  has the chi-square distribution with  degrees of freedom,
and  and  are independent. Hence

But the chi-square distribution is a special case of the gamma distribution. Specifically,  has the gamma distribution with shape
parameter  and rate parameter ,  has the gamma distribution with shape parameter  and rate parameter , and

X a ∈ (0,∞) r ∈ (0,∞) Y

b ∈ (0,∞) r X Y V =X/(X+Y )

a b

U =X+Y V =X/(X+Y ) U V U

a+b r V a b

(X,Y ) f

f(x, y) = = ; x, y ∈ (0,∞)

r

a

Γ(a)

x

a−1

e

−rx

r

b

Γ(b)

y

b−1

e

−ry

r

a+b

Γ(a)Γ(b)

x

a−1

y

b−1

e

−r(x+y)
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u = x+y v= x/(x+y) (0,∞)×(0,∞) (0,∞)×(0, 1)

x = uv y = u(1−v)

det = u

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣ (5.17.34)

g (U,V )

g(u, v) = f [uv, u(1−v)]u = (uv [u(1−v) u

r

a+b

Γ(a)Γ(b)

)

a−1

]

b−1

e

−ru

= (1−v

r

a+b

Γ(a)Γ(b)

u

a+b−1

e

−ru

v

a−1

)

b−1

= (1−v ; u ∈ (0,∞), v∈ (0, 1)

r

a+b

Γ(a+b)

u

a+b−1

e

−ru

Γ(a+b)

Γ(a)Γ(b)

v

a−1

)

b−1
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(5.17.36)

(5.17.37)

u a+b

r v a b

F

X F n ∈ (0,∞) d ∈ (0,∞)

Y =

(n/d)X

1+(n/d)X

(5.17.38)

a= n/2 b = d/2

X F n> 0 d > 0

X

X =

U/n

V /d

(5.17.39)

U n V d
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again  and  are independent. Hence by the previous result,  has the beta distribution with left parameter  and right
parameter .

Our next result is that the beta distribution is a member of the general exponential family of distributions.

Suppose that  has the beta distribution with left parameter  and right parameter . Then the distribution is
a two-parameter exponential family with natural parameters  and , and natural statistics  and .

Proof

This follows from the definition of the general exponential distribution, since the PDF  of  can be written as

The beta distribution is also the distribution of the order statistics of a random sample from the standard uniform distribution.

Suppose  and that  is a sequence of independent variables, each with the standard uniform
distribution. For , the th order statistics  has the beta distribution with left parameter  and right
parameter .

Proof

See the section on order statistics.

One of the most important properties of the beta distribution, and one of the main reasons for its wide use in statistics, is that it forms
a conjugate family for the success probability in the binomial and negative binomial distributions.

Suppose that  is a random probability having the beta distribution with left parameter  and right parameter 
. Suppose also that  is a random variable such that the conditional distribution of  given  is

binomial with trial parameter  and success parameter . Then the conditional distribution of  given  is beta with
left parameter  and right parameter .

Proof

The joint PDF  of  on  is given by

The conditional PDF of  given  is simply the normalized version of the function . We can tell from the
functional form that this distribution is beta with the parameters given in the theorem.

Suppose again that  is a random probability having the beta distribution with left parameter  and right parameter 
. Suppose also that  is a random variable such that the conditional distribution of  given  is

negative binomial with stopping parameter  and success parameter . Then the conditional distribution of  given 
 is beta with left parameter  and right parameter .

Proof

The joint PDF  of  on  is given by

The conditional PDF of  given  is simply the normalized version of the function . We can tell from the
functional form that this distribution is beta with the parameters given in the theorem.

in both cases, note that in the posterior distribution of , the left parameter is increased by the number of successes and the right
parameter by the number of failures. For more on this, see the section on Bayesian estimation in the chapter on point estimation.

U V Y n/2

d/2

X a ∈ (0,∞) b ∈ (0,∞)

a−1 b−1 ln(X) ln(1−X)

f X

f(x) = exp[(a−1) ln(x)+(b−1) ln(1−x)], x ∈ (0, 1)

1

B(a, b)

(5.17.41)

n ∈ N

+

( , ,… , )X

1

X

2

X

n

k ∈ {1, 2,… ,n} k X

(k)

a= k

b = n−k+1

P a ∈ (0,∞)

b ∈ (0,∞) X X P = p ∈ (0, 1)

n ∈ N

+

p P X = k

a+k b+n−k

f (P ,X) (0, 1)×{0, 1,… n}

f(p, k) = (1−p ( ) (1−p = ( ) (1−p

1

B(a, b)

p

a−1

)

b−1

n

k

p

k

)

n−k

1

B(a, b)

n

k

p

a+k−1

)

b+n−k−1

(5.17.42)

P X = k p↦ f(p, k)

P a ∈ (0,∞)

b ∈ (0,∞) N N P = p ∈ (0, 1)

k ∈ N

+

p P

N = n a+k b+n−k

f (P ,N) (0, 1)×{k, k+1,…}

f(p,n) = (1−p ( ) (1−p = ( ) (1−p

1

B(a, b)

p

a−1

)

b−1

n−1

k−1

p

k

)

n−k

1

B(a, b)

n−1

k−1

p

a+k−1

)

b+n−k−1

(5.17.43)
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The General Beta Distribution
The beta distribution can be easily generalized from the support interval  to an arbitrary bounded interval using a linear
transformation. Thus, this generalization is simply the location-scale family associated with the standard beta distribution.

Suppose that  has the standard beta distibution with left parameter  and right parameter . For  and 
 random variable  has the beta distribution with left parameter , right parameter , location parameter 

and scale parameter .

For the remainder of this discussion, suppose that  has the distribution in the definition above.

 has probability density function

Proof

This follows from a standard result for location-scale families. If  denotes the standard beta PDF of , then  has PDF  given
by

Most of the results in the previous sections have simple extensions to the general beta distribution.

The mean and variance of  are

1. 
2. 

Proof

This follows from the standard mean and variance and basic properties of expected value and variance.

1. 
2. 

Recall that skewness and variance are defined in terms of standard scores, and hence are unchanged under location-scale
transformations. Hence the skewness and kurtosis of  are just as for the standard beta distribution.

This page titled 5.17: The Beta Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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d ∈ (0,∞) X = c+dZ a b c

d

X

X

f(x) = (x−c (c+d−x , x ∈ (c, c+d)

1

B(a, b)d

a+b−1

)

a−1

)

b−1

(5.17.44)

g Z X f

f(x) = g( ) , x ∈ (c, c+d)

1

d

x−c

d

(5.17.45)

X

E(X) = c+d

a

a+b

var(X) = d

2 ab

(a+b (a+b+1))

2

E(X) = c+dE(Z)

var(X) = var(Z)d
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5.18: The Beta Prime Distribution
         

Basic Theory

The beta prime distribution is the distribution of the odds ratio associated with a random variable with the beta distribution. Since variables with
beta distributions are often used to model random probabilities and proportions, the corresponding odds ratios occur naturally as well.

Definition

Suppose that  has the beta distribution with shape parameters . Random variable  has the beta prime
distribution with shape parameters  and .

The special case  is known as the standard beta prime distribution. Since  has a continuous distribution on the interval ,
random variable  has a continuous distribution on the interval .

Distribution Functions

Suppose that  has the beta prime distribution with shape parameters , and as usual, let  denote the beta function.

 has probability density function  given by

Proof

First, recall that the beta PDF  with parameters  and  is

The transformation  maps  onto  and is increasing. The inverse transformation is , and 
 and . Thus, by the change of variables formula,

If , the probability density function is defined at , so in this case, it's customary add this endpoint to the domain. In particular, for the
standard beta prime distribution,

Qualitatively, the first order properties of the probability density function  depend only on , and in particular on whether  is less than, equal
to, or greater than 1.

The probability density function  satisfies the following properties:

1. If ,  is decreasing with  as .
2. If ,  is decreasing with mode at .
3. If ,  increases and then decreases with mode at .

Proof

These properties follow from standard calculus. The first derivative of  is

Qualitatively, the second order properties of  also depend only on , with transitions at  and .

For , define

U a, b ∈ (0,∞) X =U/(1−U)

a b

a= b = 1 U (0, 1)

X (0,∞)

X a, b ∈ (0,∞) B

X f

f(x) = , x ∈ (0,∞)

1

B(a, b)

x

a−1

(1+x)

a+b

(5.18.1)

g a b

g(u) = (1−u , u ∈ (0, 1)u

a−1

)

b−1

(5.18.2)

x = u/(1−u) (0, 1) (0,∞) u = x/(x+1)

1−u = 1/(x+1) du/dx = 1/(x+1)

2

f(x) = g(u) = = , x ∈ (0,∞)

du

dx

1

B(a, b)

( )

x

x+1

a−1

( )

1

x+1

b−1

1

(x+1)

2

1

B(a, b)

x

a−1

(x+1)

a+b

(5.18.3)

a≥ 1 x = 0

f(x) = , x ∈ [0,∞)

1

(1+x)

2

(5.18.4)

f a a

f

0 < a< 1 f f(x) →∞ x ↓ 0

a= 1 f x = 0

a> 1 f x = (a−1)/(b+1)

f

(x) = [(a−1)−x(b+1)], x ∈ (0,∞)f

′

1

B(a, b)

x

a−2

(1+x)

a+b+1

(5.18.5)

f a a= 1 a= 2

a> 1
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The probability density function  satisfies the following properties:

1. If ,  is concave upward.
2. If ,  is concave downward and then upward, with inflection point at .
3. If ,  is concave upward, then downward, then upward again, with inflection points at  and .

Proof

These results follow from standard calculus. The second derivative of  is

Open the Special Distribution Simulator and select the beta prime distribution. Vary the parameters and note the shape of the probability
density function. For selected values of the parameters, run the simulation 1000 times and compare the empirical density function to the
probability density function.

Because of the definition of the beta prime variable, the distribution function of  has a simple expression in terms of the beta distribution
function with the same parameters, which in turn is the regularized incomplete beta function. So let  denote the distribution function of the
beta distribution with parameters , and recall that

 has distribution function  given by

Proof

As noted in the proof of the formula for the PDF,  is strictly increasing with inverse . Hence

Similarly, the quantile function of  has a simple expression in terms of the beta quantile function  with the same parameters.

 has quantile function  given by

Proof

This follows from the result for the CDF by solving  for  in terms of .

Open the Special Distribution Calculator and choose the beta prime distribution. Vary the parameters and note the shape of the distribution
function. For selected values of the parameters, find the median and the first and third quartiles.

For certain values of the parameters, the distribution and quantile functions have simple, closed form expressions.

If  and  then

1.  for 

2.  for 

Proof

For  and ,  for  and  for 

x

1

x

2

=

(a−1)(b+2)− (a−1)(b+2)(a+b)

− −−−−−−−−−−−−−−−

√

(b+1)(b+2)

=

(a−1)(b+2)+ (a−1)(b+2)(a+b)

− −−−−−−−−−−−−−−−

√

(b+1)(b+2)

(5.18.6)

(5.18.7)

f

0 < a≤ 1 f

1 < a≤ 2 f x

2

a> 2 f x

1

x

2

f

(x) = [(a−1)(a−2)−2(a−1)(b+2)x+(b+1)(b+2) ] , x ∈ (0,∞)f

′′

1

B(a, b)

x

a−3

(1+x)

a+b+2

x

2

(5.18.8)

X

G

a, b ∈ (0,∞)

G(x) = , x ∈ (0, 1)

B(x; a, b)

B(a, b)

(5.18.9)

X F

F (x) =G( ) , x ∈ [0,∞)

x

x+1

(5.18.10)

x = u/(1−u) u = x/(x+1)

F (x) = P(X ≤ x) = P( ≤ x) = P(U ≤ ) =G( ) , x ∈ [0,∞)

U

U−1

x

x+1

x

x+1

(5.18.11)

X G

−1

X F

−1

(p) = , p ∈ [0, 1)F

−1

(p)G

−1

1− (p)G

−1

(5.18.12)

p = F (x) =G( )

x

x+1

x p

a ∈ (0,∞) b = 1

F (x) = ( )

x

x+1

a

x ∈ [0,∞)

(p) =F

−1

p

1/a

1−p

1/a

p ∈ [0, 1)

a> 0 b = 1 G(u) = u

a

u ∈ [0, 1] (p) =G

−1

p

1/a

p ∈ [0, 1]
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If  and  then

1.  for 

2.  for 

Proof

For  and ,  for  and  for .

If  then

1.  for 

2.  for 

Proof

For ,  for  and  for 

When ,  is the odds ratio for a variable with the standard arcsine distribution.

Moments

As before,  denotes a random variable with the beta prime distribution, with parameters . The moments of  have a simple
expression in terms of the beta function.

If  then

If  then .

Proof

Once again, let  denote the beta PDF with parameters  and . With the transformation , as in the proof PDF formula, we
have . Hence

If  the improper integral diverges to  at 0. If  the improper integral diverges to  at 1. If  the integral is 
 by definition of the beta function.

Of course, we are usually most interested in the integer moments of . Recall that for  and , the rising power of  of order  is 
.

Suppose that . If  Then

If  then .

Proof

From the general moment result,

by a basic property of the gamma function.

As a corollary, we have the mean and variance.

If  then

a= 1 b ∈ (0,∞)

F (x) = 1−( )

1

x+1

b

x ∈ [0,∞)

(p) =F

−1

1−(1−p)

1/b

(1−p)

1/b

p ∈ [0, 1)

a= 1 b > 0 G(u) = 1−(1−u)

b

u ∈ [0, 1] (p) = 1−(1−pG

−1

)

1/b

p ∈ [0, 1]

a= b =

1

2

F (x) = arcsin( )

2

π

x

x+1

−−−

√

x ∈ [0,∞)

(p) =F

−1

( p)sin

2

π

2

1− ( p)sin

2

π

2

p ∈ [0, 1)

a= b =

1

2

G(u) = arcsin( )

2

π

u

−−

√

u ∈ (0, 1) (p) = ( p)G

−1

sin

2

π

2

p ∈ [0, 1]

a= b =

1

2

X

X a, b ∈ (0,∞) X

t ∈ (−a, b)

E ( )=X

t

B(a+ t, b− t)

B(a, b)

(5.18.13)

t ∈ (−∞,−a] ∪ [b,∞) E( ) =∞X

t

g a b x = u/(1−u)

f(x)dx = g(u)du

f(x)dx = g(u)du = (1−u du∫

∞

0

x

t

∫

1

0

( )

u

1−u

t

1

B(a, b)

∫

1

0

u

a+t−1

)

b−t−1

(5.18.14)

t ≤−a ∞ t ≥ b ∞ −a< t < b

B(a+ t, b− t)

X x ∈ R n ∈ N x n

= x(x+1)⋯(x+n−1)x

[n]

n ∈ N n< b

E ( ) =X

n

∏

k=1

n

a+k−1

b−k

(5.18.15)

n≥ b E ( ) =∞X

n

E( ) = = = =X

n

B(a+n, b−n)

B(a, b)

Γ(a+n)Γ(a−n)

Γ(a+b)

Γ(a+b)

Γ(a)Γ(b)

Γ(a+n)

Γ(a)

Γ(b−n)

Γ(b)

a

[n]

(b−n)

[n]

(5.18.16)

b > 1

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10358?pdf


5.18.4 https://stats.libretexts.org/@go/page/10358

If  then

Proof

This follows from the general moment result above and the computational formula .

Open the Special Distribution Simulator and select the beta prime distribution. Vary the parameters and note the size and location of the
mean standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare the empirical mean and
standard deviation to the distribution mean and standard deviation.

Finally, the general moment result leads to the skewness and kurtosis of .

If  then

Proof

This follows from the usual computational formula for skewness in terms of the moments  for  and the general moment
result above.

In particular, the distibution is positively skewed for all  and .

If  then

Proof

This follows from the usual computational formula for kurtosis in terms of the moments  for  and the general
moment result above.

Related Distributions
The most important connection is the one between the beta prime distribution and the beta distribution given in the definition. We repeat this for
emphasis.

Suppose that .

1. If  has the beta distribution with parameters  and , then  has the beta prime distribution with parameters  and .
2. If  has the beta prime distribution with parameters  and , then  has the beta distribution with parameters  and .

The beta prime family is closed under the reciprocal transformation.

If  has the beta prime distribution with parameters  then  has the beta prime distribution with parameters  and .

Proof

A direct proof using the change of variables formula is possible, of course, but a better proof uses a corresponding property of the beta
distribution. By definition, we can take  where  has the beta distribution with parameters  and . But then 

, and  has the beta distribution with parameters  and . By another application of the definition,  has the
beta prime distribution with parameters  and .

The beta prime distribution is closely related to the  distribution by a simple scale transformation.

Connections with the  distributions.

E(X) =

a

b−1

(5.18.17)

b > 2

var(X) =

a(a+b−1)

(b−1 (b−2))

2

(5.18.18)

var(X) =E ( )= [E(X)X

2

]

2

±

X

b > 3

skew(X) =

2(2a+b−1)

b−3

b−2

a(a+b−1)

− −−−−−−−−−

√

(5.18.19)

E( )X

n

n ∈ {1, 2, 3}

a> 0 b > 3

b > 4

kurt(X)

=

3 +69 b−30 +6 +12 −78 b+60 +3a +9a −69a +99ab−42a+6 −30a

3

b

2

a

3

a

3

a

2

b

3

a

2

b

2

a

2

a

2

b

4

b

3

b

2

b

4

b

3

+54 −42b+12b

2

(a+b−1)(b−3)(b−4)

(5.18.20)

E( )X

n

n ∈ {1, 2, 3, 4}

a, b ∈ (0,∞)

U a b X =U/(1−U) a b

X a b U =X/(X+1) a b

X a, b ∈ (0,∞) 1/X b a

X =U/(1−U) U a b

1/X = (1−U)/U 1−U b a 1/X
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1. If  has the beta prime distribution with parameters  then  has the  distribution with  degrees of the freedom
in the numerator and  degrees of freedom in the denominator.

2. If  has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the
denominator, then  has the beta prime distribution with parameters  and .

Proof

Let  denote the PDF of  and  the PDF of .

1. By the change of variables formula,

Substituting into the beta prime PDF shows that  has the appropriate  distribution.
2. Again using the change of variables formula,

Substituting into the  PDF shows that  has the appropriate beta prime PDF.

The beta prime is the distribution of the ratio of independent variables with standard gamma distributions. (Recall that standard here means that
the scale parameter is 1.)

Suppose that  and  are independent and have standard gamma distributions with shape parameters  and ,
respectively. Then  has the beta prime distribution with parameters  and .

Proof

Of course, a direct proof can be constructed, but a better approach is to use the previous result. Thus suppose that  and  are as stated in
the theorem. Then  and  are independent chi-square variables with  and  degrees of freedom, respectively. Hence

has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator. By the previous result,

has the beta prime distribution with parameters  and .

The standard beta prime distribution is the same as the standard log-logistic distribution.

Proof

The PDF of the standard beta prime distribution is  for , which is the same as the PDF of the standard log-
logistic distribution.

Finally, the beta prime distribution is a member of the general exponential family of distributions.

Suppose that  has the beta prime distribution with parameters . Then  has a two-parameter general exponential
distribution with natural parameters  and  and natural statistics  and .

Proof

This follows from the definition of the general exponential family, since the PDF can be written in the form

This page titled 5.18: The Beta Prime Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.

X a, b ∈ (0,∞) Y = X

b

a

F 2a

2b

Y F n ∈ (0,∞) d ∈ (0,∞)

X = Y

n

d

n/2 d/2

f X g Y

g(y) = f ( y) , x ∈ (0,∞)

a

b

a

b

(5.18.21)

Y F

f(x) = g( x) , x ∈ (0,∞)

d

n

d

n

(5.18.22)

F X

Y Z a ∈ (0,∞) b ∈ (0,∞)

X = Y /Z a b

Y Z

2Y 2Z 2a 2b

W =

Y /2a

Z/2b

(5.18.23)

F 2a 2b

X = W =

2a

2b

Y

Z

(5.18.24)

a b

f(x) = 1/(1+x)

2

x ∈ [0,∞)

X a, b ∈ (0,∞) X

a−1 −(a+b) ln(X) ln(1+X)

f(x) = exp[(a−1) ln(x)−(a+b) ln(1+x)], x ∈ (0,∞)

1

B(a, b)

(5.18.25)
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5.19: The Arcsine Distribution
         

The arcsine distribution is important in the study of Brownian motion and prime numbers, among other applications.

The Standard Arcsine Distribution

Distribution Functions

The standard arcsine distribution is a continuous distribution on the interval  with probability density function  given by

Proof

There are a couple of ways to see that  is a valid PDF. First, it's the beta PDF with parameters :

since we recall that . A direct proof is also easy: The substitution , ,  gives

The occurrence of the arcsine function in the proof that  is a probability density function explains the name.

The standard arcsine probability density function  satisfies the following properties:

1.  is symmetric about .
2.  decreases and then increases with minimum value at .
3.  is concave upward
4.  as  and as .

Proof
1. Note that  is a function of  only through .
2. This follows from standard calculus:

3. This also follows from standard calculus:

4. The limits are clear.

In particular, the standard arcsine distribution is U-shaped and has no mode.

Open the Special Distribution Simulator and select the arcsine distribution. Keep the default parameter values and note the
shape of the probability density function. Run the simulation 1000 times and compare the emprical density function to the
probability density function.

The distribution function has a simple expression in terms of the arcsine function, again justifying the name of the distribution.

The standard arcsine distribution function  is given by  for .

Proof

(0, 1) g

g(x) = , x ∈ (0, 1)

1

π x(1−x)

− −−−−−−

√

(5.19.1)

g a= b =

1

2

g(x) = (1−x , x ∈ (0, 1)

1

B(1/2, 1/2)

x

−1/2

)

−1/2

(5.19.2)

B ( , )= π

1

2

1

2

u = x

−−

√

x = u

2

dx = 2u du

dx = du = arcsinu = ( −0)= 1∫

1

0

1

π x(1−x)

− −−−−−−

√

∫

1

0

2

π 1−u

2
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Again, using the substitution , , :

Not surprisingly, the quantile function has a simple expression in terms of the sine function.

The standard arcinse quantile function  is given by  for . In particular, the quartiles are

1. , the first quartile
2. , the median
3. , the third quartile

Proof

The formula for the quantile function follows from the distribution function by solving  for  in terms of .

Open the Special Distribution Calculator and select the arcsine distribution. Keep the default parameter values and note the
shape of the distribution function. Compute selected values of the distribution function and the quantile function.

Moments

Suppose that random variable  has the standard arcsine distribution. First we give the mean and variance.

The mean and variance of  are

1. 
2. 

Proof

1. The mean is  by symmetry.
2. Using the usual substitution ,   and then the substitution ,  gives

Open the Special Distribution Simulator and select the arcsine distribution. Keep the default parameter values. Run the
simulation 1000 times and compare the empirical mean and stadard deviation to the true mean and standard deviation.

The general moments about 0 can be expressed as products.

For ,

Proof

The same integral substitutions as before gives

Of course, the moments can be used to give a formula for the moment generating function, but this formula is not particularly
helpful since it is not in closed form.

 has moment generating function  given by

u = t√ t = u

2

dt = 2u du

G(x) = dt = du = arcsin(t) = arcsin( )∫

x

0

1

π t(1− t)

− −−−−−

√

∫

x

√

0

2

π 1−u

2

− −−−−

√

2

π

∣

∣

∣

x

√

0

2

π

x

−−

√

(5.19.6)
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∏
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Finally we give the skewness and kurtosis.

The skewness and kurtosis of  are

1. 
2. 

Proof
1. The skewness is 0 by the symmetry of the distribution.
2. The result for the kurtosis follows from the standard formula for kurtosis in terms of the moments: , 

, , and .

Related Distributions

As noted earlier, the standard arcsine distribution is a special case of the beta distribution.

The standard arcsine distribution is the beta distribution with left parameter  and right parameter .

Proof

The beta distribution with parameters  has PDF

But , so this is the standard arcsine PDF.

Since the quantile function is in closed form, the standard arcsine distribution can be simulated by the random quantile method.

Connections with the standard uniform distribution.

1. If  has the standard uniform distribution (a random number) then  has the standard arcsine distribution.
2. If  has the standard arcsine distribution then  has the standard uniform distribution.

Open the random quantile simulator and select the arcsine distribution. Keep the default parameters. Run the experiment 1000
times and compare the empirical probability density function, mean, and standard deviation to their distributional counterparts.
Note how the random quantiles simulate the distribution.

The following exercise illustrates the connection between the Brownian motion process and the standard arcsine distribution.

Open the Brownian motion simulator. Keep the default time parameter and select the last zero random variable. Note that this
random variable has the standard arcsine distribution. Run the experiment 1000 time and compare the empirical probability
density function, mean, and standard deviation to their distributional counterparts. Note how the last zero simulates the
distribution.

The General Arcsine Distribution
The standard arcsine distribution is generalized by adding location and scale parameters.

Definition

If  has the standard arcsine distribution, and if  and , then  has the arcsine distribution with
location parameter  and scale parameter .

So  has a continuous distribution on the interval .

m(t) =E ( )= ( ) , t ∈ Re

tZ

∑

n=0

∞

∏

j=0

n−1

2j+1

2j+2

t

n

n!
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Distribution Functions

Suppose that  has the arcsine distribution with location parameter  and scale parameter .

 has probability density function  given by

1.  is symmetric about .
2.  decreases and then increases with minimum value at .
3.  is concave upward.
4.  as  and as .

Proof

Recall that  where  is the PDF of the standard arcsine distribution.

An alternate parameterization of the general arcsine distribution is by the endpoints of the support interval: the left endpoint
(location parameter)  and the right endpoint .

Open the Special Distribution Simulator and select the arcsine distribution. Vary the location and scale parameters and note the
shape and location of the probability density function. For selected values of the parameters, run the simulation 1000 times and
compare the emprical density function to the probability density function.

Once again, the distribution function has a simple representation in terms of the arcsine function.

 has distribution function  given by

Proof

Recall that  where  is the CDF of the standard arcsine distribution.

As before, the quantile function has a simple representation in terms of the sine functioon

 has quantile function  given by  for  In particular, the quartiles of  are

1. , the first quartile
2. , the median
3. , the third quartile

Proof

Recall that  where  is the quantile function of the standard arcsine distribution.

Open the Special Distribution Calculator and select the arcsine distribution. Vary the parameters and note the shape and
location of the distribution function. For various values of the parameters, compute selected values of the distribution function
and the quantile function.

Moments

Again, we assume that  has the arcsine distribution with location parameter  and scale parameter . First we give
the mean and variance.

The mean and variance of  are

1. 
2. 

X a ∈ R w ∈ (0,∞)

X f

f(x) = , x ∈ (a, a+w)

1
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− −−−−−−−−−−−−−−

√

(5.19.12)
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Proof

These results from the representation  and the results for the mean and variance of .

Open the Special Distribution Simulator and select the arcsine distribution. Vary the parameters and note the size and location
of the mean standard deviation bar. For various values of the parameters, run the simulation 1000 times and compare the
empirical mean and stadard deviation to the true mean and standar deviation.

The moments of  can be obtained from the moments of , but the results are messy, except when the location parameter is 0.

Suppose the location parameter . For ,

Proof

This follows from the representation  and the results for the moments of .

The moment generating function can be expressed as a series with product coefficients, and so is not particularly helpful.

 has moment generating function  given by

Proof

Recall that  where  is the moment generating function of .

Finally, the skewness and kurtosis are unchanged.

The skewness and kurtosis of  are

1. 
2. 

Proof

Recall that the skewness and kurtosis are defined in terms of the standard score of  and hence are invariant under a location-
scale transformation.

Related Distributions

By construction, the general arcsine distribution is a location-scale family, and so is closed under location-scale transformations.

If  has the arcsine distribution with location parameter  and scale parameter  and if  and 
then  has the arcsine distribution with location parameter  scale parameter .

Proof

By definition we can take  where  has the standard arcsine distribution. Hence .

Since the quantile function is in closed form, the arcsine distribution can be simulated by the random quantile method.

Suppose that  and .

1. If  has the standard uniform distribution (a random number) then  has the arcsine distribution with
location parameter  and scale parameter .

2. If  has the arcsine distribution with location parameter  and scale parameter  then  has the

standard uniform distribution.
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Open the random quantile simulator and select the arcsine distribution. Vary the parameters and note the location and shape of
the probability density function. For selected parameter values, run the experiment 1000 times and compare the empirical
probability density function, mean, and standard deviation to their distributional counterparts. Note how the random quantiles
simulate the distribution.

The following exercise illustrates the connection between the Brownian motion process and the arcsine distribution.

Open the Brownian motion simulator and select the last zero random variable. Vary the time parameter  and note that the last
zero has the arcsine distribution on the interval . Run the experiment 1000 time and compare the empirical probability
density function, mean, and standard deviation to their distributional counterparts. Note how the last zero simulates the
distribution.

This page titled 5.19: The Arcsine Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.20: General Uniform Distributions
    

This section explores uniform distributions in an abstract setting. If you are a new student of probability, or are not familiar with measure
theory, you may want to skip this section and read the sections on the uniform distribution on an interval and the discrete uniform distributions.

Basic Theory

Definition

Suppose that  is a measure space. That is,  is a set,  a -algebra of subsets of , and  a positive measure on . Suppose also
that , so that  is a finite, positive measure.

Random variable  with values in  has the uniform distribution on  (with respect to ) if

Thus, the probability assigned to a set  depends only on the size of  (as measured by ).

The most common special cases are as follows:

1. Discrete: The set  is finite and non-empty,  is the -algebra of all subsets of , and  (counting measure).
2. Euclidean: For , let  denote the -algebra of Borel measureable subsets of  and let  denote Lebesgue measure on 

. In this setting,  with , , and the measure is  restricted to .

In the Euclidean case, recall that  is length measure on ,  is area measure on ,  is volume measure on , and in general  is
sometimes referred to as -dimensional volume. Thus,  is a set with positive, finite volume.

Properties

Suppose  is a finite, positive measure space, as above, and that  is uniformly distributed on .

The probability density function  of  (with respect to ) is

Proof

This follows directly from the definition of probability density function:

Thus, the defining property of the uniform distribution on a set is constant density on that set. Another basic property is that uniform
distributions are preserved under conditioning.

Suppose that  with . The conditional distribution of  given  is uniform on .

Proof

For  with ,

In the setting of previous result, suppose that  is a sequence of independent variables, each uniformly distributed on . Let 
. Then  has the geometric distribution on  with success parameter . More importantly, the

distribution of  is the same as the conditional distribution of  given , and hence is uniform on . This is the basis of the rejection
method of simulation. If we can simulate a uniform distribution on , then we can simulate a uniform distribution on .

If  is a real-valued function on , then  is the average value of  on , as measured by :

If  is integrable with respect to  Then

(S,S ,λ) S S σ S λ S

0 < λ(S) <∞ λ

X S S λ

P(X ∈ A) = , A ∈S
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λ(S)

(5.20.1)
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1
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Proof

This result follows from the change of variables theorem for expected value, since

The entropy of the uniform distribution on  depends only on the size of , as measured by :

The entropy of  is .

Proof

Product Spaces

Suppose now that  and  are finite, positive measure spaces, so that  and . Recall the product
space . The product -algebra  is the -algebra of subsets of  generated by product sets  where 

 and . The product measure  is the unique positive measure on  that satisfies 
 for  and .

 is uniformly distributed on  if and only if  is uniformly distributed on ,  is uniformly distributed on , and  and 
are independent.

Proof

Suppose first that  is uniformly distributed on . If  and  then

Taking  in the displayed equation gives  for , so  is uniformly distributed on . Taking 
in the displayed equation gives  for , so  is uniformly distributed on . Returning to the displayed
equation generally gives  for  and , so  and  are independent.

Conversely, suppose that  is uniformly distributed on ,  is uniformly distributed on , and  and  are independent. Then for 
 and ,

It then follows (see the section on existence and uniqueness of measures) that  for every 
, so  is uniformly distributed on .

This page titled 5.20: General Uniform Distributions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.21: The Uniform Distribution on an Interval
          

The continuous uniform distribution on an interval of  is one of the simplest of all probability distributions, but nonetheless very
important. In particular, continuous uniform distributions are the basic tools for simulating other probability distributions. The
uniform distribution corresponds to picking a point at random from the interval. The uniform distribution on an interval is a special
case of the general uniform distribution with respect to a measure, in this case Lebesgue measure (length measure) on .

The Standard Uniform Distribution

Definition

The continuous uniform distribution on the interval  is known as the standard uniform distribution. Thus if  has the
standard uniform distribution then

for every (Borel measurable) subset  of , where  is Lebesgue (length) measure.

A simulation of a random variable with the standard uniform distribution is known in computer science as a random number. All
programming languages have functions for computing random numbers, as do calculators, spreadsheets, and mathematical and
statistical software packages.

Distribution Functions

Suppose that  has the standard uniform distribution. By definition, the probability density function is constant on .

 has probability density function  given by  for .

Since the density function is constant, the mode is not meaningful.

Open the Special Distribution Simulator and select the continuous uniform distribution. Keep the default parameter values.
Run the simulation 1000 times and compare the empirical density function and to the probability density function.

The distribution function is simply the identity function on .

 has distribution function  given by  for .

Proof

Note that  for . Recall again that  is length measure.

The quantile function is the same as the distribution function.

 has quantile function  given by  for . The quartiles are

1. , the first quartile
2. , the median
3. , the third quartile

Proof

 is the ordinary inverse of  on the interval , which is  itself since  is the identity function.

Open the Special Distribution Calculator and select the continuous uniform distribution. Keep the default parameter values.
Compute a few values of the distribution function and the quantile function.

Moments

Suppose again that  has the standard uniform distribution. The moments (about 0) are simple.
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For ,

Proof

Since the PDF is 1 on ,

The mean and variance follow easily from the general moment formula.

The mean and variance of  are

1. 
2. 

Open the Special Distribution Simulator and select the continuous uniform distribution. Keep the default parameter values.
Run the simulation 1000 times and compare the empirical mean and standard deviation to the true mean and standard
deviation.

Next are the skewness and kurtosis.

The skewness and kurtosis of  are

1. 
2. 

Proof
1. This follows from the symmetry of the distribution about the mean .
2. This follows from the usual formula for kurtosis in terms of the moments, or directly, since  and

Thus, the excess kurtosis is 

Finally, we give the moment generating function.

The moment generating function  of  is given by  and

Proof

Again, since the PDF is 1 on 

Trivially .

Related Distributions

The standard uniform distribution is connected to every other probability distribution on  by means of the quantile function of the
other distribution. When the quantile function has a simple closed form expression, this result forms the primary method of
simulating the other distribution with a random number.

n ∈ N

E ( ) =U

n

1

n+1

(5.21.2)

[0, 1]

E ( ) = du =U

n

∫

1

0

u

n

1

n+1

(5.21.3)

U

E(U) =

1

2

var(U) =

1

12

U

skew(U) = 0

kurt(U) =

9

5

1

2

=σ

4

1

144

E[ ] = dx =(U− )

1

2

4

∫

1

0

(x− )

1

2

4

1

80

(5.21.4)

kurt(U)−3 =−

6

5

m U m(0) = 1

m(t) = , t ∈ R ∖ {0}

−1e

t

t

(5.21.5)

[0, 1]

E ( )= du = , t ≠ 0e

tU

∫

1

0

e

tu

−1e
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Suppose that  is the distribution function for a probability distribution on , and that  is the corresponding quantile
function. If  has the standard uniform distribution, then  has distribution function .

Proof

A basic property of quantile functions is that  if and only if  for  and . Hence from the
distribution function of ,

Open the Random Quantile Experiment. For each distribution, run the simulation 1000 times and compare the empirical
density function to the probability density function of the selected distribution. Note how the random quantiles simulate the
distribution.

For a continuous distribution on an interval of , the connection goes the other way.

Suppose that  has a continuous distribution on an interval , with distribution function . Then  has the
standard uniform distribution.

Proof

For  recall that  is a quantile of order . Since  has a continuous distribution,

Hence  is uniformly distributed on .

The standard uniform distribution is a special case of the beta distribution.

The beta distribution with left parameter  and right parameter  is the standard uniform distribution.

Proof

The beta distribution with parameters  and  has PDF

where  is the beta function. With , the PDF is the standard uniform PDF.

The standard uniform distribution is also the building block of the Irwin-Hall distributions.

The Uniform Distribution on a General Interval

Definition

The standard uniform distribution is generalized by adding location-scale parameters.

Suppose that  has the standard uniform distribution. For  and  random variable  has the
uniform distribution with location parameter  and scale parameter .

Distribution Functions

Suppose that  has the uniform distribution with location parameter  and scale parameter .

 has probability density function  given by  for .

Proof

Recall that  for , where  is the standard uniform PDF. But  for , so the
result follows.

F R F

−1

U X = (U)F

−1

F

F (x) ≤ p x ≤ (p)F

−1

x ∈ R p ∈ (0, 1)

U

P(X ≤ x) = P [ (U) ≤ x] = P[U ≤ F (x)] = F (x), x ∈ RF

−1

(5.21.7)

R

X I ⊆R F U = F (X)

u ∈ (0, 1) (u)F

−1

u X

P(U ≥ u) = P[F (X) ≥ u] = P[X ≥ (u)] = 1−F [ (u)] = 1−uF

−1

F

−1

(5.21.8)

U (0, 1)

a= 1 b = 1

a> 0 b > 0

x↦ (1−x , x ∈ (0, 1)

1

B(a, b)

x

a−1

)

b−1

(5.21.9)

B a= b = 1

U a ∈ R w ∈ (0,∞) X = a+wU

a w

X a ∈ R w ∈ (0,∞)

X f f(x) = 1/w x ∈ [a, a+w]

f(x) = g( )

1

w

x−a

w
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The last result shows that  really does have a uniform distribution, since the probability density function is constant on the
support interval. Moreover, we can clearly parameterize the distribution by the endpoints of this interval, namely  and ,
rather than by the location, scale parameters  and . In fact, the distribution is more commonly known as the uniform distribution
on the interval . Nonetheless, it is useful to know that the distribution is the location-scale family associated with the standard
uniform distribution. In terms of the endpoint parameterization,

Open the Special Distribution Simulator and select the uniform distribution. Vary the location and scale parameters and note
the graph of the probability density function. For selected values of the parameters, run the simulation 1000 times and compare
the empirical density function to the probability density function.

 has distribution function  given by

Proof

Recall that  for , where  is the standard uniform CDF. But  for  so the
result follows. Of course, a direct proof using the PDF is also easy.

In terms of the endpoint parameterization,

 has quantile function  given by  for . The quartiles are

1. , the first quartile
2. , the median
3. , the third quartile

Proof

Recall that  where  is the standard uniform quantile function. But  for  so
the result follows. Of course a direct proof from the CDF is also easy.

Open the Special Distribution Calculator and select the uniform distribution. Vary the parameters and note the graph of the
distribution function. For selected values of the parameters, compute a few values of the distribution function and the quantile
function.

Moments

Again we assume that  has the uniform distribution on the interval  where  and . Thus the location parameter
is  and the scale parameter .

The moments of  are

Proof

For ,

The mean and variance of  are

X

a b = a+w

a w

[a, b]

f(x) = , x ∈ [a, b]

1

b−a

(5.21.10)

X F

F (x) = , x ∈ [a, a+w]

x−a

w

(5.21.11)

F (x) =G( )

x−a

w

x ∈ [a, a+w] G G(u) = u u ∈ [0, 1]

F (x) = , x ∈ [a, b]

x−a

b−a

(5.21.12)

X F

−1

(p) = a+pw = (1−p)a+pbF

−1
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1

1

4

3

4

1
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1

2

1

2

1
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3

3

4

1

4

3

4

(p) = a+w (p)F

−1

G

−1

G

−1

(p) = pG

−1

p ∈ [0, 1]

X [a, b] a, b ∈ R a< b

a w = b−a

X

E( ) = , n ∈ NX

n

−b

n+1

a

n+1

(n+1)(b−a)
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n ∈ N

E( ) = dx =X

n

∫

b

a

x

n

1

b−a

−b

n+1
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n+1
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1. 
2. 

Open the Special Distribution Simulator and select the uniform distribution. Vary the parameters and note the location and size
of the mean standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

Recall that skewness and kurtosis are defined in terms of the standard score and hence are invariant under location-scale
transformations.

Once again, the excess kurtosis is .

The moment generating function  of  is given by  and

Proof

Recall that  where  is the standard uniform MGF. Substituting gives the result.

If  is a real-valued function on , then  is the average value of  on , as defined in calculus:

If  is integrable, then

Proof

This follows from the change of variables formula for expected value: .

The entropy of the uniform distribution on an interval depends only on the length of the interval.

The entropy of  is .

Proof

Related Distributions

Since the uniform distribution is a location-scale family, it is trivially closed under location-scale transformations.

If  has the uniform distribution with location parameter  and scale parameter , and if  and , then 
 has the uniform distribution with location parameter  and scale parameter .

Proof

From the definition, we can take  where  has the standard uniform distribution. Hence 
.

As we saw above, the standard uniform distribution is a basic tool in the random quantile method of simulation. Uniform
distributions on intervals are also basic in the rejection method of simulation. We sketch the method in the next paragraph; see the

E(X) = (a+b)

1

2

var(X) = (b−a

1

12

)

2

±

X

skew(X) = 0

kurt(X) =

9

5

kurt(X)−3 =−

6

5

M X M(0) = 1

M(t) = , t ∈ R ∖ {0}

−e

bt

e

at

t(b−a)

(5.21.15)

M(t) = m(wt)e

at

m

h [a, b] E[h(X)] h [a, b]

h : [a, b] →R

E[h(X)] = h(x)dx

1

b−a

∫

b

a

(5.21.16)

E[h(X)] = h(x)f(x)dx∫

b

a

X H(X) = ln(b−a)

H(X) =E{−ln[f(X)]} = −ln( ) dx =−ln( ) = ln(b−a)∫

b

a

1

b−a

1

b−a

1

b−a

(5.21.17)
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section on general uniform distributions for more theory.

Suppose that  is a probability density function for a continuous distribution with values in a bounded interval . Suppose
also that  is bounded, so that there exits  such that  for all . Let  be a sequence of
independent variables, each uniformly distributed on , and let  be a sequence of independent variables, each
uniformly distributed on . Finally, assume that  and  are independent. Then  is a sequence of
independent variables, each uniformly distributed on . Let . Then 
is uniformly distributed on  (the region under the graph of ), and therefore  has
probability density function . In words, we generate uniform points in the rectangular region  until we get a point
under the graph of . The -coordinate of that point is our simulated value. The rejection method can be used to approximately
simulate random variables when the region under the density function is unbounded.

Open the rejection method simulator. For each distribution, select a set of parameter values. Run the experiment 2000 times
and observe how the rejection method works. Compare the empirical density function, mean, and standard deviation to their
distributional counterparts.

This page titled 5.21: The Uniform Distribution on an Interval is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by
Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.22: Discrete Uniform Distributions
          

Uniform Distributions on a Finite Set

Suppose that  is a nonempty, finite set. A random variable  taking values in  has the uniform distribution on  if

The discrete uniform distribution is a special case of the general uniform distribution with respect to a measure, in this case
counting measure. The distribution corresponds to picking an element of  at random. Most classical, combinatorial probability
models are based on underlying discrete uniform distributions. The chapter on Finite Sampling Models explores a number of such
models.

The probability density function  of  is given by

Proof

This follows from the definition of the (discrete) probability density function:  for . Or more
simply, .

Like all uniform distributions, the discrete uniform distribution on a finite set is characterized by the property of constant density
on the set. Another property that all uniform distributions share is invariance under conditioning on a subset.

Suppose that  is a nonempty subset of . Then the conditional distribution of  given  is uniform on .

Proof

For ,

If  then the expected value of  is simply the arithmetic average of the values of :

Proof

This follows from the change of variables theorem for expected value:

The entropy of  depends only on the number of points in .

The entropy of  is .

Proof

Let . Then

S X S S

P(X ∈ A) = , A⊆ S

#(A)

#(S)

(5.22.1)

S

f X

f(x) = , x ∈ S

1

#(S)

(5.22.2)

P(X ∈ A) = f(x)∑

x∈A

A⊆ S

f(x) = P(X = x) = 1/#(S)

R S X X ∈ R R

A⊆R

P(X ∈ A ∣X ∈ R) = = =

P(X ∈ A)

P(X ∈ R)

#(A)/#(S)

#(R)/#(S)

#(A)

#(R)

(5.22.3)

h : S→R h(X) h

E[h(X)] = h(x)

1

#(S)

∑

x∈S

(5.22.4)

E[h(X)] = f(x)h(x) = h(x)∑

x∈S

1

#(S)

∑

x∈S

(5.22.5)

X S

X H(X) = ln[#(S)]
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Uniform Distributions on Finite Subsets of 
Without some additional structure, not much more can be said about discrete uniform distributions. Thus, suppose that  and
that  is a subset of  with  points. We will assume that the points are indexed in order, so that 

. Suppose that  has the uniform distribution on .

The probability density function  of  is given by  for .

The distribution function  of  is given by

1.  for 
2.  for  and 
3.  for 

Proof

This follows from the definition of the distribution function:  for .

The quantile function  of  is given by  for .

Proof

By definition,  for  and . It follows that  in this formulation.

The moments of  are ordinary arithmetic averages.

For 

In particular,

The mean and variance of  are

1. 
2. 

Uniform Distributions on Discrete Intervals
We specialize further to the case where the finite subset of  is a discrete interval, that is, the points are uniformly spaced.

The Standard Distribution

Suppose that  and that  has the discrete uniform distribution on . The distribution of  is the
standard discrete uniform distribution with  points.

Of course, the results in the previous subsection apply with  and .

The probability density function  of  is given by  for .

Open the Special Distribution Simulation and select the discrete uniform distribution. Vary the number of points, but keep the
default values for the other parameters. Note the graph of the probability density function. Run the simulation 1000 times and
compare the empirical density function to the probability density function.

The distribution function  of  is given by  for .

Proof

Note that  for  and . Thus  in this formulation.
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+
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The quantile function  of  is given by  for . In particular

1.  is the first quartile.
2.  is the median.
3.  is the third quartile.

Proof

Note that  for  and . Thus  in this formulation.

Open the special distribution calculator and select the discrete uniform distribution. Vary the number of points, but keep the
default values for the other parameters. Note the graph of the distribution function. Compute a few values of the distribution
function and the quantile function.

For the standard uniform distribution, results for the moments can be given in closed form.

The mean and variance of  are

1. 
2. 

Proof

Recall that

Hence  and . Part (b) follows from .

Open the Special Distribution Simulation and select the discrete uniform distribution. Vary the number of points, but keep the
default values for the other parameters. Note the size and location of the mean standard devation bar. Run the simulation 1000
times and compare the empirical mean and standard deviation to the true mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

Recall that

Hence  and . The results now follow from the results on
the mean and varaince and the standard formulas for skewness and kurtosis. Of course, the fact that  also follows
from the symmetry of the distribution.

Note that  as . The limiting value is the skewness of the uniform distribution on an interval.

 has probability generating function  given by  and
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Z (p) = ⌈np⌉−1G
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Proof

The General Distribution

We now generalize the standard discrete uniform distribution by adding location and scale parameters.

Suppose that  has the standard discrete uniform distribution on  points, and that  and . Then 
 has the uniform distribution on  points with location parameter  and scale parameter .

Note that  takes values in

so that  has  elements, starting at , with step size , a discrete interval. In the further special case where  and , we
have an integer interval. Note that the last point is , so we can clearly also parameterize the distribution by the
endpoints  and , and the step size . With this parametrization, the number of points is . For the remainder of
this discussion, we assume that  has the distribution in the definiiton. Our first result is that the distribution of  really is
uniform.

 has probability density function  given by  for 

Proof

Recall that  for , where  is the PDF of .

Open the Special Distribution Simulation and select the discrete uniform distribution. Vary the parameters and note the graph
of the probability density function. For various values of the parameters, run the simulation 1000 times and compare the
empirical density function to the probability density function.

The distribution function  of  is given by

Proof

Recall that  for , where  is the CDF of .

The quantile function  of  is given by  for . In particular

1.  is the first quartile.
2.  is the median.
3.  is the third quartile.

Proof

Recall that  for , where  is the quantile function of .

Open the special distribution calculator and select the discrete uniform distribution. Vary the parameters and note the graph of
the distribution function. Compute a few values of the distribution function and the quantile function.

The mean and variance of  are

1. 

P (t) = , t ∈ R ∖ {1}

1

n

1− t
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1− t

(5.22.12)
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2. 

Proof

Recall that  and , so the results follow from the corresponding results for the
standard distribution.

Note that the mean is the average of the endpoints (and so is the midpoint of the interval ) while the variance depends only on
the number of points and the step size.

Open the Special Distribution Simulator and select the discrete uniform distribution. Vary the parameters and note the shape
and location of the mean/standard deviation bar. For selected values of the parameters, run the simulation 1000 times and
compare the empirical mean and standard deviation to the true mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

Recall that skewness and kurtosis are defined in terms of the standard score, and hence are the skewness and kurtosis of  are
the same as the skewness and kurtosis of .

 has moment generating function  given by  and

Proof

Note that  where  is the probability generating function of .

Related Distributions

Since the discrete uniform distribution on a discrete interval is a location-scale family, it is trivially closed under location-scale
transformations.

Suppose that  has the discrete uniform distribution on  points with location parameter  and scale parameter 
. If  and  then  has the discrete uniform distribution on  points with location

parameter  and scale parameter .

Proof

By definition we can take  where  has the standard uniform distribution on  points. Then 
.

In terms of the endpoint parameterization,  has left endpoint , right endpoint , and step size  while  has left
endpoint , right endpoint , and step size .

The uniform distribution on a discrete interval converges to the continuous uniform distribution on the interval with the same
endpoints, as the step size decreases to 0.

Suppose that  has the discrete uniform distribution with endpoints  and , and step size , for each . Then
the distribution of  converges to the continuous uniform distribution on  as .

Proof

The CDF  of  is given by

var(X) = ( −1) = (b−a)(b−a+2h)

1
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But  for  so  as . Hence  as  for 
, and this is the CDF of the continuous uniform distribution on .

This page titled 5.22: Discrete Uniform Distributions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.23: The Semicircle Distribution
          

The Semicircle Distribution
The semicircle distribution plays a very important role in the study of random matrices. It is also known as the Wigner distribution
in honor of the physicist Eugene Wigner, who did pioneering work on random matrices.

The Standard Semicircle Distribution

Distribution Functions

The standard semicircle distribution is a continuous distribution on the interval  with probability density function 
given by

Proof

The graph of  for  is the upper half of the circle of radius 1 centered at the origin. Hence the area
under this graph is  and therefore  is a valid PDF—the constant  in  is the normalizing constant

As noted in the proof,  for  is the upper half of the circle of radius 1 centered at the origin, hence the
name.

The standard semicircle probability density function  satisfies the following properties:

1.  is symmetric about .
2.  increases and then decreases with mode at .
3.  is concave downward.

Proof

As noted earlier, except for the normalizing constant, the graph of  is the upper half of the circle of radius 1 centered at the
origin, and so these properties are obvious.

Open special distribution simulator and select the semicircle distribution. With the default parameter value, note the shape of
the probability density function. Run the simulation 1000 times and compare the empirical density function to the probability
density function.

The standard semicircle distribution function  is given by

Proof

Of course  for . The integral is evaluated by using the trigonometric substitution .

We cannot give the quantile function  in closed form, but values of this function can be approximated. Clearly by symmetry, 
 for . In particular, the median is 0.

Open the special distribution simulator and select the semicircle distribution. With the default parameter value, note the shape
of the distribution function. Compute the first and third quartiles.

Moments

Suppose that  has the standard semicircle distribution. The moments of  about 0 can be computed explicitly. In particular, the
odd order moments are 0 by symmetry.
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For , the moment of order  is  and the moment of order  is

Proof

Clearly  has moments of all orders since the PDF  is bounded and the support interval is bounded. So by symmetry, the odd
order moments are 0, and we just need to prove the result for the even order moments. Note that

We use the substitution  to get

This integral can be evaluated by standard calculus methods to give the result above.

The numbers  for  are known as the Catalan numbers, and are named for the Belgian mathematician Eugene
Catalan. In particular, we can compute the mean, variance, skewness, and kurtosis.

The mean and variance of  are

1. 
2. 

Open the special distribution simulator and select the semicircle distribution. With the default parameter value, note the size
and location of the mean  standard deviation bar. Run the simulation 1000 times and compare the empirical mean and
standard deviation to the true mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

The standard score of  is . Hence . Of course, this is also clear from the symmetry of the
distribution of . Similarly, by the moment formula,

It follows that the excess kurtosis is .

Related Distributions

The semicircle distribution has simple connections to the continuous uniform distribution.

If  is uniformly distributed on the circular region in  centered at the orgin with radius 1, then  and  each have the
standard semicircular distribution.

Proof

 has joint PDF  on . Hence  has PDF
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kurt(X)−3 =−1
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It's easy to simulate a random point that is uniformly distributed on circular region in the previous theorem, and this provides a way
of simulating a standard semicircle distribution. This is important since we can't use the random quantile method of simulation.

Suppose that , , and  are independent random variables, each with the standard uniform distribution (random numbers).
Let  and , and then let , . Then  is uniformly distributed on the
circular region of radius 1 centered at the origin, and hence  and  each have the standard semicircle distribution.

Proof

 and  have CDF  for  and therefore  has CDF  for . Hence  has PDF  for 
. On the other hand,  is uniformly distributed on  and hence has density  on . By

independence, the Joint PDF of  is  on . For the polar
coordinate transformation , the Jacobian is . Hence by the change of variables theorem,  has
PDF

Of course, note that  and  in the previous theorem are not independent. Another method of simulation is to use the rejection
method. This method works well since the semicircle distribution has a bounded support interval and a bounded probability density
function.

Open the rejection method app and select the semicircle distribution. Keep the default parameters to get the standard semicirle
distribution. Run the simulation 1000 times and note the points in the scatterplot. Compare the empirical density function,
mean, and standard deviation to their distributional counterparts.

The General Semicircle Distribution
Like so many standard distributions, the standard semicircle distribution is usually generalized by adding location and scale
parameters.

Definition

Suppose that  has the standard semicircle distribution. For  and ,  has the semicircle
distribution with center (location parameter)  and radius (scale parameter) .

Distribution Functions

Suppose that  has the semicircle distribution with center  and radius .

 has probability density function  given by

Proof

This follows from a standard result for location-scale families. Recall that

where  is the standard semicircle PDF.

The graph of  for  is the upper half of the circle of radius  centered at . The area under
this semicircle is  so as a check on our work, we see that  is a valid probability density function.

The probability density function  of  satisfies the following properties:

1.  is symmetric about .
2.  increases and then decreases with mode at .
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3.  is concave downward.

Open special distribution simulator and select the semicircle distribution. Vary the center  and the radius , and note the shape
of the probability density function. For selected values of  and , run the simulation 1000 times and compare the empirical
density function to the probability density function.

The distribution function  of  is

Proof

This follows from a standard result for location-scale families:

where  is the standard semicircle CDF.

As in the standard case, we cannot give the quantile function  in closed form, but values of this function can be approximated.
Recall that  where  is the standard semicircle quantile function. In particular, 

 for . The median is .

Open the special distribution simulator and select the semicircle distribution. Vary the center  and the radius , and note the
shape of the distribution function. For selected values of  and , compute the first and third quartiles.

Moments

Suppose again that  has the semicircle distribution with center  and radius , so by definition we can assume 
 where  has the standard semicircle distribution. The moments of  can be computed from the moments of .

Using the binomial theorem and the linearity of expected value we have

In particular,

The mean and variance of  are

1. 
2. 

When the center is 0, the general moments have a simple form:

Suppose that . For  the moment of order  is  and the moment of order  is

Proof

This follows from the moment results for  since  for .

Open the special distribution simulator and select the semicircle distribution. Vary the center  and the radius , and note the
size and location of the mean  standard deviation bar. For selected values of  and , run the simulation 1000 times and
compare the empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are
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1. 
2. 

Proof

These results follow immediately from the skewness and kurtosis of the standard distribution. Recall that skewness and
kurtosis are defined in terms of the standard score, which is independent of the location and scale parameters..

Once again, the excess kurtosis is .

Related Distributions

Since the semicircle distribution is a location-scale family, it's invariant under location-scale transformations.

Suppose that  has the semicircle distribution with center  and radius . If  and  then 
has the semicircle distribution with center  and radius .

Proof

Again from the definition we can take  where  has the standard semicircle distribution. Then 
.

One member of the beta family of distributions is a semicircle distribution:

The beta distribution with left parameter  and right parameter  is the semicircle distribution with center  and radius 
.

Proof

By definition, the beta distribution with left and right parameters  has PDF

But  and . Completing the square gives

which is the PDF of the semicircle distribution with center  and radius .

Since we can simulate a variable  with the standard semicircle distribution by the method above, we can simulate a variable with
the semicircle distribution with center  and radius  by our very definition: . Once again, the rejection
method also works well since the support and probability density fucntion of  are bounded.

Open the rejection method app and select the semicircle distribution. For selected values of  and , run the simulation 1000
times and note the points in the scatterplot. Compare the empirical density function, mean and standard deviation to their
distributional counterparts.

This page titled 5.23: The Semicircle Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.24: The Triangle Distribution
          

Like the semicircle distribution, the triangle distribution is based on a simple geometric shape. The distribution arises naturally
when uniformly distributed random variables are transformed in various ways.

The Standard Triangle Distribution

Distribution Functions

The standard triangle distribution with vertex at  (equivalently, shape parameter ) is a continuous distribution on 
 with probability density function  described as follows:

1. If  then  for 
2. If  then  for .
3. If  then

The shape of the probability density function justifies the name triangle distribution.

The graph of , together with the domain , forms a triangle with vertices , , and . The mode of the
distribution is .

1. If ,  is decreasing.
2. If ,  is increasing.
3. If ,  increases and then decreases.

Proof

Using  as the base, we can compute the area of the triangle as  so we see immediately that  is a valid probability
density function. The properties are obvious.

Open special distribution simulator and select the triangle distribution. Vary  (but keep the default values for the other
parameters) and note the shape of the probability density function. For selected values of , run the simulation 1000 times and
compare the empirical density function to the probability density function.

The distribution function  is given as follows:

1. If ,  for .
2. If ,  for .
3. If 

Proof

This result follows from standard calculus since .

The quantile function  is given by

1. The first quartile is  if  and is  if 
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2. The median is  if  and is  if .

3. The third quartile is  if  and is  if .

Open the special distribution calculator and select the triangle distribution. Vary  (but keep the default values for the other
parameters) and note the shape of the distribution function. For selected values of , compute the first and third quartiles.

Moments

Suppose that  has the standard triangle distribution with vertex . The moments are easy to compute.

Suppose that .

1. If , .
2. If ,

Proof

This follows from standard calculus, since .

From the general moment formula, we can compute the mean, variance, skewness, and kurtosis.

The mean and variance of  are

1. 
2. 

Proof

This follows from the general moment result. Recall that .

Note that  increases from  to  as  increases from 0 to 1. The graph of  is a parabola opening downward; the
largest value is  when  or  and the smallest value is  when .

Open the special distribution simulator and select the triangle distribution. Vary  (but keep the default values for the other
paramters) and note the size and location of the mean  standard deviation bar. For selected values of , run the simulation
1000 times and compare the empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness of  is

The kurtosis of  is .

Proof

These results follow from the general moment result and the computational formulas for skewness and kurtosis.

Note that  is positively skewed for , negatively skewed for , and symmetric for . More specifically, if we
indicate the dependence on the parameter  then . Note also that the kurtosis is independent of , and
the excess kurtosis is .

Open the special distribution simulator and select the triangle distribution. Vary  (but keep the default values for the other
paramters) and note the degree of symmetry and the degree to which the distribution is peaked. For selected values of , run
the simulation 1000 times and compare the empirical density function to the probability density function.
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Related Distributions

If  has the standard triangle distribution with parameter , then  has the standard triangle distribution with parameter 
.

Proof

For , , where  is the CDF of . The result now follows from
the formula for the CDF.

The standard triangle distribution has a number of connections with the standard uniform distribution. Recall that a simulation of a
random variable with a standard uniform distribution is a random number in computer science.

Suppose that  and  are independent random variables, each with the standard uniform distribution. Then

1.  has the standard triangle distribution with .
2.  has the standard triangle distribution with .

Proof

 and  have CDF  for 

1.  has CDF  for 
2.  has CDF  for .

Suppose again that  and  are independent random variables, each with the standard uniform distribution. Then

1.  has the standard triangle distribution with .
2.  has the standard triangle distribution with .

Proof
1. Let . Note that the event  is simply the union of two disjoint triangular regions,

each with base and height of length . Hence .
2. Let . The event  is a triangular region with height and base of length . Hence 

. For , the event  is a triangular regtion with height and base if length . Hence 
.

In the previous result, note that  is the sample mean from a random sample of size 2 from the standard uniform distribution. Since
the quantile function has a simple closed-form expression, the standard triangle distribution can be simulated using the random
quantile method.

Suppose that  is has the standard uniform distribution and . Then the random variable below has the standard
triangle distribution with parameter :

Open the random quantile experiment and select the triangle distribution. Vary  (but keep the default values for the other
parameters) and note the shape of the distribution function/quantile function. For selected values of , run the experiment 1000
times and watch the random quantiles. Compare the empirical density function, mean, and standard deviation to their
distributional counterparts.

The standard triangle distribution can also be simulated using the rejection method, which also works well since the region  under
the probability density function  is bounded. Recall that this method is based on the following fact: if  is uniformly
distributed on the rectangular region  which contains , then the conditional distribution of 

 given  is uniformly distributed on , and hence  has probability density function .

Open the rejection method experiment and select the triangle distribution. Vary  (but keep the default values for the other
parameters) and note the shape of the probability density function. For selected values of , run the experiment 1000 times and
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watch the scatterplot. Compare the empirical density function, mean, and standard deviation to their distributional counterparts.

For the extreme values of the shape parameter, the standard triangle distributions are also beta distributions.

Connections to the beta distribution:

1. The standard triangle distribution with shape parameter  is the beta distribution with left parameter  and right
parameter .

2. The standard triangle distribution with shape parameter  is the beta distribution with left parameter  and right
parameter .

Proof

These results follow directly from the form of the standard triangle PDF.

Open the special distribution simulator and select the beta distribution. For parameter values given below, run the simulation
1000 times and compare the empirical density function, mean, and standard deviation to their distributional counterparts.

1. , 
2. , 

The General Triangle Distribution

Like so many standard distributions, the standard triangle distribution is usually generalized by adding location and scale
parameters.

Definition

Suppose that  has the standard triangle distribution with vertex at . For  and , random variable 
 has the triangle distribution with location parameter , and scale parameter , and shape parameter 

Distribution Functions

Suppose that  has the general triangle distribution given in the definition above.

 has probability density function  given as follows:

1. If ,  for .
2. If ,  for .
3. If ,

Proof

This follows from a standard result for location-scale families. Recall that

where  is the standard triangle PDF with parameter .

Once again, the shape of the probability density function justifies the name triangle distribution.

The graph of , together with the domain , forms a triangle with vertices , , and . The
mode of the distribution is .

1. If ,  is decreasing.
2. If ,  is increasing.
3. If ,  increases and then decreases.
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Clearly the general triangle distribution could be parameterized by the left endpoint , the right endpoint  and the
location of the vertex , but the location-scale-shape parameterization is better.

Open special distribution simulator and select the triangle distribution. Vary the parameters , , and , and note the shape and
location of the probability density function. For selected values of the parameters, run the simulation 1000 times and compare
the empirical density function to the probability density function.

The distribution function  of  is given as follows:

1. If ,  for 
2. If ,  for 
3. If ,

Proof

This follows from a standard result for location-scale families:

where  is the standard triangle CDF with parameter .

 has quantile function  given by

1. The first quartile is  if  and is  if 

2. The median is  if  and is  if .

3. The third quartile is  if  and is  if .

Proof

Ths follows from a standard result for location-scale families:  for , where  is the
standard triangle quantile function with parameter .

Open the special distribution simulator and select the triangle distribution. Vary the the parameters , , and , and note the
shape and location of the distribution function. For selected values of parameters, compute the median and the first and third
quartiles.

Moments

Suppose again that  has the triangle distribution with location parameter , scale parameter  and shape parameter
. Then we can take  where  has the standard triangle distribution with parameter . Hence the moments of 

 can be computed from the moments of . Using the binomial theorem and the linearity of expected value we have

The general results are rather messy.

The mean and variance of  are
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Proof

This follows from the results for the mean and variance of the standard triangle distribution, and simple properties of expected
value and variance.

Open the special distribution simulator and select the triangle distribution. Vary the parameters , , and , and note the size
and location of the mean  standard deviation bar. For selected values of the paramters, run the simulation 1000 times and
compare the empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness of  is

The kurtosis of  is .

Proof

These results follow immediately from the skewness and kurtosis of the standard triangle distribution. Recall that skewness and
kurtosis are defined in terms of the standard score, which is independent of the location and scale parameters.

As before, the excess kurtosis is .

Related Distributions

Since the triangle distribution is a location-scale family, it's invariant under location-scale transformations. More generally, the
family is closed under linear transformations with nonzero slope.

Suppose that  has the triangle distribution with shape parameter , scale parameter , and shape parameter 
. If  and  then

1.  has the triangle distribution with location parameter , scale parameter , and shape parameter .
2.  has the triangle distribution with location parameter , scale parameter , and shape parameter .

Proof

From the definition we can take  where  has the standard triangle distribution with parameter .

1. Note that .
2. Note that , and recall from the result above that  has the basic triangle

distribution with parameter .

As with the standard distribution, there are several connections between the triangle distribution and the continuous uniform
distribution.

Suppose that  and  are independent and are uniformly distributed on the interval , where  and 
. Then

1.  has the triangle distribution with location parameter , scale parameter , and shape parameter .
2.  has the triangle distribution with location parameter , scale parameter , and shape parameter .

Proof

The uniform distribution is itself a location-scale family, so we can write  and , where  and 
 are independent and each has the standard uniform distribution. Then  and 

 so the result follows from the corresponding result for the standard triangle distribution.

Suppose again that  and  are independent and are uniformly distributed on the interval , where  and 
. Then

1.  has the triangle distribution with location parameter 0, scale parameter , and shape parameter .
2.  has the triangle distribution with location parameter , scale parameter , and shape parameter .
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3.  has the triangle distribution with location parameter , scale parameter , and shape parameter 

Proof

As before, we can write  and , where  and  are independent and each has the standard
uniform distribution.

1.  and by the result above,  has the standard triangle distribution with parameter .
2.  and by the result above,  has the standard triangle distribution with

parameter .
3. Let . Since  also has the standard uniform distribution and is

independent of , it follows from the result above that  has the basic triangle distribution with parameter . But 
 and hence the result follows.

A special case of (b) leads to a connection between the triangle distribution and the Irwin-Hall distribution.

Suppose that  and  are independent random variables, each with the standard uniform distribution. Then  has the
triangle distribtion with location parameter , scale parameter  and shape parameter . But this is also the Irwin-Hall
distribution of order .

Open the special distribution simulator and select the Irwin-Hall distribution. Set  and note the shape and location of the
probability density function. Run the simulation 1000 times and compare the empirical density function, mean, and standard
deviation to their distributional counterparts.

Since we can simulate a variable  with the basic triangle distribution with parameter  by the random quantile method
above, we can simulate a variable with the triangle distribution that has location parameter , scale parameter ,
and shape parameter  by our very definition: . Equivalently, we could compute a random quantile using the quantile
function of .

Open the random quantile experiment and select the triangle distribution. Vary the location parameter , the scale parameter ,
and the shape parameter , and note the shape of the distribution function. For selected values of the parameters, run the
experiment 1000 times and watch the random quantiles. Compare the empirical density function, mean and standard deviation
to their distributional counterparts.

As with the standard distribution, the general triangle distribution has a bounded probability density function on a bounded interval,
and hence can be simulated easily via the rejection method.

Open the rejection method experiment and select the triangle distribution. Vary the parameters and note the shape of the
probability density function. For selected values of the parameters, run the experiment 1000 times and watch the scatterplot.
Compare the empirical density function, mean, and standard deviation to their distributional counterparts.

This page titled 5.24: The Triangle Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.25: The Irwin-Hall Distribution
          

The Irwin-Hall distribution, named for Joseph Irwin and Phillip Hall, is the distribution that governs the sum of independent
random variables, each with the standard uniform distribution. It is also known as the uniform sum distribution. Since the standard
uniform is one of the simplest and most basic distributions (and corresponds in computer science to a random number), the Irwin-
Hall is a natural family of distributions. It also serves as a nice example of the central limit theorem, conceptually easy to
understand.

Basic Theory

Definition

Suppose that  is a sequence of indpendent random variables, each with the uniform distribution on the
interval  (the standard uniform distribution). For , let

Then  has the Irwin-Hall distribution of order .

So  has a continuous distribution on the interval  for .

Distribution Functions

Let  denote the probability density function of the standard uniform distribution, so that  for  (and is 0
otherwise). It follows immediately that the probability density function  of  satisfies , where of course  is the -
fold convolution power of . We can compute  and  by hand.

The probability density function  of  is given by

Proof

Note that  takes values in  and  for . The integral reduces to  for 
 and the integral reduces to  for .

Note that the graph of  on  consists of two lines, pieced together in a continuous way at . The form given above is not
the simplest, but makes the continuity clear, and will be helpful when we generalize.

In the special distribution simulator, select the Irwin-Hall distribution and set . Note the shape of the probability density
function. Run the simulation 1000 times and compare the empirical density function to the probability density function.

The probability density function  of  is given by

Note that the graph of  on  consists of three parabolas pieced together in a continuous way at  and . The
expressions for  for  and  can be expanded and simplified, but again the form given above makes the
continuity clear, and will be helpful when we generalize.

In the special distribution simulator, select the Irwin-Hall distribution and set . Note the shape of the probability density
function. Run the simulation 1000 times and compare the empirical density function to the probability density function.
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Naturally, we don't want to perform the convolutions one at a time; we would like a general formula. To state the formula
succinctly, we need to recall the floor function:

so that  if  and .

For , the probability density function  of  is given by

Proof

Let  denote the function given by the formula above. Clearly  takes values in , so first let's note that  gives the
correct value outside of this interval. If , the sum is over an empty index set and hence is 0. Suppose . Since 

 for , we have

Using the binomial theorem,

The second sum in the last expression is 0 for  by the alternating series identity for binomial coefficients.
We will see this identity again.

To show that the formula is correct on  we use induction on . Suppose that . If , then  so

Suppose now that the formula is correct for a given . We need to show that . Note that

As often with convolutions, we must take cases. Suppose that  where . Then

Substituting the formula for  and integrating gives

Adding these together, note that the first sum in the first equation cancels the second sum in the second equation. Re-indexing
the second sum in the first equation we have

⌊x⌋=max{n ∈ Z : n≤ x}, x ∈ R (5.25.4)

⌊x⌋= j j∈ Z j≤ x < j+1

n ∈ N

+

f

n

X

n

(x) = (−1 ( )(x−k , x ∈ Rf

n

1

(n−1)!

∑

k=0

⌊x⌋

)

k

n

k

)

n−1

(5.25.5)

f

n

X

n

[0,n] f

n

x < 0 x > n

( )= 0

n

k

k> n

(x) = (−1 ( )(x−k , x ∈ Rf

n

1

(n−1)!

∑

k=0

n

)

k

n

k

)

n−1

(5.25.6)

(−1 ( )(x−k∑

k=0

n

)

k

n

k

)

n−1

= (−1 ( ) ( ) (−k∑

k=0

n

)

k

n

k

∑

j=0

n−1

n−1

j

x

j

)

n−1−j

= (−1 ( ) (−1 ( )∑

j=0

n−1

)

n−1−j

n−1

j

x

j

∑

k=0

n

)

k

n

k

k

n−1−j

j∈ {0, 1,… n−1}

[0,n] n n= 1 0 < x < 1 ⌊x⌋= 0

(x) = (−1 ( ) = 1 = f(x)f

1

1

0!

)

0

1

0

x

0

(5.25.7)

n ∈ N

+

∗ f =f

n

f

n+1

( ∗ f)(x) = (y)f(x−y)dy = (y)dyf

n

∫

R

f

n

∫

x

x−1

f

n

(5.25.8)

j≤ x < j+1 j∈ {0, 1,… ,n}

( ∗ f)(x) = (y)dy = (y)dy+ (y)dyf

n

∫

x

x−1

f

n

∫

j

x−1

f

n

∫

x

j

f

n

(5.25.9)

(y)f

n

(y)dy = (−1 ( )(j−k − (−1 ( )(x−1−k∫

j

x−1

f

n

1

n!

∑

k=0

j−1

)

k

n

k

)

n

1

n!

∑

k=0

j−1

)

k

n

k

)

n

(y)dy = (−1 ( )(x−k − (−1 ( )(j−k∫

x

j

f

n

1

n!

∑

k=0

j

)

k

n

k

)

n

1

n!

∑

k=0

j

)

k

n

k

)

n

( ∗ f)(x) = (−1 ( )(x−k + (−1 ( )(x−kf

n

1

n!

∑

k=1

j

)

k

n

k−1

)

n

1

n!

∑

k=0

n

)

k

n

k

)

n

(5.25.10)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10365?pdf


5.25.3 https://stats.libretexts.org/@go/page/10365

Finally, using the famous binomial identity  for  we have

Note that for , the graph of  on  consists of  polynomials of degree  pieced together in a continuous way.
Such a construction is known as a polynomial spline. The points where the polynomials are connected are known as knots. So  is
a polynomial spline of degree  with knots at . There is another representation of  as a sum. To state
this one succinctly, we need to recall the sign function:

For , the probability density function  of  is given by

Direct Proof

Let  denote the function defined in the theorem. We will show directly that , the probability density function given
in the previous theorem. Suppose that , so that . Note that  for  and 

 for . Hence

Adding and subtracting a copy of the first term gives

The last sum is identically 0, from the proof of the previous theorem.

Proof by induction

For  the displayed formula is

So the formula is correct for . Assume now that the formula is correct for . Then

But  for . So
substituting and re-indexing one of the sums gives

Using the famous identity  for  we finally get
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which verifies the formula for .

Open the special distribution simulator and select the Irwin-Hall distribution. Start with  and increase  successively to
the maximum . Note the shape of the probability density function. For various values of , run the simulation 1000
times and compare the empirical density function to the probability density function.

For , the Irwin-Hall distribution is symmetric and unimodal, with mode at .

The distribution function  of  is given by

Proof

This follows from the first form of the PDF and integration.

So  is a polynomial spline of degree  with knots at . The alternate from of the probability density function
leads to an alternate form of the distribution function.

The distribution function  of  is given by

Proof

The result follws from the second form of the PDF and integration.

The quantile function  does not have a simple representation, but of course by symmetry, the median is .

Open the special distribution calculator and select the Irwin-Hall distribution. Vary  from 1 to 10 and note the shape of the
distribution function. For each value of  compute the first and third quartiles.

Moments

The moments of the Irwin-Hall distribution are easy to obtain from the representation as a sum of independent standard uniform
variables. Once again, we assume that  has the Irwin-Hall distribution of order .

The mean and variance of  are

1. 
2. 

Proof

This follows immediately from the representation  where  is a sequence of independent,
standard uniform variables, since  and 

Open the special distribution simulator and select the Irwin-Hall distribution. Vary  and note the shape and location of the
mean  standard deviation bar. For selected values of  run the simulation 1000 times and compare the empirical mean and
standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
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2. 

Proof

The fact that the skweness is 0 follows immediately from the symmetry of the distribution (once we know that  has
moments of all orders). The kurtosis result follows from the usual formula and the moments of the standard uniform
distribution.

Note that , the kurtosis of the normal distribution, as . That is, the excess kurtosis  as 
.

Open the special distribution simulator and select the Irwin-Hall distribution. Vary  and note the shape and of the probability
density function in light of the previous results on skewness and kurtosis. For selected values of  run the simulation 1000
times and compare the empirical density function, mean, and standard deviation to their distributional counterparts.

The moment generating function  of  is given by  and

Proof

This follows immediately from the representation  where  is a sequence of independent
standard uniform variables. Recall that the standard uniform distribution has MGF , and the MGF of a sum of
independent variables is the product of the MGFs.

Related Distributions

The most important connection is to the standard uniform distribution in the definition: The Irwin-Hall distribution of order 
 is the distribution of the sum of  independent variables, each with the standard uniform distribution. The Irwin-Hall

distribution of order 2 is also a triangle distribution:

The Irwin-Hall distribution of order 2 is the triangle distribution with location parameter 0, scale parameter 2, and shape
parameter .

Proof

This follows immediately from the PDF .

The Irwin-Hall distribution is connected to the normal distribution via the central limit theorem.

Suppose that  has the Irwin-Hall distribution of order  for each . Then the distribution of

converges to the standard normal distribution as .

Proof

This follows immediately from the central limit theorem, since  where  is a sequence of
independent variables, each with the standard uniform distribution. Note that  is the standard score of .

Thus, if  is large,  has approximately a normal distribution with mean  and variance .

Open the special distribution simulator and select the Irwin-Hall distribution. Start with  and increase  successively to
the maximum . Note how the probability density function becomes more “normal” as  increases. For various values of

, run the simulation 1000 times and compare the empirical density function to the probability density function.

The Irwin-Hall distribution of order  is trivial to simulate, as the sum of  random numbers. Since the probability density function
is bounded on a bounded support interval, the distribution can also be simulated via the rejection method. Computationally, this is a
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dumb thing to do, of course, but it can still be a fun exercise.

Open the rejection method experiment and select the Irwin-Hall distribution. For various values of , run the simulation 2000
times. Compare the empirical density function, mean, and standard deviation to their distributional counterparts.

This page titled 5.25: The Irwin-Hall Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.26: The U-Power Distribution
         

The U-power distribution is a U-shaped family of distributions based on a simple family of power functions.

The Standard U-Power Distribution

Distribution Functions

The standard U-power distribution with shape parameter  is a continuous distribution on  with probability
density function  given by

Proof

From simple calculus,  is a probability density function:

The algebraic form of the probability density function explains the name of the distribution. The most common of the standard U-
power distributions is the U-quadratic distribution, which corresponds to .

The standard U-power probability density function  satisfies the following properties:

1.  is symmetric about .
2.  decreases and then increases with minimum value at .
3. The modes are .
4.  is concave upward.

Proof

Again, these properties follow from basic calculus since

Open the Special Distribution Simulator and select the U-power distribution. Vary the shape parameter but keep the default
values for the other parameters. Note the graph of the probability density function. For selected values of the shape parameter,
run the simulation 1000 times and compare the emprical density function to the probability density function.

The distribution function  given by

Proof

This follows from the PDF above and simple calculus.

The quantile function  given by  for .

1.  for .
2. The first quartile is .
3. The median is 0.
4. The third quartile is .

Proof
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The formula for the quantile function follows immediately from the CDF above by solving  for  in terms of 
. Property (a) follows from the symmetry of the distribution about 0.

Open the Special Distribution Calculator and select the U-power distribution. Vary the shape parameter but keep the default
values for the other parameters. Note the shape of the distribution function. For various values of the shape parameter, compute
a few quantiles.

Moments

Suppose that  has the standard U-power distribution with parameter . The moments (about 0) are easy to compute.

Let . The moment of order  is . The moment of order  is

Proof

This result follows from simple calculus. The fact that the even order moments are 0 also follows from the symmetry of the
distribution about 0.

Since the mean is 0, the moments about 0 are also the central moments.

The mean and variance of  are

1. 
2. 

Proof

These results follow from the previous general moment result.

Note that  as .

Open the Special Distribution Simulator and select the U-power distribution. Vary the shape parameter but keep the default
values for the other paramters. Note the position and size of the mean  standard deviation bar. For selected values of the
shape parameter, run the simulation 1000 times and compare the empirical mean and stadard deviation to the distribution mean
and standard deviation.

The skewness and kurtosis of  are

1. 

2. 

Proof

The skewness is 0 by the symmetry of the distribution. Since the mean is 0, the kurtosis is  and so the result
follows from the general moment result above

Note that  as . The excess kurtosis is  and so  as 

.

Related Distributions

The U-power probability density function  actually makes sense for  as well, and in this case the distribution reduces to the
uniform distribution on the interval . But of course, this distribution is not U-shaped, except in a degenerate sense. There are
other connections to the uniform distribution. The first is a standard result since the U-power quantile function has a simple, closed
representation:

Suppose that .

p =G(x) x
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1. If  has the standard uniform distribution then  has the standard U-power distribution with
parameter .

2. If  has the standard U-power distribution with parameter  then  has the standard uniform
distribution.

Part (a) of course leads to the random quantile method of simulation.

Open the random quantile simulator and select the U-power distribution. Vary the shape parameter but keep the default values
for the other parameters. Note the shape of the distribution and density functions. For selected values of the parameter, run the
simulation 1000 times and note the random quantiles. Compare the empirical density function to the probability density
function.

The standard U-power distribution with shape parameter  converges to the discrete uniform distribution on  as 
.

Proof

This follows from the definition of convergence in distribution. The U-power distribution function  is 0 on , is 1
on , and is given by the formula above on . As ,  for ,  for 

, and  for . This agrees with the distribution function of the discrete uniform distribution on 
 except at the points of discontinuity .

The General U-Power Distribution
Like so many standard distributions, the standard U-power distribution is generalized by adding location and scale parameters.

Definition

Suppose that  has the standard U-power distribution with shape parameter . If  and  then 
 has the U-power distribution with shape parameter , location parameter  and scale parameter .

Note that  has a continuous distribution on the interval  where  and , so the distribution can also be
parameterized by the the shape parameter  and the endpoints  and . With this parametrization, the location parameter is 

 and the scale parameter is .

Distribution Functions

Suppose that  has the U-power distribution with shape parameter , location parameter , and scale parameter 
.

 has probability density function  given by

1.  is symmetric about .
2.  decreases and then increases with minimum value at .
3. The modes are at .
4.  is concave upward.

Proof

Recall that  where  is the PDF of .

Open the Special Distribution Simulator and select the U-power distribution. Vary the parameters and note the shape and
location of the probability density function. For various values of the parameters, run the simulation 1000 times and compare
the emprical density function to the probability density function.
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X = μ+cZ k μ c

X [a, b] a= μ−c b = μ+c

k a b

μ=

a+b

2

c =

b−a

2

X k ∈ N

+

μ ∈ R

c ∈ (0,∞)

X f

f(x) = , x ∈ [μ−c,μ+c]

2k+1

2c

( )

x−μ

c

2k

(5.26.7)
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 has distribution function  given by

Proof

Recall that  where  is the CDF of .

 has quantile function  given by  for .

1. 
2. The first quartile is 
3. The median is .
4. The third quartile is 

Proof

Recall that  where  is the quantile function of .

Open the Special Distribution Calculator and select the U-power distribution. Vary the parameters and note the graph of the
distribution function. For various values of the parameters, compute selected values of the distribution function and the
quantile function.

Moments

Suppose again that  has the U-power distribution with shape parameter , location parameter , and scale parameter 
.

The mean and variance of  are

1. 
2. 

Proof

These results follow from the representation  where  has the standard U-power distribution with shape
parameter , and from the mean and variance of .

Note that  as 

Open the Special Distribution Simulator and select the U-power distribution. Vary the parameters and note the size and
location of the mean  standard deviation bar. For various values of the parameters, run the simulation 1000 times and
compare the empirical mean and stadard deviation to the distribution mean and standard deviation.

The moments about 0 are messy, but the central moments are simple.

Let . The central moment of order  is . The moment of order  is

Proof

This follows from the representation  where  has the standard U-power distribution with shape parameter , and
the central moments of .

The skewness and kurtosis of  are

1. 

X F

F (x) = [1+ ] , x ∈ [μ−c,μ+c]

1

2

( )

x−μ

c

2k+1

(5.26.8)

F (x) =G( )

x−μ

c

G Z

X F

−1

(p) = μ+c(2p−1F

−1

)

1/(2k+1)

p ∈ [0, 1]

(1−p) = μ−c (p)F

−1

F

−1

= μ−cq

1

1

2

1/(2k+1)

μ

= μ+cq

3

1

2

1/(2k+1)

(p) = μ+c (p)F

−1

G

−1

G

−1

Z

X k ∈ N

+

μ ∈ R

c ∈ (0,∞)

X

E(X) = μ

var(X) = c

2

2k+1

2k+3

X = μ+cZ Z

k Z

var(Z) → c

2

k→∞

±

n ∈ N

+

2n+1 E [(X−μ ] = 0)

2n+1

2n

E [(x−μ ] =)

2n

c

2n

2k+1

2(n+k)+1

(5.26.9)
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2. 

Proof

Recall that the skewness and kurtosis are defined in terms of the standard score of  and hence are invariant under a location-
scale transformation. Thus, the results are the same as for the standard distribution.

Again,  as  and the excess kurtosis is 

Related Distributions

Since the U-power distribution with a given shape parameter is a location-scale family, it is trivially closed under location-scale
transformations.

Suppose that  has the U-power distribution with shape parameter , location parameter , and scale parameter 
. If  and , then  has the U-power distribution with shape parameter , location

parameter , and scale parameter .

Proof

From the definition, we can take  where  has the standard U-power distribution with shape parameter . Then 
.

As before, since the U-power distribution function and the U-power quantile function have simple forms, we have the usual
connections with the standard uniform distribution.

Suppose that ,  and .

1. If  has the standard uniform distribution then  has the U-power distribution with shape
parameter , location parameter , and scale parameter .

2. If  has the U-power distribution with shape parameter , location parameter , and scale parameter , then 

 has the standard uniform distribution.

Again, part (a) of course leads to the random quantile method of simulation.

Open the random quantile simulator and select the U-power distribution. Vary the parameters and note the shape of the
distribution and density functions. For selected values of the parameters, run the simulation 1000 times and note the random
quantiles. Compare the empirical density function to the probability density function.

The U-power distribution with given location and scale parameters converges to the discrete uniform distribution at the endpoints
as the shape parameter increases.

The U-power distribution with shape parameter , location parameter , and scale parameter  converges
to the discrete uniform distribution on  as .

Proof

This follows from the convergence result for the standard distribution and basic properties of convergence in distribution.

The U-power distribution is a general exponential family in the shape parameter, if the location and scale parameters are fixed.

Suppose that  has the U-power distribution with unspecified shape parameter , but with specified location parameter 
 and scale parameter . Then  has a one-parameter exponential distribution with natural parameter  and

natural statistics .

Proof

This follows from the definition of the general exponential family, since the PDF of the U-power distribution can be written as

kurt(X) =

(2k+3)

2

(2k+5)(2k+1)

X

kurt(X) → 1 k→∞ kurt(X)−3 = −3

(2k+3)

2

(2k+5)(2k+1)

X k ∈ N

+

μ ∈ R

c ∈ (0,∞) α ∈ R β ∈ (0,∞) Y = α+βX k

α+βμ βc

X = μ+cZ Z k

Y = α+βX = (α+βμ)+(βc)Z

k ∈ N

+

μ ∈ R c ∈ (0,∞)

U X = μ+c(2U−1)

1/(2k+1)

k μ c

X k μ c

U = [1+ ]

1

2

( )

X−μ

c

2k+1

k ∈ N

+

μ ∈ R c ∈ (0,∞)

{μ−c,μ+c} k→∞

X k ∈ N

+

μ ∈ R c ∈ (0,∞) X 2k

ln( )

X−μ

c
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Since the U-power distribution has a bounded probability density function on a bounded support interval, it can also be simulated
via the rejection method.

Open the rejection method experiment and select the U-power distribution. Vary the parameters and note the shape of the
probability density function. For selected values of the parameters, run the experiment 1000 times and watch the scatterplot.
Compare the empirical density function, mean, and standard deviation to their distributional counterparts.

This page titled 5.26: The U-Power Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

f(x) = exp[2k ln( )], x ∈ [μ−c,μ+c]

2k+1

2c

x−μ

c

(5.26.10)
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5.27: The Sine Distribution
         

The sine distribution is a simple probability distribution based on a portion of the sine curve. It is also known as Gilbert's sine
distribution, named for the American geologist Grove Karl (GK) Gilbert who used the distribution in 1892 to study craters on the
moon.

The Standard Sine Distribution

Distribution Functions

The standard sine distribution is a continuous distribution on  with probability density function  given by

1.  is symmetric about .
2.  increases and then decreases with mode at .
3.  is concave downward.

Proof

From simple calculus,  is a probability density function:  for  and

The properties follow from basic calculus since

Open the Special Distribution Simulator and select the sine distribution. Run the simulation 1000 times and compare the
emprical density function to the probability density function.

The distribution function  is given by  for .

Proof

This follows from the PDF above and simple calculus.

The quantile function  is given by  for .

1. The first quartile is .
2. The median is .
3. The third quartile is .

Proof

The formula for the quantile function follows immediately from the CDF above by solving  for  in terms of 
.

Open the Special Distribution Calculator and select the sine distribution. Compute a few quantiles.

Moments

Suppose that  has the standard sine distribution. The moment generating function can be given in closed form.

The moment generating function  of  is given by

[0, 1] g

g(z) = sin(πz), z ∈ [0, 1]

π

2

(5.27.1)

g z=

1

2

g z=

1

2

g

g sin(πx) ≥ 0 x ∈ [0, 1]

sin(πz)dz=∫

1

0

2

π

(5.27.2)

(z)g

′

(z)g

′′

= cos(πz), z ∈ [0, 1]

π

2

2

=− sin(πz), z ∈ [0, 1]

π

3

2

(5.27.3)

(5.27.4)

G G(z) = [1−cos(πz)]

1

2

z ∈ [0, 1]

G

−1

(p) = arccos(1−2p)G

−1

1

π

p ∈ [0, 1]

=q

1

1

3

1

2

=q

3

2

3
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m Z
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Proof

Note first that

Integrating by parts with  and  gives

Integrating by parts again with  and  gives

Solving for  gives the result.

The moments of all orders exist, but a general formula is complicated and involves special functions. However, the mean and
variance are easy to compute.

The mean and variance of  are

1. 
2. 

Proof
1. We know that the mean exists since the PDF is continuous on a bounded interval. By symmetry, the mean must be .
2. Integration by parts (twice) gives

The variance then follows from the usual computational formula .

Of course, the mean and variance could also be obtained by differentiating the MGF.

Numerically, .

Open the Special Distribution Simulator and select the sine distribution. Note the position and size of the mean  standard
deviation bar. Run the simulation 1000 times and compare the empirical mean and stadard deviation to the distribution mean
and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof
1. The skewness is 0 by the symmetry of the distribution.
2. The formula for the kurtosis follows from the usual computational formula and the first four moments: , 

, , .

Numerically, .

m(t) =E ( )= , t ∈ Re

tZ

(1+ )π

2

e

t

2( + )t

2

π

2

(5.27.5)

m(t) = sin(πz)dz

π

2

∫

1

0

e

tz

(5.27.6)

u = e

tz

dv= sin(πz)dz

m(t) = (1+ )+ cos(πz)dz

t

2

e

t

t

2

∫

1

0

e

tz

(5.27.7)

u = e

tz

dv= cos(πz)dz

m(t) = (1+ )− m(t)

t

2

e

t

t

2

π

2

(5.27.8)

m(t)

Z

E(Z) = 1/2

var(Z) = 1/4−2/π

2

1/2

E( ) = sin(πz)dz= −Z

2

∫

1

0

z

2

π

2

1

2

2

π

2

(5.27.9)

var(Z) =E( )−[E(Z)Z

2

]

2

sd(Z) ≈ 0.2176

±

Z

skew(Z) = 0

kurt(Z) = (384−48 + )/( −8π

2

π

4

π

2
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2
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2

π

2
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Related Distributions

Since the distribution function and the quantile function have closed form representations, the standard sine distribution has the
usual connection to the standard uniform distribution.

1. If  has the standard uniform distribution then  has the standard sine distribution.
2. If  has the standard sine distribution then  has the standard uniform distribution.

Part (a) of course leads to the random quantile method of simulation.

Open the random quantile simulator and select the sine distribution. Note the shape of the distribution and density functions.
Run the simulation 1000 times and note the random quantiles. Compare the empirical density function to the probability
density function.

Since the probability density function is continuous and is defined on a closed, bounded interval, the standard sine distribution can
also be simulated using the rejection method.

Open the rejection method app and select the sine distribution. Run the simulation 1000 times and compare the empirical
density function to the probability density function.

The General Sine Distribution
As with so many other “standard distributions”, the standard sine distribution is generalized by adding location and scale
parameters.

Suppose that  has the standard sine distribution. For  and , random variable  has the sine
distribution with location parameter  and scale parameter .

Distribution Functions

Analogies of the results above for the standard sine distribution follow easily from basic properties of the location-scale
transformation. Suppose that  has the sine distribution with location parameter  and scale parameter . So  has
a continuous distribution on the interval .

The probability density function  of  is given by

1.  is symmetric about .
2.  increases and then decreases, with mode .
3.  is concave downward.

Proof

Recall that

where  is the standard PDF.

Pure scale transformations (  and ) are particularly common, since  often represents a random angle. The scale
transformation with  gives the angle in radians. In this case the probability density function is  for .
Since the radian is the standard angle unit, this distribution could also be considered the “standard one”. The scale transformation
with  gives the angle in degrees. In this case, the probability density function is  for . This
was Gilbert's original formulation.

In the special distribution simulator, select the sine distribution. Vary the parameters and note the shape and location of the
probability density function. For selected values of the parameters, run the simulation 1000 times and compare the empirical

U Z = (U) = arccos(1−2U)G

−1 1

π

Z U =G(Z) = [1−cos(πZ)]

1

2

Z a ∈ R b ∈ (0,∞) X = a+bZ

a h

X a ∈ R b ∈ (0,∞) X

[a, a+b]

f X

f(x) = sin(π ), x ∈ [a, a+b]

π

2b

x−a

b

(5.27.10)

f x = a+b/2

f x = a+b/2

f

f(x) = g( ) , x ∈ R

1

b

x−a

b

(5.27.11)

g

a= 0 b > 0 X

b = π f(x) = sin(x)

1

2
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density function to the probability density function.

The distribution function  of  is given by

Proof

Recall that

where  is the standard CDF.

The quantile function  of  is given by

1. The first quartile is .
2. The median is .
3. The third quartile is 

Proof

Recall that  for , where  is the standard quantile function.

In the special distribution calculator, select the sine distribution. Vary the parameters and note the shape and location of the
probability density function and the distribution function. For selected values of the parameters, find the quantiles of order 0.1
and 0.9.

Moments

Suppose again that  has the sine distribution with location parameter  and scale parameter .

The moment generating function  of  is given by

Proof

Recall that  where  is the standard MGF.

The mean and variance of  are

1. 
2. 

Proof

By definition we can assume  where  has the standard sine distribution. Using the mean and variance of  we
have

1. 
2. 

In the special distribution simulator, select the sine distribution. Vary the parameters and note the shape and location of the
mean  standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare the empirical
mean and standard deviation to the distribution mean and standard deviation.

F X

F (x) = [1−cos(π )] , x ∈ [a, a+b]

1

2

x−a

b

(5.27.12)
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(5.27.13)
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−1

b

π

(5.27.14)

a+b/3

a+b/2

a+2b/3

(p) = a+b (p)F

−1

G

−1

p ∈ (0, 1) G

−1

X a ∈ R b ∈ (0,∞)

M X

M(t) = , t ∈ R

( + )π

2

e

at

e

(a+b)t

2 ( + )b

2

t

2

π

2

(5.27.15)
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The skewness and kurtosis of  are

1. 
2. 

Proof

Recall that skewness and kurtosis are defined in terms of the standard score, and hence are invariant under location-scale
transformations. So the skewness and kurtosis of  are the same as the skewness and kurtosis of .

Related Distributions

The general sine distribution is a location-scale family, so it is trivially closed under location-scale transformations.

Suppose that  has the sine distribution with location parameter  and scale parameter , and that  and 
. Then  has the sine distribution with location parameter  and scale parameter .

Proof

Again by definition we can take  where  has the standard sine distribution. Then 
.

This page titled 5.27: The Sine Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.28: The Laplace Distribution
          

The Laplace distribution, named for Pierre Simon Laplace arises naturally as the distribution of the difference of two independent,
identically distributed exponential variables. For this reason, it is also called the double exponential distribution.

The Standard Laplace Distribution

Distribution Functions

The standard Laplace distribution is a continuous distribution on  with probability density function  given by

Proof

It's easy to see that  is a valid PDF. By symmetry

The probability density function  satisfies the following properties:

1.  is symmetric about 0.
2.  increases on  and decreases on , with mode .
3.  is concave upward on  and on  with a cusp at 

Proof

These results follow from standard calculus, since  for  and  for .

Open the Special Distribution Simulator and select the Laplace distribution. Keep the default parameter value and note the shape of the
probability density function. Run the simulation 1000 times and compare the emprical density function and the probability density
function.

The standard Laplace distribution function  is given by

Proof

Again this follows from basic calculus, since  for  and  for . Of course .

The quantile function  given by

1.  for 
2. The first quartile is .
3. The median is 
4. The third quartile is .

Proof

The formula for the quantile function follows immediately from the CDF by solving  for  in terms of . Part (a) is
due to the symmetry of  about 0.

Open the Special Distribution Calculator and select the Laplace distribution. Keep the default parameter value. Compute selected values
of the distribution function and the quantile function.
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g

du = du = 1∫

∞
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Moments

Suppose that  has the standard Laplace distribution.

 has moment generating function  given by

Proof

For ,

The moments of  are

1.  if  is odd.
2.  if  is even.

Proof

This result can be obtained from the moment generating function or directly. That the odd order moments are 0 follows from the
symmetry of the distribution. For the even order moments, symmetry and an integration by parts (or using the gamma function) gives

The mean and variance of  are

1. 
2. 

Open the Special Distribution Simulator and select the Laplace distribution. Keep the default parameter value. Run the simulation 1000
times and compare the empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof
1. This follows from the symmetry of the distribution.
2. Since , we have

It follows that the excess kurtosis is .

Related Distributions

Of course, the standard Laplace distribution has simple connections to the standard exponential distribution.

If  has the standard Laplace distribution then  has the standard exponential distribution.

Proof

Using the CDF of U we have  for . This function is the CDF of
the standard exponential distribution.

If  and  are independent and each has the standard exponential distribution, then  has the standard Laplace distribution.

Proof using PDFs

U

U m

m(t) =E ( )= , t ∈ (−1, 1)e

tU

1

1− t

2

(5.28.5)

t ∈ (−1, 1)
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−∞
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1
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2
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∫
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1
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∫
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0
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n

e
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var(U) = 2
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skew(U) = 0
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kurt(U) = = = 6

E( )U

4
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kurt(U)−3 = 3

U V = |U|

P(V ≤ v) = P(−v≤U ≤ v) =G(v)−G(−v) = 1−e
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Let  denote the standard exponential PDF, extended to all of , so that  if  and  if . Using
convolution, the PDF of  is . If ,

If  then

Proof using MGFs

The MGF of  is  for . The MGF of  is  for . Hence the MGF of  is 
 for , which is the standard Laplace MGF.

If  has the standard exponential distribution,  has the standard Bernoulli distribution, and  and  are independent, then 
 has the standard Laplace distribution.

Proof

If  then

If ,

The standard Laplace distribution has a curious connection to the standard normal distribution.

Suppose that  is a random sample of size 4 from the standard normal distribution. Then  has the
standard Laplace distribution.

Proof

 and  are independent, and each has a distribution known as the product normal distribution. The MGF of this distribution is

Changing to polar coordinates gives

The inside integral can be done with a simple substitution for , yielding

Hence  has MGF  for , which again is the standard Laplace MGF.

The standard Laplace distribution has the usual connections to the standard uniform distribution by means of the distribution function and
the quantile function computed above.

Connections to the standard uniform distribution.

1. If  has the standard uniform distribution then  has the standard Laplace
distribution.

2. If  has the standard Laplace distribution then  has the standard uniform distribution.

From part (a), the standard Laplace distribution can be simulated with the usual random quantile method.

h R h(v) = e

−v

v≥ 0 h(v) = 0 v< 0

V −W g(u) = h(v)h(v−u)dv∫

R

v≥ 0

g(u) = dv= dv=∫

∞

u

e

−v

e

−(v−u)

e

u

∫

∞

u

e

−2v

1

2

e

−u
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u < 0

g(u) = = dv=∫

∞
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e

−v

e

−(v−u)

e

u

∫

∞

0

e

−2v

1

2

e
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(5.28.10)

V t↦1/(1− t) t < 1 −W t↦1/(1+ t) t >−1 U

t↦1/(1− t)(1+ t) = 1/(1− )t

2

−1 < t < 1

V I V I

U = (2I−1)V

u ≥ 0
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u < 0

P(U ≤ u) = P(I = 0,V >−u) = P(I = 0)P(V >−u) =

1
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(t) = r dr dθ= exp[ (t cosθ sinθ− )]r dr dθm
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Open the random quantile experiment and select the Laplace distribution. Keep the default parameter values and note the shape of the
probability density and distribution functions. Run the simulation 1000 times and compare the empirical density function, mean, and
standard deviation to their distributional counterparts.

The General Laplace Distribution

The standard Laplace distribution is generalized by adding location and scale parameters.

Suppose that  has the standard Laplace distribution. If  and , then  has the Laplace distribution with
location parameter  and scale parameter .

Distribution Functions

Suppos that  has the Laplace distribution with location parameter  and scale parameter .

 has probability density function  given by

1.  is symmetric about .
2.  increases on  and decreases on  with mode .
3.  is concave upward on  and on  with a cusp at .

Proof

Recall that  where  is the standard Laplace PDF.

Open the Special Distribution Simulator and select the Laplace distribution. Vary the parameters and note the shape and location of the
probability density function. For various values of the parameters, run the simulation 1000 times and compare the emprical density
function to the probability density function.

 has distribution function  given by

Proof

Recall that  where  is the standard Laplace CDF.

 has quantile function  given by

1.  for 
2. The first quartile is .
3. The median is 
4. The third quartile is .

Proof

Recall that  where  is the standard Laplace quantile function.

Open the Special Distribution Calculator and select the Laplace distribution. For various values of the scale parameter, compute selected
values of the distribution function and the quantile function.

Moments

Again, we assume that  has the Laplace distribution with location parameter  and scale parameter , so that by definition, 
 where  has the standard Lapalce distribution.

U a ∈ R b ∈ (0,∞) X = a+bU

a b

X a ∈ R b ∈ (0,∞)

X f

f(x) = exp(− ), x ∈ R

1

2b

|x−a|

b

(5.28.16)

f a

f [0, a] [a,∞) x = a

f [0, a] [a,∞) x = a
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1

b
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X F

F (x) ={

exp( ),

1

2

x−a

b

1− exp(− ),

1

2

x−a

b
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x ∈ [a,∞)
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F (x) =G( )
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X F
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(p) ={F
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a+b ln(2p),

a−b ln[2(1−p)],
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(1−p) = a−b (p)F
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 has moment generating function  given by

Proof

Recall that  where  is the standard Laplce MGF.

The moments of  about the location parameter have a simple form.

The moments of  about  are

1.  if  is odd.
2.  if  is even.

Proof

Note that  so the results follow the moments of .

The mean and variance of  are

1. 
2. 

Proof

Recall that  and , so the results follow from the mean and variance of .

Open the Special Distribution Simulator and select the Laplace distribution. Vary the parameters and note the size and location of the
mean  standard deviation bar. For various values of the scale parameter, run the simulation 1000 times and compare the empirical
mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

Recall that skewness and kurtosis are defined in terms of the standard score, and hence are unchanged by a location-scale
transformation. Thus the results from the skewness and kurtosis of .

As before, the excess kurtosis is .

Related Distributions

By construction, the Laplace distribution is a location-scale family, and so is closed under location-scale transformations.

Suppose that  has the Laplace distribution with location parameter  and scale parameter , and that  and 
. Then  has the Laplace distribution with location parameter  scale parameter .

Proof

Again by definition, we can take  where  has the standard Laplace distribution. Hence 
.

Once again, the Laplace distribution has the usual connections to the standard uniform distribution by means of the distribution function and
the quantile function computed above. The latter leads to the usual random quantile method of simulation.

Suppose that  and .

1. If  has the standard uniform distribution then

has the Laplace distribution with location parameter  and scale parameter .
2. If  has the Laplace distribution with location parameter  and scale parameter , then

X M

M(t) =E ( )= , t ∈ (−1/b, 1/b)e

tX

e

at

1−b

2

t

2

(5.28.19)
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n

b

n
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n

U

X
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2

E(X) = a+bE(U) var(X) = var(U)b

2

U

±

X

skew(X) = 0

kurt(X) = 6

U

kurt(X)−3 = 3

X a ∈ R b ∈ (0,∞) c ∈ R

d ∈ (0,∞) Y = c+dX c+ad bd

X = a+bU U

Y = c+dX = (c+ad)+(bd)U

a ∈ R b ∈ (0,∞)

V
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has the standard uniform distribution.

Open the random quantile experiment and select the Laplace distribution. Vary the parameter values and note the shape of the
probability density and distribution functions. For selected values of the parameters, run the simulation 1000 times and compare the
empirical density function, mean, and standard deviation to their distributional counterparts.

The Laplace distribution is also a member of the general exponential family of distributions.

Suppose that  has the Laplace distribution with known location parameter  and unspecified scale parameter . Then 
has a general exponential distribution in the scale parameter , with natural parameter  and natural statistics .

Proof

This follows from the definition of the general exponential family and the form of the probability density function 

This page titled 5.28: The Laplace Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.

V = exp( )1(X < a)+[1− exp(− )]1(X ≥ a)

1

2

X−a

b
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5.29: The Logistic Distribution
         

The logistic distribution is used for various growth models, and is used in a certain type of regression, known appropriately as
logistic regression.

The Standard Logistic Distribution

Distribution Functions

The standard logistic distribution is a continuous distribution on  with distribution function  given by

Proof

Note that  is continuous, and  as  and  as . Moreover,

so  is increasing.

The probability density function  of the standard logistic distribution is given by

1.  is symmetric about .
2.  increases and then decreases with the mode .
3.  is concave upward, then downward, then upward again with inflection points at .

Proof

These result follow from standard calculus. First recall that .

1. The symmetry of  is not obvious at first, but note that

2. The first derivative of  is

3. The second derivative of  is

In the special distribution simulator, select the logistic distribution. Keep the default parameter values and note the shape and
location of the probability density function. Run the simulation 1000 times and compare the empirical density function to the
probability density function.

The quantile function  of the standard logistic distribution is given by

1. The first quartile is .

R G

G(z) = , z ∈ R

e

z

1+e

z

(5.29.1)
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′

e

z
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2. The median is 0.
3. The third quartile is 

Proof

The formula for  follows by solving  for  in terms of .

Recall that  are the odds in favor of an event with probability . Thus, the logistic distribution has the interesting property
that the quantiles are the logarithms of the corresponding odds ratios. Indeed, this function of  is sometimes called the logit
function. The fact that the median is 0 also follows from symmetry, of course.

In the special distribution calculator, select the logistic distribution. Keep the default parameter values and note the shape and
location of the probability density function and the distribution function. Find the quantiles of order 0.1 and 0.9.

Moments

Suppose that  has the standard logistic distribution. The moment generating function of  has a simple representation in terms of
the beta function , and hence also in terms of the gamma function 

The moment generating function  of  is given by

Proof

Note that

Let  so that  and . Hence

The last integral, by definition, is  for 

Since the moment generating function is finite on an open interval containing 0, random variable  has moments of all orders. By
symmetry, the odd order moments are 0. The even order moments can be represented in terms of Bernoulli numbers, named of
course for Jacob Bernoulli. Let  Bernoulli number of order .

Let 

1. If  is odd then .
2. If  is even then 

Proof
1. Again, this follows from symmetry
2. Recall that the moments of  can be computed by integrating powers of the quantile function. Hence

This integral evaluates to the expression above involving the Bernoulli numbers.

In particular, we have the mean and variance.

The mean and variance of  are

1. 
2. 

ln3 ≈ 1.0986
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p =G(z) z p

p : 1 −p p
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Proof
1. Again,  by symmetry.
2. The second Bernoulli number is . Hence .

In the special distribution simulator, select the logistic distribution. Keep the default parameter values and note the shape and
location of the mean  standard deviation bar. Run the simulation 1000 times and compare the empirical mean and standard
deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof
1. Again,  by the symmetry of the distribution.
2. Recall that by symmetry, . Also, , so . Hence from the

usual computational formula for kurtosis,

It follows that the excess kurtosis of  is .

Related Distributions

The standard logistic distribution has the usual connections with the standard uniform distribution by means of the distribution
function and quantile function given above. Recall that the standard uniform distribution is the continuous uniform distribution on
the interval .

Connections with the standard uniform distribution.

1. If  has the standard logistic distribution then

has the standard uniform distribution.
2. If  has the standard uniform distribution then

has the standard logistic distribution.

Since the quantile function has a simple closed form, we can use the usual random quantile method to simulate the standard logistic
distribution.

Open the random quantile experiment and select the logistic distribution. Keep the default parameter values and note the shape
of the probability density and distribution functions. Run the simulation 1000 times and compare the empirical density
function, mean, and standard deviation to their distributional counterparts.

The standard logistic distribution also has several simple connections with the standard exponential distribution (the exponential
distribution with rate parameter 1).

Connections with the standard exponential distribution:

1. If  has the standard logistic distribution, then  has the standard exponential distribution.
2. If  has the standard exponential distribution then  has the standard logistic distribution.
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Proof

These results follow from the standard change of variables formula. The transformations, inverses of each other of course, are 
 and  for  and . Let  and  denote the PDFs of  and  respectively.

1. By definition,  for  so

which is the PDF of the standard exponential distribution.
2. By definition,  for  so

which is the PDF of the standard logistic distribution.

Suppose that  and  are independent random variables, each with the standard exponential distribution. Then 
has the standard logistic distribution.

Proof

For ,

Recall that  for  and  has PDF  on . We condition on :

As a function of , this is the distribution function of the standard logistic distribution.

There are also simple connections between the standard logistic distribution and the Pareto distribution.

Connections with the Pareto distribution:

1. If  has the standard logistic distribution, then  has the Pareto distribution with shape parameter 1.
2. If  has the Pareto distribution with shape parameter 1, then  has the standard logistic distribution.

Proof

These results follow from the basic change of variables theorem. The transformation, inverses of one another of course, are 
,  for  and . Let  and  denote PDFs of  and  respectively.

1. By definition,  for . Hence

which is the PDF of the Pareto distribution with shape parameter 1.
2. By definition,  for . Hence

which is the PDF of the standard logistic distribution.

Finally, there are simple connections to the extreme value distribution.

If  and  are independent and each has the standard Gumbel distribution, them  has the standard logistic
distribution.
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z
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z

z= ln(y−1) z ∈ R y ∈ (1,∞) g h Z Y
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z
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z
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z ∈ R
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h(y) = 1/y
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dz

1

( +1e
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Proof

The distribution function of  is  for  and the density function of  is  for 
. For , conditioning on  gives

Substituting  gives

As a function of , this is the standard logistic distribution function.

The General Logistic Distribution

The general logistic distribution is the location-scale family associated with the standard logistic distribution.

Suppose that  has the standard logistic distribution. For  and , random variable  has the logistic
distribution with location parameter  and scale parameter .

Distribution Functions

Analogies of the results above for the general logistic distribution follow easily from basic properties of the location-scale
transformation. Suppose that  has the logistic distribution with location parameter  and scale parameter .

The probability density function  of  is given by

1.  is symmetric about .
2.  increases and then decreases, with mode .
3.  is concave upward, then downward, then upward again, with inflection points at .

Proof

Recall that

where  is the standard logistic PDF.

In the special distribution simulator, select the logistic distribution. Vary the parameters and note the shape and location of the
probability density function. For selected values of the parameters, run the simulation 1000 times and compare the empirical
density function to the probability density function.

The distribution function  of  is given by

Proof

Recall that

where  is the standard logistic CDF.

Y G(y) = exp(− )e

−y

y ∈ R X g(x) = exp(− )e

−x

e

−x

x ∈ R z ∈ R X

P(Z ≤ z) = P(Y ≤X+z) =E[P(Y ≤X+z ∣X)] = exp(− ) exp(− )dx∫

∞

−∞

e

−(x+z)

e

−x

e

−x

(5.29.21)
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−(x+z)

P(Z ≤ z) = exp( u) du = exp[u(1+ )]du = , z ∈ R∫

0

−∞

e

u

e

z

e

z

e

z

∫

0

−∞

e

z

e

z

1+e

z
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z

Z a ∈ R b ∈ (0,∞) X = a+bZ

a b

X a ∈ R b ∈ (0,∞)

f X

f(x) = , x ∈ R

exp( )

x−a

b

b[1+exp( )]

x−a

b

2

(5.29.23)

f x = a

f x = a

f x = a±ln(2+ )b3

–

√

f(x) = g( ) , x ∈ R

1

b

x−a

b

(5.29.24)

g

F X

F (x) = , x ∈ R

exp( )

x−a

b

1+exp( )

x−a
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(5.29.25)
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The quantile function  of  is given by

1. The first quartile is .
2. The median is .
3. The third quartile is 

Proof

Recall that  for , where  is the standard logistic quantile function.

In the special distribution calculator, select the logistic distribution. Vary the parameters and note the shape and location of the
probability density function and the distribution function. For selected values of the parameters, find the quantiles of order 0.1
and 0.9.

Moments

Suppose again that  has the logistic distribution with location parameter  and scale parameter . Recall that 
denotes the beta function and  the gamma function.

The moment generating function  of  is given by

Proof

Recall that  where  is the standard logistic MGF.

The mean and variance of  are

1. 
2. 

Proof

By definition we can assume  where  has the standard logistic distribution. Using the mean and variance of 
we have

1. 
2. 

In the special distribution simulator, select the logistic distribution. Vary the parameters and note the shape and location of the
mean  standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare the empirical
mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

Recall that skewness and kurtosis are defined in terms of the standard score, and hence are invariant under location-scale
transformations. So the skewness and kurtosis of  are the same as the skewness and kurtosis of .

Once again, it follows that the excess kurtosis of  is . The central moments of  can be given in terms of the
Bernoulli numbers. As before, let  denote the Bernoulli number of order .

Let .

F

−1

X

(p) = a+b ln( ), p ∈ (0, 1)F

−1

p

1−p

(5.29.27)

a−b ln3

a

a+b ln3

(p) = a+b (p)F

−1

G

−1

p ∈ (0, 1) G

−1

X a ∈ R b ∈ (0,∞) B

Γ

M X

M(t) = B(1+bt, 1 −bt) = Γ(1+bt) Γ(1−bt), t ∈ (−1, 1)e

at

e

at

(5.29.28)

M(t) = m(bt)e

at

m

X
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var(X) = b

2

π

2

3

X = a+bZ Z Z
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2

b

2

π
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±

X
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1. If  is odd then .
2. If  is even then 

Proof

Again by definition we can take  where  has the standard logistic distribution. Then 
so the results follow from the moments of .

Related Distributions

The general logistic distribution is a location-scale family, so it is trivially closed under location-scale transformations.

Suppose that  has the logistic distribution with location parameter  and scale parameter , and that  and
. Then  has the logistic distribution with location parameter  and scale parameter .

Proof

Again by definition we can take  where  has the standard logistic distribution. Then 
.

This page titled 5.29: The Logistic Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.30: The Extreme Value Distribution
       

Extreme value distributions arise as limiting distributions for maximums or minimums (extreme values) of a sample of
independent, identically distributed random variables, as the sample size increases. Thus, these distributions are important in
probability and mathematical statistics.

The Standard Distribution for Maximums

Distribution Functions

The standard extreme value distribution (for maximums) is a continuous distribution on  with distribution function  given
by

Proof

Note that  is continuous, increasing, and satisfies  as  and  as .

The distribution is also known as the standard Gumbel distribution in honor of Emil Gumbel. As we will show below, it arises as
the limit of the maximum of  independent random variables, each with the standard exponential distribution (when this maximum
is appropriately centered). This fact is the main reason that the distribution is special, and is the reason for the name. For the
remainder of this discussion, suppose that random variable  has the standard Gumbel distribution.

The probability density function  of  is given by

1.  increases and then decreases with mode 
2.  is concave upward, then downward, then upward again, with inflection points at .

Proof

These results follow from standard calculus. The PDF is .

1. The first derivative of  satisfies  for .
2. The second derivative of  satisfies  for .

In the special distribution simulator, select the extreme value distribution. Keep the default parameter values and note the shape
and location of the probability density function. In particular, note the lack of symmetry. Run the simulation 1000 times and
compare the empirical density function to the probability density function.

The quantile function  of  is given by

1. The first quartile is .
2. The median is 
3. The third quartile is 

Proof

The formula for  follows from solving  for  in terms of .

In the special distribution calculator, select the extreme value distribution. Keep the default parameter values and note the
shape and location of the probability density and distribution functions. Compute the quantiles of order 0.1, 0.3, 0.6, and 0.9

R G

G(v) = exp(− ), v∈ Re

−v

(5.30.1)

G G(v) → 0 v→−∞ G(v) → 1 v→∞

n

V

g V

g(v) = exp(− )= exp[−( +v)], v∈ Re

−v

e

−v

e

−v

(5.30.2)

g v= 0

g v= ln[(3± )/2)] ≈±0.92645

–

√
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′

g (v) = g(v) ( −1)g

′

e

−v

v∈ R

g (v) = g(v)( −3 +1)g

′′

e

−2v

e

−v

v∈ R

G

−1

V

(p) =−ln[−ln(p)], p ∈ (0, 1)G

−1

(5.30.3)
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Moments

Suppose again that  has the standard Gumbel distribution. The moment generating function of  has a simple expression in terms
of the gamma function .

The moment generating function  of  is given by

Proof

Note that

The substitution ,  gives  for .

Next we give the mean and variance. First, recall that the Euler constant, named for Leonhard Euler is defined by

The mean and variance of  are

1. 
2. 

Proof

These results follow from the moment generating function.

1.  and so .
2.  and

Hence 

In the special distribution simulator, select the extreme value distribution and keep the default parameter values. Note the shape
and location of the mean  standard deviation bar. Run the simulation 1000 times and compare the empirical mean and
standard deviation to the distribution mean and standard deviation.

Next we give the skewness and kurtosis of . The skewness involves a value of the Riemann zeta function , named of course for
Georg Riemann. Recall that  is defined by

The skewness and kurtosis of  are

1. 
2. 

The particular value of the zeta function, , is known as Apéry's constant. From (b), it follows that the excess kurtosis is 
.

Related Distributions

The standard Gumbel distribution has the usual connections to the standard uniform distribution by means of the distribution
function and quantile function given above. Recall that the standard uniform distribution is the continuous uniform distribution on

V V

Γ

m V

m(t) =E ( )=Γ(1− t), t ∈ (−∞, 1)e

tV

(5.30.4)

m(t) = exp(− ) dv∫
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−∞
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−v

(5.30.5)

x = e
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dx =− dve

−v

m(t) = dx =Γ(1− t)∫

∞
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e

−x

t ∈ (−∞, 1)

γ =− (1) =− lnx dx ≈ 0.5772156649Γ

′

∫

∞

0

e
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(5.30.6)
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the interval .

The standard Gumbel and standard uniform distributions are related as follows:

1. If  has the standard uniform distribution then  has the standard Gumbel distribution.
2. If  has the standard Gumbel distribution then  has the standard uniform distribution.

So we can simulate the standard Gumbel distribution using the usual random quantile method.

Open the random quantile experiment and select the extreme value distribution. Keep the default parameter values and note
again the shape and location of the probability density and distribution functions. Run the simulation 1000 times and compare
the empirical density function, mean, and standard deviation to their distributional counteparts.

The standard Gumbel distribution also has simple connections with the standard exponential distribution (the exponential
distribution with rate parameter 1).

The standard Gumbel and standard exponential distributions are related as follows:

1. If  has the standard exponential distribution then  has the standard Gumbel distribution.
2. If  has the standard Gumbel distribution then  has the standard exponential distribution.

Proof

These results follow from the usual change of variables theorem. The transformations are  and  for 
 and , and these are inverses of each other. Let  and  denote PDFs of  and  respectively.

1. We start with  for  and then

so  has the standard Gumbel distribution.
2. We start with  for  and then

so  has the standard exponential distribution.

As noted in the introduction, the following theorem provides the motivation for the name extreme value distribution.

Suppose that  is a sequence of independent random variables, each with the standard exponential distribution.
The distribution of  converges to the standard Gumbel distribution as .

Proof

Let , so that  is the th order statistics of the random sample . Let 
denote the standard exponential CDF, so that  for . Note that  has CDF . Let  denote the
CDF of . For 

By a famous limit from calculus,  as .

The General Extreme Value Distribution
As with many other distributions we have studied, the standard extreme value distribution can be generalized by applying a linear
transformation to the standard variable. First, if  has the standard Gumbel distribution (the standard extreme value distribution for
maximums), then  has the standard extreme value distribution for minimums. Here is the general definition.

(0, 1)

U V = (U) =−ln(−lnU)G
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V U =G(V ) = exp( )e

−V

X V =−lnX

V X = e
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∣
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∣

∣ e

−v

e

−v

(5.30.9)
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∣

∣
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Suppose that  has the standard Gumbel distribution, and that  with . Then  has the extreme value
distribution with location parameter  and scale parameter .

1. If , then the distribution corresponds to maximums.
2. If , then the distribution corresponds to minimums.

So the family of distributions with  and  is a location-scale family associated with the standard distribution for
maximums, and the family of distributions with  and  is the location-scale family associated with the standard
distribution for minimums.. The distributions are also referred to more simply as Gumbel distributions rather than extreme value
distributions. The web apps in this project use only the extreme value distributions for maximums. As you will see below, the
differences in the distribution for maximums and the distribution for minimums are minor. For the remainder of this discussion,
suppose that  has the form given in the definition.

Distribution Functions

Lef  denote the distribution function of .

1. If  then

2. If  then

Proof

Let  denote the CDF of . Then

1.  for 

2.  for 

Let  denote the probability density function of . Then

Proof

Let  denote the PDF of . By the change of variables formula,

Open the special distribution simulator and select the extreme value distribution. Vary the parameters and note the shape and
location of the probability density function. For selected values of the parameters, run the simulation 1000 times and compare
the empirical density function to the probability density function.

The quantile function  of  is given as follows

1. If  then  for .
2. If  then  for 

Proof

Let  denote the quantile function of . Then

1.  for .
2.  for .

V a, b ∈ R b ≠ 0 X = a+bV

a |b|

b > 0

b < 0

a ∈ R b ∈ (0,∞)

a ∈ R b ∈ (−∞, 0)

X

F X

b > 0

F (x) = exp[−exp(− )], x ∈ R

x−a

b

(5.30.12)

b < 0

F (x) = 1−exp[−exp(− )], x ∈ R

x−a

b

(5.30.13)
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x ∈ R

f X
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1
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(5.30.14)

g V

f(x) = g( ) , x ∈ R

1

|b|
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b
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Open the special distribution calculator and select the extreme value distribution. Vary the parameters and note the shape and
location of the probability density and distribution functions. For selected values of the parameters, compute a few values of
the quantile function and the distribution function.

Moments

Suppose again that  where  has the standard Gumbel distribution, and that  with .

The moment generating function  of  is given by .

1. With domain  if 
2. With domain  if 

Proof

Let  denote the MGF of . Then  for 

The mean and variance of  are

1. 
2. 

Proof

These results follow from the mean and variance of  and basic properties of expected value and variance.

1. 
2. 

Open the special distribution simulator and select the extreme value distribution. Vary the parameters and note the size and
location of the mean  standard deviation bar. For selected values of the parameters, run the simulation 1000 times and
compare the empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness of  is

1.  if .
2.  if 

Proof

Recall that skewness is defined in terms of the standard score, and hence is invariant under linear transformations with positive
slope. A linear transformation with negative slope changes the sign of the skewness. Hence these results follow from the
skewness of .

The kurtosis of  is 

Proof

Recall that kurtosis is defined in terms of the standard score and is invariant under linear transformations with nonzero slope.
Hence this result follows from the kurtosis of .

Once again, the excess kurtosis is .

Related Distributions

Since the general extreme value distributions are location-scale families, they are trivially closed under linear transformations of
the underlying variables (with nonzero slope).

Suppose that  has the extreme value distribution with parameters  with  and that  with . Then 
 has the extreme value distribution with parameters  and .

Proof
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By definition, we can write  where  has the standard Gumbel distribution. Hence 
.

Note if  then  and  have the same association (max, max) or (min, min). If  then  and  have opposite
associations (max, min) or (min, max).

As with the standard Gumbel distribution, the general Gumbel distribution has the usual connections with the standard uniform
distribution by means of the distribution and quantile functions. Since the quantile function has a simple closed form, the latter
connection leads to the usual random quantile method of simulation. We state the result for maximums.

Suppose that  with . Let  denote distribution function and let  denote the quantile function above

1. If  has the standard uniform distribution then  has the extreme value distribution with parameters  and .
2. If  has the extreme value distribution with parameters  and  then  has the standard uniform distribution.

Open the random quantile experiment and select the extreme value distribution. Vary the parameters and note again the shape
and location of the probability density and distribution functions. For selected values of the parameters, run the simulation
1000 times and compare the empirical density function, mean, and standard deviation to their distributional counteparts.

The extreme value distribution for maximums has a simple connection to the Weibull distribution, and this generalizes the in
connection between the standard Gumbel and exponential distributions above. There is a similar result for the extreme value
distribution for minimums.

The extreme value and Weibull distributions are related as follows:

1. If  has the extreme value distribution with parameters  and , then  has the Weibull distribution
with shape parameter  and scale parameter .

2. If  has the Weibull distribution with shape parameter  and scale parameter  then  has
the extreme value distribution with parameters  and .

Proof

As before, these results can be obtained using the change of variables theorem for probability density functions. We give an
alternate proof using special forms of the random variables.

1. We can write  where  has the standard Gumbel distribution. Hence

As shown in above,  has the standard exponential distribution and therefore  has the Weibull distribution with shape
parameter  and scale parameter .

2. We can write  where  has the standard exponential distribution. Hence

As shown in above,  has the standard Gumbel distribution and hence  has the Gumbel distribution with location
parameter  and scale parameter .

This page titled 5.30: The Extreme Value Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.31: The Hyperbolic Secant Distribution
           

The hyperbolic secant distribution is a location-scale familty with a number of interesting parallels to the normal distribution. As
the name suggests, the hyperbolic secant function plays an important role in the distribution, so we should first review some
definitions

The hyperbolic trig functions sinh, cosh, tanh, and sech are defined as follows, for 

The Standard Hyperbolic Secant Distribution

Distribution Functions

The standard hyperbolic secant distribution is a continuous distribution on  with probability density function  given by

1.  is symmetric about 0.
2.  increases and then decreases with mode .
3.  is concave upward then downward then upward again, with inflection points at .

Proof

If we multiply numerator and denominator of  by  and then use the simple substitution  we see that

It follows that

The properties of  result follow from standard calculus. Recall that  and .

So  has the classic unimodal shape. Recall that the inflection points in the standard normal probability density function are .
Compared to the standard normal distribution, the hyperbolic secant distribution is more peaked at the mode 0 but has fatter tails.

Open the special distribution simulator and select the hyperbolic secant distribtion. Keep the default parameter settings and
note the shape and location of the probability density function. Run the simulation 1000 times and compare the empirical
density function to the probability density function.

The distribution function  of the standard hyperbolic secant distribution is given by

Proof

Of course, . The form of  follows from the same integration methods used for the PDF.

x ∈ R

sinhx

coshx

tanhx

sechx

= ( − )

1

2

e

x

e

−x

= ( + )

1

2

e

x
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−x

= =
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−e

x

e

−x

+e

x

e

−x

= =

1
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2

+e
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e
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The quantile function  of the standard hyperbolic secant distribution is given by

1. The first quartile is 
2. The median is 
3. The third quartile is 

Proof

The formula for  follows by solving  for  in terms of . For the quartiles, note that 
 and .

Of course, the fact that the median is 0 also follows from the symmetry of the distribution, as does the relationship between the first
and third quartiles. In general,  for . Note that the first and third quartiles coincide with the
inflection points, whereas in the normal distribution, the inflection points are at  and coincide with the standard deviation.

Open the sepcial distribution calculator and select the hyperbolic secant distribution. Keep the default values of the parameters
and note the shape of the distribution and probability density functions. Compute a few values of the distribution and quantile
functions.

Moments

Suppose that  has the standard hyperbolic secant distribution. The moments of  are easiest to compute from the generating
functions.

The characteristic function  of  is the hyperbolic secant function:

Proof

The charateristic function is

The evaluation of this integral to  is complicated, but the details can be found in the book Continuous Univariate
Distributions by Johnson, Kotz, and Balakrishnan.

Note that the probability density function can be obtained from the characteristic function by a scale transformation: 
 for . This is another curious simularity to the normal distribution: the probability density function  and

characteristic function  of the standard normal distribution are related by .

The moment generating function  of  is the secant function:

Proof

This follows from the characteristic function since .

It follows that  has moments of all orders, and then by symmetry, that the odd order moments are all 0.

The mean and variance of  are

1. 
2. 

Proof

G

−1
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As noted, the mean is 0 by symmetry. Hence also . But , so 
.

Thus, the standard hyperbolic secant distribution has mean 0 and variance 1, just like the standard normal distribution.

Open the special distribution simulator and select the hyperbolic secant distribution. Keep the default parameters and note the
size and location of the mean  standard deviation bar. Run the simulation 1000 times compare the empirical mean and
standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

The skewness is 0 by the symmetry of the distribution. Also, since the mean is 0 and the variance 1, 
. But by standard calculus,

and hence .

Recall that the kurtosis of the standard normal distribution is 3, so the excess kurtosis of the standard hyperbolic secant distribution
is . This distribution is more sharply peaked at the mean 0 and has fatter tails, compared with the normal.

Related Distributions

The standard hyperbolic secant distribution has the usual connections with the standard uniform distribution by means of the
distribution function and the quantile function computed above.

The standard hyperbolic secant distribution is related to the standard uniform distribution as follows:

1. If  has the standard hyperbolic secant distribution then

has the standard uniform distribution.
2. If  has the standard uniform distribution then

has the standard hyperbolic secant distribution.

Since the quantile function has a simple closed form, the standard hyperbolic secant distribution can be easily simulated by means
of the random quantile method.

Open the random quantile experiment and select the hyperbolic secant distribution. Keep the default parameter values and note
again the shape of the probability density and distribution functions. Run the experiment 1000 times and compare the empirical
density function, mean, and standard deviation to their distributional counterparts.

The General Hyperbolic Secant Distribution
The standard hyperbolic secant distribution is generalized by adding location and scale parameters.

Suppose that  has the standard hyperbolic secant distribution and that  and . Then  has the
hyperbolic secant distribution with location parameter  and scale parameter .
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2
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2
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Distribution Functions

Suppose that  has the hyperbolic secant distribution with location parameter  and scale parameter .

The probability density function  of  is given by

1.  is symmetric about .
2.  increases and then decreases with mode .
3.  is concave upward then downward then upward again, with inflection points at .

Proof

Recall that  for  where  is the standard hyperbolic secant PDF.

Open the special distribution simulator and select the hyperbolic secant distribution. Vary the parameters and note the shape
and location of the probability density function. For selected values of the parameters, run the simulation 1000 times and
compare the empirical density function to the probability density function.

The distribution function  of  is given by

Proof

Recall that  for  where  is the standard hyperbolic secant CDF.

The quantile function  of  is given by

1. The first quartile is 
2. The median is 
3. The third quartile is 

Proof

Recall that  where  is the standard quantile function.

Open the sepcial distribution calculator and select the hyperbolic secant distribution. Vary the parameters and note the shape of
the distribution and density functions. For various values of the parameters, compute a few values of the distribution and
quantile functions.

Moments

Suppose again that  has the hyperbolic secant distribution with location parameter  and scale parameter .

The moment generating function  of  is given by

Proof

Recall that  where  is the standard hyperbolic secant MGF.

Just as in the normal distribution, the location and scale parameters are the mean and standard deviation, respectively.
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The mean and variance of  are

1. 
2. 

Proof

These results follow from the representation  where  has the standard hyperbolic secant distribution, basic
properties of expected value and variance, and the mean and variance of :

1. 
2. 

Open the special distribution simulator and select the hyperbolic secant distribution. Vary the parameters and note the size and
location of the mean  standard deviation bar. For selected values of the parameters, run the simulation 1000 times and
compare the empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

Recall that skewness and kurtosis are defined in terms of the standard score, and hence are invariant under location-scale
transformations. Thus, the skewness and kurtosis of  are the same as the skewness and kurtosis of the standard distribution.

Once again, the excess kurtosis is 

Related Distributions

Since the hyperbolic secant distribution is a location-scale family, it is trivially closed under location-scale transformations.

Suppose that  has the hyperbolic secant distribution with location parameter  and scale parameter , and that
 and . Then  has the hyperbolic secant distribution with location parameter  and scale

parameter .

Proof

By definition, we can take  where  has the standard hyperbolic secant distribution. Hence 
.

The hyperbolic secant distribution has the usual connections with the standard uniform distribution by means of the distribution
function and the quantile function computed above.

Suppose that  and .

1. If  has the hyperbolic secant distribution with location parameter  and scale parameter  then

has the standard uniform distribution.
2. If  has the standard uniform distribution then

has the hyperbolic secant distribution with location parameter  and scale parameter .

Since the quantile function has a simple closed form, the hyperbolic secant distribution can be easily simulated by means of the
random quantile method.
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Open the random quantile experiment and select the hyperbolic secant distribution. Vary the parameters and note again the
shape of the probability density and distribution functions. Run the experiment 1000 times and compare the empirical density
function, mean, and standard deviation to their distributional counterparts.

This page titled 5.31: The Hyperbolic Secant Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.32: The Cauchy Distribution
          

The Cauchy distribution, named of course for the ubiquitous Augustin Cauchy, is interesting for a couple of reasons. First, it is a
simple family of distributions for which the expected value (and other moments) do not exist. Second, the family is closed under
the formation of sums of independent variables, and hence is an infinitely divisible family of distributions.

The Standard Cauchy Distribution

Distribution Functions

The standard Cauchy distribution is a continuous distribution on  with probability density function  given by

1.  is symmetric about 
2.  increases and then decreases, with mode .
3.  is concave upward, then downward, and then upward again, with inflection points at .

4.  as  and as 

Proof

Note that

and hence  is a PDF. Parts (a)–(d) follow from basic calculus.

Thus, the graph of  has a simple, symmetric, unimodal shape that is qualitatively (but certainly not quantitatively) like the
standard normal probability density function. The probability density function  is obtained by normalizing the function

The graph of this function is known as the witch of Agnesi, named for the Italian mathematician Maria Agnesi.

Open the special distribution simulator and select the Cauchy distribution. Keep the default parameter values to get the
standard Cauchy distribution and note the shape and location of the probability density function. Run the simulation 1000
times and compare the empirical density function to the probability density function.

The standard Cauchy distribution function  given by  for 

Proof

For ,

The standard Cauchy quantile function  is given by  for . In particular,

1. The first quartile is 
2. The median is 
3. The third quartile is 

Proof

As usual,  is computed from the CDF  by solving  for  in terms of .
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Of course, the fact that the median is 0 also follows from the symmetry of the distribution, as does the fact that 
 for .

Open the special distribution calculator and select the Cauchy distribution. Keep the default parameter values and note the
shape of the distribution and probability density functions. Compute a few quantiles.

Moments

Suppose that random variable  has the standard Cauchy distribution. As we noted in the introduction, part of the fame of this
distribution comes from the fact that the expected value does not exist.

 does not exist.

Proof

By definition, . For the improper integral to exist, even as an extended real number, at least one of the
integrals  and  must be finite, for some (and hence every) . But by a simple substitution,

and similarly, .

By symmetry, if the expected value did exist, it would have to be 0, just like the median and the mode, but alas the mean does not
exist. Moreover, this is not just an artifact of how mathematicians define improper integrals, but has real consequences. Recall that
if we think of the probability distribution as a mass distribution, then the mean is center of mass, the balance point, the point where
the moment (in the sense of physics) to the right is balanced by the moment to the left. But as the proof of the last result shows, the
moments to the right and to the left at any point  are infinite. In this sense, 0 is no more important than any other .
Finally, if you are not convinced by the argument from physics, the next exercise may convince you that the law of large numbers
fails as well.

Open the special distribution simulator and select the Cauchy distribution. Keep the default parameter values, which give the
standard Cauchy distribution. Run the simulation 1000 times and note the behavior of the sample mean.

Earlier we noted some superficial similarities between the standard Cauchy distribution and the standard normal distribution
(unimodal, symmetric about 0). But clearly there are huge quantitative differences. The Cauchy distribution is a heavy tailed
distribution because the probability density function  decreases at a polynomial rate as  and , as opposed to
an exponential rate. This is yet another way to understand why the expected value does not exist.

In terms of the higher moments,  does not exist if  is odd, and is  if  is even. It follows that the moment generating
function  cannot be finite in an interval about 0. In fact,  for every , so this generating function is
of no use to us. But every distribution on  has a characteristic function, and for the Cauchy distribution, this generating function
will be quite useful.

 has characteristic function  given by  for .

Proof

By definition,

We will compute this integral by evaluating a related contour integral in the complex plane using, appropriately enough,
Cauchy's integral formula (named for you know who).

Suppose first that . For , let  denote the curve in the complex plane consisting of the line segment  on the -
axis from  to  and the upper half circle  of radius  centered at the origin. We give  the usual counter-clockwise
orientation. On the one hand we have
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On ,  and  so

On , let . Then . Since  on  and , we have .
Also,  on . It follows that

On the other hand,  has one singularity inside , at . The residue is

Hence by Cauchy's integral formula,

. Putting the pieces together we have

Letting  gives

For , we can use the substitution  and our previous result to get

Related Distributions

The standard Cauchy distribution a member of the Student  family of distributions.

The standard Cauchy distribution is the Student  distribution with one degree of freedom.

Proof

The Student  distribution with one degree of freedom has PDF  given by

which is the standard Cauchy PDF.

The standard Cauchy distribution also arises naturally as the ratio of independent standard normal variables.

Suppose that  and  are independent random variables, each with the standard normal distribution. Then  has the
standard Cauchy distribution. Equivalently, the standard Cauchy distribution is the Student  distribution with 1 degree of
freedom.

Proof

dz= dz+ dz∫

Γ
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e

itz

π(1+ )z

2

∫
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itz

π(1+ )z

2

∫
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e

itz
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2
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∣
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(z− i) = =lim

z→i

e

itz

π(1+ )z

2

lim

z→i

e

itz

π(z+ i)

e

−t

2πi

(5.32.10)
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By definition,  has the chi-square distribution with 1 degree of freedom, and is independent of . Hence, also by definition,
 has the Student  distribution with 1 degree of freedom, so the theorem follows from the previous

result.

If  has the standard Cauchy distribution, then so does 

Proof

This is a corollary of the previous result. Suppose that  and  are independent variables, each with the standard normal
distribution. Then  has the standard Cauchy distribution. But then  also has the standard Cauchy
distribution.

The standard Cauchy distribution has the usual connections to the standard uniform distribution via the distribution function and
the quantile function computed above.

The standard Cauchy distribution and the standard uniform distribution are related as follows:

1. If  has the standard uniform distribution then  has the standard Cauchy distribution.
2. If  has the standard Cauchy distribution then  has the standard uniform distribution.

Proof

Recall that if  has the standard uniform distribution, then  has distribution function . Conversely, if  has
distribution function , then since  is strictly increasing,  has the standard uniform distribution.

Since the quantile function has a simple, closed form, it's easy to simulate the standard Cauchy distribution using the random
quantile method.

Open the random quantile experiment and select the Cauchy distribution. Keep the default parameter values and note again the
shape and location of the distribution and probability density functions. For selected values of the parameters, run the
simulation 1000 times and compare the empirical density function to the probability density function. Note the behavior of the
empirical mean and standard deviation.

For the Cauchy distribution, the random quantile method has a nice physical interpretation. Suppose that a light source is 1 unit
away from position 0 of an infinite, straight wall. We shine the light at the wall at an angle  (to the perpendicular) that is
uniformly distributed on the interval . Then the position  of the light beam on the wall has the standard
Cauchy distribution. Note that this follows since  has the same distribution as  where  has the standard uniform
distribution.

Open the Cauchy experiment and keep the default parameter values.

1. Run the experiment in single-step mode a few times, to make sure that you understand the experiment.
2. For selected values of the parameters, run the simulation 1000 times and compare the empirical density function to the

probability density function. Note the behavior of the empirical mean and standard deviation.

The General Cauchy Distribution

Like so many other “standard” distributions, the Cauchy distribution is generalized by adding location and scale parameters. Most
of the results in this subsection follow immediately from results for the standard Cauchy distribution above and general results for
location scale families.

Suppose that  has the standard Cauchy distribution and that  and . Then  has the Cauchy
distribution with location parameter  and scale parameter .

Distribution Functions

Suppose that  has the Cauchy distribution with location parameter  and scale parameter .

 has probability density function  given by

W

2
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X =Z/ =Z/WW

2

−−−

√

t

X Y = 1/X

Z W

X =Z/W 1/X =W/Z

U X = (U) = tan[π (U− )]G
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X U =G(X) = + arctan(X)

1
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1.  is symmetric about .
2.  increases and then decreases, with mode .
3.  is concave upward, then downward, then upward again, with inflection points at .

4.  as  and as .

Proof

Recall that

where  is the standard Cauchy PDF.

Open the special distribution simulator and select the Cauchy distribution. Vary the parameters and note the location and shape
of the probability density function. For selected values of the parameters, run the simulation 1000 times and compare the
empirical density function to the probability density function.

 has distribution function  given by

Proof

Recall that

where  is the standard Cauchy CDF.

 has quantile function  given by

In particular,

1. The first quartile is .
2. The median is .
3. The third quartile is .

Proof

Recall that  where  is the standard Cauchy quantile function.

Open the special distribution calculator and select the Cauchy distribution. Vary the parameters and note the shape and location
of the distribution and probability density functions. Compute a few values of the distribution and quantile functions.

Moments

Suppose again that  has the Cauchy distribution with location parameter  and scale parameter . Since the mean
and other moments of the standard Cauchy distribution do not exist, they don't exist for the general Cauchy distribution either.

Open the special distribution simulator and select the Cauchy distribution. For selected values of the parameters, run the
simulation 1000 times and note the behavior of the sample mean.

f(x) = , x ∈ R

b

π[ +(x−a ]b

2

)

2

(5.32.16)
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b
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b

(5.32.17)
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X F

F (x) = + arctan( ), x ∈ R
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1

π
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b

(5.32.18)

F (x) =G( )
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(5.32.19)
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But of course the characteristic function of the Cauchy distribution exists and is easy to obtain from the characteristic function of
the standard distribution.

 has characteristic function  given by  for .

Proof

Recall that  where  is the standard Cauchy characteristic function.

Related Distributions

Like all location-scale families, the general Cauchy distribution is closed under location-scale transformations.

Suppose that  has the Cauchy distribution with location parameter  and scale parameter , and that 
and . Then  has the Cauchy distribution with location parameter  and scale parameter .

Proof

Once again, we give the standard proof. By definition we can take  where  has the standard Cauchy distribution.
But then .

Much more interesting is the fact that the Cauchy family is closed under sums of independent variables. In fact, this is the main
reason that the generalization to a location-scale family is justified.

Suppose that  has the Cauchy distribution with location parameter  and scale parameter  for ,
and that  and  are independent. Then  has the Cauchy distribution with location parameter  and
scale parameter .

Proof

This follows easily from the characteristic function. Let  denote the characteristic function of  for  and  the
charactersitic function of . Then

As a corollary, the Cauchy distribution is stable, with index :

If  is a sequence of independent variables, each with the Cauchy distribution with location parameter 
 and scale parameter , then  has the Cauchy distribution with location parameter 

and scale parameter .

Another corollary is the strange property that the sample mean of a random sample from a Cauchy distribution has that same
Cauchy distribution. No wonder the expected value does not exist!

Suppose that  is a sequence of independent random variables, each with the Cauchy distribution with
location parameter  and scale parameter . (That is,  is a random sample of size  from the Cauchy
distribution.) Then the sample mean  also has the Cauchy distribution with location parameter  and scale
parameter .

Proof

From the previous stability result,  has the Cauchy distribution with location parameter  and scale parameter 
. But then by the scaling result,  has the Cauchy distribution with location parameter  and scale parameter .

The next result shows explicitly that the Cauchy distribution is infinitely divisible. But of course, infinite divisibility is also a
consequence of stability.

Suppose that  and . For every  the Cauchy distribution with location parameter  and scale parameter 
 is the distribution of the sum of  independent variables, each of which has the Cauchy distribution with location parameters 

 and scale parameter .
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Our next result is a very slight generalization of the reciprocal result above for the standard Cauchy distribution.

Suppose that  has the Cauchy distribution with location parameter  and scale parameter . Then  has the
Cauchy distribution with location parameter  and scale parameter .

Proof

 has the same distribution as  where  has the standard Cauchy distribution. Hence  has the same distribution as .
But by the result above,  also has the standard Cauchy distribution, so  has the Cauchy distribution with location
parameter  and scale parameter .

As with its standard cousin, the general Cauchy distribution has simple connections with the standard uniform distribution via the
distribution function and quantile function computed above, and in particular, can be simulated via the random quantile method.

Suppose that  and .

1. If  has the standard uniform distribution, then  has the Cauchy distribution with
location parameter  and scale parameter 

2. If  has the Cauchy distribution with location parameter  and scale parameter , then 

 has the standard uniform distribution.

Open the random quantile experiment and select the Cauchy distribution. Vary the parameters and note again the shape and
location of the distribution and probability density functions. For selected values of the parameters, run the simulation 1000
times and compare the empirical density function to the probability density function. Note the behavior of the empirical mean
and standard deviation.

As before, the random quantile method has a nice physical interpretation. Suppose that a light source is  units away from position 
 of an infinite, straight wall. We shine the light at the wall at an angle  (to the perpendicular) that is uniformly distributed on the

interval . Then the position  of the light beam on the wall has the Cauchy distribution with location
parameter  and scale parameter .

Open the Cauchy experiment. For selected values of the parameters, run the simulation 1000 times and compare the empirical
density function to the probability density function. Note the behavior of the empirical mean and standard deviation.

This page titled 5.32: The Cauchy Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.33: The Exponential-Logarithmic Distribution
        

The exponential-logarithmic distribution arises when the rate parameter of the exponential distribution is randomized by the logarithmic
distribution. The exponential-logarithmic distribution has applications in reliability theory in the context of devices or organisms that improve
with age, due to hardening or immunity.

The Standard Exponential-Logarithmic Distribution

Distribution Functions

The standard exponential-logarithmic distribution with shape parameter  is a continuous distribution on  with probability
density function  given by

1.  is decreasing on  with mode .
2.  is concave upward on .

Proof

Substituting ,  gives

so it follows that  is a PDF. For the shape of the graph of  note that

Open the special distribution simulator and select the exponential-logarithmic distribution. Vary the shape parameter and note the shape of
the probability density function. For selected values of the shape parameter, run the simulation 1000 times and compare the empirical
density function to the probability density function.

The distribution function  is given by

Proof

This follows from the same integral substitution used in the previous proof.

The quantile function  is given by

1. The first quartile is .
2. The median is .
3. The third quartile is .

Proof

The formula for  follows from the distribution function by solving  for  in terms of .

Open the special distribution calculator and select the exponential-logarithmic distribution. Vary the shape parameter and note the shape of
the distribution and probability density functions. For selected values of the shape parameter, computer a few values of the distribution
function and the quantile function.

The reliability function  given by

p ∈ (0, 1) [0,∞)

g

g(x) =− , x ∈ [0,∞)

(1−p)e

−x

ln(p)[1−(1−p) ]e
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(5.33.1)
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Proof

This follows trivially from the distribution function since .

The standard exponential-logarithmic distribution has decreasing failure rate.

The failure rate function  is given by

1.  is decreasing on .
2.  is concave upward on .

Proof

Recall that  so the formula follows from the probability density function and the distribution function given above.

The Polylogarithm

The moments of the standard exponential-logarithmic distribution cannot be expressed in terms of the usual elementary functions, but can be
expressed in terms of a special function known as the polylogarithm.

The polylogarithm of order  is defined by

The polylogarithm is a power series in  with radius of convergence is 1 for each .

Proof

To show that the radius of convergence is 1, we use the ratio test from calculus. For ,

Hence the series converges absolutely for  and diverges for .

In this section, we are only interested in nonnegative integer orders, but the polylogarithm will show up again, for non-integer orders, in the
study of the zeta distribution.

The polylogarithm functions of orders 0, 1, 2, and 3.

1. The polylogarithm of order 0 is

2. The polylogarithm of order 1 is

3. The polylogarithm of order 2 is known as the dilogarithm
4. The polylogarithm of order 3 is known as the trilogarithm.

Thus, the polylogarithm of order 0 is a simple geometric series, and the polylogarithm of order 1 is the standard power series for the natural
logarithm. Note that the probability density function of  can be written in terms of the polylogarithms of orders 0 and 1:

The most important property of the polylogarithm is given in the following theorem:

The polylogarithm satisfies the following recursive integral formula:

(x) = , x ∈ [0,∞)G

c
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Equivalently,  for  and .

Proof

Recall that a power series may integrated term by term, and the integrated series has the same radius of convergence. Hence for ,

When , the polylogarithm series converges at  also, and

where  is the Riemann zeta function, named for Georg Riemann. The polylogarithm can be extended to complex orders and defined for
complex  with , but the simpler version suffices for our work here.

Moments

We assume that  has the standard exponential-logarithmic distribution with shape parameter .

The moments of  (about 0) are

1.  as 
2.  as 

Proof

As noted earlier in the discussion of the polylogarithm, the PDF of  can be written as

Hence

But  and hence

1. As , the numerator in the last expression for  converges to  while the denominator diverges to .
2. As , the expression for  has the indeterminate form . An application of L'Hospital's rule and the derivative rule above

gives

But from the series definition of the polylogarithm,  as .

We will get some additional insight into the asymptotics below when we consider the limiting distribution as  and . The mean and
variance of the standard exponential logarithmic distribution follow easily from the general moment formula.

The mean and variance of  are

1. 
2. 

From the asymptotics of the general moments, note that  and  as , and  and  as .
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∞
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Open the special distribution simulator and select the exponential-logarithmic distribution. Vary the shape parameter and note the size and
location of the mean  standard deviation bar. For selected values of the shape parameter, run the simulation 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation.

Related Distributions

The standard exponential-logarithmic distribution has the usual connections to the standard uniform distribution by means of the distribution
function and the quantile function computed above.

Suppose that .

1. If  has the standard uniform distribution then

has the standard exponential-logarithmic distribution with shape parameter .
2. If  has the standard exponential-logarithmic distribution with shape parameter  then

has the standard uniform distribution.

Proof
1. Recall that if  has the standard uniform distribution, then  has the exponential-logarithmic distribution with shape parameter 

. But  also has the standard uniform distribution and hence  also has the exponential-logarithmic distribution
with shape parameter .

2. Similarly, if  has the exponential-logarithmic distribution with shape parameter  then  has the standard uniform distribution.
Hence  also has the standard uniform distribution.

Since the quantile function of the basic exponential-logarithmic distribution has a simple closed form, the distribution can be simulated using
the random quantile method.

Open the random quantile experiment and select the exponential-logarithmic distribution. Vary the shape parameter and note the shape of
the distribution and probability density functions. For selected values of the parameter, run the simulation 1000 times and compare the
empirical density function to the probability density function.

As the name suggests, the basic exponential-logarithmic distribution arises from the exponential distribution and the logarithmic distribution via
a certain type of randomization.

Suppose that  is a sequence of independent random variables, each with the standard exponential distribution. Suppose
also that  has the logarithmic distribution with parameter  and is independent of . Then  has
the basic exponential-logarithmic distribution with shape parameter .

Proof

It's best to work with reliability functions. For ,  has the exponential distribution with rate parameter , and
hence  for . Recall also that

Hence, using the polylogarithm of order 1 (the standard power series for the logarithm),

As a function of , this is the reliability function of the exponential-logarithmic distribution with shape parameter .

Also of interest, of course, are the limiting distributions of the standard exponential-logarithmic distribution as  and as .

The standard exponential-logarithmic distribution with shape parameter  converges to

1. Point mass at 0 as .
2. The standard exponential distribution as .

±
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Proof

It's slightly easier to work with the reliability function  rather than the ordinary (left) distribution function .

1. Note that  for every . On the other hand, if  then  as .
2.  has the indeterminate form  as . An application of L'Hospital's rule shows that

As a function of , this is the reliability function of the standard exponential distribution.

The General Exponential-Logarithmic Distribution
The standard exponential-logarithmic distribution is generalized, like so many distributions on , by adding a scale parameter.

Suppose that  has the standard exponential-logarithmic distribution with shape parameter . If , then  has the
exponential-logarithmic distribution with shape parameter  and scale parameter .

Using the same terminology as the exponential distribution,  is called the rate parameter.

Distribution Functions

Suppose that  has the exponential-logarithmic distribution with shape parameter  and scale parameter .

 has probability density function  given by

1.  is decreasing on  with mode .
2.  is concave upward on .

Proof

Recall that  for  where  is the PDF of the standard distribution.

Open the special distribution simulator and select the exponential-logarithmic distribution. Vary the shape and scale parameters and note the
shape and location of the probability density function. For selected values of the parameters, run the simulation 1000 times and compare the
empirical density function to the probability density function.

 has distribution function  given by

Proof

Recall that  for  where  is the CDF of the standard distribution.

 has quantile function  given by

1. The first quartile is .
2. The median is .
3. The third quartile is .

Proof

Recall that  where  is the quantile function of the standard distribution.

Open the special distribution calculator and select the exponential-logarithmic distribution. Vary the shape and scale parameter and note the
shape and location of the probability density and distribution functions. For selected values of the parameters, computer a few values of the
distribution function and the quantile function.

G
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(0) = 1G

c

p ∈ (0, 1) x > 0 (x) → 0G
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(x)G

c
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 has reliability function  given by

Proof

This follows trivially from the distribution function since .

The exponential-logarithmic distribution has decreasing failure rate.

The failure rate function  of  is given by.

1.  is decreasing on .
2.  is concave upward on .

Proof

Recall that  for , where  is the failure rate function of the standard distribution. Alternately, 

.

Moments

Suppose again that  has the exponential-logarithmic distribution with shape parameter  and scale parameter . The
moments of  can be computed easily from the representation  where  has the basic exponential-logarithmic distribution.

The moments of  (about 0) are

1.  as 
2.  as 

Proof

These results follow from basic properties of expected value and the corresponding results for the standard distribution. We can write 
 where  has the standard exponential-logarithmic distribution with shape parameter . Hence .

The mean and variance of  are

1. 

2. 

From the general moment results, note that  and  as , while  and  as .

Open the special distribution simulator and select the exponential-logarithmic distribution. Vary the shape and scale parameters and note the
size and location of the mean  standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare
the empirical mean and standard deviation to the distribution mean and standard deviation.

Related Distributions

Since the exponential-logarithmic distribution is a scale family for each value of the shape parameter, it is trivially closed under scale
transformations.

Suppose that  has the exponential-logarithmic distribution with shape parameter  and scale parameter . If 
, then  has the exponential-logarithmic distribution with shape parameter  and scale parameter .

Proof

By definition, we can take  where  has the standard exponential-logarithmic distribution with shape parameter . But then 
.

X F

c
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c
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Once again, the exponential-logarithmic distribution has the usual connections to the standard uniform distribution by means of the distribution
function and quantile function computed above.

Suppose that  and .

1. If  has the standard exponential distribution then

has the exponential-logarithmic distribution with shape parameter  and scale parameter .
2. If  has the exponential-logarithmic distribution with shape parameter  and scale parameter , then

has the standard uniform distribution.

Proof

These results follow from the representation , where  has the standard exponential-logarithmic distribution with shape parameter 
, and the corresponding result for .

Again, since the quantile function of the exponential-logarithmic distribution has a simple closed form, the distribution can be simulated using
the random quantile method.

Open the random quantile experiment and select the exponential-logarithmic distribution. Vary the shape and scale parameters and note the
shape and location of the distribution and probability density functions. For selected values of the parameters, run the simulation 1000 times
and compare the empirical density function to the probability density function.

Suppose that  is a sequence of independent random variables, each with the exponential distribution with scale parameter 
. Suppose also that  has the logarithmic distribution with parameter  and is independent of . Then 

 has the exponential-logarithmic distribution with shape parameter  and scale parameter .

Proof

Note that  has the standard exponential distribution. Hence by the corresponding result above,  has the
basic exponential-logarithmic distribution with shape parameter . Hence  has the exponential-logarithmic distribution with shape
parameter  and scale parameter .

The limiting distributions as  and as  also follow easily from the corresponding results for the standard case.

For fixed , the exponential-logarithmic distribution with shape parameter  and scale parameter  converges to

1. Point mass at 0 as .
2. The exponential distribution with scale parameter  as .

Proof

Suppose that  has the exponential-logarithmic distribution with shape parameter  and scale parameter , so that  where  has the
standard exponential-logarithmic distribution with shape parameter . Using the corresponding result above,

1. The distribution of  converges to point mass at 0 as  and hence so does the distribution of .
2. The distribution of  converges to the standard exponential distribution as  and hence the the distribution of  converges to the

exponential distribution with scale parameter .

This page titled 5.33: The Exponential-Logarithmic Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.34: The Gompertz Distribution
     

The Gompertz distributon, named for Benjamin Gompertz, is a continuous probability distribution on  that has exponentially
increasing failure rate. Unfortunately, the death rate of adult humans increases exponentially, so the Gompertz distribution is widely
used in actuarial science.

The Basic Gompertz Distribution

Distribution Functions

We will start by giving the reliability function, since most applications of the Gompertz distribution deal with mortality.

The basic Gompertz distribution with shape parameter  is a continuous distribution on  with reliability
function  given by

The special case  gives the standard Gompertz distribution.

Proof

Note that  is continuous and decreasing on  with  and  as .

The distribution function  is given by

Proof

This follows trivially from the reliability function reliability function, since .

The quantile function  is given by

1. The first quartile is .
2. The median is .
3. The third quartile is .

Proof

The formula for  follows from the distribution function by solving  for  in terms of .

For the standard Gompertz distribution ( ), the first quartile is , the median is 
, and the third quartile is .

Open the special distribution calculator and select the Gompertz distribution. Vary the shape parameter and note the shape of
the distribution function. For selected values of the shape parameter, computer a few values of the distribution function and the
quantile function.

The probability density function  is given by

1. If  then  is increasing and then decreasing with mode .
2. If  then  is decreasing with mode .
3. If  then  is concave up and then down then up again, with inflection points at 

.
4. If  then  is concave down and then up, with inflection point at 

.
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5. If  then  is concave up.

Proof

The formula for  follows from the distribution function since  Parts (a)–(d) follow from

So for the standard Gompertz distribution ( ), the inflection point is .

Open the special distribution simulator and select the Gompertz distribution. Vary the shape parameter and note the shape of
the probability density function. For selected values of the shape parameter, run the simulation 1000 times and compare the
empirical density function to the probability density function.

Finally, as promised, the Gompertz distribution has exponentially increasing failure rate.

The failure rate function  is given by  for 

Proof

Recall that the is  so the result follows from the distribution function and the probability density function.

Moments

The moments of the basic Gompertz distribution cannot be given in simple closed form, but the mean and moment generating
function can at least be expressed in terms of a special function known as the exponential integral. There are many variations on
the exponential integral, but for our purposes, the following version is best:

The exponential integral with parameter  is the function  defined by

For the remainder of this discussion, we assume that  has the basic Gompertz distribution with shape parameter .

 has moment generating function  given by

Proof

Using the substitution  we have

It follows that  has moments of all orders. Here is the mean:

 has mean .

Proof

First we use the substitution  to get

Next, integration by parts with ,  gives
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If  has the standard Gompertz distribution, .

Open the special distribution simulator and select the Gompertz distribution. Vary the shape parameter and note the size and
location of the mean  standard deviation bar. For selected values of the parameter, run the simulation 1000 times and
compare the empirical mean and standard deviation to the distribution mean and standard deviation.

Related Distributions

The basic Gompertz distribution has the usual connections to the standard uniform distribution by means of the distribution
function and quantile function computed above.

Suppose that .

1. If  has the standard uniform distribution then  has the basic Gompertz distribution with shape
parameter .

2. If  has the basic Gompertz distribution with shape parameter  then  has the standard uniform
distribution.

Proof
1. Recall that if  has the standard uniform distribution, then  also has the standard uniform distribution, and hence 

 has the basic Gompertz distribution with shape parameter .
2. If  has the basic Gompertz distribution with shape parameter  then  has the standard uniform distribution, and

hence so does .

Since the quantile function of the basic Gompertz distribution has a simple closed form, the distribution can be simulated using the
random quantile method.

Open the random quantile experiment and select the Gompertz distribution. Vary the shape parameter and note the shape of the
distribution and probability density functions. For selected values of the parameter, run the simulation 1000 times and compare
the empirical density function, mean, and standard deviation to their distributional counterparts.

The basic Gompertz distribution also has simple connections to the exponential distribution.

Suppose that .

1. If  has the basic Gompertz distribution with shape parameter , then  has the exponential distribution with
rate parameter .

2. If  has the exponential distribution with rate parameter , then  has the Gompertz distribution with shape
parameter .

Proof

These results follow from the standard change of variables formula. The transformations, which are inverses of each other, are 
 and  for . Let  and  denote PDFs of  and  respectively.

1. We start with  for  and then

which is the PDF of the exponential distribution with rate parameter .
2. We start with  for  and then

which is the PDF of the Gompertz distribution with shape parameter .

In particular, if  has the standard exponential distribution (rate parameter 1), then  has the standard Gompertz
distribution (shape parameter 1). Since the exponential distribution is a scale family (the scale parameter is the reciprocal of the rate

X E(X) ≈ 0.5963

±

a ∈ (0,∞)

U X = ln(1− lnU)

1

a
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X a U = exp[−a ( −1)]e
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a ∈ (0,∞)

X a Y = −1e
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y = −1e
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g(x) = h(y) = a exp[−a( −1)] , x ∈ [0,∞)
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parameter), we can construct an arbitrary basic Gompertz variable from a standard exponential variable. Specifically, if  has the
standard exponential variable and , then

has the Gompertz distribution with shape parameter .

The extreme value distribution (Gumbel distribution) is also related to the Gompertz distribution.

If  has the standard extreme value distribution for minimums, then the conditional distribution of  given  is the
standard Gompertz distribution.

Proof

By definition,  has PDF  given by  for . The conditional PDF of  given  is

which is the PDF of the standard Gompertz distribution.

The General Gompertz Distribution
The basic Gompertz distribution is generalized, like so many distributions on , by adding a scale parameter. Recall that scale
transformations often correspond to a change of units (minutes to hours, for example) and thus are fundamental.

If  has the basic Gompertz distribution with shape parameter  and  then  has the Gompertz
distribution with shape parameter  and scale parameter .

Distribution Functions

Suppose that  has the Gompertz distribution with shape parameter  and scale parameter .

 has reliability function  given by

Proof

Recall that  where  is the reliability function of the corresponding basic distribution.

 has distribution function  given by

Proof

As before, . Also,  where  is the CDF of the corresponding basic distribution.

 has quantile function  given by

1. The first quartile is .
2. The median is .
3. The third quartile is .

Proof

Recall that  where  is the quantile function of the corresponding basic distribution.

Y

a ∈ (0,∞)

X = ln( Y +1)

1

a

(5.34.14)
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X X X ≥ 0

X f f(x) = exp(− )e

x

e

x

x ∈ R X X ≥ 0

g(x) = = = exp[−( −1)], x ∈ [0,∞)

f(x)
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x

e

x

e

−1

e

x

e
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[0,∞)
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Open the special distribution calculator and select the Gompertz distribution. Vary the shape and scale parameters and note the
shape and location of the distribution function. For selected values of the parameters, computer a few values of the distribution
function and the quantile function.

 has probability density function  given by

1. If  then  is increasing and then decreasing with mode .
2. If  then  is decreasing with mode .
3. If  then  is concave up and then down then up again, with inflection points at 

.
4. If  then  has is concave down and then up, with inflection point at 

.
5. If  then  is concave up.

Proof

Recall that  where  is the PDF of the corresponding basic distribution.

Open the special distribution simulator and select the Gompertz distribution. Vary the shape and scale parameters and note the
shape and location of the probability density function. For selected values of the parameters, run the simulation 1000 times and
compare the empirical density function to the probability density function.

Once again,  has exponentially increasing failure rate.

 has failure rate function  given by

Proof

Recall that . Also,  where  is the failure rate function of the corresponding basic

distribution.

Moments

As with the basic distribution, the moment generating function and mean of the general Gompertz distribution can be expressed in
terms of the exponential integral. Suppose again that  has the Gompertz distribution with shape parameter  and scale
parameter .

 has moment generating function  given by

Proof

Recall that  where  is the MGF of the corresponding basic distribution.

 has mean .

Proof

This follows from the mean of the corresponding basic distribution, and the standard property .

Open the special distribution simulator and select the Gompertz distribution. Vary the shape and scale parameters and note the
size and location of the mean  standard deviation bar. For selected values of the parameters, run the simulation 1000 times
and compare the empirical mean and standard deviation to the distribution mean and standard deviation.

X f

f(x) = exp[−a( −1)], x ∈ [0,∞)
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e
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(5.34.19)
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R(x) = f(x)/ (x)F
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Related Distributions

Since the Gompertz distribution is a scale family for each value of the shape parameter, it is trivially closed under scale
transformations.

Suppose that  has the Gompertz distribution with shape parameter  and scale parameter . If 
then  has the Gompertz distribution with shape parameter  and scale parameter .

Proof

By definition, we can take  where  has the standard Gompertz distribution with shape parameter . But then 
.

As with the basic distribution, the Gompertz distribution has the usual connections with the standard uniform distribution by means
of the distribution function and quantile function computed above.

Suppose that .

1. If  has the standard uniform distribution then  has the Gompertz distribution with shape parameter 
 and scale parameter .

2. If  has the Gompertz distribution with shape parameter  and scale parameter , then  has the
standard uniform distribution.

Proof

This follows from the corresponding result for the basic distribution and the definition of the general Gompertz variable as 
 where  has the basic Gompertz distribution with shape parameter .

Again, since the quantile function of the Gompertz distribution has a simple closed form, the distribution can be simulated using
the random quantile method.

Open the random quantile experiment and select the Gompertz distribution. Vary the shape and scale parameters and note the
shape and location of the distribution and probability density functions. For selected values of the parameters, run the
simulation 1000 times and note the agreement between the empirical density function and the probability density function.

The following result is a slight generalization of the connection above between the basic Gompertz distribution and the extreme
value distribution.

If  has the extreme value distribution for minimums with scale parameter , then the conditional distribution of  given 
 is the Gompertz distribution with shape parameter 1 and scale parameter .

Proof

We can take  where  has the standard extreme value distribution for minimums. Note that  if and only if 
. Hence the conditional distribution of  given  is the same as the conditional distribution of  given .

But by the result above the conditional distribution of  given  has the standard Gompertz distribution.

Finally, we give a slight generalization of the connection above between the Gompertz distribution and the exponential distribution.

Suppose that .

1. If  has the Gompertz distribution with shape parameter  and scale parameter , then  has the exponential
distribution with rate parameter .

2. If  has the exponential distribution with rate parameter , then  has the Gompertz distribution with
shape parameter  and scale parameter .

Proof

These results follow from the corresponding result for the basic distribution.

1. If  has the Gompertz distribution with shape parameter  and scale parameter , then  has the basic Gompertz
distribution with shape parameter . Hence  has the exponential distribution with rate parameter .
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2. If  has the exponential distribution with rate parameter  then  has the basic Gompertz distribution with shape
parameter  and hence  has the Gompertz distribution with shape parameter  and scale parameter . (

As a corollary, we can construct a general Gompertz variable from a standard exponential variable. Specifically, if  has the
standard exponential distribution and if  then

has the Gompertz distribution with shape parameter  and scale parameter .

This page titled 5.34: The Gompertz Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.35: The Log-Logistic Distribution
      

As the name suggests, the log-logistic distribution is the distribution of a variable whose logarithm has the logistic distribution. The
log-logistic distribution is often used to model random lifetimes, and hence has applications in reliability.

The Basic Log-Logistic Distribution

Distribution Functions

The basic log-logistic distribution with shape parameter  is a continuous distribution on  with distribution
function  given by

In the special case that , the distribution is the standard log-logistic distribution.

Proof

Note that  is continuous on  with  and  as . Moreover,

so  is strictly increasing on .

The probability density function function  is given by

1. If ,  is decreasing with  as .
2. If ,  is deceasing with mode .

3. If ,  increases and then decreases with mode 

4. If ,  is concave upward.
5. If ,  is concave downward and then upward, with inflection point at

6. If ,  is concave upward then downward then upward again, with inflection points at

Proof

The PDF  was computed in the proof of the CDF result. The rest follows from

So  has a rich variety of shapes, and is unimodal if . When ,  is defined at 0 as well.
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Open the special distribution simulator and select the log-logistic distribution. Vary the shape parameter and note the shape of
the probability density function. For selected values of the shape parameter, run the simulation 1000 times and compare the
empirical density function to the probability density function.

The quantile function  is given by

1. The first quartile is .
2. The median is .
3. The third quartile is .

Proof

The formula for  follows from the distribution function by solving  for  in terms of .

Recall that  is the odds ratio associated with probability . Thus, the quantile function of the basic log-logistic
distribution with shape parameter  is the th root of the odds ratio function. In particular, the quantile function of the standard log-
logistic distribution is the odds ratio function itself. Also of interest is that the median is 1 for every value of the shape parameter.

Open the special distribution calculator and select the log-logistic distribution. Vary the shape parameter and note the shape of
the distribution and probability density functions. For selected values of the shape parameter, computer a few values of the
distribution function and the quantile function.

The reliability function  is given by

Proof

This follows trivially from the distribution function since .

The basic log-logistic distribution has either decreasing failure rate, or mixed decreasing-increasing failure rate, depending on the
shape parameter.

The failure rate function  is given by

1. If ,  is decreasing.
2. If ,  decreases and then increases with minimum at .

Proof

Recall that the is  for  so the formula follows from the PDF and the reliability function above.
Parts (a) and (b) follow from

If ,  is defined at 0 also.

Moments

Suppose that  has the basic log-logistic distribution with shape parameter . The moments (about 0) of the  have an
interesting expression in terms of the beta function  and in terms of the sine function. The simplest representation is in terms of a
new special function constructed from the sine function.
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The (normalized) cardinal sine function sinc is defined by

where it is understood that  (the limiting value).

Figure : The graph of the sinc function on the interval 

If  then . If  then

Proof

Using the PDF,

The substitution ,  gives

The result now follows from the definition of the beta function.

In particular, we can give the mean and variance.

If  then

If  then

Open the special distribution simulator and select the log-logistic distribution. Vary the shape parameter and note the size and
location of the mean  standard deviation bar. For selected values of the shape parameter, run the simulation 1000 times and
compare the empirical mean and standard deviation to the distribution mean and standard deviation.

Related Distributions

The basic log-logistic distribution is preserved under power transformations.

If  has the basic log-logistic distribution with shape parameter  and if , then  has the basic
log-logistic distribution with shape parameter .

Proof

sinc(x) = , x ∈ R

sin(πx)

πx

(5.35.12)
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For ,

As a function of , this is the CDF of the basic log-logistic distribution with shape parameter .

In particular, it follows that if  has the standard log-logistic distribution and , then  has the basic log-logistic
distribution with shape parameter .

The log-logistic distribution has the usual connections with the standard uniform distribution by means of the distribution function
and the quantile function given above.

Suppose that .

1. If  has the standard uniform distribution then  has the basic log-logistic distribution
with shape parameter .

2. If  has the basic log-logistic distribution with shape parameter  then  has the standard
uniform distribution.

Since the quantile function of the basic log-logistic distribution has a simple closed form, the distribution can be simulated using
the random quantile method.

Open the random quantile experiment and select the log-logistic distribution. Vary the shape parameter and note the shape of
the distribution and probability density functions. For selected values of the parameter, run the simulation 1000 times and
compare the empirical density function, mean, and standard deviation to their distributional counterparts..

Of course, as mentioned in the introduction, the log-logistic distribution is related to the logistic distribution.

Suppose that .

1. If  has the basic log-logistic distribution with shape parameter  then  has the logistic distribution with location
parameter 0 and scale parameter .

2. If  has the logistic distribution with location parameter  and scale parameter  then  has the basic log-logistic
distribution with shape parameter .

Proof
1. Suppose first that  has the standard log-logistic distribution. Then

and as a function of , this is the CDF of the standard logistic distribution. Suppose now that  has the basic log-logistic
distribution with shape parameter . From the power result, we can take  where  has the standard log-logistic
distribution. Then . But  has the standard logistic distribution, and hence  has the logistic
distribution with location parameter  and scale parameter 

2. Suppose first that  has the standard logistic distribution. Then

and as a function of , this is the CDF of the standard log-logistic distribution. Suppose now that  has the logistic
distribution with location parameter 0 and scale parameter . We can take  where  has the standard logistic
distribution. Hence . But  has the standard log-logistic distribution, and again by the power

result  has the log-logistic distribution with shape parameter .

As a special case, (and as noted in the proof), if  has the standard log-logistic distribution, then  has the standard
logistic distribution, and if  has the standard logistic distribution, then  has the standard log-logistic distribution.
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The standard log-logistic distribution is the same as the standard beta prime distribution.

Proof

The PDF of the standard log-logistic distribution is  for , which is the same as the PDF of the
standard beta prime distribution.

Of course, limiting distributions with respect to parameters are always interesting.

The basic log-logistic distribution with shape parameter  converges to point mass at 1 as .

Proof from the definition

Note that the distribution function satisfies  as  for ,  for all , and  as 
 for . Except for the point of discontinuity , the limiting values are the distribution function of point mass at

1.

Random variable proof

Suppose that  has the standard log-logistic distribution, and for , let , so that  has the basic log-
logistic distribution with shape parameter . The event  has probability 1, and on this event,  as . But
convergence with probability 1 implies convergence in distribution.

The General Log-Logistic Distribution

The basic log-logistic distribution is generalized, like so many distributions on , by adding a scale parameter. Recall that a
scale transformation often corresponds to a change of units (gallons into liters, for example), and so such transformations are of
basic importance.

If  has the basic log-logistic distribution with shape parameter  and if  then  has the log-
logistic distribution with shape parameter  and scale parameter .

Distribution Functions

Suppose that  has the log-logistic distribution with shape parameter  and scale parameter .

 has distribution function  given by

Proof

Recall that  where  is the distribution function of the basic log-logistic distribution with shape parameter .

 has probability density function  given by

When ,  is defined at 0 also.  satisfies the following properties:

1. If ,  is decreasing with  as .
2. If ,  is deceasing with mode .

3. If ,  increases and then decreases with mode 

4. If ,  is concave upward.
5. If ,  is concave downward and then upward, with inflection point at

g(z) = 1/(1+z)

2
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k
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X F
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)
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k≥ 1 f f

0 < k< 1 f f(x) →∞ x ↓ 0

k= 1 f x = 0

k> 1 f x = b .( )
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1/k

k≤ 1 f
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6. If ,  is concave upward then downward then upward again, with inflection points at

Proof

Recall that  where  is the probability density function of the basic log-logistic distribution with shape

parameter . Also of course, .

Open the special distribution simulator and select the log-logistic distribution. Vary the shape and scale parameters and note the
shape of the probability density function. For selected values of the parameters, run the simulation 1000 times and compare the
empirical density function to the probability density function.

 has quantile function  given by

1. The first quartile is .
2. The median is .
3. The third quartile is .

Proof

Recall that  for  where  is the quantlie function of the basic log-logistic distribution with
shape parameter .

Open the special distribution calculator and select the log-logistic distribution. Vary the shape and sclae parameters and note
the shape of the distribution and probability density functions. For selected values of the parameters, computer a few values of
the distribution function and the quantile function.

 has reliability function  given by

Proof

This follows trivially from the distribution function, since .

The log-logistic distribution has either decreasing failure rate, or mixed decreasing-increasing failure rate, depending on the shape
parameter.

 has failure rate function  given by

1. If ,  is decreasing.
2. If ,  decreases and then increases with minimum at .

Proof

Recall that  where  is the failure rate function of the basic log-logistic distribution with shape parameter .

Also,  where  is the PDF and  is the reliability function,.

k> 2 f

x = b[ ]

2( −1)±2kk

2

3( −1)k
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Moments

Suppose again that  has the log-logistic distribution with shape parameter  and scale parameter . The
moments of  can be computed easily from the representation  where  has the basic log-logistic distribution with shape
parameter . Again, the expressions are simplest in terms of the beta function  and in terms of the normalized cardinal sine
function sinc.

If  then . If  then

If  then

If  then

Open the special distribution simulator and select the log-logistic distribution. Vary the shape and scale parameters and note the
size and location of the mean/standard deviation bar. For selected values of the parameters, run the simulation 1000 times
compare the empirical mean and standard deviation to the distribution mean and standard deviation.

Related Distributions

Since the log-logistic distribution is a scale family for each value of the shape parameter, it is trivially closed under scale
transformations.

If  has the log-logistic distribution with shape parameter  and scale parameter , and if , then
 has the log-logistic distribution with shape parameter  and scale parameter .

Proof

By definition we can take  where  has the basic log-logistic distribution with shape parameter . But then 
.

The log-logistic distribution is preserved under power transformations.

If  has the log-logistic distribution with shape parameter  and scale parameter , and if ,
then  has the log-logistic distribution with shape parameter  and scale parameter .

Proof

Again we can take  where  has the basic log-logistic distribution with shape parameter . Then . But by
the power result for the standard distribution,  has the basic log-logistic distribution with shape parameter  and hence 
has the log-logistic distribution with shape parameter  and scale parameter .

In particular, if  has the standard log-logistic distribution, then  has the log-logistic distribution with shape parameter 
 and scale parameter .

As before, the log-logistic distribution has the usual connections with the standard uniform distribution by means of the distribution
function and the quantile function computed above.

Suppose that .

1. If  has the standard uniform distribution then  has the log-logistic distribution with
shape parameter  and scale parameter .
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k> 1

E(X) =
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2. If  has the log-logistic distribution with shape parameter  and scale parameter , then  has
the standard uniform distribution.

Again, since the quantile function of the log-logistic distribution has a simple closed form, the distribution can be simulated using
the random quantile method.

Open the random quantile experiment and select the log-logistic distribution. Vary the shape and scale parameters and note the
shape and location of the distribution and probability density functions. For selected values of the parameters, run the
simulation 1000 times and compare the empirical density function, mean and standard deviation to their distributional
counterparts.

Again, the logarithm of a log-logistic variable has the logistic distribution.

Suppose that  and .

1. If  has the log-logistic distribution with shape parameter  and scale parameter  then  has the logistic
distribution with location parameter  and scale parameter .

2. If  has the logistic distribution with location parameter  and scale parameter  then  has the log-logistic
distribution with shape parameter  and scale parameter .

Proof

1. As noted above, we can take  where  has the standard log-logistic distribution. Then 
. But by the corresponding result for the basic distribution,  has the standard logistic

distribution, so  has the logistic distribution with location parameter  and scale parameter .
2. We can take  where  has the standard logistic distribution. Hence . But by the

result corresponding result for the standard distribution,  has the standard log-logistic distribution so  has the log-
logistic distribution with shape parameter  and scale parameter .

Once again, the limiting distribution is also of interest.

For fixed , the log-logistic distribution with shape parameter  and scale parameter  converges to point
mass at  as .

Proof

If  has the log-logistic distribution with shape parameter  and scale parameter , then as usual, we can write  where 
 has the basic log-logistic distribution with shape parameter . From the limit result for the basic distribution, we know that

the distribution of  converges to point mass at 1 as , so it follows by the continuity theorem that the distribution of 
converges to point mass at  as .

This page titled 5.35: The Log-Logistic Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.36: The Pareto Distribution
      

The Pareto distribution is a skewed, heavy-tailed distribution that is sometimes used to model the distribution of incomes and other
financial variables.

The Basic Pareto Distribution

Distribution Functions

The basic Pareto distribution with shape parameter  is a continuous distribution on  with distribution
function  given by

The special case  gives the standard Pareto distribuiton.

Proof

Clearly  is increasing and continuous on , with  and  as .

The Pareto distribution is named for the economist Vilfredo Pareto.

The probability density function  is given by

1.  is decreasing with mode 
2.  is concave upward.

Proof

Recall that . Parts (a) and (b) follow from standard calculus.

The reason that the Pareto distribution is heavy-tailed is that the  decreases at a power rate rather than an exponential rate.

Open the special distribution simulator and select the Pareto distribution. Vary the shape parameter and note the shape of the
probability density function. For selected values of the parameter, run the simulation 1000 times and compare the empirical
density function to the probability density function.

The quantile function  is given by

1. The first quartile is .
2. The median is .
3. The third quartile is .

Proof

The formula for  comes from solving  for  in terms of .

Open the special distribution calculator and select the Pareto distribution. Vary the shape parameter and note the shape of the
probability density and distribution functions. For selected values of the parameters, compute a few values of the distribution
and quantile functions.
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Moments

Suppose that random variable  has the basic Pareto distribution with shape parameter . Because the distribution is
heavy-tailed, the mean, variance, and other moments of  are finite only if the shape parameter  is sufficiently large.

The moments of  (about 0) are

1.  if 
2.  if 

Proof

Note that

The integral diverges to  if  and evaluates to  if .

It follows that the moment generating function of  cannot be finite on any interval about 0.

In particular, the mean and variance of  are

1.  if 
2.  if 

Proof

This results follow from the general moment formula above and the computational formula .

In the special distribution simulator, select the Pareto distribution. Vary the parameters and note the shape and location of the
mean  standard deviation bar. For each of the following parameter values, run the simulation 1000 times and note the
behavior of the empirical moments:

1. 
2. 
3. 

The skewness and kurtosis of  are as follows:

1. If ,

2. If ,

Proof

These results follow from the standard computational formulas for skewness and kurtosis, and the first 4 moments of  given
above.

So the distribution is positively skewed and  as  while  as . Similarly,  as 
 and  as . Recall that the excess kurtosis of  is
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Related Distributions

The basic Pareto distribution is invariant under positive powers of the underlying variable.

Suppose that  has the basic Pareto distribution with shape parameter  and that . Then  has the
basic Pareto distribution with shape parameter .

Proof

We use the CDF of  given above.

As a function of , this is the Pareto CDF with shape parameter .

In particular, if  has the standard Pareto distribution and , then  has the basic Pareto distribution with shape
parameter . Thus, all basic Pareto variables can be constructed from the standard one.

The basic Pareto distribution has a reciprocal relationship with the beta distribution.

Suppose that .

1. If  has the basic Pareto distribution with shape parameter  then  has the beta distribution with left parameter 
and right parameter 1.

2. If  has the beta distribution with left parameter  and right parameter 1, then  has the basic Pareto distribution
with shape parameter .

Proof

We will use the standard change of variables theorem. The transformations are  and  for  and 
. These are inverses of each another. Let  and  denote PDFs of  and  respectively.

1. We start with  for , thePDF of  given above. Then

which is the PDF of the beta distribution with left parameter  and right parameter 1.
2. We start with  for . Then

which is the PDF of the basic Pareto distribution with shape parameter .

The basic Pareto distribution has the usual connections with the standard uniform distribution by means of the distribution function
and quantile function computed above.

Suppose that .

1. If  has the standard uniform distribution then  has the basic Pareto distribution with shape parameter .
2. If  has the basic Pareto distribution with shape parameter  then  has the standard uniform distribution.

Proof

1. If  has the standard uniform distribution, then so does . Hence  has the basic Pareto
distribution with shape parameter .

2. If  has the basic Pareto distribution with shape parameter , then  has the standard uniform distribution. But then 
 also has the standard uniform distribution.

Since the quantile function has a simple closed form, the basic Pareto distribution can be simulated using the random quantile
method.
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Open the random quantile experiment and selected the Pareto distribution. Vary the shape parameter and note the shape of the
distribution and probability density functions. For selected values of the parameter, run the experiment 1000 times and
compare the empirical density function, mean, and standard deviation to their distributional counterparts.

The basic Pareto distribution also has simple connections to the exponential distribution.

Suppose that .

1. If  has the basic Pareto distribution with shape parameter , then  has the exponential distribution with rate
parameter .

2. If  has the exponential distribution with rate parameter , then  has the basic Pareto distribution with shape
parameter .

Proof

We use the Pareto CDF given above and the CDF of the exponential distribution.

1. If  then

which is the CDF of the exponential distribution with rate parameter .
2. If  then

which is the CDF of the basic Pareto distribution with shape parameter .

The General Pareto Distribution
As with many other distributions that govern positive variables, the Pareto distribution is often generalized by adding a scale
parameter. Recall that a scale transformation often corresponds to a change of units (dollars into Euros, for example) and thus such
transformations are of basic importance.

Suppose that  has the basic Pareto distribution with shape parameter  and that . Random variable 
 has the Pareto distribution with shape parameter  and scale parameter .

Note that  has a continuous distribution on the interval .

Distribution Functions

Suppose again that  has the Pareto distribution with shape parameter  and scale parameter .

 has distribution function  given by

Proof

Recall that  for  where  is the CDF of the basic distribution with shape parameter .

 has probability density function  given by

Proof

Recall that  for  where  is the PDF of the basic distribution with shape parameter .
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Open the special distribution simulator and select the Pareto distribution. Vary the parameters and note the shape and location
of the probability density function. For selected values of the parameters, run the simulation 1000 times and compare the
empirical density function to the probability density function.

 has quantile function  given by

1. The first quartile is .
2. The median is .
3. The third quartile is .

Proof

Recall that  for  where  is the quantile function of the basic distribution with shape
parameter .

Open the special distribution calculator and select the Pareto distribution. Vary the parameters and note the shape and location
of the probability density and distribution functions. For selected values of the parameters, compute a few values of the
distribution and quantile functions.

Moments

Suppose again that  has the Pareto distribution with shape parameter  and scale parameter 

The moments of  are given by

1.  if 
2.  if 

Proof

By definition we can take  where  has the basic Pareto distribution with shape parameter . By the linearity of
expected value, , so the result follows from the moments of  given above.

The mean and variance of  are

1.  if 
2.  if 

Open the special distribution simulator and select the Pareto distribution. Vary the parameters and note the shape and location
of the mean  standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are as follows:

1. If ,

2. If ,
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2
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2
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a> 4

kurt(X) =

3(a−2)(3 +a+2)a

2

a(a−3)(a−4)
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Recall that skewness and kurtosis are defined in terms of the standard score, and hence are invariant under scale
transformations. Thus the skewness and kurtosis of  are the same as the skewness and kurtosis of  given above.

Related Distributions

Since the Pareto distribution is a scale family for fixed values of the shape parameter, it is trivially closed under scale
transformations.

Suppose that  has the Pareto distribution with shape parameter  and scale parameter . If 
then  has the Pareto distribution with shape parameter  and scale parameter .

Proof

By definition we can take  where  has the basic Pareto distribution with shape parameter . But then 
.

The Pareto distribution is closed under positive powers of the underlying variable.

Suppose that  has the Pareto distribution with shape parameter  and scale parameter . If 
then  has the Pareto distribution with shape parameter  and scale parameter .

Proof

Again we can write  where  has the basic Pareto distribution with shape parameter . Then from the power result
above  has the basic Pareto distibution with shape parameter  and hence  has the Pareto distribution
with shape parameter  and scale parameter .

All Pareto variables can be constructed from the standard one. If  has the standard Pareto distribution and  then 
 has the Pareto distribution with shape parameter  and scale parameter .

As before, the Pareto distribution has the usual connections with the standard uniform distribution by means of the distribution
function and quantile function given above.

Suppose that .

1. If  has the standard uniform distribution then  has the Pareto distribution with shape parameter  and scale
parameter .

2. If  has the Pareto distribution with shape parameter  and scale parameter , then  has the standard uniform
distribution.

Proof

1. If  has the standard uniform distribution, then so does . Hence  has the Pareto
distribution with shape parameter  and scale parameter .

2. If  has the Pareto distribution with shape parameter  and scale parameter , then  has the standard uniform
distribution. But then  also has the standard uniform distribution.

Again, since the quantile function has a simple closed form, the basic Pareto distribution can be simulated using the random
quantile method.

Open the random quantile experiment and selected the Pareto distribution. Vary the parameters and note the shape of the
distribution and probability density functions. For selected values of the parameters, run the experiment 1000 times and
compare the empirical density function, mean, and standard deviation to their distributional counterparts.

The Pareto distribution is closed with respect to conditioning on a right-tail event.

Suppose that  has the Pareto distribution with shape parameter  and scale parameter . For ,
the conditional distribution of  given  is Pareto with shape parameter  and scale parameter .

Proof

X Z =X/b

X a ∈ (0,∞) b ∈ (0,∞) c ∈ (0,∞)

Y = cX a bc

X = bZ Z a

Y = cX = (bc)Z

X a ∈ (0,∞) b ∈ (0,∞) n ∈ (0,∞)

Y =X

n

a/n b

n

X = bZ Z a

Z

n

a/n Y = =X

n

b

n

Z

n

a/n b

n

Z a, b ∈ (0,∞)

X = bZ

1/a

a b

a, b ∈ (0,∞)

U X = b/U

1/a

a

b

X a b U = (b/X)

a

U 1−U X = (1−U) = b/F

−1

U

1/a

a b

X a b F (X)

U = 1−F (X) = (b/X)

a
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X X ≥ c a c
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Not surprisingly, its best to use right-tail distribution functions. Recall that this is the function  where  is the
ordinary CDF given above. If , them

Finally, the Pareto distribution is a general exponential distribution with respect to the shape parameter, for a fixed value of the
scale parameter.

Suppose that  has the Pareto distribution with shape parameter  and scale parameter . For fixed , the
distribution of  is a general exponential distribution with natural parameter  and natural statistic .

Proof

This follows from the definition of the general exponential family, since the pdf above can be written in the form

Computational Exercises

Suppose that the income of a certain population has the Pareto distribution with shape parameter 3 and scale parameter 1000.
Find each of the following:

1. The proportion of the population with incomes between 2000 and 4000.
2. The median income.
3. The first and third quartiles and the interquartile range.
4. The mean income.
5. The standard deviation of income.
6. The 90th percentile.

Answer
1.  so the proportion is 16.37%
2. 
3. , , 
4. 
5. 
6. 

This page titled 5.36: The Pareto Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

= 1−FF
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2
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1
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5.37: The Wald Distribution
      

The Wald distribution, named for Abraham Wald, is important in the study of Brownian motion. Specifically, the distribution
governs the first time that a Brownian motion with positive drift hits a fixed, positive value. In Brownian motion, the distribution of
the random position at a fixed time has a normal (Gaussian) distribution, and thus the Wald distribution, which governs the random
time at a fixed position, is sometimes called the inverse Gaussian distribution.

The Basic Wald Distribution

Distribution Functions

As usual, let  denote the standard normal distribution function.

The basic Wald distribution with shape parameter  is a continuous distribution on  with distribution function
 given by

The special case  gives the standard Wald distribution.

Proof

Note that as ,  and , and hence . As , 

and , and hence . Of course,  is clearly continuous on , so it remains to show that 

is increasing on this interval. Differentiating gives

where  is the standard normal PDF. Simple algebra shows that

so simplifying further gives

The probability density function  is given by

1.  increases and then decreases with mode 
2.  is concave upward then downward then upward again.

Proof

The formula for the PDF follows immediately from the proof of the CDF above, since . The first order properties come
from

and the second order properties from

Φ

λ ∈ (0,∞) (0,∞)

G

G(u) = Φ [ (u−1)]+ Φ [− (u+1)] , u ∈ (0,∞)
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√
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2π√
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− /2z

2
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g

g(u) = exp[− (u−1 ], u ∈ (0,∞)
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So  has the classic unimodal shape, but the inflection points are very complicated functions of . For the mode, note that  as
 and  as . The probability density function of the standard Wald distribution is

Open the special distribution simulator and select the Wald distribution. Vary the shape parameter and note the shape of the
probability density function. For various values of the parameter, run the simulation 1000 times and compare the empirical
density function to the probability density function.

The quantile function of the standard Wald distribution does not have a simple closed form, so the median and other quantiles must
be approximated.

Open the special distribution calculator and select the Wald distribution. Vary the shape parameter and note the shape of the
distribution and probability density functions. For selected values of the parameter, compute approximate values of the first
quartile, the median, and the third quartile.

Moments

Suppose that random variable  has the standard Wald distribution with shape parameter .

 has moment generating function  given by

Proof

The proof requires some facts about the modified Bessel function of the second kind, denoted  where the parameter .
This function is one of the two linearly independent solutions of the differential equation

The other solution, appropriately enough, is the modified Bessel function of the first kind. The function of the second kind, the
one that we care about here, is the solution that decays exponentially as . The first fact we need is that

which you can verify be direct substitution into the differential equation. The second fact that we need is the identity

Now, for the moment generating function of  we have

Combining the exponentials and doing some algebra, we can rewrite this as

The integral now has the form of the identity given above with , , and . Hence we have

(u) = exp[− (u−1 ] [15 + ( −1 +2λu(3 −5)] , u ∈ (0,∞)g
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exp[− (ax+ )]dx = , a, b ∈ (0,∞); p ∈ R∫
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m(t) = exp[− (λ−2t)x− ]dx
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Using the explicit form of  given above and doing more algebra we get

Since the moment generating function is finite in an interval containing 0, the basic Wald distribution has moments of all orders.

The mean and variance of  are

1. 
2. 

Proof

Differentiating gives

and hence  and .

So interestingly, the mean is 1 for all values of the shape parameter, while  as  and  as .

Open the special distribution simulator and select the Wald distribution. Vary the shape parameter and note the size and
location of the mean  standard deviation bar. For various values of the parameters, run the simulation 1000 times and
compare the empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

The main tool is the differential equation for the moment generating function that we used in computing the mean and
variance:

Using this recursively, we can find the first four moments of . We already know the first two: , 
. The third and fourth are

The results then follow from the standard computational formulas for the skewness and kurtosis in terms of the moments.

It follows that the excess kurtosis is . Note that  as  and  as .
Similarly,  as  and  as .

The General Wald Distribution
The basic Wald distribution is generalized into a scale family. Scale parameters often correspond to a change of units, and so are of
basic importance.

m(t) =

λ

2π

−−−
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2 [ ]K
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− −−−−−−−
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Suppose that  and that  has the basic Wald distribution with shape parameter . Then  has the
Wald distribution with shape parameter  and mean .

Justification for the name of the parameter  as the mean is given below. Note that the generalization is consistent—when 
we have the basic Wald distribution with shape parameter .

Distribution Functions

Suppose that  has the Wald distribution with shape parameter  and mean . Again, we let  denote the
standard normal distribution function.

 has distribution function  given by

Proof

Recall that the CDF  of  is related to the CDF  of  by

so the result follows from the CDF above, with  replaced by , and  with .

 has probability density function  given by

1.  increases and then decreases with mode 

2.  is concave upward then downward then upward again.

Proof

Recall that the PDF  of  is related to the PDF  of  by

Hence the result follows from the PDF above with  replaced by  and  with .

Once again, the graph of  has the classic unimodal shape, but the inflection points are complicated functions of the parameters.

Open the special distribution simulator and select the Wald distribution. Vary the parameters and note the shape of the
probability density function. For various values of the parameters, run the simulation 1000 times and compare the empirical
density function to the probability density function.

Again, the quantile function cannot be expressed in a simple closed form, so the median and other quantiles must be approximated.

Open the special distribution calculator and select the Wald distribution. Vary the parameters and note the shape of the
distribution and density functions. For selected values of the parameters, compute approximate values of the first quartile, the
median, and the third quartile.

Moments

Suppose again that  has the Wald distribution with shape parameter  and mean . By definition, we can
take  where  has the basic Wald distribution with shape parameter .

 has moment generating function  given by

λ, μ ∈ (0,∞) U λ/μ X = μU

λ μ

μ μ= 1

λ

X λ ∈ (0,∞) μ ∈ (0,∞) Φ

X F
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Proof

Recall that the MGF  of  is related to the MGF  of  by . Hence the result follows from the result MFG
above with  replaced by  and  with .

As promised, the parameter  is the mean of Wald distribution.

The mean and variance of  are

1. 
2. 

Proof

From the results for the mean and variance above and basic properties of expected value and variance, we have 
 and .

Open the special distribution simulator and select the Wald distribution. Vary the parameters and note the size and location of
the mean  standard deviation bar. For various values of the parameters, run the simulation 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

Skewness and kurtosis are invariant under scale transformations, so  and . The
results then follow from the skewness and kurtosis above, with  replaced by .

Related Distribution

As noted earlier, the Wald distribution is a scale family, although neither of the parameters is a scale parameter.

Suppose that  has the Wald distribution with shape parameters  and mean  and that . Then 
 has the Wald distribution with shape parameter  and mean .

Proof

By definition, we can take  where  has the basic Wald distribution with shape parameter . Then 
. Since  has shape parameter , the result follows from the definition.

For the next result, it's helpful to re-parameterize the Wald distribution with the mean  and the ratio . This
parametrization is clearly equivalent, since we can recover the shape parameter from the mean and ratio as . Note also that 

, the ratio of the mean to the variance. Finally, note that the moment generating function above becomes

and of course, this function characterizes the Wald distribution with this parametrization. Our next result is that the Wald
distribution is closed under convolution (corresponding to sums of independent variables) when the ratio is fixed.

Suppose that  has the Wald distribution with mean  and ratio ;  has the Wald distribution with
mean  and ratio ; and that  and  are independent. Then  has the Wald distribution with mean

 and ratio .

Proof

For , the MGF of  is

M(t) = exp[ (1− )], t <
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Hence the MGF of  is

Hence  has the Wald distribution with mean  and ratio .

In the previous result, note that the shape parameter of  is , the shape parameter of  is , and the shape parameter of 
is . Also, of course, the result generalizes to a sum of any finite number of independent Wald variables, as long as
the ratio is fixed. The next couple of results are simple corollaries.

Suppose that  is a sequence of independent variables, each with the Wald distribution with shape parameter 
 and mean . Then

1.  has the Wald distribution with shape parameter  and mean .
2.  has the Wald distribution with shape parameter  and mean .

Proof
1. This follows from the previous result and induction. The mean of  of course is . The common ratio is , and

hence the shape parameter of  is .
2. This follows from (a) and the scaling result above. The mean of  of course is  and the shape parameter is 

.

In the context of the previous theorem,  is a random sample of size  from the Wald distribution, and 
 is the sample mean. The Wald distribution is infinitely divisible:

Suppose that  has the Wald distribution with shape parameter  and mean . For every ,  has
the same distribution as  where  are independent, and each has the Wald distribution with shape
parameter  and mean .

The Lévy distribution is related to the Wald distribution, not surprising since the Lévy distribution governs the first time that a
standard Brownian motion hits a fixed positive value.

For fixed , the Wald distribution with shape parameter  and mean  converges to the Lévy distribution
with location parameter 0 and scale parameter  as .

Proof

From the formula for the CDF above, note that

But the last expression is the distribution function of the Lévy distribution with location parameter 0 and shape parameter .

The other limiting distribution, this time with the mean fixed, is less interesting.

For fixed , the Wald distribution with shape parameter  and mean  converges to point mass at  and
variance 1 as .

Proof

This time, it's better to use , the moment generating function above. By rationalizing we see that for fixed  and 
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Hence  as  and the limit is the MGF of the constant random variable .

Finally, the Wald distribution is a member of the general exponential family of distributions.

The Wald distribution is a general exponential distribution with natural parameters  and , and natural statistics 
 and .

Proof

This follows from the PDF  above. If we expand the square and simplify, we can write  in the form

This page titled 5.37: The Wald Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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5.38: The Weibull Distribution
         

In this section, we will study a two-parameter family of distributions that has special importance in reliability.

The Basic Weibull Distribution

Distribution Functions

The basic Weibull distribution with shape parameter  is a continuous distribution on  with distribution
function  given by

The special case  gives the standard Weibull distribution.

Proof

Clearly  is continuous and increasing on  with  and  as .

The Weibull distribution is named for Waloddi Weibull. Weibull was not the first person to use the distribution, but was the first to
study it extensively and recognize its wide use in applications. The standard Weibull distribution is the same as the standard
exponential distribution. But as we will see, every Weibull random variable can be obtained from a standard Weibull variable by a
simple deterministic transformation, so the terminology is justified.

The probability density function  is given by

1. If ,  is decreasing and concave upward with  as .
2. If ,  is decreasing and concave upward with mode .

3. If ,  increases and then decreases, with mode .

4. If ,  is concave downward and then upward, with inflection point at 

5. If ,  is concave upward, then downward, then upward again, with inflection points at 

Proof

These results follow from basic calculus. The PDF is  where  is the CDF above. The first order properties come from

The second order properties come from

So the Weibull density function has a rich variety of shapes, depending on the shape parameter, and has the classic unimodal shape
when . If ,  is defined at 0 also.

In the special distribution simulator, select the Weibull distribution. Vary the shape parameter and note the shape of the
probability density function. For selected values of the shape parameter, run the simulation 1000 times and compare the
empirical density function to the probability density function.

The quantile function  is given by

1. The first quartile is .
2. The median is .
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3. The third quartile is .

Proof

The formula for  comes from solving  for  in terms of .

Open the special distribution calculator and select the Weibull distribution. Vary the shape parameter and note the shape of the
distribution and probability density functions. For selected values of the parameter, compute the median and the first and third
quartiles.

The reliability function  is given by

Proof

This follows trivially from the CDF above, since .

The failure rate function  is given by

1. If ,  is decreasing with  as  and  as .
2. If ,  is constant 1.
3. If ,  is increasing with  and  as .

Proof

The formula for  follows immediately from the PDF  and the reliability function  given above, since .

Thus, the Weibull distribution can be used to model devices with decreasing failure rate, constant failure rate, or increasing failure
rate. This versatility is one reason for the wide use of the Weibull distribution in reliability. If ,  is defined at 0 also.

Moments

Suppose that  has the basic Weibull distribution with shape parameter . The moments of , and hence the mean and
variance of  can be expressed in terms of the gamma function 

 for .

Proof

For ,

Substituting  gives

So the Weibull distribution has moments of all orders. The moment generating function, however, does not have a simple, closed
expression in terms of the usual elementary functions.

In particular, the mean and variance of  are

1. 
2. 

Note that  and  as . We will learn more about the limiting distribution below.
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In the special distribution simulator, select the Weibull distribution. Vary the shape parameter and note the size and location of
the mean  standard deviation bar. For selected values of the shape parameter, run the simulation 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis also follow easily from the general moment result above, although the formulas are not particularly
helpful.

Skewness and kurtosis

1. The skewness of  is

2. The kurtosis of  is

Proof

The results follow directly from the general moment result and the computational formulas for skewness and kurtosis.

Related Distributions

As noted above, the standard Weibull distribution (shape parameter 1) is the same as the standard exponential distribution. More
generally, any basic Weibull variable can be constructed from a standard exponential variable.

Suppose that .

1. If  has the standard exponential distribution then  has the basic Weibull distribution with shape parameter .
2. If  has the basic Weibull distribution with shape parameter  then  has the standard exponential distribution.

Proof

We use distribution functions. The basic Weibull CDF is given above; the standard exponential CDF is  on 
. Note that the inverse transformations  and  are strictly increasing and map  onto .

1.  for .

2.  for .

The basic Weibull distribution has the usual connections with the standard uniform distribution by means of the distribution
function and the quantile function given above.

Suppose that .

1. If  has the standard uniform distribution then  has the basic Weibull distribution with shape parameter .
2. If  has the basic Weibull distribution with shape parameter  then  has the standard uniform distribution.

Proof

Let  denote the CDF of the basic Weibull distribution with shape parameter  and  the corresponding quantile function,
given above.

1. If  has the standard uniform distribution then so does . Hence  has the basic
Weibull distribution with shape parameter .

2. If  has the basic Weibull distribution with shape parameter  then  has the standard uniform distribution. But then
so does .

Since the quantile function has a simple, closed form, the basic Weibull distribution can be simulated using the random quantile
method.
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Open the random quantile experiment and select the Weibull distribution. Vary the shape parameter and note again the shape of
the distribution and density functions. For selected values of the parameter, run the simulation 1000 times and compare the
empirical density, mean, and standard deviation to their distributional counterparts.

The limiting distribution with respect to the shape parameter is concentrated at a single point.

The basic Weibull distribution with shape parameter  converges to point mass at 1 as .

Proof

Once again, let  denote the basic Weibull CDF with shape parameter  given above. Note that  as  for 
;  for all ; and  as  for . Except for the point of discontinuity , the

limits are the CDF of point mass at 1.

The General Weibull Distribution
Like most special continuous distributions on , the basic Weibull distribution is generalized by the inclusion of a scale
parameter. A scale transformation often corresponds in applications to a change of units, and for the Weibull distribution this
usually means a change in time units.

Suppose that  has the basic Weibull distribution with shape parameter . For , random variable 
has the Weibull distribution with shape parameter  and scale parameter .

Generalizations of the results given above follow easily from basic properties of the scale transformation.

Distribution Functions

Suppose that  has the Weibull distribution with shape parameter  and scale parameter .

 distribution function  given by

Proof

Recall that  for  where  is the CDF of the basic Weibull distribution with shape parameter , given

above.

 has probability density function  given by

1. If ,  is decreasing and concave upward with  as .
2. If ,  is decreasing and concave upward with mode .

3. If ,  increases and then decreases, with mode .

4. If ,  is concave downward and then upward, with inflection point at 

5. If ,  is concave upward, then downward, then upward again, with inflection points at 

Proof

Recall that  for  where  is the PDF of the corresponding basic Weibull distribution given above.
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Open the special distribution simulator and select the Weibull distribution. Vary the parameters and note the shape of the
probability density function. For selected values of the parameters, run the simulation 1000 times and compare the empirical
density function to the probability density function.

 has quantile function  given by

1. The first quartile is .
2. The median is .
3. The third quartile is .

Proof

Recall that  for  where  is the quantile function of the corresponding basic Weibull
distribution given above.

Open the special distribution calculator and select the Weibull distribution. Vary the parameters and note the shape of the
distribution and probability density functions. For selected values of the parameters, compute the median and the first and third
quartiles.

 has reliability function  given by

Proof

This follows trivially from the CDF  given above, since .

As before, the Weibull distribution has decreasing, constant, or increasing failure rates, depending only on the shape parameter.

 has failure rate function  given by

1. If ,  is decreasing with  as  and  as .
2. If ,  is constant .
3. If ,  is increasing with  and  as .

Moments

Suppose again that  has the Weibull distribution with shape parameter  and scale parameter . Recall that by
definition, we can take  where  has the basic Weibull distribution with shape parameter .

 for .

Proof

The result then follows from the moments of  above, since .

In particular, the mean and variance of  are

1. 
2. 

Note that  and  as .
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Open the special distribution simulator and select the Weibull distribution. Vary the parameters and note the size and location
of the mean  standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation.

Skewness and kurtosis

1. The skewness of  is

2. The kurtosis of  is

Proof

Skewness and kurtosis depend only on the standard score of the random variable, and hence are invariant under scale
transformations. So the results are the same as the skewness and kurtosis of .

Related Distributions

Since the Weibull distribution is a scale family for each value of the shape parameter, it is trivially closed under scale
transformations.

Suppose that  has the Weibull distribution with shape parameter  and scale parameter . If 
then  has the Weibull distribution with shape parameter  and scale parameter .

Proof

By definition, we can take  where  has the basic Weibull distribution with shape parameter . But then 
.

The exponential distribution is a special case of the Weibull distribution, the case corresponding to constant failure rate.

The Weibull distribution with shape parameter 1 and scale parameter  is the exponential distribution with scale
parameter .

Proof

When , the Weibull CDF  is given by  for . But this is also the CDF of the exponential
distribution with scale parameter .

More generally, any Weibull distributed variable can be constructed from the standard variable. The following result is a simple
generalization of the connection between the basic Weibull distribution and the exponential distribution.

Suppose that .

1. If  has the standard exponential distribution (parameter 1), then  has the Weibull distribution with shape
parameter  and scale parameter .

2. If  has the Weibull distribution with shape parameter  and scale parameter , then  has the standard
exponential distribution.

Proof

The results are a simple consequence of the corresponding result above

1. If  has the standard exponential distribution then  has the basic Weibull distribution with shape parameter , and
hence  has the Weibull distribution with shape parameter  and scale parameter .

2. If  has the Weibull distribution with shape parameter  and scale parameter  then  has the basic Weibull distribution
with shape parameter , and hence  has the standard exponential distributioon.
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The Rayleigh distribution, named for William Strutt, Lord Rayleigh, is also a special case of the Weibull distribution.

The Rayleigh distribution with scale parameter  is the Weibull distribution with shape parameter  and scale
parameter .

Proof

The Rayleigh distribution with scale parameter  has CDF  given by

But this is also the Weibull CDF with shape parameter  and scale parameter .

Recall that the minimum of independent, exponentially distributed variables also has an exponential distribution (and the rate
parameter of the minimum is the sum of the rate parameters of the variables). The Weibull distribution has a similar, but more
restricted property.

Suppose that  is an independent sequence of variables, each having the Weibull distribution with shape
parameter  and scale parameter . Then  has the Weibull distribution with
shape parameter  and scale parameter .

Proof

Recall that the reliability function of the minimum of independent variables is the product of the reliability functions of the
variables. It follows that  has reliability function given by

and so the result follows.

As before, Weibull distribution has the usual connections with the standard uniform distribution by means of the distribution
function and the quantile function given above..

Suppose that .

1. If  has the standard uniform distribution then  has the Weibull distribution with shape parameter  and
scale parameter .

2. If  has the basic Weibull distribution with shape parameter  then  has the standard uniform
distribution.

Proof

Let  denote the Weibull CDF with shape parameter  and scale parameter  and so that  is the corresponding quantile
function.

1. If  has the standard uniform distribution then so does . Hence  has the Weibull
distribution with shape parameter  and scale parameter .

2. If  has the Weibull distribution with shape parameter  and scale parameter  then  has the standard uniform
distribution. But then so does .

Again, since the quantile function has a simple, closed form, the Weibull distribution can be simulated using the random quantile
method.

Open the random quantile experiment and select the Weibull distribution. Vary the parameters and note again the shape of the
distribution and density functions. For selected values of the parameters, run the simulation 1000 times and compare the
empirical density, mean, and standard deviation to their distributional counterparts.

The limiting distribution with respect to the shape parameter is concentrated at a single point.

b ∈ (0,∞) 2

b2

–

√

b F

F (x) = 1−exp(− ), x ∈ [0,∞)

x

2

2b

2

(5.38.19)
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1

X

2

X

n

k b/n
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k, b ∈ (0,∞)

U X = b(−lnU)
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k

F k b F
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)
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The Weibull distribution with shape parameter  and scale parameter  converges to point mass at  as 
.

Proof

If  has the Weibull distribution with shape parameter  and scale parameter , then we can write  where  has the
basic Weibull distribution with shape parameter . We showed above that the distribution of  converges to point mass at 1, so
by the continuity theorem for convergence in distribution, the distribution of  converges to point mass at .

Finally, the Weibull distribution is a member of the family of general exponential distributions if the shape parameter is fixed.

Suppose that  has the Weibull distribution with shape parameter  and scale parameter . For fixed , 
has a general exponential distribution with respect to , with natural parameter  and natural statistics .

Proof

This follows from the definition of the general exponential distribution, since the Weibull PDF can be written in the form

Computational Exercises

The lifetime  of a device (in hours) has the Weibull distribution with shape parameter  and scale parameter .

1. Find the probability that the device will last at least 1500 hours.
2. Approximate the mean and standard deviation of .
3. Compute the failure rate function.

Answer
1. 
2. , 
3. 

This page titled 5.38: The Weibull Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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k→∞

X k b X = bZ Z
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b k−1 lnX

f(t) = exp(− ) exp[(k−1) ln t], t ∈ (0,∞)

k

b

k

t

k
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T k= 1.2 b = 1000
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5.39: Benford's Law
      

Benford's law refers to probability distributions that seem to govern the significant digits in real data sets. The law is named for the
American physicist and engineer Frank Benford, although the “law” was actually discovered earlier by the astronomer and mathematician
Simon Newcomb.

To understand Benford's law, we need some preliminaries. Recall that a positive real number  can be written uniquely in the form 
 (sometimes called scientific notation) where  is the mantissa and  is the exponent (both of these terms are

base 10, of course). Note that

where the logarithm function is the base 10 common logarithm instead of the usual base  natural logarithm. In the old days BC (before
calculators), one would compute the logarithm of a number by looking up the logarithm of the mantissa in a table of logarithms, and then
adding the exponent. Of course, these remarks apply to any base , not just base 10. Just replace 10 with  and the common logarithm
with the base  logarithm.

Distribution of the Mantissa

Distribution Functions

Suppose now that  is a number selected at random from a certain data set of positive numbers. Based on empirical evidence from a
number of different types of data, Newcomb, and later Benford, noticed that the mantissa  of  seemed to have distribution function 

 for . We will generalize this to an arbitrary base .

The Benford mantissa distribution with base , is a continuous distribution on  with distribution function  given by

The special case  gives the standard Benford mantissa distribution.

Proof

Note that  is continuous and strictly increasing on  with  and .

The probability density function  is given by

1.  is decreasing with mode .
2.  is concave upward.

Proof

These results follow from the CDF  above and standard calculus. Recall that .

Open the Special Distribution Simulator and select the Benford mantissa distribution. Vary the base  and note the shape of the
probability density function. For various values of , run the simulation 1000 times and compare the empirical density function to the
probability density function.

The quantile function  is given by

1. The first quartile is 

2. The median is 

3. The third quartile is 

Proof

The formula for  follows by solving  for  in terms of .

Numerical values of the quartiles for the standard (base 10) distribution are given in an exercise below.

x

x = y ⋅ 10

n

y ∈ [ , 1)

1

10

n ∈ Z

log x = log y+n (5.39.1)

e

b > 1 b

b

X

Y X

F (y) = 1+log y y ∈ [1/10, 1) b > 1

b ∈ (1,∞) [1/b, 1) F

F (y) = 1+ y, y ∈ [1/b, 1)log

b
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b = 10

F [1/b, 1) F (1/b) = 0 F (1) = 1

f

f(y) = , y ∈ [1/b, 1)

1

y lnb
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Open the special distribution calculator and select the Benford mantissa distribution. Vary the base and note the shape and location of
the distribution and probability density functions. For selected values of the base, compute the median and the first and third quartiles.

Moments

Assume that  has the Benford mantissa distribution with base .

The moments of  are

Proof

For ,

Note that for fixed ,  as  and  as . We will learn more about the limiting distribution below. The
mean and variance follow easily from the general moment result.

Mean and variance

1. The mean of  is

2. the variance of  is

Numerical values of the mean and variance for the standard (base 10) distribution are given in an exercise below.

In the Special Distribution Simulator, select the Benford mantissa distribution. Vary the base  and note the size and location of the
mean  standard deviation bar. For selected values of , run the simulation 1000 times and compare the empirical mean and standard
deviation to the distribution mean and standard deviation.

Related Distributions

The Benford mantissa distribution has the usual connections to the standard uniform distribution by means of the distribution function and
quantile function given above.

Suppose that .

1. If  has the standard uniform distribution then  has the Benford mantissa distribution with base .
2. If  has the Benford mantissa distribution with base  then  has the standard uniform distribution.

Proof
1. If  has the standard uniform distribution then so does  and hence  has the Benford mantissa

distribution with base .
2. The CDF  is strictly increasing on . Hence if  has the Benford mantissa distribution with base  then 

 has the standard uniform distribution and hence so does .

Since the quantile function has a simple closed form, the Benford mantissa distribution can be simulated using the random quantile method.

Open the random quantile experiment and select the Benford mantissa distribution. Vary the base  and note again the shape and
location of the distribution and probability density functions. For selected values of , run the simulation 1000 times and compare the
empirical density function, mean, and standard deviation to their distributional counterparts.

Also of interest, of course, are the limiting distributions of  with respect to the base .

The Benford mantissa distribution with base  converges to

Y b ∈ (1,∞)

Y

E ( ) = , n ∈ (0,∞)Y

n

−1b

n

n lnbb

n

(5.39.5)

n> 0
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1
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∫

1
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n ln(b)
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n> 0 E( ) → 1Y

n

b ↓ 1 E( ) → 0Y

n

b→∞

Y

E(Y ) =

b−1

b lnb
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Y

var(Y ) = [ − ]

b−1

lnbb

2

b+1
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1. Point mass at 1 as .
2. Point mass at 0 as .

Proof

Note that the CDF of  above can be written as  for , and of course we also have  for 
 and  for .

1. As , , and , so in the limit we have  for  and  for .
2. As , , and again , so in the limit we have  for  and  for 

Since the probability density function is bounded on a bounded support interval, the Benford mantissa distribution can also be simulated via
the rejection method.

Open the rejection method experiment and select the Benford mantissa distribution. Vary the base  and note again the shape and
location of the probability density functions. For selected values of , run the simulation 1000 times and compare the empirical density
function, mean, and standard deviation to their distributional counterparts.

Distributions of the Digits
Assume now that the base is a positive integer , which of course is the case in standard number systems. Suppose that the
sequence of digits of our mantissa  (in base ) is , so that

Thus, our leading digit  takes values in , while each of the other significant digits takes values in .
Note that  is a stochastic process so at least we would like to know the finite dimensional distributions. That is, we would like
to know the joint probability density function of the first  digits for every . But let's start, appropriately enough, with the first digit
law. The leading digit is the most important one, and fortunately also the easiest to analyze mathematically.

First Digit Law

 has probability density function  given by  for . The
density function  is decreasing and hence the mode is .

Proof

Note that  if and only if  for . Hence using the PDF of  above,

Note that when ,  deterministically, which of course has to be the case. The first significant digit of a number in base 2 must be
1. Numerical values of  for the standard (base 10) distribution are given in an exercise below.

In the Special Distribution Simulator, select the Benford first digit distribution. Vary the base  with the input control and note the shape
of the probability density function. For various values of , run the simulation 1000 times and compare the empirical density function to
the probability density function.

 has distribution function  given by  for .

Proof

Using the PDF of  above note that

More generally,  for 

 has quantile function  given by  for .

1. The first quartile is .

b ↓ 1

b ↑ ∞

Y F (y) = 1+ln(y)/ ln(b) 1/b ≤ y < 1 F (y) = 0

y < 1/b F (y) = 1 y ≥ 1

b ↓ 1 1/b ↑ 1 1+ln(y)/ ln(b) → 1 F (y) = 0 y < 1 F (y) = 1 y > 1

b ↑ ∞ 1/b ↓ 0 1+ln(y)/ ln(b) → 1 F (y) = 0 y < 0 F (y) = 1 y > 0).
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2. The median is .
3. The third quartile is .

Proof

As usual, the formula for  follows from the CDF , by solving  for  in terms of .

Numerical values of the quantiles for the standard (base 10) distribution are given in an exercise below.

Open the special distribution calculator and choose the Benford first digit distribution. Vary the base and note the shape and location of
the distribution and probability density functions. For selected values of the base, compute the median and the first and third quartiles.

For the most part the moments of  do not have simple expressions. However, we do have the following result for the mean.

.

Proof

From the PDF of  above and using standard properties of the logarithm,

The product in the displayed equation simplifies to , and the base  logarithm of this expression is 
.

Numerical values of the mean and variance for the standard (base 10) distribution are given in an exercise below.

Opne the Special Distribution Simulator and select the Benford first digit distribution. Vary the base  with the input control and note
the size and location of the mean  standard deviation bar. For various values of , run the simulation 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation..

Since the quantile function has a simple, closed form, the Benford first digit distribution can be simulated via the random quantile method.

Open the random quantile experiment and select the Benford first digit distribution. Vary the base  and note again the shape and
location of the probability density function. For selected values of the base, run the experiment 1000 times and compare the empirical
density function, mean, and standard deviation to their distributional counterparts.

Higher Digits

Now, to compute the joint probability density function of the first  significant digits, some additional notation will help.

If  and  for , let

Of course, this is just the base  version of what we do in our standard base 10 system: we represent integers as strings of digits between 0
and 9 (except that the first digit cannot be 0). Here is a base 5 example:

The joint probability density function  of  is given by

Proof

Note that . where

Hence using the PDF of  and properties of logarithms,
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The probability density function of  in the standard (base 10) case is given in an exercise below. Of course, the probability density
function of a given digit can be obtained by summing the joint probability density over the unwanted digits in the usual way. However,
except for the first digit, these functions do not reduce to simple expressions.

The probability density function  of  is given by

The probability density function of  in the standard (base 10) case is given in an exercise below.

Theoretical Explanation

Aside from the empirical evidence noted by Newcomb and Benford (and many others since), why does Benford's law work? For a
theoretical explanation, see the article A Statistical Derivation of the Significant Digit Law by Ted Hill.

Computational Exercises

In the following exercises, suppose that  has the standard Benford mantissa distribution (the base 10 decimal case), and that 
are the digits of .

Find each of the following for the mantissa 

1. The density function .
2. The mean and variance
3. The quartiles

Answer

1. 

2. , 
3. , , 

For , find each of the following numerically

1. The probability density function
2. The mean and variance
3. The quartiles

Answer

1. 

1 0.3010

2 0.1761

3 0.1249

4 0.0969

5 0.0792

6 0.0669

7 0.0580

8 0.0512

9 0.0458

2. , 
3. , , 

( , ,… , ) = dy = (u)− (l) = ([ ⋯ +1)− ([ ⋯ , )h
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Explicitly compute the values of the joint probability density function of .

Answer

2 3 4 5 6 7 8 9

0.0414 0.0212 0.0142 0.0107 0.0086 0.0072 0.0062 0.0054 0.0048

1 0.0378 0.0202 0.0138 0.0105 0.0084 0.0071 0.0061 0.0053 0.0047

2 0.0348 0.0193 0.0134 0.0102 0.0083 0.0069 0.0060 0.0053 0.0047

3 0.0322 0.0185 0.0130 0.0100 0.0081 0.0068 0.0059 0.0052 0.0046

4 0.0300 0.0177 0.0126 0.0098 0.0080 0.0067 0.0058 0.0051 0.0046

5 0.0280 0.0170 0.0122 0.0092 0.0078 0.0066 0.0058 0.0051 0.0045

6 0.0263 0.0164 0.0119 0.0093 0.0077 0.0065 0.0057 0.0050 0.0045

7 0.0248 0.0158 0.0116 0.0091 0.0076 0.0064 0.0056 0.0050 0.0045

8 0.0235 0.0152 0.0113 0.0090 0.0074 0.0063 0.0055 0.0049 0.0044

9 0.0223 0.0147 0.0110 0.0088 0.0073 0.0062 0.0055 0.0049 0.0044

For , find each of the following numerically

1. The probability density function
2. 
3. 

Answer

1. 

0 0.1197

1 0.1139

2 0.1088

3 0.1043

4 0.1003

5 0.0967

6 0.0934

7 0.0904

8 0.0876

9 0.0850

2. 
3. 

Comparing the result for  and the result result for  , note that the distribution of  is flatter than the distribution of . In general, it
turns out that distribution of  converges to the uniform distribution on  as . Interestingly, the digits are
dependent.

 and  are dependent.

Proof

This result follows from the joint PDF, the marginal PDF of , and the marginal PDF of  above.

Find each of the following.
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5.40: The Zeta Distribution
       

The zeta distribution is used to model the size or ranks of certain types of objects randomly chosen from certain types of
populations. Typical examples include the frequency of occurrence of a word randomly chosen from a text, or the population rank
of a city randomly chosen from a country. The zeta distribution is also known as the Zipf distribution, in honor of the American
linguist George Zipf.

Basic Theory

The Zeta Function

The Riemann zeta function , named after Bernhard Riemann, is defined as follows:

You might recall from calculus that the series in the zeta function converges for  and diverges for .

Figure : Graph of  on the interval 

The zeta function satifies the following properties:

1.  is decreasing.
2.  is concave upward.
3.  as 
4.  as 

The zeta function is transcendental, and most of its values must be approximated. However,  can be given explicitly for even
integer values of ; in particular,  and .

The Probability Density Function

The zeta distribution with shape parameter  is a discrete distribution on  with probability density function 
given by.

1.  is decreasing with mode .
2. When smoothed,  is concave upward.

Proof

Clearly  is a valid PDF, since by definition,  is the normalizing constant for the function  on . Part (a) is clear.
For part (b), note that the function  on  has a positive second derivative.
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Open the special distribution simulator and select the zeta distribution. Vary the shape parameter and note the shape of the
probability density function. For selected values of the parameter, run the simulation 1000 times and compare the empirical
density function to the probability density function.

The distribution function and quantile function do not have simple closed forms, except in terms of other special functions.

Open the special distribution calculator and select the zeta distribution. Vary the parameter and note the shape of the
distribution and probability density functions. For selected values of the parameter, compute the median and the first and third
quartiles.

Moments

Suppose that  has the zeta distribution with shape parameter . The moments of  can be expressed easily in terms of
the zeta function.

If , . If ,

Proof

Note that

If , the last sum diverges to . If , the sum converges to 

The mean and variance of  are as follows:

1. If ,

2. If ,

Open the special distribution simulator and select the zeta distribution. Vary the parameter and note the shape and location of
the mean  standard deviation bar. For selected values of the parameter, run the simulation 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are as follows:

1. If ,

2. If ,

Proof

These results follow from the general moment result above and standard computational formulas for skewness and kurtosis.
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The probability generating function of  can be expressed in terms of the polylogarithm function  that was introduced in the
section on the exponential-logarithmic distribution. Recall that the polylogarithm of order  is defined by

 has probability generating function  given by

Proof

Note that

The last sum is .

Related Distributions

In an algebraic sense, the zeta distribution is a discrete version of the Pareto distribution. Recall that if , the Pareto
distribution with shape parameter  is a continuous distribution on  with probability density function

Naturally, the limits of the zeta distribution with respect to the shape parameter  are of interest.

The zeta distribution with shape parameter  converges to point mass at 1 as .

Proof

For the PDF  above, note that  as  and for ,  as 

Finally, the zeta distribution is a member of the family of general exponential distributions.

Suppose that  has the zeta distribution with parameter . Then the distribution is a one-parameter exponential family with
natural parameter  and natural statistic .

Proof

This follows from the definition of the general exponential distribution, since the zeta PDF can be written in the form

Computational Exercises

Let  denote the frequency of occurrence of a word chosen at random from a certain text, and suppose that  has the zeta
distribution with parameter . Find .

Answer

Suppose that  has the zeta distribution with parameter . Approximate each of the following:

1. 
2. 
3. 
4. 
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Answer
1. 
2. 
3. 
4. 

This page titled 5.40: The Zeta Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

E(N) ≈ 1.109

var(N) ≈ 0.025

skew(N) ≈ 11.700

kurt(N) ≈ 309.19
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5.41: The Logarithmic Series Distribution
     

The logarithmic series distribution, as the name suggests, is based on the standard power series expansion of the natural logarithm
function. It is also sometimes known more simply as the logarithmic distribution.

Basic Theory

Distribution Functions

The logarithmic series distribution with shape parameter  is a discrete distribution on  with probability density
function  given by

1.  is decreasing with mode .
2. When smoothed,  is concave upward.

Proof

Recall that the standard power series for , obtained by integrating the geometric series , is

For the properties, consider the function  on . The first derivative is

which is negative, and the second derivative is

which is positive

Open the Special Distribution Simulator and select the logarithmic series distribution. Vary the parameter and note the shape of
the probability density function. For selected values of the parameter, run the simulation 1000 times and compare the empirical
density function to the probability density function.

The distribution function and the quantile function do not have simple, closed forms in terms of the standard elementary functions.

Open the special distribution calculator and select the logarithmic series distribution. Vary the parameter and note the shape of
the distribution and probability density functions. For selected values of the parameters, compute the median and the first and
third quartiles.

Moments

Suppose again that random variable  has the logarithmic series distribution with shape parameter . Recall that the
permutation formula is  for  and . The factorial moments of  are  for 

.

The factorial moments of  are given by

Proof
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Recall that a power series can be differentialed term by term within the open interval of convergence. Hence

The mean and variance of  are

1. 

2. 

Proof

These results follow easily from the factorial moments. For part (b), note first that

The result then then follows from the usual computational formula .

Open the special distribution simulator and select the logarithmic series distribution. Vary the parameter and note the shape of
the mean  standard deviation bar. For selected values of the parameter, run the simulation 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation.

The probability generating function  of  is given by

Proof

The factorial moments above can also be obtained from the probability generating function, since  for 
.

Related Distributions

Naturally, the limits of the logarithmic series distribution with respect to the parameter  are of interest.

The logarithmic series distribution with shape parameter  converges to point mass at 1 as .

Proof

An application of L'Hospitals rule to the PGF  above shows that , which is the PGF of point mass at 1.

The logarithmic series distribution is a power series distribution associated with the function  for 
.

Proof

This follows from the definition of a power series distribution, since as noted in the PDF proof,
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The moment results above actually follow from general results for power series distributions. The compound Poisson distribution
based on the logarithmic series distribution gives a negative binomial distribution.

Suppose that  is a sequence of independent random variables each with the logarithmic series distribution
with parameter . Suppose also that  is independent of  and has the Poisson distribution with rate parameter 

. Then  has the negative binomial distribution on  with parameters  and 

Proof

The PGF of  is , where  is the PGF of the logarithmic series distribution, and where  is the PGF of the Poisson
distribution so that  for . Thus we have

With a little algebra, this can be written in the form

which is the PGF of the negative binomial distribution with parameters  and .

This page titled 5.41: The Logarithmic Series Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by
Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

6: Random Samples
Point estimation refers to the process of estimating a parameter from a probability distribution, based on observed data from the
distribution. It is one of the core topics in mathematical statistics. In this chapter, we will explore the most common methods of
point estimation: the method of moments, the method of maximum likelihood, and Bayes' estimators. We also study important
properties of estimators, including sufficiency and completeness, and the basic question of whether an estimator is the best possible
one.

6.1: Introduction
6.2: The Sample Mean
6.3: The Law of Large Numbers
6.4: The Central Limit Theorem
6.5: The Sample Variance
6.6: Order Statistics
6.7: Sample Correlation and Regression
6.8: Special Properties of Normal Samples
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6.1: Introduction
   

The Basic Statistical Model

In the basic statistical model, we have a population of objects of interest. The objects could be persons, families, computer chips,
acres of corn. In addition, we have various measurements or variables defined on the objects. We select a sample from the
population and record the variables of interest for each object in the sample. Here are a few examples based on the data sets in this
project:

In the M&M data, the objects are bags of M&Ms of a specified size. The variables recorded for a bag of M&Ms are net weight
and the counts for red, green, blue, orange, yellow, and brown candies.
In the cicada data, the objects are cicadas from the middle Tennessee area. The variables recorded for a cicada are body weight,
wing length, wing width, body length, gender, and species.
In Fisher's iris data, the objects are irises. The variables recorded for an iris are petal length, petal width, sepal length, sepal
width, and type.
In the Polio data set, the objects are children. Although many variables were probably recorded for a child, the two crucial
variables, both binary, were whether or not the child was vaccinated, and whether or not the child contracted Polio within a
certain time period.
In the Challenger data sets, the objects are Space Shuttle launches. The variables recorded are temperature at the time of launch
and various measures of O-ring erosion of the solid rocket boosters.
In Michelson's data set, the objects are beams of light and the variable recorded is speed.
In Pearson's data set, the objects are father-son pairs. The variables are the height of the father and the height of the son.
In Snow's data set, the objects are persons who died of cholera. The variables record the address of the person.
In one of the SAT data sets, the objects are states and the variables are participation rate, average SAT Math score and average
SAT Verbal score.

Thus, the observed outcome of a statistical experiment (the data) has the form  where  is the vector of
measurements for the th object chosen from the population. The set  of possible values of  (before the experiment is conducted)
is called the sample space. It is literally the space of samples. Thus, although the outcome of a statistical experiment can have quite
a complicated structure (a vector of vectors), the hallmark of mathematical abstraction is the ability to gray out the features that are
not relevant at any particular time, to treat a complex structure as a single object. This we do with the outcome  of the experiment.

The techniques of statistics have been enormously successful; these techniques are widely used in just about every subject that
deals with quantification—the natural sciences, the social sciences, law, and medicine. On the other hand, statistics has a legalistic
quality and a great deal of terminology and jargon that can make the subject a bit intimidating at first. In the rest of this section, we
begin discussing some of this terminology.

The Empirical Distribution

Suppose again that the data have the form  where  is the vector of measurements for the th object chosen.
The empirical distribution associated with  is the probability distribution that places probability  at each . Thus, if the
values are distinct, the empirical distribution is the discrete uniform distribution on . More generally, if  occurs 
times in the data, then the empirical distribution assigns probability  to . Thus, every finite data set defines a probability
distribution.

Statistics

Technically, a statistic  is an observable function of the outcome  of the experiment. That is, a statistic is a computable
function defined on the sample space . The term observable means that the function should not contain any unknown quantities,
because we need to be able to compute the value  of the statistic from the observed data . As with the data , a statistic  may
have a complicated structure; typically,  is vector valued. Indeed, the outcome  of the experiment is itself is a statistic; all other
statistics are derived from .

Statistics  and  are equivalent if there exists a one-to-one function  from the range of  onto the range of  such that .
Equivalent statistics give equivalent information about .
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Statistics  and  are equivalent if and only if the following condition holds: for any  and ,  if and
only if .

Equivalence really is an equivalence relation on the collection of statistics for a given statistical experiment. That is, if , ,
and  are arbitrary statistics then

1.  is equivalent to  (the reflexive property).
2. If  is equivalent to  then  is equivalent to  (the symmetric property).
3. If  is equivalent to  and  is equivalent to  then  is equivalent to  (the transitive property).

Descriptive and Inferential Statistics

There are two broad branches of statistics. The term descriptive statistics refers to methods for summarizing and displaying the
observed data . As the name suggests, the methods of descriptive statistics usually involve computing various statistics (in the
technical sense) that give useful information about the data: measures of center and spread, measures of association, and so forth.
In the context of descriptive statistics, the term parameter refers to a characteristic of the entire population.

The deeper and more useful branch of statistics is known as inferential statistics. Our point of view in this branch is that the
statistical experiment (before it is conducted) is a random experiment with a probability measure  on an underlying sample space.
Thus, the outcome  of the experiment is an observed value of a random variable  defined on this probability space, with the
distribution of  not completely known to us. Our goal is to draw inferences about the distribution of  from the observed value 

. Thus, in a sense, inferential statistics is the dual of probability. In probability, we try to predict the value of  assuming
complete knowledge of the distribution. In statistics, by contrast, we observe the value of  of the random variable  and try to
infer information about the underlying distribution of . In inferential statistics, a statistic (a function of ) is itself a random
variable with a distribution of its own. On the other hand, the term parameter refers to a characteristic of the distribution of .
Often the inferential problem is to use various statistics to estimate or test hypotheses about a parameter. Another way to think of
inferential statistics is that we are trying to infer from the empirical distribution associated with the observed data  to the true
distribution associated with .

There are two basic types of random experiments in the general area of inferential statistics. A designed experiment, as the name
suggests, is carefully designed to study a particular inferential question. The experimenter has considerable control over how the
objects are selected, what variables are to be recorded for these objects, and the values of certain of the variables. In an
observational study, by contrast, the researcher has little control over these factors. Often the researcher is simply given the data set
and asked to make sense out of it. For example, the Polio field trials were designed experiments to study the effectiveness of the
Salk vaccine. The researchers had considerable control over how the children were selected, and how the children were assigned to
the treatment and control groups. By contrast, the Challenger data sets used to explore the relationship between temperature and O-
ring erosion are observational studies. Of course, just because an experiment is designed does not mean that it is well designed.

Difficulties

A number of difficulties can arise when trying to explore an inferential question. Often, problems arise because of confounding
variables, which are variables that (as the name suggests) interfere with our understanding of the inferential question. In the first
Polio field trial design, for example, age and parental consent are two confounding variables that interfere with the determination
of the effectiveness of the vaccine. The entire point of the Berkeley admissions data, to give another example, is to illustrate how a
confounding variable (department) can create a spurious correlation between two other variables (gender and admissions status).
When we correct for the interference caused by a confounding variable, we say that we have controlled for the variable.

Problems also frequently arise because of measurement errors. Some variables are inherently difficult to measure, and systematic
bias in the measurements can interfere with our understanding of the inferential question. The first Polio field trial design again
provides a good example. Knowledge of the vaccination status of the children led to systematic bias by doctors attempting to
diagnose polio in these children. Measurement errors are sometimes caused by hidden confounding variables.

Confounding variables and measurement errors abound in political polling, where the inferential question is who will win an
election. How do confounding variables such as race, income, age, and gender (to name just a few) influence how a person will
vote? How do we know that a person will vote for whom she says she will, or if she will vote at all (measurement errors)? The
Literary Digest poll in the 1936 presidential election and the professional polls in the 1948 presidential election illustrate these
problems.
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Confouding variables, measurement errors and other causes often lead to selection bias, which means that the sample does not
represent the population with respect to the inferential question at hand. Often randomization is used to overcome the effects of
confounding variables and measurement errors.

Random Samples

The most common and important special case of the inferential statistical model occurs when the observation variable

is a sequence of independent and identically distributed random variables. Again, in the standard sampling model,  is itself a
vector of measurements for the th object in the sample, and thus, we think of  as independent copies of an
underlying measurement vector . In this case,  is said to be a random sample of size  from the distribution of 

.

Variables
The mathematical operations that make sense for variable in a statistical experiment depend on the type and level of measurement
of the variable.

Type

Recall that a real variable  is continuous if the possible values form an interval of real numbers. For example, the weight variable
in the M&M data set, and the length and width variables in Fisher's iris data are continuous. In contrast, a discrete variable is one
whose set of possible values forms a discrete set. For example, the counting variables in the M&M data set, the type variable in
Fisher's iris data, and the denomination and suit variables in the card experiment are discrete. Continuous variables represent
quantities that can, in theory, be measured to any degree of accuracy. In practice, of course, measuring devices have limited
accuracy so data collected from a continuous variable are necessarily discrete. That is, there is only a finite (but perhaps very large)
set of possible values that can actually be measured. So, the distinction between a discrete and continuous variable is based on what
is theoretically possible, not what is actually measured. Some additional examples may help:

A person's age is usually given in years. However, one can imagine age being given in months, or weeks, or even (if the time of
birth is known to a sufficient accuracy) in seconds. Age, whether of devices or persons, is usually considered to be a continuous
variable.
The price of an item is usually given (in the US) in dollars and cents, and of course, the smallest monetary object in circulation
is the penny ($0.01). However, taxes are sometimes given in mills ($0.001), and one can imagine smaller divisions of a dollar,
even if there are no coins to represent these divisions. Measures of wealth are usually thought of as continuous variables.
On the other hand, the number of persons in a car at the time of an accident is a fundamentally discrete variable.

Levels of Measurement

A real variable  is also distinguished by its level of measurement.

Qualitative variables simply encode types or names, and thus few mathematical operations make sense, even if numbers are used
for the encoding. Such variables have the nominal level of measurement. For example, the type variable in Fisher's iris data is
qualitative. Gender, a common variable in many studies of persons and animals, is also qualitative. Qualitative variables are almost
always discrete; it's hard to imagine a continuous infinity of names.

A variable for which only order is meaningful is said to have the ordinal level of measurement; differences are not meaningful
even if numbers are used for the encoding. For example, in many card games, the suits are ranked, so the suit variable has the
ordinal level of measurement. For another example, consider the standard 5-point scale (terrible, bad, average, good, excellent)
used to rank teachers, movies, restaurants etc.

A quantitative variable for which difference, but not ratios are meaningful is said to have the interval level of measurement.
Equivalently, a variable at this level has a relative, rather than absolute, zero value. Typical examples are temperature (in Fahrenheit
or Celsius) or time (clock or calendar).

Finally, a quantitative variable for which ratios are meaningful is said to have the ratio level of measurement. A variable at this
level has an absolute zero value. The count and weight variables in the M&M data set, and the length and width variables in
Fisher's iris data are examples.
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Subsamples

In the basic statistical model, subsamples corresponding to some of the variables can be constructed by filtering with respect to
other variables. This is particularly common when the filtering variables are qualitative. Consider the cicada data for example. We
might be interested in the quantitative variables body weight, body length, wing width, and wing length by species, that is,
separately for species 0, 1, and 2. Or, we might be interested in these quantitative variables by gender, that is separately for males
and females.

Exercises

Study Michelson's experiment to measure the velocity of light.

1. Is this a designed experiment or an observational study?
2. Classify the velocity of light variable in terms of type and level of measurement.
3. Discuss possible confounding variables and problems with measurement errors.

Answer
1. Designed experiment
2. Continuous, interval. The level of measurement is only interval because the recorded variable is the speed of light in 

 minus  (to make the numbers simpler). The actual speed in  is a continuous, ratio variable.

Study Cavendish's experiment to measure the density of the earth.

1. Is this a designed experiment or an observational study?
2. Classify the density of earth variable in terms of type and level of measurement.
3. Discuss possible confounding variables and problems with measurement errors.

Answer
1. Designed experiment
2. Continuous, ratio.

Study Short's experiment to measure the parallax of the sun.

1. Is this a designed experiment or an observational study?
2. Classify the parallax of the sun variable in terms of type and level of measurement.
3. Discuss possible confounding variables and problems with measurement errors.

Answer
1. Observational study
2. Continuous, ratio.

In the M&M data, classify each variable in terms of type and level of measurement.

Answer

Each color count variable: discrete, ratio; Net weight: continuous, ratio

In the Cicada data, classify each variable in terms of type and level of measurement.

Answer

Body weight, wing length, wing width, body length: continuous, ratio. Gender, type: discrete, nominal

In Fisher's iris data, classify each variable in terms of type and level of measurement.

Answer

Petal width, petal length, sepal width, sepal length: continuous, ratio. Type: discrete, nominal

Study the Challenger experiment to explore the relationship between temperature and O-ring erosion.

1. Is this a designed experiment or an observational study?

km/hr 299 000 km/hr
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2. Classify each variable in terms of type and level of measurement.
3. Discuss possible confounding variables and problems with measurement errors.

Answer
1. Observational study
2. Temperature: continuous, interval; Erosion: continuous, ratio; Damage index: discrete, ordinal

In the Vietnam draft data, classify each variable in terms of type and level of measurement.

Answer

Birth month: discrete, interval; Birth day: discrete, interval

In the two SAT data sets, classify each variable in terms of type and level of measurement.

Answer

SAT math and verbal scores: probably continuous, ratio; State: discrete, nominal; Year: discrete, interval

Study the Literary Digest experiment to to predict the outcome of the 1936 presidential election.

1. Is this a designed experiment or an observational study?
2. Classify each variable in terms of type and level of measurement.
3. Discuss possible confounding variables and problems with measurement errors.

Answer
1. designed experiment, although poorly designed
2. State: discrete, nominal; Electoral votes: discrete, ratio; Landon count: discrete, ratio; Roosevelt count: discrete, ratio

Study the 1948 polls to predict the outcome of the presidential election between Truman and Dewey. Are these designed
experiments or an observational studies?

Answer

Designed experiments, but poorly designed

Study Pearson's experiment to explore the relationship between heights of fathers and heights of sons.

1. Is this a designed experiment or an observational study?
2. Classify each variable in terms of type and level of measurement.
3. Discuss possible confounding variables.

Answer
1. Observational study
2. height of the father: continuous ratio; height of the son: continuous ratio

Study the Polio field trials.

1. Are these designed experiments or observational studies?
2. Identify the essential variables and classify each in terms of type and level of measurement.
3. Discuss possible confounding variables and problems with measurement errors.

Answer
1. designed experiments
2. vacination status: discrete, nominal; Polio status: discrete, nominal

Identify the parameters in each of the following:

1. Buffon's Coin Experiment
2. Buffon's Needle Experiment
3. the Bernoulli trials model
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4. the Poisson model

Answer
1. radius of the coin
2. length of the needle
3. probability of success
4. rate of arrivals

Note the parameters for each of the following families of special distributions:

1. the normal distribution
2. the gamma distribution
3. the beta distribution
4. the Pareto distribution
5. the Weibull distribution

Answer
1. mean  and standard deviation 
2. shape parameter  and scale parameter 
3. left parameter  and right parameter 
4. shape parameter  and scale parameter 
5. shape parameter  and scale parameter 

During World War II, the Allies recorded the serial numbers of captured German tanks. Classify the underlying serial number
variable by type and level of measurement.

Answer

discrete, ordinal.

For a discussion of how the serial numbers were used to estimate the total number of tanks, see the section on Order Statistics in
the chapter on Finite Sampling Models.

This page titled 6.1: Introduction is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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6.2: The Sample Mean
     

Basic Theory

Recall the basic model of statistics: we have a population of objects of interest, and we have various measurements (variables) that
we make on the objects. We select objects from the population and record the variables for the objects in the sample; these become
our data. Our first discussion is from a purely descriptive point of view. That is, we do not assume that the data are generated by an
underlying probability distribution. However, recall that the data themselves define a probability distribution.

Definition and Basic Properties

Suppose that  is a sample of size  from a real-valued variable. The sample mean is simply the arithmetic
average of the sample values:

If we want to emphasize the dependence of the mean on the data, we write  instead of just . Note that  has the same
physical units as the underlying variable. For example, if we have a sample of weights of cicadas, in grams, then  is in grams
also. The sample mean is frequently used as a measure of center of the data. Indeed, if each  is the location of a point mass, then 

 is the center of mass as defined in physics. In fact, a simple graphical display of the data is the dotplot: on a number line, a dot is
placed at  for each . If values are repeated, the dots are stacked vertically. The sample mean  is the balance point of the
dotplot. The image below shows a dot plot with the mean as the balance point.

Figure : A dotplot

The standard notation for the sample mean corresponding to the data  is . We break with tradition and do not use the bar notation
in this text, because it's clunky and because it's inconsistent with the notation for other statistics such as the sample variance,
sample standard deviation, and sample covariance. However, you should be aware of the standard notation, since you will
undoubtedly see it in other sources.

The following exercises establish a few simple properties of the sample mean. Suppose that  and 
 are samples of size  from real-valued population variables and that  is a constant. In vector notation, recall

that  and .

Computing the sample mean is a linear operation.

1. 
2. 

Proof

1. 

2. 

The sample mean preserves order.

1. If  for each  then .
2. If  for each  and  for some  them 
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3. If  for each  then 
4. If  for each  and  for some  then 

Proof

Parts (a) and (b) are obvious from the definition. Part (c) follows from part (a) and the linearity of expected value. Specifically,
if  (in the product ordering), then . Hence by (a), . But . Hence 

. Similarly, (d) follows from (b) and the linearity of expected value.

Trivially, the mean of a constant sample is simply the constant. .

If  is a constant sample then .

Proof

Note that

As a special case of these results, suppose that  is a sample of size  corresponding to a real variable , and
that  and  are constants. Then the sample corresponding to the variable , in our vector notation, is . The
sample means are related in precisely the same way, that is, . Linear transformations of this type, when 

, arise frequently when physical units are changed. In this case, the transformation is often called a location-scale
transformation;  is the location parameter and  is the scale parameter. For example, if  is the length of an object in inches, then 

 is the length of the object in centimeters. If  is the temperature of an object in degrees Fahrenheit, then 
is the temperature of the object in degree Celsius.

Sample means are ubiquitous in statistics. In the next few paragraphs we will consider a number of special statistics that are based
on sample means.

The Empirical Distribution

Suppose now that  is a sample of size  from a general variable taking values in a set . For , the
frequency of  corresponding to  is the number of data values that are in :

The relative frequency of  corresponding to  is the proportion of data values that are in :

Note that for fixed ,  is itself a sample mean, corresponding to the data . This fact bears
repeating: every sample proportion is a sample mean, corresponding to an indicator variable. In the picture below, the red dots
represent the data, so .

Figure : The empirical probability of 
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3. If  is a countable collection of pairwise disjont subsets of  then 

Proof

Parts (a) and (b) are obvious. For part (c) note that since the sets are disjoint,

This probability measure is known as the empirical probability distribution associated with the data set . It is a discrete
distribution that places probability  at each point . In fact this observation supplies a simpler proof of previous theorem. Thus,
if the data values are distinct, the empirical distribution is the discrete uniform distribution on . More generally, if 

 occurs  times in the data then the empirical distribution assigns probability  to .

If the underlying variable is real-valued, then clearly the sample mean is simply the mean of the empirical distribution. It follows
that the sample mean satisfies all properties of expected value, not just the linear properties and increasing properties given above.
These properties are just the most important ones, and so were repeated for emphasis.

Empirical Density

Suppose now that the population variable  takes values in a set  for some . Recall that the standard measure on 
 is given by

In particular  is the length of , for ;  is the area of , for ; and  is the volume of , for 
. Suppose that  is a continuous variable in the sense that . Typically,  is an interval if  and a Cartesian

product of intervals if . Now for  with , the empirical density of  corresponding to  is

Thus, the empirical density of  is the proportion of data values in , divided by the size of . In the picture below
(corresponding to ), if  has area 5, say, then .

Figure : The empirical density of 

The Empirical Distribution Function

Suppose again that  is a sample of size  from a real-valued variable. For , let  denote the relative
frequency (empirical probability) of  corresponding to the data set . Thus, for each ,  is the sample mean of
the data 

 is a distribution function.

1.  increases from 0 to 1.
2.  is a step function with jumps at the distinct sample values .
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Proof

Suppose that  are the distinct values of the data, ordered from smallest to largest, and that  occurs  times in
the data. Then  for ,  for ,  for , and so forth.

Appropriately enough,  is called the empirical distribution function associated with  and is simply the distribution function of
the empirical distribution corresponding to . If we know the sample size  and the empirical distribution function , we can
recover the data, except for the order of the observations. The distinct values of the data are the places where  jumps, and the
number of data values at such a point is the size of the jump, times the sample size .

The Empirical Discrete Density Function

Suppose now that  is a sample of size  from a discrete variable that takes values in a countable set . For 
, let  be the relative frequency (empirical probability) of  corresponding to the data set . Thus, for each , 

is the sample mean of the data :

In the picture below, the dots are the possible values of the underlying variable. The red dots represent the data, and the numbers
indicate repeated values. The blue dots are possible values of the the variable that did not happen to occur in the data. So, the
sample size is 12, and for the value  that occurs 3 times, we have .

Figure : The discrete probability density function

 is a discrete probabiltiy density function:

1.  for 
2. 

Proof

Part (a) is obvious. For part (b), note that

Appropriately enough,  is called the empirical probability density function or the relative frequency function associated with ,
and is simply the probabiltiy density function of the empirical distribution corresponding to . If we know the empirical PDF  and
the sample size , then we can recover the data set, except for the order of the observations.

If the underlying population variable is real-valued, then the sample mean is the expected value computed relative to the
empirical density function. That is,

Proof

Note that

As we noted earlier, if the population variable is real-valued then the sample mean is the mean of the empirical distribution.

( , ,… , )y

1

y

2

y

k

y

j

n

j

F (x) = 0 x < y

1

F (x) = /nn

1

≤ x <y

1

y

2

F (x) = ( + )/nn

1

n

2

≤ x <y

2

y

3

F x

x n F

F

n

x = ( , ,… , )x

1

x

2

x

n

n S

x ∈ S f(x) x x x ∈ S f(x)

{1( = x) : i ∈ {1, 2,… ,n}}x

i

f(x) = p({x}) = 1( = x)

1

n

∑

i=1

n

x

i

(6.2.12)

x f(x) = 3/12

6.2.4

f

f(x) ≥ 0 x ∈ S

f(x) = 1∑

x∈S

f(x) = p({x}) = 1∑

x∈S

∑

x∈S

(6.2.13)

f x

x f

n

= x f(x)

1

n

∑

i=1

n

x

i

∑

x∈S

(6.2.14)

xf(x) = x 1( = x) = x1( = x) =∑

x∈S

∑

x∈S

1

n

∑

i=1

n

x

i

1

n

∑

i=1

n

∑

x∈S

x

i

1

n

∑

i=1

n

x

i

(6.2.15)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10179?pdf


6.2.5 https://stats.libretexts.org/@go/page/10179

The Empirical Continuous Density Function

Suppose now that  is a sample of size  from a continuous variable that takes values in a set . Let 
 be a partition of  into a countable number of subsets, each of positive, finite measure. Recall that the word

partition means that the subsets are pairwise disjoint and their union is . Let  be the function on  defined by the rule that 
is the empricial density of , corresponding to the data set , for each . Thus,  is constant on each of the partition sets:

 is a continuous probabiltiy density function.

1.  for 
2. 

Proof

Part (a) is obvious. For part (b) note that since  is constant on  for each  we have

The function  is called the empirical probability density function associated with the data  and the partition . For the
probability distribution defined by , the empirical probability  is uniformly distributed over  for each . In the
picture below, the red dots represent the data and the black lines define a partition of  into 9 rectangles. For the partition set  in
the upper right, the empirical distribution would distribute probability  uniformly over . If the area of  is, say, 4,
then  for .

Figure : Empirical probability density function

Unlike the discrete case, we cannot recover the data from the empirical PDF. If we know the sample size, then of course we can
determine the number of data points in  for each , but not the precise location of these points in . For this reason, the mean of
the empirical PDF is not in general the same as the sample mean when the underlying variable is real-valued.

Histograms

Our next discussion is closely related to the previous one. Suppose again that  is a sample of size  from a
variable that takes values in a set  and that  is a partition of  into  subsets. The sets in the partition are
sometimes known as classes. The underlying variable may be discrete or continuous.

The mapping that assigns frequencies to classes is known as a frequency distribution for the data set and the given partition.
The mapping that assigns relative frequencies to classes is known as a relative frequency distribution for the data set and the
given partition.
In the case of a continuous variable, the mapping that assigns densities to classes is known as a density distribution for the data
set and the given partition.

In dimensions 1 or 2, the bar graph any of these distributions, is known as a histogram. The histogram of a frequency distribution
and the histogram of the corresponding relative frequency distribution look the same, except for a change of scale on the vertical
axis. If the classes all have the same size, the histogram of the corresponding density histogram also looks the same, again except
for a change of scale on the vertical axis. If the underlying variable is real-valued, the classes are usually intervals (discrete or
continuous) and the midpoints of these intervals are sometimes referred to as class marks.
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Figure : A density histogram

The whole purpose of constructing a partition and graphing one of these empirical distributions corresponding to the partition is to
summarize and display the data in a meaningful way. Thus, there are some general guidelines in choosing the classes:

1. The number of classes should be moderate.
2. If possible, the classes should have the same size.

For highly skewed distributions, classes of different sizes are appropriate, to avoid numerous classes with very small frequencies.
For a continuous variable with classes of different sizes, it is essential to use a density histogram, rather than a frequency or relative
frequency histogram, otherwise the graphic is visually misleading, and in fact mathematically wrong.

It is important to realize that frequency data is inevitable for a continuous variable. For example, suppose that our variable
represents the weight of a bag of M&Ms (in grams) and that our measuring device (a scale) is accurate to 0.01 grams. If we
measure the weight of a bag as 50.32, then we are really saying that the weight is in the interval  (or perhaps some
other interval, depending on how the measuring device works). Similarly, when two bags have the same measured weight, the
apparent equality of the weights is really just an artifact of the imprecision of the measuring device; actually the two bags almost
certainly do not have the exact same weight. Thus, two bags with the same measured weight really give us a frequency count of 2
for a certain interval.

Again, there is a trade-off between the number of classes and the size of the classes; these determine the resolution of the empirical
distribution corresponding to the partition. At one extreme, when the class size is smaller than the accuracy of the recorded data,
each class contains a single datum or no datum. In this case, there is no loss of information and we can recover the original data set
from the frequency distribution (except for the order in which the data values were obtained). On the other hand, it can be hard to
discern the shape of the data when we have many classes with small frequency. At the other extreme is a frequency distribution
with one class that contains all of the possible values of the data set. In this case, all information is lost, except the number of the
values in the data set. Between these two extreme cases, an empirical distribution gives us partial information, but not complete
information. These intermediate cases can organize the data in a useful way.

Ogives

Suppose now the underlying variable is real-valued and that the set of possible values is partitioned into intervals 
, with the endpoints of the intervals ordered from smallest to largest. Let  denote the frequency of class , so

that  is the relative frequency of class . Let  denote the class mark (midpoint) of class . The cumulative frequency
of class  is  and the cumulative relative frequency of class  is . Note that the cumulative
frequencies increase from  to  and the cumulative relative frequencies increase from  to 1.

The mapping that assigns cumulative frequencies to classes is known as a cumulative frequency distribution for the data set and
the given partition. The polygonal graph that connects the points  for  is the cumulative frequency
ogive.
The mapping that assigns cumulative relative frequencies to classes is known as a cumulative relative frequency distribution for
the data set and the given partition. The polygonal graph that connects the points  for  is the cumulative
relative frequency ogive.

Note that the relative frquency ogive is simply the graph of the distribution function corresponding to the probability distibution
that places probability  at  for each .
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Approximating the Mean

In the setting of the last subsection, suppose that we do not have the actual data , but just the frequency distribution. An
approximate value of the sample mean is

This approximation is based on the hope that the mean of the data values in each class is close to the midpoint of that class. In fact,
the expression on the right is the expected value of the distribution that places probability  on class mark  for each .

Exercises

Basic Properties

Suppose that  is the temperature (in degrees Fahrenheit) for a certain type of electronic component after 10 hours of
operation.

1. Classify  by type and level of measurement.
2. A sample of 30 components has mean 113°. Find the sample mean if the temperature is converted to degrees Celsius. The

transformation is .

Answer
1. continuous, interval
2. 45°

Suppose that  is the length (in inches) of a machined part in a manufacturing process.

1. Classify  by type and level of measurement.
2. A sample of 50 parts has mean 10.0. Find the sample mean if length is measured in centimeters. The transformation is 

.

Answer
1. continuous, ratio
2. 25.4

Suppose that  is the number of brothers and  the number of sisters for a person in a certain population. Thus,  is
the number of siblings.

1. Classify the variables by type and level of measurement.
2. For a sample of 100 persons,  and . Find .

Answer
1. discrete, ratio
2. 2.0

Professor Moriarity has a class of 25 students in her section of Stat 101 at Enormous State University (ESU). The mean grade
on the first midterm exam was 64 (out of a possible 100 points). Professor Moriarity thinks the grades are a bit low and is
considering various transformations for increasing the grades. In each case below give the mean of the transformed grades, or
state that there is not enough information.

1. Add 10 points to each grade, so the transformation is .
2. Multiply each grade by 1.2, so the transformation is 
3. Use the transformation . Note that this is a non-linear transformation that curves the grades greatly at the low

end and very little at the high end. For example, a grade of 100 is still 100, but a grade of 36 is transformed to 60.

One of the students did not study at all, and received a 10 on the midterm. Professor Moriarity considers this score to be an
outlier.

4. What would the mean be if this score is omitted?
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Density Cum Freq Cum Rel Freq Midpoint

Answer
1. 74
2. 76.8
3. Not enough information
4. 66.25

Computational Exercises

All statistical software packages will compute means and proportions, draw dotplots and histograms, and in general perform the
numerical and graphical procedures discussed in this section. For real statistical experiments, particularly those with large data sets,
the use of statistical software is essential. On the other hand, there is some value in performing the computations by hand, with
small, artificial data sets, in order to master the concepts and definitions. In this subsection, do the computations and draw the
graphs with minimal technological aids.

Suppose that  is the number of math courses completed by an ESU student. A sample of 10 ESU students gives the data 
.

1. Classify  by type and level of measurement.
2. Sketch the dotplot.
3. Compute the sample mean  from the definition and indicate its location on the dotplot.
4. Find the empirical density function  and sketch the graph.
5. Compute the sample mean  using .
6. Find the empirical distribution function  and sketch the graph.

Answer
1. discrete, ratio
3. 2
4. , , , , 
5. 2
6.  for ,  for ,  for ,  for , 

 for ,  for 

Suppose that a sample of size 12 from a discrete variable  has empirical density function given by , 
, , , .

1. Sketch the graph of .
2. Compute the sample mean  using .
3. Find the empirical distribution function 
4. Give the sample values, ordered from smallest to largest.

Answer
2. 
3.  for ,  for ,  for ,  for , 

 for ,  for 
4. 

The following table gives a frequency distribution for the commuting distance to the math/stat building (in miles) for a sample
of ESU students.

Class Freq Rel Freq Density Cum Freq Cum Rel Freq Midpoint

6      

16      

18      

Total   

x

x = (3, 1, 2, 0, 2, 4, 3, 2, 1, 2)
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f

m f

F

f(0) = 1/10 f(1) = 2/10 f(2) = 4/10 f(3) = 2/10 f(4) = 1/10

F (x) = 0 x < 0 F (x) = 1/10 0 ≤ x < 1 F (x) = 3/10 1 ≤ x < 2 F (x) = 7/10 2 ≤ x < 3

F (x) = 9/10 3 ≤ x < 4 F (x) = 1 x ≥ 4

x f(−2) = 1/12

f(−1) = 1/4 f(0) = 1/3 f(1) = 1/6 f(2) = 1/6

f

m f

F

1/12

F (x) = 0 x <−2 F (x) = 1/12 −2 ≤ x <−1 F (x) = 1/3 −1 ≤ x < 0 F (x) = 2/3 0 ≤ x < 1

F (x) = 5/6 1 ≤ x < 2 F (x) = 1 x ≥ 2

(−2,−1,−1,−1, 0, 0, 0, 0, 1, 1, 2, 2)
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Density Cum Freq Cum Rel Freq Midpoint

Class Freq Rel Freq Density Cum Freq Cum Rel Freq Midpoint

10      

Total   

1. Complete the table
2. Sketch the density histogram
3. Sketch the cumulative relative frquency ogive.
4. Compute an approximation to the mean

Answer

1. Class Freq Rel Freq Density Cum Freq Cum Rel Freq Midpoint

6 0.12 0.06 6 0.12 1

16 0.32 0.08 22 0.44 4

18 0.36 0.09 40 0.80 8

10 0.20 0.02 50 1 15

Total 50 1

4. 7.28

App Exercises

In the interactive histogram, click on the -axis at various points to generate a data set with at least 20 values. Vary the number
of classes and switch between the frequency histogram and the relative frequency histogram. Note how the shape of the
histogram changes as you perform these operations. Note in particular how the histogram loses resolution as you decrease the
number of classes.

In the interactive histogram, click on the axis to generate a distribution of the given type with at least 30 points. Now vary the
number of classes and note how the shape of the distribution changes.

1. A uniform distribution
2. A symmetric unimodal distribution
3. A unimodal distribution that is skewed right.
4. A unimodal distribution that is skewed left.
5. A symmetric bimodal distribution
6. A -shaped distribution.

Data Analysis Exercises

Statistical software should be used for the problems in this subsection.

Consider the petal length and species variables in Fisher's iris data.

1. Classify the variables by type and level of measurement.
2. Compute the sample mean and plot a density histogram for petal length.
3. Compute the sample mean and plot a density histogram for petal length by species.

Answers
1. petal length: continuous, ratio. species: discrete, nominal
2. 
3. 

Consider the erosion variable in the Challenger data set.

(10, 20]

(0, 2]

(2, 6]

(6, 10]

(10, 20])

x

u

m = 37.8

m(0) = 14.6, m(1) = 55.5, m(2) = 43.2
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1. Classify the variable by type and level of measurement.
2. Compute the mean
3. Plot a density histogram with the classes , , , .

Answer
1. continuous, ratio
2. 

Consider Michelson's velocity of light data.

1. Classify the variable by type and level of measurement.
2. Plot a density histogram.
3. Compute the sample mean.
4. Find the sample mean if the variable is converted to . The transformation is 

Answer
1. continuous, interval
3. 
4. 

Consider Short's paralax of the sun data.

1. Classify the variable by type and level of measurement.
2. Plot a density histogram.
3. Compute the sample mean.
4. Find the sample mean if the variable is converted to degrees. There are 3600 seconds in a degree.
5. Find the sample mean if the variable is converted to radians. There are  radians in a degree.

Answer
1. continuous, ratio
3. 8.616
4. 0.00239
5. 0.0000418

Consider Cavendish's density of the earth data.

1. Classify the variable by type and level of measurement.
2. Compute the sample mean.
3. Plot a density histogram.

Answer
1. continuous, ratio
2. 

Consider the M&M data.

1. Classify the variables by type and level of measurement.
2. Compute the sample mean for each color count variable.
3. Compute the sample mean for the total number of candies, using the results from (b).
4. Plot a relative frequency histogram for the total number of candies.
5. Compute the sample mean and plot a density histogram for the net weight.

Answer
1. color counts: discrete ratio. net weight: continuous ratio.
2. , , , , , 
3. 
5. 

[0, 5) [5, 40) [40, 50) [50, 60)

m = 7.7

km/hr y = x+299 000

m = 852.4

m = 299 852.4

π/180

m = 5.448

m(r) = 9.60 m(g) = 7.40 m(bl) = 7.23 m(o) = 6.63 m(y) = 13.77 m(br) = 12.47

m(n) = 57.10

m(w) = 49.215
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Consider the body weight, species, and gender variables in the Cicada data.

1. Classify the variables by type and level of measurement.
2. Compute the relative frequency function for species and plot the graph.
3. Compute the relative frequeny function for gender and plot the graph.
4. Compute the sample mean and plot a density histogram for body weight.
5. Compute the sample mean and plot a density histogrm for body weight by species.
6. Compute the sample mean and plot a density histogram for body weight by gender.

Answer
1. body weight: continuous, ratio. species: discrete, nominal. gender: discrete, nominal.
2. , , 
3. , 
4. 
5. 
6. 

Consider Pearson's height data.

1. Classify the variables by type and level of measurement.
2. Compute the sample mean and plot a density histogram for the height of the father.
3. Compute the sample mean and plot a density histogram for the height of the son.

Answer
1. continuous ratio
2. 
3. 

This page titled 6.2: The Sample Mean is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.

f(0) = 0.423 f(1) = 0.519 f(2) = 0.058

f(0) = 0.567 f(1) = 0.433

m = 0.180

m(0) = 0.168, m(1) = 0.185, m(2) = 0.225

m(0) = 0.206, m(1) = 0.145

m(f) = 67.69

m(s) = 68.68
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6.3: The Law of Large Numbers
      

Basic Theory

This section continues the discussion of the sample mean from the last section, but we now consider the more interesting setting where the
variables are random. Specifically, suppose that we have a basic random experiment with an underlying probability measure , and that  is
random variable for the experiment. Suppose now that we perform  independent replications of the basic experiment. This defines a new,
compound experiment with a sequence of independent random variables , each with the same distribution as . Recall
that in statistical terms,  is a random sample of size  from the distribution of . All of the relevant statistics discussed in the the previous
section, are defined for , but of course now these statistics are random variables with distributions of their own. For the most part, we use the
notation established previously, except that for the usual convention of denoting random variables with capital letters. Of course, the deterministic
properties and relations established previously apply as well. When we acutally run the experiment and observe the values 
of the random variables, then we are precisely in the setting of the previous section.

Suppose now that the basic variable  is real valued, and let  denote the expected value of  and  the variance of 
(assumed finite). The sample mean is

Ofen the distribution mean  is unknown and the sample mean  is used as an estimator of this unknown parameter.

Moments

The mean and variance of  are

1. 
2. 

Proof
1. This follows from the linear property of expected value:

2. This follows from basic properties of variance. Recall in particular that the variance of the sum of independent variables is the sum of the
variances.

Part (a) means that the sample mean  is an unbiased estimator of the distribution mean . Therefore, the variance of  is the mean square
error, when  is used as an estimator of . Note that the variance of  is an increasing function of the distribution variance and a decreasing
function of the sample size. Both of these make intuitive sense if we think of the sample mean  as an estimator of the distribution mean . The
fact that the mean square error (variance in this case) decreases to 0 as the sample size  increases to  means that the sample mean  is a
consistent estimator of the distribution mean .

Recall that  is the deviation of  from , that is, the directed distance from  to . The following theorem states that the sample
mean is uncorrelated with each deviation, a result that will be crucial for showing the independence of the sample mean and the sample variance
when the sampling distribution is normal.

 and  are uncorrelated.

Proof

This result follows from simple properties of covariance. Note that . By independence,

But by previous theorem, .
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The Weak and Strong Laws of Large Numbers

The law of large numbers states that the sample mean converges to the distribution mean as the sample size increases, and is one of the
fundamental theorems of probability. There are different versions of the law, depending on the mode of convergence.

Suppose again that  is a real-valued random variable for our basic experiment, with mean  and standard deviation  (assumed finite). We
repeat the basic experiment indefinitely to create a new, compound experiment with an infinite sequence of independent random variables 

, each with the same distribution as . In statistical terms, we are sampling from the distribution of . In probabilistic terms, we
have an independent, identically distributed (IID) sequence. For each , let  denote the sample mean of the first  sample variables:

From the result above on variance, note that  as . This means that  as  in mean square.

As stated in the next theorem,  as  in probability as well.

 as  for every .

Proof

This follows from Chebyshev's inequality:

Recall that in general, convergence in mean square implies convergence in probability. The convergence of the sample mean to the distribution
mean in mean square and in probability are known as weak laws of large numbers.

Finally, the strong law of large numbers states that the sample mean  converges to the distribution mean  with probability 1 . As the name
suggests, this is a much stronger result than the weak laws. We will need some additional notation for the proof. First let  so that 

. Next, recall the definitions of the positive and negative parts a real number : , . Note that 
, , , and .

 as  with probability 1.

Proof

The proof is in three major steps. The first step is to show that with probability 1,  as . From Chebyshev's inequality, 
 for every  and every . Since , it follows from the first Borel-Cantelli

lemma that for every ,

Next, from Boole's inequality it follows that

This is equivalent to the statment that  as  with probability 1.

For our next step, we will show that if the underlying sampling variable is nonnegative, so that , then  as .
with probabiity 1. Note first that with probability 1,  is increasing in . For , let  be the unique positive integer such that 

. From the increasing property and simple algebra, it follows that with probability 1,

From our first step, with probability 1,

Similarly with probability 1

Finally by the squeeze theorem for limits it follows that with probability 1,  as .

Finally we relax the condition that the underlying sampling variable  is nonnegative. From step two, it follows that 
 as  with probability 1, and  as  with probability 1. Now from algebra and
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the linearity of expected value, with probability 1,

The proof of the strong law of large numbers given above requires that the variance of the sampling distribution be finite (note that this is critical
in the first step). However, there are better proofs that only require that . An elegant proof showing that  as  with
probability 1 and in mean, using backwards martingales, is given in the chapter on martingales. In the next few paragraphs, we apply the law of
large numbers to some of the special statistics studied in the previous section.

Emprical Probability

Suppose that  is the outcome random variable for a basic experiment, with sample space  and probability measure . Now suppose that we
repeat the basic experiment indefinitley to form a sequence of independent random variables  each with the same distribution as .
That is, we sample from the distribution of . For , let  denote the empricial probability of  corresponding to the sample 

:

Now of course,  is a random variable for each event . In fact, the sum  has the binomial distribution with parameters 
and .

For each event ,

1. 
2. 
3.  as  with probability 1.

Proof

These results follow from the results of this section, since  is the sample mean for the random sample 
 from the distribution of .

This special case of the law of large numbers is central to the very concept of probability: the relative frequency of an event converges to the
probability of the event as the experiment is repeated.

The Empirical Distribution Function

Suppose now that  is a real-valued random variable for a basic experiment. Recall that the distribution function of  is the function  given by

Now suppose that we repeat the basic experiment indefintely to form a sequence of independent random variables , each with the
same distribution as . That is, we sample from the distribution of . Let  denote the empirical distribution function corresponding to the
sample :

Now, of course,  is a random variable for each . In fact, the sum  has the binomial distribution with parameters 
and .

For each ,

1. 
2. 
3.  as  with probability 1.

Proof

These results follow immediately from the results in this section, since  is the sample mean for the random sample 
 from the distribution of .

Empirical Density for a Discrete Variable

Suppose now that  is a random variable for a basic experiment with a discrete distribution on a countable set . Recall that the probability
density function of  is the function  given by
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Now suppose that we repeat the basic experiment to form a sequence of independent random variables  each with the same
distribution as . That is, we sample from the distribution of . Let  denote the empirical probability density function corresponding to the
sample :

Now, of course,  is a random variable for each . In fact, the sum  has the binomial distribution with parameters  and
.

For each ,

1. 
2. 
3.  as  with probability 1.

Proof

These results follow immediately from the results in this section, since  is the sample mean for the random sample 
 from the distribution of .

Recall that a countable intersection of events with probability 1 still has probability 1. Thus, in the context of the previous theorem, we actually
have

Empirical Density for a Continuous Variable

Suppose now that  is a random variable for a basic experiment, with a continuous distribution on , and that  has probability density
function . Technically,  is the probability density function with respect to the standard (Lebsesgue) measure . Thus, by definition,

Again we repeat the basic experiment to generate a sequence of independent random variables  each with the same distribution as 
. That is, we sample from the distribution of . Suppose now that  is a partition of  into a countable number of subsets,

each with positive, finite size. Let  denote the empirical probability density function corresponding to the sample  and the
partition :

Of course now,  is a random variable for each . If the partition is sufficiently fine (so that  is small for each ), and if the
sample size  is sufficiently large, then by the law of large numbers,

Exercises

Simulation Exercises

In the dice experiment, recall that the dice scores form a random sample from the specified die distribution. Select the average random
variable, which is the sample mean of the sample of dice scores. For each die distribution, start with 1 die and increase the sample size .
Note how the distribution of the sample mean begins to resemble a point mass distribution. Note also that the mean of the sample mean stays
the same, but the standard deviation of the sample mean decreases. For selected values of  and selected die distributions, run the simulation
1000 times and compare the relative frequency function of the sample mean to the true probability density function, and compare the
empirical moments of the sample mean to the true moments.

Several apps in this project are simulations of random experiments with events of interest. When you run the experiment, you are performing
independent replications of the experiment. In most cases, the app displays the relative frequency of the event and its complement, both
graphically in blue, and numerically in a table. When you run the experiment, the relative frequencies are shown graphically in red and also
numerically.

In the simulation of Buffon's coin experiment, the event of interest is that the coin crosses a crack. For various values of the parameter (the
radius of the coin), run the experiment 1000 times and compare the relative frequency of the event to the true probability.
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In the simulation of Bertrand's experiment, the event of interest is that a “random chord” on a circle will be longer than the length of a side of
the inscribed equilateral triangle. For each of the various models, run the experiment 1000 times and compuare the relative frequency of the
event to the true probability.

Many of the apps in this project are simulations of experiments which result in discrete variables. When you run the simulation, you are
performing independent replications of the experiment. In most cases, the app displays the true probability density function numerically in a table
and visually as a blue bar graph. When you run the simulation, the relative frequency function is also shown numerically in the table and visually
as a red bar graph.

In the simulation of the binomial coin experiment, select the number of heads. For selected values of the parameters, run the simulation 1000
times and compare the sample mean to the distribution mean, and compare the empirical density function to the probability density function.

In the simulation of the matching experiment, the random variable is the number of matches. For selected values of the parameter, run the
simulation 1000 times and compare the sample mean and the distribution mean, and compare the empirical density function to the probability
density function.

In the poker experiment, the random variable is the type of hand. Run the simulation 1000 times and compare the empirical density function
to the true probability density function.

Many of the apps in this project are simulations of experiments which result in variables with continuous distributions. When you run the
simulation, you are performing independent replications of the experiment. In most cases, the app displays the true probability density function
visually as a blue graph. When you run the simulation, an empirical density function, based on a partition, is also shown visually as a red bar
graph.

In the simulation of the gamma experiment, the random variable represents a random arrival time. For selected values of the parameters, run
the experiment 1000 times and compare the sample mean to the distribution mean, and compare the empirical density function to the
probability density function.

In the special distribution simulator, select the normal distribution. For various values of the parameters (the mean and standard deviation),
run the experiment 1000 times and compare the sample mean to the distribution mean, and compare the empirical density function to the
probability density function.

Probability Exercises

Suppose that  has probability density function  for . The distribution of  is a member of the beta family.
Compute each of the following

1. 
2. 
3. 

Answer

1. 
2. 
3. 

Suppose now that  is a random sample of size 9 from the distribution in the previous problem. Find the expected value and
variance of each of the following random variables:

1. The sample mean 
2. The empirical probability 

Answer

1. 
2. 

Suppose that  has probability density function  for . The distribution of  is a member of the Pareto family.
Compute each of the following

1. )
2. 
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3. 

Answer

1. 
2. 
3. 

Suppose now that  is a random sample of size 16 from the distribution in the previous problem. Find the expected value
and variance of each of the following random variables:

1. The sample mean 
2. The empirical probability 

Answer

1. 
2. 

Recall that for an ace-six flat die, faces 1 and 6 have probability  each, while faces 2, 3, 4, and 5 have probability  each. Let  denote the
score when an ace-six flat die is thrown. Compute each of the following:

1. The probability density function  for 
2. The distribution function  for 
3. 
4. 

Answer
1. 
2. 
3. 
4. 

Suppose now that an ace-six flat die is thrown  times. Find the expected value and variance of each of the following random variables:

1. The empirical probability density function  for 
2. The empirical distribution function  for 
3. The average score 

Answer

1. 
2. 
3. 
4. 
5. 

This page titled 6.3: The Law of Large Numbers is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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6.4: The Central Limit Theorem
         

The central limit theorem and the law of large numbers are the two fundamental theorems of probability. Roughly, the central limit
theorem states that the distribution of the sum (or average) of a large number of independent, identically distributed variables will
be approximately normal, regardless of the underlying distribution. The importance of the central limit theorem is hard to overstate;
indeed it is the reason that many statistical procedures work.

Partial Sum Processes

Definitions

Suppose that  is a sequence of independent, identically distributed, real-valued random variables with common
probability density function , mean , and variance . We assume that , so that in particular, the random variables
really are random and not constants. Let

Note that by convention, , since the sum is over an empty index set. The random process  is called the
partial sum process associated with . Special types of partial sum processes have been studied in many places in this text; in
particular see

the binomial distribution in the setting of Bernoulli trials
the negative binomial distribution in the setting of Bernoulli trials
the gamma distribution in the Poisson process
the the arrival times in a general renewal process

Recall that in statistical terms, the sequence  corresponds to sampling from the underlying distribution. In particular, 
 is a random sample of size  from the distribution, and the corresponding sample mean is

By the law of large numbers,  as  with probability 1.

Stationary, Independent Increments

The partial sum process corresponding to a sequence of independent, identically distributed variables has two important properties,
and these properties essentially characterize such processes.

If  then  has the same distribution as . Thus the process  has stationary increments.

Proof

Note that  and is the sum of  independent variables, each with the common distribution. Of
course,  is also the sum of  independent variables, each with the common distribution.

Note however that  and  are very different random variables; the theorem simply states that they have the same
distribution.

If  then  is a sequence of independent random variables. Thus the process
 has independent increments.

Proof

The terms in the sequence of increments  are sums over disjoint collections of terms in the
sequence . Since the sequence  is independent, so is the sequence of increments.

Conversely, suppose that  is a random process with stationary, independent increments. Define 
 for . Then  is a sequence of independent, identically distributed variables and  is
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the partial sum process associated with .

Thus, partial sum processes are the only discrete-time random processes that have stationary, independent increments. An
interesting, and much harder problem, is to characterize the continuous-time processes that have stationary independent increments.
The Poisson counting process has stationary independent increments, as does the Brownian motion process.

Moments

If  then

1. 
2. 

Proof

The results follow from basic properties of expected value and variance. Expected value is a linear operation so 
. By independence, .

If  and  with  then

1. 

2. 

3. 

Proof
1. Note that . This follows from basic properties of covariance, and Theorem 1 and Theorem 2:

2. This result follows from part (a) and Theorem 4

3. This result also follows from part (a) and Theorem 4: 

If  has moment generating function  then  has moment generating function .

Proof

This follows from a basic property of generating functions: the generating function of a sum of independent variables is the
product of the generating functions of the terms.

Distributions

Suppose that  has either a discrete distribution or a continuous distribution with probability density function . Then the
probability density function of  is , the convolution power of  of order .

Proof

This follows from a basic property of PDFs: the pdf of a sum of independent variables is the convolution of the PDFs of the
terms.

More generally, we can use the stationary and independence properties to find the joint distributions of the partial sum process:

If  then  has joint probability density function

Proof

This follows from the multivariate change of variables theorem.
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The Central Limit Theorem
First, let's make the central limit theorem more precise. From Theorem 4, we cannot expect  itself to have a limiting distribution.
Note that  as  since , and  as  if  while  as  if .
Similarly, we know that  as  with probability 1, so the limiting distribution of the sample mean is degenerate.
Thus, to obtain a limiting distribution of  or  that is not degenerate, we need to consider, not these variables themeselves, but
rather the common standard score. Thus, let

 has mean 0 and variance 1.

1. 
2. 

Proof

These results follow from basic properties of expected value and variance, and are true for the standard score associated with
any random variable. Recall also that the standard score of a variable is invariant under linear transformations with positive
slope. The fact that the standard score of  and the standard score of  are the same is a special case of this.

The precise statement of the central limit theorem is that the distribution of the standard score  converges to the standard normal
distribution as . Recall that the standard normal distribution has probability density function

and is studied in more detail in the chapter on special distributions. A special case of the central limit theorem (to Bernoulli trials),
dates to Abraham De Moivre. The term central limit theorem was coined by George Pólya in 1920. By definition of convergence in
distribution, the central limit theorem states that  as  for each , where  is the distribution function
of  and  is the standard normal distribution function:

An equivalent statment of the central limit theorm involves convergence of the corresponding characteristic functions. This is the
version that we will give and prove, but first we need a generalization of a famous limit from calculus.

Suppose that  is a sequence of real numbers and that  as . Then

Now let  denote the characteristic function of the standard score of the sample variable , and let  denote the characteristic
function of the standard score :

Recall that  is the characteristic function of the standard normal distribution. We can now give a proof.

The central limit theorem. The distribution of  converges to the standard normal distribution as . That is, 
 as  for each .

Proof

Note that , , . Next
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From properties of characteristic functions,  for . By Taylor's theorem (named after Brook Taylor),

But  and hence  as . Finally,

Normal Approximations
The central limit theorem implies that if the sample size  is “large” then the distribution of the partial sum  is approximately
normal with mean  and variance . Equivalently the sample mean  is approximately normal with mean  and variance 

. The central limit theorem is of fundamental importance, because it means that we can approximate the distribution of certain
statistics, even if we know very little about the underlying sampling distribution.

Of course, the term “large” is relative. Roughly, the more “abnormal” the basic distribution, the larger  must be for normal
approximations to work well. The rule of thumb is that a sample size  of at least 30 will usually suffice if the basic distribution is
not too weird; although for many distributions smaller  will do.

Let  denote the sum of the variables in a random sample of size 30 from the uniform distribution on . Find normal
approximations to each of the following:

1. 
2. The 90th percentile of 

Answer
1. 0.8682
2. 17.03

Random variable  in the previous exercise has the Irwin-Hall distribution of order 30. The Irwin-Hall distributions are studied in
more detail in the chapter on Special Distributions and are named for Joseph Irwin and Phillip Hall.

In the special distribution simulator, select the Irwin-Hall distribution. Vary and  from 1 to 10 and note the shape of the
probability density function. With  run the experiment 1000 times and compare the empirical density function to the
true probability density function.

Let  denote the sample mean of a random sample of size 50 from the distribution with probability density function 
 for . This is a Pareto distribution, named for Vilfredo Pareto. Find normal approximations to each of

the following:

1. 
2. The 60th percentile of 

Answer
1. 0.2071
2. 1.531

The Continuity Correction

A slight technical problem arises when the sampling distribution is discrete. In this case, the partial sum also has a discrete
distribution, and hence we are approximating a discrete distribution with a continuous one. Suppose that  takes integer values
(the most common case) and hence so does the partial sum . For any  and , note that the event 

 is equivalent to the event . Different values of  lead to different normal approximations, even
though the events are equivalent. The smallest approximation would be 0 when , and the approximations increase as 
increases. It is customary to split the difference by using  for the normal approximation. This is sometimes called the half-
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unit continuity correction or the histogram correction. The continuity correction is extended to other events in the natural way,
using the additivity of probability.

Suppose that  with .

1. For the event , use  in the normal approximation.
2. For the event , use  in the normal approximation.
3. For the event , use  in the normal approximation.

Let  denote the sum of the scores of 20 fair dice. Compute the normal approximation to .

Answer

0.6741

In the dice experiment, set the die distribution to fair, select the sum random variable , and set . Run the simulation
1000 times and find each of the following. Compare with the result in the previous exercise:

1. 
2. The relative frequency of the event  (from the simulation)

Normal Approximation to the Gamma Distribution

Recall that the gamma distribution with shape parameter  and scale parameter  is a continuous distribution
on  with probability density function  given by

The mean is  and the variance is . The gamma distribution is widely used to model random times (particularly in the context
of the Poisson model) and other positive random variables. The general gamma distribution is studied in more detail in the chapter
on Special Distributions. In the context of the Poisson model (where ), the gamma distribution is also known as the Erlang
distribution, named for Agner Erlang; it is studied in more detail in the chapter on the Poisson Process. Suppose now that  has
the gamma (Erlang) distribution with shape parameter  and scale parameter  then

where  is a sequence of independent variables, each having the exponential distribution with scale parameter . (The
exponential distribution is a special case of the gamma distribution with shape parameter 1.) It follows that if  is large, the gamma
distribution can be approximated by the normal distribution with mean  and variance . The same statement actually holds
when  is not an integer. Here is the precise statement:

Suppose that  has the gamma distribution with scale parameter  and shape parameter . Then the
distribution of the standardized variable  below converges to the standard normal distribution as :

In the special distribution simulator, select the gamma distribution. Vary and  and note the shape of the probability density
function. With  and various values of , run the experiment 1000 times and compare the empirical density function to
the true probability density function.

Suppose that  has the gamma distribution with shape parameter  and scale parameter . Find normal
approximations to each of the following:

1. 
2. The 80th percentile of 
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Answer
1. 0.3063
2. 25.32

Normal Approximation to the Chi-Square Distribution

Recall that the chi-square distribution with  degrees of freedom is a special case of the gamma distribution, with shape
parameter  and scale parameter . Thus, the chi-square distribution with  degrees of freedom has probability density
function

When  is a positive, integer, the chi-square distribution governs the sum of  independent, standard normal variables. For this
reason, it is one of the most important distributions in statistics. The chi-square distribution is studied in more detail in the chapter
on Special Distributions. From the previous discussion, it follows that if  is large, the chi-square distribution can be approximated
by the normal distribution with mean  and variance . Here is the precise statement:

Suppose that  has the chi-square distribution with  degrees of freedom. Then the distribution of the standardized
variable  below converges to the standard normal distribution as :

In the special distribution simulator, select the chi-square distribution. Vary  and note the shape of the probability density
function. With , run the experiment 1000 times andcompare the empirical density function to the probability density
function.

Suppose that  has the chi-square distribution with  degrees of freedom. Find normal approximations to each of the
following:

1. 
2. The 75th percentile of 

Answer
1. 0.4107
2. 24.3

Normal Approximation to the Binomial Distribution

Recall that a Bernoulli trials sequence, named for Jacob Bernoulli, is a sequence  of independent, identically
distributed indicator variables with  for each , where  is the parameter. In the usual language of
reliability,  is the outcome of trial , where 1 means success and 0 means failure. The common mean is  and the common
variance is .

Let , so that  is the number of successes in the first  trials. Recall that  has the binomial distribution with
parameters  and , and has probability density function

The binomial distribution is studied in more detail in the chapter on Bernoulli trials.

It follows from the central limit theorem that if  is large, the binomial distribution with parameters  and  can be approximated
by the normal distribution with mean  and variance . The rule of thumb is that  should be large enough for 
and . (The first condition is the important one when  and the second condition is the important one when 

.) Here is the precise statement:
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Suppose that  has the binomial distribution with trial parameter  and success parameter . Then the
distribution of the standardized variable  given below converges to the standard normal distribution as :

In the binomial timeline experiment, vary  and  and note the shape of the probability density function. With  and 
, run the simulation 1000 times and compute the following:

1. 
2. The relative frequency of the event  (from the simulation)

Answer
1. 0.5448

Suppose that  has the binomial distribution with parameters  and . Compute the normal approximation to 
 (don't forget the continuity correction) and compare with the results of the previous exercise.

Answer

0.5383

Normal Approximation to the Poisson Distribution

Recall that the Poisson distribution, named for Simeon Poisson, is a discrete distribution on  with probability density function 
given by

where  is a parameter. The parameter is both the mean and the variance of the distribution. The Poisson distribution is widely
used to model the number of “random points” in a region of time or space, and is studied in more detail in the chapter on the
Poisson Process. In this context, the parameter is proportional to the size of the region.

Suppose now that  has the Poisson distribution with parameter . Then

where  is a sequence of independent variables, each with the Poisson distribution with parameter 1. It follows
from the central limit theorem that if  is large, the Poisson distribution with parameter  can be approximated by the normal
distribution with mean  and variance . The same statement holds when the parameter  is not an integer. Here is the precise
statement:

. Suppose that  has the Poisson distribution with parameter . Then the distribution of the standardized variable 
below converges to the standard normal distribution as :

Suppose that  has the Poisson distribution with mean 20.

1. Compute the true value of .
2. Compute the normal approximation to .

Answer
1. 0.6310
2. 0.6259
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In the Poisson experiment, vary the time and rate parameters  and  (the parameter of the Poisson distribution in the
experiment is the product ). Note the shape of the probability density function. With  and , run the experiment
1000 times and compare the empirical density function to the true probability density function.

Normal Approximation to the Negative Binomial Distribution

The general version of the negative binomial distribution is a discrete distribution on , with shape parameter  and
success parameter . The probability density function  is given by

The mean is  and the variance is . The negative binomial distribution is studied in more detail in the
chapter on Bernoulli trials. If , the distribution governs the number of failures  before success number  in a sequence of
Bernoulli trials with success parameter . Thus in this case,

where  is a sequence of independent variables, each having the geometric distribution on  with parameter .
(The geometric distribution is a special case of the negative binomial, with parameters 1 and .) In the context of the Bernoulli
trials,  is the number of failures before the first success, and for ,  is the number of failures between success
number  success number . It follows that if  is large, the negative binomial distribution can be approximated by the normal
distribution. The same statement holds if  is not an integer. Here is the precise statement:

Suppose that  has the negative binomial distribution with shape parameter  and scale parameter . Then
the distribution of the standardized variable  below converges to the standard normal distribution as :

Another version of the negative binomial distribution is the distribution of the trial number  of success number . So 
 and  has mean  and variance . The normal approximation applies to the distribution of  as well,

if  is large, and since the distributions are related by a location transformation, the standard scores are the same. That is

In the negative binomial experiment, vary  and  and note the shape of the probability density function. With  and 
, run the experiment 1000 times and compare the empirical density function to the true probability density function.

Suppose that  has the negative binomial distribution with trial parameter  and success parameter . Find normal
approximations to each of the following:

1. 
2. The 80th percentile of 

Answer
1. 0.6318
2. 30.1

Partial Sums with a Random Number of Terms

Our last topic is a bit more esoteric, but still fits with the general setting of this section. Recall that  is a
sequence of independent, identically distributed real-valued random variables with common mean  and variance . Suppose now
that  is a random variable (on the same probability space) taking values in , also with finite mean and variance. Then
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is a random sum of the independent, identically distributed variables. That is, the terms are random of course, but so also is the
number of terms . We are primarily interested in the moments of .

Independent Number of Terms

Suppose first that , the number of terms, is independent of , the sequence of terms. Computing the moments of  is a good
exercise in conditional expectation.

The conditional expected value of  given , and the expected value of  are

1. 
2. 

The conditional variance of  given  and the variance of  are

1. 
2. 

Let  denote the probability generating function of . Show that the moment generating function of  is .

1. 
2. 

Wald's Equation

The result in Exercise 29 (b) generalizes to the case where the random number of terms  is a stopping time for the sequence .
This means that the event  depends only on (technically, is measurable with respect to)  for each 

. The generalization is knowns as Wald's equation, and is named for Abraham Wald. Stopping times are studied in much
more technical detail in the section on Filtrations and Stopping Times.

If  is a stopping time for  then .

Proof

First note that . But  depends only on  and hence is
independent of . Thus . Suppose that  for each . Taking expected values term by
term gives Wald's equation in this special case. The interchange of sum and expected value is justified by the monotone
convergence theorem. Now Wald's equation can be established in general by using the dominated convergence theorem.

An elgant proof of Wald's equation is given in the chapter on Martingales.

Suppose that the number of customers arriving at a store during a given day has the Poisson distribution with parameter 50.
Each customer, independently of the others (and independently of the number of customers), spends an amount of money that
is uniformly distributed on the interval . Find the mean and standard deviation of the amount of money that the store
takes in during a day.

Answer

500, 81.65

When a certain critical component in a system fails, it is immediately replaced by a new, statistically identical component. The
components are independent, and the lifetime of each (in hours) is exponentially distributed with scale parameter . During the
life of the system, the number of critical components used has a geometric distribution on  with parameter . For the total
life of the critical component,

1. Find the mean.
2. Find the standard deviation.
3. Find the moment generating function.
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4. Identify the distribution by name.

Answer
1. 
2. 
3. 

4. Exponential distribution with scale parameter 

This page titled 6.4: The Central Limit Theorem is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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6.5: The Sample Variance
            

Descriptive Theory

Recall the basic model of statistics: we have a population of objects of interest, and we have various measurements (variables) that
we make on these objects. We select objects from the population and record the variables for the objects in the sample; these
become our data. Once again, our first discussion is from a descriptive point of view. That is, we do not assume that the data are
generated by an underlying probability distribution. Remember however, that the data themselves form a probability distribution.

Variance and Standard Deviation

Suppose that  is a sample of size  from a real-valued variable . Recall that the sample mean is

and is the most important measure of the center of the data set. The sample variance is defined to be

If we need to indicate the dependence on the data vector , we write . The difference  is the deviation of  from the
mean  of the data set. Thus, the variance is the mean square deviation and is a measure of the spread of the data set with respet to
the mean. The reason for dividing by  rather than  is best understood in terms of the inferential point of view that we discuss
in the next section; this definition makes the sample variance an unbiased estimator of the distribution variance. However, the
reason for the averaging can also be understood in terms of a related concept.

.

Proof

.

Thus, if we know  of the deviations, we can compute the last one. This means that there are only  freely varying
deviations, that is to say,  degrees of freedom in the set of deviations. In the definition of sample variance, we average the
squared deviations, not by dividing by the number of terms, but rather by dividing by the number of degrees of freedom in those
terms. However, this argument notwithstanding, it would be reasonable, from a purely descriptive point of view, to divide by  in
the definition of the sample variance. Moreover, when  is sufficiently large, it hardly matters whether we divide by  or by .

In any event, the square root  of the sample variance  is the sample standard deviation. It is the root mean square deviation and
is also a measure of the spread of the data with respect to the mean. Both measures of spread are important. Variance has nicer
mathematical properties, but its physical unit is the square of the unit of . For example, if the underlying variable  is the height
of a person in inches, the variance is in square inches. On the other hand, the standard deviation has the same physical unit as the
original variable, but its mathematical properties are not as nice.

Recall that the data set  naturally gives rise to a probability distribution, namely the empirical distribution that places probability 
 at  for each . Thus, if the data are distinct, this is the uniform distribution on . The sample mean  is simply

the expected value of the empirical distribution. Similarly, if we were to divide by  rather than , the sample variance would
be the variance of the empirical distribution. Most of the properties and results this section follow from much more general
properties and results for the variance of a probability distribution (although for the most part, we give independent proofs).

Measures of Center and Spread

Measures of center and measures of spread are best thought of together, in the context of an error function. The error function
measures how well a single number  represents the entire data set . The values of  (if they exist) that minimize the error
functions are our measures of center; the minimum value of the error function is the corresponding measure of spread. Of course,
we hope for a single value of  that minimizes the error function, so that we have a unique measure of center.

Let's apply this procedure to the mean square error function defined by
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Minimizing  is a standard problem in calculus.

The graph of  is a parabola opening upward.

1.  is minimized when , the sample mean.
2. The minimum value of  is , the sample variance.

Proof

We can tell from the form of  that the graph is a parabola opening upward. Taking the derivative gives

Hence  is the unique value that minimizes . Of course, .

Trivially, if we defined the mean square error function by dividing by  rather than , then the minimum value would still
occur at , the sample mean, but the minimum value would be the alternate version of the sample variance in which we divide by 

. On the other hand, if we were to use the root mean square deviation function , then because the square
root function is strictly increasing on , the minimum value would again occur at , the sample mean, but the minimum value
would be , the sample standard deviation. The important point is that with all of these error functions, the unique measure of
center is the sample mean, and the corresponding measures of spread are the various ones that we are studying.

Next, let's apply our procedure to the mean absolute error function defined by

The mean absolute error function satisfies the following properties:

1.  is a continuous function.
2. The graph of  consists of lines.
3. The slope of the line at  depends on where  is in the data set .

Proof

For parts (a) and (b), note that for each ,  is a continuous function of  with the graph consisting of two lines (of
slopes ) meeting at .

Mathematically,  has some problems as an error function. First, the function will not be smooth (differentiable) at points where
two lines of different slopes meet. More importantly, the values that minimize mae may occupy an entire interval, thus leaving us
without a unique measure of center. The error function exercises below will show you that these pathologies can really happen. It
turns out that  is minimized at any point in the median interval of the data set . The proof of this result follows from a much
more general result for probability distributions. Thus, the medians are the natural measures of center associated with  as a
measure of error, in the same way that the sample mean is the measure of center associated with the  as a measure of error.

Properties

In this section, we establish some essential properties of the sample variance and standard deviation. First, the following alternate
formula for the sample variance is better for computational purposes, and for certain theoretical purposes as well.

The sample variance can be computed as

Proof

Note that
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Dividing by  gives the result.

If we let  denote the sample from the variable , then the computational formula in the last exercise can be
written succinctly as

The following theorem gives another computational formula for the sample variance, directly in terms of the variables and thus
without the computation of an intermediate statistic.

The sample variance can be computed as

Proof

Note that

Dividing by  gives the result.

The sample variance is nonnegative:

1. 
2.  if and only if  for each .

Proof

Part (a) is obvious. For part (b) note that if  then  for each . Conversely, if  is a constant vector, then  is that
same constant.

Thus,  if and only if the data set is constant (and then, of course, the mean is the common value).

If  is a constant then

1. 
2. 

Proof

For part (a), recall that . Hence
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If  is a sample of size  from a constant  then

1. .
2. 

Proof

Recall that . Hence

As a special case of these results, suppose that  is a sample of size  corresponding to a real variable , and
that  and  are constants. The sample corresponding to the variable , in our vector notation, is . Then 

 and . Linear transformations of this type, when , arise frequently when
physical units are changed. In this case, the transformation is often called a location-scale transformation;  is the location
parameter and  is the scale parameter. For example, if  is the length of an object in inches, then  is the length of the
object in centimeters. If  is the temperature of an object in degrees Fahrenheit, then  is the temperature of the
object in degree Celsius.

Now, for , let . The number  is the standard score associated with . Note that since , ,
and  have the same physical units, the standard score  is dimensionless (that is, has no physical units); it measures the directed
distance from the mean  to the data value  in standard deviations.

The sample of standard scores  has mean 0 and variance 1. That is,

1. 
2. 

Proof

These results follow from Theroems 7 and 8. In vector notation, note that . Hence 
and .

Approximating the Variance

Suppose that instead of the actual data , we have a frequency distribution corresponding to a partition with classes (intervals) 
, class marks (midpoints of the intervals) , and frequencies . Recall that the

relative frequency of class  is . In this case, approximate values of the sample mean and variance are, respectively,

These approximations are based on the hope that the data values in each class are well represented by the class mark. In fact, these
are the standard definitions of sample mean and variance for the data set in which  occurs  times for each .

Inferential Statistics

We continue our discussion of the sample variance, but now we assume that the variables are random. Thus, suppose that we have a
basic random experiment, and that  is a real-valued random variable for the experiment with mean  and standard deviation .
We will need some higher order moments as well. Let  and  denote the 3rd and 4th
moments about the mean. Recall that , the skewness of , and , the kurtosis of . We
assume that .
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We repeat the basic experiment  times to form a new, compound experiment, with a sequence of independent random variables 
, each with the same distribution as . In statistical terms,  is a random sample of size  from the

distribution of . All of the statistics above make sense for , of course, but now these statistics are random variables. We will use
the same notationt, except for the usual convention of denoting random variables by capital letters. Finally, note that the
deterministic properties and relations established above still hold.

In addition to being a measure of the center of the data , the sample mean

is a natural estimator of the distribution mean . In this section, we will derive statistics that are natural estimators of the
distribution variance . The statistics that we will derive are different, depending on whether  is known or unknown; for this
reason,  is referred to as a nuisance parameter for the problem of estimating .

A Special Sample Variance

First we will assume that  is known. Although this is almost always an artificial assumption, it is a nice place to start because the
analysis is relatively easy and will give us insight for the standard case. A natural estimator of  is the following statistic, which
we will refer to as the special sample variance.

 is the sample mean for a random sample of size  from the distribution of , and satisfies the following
properties:

1. 
2. 
3.  as  with probability 1
4. The distribution of  converges to the standard normal distribution as .

Proof

These result follow immediately from standard results in the section on the Law of Large Numbers and the section on the
Central Limit Theorem. For part (b), note that

In particular part (a) means that  is an unbiased estimator of . From part (b), note that  as ; this means
that  is a consistent estimator of . The square root of the special sample variance is a special version of the sample standard
deviation, denoted .

. Thus,  is a negativley biased estimator that tends to underestimate .

Proof

This follows from the unbiased property and Jensen's inequality. Since  is concave downward on , we have 
.

Next we compute the covariance and correlation between the sample mean and the special sample variance.

The covariance and correlation of  and  are

1. .
2. 

Proof
1. From the bilinearity of the covariance operator and by independence,
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But . Substituting
gives the result.

2. This follows from part (a), the unbiased property, and our previous result that .

Note that the correlation does not depend on the sample size, and that the sample mean and the special sample variance are
uncorrelated if  (equivalently ).

The Standard Sample Variance

Consider now the more realistic case in which  is unknown. In this case, a natural approach is to average, in some sense, the
squared deviations  over . It might seem that we should average by dividing by . However, another
approach is to divide by whatever constant would give us an unbiased estimator of . This constant turns out to be , leading
to the standard sample variance:

.

Proof

By expanding (as was shown in the last section),

Recall that  and . Taking expected values in the displayed equation gives

Of course, the square root of the sample variance is the sample standard deviation, denoted .

. Thus,  is a negativley biased estimator than tends to underestimate .

Proof

The proof is exactly the same as for the special standard variance.

 as  with probability 1.

Proof

This follows from the strong law of large numbers. Recall again that

But with probability 1,  as  and  as .

Since  is an unbiased estimator of , the variance of  is the mean square error, a measure of the quality of the estimator.

.

Proof

Recall from the result above that

cov (M , )= cov[ , ( −μ ] = cov [ , ( −μ ]W
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i

X

i

)

2

X

i

X

i

)

2

X

i

)

3

X

i

X

i

)

2

σ

3

var(M) = /nσ

2

= 0σ

3

skew(X) = 0

μ

( −MX

i

)

2

i ∈ {1, 2,… ,n} n

σ

2

n−1

= ( −MS

2

1

n−1

∑

i=1

n

X

i

)

2

(6.5.24)
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E(M) = μ var(M) = /nσ
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S
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2
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M( ) → +X

2

σ

2

μ

2

n→∞ (X) →M

2

μ

2
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2

S
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Hence, using the bilinear property of covariance we have

We compute the covariances in this sum by considering disjoint cases:

 if  or , and there are  such terms.
 if  are distinct, and there are  such terms.

 if  and , and there are  such terms.
 if ,  and , and there are 

such terms.

Substituting gives the result.

Note that  as , and hence  is a consistent estimator of . On the other hand, it's not surprising that the
variance of the standard sample variance (where we assume that  is unknown) is greater than the variance of the special standard
variance (in which we assume  is known).

.

Proof

From the formula above for the variance of , the previous result for the variance of , and simple algebra,

Note however that the difference goes to 0 as .

Next we compute the covariance between the sample mean and the sample variance.

The covariance and correlation between the sample mean and sample variance are

1. 
2. 

Proof
1. Recall again that

Hence, using the bilinear property of covariance we have

We compute the covariances in this sum by considering disjoint cases:
 if , and there are  such terms.
 if  are distinct, and there are  such terms.

 if  and , and there are  such terms.
Substituting gives the result.

2. This follows follows from part(a), the result above on the variance of , and .

= ( −S
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In particular, note that . Again, the sample mean and variance are uncorrelated if  so that 
. Our last result gives the covariance and correlation between the special sample variance and the standard one.

Curiously, the covariance the same as the variance of the special sample variance.

The covariance and correlation between  and  are

1. 

2. 

Proof
1. Recall again that

so by the bilinear property of covariance we have

Once again, we compute the covariances in this sum by considering disjoint cases:
 if , and there are  such terms.
 if  are distinct, and there are  such terms.

 if  and , and there are  such terms.
Substituting gives the results.

2. This follows from part (a) and the formulas above for the variance of  and the variance of 

Note that  as , not surprising since with probability 1,  and  as .

A particularly important special case occurs when the sampling distribution is normal. This case is explored in the section on
Special Properties of Normal Samples.

Exercises

Basic Properties

Suppose that  is the temperature (in degrees Fahrenheit) for a certain type of electronic component after 10 hours of
operation. A sample of 30 components has mean 113° and standard deviation .

1. Classify  by type and level of measurement.
2. Find the sample mean and standard deviation if the temperature is converted to degrees Celsius. The transformation is 

.

Answer
1. continuous, interval
2. , 

Suppose that  is the length (in inches) of a machined part in a manufacturing process. A sample of 50 parts has mean 10.0 and
standard deviation 2.0.

1. Classify  by type and level of measurement.
2. Find the sample mean if length is measured in centimeters. The transformation is .

Answer
1. continuous, ratio
2. , 
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Professor Moriarity has a class of 25 students in her section of Stat 101 at Enormous State University (ESU). The mean grade
on the first midterm exam was 64 (out of a possible 100 points) and the standard deviation was 16. Professor Moriarity thinks
the grades are a bit low and is considering various transformations for increasing the grades. In each case below give the mean
and standard deviation of the transformed grades, or state that there is not enough information.

1. Add 10 points to each grade, so the transformation is .
2. Multiply each grade by 1.2, so the transformation is 
3. Use the transformation . Note that this is a non-linear transformation that curves the grades greatly at the low

end and very little at the high end. For example, a grade of 100 is still 100, but a grade of 36 is transformed to 60.

One of the students did not study at all, and received a 10 on the midterm. Professor Moriarity considers this score to be an
outlier.

4. Find the mean and standard deviation if this score is omitted.

Answer
1. , 
2. , 
3. Not enough information
4. , 

Computational Exercises

All statistical software packages will compute means, variances and standard deviations, draw dotplots and histograms, and in
general perform the numerical and graphical procedures discussed in this section. For real statistical experiments, particularly those
with large data sets, the use of statistical software is essential. On the other hand, there is some value in performing the
computations by hand, with small, artificial data sets, in order to master the concepts and definitions. In this subsection, do the
computations and draw the graphs with minimal technological aids.

Suppose that  is the number of math courses completed by an ESU student. A sample of 10 ESU students gives the data 
.

1. Classify  by type and level of measurement.
2. Sketch the dotplot.
3. Construct a table with rows corresponding to cases and columns corresponding to , , , and . Add rows

at the bottom in the  column for totals and means.

Answer
1. discrete, ratio

3. 

Total 20 0 14

Mean 2 0

y = x+10

z= 1.2x

w = 10 x

−−

√

m = 74 s= 16

m = 76.8 s= 19.2

m = 66.25 s= 11.62

x

x = (3, 1, 2, 0, 2, 4, 3, 2, 1, 2)

x

i x

i

−mx

i

( −mx

i

)

2

i

i x

i

−mx

i

( −mx

i

)

2

1 3 1 1

2 1 −1 1

3 2 0 0

4 0 −2 4

5 2 0 0

6 4 2 4

7 3 1 1

8 2 0 0

9 1 −1 1

14/9
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Total 20 0 14

Mean 2 0

Suppose that a sample of size 12 from a discrete variable  has empirical density function given by , 
, , , .

1. Sketch the graph of .
2. Compute the sample mean and variance.
3. Give the sample values, ordered from smallest to largest.

Answer
2. , 
3. 

The following table gives a frequency distribution for the commuting distance to the math/stat building (in miles) for a sample
of ESU students.

Class Freq Rel Freq Density Cum Freq Cum Rel Freq Midpoint

6      

16      

18      

10      

Total       

1. Complete the table
2. Sketch the density histogram
3. Sketch the cumulative relative frquency ogive.
4. Compute an approximation to the mean and standard deviation.

Answer

1. Class Freq Rel Freq Density Cum Freq Cum Rel Freq Midpoint

6 0.12 0.06 6 0.12 1

16 0.32 0.08 22 0.44 4

18 0.36 0.09 40 0.80 8

10 0.20 0.02 50 1 15

Total 50 1

4. , 

Error Function Exercises

In the error function app, select root mean square error. As you add points, note the shape of the graph of the error function, the
value that minimizes the function, and the minimum value of the function.

i x

i

−mx

i

( −mx

i

)

2

10 2 0 0

14/9

x f(−2) = 1/12

f(−1) = 1/4 f(0) = 1/3 f(1) = 1/6 f(2) = 1/6

f

m = 1/12 = 203/121s

2

(−2,−1,−1,−1, 0, 0, 0, 0, 1, 1, 2, 2)

(0, 2]

(2, 6]

(6, 10]

(10, 20])

(0, 2]

(2, 6]

(6, 10]

(10, 20]

m = 7.28 s= 4.549
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In the error function app, select mean absolute error. As you add points, note the shape of the graph of the error function, the
values that minimizes the function, and the minimum value of the function.

Suppose that our data vector is . Explicitly give  as a piecewise function and sketch its graph. Note that

1. All values of  minimize .
2.  is not differentiable at .

Suppose that our data vector is . Explicitly give  as a piecewise function and sketch its graph. Note that

1.  is minimized at .
2.  is not differentiable at .

Simulation Exercises

Many of the apps in this project are simulations of experiments with a basic random variable of interest. When you run the
simulation, you are performing independent replications of the experiment. In most cases, the app displays the standard deviation
of the distribution, both numerically in a table and graphically as the radius of the blue, horizontal bar in the graph box. When you
run the simulation, the sample standard deviation is also displayed numerically in the table and graphically as the radius of the red
horizontal bar in the graph box.

In the binomial coin experiment, the random variable is the number of heads. For various values of the parameters  (the
number of coins) and  (the probability of heads), run the simulation 1000 times and compare the sample standard deviation to
the distribution standard deviation.

In the simulation of the matching experiment, the random variable is the number of matches. For selected values of  (the
number of balls), run the simulation 1000 times and compare the sample standard deviation to the distribution standard
deviation.

Run the simulation of the gamma experiment 1000 times for various values of the rate parameter  and the shape parameter .
Compare the sample standard deviation to the distribution standard deviation.

Probability Exercises

Suppose that  has probability density function  for . The distribution of  is a member of
the beta family. Compute each of the following

1. 
2. 
3. 
4. 

Answer
1. 
2. 
3. \)
4. 

Suppose now that  is a random sample of size 10 from the beta distribution in the previous problem. Find
each of the following:

1. 
2. 
3. 
4. 
5. 
6. 

(2, 1, 5, 7) mae

a ∈ [2, 5] mae

mae a ∈ {1, 2, 5, 7}

(3, 5, 1) mae

mae a= 3

mae a ∈ {1, 3, 5}

n

p

n

r k

X f(x) = 12 (1−x)x

2

0 ≤ x ≤ 1 X

μ=E(X)

= var(X)σ

2

=E [(X−μ ]d

3

)

3

=E [(X−μ ]d

4

)

4

3/5

1/25

−2/875

33/8750

( , ,… , )X

1

X

2

X

10

E(M)

var(M)

E ( )W

2

var( )W

2

E ( )S

2

var( )S
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7. 
8. 
9. 

Answer
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Suppose that  has probability density function  for , where  is a parameter. Thus  has the
exponential distribution with rate parameter . Compute each of the following

1. 
2. 
3. 
4. 

Answer
1. 
2. 
3. 
4. 

Suppose now that  is a random sample of size 5 from the exponential distribution in the previous problem.
Find each of the following:

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Answer
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Recall that for an ace-six flat die, faces 1 and 6 have probability  each, while faces 2, 3, 4, and 5 have probability  each. Let
 denote the score when an ace-six flat die is thrown. Compute each of the following:

cov (M , )W

2

cov (M , )S

2

cov ( , )W

2

S

2

3/5

1/250

1/25

19/87 500

1/25

199/787 500

−2/8750

−2/8750

19/87 500

X f(x) = λe

−λx

0 ≤ x <∞ λ > 0 X

λ

μ=E(X)

= var(X)σ

2

=E [(X−μ ]d

3

)

3
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4

)

4
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4
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X
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X
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E ( )W

2
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2

E ( )S

2

var( )S

2

cov (M , )W

2

cov (M , )S

2

cov ( , )W

2

S

2

1/λ

1/5λ

2

1/λ

2

8/5λ

4

1/λ

2

17/10λ

4

2/5λ

3

2/5λ

3

8/5λ

4

1

4

1

8

X
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1. 
2. 
3. 
4. 

Answer
1. 
2. 
3. 
4. 

Suppose now that an ace-six flat die is tossed 8 times. Find each of the following:

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Answer
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Data Analysis Exercises

Statistical software should be used for the problems in this subsection.

Consider the petal length and species variables in Fisher's iris data.

1. Classify the variables by type and level of measurement.
2. Compute the sample mean and standard deviation, and plot a density histogram for petal length.
3. Compute the sample mean and standard deviation, and plot a density histogram for petal length by species.

Answers
1. petal length: continuous, ratio. species: discrete, nominal
2. , 
3. , ; , ; , 

Consider the erosion variable in the Challenger data set.

1. Classify the variable by type and level of measurement.
2. Compute the mean and standard deviation
3. Plot a density histogram with the classes , , , .

Answer
1. continuous, ratio

μ=E(X)

= var(X)σ

2

=E [(X−μ ]d

3

)

3

=E [(X−μ ]d

4

)

4

7/2

15/4

0

333/16

E(M)

var(M)

E ( )W

2

var( )W

2

E ( )S

2

var( )S

2

cov (M , )W

2

cov (M , )S

2

cov ( , )W

2

S

2

7/2

15/32

15/4

27/32

15/4

207/512

0

0

27/32

m = 37.8 s= 17.8

m(0) = 14.6 s(0) = 1.7 m(1) = 55.5 s(1) = 30.5 m(2) = 43.2 s(2) = 28.7

[0, 5) [5, 40) [40, 50) [50, 60)
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2. , 

Consider Michelson's velocity of light data.

1. Classify the variable by type and level of measurement.
2. Plot a density histogram.
3. Compute the sample mean and standard deviation.
4. Find the sample mean and standard deviation if the variable is converted to . The transformation is 

Answer
1. continuous, interval
3. , 
4. , 

Consider Short's paralax of the sun data.

1. Classify the variable by type and level of measurement.
2. Plot a density histogram.
3. Compute the sample mean and standard deviation.
4. Find the sample mean and standard deviation if the variable is converted to degrees. There are 3600 seconds in a degree.
5. Find the sample mean and standard deviation if the variable is converted to radians. There are  radians in a degree.

Answer
1. continuous, ratio
3. , 
4. , 
5. , 

Consider Cavendish's density of the earth data.

1. Classify the variable by type and level of measurement.
2. Compute the sample mean and standard deviation.
3. Plot a density histogram.

Answer
1. continuous, ratio
2. , 

Consider the M&M data.

1. Classify the variables by type and level of measurement.
2. Compute the sample mean and standard deviation for each color count variable.
3. Compute the sample mean and standard deviation for the total number of candies.
4. Plot a relative frequency histogram for the total number of candies.
5. Compute the sample mean and standard deviation, and plot a density histogram for the net weight.

Answer
1. color counts: discrete ratio. net weight: continuous ratio.
2. , ; , ; , ; , ; 

, ; , 
3. , 
5. , 

Consider the body weight, species, and gender variables in the Cicada data.

1. Classify the variables by type and level of measurement.
2. Compute the relative frequency function for species and plot the graph.

m = 7.7 s= 17.2

km/hr y = x+299 000

m = 852.4 s= 79.0

m = 299 852.4 s= 79.0

π/180

m = 8.616 s= 0.749

m = 0.00239 s= 0.000208

m = 0.0000418s= 0.00000363

m = 5.448 s= 0.221

m(r) = 9.60 s(r) = 4.12 m(g) = 7.40 s(g) = 0.57 m(bl) = 7.23 s(bl) = 4.35 m(o) = 6.63 s(0) = 3.69

m(y) = 13.77 s(y) = 6.06 m(br) = 12.47 s(br) = 5.13

m(n) = 57.10 s(n) = 2.4

m(w) = 49.215 s(w) = 1.522
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3. Compute the relative frequeny function for gender and plot the graph.
4. Compute the sample mean and standard deviation, and plot a density histogram for body weight.
5. Compute the sample mean and standard deviation, and plot a density histogrm for body weight by species.
6. Compute the sample mean and standard deviation, and plot a density histogram for body weight by gender.

Answer
1. body weight: continuous, ratio. species: discrete, nominal. gender: discrete, nominal.
2. , , 
3. , 
4. , 
5. , ; , ; , 
6. , ; , 

Consider Pearson's height data.

1. Classify the variables by type and level of measurement.
2. Compute the sample mean and standard deviation, and plot a density histogram for the height of the father.
3. Compute the sample mean and standard deviation, and plot a density histogram for the height of the son.

Answer
1. continuous ratio
2. , 
3. , 

This page titled 6.5: The Sample Variance is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

f(0) = 0.423 f(1) = 0.519 f(2) = 0.058

f(0) = 0.567 f(1) = 0.433

m = 0.180 s= 0.059

m(0) = 0.168 s(0) = 0.054 m(1) = 0.185 s(1) = 0.185 m(2) = 0.225 s(2) = 0.107

m(0) = 0.206 s(0) = 0.052 m(1) = 0.145 s(1) = 0.051

m(x) = 67.69 s(x) = 2.75

m(y) = 68.68 s(y) = 2.82
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6.6: Order Statistics
        

Descriptive Theory

Recall again the basic model of statistics: we have a population of objects of interest, and we have various measurements (variables) that we
make on these objects. We select objects from the population and record the variables for the objects in the sample; these become our data.
Our first discussion is from a purely descriptive point of view. That is, we do not assume that the data are generated by an underlying
probability distribution. But as always, remember that the data themselves define a probability distribution, namely the empirical distribution.

Order Statistics

Suppose that  is a real-valued variable for a population and that  are the observed values of a sample of size 
corresponding to this variable. The order statistic of rank  is the th smallest value in the data set, and is usually denoted . To emphasize
the dependence on the sample size, another common notation is . Thus,

Naturally, the underlying variable  should be at least at the ordinal level of measurement. The order statistics have the same physical units as 
. One of the first steps in exploratory data analysis is to order the data, so order statistics occur naturally. In particular, note that the extreme

order statistics are

The sample range is  and the sample midrange is . These statistics have the same physical units as  and
are measures of the dispersion of the data set.

The Sample Median

If  is odd, the sample median is the middle of the ordered observations, namely  where . If  is even, there is not a single
middle observation, but rather two middle observations. Thus, the median interval is  where . In this case, the sample
median is defined to be the midpoint of the median interval, namely  where . In a sense, this definition is a bit
arbitrary because there is no compelling reason to prefer one point in the median interval over another. For more on this issue, see the
discussion of error functions in the section on Sample Variance. In any event, sample median is a natural statistic that gives a measure of the
center of the data set.

Sample Quantiles

We can generalize the sample median discussed above to other sample quantiles. Thus, suppose that . Our goal is to find the value
that is the fraction  of the way through the (ordered) data set. We define the rank of the value that we are looking for as . Note
that the rank is a linear function of , and that the rank is 1 when  and  when . But of course, the rank will not be an integer in
general, so we let , the integer part of the desired rank, and we let , the fractional part of the
desired rank. Thus,  where  and . So, using linear interpolation, we define the sample
quantile of order  to be

Sample quantiles have the same physical units as the underlying variable . The algorithm really does generalize the results for sample
medians.

The sample quantile of order  is the median as defined earlier, in both cases where  is odd and where  is even.

The sample quantile of order  is known as the first quartile and is frequently denoted . The the sample quantile of order  is known as the
third quartile and is frequently denoted . The sample median which is the quartile of order  is sometimes denoted . The interquartile
range is defined to be . Note that  is a statistic that measures the spread of the distribution about the median, but of course
this number gives less information than the interval .

The statistic  is called the lower fence and the statistic  is called the upper fence. Sometimes lower limit and upper limit
are used instead of lower fence and upper fence. Values in the data set that are below the lower fence or above the upper fence are potential
outliers, that is, values that don't seem to fit the overall pattern of the data. An outlier can be due to a measurement error, or may be a valid but
rather extreme value. In any event, outliers usually deserve additional study.

The five statistics  are often referred to as the five-number summary. Together, these statistics give a great deal of
information about the data set in terms of the center, spread, and skewness. The five numbers roughly separate the data set into four intervals
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each of which contains approximately 25% of the data. Graphically, the five numbers, and the outliers, are often displayed as a boxplot,
sometimes called a box and whisker plot. A boxplot consists of an axis that extends across the range of the data. A line is drawn from smallest
value that is not an outlier (of course this may be the minimum ) to the largest value that is not an outlier (of course, this may be the
maximum ). Vertical marks (“whiskers”) are drawn at the ends of this line. A rectangular box extends from the first quartile  to the third
quartile  and with an additional whisker at the median . Finally, the outliers are denoted as points (beyond the extreme whiskers). All
statistical packages will compute the quartiles and most will draw boxplots. The picture below shows a boxplot with 3 outliers.

Figure : Boxplot

Alternate Definitions

The algorithm given above is not the only reasonable way to define sample quantiles, and indeed there are lots of alternatives. One natural
method would be to first compute the empirical distribution function

Recall that  has the mathematical properties of a distribution function, and in fact  is the distribution function of the empirical distribution
of the data. Recall that this is the distribution that places probability  at each data value  (so this is the discrete uniform distribution on 

 if the data values are distinct). Thus,  for . Then, we could define the quantile function to be the
inverse of the distribution function, as we usually do for probability distributions:

It's easy to see that with this definition, the quantile of order  is simply  where .

Another method is to compute the rank of the quantile of order  as , rather than , and then use linear
interpolation just as we have done. To understand the reasoning behind this method, suppose that the underlying variable  takes value in an
interval . Then the  points in the data set  separate this interval into  subintervals, so it's reasonable to think of  as the
quantile of order . This method also reduces to the standard calculation for the median when . However, the method will fail if  is
so small that  or so large that .

The primary definition that we give above is the one that is most commonly used in statistical software and spreadsheets. Moreover, when the
sample size  is large, it doesn't matter very much which of these competing quantile definitions is used. All will give similar results.

Transformations

Suppose again that  is a sample of size  from a population variable , but now suppose also that  is a new
variable, where  and . Recall that transformations of this type are location-scale transformations and often correspond to
changes in units. For example, if  is the length of an object in inches, then  is the length of the object in centimeters. If  is the
temperature of an object in degrees Fahrenheit, then  is the temperature of the object in degrees Celsius. Let 
denote the sample from the variable .

Order statistics and quantiles are preserved under location-scale transformations:

1.  for 
2.  for 

Proof

Part (a) follows easily from the fact that the location-scale transformation is strictly increasing and hence preserves order:  if and
only if . For part (b), let  and let  and  be as above in the definition of the sample
quantile or order . Then

Like standard deviation (our most important measure of spread), range and interquartile range are not affected by the location parameter, but
are scaled by the scale parameter.

The range and interquartile range of  are

1. 
2. 
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Proof

These results follow immediately from the previous result.

More generally, suppose  where  is a strictly increasing real-valued function on the set of possible values of . Let 
 denote the sample corresponding to the variable . Then (as in the proof of Theorem 2), the order statistics are

preserved so . However, if  is nonlinear, the quantiles are not preserved (because the quantiles involve linear interpolation).
That is,  and  are not usually the same. When  is convex or concave we can at least give an inequality for the sample quantiles.

Suppose that  where  is strictly increasing. Then

1.  for 
2. If  is convex then  for 
3. If  is concave then  for 

Proof

As noted, part (a) follows since  is strictly increasing and hence preserves order. Part (b) follows from the definition of convexity. For 
, and  and  as in the definition of the sample quantile of order , we have

Part (c) follows by the same argument.

Stem and Leaf Plots

A stem and leaf plot is a graphical display of the order statistics . It has the benefit of showing the data in a graphical
way, like a histogram, and at the same time, preserving the ordered data. First we assume that the data have a fixed number format: a fixed
number of digits, then perhaps a decimal point and another fixed number of digits. A stem and leaf plot is constructed by using an initial part
of this string as the stem, and the remaining parts as the leaves. There are lots of variations in how to do this, so rather than give an exhaustive,
complicated definition, we will just look at a couple of examples in the exercise below.

Probability Theory

We continue our discussion of order statistics except that now we assume that the variables are random variables. Specifically, suppose that
we have a basic random experiment, and that  is a real-valued random variable for the experiment with distribution function . We perform 

 independent replications of the basic experiment to generate a random sample  of size  from the distribution of .
Recall that this is a sequence of independent random variables, each with the distribution of . All of the statistics defined in the previous
section make sense, but now of course, they are random variables. We use the notation established previously, except that we follow our usual
convention of denoting random variables with capital letters. Thus, for ,  is the th order statistic, that is, the  smallest
of . Our interest now is on the distribution of the order statistics and statistics derived from them.

Distribution of the th order statistic

Finding the distribution function of an order statistic is a nice application of Bernoulli trials and the binomial distribution.

The distribution function  of  is given by

Proof

For , let

so that  is the number of sample variables that fall in the interval . The indicator variables in the sum are independent, and
each takes the value 1 with probability . Thus,  has the binomial distribution with parameters  and . Next note that 

 if and only if  for  and , since both events mean that there are at least  sample variables in the
interval . Hence
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As always, the extreme order statistics are particularly interesting.

The distribution functions  of  and  of  are given by

1.  for 
2.  for 

The quantile functions  and  of  and  are given by

1.  for 
2.  for 

Proof

The formulas follow from the previous theorem and simple algebra. Recall that if  is a distribution function, then the corresponding
quantile function is given by  for .

When the underlying distribution is continuous, we can give a simple formula for the probability density function of an order statistic.

Suppose now that  has a continuous distribution with probability density function . Then  has a continuous distribution with
probability density function  given by

Proof

Of course, . We take the derivatives term by term and use the product rule on

We use the binomial identities  and . The net effect is

The sums cancel, leaving only the  term in the first sum. Hence

But .

Heuristic Proof

There is a simple heuristic argument for this result First,  is the probability that  is in an infinitesimal interval of size 
about . On the other hand, this event means that one of sample variables is in the infinitesimal interval,  sample variables are less
than , and  sample variables are greater than . The number of ways of choosing these variables is the multinomial coefficient

By independence, the probability that the chosen variables are in the specified intervals is

Here are the special cases for the extreme order statistics.

The probability density function  of  and  of  are given by

1.  for 
2.  for 
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Joint Distributions

We assume again that  has a continuous distribution with distribution function  and probability density function .

Suppose that  with . The joint probability density function  of  is given by

Heuristic Proof

We want to compute the probability that  is in an infinitesimal interval  about  and  is in an infinitesimal interval  about .
Note that there must be  sample variables that are less than , one variable in the infinitesimal interval about ,  sample
variables that are between  and , one variable in the infinitesimal interval about , and  sample variables that are greater than .
The number of ways to select the variables is the multinomial coefficient

By independence, the probability that the chosen variables are in the specified intervals is

From the joint distribution of two order statistics we can, in principle, find the distribution of various other statistics: the sample range ;
sample quantiles  for , and in particular the sample quartiles , , ; and the inter-quartile range IQR. The joint distribution
of the extreme order statistics  is a particularly important case.

The joint probability density function  of  is given by

Proof

This is a corollary of Theorem 7 with  and .

Arguments similar to the one above can be used to obtain the joint probability density function of any number of the order statistics. Of
course, we are particularly interested in the joint probability density function of all of the order statistics. It turns out that this density function
has a remarkably simple form.

 has joint probability density function  given by

Proof

For each permutation  of , let . On , the mapping 
 is one-to-one, has continuous first partial derivatives, and has Jacobian 1. The sets  where 

ranges over the  permutations of  are disjoint. The probability that  is not in one of these sets is 0. The
result now follows from the multivariate change of variables formula.

Heuristic Proof

Again, there is a simple heuristic argument for this result. For each  with , there are  permutations of the
coordinates of . The probability density of  at each of these points is . Hence the probability
density of  at  is  times this product.

Probability Plots

A probability plot, also called a quantile-quantile plot or a Q-Q plot for short, is an informal, graphical test to determine if observed data
come from a specified distribution. Thus, suppose that we observe real-valued data  from a random sample of size . We are
interested in the question of whether the data could reasonably have come from a continuous distribution with distribution function . First,
we order that data from smallest to largest; this gives us the sequence of observed values of the order statistics: .

Note that we can view  has the sample quantile of order . Of course, by definition, the distribution quantile of order  is 

. If the data really do come from the distribution, then we would expect the points  to
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be close to the diagonal line ; conversely, strong deviation from this line is evidence that the distribution did not produce the data. The
plot of these points is referred to as a probability plot.

Usually however, we are not trying to see if the data come from a particular distribution, but rather from a parametric family of distributions
(such as the normal, uniform, or exponential families). We are usually forced into this situation because we don't know the parameters; indeed
the next step, after the probability plot, may be to estimate the parameters. Fortunately, the probability plot method has a simple extension for
any location-scale family of distributions. Thus, suppose that  is a given distribution function. Recall that the location-scale family
associated with  has distribution function  for, , where  is the location parameter and  is the scale
parameter. Recall also that for , if  denote the quantile of order  for  and  the quantile of order  for 

. Then . It follows that if the probability plot constructed with distribution function  is nearly linear (and in particular, if it is
close to the diagonal line), then the probability plot constructed with distribution function  will be nearly linear. Thus, we can use the
distribution function  without having to know the location and scale parameters.

In the exercises below, you will explore probability plots for the normal, exponential, and uniform distributions. We will study a formal,
quantitative procedure, known as the chi-square goodness of fit test in the chapter on Hypothesis Testing.

Exercises and Applications

Basic Properties

Suppose that  is the temperature (in degrees Fahrenheit) for a certain type of electronic component after 10 hours of operation. A sample
of 30 components has five number summary .

1. Classify  by type and level of measurement.
2. Find the range and interquartile range.
3. Find the five number summary, range, and interquartile range if the temperature is converted to degrees Celsius. The transformation is

.

Answer
1. continuous, interval
2. 51, 18
3. , 28.33, 10

Suppose that  is the length (in inches) of a machined part in a manufacturing process. A sample of 50 parts has five number summary
(9.6, 9.8, 10.0, 10.1, 10.3).

1. Classify  by type and level of measurement.
2. Find the range and interquartile range.
3. Find the five number summary, range, and interquartile if length is measured in centimeters. The transformation is .

Answer
1. continuous, ratio
2. 0.7, 0.3
3. , 1.78, 0.76
4. 

Professor Moriarity has a class of 25 students in her section of Stat 101 at Enormous State University (ESU). For the first midterm exam,
the five number summary was (16, 52, 64, 72, 81) (out of a possible 100 points). Professor Moriarity thinks the grades are a bit low and is
considering various transformations for increasing the grades.

1. Find the range and interquartile range.
2. Suppose she adds 10 points to each grade. Find the five number summary, range, and interquartile range for the transformed grades.
3. Suppose she multiplies each grade by 1.2. Find the five number summary, range, and interquartile range for the transformed grades.
4. Suppose she uses the transformation , which curves the grades greatly at the low end and very little at the high end. Give

whatever information you can about the five number summary of the transformed grades.
5. Determine whether the low score of 16 is an outlier.

Answer
1. 65, 20
2. , 65, 20
3. , 78, 24
4. , , , , 

y = x

G

G F (x) =G( )

x−a

b

x ∈ R a ∈ R b ∈ (0,∞)
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p
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x
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x

y = 2.54x
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(19.2, 62.4, 76.8, 86.4, 97.2)

= 40y

(1)

≤ 72.11q

1

≤ 80q

2

≤ 84.85q

3

= 90y

(25)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10183?pdf


6.6.7 https://stats.libretexts.org/@go/page/10183

5. The lower fence is 27, so yes 16 is an outlier.

Computational Exercises

All statistical software packages will compute order statistics and quantiles, draw stem-and-leaf plots and boxplots, and in general perform the
numerical and graphical procedures discussed in this section. For real statistical experiments, particularly those with large data sets, the use of
statistical software is essential. On the other hand, there is some value in performing the computations by hand, with small, artificial data sets,
in order to master the concepts and definitions. In this subsection, do the computations and draw the graphs with minimal technological aids.

Suppose that  is the number of math courses completed by an ESU student. A sample of 10 ESU students gives the data 
.

1. Classify  by type and level of measurement.
2. Give the order statistics
3. Compute the five number summary and draw the boxplot.
4. Compute the range and the interquartile range.

Answer
1. discrete, ratio
2. 
3. 
4. 4, 1.5

Suppose that a sample of size 12 from a discrete variable  has empirical density function given by , , 
, , .

1. Give the order statistics.
2. Compute the five number summary and draw the boxplot.
3. Compute the range and the interquartile range.

Answer
1. 
2. 
3. 4, 2

The stem and leaf plot below gives the grades for a 100-point test in a probability course with 38 students. The first digit is the stem and
the second digit is the leaf. Thus, the low score was 47 and the high score was 98. The scores in the 6 row are 60, 60, 62, 63, 65, 65, 67,
68.

Compute the five number summary and draw the boxplot.

Answer

App Exercises

In the histogram app, construct a distribution with at least 30 values of each of the types indicated below. Note the five number summary.

1. A uniform distribution.
2. A symmetric, unimodal distribution.
3. A unimodal distribution that is skewed right.
4. A unimodal distribution that is skewed left.
5. A symmetric bimodal distribution.
6. A -shaped distribution.

x

x = (3, 1, 2, 0, 2, 4, 3, 2, 1, 2)

x

(0, 1, 1, 2, 2, 2, 2, 3, 3, 4)

(0, 1.25, 2, 2.75, 4)

x f(−2) = 1/12 f(−1) = 1/4

f(0) = 1/3 f(1) = 1/6 f(2) = 1/6

(−2,−1,−1,−1, 0, 0, 0, 0, 1, 1, 2, 2)

(−2,−1, 0, 1, 2)

4

5

6

7

8

9

7

0346

00235578

0112346678899

0367889

1368

(47, 65, 75, 83, 98)

u
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In the error function app, Start with a distribution and add additional points as follows. Note the effect on the five number summary:

1. Add a point below .
2. Add a point between  and .
3. Add a point between  and .
4. Add a point between  and .
5. Add a point between  and .
6. Add a point above .

In the last problem, you may have noticed that when you add an additional point to the distribution, one or more of the five statistics does not
change. In general, quantiles can be relatively insensitive to changes in the data.

The Uniform Distribution

Recall that the standard uniform distribution is the uniform distribution on the interval .

Suppose that  is a random sample of size  from the standard uniform distribution. For ,  has the beta
distribution, with left parameter  and right parameter . The probability density function  is given by

Proof

This follows immediately from the basic theorem above since  and  for . From the form of  we can
identify the distribution as beta with left parameter  and right parameter .

In the order statistic experiment, select the standard uniform distribution and . Vary  from 1 to 5 and note the shape of the
probability density function of . For each value of , run the simulation 1000 times and compare the empirical density function to the
true probability density function.

It's easy to extend the results for the standard uniform distribution to the general uniform distribution on an interval.

Suppose that  is a random sample of size  from the uniform distribution on the interval  where  and . For 
,  has the beta distribution with left parameter , right parameter , location parameter , and scale

parameter . In particular,

1. 

2. 

Proof

Suppose that  is a random sample of size  from the standard uniform distribution, and let  for 
. Then  is a random sample of size  from the uniform distribution on the interval ,

and moreover, . So the distribution of  follows from the previous result. Parts (a) and (b) follow from standard
results for the beta distribution.

We return to the standard uniform distribution and consider the range of the random sample.

Suppose that  is a random sample of size  from the standard uniform distribution. The sample range  has the beta distribution with
left parameter  and right parameter 2. The probability density function  is given by

Proof

From the result above, the joint PDF of  is  for . Hence, for ,

It follows that the CDF of  is  for . Taking the derivative with respect to  and simplifying gives
the PDF  for . We can tell from the form of  that the distribution is beta with left parameter 

 and right parameter 2.
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Once again, it's easy to extend this result to a general uniform distribution.

Suppose that  is a random sample of size  from the uniform distribution on  where  and 
. The sample range  has the beta distribution with left parameter , right parameter , and scale

parameter . In particular,

1. 

2. 

Proof

Suppose again that  is a random sample of size  from the standard uniform distribution, and let 
for . Then  is a random sample of size  from the uniform distribution on the interval 

, and moreover, . Hence  so the distribution of  follows from the previous
result. Parts (a) and (b) follow from standard results for the beta distribution.

The joint distribution of the order statistics for a sample from the uniform distribution is easy to get.

Suppose that  is a random sample of size  from the uniform distribution on the interval , where  and 
. Then  is uniformly distributed on .

Proof

This follows easily from the fact that  is uniformly distributed on . From the result above, the joint PDF of
the order statistics is  for  with .

The Exponential Distribution

Recall that the exponential distribution with rate parameter  has probability density function

The exponential distribution is widely used to model failure times and other random times under certain ideal conditions. In particular, the
exponential distribution governs the times between arrivals in the Poisson process.

Suppose that  is a random sample of size  from the exponential distribution with rate parameter . The probability density function of
the th order statistic  is

In particular, the minimum of the variables  also has an exponential distribution, but with rate parameter .

Proof

The PDF of  follows from the theorem above since  for . Substituting  gives 
for .

In the order statistic experiment, select the standard exponential distribution and . Vary  from 1 to 5 and note the shape of the
probability density function of . For each value of , run the simulation 1000 times and compare the empirical density function to the
true probability density function.

Suppose again that  is a random sample of size  from the exponential distribution with rate parameter . The sample range  has the
same distribution as the maximum of a random sample of size  from the exponential distribution. The probability density function is

Proof

By the result above,  has joint PDF  for . Hence for 
,

Substituting ,  into the inside integral and evaluating gives
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Differentiating with respect to  gives the the PDF. Comparing with our previous result, we see that this is the PDF of the maximum of a
sample of size  from the exponential distribution.

Suppose again that  is a random sample of size  from the exponential distribution with rate parameter . The joint probability density
function of the order statistics  is

Proof

This follows from the result above and simple algebra.

Dice

Four fair dice are rolled. Find the probability density function of each of the order statistics.

Answer

1 2 3 4 5 6

In the dice experiment, select the order statistic and die distribution given in parts (a)–(d) below. Increase the number of dice from 1 to 20,
noting the shape of the probability density function at each stage. Now with , run the simulation 1000 times, and note the apparent
convergence of the relative frequency function to the probability density function.

1. Maximum score with fair dice.
2. Minimum score with fair dice.
3. Maximum score with ace-six flat dice.
4. Minimum score with ace-six flat dice.

Four fair dice are rolled. Find the joint probability density function of the four order statistics.

Answer

The joint probability density function  is defined on 

1.  if the coordinates are all the same (there are 6 such vectors).
2.  if there are two distinct coordinates, one value occurring 3 times and the other value once (there are 30 such

vectors).
3.  if there are two distinct coordinates in , each value occurring 2 times (there are 15 such

vectors).
4.  if there are three distinct coordinates, one value occurring twice and the other values once (there are 60 such

vectors).
5.  if the coordinates are distinct (there are 15 such vectors).

Four fair dice are rolled. Find the probability density function of the sample range.

Answer

 has probability density function  given by 

Probability Plot Simulations

In the probability plot experiment, set the sampling distribution to normal distribution with mean 5 and standard deviation 2. Set the
sample size to . For each of the following test distributions, run the experiment 50 times and note the geometry of the probability

P(R≤ t) = nλ (1− dx = (1−∫

∞

0

e

−nλx

e

−λt

)

n−1

e

−λt

)

n−1

(6.6.29)

t

n−1

X n λ

( , ,… , )X

(1)

X

(2)

X

(n)

g( , ,… , ) = n! , 0 ≤ ≤ ⋯≤ <∞x

1

x

2

x

n

λ

n

e

−λ( + +⋯+ )x

1

x

2

x

n

x

1

x

2

x

n

(6.6.30)

x

(x)f

1

671

1296

369

1296

175

1296

65

1296

15

1296

1

1296

(x)f

2

171

1296

357

1296

363

1296

261

1296

123

1296

21

1296

(x)f

3

21

1296

123

1296

261

1296

363

1296

357

1296

171

1296

(x)f

4

1

1296

15

1296

65

1296

175

1296

369

1296

671

1296

n= 4

g {( , , , ) ∈ {1, 2, 3, 4, 5, 6 : ≤ ≤ ≤ }x

1

x

2

x

3

x

4

}

4

x

1

x

2

x

3

x

4

g( , , , ) =x

1

x

2

x

3

x

4

1

1296

g( , , , ) =x

1

x

2

x

3

x

4

4

1296

g( , , , ) =x

1

x

2

x

3

x

4

6

1296

( , , , )x

1

x

2

x

3

x

4

g( , , , ) =x

1

x

2

x

3

x

4

12

1296

g( , , , ) =x

1

x

2

x

3

x

4

24

1296

R h h(0) = , h(1) = , h(2) = , h(3) = , h(4) = , h(5) =

6

1296

70

1296

300

1296

300

1296

318

1296

302

1296

n= 20

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10183?pdf


6.6.11 https://stats.libretexts.org/@go/page/10183

plot:

1. Standard normal
2. Uniform on the interval 
3. Exponential with parameter 1

In the probability plot experiment, set the sampling distribution to the uniform distribution on . Set the sample size to . For
each of the following test distributions, run the experiment 50 times and note the geometry of the probability plot:

1. Standard normal
2. Uniform on the interval 
3. Exponential with parameter 1

In the probability plot experiment, Set the sampling distribution to the exponential distribution with parameter 3. Set the sample size to 
. For each of the following test distributions, run the experiment 50 times and note the geometry of the probability plot:

1. Standard normal
2. Uniform on the interval 
3. Exponential with parameter 1

Data Analysis Exercises

Statistical software should be used for the problems in this subsection.

Consider the petal length and species variables in Fisher's iris data.

1. Classify the variables by type and level of measurement.
2. Compute the five number summary and draw the boxplot for petal length.
3. Compute the five number summary and draw the boxplot for petal length by species.
4. Draw the normal probability plot for petal length.

Answers
1. petal length: continuous, ratio. type: discrete, nominal
2. 
3. type 0: ; type 1: ; type 2: 

Consider the erosion variable in the Challenger data set.

1. Classify the variable by type and level of measurement.
2. Compute the five number summary and draw the boxplot.
3. Identify any outliers.

Answer
1. continuous, ratio
2. 
3. All of the positive values 28, 40, 48, and 53 are outliers.

A stem and leaf plot of Michelson's velocity of light data is given below. In this example, the last digit (which is always 0) has been left
out, for convenience. Also, note that there are two sets of leaves for each stem, one corresponding to leaves from 0 to 4 (so actually from
00 to 40) and the other corresponding to leaves from 5 to 9 (so actually from 50 to 90). Thus, the minimum value is 620 and the numbers
in the second 7 row are 750, 760, 760, and so forth.

[0, 1]

[4, 10] n= 20

[0, 1]

n= 20

[0, 1]

(10, 15, 44, 51, 69)

(10, 14, 15, 16, 19) (45, 51, 55.5, 59, 69) (30, 40, 44, 47, 56)

(0, 0, 0, 0, 53)

6

6

7

7

8

9

9

10

10

2

5

222444

566666788999

000001111111111223344444444

0011233444

55566667888

000

7
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Classify the variable by type and level of measurement.

1. Compute the five number summary and draw the boxplot.
2. Compute the five number summary for the velocity in . The transformation is .
3. Draw the normal probability plot.

Answer
1. continuous, interval
2. 
3. 

Consider Short's paralax of the sun data.

1. Classify the variable by type and level of measurement.
2. Compute the five number summary and draw the boxplot.
3. Compute the five number summary and draw the boxplot if the variable is converted to degrees. There are 3600 seconds in a degree.
4. Compute the five number summary and draw the boxplot if the variable is converted to radians. There are  radians in a degree.
5. Draw the normal probability plot.

Answer
1. continuous, ratio
2. 
3. 
4. 

Consider Cavendish's density of the earth data.

1. Classify the variable by type and level of measurement.
2. Compute the five number summary and draw the boxplot.
3. Draw the normal probability plot.

Answer
1. continuous, ratio
2. 

Consider the M&M data.

1. Classify the variables by type and level of measurement.
2. Compute the five number summary and draw the boxplot for each color count.
3. Construct a stem and leaf plot for the total number of candies.
4. Compute the five number summary and draw the boxplot for the total number of candies.
5. Compute the five number summary and draw the boxplot for net weight.

Answer
1. color counts: discrete ratio. net weight: continuous ratio.
2. red: ; green: ; blue: ; orange: ; yellow: ; brown: 

3. 5 0

5 3

5 4 5 5 5 5

5 6 6 6 6 7 7 7

5 8 8 8 8 8 8 8 8 8 9 9 9

6 0 0 1 1

4. 
5. 

Consider the body weight, species, and gender variables in the Cicada data.

km/hr y = x+299 000

(620, 805, 850, 895, 1071)

(299 620, 299 805, 299 850, 299 895, 300 071)

π/180

(5.76, 8.34, 8.50, 9.02, 10.57)

(0.00160, 0.00232, 0.00236, 0.00251, 0.00294)

(0.0000278, 0.0000404, 0.0000412, 0.0000437, 0.0000512)

(4.88, 5.30, 5.46, 5.61, 5.85)

(3, 5.5, 9, 14, 20) (2, 5, 7, 9, 17) (1, 4, 6.5, 10, 19) (0, 3.5, 6, 10.5, 13) (3, 8, 13.5, 18, 26)

(4, 8, 12.5, 18, 20)

(50, 55.5, 58, 60, 61)

(46.22, 48.28, 49.07, 50.23, 52.06)
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1. Classify the variables by type and level of measurement.
2. Compute the five number summary and draw the boxplot for body weight.
3. Compute the five number summary and draw the boxplot for body weight by species.
4. Compute the five number summary and draw the boxplot for body weight by gender.

Answer
1. body weight: continuous, ratio. species: discrete, nominal. gender: discrete, nominal.
2. 
3. species 0: ; species 1: ; species 2: 
4. female: ; male: 

Consider Pearson's height data.

1. Classify the variables by type and level of measurement.
2. Compute the five number summary and sketch the boxplot for the height of the father.
3. Compute the five number summary and sketch the boxplot for the height of the son.

Answer
1. continuous ratio
2. 
3. 

This page titled 6.6: Order Statistics is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via
source content that was edited to the style and standards of the LibreTexts platform.

(0.08, 0.13, 0.17, 0.22, 0.39)

(0.08, 0.13, 0.16, 0.21, 0.27) (0.08, 0.14, 0.18, 0.23, 0.31) (0.12, 0.12, 0.215, 0.29, 0.39)

(0.08, 0.17, 0.21, 0.25, 0.31) (0.08, 0.12, 0.14, 0.16, 0.39)

(59.0, 65.8, 67.8, 69.6, 75.4)

(58.5, 66.9, 68.6, 70.5, 78.4)
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6.7: Sample Correlation and Regression
              

Descriptive Theory

Recall the basic model of statistics: we have a population of objects of interest, and we have various measurements (variables) that we make on these objects. We select objects
from the population and record the variables for the objects in the sample; these become our data. Our first discussion is from a purely descriptive point of view. That is, we do
not assume that the data are generated by an underlying probability distribution. But as always, remember that the data themselves define a probability distribution, namely the
empirical distribution that assigns equal probability to each data point.

Suppose that  and  are real-valued variables for a population, and that  is an observed sample of size  from . We will let 
 denote the sample from  and  the sample from . In this section, we are interested in statistics that are measures of association

between the  and , and in finding the line (or other curve) that best fits the data.

Recall that the sample means are

and the sample variances are

Scatterplots

Often, the first step in exploratory data analysis is to draw a graph of the points; this is called a scatterplot an can give a visual sense of the statistical realtionship between the
variables.

Figure : A scatterplot

In particular, we are interested in whether the cloud of points seems to show a linear trend or whether some nonlinear curve might fit the cloud of points. We are interested in
the extent to which one variable  can be used to predict the other variable .

Defintions

Our next goal is to define statistics that measure the association between the  and  data.

The sample covariance is defined to be

Assuming that the data vectors are not constant, so that the standard deviations are positive, the sample correlation is defined to be

Note that the sample covariance is an average of the product of the deviations of the  and  data from their means. Thus, the physical unit of the sample covariance is the
product of the units of  and . Correlation is a standardized version of covariance. In particular, correlation is dimensionless (has no physical units), since the covariance in the
numerator and the product of the standard devations in the denominator have the same units (the product of the units of  and ). Note also that covariance and correlation have
the same sign: positive, negative, or zero. In the first case, the data  and  are said to be positively correlated; in the second case  and  are said to be negatively correlated;
and in the third case  and  are said to be uncorrelated

To see that the sample covariance is a measure of association, recall first that the point  is a measure of the center of the bivariate data. Indeed, if each point is the
location of a unit mass, then  is the center of mass as defined in physics. Horizontal and vertical lines through this center point divide the plane into four
quadrants. The product deviation  is positive in the first and third quadrants and negative in the second and fourth quadrants. After we study linear
regression below, we will have a much deeper sense of what covariance measures.
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r(x,y) =
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s(x)s(y)
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Figure : Scatterplot with means

You may be perplexed that we average the product deviations by dividing by  rather than . The best explanation is that in the probability model discussed below, the
sample covariance is an unbiased estimator of the distribution covariance. However, the mode of averaging can also be understood in terms of degrees of freedom, as was done
for sample variance. Initially, we have  degrees of freedom in the bivariate data. We lose two by computing the sample means  and . Of the remaining 
degrees of freedom, we lose  by computing the product deviations. Thus, we are left with  degrees of freedom total. As is typical in statistics, we average not by
dividing by the number of terms in the sum but rather by the number of degrees of freedom in those terms. However, from a purely descriptive point of view, it would also be
reasonable to divide by .

Recall that there is a natural probability distribution associated with the data, namely the empirical distribution that gives probability  to each data point . (Thus, if
these points are distinct this is the discrete uniform distribution on the data.) The sample means are simply the expected values of this bivariate distribution, and except for a
constant multiple (dividing by  rather than ), the sample variances are simply the variances of this bivarite distribution. Similarly, except for a constant multiple (again
dividing by  rather than ), the sample covariance is the covariance of the bivariate distribution and the sample correlation is the correlation of the bivariate distribution.
All of the following results in our discussion of descriptive statistics are actually special cases of more general results for probability distributions.

Properties of Covariance

The next few exercises establish some essential properties of sample covariance. As usual, bold symbols denote samples of a fixed size  from the corresponding population
variables (that is, vectors of length ), while symbols in regular type denote real numbers. Our first result is a formula for sample covariance that is sometimes better than the
definition for computational purposes. To state the result succinctly, let  denote the sample from the product variable .

The sample covariance can be computed as follows:

Proof

Note that

The following theorem gives another formula for the sample covariance, one that does not require the computation of intermediate statistics.

The sample covariance can be computed as follows:

Proof

Note that

We compute the sums term by term. The first is

The second two sums are 0. The last sum is
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Dividing the entire sum by  results in .

As the name suggests, sample covariance generalizes sample variance.

.

In light of the previous theorem, we can now see that the first computational formula and the second computational formula above generalize the computational formulas for
sample variance. Clearly, sample covariance is symmetric.

.

Sample covariance is linear in the first argument with the second argument fixed.

If , , and  are data vectors from population variables , , and , respectively, and if  is a constant, then

1. 
2. 

Proof
1. Recall that . Hence

2. Recall that . Hence

By symmetry, sample covariance is also linear in the second argument with the first argument fixed, and hence is bilinear. The general version of the bilinear property is given
in the following theorem:

Suppose that  is a data vector from a population variable  for  and that  is a data vector from a population variable  for . Suppose
also that  and  are constants. Then

A special case of the bilinear property provides a nice way to compute the sample variance of a sum.

.

Proof

From the preceding results,

The generalization of this result to sums of three or more vectors is completely straightforward: namely, the sample variance of a sum is the sum of all of the pairwise sample
covariances. Note that the sample variance of a sum can be greater than, less than, or equal to the sum of the sample variances, depending on the sign and magnitude of the pure
covariance term. In particular, if the vectors are pairwise uncorrelated, then the variance of the sum is the sum of the variances.

If  is a constant data set then .

Proof

This follows directly from the definition. If  for each , then  and hence  for each .

Combining the result in the last exercise with the bilinear property, we see that covariance is unchanged if constants are added to the data sets. That is, if  and  are constant
vectors then .

Properties of Correlation

A few simple properties of correlation are given next. Most of these follow easily from the corresponding properties of covariance. First, recall that the standard scores of 
and  are, respectively,
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The standard scores from a data set are dimensionless quantities that have mean 0 and variance 1.

The correlation between  and  is the covariance of their standard scores  and . That is, .

Proof

In vector notation, note that

Hence the result follows immediatedly from properties of covariance:

Correlation is symmetric.

.

Unlike covariance, correlation is unaffected by multiplying one of the data sets by a positive constant (recall that this can always be thought of as a change of scale in the
underlying variable). On the other hand, muliplying a data set by a negative constant changes the sign of the correlation.

If  is a constant then

1.  if 
2.  if 

Proof

By definition and from the scaling property of covariance,

and of course,  if  and  if .

Like covariance, correlation is unaffected by adding constants to the data sets. Adding a constant to a data set often corresponds to a change of location.

If  and  are constant vectors then .

Proof

This result follows directly from the corresponding properties of covariance and standard deviation:

The last couple of properties reinforce the fact that correlation is a standardized measure of association that is not affected by changing the units of measurement. In the first
Challenger data set, for example, the variables of interest are temperature at time of launch (in degrees Fahrenheit) and O-ring erosion (in millimeters). The correlation between
these variables is of critical importance. If we were to measure temperature in degrees Celsius and O-ring erosion in inches, the correlation between the two variables would be
unchanged.

The most important properties of correlation arise from studying the line that best fits the data, our next topic.

Linear Regression

We are interested in finding the line  that best fits the sample points . This is a basic and important problem in many areas of
mathematics, not just statistics. We think of  as the predictor variable and  as the response variable. Thus, the term best means that we want to find the line (that is, find the
coefficients  and ) that minimizes the average of the squared errors between the actual  values in our data and the predicted  values:

Note that the minimizing value of  would be the same if the function were simply the sum of the squared errors, of if we averaged by dividing by  rather than , or
if we used the square root of any of these functions. Of course that actual minimum value of the function would be different if we changed the function, but again, not the point 

 where the minimum occurs. Our particular choice of  as the error function is best for statistical purposes. Finding  that minimize  is a standard problem in
calculus.

The graph of  is a paraboloid opening upward. The function  is minimized when

Proof

We can tell from the algebraic form of  that the graph is a paraboloid opening upward. To find the unique point that minimizes , note that
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c/ |c| = 1 c > 0 c/ |c| = −1 c < 0
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Solving , gives . Substituting this into  and solving for  gives

Dividing the numerator and denominator in the last expression by  and using the computational formula above, we see that .

Of course, the optimal values of  and  are statistics, that is, functions of the data. Thus the sample regression line is

Figure : Scatterplot with regression line

Note that the regression line passes through the point , the center of the sample of points.

Figure : The regression line passes through the center

The minimum mean square error is

Proof

This follows from substituting   into  and simplifying.

Sample correlation and covariance satisfy the following properties.

1. 
2. 
3.  if and only if the sample points lie on a line with negative slope.
4.  if and only if the sample points lie on a line with positive slope.

Proof

Note that  and hence from the previous theorem, we must have . This is equivalent to part (a), which in turn, from the definition of sample
correlation, is equivalent to part (b). For parts (c) and (d), note that  if and only if  for each , and moreover,  has the same sign as 

.

Thus, we now see in a deeper way that the sample covariance and correlation measure the degree of linearity of the sample points. Recall from our discussion of measures of
center and spread that the constant  that minimizes

is the sample mean , and the minimum value of the mean square error is the sample variance . Thus, the difference between this value of the mean square error and
the one above, namely  is the reduction in the variability of the  data when the linear term in  is added to the predictor. The fractional reduction is ,
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mse(a, b) = 0

∂
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and hence this statistics is called the (sample) coefficient of determination. Note that if the data vectors  and  are uncorrelated, then  has no value as a predictor of ; the
regression line in this case is the horizontal line  and the mean square error is .

The choice of predictor and response variables is important.

The sample regression line with predictor variable  and response variable  is not the same as the sample regression line with predictor variable  and response variable 
, except in the extreme case  where the sample points all lie on a line.

Residuals

The difference between the actual  value of a data point and the value predicted by the regression line is called the residual of that data point. Thus, the residual corresponding
to  is  where  is the regression line at :

Note that the predicted value  and the residual  are statistics, that is, functions of the data , but we are suppressing this in the notation for simplicity.

The residuals sum to 0: .

Proof

This follows from the definition, and is a restatement of the fact that the regression line passes through the center of the data set .

Various plots of the residuals can help one understand the relationship between the  and  data. Some of the more common are given in the following definition:

Residual plots

1. A plot of  for , that is, a plot of indices versus residuals.
2. A plot of  for , that is, a plot of  values versus residuals.
3. A plot of  for , that is, a plot of residuals versus actual  values.
4. A plot of  for , that is a plot of residuals versus predicted  values.
5. A histogram of the residuals .

Sums of Squares

For our next discussion, we will re-interpret the minimum mean square error formulat above. Here are the new definitions:

Sums of squares

1.  is the total sum of squares.
2.  is the regression sum of squares
3.  is the error sum of squares.

Note that  is simply  times the variance  and is the total of the sums of the squares of the deviations of the  values from the mean of the  values. Similarly, 
 is simply  times the minimum mean square error given above. Of course,  has  degrees of freedom, while  has  degrees of freedom

and  a single degree of freedom. The total sum of squares is the sum of the regression sum of squares and the error sum of squares:

The sums of squares are related as follows:

1. 
2. 

Proof

By definition of  and , we see that . But from the regression equation,

Summing over  gives

Hence . Finally, multiplying the result above by  gives .

Note that , so once again,  is the coefficient of determination—the proportion of the variability in the  data explained by the  data. We
can average  by dividing by its degrees of freedom and then take the square root to obtain a standard error:

The standard error of estimate is

This really is a standard error in the same sense as a standard deviation. It's an average of the errors of sorts, but in the root mean square sense.

Finally, it's important to note that linear regression is a much more powerful idea than might first appear, and in fact the term linear can be a bit misleading. By applying
various transformations to  or  or both, we can fit a variety of two-parameter curves to the given data . Some of the most common
transformations are explored in the exercises below.
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Probability Theory

We continue our discussion of sample covariance, correlation, and regression but now from the more interesting point of view that the variables are random. Specifically,
suppose that we have a basic random experiment, and that  and  are real-valued random variables for the experiment. Equivalently,  is a random vector taking values
in . Let  and  denote the distribution means,  and  the distribution variances, and let  denote the distribution
covariance, so that the distribution correlation is

We will also need some higher order moments. Let , , and . Naturally, we assume that all of these
moments are finite.

Now suppose that we run the basic experiment  times. This creates a compound experiment with a sequence of independent random vectors 
 each with the same distribution as . In statistical terms, this is a random sample of size  from the distribution of . The

statistics discussed in previous section are well defined but now they are all random variables. We use the notation established previously, except that we use our usual
convention of denoting random variables with capital letters. Of course, the deterministic properties and relations established above still hold. Note that 

 is a random sample of size  from the distribution of  and  is a random sample of size  from the distribution of . The main
purpose of this subsection is to study the relationship between various statistics from  and , and to study statistics that are natural estimators of the distribution covariance
and correlation.

The Sample Means

Recall that the sample means are

From the sections on the law of large numbers and the central limit theorem, we know a great deal about the distributions of  and  individually. But we need to
know more about the joint distribution.

The covariance and correlation between  and  are

1. 
2. 

Proof

Part (a) follows from the bilinearity of the covariance operator:

By independence, the terms in the last sum are 0 if . For  the terms are . There are  such terms so . For part (b),
recall that  and . Hence

Note that the correlation between the sample means is the same as the correlation of the underlying sampling distribution. In particular, the correlation does not depend on the
sample size .

The Sample Variances

Recall that special versions of the sample variances, in the unlikely event that the distribution means are known, are

Once again, we have studied these statistics individually, so our emphasis now is on the joint distribution.

The covariance and correlation between  and  are

1. 
2. 

Proof

For part (a), we use the bilinearity of the covariance operator to obtain

By independence, the terms in the last sum are 0 when . When  the terms are

There are  such terms, so . Part (b) follows from part (a) and the variances of  and  from the section on Sample
Variance.

Note that the correlation does not dependend on the sample size . Next, recall that the standard versions of the sample variances are
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The covariance and correlation of the sample variances are

1. 
2. 

Proof

Recall that

Hence using the bilinearity of the covariance operator we have

We compute the covariances in this sum by considering disjoint cases:

 if  or if , and there are  such terms.
 by independence if  are distinct, and there are  such terms.

 if  and , and there are  such terms.
 if , , and , and there are  such terms.

Substituting and simplifying gives the result in (a). For (b), we use the definition of correlation and the formulas for  and  from the section on the
sample variance.

Asymptotically, the correlation between the sample variances is the same as the correlation between the special sample variances given above:

Sample Covariance

Suppose first that the distribution means  and  are known. As noted earlier, this is almost always an unrealistic assumption, but is still a good place to start because the
analysis is very simple and the results we obtain will be useful below. A natural estimator of the distsribution covariance  in this case is the special sample
covariance

Note that the special sample covariance generalizes the special sample variance: .

 is the sample mean for a random sample of size  from the distribution of  and satisfies the following properties:

1. 
2. 
3.  as  with probability 1

Proof

These results follow directly from the section on the Law of Large Numbers. For part (b), note that

As an estimator of , part (a) means that  is unbiased and part (b) means that  is consistent.

Consider now the more realistic assumption that the distribution means  and  are unknown. A natural approach in this case is to average  over 
. But rather than dividing by  in our average, we should divide by whatever constant gives an unbiased estimator of . As shown in the next theorem, this

constant turns out to be , leading to the standard sample covariance:

.

Proof

Expanding as above we have,

But . Similarly, from the covariance of the sample means and the unbiased property, 
. So taking expected values in the displayed equation above gives
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 as  with probability 1.

Proof

Once again, we have

where  denotes the sample mean for the sample of the products . By the strong law of large numbers,  as , 
 as , and  as , each with probability 1. So the result follows by letting  in the displayed equation.

Of courese, the sample correlation is

Since the sample correlation  is a nonlinear function of the sample covariance and sample standard deviations, it will not in general be an unbiased estimator of the
distribution correlation . In most cases, it would be difficult to even compute the mean and variance of . Nonetheless, we can show convergence of the sample
correlation to the distribution correlation.

 as  with probability 1.

Proof

This follows immediately from the strong law of large numbers and previous results. From the result above  as , and from the section on the sample
variance,  as  and  as , each with probability 1. Hence  as  with probability 1.

Our next theorem gives a formuala for the variance of the sample covariance, not to be confused with the covariance of the sample variances given above!

The variance of the sample covariance is

Proof

Recall first that

Hence using the bilinearity of the covariance operator we have

We compute the covariances in this sum by considering disjoint cases:

 if  or if , and there are  such terms.
 if  are distinct, and there are  such terms.

 if  and , and there are  such terms.
 if , , and , and there are  such terms.

Substituting and simplifying gives the result

It's not surprising that the variance of the standard sample covariance (where we don't know the distribution means) is greater than the variance of the special sample
covariance (where we do know the distribution means).

.

Proof

From results above, and some simple algebra,

But note that the difference goes to 0 as .

 as . Thus, the sample covariance is a consistent estimator of the distribution covariance.

Regression

In our first discussion above, we studied regression from a deterministic, descriptive point of view. The results obtained applied only to the sample. Statistically more
interesting and deeper questions arise when the data come from a random experiment, and we try to draw inferences about the underlying distribution from the sample
regression. There are two models that commonly arise. One is where the response variable is random, but the predictor variable is deterministic. The other is the model we
consider here, where the predictor variable and the response variable are both random, so that the data form a random sample from a bivariate distribution.

Thus, suppose again that we have a basic random vector  for an experiment. Recall that in the section on (distribution) correlation and regression, we showed that the
best linear predictor of  given , in the sense of minimizing mean square error, is the random variable
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2 n (n−1)

∑

i=1

n

∑

j=1

n
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i

X

j

Y

i

Y

j

(6.7.61)

var[S(X),Y )] = cov[( − )( − ), ( − )( − )]

1

4 (n−1n

2

)
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i=1

n

∑

j=1

n

∑

k=1

n

∑

l=1
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X

i

X

j

Y

i

Y

j

X

k

X

l

Y

k

Y

l

(6.7.62)

cov[( − )( − ), ( − )( − )] = 0X
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j

Y

i
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X
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Y
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δ

2

σ

2

τ

2
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cov[( − )( − ), ( − )( − )] = −X
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X

j
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i

Y

j

X

k
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k

Y

l

δ

2

δ

2

i ≠ j k≠ l #({i, j} ∩{k, l}) = 1 4n(n−1)(n−2)

var[S(X,Y )] > var[W (X,Y )]

var[S(X,Y )] −var[W (X,Y )] = ( + ) > 0

1

n(n−1)

δ

2

σ

2

τ
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n→∞

var[S(X,Y )] → 0 n→∞

(X,Y )

Y X

L(Y ∣X) =E(Y )+ [X−E(X)] = ν+ (X−μ)

cov(X,Y )

var(X)

δ

σ

2

(6.7.64)
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so that the distribution regression line is given by

Moreover, the (minimum) value of the mean square error is .

Figure : The distribution regression line

Of course, in real applications, we are unlikely to know the distribution parameters , , , and . If we want to estimate the distribution regression line, a natural approach
would be to consider a random sample  from the distribution of  and compute the sample regression line. Of course, the results are
exactly the same as in the discussion above, except that all of the relevant quantities are random variables. The sample regression line is

The mean square error is  and the coefficient of determination is .

Figure : The distribution and sample regression lines

The fact that the sample regression line and mean square error are completely analogous to the distribution regression line and mean square error is mathematically elegant and
reassuring. Again, the coefficients of the sample regression line can be viewed as estimators of the respective coefficients in the distribution regression line.

The coefficients of the sample regression line converge to the coefficients of the distribution regression line with probability 1.

1.  as 

2.  as 

Proof

This follows from the strong law of large numbers and previous results. with probability 1,  as ,  as ,  as ,
and  as .

Of course, if the linear relationship between  and  is not strong, as measured by the sample correlation, then transformation applied to one or both variables may help.
Again, some typical transformations are explored in the exercises below.

Exercises

Basic Properties

Suppose that  and  are population variables, and  and  samples of size  from  and  respectively. Suppose also that , , , 
, and . Find each of the following:

1. 
2. 
3. 
4. 

Suppose that  is the temperature (in degrees Fahrenheit) and  the resistance (in ohms) for a certain type of electronic component after 10 hours of operation. For a
sample of 30 components, , , , , .

1. Classify  and  by type and level of measurement.
2. Find the sample covariance.
3. Find the equation of the regression line.

Suppose now that temperature is converted to degrees Celsius (the transformation is ).

4. Find the sample means.

y =L(Y ∣X = x) = ν+ (x−μ)

δ

σ

2

(6.7.65)

E{[Y −L(Y ∣X)]} = var(Y )[1− (X,Y )] = (1− )cor

2

r

2

ρ

2

6.7.5
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2

δ

(( , ), ( , ),… , ( , ))X

1

Y

1

X

2

Y

2

X

n

Y

n

(X,Y )

y =M(Y )+ [x−M(X)]

S(X,Y )

(X)S

2

(6.7.66)

(Y )[1− (X,Y )]S

2

R

2

(X,Y )R

2

6.7.6

→
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(X)S

2

δ

σ

2

n→∞

M(Y )− M(X) → ν− μ

S(X,Y)

(X)S

2

δ

σ

2

n→∞

S(X,Y ) → δ n→∞ (X) →S

2

σ

2

n→∞ M(X) → μ n→∞

M(Y ) → ν n→∞

X Y

x y x y n x y m(x) = 3 m(y) =−1 (x) = 4s

2

(y) = 9s

2

s(x,y) = 5

r(x,y)

m(2x+3y)

(2x+3y)s

2

s(2x+3y−1, 4x+2y−3)

x y
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x y
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5. Find the sample standard deviations.
6. Find the sample covariance and correlation.
7. Find the equation of the regression line.

Answer
1. continuous, interval
2. , 

Suppose that  is the length and  the width (in inches) of a leaf in a certain type of plant. For a sample of 50 leaves , , , , and 
.

1. Classify  and  by type and level of measurement.
2. Find the sample covariance.
3. Find the equation of the regression line with  as the predictor variable and  as the response variable.

Suppose now that  and  are converted to inches (0.3937 inches per centimeter).

4. Find the sample means.
5. Find the sample standard deviations.
6. Find the sample covariance and correlation.
7. Find the equation of the regression line.

Answer
1. continuous, ratio
2. , 

Scatterplot Exercises

Click in the interactive scatterplot, in various places, and watch how the means, standard deviations, correlation, and regression line change.

Click in the interactive scatterplot to define 20 points and try to come as close as possible to each of the following sample correlations:

1. 
2. 
3. 
4. 
5. 
6. 
7. .

Click in the interactive scatterplot to define 20 points. Try to generate a scatterplot in which the regression line has

1. slope 1, intercept 1
2. slope 3, intercept 0
3. slope , intercept 1

Simulation Exercises

Run the bivariate uniform experiment 2000 times in each of the following cases. Compare the sample means to the distribution means, the sample standard deviations to
the distribution standard deviations, the sample correlation to the distribution correlation, and the sample regression line to the distribution regression line.

1. The uniform distribution on the square
2. The uniform distribution on the triangle.
3. The uniform distribution on the circle.

Run the bivariate normal experiment 2000 times for various values of the distribution standard deviations and the distribution correlation. Compare the sample means to
the distribution means, the sample standard deviations to the distribution standard deviations, the sample correlation to the distribution correlation, and the sample
regression line to the distribution regression line.

Transformations

Consider the function .

1. Sketch the graph for some representative values of  and .
2. Note that  is a linear function of , with intercept  and slope .
3. Hence, to fit this curve to sample data, simply apply the standard regression procedure to the data from the variables  and .

Consider the function .

1. Sketch the graph for some representative values of  and .
2. Note that  is a linear function of , with intercept  and slope .
3. Hence, to fit this curve to our sample data, simply apply the standard regression procedure to the data from the variables  and .

Consider the function .

1. Sketch the graph for some representative values of  and .
2. Note that  is a linear function of , with intercept  and slope .

m = 45° s= 10°

x y m(x) = 10 s(x) = 2 m(y) = 4 s(y) = 1

r(x,y) = 0.8

x y

x y

x y

m = 25.4 s= 5.08

0

0.5

−0.5

0.7

−0.7

0.9

−0.9

−2

y = a+bx

2

a b

y x

2

a b

x

2

y

y =

1

a+bx

a b

1

y

x a b

x

1

y

y =

x

a+bx

a b

1

y

1
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3. Hence, to fit this curve to sample data, simply apply the standard regression procedure to the data from the variables  and .
4. Note again that the names of the intercept and slope are reversed from the standard formulas.

Consider the function .

1. Sketch the graph for some representative values of  and .
2. Note that  is a linear function of , with intercept  and slope .
3. Hence, to fit this curve to sample data, simply apply the standard regression procedure to the data from the variables  and .
4. After solving for the intercept , recover the statistic .

Consider the function .

1. Sketch the graph for some representative values of  and .
2. Note that  is a linear function of , with intercept  and slope .
3. Hence, to fit this curve to sample data, simply apply the standard regression procedure to the data from the variables  and .
4. After solving for the intercept , recover the statistic .

Computational Exercises

All statistical software packages will perform regression analysis. In addition to the regression line, most packages will typically report the coefficient of determination 
, the sums of squares , , , and the standard error of estimate . Most packages will also draw the scatterplot, with the regression line

superimposed, and will draw the various graphs of residuals discussed above. Many packages also provide easy ways to transform the data. Thus, there is very little reason to
perform the computations by hand, except with a small data set to master the definitions and formulas. In the following problem, do the computations and draw the graphs with
minimal technological aids.

Suppose that  is the number of math courses completed and  the number of science courses completed for a student at Enormous State University (ESU). A sample of 10
ESU students gives the following data: .

1. Classify  and  by type and level of measurement.
2. Sketch the scatterplot.

Construct a table with rows corresponding to cases and columns corresponding to , , , , , , , 
, , , , , and . Add a rows at the bottom for totals and means. Use precision arithmetic.

3. Complete the first 8 columns.
4. Find the sample correlation and the coefficient of determination.
5. Find the sample regression equation.
6. Complete the table.
7. Verify the identities for the sums of squares.

Answer

1 1 1

2 3 3

3 6 4

4 2 1

5 8 5

6 2 2

7 4 3

8 6 4

9 4 3

10 4 4

Total

Mean

1. discrete, ratio
4. , 
5. 
7. 

The following two exercise should help you review some of the probability topics in this section.

Suppose that  has a continuous distribution with probability density function  for . Find each of the following:

1.  and 
2.  and 
3.  and 
4.  and 
5. , , and 

1
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y
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bx

a b
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a b
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2
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x y
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−3 −2 9 4 6 9/7 −12/7 144/49 −2/7 4/49

−1 0 1 0 0 17/7 −4/7 16/49 4/7 16/49

2 1 4 1 2 29/7 8/7 64/49 −1/7 1/49

−2 −2 4 4 4 13/7 −8/7 64/49 −6/7 36/49

4 2 16 4 8 37/7 16/7 256/49 −2/7 4/49

−2 −1 4 1 2 13/7 −8/7 64/49 1/7 1/49

0 0 0 0 0 3 0 0 0 0
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0 1 0 1 0 3 0 0 1 1
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2

y = 3+ (x−4)
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6.  and 

Answer
1. , 
2. , 
3. , 
4. , 
5. , , 
6. , 

Suppose now that  is a random sample of size  from the distribution in the previous exercise. Find each of the following:

1.  and 
2.  and 
3.  and 
4.  and 
5.  and 
6.  and 
7.  and 
8.  and 
9.  and 

Answer
1. , 
2. , 
3. , 
4. , 
5. , 
6. , 
7. , 
8. , 
9. , 

Data Analysis Exercises

Use statistical software for the following problems.

Consider the height variables in Pearson's height data.

1. Classify the variables by type and level of measurement.
2. Compute the correlation coefficient and the coefficient of determination
3. Compute the least squares regression line, with the height of the father as the predictor variable and the height of the son as the response variable.
4. Draw the scatterplot and the regression line together.
5. Predict the height of a son whose father is 68 inches tall.
6. Compute the regression line if the heights are converted to centimeters (there are 2.54 centimeters per inch).

Answer
1. Continuous, ratio
2. , 
3. 
5. 68.85
6. 

Consider the petal length, petal width, and species variables in Fisher's iris data.

1. Classify the variables by type and level of measurement.
2. Compute the correlation between petal length and petal width.
3. Compute the correlation between petal length and petal width by species.

Answer
1. Species: discrete, nominal; petal length and width: continuous ratio
2. 0.9559
3. Setosa: 0.3316, Verginica: 0.3496, Versicolor: 0.6162

Consider the number of candies and net weight variables in the M&M data.

1. Classify the variable by type and level of measurement.
2. Compute the correlation coefficient and the coefficient of determination.
3. Compute the least squares regression line with number of candies as the predictor variable and net weight as the response variable.
4. Draw the scatterplot and the regression line in part (b) together.
5. Predict the net weight of a bag of M&Ms with 56 candies.
6. Naively, one might expect a much stronger correlation between the number of candies and the net weight in a bag of M&Ms. What is another source of variability in net

weight?

Answer

L(Y ∣X) L(X ∣ Y )

5/8 5/6

17/448 5/252

−5/1792 −5/1512

305/86 0165/3024

5/336 5/17

− −−−

√ 1/768

L(Y ∣X) = + X

10

17

20

51

L(X ∣ Y ) = Y

3

4

(( , ), ( , ),… ( , ))X

1

Y

1

X

2

Y

2

X

9

Y

9

9

E[M(X)] var[M(X)]

E[M(Y )] var[M(Y )]

cov[M(X),M(Y )] cor[M(X),M(Y )]

E[ (X)]W

2

var[ (X)]W

2

E[ (Y )]W

2

var[ (Y )]W

2

E[ (X)]S

2

var[ (X)]S

2

E[ (Y )]S

2

var[ (Y )]S

2

E[W (X,Y )] var[W (X,Y )]

E[S(X,Y )] var[S(X,Y )]

5/8 17/4032

5/6 5/2268

5/3024 5/17

− −−−

√

17/448 317/1 354 752

5/252 5/35 721

17/448 5935/21 676 032

5/252 115/762 048

5/336 61/508 032

5/336 181/1 354 752

r= 0.501 = 0.251r

2

y = 33.893+0.514x

y = 86.088+0.514x
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1. Number of candies: discrete, ratio; net weight: continuous, ratio
2. , 
3. 
5. 48.657
6. Variability in the weight of individual candies.

Consider the response rate and total SAT score variables in the SAT by state data set.

1. Classify the variables by type and level of measurement.
2. Compute the correlation coefficient and the coefficient of determination.
3. Compute the least squares regression line with response rate as the predictor variable and SAT score as the response variable.
4. Draw the scatterplot and regression line together.
5. Give a possible explanation for the negative correlation.

Answer
1. Response rate: continuous, ratio. SAT score could probably be considered either discrete or continuous, but is only at the interval level of measurement, since the

smallest possible scores is 400 (200 each on the verbal and math portions).
2. , 
3. 
5. States with low response rate may be states for which the SAT is optional. In that case, the students who take the test are the better, college-bound students. Conversely,

states with high response rates may be states for which the SAT is mandatory. In that case, all students including the weaker, non-college-bound students take the test.

Consider the verbal and math SAT scores (for all students) in the SAT by year data set.

1. Classify the variables by type and level of measurement.
2. Compute the correlation coefficient and the coefficient of determination.
3. Compute the least squares regression line.
4. Draw the scatterplot and regression line together.

Answer
1. Continuous perhaps, but only at the interval level of measurement because the smallest possible score on each part is 200.
2. , 
3. 

Consider the temperature and erosion variables in the first data set in the Challenger data.

1. Classify the variables by type and level of measurement.
2. Compute the correlation coefficient and the coefficient of determination.
3. Compute the least squares regression line.
4. Draw the scatter plot and the regression line together.
5. Predict the O-ring erosion with a temperature of 31° F.
6. Is the prediction in part (c) meaningful? Explain.
7. Find the regression line if temperature is converted to degrees Celsius. Recall that the conversion is .

Answer
1. temperature: continuous, interval; erosion: continuous ratio
2. , 
3. 
5. 62.9.
6. This estimate is problematic, because 31° is far outside of the range of the sample data.
7. 

This page titled 6.7: Sample Correlation and Regression is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via source content
that was edited to the style and standards of the LibreTexts platform.
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6.8: Special Properties of Normal Samples
         

Random samples from normal distributions are the most important special cases of the topics in this chapter. As we will see, many
of the results simplify significantly when the underlying sampling distribution is normal. In addition we will derive the
distributions of a number of random variables constructed from normal samples that are of fundamental important in inferential
statistics.

The One Sample Model
Suppose that  is a random sample from the normal distribution with mean  and standard deviation 

. Recall that the term random sample means that  is a sequence of independent, identically distributed random
variables. Recall also that the normal distribution has probability density function

In the notation that we have used elsewhere in this chapter,  (equivalently, the skewness of the normal
distribution is 0) and  (equivalently, the kurtosis of the normal distribution is 3). Since the sample (and
in particular the sample size ) is fixed is this subsection, it will be suppressed in the notation.

The Sample Mean

First recall that the sample mean is

 is normally distributed with mean and variance given by

1. 
2. 

Proof

This follows from basic properties of the normal distribution. Recall that the sum of independent normally distributed variables
also has a normal distribution, and a linear transformation of a normally distributed variable is also normally distributed. The
mean and variance of  hold in general, and were derived in the section on the Law of Large Numbers.

Of course, by the central limit theorem, the distribution of  is approximately normal, if  is large, even if the underlying
sampling distribution is not normal. The standard score of  is given as follows:

 has the standard normal distribution.

The standard score  associated with the sample mean  plays a critical role in constructing interval estimates and hypothesis
tests for the distribution mean  when the distribution standard deviation  is known. The random variable  will also appear in
several derivations in this section.

The Sample Variance

The main goal of this subsection is to show that certain multiples of the two versions of the sample variance that we have studied
have chi-square distributions. Recall that the chi-square distribution with  degrees of freedom has probability density
function

X = ( , ,… , )X

1

X

2

X

n

μ ∈ R

σ ∈ (0,∞) X

f(x) = exp[− ], x ∈ R

1

σ2 π

−−−

√

1

2

( )

x−μ

σ

2

(6.8.1)
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i
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M

E(M) = μ

var(M) = /nσ

2

M

M n

M

Z =

M −μ

σ/ n

−−

√

(6.8.3)

Z
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μ σ Z

k ∈ N

+
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1
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and has mean  and variance . The moment generating function is

The most important result to remember is that the chi-square distribution with  degrees of freedom governs , where 
 is a sequence of independent, standard normal random variables.

Recall that if  is known, a natural estimator of the variance  is the statistic

Although the assumption that  is known is almost always artificial,  is very easy to analyze and it will be used in some of the
derivations below. Our first result is the distribution of a simple multiple of . Let

 has the chi-square distribution with  degrees of freedom.

Proof

Note that

and the terms in the sum are independent standard normal variables.

The variable  associated with the statistic  plays a critical role in constructing interval estimates and hypothesis tests for the
distribution standard deviation  when the distribution mean  is known (although again, this assumption is usually not realistic).

The mean and variance of  are

1. 
2. 

Proof

These results follow from the chi-square distribution of  and standard properties of expected value and variance.

As an estimator of , part (a) means that  is unbiased and part (b) means that  is consistent. Of course, these moment
results are special cases of the general results obtained in the section on Sample Variance. In that section, we also showed that 
and  are uncorrelated if the underlying sampling distribution has skewness 0 ( ), as is the case here.

Recall now that the standard version of the sample variance is the statistic

The sample variance  is the usual estimator of  when  is unknown (which is usually the case). We showed earlier that in
general, the sample mean  and the sample variance  are uncorrelated if the underlying sampling distribution has skewness 0 (

). It turns out that if the sampling distribution is normal, these variables are in fact independent, a very important and useful
property, and at first blush, a very surprising result since  appears to depend explicitly on .

The sample mean  and the sample variance  are independent.

Proof

The proof is based on the vector of deviations from the sample mean. Let
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Note that  can be written as a function of  since . Next,  and the vector  have a joint
multivariate normal distribution. We showed earlier that  and  are uncorrelated for each , and hence it follows that 

 and  are independent. Finally, since  is a function of , it follows that  and  are independent.

We can now determine the distribution of a simple multiple of the sample variance . Let

 has the chi-square distribution with  degrees of freedom.

Proof

We first show that  where  is the chi-square variable associated with  and where  is the standard score
associated with . To see this, note that

In the right side of the last equation, the first term is . The second term is 0 because . The last term is 
. Now, from the result above,  has the chi-square distribution with  degrees of freedom. and of course 

 has the chi-square distribution with 1 degree of freedom. From the previous result,  and  are independent. Recall that
the moment generating function of a sum of independent variables is the product of the MGFs. Thus, taking moment
generating functions in the equation  gives

Solving we have  for  and therefore  has the chi-square distribution with  degrees
of freedom.

The variable  associated with the statistic  plays a critical role in constructing interval estimates and hypothesis tests for the
distribution standard deviation  when the distribution mean  is unknown (almost always the case).

The mean and variance of  are

1. 
2. 

Proof

These results follow from the chi-square distribution of  and standard properties of expected value and variance.

As before, these moment results are special cases of the general results obtained in the section on Sample Variance. Again, as an
estimator of , part (a) means that  is unbiased, and part (b) means that  is consistent. Note also that  is larger than 

 (not surprising), by a factor of .

In the special distribution simulator, select the chi-square distribution. Vary the degree of freedom parameter and note the
shape and location of the probability density function and the mean, standard deviation bar. For selected values of the
parameter, run the experiment 1000 times and compare the empirical density function and moments to the true probability
density function and moments.

The covariance and correlation between the special sample variance and the standard sample variance are

1. 
2. 

Proof
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These results follows from general results obtained in the section on sample variance and the fact that .

Note that the correlation does not depend on the parameters  and , and converges to 1 as ,

The  Variable

Recall that the Student  distribution with  degrees of freedom has probability density function

where  is the appropriate normalizing constant. The distribution has mean 0 if  and variance  if . In this
subsection, the main point to remember is that the  distribution with  degrees of freedom is the distribution of

where  has the standard normal distribution;  has the chi-square distribution with  degrees of freedom; and  and  are
independent. Our goal is to derive the distribution of

Note that  is similar to the standard score  associated with , but with the sample standard deviation  replacing the
distribution standard deviation . The variable  plays a critical role in constructing interval estimates and hypothesis tests for the
distribution mean  when the distribution standard deviation  is unknown.

As usual, let  denote the standard score associated with the sample mean , and let  denote the chi-square variable
associated with the sample variance . Then

and hence  has the student  distribution with  degrees of freedom.

Proof

In the definition of , divide the numerator and denominator by . The numerator is then  and
the denominator is . Since  and  are independent,  has the standard normal distribution, and  has
the chi-squre distribution with  degrees of freedom, it follows that  has the student  distribution with  degrees of
freedom.

In the special distribution simulator, select the  distribution. Vary the degree of freedom parameter and note the shape and
location of the probability density function and the mean standard deviation bar. For selected values of the parameters, run the
experiment 1000 times and compare the empirical density function and moments to the distribution density function and
moments.

The Two Sample Model
Suppose that  is a random sample of size  from the normal distribution with mean  and standard
deviation , and that  is a random sample of size  from the normal distribution with mean 
and standard deviation . Finally, suppose that  and  are independent. Of course, all of the results above in the one
sample model apply to  and  separately, but now we are interested in statistics that are helpful in inferential procedures that
compare the two normal distributions. We will use the basic notation established above, but we will indicate the dependence on the
sample.

The two-sample (or more generally the multi-sample model) occurs naturally when a basic variable in the statistical experiment is
filtered according to one or more other variable (often nominal variables). For example, in the cicada data, the weights of the male
cicadas and the weights of the female cicadas may fit observations from the two-sample normal model. The basic variable weight is
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filtered by the variable gender. If weight is filtered by gender and species, we might have observations from the 6-sample normal
model.

The Difference in the Sample Means

We know from our work above that  and  have normal distributions. Moreover, these sample means are independent
because the underlying samples  and  are independent. Hence, it follows from a basic property of the normal distribution that
any linear combination of  and  will be normally distributed as well. For inferential procedures that compare the
distribution means  and , the linear combination that is most important is the difference.

 has a normal distribution with mean and variance given by

1. 
2. 

Hence the standard score

has the standard normal distribution. This standard score plays a fundamental role in constructing interval estimates and hypothesis
test for the difference  when the distribution standard deviations  and  are known.

Ratios of Sample Variances

Next we will show that the ratios of certain multiples of the sample variances (both versions) of  and  have  distributions.
Recall that the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the
denominator is the distribution of

where  has the chi-square distribution with  degrees of freedom;  has the chi-square distribution with  degrees of freedom;
and  and  are independent. The  distribution is named in honor of Ronald Fisher and has probability density function

where  is the appropriate normalizing constant. The mean is  if , and the variance is  if .

The random variable given below has the  distribution with  degrees of freedom in the numerator and  degrees of
freedom in the denominator:

Proof

Using the notation in the subsection on the special sample variances, note that  and 
. The result then follows immediately since  and  are independent chi-square variables

with  and  degrees of freedom, respectivley.

The random variable given below has the  distribution with  degrees of freedom in the numerator and  degrees of
freedom in the denominator:

Proof
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Using the notation in the subsection on the standard sample variances, note that  and 
. The result then follows immediately since  and  are independent chi-square

variables with  and  degrees of freedom, respectively.

These variables are useful for constructing interval estimates and hypothesis tests of the ratio of the standard deviations . The
choice of the  variable depends on whether the means  and  are known or unknown. Usually, of course, the means are
unknown and so the statistic in above is used.

In the special distribution simulator, select the  distribution. Vary the degrees of freedom parameters and note the shape and
location of the probability density function and the mean standard deviation bar. For selected values of the parameters, run the
experiment 1000 times and compare the empirical density function and moments to the true distribution density function and
moments.

The  Variable

Our final construction in the two sample normal model will result in a variable that has the student  distribution. This variable
plays a fundamental role in constructing interval estimates and hypothesis test for the difference  when the distribution
standard deviations  and  are unknown. The construction requires the additional assumption that the distribution standard
deviations are the same: . This assumption is reasonable if there is an inherent variability in the measurement variables that
does not change even when different treatments are applied to the objects in the population.

Note first that the standard score associated with the difference in the sample means becomes

To construct our desired variable, we first need an estimate of . A natural approach is to consider a weighted average of the
sample variances  and , with the degrees of freedom as the weight factors (this is called the pooled estimate of .
Thus, let

The random variable  given below has the chi-square distribution with  degrees of freedom:

Proof

The variable can be expressed as the sum of independent chi-square variables.

The variables  and  are independent.

Proof

The following pairs of variables are independent:  and ;  and ;  and 

The random variable  given below has the student  distribution with  degrees of freedom.

Proof

The random variable can be written as  where  is the the standard normal variable given above and  is
the chi-square variable given above. Moreover,  and  are independent by the previous result.
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The Bivariate Sample Model
Suppose now that  is a random sample of size  from the bivariate normal distribution with
means  and , standard deviations  and , and correlation . Of course, 

 is a random sample of size  from the normal distribution with mean  and standard deviation , and 
 is a random sample of size  from the normal distribution with mean  and standard deviation , so the

results above in the one sample model apply to  and  individually. Thus our interest in this section is in the relation between
various  and  statistics and properties of sample covariance.

The bivariate (or more generally multivariate) model occurs naturally when considering two (or more) variables in the statistical
experiment. For example, the heights of the fathers and the heights of the sons in Pearson's height data may well fit observations
from the bivariate normal model.

In the notation that we have used previously, recall that , , 
, , . and .

The data vector  has a multivariate normal distribution.

1. The mean vector has a block form, with each block being .

2. The variance-covariance matrix has a block-diagonal form, with each block being .

Proof

This follows from standard results for the multivariate normal distribution. Of course the blocks in parts (a) and (b) are simply
the mean and variance-covariance matrix of a single observation .

Sample Means

 has a bivariate normal distribution. The covariance and correlation are

1. 
2. 

Proof

The bivariate normal distribution follows from previous result since  can be obtained from the data vector by
a linear transformation. Parts (a) and (b) follow from our previous general results.

Of course, we know the individual means and variances of  and  from the one-sample model above. Hence we know
the complete distribution of .

Sample Variances

The covariance and correlation between the special sample variances are

1. 
2. 

Proof

These results follow from our previous general results and the special form of , , and .

The covariance and correlation between the standard sample variances are

1. 
2. 

Proof

These results follow from our previous general results and the special form of , , , and .
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Sample Covariance

If  and  are known (again usually an artificial assumption), a natural estimator of the distribution covariance  is the special
version of the sample covariance

The mean and variance of  are

1. 
2. 

Proof

These results follow from our previous general results and the special form of  and .

If  and  are unknown (again usually the case), then a natural estimator of the distribution covariance  is the standard sample
covariance

The mean and variance of the sample variance are

1. 
2. 

Proof

These results follow from our previous general results and the special form of  and .

Computational Exercises
We use the basic notation established above for samples  and , and for the statistics , , , , and so forth.

Suppose that the net weights (in grams) of 25 bags of M&Ms form a random sample  from the normal distribution with
mean 50 and standard deviation 4. Find each of the following:

1. The mean and standard deviation of .
2. The mean and standard deviation of .
3. The mean and standard deviation of .
4. The mean and standard deviation of .
5. .
6. .

Answer
1. 
2. 
3. 
4. 
5. 
6. 

Suppose that the SAT math scores from 16 Alabama students form a random sample  from the normal distribution with mean
550 and standard deviation 20, while the SAT math scores from 25 Georgia students form a random sample  from the normal
distribution with mean 540 and standard deviation 15. The two samples are independent. Find each of the following:

1. The mean and standard deviation of .
2. The mean and standard deviation of .
3. The mean and standard deviation of .

μ ν δ

W (X,Y ) = ( −μ)( −ν)

1

n

∑

i=1

n

X

i

Y

i

(6.8.28)

W (X,Y )

E[W (X,Y )] = στρ

var[W (X,Y )] = (1+ )/nσ

2

τ

2

ρ

2

δ δ

2

μ ν δ

S(X,Y ) = [ −M(X)][ −M(Y )]

1

n−1

∑

i=1

n

X

i

Y

i

(6.8.29)

E[S(X,Y )] = στρ

var[S(X,Y )] = (1+ )/(n−1)σ

2

τ

2

ρ

2

δ δ

2

X Y M W

2

S

2

T

X

M

W

2

S

2

T

P(M > 49, < 20))S

2

P(−1 < T < 1)

50, 4/5

16, 16 /52

–

√

16, 8/ 3

–

√

0, 2 3/11

− −−−

√

0.7291

0.6727

X

Y

M(X)

M(Y )

M(X)−M(Y )

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10185?pdf


6.8.9 https://stats.libretexts.org/@go/page/10185

4. .
5. The mean and standard deviation of .
6. The mean and standard deviation of .
7. The mean and standard deviation of 
8. .

Answer
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

This page titled 6.8: Special Properties of Normal Samples is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by
Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

7: Point Estimation
Point estimation refers to the process of estimating a parameter from a probability distribution, based on observed data from the
distribution. It is one of the core topics in mathematical statistics. In this chapter, we will explore the most common methods of
point estimation: the method of moments, the method of maximum likelihood, and Bayes' estimators. We also study important
properties of estimators, including sufficiency and completeness, and the basic question of whether an estimator is the best possible
one.

7.1: Estimators
7.2: The Method of Moments
7.3: Maximum Likelihood
7.4: Bayesian Estimation
7.5: Best Unbiased Estimators
7.6: Sufficient, Complete and Ancillary Statistics
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7.1: Estimators
            

The Basic Statistical Model

As usual, our starting point is a random experiment with an underlying sample space and a probability measure . In the basic
statistical model, we have an observable random variable  taking values in a set . Recall that in general, this variable can have
quite a complicated structure. For example, if the experiment is to sample  objects from a population and record various
measurements of interest, then the data vector has the form

where  is the vector of measurements for the th object. The most important special case is when  are
independent and identically distributed (IID). In this case  is a random sample of size  from the distribution of an underlying
measurement variable .

Statistics

Recall also that a statistic is an observable function of the outcome variable of the random experiment:  where  is a
known function from  into another set . Thus, a statistic is simply a random variable derived from the observation variable ,
with the assumption that  is also observable. As the notation indicates,  is typically also vector-valued. Note that the original
data vector  is itself a statistic, but usually we are interested in statistics derived from . A statistic  may be computed to
answer an inferential question. In this context, if the dimension of  (as a vector) is smaller than the dimension of  (as is usually
the case), then we have achieved data reduction. Ideally, we would like to achieve significant data reduction with no loss of
information about the inferential question at hand.

Parameters

In the technical sense, a parameter  is a function of the distribution of , taking values in a parameter space . Typically, the
distribution of  will have  real parameters of interest, so that  has the form  and thus . In
many cases, one or more of the parameters are unknown, and must be estimated from the data variable . This is one of the of the
most important and basic of all statistical problems, and is the subject of this chapter. If  is a statistic, then the distribution of 
will depend on the parameters of , and thus so will distributional constructs such as means, variances, covariances, probability
density functions and so forth. We usually suppress this dependence notationally to keep our mathematical expressions from
becoming too unwieldy, but it's very important to realize that the underlying dependence is present. Remember that the critical idea
is that by observing a value  of a statistic  we (hopefully) gain information about the unknown parameters.

Estimators

Suppose now that we have an unknown real parameter  taking values in a parameter space . A real-valued statistic 
 that is used to estimate  is called, appropriately enough, an estimator of . Thus, the estimator is a random variable

and hence has a distribution, a mean, a variance, and so on (all of which, as noted above, will generally depend on ). When we
actually run the experiment and observe the data , the observed value  (a single number) is the estimate of the parameter

. The following definitions are basic.

Suppose that  is a statistic used as an estimator of a parameter  with values in . For ,

1.  is the error.
2.  is the bias of 
3.  is the mean square error of 

Thus the error is the difference between the estimator and the parameter being estimated, so of course the error is a random
variable. The bias of  is simply the expected error, and the mean square error (the name says it all) is the expected square of the
error. Note that bias and mean square error are functions of . The following definitions are a natural complement to the
definition of bias.

Suppose again that  is a statistic used as an estimator of a parameter  with values in .

1.  is unbiased if , or equivalently , for all .
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2.  is negatively biased if , or equivalently , for all .
3.  is positively biased if , or equivalently , for all .

Thus, for an unbiased estimator, the expected value of the estimator is the parameter being estimated, clearly a desirable property.
On the other hand, a positively biased estimator overestimates the parameter, on average, while a negatively biased estimator
underestimates the parameter on average. Our definitions of negative and positive bias are weak in the sense that the weak
inequalities  and  are used. There are corresponding strong definitions, of course, using the strong inequalities  and . Note,
however, that none of these definitions may apply. For example, it might be the case that  for some , 

 for other , and  for yet other .

Proof

This follows from basic properties of expected value and variance:

In particular, if the estimator is unbiased, then the mean square error of  is simply the variance of .

Ideally, we would like to have unbiased estimators with small mean square error. However, this is not always possible, and the
result in (3) shows the delicate relationship between bias and mean square error. In the next section we will see an example with
two estimators of a parameter that are multiples of each other; one is unbiased, but the other has smaller mean square error.
However, if we have two unbiased estimators of , we naturally prefer the one with the smaller variance (mean square error).

Suppose that  and  are unbiased estimators of a parameter  with values in .

1.  is more efficient than  if .
2. The relative efficiency of  with respect to  is

Asymptotic Properties

Suppose again that we have a real parameter  with possible values in a parameter space . Often in a statistical experiment, we
observe an infinite sequence of random variables over time, , so that at time  we have observed 

. In this setting we often have a general formula that defines an estimator of  for each sample size .
Technically, this gives a sequence of real-valued estimators of :  where  is a real-valued function of  for
each . In this case, we can discuss the asymptotic properties of the estimators as . Most of the definitions are
natural generalizations of the ones above.

The sequence of estimators  is asymptotically unbiased if  as  for every , or
equivalently,  as  for every .

Suppose that  and  are two sequences of estimators that are asymptotically unbiased. The
asymptotic relative efficiency of  to  is

assuming that the limit exists.

Naturally, we expect our estimators to improve, as the sample size  increases, and in some sense to converge to the parameter as 
. This general idea is known as consistency. Once again, for the remainder of this discussion, we assume that 

 is a sequence of estimators for a real-valued parameter , with values in the parameter space .

Consistency
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1.  is consistent if  as  in probability for each . That is,  as  for every 
 and .

2.  is mean-square consistent if  as  for .

Here is the connection between the two definitions:

If  is mean-square consistent then  is consistent.

Proof

From Markov's inequality,

That mean-square consistency implies simple consistency is simply a statistical version of the theorem that states that mean-square
convergence implies convergence in probability. Here is another nice consequence of mean-square consistency.

If  is mean-square consistent then  is asymptotically unbiased.

Proof

This result follows from the fact that mean absolute error is smaller than root mean square error, which in turn is special case
of a general result for norms. See the advanced section on vector spaces for more details. So, using this result and the ordinary
triangle inequality for expected value we have

Hence  as  for .

In the next several subsections, we will review several basic estimation problems that were studied in the chapter on Random
Samples.

Estimation in the Single Variable Model

Suppose that  is a basic real-valued random variable for an experiment, with mean  and variance . We sample
from the distribution of  to produce a sequence  of independent variables, each with the distribution of . For
each ,  is a random sample of size  from the distribution of .

Estimating the Mean

This subsection is a review of some results obtained in the section on the Law of Large Numbers in the chapter on Random
Samples. Recall that a natural estimator of the distribution mean  is the sample mean, defined by

Properties of  as a sequence of estimators of .

1.  so  is unbiased for 
2.  for  so  is consistent.

The consistency of  is simply the weak law of large numbers. Moreover, there are a number of important special cases of the
results in (10). See the section on Sample Mean for the details.

Special cases of the sample mean

1. Suppose that , the indicator variable for an event  that has probability . Then the sample mean for a random
sample of size  from the distribution of  is the relative frequency or empirical probability of , denoted .
Hence  is an unbiased estimator of  for  and  is consistent..
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2. Suppose that  denotes the distribution function of a real-valued random variable . Then for fixed , the empirical
distribution function  is simply the sample mean for a random sample of size  from the distribution of the
indicator variable . Hence  is an unbiased estimator of  for  and  is
consistent.

3. Suppose that  is a random variable with a discrete distribution on a countable set  and  denotes the probability density
function of . Then for fixed , the empirical probability density function  is simply the sample mean for a
random sample of size  from the distribution of the indicator variable . Hence  is an unbiased
estimator of  for  and  is consistent.

Estimating the Variance

This subsection is a review of some results obtained in the section on the Sample Variance in the chapter on Random Samples. We
also assume that the fourth central moment  is finite. Recall that  is the kurtosis of . Recall first that if 

 is known (almost always an artificial assumption), then a natural estimator of  is a special version of the sample variance,
defined by

Properties of  as a sequence of estimators of .

1.  so  is unbiased for 
2.  for  so  is consistent.

Proof

 corresponds to sampling from the distribution of . This distribution as mean  and variance , so the
results follow immediately from theorem (10).

If  is unknown (the more reasonable assumption), then a natural estimator of the distribution variance is the standard version of
the sample variance, defined by

Properties of  as a sequence of estimators of 

1.  so  is unbiased for 

2.  for  so  is consistent sequence.

Naturally, we would like to compare the sequences  and  as estimators of . But again remember that  only makes
sense if  is known.

Comparison of  and 

1.  for .
2. The asymptotic relative efficiency of  to  is 1.

So by (a)  is better than  for , assuming that  is known so that we can actually use . This is perhaps not
surprising, but by (b)  works just about as well as  for a large sample size . Of course, the sample standard deviation  is
a natural estimator of the distribution standard deviation . Unfortunately, this estimator is biased. Here is a more general result:

Suppose that  is a parameter with possible values in  (with at least two points) and that  is a statistic with values
in . If  is an unbiased estimator of  then  is a negatively biased estimator of .

Proof

Note that

F Y y ∈ R

(y)F

n

n ∈ N

+

X = 1(Y ≤ y) (y)F

n

F (y) n ∈ N

+

( (y) : n ∈ )F

n

N

+

U S f

U u ∈ S (u)f

n

n ∈ N

+

X = 1(U = u) (u)f

n

f(u) n ∈ N

+

( (u) : n ∈ )f

n

N

+

=E [(X−μ ]σ

4

)

4

/σ

4

σ

4

X

μ σ

2

= ( −μ , n ∈W

2

n

1

n

∑

i=1

n

X

i

)

2

N

+

(7.1.8)

= ( , ,…)W

2

W

2

1

W

2

2

σ

2

E ( )=W

2

n

σ

2

W

2

n

n ∈ N

+

var( )= ( − )W

2

n

1

n

σ

4

σ

4

n ∈ N

+

W

2

W

2

(X−μ)

2

σ

2

−σ

4

σ

4

μ

= ( − , n ∈ {2, 3,…}S

2

n

1

n−1

∑

i=1

n

X

i

M

n

)

2

(7.1.9)

= ( , ,…)S

2

S

2

2

S

2

3

σ

2

E ( )=S

2

n

σ

2

S

2

n

n ∈ {2, 3,…}

var( )= ( − )S

2

n

1

n

σ

4

n−3

n−1

σ

4

n ∈ {2, 3,…} S

2

W

2

S

2

σ

2

W

2

μ

W

2

S

2

var( )< var( )W

2

n

S

2

n

n ∈ {2, 3,…}

W

2

S

2

W

2

n

S

2

n

n ∈ {2, 3,…} μ W

2

n

S

2

n

W

2

n

n S

n

σ

θ T ⊆ (0,∞) U

T U

2

θ

2

U θ

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10189?pdf


7.1.5 https://stats.libretexts.org/@go/page/10189

Since  has at least two points,  cannot be deterministic so . It follows that  so  for 
.

Thus, we should not be too obsessed with the unbiased property. For most sampling distributions, there will be no statistic  with
the property that  is an unbiased estimator of  and  is an unbiased estimator of .

Estimation in the Bivariate Model

In this subsection we review some of the results obtained in the section on the Correlation and Regression in the chapter on
Random Samples

Suppose that  and  are real-valued random variables for an experiment, so that  has a bivariate distribution in . Let 
 and  denote the mean and variance of , and let  and  denote the mean and

variance of . For the bivariate parameters, let  denote the distribution covariance and  the
distribution correlation. We need one higher-order moment as well: let , and as usual, we assume that
all of the parameters exist. So the general parameter spaces are , , , and . Suppose now
that we sample from the distribution of  to generate a sequence of independent variables , each
with the distribution of . As usual, we will let  and ; these are random
samples of size  from the distributions of  and , respectively.

Since we now have two underlying variables, we need to enhance our notation somewhat. It will help to define the deterministic
versions of our statistics. So if  and  are sequences of real numbers and , we define the
mean and special covariance functions by

If  we define the variance and standard covariance functions by

It should be clear from context whether we are using the one argument or two argument version of . On this point, note that 
.

Estimating the Covariance

If  and  are known (almost always an artificial assumption), then a natural estimator of the distribution covariance  is a special
version of the sample covariance, defined by

Properties of  as a sequence of estimators of .

1.  so  is unbiased for .
2.  for  so  is consistent.

Proof

We've done this proof before, but it's so basic that it's worth repeating. Note that  corresponds to sampling from the
distribution of . This distribution as mean  and variance , so the results follow immediately from
Theorem (10).

var(U) =E( )−[E(U) = −[E(U) , θ ∈ TU

2

]

2

θ

2

]

2

(7.1.10)

T U var(U) > 0 [E(U) <]

2

θ

2

E(U) < θ

θ ∈ T

U

U σ U

2

σ

2

X Y (X,Y ) R

2

μ=E(X) = var(X)σ

2

X ν =E(Y ) = var(Y )τ

2

Y δ = cov(X,Y ) ρ = cor(X,Y )

=E [(X−μ (Y −ν ]δ

2

)

2

)

2

μ, ν ∈ R , ∈ (0,∞)σ

2

τ

2

δ ∈ R ρ ∈ [0, 1]

(X,Y ) (( , ), ( , ),…)X

1

Y

1

X

2

Y

2

(X,Y ) = ( , ,… , )X

n

X

1

X

2

X

n

= ( , ,… , )Y

n

Y

1

Y

2

Y

n

n X Y

x = ( , ,…)x

1

x

2

y = ( , ,…)y

1

y

2

n ∈ N

+

(x)m

n

(x,y)w

n

=

1

n

∑

i=1

n

x

i

= ( −μ)( −ν)

1

n

∑

i=1

n

x

i

y

i

n ∈ {2, 3,…}

(x)s

2

n

(x,y)s

n

= [ − (x)

1

n−1

∑

i=1

n

x

i

m

n

]

2

= [ − (x)][ − (y)]

1

n−1

∑

i=1

n

x

i

m

n

y

i

m

n

s

n

(x,x) = (x)s

n

s

2

n

μ ν δ

= (X,Y ) = ( −μ)( −ν), n ∈W

n

w

n

1

n

∑

i=1

n

X

i

Y

i

N

+

(7.1.11)

W = ( , ,…)W

1

W

2

δ

E ( ) = δW

n

W

n

n ∈ N

+

var ( ) = ( − )W

n

1

n

δ

2

δ

2

n ∈ N

+

W

W

(X−μ)(Y −ν) δ −δ

2

δ

2

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10189?pdf


7.1.6 https://stats.libretexts.org/@go/page/10189

If  and  are unknown (usually the more reasonable assumption), then a natural estimator of the distribution covariance  is the
standard version of the sample covariance, defined by

Properties of  as a sequence of estimators of .

1.  so is unbiased for .

2.  for  so  is consistent.

Once again, since we have two competing sequences of estimators of , we would like to compare them.

Comparison of  and  as estimators of :

1.  for .
2. The asymptotic relative efficiency of  to  is 1.

Thus,  is better than  for , assuming that  and  are known so that we can actually use . But for large , 
 works just about as well as .

Estimating the Correlation

A natural estimator of the distribution correlation  is the sample correlation

Note that this statistics is a nonlinear function of the sample covariance and the two sample standard deviations. For most
distributions of , we have no hope of computing the bias or mean square error of this estimator. If we could compute the
expected value, we would probably find that the estimator is biased. On the other hand, even though we cannot compute the mean
square error, a simple application of the law of large numbers shows that  as  with probability 1. Thus, 

 is at least consistent.

Estimating the regression coefficients

Recall that the distribution regression line, with  as the predictor variable and  as the response variable, is  where

On the other hand, the sample regression line, based on the sample of size , is  where

Of course, the statistics  and  are natural estimators of the parameters  and , respectively, and in a sense are derived from
our previous estimators of the distribution mean, variance, and covariance. Once again, for most distributions of , it would
be difficult to compute the bias and mean square errors of these estimators. But applications of the law of large numbers show that
with probability 1,  and  as , so at least  and  are consistent.

Exercises and Special Cases

The Poisson Distribution

Let's consider a simple example that illustrates some of the ideas above. Recall that the Poisson distribution with parameter 
 has probability density function  given by
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The Poisson distribution is often used to model the number of random “points” in a region of time or space, and is studied in more
detail in the chapter on the Poisson process. The parameter  is proportional to the size of the region of time or space; the
proportionality constant is the average rate of the random points. The distribution is named for Simeon Poisson.

Suppose that  has the Poisson distribution with parameter . . Hence

1. 
2. 
3. 

Proof

Recall the permutation notation  for  and . The expected value  is the
factorial moment of  of order . It's easy to see that he factorial moments are  for . The results follow
from this.

Suppose now that we sample from the distribution of  to produce a sequence of independent random variables 
, each having the Poisson distribution with unknown parameter . Again, 

is a random sample of size  from the from the distribution for each . From the previous exercise,  is both the mean
and the variance of the distribution, so that we could use either the sample mean  or the sample variance  as an estimator of 

. Both are unbiased, so which is better? Naturally, we use mean square error as our criterion.

Comparison of  to  as estimators of .

1.  for .

2.  for .

3.  so  for .
4. The asymptotic relative efficiency of  to  is .

So our conclusion is that the sample mean  is a better estimator of the parameter  than the sample variance  for 
, and the difference in quality increases with .

Run the Poisson experiment 100 times for several values of the parameter. In each case, compute the estimators  and .
Which estimator seems to work better?

The emission of elementary particles from a sample of radioactive material in a time interval is often assumed to follow the
Poisson distribution. Thus, suppose that the alpha emissions data set is a sample from a Poisson distribution. Estimate the rate
parameter .

1. using the sample mean
2. using the sample variance

Answer
1. 8.367
2. 8.649

Simulation Exercises

In the sample mean experiment, set the sampling distribution to gamma. Increase the sample size with the scroll bar and note
graphically and numerically the unbiased and consistent properties. Run the experiment 1000 times and compare the sample
mean to the distribution mean.

Run the normal estimation experiment 1000 times for several values of the parameters.

1. Compare the empirical bias and mean square error of  with the theoretical values.
2. Compare the empirical bias and mean square error of  and of  to their theoretical values. Which estimator seems to

work better?
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In matching experiment, the random variable is the number of matches. Run the simulation 1000 times and compare

1. the sample mean to the distribution mean.
2. the empirical density function to the probability density function.

Run the exponential experiment 1000 times and compare the sample standard deviation to the distribution standard deviation.

Data Analysis Exercises

For Michelson's velocity of light data, compute the sample mean and sample variance.

Answer

852.4, 6242.67

For Cavendish's density of the earth data, compute the sample mean and sample variance.

Answer

5.448, 0.048817

For Short's parallax of the sun data, compute the sample mean and sample variance.

Answer

8.616, 0.561032

Consider the Cicada data.

1. Compute the sample mean and sample variance of the body length variable.
2. Compute the sample mean and sample variance of the body weight variable.
3. Compute the sample covariance and sample correlation between the body length and body weight variables.

Answer
1. 24.0, 3.92
2. 0.180, 0.003512
3. 0.0471, 0.4012

Consider the M&M data.

1. Compute the sample mean and sample variance of the net weight variable.
2. Compute the sample mean and sample variance of the total number of candies.
3. Compute the sample covariance and sample correlation between the number of candies and the net weight.

Answer
1. 57.1, 5.68
2. 49.215, 2.3163
3. 2.878, 0.794

Consider the Pearson data.

1. Compute the sample mean and sample variance of the height of the father.
2. Compute the sample mean and sample variance of the height of the son.
3. Compute the sample covariance and sample correlation between the height of the father and height of the son.

Answer
1. 67.69, 7.5396
2. 68.68, 7.9309
3. 3.875, 0.501
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The estimators of the mean, variance, and covariance that we have considered in this section have been natural in a sense.
However, for other parameters, it is not clear how to even find a reasonable estimator in the first place. In the next several sections,
we will consider the problem of constructing estimators. Then we return to the study of the mathematical properties of estimators,
and consider the question of when we can know that an estimator is the best possible, given the data.
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7.2: The Method of Moments
           

Basic Theory

The Method

Suppose that we have a basic random experiment with an observable, real-valued random variable . The distribution of  has 
unknown real-valued parameters, or equivalently, a parameter vector  taking values in a parameter space, a
subset of . As usual, we repeat the experiment  times to generate a random sample of size  from the distribution of .

Thus,  is a sequence of independent random variables, each with the distribution of . The method of moments is a technique for
constructing estimators of the parameters that is based on matching the sample moments with the corresponding distribution
moments. First, let

so that  is the th moment of  about 0. Note that we are emphasizing the dependence of these moments on the vector of
parameters . Note also that  is just the mean of , which we usually denote simply by . Next, let

so that  is the th sample moment about 0. Equivalently,  is the sample mean for the random sample 

 from the distribution of . Note that we are emphasizing the dependence of the sample moments on the

sample . Note also that  is just the ordinary sample mean, which we usually just denote by  (or by  if we wish to
emphasize the dependence on the sample size). From our previous work, we know that  is an unbiased and consistent
estimator of  for each . Here's how the method works:

To construct the method of moments estimators  for the parameters  respectively, we
consider the equations

consecutively for  until we are able to solve for  in terms of .

The equations for  give  equations in  unknowns, so there is hope (but no guarantee) that the equations can be
solved for  in terms of . In fact, sometimes we need equations with . Exercise 28
below gives a simple example. The method of moments can be extended to parameters associated with bivariate or more general
multivariate distributions, by matching sample product moments with the corresponding distribution product moments. The method
of moments also sometimes makes sense when the sample variables  are not independent, but at least are
identically distributed. The hypergeometric model below is an example of this.

Of course, the method of moments estimators depend on the sample size . We have suppressed this so far, to keep the
notation simple. But in the applications below, we put the notation back in because we want to discuss asymptotic behavior.

Estimates for the Mean and Variance

Estimating the mean and variance of a distribution are the simplest applications of the method of moments. Throughout this
subsection, we assume that we have a basic real-valued random variable  with  and .
Occasionally we will also need , the fourth central moment. We sample from the distribution of  to produce a
sequence  of independent variables, each with the distribution of . For each , 

 is a random sample of size  from the distribution of . We start by estimating the mean, which is
essentially trivial by this method.

Suppose that the mean  is unknown. The method of moments estimator of  based on  is the sample mean
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1.  so  is unbiased for 
2.  for so  is consistent.

Proof

It does not get any more basic than this. The method of moments works by matching the distribution mean with the sample
mean. The fact that  and  for  are properties that we have seen several times before.

Estimating the variance of the distribution, on the other hand, depends on whether the distribution mean  is known or unknown.
First we will consider the more realistic case when the mean in also unknown. Recall that for , the sample variance
based on  is

Recall also that  so  is unbiased for , and that  so 

is consistent.

Suppose that the mean  and the variance  are both unknown. For , the method of moments estimator of  based
on  is

1.  for  so  is asymptotically unbiased.
2.  for  so  is consistent.

Proof

As before, the method of moments estimator of the distribution mean  is the sample mean . On the other hand, 
 and hence the method of moments estimator of  is , which simplifies to the result above.

Note that  for .

1. Note that , so .

2. Recall that . But . The result follows from substituting 

 given above and  in part (a).

Hence  is negatively biased and on average underestimates . Because of this result,  is referred to as the biased sample
variance to distinguish it from the ordinary (unbiased) sample variance .

Next let's consider the usually unrealistic (but mathematically interesting) case where the mean is known, but not the variance.

Suppose that the mean  is known and the variance  unknown. For , the method of moments estimator of  based
on  is

1.  so  is unbiased for 
2.  for  so  is consistent.

Proof

These results follow since  is the sample mean corresponding to a random sample of size  from the distribution of 
.
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We compared the sequence of estimators  with the sequence of estimators  in the introductory section on Estimators. Recall
that  for  but  as . There is no simple, general relationship
between  and  or between  and , but the asymptotic relationship is simple.

 and  as 

Proof

In light of the previous remarks, we just have to prove one of these limits. The first limit is simple, since the coefficients of 
and  in  are asymptotically  as .

It also follows that if both  and  are unknown, then the method of moments estimator of the standard deviation  is .
In the unlikely event that  is known, but  unknown, then the method of moments estimator of  is .

Estimating Two Parameters

There are several important special distributions with two paraemters; some of these are included in the computational exercises
below. With two parameters, we can derive the method of moments estimators by matching the distribution mean and variance with
the sample mean and variance, rather than matching the distribution mean and second moment with the sample mean and second
moment. This alternative approach sometimes leads to easier equations. To setup the notation, suppose that a distribution on  has
parameters  and . We sample from the distribution to produce a sequence of independent variables , each with
the common distribution. For ,  is a random sample of size  from the distribution. Let , 

, and  denote the sample mean, second-order sample mean, and biased sample variance corresponding to , and let 
, , and  denote the mean, second-order mean, and variance of the distribution.

If the method of moments estimators  and  of  and , respectively, can be found by solving the first two equations

then  and  can also be found by solving the equations

Proof

Recall that . In addition, . Hence the equations , 
 are equivalent to the equations , .

Because of this result, the biased sample variance  will appear in many of the estimation problems for special distributions that
we consider below.

Special Distributions

The Normal Distribution

The normal distribution with mean  and variance  is a continuous distribution on  with probability density
function  given by

This is one of the most important distributions in probability and statistics, primarily because of the central limit theorem. The
normal distribution is studied in more detail in the chapter on Special Distributions.

Suppose now that  is a random sample of size  from the normal distribution with mean  and variance 
. Form our general work above, we know that if  is unknown then the sample mean  is the method of moments estimator of 

, and if in addition,  is unknown then the method of moments estimator of  is . On the other hand, in the unlikely event
that  is known then  is the method of moments estimator of . Our goal is to see how the comparisons above simplify for the
normal distribution.
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Mean square errors of  and .

1. 
2. 
3.  for 

Proof

Recall that for the normal distribution, . Substituting this into the general results gives parts (a) and (b). Part (c)
follows from (a) and (b). Of course the asymptotic relative efficiency is still 1, from our previous theorem.

Thus,  and  are multiplies of one another;  is unbiased, but when the sampling distribution is normal,  has smaller mean
square error. Surprisingly,  has smaller mean square error even than .

Mean square errors of  and .

1. 
2.  for 

Proof

Again, since the sampling distribution is normal, . Substituting this into the gneral formula for  gives part
(a).

Run the normal estimation experiment 1000 times for several values of the sample size  and the parameters  and .
Compare the empirical bias and mean square error of  and of  to their theoretical values. Which estimator is better in
terms of bias? Which estimator is better in terms of mean square error?

Next we consider estimators of the standard deviation . As noted in the general discussion above,  is the method of
moments estimator when  is unknown, while  is the method of moments estimator in the unlikely event that  is
known. Another natural estimator, of course, is , the usual sample standard deviation. The following sequence, defined in
terms of the gamma function turns out to be important in the analysis of all three estimators.

Consider the sequence

Then  for  and  as .

First, assume that  is known so that  is the method of moments estimator of .

For ,

1. 
2. 
3. 
4. 

Proof

Recall that  has the chi-square distribution with  degrees of freedom, and hence  has the chi distribution
with  degrees of freedom. Solving gives

From the formulas for the mean and variance of the chi distribution we have
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Thus  is negatively biased as an estimator of  but asymptotically unbiased and consistent. Of course we know that in general
(regardless of the underlying distribution),  is an unbiased estimator of  and so  is negatively biased as an estimator of .
In the normal case, since  involves no unknown parameters, the statistic  is an unbiased estimator of . Next we consider
the usual sample standard deviation .

For ,

1. 
2. 
3. 
4. 

Proof

Recall that  has the chi-square distribution with  degrees of freedom, and hence  has the chi
distribution with  degrees of freedom. The proof now proceeds just as in the previous theorem, but with  replacing 

.

As with , the statistic  is negatively biased as an estimator of  but asymptotically unbiased, and also consistent. Since 
involves no unknown parameters, the statistic  is an unbiased estimator of . Note also that, in terms of bias and mean
square error,  with sample size  behaves like  with sample size . Finally we consider , the method of moments
estimator of  when  is unknown.

For ,

1. 

2. 

3. 

4. 

Proof

The results follow easily from the previous theorem since .

The Bernoulli Distribution

Recall that an indicator variable is a random variable  that takes only the values 0 and 1. The distribution of  is known as the
Bernoulli distribution, named for Jacob Bernoulli, and has probability density function  given by

where  is the success parameter. The mean of the distribution is  and the variance is .

Suppose now that  is a random sample of size  from the Bernoulli distribution with unknown success
parameter . Since the mean of the distribution is , it follows from our general work above that the method of moments estimator
of  is , the sample mean. In this case, the sample  is a sequence of Bernoulli trials, and  has a scaled version of the
binomial distribution with parameters  and :

Note that since  for every , it follows that  and  for every . So any of the method of
moments equations would lead to the sample mean  as the estimator of . Although very simple, this is an important application,
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since Bernoulli trials are found embedded in all sorts of estimation problems, such as empirical probability density functions and
empirical distribution functions.

The Geometric Distribution

The geometric distribution on  with success parameter  has probability density function  given by

The geometric distribution on  governs the number of trials needed to get the first success in a sequence of Bernoulli trials with
success parameter . The mean of the distribution is .

Suppose that  is a random sample of size  from the geometric distribution on  with unknown
success parameter . The method of moments estimator of  is

Proof

The method of moments equation for  is .

The geometric distribution on  with success parameter  has probability density function

This version of the geometric distribution governs the number of failures before the first success in a sequence of Bernoulli trials.
The mean of the distribution is .

Suppose that  is a random sample of size  from the geometric distribution on  with unknown
parameter . The method of moments estimator of  is

Proof

The method of moments equation for  is .

The Negative Binomial Distribution

More generally, the negative binomial distribution on  with shape parameter  and success parameter  has
probability density function

If  is a positive integer, then this distribution governs the number of failures before the th success in a sequence of Bernoulli
trials with success parameter . However, the distribution makes sense for general . The negative binomial distribution
is studied in more detail in the chapter on Bernoulli Trials. The mean of the distribution is  and the variance is 

. Suppose now that  is a random sample of size  from the negative binomial distribution on 
 with shape parameter  and success parameter 

If  and  are unknown, then the corresponding method of moments estimators  and  are

Proof

Matching the distribution mean and variance to the sample mean and variance gives the equations
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As usual, the results are nicer when one of the parameters is known.

Suppose that  is known but  is unknown. The method of moments estimator  of  is

Proof

Matching the distribution mean to the sample mean gives the equation

Suppose that  is unknown but  is known. The method of moments estimator of  is

1.  so  is unbiased.
2.  so  is consistent.

Proof

Matching the distribution mean to the sample mean gives the equation .

1.  and 

2.  and 

The Poisson Distribution

The Poisson distribution with parameter  is a discrete distribution on  with probability density function  given by

The mean and variance are both . The distribution is named for Simeon Poisson and is widely used to model the number of
“random points” is a region of time or space. The parameter  is proportional to the size of the region, with the proportionality
constant playing the role of the average rate at which the points are distributed in time or space. The Poisson distribution is studied
in more detail in the chapter on the Poisson Process.

Suppose now that  is a random sample of size  from the Poisson distribution with parameter . Since  is
the mean, it follows from our general work above that the method of moments estimator of  is the sample mean .

The Gamma Distribution

The gamma distribution with shape parameter  and scale parameter  is a continuous distribution on 
with probability density function  given by

The gamma probability density function has a variety of shapes, and so this distribution is used to model various types of positive
random variables. The gamma distribution is studied in more detail in the chapter on Special Distributions. The mean is 
and the variance is .

Suppose now that  is a random sample from the gamma distribution with shape parameter  and scale
parameter .

Suppose that  and  are both unknown, and let  and  be the corresponding method of moments estimators. Then
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Proof

Matching the distribution mean and variance with the sample mean and variance leads to the equations , 
. Solving gives the results.

The method of moments estimators of  and  given in the previous exercise are complicated, nonlinear functions of the sample
mean  and the sample variance . Thus, computing the bias and mean square errors of these estimators are difficult problems
that we will not attempt. However, we can judge the quality of the estimators empirically, through simulations.

When one of the parameters is known, the method of moments estimator of the other parameter is much simpler.

Suppose that  is unknown, but  is known. The method of moments estimator of  is

1.  so  is unbiased.
2.  so  is consistent.

Proof

If  is known, then the method of moments equation for  is . Solving gives (a). Next, 
, so  is unbiased. Finally .

Suppose that  is unknown, but  is known. The method of moments estimator of  is

1.  so  is unbiased.
2.  so that  is consistent.

Proof

If  is known, then the method of moments equation for  is . Solving gives (a). Next, 
, so  is unbiased. Finally .

Run the gamma estimation experiment 1000 times for several different values of the sample size  and the parameters  and .
Note the empirical bias and mean square error of the estimators , , , and . One would think that the estimators when
one of the parameters is known should work better than the corresponding estimators when both parameters are unknown; but
investigate this question empirically.

The Beta Distribution

The beta distribution with left parameter  and right parameter  is a continuous distribution on  with
probability density function  given by

The beta probability density function has a variety of shapes, and so this distribution is widely used to model various types of
random variables that take values in bounded intervals. The beta distribution is studied in more detail in the chapter on Special

Distributions. The first two moments are  and .

Suppose now that  is a random sample of size  from the beta distribution with left parameter  and right
parameter .

Suppose that  and  are both unknown, and let  and  be the corresponding method of moments estimators. Then
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Proof

The method of moments equations for  and  are

Solving gives the result.

The method of moments estimators of  and  given in the previous exercise are complicated nonlinear functions of the sample
moments  and . Thus, we will not attempt to determine the bias and mean square errors analytically, but you will have an
opportunity to explore them empricially through a simulation.

Suppose that  is unknown, but  is known. Let  be the method of moments estimator of . Then

Proof

If  is known then the method of moments equation for  as an estimator of  is . Solving for  gives the
result.

Suppose that  is unknown, but  is known. Let  be the method of moments estimator of . Then

Proof

If  is known then the method of moments equation for  as an estimator of  is . Solving for  gives the
result.

Run the beta estimation experiment 1000 times for several different values of the sample size  and the parameters  and .
Note the empirical bias and mean square error of the estimators , , , and . One would think that the estimators when
one of the parameters is known should work better than the corresponding estimators when both parameters are unknown; but
investigate this question empirically.

The following problem gives a distribution with just one parameter but the second moment equation from the method of moments
is needed to derive an estimator.

Suppose that  is a random sample from the symmetric beta distribution, in which the left and right
parameters are equal to an unknown value . The method of moments estimator of  is

Proof

Note that the mean  of the symmetric distribution is , independently of , and so the first equation in the method of
moments is useless. However, matching the second distribution moment to the second sample moment leads to the equation

Solving gives the result.

The Pareto Distribution

The Pareto distribution with shape parameter  and scale parameter  is a continuous distribution on 
with probability density function  given by
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The Pareto distribution is named for Vilfredo Pareto and is a highly skewed and heavy-tailed distribution. It is often used to model
income and certain other types of positive random variables. The Pareto distribution is studied in more detail in the chapter on
Special Distributions. If , the first two moments of the Pareto distribution are  and .

Suppose now that  is a random sample of size  from the Pareto distribution with shape parameter 
and scale parameter .

Suppose that  and  are both unknown, and let  and  be the corresponding method of moments estimators. Then

Proof

The method of moments equations for  and  are

Solving for  and  gives the results.

As with our previous examples, the method of moments estimators are complicatd nonlinear functions of  and , so
computing the bias and mean square error of the estimator is difficult. Instead, we can investigate the bias and mean square error
empirically, through a simulation.

Run the Pareto estimation experiment 1000 times for several different values of the sample size  and the parameters  and .
Note the empirical bias and mean square error of the estimators  and .

When one of the parameters is known, the method of moments estimator for the other parameter is simpler.

Suppose that  is unknown, but  is known. Let  be the method of moments estimator of . Then

Proof

If  is known then the method of moment equation for  as an estimator of  is . Solving for  gives
the result.

Suppose that  is unknown, but  is known. Let  be the method of moments estimator of . Then

1.  so  is unbiased.
2.  so  is consistent.

Proof

If  is known then the method of moments equation for  as an estimator of  is . Solving for  gives
(a). Next,  so  is unbiased. Finally, 
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.

The Uniform Distribution

The (continuous) uniform distribution with location parameter  and scale parameter  has probability density
function  given by

The distribution models a point chosen “at random” from the interval . The mean of the distribution is  and
the variance is . The uniform distribution is studied in more detail in the chapter on Special Distributions. Suppose now
that  is a random sample of size  from the uniform distribution.

Suppose that  and  are both unknown, and let  and  denote the corresponding method of moments estimators. Then

Proof

Matching the distribution mean and variance to the sample mean and variance leads to the equations  and 
. Solving gives the result.

As usual, we get nicer results when one of the parameters is known.

Suppose that  is known and  is unknown, and let  denote the method of moments estimator of . Then

1.  so  is unbiased.
2.  so  is consistent.

Proof

Matching the distribution mean to the sample mean leads to the equation . Solving gives the result.

1. 
2. 

Suppose that  is known and  is unknown, and let  denote the method of moments estimator of . Then

1.  so  is unbiased.
2.  so  is consistent.

Proof

Matching the distribution mean to the sample mean leads to the quation . Solving gives the result.

1. 

2. 

The Hypergeometric Model

Our basic assumption in the method of moments is that the sequence of observed random variables  is a
random sample from a distribution. However, the method makes sense, at least in some cases, when the variables are identically
distributed but dependent. In the hypergeometric model, we have a population of  objects with  of the objects type 1 and the
remaining  objects type 0. The parameter , the population size, is a positive integer. The parameter , the type 1 size, is a
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nonnegative integer with . These are the basic parameters, and typically one or both is unknown. Here are some typical
examples:

1. The objects are devices, classified as good or defective.
2. The objects are persons, classified as female or male.
3. The objects are voters, classified as for or against a particular candidate.
4. The objects are wildlife or a particular type, either tagged or untagged.

We sample  objects from the population at random, without replacement. Let  be the type of the th object selected, so that our
sequence of observed variables is . The variables are identically distributed indicator variables, with 

 for each , but are dependent since the sampling is without replacement. The number of type 1
objects in the sample is . This statistic has the hypergeometric distribution with parameter , , and , and has
probability density function given by

The hypergeometric model is studied in more detail in the chapter on Finite Sampling Models.

As above, let  be the observed variables in the hypergeometric model with parameters  and . Then

1. The method of moments estimator of  is , the sample mean.
2. The method of moments estimator of  with  known is .
3. The method of moments estimator of  with  known is  if .

Proof

These results all follow simply from the fact that .

In the voter example (3) above, typically  and  are both unknown, but we would only be interested in estimating the ratio 
. In the reliability example (1), we might typically know  and would be interested in estimating . In the wildlife

example (4), we would typically know  and would be interested in estimating . This example is known as the capture-recapture
model.

Clearly there is a close relationship between the hypergeometric model and the Bernoulli trials model above. In fact, if the
sampling is with replacement, the Bernoulli trials model would apply rather than the hypergeometric model. In addition, if the
population size  is large compared to the sample size , the hypergeometric model is well approximated by the Bernoulli trials
model.

This page titled 7.2: The Method of Moments is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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7.3: Maximum Likelihood
           

Basic Theory

The Method

Suppose again that we have an observable random variable  for an experiment, that takes values in a set . Suppose also that
distribution of  depends on an unknown parameter , taking values in a parameter space . Of course, our data variable  will
almost always be vector valued. The parameter  may also be vector valued. We will denote the probability density function of 
on  by  for . The distribution of  could be discrete or continuous.

The likelihood function is the function obtained by reversing the roles of  and  in the probability density function; that is, we
view  as the variable and  as the given information (which is precisely the point of view in estimation).

The likelihood function at  is the function  given by

In the method of maximum likelihood, we try to find the value of the parameter that maximizes the likelihood function for each
value of the data vector.

Suppose that the maximum value of  occurs at  for each . Then the statistic  is a maximum likelihood
estimator of .

The method of maximum likelihood is intuitively appealing—we try to find the value of the parameter that would have most likely
produced the data we in fact observed.

Since the natural logarithm function is strictly increasing on , the maximum value of the likelihood function, if it exists, will
occur at the same points as the maximum value of the logarithm of the likelihood function.

The log-likelihood function at  is the function :

If the maximum value of  occurs at  for each . Then the statistic  is a maximum likelihood
estimator of 

The log-likelihood function is often easier to work with than the likelihood function (typically because the probability density
function  has a product structure).

Vector of Parameters

An important special case is when  is a vector of  real parameters, so that . In this case, the maximum
likelihood problem is to maximize a function of several variables. If  is a continuous set, the methods of calculus can be used. If
the maximum value of  occurs at a point  in the interior of , then  has a local maximum at . Therefore, assuming that the
likelihood function is differentiable, we can find this point by solving

or equivalently

On the other hand, the maximum value may occur at a boundary point of , or may not exist at all.
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Random Samples

The most important special case is when the data variables form a random sample from a distribution.

Suppose that  is a random sample of size  from the distribution of a random variable  taking values
in , with probability density function  for . Then  takes values in , and the likelihood and log-likelihood
functions for  are

Extending the Method and the Invariance Property

Returning to the general setting, suppose now that  is a one-to-one function from the parameter space  onto a set . We can
view  as a new parameter taking values in the space , and it is easy to re-parameterize the probability density function
with the new parameter. Thus, let  for  and . The corresponding likelihood function for  is

Clearly if  maximizes  for . Then  maximizes  for . It follows that if  is a maximum
likelihood estimator for , then  is a maximum likelihood estimator for .

If the function  is not one-to-one, the maximum likelihood function for the new parameter  is not well defined, because
we cannot parameterize the probability density function in terms of . However, there is a natural generalization of the method.

Suppose that , and let  denote the new parameter. Define the likelihood function for  at  by

If  maximizes  for each , then  is a maximum likelihood estimator of .

This definition extends the maximum likelihood method to cases where the probability density function is not completely
parameterized by the parameter of interest. The following theorem is known as the invariance property: if we can solve the
maximum likelihood problem for  then we can solve the maximum likelihood problem for .

In the setting of the previous theorem, if  is a maximum likelihood estimator of , then  is a maximum likelihood
estimator of .

Proof

As before, if  maximizes  for . Then  maximizes  for .

Examples and Special Cases
In the following subsections, we will study maximum likelihood estimation for a number of special parametric families of
distributions. Recall that if  is a random sample from a distribution with mean  and variance , then the
method of moments estimators of  and  are, respectively,

Of course,  is the sample mean, and  is the biased version of the sample variance. These statistics will also sometimes occur
as maximum likelihood estimators. Another statistic that will occur in some of the examples below is

X = ( , ,… , )X

1

X

2

X

n

n X

R g

θ

θ ∈ Θ X S =R

n

x = ( , ,… , ) ∈ Sx

1

x

2

x

n

(θ)L

x

ln (θ)L

x

= ( ), θ ∈ Θ∏

i=1

n

g

θ

x

i

= ln ( ), θ ∈ Θ∑

i=1

n

g

θ

x

i

h Θ Λ

λ = h(θ) Λ

(x) = (x)f

^

λ

f

(λ)h

−1 x ∈ S λ ∈ Λ x ∈ S

(λ) = [ (λ)] , λ ∈ ΛL

^

x

L

x

h

−1

(7.3.5)

u(x) ∈ Θ L

x

x ∈ S h [u(x)] ∈ Λ L

^

x

x ∈ S U

θ V = h(U) λ = h(θ)

h λ = h(θ)

λ

h : Θ→Λ λ = h(θ) λ x ∈ S

(λ) =max{ (θ) : θ ∈ {λ}} ; λ ∈ ΛL

^

x

L

x

h

−1

(7.3.6)

v(x) ∈ Λ L

^

x

x ∈ S V = v(X) λ

θ λ = h(θ)

U θ V = h(U)

λ

u(x) ∈ Θ L

x

x ∈ S h [u(x)] ∈ Λ L

^

x

x ∈ S

X = ( , ,… , )X

1

X

2

X

n

μ σ

2

μ σ

2

M

T

2

=

1

n

∑

i=1

n

X

i

= ( −M

1

n

∑

i=1

n

X

i

)

2

(7.3.7)

(7.3.8)

M T

2

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10191?pdf


7.3.3 https://stats.libretexts.org/@go/page/10191

the second-order sample mean. As always, be sure to try the derivations yourself before looking at the solutions.

The Bernoulli Distribution

Suppose that  is a random sample of size  from the Bernoulli distribution with success parameter 
. Recall that the Bernoulli probability density function is

Thus,  is a sequence of independent indicator variables with  for each . In the usual language of reliability,  is
the outcome of trial , where 1 means success and 0 means failure. Let  denote the number of successes, so that the
proportion of successes (the sample mean) is . Recall that  has the binomial distribution with parameters  and .

The sample mean  is the maximum likelihood estimator of  on the parameter space .

Proof

Note that  for  Hence the log-likelihood function at 
 is

Differentiating with respect to  and simplifying gives

where . Thus, there is a single critical point at . The second deriviative is

Hence the log-likelihood function is concave downward and so the maximum occurs at the unique critical point .

Recall that  is also the method of moments estimator of . It's always nice when two different estimation procedures yield the
same result. Next let's look at the same problem, but with a much restricted parameter space.

Suppose now that  takes values in . Then the maximum likelihood estimator of  is the statistic

1. 

2.  is positively biased, but is asymptotically unbiased.

3. 

4.  is consistent.

Proof

Note that the likelihood function at  is  for  where as
usual, . Thus . On the other hand,  if  while  if . Thus, if 

 the maximum occurs when  while if  the maximum occurs when .

1. If  then , so trivially . If ,

=M

2

1

n

∑

i=1

n

X

2

i

(7.3.9)

X = ( , ,… , )X

1

X

2

X

n

n

p ∈ [0, 1]

g(x) = (1−p , x ∈ {0, 1}p

x

)

1−x

(7.3.10)

X P( = 1) = pX

i

i X

i

i Y =∑

n

i=1

X

i

M = Y /n Y n p

M p (0, 1)

lng(x) = x lnp+(1−x) ln(1−p) x ∈ {0, 1}

x = ( , ,… , ) ∈ {0, 1x

1

x

2

x

n

}

n

ln (p) = [ lnp+(1− ) ln(1−p)], p ∈ (0, 1)L

x

∑

i=1

n

x

i

x

i

(7.3.11)

p

ln (p) = −

d

dp

L

x

y

p

n−y

1−p

(7.3.12)

y =∑

n

i=1

x

i

p = y/n=m

ln (p) =− − < 0

d

2

dp

2

L

x

y

p

2

n−1

(1−p)

2

(7.3.13)

m

M p

p { , 1}

1

2

p

U ={

1,

,

1

2

Y = n

Y < n

(7.3.14)

E(U) ={

1,

+ ,

1

2

( )

1

2

n+1

p = 1

p =

1

2

U

mse(U) ={

0

,( )

1

2

n+2

p = 1

p =

1

2

U

x = ( , ,… , ) ∈ {0, 1x

1

x

2

x

n

}

n

(p) = (1−pL

x

p

y

)

n−y

p ∈ { , 1}

1

2

y =∑

n

i=1

x

i

( )=L

x

1

2

( )

1

2

y

(1) = 0L

x

y < n (1) = 1L

x

y = n

y = n p = 1 y < n p =

1

2

p = 1 P(U = 1) = P(Y = n) = 1 E(U) = 1 p =

1

2

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10191?pdf


7.3.4 https://stats.libretexts.org/@go/page/10191

2. Note that  and  as  both in the case that  and .
3. If  then  with probability 1, so trivially . If ,

4. From (c),  as .

Note that the Bernoulli distribution in the last exercise would model a coin that is either fair or two-headed. The last two exercises
show that the maximum likelihood estimator of a parameter, like the solution to any maximization problem, depends critically on
the domain.

 is uniformly better than  on the parameter space .

Proof

Recall that . If  then  so that both estimators give the

correct answer. If , .

Suppose that  is a random sample of size  from the Bernoulli distribution with unknown success
parameter . Find the maximum likelihood estimator of , which is the variance of the sampling distribution.

Answer

By the invariance principle, the estimator is  where  is the sample mean.

The Geometric Distribution

Recall that the geometric distribution on  with success parameter  has probability density function

The geometric distribution governs the trial number of the first success in a sequence of Bernoulli trials.

Suppose that  is a random sample from the geometric distribution with unknown parameter .
The maximum likelihood estimator of  is .

Proof

Note that  for . Hence the log-likelihood function corresponding to the data 
 is

where . So

The derivative is 0 when . Finally,  so the maximum occurs

at the critical point.

Recall that  is also the method of moments estimator of . It's always reassuring when two different estimation procedures
produce the same estimator.

The Negative Binomial Distribution

More generally, the negative binomial distribution on  with shape parameter  and success parameter  has
probability density function
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If  is a positive integer, then this distribution governs the number of failures before the th success in a sequence of Bernoulli
trials with success parameter . However, the distribution makes sense for general . The negative binomial distribution
is studied in more detail in the chapter on Bernoulli Trials.

Suppose that  is a random sample of size  from the negative binomial distribution on  with known
shape parameter  and unknown success parameter . The maximum likelihood estimator of  is

Proof

Note that  for . Hence the log-likelihood function corresponding to 
 is

where  and . Hence

The derivative is 0 when  where as usual, . Finally, 

, so the maximum occurs at the critical point.

Once again, this is the same as the method of moments estimator of  with  known.

The Poisson Distribution

Recall that the Poisson distribution with parameter  has probability density function

The Poisson distribution is named for Simeon Poisson and is widely used to model the number of random “points” in a region of
time or space. The parameter  is proportional to the size of the region. The Poisson distribution is studied in more detail in the
chapter on the Poisson process.

Suppose that  is a random sample from the Poisson distribution with unknown parameter .
The maximum likelihood estimator of  is the sample mean .

Proof

Note that  for . Hence the log-likelihood function corresponding to 
 is

where  and . Hence . The derivative is 0 when .

Finally, , so the maximum occurs at the critical point.

Recall that for the Poisson distribution, the parameter  is both the mean and the variance. Thus  is also the method of moments
estimator of . We showed in the introductory section that  has smaller mean square error than , although both are unbiased.

Suppose that  is a random sample from the Poisson distribution with parameter , and let 
. Find the maximum likelihood estimator of  in two ways:

1. Directly, by finding the likelihood function corresponding to the parameter .
2. By using the result of the last exercise and the invariance property.
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Answer

 where  is the sample mean.

The Normal Distribution

Recall that the normal distribution with mean  and variance  has probability density function

The normal distribution is often used to model physical quantities subject to small, random errors, and is studied in more detail in
the chapter on Special Distributions

Suppose that  is a random sample from the normal distribution with unknown mean  and
variance . The maximum likelihood estimators of  and  are  and , respectively.

Proof

Note that

Hence the log-likelihood function corresponding to the data  is

Taking partial derivatives gives

The partial derivatives are 0 when  and . Hence the unique critical point is .
Finally, with a bit more calculus, the second partial derivatives evaluated at the critical point are

Hence the second derivative matrix at the critical point is negative definite and so the maximum occurs at the critical point.

Of course,  and  are also the method of moments estimators of  and , respectively.

Run the Normal estimation experiment 1000 times for several values of the sample size , the mean , and the variance .
For the parameter , compare the maximum likelihood estimator  with the standard sample variance . Which estimator
seems to work better in terms of mean square error?

Suppose again that  is a random sample from the normal distribution with unknown mean  and
unknown variance . Find the maximum likelihood estimator of , which is the second moment about 0 for
the sampling distribution.

Answer

By the invariance principle, the estimator is  where  is the sample mean and  is the (biased version of the)
sample variance.
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The Gamma Distribution

Recall that the gamma distribution with shape parameter  and scale parameter  has probability density function

The gamma distribution is often used to model random times and certain other types of positive random variables, and is studied in
more detail in the chapter on Special Distributions

Suppose that  is a random sample from the gamma distribution with known shape parameter  and
unknown scale parameter . The maximum likelihood estimator of  is .

Proof

Note that for ,

and hence the log-likelihood function corresponding to the data  is

where  and . It follows that

The derivative is 0 when . Finally, . At the critical point , the

second derivative is  so the maximum occurs at the critical point.

Recall that  is also the method of moments estimator of  when  is known. But when  is unknown, the method of moments
estimator of  is .

Run the gamma estimation experiment 1000 times for several values of the sample size , shape parameter , and scale
parameter . In each case, compare the method of moments estimator  of  when  is unknown with the method of moments
and maximum likelihood estimator  of  when  is known. Which estimator seems to work better in terms of mean square
error?

The Beta Distribution

Recall that the beta distribution with left parameter  and right parameter  has probability density function

The beta distribution is often used to model random proportions and other random variables that take values in bounded intervals. It
is studied in more detail in the chapter on Special Distribution

Suppose that  is a random sample from the beta distribution with unknown left parameter 
and right parameter . The maximum likelihood estimator of  is

Proof

Note that  for  Hence the log-likelihood function corresponding to the data 
 is
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Therefore . The derivative is 0 when . Finally, 

, so the maximum occurs at the critical point.

Recall that when , the method of moments estimator of  is , but when  is also unknown, the
method of moments estimator of  is . When , which estimator is better, the method of
moments estimator or the maximum likelihood estimator?

In the beta estimation experiment, set . Run the experiment 1000 times for several values of the sample size  and the
parameter . In each case, compare the estimators ,  and . Which estimator seems to work better in terms of mean
square error?

Finally, note that  is the sample mean for a random sample of size  from the distribution of . This distribution is the
exponential distribution with rate .

The Pareto Distribution

Recall that the Pareto distribution with shape parameter  and scale parameter  has probability density function

The Pareto distribution, named for Vilfredo Pareto, is a heavy-tailed distribution often used to model income and certain other
types of random variables. It is studied in more detail in the chapter on Special Distribution.

Suppose that  is a random sample from the Pareto distribution with unknown shape parameter 
 and scale parameter . The maximum likelihood estimator of  is , the

first order statistic. The maximum likelihood estimator of  is

Proof

Note that  for . Hence the log-likelihood function corresponding to the data 
 is

Equivalently, the domain is  and . Note that  is increasing in  for each , and hence is
maximized when  for each . Next,

The derivative is 0 when . Finally, , so the maximum
occurs at the critical point.

Recall that if , the method of moments estimators of  and  are

Open the the Pareto estimation experiment. Run the experiment 1000 times for several values of the sample size  and the
parameters  and . Compare the method of moments and maximum likelihood estimators. Which estimators seem to work
better in terms of bias and mean square error?

Often the scale parameter in the Pareto distribution is known.
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Suppose that  is a random sample from the Pareto distribution with unknown shape parameter 
 and known scale parameter . The maximum likelihood estimator of  is

Proof

Modifying the previous proof, the log-likelihood function corresponding to the data  is

The derivative is

The derivative is 0 when . Finally, , so the maximum occurs at the
critical point.

Uniform Distributions

In this section we will study estimation problems related to the uniform distribution that are a good source of insight and
counterexamples. In a sense, our first estimation problem is the continuous analogue of an estimation problem studied in the
section on Order Statistics in the chapter Finite Sampling Models. Suppose that  is a random sample from
the uniform distribution on the interval , where  is an unknown parameter. Thus, the sampling distribution has
probability density function

First let's review results from the last section.

The method of moments estimator of  is . The estimator  satisfies the following properties:

1.  is unbiased.
2.  so  is consistent.

Now let's find the maximum likelihood estimator

The maximum likelihood estimator of  is , the th order statistic. The estimator 
satisfies the following properties:

1. 
2.  so that  is negatively biased but asymptotically unbiased.
3. 

4.  so that  is consistent.

Proof

The likelihood function corresponding to the data  is  for  for each 
. The domain is equivalent to . The function  is decreasing, and so the maximum occurs at

the smallest value, namely . Parts (a) and (c) are restatements of results from the section on order statistics. Parts (b) and
(d) follow from (a) and (c).

Since the expected value of  is a known multiple of the parameter , we can easily construct an unbiased estimator.

Let . The estimator  satisfies the following properties:
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1.  is unbiased.
2.  so that  is consistent.

3. The asymptotic relative efficiency of  to  is infinite.

Proof

Parts (a) and (b) follow from the previous result and basic properties of the expected value and variance. For part (c),

The last part shows that the unbiased version  of the maximum likelihood estimator is a much better estimator than the method of
moments estimator . In fact, an estimator such as , whose mean square error decreases on the order of , is called super
efficient. Now, having found a really good estimator, let's see if we can find a really bad one. A natural candidate is an estimator
based on , the first order statistic. The next result will make the computations very easy.

The sample  satisfies the following properties:

1.  is uniformly distributed on  for each .
2.  is also a random sample from the uniform distribution on .
3.  has the same distribution as .

Proof
1. This is a simple consequence of the fact that uniform distributions are preserved under linear transformations on the

random variable.
2. This follows from (a) and that the fact that if  is a sequence of independent variables, then so is 

.
3. From part (b),  has the same distribution as 

.

Now we can construct our really bad estimator.

Let . Then

1.  is an unbiased estimator of .
2. , so  is not even consistent.

Proof

These results follow from the ones above:

1.  and hence .
2. .

Run the uniform estimation experiment 1000 times for several values of the sample size  and the parameter . In each case,
compare the empirical bias and mean square error of the estimators with their theoretical values. Rank the estimators in terms
of empirical mean square error.

Our next series of exercises will show that the maximum likelihood estimator is not necessarily unique. Suppose that 
 is a random sample from the uniform distribution on the interval , where  is an unknown

parameter. Thus, the sampling distribution has probability density function

As usual, let's first review the method of moments estimator.

The method of moments estimator of  is . The estimator  satisfies the following properties:

1.  is unbiased.
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2.  so  is consistent.

However, as promised, there is not a unique maximum likelihood estimatr.

Any statistic  is a maximum likelihood estimator of .

Proof

The likelihood function corresponding to the data  is  for  and 
. The domain is equivalent to  and . Since the likelihood function is constant on this

domain, the result follows.

For completeness, let's consider the full estimation problem. Suppose that  is a random sample of size 
from the uniform distribution on  where  and  are both unknown. Here's the result from the last section:

Let  and  denote the method of moments estimators of  and , respectively. Then

where  is the sample mean, and  is the biased version of the sample variance.

It should come as no surprise at this point that the maximum likelihood estimators are functions of the largest and smallest order
statistics.

The maximum likelihood estimators or  and  are  and , respectively.

1.  so  is positively biased and asymptotically unbiased.
2.  so  is negatively biased and asymptotically unbiased.
3.  so  is consistent.

4.  so  is consistent.

Proof

The likelihood function corresponding to the data  is  for  and 
. The domain is equivalent to  and . Since the likelihood function depends only on  in

this domain and is decreasing, the maximum occurs when  and . Parts (a)–(d) follow from standard
results for the order statistics from the uniform distribution.

The Hypergeometric Model

In all of our previous examples, the sequence of observed random variables  is a random sample from a
distribution. However, maximum likelihood is a very general method that does not require the observation variables to be
independent or identically distributed. In the hypergeometric model, we have a population of  objects with  of the objects type 1
and the remaining  objects type 0. The population size , is a positive integer. The type 1 size , is a nonnegative integer
with . These are the basic parameters, and typically one or both is unknown. Here are some typical examples:

1. The objects are devices, classified as good or defective.
2. The objects are persons, classified as female or male.
3. The objects are voters, classified as for or against a particular candidate.
4. The objects are wildlife or a particular type, either tagged or untagged.

We sample  objects from the population at random, without replacement. Let  be the type of the th object selected, so that our
sequence of observed variables is . The variables are identically distributed indicator variables, with 

 for each , but are dependent since the sampling is without replacement. The number of type 1
objects in the sample is . This statistic has the hypergeometric distribution with parameter , , and , and has
probability density function given by
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Recall the falling power notation:  for  and . The hypergeometric model is studied in
more detail in the chapter on Finite Sampling Models.

As above, let  be the observed variables in the hypergeometric model with parameters  and . Then

1. The maximum likelihood estimator of  with  known is .
2. The maximum likelihood estimator of  with  known is  if .

Proof

By a simple application of the multiplication rule, the PDF  of  is

where .

1. With  known, the likelihood function corresponding to the data  is

After some algebra,  if and only if  if and only if 
. So the maximum of  occurs when .

2. Similarly, with  known, the likelihood function corresponding to the data  is

After some algebra,  if and only if  if and only if 
 (assuming ). So the maximum of  occurs when .

In the reliability example (1), we might typically know  and would be interested in estimating . In the wildlife example (4), we
would typically know  and would be interested in estimating . This example is known as the capture-recapture model.

Clearly there is a close relationship between the hypergeometric model and the Bernoulli trials model above. In fact, if the
sampling is with replacement, the Bernoulli trials model with  would apply rather than the hypergeometric model. In
addition, if the population size  is large compared to the sample size , the hypergeometric model is well approximated by the
Bernoulli trials model, again with .

This page titled 7.3: Maximum Likelihood is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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7.4: Bayesian Estimation
           

Basic Theory

The General Method

Suppose again that we have an observable random variable  for an experiment, that takes values in a set . Suppose also that
distribution of  depends on a parameter  taking values in a parameter space . Of course, our data variable  is almost always
vector-valued, so that typically  for some . Depending on the nature of the sample space , the distribution of 
may be discrete or continuous. The parameter  may also be vector-valued, so that typically  for some .

In Bayesian analysis, named for the famous Thomas Bayes, we model the deterministic, but unknown parameter  with a random
variable  that has a specified distribution on the parameter space . Depending on the nature of the parameter space, this
distribution may also be either discrete or continuous. It is called the prior distribution of  and is intended to reflect our
knowledge of the parameter , before we gather data. After observing , we then use Bayes' theorem, to compute the
conditional distribution of  given . This distribution is called the posterior distribution of , and is an updated
distribution, given the information in the data. Here is the mathematical description, stated in terms of probability density
functions.

Suppose that the prior distribution of  on  has probability density function , and that given , the conditional
probability density function of  on  is . Then the probability density function of the posterior distribution of 
given  is

where the function in the denominator is defined as follows, in the discrete and continuous cases, respectively:

Proof

This is just Bayes' theorem with new terminology. Recall that he joint probability density function of  is the mapping
on  given by

Then the function in the denominator is the marginal probability density function of . So by definition, 
 for  is the conditional probability density function of  given .

For , note that  is simply the normalizing constant for the function . It may not be necessary to
explicitly compute , if one can recognize the functional form of  as that of a known distribution. This will
indeed be the case in several of the examples explored below.

If the parameter space  has finite measure  (counting measure in the discrete case or Lebesgue measure in the continuous case),
then one possible prior distribution is the uniform distribution on , with probability density function  for . This
distribution reflects no prior knowledge about the parameter, and so is called the non-informative prior distributioon.

Random Samples

Of course, an important and essential special case occurs when  is a random sample of size  from the
distribution of a basic variable . Specifically, suppose that  takes values in a set  and has probability density function 
for a given . In this case,  and the probability density function  of  given  is

X S

X θ T X

S ⊆R

n

n ∈ N

+

S X

θ T ⊆R

k

k ∈ N

+

θ

Θ T

Θ

θ X = x ∈ S

Θ X = x Θ

Θ T h Θ= θ ∈ T

X S f(⋅ ∣ θ) Θ

X = x ∈ S

h(θ ∣ x) = , θ ∈ T

h(θ)f(x ∣ θ)

f(x)
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Real Parameters

Suppose that  is a real-valued parameter, so that . Here is our main definition.

The conditional expected value  is the Bayesian estimator of .

1. If  has a discrete distribution on  then

2. If  has a continuous distribution on  then

Recall that  is a function of  and, among all functions of , is closest to  in the mean square sense. Of course, once
we collect the data and observe , the Bayesian estimate of  is . As always, the term estimator refers to a
random variable, before the data are collected, and the term estimate refers to an observed value of the random variable after the
data are collected. The definitions of bias and mean square error are as before, but now conditioned on .

Suppose that  is the Bayes estimator of .

1. The bias of  is  for .
2. The mean square error of  is  for .

As before,  and . Suppose now that we observe the random
variables  sequentially, and we compute the Bayes estimator  of  based on  for each 

. Again, the most common case is when we are sampling from a distribution, so that the sequence is independent and
identically distributed (given ). We have the natural asymptotic properties that we have seen before.

Let  be the sequence of Bayes estimators of  as above.

1.  is asymptotically unbiased if  as  for each .
2.  is mean-square consistent if  as  for each .

Often we cannot construct unbiased Bayesian estimators, but we do hope that our estimators are at least asymptotically unbiased
and consistent. It turns out that the sequence of Bayesian estimators  is a martingale. The theory of martingales provides some
powerful tools for studying these estimators.

From the Bayesian perspective, the posterior distribution of  given the data  is of primary importance. Point estimates of 
derived from this distribution are of secondary importance. In particular, the mean square error function 

, minimized as we have noted at , is not the only loss function that can be used.
(Although it's the only one that we consider.) Another possible loss function, among many, is the mean absolute error function 

, which we know is minimized at the median(s) of the posterior distribution.

Conjugate Families

Often, the prior distribution of  is itself a member of a parametric family, with the parameters specified to reflect our prior
knowledge of . In many important special cases, the parametric family can be chosen so that the posterior distribution of  given 

 belongs to the same family for each . In such a case, the family of distributions of  is said to be conjugate to the
family of distributions of . Conjugate families are nice from a computational point of view, since we can often compute the
posterior distribution through a simple formula involving the parameters of the family, without having to use Bayes' theorem
directly. Similarly, in the case that the parameter is real valued, we can often compute the Bayesian estimator through a simple
formula involving the parameters of the conjugate family.

Special Distributions

θ T ⊆R

E(Θ ∣X) θ

Θ T

E(Θ ∣X = x) = θh(θ ∣ x), x ∈ S∑

θ∈T
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Θ T

E(Θ ∣X = x) = θh(θ ∣ x)dθ, x ∈ S∫

T
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The Bernoulli Distribution

Suppose that  is sequence of independent variables, each having the Bernoulli distribution with unknown
success parameter . In short,  is a sequence of Bernoulli trials, given . In the usual language of reliability, 
means success on trial  and  means failure on trial . Recall that given , the Bernoulli distribution has probability density
function

Note that the number of successes in the first  trials is . Given , random variable  has the binomial distribution
with parameters  and .

Suppose now that we model  with a random variable  that has a prior beta distribution with left parameter  and right
parameter , where  and  are chosen to reflect our initial information about . So  has probability density function

and has mean . For example, if we know nothing about , we might let , so that the prior distribution is
uniform on the parameter space  (the non-informative prior). On the other hand, if we believe that  is about , we might let 

 and , so that the prior distribution is unimodal, with mean . As a random process, the sequence  with  randomized
by , is known as the beta-Bernoulli process, and is very interesting on its own, outside of the context of Bayesian estimation.

For , the posterior distribution of  given  is beta with left parameter  and right
parameter .

Proof

Fix . Let , and let . Then

Hence

As a function of  this expression is proportional to the beta PDF with parameters , . Note that it's not
necessary to compute the normalizing factor .

Thus, the beta distribution is conjugate to the Bernoulli distribution. Note also that the posterior distribution depends on the data
vector  only through the number of successes . This is true because  is a sufficient statistic for . In particular, note that the
left beta parameter is increased by the number of successes  and the right beta parameter is increased by the number of failures 

.

The Bayesian estimator of  given  is

Proof

Recall that the mean of the beta distribution is the left parameter divided by the sum of the parameters, so this result follows
from the previous result.

In the beta coin experiment, set  and , and set  and . Run the simulation 100 times and note the
estimate of  and the shape and location of the posterior probability density function of  on each run.

Next let's compute the bias and mean-square error functions.

For ,

X = ( , ,…)X
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i = 0X
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i p
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The sequence  is asymptotically unbiased.

Proof

Given ,  has the binomial distribution with parameters  and  so . Hence

Simplifying gives the formula above. Clearly  as .

Note also that we cannot choose  and  to make  unbiased, since such a choice would involve the true value of , which we do
not know.

In the beta coin experiment, vary the parameters and note the change in the bias. Now set  and , and set 
and . Run the simulation 1000 times. Note the estimate of  and the shape and location of the posterior probability
density function of  on each update. Compare the empirical bias to the true bias.

For ,

The sequence  is mean-square consistent.

Proof

Once again, given ,  has the binomail distribution with parameters  and  so

Hence

Simplifying gives the result. Clearly  as .

In the beta coin experiment, vary the parameters and note the change in the mean square error. Now set  and ,
and set . Run the simulation 1000 times. Note the estimate of  and the shape and location of the posterior
probability density function of  on each update. Compare the empirical mean square error to the true mean square error.

Interestingly, we can choose  and  so that  has mean square error that is independent of the unknown parameter :

Let  and let . Then

In the beta coin experiment, set  and . Vary  and note that the mean square error does not change. Now set 
 and run the simulation 1000 times. Note the estimate of  and the shape and location of the posterior probability

density function on each update. Compare the empirical bias and mean square error to the true values.

Recall that the method of moments estimator and the maximum likelihood estimator of  (on the interval ) is the sample mean
(the proportion of successes):

bias( ∣ p) = , p ∈ (0, 1)U

n
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This estimator has mean square error . To see the connection between the estimators, note from (6) that

So  is a weighted average of  (the mean of the prior distribution) and  (the maximum likelihood estimator).

Another Bernoulli Distribution

Bayesian estimation, like other forms of parametric estimation, depends critically on the parameter space. Suppose again that 
 is a sequence of Bernoulli trials, given the unknown success parameter , but suppose now that the parameter space

is . This setup corresponds to the tossing of a coin that is either fair or two-headed, but we don't know which. We model 
with a random variable  that has the prior probability density function  given by , , where  is
chosen to reflect our prior knowledge of the probability that the coin is two-headed. If we are completely ignorant, we might let 

 (the non-informative prior). If with think the coin is more likely to be two-headed, we might let . Again let 
 for .

The posterior distribution of  given  is

1.  if  and  if 

2.  if  and  if 

Proof

Fix . Let , and let . As before,

We adopt the usual conventions (which gives the correct mathematics) that  if  but . So from Bayes'
theorem,

So if  then  while if 

Of course, . The results now follow after a bit of algebra.

Now let

The Bayes' estimator of  given  the statistic  defined by

1.  if 
2.  if 

Proof

By definition, the Bayes' estimator is . From the previous result, if  then
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which simplifies to . If  then .

If we observe  then  gives the correct answer . This certainly makes sense since we know that we do not have the two-
headed coin. On the other hand, if we observe  then we are not certain which coin we have, and the Bayesian estimate  is
not even in the parameter space! But note that  as  exponentially fast. Next let's compute the bias and mean-square
error for a given .

For ,

1. 
2. 

The sequence of estimators  is asymptotically unbiased.

Proof

By definition, . Hence from the previous result,

Substituting  and  gives the results. In both cases,  as  since  and  as 
.

If , the estimator  is negatively biased; we noted this earlier. If , then  is positively biased for sufficiently large 
(depending on ).

For ,

1. 
2. 

The sequence of estimators  is mean-square consistent.

Proof

By definition, . Hence

Substituting  and  gives the results. In both cases,  as  since  and  as 
.

The Geometric distribution

Suppose that  is a sequence of independent random variables, each having the geometric distribution on 
with unknown success parameter . Recall that these variables can be interpreted as the number of trials between
successive successes in a sequence of Bernoulli trials. Given , the geometric distribution has probability density function

Once again for , let . In this setting,  is the trial number of the th success, and given , has the negative
binomial distribution with parameters  and .

Suppose now that we model  with a random variable  having a prior beta distribution with left parameter  and right
parameter . As usual,  and  are chosen to reflect our prior knowledge of .
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The posterior distribution of  given  is beta with left parameter  and right parameter 
.

Proof

Fix . Let  and let . Then

Hence

As a function of  this expression is proportional to the beta PDF with parameters  and . Note that it's
not necessary to compute the normalizing constant .

Thus, the beta distribution is conjugate to the geometric distribution. Moreover, note that in the posterior beta distribution, the left
parameter is increased by the number of successes  while the right parameter is increased by the number of failures , just as
in the Bernoulli model. In particular, the posterior left parameter is deterministic and depends on the data only through the sample
size .

The Bayesian estimator of  based on is

Proof

By definition, the Bayesian estimator is the mean of the posterior distribution. Recall again that the mean of the beta
distribution is the left parameter divided by the sum of the parameters, so the result follows from our previous theorem.

Recall that the method of moments estimator of , and the maximum likelihood estimator of  on the interval  are both 
. To see the connection between the estimators, note from (19) that

So  (the reciprocal of the Bayesian estimator) is a weighted average of  (the reciprocal of the mean of the prior
distribution) and  (the reciprocal of the maximum likelihood estimator).

The Poisson Distribution

Suppose that  is a sequence of random variable each having the Poisson distribution with unknown parameter 
. Recall that the Poisson distribution is often used to model the number of “random points” in a region of time or space

and is studied in more detail in the chapter on the Poisson Process. The distribution is named for the inimitable Simeon Poisson and
given , has probability density function

Once again, for , let . Given , random variable  also has a Poisson distribution, but with parameter .

Suppose now that we model  with a random variable  having a prior gamma distribution with shape parameter  and
rate parameter . As usual  and  are chosen to reflect our prior knowledge of . Thus the prior probability density
function of  is

and the mean is . The scale parameter of the gamma distribution is , but the formulas will work out nicer if we use the
rate parameter.
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The posterior distribution of  given  is gamma with shape parameter  and rate parameter 
.

Proof

Fix . Let  and . Then

Hence

As a function of  the last expression is proportional to the gamma PDF with shape parameter  and rate
parameter . Note again that it's not necessary to compute the normalizing constant .

It follows that the gamma distribution is conjugate to the Poisson distribution. Note that the posterior rate parameter is
deterministic and depends on the data only through the sample size .

The Bayesian estimator of  based on  is

Proof

By definition, the Bayes estimator is the mean of the posterior distribution. Recall that mean of the gamma distribution is the
shape parameter divided by the rate parameter.

Since  is a linear function of , and we know the distribution of  given , we can compute the bias and mean-
square error functions.

For ,

The sequence of estimators  is asymptotically unbiased.

Proof

The computation is simple, since the distribution of  given  is Poisson with parameter .

Clearly  as .

Note that, as before, we cannot choose  and  to make  unbiased, without knowledge of .

For ,

The sequence of estimators  is mean-square consistent.

Proof

Again, the computation is easy since the distribution of  given  is Poisson with parameter .
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Clearly  as .

Recall that the method of moments estimator of  and the maximum likelihood estimator of  on the interval  are both 
, the sample mean. This estimator is unbiased and has mean square error . To see the connection between the

estimators, note from (21) that

So  is a weighted average of  (the mean of the prior distribution) and  (the maximum likelihood estimator).

The Normal Distribution

Suppose that  is a sequence of independent random variables, each having the normal distribution with
unknown mean  but known variance . Of course, the normal distribution plays an especially important role in
statistics, in part because of the central limit theorem. The normal distribution is widely used to model physical quantities subject to
numerous small, random errors. In many statistical applications, the variance of the normal distribution is more stable than the
mean, so the assumption that the variance is known is not entirely artificial. Recall that the normal probability density function
(given ) is

Again, for  let . Recall that  also has a normal distribution (given ) but with mean  and variance 
.

Suppose now that  is modeled by a random variable  that has a prior normal distribution with mean  and variance 
. As usual,  and  are chosen to reflect our prior knowledge of . An interesting special case is when we take ,

so the variance of the prior distribution of  is the same as the variance of the underlying sampling distribution.

For , the posterior distribution of  given  is normal with mean and variance given by

Proof

Fix . Suppose  and let  and . Then

On the other hand, of course

Therefore,
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where  depends on , , , , , but importantly not on . So we don't really care what  is. Completing the square in  in
the expression above gives

where  is yet another factor that depends on lots of stuff, but not . As a function of , this expression is proportional to the
normal distribution with mean and variance, respectively, given by

Once again, it was not necessary to compute the normalizing constant , which would have been yet another factor that we
do not care about.

Therefore, the normal distribution is conjugate to the normal distribution with unknown mean and known variance. Note that the
posterior variance is deterministic, and depends on the data only through the sample size . In the special case that , the
posterior distribution of  given  is normal with mean  and variance .

The Bayesian estimator of  is

Proof

This follows immediately from the previous result.

Note that  in the special case that .

For ,

The sequence of estimators  is asymptotically unbiased.

Proof

Recall that  has mean  given . Hence

Clearly  as  for every .

When , .

For ,

The sequence of estimators  is mean-square consistent.

Proof

Recall that  as variance . Hence
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Clearly  as  for every .

When , . Recall that the method of moments estimator of  and the maximum
likelihood estimator of  on  are both , the sample mean. This estimator is unbiased and has mean square error 

. To see the connection between the estimators, note from (25) that

So  is a weighted average of  (the mean of the prior distribution) and  (the maximum likelihood estimator).

The Beta Distribution

Suppose that  is a sequence of independent random variables each having the beta distribution with unknown
left shape parameter  and right shape parameter . The beta distribution is widely used to model random
proportions and probabilities and other variables that take values in bounded intervals (scaled to take values in ). Recall that
the probability density function (given ) is

Suppose now that  is modeled by a random variable  that has a prior gamma distribution with shape parameter  and
rate parameter . As usual,  and  are chosen to reflect our prior knowledge of . Thus the prior probabiltiy density
function of  is

The mean of the prior distribution is .

The posterior distribution of  given  is gamma, with shape parameter  and rate parameter 
.

Proof

Fix . Let  and let  Then

Hence

As a function of  this expression is proportional to the gamma PDF with shape parameter  and scale
parameter . Once again, it's not necessary to compute the normalizing constant .

Thus, the gamma distribution is conjugate to the beta distribution with unknown left parameter and right parameter 1. Note that the
posterior shape parameter is deterministic and depends on the data only through the sample size .

The Bayesian estimator of  based on  is

Proof

The mean of the gamma distribution is the shape parameter divided by the rate parameter, so this follows from the previous
theorem.
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Given the complicated structure, the bias and mean square error of  given  would be difficult to compute explicitly.
Recall that the maximum likelihood estimator of  is . To see the connection between the estimators,
note from (29) that

So  (the reciprocal of the Bayesian estimator) is a weighted average of  (the reciprocal of the mean of the prior
distribution) and  (the reciprocal of the maximum likelihood estimator).

The Pareto Distribution

Suppose that  is a sequence of independent random variables each having the Pareto distribution with unknown
shape parameter  and scale parameter . The Pareto distribution is used to model certain financial variables and
other variables with heavy-tailed distributions, and is named for Vilfredo Pareto. Recall that the probability density function (given 

) is

Suppose now that  is modeled by a random variable  that has a prior gamma distribution with shape parameter  and
rate parameter . As usual,  and  are chosen to reflect our prior knowledge of . Thus the prior probabiltiy density
function of  is

For , the posterior distribution of  given  is gamma, with shape parameter  and rate
parameter .

Proof

Fix . Let  and let  Then

Hence

As a function of  this expression is proportional to the gamma PDF with shape parameter  and scale
parameter . Once again, it's not necessary to compute the normalizing constant .

Thus, the gamma distribution is conjugate to Pareto distribution with unknown shape parameter. Note that the posterior shape
parameter is deterministic and depends on the data only through the sample size .

The Bayesian estimator of  based on  is

Proof

Once again, the mean of the gamma distribution is the shape parameter divided by the rate parameter, so this follows from the
previous theorem.

Given the complicated structure, the bias and mean square error of  given  would be difficult to compute explicitly.
Recall that the maximum likelihood estimator of  is . To see the connection between the estimators,
note from (31) that
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So  (the reciprocal of the Bayesian estimator) is a weighted average of  (the reciprocal of the mean of the prior
distribution) and  (the maximum likelihood estimator).

This page titled 7.4: Bayesian Estimation is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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7.5: Best Unbiased Estimators
           

Basic Theory

Consider again the basic statistical model, in which we have a random experiment that results in an observable random variable 
taking values in a set . Once again, the experiment is typically to sample  objects from a population and record one or more
measurements for each item. In this case, the observable random variable has the form

where  is the vector of measurements for the th item.

Suppose that  is a real parameter of the distribution of , taking values in a parameter space . Let  denote the probability
density function of  for . Note that the expected value, variance, and covariance operators also depend on , although we
will sometimes suppress this to keep the notation from becoming too unwieldy.

Definitions

Suppose now that  is a parameter of interest that is derived from . (Of course,  might be  itself, but more generally
might be a function of .) In this section we will consider the general problem of finding the best estimator of  among a given
class of unbiased estimators. Recall that if  is an unbiased estimator of , then  is the mean square error. Mean square
error is our measure of the quality of unbiased estimators, so the following definitions are natural.

Suppose that  and  are unbiased estimators of .

1. If  for all  then  is a uniformly better estimator than .
2. If  is uniformly better than every other unbiased estimator of , then  is a Uniformly Minimum Variance Unbiased

Estimator (UMVUE) of .

Given unbiased estimators  and  of , it may be the case that  has smaller variance for some values of  while  has smaller
variance for other values of , so that neither estimator is uniformly better than the other. Of course, a minimum variance unbiased
estimator is the best we can hope for.

The Cramér-Rao Lower Bound

We will show that under mild conditions, there is a lower bound on the variance of any unbiased estimator of the parameter .
Thus, if we can find an estimator that achieves this lower bound for all , then the estimator must be an UMVUE of . The
derivative of the log likelihood function, sometimes called the score, will play a critical role in our anaylsis. A lesser, but still
important role, is played by the negative of the second derivative of the log-likelihood function. Life will be much easier if we give
these functions names.

For  and , define

In the rest of this subsection, we consider statistics  where  (and so in particular,  does not depend on ). We
need a fundamental assumption:

We will consider only statistics  with  for . We also assume that

This is equivalent to the assumption that the derivative operator  can be interchanged with the expected value operator 
.

Proof
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Note first that

On the other hand,

Thus the two expressions are the same if and only if we can interchange the derivative and integral operators.

Generally speaking, the fundamental assumption will be satisfied if  is differentiable as a function of , with a derivative that
is jointly continuous in  and , and if the support set  does not depend on .

 for .

Proof

This follows from the fundamental assumption by letting  for .

If  is a statistic then

Proof

First note that the covariance is simply the expected value of the product of the variables, since the second variable has mean 0
by the previous theorem. The result then follows from the basic condition.

Proof

This follows since  has mean 0 by the theorem above.

The following theorem gives the general Cramér-Rao lower bound on the variance of a statistic. The lower bound is named for
Harold Cramér and CR Rao:

If  is a statistic then

Proof

From the Cauchy-Scharwtz (correlation) inequality,

The result now follows from the previous two theorems.

We can now give the first version of the Cramér-Rao lower bound for unbiased estimators of a parameter.

Suppose now that  is a parameter of interest and  is an unbiased estimator of . Then
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Proof

This follows immediately from the Cramér-Rao lower bound, since  for .

An estimator of  that achieves the Cramér-Rao lower bound must be a uniformly minimum variance unbiased estimator
(UMVUE) of .

Equality holds in the previous theorem, and hence  is an UMVUE, if and only if there exists a function  such that
(with probability 1)

Proof

Equality holds in the Cauchy-Schwartz inequality if and only if the random variables are linear transformations of each other.
Recall also that  has mean 0.

The quantity  that occurs in the denominator of the lower bounds in the previous two theorems is called the Fisher
information number of , named after Sir Ronald Fisher. The following theorem gives an alternate version of the Fisher
information number that is usually computationally better.

If the appropriate derivatives exist and if the appropriate interchanges are permissible then

The following theorem gives the second version of the Cramér-Rao lower bound for unbiased estimators of a parameter.

If  is a parameter of interest and  is an unbiased estimator of  then

Proof

This follows from the results above.

Random Samples

Suppose now that  is a random sample of size  from the distribution of a random variable  having
probability density function  and taking values in a set . Thus . We will use lower-case letters for the derivative of the
log likelihood function of  and the negative of the second derivative of the log likelihood function of .

For  and  define

 can be written in terms of  and  can be written in terms of :

1. 
2. 

The following theorem gives the second version of the general Cramér-Rao lower bound on the variance of a statistic, specialized
for random samples.

If  is a statistic then
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The following theorem give the third version of the Cramér-Rao lower bound for unbiased estimators of a parameter, specialized
for random samples.

Suppose now that  is a parameter of interest and  is an unbiased estimator of . Then

Note that the Cramér-Rao lower bound varies inversely with the sample size . The following version gives the fourth version of
the Cramér-Rao lower bound for unbiased estimators of a parameter, again specialized for random samples.

If the appropriate derivatives exist and the appropriate interchanges are permissible) then

To summarize, we have four versions of the Cramér-Rao lower bound for the variance of an unbiased estimate of : version 1 and
version 2 in the general case, and version 1 and version 2 in the special case that  is a random sample from the distribution of .
If an ubiased estimator of  achieves the lower bound, then the estimator is an UMVUE.

Examples and Special Cases
We will apply the results above to several parametric families of distributions. First we need to recall some standard notation.
Suppose that  is a random sample of size  from the distribution of a real-valued random variable  with
mean  and variance . The sample mean is

Recall that  and . The special version of the sample variance, when  is known, and standard version
of the sample variance are, respectively,

The Bernoulli Distribution

Suppose that  is a random sample of size  from the Bernoulli distribution with unknown success
parameter . In the usual language of reliability,  means success on trial  and  means failure on trial ; the
distribution is named for Jacob Bernoulli. Recall that the Bernoulli distribution has probability density function

The basic assumption is satisfied. Moreover, recall that the mean of the Bernoulli distribution is , while the variance is .

 is the Cramér-Rao lower bound for the variance of unbiased estimators of .

The sample mean  (which is the proportion of successes) attains the lower bound in the previous exercise and hence is an
UMVUE of .
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The Poisson Distribution

Suppose that  is a random sample of size  from the Poisson distribution with parameter .
Recall that this distribution is often used to model the number of “random points” in a region of time or space and is studied in
more detail in the chapter on the Poisson Process. The Poisson distribution is named for Simeon Poisson and has probability
density function

The basic assumption is satisfied. Recall also that the mean and variance of the distribution are both .

 is the Cramér-Rao lower bound for the variance of unbiased estimators of .

The sample mean  attains the lower bound in the previous exercise and hence is an UMVUE of .

The Normal Distribution

Suppose that  is a random sample of size  from the normal distribution with mean  and variance 
. Recall that the normal distribution plays an especially important role in statistics, in part because of the central limit

theorem. The normal distribution is widely used to model physical quantities subject to numerous small, random errors, and has
probability density function

The basic assumption is satisfied with respect to both of these parameters. Recall also that the fourth central moment is 
.

 is the Cramér-Rao lower bound for the variance of unbiased estimators of .

The sample mean  attains the lower bound in the previous exercise and hence is an UMVUE of .

 is the Cramér-Rao lower bound for the variance of unbiased estimators of .

The sample variance  has variance  and hence does not attain the lower bound in the previous exercise.

If  is known, then the special sample variance  attains the lower bound above and hence is an UMVUE of .

If  is unknown, no unbiased estimator of  attains the Cramér-Rao lower bound above.

Proof

This follows from the result above on equality in the Cramér-Rao inequality.

The Gamma Distribution

Suppose that  is a random sample of size  from the gamma distribution with known shape parameter 
 and unknown scale parameter . The gamma distribution is often used to model random times and certain other types of

positive random variables, and is studied in more detail in the chapter on Special Distributions. The probability density function is

The basic assumption is satisfied with respect to . Moreover, the mean and variance of the gamma distribution are  and ,
respectively.

 is the Cramér-Rao lower bound for the variance of unbiased estimators of .
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 attains the lower bound in the previous exercise and hence is an UMVUE of .

The Beta Distribution

Suppose that  is a random sample of size  from the beta distribution with left parameter  and right
parameter . Beta distributions are widely used to model random proportions and other random variables that take values in
bounded intervals, and are studied in more detail in the chapter on Special Distributions. In our specialized case, the probability
density function of the sampling distribution is

The basic assumption is satisfied with respect to .

The mean and variance of the distribution are

1. 
2. 

The Cramér-Rao lower bound for the variance of unbiased estimators of  is .

The sample mean  does not achieve the Cramér-Rao lower bound in the previous exercise, and hence is not an UMVUE of 
.

The Uniform Distribution

Suppose that  is a random sample of size  from the uniform distribution on  where  is the
unknown parameter. Thus, the probability density function of the sampling distribution is

The basic assumption is not satisfied.

The Cramér-Rao lower bound for the variance of unbiased estimators of  is . Of course, the Cramér-Rao Theorem does not
apply, by the previous exercise.

Recall that  is unbiased and has variance . This variance is smaller than the Cramér-

Rao bound in the previous exercise.

The reason that the basic assumption is not satisfied is that the support set  depends on the parameter .

Best Linear Unbiased Estimators

We now consider a somewhat specialized problem, but one that fits the general theme of this section. Suppose that 
 is a sequence of observable real-valued random variables that are uncorrelated and have the same

unknown mean , but possibly different standard deviations. Let  where  for 
.

We will consider estimators of  that are linear functions of the outcome variables. Specifically, we will consider estimators of the
following form, where the vector of coefficients  is to be determined:

 is unbiased if and only if .

The variance of  is
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The variance is minimized, subject to the unbiased constraint, when

Proof

Use the method of Lagrange multipliers (named after Joseph-Louis Lagrange).

This exercise shows how to construct the Best Linear Unbiased Estimator (BLUE) of , assuming that the vector of standard
deviations  is known.

Suppose now that  for  so that the outcome variables have the same standard deviation. In particular, this
would be the case if the outcome variables form a random sample of size  from a distribution with mean  and standard deviation 

.

In this case the variance is minimized when  for each  and hence , the sample mean.

This exercise shows that the sample mean  is the best linear unbiased estimator of  when the standard deviations are the same,
and that moreover, we do not need to know the value of the standard deviation.

This page titled 7.5: Best Unbiased Estimators is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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7.6: Sufficient, Complete and Ancillary Statistics
           

Basic Theory

The Basic Statistical Model

Consider again the basic statistical model, in which we have a random experiment with an observable random variable  taking values in a set . Once
again, the experiment is typically to sample  objects from a population and record one or more measurements for each item. In this case, the outcome
variable has the form

where  is the vector of measurements for the th item. In general, we suppose that the distribution of  depends on a parameter  taking values in a
parameter space . The parameter  may also be vector-valued. We will sometimes use subscripts in probability density functions, expected values, etc. to
denote the dependence on .

As usual, the most important special case is when  is a sequence of independent, identically distributed random variables. In this case  is a random
sample from the common distribution.

Sufficient Statistics

Let  be a statistic taking values in a set . Intuitively,  is sufficient for  if  contains all of the information about  that is available in the
entire data variable . Here is the formal definition:

A statistic  is sufficient for  if the conditional distribution of  given  does not depend on .

Sufficiency is related to the concept of data reduction. Suppose that  takes values in . If we can find a sufficient statistic  that takes values in ,
then we can reduce the original data vector  (whose dimension  is usually large) to the vector of statistics  (whose dimension  is usually much
smaller) with no loss of information about the parameter .

The following result gives a condition for sufficiency that is equivalent to this definition.

Let  be a statistic taking values in , and let  and  denote the probability density functions of  and  respectively. Then  is
suffcient for  if and only if the function on  given below does not depend on :

Proof

The joint distribution of  is concentrated on the set . The conditional PDF of  given  is 
 on this set, and is 0 otherwise.

The definition precisely captures the intuitive notion of sufficiency given above, but can be difficult to apply. We must know in advance a candidate
statistic , and then we must be able to compute the conditional distribution of  given . The Fisher-Neyman factorization theorem given next often
allows the identification of a sufficient statistic from the form of the probability density function of . It is named for Ronald Fisher and Jerzy Neyman.

Fisher-Neyman Factorization Theorem. Let  denote the probability density function of  and suppose that  is a statistic taking values
in . Then  is sufficient for  if and only if there exists  and  such that

Proof

Let  denote the PDF of  for . If  is sufficient for , then from the previous theorem, the function  for  does
not depend on . Hence  for  and so  has the form given in the theorem. Conversely,
suppose that  has the form given in the theorem. Then there exists a positive constant  such that  for  and 

. Hence  for , independent of .

Note that  depends only on the data  but not on the parameter . Less technically,  is sufficient for  if the probability density function 
depends on the data vector  and the parameter  only through .

If  and  are equivalent statistics and  is sufficient for  then  is sufficient for .

Minimal Sufficient Statistics

The entire data variable  is trivially sufficient for . However, as noted above, there usually exists a statistic  that is sufficient for  and has smaller
dimension, so that we can achieve real data reduction. Naturally, we would like to find the statistic  that has the smallest dimension possible. In many
cases, this smallest dimension  will be the same as the dimension  of the parameter vector . However, as we will see, this is not necessarily the case; 
can be smaller or larger than . An example based on the uniform distribution is given in (38).
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Suppose that a statistic  is sufficient for . Then  is minimally sufficient if  is a function of any other statistic  that is sufficient for .

Once again, the definition precisely captures the notion of minimal sufficiency, but is hard to apply. The following result gives an equivalent condition.

Let  denote the probability density function of  corresponding to the parameter value  and suppose that  is a statistic taking
values in . Then  is minimally sufficient for  if the following condition holds: for  and 

Proof

Suppose that the condition in the theorem is satisfied. Then the PDF  of  must have the form given in the factorization theorem (3) so  is
sufficient for . Next, suppose that  is another sufficient statistic for , taking values in . From the factorization theorem, there exists 

 and  such that  for . Hence if  and  then

does not depend on . Hence from the condition in the theorem,  and it follows that  is a function of .

If  and  are equivalent statistics and  is minimally sufficient for  then  is minimally sufficient for .

Properties of Sufficient Statistics

Sufficiency is related to several of the methods of constructing estimators that we have studied.

Suppose that  is sufficient for  and that there exists a maximum likelihood estimator of . Then there exists a maximum likelihood estimator  that
is a function of .

Proof

From the factorization theorem (3), the log likelihood function for  is

Hence a value of  that maximizes this function, if it exists, must be a function of .

In particular, suppose that  is the unique maximum likelihood estimator of  and that  is sufficient for . If  is sufficient for  then  is a function of 
 by the previous theorem. Hence it follows that  is minimally sufficient for . Our next result applies to Bayesian analysis.

Suppose that the statistic  is sufficient for the parameter  and that  is modeled by a random variable  with values in . Then the
posterior distribution of  given  is a function of .

Proof

Let  denote the prior PDF of  and  the conditional PDF of  given . By the factorization theorem (3), this conditional PDF has
the form  for  and . The posterior PDF of  given  is

where the function in the denominator is the marginal PDF of , or simply the normalizing constant for the function of  in the numerator. Let's
suppose that  has a continuous distribution on , so that  for . Then the posterior PDF simplifies to

which depends on  only through .

Continuing with the setting of Bayesian analysis, suppose that  is a real-valued parameter. If we use the usual mean-square loss function, then the
Bayesian estimator is . By the previous result,  is a function of the sufficient statistics . That is, .

The next result is the Rao-Blackwell theorem, named for CR Rao and David Blackwell. The theorem shows how a sufficient statistic can be used to
improve an unbiased estimator.

Rao-Blackwell Theorem. Suppose that  is sufficient for  and that  is an unbiased estimator of a real parameter . Then  is
also an unbiased estimator of  and is uniformly better than .

Proof

This follows from basic properties of conditional expected value and conditional variance. First, since  is a function of  and  is sufficient for , 
 is a valid statistic; that is, it does not depend on , in spite of the formal dependence on  in the expected value. Next,  is a

U θ U U V θ

f
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X θ ∈ T U = u(X)

R U θ x ∈ S y ∈ S

 is independent of θ if and only if u(x) = u(y)

(x)f
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function of  and  for . Thus  is an unbiased estimator of . Finally 
 for any .

Complete Statistics

Suppose that  is a statistic taking values in a set . Then  is a complete statistic for  if for any function 

To understand this rather strange looking condition, suppose that  is a statistic constructed from  that is being used as an estimator of 0 (thought of
as a function of ). The completeness condition means that the only such unbiased estimator is the statistic that is 0 with probability 1.

If  and  are equivalent statistics and  is complete for  then  is complete for .

The next result shows the importance of statistics that are both complete and sufficient; it is known as the Lehmann-Scheffé theorem, named for Erich
Lehmann and Henry Scheffé.

Lehmann-Scheffé Theorem. Suppose that  is sufficient and complete for  and that  is an unbiased estimator of a real parameter 
. Then  is a uniformly minimum variance unbiased estimator (UMVUE) of .

Proof

Suppose that  is an unbiased estimator of . By the Rao-Blackwell theorem (10),  is also an unbiased estimator of  and is uniformly
better than . Since  is a function of , it follows from completeness that  with probability 1.

Ancillary Statistics

Suppose that  is a statistic taking values in a set . If the distribution of  does not depend on , then  is called an ancillary statistic for 
.

Thus, the notion of an ancillary statistic is complementary to the notion of a sufficient statistic. A sufficient statistic contains all available information
about the parameter; an ancillary statistic contains no information about the parameter. The following result, known as Basu's Theorem and named for
Debabrata Basu, makes this point more precisely.

Basu's Theorem. Suppose that  is complete and sufficient for a parameter  and that  is an ancillary statistic for . Then  and  are
independent.

Proof

Let  denote the probability density function of  and let  denote the conditional probability density function of  given . From
properties of conditional expected value,  for . But then from completeness,  with probability 1.

If  and  are equivalent statistics and  is ancillary for  then  is ancillary for .

Applications and Special Distributions
In this subsection, we will explore sufficient, complete, and ancillary statistics for a number of special distributions. As always, be sure to try the problems
yourself before looking at the solutions.

The Bernoulli Distribution

Recall that the Bernoulli distribuiton with parameter  is a discrete distribution on  with probability density function  defined by

Suppose that  is a random sample of size  from the Bernoulli distribution with parameter . Equivalently,  is a sequence of
Bernoulli trials, so that in the usual langauage of reliability,  if trial  is a success, and  if trial  is a failure. The Bernoulli distribution is
named for Jacob Bernoulli and is studied in more detail in the chapter on Bernoulli Trials

Let  denote the number of successes. Recall that  has the binomial distribution with parameters  and , and has probability density
function  defined by

 is sufficient for . Specifically, for , the conditional distribution of  given  is uniform on the set of points

Proof

The joint PDF  of  is defined by
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where . Now let . Given ,  is concentrated on  and

Of course,  is the cardinality of .

This result is intuitively appealing: in a sequence of Bernoulli trials, all of the information about the probability of success  is contained in the number of
successes . The particular order of the successes and failures provides no additional information. Of course, the sufficiency of  follows more easily
from the factorization theorem (3), but the conditional distribution provides additional insight.

 is complete for  on the parameter space .

Proof

If , then

The last sum is a polynomial in the variable . If this polynomial is 0 for all , then all of the coefficients must be 0. Hence
we must have  for .

The proof of the last result actually shows that if the parameter space is any subset of  containing an interval of positive length, then  is complete
for . But the notion of completeness depends very much on the parameter space. The following result considers the case where  has a finite set of values.

Suppose that the parameter space  is a finite set with  elements. If the sample size  is at least , then  is not complete for .

Proof

Suppose that  and that  for . Then we have

This is a set of  linear, homogenous equations in the variables . Since , we have at least  variables, so there are
infinitely many nontrivial solutions.

The sample mean  (the sample proportion of successes) is clearly equivalent to  (the number of successes), and hence is also sufficient for 
and is complete for . Recall that the sample mean  is the method of moments estimator of , and is the maximum likelihood estimator of  on
the parameter space .

In Bayesian analysis, the usual approach is to model  with a random variable  that has a prior beta distribution with left parameter  and right
parameter . Then the posterior distribution of  given  is beta with left parameter  and right parameter . The posterior
distribution depends on the data only through the sufficient statistic , as guaranteed by theorem (9).

The sample variance  is an UMVUE of the distribution variance  for , and can be written as

Proof

Recall that the sample variance can be written as

But  since  is an indicator variable, and . Substituting gives the representation above. In general,  is an unbiased estimator
of the distribution variance . But in this case,  is a function of the complete, sufficient statistic , and hence by the Lehmann Scheffé theorem
(13),  is an UMVUE of .

The Poisson Distribution

Recall that the Poisson distribution with parameter  is a discrete distribution on  with probability density function  defined by
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The Poisson distribution is named for Simeon Poisson and is used to model the number of “random points” in region of time or space, under certain ideal
conditions. The parameter  is proportional to the size of the region, and is both the mean and the variance of the distribution. The Poisson distribution is
studied in more detail in the chapter on Poisson process.

Suppose now that  is a random sample of size  from the Poisson distribution with parameter . Recall that the sum of the scores 
 also has the Poisson distribution, but with parameter .

The statistic  is sufficient for . Specifically, for , the conditional distribution of  given  is the multinomial distribution with  trials, 
 trial values, and uniform trial probabilities.

Proof

The joint PDF  of  is defined by

where . Given , random vector  takes values in the set . Moreover,

The last expression is the PDF of the multinomial distribution stated in the theorem. Of course, the important point is that the conditional distribution
does not depend on .

As before, it's easier to use the factorization theorem to prove the sufficiency of , but the conditional distribution gives some additional insight.

 is complete for .

Proof

If  then

The last sum is a power series in  with coefficients  for . If this series is 0 for all  in an open interval, then the coefficients must be 0
and hence  for .

As with our discussion of Bernoulli trials, the sample mean  is clearly equivalent to  and hence is also sufficient for  and complete for 
. Recall that  is the method of moments estimator of  and is the maximum likelihood estimator on the parameter space .

An UMVUE of the parameter  for  is

Proof

The probability generating function of  is

Hence

So  is an unbiased estimator of . Since  is a function of the complete, sufficient statistic , it follows from the Lehmann
Scheffé theorem (13) that  is an UMVUE of .

The Normal Distribution

Recall that the normal distribution with mean  and variance  is a continuous distribution on  with probability density function 
defined by

The normal distribution is often used to model physical quantities subject to small, random errors, and is studied in more detail in the chapter on Special
Distributions. Because of the central limit theorem, the normal distribution is perhaps the most important distribution in statistics.
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Suppose that  is a random sample from the normal distribution with mean  and variance . Then each of the following
pairs of statistics is minimally sufficient for 

1.  where  and .
2.  where  is the sample mean and  is the sample variance.
3.  where  is the biased sample variance.

Proof
1. The joint PDF  of  is given by

After some algebra, this can be written as

It follows from the factorization theorem (3) that  is sufficient for . Minimal sufficiency follows from the condition in theorem (6).
2. Note that . Hence  is equivalent to  and so  is also minimally sufficient for .
3. Similarly,  and . Hence  is equivalent to  and so  is also minimally sufficient for .

Recall that  and  are the method of moments estimators of  and , respectively, and are also the maximum likelihood estimators on the parameter
space .

Run the normal estimation experiment 1000 times with various values of the parameters. Compare the estimates of the parameters in terms of bias and
mean square error.

Sometimes the variance  of the normal distribution is known, but not the mean . It's rarely the case that  is known but not . Nonetheless we can
give sufficient statistics in both cases.

Suppose again that  is a random sample from the normal distribution with mean  and variance . If

1. If  is known then  is minimally sufficient for .
2. If  is known then  is sufficient for .

Proof
1. This results follow from the second displayed equation for the PDF  of  in the proof of the previous theorem.
2. This result follows from the first displayed equation for the PDF  of  in the proof of the previous theorem.

Of course by equivalence, in part (a) the sample mean  is minimally sufficient for , and in part (b) the special sample variance  is
minimally sufficient for . Moreover, in part (a),  is complete for  on the parameter space  and the sample variance  is ancillary for  (Recall
that  has the chi-square distribution with  degrees of freedom.) It follows from Basu's theorem (15) that the sample mean  and the
sample variance  are independent. We proved this by more direct means in the section on special properties of normal samples, but the formulation in
terms of sufficient and ancillary statistics gives additional insight.

The Gamma Distribution

Recall that the gamma distribution with shape parameter  and scale parameter  is a continuous distribution on  with
probability density function  given by

The gamma distribution is often used to model random times and certain other types of positive random variables, and is studied in more detail in the
chapter on Special Distributions.

Suppose that  is a random sample from the gamma distribution with shape parameter  and scale parameter . Each of the
following pairs of statistics is minimally sufficient for 

1.  where  is the sum of the scores and  is the product of the scores.
2.  where  is the sample (arithmetic) mean of  and  is the sample geometric mean of .

Proof
1. The joint PDF  of  is given by

From the factorization theorem (3),  is sufficient for . Minimal sufficiency follows from condition (6).
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2. Clearly  is equivalent to  and  is equivalent to . Hence  is also minimally sufficient for .

Recall that the method of moments estimators of  and  are  and , respectively, where  is the sample mean and 
 is the biased sample variance. If the shape parameter  is known,  is both the method of moments estimator of  and the

maximum likelihood estimator on the parameter space . Note that  is not a function of the sufficient statistics , and hence estimators based
on  suffer from a loss of information.

Run the gamma estimation experiment 1000 times with various values of the parameters and the sample size . Compare the estimates of the
parameters in terms of bias and mean square error.

The proof of the last theorem actually shows that  is sufficient for  if  is known, and that  is sufficient for  if  is known.

Suppose again that  is a random sample of size  from the gamma distribution with shape parameter  and scale
parameter . Then  is complete for .

Proof

 has the gamma distribution with shape parameter  and scale parameter . Hence, if , then

The last integral can be interpreted as the Laplace transform of the function  evaluated at . If this transform is 0 for all  in an open
interval, then  almost everywhere in .

Suppose again that  is a random sample from the gamma distribution on  with shape parameter  and scale
parameter . Let  denote the sample mean and  the sample geometric mean, as before. Then

1.  is ancillary for .
2.  and  are independent.

Proof
1. We can take  for  where  is a random sample of size  from the gamma distribution with shape

parameter  and scale parameter 1 (the standard gamma distribution with shape parameter ). Then

But  for , and the distribution of  does not depend on . Hence the distribution of 
 does not depend on .

2. This follows from Basu's theorem (15), since  is complete and sufficient for  and  is ancillary for .

The Beta Distribution

Recall that the beta distribution with left parameter  and right parameter  is a continuous distribution on  with probability
density function  given by

where  is the beta function. The beta distribution is often used to model random proportions and other random variables that take values in bounded
intervals. It is studied in more detail in the chapter on Special Distribution

Suppose that  is a random sample from the beta distribution with left parameter  and right parameter . Then  is
minimally sufficient for  where  and .

Proof

The joint PDF  of  is given by

From the factorization theorem (3), it follows that  is sufficient for . Minimal sufficiency follows from condition (6).

The proof also shows that  is sufficient for  if  is known, and that  is sufficient for  if  is known. Recall that the method of moments estimators of 
 and  are
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respectively, where  is the sample mean and  is the second order sample mean. If  is known, the method of
moments estimator of  is , while if  is known, the method of moments estimator of  is . None of these
estimators is a function of the sufficient statistics  and so all suffer from a loss of information. On the other hand, if , the maximum likelihood
estimator of  on the interval  is , which is a function of  (as it must be).

Run the beta estimation experiment 1000 times with various values of the parameters. Compare the estimates of the parameters.

The Pareto Distribution

Recall that the Pareto distribution with shape parameter  and scale parameter  is a continuous distribution on  with
probability density function  given by

The Pareto distribution, named for Vilfredo Pareto, is a heavy-tailed distribution often used to model income and certain other types of random variables.
It is studied in more detail in the chapter on Special Distribution.

Suppose that  is a random sample from the Pareto distribution with shape parameter  and scale parameter . Then 
is minimally sufficient for  where  is the product of the sample variables and where  is the first
order statistic.

Proof

The joint PDF  of  at  is given by

which can be rewritten as

So the result follows from the factorization theorem (3). Minimal sufficiency follows from condition (6).

The proof also shows that  is sufficient for  if  is known (which is often the case), and that  is sufficient for  if  is known (much less likely).
Recall that the method of moments estimators of  and  are

respectively, where as before  is the sample mean and  the second order sample mean. These estimators are not
functions of the sufficient statistics and hence suffers from loss of information. On the other hand, the maximum likelihood estimators of  and  on the
interval  are

respectively. These are functions of the sufficient statistics, as they must be.

Run the Pareto estimation experiment 1000 times with various values of the parameters  and  and the sample size . Compare the method of
moments estimates of the parameters with the maximum likelihood estimates in terms of the empirical bias and mean square error.

The Uniform Distribution

Recall that the continuous uniform distribution on the interval , where  is the location parameter and  is the scale parameter,
has probability density function  given by

Continuous uniform distributions are widely used in applications to model a number chosen “at random” from an interval. Continuous uniform
distributions are studied in more detail in the chapter on Special Distributions. Let's first consider the case where both parameters are unknown.

Suppose that  is a random sample from the uniform distribution on the interval . Then  is minimally
sufficient for , where  is the first order statistic and  is the last order statistic.

Proof

The PDF  of  is given by
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We can rewrite the PDF as

It then follows from the factorization theorem (3) that  is sufficient for . Next, suppose that  and that  or 
. For a given , we can easily find values of  such that  and , and other values of  such that 

. By condition (6),  is minimally sufficient.

If the location parameter  is known, then the largest order statistic is sufficient for the scale parameter . But if the scale parameter  is known, we still
need both order statistics for the location parameter . So in this case, we have a single real-valued parameter, but the minimally sufficient statistic is a pair
of real-valued random variables.

Suppose again that  is a random sample from the uniform distribution on the interval .

1. If  is known, then  is sufficient for .
2. If  is known, then  is minimally sufficient for .

Proof

Both parts follow easily from the analysis given in the proof of the last theorem.

Run the uniform estimation experiment 1000 times with various values of the parameter. Compare the estimates of the parameter.

Recall that if both parameters are unknown, the method of moments estimators of  and  are  and , respectively, where 
 is the sample mean and  is the biased sample variance. If  is known, the method of moments estimator of 

is , while if  is known, the method of moments estimator of  is . None of these estimators are functions of the
minimally sufficient statistics, and hence result in loss of information.

The Hypergeometric Model

So far, in all of our examples, the basic variables have formed a random sample from a distribution. In this subsection, our basic variables will be
dependent.

Recall that in the hypergeometric model, we have a population of  objects, and that  of the objects are type 1 and the remaining  are type 0. The
population size  is a positive integer and the type 1 size  is a nonnegative integer with . Typically one or both parameters are unknown. We select
a random sample of  objects, without replacement from the population, and let  be the type of the th object chosen. So our basic sequence of random
variables is . The variables are identically distributed indicator variables with  for , but are
dependent. Of course, the sample size  is a positive integer with .

The variable  is the number of type 1 objects in the sample. This variable has the hypergeometric distribution with parameters , , and ,
and has probability density function  given by

(Recall the falling power notation ). The hypergeometric distribution is studied in more detail in the chapter on Finite
Sampling Models.

 is sufficient for . Specifically, for , the conditional distribution of  given  is uniform on
the set of points

Proof

By a simple application of the multiplication rule of combinatorics, the PDF  of  is given by

where . If , the conditional distribution of  given  is concentrated on  and

Of course,  is the cardinality of .
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There are clearly strong similarities between the hypergeometric model and the Bernoulli trials model above. Indeed if the sampling were with
replacement, the Bernoulli trials model with  would apply rather than the hypergeometric model. It's also interesting to note that we have a single
real-valued statistic that is sufficient for two real-valued parameters.

Once again, the sample mean  is equivalent to  and hence is also sufficient for . Recall that the method of moments estimator of  with 
 known is  and the method of moment estimator of  with  known is . The estimator of  is the one that is used in the capture-recapture

experiment.

Exponential Families

Suppose now that our data vector  takes values in a set , and that the distribution of  depends on a parameter vector  taking values in a parameter
space . The distribution of  is a -parameter exponential family if  does not depend on  and if the probability density function of  can be written
as

where  and  are real-valued functions on , and where  and  are real-valued functions on . Moreover,  is assumed to
be the smallest such integer. The parameter vector  is sometimes called the natural parameter of the distribution, and the
random vector  is sometimes called the natural statistic of the distribution. Although the definition may look
intimidating, exponential families are useful because they have many nice mathematical properties, and because many special parametric families are
exponential families. In particular, the sampling distributions from the Bernoulli, Poisson, gamma, normal, beta, and Pareto considered above are
exponential families. Exponential families of distributions are studied in more detail in the chapter on special distributions.

 is minimally sufficient for .

Proof

That  is sufficient for  follows immediately from the factorization theorem. That  is minimally sufficient follows since  is the smallest integer in
the exponential formulation.

It turns out that  is complete for  as well, although the proof is more difficult.
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CHAPTER OVERVIEW

8: Set Estimation
Set estimation refers to the process of constructing a subset of the parameter space, based on observed data from a probability
distribution. The subset will contain the true value of the parameter with a specified confidence level. In this chapter, we explore
the basic method of set estimation using pivot variables. We study set estimation in some of the most important models: the single
variable normal model, the two-variable normal model, and the Bernoulli model.

8.1: Introduction to Set Estimation
8.2: Estimation the Normal Model
8.3: Estimation in the Bernoulli Model
8.4: Estimation in the Two-Sample Normal Model
8.5: Bayesian Set Estimation
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8.1: Introduction to Set Estimation
       

Basic Theory

The Basic Statistical Model

As usual, our starting point is a random experiment with an underlying sample space and a probability measure . In the basic
statistical model, we have an observable random variable  taking values in a set . In general,  can have quite a complicated
structure. For example, if the experiment is to sample  objects from a population and record various measurements of interest,
then

where  is the vector of measurements for the th object. The most important special case occurs when  are
independent and identically distributed. In this case, we have a random sample of size  from the common distribution.

Suppose also that the distribution of  depends on a parameter  taking values in a parameter space . The parameter may also be
vector-valued, in which case  for some  and the parameter vector has the form .

Confidence Sets

A confidence set is a subset  of the parameter space  that depends only on the data variable , and no unknown
parameters. the confidence level is the smallest probability that :

Thus, in a sense, a confidence set is a set-valued statistic. A confidence set is an estimator of  in the sense that we hope that 
 with high probability, so that the confidence level is high. Note that since the distribution of  depends on , there is a

dependence on  in the probability measure  in the definition of confidence level. However, we usually suppress this, just to keep
the notation simple. Usually, we try to construct a confidence set for  with a prescribed confidence level  where .
Typical confidence levels are 0.9, 0.95, and 0.99. Sometimes the best we can do is to construct a confidence set whose confidence
level is at least ; this is called a conservative  confidence set for .

Figure : A set estimate that successfully captured the parameter

Suppose that  is  level confidence set for a parameter . Note that when we run the experiment and observe the data ,
the computed confidence set is . The true value of  is either in this set, or is not, and we will usually never know. However,
by the law of large numbers, if we were to repeat the confidence experiment over and over, the proportion of sets that contain 
would converge to . This is the precise meaning of the term confidence. In the usual terminology of
statistics, the random set  is the estimator; the deterministic set  based on an observed value  is the estimate.

Next, note that the quality of a confidence set, as an estimator of , is based on two factors: the confidence level and the precision
as measured by the “size” of the set. A good estimator has small size (and hence gives a precise estimate of ) and large
confidence. However, for a given , there is usually a tradeoff between confidence level and precision—increasing the confidence
level comes only at the expense of increasing the size of the set, and decreasing the size of the set comes only at the expense of
decreasing the confidence level. How we measure the “size” of the confidence set depends on the dimension of the parameter space
and the nature of the confidence set. Moreover, the size of the set is usually random, although in some special cases it may be
deterministic.

Considering the extreme cases may give us some insight. First, suppose that . This set estimator has maximum
confidence 1, but no precision and hence it is worthless (we already knew that ). At the other extreme, suppose that  is
a singleton set. This set estimator has the best possible precision, but typically for continuous distributions, would have confidence
0. In between these extremes, hopefully, are set estimators that have high confidence and high precision.
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Suppose that  is a  level confidence set for  for . If  then 
 is a conservative  level confidence set for .

Proof

This follows from Bonferroni's inequality.

Real-Valued Parameters

In many cases, we are interested in estimating a real-valued parameter  taking values in an interval parameter space 
, where  with . Of course, it's possible that  or . In this context our confidence set frequently

has the form

where  and  are real-valued statistics. In this case  is called a confidence interval for . If  and 
 are both random, then the confidence interval is often said to be two-sided. In the special case that ,  is

called a confidence lower bound for . In the special case that ,  is called a confidence upper bound for .

Suppose that  is a  level confidence lower bound for  and that  is a  level confidence upper bound for 
. If  then  is a conservative  level confidence interval for .

Proof

This follows immediately from (2).

Pivot Variables

You might think that it should be very difficult to construct confidence sets for a parameter . However, in many important special
cases, confidence sets can be constructed easily from certain random variables known as pivot variables.

Suppose that  is a function from  into a set . The random variable  is a pivot variable for  if its distribution
does not depend on . Specifically,  is constant in  for each .

The basic idea is that we try to combine  and  algebraically in such a way that we factor out the dependence on  in the
distribution of the resulting random variable . If we know the distribution of the pivot variable, then for a given , we can
try to find  (that does not depend on ) such that . It then follows that a  confidence set for
the parameter is given by .

Figure : A confidence set constructed from a pivot variable

Suppose now that our pivot variable  is real-valued, which for simplicity, we will assume has a continuous distribution.
For , let  denote the quantile of order  for the pivot variable . By the very meaning of pivot variable, 
does not depend on .

For any , a  level confidence set for  is

Proof

By definition, the probability of the event is .
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The confidence set above corresponds to  in the left tail and  in the right tail, in terms of the distribution of the pivot
variable . The special case  is the equal-tailed case, the most common case.

Figure : Distribution of the pivot variable showing  is the left tail and  is the right tail.

The confidence set (5) is decreasing in  and hence increasing in  (in the sense of the subset relation) for fixed .

For the confidence set (5), we would naturally like to choose  that minimizes the size of the set in some sense. However this is
often a difficult problem. The equal-tailed interval, corresponding to , is the most commonly used case, and is sometimes
(but not always) an optimal choice. Pivot variables are far from unique; the challenge is to find a pivot variable whose distribution
is known and which gives tight bounds on the parameter (high precision).

Suppose that  is a pivot variable for . If  is a function defined on the range of  and  involves no unknown
parameters, then  is also a pivot variable for .

Examples and Special Cases

Location-Scale Families

In the case of location-scale families of distributions, we can easily find pivot variables. Suppose that  is a real-valued random
variable with a continuous distribution that has probability density function , and no unknown parameters. Let 
where  and  are parameters. Recall that the probability density function of  is given by

and the corresponding family of distributions is called the location-scale family associated with the distribution of ;  is the
location parameter and  is the scale parameter. Generally, we are assuming that these parameters are unknown.

Now suppose that  is a random sample of size  from the distribution of ; this is our observable outcome
vector. For each , let

The random vector  is a random sample of size  from the distribution of .

In particular, note that  is a pivot variable for , since  is a function of , , and , but the distribution of  does not
depend on  or . Hence, any function of  will also be a pivot variable for , (if the function does not involve the
parameters). Of course, some of these pivot variables will be much more useful than others in estimating  and . In the following
exercises, we will explore two common and important pivot variables.

Let  and  denote the sample means of  and , respectively. Then  is a pivot variable for  since

Let  denote the quantile function of the pivot variable . For any , a  confidence set for  is
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The confidence set constructed above is a “cone” in the  parameter space, with vertex at  and boundary lines
of slopes  and , as shown in the graph below. (Note, however, that both slopes might be
negative or both positive.)

Figure : The confidence set for  constructed from 

The fact that the confidence set is unbounded is clearly not good, but is perhaps not surprising; we are estimating two real
parameters with a single real-valued pivot variable. However, if  is known, the confidence set defines a confidence interval for .
Geometrically, the confidence interval simply corresponds to the horizontal cross section at .

 confidence sets for  are

1. 
2. 

Proof

In the confidence set constructed above, let  and , respectively.

If  is known, then (a) gives a  confidence lower bound for  and (b) gives a  confidence upper bound for .

Let  and  denote the sample standard deviations of  and , respectively. Then  is a pivot variable for 
and a pivot variable for  since

Let  denote the quantile function of . For any  and , a  confidence set for  is

Note that the confidence set gives no information about  since the random variable above is a pivot variable for  alone. The
confidence set can also be viewed as a bounded confidence interval for .

Figure : The confidence set for  constructed from 

 confidence sets for  are

1. 
2. 

Proof

In the confidence set constructed above, let  and , respectively.
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The set in part (a) gives a  confidence lower bound for  and the set in part (b) gives a  confidence upper bound for .

We can intersect the confidence sets corresponding to the two pivot variables to produce conservative, bounded confidence sets.

If  with  then  is a conservative  confidence set for .

Proof

Figure : The bounded confidence set for  constructed from 

The most important location-scale family is the family of normal distributions. The problem of estimation in the normal model is
considered in the next section. In the remainder of this section, we will explore another important scale family.

The Exponential Distribution

Recall that the exponential distribution with scale parameter  has probability density function 
. It is the scale family associated with the standard exponential distribution, which has probability

density function . The exponential distribution is widely used to model random times (such as lifetimes
and “arrival” times), particularly in the context of the Poisson model. Now suppose that  is a random
sample of size  from the exponential distribution with unknown scale parameter . Let

The random variable  has the chi-square distribution with  degrees of freedom, and hence is a pivot variable for .

Note that this pivot variable is a multiple of the variable  constructed above for general location-scale families (with ). For 
 and , let  denote the quantile of order  for the chi-square distribution with  degrees of freedom. For

selected values of  and ,  can be obtained from the special distribution calculator or from most statistical software
packages.

Recall that

1.  as 
2.  as 

For any  and any , a  confidence interval for  is

Note that

1.  is a  confidence lower bound for .
2.  is a  confidence lower bound for .

Of the two-sided confidence intervals constructed above, we would naturally prefer the one with the smallest length, because this
interval gives the most information about the parameter . However, minimizing the length as a function of  is computationally
difficult. The two-sided confidence interval that is typically used is the equal tailed interval obtained by letting :
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The lifetime of a certain type of component (in hours) has an exponential distribution with unknown scale parameter . Ten
devices are operated until failure; the lifetimes are 592, 861, 1470, 2412, 335, 3485, 736, 758, 530, 1961.

1. Construct the 95% two-sided confidence interval for .
2. Construct the 95% confidence lower bound for .
3. Construct the 95% confidence upper bound for .

Answer
1. 
2. 836.7
3. 2421.9

This page titled 8.1: Introduction to Set Estimation is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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8.2: Estimation the Normal Model
       

Basic Theory

The Normal Model

The normal distribution is perhaps the most important distribution in the study of mathematical statistics, in part because of the
central limit theorem. As a consequence of this theorem, a measured quantity that is subject to numerous small, random errors will
have, at least approximately, a normal distribution. Such variables are ubiquitous in statistical experiments, in subjects varying
from the physical and biological sciences to the social sciences.

So in this section, we assume that  is a random sample from the normal distribution with mean  and
standard deviation . Our goal is to construct confidence intervals for  and  individually, and then more generally, confidence
sets for . These are among of the most important special cases of set estimation. A parallel section on Tests in the Normal
Model is in the chapter on Hypothesis Testing. First we need to review some basic facts that will be critical for our analysis.

Recall that the sample mean  and sample variance  are

From our study of point estimation, recall that  is an unbiased and consistent estimator of  while  is an unbiased and
consistent estimator of . From these basic statistics we can construct the pivot variables that will be used to construct our interval
estimates. The following results were established in the section on Special Properties of the Normal Distribution.

Define

1.  has the standard normal distribution.
2.  has the student  distribution with  degrees of freedom.
3.  has the chi-square distribution with  degrees of freedom.
4.  and  are independent.

It follows that each of these random variables is a pivot variable for  since the distributions do not depend on the parameters,
but the variables themselves functionally depend on one or both parameters. Pivot variables  and  will be used to construct
interval estimates of  while  will be used to construct interval estimates of . To construct our estimates, we will need
quantiles of these standard distributions. The quantiles can be computed using the special distribution calculator or from most
mathematical and statistical software packages. Here is the notation we will use:

Let  and .

1.  denotes the quantile of order  for the standard normal distribution.
2.  denotes the quantile of order  for the student  distribution with  degrees of freedom.
3.  denotes the quantile of order  for the chi-square distribution with  degrees of freedom

Since the standard normal and student  distributions are symmetric about 0, it follows that  and 
 for  and . On the other hand, the chi-square distribution is not symmetric.

Confidence Intervals for  with  Known

For our first discussion, we assume that the distribution mean  is unknown but the standard deviation  is known. This is not
always an artificial assumption. There are often situations where  is stable over time, and hence is at least approximately known,
while  changes because of different “treatments”. Examples are given in the computational exercises below. The pivot variable 
leads to confidence intervals for .
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For ,

1.  is a  confidence interval for .

2.  is a  confidence lower bound for 

3.  is a  confidence upper bound for 

Proof

Since  has the standard normal distribution, each of the following events has probability  by definition of the

quantiles:

1. 

2. 

3. 

In each case, solving the inequality for  gives the result.

These are the standard interval estimates for  when  is known. The two-sided confidence interval in (a) is symmetric about the
sample mean , and as the proof shows, corresponds to equal probability  in each tail of the distribution of the pivot variable .
But of course, this is not the only two-sided  confidence interval; we can divide the probability  anyway we want between
the left and right tails of the distribution of .

For every , a  confidence interval for  is

1.  gives the symmetric, equal-tail confidence interval.
2.  gives the interval with the confidence upper bound.
3.  gives the interval with the confidence lower bound.

Proof

From the normal distribution of  and the definition of the quantile function,

The result then follows by solving for  in the inequality.

In terms of the distribution of the pivot variable , as the proof shows, the two-sided confidence interval above corresponds to 
in the right tail and  in the left tail. Next, let's study the length of this confidence interval.

For , the (deterministic) length of the two-sided  confidence interval above is

1.  is a decreasing function of , and  as  and  as .
2.  is a decreasing function of , and  as .
3.  is an increasing function of , and  as  and  as .
4. As a function of ,  decreases and then increases, with minimum at the point of symmetry .

The last result shows again that there is a tradeoff between the confidence level and the length of the confidence interval. If  and 
are fixed, we can decrease , and hence tighten our estimate, only at the expense of decreasing our confidence in the estimate.
Conversely, we can increase our confidence in the estimate only at the expense of increasing the length of the interval. In terms of 
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, the best of the two-sided  confidence intervals (and the one that is almost always used) is symmetric, equal-tail interval
with :

Use the mean estimation experiment to explore the procedure. Select the normal distribution and select normal pivot. Use
various parameter values, confidence levels, sample sizes, and interval types. For each configuration, run the experiment 1000
times. As the simulation runs, note that the confidence interval successfully captures the mean if and only if the value of the
pivot variable is between the quantiles. Note the size and location of the confidence intervals and compare the proportion of
successful intervals to the theoretical confidence level.

For the standard confidence intervals, let  denote the distance between the sample mean  and an endpoint. That is,

where  for the two-sided interval and  for the upper or lower confidence interval. The number 
 is the margin of error of the estimate.

Note that  is deterministic, and the length of the standard two-sided interval is . In many cases, the first step in the design
of the experiment is to determine the sample size needed to estimate  with a given margin of error and a given confidence level.

The sample size needed to estimate  with confidence  and margin of error  is

Proof

This follows by solving for  in the definition of  above, and then rounding up to the next integer.

Note that  varies directly with  and with  and inversely with . This last fact implies a law of diminishing return in reducing
the margin of error. For example, if we want to reduce a given margin of error by a factor of , we must increase the sample size
by a factor of 4.

Confidence Intervals for  with  Unknown

For our next discussion, we assume that the distribution mean  and standard deviation  are unknown, the usual situation. In this
case, we can use the  pivot variable, rather than the  pivot variable, to construct confidence intervals for .

For ,

1.  is a  confidence interval for .

2.  is a  lower bound for 

3.  is a  upper bound for 

Proof

Since  has the  distribution with  degees of freedom, each of the following events has probability , by

definition of the quantiles:

1. 

2. 

3. 

In each case, solving for  in the inequality gives the result.

These are the standard interval estimates of  with  unknown. The two-sided confidence interval in (a) is symmetric about the
sample mean  and corresponds to equal probability  in each tail of the distribution of the pivot variable . As before, this is
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not the only confidence interval; we can divide  between the left and right tails any way that we want.

For every , a  confidence interval for  is

1.  gives the symmetric, equal-tail confidence interval.
2.  gives the interval with the confidence upper bound.
3.  gives the interval with the confidence lower bound.

Proof

Since  has the student  distribution with  degrees of freedom, it follows from the definition of the quantiles that

The result then follows by solving for  in the inequality.

The two-sided confidence interval above corresponds to  in the right tail and  in the left tail of the distribution of the
pivot variable . Next, let's study the length of this confidence interal.

For , the (random) length of the two-sided  confidence interval above is

1.  is a decreasing function of , and  as  and  as .
2. As a function of ,  decreases and then increases, with minimum at the point of symmetry .

3. 

4. 

Proof

Parts (a) and (b) follow from properties of the student quantile function . Parts (c) and (d) follow from the fact that 
has a chi distribution with  degrees of freedom.

Once again, there is a tradeoff between the confidence level and the length of the confidence interval. If  and  are fixed, we can
decrease , and hence tighten our estimate, only at the expense of decreasing our confidence in the estimate. Conversely, we can
increase our confidence in the estimate only at the expense of increasing the length of the interval. In terms of , the best of the
two-sided  confidence intervals (and the one that is almost always used) is symmetric, equal-tail interval with . Finally,
note that it does not really make sense to consider  as a function of , since  is a statistic rather than an algebraic variable.
Similarly, it does not make sense to consider  as a function of , since changing  means new data and hence a new value of .

Use the mean estimation experiment to explore the procedure. Select the normal distribution and the  pivot. Use various
parameter values, confidence levels, sample sizes, and interval types. For each configuration, run the experiment 1000 times.
As the simulation runs, note that the confidence interval successfully captures the mean if and only if the value of the pivot
variable is between the quantiles. Note the size and location of the confidence intervals and compare the proportion of
successful intervals to the theoretical confidence level.

Confidence Intervals for 

Next we will construct confidence intervals for  using the pivot variable  given above

For ,
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1.  is a  confidence interval for 

2.  is a  confidence lower bound for 

3.  is a  confidence upper bound for .

Proof

Since  has the chi-square distribution with  degrees of freedom, each of the following events has probability 
 by definition of the quantiles:

1. 

2. 

3. 

In each case, solving for  in the inequality give the result.

These are the standard interval estimates for . The two-sided interval in (a) is the equal-tail interval, corresponding to probability
 in each tail of the distribution of the pivot variable . Note however that this interval is not symmetric about the sample

variance . Once again, we can partition the probability  between the left and right tails of the distribution of  any way that we
like.

For every , a  confidence interval for  is

1.  gives the equal-tail  confidence interval.
2.  gives the interval with the  upper bound
3.  gives the interval with the  lower bound.

In terms of the distribution of the pivot variable , the confidence interval above corresponds to  in the right tail and 
in the left tail. Once again, let's look at the length of the general two-sided confidence interval. The length is random, but is a
multiple of the sample variance . Hence we can compute the expected value and variance of the length.

For , the (random) length of the two-sided confidence interval in the last theorem is

1. 

2. 

To construct an optimal two-sided confidence interval, it would be natural to find  that minimizes the expected length. This is a
complicated problem, but it turns out that for large , the equal-tail interval with  is close to optimal. Of course, taking
square roots of the endpoints of any of the confidence intervals for  gives  confidence intervals for the distribution standard
deviation .

Use variance estimation experiment to explore the procedure. Select the normal distribution. Use various parameter values,
confidence levels, sample sizes, and interval types. For each configuration, run the experiment 1000 time. As the simulation
runs, note that the confidence interval successfully captures the standard deviation if and only if the value of the pivot variable
is between the quantiles. Note the size and location of the confidence intervals and compare the proportion of successful
intervals to the theoretical confidence level.
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Confidence Sets for 

In the discussion above, we constructed confidence intervals for  and for  separately (again, usually both parameters are
unknown). In our next discussion, we will consider confidence sets for the parameter point . These sets will be subsets of the
underlying parameter space .

Confidence Sets Constructed from the Pivot Variables

Each of the pivot variables , , and  can be used to construct confidence sets for . In isolation, each will produce an
unbounded confidence set, not surprising since, we are using a single pivot variable to estimate two parameters. We consider the
normal pivot variable  first.

For any , a  level confidence set for  is

The confidence set is a “cone” in the  parameter space, with vertex at  and boundary lines of slopes 
 and 

Proof

From the normal distribution of  and the definition of the quantile function,

The result then follows by solving for  in the inequality.

The confidence cone is shown in the graph below. (Note, however, that both slopes might be negative or both positive.)

Figure : The confidence set based on the normal pivot variable

The pivot variable  leads to the following result:

For every , a  level confidence set for  is

Proof

Figure : The confidence set based on the  pivot variable

By design, this confidence set gives no information about . Finally, the pivot variable  leads to the following result:

For every , a  level confidence set for  is
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Proof

Figure : The confidence set based on the pivot variable 

By design, this confidence set gives no information about .

Intersections

We can now form intersections of some of the confidence sets constructed above to obtain bounded confidence sets for . We
will use the fact that the sample mean  and the sample variance  are independent, one of the most important special properties
of a normal sample. We will also need the result from the Introduction on the intersection of confidence interals. In the following
theorems, suppose that  with .

The set  is a conservative  confidence sets for .

Figure : The confidence set 

The set  is a  confidence set for .

Figure : The confidence set 

It is interesting to note that the confidence set  is a product set as a subset of the parameter space, but is not a product set
as a subset of the sample space. By contrast, the confidence set  is not a product set as a subset of the parameter space,
but is a product set as a subset of the sample space.

Exercises

Robustness

The main assumption that we made was that the underlying sampling distribution is normal. Of course, in real statistical problems,
we are unlikely to know much about the sampling distribution, let alone whether or not it is normal. When a statistical procedure
works reasonably well, even when the underlying assumptions are violated, the procedure is said to be robust. In this subsection,
we will explore the robustness of the estimation procedures for  and .
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Suppose in fact that the underlying distribution is not normal. When the sample size  is relatively large, the distribution of the
sample mean will still be approximately normal by the central limit theorem. Thus, our interval estimates of  may still be
approximately valid.

Use the simulation of the mean estimation experiment to explore the procedure. Select the gamma distribution and select
student pivot. Use various parameter values, confidence levels, sample sizes, and interval types. For each configuration, run the
experiment 1000 times. Note the size and location of the confidence intervals and compare the proportion of successful
intervals to the theoretical confidence level.

In the mean estimation experiment, repeat the previous exercise with the uniform distribution.

How large  needs to be for the interval estimation procedures of  to work well depends, of course, on the underlying
distribution; the more this distribution deviates from normality, the larger  must be. Fortunately, convergence to normality in the
central limit theorem is rapid and hence, as you observed in the exercises, we can get away with relatively small sample sizes (30
or more) in most cases.

In general, the interval estimation procedures for  are not robust; there is no analog of the central limit theorem to save us from
deviations from normality.

In variance estimation experiment, select the gamma distribution. Use various parameter values, confidence levels, sample
sizes, and interval types. For each configuration, run the experiment 1000 times. Note the size and location of the confidence
intervals and compare the proportion of successful intervals to the theoretical confidence level.

In variance estimation experiment, select the uniform distribution. Use various parameter values, confidence levels, sample
sizes, and interval types. For each configuration, run the experiment 1000 times. Note the size and location of the confidence
intervals and compare the proportion of successful intervals to the theoretical confidence level.

Computational Exercises

In the following exercises, use the equal-tailed construction for two-sided confidence intervals, unless otherwise instructed.

The length of a certain machined part is supposed to be 10 centimeters but due to imperfections in the manufacturing process,
the actual length is a normally distributed with mean  and variance . The variance is due to inherent factors in the process,
which remain fairly stable over time. From historical data, it is known that . On the other hand,  may be set by
adjusting various parameters in the process and hence may change to an unknown value fairly frequently. A sample of 100
parts has mean 10.2.

1. Construct the 95% confidence interval for .
2. Construct the 95% confidence upper bound for .
3. Construct the 95% confidence lower bound for .

Answer
1. 
2. 10.25
3. 10.15

Suppose that the weight of a bag of potato chips (in grams) is a normally distributed random variable with mean  and
standard deviation , both unknown. A sample of 75 bags has mean 250 and standard deviation 10.

1. Construct the 90% confidence interval for .
2. Construct the 90% confidence interval for .
3. Construct a conservative 90% confidence rectangle for .

Answer
1. 
2. 
3. 
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At a telemarketing firm, the length of a telephone solicitation (in seconds) is a normally distributed random variable with mean
 and standard deviation , both unknown. A sample of 50 calls has mean length 300 and standard deviation 60.

1. Construct the 95% confidence upper bound for .
2. Construct the 95% confidence lower bound for .

Answer
1. 314.3.
2. 51.6.

At a certain farm the weight of a peach (in ounces) at harvest time is a normally distributed random variable with standard
deviation 0.5. How many peaches must be sampled to estimate the mean weight with a margin of error  and with 95%
confidence.

Answer

25

The hourly salary for a certain type of construction work is a normally distributed random variable with standard deviation
$1.25 and unknown mean . How many workers must be sampled to construct a 95% confidence lower bound for  with
margin of error $0.25?

Answer

68

Data Analysis Exercises

In Michelson's data, assume that the measured speed of light has a normal distribution with mean  and standard deviation ,
both unknown.

1. Construct the 95% confidence interval for . Is the “true” value of the speed of light in this interval?
2. Construct the 95% confidence interval for .
3. Explore, in an informal graphical way, the assumption that the underlying distribution is normal.

Answer
1. . No, the true value is not in the interval.
2. 

In Cavendish's data, assume that the measured density of the earth has a normal distribution with mean  and standard
deviation , both unknown.

1. Construct the 95% confidence interval for . Is the “true” value of the density of the earth in this interval?
2. Construct the 95% confidence interval for .
3. Explore, in an informal graphical way, the assumption that the underlying distribution is normal.

Answer
1. . Yes, the true value is in the interval.
2. 

In Short's data, assume that the measured parallax of the sun has a normal distribution with mean  and standard deviation ,
both unknown.

1. Construct the 95% confidence interval for . Is the “true” value of the parallax of the sun in this interval?
2. Construct the 95% confidence interval for .
3. Explore, in an informal graphical way, the assumption that the underlying distribution is normal.

Answer
1. . Yes, the true value is in the interval.
2. 

μ σ

μ

σ

±2

μ μ

μ σ

μ

σ

(836.8, 868.0)

(69.4, 91.8)

μ

σ

μ

σ

(5.364, 5.532)

(0.1725, 0.3074)

μ σ

μ

σ

(8.410, 8.822)

(0.629, 0.927)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10201?pdf


8.2.10 https://stats.libretexts.org/@go/page/10201

Suppose that the length of an iris petal of a given type (Setosa, Verginica, or Versicolor) is normally distributed. Use Fisher's
iris data to construct 90% two-sided confidence intervals for each of the following parameters.

1. The mean length of a Sertosa iris petal.
2. The mean length of a Vergnica iris petal.
3. The mean length of a Versicolor iris petal.

Answer
1. 
2. 
3. 

This page titled 8.2: Estimation the Normal Model is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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8.3: Estimation in the Bernoulli Model
       

Introduction

Recall that an indicator variable is a random variable that just takes the values 0 and 1. In applications, an indicator variable
indicates which of two complementary events in a random experiment has occurred. Typical examples include

A manufactured item subject to unavoidable random factors is either defective or acceptable.
A voter selected from a population either supports a particular candidate or does not.
A person selected from a population either does or does not have a particular medical condition.
A student in a class either passes or fails a standardized test.
A sample of radioactive material either does or does not emit an alpha particle in a specified ten-second period.

Recall also that the distribution of an indicator variable is known as the Bernoulli distribution, named for Jacob Bernoulli, and has
probability density function given by , , where  is the basic parameter. In the context
of the examples above,

 is the probability that the manufactured item is defective.
 is the proportion of voters in the population who favor the candidate.
 is the poportion of persons in the population that have the medical condition.
 is the probability that a student in the class will pass the exam.
 is the probability that the material will emit an alpha particle in the specified period.

Recall that the mean and variance of the Bernoulli distribution are  and . Often in statistical
applications,  is unknown and must be estimated from sample data. In this section, we will see how to construct interval estimates
for the parameter from sample data. A parallel section on Tests in the Bernoulli Model is in the chapter on Hypothesis Testing.

The One-Sample Model

Preliminaries

Suppose that  is a random sample from the Bernoulli distribution with unknown parameter . That
is,  is a squence of Bernoulli trials. From the examples in the introduction above, note that often the underlying experiment is to
sample at random from a dichotomous population. When the sampling is with replacement,  really is a sequence of Bernoulli
trials. When the sampling is without replacement, the variables are dependent, but the Bernoulli model is still approximately valid
if the population size is large compared to the sample size . For more on these points, see the discussion of sampling with and
without replacement in the chapter on Finite Sampling Models.

Note that the sample mean of our data vector , namely

is the sample proportion of objects of the type of interest. By the central limit theorem, the standard score

has approximately a standard normal distribution and hence is (approximately) a pivot variable for . For a given sample size ,
the distribution of  is closest to normal when  is near  and farthest from normal when  is near 0 or 1 (extreme). Because the
pivot variable is (approximately) normally distributed, the construction of confidence intervals for  in this model is similar to the
construction of confidence intervals for the distribution mean  in the normal model. But of course all of the confidence intervals
so constructed are approximate.

As usual, for , let  denote the quantile of order  for the standard normal distribution. Values of  can be obtained
from the special distribution calculator, or from most statistical software packages.
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Basic Confidence Intervals

For , the following are approximate  confidence sets for :

1. 
2. 
3. 

Proof

From our discussion above,  has approximately a standard normal distribution. Hence by definition of
the quantiles,

1. 
2. 
3. 

Solving the inequalities for  in the numerator of  for each event gives the corresponding confidence
set.

These confidence sets are actually intervals, known as the Wilson intervals, in honor of Edwin Wilson.

The confidence sets for  in (1) are intervals. Let

Then the following have approximate confidecne level  for .

1. The two-sided interval .
2. The upper bound .
3. The lower bound .

Proof

This follows by solving the inequalities in (1) for . For each inequality, we can isolate the square root term, and then square
both sides. This gives quadratic inequalities, which can be solved using the quadratic formula.

As usual, the equal-tailed confidence interval in (a) is not the only two-sided  confidence interval for . We can divide the 
probability between the left and right tails of the standard normal distribution in any way that we please.

For , an approximate two-sided  confidence interval for  is  where  is the
function in (2).

Proof

As in the proof of (1),

Solving for  with the help of the quadratic formula gives the result.

In practice, the equal-tailed  confidence interval in part (a) of (2), obtained by setting , is the one that is always used.
As , the right enpoint converges to the  confidence upper bound in part (b), and as  the left endpoint converges to
the  confidence lower bound in part (c).

Simplified Confidence Intervals

Simplified approximate  confidence intervals for  can be obtained by replacing the distribution mean  by the sample mean 
 in the extreme parts of the inequalities in (1).

α ∈ (0, 1) 1−α p

{p ∈ [0, 1] :M −z(1−α/2) ≤ p ≤M +z(1−α/2) }p(1−p)/n
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For , the following have approximate confidence level  for :

1. The two-sided interval with endpoints .
2. The upper bound .
3. The lower bound .

Proof

As noted, these results follows from the confidence set in (1) by replacing  with  in the expression .

These confidence intervals are known as Wald intervals, in honor of Abraham Wald.. Note that the Wald interval can also be
obtained from the Wilson intervals in (2) by assuming that  is large compared to , so that , , and 

. Note that this interval in (c) is symmetric about the sample proportion  but that the length of the interval, as well as
the center is random. This is the two-sided interval that is normally used.

Use the simulation of the proportion estimation experiment to explore the procedure. Use various values of  and various
confidence levels, sample sizes, and interval types. For each configuration, run the experiment 1000 times and compare the
proportion of successful intervals to the theoretical confidence level.

As always, the equal-tailed interval in (4) is not the only two-sided,  confidence interval.

For , an approximate two-sided  confidence interval for  is

The interval with smallest length is the equal-tail interval with .

Conservative Confidence Intervals

Note that the function  on the interval  is maximized when  and thus the maximum value is . We can
obtain conservative confidence intervals for  from the basic confidence intervals by using this fact.

For , the following have approximate confidence level at least  for :

1. The two-sided interval with endpoints .

2. The upper bound .

3. The lower bound .

Proof

As noted, these results follows from the confidence sets in (1) by replacing  with  in the expression .

Note that the confidence interval in (a) is symmetric about the sample proportion  and that the length of the interval is
deterministic. Of course, the conservative confidence intervals will be larger than the approximate simplified confidence intervals
in (4). The conservative estimate can be used to design the experiment. Recall that the margin of error is the distance between the
sample proportion  and an endpoint of the confidence interval.

A conservative estimate of the sample size  needed to estimate  with confidence  and margin of error  is

where  for the two-sided interval and  for the confidence upper or lower bound.

Proof

With confidence level , the margin of error is . Setting this equal to the prescribed value  and solving gives the

result.
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As always, the equal-tailed interval in (7) is not the only two-sided, conservative,  confidence interval.

For , an approximate two-sided, conservative  confidence interval for  is

The interval with smallest length is the equal-tail interval with .

The Two-Sample Model

Preliminaries

Often we have two underlying Bernoulli distributions, with parameters  and we would like to estimate the difference 
. This problem could arise in the following typical examples:

In a quality control setting, suppose that  is the proportion of defective items produced under one set of manufacturing
conditions while  is the proportion of defectives under a different set of conditions.
In an election, suppose that  is the proportion of voters who favor a particular candidate at one point in the campaign, while 

 is the proportion of voters who favor the candidate at a later point (perhaps after a scandal has erupted).
Suppose that  is the proportion of students who pass a certain standardized test with the usual test preparation methods while 

 is the proportion of students who pass the test with a new set of preparation methods.
Suppose that  is the proportion of unvaccinated persons in a certain population who contract a certain disease, while  is the
proportion of vaccinated person who contract the disease.

Note that several of these examples can be thought of as treatment-control problems. Of course, we could construct interval
estimates  for  and  for  separately, as in the subsections above. But as we noted in the Introduction, if these two intervals
have confidence level , then the product set  has confidence level  for . So if  is our
parameter of interest, we will use a different approach.

Simplified Confidence Intervals

Suppose now that  is a random sample of size  from the Bernoulli distribution with parameter , and 
 is a random sample of size  from the Bernoulli distribution with parameter . We assume that the

samples  and  are independent. Let

denote the sample means (sample proportions) for the samples  and . A natural point estimate for , and the building
block for our interval estimate, is . As noted in the one-sample model, if  is large,  has an approximate normal
distribution with mean  and variance  for . Since the samples are independent, so are the sample means.
Hence  has an approximate normal distribution with mean  and variance . We
now have all the tools we need for a simplified, approximate confidence interval for .

For , the following have approximate confidence level  for :

1. The two-sided interval with endpoints .
2. The lower bound .
3. The upper bound .

Proof

As noted above, if  and  are large,

has approximatle a standard normal distribution, and hence so does

1−α

α, r ∈ (0, 1) 1−α p
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1. . Solving for  gives the two-sided confidence interval.
2. . Solving for  gives the confidence upper bound.
3. . Solving for  gives the confidence lower bound.

As always, the equal-tailed interval in (a) is not the only approximate two-sided  confidence interval.

For , an approximate  confidence set for  is

Proof

As noted in the proof of the previous theorem,

has approximately a standard normal distribution if  and  are large. Hence .
Solving for  gives the two-sided confidence interval.

Conservative Confidence Intervals

Once again,  is maximized when  with maximum value . We can use this to construct approximate
conservative confidence intervals for .

For , the following have approximate confidence level at least  for :

1. The two-sided interval with endpoints .
2. The lower bound .
3. The upper bound .

Proof

These results follow from the previous theorem by replacing  and  each with .

Computational Exercises

In a poll of 1000 registered voters in a certain district, 427 prefer candidate X. Construct the 95% two-sided confidence interval
for the proportion of all registered voters in the district that prefer X.

Answer

A coin is tossed 500 times and results in 302 heads. Construct the 95% confidence lower bound for the probability of heads.
Do you believe that the coin is fair?

Answer

0.579. No, the coin is almost certainly not fair.

A sample of 400 memory chips from a production line are tested, and 30 are defective. Construct the conservative 90% two-
sided confidence interval for the proportion of defective chips.

Answer
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A drug company wants to estimate the proportion of persons who will experience an adverse reaction to a certain new drug.
The company wants a two-sided interval with margin of error 0.03 with 95% confidence. How large should the sample be?

Answer

1068

An advertising agency wants to construct a 99% confidence lower bound for the proportion of dentists who recommend a
certain brand of toothpaste. The margin of error is to be 0.02. How large should the sample be?

Answer

3382

The Buffon trial data set gives the results of 104 repetitions of Buffon's needle experiment. Theoretically, the data should
correspond to Bernoulli trials with , but because real students dropped the needle, the true value of  is unknown.
Construct a 95% confidence interval for . Do you believe that  is the theoretical value?

Answer

. The theoretical value is approximately 0.637, which is not in the confidence interval.

A manufacturing facility has two production lines for a certain item. In a sample of 150 items from line 1, 12 are defective.
From a sample of 130 items from line 2, 10 are defective. Construct the two-sided 95% confidence interval for , where 

 is the proportion of defective items from line , for 

Answer

The vaccine for influenza is tailored each year to match the predicted dominant strain of influenza. Suppose that of 500
unvaccinated persons, 45 contracted the flu in a certain time period. Of 300 vaccinated persons, 20 contracted the flu in the
same time period. Construct the two-sided 99% confidence interval for , where  is the incidence of flu in the
unvaccinated population and  the incidence of flu in the vaccinated population.

This page titled 8.3: Estimation in the Bernoulli Model is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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8.4: Estimation in the Two-Sample Normal Model
        

As we have noted before, the normal distribution is perhaps the most important distribution in the study of mathematical statistics, in part
because of the central limit theorem. As a consequence of this theorem, measured quantities that are subject to numerous small, random
errors will have, at least approximately, normal distributions. Such variables are ubiquitous in statistical experiments, in subjects varying
from the physical and biological sciences to the social sciences.

In this section, we will study estimation problems in the two-sample normal model and in the bivariate normal model. This section parallels
the section on Tests in the Two-Sample Normal Model in the Chapter on Hypothesis Testing.

The Two-Sample Normal Model

Preliminaries

Suppose that  is a random sample of size  from the normal distribution with mean  and standard deviation ,
and that  is a random sample of size  from the normal distribution with mean  and standard deviation . Moreover,
suppose that the samples  and  are independent. Usually, the parameters are unknown, so the parameter space for our vector of
parameters  is .

This type of situation arises frequently when the random variables represent a measurement of interest for the objects of the population, and
the samples correspond to two different treatments. For example, we might be interested in the blood pressure of a certain population of
patients. The  vector records the blood pressures of a control sample, while the  vector records the blood pressures of the sample
receiving a new drug. Similarly, we might be interested in the yield of an acre of corn. The  vector records the yields of a sample receiving
one type of fertilizer, while the  vector records the yields of a sample receiving a different type of fertilizer.

Usually our interest is in a comparison of the parameters (either the means or standard deviations) for the two sampling distributions. In this
section we will construct confidence intervals for the difference of the distribution means  and for the ratio of the distribution
variances . As with previous estimation problems, the construction depends on finding appropriate pivot variables.

For a generic sample  from a distribution with mean , we will use our standard notation for the sample mean and for
the sample variance.

We will need to also recall the special properties of these statistics when the sampling distribution is normal. The special pivot distributions
that will play a fundamental role in this section are the standard normal, the student , and the Fisher  distributions. To construct our
interval estimates we will need the quantiles of these distributions. The quantiles can be computed using the special distribution calculator or
from most mathematical and statistical software packages. Here is the notation we will use:

Let  and let .

1.  denotes the quantile of order  for the standard normal distribution.
2.  denotes the quantile of order  for the student  distribution with  degrees of freedom.
3.  denotes the quantile of order  for the student  distribution with  degrees of freedom in the numerator and  degrees of

freedom in the denominator.

Recall that by symmetry,  and  for  and . On the other hand, there is no simple
relationship between the left and right tail probabilities of the  distribution.

Confidence Intervals for the Difference of the Means with Known Variances

First we will construct confidence intervals for  under the assumption that the distribution variances  and  are known. This is not
always an artificial assumption. As in the one sample normal model, the variances are sometime stable, and hence are at least approximately
known, while the means change under different treatments. First recall the following basic facts:

The difference of the sample means  has the normal distribution with mean  and variance . Hence
the standard score of the difference of the sample means
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has the standard normal distribution. Thus, this variable is a pivotal variable for  when  are known.

The basic confidence interval and upper and lower bound are now easy to construct.

For ,

1.  is a  confidence interval for .

2.  is a  confidence lower bound for .

3.  is a  confidence upper bound for .

Proof

The variable  given above has the standard normal distribution. Hence each of the following events has probability  by
definition of the quantiles:

1. 
2. 
3. 

In each case, solving the inequality for  gives the result.

The two-sided interval in part (a) is the symmetric interval corresponding to  in both tails of the standard normal distribution. As usual,
we can construct more general two-sided intervals by partitioning  between the left and right tails in anyway that we please.

For every , a  confidence interval for  is

1.  gives the symmetric two-sided interval.
2.  gives the interval with the confidence lower bound.
3.  gives the interval with confidence upper bound.

Proof

From the distribution of the pivot variable and the definition of the quantile function,

Solving for  in the inequality gives the confidence interval.

The following theorem gives some basic properties of the length of this interval.

The (deterministic) length of the general two-sided confidence interval is

1.  is a decreasing function of  and a decreasing function of .
2.  is an increasing function of  and an increasing function of 
3.  is an decreasing function of  and hence an increasing function of the confidence level.
4. As a function of ,  decreases and then increases, with minimum value at .

Part (a) means that we can make the estimate more precise by increasing either or both sample sizes. Part (b) means that the estimate
becomes less precise as the variance in either distribution increases. Part (c) we have seen before. All other things being equal, we can
increase the confidence level only at the expense of making the estimate less precise. Part (d) means that the symmetric, equal-tail
confidence interval is the best of the two-sided intervals.
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Confidence Intervals for the Difference of the Means with Unknown Variances

Our next method is a construction of confidence intervals for the difference of the means  without needing to know the standard
deviations  and . However, there is a cost; we will assume that the standard deviations are the same, , but the common value is
unknown. This assumption is reasonable if there is an inherent variability in the measurement variables that does not change even when
different treatments are applied to the objects in the population. We need to recall some basic facts from our study of special properties of
normal samples.

The pooled estimate of the common variance  is

The random variable

has the student  distribution with  degrees of freedom

Note that  is a weighted average of the sample variances, with the degrees of freedom as the weight factors. Note also that  is a
pivot variable for  and so we can construct confidence intervals for  in the usual way.

For ,

1.  is a 

confidence interval for .

2.  is a  confidence lower bound for .

3.  is a  confidence upper bound for .

Proof

The variable  given above has the standard normal distribution. Hence each of the following events has probability  by
definition of the quantiles:

1. 
2. 
3. 

In each case, solving the inequality for  gives the result.

The two-sided interval in part (a) is the symmetric interval corresponding to  in both tails of the student  distribution. As usual, we can
construct more general two-sided intervals by partitioning  between the left and right tails in anyway that we please.

For every , a  confidence interval for  is

1.  gives the symmetric two-sided interval.
2.  gives the interval with the confidence lower bound.
3.  gives the inteval with confidence upper bound.

Proof

From the distribution of the pivot variable and the definition of the quantile function,

Solving for  in the inequality gives the confidence interval.

The next result considers the length of the general two-sided interval.
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The (random) length of the two-sided interval above is

1.  is an decreasing function of  and hence an increasing function of the confidence level.
2. As a function of ,  decreases and then increases, with minimum value at .

As in the case of known variances, part (c) means that all other things being equal, we can increase the confidence level only at the expense
of making the estimate less precise. Part (b) means that the symmetric, equal-tail confidence interval is the best of the two-sided intervals.

Confidence Intervals for the Ratio of the Variances

Our next construction will produce interval estimates for the ratio of the variances  (or by taking square roots, for the ratio of the
standard deviations ). Once again, we need to recall some basic facts from our study of special properties of random samples from the
normal distribution.

The ratio

has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator, and hence
this variable is a pivot variable for .

The pivot variable  can be used to construct confidence intervals for  in the usual way.

For ,

1.  is a  confidence interval for .

2.  is a  confidence lower bound for .

3.  is a  confidence upper bound for .

Proof

The variable  given above has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in
the denominator. Hence each of the following events has probability  by definition of the quantiles:

1. 
2. 
3. 

In each case, solving the inequality for  gives the result.

The two-sided confidence interval in part (a) is the equal-tail confidence interval, and is the one commonly used. But as usual, we can
partition  between the left and right tails of the distribution of the pivot variable in any way that we please.

For every , a  confidence set for  is

1.  gives the equal-tail, two-sided interval.
2.  gives the interval with the confidence lower bound.
3.  gives the inteval with confidence upper bound.

Proof

From the  pivot variable and the definition of the quantile function,

Solving for  in the inequality.
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The length of the general confidence interval is considered next.

The (random) length of the general two-sided confidence interval above is

Assuming that  and ,

1.  is an decreasing function of  and hence an increasing function of the confidence level.
2. 

3. 

Proof

Parts (b) and (c) follow since  as the  distribution with  degrees of freedom in the numerator and  degrees of

freedom in the denominator.

Optimally, we might want to choose  so that  is minimized. However, this is difficult computationally, and fortunately the equal-tail
interval with  is not too far from optimal when the sample sizes  and  are large.

Estimation in the Bivariate Normal Model

In this subsection, we consider a model that is superficially similar to the two-sample normal model, but is actually much simpler. Suppose
that

is a random sample of size  from the bivariate normal distribution of a random vector , with , , , 
, and .

Thus, instead of a pair of samples, we have a sample of pairs. This type of model frequently arises in before and after experiments, in which
a measurement of interest is recorded for a sample of  objects from the population, both before and after a treatment. For example, we
could record the blood pressure of a sample of  patients, before and after the administration of a certain drug. The critical point is that in
this model,  and  are measurements made on the same underlying object in the sample. As with the two-sample normal model, the
interest is usually in estimating the difference of the means.

We will use our usual notation for the sample means and variances of  and . Recall also that
the sample covariance of , is

(not to be confused with the pooled estimate of the standard deviation in the two sample model).

The vector of differences  is a random sample of size  from the distribution of ,
which is normal with

1. 
2. 

The sample mean and variance of the sample of differences are given by

1. 
2. 

Thus, the sample of differences  fits the normal model for a single variable. The section on Estimation in the Normal Model could be
used to obtain confidence sets and intervals for the parameters .

In the setting of this subsection, suppose that  and  are independent. Mathematically this
fits both models—the two-sample normal model and the bivariate normal model. Which procedure would work better for estimating the
difference of means ?
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1. If the standard deviations  and  are known.
2. If the standard deviations  and  are unknown.

Answer
1. The two methods are equivalent.
2. The bivariate normal model works better.

Although the setting in the last problem fits both models mathematically, only one model would make sense in a real problem. Again, the
critical point is whether  makes sense as a pair of random variables (measurements) corresponding to a given object in the sample.

Computational Exercises

A new drug is being developed to reduce a certain blood chemical. A sample of 36 patients are given a placebo while a sample of 49
patients are given the drug. Let  denote the measurement for a patient given the placebo and  the measurement for a patient given
the drug (in mg). The statistics are , , , .

1. Compute the 90% confidence interval for .
2. Assuming that , compute the 90% confidence interval for .
3. Based on (a), is the assumption that  reasonable?
4. Based on (b), is the drug effective?

Answer
1. 
2. 
3. Perhaps not.
4. Yes

A company claims that an herbal supplement improves intelligence. A sample of 25 persons are given a standard IQ test before and after
taking the supplement. Let  denote the IQ of a subject before taking the supplement and  the IQ of the subject after the supplement.
The before and after statistics are , , , , . Do you believe the company's
claim?

Answer

A 90% confidence lower bound for the difference in IQ is 2.675. There may be a vary small increase.

In Fisher's iris data, let  denote consider the petal length of a Versicolor iris and  the petal length of a Virginica iris.

1. Compute the 90% confidence interval for .
2. Assuming that , compute the 90% confidence interval for .
3. Based on (a), is the assumption that  reasonable?

Answer
1. 
2. 
3. Yes

A plant has two machines that produce a circular rod whose diameter (in cm) is critical. Let  denote the diameter of a rod from the
first machine and  the diameter of a rod from the second machine. A sample of 100 rods from the first machine as mean 10.3 and
standard deviation 1.2. A sample of 100 rods from the second machine has mean 9.8 and standard deviation 1.6.

1. Compute the 90% confidence interval for .
2. Assuming that , compute the 90% confidence interval for .
3. Based on (a), is the assumption that  reasonable?

Answer
1. 
2. 
3. Perhaps not.
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8.5: Bayesian Set Estimation
        

Basic Theory

As usual, our starting point is a random experiment with an underlying sample space and a probability measure . In the basic
statistical model, we have an observable random variable  taking values in a set . In general,  can have quite a complicated
structure. For example, if the experiment is to sample  objects from a population and record various measurements of interest, then

where  is the vector of measurements for the th object.

Suppose also that the distribution of  depends on a parameter  taking values in a parameter space . The parameter may also be
vector valued, in which case  for some  and the parameter has the form .

The Bayesian Formulation

Recall that in Bayesian analysis, the unknown parameter  is treated as a random variable. Specifically, suppose that the conditional
probability density function of the data vector  given  is denoted  for . Moreover, the parameter  is given a
prior distribution with probability density function  on . (The prior distribution is often subjective, and is chosen to reflect our
knowledge, if any, of the parameter.) The joint probability density function of the data vector and the parameter is

Next, the (unconditional) probability density function of  is the function  given by

if the parameter has a discrete distribution, or by

if the parameter has a continuous distribution. Finally, by Bayes' theorem, the posterior probability density function of  given  is

In some cases, we can recognize the posterior distribution from the functional form of  without having to actually
compute the normalizing constant , and thus reducing the computational burden significantly. In particular, this is often the case
when we have a conjugate parametric family of distributions of . Recall that this means that when the prior distribution of  belongs
to the family, so does the posterior distribution given .

Confidence Sets

Now let  be a confidence set (that is, a subset of the parameter space that depends on the data variable  but no unknown
parameters). One possible definition of a  level Bayesian confidence set requires that

In this definition, only  is random and thus the probability above is computed using the posterior probability density function 
. Another possible definition requires that

In this definition,  and  are both random, and so the probability above would be computed using the joint probability density
function . Whatever the philosophical arguments may be, the first definition is certainly the easier one from a
computational viewpoint, and hence is the one most commonly used.

Let us compare the classical and Bayesian approaches. In the classical approach, the parameter  is deterministic, but unknown. Before
the data are collected, the confidence set  (which is random by virtue of ) will contain the parameter with probability .
After the data are collected, the computed confidence set  either contains  or does not, and we will usually never know which. By
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contrast in a Bayesian confidence set, the random parameter  falls in the computed, deterministic confidence set  with probability
.

Real Parameters

Suppose that  is real valued, so that . For , we can compute the  level Bayesian confidence interval as 
 where  is the quantile of order  for the posterior distribution of  given . As in past sections, 

is the fraction of  in the right tail of the posterior distribution and  is the fraction of  in the left tail of the posterior distribution.
As usual,  gives the symmetric, two-sided confidence interval; letting  gives the confidence lower bound; and letting 
gives the confidence upper bound.

Random Samples

In terms of our data vector  the most important special case arises when we have a basic variable  with values in a set , and given 
,  is a random sample of size  from . That is, given ,  is a sequence of independent, identically

distributed variables, each with the same distribution as  given . Thus  and if  has conditional probability density function 
, then

Applications

The Bernoulli Distribution

Suppose that  is a random sample of size  from the Bernoulli distribution with unknown success parameter 
. In the usual language of reliability,  means success on trial  and  means failure on trial . The distribution is

named for Jacob Bernoulli. Recall that the Bernoulli distribution has probability density function (given )

Note that the number of successes in the  trials is . Given , random variable  has the binomial distribution with
parameters  and .

In our previous discussion of Bayesian estimation, we showed that the beta distribution is conjugate for . Specifically, if the prior
distribution of  is beta with left parameter  and right parameter , then the posterior distribution of  given  is beta with
left parameter  and right parameter ; the left parameter is increased by the number of successes and the right
parameter by the number of failure. It follows that a  level Bayesian confidence interval for  is  where 

 is the quantile of order  for the posterior beta distribution. In the special case  the prior distribution is uniform on 
 and reflects a lack of previous knowledge about .

Suppose that we have a coin with an unknown probability  of heads, and that we give  the uniform prior, reflecting our lack of
knowledge about . We then toss the coin 50 times, observing 30 heads.

1. Find the posterior distribution of  given the data.
2. Construct the 95% Bayesian confidence interval.
3. Construct the classical Wald confidence interval at the 95% level.

Answer
1. Beta with left parameter 31 and right parameter 21.
2. 
3. 

The Poisson Distribution

Suppose that  is a random sample of size  from the Poisson distribution with parameter . Recall
that the Poisson distribution is often used to model the number of “random points” in a region of time or space and is studied in more
detail in the chapter on the Poisson Process. The distribution is named for the inimitable Simeon Poisson and given , has probability
density function
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As usual, we will denote the sum of the sample values by . Given , random variable  also has a Poisson distribution,
but with parameter .

In our previous discussion of Bayesian estimation, we showed that the gamma distribution is conjugate for . Specifically, if the prior
distribution of  is gamma with shape parameter  and rate parameter  (so that the scale parameter is ), then the posterior
distribution of  given  is gamma with shape parameter  and rate parameter . It follows that a  level Bayesian
confidence interval for  is  where  is the quantile of order  for the posterior gamma distribution.

Consider the alpha emissions data, which we believe come from a Poisson distribution with unknown parameter . Suppose that a
priori, we believe that  is about 5, so we give  a prior gamma distribution with shape parameter  and rate parameter 1. (Thus
the mean is 5 and the standard deviation .)

1. Find the posterior distribution of  given the data.
2. Construct the 95% Bayesian confidence interval.
3. Construct the classical  confidence interval at the 95% level.

Answer
1. Gamma with shape parameter 10104 and rate parameter 1208.
2. 
3. 

The Normal Distribution

Suppose that  is a random sample of size  from the normal distribution with unknown mean  and known
variance . Of course, the normal distribution plays an especially important role in statistics, in part because of the central
limit theorem. The normal distribution is widely used to model physical quantities subject to numerous small, random errors. Recall
that the normal probability density function (given the parameters) is

We denote the sum of the sample values by . Recall that  also has a normal distribution (given  and ), but with mean 
 and variance .

In our previous discussion of Bayesian estimation, we showed that the normal distribution is conjugate for  (with  known).
Specifically, if the prior distribution of  is normal with mean  and standard deviation , then the posterior distribution
of  given  is also normal, with

It follows that a  level Bayesian confidence interval for  is  where  is the quantile of order  for the
posterior normal distribution. An interesting special case is when , so that the standard deviation of the prior distribution of  is
the same as the standard deviation of the sampling distribution. In this case, the posterior mean is  and the posterior
variance is 

The length of a certain machined part is supposed to be 10 centimeters but due to imperfections in the manufacturing process, the
actual length is a normally distributed with mean  and variance . The variance is due to inherent factors in the process, which
remain fairly stable over time. From historical data, it is known that . On the other hand,  may be set by adjusting various
parameters in the process and hence may change to an unknown value fairly frequently. Thus, suppose that we give  with a prior
normal distribution with mean 10 and standard deviation 0.03 A sample of 100 parts has mean 10.2.

1. Find the posterior distribution of  given the data.
2. Construct the 95% Bayesian confidence interval.
3. Construct the classical  confidence interval at the 95% level.

Answer
1. Normal with mean 10.198 and standard deviation 0.0299.
2. 
3. 
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The Beta Distribution

Suppose that  is a random sample of size  from the beta distribution with unknown left shape parameter 
 and right shape parameter . The beta distribution is widely used to model random proportions and probabilities and

other variables that take values in bounded intervals. Recall that the probability density function (given ) is

We denote the product of the sample values by .

In our previous discussion of Bayesian estimation, we showed that the gamma distribution is conjugate for . Specifically, if the prior
distribution of  is gamma with shape parameter  and rate parameter , then the posterior distribution of  given  is also
gamma, with shape parameter  and rate parameter . It follows that a  level Bayesian confidence interval for  is 

 where  is the quantile of order  for the posterior gamma distribution. In the special case that , the
prior distribution of  is exponential with rate parameter .

Suppose that the resistance of an electrical component (in Ohms) has the beta distribution with unknown left parameter  and right
parameter . We believe that  may be about 10, so we give  the prior gamma distribution with shape parameter 10 and rate
parameter 1. We sample 20 components and observe the data

1. Find the posterior distribution of .
2. Construct the 95% Bayesian confidence interval for .

Answer
1. Gamma with shape parameter 30 and rate parameter 2.424.
2. 

The Pareto Distribution

Suppose that  is a random sample of size  from the Pareto distribution with shape parameter  and
scale parameter . The Pareto distribution is used to model certain financial variables and other variables with heavy-tailed
distributions, and is named for Vilfredo Pareto. Recall that the probability density function (given ) is

We denote the product of the sample values by .

In our previous discussion of Bayesian estimation, we showed that the gamma distribution is conjugate for . Specifically, if the prior
distribution of  is gamma with shape parameter  and rate parameter , then the posterior distribution of  given  is also
gamma, with shape parameter  and rate parameter . It follows that a  level Bayesian confidence interval for  is 

 where  is the quantile of order  for the posterior gamma distribution. In the special case that , the
prior distribution of  is exponential with rate parameter .

Suppose that a financial variable has the Pareto distribution with unknown shape parameter  and scale parameter . We
believe that  may be about 4, so we give  the prior gamma distribution with shape parameter 4 and rate parameter 1. A random
sample of size 20 from the variable gives the data

1. Find the posterior distribution of .
2. Construct the 95% Bayesian confidence interval for .

Answer
1. Gamma with shape parameter 24 and rate parameter 5.223.
2. 

This page titled 8.5: Bayesian Set Estimation is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

9: Hypothesis Testing
Hypothesis testing refers to the process of choosing between competing hypotheses about a probability distribution, based on
observed data from the distribution. It is a core topic in mathematical statistics, and indeed is a fundamental part of the language of
statistics. In this chapter, we study the basics of hypothesis testing, and explore hypothesis tests in some of the most important
parametric models: the normal model and the Bernoulli model.

9.1: Introduction to Hypothesis Testing
9.2: Tests in the Normal Model
9.3: Tests in the Bernoulli Model
9.4: Tests in the Two-Sample Normal Model
9.5: Likelihood Ratio Tests
9.6: Chi-Square Tests

This page titled 9: Hypothesis Testing is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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9.1: Introduction to Hypothesis Testing
       

Basic Theory

Preliminaries

As usual, our starting point is a random experiment with an underlying sample space and a probability measure . In the basic
statistical model, we have an observable random variable  taking values in a set . In general,  can have quite a complicated
structure. For example, if the experiment is to sample  objects from a population and record various measurements of interest,
then

where  is the vector of measurements for the th object. The most important special case occurs when  are
independent and identically distributed. In this case, we have a random sample of size  from the common distribution.

The purpose of this section is to define and discuss the basic concepts of statistical hypothesis testing. Collectively, these concepts
are sometimes referred to as the Neyman-Pearson framework, in honor of Jerzy Neyman and Egon Pearson, who first formalized
them.

Hypotheses

A statistical hypothesis is a statement about the distribution of . Equivalently, a statistical hypothesis specifies a set of
possible distributions of : the set of distributions for which the statement is true. A hypothesis that specifies a single
distribution for  is called simple; a hypothesis that specifies more than one distribution for  is called composite.

In hypothesis testing, the goal is to see if there is sufficient statistical evidence to reject a presumed null hypothesis in favor of a
conjectured alternative hypothesis. The null hypothesis is usually denoted  while the alternative hypothesis is usually denoted 

.

An hypothesis test is a statistical decision; the conclusion will either be to reject the null hypothesis in favor of the alternative, or to
fail to reject the null hypothesis. The decision that we make must, of course, be based on the observed value  of the data vector 

. Thus, we will find an appropriate subset  of the sample space  and reject  if and only if . The set  is known as
the rejection region or the critical region. Note the asymmetry between the null and alternative hypotheses. This asymmetry is due
to the fact that we assume the null hypothesis, in a sense, and then see if there is sufficient evidence in  to overturn this
assumption in favor of the alternative.

An hypothesis test is a statistical analogy to proof by contradiction, in a sense. Suppose for a moment that  is a statement in a
mathematical theory and that  is its negation. One way that we can prove  is to assume  and work our way logically to a
contradiction. In an hypothesis test, we don't “prove” anything of course, but there are similarities. We assume  and then see if
the data  are sufficiently at odds with that assumption that we feel justified in rejecting  in favor of .

Often, the critical region is defined in terms of a statistic , known as a test statistic, where  is a function from  into another
set . We find an appropriate rejection region  and reject  when the observed value . Thus, the rejection
region in  is then . As usual, the use of a statistic often allows significant data reduction
when the dimension of the test statistic is much smaller than the dimension of the data vector.

Errors

The ultimate decision may be correct or may be in error. There are two types of errors, depending on which of the hypotheses is
actually true.

Types of errors:

1. A type 1 error is rejecting the null hypothesis  when  is true.
2. A type 2 error is failing to reject the null hypothesis  when the alternative hypothesis  is true.

Similarly, there are two ways to make a correct decision: we could reject  when  is true or we could fail to reject  when 
 is true. The possibilities are summarized in the following table:
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Hypothesis Test

State | Decision Fail to reject Reject 

 True Correct Type 1 error

 True Type 2 error Correct

Of course, when we observe  and make our decision, either we will have made the correct decision or we will have
committed an error, and usually we will never know which of these events has occurred. Prior to gathering the data, however, we
can consider the probabilities of the various errors.

If  is true (that is, the distribution of  is specified by ), then  is the probability of a type 1 error for this
distribution. If  is composite, then  specifies a variety of different distributions for  and thus there is a set of type 1 error
probabilities.

The maximum probability of a type 1 error, over the set of distributions specified by , is the significance level of the test or
the size of the critical region.

The significance level is often denoted by . Usually, the rejection region is constructed so that the significance level is a
prescribed, small value (typically 0.1, 0.05, 0.01).

If  is true (that is, the distribution of  is specified by ), then  is the probability of a type 2 error for this
distribution. Again, if  is composite then  specifies a variety of different distributions for , and thus there will be a set of
type 2 error probabilities. Generally, there is a tradeoff between the type 1 and type 2 error probabilities. If we reduce the
probability of a type 1 error, by making the rejection region  smaller, we necessarily increase the probability of a type 2 error
because the complementary region  is larger.

The extreme cases can give us some insight. First consider the decision rule in which we never reject , regardless of the
evidence . This corresponds to the rejection region . A type 1 error is impossible, so the significance level is 0. On the
other hand, the probability of a type 2 error is 1 for any distribution defined by . At the other extreme, consider the decision rule
in which we always rejects  regardless of the evidence . This corresponds to the rejection region . A type 2 error is
impossible, but now the probability of a type 1 error is 1 for any distribution defined by . In between these two worthless tests
are meaningful tests that take the evidence  into account.

Power

If  is true, so that the distribution of  is specified by , then , the probability of rejecting  is the power of
the test for that distribution.

Thus the power of the test for a distribution specified by  is the probability of making the correct decision.

Suppose that we have two tests, corresponding to rejection regions  and , respectively, each having significance level .
The test with region  is uniformly more powerful than the test with region  if

Naturally, in this case, we would prefer the first test. Often, however, two tests will not be uniformly ordered; one test will be more
powerful for some distributions specified by  while the other test will be more powerful for other distributions specified by .

If a test has significance level  and is uniformly more powerful than any other test with significance level , then the test is
said to be a uniformly most powerful test at level .

Clearly a uniformly most powerful test is the best we can do.

-value

In most cases, we have a general procedure that allows us to construct a test (that is, a rejection region ) for any given
significance level . Typically,  decreases (in the subset sense) as  decreases.
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The -value of the observed value  of , denoted , is defined to be the smallest  for which ; that is, the
smallest significance level for which  is rejected, given .

Knowing  allows us to test  at any significance level for the given data : If  then we would reject  at
significance level ; if  then we fail to reject  at significance level . Note that  is a statistic. Informally, 
can often be thought of as the probability of an outcome “as or more extreme” than the observed value , where extreme is
interpreted relative to the null hypothesis .

Analogy with Justice Systems

There is a helpful analogy between statistical hypothesis testing and the criminal justice system in the US and various other
countries. Consider a person charged with a crime. The presumed null hypothesis is that the person is innocent of the crime; the
conjectured alternative hypothesis is that the person is guilty of the crime. The test of the hypotheses is a trial with evidence
presented by both sides playing the role of the data. After considering the evidence, the jury delivers the decision as either not
guilty or guilty. Note that innocent is not a possible verdict of the jury, because it is not the point of the trial to prove the person
innocent. Rather, the point of the trial is to see whether there is sufficient evidence to overturn the null hypothesis that the person is
innocent in favor of the alternative hypothesis of that the person is guilty. A type 1 error is convicting a person who is innocent; a
type 2 error is acquitting a person who is guilty. Generally, a type 1 error is considered the more serious of the two possible errors,
so in an attempt to hold the chance of a type 1 error to a very low level, the standard for conviction in serious criminal cases is
beyond a reasonable doubt.

Tests of an Unknown Parameter

Hypothesis testing is a very general concept, but an important special class occurs when the distribution of the data variable 
depends on a parameter  taking values in a parameter space . The parameter may be vector-valued, so that 
and  for some . The hypotheses generally take the form

where  is a prescribed subset of the parameter space . In this setting, the probabilities of making an error or a correct decision
depend on the true value of . If  is the rejection region, then the power function  is given by

The power function gives a lot of information about the test.

The power function satisfies the following properties:

1.  is the probability of a type 1 error when .
2.  is the significance level of the test.
3.  is the probability of a type 2 error when .
4.  is the power of the test when .

If we have two tests, we can compare them by means of their power functions.

Suppose that we have two tests, corresponding to rejection regions  and , respectively, each having significance level .
The test with rejection region  is uniformly more powerful than the test with rejection region  if  for all 

.

Most hypothesis tests of an unknown real parameter  fall into three special cases:

Suppose that  is a real parameter and  a specified value. The tests below are respectively the two-sided test, the left-
tailed test, and the right-tailed test.
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Thus the tests are named after the conjectured alternative. Of course, there may be other unknown parameters besides  (known as
nuisance parameters).

Equivalence Between Hypothesis Test and Confidence Sets

There is an equivalence between hypothesis tests and confidence sets for a parameter .

Suppose that  is a  level confidence set for . The following test has significance level  for the hypothesis 
 versus : Reject  if and only if 

Proof

By definition, . Hence if  is true so that , then the probability of a type 1 error is 
.

Equivalently, we fail to reject  at significance level  if and only if  is in the corresponding  level confidence set. In
particular, this equivalence applies to interval estimates of a real parameter  and the common tests for  given above.

In each case below, the confidence interval has confidence level  and the test has significance level .

1. Suppose that  is a two-sided confidence interval for . Reject  versus  if and only if 
 or .

2. Suppose that  is a confidence lower bound for . Reject  versus  if and only if .
3. Suppose that  is a confidence upper bound for . Reject  versus  if and only if .

Pivot Variables and Test Statistics

Recall that confidence sets of an unknown parameter  are often constructed through a pivot variable, that is, a random variable 
 that depends on the data vector  and the parameter , but whose distribution does not depend on  and is known. In

this case, a natural test statistic for the basic tests given above is .

This page titled 9.1: Introduction to Hypothesis Testing is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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9.2: Tests in the Normal Model
       

Basic Theory

The Normal Model

The normal distribution is perhaps the most important distribution in the study of mathematical statistics, in part because of the
central limit theorem. As a consequence of this theorem, a measured quantity that is subject to numerous small, random errors will
have, at least approximately, a normal distribution. Such variables are ubiquitous in statistical experiments, in subjects varying
from the physical and biological sciences to the social sciences.

So in this section, we assume that  is a random sample from the normal distribution with mean  and
standard deviation . Our goal in this section is to to construct hypothesis tests for  and ; these are among of the most important
special cases of hypothesis testing. This section parallels the section on Estimation in the Normal Model in the chapter on Set
Estimation, and in particular, the duality between interval estimation and hypothesis testing will play an important role. But first we
need to review some basic facts that will be critical for our analysis.

Recall that the sample mean  and sample variance  are

From our study of point estimation, recall that  is an unbiased and consistent estimator of  while  is an unbiased and
consistent estimator of . From these basic statistics we can construct the test statistics that will be used to construct our
hypothesis tests. The following results were established in the section on Special Properties of the Normal Distribution.

Define

1.  has the standard normal distribution.
2.  has the student  distribution with  degrees of freedom.
3.  has the chi-square distribution with  degrees of freedom.
4.  and  are independent.

It follows that each of these random variables is a pivot variable for  since the distributions do not depend on the parameters,
but the variables themselves functionally depend on one or both parameters. The pivot variables will lead to natural test statistics
that can then be used to perform the hypothesis tests of the parameters. To construct our tests, we will need quantiles of these
standard distributions. The quantiles can be computed using the special distribution calculator or from most mathematical and
statistical software packages. Here is the notation we will use:

Let  and .

1.  denotes the quantile of order  for the standard normal distribution.
2.  denotes the quantile of order  for the student  distribution with  degrees of freedom.
3.  denotes the quantile of order  for the chi-square distribution with  degrees of freedom

Since the standard normal and student  distributions are symmetric about 0, it follows that  and 
 for  and . On the other hand, the chi-square distribution is not symmetric.

Tests for the Mean with Known Standard Deviation

For our first discussion, we assume that the distribution mean  is unknown but the standard deviation  is known. This is not
always an artificial assumption. There are often situations where  is stable over time, and hence is at least approximately known,
while  changes because of different “treatments”. Examples are given in the computational exercises below.
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For a conjectured , define the test statistic

1. If  then  has the standard normal distribution.
2. If  then  has the normal distribution with mean  and variance 1.

So in case (b),  can be viewed as a non-centrality parameter. The graph of the probability density function of  is like that of

the standard normal probability density function, but shifted to the right or left by the non-centrality parameter, depending on
whether  or .

For , each of the following tests has significance level :

1. Reject  versus  if and only if  or  if and only if 
 or .

2. Reject  versus  if and only if  if and only if .

3. Reject  versus  if and only if  if and only if .

Proof

In part (a),  is a simple hypothesis, and under ,  has the standard normal distribution. So  is probability of falsely
rejecting  by definition of the quantiles. In parts (b) and (c),  has a non-central normal distribution under  as discussed
above. So if  is true, the the maximum type 1 error probability  occurs when . The decision rules in terms of 
are equivalent to the corresponding ones in terms of  by simple algebra.

Part (a) is the standard two-sided test, while (b) is the right-tailed test and (c) is the left-tailed test. Note that in each case, the
hypothesis test is the dual of the corresponding interval estimate constructed in the section on Estimation in the Normal Model.

For each of the tests above, we fail to reject  at significance level  if and only if  is in the corresponding 
confidence interval, that is

1. 

2. 

3. 

Proof

This follows from the previous result. In each case, we start with the inequality that corresponds to not rejecting  and solve
for .

The two-sided test in (a) corresponds to  in each tail of the distribution of the test statistic , under . This set is said to be
unbiased. But of course we can construct other biased tests by partitioning the confidence level  between the left and right tails in
a non-symmetric way.

For every , the following test has significance level : Reject  versus  if and only if 
 or .

1.  gives the symmetric, unbiased test.
2.  gives the left-tailed test.
3.  gives the right-tailed test.

Proof

As before  is a simple hypothesis, and if  is true,  has the standard normal distribution. So the probability of falsely
rejecting  is  by definition of the quantiles. Parts (a)–(c) follow from properties of the standard normal quantile function.

The -value of these test can be computed in terms of the standard normal distribution function .
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The -values of the standard tests above are respectively

1. 
2. 
3. 

Recall that the power function of a test of a parameter is the probability of rejecting the null hypothesis, as a function of the true
value of the parameter. Our next series of results will explore the power functions of the tests above.

The power function of the general two-sided test above is given by

1.  is decreasing on  and increasing on  where .
2. .
3.  as  and  as .
4. If  then  is symmetric about  (and ).
5. As  increases,  increases if  and decreases if .

So by varying , we can make the test more powerful for some values of , but only at the expense of making the test less powerful
for other values of .

The power function of the left-tailed test above is given by

1.  is increasing on .
2. .
3.  as  and  as .

The power function of the right-tailed test above, is given by

1.  is decreasing on .
2. .
3.  as  and  as .

For any of the three tests in above , increasing the sample size  or decreasing the standard deviation  results in a uniformly
more powerful test.

In the mean test experiment, select the normal test statistic and select the normal sampling distribution with standard deviation 
, significance level , sample size , and . Run the experiment 1000 times for several values of the

true distribution mean . For each value of , note the relative frequency of the event that the null hypothesis is rejected.
Sketch the empirical power function.

In the mean estimate experiment, select the normal pivot variable and select the normal distribution with  and standard
deviation , confidence level , and sample size . For each of the three types of confidence intervals,
run the experiment 20 times. State the corresponding hypotheses and significance level, and for each run, give the set of  for
which the null hypothesis would be rejected.

In many cases, the first step is to design the experiment so that the significance level is  and so that the test has a given power 
for a given alternative .
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For either of the one-sided tests in above, the sample size  needed for a test with significance level  and power  for the
alternative  is

Proof

This follows from setting the power function equal to  and solving for 

For the unbiased, two-sided test, the sample size  needed for a test with significance level  and power  for the alternative 
 is approximately

Proof

In the power function for the two-sided test given above, we can neglect the first term if  and neglect the second term
if .

Tests of the Mean with Unknown Standard Deviation

For our next discussion, we construct tests of  without requiring the assumption that  is known. And in applications of course, 
is usually unknown.

For a conjectured , define the test statistic

1. If , the statistic  has the student  distribution with  degrees of freedom.
2. If  then  has a non-central  distribution with  degrees of freedom and non-centrality parameter .

In case (b), the graph of the probability density function of  is much (but not exactly) the same as that of the ordinary 
distribution with  degrees of freedom, but shifted to the right or left by the non-centrality parameter, depending on whether 

 or .

For , each of the following tests has significance level :

1. Reject  versus  if and only if  or  if and only if 
 or .

2. Reject  versus  if and only if  if and only if .

3. Reject  versus  if and only if  if and only if .

Proof

In part (a),  has the chi-square distribution with  degrees of freedom under . So if  is true, the probability of
falsely rejecting  is  by definition of the quantiles. In parts (b) and (c),  has a non-central  distribution with 
degrees of freedom under , as discussed above. Hence if  is true, the maximum type 1 error probability  occurs when 

. The decision rules in terms of  are equivalent to the corresponding ones in terms of  by simple algebra.

Part (a) is the standard two-sided test, while (b) is the right-tailed test and (c) is the left-tailed test. Note that in each case, the
hypothesis test is the dual of the corresponding interval estimate constructed in the section on Estimation in the Normal Model.

For each of the tests above, we fail to reject  at significance level  if and only if  is in the corresponding 
confidence interval.
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2. 

3. 

Proof

This follows from the previous result. In each case, we start with the inequality that corresponds to not rejecting  and then
solve for .

The two-sided test in (a) corresponds to  in each tail of the distribution of the test statistic , under . This set is said to be
unbiased. But of course we can construct other biased tests by partitioning the confidence level  between the left and right tails in
a non-symmetric way.

For every , the following test has significance level : Reject  versus  if and only if 
 or  if and only if  or .

1.  gives the symmetric, unbiased test.
2.  gives the left-tailed test.
3.  gives the right-tailed test.

Proof

Once again,  is a simple hypothesis, and under  the test statistic  has the student  distribution with  degrees of
freedom. So if  is true, the probability of falsely rejecting  is  by definition of the quantiles. Parts (a)–(c) follow from
properties of the quantile function.

The -value of these test can be computed in terms of the distribution function  of the -distribution with  degrees of
freedom.

The -values of the standard tests above are respectively

1. 
2. 
3. 

In the mean test experiment, select the student test statistic and select the normal sampling distribution with standard deviation 
, significance level , sample size , and . Run the experiment 1000 times for several values of the

true distribution mean . For each value of , note the relative frequency of the event that the null hypothesis is rejected.
Sketch the empirical power function.

In the mean estimate experiment, select the student pivot variable and select the normal sampling distribution with mean 0 and
standard deviation 2. Select confidence level 0.90 and sample size 10. For each of the three types of intervals, run the
experiment 20 times. State the corresponding hypotheses and significance level, and for each run, give the set of  for which
the null hypothesis would be rejected.

The power function for the  tests above can be computed explicitly in terms of the non-central  distribution function.
Qualitatively, the graphs of the power functions are similar to the case when  is known, given above two-sided, left-tailed, and
right-tailed cases.

If an upper bound  on the standard deviation  is known, then conservative estimates on the sample size needed for a given
confidence level and a given margin of error can be obtained using the methods for the normal pivot variable, in the two-sided and
one-sided cases.

Tests of the Standard Deviation

For our next discussion, we will construct hypothesis tests for the distribution standard deviation . So our assumption is that  is
unknown, and of course almost always,  would be unknown as well.

For a conjectured value , define the test statistic
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1. If , then  has the chi-square distribution with  degrees of freedom.
2. If  then  has the gamma distribution with shape parameter  and scale parameter .

Recall that the ordinary chi-square distribution with  degrees of freedom is the gamma distribution with shape parameter 
 and scale parameter . So in case (b), the ordinary chi-square distribution is scaled by . In particular, the scale

factor is greater than 1 if  and less than 1 if .

For every , the following test has significance level :

1. Reject  versus  if and only if  or  if and only if 

 or 

2. Reject  versus  if and only if  if and only if 

3. Reject  versus  if and only if  if and only if 

Proof

The logic is largely the same as with our other hypothesis test. In part (a),  is a simple hypothesis, and under , the test
statistic  has the chi-square distribution with  degrees of freedom. So if  is true, the probability of falsely rejecting 

 is  by definition of the quantiles. In parts (b) and (c),  has the more general gamma distribution under , as discussed
above. If  is true, the maximum type 1 error probability is  and occurs when .

Part (a) is the unbiased, two-sided test that corresponds to  in each tail of the chi-square distribution of the test statistic ,
under . Part (b) is the left-tailed test and part (c) is the right-tailed test. Once again, we have a duality between the hypothesis
tests and the interval estimates constructed in the section on Estimation in the Normal Model.

For each of the tests in above, we fail to reject  at significance level  if and only if  is in the corresponding 
confidence interval. That is

1. 

2. 

3. 

Proof

This follows from the previous result. In each case, we start with the inequality that corresponds to not rejecting  and then
solve for .

As before, we can construct more general two-sided tests by partitioning the significance level  between the left and right tails of
the chi-square distribution in an arbitrary way.

For every , the following test has significance level : Reject  versus  if and only if 

 or  if and only if  or .

1.  gives the equal-tail test.
2.  gives the left-tail test.
3.  gives the right-tail test.

Proof

As before,  is a simple hypothesis, and under  the test statistic  has the chi-square distribution with  degrees of
freedom. So if  is true, the probability of falsely rejecting  is  by definition of the quantiles. Parts (a)–(c) follow from
properties of the quantile function.
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Recall again that the power function of a test of a parameter is the probability of rejecting the null hypothesis, as a function of the
true value of the parameter. The power functions of the tests for  can be expressed in terms of the distribution function  of
the chi-square distribution with  degrees of freedom.

The power function of the general two-sided test above is given by the following formula, and satisfies the given properties:

1.  is decreasing on  and increasing on .
2. .
3.  as  and  as .

The power function of the left-tailed test in above is given by the following formula, and satisfies the given properties:

1.  is increasing on .
2. .
3.  as  and  as .

The power function for the right-tailed test above is given by the following formula, and satisfies the given properties:

1.  is decreasing on .
2. .
3.  as  and  as  and as .

In the variance test experiment, select the normal distribution with mean 0, and select significance level 0.1, sample size 10,
and test standard deviation 1.0. For various values of the true standard deviation, run the simulation 1000 times. Record the
relative frequency of rejecting the null hypothesis and plot the empirical power curve.

1. Two-sided test
2. Left-tailed test
3. Right-tailed test

In the variance estimate experiment, select the normal distribution with mean 0 and standard deviation 2, and select confidence
level 0.90 and sample size 10. Run the experiment 20 times. State the corresponding hypotheses and significance level, and for
each run, give the set of test standard deviations for which the null hypothesis would be rejected.

1. Two-sided confidence interval
2. Confidence lower bound
3. Confidence upper bound

Exercises

Robustness

The primary assumption that we made is that the underlying sampling distribution is normal. Of course, in real statistical problems,
we are unlikely to know much about the sampling distribution, let alone whether or not it is normal. Suppose in fact that the
underlying distribution is not normal. When the sample size  is relatively large, the distribution of the sample mean will still be
approximately normal by the central limit theorem, and thus our tests of the mean  should still be approximately valid. On the
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other hand, tests of the variance  are less robust to deviations form the assumption of normality. The following exercises explore
these ideas.

In the mean test experiment, select the gamma distribution with shape parameter 1 and scale parameter 1. For the three
different tests and for various significance levels, sample sizes, and values of , run the experiment 1000 times. For each
configuration, note the relative frequency of rejecting . When  is true, compare the relative frequency with the
significance level.

In the mean test experiment, select the uniform distribution on . For the three different tests and for various significance
levels, sample sizes, and values of , run the experiment 1000 times. For each configuration, note the relative frequency of
rejecting . When  is true, compare the relative frequency with the significance level.

How large  needs to be for the testing procedure to work well depends, of course, on the underlying distribution; the more this
distribution deviates from normality, the larger  must be. Fortunately, convergence to normality in the central limit theorem is
rapid and hence, as you observed in the exercises, we can get away with relatively small sample sizes (30 or more) in most cases.

In the variance test experiment, select the gamma distribution with shape parameter 1 and scale parameter 1. For the three
different tests and for various significance levels, sample sizes, and values of , run the experiment 1000 times. For each
configuration, note the relative frequency of rejecting . When  is true, compare the relative frequency with the
significance level.

In the variance test experiment, select the uniform distribution on . For the three different tests and for various
significance levels, sample sizes, and values of , run the experiment 1000 times. For each configuration, note the relative
frequency of rejecting . When  is true, compare the relative frequency with the significance level.

Computational Exercises

The length of a certain machined part is supposed to be 10 centimeters. In fact, due to imperfections in the manufacturing
process, the actual length is a random variable. The standard deviation is due to inherent factors in the process, which remain
fairly stable over time. From historical data, the standard deviation is known with a high degree of accuracy to be 0.3. The
mean, on the other hand, may be set by adjusting various parameters in the process and hence may change to an unknown
value fairly frequently. We are interested in testing  versus .

1. Suppose that a sample of 100 parts has mean 10.1. Perform the test at the 0.1 level of significance.
2. Compute the -value for the data in (a).
3. Compute the power of the test in (a) at .
4. Compute the approximate sample size needed for significance level 0.1 and power 0.8 when .

Answer
1. Test statistic 3.33, critical values . Reject .
2. 
3. The power of the test at 10.05 is approximately 0.0509.
4. Sample size 223

A bag of potato chips of a certain brand has an advertised weight of 250 grams. Actually, the weight (in grams) is a random
variable. Suppose that a sample of 75 bags has mean 248 and standard deviation 5. At the 0.05 significance level, perform the
following tests:

1.  versus 
2.  versus 

Answer
1. Test statistic , critical value . Reject .
2.  so reject .
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At a telemarketing firm, the length of a telephone solicitation (in seconds) is a random variable. A sample of 50 calls has mean
310 and standard deviation 25. At the 0.1 level of significance, can we conclude that

1. ?
2. ?

Answer
1. Test statistic 2.828, critical value 1.2988. Reject .
2.  so reject .

At a certain farm the weight of a peach (in ounces) at harvest time is a random variable. A sample of 100 peaches has mean 8.2
and standard deviation 1.0. At the 0.01 level of significance, can we conclude that

1. ?
2. ?

Answer
1. Test statistic 2.0, critical value 2.363. Fail to reject .
2.  so reject .

The hourly wage for a certain type of construction work is a random variable with standard deviation 1.25. For sample of 25
workers, the mean wage was $6.75. At the 0.01 level of significance, can we conclude that ?

Answer

Test statistic , critical value . Fail to reject .

Data Analysis Exercises

Using Michelson's data, test to see if the velocity of light is greater than 730 (+299000) km/sec, at the 0.005 significance level.

Answer

Test statistic 15.49, critical value 2.6270. Reject .

Using Cavendish's data, test to see if the density of the earth is less than 5.5 times the density of water, at the 0.05 significance
level .

Answer

Test statistic , critical value . Fail to reject .

Using Short's data, test to see if the parallax of the sun differs from 9 seconds of a degree, at the 0.1 significance level.

Answer

Test statistic , critical value . Reject .

Using Fisher's iris data, perform the following tests, at the 0.1 level:

1. The mean petal length of Setosa irises differs from 15 mm.
2. The mean petal length of Verginica irises is greater than 52 mm.
3. The mean petal length of Versicolor irises is less than 44 mm.

Answer
1. Test statistic , critical values . Fail to reject .
2. Test statistic 4.556, critical value 1.2988. Reject .
3. Test statistic , critical value . Fail to Reject .

This page titled 9.2: Tests in the Normal Model is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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9.3: Tests in the Bernoulli Model
       

Basic Tests

Preliminaries

Suppose that  is a random sample from the Bernoulli distribution with unknown parameter .
Thus, these are independent random variables taking the values 1 and 0 with probabilities  and  respectively. In the usual
language of reliability, 1 denotes success and 0 denotes failure, but of course these are generic terms. Often this model arises in one
of the following contexts:

1. There is an event of interest in a basic experiment, with unknown probability . We replicate the experiment  times and define 
 if and only if the event occurred on run .

2. We have a population of objects of several different types;  is the unknown proportion of objects of a particular type of
interest. We select  objects at random from the population and let  if and only if object  is of the type of interest.
When the sampling is with replacement, these variables really do form a random sample from the Bernoulli distribution. When
the sampling is without replacement, the variables are dependent, but the Bernoulli model may still be approximately valid if
the population size is very large compared to the sample size . For more on these points, see the discussion of sampling with
and without replacement in the chapter on Finite Sampling Models.

In this section, we will construct hypothesis tests for the parameter . The parameter space for  is the interval , and all
hypotheses define subsets of this space. This section parallels the section on Estimation in the Bernoulli Model in the Chapter on
Interval Estimation.

The Binomial Test

Recall that the number of successes  has the binomial distribution with parameters  and , and has probability
density function given by

Recall also that the mean is  and variance is . Moreover  is sufficient for  and hence is a
natural candidate to be a test statistic for hypothesis tests about . For , let  denote the quantile of order  for the
binomial distribution with parameters  and . Since the binomial distribution is discrete, only certain (exact) quantiles are
possible. For the remainder of this discussion,  is a conjectured value of .

For every , the following tests have approximate significance level :

1. Reject  versus  if and only if  or .
2. Reject  versus  if and only if .
3. Reject  versus  if and only if .

Proof

In part (a),  is a simple hypothesis, and under  the test statistic  has the binomial distribution with parameter  and .
Thus, if  is true, then  is (approximately) the probability of falsely rejecting  by definition of the quantiles. In parts (b)
and (c),  specifies a range of values of . But if  is true, the maximum type 1 probability is (approximately)  and occurs
when .

The test in (a) is the standard, symmetric, two-sided test, corresponding to probability  (approximately) in both tails of the
binomial distribution under . The test in (b) is the left-tailed and test and the test in (c) is the right-tailed test. As usual, we can
generalize the two-sided test by partitioning  between the left and right tails of the binomial distribution in an arbitrary manner.

For any , the following test has (approximate) significance level : Reject  versus  if and
only if  or .

1.  gives the standard symmetric two-sided test.
2.  gives the left-tailed test.
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3.  gives the right-tailed test.

Proof

Once again,  is a simple hypothesis and under , the test statistic  has the binomial distribution with parameters  and 
. Thus if  is true then the probability of falsely rejecting  is  by definition of the quantiles. Parts (a)–(c) follow from

properties of the quantile function.

An Approximate Normal Test

When  is large, the distribution of  is approximately normal, by the central limit theorem, so we can construct an approximate
normal test.

Suppose that the sample size  is large. For a conjectured , define the test statistic

1. If , then  has approximately a standard normal distribution.

2. If , then  has approximately a normal distribution with mean  and variance 

Proof
1. This follows from the DeMoivre-Laplace theorem, the special case of the central limit theorem applied to the binomial

distribution. Note that  is simply the standard score associated with .
2. With some fairly simple algebra, we can write

The second factor in the second term is again simply the standard score associated with  and hence this factor has
approximately a standard normal distribution. So the result follows from the basic linearity property of the normal
distribution.

As usual, for , let  denote the quantile of order  for the standard normal distribution. For selected values of , 
 can be obtained from the special distribution calculator, or from most statistical software packages. Recall also by symmetry

that .

For every , the following tests have approximate significance level :

1. Reject  versus  if and only if  or .
2. Reject  versus  if and only if .
3. Reject  versus  if and only if .

Proof

In part (a),  is a simple hypothesis and under  the test statistic  has approximately a standard normal distribution.
Hence if  is true then the probability of falsely rejecting  is approximately  by definition of the quantiles. In parts (b)
and (c),  specifies a range of values of , and under  the test statistic  has a nonstandard normal distribution, as
described above. The maximum type one error probability is  and occurs when .

The test in (a) is the symmetric, two-sided test that corresponds to  in both tails of the distribution of , under . The test in
(b) is the left-tailed test and the test in (c) is the right-tailed test. As usual, we can construct a more general two-sided test by
partitioning  between the left and right tails of the standard normal distribution in an arbitrary manner.

For every , the following test has approximate significance level : Reject  versus  if and
only if  or .

1.  gives the standard, symmetric two-sided test.
2.  gives the left-tailed test.
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3.  gives the right-tailed test.

Proof

In part (a),  is again a simple hypothesis, and under  the test statistic  has approximately a standard normal distribution.
So if  is true, the probability of falsely rejecting  is  by definition of the quantiles.

Simulation Exercises

In the proportion test experiment, set , and select sample size 10, significance level 0.1, and . For each 
, run the experiment 1000 times and then note the relative frequency of rejecting the null hypothesis.

Graph the empirical power function.

In the proportion test experiment, repeat the previous exercise with sample size 20.

In the proportion test experiment, set , and select sample size 15, significance level 0.05, and . For each 
, run the experiment 1000 times and note the relative frequency of rejecting the null hypothesis. Graph

the empirical power function.

In the proportion test experiment, repeat the previous exercise with sample size 30.

In the proportion test experiment, set , and select sample size 20, significance level 0.01, and . For each 
, run the experiment 1000 times and then note the relative frequency of rejecting the null hypothesis.

Graph the empirical power function.

In the proportion test experiment, repeat the previous exercise with sample size 50.

Computational Exercises

In a pole of 1000 registered voters in a certain district, 427 prefer candidate X. At the 0.1 level, is the evidence sufficient to
conclude that more that 40% of the registered voters prefer X?

Answer

Test statistic 1.743, critical value 1.282. Reject .

A coin is tossed 500 times and results in 302 heads. At the 0.05 level, test to see if the coin is unfair.

Answer

Test statistic 4.651, critical values . Reject ; the coin is almost certainly unfair.

A sample of 400 memory chips from a production line are tested, and 32 are defective. At the 0.05 level, test to see if the
proportion of defective chips is less than 0.1.

Answer

Test statistic , critical value . Fail to reject .

A new drug is administered to 50 patients and the drug is effective in 42 cases. At the 0.1 level, test to see if the success rate
for the new drug is greater that 0.8.

Answer

Test statistic 0.707, critical value 1.282. Fail to reject .

Using the M&M data, test the following alternative hypotheses at the 0.1 significance level:

1. The proportion of red M&Ms differs from .
2. The proportion of green M&Ms is less than .
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3. The proportion of yellow M&M is greater than .

Answer
1. Test statistic 0.162, critical values . Fail to reject .
2. Test statistic , critical value . Reject .
3. Test statistic 8.266, critical value 1.282. Reject .

The Sign Test

Derivation

Suppose now that we have a basic random experiment with a real-valued random variable  of interest. We assume that  has a
continuous distribution with support on an interval of . Let  denote the quantile of a specified order  for the
distribution of . Thus, by definition,

In general of course,  is unknown, even though  is specified, because we don't know the distribution of . Suppose that we
want to construct hypothesis tests for . For a given test value , let

Note that  is unknown even though  is specified, because again, we don't know the distribution of .

Relations

1.  if and only if .
2.  if and only if .
3.  if and only if .

Proof

These results follow since we are assuming that the distribution of  is continuous and is supported on the interval .

As usual, we repeat the basic experiment  times to generate a random sample  of size  from the
distribution of . Let  be the indicator variable of the event  for .

Note that  is a statistic (an observable function of the data vector ) and is a random sample of size 
from the Bernoulli distribution with parameter .

From the last two results it follows that tests of the unknown quantile  can be converted to tests of the Bernoulli parameter , and
thus the tests developed above apply. This procedure is known as the sign test, because essentially, only the sign of  is
recorded for each . This procedure is also an example of a nonparametric test, because no assumptions about the distribution of 
are made (except for continuity). In particular, we do not need to assume that the distribution of  belongs to a particular
parametric family.

The most important special case of the sign test is the case where ; this is the sign test of the median. If the distribution of 
is known to be symmetric, the median and the mean agree. In this case, sign tests of the median are also tests of the mean.

Simulation Exercises

In the sign test experiment, set the sampling distribution to normal with mean 0 and standard deviation 2. Set the sample size to
10 and the significance level to 0.1. For each of the 9 values of , run the simulation 1000 times.

1. When , give the empirical estimate of the significance level of the test and compare with 0.1.
2. In the other cases, give the empirical estimate of the power of the test.

In the sign test experiment, set the sampling distribution to uniform on the interval . Set the sample size to 20 and the
significance level to 0.05. For each of the 9 values of , run the simulation 1000 times.

1. When , give the empirical estimate of the significance level of the test and compare with 0.05.
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2. In the other cases, give the empirical estimate of the power of the test.

In the sign test experiment, set the sampling distribution to gamma with shape parameter 2 and scale parameter 1. Set the
sample size to 30 and the significance level to 0.025. For each of the 9 values of , run the simulation 1000 times.

1. When , give the empirical estimate of the significance level of the test and compare with 0.025.
2. In the other cases, give the empirical estimate of the power of the test.

Computational Exercises

Using the M&M data, test to see if the median weight exceeds 47.9 grams, at the 0.1 level.

Answer

Test statistic 3.286, critical value 1.282. Reject .

Using Fisher's iris data, perform the following tests, at the 0.1 level:

1. The median petal length of Setosa irises differs from 15 mm.
2. The median petal length of Verginica irises is less than 52 mm.
3. The median petal length of Versicolor irises is less than 42 mm.

Answer
1. Test statistic 3.394, critical values . Reject .
2. Test statistic , critical value . Reject .
3. Test statistic , critical value . Fail to reject .

This page titled 9.3: Tests in the Bernoulli Model is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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9.4: Tests in the Two-Sample Normal Model
        

In this section, we will study hypothesis tests in the two-sample normal model and in the bivariate normal model. This section
parallels the section on Estimation in the Two Sample Normal Model in the chapter on Interval Estimation.

The Two-Sample Normal Model
Suppose that  is a random sample of size  from the normal distribution with mean  and standard
deviation , and that  is a random sample of size  from the normal distribution with mean  and standard
deviation . Moreover, suppose that the samples  and  are independent.

This type of situation arises frequently when the random variables represent a measurement of interest for the objects of the
population, and the samples correspond to two different treatments. For example, we might be interested in the blood pressure of a
certain population of patients. The  vector records the blood pressures of a control sample, while the  vector records the blood
pressures of the sample receiving a new drug. Similarly, we might be interested in the yield of an acre of corn. The  vector
records the yields of a sample receiving one type of fertilizer, while the  vector records the yields of a sample receiving a
different type of fertilizer.

Usually our interest is in a comparison of the parameters (either the mean or variance) for the two sampling distributions. In this
section we will construct tests for the for the difference of the means and the ratio of the variances. As with previous estimation
problems we have studied, the procedures vary depending on what parameters are known or unknown. Also as before, key
elements in the construction of the tests are the sample means and sample variances and the special properties of these statistics
when the sampling distribution is normal.

We will use the following notation for the sample mean and sample variance of a generic sample :

Tests of the Difference in the Means with Known Standard Deviations

Our first discussion concerns tests for the difference in the means  under the assumption that the standard deviations  and 
are known. This is often, but not always, an unrealistic assumption. In some statistical problems, the variances are stable, and are at
least approximately known, while the means may be different because of different treatments. Also this is a good place to start
because the analysis is fairly easy.

For a conjectured difference of the means , define the test statistic

1. If  then  has the standard normal distribution.
2. If  then  has the normal distribution with mean  and variance 1.

Proof

From properties of normal samples,  has a normal distribution with mean  and variance  and similarly 
has a normal distribution with mean  and variance . Since the samples are independent,  and  are
independent, so  has a normal distribution with mean  and variance . The final result
then follows since  is a linear function of .

Of course (b) actually subsumes (a), but we separate them because the two cases play an impotrant role in the hypothesis tests. In
part (b), the non-zero mean can be viewed as a non-centrality parameter.

As usual, for , let  denote the quantile of order  for the standard normal distribution. For selected values of , 
can be obtained from the special distribution calculator or from most statistical software packages. Recall also by symmetry that 

.

For every , the following tests have significance level :
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1. Reject  versus  if and only if  or  if and only if 
 or .

2. Reject  versus  if and only if  if and only if 
.

3. Reject  versus  if and only if  if and only if 
.

Proof

This follows the same logic that we have seen before. In part (a),  is a simple hypothesis, and under this hypothesis  has
the standard normal distribution. Thus, if  is true then the probability of falsely rejecting  is  by definition of the
quantiles. In parts (b) and (c),  specifies a range of values of , and under ,  has a nonstandard normal distribution,
as described above. But the largest type 1 error probability is  and occurs when . The decision rules in terms of 

 are equivalent to those in terms of  by simple algebra.

For each of the tests above, we fail to reject  at significance level  if and only if  is in the corresponding  level
confidence interval.

1. 
2. 
3. 

Proof

These results follow from the previous results above. In each case, we start with the inequality that corresponds to not rejecting
the null hypothesis and solve for .

Tests of the Difference of the Means with Unknown Standard Deviations

Next we will construct tests for the difference in the means  under the more realistic assumption that the standard deviations 
 and  are unknown. In this case, it is more difficult to find a suitable test statistic, but we can do the analysis in the special case

that the standard deviations are the same. Thus, we will assume that , and the common value  is unknown. This assumption
is reasonable if there is an inherent variability in the measurement variables that does not change even when different treatments
are applied to the objects in the population. Recall that the pooled estimate of the common variance  is the weighted average of
the sample variances, with the degrees of freedom as the weight factors:

The statistic  is an unbiased and consistent estimator of the common variance .

For a conjectured  define the test statistc

1. If  then  has the  distribution with  degrees of freedom,
2. If  then  has a non-central  distribution with  degrees of freedom and non-centrality parameter

Proof

Part (b) actually subsumes part (a), since the ordinary  distribution is a special case of the non-central  distribution, with non-
centrality parameter 0. With some basic algebra, we can write  in the form

: ν−μ= δH
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where  is the standard score of ,  is the non-centrality parameter given in the theorem, and 
. So  has the standard normal distribution,  has the chi-square distribution with  degrees

of freedom, and  and  are independent. Thus by definition,  has the non-central  distribution with  degrees of
freedom and non-centrality parameter .

As usual, for  and , let  denote the quantile of order  for the  distribution with  degrees of freedom. For
selected values of  and , values of  can be computed from the special distribution calculator, or from most statistical
software packages. Recall also that, by symmetry, .

The following tests have significance level :

1. Reject  versus  if and only if  or  if and
only if  or 

2. Reject  versus  if and only if  if and only if 

3. Reject  versus  if and only if  if and only if 

Proof

This follows the same logic that we have seen before. In part (a),  is a simple hypothesis, and under this hypothesis  has
the  distribution with  degrees of freedom. Thus, if  is true then the probability of falsely rejecting  is  by
definition of the quantiles. In parts (b) and (c),  specifies a range of values of , and under ,  has a non-central 
distribution, as described above. But the largest type 1 error probability is  and occurs when . The decision rules in
terms of  are equivalent to those in terms of  by simple algebra.

For each of the tests above, we fail to reject  at significance level  if and only if  is in the corresponding  level
confidence interval.

1. 
2. 
3. 

Proof

These results follow from the previous results above. In each case, we start with the inequality that corresponds to not rejecting
the null hypothesis and solve for .

Tests of the Ratio of the Variances

Next we will construct tests for the ratio of the distribution variances . So the basic assumption is that the variances, and of
course the means  and  are unknown.

For a conjectured , define the test statistics

1. If  then  has the  distribution with  degrees of freedom in the numerator and  degrees of freedom
in the denominator.

2. If  then  has a scaled  distribution with  degrees of freedom in the numerator,  degrees of
freedom in the denominator, and scale factor .

Proof

Part (b) actually subsumes part (a) when , so we will just prove (b). Note that
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But  has the chi-square distribution with  degrees of freedom,  has the chi-square distribution
with  degrees of freedom, and the variables are independent. Hence the ratio has the  distribution with  degrees
of freedom in the numerator and  degrees of freedom in the denominator

The following tests have significance level :

1. Reject  versus  if and only if  or .
2. Reject  versus  if and only if .
3. Reject  versus  if and only if .

Proof

The proof is the usual argument. In part (a),  is a simple hypothesis, and under this hypothesis  has the  distribution with 
 degrees of freedom in the numerator  degrees of freedom in the denominator. Thus, if  is true then the

probability of falsely rejecting  is  by definition of the quantiles. In parts (b) and (c),  specifies a range of values of 
, and under ,  has a scaled  distribution, as described above. But the largest type 1 error probability is  and

occurs when .

For each of the tests above, we fail to reject  at significance level  if and only if  is in the corresponding  level
confidence interval.

1. 

2. 

3. 

Proof

These results follow from the previous results above. In each case, we start with the inequality that corresponds to not rejecting
the null hypothesis and solve for .

Tests in the Bivariate Normal Model
In this subsection, we consider a model that is superficially similar to the two-sample normal model, but is actually much simpler.
Suppose that

is a random sample of size  from the bivariate normal distribution of  with , , , 
, and .

Thus, instead of a pair of samples, we have a sample of pairs. The fundamental difference is that in this model, variables  and 
are measured on the same objects in a sample drawn from the population, while in the previous model, variables  and  are
measured on two distinct samples drawn from the population. The bivariate model arises, for example, in before and after
experiments, in which a measurement of interest is recorded for a sample of  objects from the population, both before and after a
treatment. For example, we could record the blood pressure of a sample of  patients, before and after the administration of a
certain drug.

We will use our usual notation for the sample means and variances of  and . Recall
also that the sample covariance of  is

(not to be confused with the pooled estimate of the standard deviation in the two-sample model above).
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The sequence of differences  is a random sample of size  from the distribution
of . The sampling distribution is normal with

1. 
2. 

The sample mean and variance of the sample of differences are

1. 
2. 

The sample of differences  fits the normal model for a single variable. The section on Tests in the Normal Model could be
used to perform tests for the distribution mean  and the distribution variance .

Computational Exercises

A new drug is being developed to reduce a certain blood chemical. A sample of 36 patients are given a placebo while a sample
of 49 patients are given the drug. The statistics (in mg) are , , , . Test the following at the 10%
significance level:

1.  versus .
2.  versus  (assuming that ).
3. Based on (b), is the drug effective?

Answer
1. Test statistic 0.4, critical values 0.585, 1.667. Reject .
2. Test statistic 1.0, critical values . Fail to reject .
3. Probably not

A company claims that an herbal supplement improves intelligence. A sample of 25 persons are given a standard IQ test before
and after taking the supplement. The before and after statistics are , , , , . At
the 10% significance level, do you believe the company's claim?

Answer

Test statistic 2.8, critical value 1.3184. Reject .

In Fisher's iris data, consider the petal length variable for the samples of Versicolor and Virginica irises. Test the following at
the 10% significance level:

1.  versus .
2.  versus  (assuming that ).

Answer
1. Test statistic 1.1, critical values 0.6227, 1.6072. Fail to reject .
2. Test statistic , critical value . Reject .

A plant has two machines that produce a circular rod whose diameter (in cm) is critical. A sample of 100 rods from the first
machine as mean 10.3 and standard deviation 1.2. A sample of 100 rods from the second machine has mean 9.8 and standard
deviation 1.6. Test the following hypotheses at the 10% level.

1.  versus .
2.  versus  (assuming that ).

Answer
1. Test statistic 0.56, critical values 0.7175, 1.3942. Reject .
2. Test statistic , critical values . Reject .
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9.5: Likelihood Ratio Tests
       

Basic Theory

As usual, our starting point is a random experiment with an underlying sample space, and a probability measure . In the basic
statistical model, we have an observable random variable  taking values in a set . In general,  can have quite a complicated
structure. For example, if the experiment is to sample  objects from a population and record various measurements of interest,
then

where  is the vector of measurements for the th object. The most important special case occurs when  are
independent and identically distributed. In this case, we have a random sample of size  from the common distribution.

In the previous sections, we developed tests for parameters based on natural test statistics. However, in other cases, the tests may
not be parametric, or there may not be an obvious statistic to start with. Thus, we need a more general method for constructing test
statistics. Moreover, we do not yet know if the tests constructed so far are the best, in the sense of maximizing the power for the set
of alternatives. In this and the next section, we investigate both of these ideas. Likelihood functions, similar to those used in
maximum likelihood estimation, will play a key role.

Tests of Simple Hypotheses

Suppose that  has one of two possible distributions. Our simple hypotheses are

 has probability density function .
 has probability density function .

We will use subscripts on the probability measure  to indicate the two hypotheses, and we assume that  and  are postive on .
The test that we will construct is based on the following simple idea: if we observe , then the condition  is
evidence in favor of the alternative; the opposite inequality is evidence against the alternative.

The likelihood ratio function  is defined by

The statistic  is the likelihood ratio statistic.

Restating our earlier observation, note that small values of  are evidence in favor of . Thus it seems reasonable that the
likelihood ratio statistic may be a good test statistic, and that we should consider tests in which we teject  if and only if ,
where  is a constant to be determined:

The significance level of the test is .

As usual, we can try to construct a test by choosing  so that  is a prescribed value. If  has a discrete distribution, this will only
be possible when  is a value of the distribution function of .

An important special case of this model occurs when the distribution of  depends on a parameter  that has two possible values.
Thus, the parameter space is , and  denotes the probability density function of  when  and  denotes the
probability density function of  when . In this case, the hypotheses are equivalent to  versus .

As noted earlier, another important special case is when  is a random sample of size  from a distribution
an underlying random variable  taking values in a set . In this case,  and the probability density function  of  has
the form

where  is the probability density function of . So the hypotheses simplify to

 has probability density function .
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 has probability density function .

and the likelihood ratio statistic is

In this special case, it turns out that under , the likelihood ratio statistic, as a function of the sample size , is a martingale.

The Neyman-Pearson Lemma

The following theorem is the Neyman-Pearson Lemma, named for Jerzy Neyman and Egon Pearson. It shows that the test given
above is most powerful. Let

and recall that the size of a rejection region is the significance of the test with that rejection region.

Consider the tests with rejection regions  given above and arbitrary . If the size of  is at least as large as the size of 
 then the test with rejection region  is more powerful than the test with rejection region . That is, if 

 then .

Proof

First note that from the definitions of  and  that the following inequalities hold:

Now for arbitrary , write  and . From the additivity of probability and
the inequalities above, it follows that

Hence if  then .

The Neyman-Pearson lemma is more useful than might be first apparent. In many important cases, the same most powerful test
works for a range of alternatives, and thus is a uniformly most powerful test for this range. Several special cases are discussed
below.

Generalized Likelihood Ratio

The likelihood ratio statistic can be generalized to composite hypotheses. Suppose again that the probability density function  of
the data variable  depends on a parameter , taking values in a parameter space . Consider the hypotheses  versus 

, where .

Define

The function  is the likelihood ratio function and  is the likelihood ratio statistic.

By the same reasoning as before, small values of  are evidence in favor of the alternative hypothesis.

Examples and Special Cases

Tests for the Exponential Model

Suppose that  is a random sample of size  from the exponential distribution with scale parameter 
. The sample variables might represent the lifetimes from a sample of devices of a certain type. We are interested in

testing the simple hypotheses  versus , where  are distinct specified values.
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Recall that the sum of the variables is a sufficient statistic for :

Recall also that  has the gamma distribution with shape parameter  and scale parameter . For , we will denote the
quantile of order  for the this distribution by .

The likelihood ratio statistic is

Proof

Recall that the PDF  of the exponential distribution with scale parameter  is given by  for 
. If  denotes the PDF when  for  then

Hence the likelihood ratio function is

where .

The following tests are most powerful test at the  level

1. Suppose that . Reject  versus  if and only if .
2. Suppose that . Reject  versus  if and only if .

Proof

Under ,  has the gamma distribution with parameters  and .

1. If  then . From simple algebra, a rejection region of the form  becomes a rejection region of
the form . The precise value of  in terms of  is not important. For the test to have significance level  we must
choose 

2. If  then . From simple algebra, a rejection region of the form  becomes a rejection region of
the form . Again, the precise value of  in terms of  is not important. For the test to have significance level  we
must choose 

Note that the these tests do not depend on the value of . This fact, together with the monotonicity of the power function can be
used to shows that the tests are uniformly most powerful for the usual one-sided tests.

Suppose that .

1. The decision rule in part (a) above is uniformly most powerful for the test  versus .
2. The decision rule in part (b) above is uniformly most powerful for the test  versus .

Tests for the Bernoulli Model

Suppose that  is a random sample of size  from the Bernoulli distribution with success parameter 
. The sample could represent the results of tossing a coin  times, where  is the probability of heads. We wish to test the simple

hypotheses  versus , where  are distinct specified values. In the coin tossing model, we
know that the probability of heads is either  or , but we don't know which.

Recall that the number of successes is a sufficient statistic for :
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Recall also that  has the binomial distribution with parameters  and . For , we will denote the quantile of order  for
the this distribution by ; although since the distribution is discrete, only certain values of  are possible.

The likelihood ratio statistic is

Proof

Recall that the PDF  of the Bernoulli distribution with parameter  is given by  for .
If  denotes the PDF when  for  then

Hence the likelihood ratio function is

where .

The following tests are most powerful test at the  level

1. Suppose that . Reject  versus  if and only if .
2. Suppose that . Reject  versus  if and only if .

Proof

Under ,  has the binomial distribution with parameters  and .

1. If  then . From simple algebra, a rejection region of the form  becomes a
rejection region of the form . The precise value of  in terms of  is not important. For the test to have significance
level  we must choose 

2. If  then . From simple algebra, a rejection region of the form  becomes a
rejection region of the form . Again, the precise value of  in terms of  is not important. For the test to have
significance level  we must choose 

Note that these tests do not depend on the value of . This fact, together with the monotonicity of the power function can be used
to shows that the tests are uniformly most powerful for the usual one-sided tests.

Suppose that .

1. The decision rule in part (a) above is uniformly most powerful for the test  versus .
2. The decision rule in part (b) above is uniformly most powerful for the test  versus .

Tests in the Normal Model

The one-sided tests that we derived in the normal model, for  with  known, for  with  unknown, and for  with  unknown
are all uniformly most powerful. On the other hand, none of the two-sided tests are uniformly most powerful.

A Nonparametric Example

Suppose that  is a random sample of size , either from the Poisson distribution with parameter 1 or
from the geometric distribution on  with parameter . Note that both distributions have mean 1 (although the Poisson
distribution has variance 1 while the geometric distribution has variance 2). So, we wish to test the hypotheses

 has probability density function  for .
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 has probability density function  for .

The likelihood ratio statistic is

Proof

Note that

Hence the likelihood ratio function is

where  and .

The most powerful tests have the following form, where  is a constant: reject  if and only if .

Proof

A rejection region of the form  is equivalent to

Taking the natural logarithm, this is equivalent to  where 

This page titled 9.5: Likelihood Ratio Tests is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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9.6: Chi-Square Tests
       

In this section, we will study a number of important hypothesis tests that fall under the general term chi-square tests. These are named,
as you might guess, because in each case the test statistics has (in the limit) a chi-square distribution. Although there are several different
tests in this general category, they all share some common themes:

In each test, there are one or more underlying multinomial samples, Of course, the multinomial model includes the Bernoulli model
as a special case.
Each test works by comparing the observed frequencies of the various outcomes with expected frequencies under the null hypothesis.
If the model is incompletely specified, some of the expected frequencies must be estimated; this reduces the degrees of freedom in
the limiting chi-square distribution.

We will start with the simplest case, where the derivation is the most straightforward; in fact this test is equivalent to a test we have
already studied. We then move to successively more complicated models.

The One-Sample Bernoulli Model

Suppose that  is a random sample from the Bernoulli distribution with unknown success parameter .
Thus, these are independent random variables taking the values 1 and 0 with probabilities  and  respectively. We want to test 

 versus , where  is specified. Of course, we have already studied such tests in the Bernoulli model.
But keep in mind that our methods in this section will generalize to a variety of new models that we have not yet studied.

Let  and . These statistics give the number of times (frequency) that outcomes 1 and 0
occur, respectively. Moreover, we know that each has a binomial distribution;  has parameters  and , while  has parameters 
and . In particular, , , and . Moreover, recall that  is
sufficient for . Thus, any good test statistic should be a function of . Next, recall that when  is large, the distribution of  is
approximately normal, by the central limit theorem. Let

Note that  is the standard score of  under . Hence if  is large,  has approximately the standard normal distribution under ,
and therefore  has approximately the chi-square distribution with 1 degree of freedom under . As usual, let  denote the
quantile function of the chi-square distribution with  degrees of freedom.

An approximate test of  versus  at the  level of significance is to reject  if and only if .

The test above is equivalent to the unbiased test with test statistic  (the approximate normal test) derived in the section on Tests in
the Bernoulli model.

For purposes of generalization, the critical result in the next exercise is a special representation of . Let  and .
Note that these are the expected frequencies of the outcomes 0 and 1, respectively, under .

 can be written in terms of the observed and expected frequencies as follows:

This representation shows that our test statistic  measures the discrepancy between the expected frequencies, under , and the
observed frequencies. Of course, large values of  are evidence in favor of . Finally, note that although there are two terms in the
expansion of  in Exercise 3, there is only one degree of freedom since . The observed and expected frequencies could be
stored in a  table.

The Multi-Sample Bernoulli Model
Suppose now that we have samples from several (possibly) different, independent Bernoulli trials processes. Specifically, suppose that 

 is a random sample of size  from the Bernoulli distribution with unknown success parameter 
for each . Moreover, the samples  are independent. We want to test hypotheses about the unknown
parameter vector . There are two common cases that we consider below, but first let's set up the essential notation
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that we will need for both cases. For  and , let  denote the number of times that outcome  occurs in
sample . The observed frequency  has a binomial distribution;  has parameters  and  while  has parameters  and 

.

The Completely Specified Case

Consider a specified parameter vector . We want to test the null hypothesis , versus 
. Since the null hypothesis specifies the value of  for each , this is called the completely specified case. Now let 

 and let . These are the expected frequencies of the outcomes 0 and 1, respectively, from sample 
under .

If  is large for each , then under  the following test statistic has approximately the chi-square distribution with  degrees of
freedom:

Proof

This follows from the result above and independence.

As a rule of thumb, “large” means that we need  for each  and . But of course, the larger these
expected frequencies the better.

Under the large sample assumption, an approximate test of  versus  at the  level of significance is to reject  if and only if 
.

Once again, note that the test statistic  measures the discrepancy between the expected and observed frequencies, over all outcomes
and all samples. There are  terms in the expansion of  in Exercise 4, but only  degrees of freedom, since  for
each . The observed and expected frequencies could be stored in an  table.

The Equal Probability Case

Suppose now that we want to test the null hypothesis  that all of the success probabilities are the same, versus
the complementary alternative hypothesis  that the probabilities are not all the same. Note, in contrast to the previous model, that the
null hypothesis does not specify the value of the common success probability . But note also that under the null hypothesis, the 
samples can be combined to form one large sample of Bernoulli trials with success probability . Thus, a natural approach is to estimate 

 and then define the test statistic that measures the discrepancy between the expected and observed frequencies, just as before. The
challenge will be to find the distribution of the test statistic.

Let  denote the total sample size when the samples are combined. Then the overall sample mean, which in this context is
the overall sample proportion of successes, is

The sample proportion  is the best estimate of , in just about any sense of the word. Next, let  and .
These are the estimated expected frequencies of 0 and 1, respectively, from sample  under . Of course these estimated frequencies
are now statistics (and hence random) rather than parameters. Just as before, we define our test statistic

It turns out that under , the distribution of  converges to the chi-square distribution with  degrees of freedom as .

An approximate test of  versus  at the  level of significance is to reject  if and only if .

Intuitively, we lost a degree of freedom over the completely specified case because we had to estimate the unknown common success
probability . Again, the observed and expected frequencies could be stored in an  table.
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The One-Sample Multinomial Model
Our next model generalizes the one-sample Bernoulli model in a different direction. Suppose that  is a sequence
of multinomial trials. Thus, these are independent, identically distributed random variables, each taking values in a set  with 
elements. If we want, we can assume that ; the one-sample Bernoulli model then corresponds to . Let 
denote the common probability density function of the sample variables on , so that  for  and 

. The values of  are assumed unknown, but of course we must have , so there are really only  unknown
parameters. For a given probability density function  on  we want to test  versus .

By this time, our general approach should be clear. We let  denote the number of times that outcome  occurs in sample :

Note that  has the binomial distribution with parameters  and . Thus,  is the expected number of times that
outcome  occurs, under . Out test statistic, of course, is

It turns out that under , the distribution of  converges to the chi-square distribution with  degrees of freedom as . Note
that there are  terms in the expansion of , but only  degrees of freedom since .

An approximate test of  versus  at the  level of significance is to reject  if and only if .

Again, as a rule of thumb, we need  for each , but the larger the expected frequencies the better.

The Multi-Sample Multinomial Model

As you might guess, our final generalization is to the multi-sample multinomial model. Specifically, suppose that 
 is a random sample of size  from a distribution on a set  with  elements, for each .

Moreover, we assume that the samples  are independent. Again there is no loss in generality if we take 
. Then  reduces to the multi-sample Bernoulli model, and  corresponds to the one-sample

multinomial model.

Let  denote the common probability density function of the variables in sample , so that  for 
, , and . These are generally unknown, so that our vector of parameters is the vector of

probability density functions: . Of course,  for , so there are actually 
unknown parameters. We are interested in testing hypotheses about . As in the multi-sample Bernoulli model, there are two common
cases that we consider below, but first let's set up the essential notation that we will need for both cases. For  and 

, let  denote the number of times that outcome  occurs in sample . The observed frequency  has a binomial distribution
with parameters  and .

The Completely Specified Case

Consider a given vector of probability density functions on , denoted . We want to test the null hypothesis 
, versus . Since the null hypothesis specifies the value of  for each  and , this is called the completely

specified case. Let . This is the expected frequency of outcome  in sample  under .

If  is large for each , then under , the test statistic  below has approximately the chi-square distribution with 
degrees of freedom:

Proof

This follows from the one-sample multinomial case and independence.

As usual, our rule of thumb is that we need  for each  and . But of course, the larger these expected
frequencies the better.
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Under the large sample assumption, an approximate test of  versus  at the  level of significance is to reject  if and only if 
.

As always, the test statistic  measures the discrepancy between the expected and observed frequencies, over all outcomes and all
samples. There are  terms in the expansion of  in Exercise 8, but we lose  degrees of freedom, since  for each 

.

The Equal PDF Case

Suppose now that we want to test the null hypothesis  that all of the probability density functions are the
same, versus the complementary alternative hypothesis  that the probability density functions are not all the same. Note, in contrast to
the previous model, that the null hypothesis does not specify the value of the common success probability density function . But note
also that under the null hypothesis, the  samples can be combined to form one large sample of multinomial trials with probability
density function . Thus, a natural approach is to estimate the values of  and then define the test statistic that measures the discrepancy
between the expected and observed frequencies, just as before.

Let  denote the total sample size when the samples are combined. Under , our best estimate of  is

Hence our estimate of the expected frequency of outcome  in sample  under  is . Again, this estimated frequency is
now a statistic (and hence random) rather than a parameter. Just as before, we define our test statistic

As you no doubt expect by now, it turns out that under , the distribution of  converges to a chi-square distribution as . But
let's see if we can determine the degrees of freedom heuristically.

The limiting distribution of  has  degrees of freedom.

Proof

There are  terms in the expansion of . We lose  degrees of freedom since  for each . We
must estimate all but one of the probabilities  for , thus losing  degrees of freedom.

An approximate test of  versus  at the  level of significance is to reject  if and only if .

A Goodness of Fit Test
A goodness of fit test is an hypothesis test that an unknown sampling distribution is a particular, specified distribution or belongs to a
parametric family of distributions. Such tests are clearly fundamental and important. The one-sample multinomial model leads to a quite
general goodness of fit test.

To set the stage, suppose that we have an observable random variable  for an experiment, taking values in a general set . Random
variable  might have a continuous or discrete distribution, and might be single-variable or multi-variable. We want to test the null
hypothesis that  has a given, completely specified distribution, or that the distribution of  belongs to a particular parametric family.

Our first step, in either case, is to sample from the distribution of  to obtain a sequence of independent, identically distributed variables
. Next, we select  and partition  into  (disjoint) subsets. We will denote the partition by 

where . Next, we define the sequence of random variables  by  if and only if  for 
 and .

 is a multinomial trials sequence with parameters  and , where  for .

The Completely Specified Case

Let  denote the statement that  has a given, completely specified distribution. Let  denote the probability density function on 
defined by  for . To test hypothesis , we can formally test  versus , which of
course, is precisely the problem we solved in the one-sample multinomial model.
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Generally, we would partition the space  into as many subsets as possible, subject to the restriction that the expected frequencies all be
at least 5.

The Partially Specified Case

Often we don't really want to test whether  has a completely specified distribution (such as the normal distribution with mean 5 and
variance 9), but rather whether the distribution of  belongs to a specified parametric family (such as the normal). A natural course of
action in this case would be to estimate the unknown parameters and then proceed just as above. As we have seen before, the expected
frequencies would be statistics  because they would be based on the estimated parameters. As a rule of thumb, we lose a degree of
freedom in the chi-square statistic  for each parameter that we estimate, although the precise mathematics can be complicated.

A Test of Independence
Suppose that we have observable random variables  and  for an experiment, where  takes values in a set  with  elements, and 
takes values in a set  with  elements. Let  denote the joint probability density function of , so that 

 for  and . Recall that the marginal probability density functions of  and  are the functions 
and  respectively, where

Usually, of course, , , and  are unknown. In this section, we are interested in testing whether  and  are independent, a basic and
important test. Formally then we want to test the null hypothesis

versus the complementary alternative .

Our first step, of course, is to draw a random sample  from the distribution of .
Since the state spaces are finite, this sample forms a sequence of multinomial trials. Thus, with our usual notation, let  denote the
number of times that  occurs in the sample, for each . This statistic has the binomial distribution with trial parameter 

 and success parameter . Under , the success parameter is . However, since we don't know the success parameters,
we must estimate them in order to compute the expected frequencies. Our best estimate of  is the sample proportion . Thus,
our best estimates of  and  are  and , respectively, where  is the number of times that  occurs in sample  and 
is the number of times that  occurs in sample :

Thus, our estimate of the expected frequency of  under  is

Of course, we define our test statistic by

As you now expect, the distribution of  converges to a chi-square distribution as . But let's see if we can determine the
appropriate degrees of freedom on heuristic grounds.

The limiting distribution of  has  degrees of freedom.

Proof

There are  terms in the expansion of . We lose one degree of freedom since . We must estimate all but
one of the probabilities  for , thus losing  degrees of freedom. We must estimate all but one of the probabilities 
for , thus losing  degrees of freedom.

S

X

X

E

j

V

X Y X S k Y

T m f (X,Y )

f(i, j) = P(X = i,Y = j) i ∈ S j∈ T X Y g

h

g(i) =

h(j) =

f(i, j), i ∈ S∑

j∈T

f(i, j), j∈ T∑

i∈S

(9.6.11)

(9.6.12)

f g h X Y

: f(i, j) = g(i)h(j), (i, j) ∈ S×TH

0

(9.6.13)

H

1

(X,Y ) = (( , ), ( , ),… , ( , ))X

1

Y

1

X

2

Y

2

X

n

Y

n

(X,Y )

O

i,j

(i, j) (i, j) ∈ S×T

n f(i, j) H

0

g(i)h(j)

f(i, j)

1

n

O

i,j

g(i) h(j)

1

n

N

i

1

n

M

j

N

i

i X M

j

j Y

N

i

M

j

=∑

j∈T

O

i,j

=∑

i∈S

O

i,j

(9.6.14)

(9.6.15)

(i, j) H

0

= n =E

i,j

1

n

N

i

1

n

M

j

1

n

N

i

M

j

(9.6.16)

V =∑

i∈J

∑

j∈T

( −O

i,j

E

i,j

)

2

E

i,j

(9.6.17)

V n→∞

V (k−1) (m−1)

km V = n∑

i∈S

∑

j∈T

O

i,j

g(i) i ∈ S k−1 h(j)

j∈ T m−1

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10216?pdf


9.6.6 https://stats.libretexts.org/@go/page/10216

An approximate test of  versus  at the  level of significance is to reject  if and only if .

The observed frequencies are often recorded in a  table, known as a contingency table, so that  is the number in row  and
column . In this setting, note that  is the sum of the frequencies in the th row and  is the sum of the frequencies in the th
column. Also, for historical reasons, the random variables  and  are sometimes called factors and the possible values of the variables
categories.

Computational and Simulation Exercises

Computational Exercises

In each of the following exercises, specify the number of degrees of freedom of the chi-square statistic, give the value of the statistic and
compute the -value of the test.

A coin is tossed 100 times, resulting in 55 heads. Test the null hypothesis that the coin is fair.

Answer

1 degree of freedom, , .

Suppose that we have 3 coins. The coins are tossed, yielding the data in the following table:

Heads Tails

Coin 1 29 21

Coin 2 23 17

Coin 3 42 18

1. Test the null hypothesis that all 3 coin are fair.
2. Test the null hypothesis that coin 1 has probability of heads ; coin 2 is fair; and coin 3 has probability of heads .
3. Test the null hypothesis that the 3 coins have the same probability of heads.

Answer
1. 3 degree of freedom, , .
2. 3 degree of freedom, , .
3. 2 degree of freedom, , .

A die is thrown 240 times, yielding the data in the following table:

Score 1 2 3 4 5 6

Frequency 57 39 28 28 36 52

1. Test the null hypothesis that the die is fair.
2. Test the null hypothesis that the die is an ace-six flat die (faces 1 and 6 have probability  each while faces 2, 3, 4, and 5 have

probability  each).

Answer
1. 5 degree of freedom, , .
2. 5 degree of freedom, , .

Two dice are thrown, yielding the data in the following table:

Score 1 2 3 4 5 6

Die 1 22 17 22 13 22 24

Die 2 44 24 19 19 18 36
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1. Test the null hypothesis that die 1 is fair and die 2 is an ace-six flat.
2. Test the null hypothesis that all the dice have have the same probability distribuiton.

Answer
1. 10 degree of freedom, , .
2. 5 degree of freedom, , .

A university classifies faculty by rank as instructors, assistant professors, associate professors, and full professors. The data, by
faculty rank and gender, are given in the following contingency table. Test to see if faculty rank and gender are independent.

Faculty Instructor Assistant Professor Associate Professor Full Professor

Male 62 238 185 115

Female 118 122 123 37

Answer

3 degrees of freedom, , .

Data Analysis Exercises

The Buffon trial data set gives the results of 104 repetitions of Buffon's needle experiment. The number of crack crossings is 56. In
theory, this data set should correspond to 104 Bernoulli trials with success probability . Test to see if this is reasonable.

Answer

1 degree of freedom, , .

Test to see if the alpha emissions data come from a Poisson distribution.

Answer

We partition of  into 17 subsets: ,  for , and . There are 15 degrees of freedom. The
estimated Poisson parameter is 8.367, , .

Test to see if Michelson's velocity of light data come from a normal distribution.

Answer

Using the following partition of : 
. We

have 8 degrees of freedom, , .

Simulation Exercises

In the simulation exercises below, you will be able to explore the goodness of fit test empirically.

In the dice goodness of fit experiment, set the sampling distribution to fair, the sample size to 50, and the significance level to 0.1.
Set the test distribution as indicated below and in each case, run the simulation 1000 times. In case (a), give the empirical estimate
of the significance level of the test and compare with 0.1. In the other cases, give the empirical estimate of the power of the test.
Rank the distributions in (b)-(d) in increasing order of apparent power. Do your results seem reasonable?

1. fair
2. ace-six flats
3. the symmetric, unimodal distribution
4. the distribution skewed right

In the dice goodness of fit experiment, set the sampling distribution to ace-six flats, the sample size to 50, and the significance level
to 0.1. Set the test distribution as indicated below and in each case, run the simulation 1000 times. In case (a), give the empirical
estimate of the significance level of the test and compare with 0.1. In the other cases, give the empirical estimate of the power of the
test. Rank the distributions in (b)-(d) in increasing order of apparent power. Do your results seem reasonable?

1. fair

V = 6.2 P = 0.798

V = 7.103 P = 0.213

V = 70.111 P ≈ 0

p =

2

π

V = 4.332 P = 0.037

N {0, 1} {x} x ∈ {2, 3,… , 16} {17, 18,…}

V = 9.644 P = 0.842

R

{(−∞, 750), [750, 775), [775, 800), [800, 825), [825, 850), [850, 875), [875, 900), [900, 925), [925, 950), [950, 975), [975,∞)}

V = 11.443 P = 0.178
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2. ace-six flats
3. the symmetric, unimodal distribution
4. the distribution skewed right

In the dice goodness of fit experiment, set the sampling distribution to the symmetric, unimodal distribution, the sample size to 50,
and the significance level to 0.1. Set the test distribution as indicated below and in each case, run the simulation 1000 times. In case
(a), give the empirical estimate of the significance level of the test and compare with 0.1. In the other cases, give the empirical
estimate of the power of the test. Rank the distributions in (b)-(d) in increasing order of apparent power. Do your results seem
reasonable?

1. the symmetric, unimodal distribution
2. fair
3. ace-six flats
4. the distribution skewed right

In the dice goodness of fit experiment, set the sampling distribution to the distribution skewed right, the sample size to 50, and the
significance level to 0.1. Set the test distribution as indicated below and in each case, run the simulation 1000 times. In case (a), give
the empirical estimate of the significance level of the test and compare with 0.1. In the other cases, give the empirical estimate of the
power of the test. Rank the distributions in (b)-(d) in increasing order of apparent power. Do your results seem reasonable?

1. the distribution skewed right
2. fair
3. ace-six flats
4. the symmetric, unimodal distribution

Suppose that  and  are different distributions. Is the power of the test with sampling distribution  and test distribution 
the same as the power of the test with sampling distribution  and test distribution ? Make a conjecture based on your results in
the previous three exercises.

In the dice goodness of fit experiment, set the sampling and test distributions to fair and the significance level to 0.05. Run the
experiment 1000 times for each of the following sample sizes. In each case, give the empirical estimate of the significance level and
compare with 0.05.

1. 
2. 
3. 
4. 

In the dice goodness of fit experiment, set the sampling distribution to fair, the test distributions to ace-six flats, and the significance
level to 0.05. Run the experiment 1000 times for each of the following sample sizes. In each case, give the empirical estimate of the
power of the test. Do the powers seem to be converging?

1. 
2. 
3. 
4. 

This page titled 9.6: Chi-Square Tests is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

10: Geometric Models
In this chapter, we explore several problems in geometric probability. These problems are interesting, conceptually clear, and the
analysis is relatively simple. Thus, they are good problems for the student of probability. In addition, Buffon's problems and
Bertrand's problem are historically famous, and contributed significantly to the early development of probability theory.

10.1: Buffon's Problems
10.2: Bertrand's Paradox
10.3: Random Triangles

This page titled 10: Geometric Models is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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10.1: Buffon's Problems
     

Buffon's experiments are very old and famous random experiments, named after comte de Buffon. These experiments are
considered to be among the first problems in geometric probability.

Buffon's Coin Experiment
Buffon's coin experiment consists of dropping a coin randomly on a floor covered with identically shaped tiles. The event of
interest is that the coin crosses a crack between tiles. We will model Buffon's coin problem with square tiles of side length 1—
assuming the side length is 1 is equivalent to taking the side length as the unit of measurement.

Assumptions

First, let us define the experiment mathematically. As usual, we will idealize the physical objects by assuming that the coin is a
perfect circle with radius  and that the cracks between tiles are line segments. A natural way to describe the outcome of the
experiment is to record the center of the coin relative to the center of the tile where the coin happens to fall. More precisely, we will
construct coordinate axes so that the tile where the coin falls occupies the square .

Now when the coin is tossed, we will denote the center of the coin by  so that  is our sample space and  and  are
our basic random variables. Finally, we will assume that  so that it is at least possible for the coin to fall inside the square
without touching a crack.

Figure : Buffon's floor

Next, we need to define an appropriate probability measure that describes our basic random vector . If the coin falls
“randomly” on the floor, then it is natural to assume that  is uniformly distributed on . By definition, this means that

Run Buffon's coin experiment with the default settings. Watch how the points seem to fill the sample space  in a uniform
manner.

The Probability of a Crack Crossing

Our interest is in the probability of the event  that the coin crosses a crack.

The probability of a crack crossing is .

Proof

Figure :  as a function of 
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In Buffon's coin experiment, change the radius with the scroll bar and watch how the events  and  and change. Run the
experiment with various values of  and compare the physical experiment with the points in the scatterplot. Compare the
relative frequency of  to the probability of .

The convergence of the relative frequency of an event (as the experiment is repeated) to the probability of the event is a special
case of the law of large numbers.

Solve Buffon's coin problem with rectangular tiles that have height  and width .

Answer

Solve Buffon's coin problem with equilateral triangular tiles that have side length 1.

Recall that random numbers are simulation of independent random variables, each with the standard uniform distribution, that is,
the continuous uniform distribution on the interval .

Show how to simulate the center of the coin  in Buffon's coin experiment using random numbers.

Answer

, , where  and  are random numbers.

Buffon's Needle Problem
Buffon's needle experiment consists of dropping a needle on a hardwood floor. The main event of interest is that the needle crosses
a crack between floorboards. Strangely enough, the probability of this event leads to a statistical estimate of the number !

Assumptions

Our first step is to define the experiment mathematically. Again we idealize the physical objects by assuming that the floorboards
are uniform and that each has width 1. We will also assume that the needle has length  so that the needle cannot cross more
than one crack. Finally, we assume that the cracks between the floorboards and the needle are line segments.

When the needle is dropped, we want to record its orientation relative to the floorboard cracks. One way to do this is to record the
angle  that the top half of the needle makes with the line through the center of the needle, parallel to the floorboards, and the
distance  from the center of the needle to the bottom crack. These will be the basic random variables of our experiment, and thus
the sample space of the experiment is

Figure : Buffon's needle problem

Again, our main modeling assumption is that the needle is tossed “randomly” on the floor. Thus, a reasonable mathematical
assumption might be that the basic random vector  is uniformly distributed over the sample space. By definition, this means
that

Run Buffon's needle experiment with the default settings and watch the outcomes being plotted in the sample space. Note how
the points in the scatterplot seem to fill the sample space  in a uniform way.
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The Probability of a Crack Crossing

Our main interest is in the event  that the needle crosses a crack between the floorboards.

The event  can be written in terms of the basic angle and distance variables as follows:

The curves  and  on the interval  are shown in blue in the scatterplot of Buffon's needle
experiment, and hence event  is the union of the regions below the lower curve and above the upper curve. Thus, the needle
crosses a crack precisely when a point falls in this region.

The probability of a crack crossing is .

Proof

Figure :  as a function of 

In the Buffon's needle experiment, vary the needle length  with the scroll bar and watch how the event  changes. Run the
experiment with various values of  and compare the physical experiment with the points in the scatterplot. Compare the
relative frequency of  to the probability of .

The convergence of the relative frequency of an event (as the experiment is repeated) to the probability of the event is a special
case of the law of large numbers.

Find the probabilities of the following events in Buffon's needle experiment. In each case, sketch the event as a subset of the
sample space.

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

The Estimate of 

Suppose that we run Buffon's needle experiment a large number of times. By the law of large numbers, the proportion of crack
crossings should be about the same as the probability of a crack crossing. More precisely, we will denote the number of crack
crossings in the first  runs by . Note that  is a random variable for the compound experiment that consists of  replications
of the basic needle experiment. Thus, if  is large, we should have  and hence
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This is Buffon's famous estimate of . In the simulation of Buffon's needle experiment, this estimate is computed on each run and
shown numerically in the second table and visually in a graph.

Run the Buffon's needle experiment with needle lengths . In each case, watch the estimate of  as the
simulation runs.

Let us analyze the estimation problem more carefully. On each run  we have an indicator variable , where  if the needle
crosses a crack on run  and  if the needle does not cross a crack on run . These indicator variables are independent, and
identically distributed, since we are assuming independent replications of the experiment. Thus, the sequence forms a Bernoulli
trials process.

The number of crack crossings in the first  runs of the experiment is

which has the binomial distribution with parameters  and .

The mean and variance of  are

1. 
2. 

With probability 1,  as  and  as .

Proof
a

These results follow from the strong law of large numbers.

Thus, we have two basic estimators:  as an estimator of  and  as an estimator of . The estimator of  has several
important statistical properties. First, it is unbiased since the expected value of the estimator is the parameter being estimated:

The estimator of  is unbiased:

Proof

This follows from the results above for the binomial distribution and properties of expected value.

Since this estimator is unbiased, the variance gives the mean square error:

The mean square error of the estimator of  is

The variance is a decreasing function of the needle length .

Thus, the estimator of  improves as the needle length increases. On the other hand, the estimator of  is biased; it tends to
overestimate :

The estimator of  is positively biased:
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Proof

Use Jensen's inequality.

The estimator of  also tends to improve as the needle length increases. This is not easy to see mathematically. However, you can
see it empirically.

In the Buffon's needle experiment, run the simulation 5000 times each with , , , and . Note
how well the estimator seems to work in each case.

Finally, we should note that as a practical matter, Buffon's needle experiment is not a very efficient method of approximating .
According to Richard Durrett, to estimate  to four decimal places with  would require about 100 million tosses!

Run the Buffon's needle experiment until the estimates of  seem to be consistently correct to two decimal places. Note the
number of runs required. Try this for needle lengths , , , and  and compare the results.

Show how to simulate the angle  and distance  in Buffon's needle experiment using random numbers.

Answer

, , where  and  are random numbers.

Notes

Buffon's needle problem is essentially solved by Monte-Carlo integration. In general, Monte-Carlo methods use statistical
sampling to approximate the solutions of problems that are difficult to solve analytically. The modern theory of Monte-Carlo
methods began with Stanislaw Ulam, who used the methods on problems associated with the development of the hydrogen bomb.

The original needle problem has been extended in many ways, starting with Simon Laplace who considered a floor with rectangular
tiles. Indeed, variations on the problem are active research problems even today.

Neil Weiss has pointed out that our computer simulation of Buffon's needle experiment is circular, in the sense the program
assumes knowledge of  (you can see this from the simulation result above).

Try to write a computer algorithm for Buffon's needle problem, without assuming the value of  or any other transcendental
numbers.

This page titled 10.1: Buffon's Problems is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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10.2: Bertrand's Paradox
     

Preliminaries

Statement of the Problem

Bertrand's problem is to find the probability that a “random chord” on a circle will be longer than the length of a side of the
inscribed equilateral triangle. The problem is named after the French mathematician Joseph Louis Bertrand, who studied the
problem in 1889.

It turns out, as we will see, that there are (at least) three answers to Bertrand's problem, depending on how one interprets the phrase
“random chord”. The lack of a unique answer was considered a paradox at the time, because it was assumed (naively, in hindsight)
that there should be a single natural answer.

Run Bertrand's experiment 100 times for each of the following models. Do not be concerned with the exact meaning of the
models, but see if you can detect a difference in the behavior of the outcomes

1. Uniform distance
2. Uniform angle
3. Uniform endpoint

Mathematical Formulation

To formulate the problem mathematically, let us take  as the center of the circle and take the radius of the circle to be 1. These
assumptions entail no loss of generality because they amount to measuring distances relative to the center of the circle, and taking
the radius of the circle as the unit of length. Now consider a chord on the circle. By rotating the circle, we can assume that one
point of the chord is  and the other point is  where  and .

With these assumptions, the chord is completely specified by giving any one of the following variables

1. The (perpendicular) distance  from the center of the circle to the midpoint of the chord. Note that .
2. The angle  between the -axis and the line from the center of the circle to the midpoint of the chord. Note that 

.
3. The horizontal coordinate . Note that .

Figure : A chord in the circle

The variables are related as follows:

1. 
2. 
3. 

The inverse relations are given below. Note again that there are one-to-one correspondences between , , and .
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If the chord is generated in a probabilistic way, , , , and  become random variables. In light of the previous results,
specifying the distribution of any of the variables , , or  completely determines the distribution of all four variables.

The angle  is also the angle between the chord and the tangent line to the circle at .

Now consider the equilateral triangle inscribed in the circle so that one of the vertices is . Consider the chord defined by the
upper side of the triangle.

For this chord, the angle, distance, and coordinate variables are given as follows:

1. 
2. 
3. 
4. 

Figure : The inscribed equilateral triangle

Now suppose that a chord is chosen in probabilistic way.

The length of the chord is greater than the length of a side of the inscribed equilateral triangle if and only if the following
equivalent conditions occur:

1. 
2. 
3. 

Models
When an object is generated “at random”, a sequence of “natural” variables that determines the object should be given an
appropriate uniform distribution. The coordinates of the coin center are such a sequence in Buffon's coin experiment; the angle and
distance variables are such a sequence in Buffon's needle experiment. The crux of Bertrand's paradox is the fact that the distance 

, the angle , and the coordinate  each seems to be a natural variable that determine the chord, but different models are
obtained, depending on which is given the uniform distribution.

The Model with Uniform Distance

Suppose that  is uniformly distributed on the interval .

The solution of Bertrand's problem is

In Bertrand's experiment, select the uniform distance model. Run the experiment 1000 times and compare the relative
frequency function of the chord event to the true probability.

The angle  has probability density function

Proof
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This follows from the standard the change of variables formula.

The coordinate  has probability density function

Proof

This follows from the standard the change of variables formula.

Note that  and  do not have uniform distributions. Recall that a random number is a simulation of a variable with the standard
uniform distribution, that is the continuous uniform distribution on the interval .

Show how to simulate , , , and  using a random number.

Answer

, , , where  is a random number

The Model with Uniform Angle

Suppose that  is uniformly distributed on the interval .

The solution of Bertrand's problem is

In Bertrand's experiment, select the uniform angle model. Run the experiment 1000 times and compare the relative frequency
function of the chord event to the true probability.

The distance  has probability density function

Proof

This follows from the standard change of variables formula.

The coordinate  has probability density function

Proof

This follows from the change of variables formula.

Note that  and  do not have uniform distributions.

Show how to simulate , , , and  using a random number.

Answer

, , , , where  is a random number.

The Model with Uniform Endpoint

Suppose that  is uniformly distributed on the interval .

The solution of Bertrand's problem is

X

h(x) = , −1 < x < 1

1

8(x+1)

− −−−−−−

√

(10.2.3)
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In Bertrand's experiment, select the uniform endpoint model. Run the experiment 1000 times and compare the relative
frequency function of the chord event to the true probability.

The distance  has probability density function

Proof

This follows from the change of variables formula.

The angle  has probability density function

Proof

This follows from the change of variables formula.

Note that  and  do not have uniform distributions; in fact,  has a beta distribution with left parameter 2 and right parameter 1.

Physical Experiments

Suppose that a random chord is generated by tossing a coin of radius 1 on a table ruled with parallel lines that are distance 2
apart. Which of the models (if any) would apply to this physical experiment?

Answer

Uniform distance

Suppose that a needle is attached to the edge of disk of radius 1. A random chord is generated by spinning the needle. Which of
the models (if any) would apply to this physical experiment?

Answer

Uniform angle

Suppose that a thin trough is constructed on the edge of a disk of radius 1. Rolling a ball in the trough generates a random point
on the circle, so a random chord is generated by rolling the ball twice. Which of the models (if any) would apply to this
physical experiment?

Answer

Uniform angle

This page titled 10.2: Bertrand's Paradox is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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10.3: Random Triangles
     

Preliminaries

Statement of the Problem

Suppose that a stick is randomly broken in two places. What is the probability that the three pieces form a triangle?

Without looking below, make a guess.

Run the triangle experiment 50 times. Do not be concerned with all of the information displayed in the app, but just note
whether the pieces form a triangle. Would you like to revise your guess?

Mathematical Formulation

As usual, the first step is to model the random experiment mathematically. We will take the length of the stick as our unit of length,
so that we can identify the stick with the interval . To break the stick into three pieces, we just need to select two points in the
interval. Thus, let  denote the first point chosen and  the second point chosen. Note that  and  are random variables and
hence the sample space of our experiment is . Now, to model the statement that the points are chosen at random, let us
assume, as in the previous sections, that  and  are independent and each is uniformly distributed on .

The random point  is uniformly distributed on .

Hence

Triangles

The Probability of a Triangle

The three pieces form a triangle if and only if the triangle inequalities hold: the sum of the lengths of any two pieces must be
greater than the length of the third piece.

The event that the pieces form a triangle is  where

1. 
2. 

A sketch of the event  is given below. Curiously,  is composed of triangles!

Figure : The event  that the pieces form a triangle

The probability that the pieces form a triangle is .

How close did you come with your initial guess? The relative low value of  is a bit surprising.
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Run the triangle experiment 1000 times and compare the empirical probability of  to the true probability.

Triangles of Different Types

Now let us compute the probability that the pieces form a triangle of a given type. Recall that in an acute triangle all three angles
are less than 90°, while an obtuse triangle has one angle (and only one) that is greater than 90°. A right triangle, of course, has one
90° angle.

Suppose that a triangle has side lengths , , and , where  is the largest of these. The triangle is

1. acute if and only if .
2. obtuse if and only if .
3. right if and only if .

Part (c), of course, is the famous Pythagorean theorem, named for the ancient Greek mathematician Pythagoras.

The right triangle equations for the stick pieces are

1.  in 
2.  in 
3.  in 
4.  in 
5.  in 
6.  in 

Figure : The events that the pieces form acute and obtuse triangles

Let  denote the event that the pieces form a right triangle. Then .

The event that the pieces form an acute triangle is  where

1.  is the region inside curves (a), (b), and (c) of the right triangle equations.
2.  is the region inside curves (d), (e), and (f) of the right triangle equations.

The event that the pieces form an obtuse triangle is  where

1. , , and  are the regions inside  and outside of curves (a), (b), and (c) of the right triangle equations, respectively.
2. , , and  are the regions inside  and outside of curves (d), (e), and (f) of the right triangle equations, respectively.

The probability that the pieces form an obtuse triangle is

Proof

Simple calculus shows that  for each . For example
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From symmetry it also follows that  is the same for each .

The probability that the pieces form an acute triangle is

Proof

Note that , and , , and  are disjoint.

Run the triangle experiment 1000 times and compare the empirical probabilities to the true probabilities.

This page titled 10.3: Random Triangles is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

11: Bernoulli Trials
The Bernoulli trials process is one of the simplest, yet most important, of all random processes. It is an essential topic in any course
in probability or mathematical statistics. The process consists of independent trials with two outcomes and with constant
probabilities from trial to trial. Thus it is the mathematical abstraction of coin tossing. The process leads to several important
probability distributions: the binomial, geometric, and negative binomial.

11.1: Introduction to Bernoulli Trials
11.2: The Binomial Distribution
11.3: The Geometric Distribution
11.4: The Negative Binomial Distribution
11.5: The Multinomial Distribution
11.6: The Simple Random Walk
11.7: The Beta-Bernoulli Process

This page titled 11: Bernoulli Trials is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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11.1: Introduction to Bernoulli Trials
       

Basic Theory

Definition

The Bernoulli trials process, named after Jacob Bernoulli, is one of the simplest yet most important random processes in
probability. Essentially, the process is the mathematical abstraction of coin tossing, but because of its wide applicability, it is
usually stated in terms of a sequence of generic “trials”.

A sequence of Bernoulli trials satisfies the following assumptions:

1. Each trial has two possible outcomes, in the language of reliability called success and failure.
2. The trials are independent. Intuitively, the outcome of one trial has no influence over the outcome of another trial.
3. On each trial, the probability of success is  and the probability of failure is  where  is the success parameter

of the process.

Random Variables

Mathematically, we can describe the Bernoulli trials process with a sequence of indicator random variables:

An indicator variable is a random variable that takes only the values 1 and 0, which in this setting denote success and failure,
respectively. Indicator variable  simply records the outcome of trial . Thus, the indicator variables are independent and have the
same probability density function:

The distribution defined by this probability density function is known as the Bernoulli distribution. In statistical terms, the
Bernoulli trials process corresponds to sampling from the Bernoulli distribution. In particular, the first  trials 
form a random sample of size  from the Bernoulli distribution. Note again that the Bernoulli trials process is characterized by a
single parameter .

The joint probability density function of  trials is given by

Proof

This follows from the basic assumptions of independence and the constant probabilities of 1 and 0.

Note that the exponent of  in the probability density function is the number of successes in the  trials, while the exponent of 
 is the number of failures.

If  is a Bernoulli trials process with parameter  then  is a Bernoulli trials
sequence with parameter .

Suppose that  is a sequence of independent random variables, each with the uniform distribution on the
interval . For  and , let . Then  is a Bernoulli trials
process with probability .

Note that in the previous result, the Bernoulli trials processes for all possible values of the parameter  are defined on a common
probability space. This type of construction is sometimes referred to as coupling. This result also shows how to simulate a
Bernoulli trials process with random numbers. All of the other random process studied in this chapter are functions of the Bernoulli
trials sequence, and hence can be simulated as well.
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Moments

Let  be an indciator variable with , where . Thus,  is the result of a generic Bernoulli trial and has the
Bernoulli distribution with parameter . The following results give the mean, variance and some of the higher moments. A helpful
fact is that if we take a positive power of an indicator variable, nothing happens; that is,  for 

The mean and variance of  are

1. 
2. 

Proof
1. 
2. 

Note that the graph of , as a function of  is a parabola opening downward. In particular the largest value is  when
, and the smallest value is 0 when  or . Of course, in the last two cases,  is deterministic, taking the single value

0 when  and the single value 1 when 

Figure :  as a function of 

Suppose that . The skewness and kurtosis of  are

1. 

2. 

The probability generating function of  is  for .

Examples and Applications

Coins

As we noted earlier, the most obvious example of Bernoulli trials is coin tossing, where success means heads and failure means
tails. The parameter  is the probability of heads (so in general, the coin is biased).

In the basic coin experiment, set  and For each  run the experiment and observe the
outcomes.

Generic Examples

In a sense, the most general example of Bernoulli trials occurs when an experiment is replicated. Specifically, suppose that we have
a basic random experiment and an event of interest . Suppose now that we create a compound experiment that consists of
independent replications of the basic experiment. Define success on trial  to mean that event  occurred on the th run, and define
failure on trial  to mean that event  did not occur on the th run. This clearly defines a Bernoulli trials process with parameter 

.

Bernoulli trials are also formed when we sample from a dichotomous population. Specifically, suppose that we have a population
of two types of objects, which we will refer to as type 0 and type 1. For example, the objects could be persons, classified as male or
female, or the objects could be components, classified as good or defective. We select  objects at random from the population; by
definition, this means that each object in the population at the time of the draw is equally likely to be chosen. If the sampling is
with replacement, then each object drawn is replaced before the next draw. In this case, successive draws are independent, so the
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types of the objects in the sample form a sequence of Bernoulli trials, in which the parameter  is the proportion of type 1 objects in
the population. If the sampling is without replacement, then the successive draws are dependent, so the types of the objects in the
sample do not form a sequence of Bernoulli trials. However, if the population size is large compared to the sample size, the
dependence caused by not replacing the objects may be negligible, so that for all practical purposes, the types of the objects in the
sample can be treated as a sequence of Bernoulli trials. Additional discussion of sampling from a dichotomous population is in the
in the chapter Finite Sampling Models.

Suppose that a student takes a multiple choice test. The test has 10 questions, each of which has 4 possible answers (only one
correct). If the student blindly guesses the answer to each question, do the questions form a sequence of Bernoulli trials? If so,
identify the trial outcomes and the parameter .

Answer

Yes, probably so. The outcomes are correct and incorrect and .

Candidate  is running for office in a certain district. Twenty persons are selected at random from the population of registered
voters and asked if they prefer candidate . Do the responses form a sequence of Bernoulli trials? If so identify the trial
outcomes and the meaning of the parameter .

Answer

Yes, approximately, assuming that the number of registered voters is large, compared to the sample size of 20. The outcomes
are prefer  and do not prefer ;  is the proportion of voters in the entire district who prefer .

An American roulette wheel has 38 slots; 18 are red, 18 are black, and 2 are green. A gambler plays roulette 15 times, betting
on red each time. Do the outcomes form a sequence of Bernoulli trials? If so, identify the trial outcomes and the parameter .

Answer

Yes, the outcomes are red and black, and .

Roulette is discussed in more detail in the chapter on Games of Chance.

Two tennis players play a set of 6 games. Do the games form a sequence of Bernoulli trials? If so, identify the trial outcomes
and the meaning of the parameter .

Answer

No, probably not. The games are almost certainly dependent, and the win probably depends on who is serving and thus is not
constant from game to game.

Reliability

Recall that in the standard model of structural reliability, a system is composed of  components that operate independently of each
other. Let  denote the state of component , where 1 means working and 0 means failure. If the components are all of the same
type, then our basic assumption is that the state vector

is a sequence of Bernoulli trials. The state of the system, (again where 1 means working and 0 means failed) depends only on the
states of the components, and thus is a random variable

where  is the structure function. Generally, the probability that a device is working is the reliability of the
device, so the parameter  of the Bernoulli trials sequence is the common reliability of the components. By independence, the
system reliability  is a function of the component reliability:

where we are emphasizing the dependence of the probability measure  on the parameter . Appropriately enough, this function is
known as the reliability function. Our challenge is usually to find the reliability function, given the structure function.
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A series system is working if and only if each component is working.

1. The state of the system is .
2. The reliability function is  for .

A parallel system is working if and only if at least one component is working.

1. The state of the system is .
2. The reliability function is  for .

Recall that in some cases, the system can be represented as a graph or network. The edges represent the components and the
vertices the connections between the components. The system functions if and only if there is a working path between two
designated vertices, which we will denote by  and .

Find the reliability of the Wheatstone bridge network shown below (named for Charles Wheatstone).

Figure : The Wheatstone bridge network
Answer

The Pooled Blood Test

Suppose that each person in a population, independently of all others, has a certain disease with probability . Thus, with
respect to the disease, the persons in the population form a sequence of Bernoulli trials. The disease can be identified by a blood
test, but of course the test has a cost.

For a group of  persons, we will compare two strategies. The first is to test the  persons individually, so that of course,  tests are
required. The second strategy is to pool the blood samples of the  persons and test the pooled sample first. We assume that the test
is negative if and only if all  persons are free of the disease; in this case just one test is required. On the other hand, the test is
positive if and only if at least one person has the disease, in which case we then have to test the persons individually; in this case 

 tests are required. Thus, let  denote the number of tests required for the pooled strategy.

The number of tests  has the following properties:

1. 
2. 
3. 

In terms of expected value, the pooled strategy is better than the basic strategy if and only if

The graph of the critical value  as a function of  is shown in the graph below:
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Figure : The graph of  as a function of 

The critical value  satisfies the following properties:

1. The maximum value of  occurs at  and .
2.  as .

It follows that if , pooling never makes sense, regardless of the size of the group . At the other extreme, if  is very
small, so that the disease is quite rare, pooling is better unless the group size  is very large.

Now suppose that we have  persons. If  then we can partition the population into  groups of  each, and apply the pooled
strategy to each group. Note that  corresponds to individual testing, and  corresponds to the pooled strategy on the
entire population. Let  denote the number of tests required for group .

The random variables  are independent and each has the distribution given above.

The total number of tests required for this partitioning scheme is .

The expected total number of tests is

The variance of the total number of tests is

Thus, in terms of expected value, the optimal strategy is to group the population into  groups of size , where  minimizes the
expected value function above. It is difficult to get a closed-form expression for the optimal value of , but this value can be
determined numerically for specific  and .

For the following values of  and , find the optimal pooling size  and the expected number of tests. (Restrict your attention
to values of  that divide .)

1. , 
2. , 
3. , 

Answer
1. , 
2. , 
3. , 

If  does not divide , then we could divide the population of  persons into  groups of  each and one “remainder” group
with  members. This clearly complicates the analysis, but does not introduce any new ideas, so we will leave this
extension to the interested reader.

This page titled 11.1: Introduction to Bernoulli Trials is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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11.2: The Binomial Distribution
       

Basic Theory

Definitions

Our random experiment is to perform a sequence of Bernoulli trials . Recall that  is a sequence of independent, identically
distributed indicator random variables, and in the usual language of reliability, 1 denotes success and 0 denotes failure. The common probability of
success , is the basic parameter of the process. In statistical terms, the first  trails  form a random sample of size 
from the Bernoulli distribution.

In this section we will study the random variable that gives the number of successes in the first  trials and the random variable that gives the proportion
of successes in the first  trials. The underlying distribution, the binomial distribution, is one of the most important in probability theory, and so deserves
to be studied in considerable detail. As you will see, some of the results in this section have two or more proofs. In almost all cases, note that the proof
from Bernoulli trials is the simplest and most elegant.

For , the number of successes in the first  trials is the random variable

The distribution of  is the binomial distribution with trial parameter  and success parameter .

Note that  is the partial sum process associated with the Bernoulli trials sequence . In particular, , so point mass at 0 is
considered a degenerate form of the binomial distribution.

Distribution Functions

The probability density function  of  is given by

Proof

Recall that if  with  (that is, a bit string of length  with 1 occurring exactly  times), then by independence,

Moreover, the number of bit strings of length  with 1 occurring exactly  times is the binomial coefficient . By the additive property of
probability

Check that  is a valid PDF

Clearly  for . From the binomial theorem

In the binomial coin experiment, vary  and  with the scrollbars, and note the shape and location of the probability density function. For selected
values of the parameters, run the simulation 1000 times and compare the relative frequency function to the probability density function.

The binomial distribution is unimodal: For ,

1.  if and only if .
2.  if and only if  is an integer an integer between 1 and .

Proof

1.  if and only if  if and only if  if and only if 
2. As in (a),  if and only if , which must be an integer.

Thus, the density function at first increases and then decreases, reaching its maximum value at . This integer is a mode of the distribution. In
the case that  is an integer between 1 and , there are two consecutive modes, at  and .

Now let  denote the distribution function of , so that
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The distribution function  and the quantile function  do not have simple, closed forms, but values of these functions can be computed from
mathematical and statistical software.

Open the special distribution calculator and select the binomial distribution and set the view to CDF. Vary  and  and note the shape and location of
the distribution/quantile function. For various values of the parameters, compute the median and the first and third quartiles.

The binomial distribution function also has a nice relationship to the beta distribution function.

The distribution function  can be written in the form

Proof

Let  denote the expression on the right. Substitution and simple integration shows that . For 
, integrating by parts with  and  gives

It follows that  for .

The expression on the right in the previous theorem is the beta distribution function, with left parameter  and right parameter , evaluated at 
.

Moments

The mean, variance and other moments of the binomial distribution can be computed in several different ways. Again let  where 
 is a sequence of Bernoulli trials with success parameter .

The mean and variance of  are

1. 
2. 

Proof from Bernoulli trials
1. Recall that  for each . Hence from the additive property of expected value,

2. Recall that  for each . Hence from the additive property of variance for independent variables,

Direct proof of (a)

Recall the identity  for . Using the binomial theorem,

A similar, but more complicated proof can be used for part (b).

The expected value of  also makes intuitive sense, since  should be approximately the proportion of successes in a large number of trials. We will
discuss the point further in the subsection below on the proportion of successes. Note that the graph of  as a function of  is parabola
opening downward. In particular the maximum value of the variance is  when , and the minimm value is 0 when  or . Of course,
in the last two cases,  is deterministic, taking just the value 0 if  and just the value  when .
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In the binomial coin experiment, vary  and  with the scrollbars and note the location and size of the mean standard deviation bar. For selected
values of the parameters, run the simulation 1000 times and compare the sample mean and standard deviation to the distribution mean and standard
deviation.

The probability generating function of  is  for .

Proof from Bernoulli trials

Recall that the probability generating function of a sum of indpendent variables is the product of the probability generating functions of the terms.
Recall also that the PGF of  is  for each . Hence .

Direct Proof

Using the binomial theorem yet again,

Recall that for  and , the falling power of  of order  is . If  is a random variable and , then 
 is the factorial moment of  of onder . The probability generating function provides an easy way to compute the factorial moments of the

binomial distribution.

 for .

Proof

Recall that  where  denotes the th derivative of . By simple calculus, , so 

.

Our next result gives a recursion equation and initial conditions for the moments of the binomial distribution.

Recursion relation and initial conditions

1.  for 

2.  for 
3.  for 

Proof

Recall again the identity .

The ordinary (raw) moments of  can be computed from the factorial moments and from the recursion relation. Here are the first four, which will be
needed below.

The first four moments of  are

1. 
2. 
3. 
4. 

Our final moment results gives the skewness and kurtosis of the binomial distribution.

For , the skewness of  is

1.  if ,  if , and  if 
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2. For fixed ,  as  and as 
3. For fixed ,  as 

Proof

These result follow from the standard computational formulas for skewness and kurtosis and the first three moments of the binomial distribution.

Open the binomial timeline experiment. For each of the following values of , vary  from 0 to 1 and note the shape of the probability density
function in light of the previous results on skewness.

1. 
2. 
3. 

For , the kurtosis of  is

1. For fixed ,  decreases and then increases as a function of , with minimum value  at the point of symmetry 
2. For fixed ,  as  and as 
3. For fixed ,  as 

Proof

These result follow from the standard computational formulas for skewness and kurtosis and the first four moments of the binomial distribution.

Note that the excess kurtosis is  as . This is related to the convergence of the binomial distribution to the

normal, which we will discuss below.

The Partial Sum Process

Several important properties of the random process  stem from the fact that it is a partial sum process corresponding to the sequence
 of independent, identically distributed indicator variables.

 has stationary, independent increments:

1. If  and  are positive integers with  then  has the same distribution as , namely binomial with parameters  and .
2. If  then  is a sequence of independent variables.

Proof

Every partial sum process corresponding to a sequence of independent, identically distributed variables has stationary, independent increments.

The following result gives the finite dimensional distributions of .

The joint probability density functions of the sequence  are given as follows:

where  with  and where  with  for each .

Proof

From the stationary and independent increments properties,

The result then follows from substitution and simplification.

Transformations that Preserve the Binomial Distribution

There are two simple but important transformations that perserve the binomial distribution.

If  is a random variable having the binomial distribution with parameters  and , then  has the binomial distribution with parameters  and 
.

Proof from Bernoulli trials

Recall that if  is a Bernoulli trials sequence with parameter , then  is a Bernoulli trials sequence with parameter
. Also  has the same distribution as  (binomial with parameters  and ) so  has the same distribution as 

(binomial with parameters  and ).

Proof from density functions
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Note that  for 

The sum of two independent binomial variables with the same success parameter also has a binomial distribution.

Suppose that  and  are independent random variables, and that  has the binomial distribution with parameters  and , and  has the binomial
distribution with parameters  and . Then  has the binomial distribution with parameters  and .

Proof from Bernoulli trials

Let  be a Bernoulli trials sequence with parameter , and let  for . Then  has the same distribution as  and 
has the same distribution as . Since  and  are independent,  has the same distribution as 

.

Proof from convolution powers

Let  denote the PDF of an indicator variable  with parameter , so that  for . The binomial distribution with
parameters  and  has PDF , the -fold convolution power of . In particular,  has PDF ,  has PDF  and hence 
has PDF .

Proof from generating functions

 and  have PGFs  and  for , respectively. Hence by independence,  has PGF 
.

Sampling and the Hypergeometric Distribution

Suppose that we have a dichotomous population, that is a population of two types of objects. Specifically, suppose that we have  objects, and that  of
the objects are type 1 and the remaining  objects are type 0. Thus  and . We select  objects at random from the
population, so that all samples of size  are equally likely. If the sampling is with replacement, the sample size  can be any positive integer. If the
sampling is without replacement, then we must have .

In either case, let  denote the type of the 'th object selected for  so that  is the number of type 1 objects in the sample.
As noted in the Introduction, if the sampling is with replacement,  is a sequence of Bernoulli trials, and hence  has the binomial
distribution parameters  and . If the sampling is without replacement, then  has the hypergeometric distribution with parameters , , and .
The hypergeometric distribution is studied in detail in the chapter on Finite Sampling Models. For reference, the probability density function of  is
given by

and the mean and variance of  are

If the population size  is large compared to the sample size , then the dependence between the indicator variables is slight, and so the hypergeometric
distribution should be close to the binomial distribution. The following theorem makes this precise.

Suppose that  for each  and that  as . Then for fixed the hypergeometric
distribution with parameters ,  and  converges to the binomial distribution with parameters  and  as .

Proof

The hypergeometric PDF has the form

Note that the fraction above has  factors in the numerator and  factors in the denominator. We can group these, in order, to form a product of 
fractions. The first  fractions have the form

where . Each of these converges to  as . The remaining  fractions have the form

where . For fixed  and , each of these converges to  as . Hence  as 
for each 
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Under the conditions in the previous theorem, the mean and variance of the hypergeometric distribution converge to the mean and variance of the
limiting binomial distribution:

1.  as 
2.  as 

Proof

By assumption  as  and  is fixed, so also  as 

In the ball and urn experiment, vary the parameters and switch between sampling without replacement and sampling with replacement. Note the
difference between the graphs of the hypergeometric probability density function and the binomial probability density function. In particular, note the
similarity when  is large and  small. For selected values of the parameters, and for both sampling modes, run the experiment 1000 times.

From a practical point of view, the convergence of the hypergeometric distribution to the binomial means that if the population size  is “large”
compared to the sample size, then the hypergeometric distribution with parameters ,  and  is well approximated by the binomial distribution with
parameters  and . This is often a useful result, because the binomial distribution has fewer parameters than the hypergeometric distribution
(and often in real problems, the parameters may only be known approximately). Specifically, in the approximating binomial distribution, we do not need
to know the population size  and the number of type 1 objects  individually, but only in the ratio . Generally, the approximation works well if 
is large compared to  that  is close to 1. This ensures that the variance of the hypergeometric distribution is close to the variance of the
approximating binomial distribution.

Now let's return to our usual sequence of Bernoulli trials , with success parameter , and to the binomial variables  for 
. Our next result shows that given  successes in the first  trials, the trials on which the successes occur is simply a random sample of size 

chosen without replacement from .

Suppose that  and . Then for  with ,

Proof

From the definition of conditional probability,

Note in particular that the conditional distribution above does not depend on . In statistical terms, this means that relative to , random
variable  is a sufficient statistic for . Roughly,  contains all of the information about  that is available in the entire sample .
Sufficiency is discussed in more detail in the chapter on Point Estimation. Next, if  then the conditional distribution of  given  is
hypergeometric, with population size , type 1 size , and sample size .

Suppose that  and that  with  and . Then

Proof from the previous result

Given , the trial numbers of the successes form a random sample of size  chosen without replacement from . Designate trials 
 as type 1 and trials  as type 0. Then  is the number of type 1 trials in the sample, and hence (given )

has the hypergeometric distribution with population size , type 1 size , and sample size .

Direct proof

From the definition of conditional probability,

But  and  are independent. Both variables have binomial distributions; the first with parameters  and , and the second with parameters
 and . Hence

Once again, note that the conditional distribution is independent of the success parameter .
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The Poisson Approximation

The Poisson process on , named for Simeon Poisson, is a model for random points in continuous time. There are many deep and interesting
connections between the Bernoulli trials process (which can be thought of as a model for random points in discrete time) and the Poisson process. These
connections are explored in detail in the chapter on the Poisson process. In this section we just give the most famous and important result—the
convergence of the binomial distribution to the Poisson distribution.

For reference, the Poisson distribution with rate parameter  has probability density function

The parameter  is both the mean and the variance of the distribution. In addition, the probability generating function is .

Suppose that  for  and that  as . Then the binomial distribution with parameters  and  converges to
the Poisson distribution with parameter  as .

Proof from density functions

Let  denote the binomial PDF with parameters  and . Then for 

But  as  for fixed . Also, using a basic theorem from calculus,  as . Hence 
as .

Proof from generating functions

For , using the same basic limit from calculus,

The left side is the PGF of the binomial distribution with parameters  and , while the right side is the PGF of the Poisson distribution with
parameter .

Under the same conditions as the previous theorem, the mean and variance of the binomial distribution converge to the mean and variance of the
limiting Poisson distribution, respectively.

1.  as 
2.  as 

Proof

By assumption,  as , and so it also follows that  as .

Compare the Poisson experiment and the binomial timeline experiment.

1. Open the Poisson experiment and set  and . Run the experiment a few times and note the general behavior of the random points in
time. Note also the shape and location of the probability density function and the mean standard deviation bar.

2. Now open the binomial timeline experiment and set  and . Run the experiment a few times and note the general behavior of the
random points in time. Note also the shape and location of the probability density function and the mean standard deviation bar.

From a practical point of view, the convergence of the binomial distribution to the Poisson means that if the number of trials  is “large” and the
probability of success  “small”, so that  is small, then the binomial distribution with parameters  and  is well approximated by the Poisson
distribution with parameter . This is often a useful result, because the Poisson distribution has fewer parameters than the binomial distribution
(and often in real problems, the parameters may only be known approximately). Specifically, in the approximating Poisson distribution, we do not need to
know the number of trials  and the probability of success  individually, but only in the product . The condition that  be small means that the
variance of the binomial distribution, namely  is approximately , the variance of the approximating Poisson distribution.

The Normal Approximation

Open the binomial timeline experiment. For selected values of , start with  and successively increase  by 1. For each value of ,
Note the shape of the probability density function of the number of successes and the proportion of successes. With , run the experiment
1000 times and compare the empirical density function to the probability density function for the number of successes and the proportion of
successes

The characteristic bell shape that you should observe in the previous exercise is an example of the central limit theorem, because the binomial variable
can be written as a sum of  independent, identically distributed random variables (the indicator variables).

The standard score  of  is the same as the standard score of :
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The distribution of  converges to the standard normal distribution as .

This version of the central limit theorem is known as the DeMoivre-Laplace theorem, and is named after Abraham DeMoivre and Simeon Laplace. From
a practical point of view, this result means that, for large , the distribution of  is approximately normal, with mean  and standard deviation 

 and the distribution of  is approximately normal, with mean  and standard deviation . Just how large  needs to be for
the normal approximation to work well depends on the value of . The rule of thumb is that we need  and  (the first condition is the
significant one when  and the second condition is the significant one when ). Finally, when using the normal approximation, we should
remember to use the continuity correction, since the binomial is a discrete distribution.

General Families

For a fixed number of trials , the binomial distribution is a member of two general families of distributions. First, it is a general exponential distribution.

Suppose that  has the binomial distribution with parameters  and , where  is fixed and . The distribution of  is a one-

parameter exponential family with natural parameter  and natural statistic .

Proof

This follows from the definition of the general exponential family. The support set  does not depend on , and for  in this set,

Note that the natural parameter is the logarithm of the odds ratio corresponding to . This function is sometimes called the logit function. The binomial
distribution is also a power series distribution

Suppose again that  has the binomial distribution with parameters  and , where  is fixed and . The distribution of  is a power
series distribution in the parameter , corresponding to the function .

Proof

This follows from the definition of the power series distribution. As before, for ,

where . This is the power series distribution in , with coefficients , corresponding to the function .

The Proportion of Successes

Suppose again that  is a sequence of Bernoulli trials with success parameter , and that as usual,  is the number of
successes in the first  trials for . The proportion of successes in the first  trials is the random variable

In statistical terms,  is the sample mean of the random sample . The proportion of successes  is typically used to estimate the
probability of success  when this probability is unknown.

It is easy to express the probability density function of the proportion of successes  in terms of the probability density function of the number of
successes . First, note that  takes the values  where .

The probabiliy density function of  is given by

Proof

Trivially,  if and only if  for .

In the binomial coin experiment, select the proportion of heads. Vary  and  with the scroll bars and note the shape of the probability density
function. For selected values of the parameters, run the experiment 1000 times and compare the relative frequency function to the probability density
function.

The mean and variance of the proportion of successes  are easy to compute from the mean and variance of the number of successes .

The mean and variance of  are
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1. 
2. .

Proof

From the scaling properties of expected value and variance,

1. 
2. 

In the binomial coin experiment, select the proportion of heads. Vary  and  and note the size and location of the mean standard deviation bar. For
selected values of the parameters, run the experiment 1000 times and compare the empirical moments to the distribution moments.

Recall that skewness and kurtosis are standardized measures. Since  and  have the same standard score, the skewness and kurtosis of  are the
same as the skewness and kurtosis of  given above.

In statistical terms, part (a) of the moment result above means that  is an unbiased estimator of . From part (b) note that  for any 
. In particular,  as  and the convergence is uniform in . Thus, the estimate improves as  increases; in statistical

terms, this is known as consistency.

For every ,  as  and the convergence is uniform in .

Proof

This follows from the last result and Chebyshev's inequality.

The last result is a special case of the weak law of large numbers and means that  as  in probability. The strong law of large numbers
states that the convergence actually holds with probability 1.

The proportion of successes  has a number of nice properties as an estimator of the probability of success . As already noted, it is unbiased and
consistent. In addition, since  is a sufficient statistic for , based on the sample , it follows that  is sufficient for  as well. Since 

,  is trivially the method of moments estimator of . Assuming that the parameter space for  is , it is also the maximum likelihood
estimator of .

The likelihood function for , based on the observed sample , is , where .
The likelihood is maximized at .

Proof

By definition, the likelihood function is simply the joint PDF of  thought of as a function of the parameter , for fixed 
. Thus the form of the likelihood function follows from the joint PDF given in the Introduction. If ,  is decreasing and hence

is maximized at . If ,  is increasing and is maximized at . If , the log-likelihood function is

and the derivative is

There is a single critical point at . The second derivative of the log-likelihood function is negative, so the maximum on  occurs at the
critical point.

See Estimation in the Bernoulli Model in the chapter on Set Estimation for a different approach to the problem of estimating .

Examples and Applications

Simple Exercises

A student takes a multiple choice test with 20 questions, each with 5 choices (only one of which is correct). Suppose that the student blindly guesses.
Let  denote the number of questions that the student answers correctly. Find each of the following:

1. The probability density function of .
2. The mean of .
3. The variance of .
4. The probability that the student answers at least 12 questions correctly (the score that she needs to pass).
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1.  for 

2. 
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4. . She has no hope of passing.

A certain type of missile has failure probability 0.02. Let  denote the number of failures in 50 tests. Find each of the following:

1. The probability density function of .
2. The mean of .
3. The variance of .
4. The probability of at least 47 successful tests.

Answer

1.  for 

2. 
3. 
4. 

Suppose that in a certain district, 40% of the registered voters prefer candidate . A random sample of 50 registered voters is selected. Let  denote
the number in the sample who prefer . Find each of the following:

1. The probability density function of .
2. The mean of .
3. The variance of .
4. The probability that  is less that 19.
5. The normal approximation to the probability in (d).

Answer

1.  for 

2. 
3. 
4. 
5. 

Coins and Dice

Recall that a standard die is a six-sided die. A fair die is one in which the faces are equally likely. An ace-six flat die is a standard die in which faces 1
and 6 have probability  each, and faces 2, 3, 4, and 5 have probability .

A standard, fair die is tossed 10 times. Let  denote the number of aces. Find each of the following:

1. The probability density function of .
2. The mean of .
3. The variance of .

Answer

1.  for 

2. 
3. 

A coin is tossed 100 times and results in 30 heads. Find the probability density function of the number of heads in the first 20 tosses.

Answer

Let  denote the number of heads in the first  tosses.

An ace-six flat die is rolled 1000 times. Let  denote the number of times that a score of 1 or 2 occurred. Find each of the following:

1. The probability density function of .
2. The mean of .
3. The variance of .
4. The probability that  is at least 400.
5. The normal approximation of the probability in (d)

Answer

P(X ≥ 12) ≈ 0.000102

Y

Y

Y

Y

P(Y = y) = ( )

50

k

( )

1

50

y

( )

49

50

50−y

y ∈ {0, 1,… , 50}

E(Y ) = 1

var(Y ) =

49

50

P(Y ≤ 3) ≈ 0.9822

A Z

A

Z

Z

Z

Z

P(Z = z) = ( )

50

z

( )

2

5

z

( )

3

5

50−z

z ∈ {0, 1,… , 50}

E(Z) = 20

var(Z) = 12

P(Z < 19) = 0.3356

P(Z < 19) ≈ 0.3330

1

4

1

8

N

N

N

N

P(N = k) = ( )

10

k

( )

1

6

k

( )

5

6

10−k

k ∈ {0, 1,… , 10}

E(N) =

5

3

var(N) =

25

18

Y

n

n
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20

Y

100

( )( )

20

y

80
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1.  for 

2. 
3. 
4. 
5. 

In the binomial coin experiment, select the proportion of heads. Set  and . Run the experiment 100 times. Over all 100 runs, compute
the square root of the average of the squares of the errors, when  used to estimate . This number is a measure of the quality of the estimate.

In the binomial coin experiment, select the number of heads , and set  and . Run the experiment 1000 times with and compute the
following:

1. 
2. The relative frequency of the event 
3. The normal approximation to 

Answer
1. 
3. 

In the binomial coin experiment, select the proportion of heads  and set , . Run the experiment 1000 times and compute each of the
following:

1. 
2. The relative frequency of the event 
3. The normal approximation to 

Answer
1. 
3. 

Famous Problems

In 1693, Samuel Pepys asked Isaac Newton whether it is more likely to get at least one 6 in 6 rolls of a die, or at least two 6's in 12 rolls, or at least three
6's in 18 rolls. This problems is known a Pepys' problem; naturally, Pepys had fair dice in mind.

Solve Pepys' problem using the binomial distribution.

Answer

Let  denote the number of 6's in  rolls of a fair die, so that  has the binomial distribution with parameters  and . Using the binomial
PDF (and complements to simplify the computations),

1. 
2. 
3. 

So the first event, at least one 6 in 6 rolls, is the most likely, and in fact the three events, in the order given, decrease in probability.

With fair dice run the simulation of the dice experiment 500 times and compute the relative frequency of the event of interest. Compare the results
with the theoretical probabilities above.

1. At least one 6 with .
2. At least two 6's with .
3. At least three 6's with .

It appears that Pepys had some sort of misguided linearity in mind, given the comparisons that he wanted. Let's solve the general problem.

For , let  denote the number of 6's in  rolls of a fair die.

1. Identify the distribution of .
2. Find the mean and variance of .
3. Give an exact formula for , the probability of at least  6's in  rolls of a fair die.
4. Give the normal approximation of the probability in (c).
5. Find the limit of the probability in (d) as .

Proof

1.  has the binomial distribution with parameters  and .

P(Z = z) = ( )

1000

z

( )

3

8

z

( )

5

8

1000−z

z ∈ {0, 1,… , 1000}

E(Z) = 375

var(Z) = 1875/8

P(Z ≥ 400) ≈ 0.0552

P(Z ≥ 400) ≈ 0.0550

n= 10 p = 0.4

M p

Y p = 0.5 n= 15

P(5 ≤ Y ≤ 10)

{5 ≤ Y ≤ 10}

P(5 ≤ Y ≤ 10)

P(5 ≤ Y ≤ 10) = 0.8815

P(5 ≤ Y ≤ 10) ≈ 0.878

M n= 30 p = 0.6

P(0.5 ≤M ≤ 0.7)

{0.5 ≤M ≤ 0.7}

P(0.5 ≤M ≤ 0.7)

P(0.5 ≤M ≤ 0.7) = 0.8089

P(0.5 ≤M ≤ 0.7) ≈ 0.808

Y

n

n Y

n

n p =

1

6
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6

Y
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18

Y
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n= 18
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+

Y
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2. , 

3. 

4. Using the continuity correction,

5.  as 

So on average, the number of 6's in  rolls of a fair die is , and that fact might have influenced Pepys thinking. The next problem is known as
DeMere's problem, named after Chevalier De Mere

Which is more likely: at least one 6 with 4 throws of a fair die or at least one double 6 in 24 throws of two fair dice? .

Answer

Let  denote the number of 6's in  rolls of a fair die, and let  denote the number of double 6's in  rolls of a pair of fair dice. Then  as the
binomial distribution with parameters  and , and  has the binomial distribution with parameters  and . Using the binomial PDF,

1. 
2. 

Data Analysis Exercises

In the cicada data, compute the proportion of males in the entire sample, and the proportion of males of each species in the sample.

Answer
1. 
2. 
3. 
4. 

In the M&M data, pool the bags to create a large sample of M&Ms. Now compute the sample proportion of red M&Ms.

Answer

The Galton Board

The Galton board is a triangular array of pegs. The rows are numbered by the natural numbers  from top downward. Row  has 
pegs numbered from left to right by the integers . Thus a peg can be uniquely identified by the ordered pair  where  is the row
number and  is the peg number in that row. The Galton board is named after Francis Galton.

Now suppose that a ball is dropped from above the top peg . Each time the ball hits a peg, it bounces to the right with probability  and to the left
with probability , independently from bounce to bounce.

The number of the peg that the ball hits in row  has the binomial distribution with parameters  and .

In the Galton board experiment, select random variable  (the number of moves right). Vary the parameters  and  and note the shape and location
of the probability density function and the mean standard deviation bar. For selected values of the parameters, click single step several times and
watch the ball fall through the pegs. Then run the experiment 1000 times and watch the path of the ball. Compare the relative frequency function and
empirical moments to the probability density function and distribution moments, respectively.

Structural Reliability

Recall the discussion of structural reliability given in the last section on Bernoulli trials. In particular, we have a system of  similar components that
function independently, each with reliability . Suppose now that the system as a whole functions properly if and only if at least  of the  components
are good. Such a systems is called, appropriately enough, a  out of  system. Note that the series and parallel systems considered in the previous section
are  out of  and 1 out of  systems, respectively.

Consider the  out of  system.

1. The state of the system is  where  is the number of working components.
2. The reliability function is .

E( ) = (6k) = kY

k

1
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var( ) = (6k) = kY
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− −−−−

√

(11.2.43)

1−Φ( )→1−Φ(0) =
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In the binomial coin experiment, set  and  and run the simulation 1000 times. Compute the empirical reliability and compare with the
true reliability in each of the following cases:

1. 10 out of 10 (series) system.
2. 1 out of 10 (parallel) system.
3. 4 out of 10 system.

Consider a system with  components. Sketch the graphs of , , , and  on the same set of axes.

An  out of  system is a majority rules system.

1. Compute the reliability of a 2 out of 3 system.
2. Compute the reliability of a 3 out of 5 system
3. For what values of  is a 3 out of 5 system more reliable than a 2 out of 3 system?
4. Sketch the graphs of  and  on the same set of axes.
5. Show that .

Answer
1. 
2. 
3. 3 out of 5 is better for 

In the binomial coin experiment, compute the empirical reliability, based on 100 runs, in each of the following cases. Compare your results to the true
probabilities.

1. A 2 out of 3 system with 
2. A 3 out of 5 system with 
3. A 2 out of 3 system with 
4. A 3 out of 5 system with 

Reliable Communications

Consider the transmission of bits (0s and 1s) through a noisy channel. Specifically, suppose that when bit  is transmitted, bit  is received with
probability  and the complementary bit  is received with probability . Given the bits transmitted, bits are received correctly or
incorrectly independently of one-another. Suppose now, that to increase reliability, a given bit  is repeated  times in the transmission. A priori,
we believe that  and . Let  denote the number of 1s received when bit  is transmitted  times.

Find each of the following:

1. The conditional distribution of  given 
2. he probability density function of 
3. 
4. 

Answer
1. Give ,  has the binomial distribution with parameters  and . Given ,  has the binomial distribution with parameters  and 

.
2.  for .
3. 
4. 

Simplify the results in the last exercise in the symmetric case where  (so that the bits are equally reliable) and with  (so that we
have no prior information).

Answer
1. Give ,  has the binomial distribution with parameters  and . Given ,  has the binomial distribution with parameters  and 

.
2.  for .
3. 
4. 

Our interest, of course, is predicting the bit transmitted given the bits received.

Find the posterior probability that  given .

Answer

n= 10 p = 0.9
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Presumably, our decision rule would be to conclude that 1 was transmitted if the posterior probability in the previous exercise is greater than  and to
conclude that 0 was transmitted if the this probability is less than . If the probability equals , we have no basis to prefer one bit over the other.

Give the decision rule in the symmetric case where , so that the bits are equally reliable. Assume that , so that we at least have a
better than even chance of receiving the bit transmitted.

Answer

Give , we conclude that bit 1 was transmitted if

and we conclude that bit 0 was transmitted if the reverse inequality holds.

Not surprisingly, in the symmetric case with no prior information, so that , we conclude that bit  was transmitted if a majority of bits received are 
.

Bernstein Polynomials

The Weierstrass Approximation Theorem, named after Karl Weierstrass, states that any real-valued function that is continuous on a closed, bounded
interval can be uniformly approximated on that interval, to any degree of accuracy, with a polynomial. The theorem is important, since polynomials are
simple and basic functions, and a bit surprising, since continuous functions can be quite strange.

In 1911, Sergi Bernstein gave an explicit construction of polynomials that uniformly approximate a given continuous function, using Bernoulli trials.
Bernstein's result is a beautiful example of the probabilistic method, the use of probability theory to obtain results in other areas of mathematics that are
seemingly unrelated to probability.

Suppose that  is a real-valued function that is continuous on the interval . The Bernstein polynomial of degree  for  is defined by

where  is the proportion of successes in the first  Bernoulli trials with success parameter , as defined earlier. Note that we are emphasizing the
dependence on  in the expected value operator. The next exercise gives a more explicit representation, and shows that the Bernstein polynomial is, in
fact, a polynomial

The Bernstein polynomial of degree  can be written as follows:

Proof

This follows from the change of variables theorem for expected value.

The Bernstein polynomials satisfy the following properties:

1.  and 
2.  for .
3.  for 

From part (a), the graph of  passes through the endpoints  and . From part (b), the graph of  is a line connecting the endpoints.
From (c), the graph of  is parabola passing through the endpoints and the point .

The next result gives Bernstein's theorem explicitly.

 as  uniformly on .

Proof

Since  is continuous on the closed, bounded interval , it is bounded on this interval. Thus, there exists a constant  such that  for
all . Also,  it is uniformly continuous on . Thus, for any  there exists  such that if  and  then 

. From basic properties of expected value,

Hence  for any . But by weak law of large numbers above,  as 
 uniformly in .
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Compute the Bernstein polynomials of orders 1, 2, and 3 for the function  defined by  for . Graph  and the three
polynomials on the same set of axes.

Answer
1. 
2. 
3. 

Use a computer algebra system to compute the Bernstein polynomials of orders 10, 20, and 30 for the function  defined below. Use the CAS to
graph the function and the three polynomials on the same axes.

This page titled 11.2: The Binomial Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via
source content that was edited to the style and standards of the LibreTexts platform.
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11.3: The Geometric Distribution
       

Basic Theory

Definitions

Suppose again that our random experiment is to perform a sequence of Bernoulli trials  with success parameter 
. In this section we will study the random variable  that gives the trial number of the first success and the random

variable  that gives the number of failures before the first success.

Let , the trial number of the first success, and let , the number of failures before the
first success. The distribution of  is the geometric distribution on  and the distribution of  is the geometric distribution
on . In both cases,  is the success parameter of the distribution.

Since  and  differ by a constant, the properties of their distributions are very similar. Nonetheless, there are applications where
it more natural to use one rather than the other, and in the literature, the term geometric distribution can refer to either. In this
section, we will concentrate on the distribution of , pausing occasionally to summarize the corresponding results for .

The Probability Density Function

 has probability density function  given by  for .

Proof

Note first that . By independence, the probability of this event is 
.

Check that  is a valid PDF

By standard results for geometric series

A priori, we might have thought it possible to have  with positive probability; that is, we might have thought that we could
run Bernoulli trials forever without ever seeing a success. However, we now know this cannot happen when the success parameter 

 is positive.

The probability density function of  is given by  for .

In the negative binomial experiment, set  to get the geometric distribution on . Vary  with the scroll bar and note the
shape and location of the probability density function. For selected values of , run the simulation 1000 times and compare the
relative frequency function to the probability density function.

Note that the probability density functions of  and  are decreasing, and hence have modes at 1 and 0, respectively. The
geometric form of the probability density functions also explains the term geometric distribution.

Distribution Functions and the Memoryless Property

Suppose that  is a random variable taking values in . Recall that the ordinary distribution function of  is the function 
. In this section, the complementary function  will play a fundamental role. We will refer to this

function as the right distribution function of . Of course both functions completely determine the distribution of . Suppose again
that  has the geometric distribution on  with success parameter .

 has right distribution function  given by  for .

Proof from Bernoulli trials

Note that . By independence, the probability of this event is .
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+
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∞
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∞
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Direct proof

Using geometric series,

From the last result, it follows that the ordinary (left) distribution function of  is given by

We will now explore another characterization known as the memoryless property.

For , the conditional distribution of  given  is the same as the distribution of . That is,

Proof

From the result above and the definition of conditional probability,

Thus, if the first success has not occurred by trial number , then the remaining number of trials needed to achieve the first
success has the same distribution as the trial number of the first success in a fresh sequence of Bernoulli trials. In short, Bernoulli
trials have no memory. This fact has implications for a gambler betting on Bernoulli trials (such as in the casino games roulette or
craps). No betting strategy based on observations of past outcomes of the trials can possibly help the gambler.

Conversely, if  is a random variable taking values in  that satisfies the memoryless property, then  has a geometric
distribution.

Proof

Let  for . The memoryless property and the definition of conditional probability imply that 
 for . Note that this is the law of exponents for . It follows that  for 

. Hence  has the geometric distribution with parameter .

Moments

Suppose again that  is the trial number of the first success in a sequence of Bernoulli trials, so that  has the geometric
distribution on  with parameter . The mean and variance of  can be computed in several different ways.

Proof from the density function

Using the derivative of the geometric series,

Proof from the right distribution function

Recall that since  takes positive integer values, its expected value can be computed as the sum of the right distribution
function. Hence

P(N > n) = P(N = k) = (1−p p = = (1−p∑

k=n+1

∞

∑

k=n+1

∞

)

k−1

p(1−p)

n

1−(1−p)

)

n
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m ∈ N N −m N >m N
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Proof from Bernoulli trials

We condition on the first trial : If  then  and hence . If  (equivalently 
then by the memoryless property,  has the same distribution as . Hence . In short

It follows that

Solving gives .

This result makes intuitive sense. In a sequence of Bernoulli trials with success parameter  we would “expect” to wait  trials
for the first success.

Direct proof

We first compute . This is an example of a factorial moment, and we will compute the general factorial moments
below. Using derivatives of the geometric series again,

Since , it follows that  and hence 

Proof from Bernoulli trials

Recall that

and by the same reasoning, . Hence

Solving gives .

Note that  if , hardly surprising since  is deterministic (taking just the value 1) in this case. At the other
extreme,  as .

In the negative binomial experiment, set  to get the geometric distribution. Vary  with the scroll bar and note the
location and size of the mean standard deviation bar. For selected values of , run the simulation 1000 times and compare the
sample mean and standard deviation to the distribution mean and standard deviation.

the probability generating function  of  is given by

Proof

This result follows from yet another application of geometric series:

E(N) = P(N > n) = (1−p =∑
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Recall again that for  and , the falling power of  of order  is . If  is a random
variable, then  is the factorial moment of  of order .

The factorial moments of  are given by

Proof from geometric series

Using derivatives of geometric series again,

Proof from the generating function

Recall that  where  is the probability generating function of . So the result follows from standard
calculus.

Suppose that . The skewness and kurtosis of  are

1. 

2. 

Proof

The factorial moments can be used to find the moments of  about 0. The results then follow from the standard computational
formulas for skewness and kurtosis.

Note that the geometric distribution is always positively skewed. Moreover,  and  as .

Suppose now that , so that  (the number of failures before the first success) has the geometric distribution on .
Then

1. 

2. 

3. 

4. 
5.  for 

Of course, the fact that the variance, skewness, and kurtosis are unchanged follows easily, since  and  differ by a constant.

The Quantile Function

Let  denote the distribution function of , so that  for . Recall that 
 for  is the quantile function of .

The quantile function of  is
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Of course, the quantile function, like the probability density function and the distribution function, completely determines the
distribution of . Moreover, we can compute the median and quartiles to get measures of center and spread.

The first quartile, the median (or second quartile), and the third quartile are

1. 
2. 
3. 

Open the special distribution calculator, and select the geometric distribution and CDF view. Vary  and note the shape and
location of the CDF/quantile function. For various values of , compute the median and the first and third quartiles.

The Constant Rate Property

Suppose that  is a random variable taking values in , which we interpret as the first time that some event of interest occurs.

The function  given by

is the rate function of .

If  is interpreted as the (discrete) lifetime of a device, then  is a discrete version of the failure rate function studied in reliability
theory. However, in our usual formulation of Bernoulli trials, the event of interest is success rather than failure (or death), so we
will simply use the term rate function to avoid confusion. The constant rate property characterizes the geometric distribution. As
usual, let  denote the trial number of the first success in a sequence of Bernoulli trials with success parameter , so that 

 has the geometric distribution on  with parameter .

 has constant rate .

Proof

From the results above,  and , so 
 for .

Conversely, if  has constant rate  then  has the geometric distrbution on  with success parameter .

Proof

Let  for . From the constant rate property,  for . Next note that 
 for . Thus,  satisfies the recurrence relation  for 

. Also  satisfies the initial condition . Solving the recurrence relation gives  for 

.

Relation to the Uniform Distribution

Suppose again that  is a sequence of Bernoulli trials with success parameter . For , recall that 
, the number of successes in the first  trials, has the binomial distribution with parameters  and . As before, 

denotes the trial number of the first success.

Suppose that . The conditional distribution of  given  is uniform on .

Proof from sampling

We showed in the last section that given , the trial numbers of the successes form a random sample of size  chosen
without replacement from . This result is a simple corollary with 

Direct proof

For 

N
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In words, the events in the numerator of the last fraction are that there are no successes in the first  trials, a success on
trial , and no successes in trials  to . These events are independent so

Note that the conditional distribution does not depend on the success parameter . If we know that there is exactly one success in
the first  trials, then the trial number of that success is equally likely to be any of the  possibilities.

Another connection between the geometric distribution and the uniform distribution is given below in the alternating coin tossing
game: the conditional distribution of  given  converges to the uniform distribution on  as .

Relation to the Exponential Distribution

The Poisson process on , named for Simeon Poisson, is a model for random points in continuous time. There are many deep
and interesting connections between the Bernoulli trials process (which can be thought of as a model for random points in discrete
time) and the Poisson process. These connections are explored in detail in the chapter on the Poisson process. In this section we just
give the most famous and important result—the convergence of the geometric distribution to the exponential distribution. The
geometric distribution, as we know, governs the time of the first “random point” in the Bernoulli trials process, while the
exponential distribution governs the time of the first random point in the Poisson process.

For reference, the exponential distribution with rate parameter  has distribution function  for 
. The mean of the exponential distribution is  and the variance is . In addition, the moment generating function

is  for .

For , suppose that  has the geometric distribution on  with success parameter , where 
as . Then the distribution of  converges to the exponential distribution with parameter  as .

Proof

Let  denote the CDF of . Then for 

But by a famous limit from calculus,  as , and hence  as .
But by definition,  or equivalently,  so it follows that  as 

. Hence  as , which is the CDF of the exponential distribution.

Note that the condition  as  is the same condition required for the convergence of the binomial distribution to the
Poisson that we studied in the last section.

Special Families

The geometric distribution on  is an infinitely divisible distribution and is a compound Poisson distribution. For the details, visit
these individual sections and see the next section on the negative binomial distribution.

Examples and Applications

Simple Exercises

A standard, fair die is thrown until an ace occurs. Let  denote the number of throws. Find each of the following:

1. The probability density function of .
2. The mean of .
3. The variance of .
4. The probability that the die will have to be thrown at least 5 times.

P(N = j ∣ = 1) = =Y

n
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n

P( = 1)Y

n

P ( = 0, = 1, − = 0)Y
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j
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n
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5. The quantile function of .
6. The median and the first and third quartiles.

Answwer

1.  for 

2. 
3. 
4. 
5.  for 
6. Quartiles , , 

A type of missile has failure probability 0.02. Let  denote the number of launches before the first failure. Find each of the
following:

1. The probability density function of .
2. The mean of .
3. The variance of .
4. The probability of 20 consecutive successful launches.
5. The quantile function of .
6. The median and the first and third quartiles.

Answer

1.  for 

2. 
3. 
4. 
5.  for 
6. Quartiles , , 

A student takes a multiple choice test with 10 questions, each with 5 choices (only one correct). The student blindly guesses
and gets one question correct. Find the probability that the correct question was one of the first 4.

Answer

0.4

Recall that an American roulette wheel has 38 slots: 18 are red, 18 are black, and 2 are green. Suppose that you observe red or
green on 10 consecutive spins. Give the conditional distribution of the number of additional spins needed for black to occur.

Answer

Geometric with 

The game of roulette is studied in more detail in the chapter on Games of Chance.

In the negative binomial experiment, set  to get the geometric distribution and set . Run the experiment 1000
times. Compute the appropriate relative frequencies and empirically investigate the memoryless property

The Petersburg Problem

We will now explore a gambling situation, known as the Petersburg problem, which leads to some famous and surprising results.
Suppose that we are betting on a sequence of Bernoulli trials with success parameter . We can bet any amount of money
on a trial at even stakes: if the trial results in success, we receive that amount, and if the trial results in failure, we must pay that
amount. We will use the following strategy, known as a martingale strategy:

N

P(N = n) = ( )

5

6

n−1

1

6

n ∈ N

+

E(N) = 6

var(N) = 30

P(N ≥ 5) = 525/1296

(r) = ⌈ln(1−r)/ ln(5/6)⌉F

−1
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1
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2

= 8q
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N

N

N

N

N

P(N = n) ( )

49

50

n−1

1

50

n ∈ N

+

E(N) = 50

var(N) = 2450

P(N > 20) = 0.6676

(r) = ⌈ln(1−r)/ ln(0.98)⌉F

−1

r ∈ (0, 1)

= 15q

1

= 35q

2

= 69q

3

p =

18

38

k= 1 p = 0.3

P(V > 5 ∣ V > 2) = P(V > 3) (11.3.26)
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1. We bet  units on the first trial.
2. Whenever we lose a trial, we double the bet for the next trial.
3. We stop as soon as we win a trial.

Let  denote the number of trials played, so that  has the geometric distribution with parameter , and let  denote our net
winnings when we stop.

Proof

The first win occurs on trial , so the initial bet was doubled  times. The net winnings are

Thus,  is not random and  is independent of ! Since  is an arbitrary constant, it would appear that we have an ideal strategy.
However, let us study the amount of money  needed to play the strategy.

The expected amount of money needed for the martingale strategy is

Thus, the strategy is fatally flawed when the trials are unfavorable and even when they are fair, since we need infinite expected
capital to make the strategy work in these cases.

Compute  explicitly if  and .

Answer

$1000

In the negative binomial experiment, set . For each of the following values of , run the experiment 100 times. For each
run compute  (with ). Find the average value of  over the 100 runs:

1. 
2. 
3. 

For more information about gambling strategies, see the section on Red and Black. Martingales are studied in detail in a separate
chapter.

The Alternating Coin-Tossing Game

A coin has probability of heads . There are  players who take turns tossing the coin in round-robin style: player 1 first,
then player 2, continuing until player , then player 1 again, and so forth. The first player to toss heads wins the game.

Let  denote the number of the first toss that results in heads. Of course,  has the geometric distribution on  with parameter 
. Additionally, let  denote the winner of the game;  takes values in the set . We are interested in the probability

distribution of .

For ,  if and only if  for some . That is, using modular arithmetic,

The winning player  has probability density function

c

N N p W

W = c
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Proof

This follows from the previous exercise and the geometric distribution of .

 for .

Proof

This result can be argued directly, using the memoryless property of the geometric distribution. In order for player  to win, the
previous  players must first all toss tails. Then, player  effectively becomes the first player in a new sequence of tosses.
This result can be used to give another derivation of the probability density function in the previous exercise.

Note that  is a decreasing function of . Not surprisingly, the lower the toss order the better for the
player.

Explicitly compute the probability density function of  when the coin is fair ( ).

Answer

Note from the result above that  itself has a truncated geometric distribution.

The distribution of  is the same as the conditional distribution of  given :

The following problems explore some limiting distributions related to the alternating coin-tossing game.

For fixed , the distribution of  converges to the geometric distribution with parameter  as .

For fixed , the distribution of  converges to the uniform distribution on  as .

Players at the end of the tossing order should hope for a coin biased towards tails.

Odd Man Out

In the game of odd man out, we start with a specified number of players, each with a coin that has the same probability of heads.
The players toss their coins at the same time. If there is an odd man, that is a player with an outcome different than all of the other
players, then the odd player is eliminated; otherwise no player is eliminated. In any event, the remaining players continue the game
in the same manner. A slight technical problem arises with just two players, since different outcomes would make both players
“odd”. So in this case, we might (arbitrarily) make the player with tails the odd man.

Suppose there are  players and . In a single round, the probability of an odd man is

Proof

Let  denote the number of heads. If , the event that there is an odd man is . If , the event that there is an
odd man is . The result now follows since  has a binomial distribution with parameters  and .

The graph of  is more interesting than you might think.

P(W = i) = , i ∈ {1, 2,… ,n}

p(1−p)

i−1

1−(1−p)

n

(11.3.30)
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Figure : The graphs of  for 

For ,  has the following properties:

1. 
2.  is symmetric about 
3. For fixed ,  as .

Proof

These properties are clear from the functional form of . Note that .

For ,  has the following properties:

1.  increases and then decreases, with maximum at .
2.  is concave downward

Proof

This follows by computing the first derivatives: , , , and the second
derivatives: , , .

For ,  has the following properties:

1. The maximum occurs at two points of the form  and  where  and  as .
2. The maximum value  as .
3. The graph has a local minimum at .

Proof sketch

Note that  where  for . Also,  is the dominant term when
 while  is the dominant term when . A simple analysis of the derivative shows that  increases

and then decreases, reaching its maximum at . Moreover, the maximum value is 
 as . Also,  is concave upward and then downward, wit inflection point at 

.

Suppose , and let  denote the number of rounds until an odd man is eliminated, starting with  players. Then 
has the geometric distribution on  with parameter . The mean and variance are

1. 
2. 

As we might expect,  and  as  for fixed . On the other hand, from the result above, 
 and  as .

Suppose we start with  players and . The number of rounds until a single player remains is 
 where  are independent and  has the geometric distribution on  with parameter .

The mean and variance are

1. 
2. 
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Proof

The form of  follows from the previous result:  is the number of rounds until the first player is eliminated. Then the
game continues independently with  players, so  is the number of additional rounds until the second player is
eliminated, and so forth. Parts (a) and (b) follow from the previous result and standard properties of expected value and
variance.

Starting with  players and probability of heads , the total number of coin tosses is . The mean and
variance are

1. 
2. 

Proof

As before, the form of  follows from result above:  is the number of rounds until the first player is eliminated, and each
these rounds has  tosses. Then the game continues independently with  players, so  is the number of additional
rounds until the second player is eliminated with each round having  tosses, and so forth. Parts (a) and (b) also follow
from the result above and standard properties of expected value and variance.

Number of Trials Before a Pattern

Consider again a sequence of Bernoulli trials  with success parameter . Recall that the number of
trials  before the first success (outcome 1) occurs has the geometric distribution on  with parameter . A natural generalization
is the random variable that gives the number of trials before a specific finite sequence of outcomes occurs for the first time. (Such a
sequence is sometimes referred to as a word from the alphabet  or simply a bit string). In general, finding the distribution of
this variable is a difficult problem, with the difficulty depending very much on the nature of the word. The problem of finding just
the expected number of trials before a word occurs can be solved using powerful tools from the theory of renewal processes and
from the theory of martingalges.

To set up the notation, let  denote a finite bit string and let  denote the number of trials before  occurs for the first time.
Finally, let . Note that  takes values in . In the following exercises, we will consider , a success followed by
a failure. As always, try to derive the results yourself before looking at the proofs.

The probability density function  of  is given as follows:

1. If  then

2. If  then  for .

Proof

For , the event  can only occur if there is an initial string of 0s of length  followed by a
string of 1s of length  and then 1 on trial  and 0 on trial . Hence

The stated result then follows from standard results on geometric series.

It's interesting to note that  is symmetric in  and , that is, symmetric about . It follows that the distribution function,
probability generating function, expected value, and variance, which we consider below, are all also symmetric about . It's
also interesting to note that , and this is the largest value. So regardless of  the distribution is
bimodal with modes 0 and 1.

The distribution function  of  is given as follows:
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1. If  then

2. If  then  for .

Proof

By definition,  for . The stated result then follows from the previous theorem, standard results
on geometric series, and some algebra.

The probability generating function  of  is given as follows:

1. If  then

2. If  then  for 

Proof

By definition,

for all  for which the series converges absolutely. The stated result then follows from the theorem above, and once again,
standard results on geometric series.

The mean of  is given as follows:

1. If  then

2. If  then .

Proof

Recall that  so the stated result follows from calculus, using the previous theorem on the probability
generating function. The mean can also be computed from the definition  using standard results
from geometric series, but this method is more tedious.

The graph of  as a function of  is given below. It's not surprising that  as  and as , and
that the minimum value occurs when .

Figure :  as a function of 

The variance of  is given as follows:
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1. If  then

2. If  then .

Proof

Recall that , the second factorial moment, and so

The stated result then follows from calculus and the theorem above giving the probability generating function.

This page titled 11.3: The Geometric Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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11.4: The Negative Binomial Distribution
        

Basic Theory

Suppose again that our random experiment is to perform a sequence of Bernoulli trials  with success parameter . Recall
that the number of successes in the first  trials

has the binomial distribution with parameters  and . In this section we will study the random variable that gives the trial number of the th
success:

Note that  is the number of trials needed to get the first success, which we now know has the geometric distribution on  with parameter .

The Probability Density Function

The probability distribution of  is given by

Proof

Note that  if and only if  and . Hence, from independence and the binomial distribution,

The distribution defined by the density function in (1) is known as the negative binomial distribution; it has two parameters, the stopping parameter 
 and the success probability .

In the negative binomial experiment, vary  and  with the scroll bars and note the shape of the density function. For selected values of  and ,
run the experiment 1000 times and compare the relative frequency function to the probability density function.

The binomial and negative binomial sequences are inverse to each other in a certain sense.

For  and ,

1.  and hence 
2. 

Proof
1. The events  and  both mean that there are at least  successes in the first  Bernoulli trials.
2. From the formulas for the binomial and negative binomial PDFs,  and  both simplify to .

In particular, it follows from part (a) that any event that can be expressed in terms of the negative binomial variables can also be expressed in terms
of the binomial variables.

The negative binomial distribution is unimodal. Let . Then

1.  if and only if .
2. The probability density function at first increases and then decreases, reaching its maximum value at .
3. There is a single mode at  if  is not an integers, and two consecutive modes at  and  if  is an integer.

Times Between Successes

Next we will define the random variables that give the number of trials between successive successes. Let  and  for 

 is a sequence of independent random variables, each having the geometric distribution on  with parameter . Moreover,
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In statistical terms,  corresponds to sampling from the geometric distribution with parameter , so that for each ,  is a random
sample of size  from this distribution. The sample mean corresponding to this sample is ; this random variable gives the average number of
trials between the first  successes. In probability terms, the sequence of negative binomial variables  is the partial sum process corresponding to
the sequence . Partial sum processes are studied in more generality in the chapter on Random Samples.

The random process  has stationary, independent increments:

1. If  then  has the same distribution as , namely negative binomial with parameters  and .
2. If  then  is a sequence of independent random variables.

Actually, any partial sum process corresponding to an independent, identically distributed sequence will have stationary, independent increments.

Basic Properties

The mean, variance and probability generating function of  can be computed in several ways. The method using the representation as a sum of
independent, identically distributed geometrically distributed variables is the easiest.

 has probability generating function  given by

Proof

Recall that the probability generating function of a sum of independent variables is the product of the probability generating functions of the
variables. Recall also, the probability generating function of the geometric distribution with parameter  is . Thus, the
result follows immediately from the sum representation above. A derivation can also be given directly from the probability density function.

The mean and variance of  are

1. .

2. 

Proof

The geometric distribution with parameter  has mean  and variance , so the results follows immediately from the sum
representation above. Recall that the mean of a sum is the sum of the means, and the variance of the sum of independent variables is the sum of
the variances. These results can also be proven directly from the probability density function or from the probability generating function.

In the negative binomial experiment, vary  and  with the scroll bars and note the location and size of the mean/standard deviation bar. For
selected values of the parameters, run the experiment 1000 times and compare the sample mean and standard deviation to the distribution mean
and standard deviation.

Suppose that  and  are independent random variables for an experiment, and that  has the negative binomial distribution with parameters 
and , and  has the negative binomial distribution with parameters  and . Then  has the negative binomial distribution with
parameters  and .

Proof

Once again, the simplest proof is based on the representation as a sum of independent geometric variables. In the context of the sum
representation above, we can take  and , so that . Another simple proof uses probability generating
functions. Recall again that the PGF of the sum of independent variables is the product of the PGFs. Finally, a difficult proof can be constructed
using probability density functions. Recall that the PDF of a sum of independent variables is the convolution of the PDFs.

Normal Approximation

In the negative binomial experiment, start with various values of  and . Successively increase  by 1, noting the shape of the probability
density function each time.

Even though you are limited to  in the app, you can still see the characteristic bell shape. This is a consequence of the central limit theorem
because the negative binomial variable can be written as a sum of  independent, identically distributed (geometric) random variables.

The standard score of  is
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The distribution of  converges to the standard normal distribution as .

From a practical point of view, this result means that if  is “large”, the distribution of  is approximately normal with mean  and variance 

. Just how large  needs to be for the approximation to work well depends on . Also, when using the normal approximation, we should
remember to use the continuity correction, since the negative binomial is a discrete distribution.

Relation to Order Statistics

Suppose that  and , and let . Then

Proof

Note that the event in the numerator of the first fraction means that in the first  trials, successes occurred at trials  and failures
occurred at all other trials.

Thus, given exactly  successes in the first  trials, the vector of success trial numbers is uniformly distributed on the set of possibilities ,
regardless of the value of the success parameter . Equivalently, the vector of success trial numbers is distributed as the vector of order statistics
corresponding to a sample of size  chosen at random and without replacement from .

Suppose that , , and . Then

Proof

This follows immediately from the previous result and a theorem in the section on order statistics. However, a direct proof is also easy. Note that
the event  means that there were  successes in the first  trials, a success on trial  and  success in trials 

 to . Hence using the binomial distribution and independence,

Thus, given exactly  successes in the first  trials, the trial number of the th success has the same distribution as the th order statistic when a
sample of size  is selected at random and without replacement from the population . Again, this result does not depend on the value of
the success parameter . The following theorem gives the mean and variance of the conditional distribution.

Suppose again that , , and . Then

1. 

2. 

Proof

These moment results follow immediately from the previous theorem and a theorem in the section on order statistics. However, there is also a
nice heuristic argument for (a) using indicator variables. Given , the  successes divide the set of indices where the failures occur into 

 disjoint sets (some may be empty, of course, if there are adjacent successes).

The red dots are successes and the green dots failures. The 8 successes in the 50 trials divide the set of failures into 9 disjoint sets.
Timeline.png

Let  take the value 1 if the th failure occurs before the th success, and 0 otherwise, for . Then given ,

Given , we know that the  successes and  failures are randomly placed in , with each possible configuration having
the same probability. Thus,
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Hence

Examples and Applications

Coins, Dice and Other Gadgets

A standard, fair die is thrown until 3 aces occur. Let  denote the number of throws. Find each of the following:

1. The probability density function of .
2. The mean of .
3. The variance of .
4. The probability that at least 20 throws will needed.

Answer

1. 

2. 
3. 
4. 

A coin is tossed repeatedly. The 10th head occurs on the 25th toss. Find each of the following:

1. The probability density function of the trial number of the 5th head.
2. The mean of the distribution in (a).
3. The variance of the distribution in (a).

Answer

1. 

2. 
3. 

A certain type of missile has failure probability 0.02. Let  denote the launch number of the fourth failure. Find each of the following:

1. The probability density function of .
2. The mean of .
3. The variance of .
4. The probability that there will be at least 4 failures in the first 200 launches.

Answer

1. 

2. 
3. 
4. 

In the negative binomial experiment, set  and . Run the experiment 1000 times. Compute and compare each of the following:

1. 
2. The relative frequency of the event  in the simulation
3. The normal approximation to 

Answer
1. 
3. 

A coin is tossed until the 50th head occurs.

1. Assuming that the coin is fair, find the normal approximation of the probability that the coin is tossed at least 125 times.
2. Suppose that you perform this experiment, and 125 tosses are required. Do you believe that the coin is fair?
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Answer
1. 0.0072
2. No.

The Banach Match Problem

Suppose that an absent-minded professor (is there any other kind?) has  matches in his right pocket and  matches in his left pocket. When he
needs a match to light his pipe, he is equally likely to choose a match from either pocket. We want to compute the probability density function of the
random variable  that gives the number of matches remaining when the professor first discovers that one of the pockets is empty. This is known as
the Banach match problem, named for the mathematician Stefan Banach, who evidently behaved in the manner described.

We can recast the problem in terms of the negative binomial distribution. Clearly the match choices form a sequence of Bernoulli trials with
parameter . Specifically, we can consider a match from the right pocket as a win for player , and a match from the left pocket as a win for
player . In a hypothetical infinite sequence of trials, let  denote the number of trials necessary for  to win  trials, and  the number of
trials necessary for  to win  trials. Note that  and  each have the negative binomial distribution with parameters  and .

For ,

1.  has  wins at the moment when  wins  games if and only if .
2.  is equivalent to the event that the professor first discovers that the right pocket is empty and that the left pocket has 

matches

3. 

For ,

1.  has  wins at the moment when  wins  games if and only if .
2.  is equivalent to the event that the professor first discovers that the right pocket is empty and that the left pocket has 

matches
3. .

 has probability density function

Proof

This result follows from the previous two exercises, since .

We can also solve the non-symmetric Banach match problem, using the same methods as above. Thus, suppose that the professor reaches for a match
in his right pocket with probability  and in his left pocket with probability , where . The essential change in the analysis is that 
has the negative binomial distribution with parameters  and , while  has the negative binomial distribution with parameters  and 

.

For the Banach match problem with parameter ,  has probability density function

The Problem of Points

Suppose that two teams (or individuals)  and  play a sequence of Bernoulli trials (which we will also call points), where  is the
probability that player  wins a point. For nonnegative integers  and , let  denote the probability that  wins  points before  wins 
points. Computing  is an historically famous problem, known as the problem of points, that was solved by Pierre de Fermat and by Blaise
Pascal.

Comment on the validity of the Bernoulli trial assumptions (independence of trials and constant probability of success) for games of sport that
have a skill component as well as a random component.

There is an easy solution to the problem of points using the binomial distribution; this was essentially Pascal's solution. There is also an easy
solution to the problem of points using the negative binomial distribution In a sense, this has to be the case, given the equivalence between the
binomial and negative binomial processes in (3). First, let us pretend that the trials go on forever, regardless of the outcomes. Let  denote the
number of wins by player  in the first  points, and let  denote the number of trials needed for  to win  points. By definition, 

 has the binomial distribution with parameters  and , and  has the negative binomial distribution with parameters  and .
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Player  wins  points before  wins  points if and only if  if and only if . Hence

 satisfies the following properties:

1.  increases from 0 to 1 as  increases from 0 to 1 for fixed  and .
2.  decreases as  increases for fixed  and .
3.  increases as  increases for fixed  and .

 for any  and .

Proof

A simple probabilistic proof is to note that both sides can be interpreted as the probability that a player with point probability  wins 
points before the opponent wins  points. An analytic proof can also be constructed using the formulas above for 

In the problem of points experiments, vary the parameters , , and , and note how the probability changes. For selected values of the
parameters, run the simulation 1000 times and note the apparent convergence of the relative frequency to the probability.

The win probability function for player  satisfies the following recurrence relation and boundary conditions (this was essentially Fermat's
solution):

1. 
2. , 

Proof

Condition on the outcome of the first trial.

Next let  denote the number of trials needed until either  wins  points or  wins  points, whichever occurs first—the length of the
problem of points experiment. The following result gives the distribution of 

For 

Proof

Again, imagine that we continue the trials indefinitely. Let  denote the number of trials needed for  to win  points, and let  denote the
number of trials needed for  to win  points. Then  for  in the indicated range.

Series of Games

The special case of the problem of points experiment with  is important, because it corresponds to  and  playing a best of  game
series. That is, the first player to win  games wins the series. Such series, especially when , are frequently used in championship
tournaments.

Let  denote the probability that player  wins the series. Then

Proof

This follows directly from the problem of points probability above, since .

Suppose that . Explicitly find the probability that team  wins in each of the following cases:

1. A best of 5 game series.
2. A best of 7 game series.

Answer
1. 0.6825.
2. 0.7102
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In the problem of points experiments, vary the parameters , , and  (keeping ), and note how the probability changes. Now simulate a
best of 5 series by selecting , . Run the experiment 1000 times and compare the relative frequency to the true probability.

 for any  and . Therefore

1. The graph of  is symmetric with respect to .
2. .

Proof

Again, there is a simple probabilistic argument for the equation: both sides represent the probabiltiy that a player with game probability 
will win the series.

In the problem of points experiments, vary the parameters , , and  (keeping ), and note how the probability changes. Now simulate a
best 7 series by selecting , . Run the experiment 1000 times and compare the relative frequency to the true probability.

If  then

1.  if 
2.  if 

Proof

The greater the number of games in the series, the more the series favors the stronger player (the one with the larger game probability).

Let  denote the number of trials in the series. Then  has probability density function

Proof

This result follows directly from the corresponding problem of points result above with .

Explicitly compute the probability density function, expected value, and standard deviation for the number of games in a best of 7 series with
the following values of :

1. 0.5
2. 0.7
3. 0.9

Answer

1. , , 
2. , , 
3. , , 

Division of Stakes

The problem of points originated from a question posed by Chevalier de Mere, who was interested in the fair division of stakes when a game is
interrupted. Specifically, suppose that players  and  each put up  monetary units, and then play Bernoulli trials until one of them wins a
specified number of trials. The winner then takes the entire  fortune.

If the game is interrupted when  needs to win  more trials and  needs to win  more trials, then the fortune should be divided between 
and , respectively, as follows:

1.  for 
2.  for .

Suppose that players  and  bet $50 each. The players toss a fair coin until one of them has 10 wins; the winner takes the entire fortune.
Suppose that the game is interrupted by the gambling police when  has 5 wins and  has 3 wins. How should the stakes be divided?

Answer

 gets $72.56,  gets $27.44

n m p n=m

n=m = 3 p = 0.6

(1−p) = 1− (p)A

n

A

n

n ∈ N

+

p ∈ [0, 1]

A

n

p =

1

2

( )=A

n

1

2

1

2

1−p

n m p n=m

n=m = 4 p = 0.45

n>m

(p) < (p)A

n

A

m

0 < p <

1

2

(p) > (p)A

n

A

m

< p < 1

1

2

N

n

N

n

P( = k) =( ) [ (1−p +(1−p ] , k ∈ {n,n+1,… , 2 n−1}N

n

k−1

n−1

p

n

)

k−n

)

n

p

k−n

(11.4.21)

n=m

p

f(k) = ( ) , k ∈ {4, 5, 6, 7}

k−1

3

( )

1

2

k−1

E(N) = 5.8125 sd(N) = 1.0136

f(k) = ( ) [(0.7 (0.3 +(0.3 (0.7 ] , k ∈ {4, 5, 6, 7}

k−1

3

)

4

)

k−4

)

4

)

k−4

E(N) = 5.3780 sd(N) = 1.0497

f(k) = ( ) [(0.9 (0.1 +(0.1 (0.9 ] , k ∈ {4, 5, 6, 7}

k−1

3

)

4

)

k−4

)

4

)

k−4

E(N) = 4.4394 sd(N) = 0.6831

A B c

2c

A n B m A

B

2c (p)A

n,m

A

2c [1 − (p)] = 2c (1−p)A

n,m

A

m,n

B

A B

A B

A B

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10236?pdf


11.4.8 https://stats.libretexts.org/@go/page/10236

Alternate and General Versions
Let's return to the formulation at the beginning of this section. Thus, suppose that we have a sequence of Bernoulli trials  with success parameter 

, and for , we let  denote the trial number of the th success. Thus,  has the negative binomial distribution with parameters 
and  as we studied above. The random variable  is the number of failures before the th success. Let , the number of
failures before the first success, and let , the number of failures between the st success and the th success, for 

.

 is a sequence of independent random variables, each having the geometric distribution on  with parameter . Moreover,

Thus,  is the partial sum process associated with . In particular,  has stationary, independent increments.

Probability Density Functions

The probability density function of  is given by

Proof

This result follows directly from the PDF of , since  for .

The distribution of  is also referred to as the negative binomial distribution with parameters  and . Thus, the term negative binomial
distribution can refer either to the distribution of the trial number of the th success or the distribution of the number of failures before the th
success, depending on the author and the context. The two random variables differ by a constant, so it's not a particularly important issue as long as
we know which version is intended. In this text, we will refer to the alternate version as the negative binomial distribution on , to distinguish it
from the original version, which has support set 

More interestingly, however, the probability density function in the last result makes sense for any , not just integers. To see this, first
recall the definition of the general binomial coefficient: if  and , we define

The function  given below defines a probability density function for every  and :

Proof

Recall from the section on Combinatorial Structures that . From the general binomial theorem,

Once again, the distribution defined by the probability density function in the last theorem is the negative binomial distribution on , with
parameters  and . The special case when  is a positive integer is sometimes referred to as the Pascal distribution, in honor of Blaise Pascal.

The distribution is unimodal. Let .

1.  if and only if .
2. The distribution has a single mode at  if  is not an integer.
3. The distribution has two consecutive modes at  and  if  is a positive integer.

Basic Properties

Suppose that  has the negative binomial distribution on  with parameters  and . To establish basic properties, we can no
longer use the decomposition of  as a sum of independent geometric variables. Instead, the best approach is to derive the probability generating
function and then use the generating function to obtain other basic properties.

 has probability generating function  given by
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Proof

This follows from the general binomial theorem: for ,

The moments of  can be obtained from the derivatives of the probability generating funciton.

 has the following moments:

1. 

2. 

3. 

4. 

Proof

Recall that the factorial moments of  can be obtained from the derivatives of the probability generating function: . Then
the various moments above can be obtained from standard formulas.

The negative binomial distribution on  is preserved under sums of independent variables.

Suppose that  has the negative binomial distribution on  with parameters  and , and that  has the negative binomial
distribution on  with parameters  and , and that  and  are independent. Then  has the negative binomial on 
distribution with parameters  and .

Proof

This result follows from the probability generating functions. Recall that the PGF of  is the product of the PGFs of  and .

In the last result, note that the success parameter  must be the same for both variables.

Normal Approximation

Because of the decomposition of  when the parameter  is a positive integer, it's not surprising that a central limit theorm holds for the general
negative binomial distribution.

Suppose that  has the negative binomial distibtion with parameters  and . The standard score of  is

The distribution of  converges to the standard normal distribution as .

Thus, if  is large (and not necessarily an integer), then the distribution of  is approximately normal with mean  and variance .

Special Families

The negative binomial distribution on  belongs to several special families of distributions. First, It follows from the result above on sums that we
can decompose a negative binomial variable on  into the sum of an arbitrary number of independent, identically distributed variables. This special
property is known as infinite divisibility, and is studied in more detail in the chapter on Special Distributions.

The negative binomial distribution on  is infinitely divisible.

Proof

Suppose that  has the negative binomial distribution on  with parameters  and . It follows from the previous result that
for any ,  can be represented as  where  are independent, and each has the negative binomial
distribution on  with parameters  and .

A Poisson-distributed random sum of independent, identically distributed random variables is said to have a compound Poisson distributions; these
distributions are studied in more detail in the chapter on the Poisson Process. A theorem of William Feller states that an infinite divisible distribution

P (t) =E ( )= , |t| <t

W

( )

p

1−(1−p) t

k

1

1−p

(11.4.27)
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∞
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∞
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on  must be compound Poisson. Hence it follows from the previous result that the negative binomial distribution on  belongs to this family. Here
is the explicit result:

Let . Suppose that  is a sequence of independent variables, each having the logarithmic series distribution with
shape parameter . Suppose also that  is independent of  and has the Poisson distribution with parameter . Then 

 has the negative binomial distribution on  with parameters  and .

Proof

From the general theory of compound Poisson distributions, the probability generating function of  is  where  is
the parameter of the Poisson variable  and  is the common PGF of the the terms in the sum. Using the PGF of the logarithmic series
distribution, and the particular values of the parameters, we have

Using properties of logarithms and simple algebra, this reduces to

which is the PGF of the negative binomial distribution with parameters  and .

As a special case ( ), it follows that the geometric distribution on  is infinitely divisible and compound Poisson.

Next, the negative binomial distribution on  belongs to the general exponential family. This family is important in inferential statistics and is
studied in more detail in the chapter on Special Distributions.

Suppose that  has the negative binomial distribution on  with parameters  and . For fixed ,  has a one-parameter
exponential distribution with natural statistic  and natural parameter .

Proof

The PDF of  can be written as

so the result follows from the definition of the general exponential family.

Finally, the negative binomial distribution on  is a power series distribution. Many special discrete distribution belong to this family, which is
studied in more detail in the chapter on Special Distributions.

For fixed , the negative binomial distribution on  with parameters  and  is a power series distribution corresponding to
the function  for , where .

Proof

In terms of the new parameter , the negative binomial pdf has the form  for , and .

Computational Exercises

Suppose that  has the negative binomial distribution with parameters  and . Compute each of the following:

1. 
2. 
3. 

Answer
1. 
2. 
3. 

Suppose that  has the negative binomial distribution with parameters  and . Compute each of the following:

1. 
2. 
3. 

Answer

N N

p, k ∈ (0,∞) X = ( , ,…)X

1

X

2

1−p N X −k ln(p)
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X
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N k p
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P (t) = exp[−k ln(p)( −1)], |t| <
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1
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1. 

2. 
3. 

Suppose that  has the negative binomial distribution with parameters  and . Compute each of the following:

1. 
2. 
3. The normal approximation to 

Answer
1. 
2. 
3. 

This page titled 11.4: The Negative Binomial Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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11.5: The Multinomial Distribution
       

Basic Theory

Multinomial trials

A multinomial trials process is a sequence of independent, identically distributed random variables  each taking
 possible values. Thus, the multinomial trials process is a simple generalization of the Bernoulli trials process (which corresponds

to ). For simplicity, we will denote the set of outcomes by , and we will denote the common probability density
function of the trial variables by

Of course  for each  and . In statistical terms, the sequence  is formed by sampling from the distribution.

As with our discussion of the binomial distribution, we are interested in the random variables that count the number of times each
outcome occurred. Thus, let

Of course, these random variables also depend on the parameter  (the number of trials), but this parameter is fixed in our
discussion so we suppress it to keep the notation simple. Note that  so if we know the values of  of the counting
variables, we can find the value of the remaining variable.

Basic arguments using independence and combinatorics can be used to derive the joint, marginal, and conditional densities of the
counting variables. In particular, recall the definition of the multinomial coefficient: for nonnegative integers  with 

,

Joint Distribution

For nonnegative integers  with ,

Proof

By independence, any sequence of trials in which outcome  occurs exactly  times for  has probability 
. The number of such sequences is the multinomial coefficient . Thus, the result follows from the

additive property of probability.

The distribution of  is called the multinomial distribution with parameters  and . We
also say that  has this distribution (recall that the values of  of the counting variables determine the value
of the remaining variable). Usually, it is clear from context which meaning of the term multinomial distribution is intended. Again,
the ordinary binomial distribution corresponds to .

Marginal Distributions

For each ,  has the binomial distribution with parameters  and :

Proof
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There is a simple probabilistic proof. If we think of each trial as resulting in outcome  or not, then clearly we have a sequence
of  Bernoulli trials with success parameter . Random variable  is the number of successes in the  trials. The result could
also be obtained by summing the joint probability density function in Exercise 1 over all of the other variables, but this would
be much harder.

Grouping

The multinomial distribution is preserved when the counting variables are combined. Specifically, suppose that 
is a partition of the index set  into nonempty subsets. For  let

 has the multinomial distribution with parameters  and .

Proof

Again, there is a simple probabilistic proof. Each trial, independently of the others, results in an outome in  with probability 
. For each ,  counts the number of trails which result in an outcome in . This result could also be derived from the joint

probability density function in Exercise 1, but again, this would be a much harder proof.

Conditional Distribution

The multinomial distribution is also preserved when some of the counting variables are observed. Specifically, suppose that 
is a partition of the index set  into nonempty subsets. Suppose that  is a sequence of nonnegative integers,
indexed by  such that . Let .

The conditional distribution of  given  is multinomial with parameters  and .

Proof

Again, there is a simple probabilistic argument and a harder analytic argument. If we know  for , then there are 
 trials remaining, each of which, independently of the others, must result in an outcome in . The conditional probability

of a trial resulting in  is .

Combinations of the basic results involving grouping and conditioning can be used to compute any marginal or conditional
distributions.

Moments

We will compute the mean and variance of each counting variable, and the covariance and correlation of each pair of variables.

For , the mean and variance of  are

1. 
2. 

Proof

Recall that  has the binomial distribution with parameters  and .

For distinct ,

1. 

2. 

Proof

From the bi-linearity of the covariance operator, we have
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If , the covariance of the indicator variables is . If  the covariance is 0 by independence. Part (b) can be
obtained from part (a) using the definition of correlation and the variances of  and  given above.

From the last result, note that the number of times outcome  occurs and the number of times outcome  occurs are negatively
correlated, but the correlation does not depend on .

If , then the number of times outcome 1 occurs and the number of times outcome 2 occurs are perfectly correlated.

Proof

This follows immediately from the result above on covariance since we must have  and , and . Of
course we can also argue this directly since .

Examples and Applications

In the dice experiment, select the number of aces. For each die distribution, start with a single die and add dice one at a time,
noting the shape of the probability density function and the size and location of the mean/standard deviation bar. When you get
to 10 dice, run the simulation 1000 times and compare the relative frequency function to the probability density function, and
the empirical moments to the distribution moments.

Suppose that we throw 10 standard, fair dice. Find the probability of each of the following events:

1. Scores 1 and 6 occur once each and the other scores occur twice each.
2. Scores 2 and 4 occur 3 times each.
3. There are 4 even scores and 6 odd scores.
4. Scores 1 and 3 occur twice each given that score 2 occurs once and score 5 three times.

Answer
1. 0.00375
2. 0.0178
3. 0.205
4. 0.0879

Suppose that we roll 4 ace-six flat dice (faces 1 and 6 have probability  each; faces 2, 3, 4, and 5 have probability  each).
Find the joint probability density function of the number of times each score occurs.

Answer

 for nonnegative integers  that sum to 4

In the dice experiment, select 4 ace-six flats. Run the experiment 500 times and compute the joint relative frequency function
of the number times each score occurs. Compare the relative frequency function to the true probability density function.

Suppose that we roll 20 ace-six flat dice. Find the covariance and correlation of the number of 1's and the number of 2's.

Answer

covariance: ; correlation: 

In the dice experiment, select 20 ace-six flat dice. Run the experiment 500 times, updating after each run. Compute the
empirical covariance and correlation of the number of 1's and the number of 2's. Compare the results with the theoretical
results computed previously.

This page titled 11.5: The Multinomial Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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11.6: The Simple Random Walk
       

The simple random walk process is a minor modification of the Bernoulli trials process. Nonetheless, the process has a number of
very interesting properties, and so deserves a section of its own. In some respects, it's a discrete time analogue of the Brownian
motion process.

The Basic Process

Suppose that  is a sequence of independent random variables, each taking values 1 and  with probabilities 
 and  respectively. Let  be the partial sum process associated with , so that

The sequence  is the simple random walk with parameter .

We imagine a person or a particle on an axis, so that at each discrete time step, the walker moves either one unit to the right (with
probability ) or one unit to the left (with probability ), independently from step to step. The walker could accomplish this by
tossing a coin with probability of heads  at each step, to determine whether to move right or move left. Other types of random
walks, and additional properties of this random walk, are studied in the chapter on Markov Chains.

The mean and standard deviation, respectively of a step  are

1. 
2. 

Let  for . Then  is a Bernoulli trials sequence with success parameter .

Proof

Note that  if  and  if .

In terms of the random walker,  is the indicator variable for the event that the th step is to the right.

Let  for , so that  is the partial sum process associated with . Then

1.  for .
2.  has the binomial distribution with trial parameter  and success parameter .

In terms of the walker,  is the number of steps to the right in the first  steps.

 has probability density function

Proof

Since  takes values in ,  takes values in . For  in this set, 
, so the result follows from the binomial distribution of .

The mean and variance of  are

1. 
2. 
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The Simple Symmetric Random Walk

Suppose now that . In this case,  is called the simple symmetric random walk. The symmetric random
walk can be analyzed using some special and clever combinatorial arguments. But first we give the basic results above for this
special case.

For each , the random vector  is uniformly distributed on , and therefore

 has probability density function

The mean and variance of  are

1. 
2. 

In the random walk simulation, select the final position. Vary the number of steps and note the shape and location of the
probability density function and the mean standard deviation bar. For selected values of the parameter, run the simulation
1000 times and compare the empirical density function and moments to the true probability density function and moments.

In the random walk simulation, select the final position and set the number of steps to 50. Run the simulation 1000 times and
compute and compare the following:

1. 
2. The relative frequency of the event 
3. The normal approximation to 

Answer
1. 0.7794
3. 0.7752

The Maximum Position

Consider again the simple, symmetric random walk. Let , the maximum position during the first 
steps. Note that  takes values in the set . The distribution of  can be derived from a simple and wonderful idea
known as the reflection principle.

For  and ,

Proof

Note first that  if and only if  for some . Suppose that . For each path that satisfies 
 and  there is another path that satisfies . The second path is obtained from the first path by

reflecting in the line , after the first path hits . Since the paths are equally likely,

Hence it follows that
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In the random walk simulation, select the maximum value variable. Vary the number of steps and note the shape and location of
the probability density function and the mean/standard deviation bar. Now set the number of steps to 30 and run the simulation
1000 times. Compare the relative frequency function and empirical moments to the true probability density function and
moments.

For every , the probability density function of  is decreasing.

The last result is a bit surprising; in particular, the single most likely value for the maximum (and hence the mode of the
distribution) is 0.

Explicitly compute the probability density function, mean, and standard deviation of .

Answer

1. Probability density function of : , , 
2. 
3. 

A fair coin is tossed 10 times. Find the probability that the difference between the number of heads and the number of tails is
never greater than 4.

Answer

The Last Visit to 0

Consider again the simple, symmetric random walk. Our next topic is the last visit to 0 during the first  steps:

Note that since visits to 0 can only occur at even times,  takes the values in the set . This random variable has a
strange and interesting distribution known as the discrete arcsine distribution. Along the way to our derivation, we will discover
some other interesting results as well.

The probability density function of  is

Proof

Note that

From independence and symmetry it follows that

We know the first factor on the right from the distribution of . Thus, we need to compute the second factor, the probability
that our random walk never returns to 0 during a time interval. Using results for the maximum position we have

From symmetry (which is just the reflection principle at ), it follows that

Next, . From independence and symmetry,

n Y
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But  implies . Hence

From symmetry,

In the random walk simulation, choose the last visit to 0 and then vary the number of steps with the scroll bar. Note the shape
and location of the probability density function and the mean/standard deviation bar. For various values of the parameter, run
the simulation 1000 times and compare the empirical density function and moments to the true probability density function and
moments.

The probability density function of  is symmetric about  and is -shaped:

1. 
2.  if and only if  and 

In particular, 0 and  are the most likely values and hence are the modes of the distribution. The discrete arcsine distribution is
quite surprising. Since we are tossing a fair coin to determine the steps of the walker, you might easily think that the random walk
should be positive half of the time and negative half of the time, and that it should return to 0 frequently. But in fact, the arcsine law
implies that with probability , there will be no return to 0 during the second half of the walk, from time  to , regardless of 

, and it is not uncommon for the walk to stay positive (or negative) during the entire time from 1 to .

Explicitly compute the probability density function, mean, and variance of .

Answer

1. Probability density function of : , , 
2. 
3. 

The Ballot Problem and the First Return to Zero

The Ballot Problem

Suppose that in an election, candidate  receives  votes and candidate  receives  votes where . Assuming a random
ordering of the votes, what is the probability that  is always ahead of  in the vote count? This is an historically famous problem
known as the Ballot Problem, that was solved by Joseph Louis Bertrand in 1887. The ballot problem is intimately related to simple
random walks.

Comment on the validity of the assumption that the voters are randomly ordered for a real election.

The ballot problem can be solved by using a simple conditional probability argument to obtain a recurrence relation. Let 
denote the probability that  is always ahead of  in the vote count.

 satisfies the initial condition  and the following recurrence relation:

Proof

This follows by conditioning on the candidate that receives the last vote.

The probability that  is always ahead in the vote count is

P( > 0, > 0,… , > 0} = P( = 0)P( ≥ 0, ≥ 0,… , ≥ 0)X

1
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Proof

This follows from the recurrence relation and induction on the total number of votes 

In the ballot experiment, vary the parameters  and  and note the change the ballot probability. For selected values of the
parameters, run the experiment 1000 times and compare the relative frequency to the true probability.

In an election for mayor of a small town, Mr. Smith received 4352 votes while Ms. Jones received 7543 votes. Compute the
probability that Jones was always ahead of Smith in the vote count.

Answer

Relation to Random Walks

Consider again the simple random walk  with parameter .

Given ,

1. There are  steps to the right and  steps to the left.
2. All possible orderings of the steps to the right and the steps to the left are equally likely.

For ,

Proof

This follows from the previous result and the ballot probability.

In the ballot experiment, vary the parameters  and  and note the change the ballot probability. For selected values of the
parameters, run the experiment 1000 times and compare the relative frequency to the true probability.

An American roulette wheel has 38 slots; 18 are red, 18 are black, and 2 are green. Fred bet $1 on red, at even stakes, 50 times,
winning 22 times and losing 28 times. Find the probability that Fred's net fortune was always negative.

Answer

Roulette is studied in more detail in the chapter on Games of Chance.

The Distribution of the First Zero

Consider again the simple random walk with parameter , as in the last subsection. Let  denote the time of the first return to 0:

Note that returns to 0 can only occur at even times; it may also be possible that the random walk never returns to 0. Thus,  takes
values in the set .

The probability density funtion of  is given by

Proof

For 

f(a, b) =

a−b

a+b

(11.6.18)
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From the ballot problem,

Fred and Wilma are tossing a fair coin; Fred gets a point for each head and Wilma gets a point for each tail. Find the probability
that their scores are equal for the first time after  tosses, for each .

Answer

, , , , 

This page titled 11.6: The Simple Random Walk is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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11.7: The Beta-Bernoulli Process
       

An interesting thing to do in almost any parametric probability model is to “randomize” one or more of the parameters. Done in a
clever way, this often leads to interesting new models and unexpected connections between models. In this section we will
randomize the success parameter in the Bernoulli trials process. This leads to interesting and surprising connections with Pólya's
urn process.

Basic Theory

Definitions

First, recall that the beta distribution with left parameter  and right parameter  is a continuous distribution on
the interval  with probability density function  given by

where  is the beta function. So  is simply the normalizing constant for the function  on the interval 
. Here is our main definition:

Suppose that  has the beta distribution with left parameter  and right parameter . Next suppose that 
 is a sequence of indicator random variables with the property that given ,  is a

conditionally independent sequence with

Then  is the beta-Bernoulli process with parameters  and .

In short, given , the sequence  is a Bernoulli trials sequence with success parameter . In the usual language of reliability, 
 is the outcome of trial , where 1 denotes success and 0 denotes failure. For a specific application, suppose that we select a

random probability of heads according to the beta distribution with with parameters  and , and then toss a coin with this
probability of heads repeatedly.

Outcome Variables

What's our first step? Well, of course we need to compute the finite dimensional distributions of . Recall that for  and 
,  denotes the ascending power . By convention, a product over an empty index set is 1, so 

.

Suppose that  and . Let . Then

Proof

First, note that  by the conditional independence. Thus,
conditioning on  gives

The last step uses a property of the beta function.

From this result, it follows that Pólya's urn process with parameters  is equivalent to the beta-Bernoulli process with
parameters  and , quite an interesting result. Note that since the joint distribution above depends only on 
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, the sequence  is exchangeable. Finally, it's interesting to note that the beta-Bernoulli process with
parameters  and  could simply be defined as the sequence with the finite-dimensional distributions above, without reference to
the beta distribution! It turns out that every exchangeable sequence of indicator random variables can be obtained by randomizing
the success parameter in a sequence of Bernoulli trials. This is de Finetti's theorem, named for Bruno de Finetti, which is studied in
the section on backwards martingales.

For each 

1. 
2. 

Proof

Since the sequence is exchangeable,  has the same distribution as , so . The mean and variance now
follow from standard results for indicator variables.

Thus  is a sequence of identically distributed variables, quite surprising at first but of course inevitable for any exchangeable
sequence. Compare the joint distribution with the marginal distributions. Clearly the variables are dependent, so let's compute the
covariance and correlation of a pair of outcome variables.

Suppose that  are distinct. Then

1. 

2. 

Proof

Since the variables are exchangeable, . The results now follow from
standard formulas for covariance and correlation.

Thus, the variables are positively correlated. It turns out that in any infinite sequence of exchangeable variables, the the variables
must be nonnegatively correlated. Here is another result that explores how the variables are related.

Suppose that  and . Let . Then

Proof

Using the joint distribution,

The beta-Bernoulli model starts with the conditional distribution of  given . Let's find the conditional distribution in the other
direction.

Suppose that  and . Let . Then the conditional distribution of  given 
 is beta with left parameter  and right parameter . Hence

Proof

This follows from Bayes' theorem. The conditional PDF  is given by

+ +⋯+x

1

x

2

x

n

X

a b

i ∈ N

+

E( ) =X

i

a

a+b

var( ) =X

i

a

a+b

b

a+b

X

i

X

1

P( = 1) =X

i

a

a+b

X

i, j∈ N

+

cov( , ) =X

i

X

j

a b

(a+b (a+b+1))

2

cor( , ) =X

i

X

j

1

a+b+1

P( = 1, = 1) = P( = 1, = 1) =X

i

X

j

X

1

X

2

a

a+b

a+1

a+b+1

n ∈ N

+

( , ,… , ) ∈ {0, 1x

1

x

2

x

n

}

n

k=∑

n

i=1

x

i

P( = 1 ∣ = , = ,… = ) =X

n+1

X

1

x

1

X

2

x

2

X

n

x

n

a+k

a+b+n

(11.7.7)

P( = 1 ∣ = , = ,… = )X

n+1

X

1

x

1

X

2

x

2

X

n

x

n

=

P( = , = ,… = , = 1)X

1

x

1

X

2

x

2

X

n

x

n

X

n+1

P( = , = ,… = )X

1

x

1

X

2

x

2

X

n

x

n

= =

a

[k+1]

b

[n−k]

(a+b)

[n+1]

(a+b)

[n]

a

[k]

b

[n−k]

a+k

a+b+n

X P

n ∈ N

+

( , ,… , ) ∈ {0, 1x

1

x

2

x

n

}

n

k=∑

n

i=1

x

i

P

( = , , = ,… , = )X

1

x

1

X

2

x

2

X

n

x

n

a+k b+(n−k)

E(P ∣ = , = ,… , = ) =X

1

x

1

X

2

x

2

X

n

x

n

a+k

a+b+k

(11.7.8)

g(⋅ ∣ , ,… , )x

1

x

2

x

n

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10239?pdf


11.7.3 https://stats.libretexts.org/@go/page/10239

The numerator is

The denominator is simply the normalizing constant for the expression, as a function of  and is 
. Hence

The last result follows since the mean of the beta distribution is the left parameter divided by the sum of the parameters.

Thus, the left parameter increases by the number of successes while the right parameter increases by the number of failures. In the
language of Bayesian statistics, the original distribution of  is the prior distribution, and the conditional distribution of  given
the data  is the posterior distribution. The fact that the posterior distribution is beta whenever the prior distribution
is beta means that the beta distributions is conjugate to the Bernoulli distribution. The conditional expected value in the last
theorem is the Bayesian estimate of  when  is modeled by the random variable . These concepts are studied in more generality
in the section on Bayes Estimators in the chapter on Point Estimation. It's also interesting to note that the expected values in the last
two theorems are the same: If ,  and  then

Run the simulation of the beta coin experiment for various values of the parameter. Note how the posterior probability density
function changes from the prior probability density function, given the number of heads.

The Number of Successes

It's already clear that the number of successes in a given number of trials plays an important role, so let's study these variables. For 
, let

denote the number of successes in the first  trials. Of course,  is the partial sum process associated with 
.

 has probability density function given by

Proof

Every bit string of length  with 1 occurring exactly  times has the probability given in the joint distribution above. There are 
 such bit strings.

The distribution of  is known as the beta-binomial distribution with parameters , , and .

In the simulation of the beta-binomial experiment, vary the parameters and note how the shape of the probability density
function of  (discrete) parallels the shape of the probability density function of  (continuous). For various values of the
parameters, run the simulation 1000 times and compare the empirical density function to the probability density function.

The case where the parameters are both 1 is interesting.

If , so that  is uniformly distributed on , then  is uniformly distributed on .
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Proof

Note that  and  for . Hence, from the general PDF  above

Next, let's compute the mean and variance of .

The mean and variance of  are

1. 

2. 

Proof

These results follow from the mean and covariance results given above:

In the simulation of the beta-binomial experiment, vary the parameters and note the location and size of the mean-standard
deviation bar. For various values of the parameters, run the simulation 1000 times and compare the empirical moments to the
true moments.

We can restate the conditional distributions in the last subsection more elegantly in terms of .

Let .

1. The conditional distribution of  given  is

2. The conditional distribution of  given  is beta with left parameter  and right parameter . In
particular

Proof

The proof is easy using the nesting property of conditional expected value and the fact that the conditional distributions given 
 depend only on .

1. Note that

2. Similarly, if  is measurable then  depends only on  and so

Once again, the conditional expected value  is the Bayesian estimator of . In particular, if , so that  has the
uniform distribution on , then . This is Laplace's rule of succession, another interesting
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connection. The rule is named for Pierre Simon Laplace, and is studied from a different point of view in the section on
Independence.

The Proportion of Successes

For , let

so that  is the sample mean of , or equivalently the proportion of successes in the first  trials. Properties of 
 follow easily from the corresponding properties of . In particular,  for  as

given above, so let's move on to the mean and variance.

For , the mean and variance of  are

1. 
2. 

Proof

These results follow from the mean and variance of  above and properties of expected value and variance:

1. 
2. 

So  is constant in  while  as . These results suggest that perhaps 
has a limit, in some sense, as . For an ordinary sequence of Bernoulli trials with success parameter , we know
from the law of large numbers that  as  with probability 1 and in mean (and hence also in distribution). What
happens here when the success probability  has been randomized with the beta distribution? The answer is what we might hope.

 as  with probability 1 and in mean square, and hence also in in distribution.

Proof

Let  denote the PDF of . For convergence with probability 1, we condition on 

For convergence in mean square, once again we condition on . Note that

Hence by the dominated convergence theorem,

Proof of convergence in distribution

Convergence with probability 1 implies convergence in distribution, but it's interesting to gove a direct proof. For ,
note that

where  is the floor function. But recall that
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Substituting and doing some algebra we get

The sum in the square brackets is  where  has the ordinary binomial distribution with
parameters  and . But  converges (in every sense) to  as  so  as . So by
the dominated convergence theorem,

Recall again that the Bayesian estimator of  based on  is

It follows from the last theorem that  with probability 1, in mean square, and in distribution. The stochastic process
 that we have seen several times now is of fundamental importance, and turns out to

be a martingale. The theory of martingales provides powerful tools for studying convergence in the beta-Bernoulli process.

The Trial Number of a Success

For , let  denote the trial number of the th success. As we have seen before in similar circumstances, the process 
 can be defined in terms of the process :

Note that  takes values in . The random processes  and  are inverses of each
other in a sense.

For  and  with ,

1.  if and only if 
2.  if and only if  and 

The probability denisty function of  is given by

Proof 1

As usual, we can condition on  and use known results for ordinary Bernoulli trials. Given , random variable  has the
negative binomial distribution with parameters  and . Hence

Proof 2

In this proof, we condition on . Using the PDF of  and the result above,
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The distribution of  is known as the beta-negative binomial distribution with parameters , , and .

If  so that  is uniformly distributed on , then

Proof

Recall again that  and  for . Hence from the previous result,

In the simulation of the beta-negative binomial experiment, vary the parameters and note the shape of the probability density
function. For various values of the parameters, run the simulation 1000 times and compare the empirical density function to the
probability density function.

The mean and variance of  are

1.  if .

2. 

Proof

From our work with the negative binomial distribution we know that  and .

Thus, conditioning on  we have

which gives part (a). Similarly

Simplifying and using part (a) gives part (b).

In the simulation of the beta-negative binomial experiment, vary the parameters and note the location and size of the mean
standard deviation bar. For various values of the parameters, run the simulation 1000 times and compare the empirical

moments to the true moments.
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CHAPTER OVERVIEW

12: Finite Sampling Models
This chapter explores a number of models and problems based on sampling from a finite population. Sampling without replacement
from a population of objects of various types leads to the hypergeometric and multivariate hypergeometric models. Sampling with
replacement from a finite population leads naturally to the birthday and coupon-collector problems. Sampling without replacement
form an ordered population leads naturally to the matching problem and to the study of order statistics.

12.1: Introduction to Finite Sampling Models
12.2: The Hypergeometric Distribution
12.3: The Multivariate Hypergeometric Distribution
12.4: Order Statistics
12.5: The Matching Problem
12.6: The Birthday Problem
12.7: The Coupon Collector Problem
12.8: Pólya's Urn Process
12.9: The Secretary Problem
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12.1: Introduction to Finite Sampling Models
        

Basic Theory

Sampling Models

Suppose that we have a population  of  objects. The population could be a deck of cards, a set of people, an urn full of balls, or
any number of other collections. In many cases, we simply label the objects from 1 to , so that . In other cases
(such as the card experiment), it may be more natural to label the objects with vectors. In any case,  is usually a finite subset of 

 for some .

Our basic experiment consists of selecting  objects from the population  at random and recording the sequence of objects
chosen. Thus, the outcome is  where  is the th object chosen. If the sampling is with replacement,
the sample size  can be any positive integer. In this case, the sample space  is

If the sampling is without replacement, the sample size  can be no larger than the population size . In this case, the sample
space  consists of all permutations of size  chosen from :

From the multiplication principle of combinatorics,

1. 
2. 

With either type of sampling, we assume that the samples are equally likely and thus that the outcome variable  is uniformly
distributed on the appropriate sample space ; this is the meaning of the phrase random sample:

The Exchangeable Property

Suppose again that we select  objects at random from the population , either with or without replacement and record the ordered
sample 

Any permutation of  has the same distribution as  itself, namely the uniform distribution on the appropriate sample space 
:

1.  if the sampling is with replacement.
2.  if the sampling is without replacement.

A sequence of random variables with this property is said to be exchangeable. Although this property is very simple to understand,
both intuitively and mathematically, it is nonetheless very important. We will use the exchangeable property often in this chapter.

More generally, any sequence of  of the  outcome variables is uniformly distributed on the appropriate sample space:

1.  if the sampling is with replacement.
2.  if the sampling is without replacement.

In particular, for either sampling method,  is uniformly distributed on  for each .

If the sampling is with replacement then  is a sequence of independent random variables.

Thus, when the sampling is with replacement, the sample variables form a random sample from the uniform distribution, in
statistical terminology.
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If the sampling is without replacement, then the conditional distribution of a sequence of  of the outcome variables, given the
values of a sequence of  other outcome variables, is the uniform distribution on the set of permutations of size  chosen from
the population when the  known values are removed (of course, ).

In particular,  and  are dependent for any distinct  and  when the sampling is without replacement.

The Unordered Sample

In many cases when the sampling is without replacement, the order in which the objects are chosen is not important; all that
matters is the (unordered) set of objects:

The random set  takes values in the set of combinations of size  chosen from :

Recall that .

 is uniformly distributed over :

Proof

For any combination of size  from , there are  permutations of size .

Suppose now that the sampling is with replacement, and we again denote the unordered outcome by . In this case,  takes
values in the collection of multisets of size  from . (A multiset is like an ordinary set, except that repeated elements are
allowed).

Recall that .

 is not uniformly distributed on .

Summary of Sampling Formulas

The following table summarizes the formulas for the number of samples of size  chosen from a population of  elements, based
on the criteria of order and replacement.

Sampling Formulas

Number of samples With order Without

With replacement

Without

Examples and Applications

Suppose that a sample of size 2 is chosen from the population . Explicitly list all samples in the following cases:

1. Ordered samples, with replacement.
2. Ordered samples, without replacement.
3. Unordered samples, with replacement.
4. Unordered samples, without replacement.

Answer
1. 

k

j k

j j+k ≤ n
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i j
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#(T ) = ( )

m+n−1
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m
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n

m

(n)

( )

m

n

{1, 2, 3, 4}

{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)}
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2. 
3. 
4. 

Multi-type Populations

A dichotomous population consists of two types of objects.

Suppose that a batch of 100 components includes 10 that are defective. A random sample of 5 components is selected without
replacement. Compute the probability that the sample contains at least one defective component.

Answer

0.4162

An urn contains 50 balls, 30 red and 20 green. A sample of 15 balls is chosen at random. Find the probability that the sample
contains 10 red balls in each of the following cases:

1. The sampling is without replacement
2. The sampling is with replacement

Answer
1. 0.2070
2. 0.1859

In the ball and urn experiment select 50 balls with 30 red balls, and sample size 15. Run the experiment 100 times. Compute
the relative frequency of the event that the sample has 10 red balls in each of the following cases, and compare with the
respective probability in the previous exercise:

1. The sampling is without replacement
2. The sampling is with replacement

Suppose that a club has 100 members, 40 men and 60 women. A committee of 10 members is selected at random (and without
replacement, of course).

1. Find the probability that both genders are represented on the committee.
2. If you observed the experiment and in fact the committee members are all of the same gender, would you believe that the

sampling was random?

Answer
1. 0.9956
2. No

Suppose that a small pond contains 500 fish, 50 of them tagged. A fisherman catches 10 fish. Find the probability that the catch
contains at least 2 tagged fish.

Answer

0.2635

The basic distribution that arises from sampling without replacement from a dichotomous population is studied in the section on the
hypergeometric distribution. More generally, a multi-type population consists of objects of  different types.

Suppose that a legislative body consists of 60 republicans, 40 democrats, and 20 independents. A committee of 10 members is
chosen at random. Find the probability that at least one party is not represented on the committee.

Answer

0.1633. Use the inclusion-exclusion law.

{(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3)}

{{1, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 2}, {2, 3}, {2, 4}, {3, 3}, {3, 4}, {4, 4}}

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

k
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The basic distribution that arises from sampling without replacement from a multi-type population is studied in the section on the
multivariate hypergeometric distribution.

Cards

Recall that a standard card deck can be modeled by the product set

where the first coordinate encodes the denomination or kind (ace, 2-10, jack, queen, king) and where the second coordinate encodes
the suit (clubs, diamonds, hearts, spades). The general card experiment consists of drawing  cards at random and without
replacement from the deck . Thus, the th card is  where  is the denomination and  is the suit. The special case

 is the poker experiment and the special case  is the bridge experiment. Note that with respect to the denominations or
with respect to the suits, a deck of cards is a multi-type population as discussed above.

In the card experiment with  cards (poker), there are

1. 311,875,200 ordered hands
2. 2,598,960 unordered hands

In the card experiment with  cards (bridge), there are

1. 3,954,242,643,911,239,680,000 ordered hands
2. 635,013,559,600 unordered hands

In the card experiment, set . Run the simulation 5 times and on each run, list all of the (ordered) sequences of cards that
would give the same unordered hand as the one you observed.

In the card experiment,

1.  is uniformly distributed on  for each .
2.  is uniformly distributed on  for each .

In the card experiment,  and  are independent for any  and .

In the card experiment,  and  are dependent.

Suppose that a sequence of 5 cards is dealt. Find each of the following:

1. The probability that the third card is a spade.
2. The probability that the second and fourth cards are queens.
3. The conditional probability that the second card is a heart given that the fifth card is a heart.
4. The probability that the third card is a queen and the fourth card is a heart.

Answer
1. 
2. 
3. 
4. 

Run the card experiment 500 time. Compute the relative frequency corresponding to each probability in the previous exercise.

Find the probability that a bridge hand will contain no honor cards that is, no cards of denomination 10, jack, queen, king, or
ace. Such a hand is called a Yarborough, in honor of the second Earl of Yarborough.

Answer

0.000547

D= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, k}×{♣,♢,♡,♠} (12.1.8)
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Dice

Rolling  fair, six-sided dice is equivalent to choosing a random sample of size  with replacement from the population 
. Generally, selecting a random sample of size  with replacement from  is equivalent to rolling 

 fair, -sided dice.

In the game of poker dice, 5 standard, fair dice are thrown. Find each of the following:

1. The probability that all dice show the same score.
2. The probability that the scores are distinct.
3. The probability that 1 occurs twice and 6 occurs 3 times.

Answer

1. 
2. 
3. 

Run the poker dice experiment 500 times. Compute the relative frequency of each event in the previous exercise and compare
with the corresponding probability.

The game of poker dice is treated in more detail in the chapter on Games of Chance.

Birthdays

Supposes that we select  persons at random and record their birthdays. If we assume that birthdays are uniformly distributed
throughout the year, and if we ignore leap years, then this experiment is equivalent to selecting a sample of size  with replacement
from . Similarly, we could record birth months or birth weeks.

Suppose that a probability class has 30 students. Find each of the following:

1. The probability that the birthdays are distinct.
2. The probability that there is at least one duplicate birthday.

Answer
1. 0.2937
2. 0.7063

In the birthday experiment, set  and . Run the experiment 1000 times and compare the relative frequency of
each event in the previous exercise to the corresponding probability.

The birthday problem is treated in more detail later in this chapter.

Balls into Cells

Suppose that we distribute  distinct balls into  distinct cells at random. This experiment also fits the basic model, where  is
the population of cells and  is the cell containing the th ball. Sampling with replacement means that a cell may contain more
than one ball; sampling without replacement means that a cell may contain at most one ball.

Suppose that 5 balls are distributed into 10 cells (with no restrictions). Find each of the following:

1. The probability that the balls are all in different cells.
2. The probability that the balls are all in the same cell.

Answer

1. 
2. 

n n

{1, 2, 3, 4, 5, 6} n D= {1, 2,… ,m}

n m

1

1296

5

24

5

3888

n

n
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n m D
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Coupons

Suppose that when we purchase a certain product (bubble gum, or cereal for example), we receive a coupon (a baseball card or
small toy, for example), which is equally likely to be any one of  types. We can think of this experiment as sampling with
replacement from the population of coupon types;  is the coupon that we receive on the th purchase.

Suppose that a kid's meal at a fast food restaurant comes with a toy. The toy is equally likely to be any of 5 types. Suppose that
a mom buys a kid's meal for each of her 3 kids. Find each of the following:

1. The probability that the toys are all the same.
2. The probability that the toys are all different.

Answer

1. 
2. 

The coupon collector problem is studied in more detail later in this chapter.

The Key Problem

Suppose that a person has  keys, only one of which opens a certain door. The person tries the keys at random. We will let 
denote the trial number when the person finds the correct key.

Suppose that unsuccessful keys are discarded (the rational thing to do, of course). Then  has the uniform distribution on 
.

1. .
2. .

3. .

Suppose that unsuccessful keys are not discarded (perhaps the person has had a bit too much to drink). Then  has a
geometric distribution on .

1. .

2. .
3. .

Simulating a Random Samples

It's very easy to simulate a random sample of size , with replacement from . Recall that the ceiling function 
 gives the smallest integer that is at least as large as .

Let  be a sequence of be a random numbers. Recall that these are independent random variables, each
uniformly distributed on the interval  (the standard uniform distribution). Then  for 
simulates a random sample, with replacement, from .

It's a bit harder to simulate a random sample of size , without replacement, since we need to remove each sample value before the
next draw.

The following algorithm generates a random sample of size , without replacement, from .

1. For  to , let .
2. For  to ,

a. let 
b. let  be a random number
c. let 
d. let 
e. let 
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f. let 
g. let 

3. Return 

This page titled 12.1: Introduction to Finite Sampling Models is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by
Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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12.2: The Hypergeometric Distribution
       

Basic Theory

Dichotomous Populations

Suppose that we have a dichotomous population . That is, a population that consists of two types of objects, which we will refer to as type 1
and type 0. For example, we could have

balls in an urn that are either red or green
a batch of components that are either good or defective
a population of people who are either male or female
a population of animals that are either tagged or untagged
voters who are either democrats or republicans

Let  denote the subset of  consisting of the type 1 objects, and suppose that  and . As in the basic sampling model,
we sample  objects at random from . In this section, our only concern is in the types of the objects, so let  denote the type of the th
object chosen (1 or 0). The random vector of types is

Our main interest is the random variable  that gives the number of type 1 objects in the sample. Note that  is a counting variable, and thus
like all counting variables, can be written as a sum of indicator variables, in this case the type variables:

We will assume initially that the sampling is without replacement, which is usually the realistic setting with dichotomous populations.

The Probability Density Function

Recall that since the sampling is without replacement, the unordered sample is uniformly distributed over the set of all combinations of size 
chosen from . This observation leads to a simple combinatorial derivation of the probability density function of .

The probability density function of  is given by

Proof

Consider the unordered outcome, which is uniformly distributed on the set of combinations of size  chosen from the population of size 
. The number of ways to select  type 1 objects from the  type 1 objects in the population is . Similarly the number of ways to

select the remaining  type 0 objects from the  type 0 objects in the population is . Finally the number of ways to select
the sample of size  from the population of size  is .

This distribution defined by this probability density function is known as the hypergeometric distribution with parameters , , and .

Another form of the probability density function of  is

Combinatorial Proof

The combinatorial proof is much like the previous proof, except that we consider the ordered sample, which is uniformly distributed on
the set of permutations of size  chosen from the population of  objects. The binomial coefficient  is the number of ways to select
the coordinates where the type 1 objects will go;  is the number of ways to select an ordered sequence of  type 1 objects objects; and 

 is the number of ways to select an ordered sequence of  type 0 objects. Finally  is the number of ways to select
an ordered sequence of  objects from the population.

Algebraic Proof
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The new form of the PDF can also be derived algebraically by starting with the previous form of the PDF. Use the formula 
for each binomial coefficient, and then rearrange things a bit.

Recall our convention that  for . With this convention, the two formulas for the probability density function are correct for 
. We usually use this simpler set as the set of values for the hypergeometric distribution.

The hypergeometric distribution is unimodal. Let . Then

1.  if and only if .
2. The mode occurs at  if  is not an integer, and at  and  if  is an integer greater than 0.

In the ball and urn experiment, select sampling without replacement. Vary the parameters and note the shape of the probability density
function. For selected values of the parameters, run the experiment 1000 times and compare the relative frequency function to the
probability density function.

You may wonder about the rather exotic name hypergeometric distribution, which seems to have nothing to do with sampling from a
dichotomous population. The name comes from a power series, which was studied by Leonhard Euler, Carl Friedrich Gauss, Bernhard
Riemann, and others.

A (generalized) hypergeometric series is a power series

where  is a rational function (that is, a ratio of polynomials).

Many of the basic power series studied in calculus are hypergeometric series, including the ordinary geometric series and the exponential
series.

The probability generating function of the hypergeometric distribution is a hypergeometric series.

Proof

The PGF is  where  is the hypergeometric PDF, given above. Simple algebra shows that

In addition, the hypergeometric distribution function can be expressed in terms of a hypergeometric series. These representations are not
particularly helpful, so basically were stuck with the non-descriptive term for historical reasons.

Moments

Next we will derive the mean and variance of . The exchangeable property of the indicator variables, and properties of covariance and
correlation will play a key role.

 for each .

Proof

Recall that  is an indicator variable with  for each .

From the representation of  as the sum of indicator variables, the expected value of  is trivial to compute. But just for fun, we give the
derivation from the probability density function as well.

.

Proof

This follows from the previous result and the additive property of expected value.

Proof from the definition

Using the hypergeometric PDF,
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Note that the  term is 0. For the other terms, we can use the identity  to get

But substituting  and using another fundamental identity,

So substituting and doing a bit of algebra gives .

Next we turn to the variance of the hypergeometric distribution. For that, we will need not only the variances of the indicator variables, but
their covariances as well.

 for each .

Proof

Again this follows because  is an indicator variable with  for each .

For distinct ,

1. 
2. 

Proof

Note that  is an indicator variable that indicates the event that the th and th objects are both type 1. By the exchangeable property,
. Part (a) then follows from .

Part (b) follows from part (a) and the definition of correlation.

Note that the event of a type 1 object on draw  and the event of a type 1 object on draw  are negatively correlated, but the correlation
depends only on the population size and not on the number of type 1 objects. Note also that the correlation is perfect if , which must be
the case.

.

Proof

This result follows from the previous results on the variance and covariance of the indicator variables. Recall that the variance of  is the
sum of  over all  and .

Note that  if  or  or , which must be true since  is deterministic in each of these cases.

In the ball and urn experiment, select sampling without replacement. Vary the parameters and note the size and location of the mean 
standard deviation bar. For selected values of the parameters, run the experiment 1000 times and compare the empirical mean and
standard deviation to the true mean and standard deviation.

Sampling with Replacement

Suppose now that the sampling is with replacement, even though this is usually not realistic in applications.

 is a sequence of  Bernoulli trials with success parameter .

The following results now follow immediately from the general theory of Bernoulli trials, although modifications of the arguments above
could also be used.

 has the binomial distribution with parameters  and :
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The mean and variance of  are

1. 
2. 

Note that for any values of the parameters, the mean of  is the same, whether the sampling is with or without replacement. On the other
hand, the variance of  is smaller, by a factor of , when the sampling is without replacement than with replacement. It certainly makes
sense that the variance of  should be smaller when sampling without replacement, since each selection reduces the variablility in the
population that remains. The factor  is sometimes called the finite population correction factor.

In the ball and urn experiment, vary the parameters and switch between sampling without replacement and sampling with replacement.
Note the difference between the graphs of the hypergeometric probability density function and the binomial probability density function.
Note also the difference between the mean  standard deviation bars. For selected values of the parameters and for the two different
sampling modes, run the simulation 1000 times.

Convergence of the Hypergeometric Distribution to the Binomial

Suppose that the population size  is very large compared to the sample size . In this case, it seems reasonable that sampling without
replacement is not too much different than sampling with replacement, and hence the hypergeometric distribution should be well
approximated by the binomial. The following exercise makes this observation precise. Practically, it is a valuable result, since the binomial
distribution has fewer parameters. More specifically, we do not need to know the population size  and the number of type 1 objects 
individually, but only in the ratio .

Suppose that  for each  and that  as . Then for fixed , the hypergeometric
probability density function with parameters , , and  converges to the binomial probability density function with parameters  and 

 as 

Proof

Consider the second version of the hypergeometric PDF above. In the fraction, note that there are  factors in the numerator and  in the
denominator. Suppose we pair the factors to write the original fraction as the product of  fractions. The first  fractions have the form 

 where  does not depend on . Hence each of these fractions converge to  as . The remaining  fractions have the

form , where again,  does not depend on . Hence each of these fractions converges to  as .

The type of convergence in the previous exercise is known as convergence in distribution.

In the ball and urn experiment, vary the parameters and switch between sampling without replacement and sampling with replacement.
Note the difference between the graphs of the hypergeometric probability density function and the binomial probability density function.
In particular, note the similarity when  is large and  small. For selected values of the parameters, and for both sampling modes, run the
experiment 1000 times.

In the setting of the convergence result above, note that the mean and variance of the hypergeometric distribution converge to the mean
and variance of the binomial distribution as .

Inferences in the Hypergeometric Model
In many real problems, the parameters  or  (or both) may be unknown. In this case we are interested in drawing inferences about the
unknown parameters based on our observation of , the number of type 1 objects in the sample. We will assume initially that the sampling is
without replacement, the realistic setting in most applications.

Estimation of  with  Known

Suppose that the size of the population  is known but that the number of type 1 objects  is unknown. This type of problem could arise, for
example, if we had a batch of  manufactured items containing an unknown number  of defective items. It would be too costly to test all 
items (perhaps even destructive), so we might instead select  items at random and test those.

A simple estimator of  can be derived by hoping that the sample proportion of type 1 objects is close to the population proportion of type 1
objects. That is,

P(Y = y) =( ) , y ∈ {0, 1,… ,n}
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Thus, our estimator of  is . This method of deriving an estimator is known as the method of moments.

Proof

This follows from the expected value of  above, and the scale property of expected value.

The result in the previous exercise means that  is an unbiased estimator of . Hence the variance is a measure of the quality of the
estimator, in the mean square sense.

.

Proof

This follows from variance of  above, and standard properties of variance.

For fixed  and ,  as .

Thus, the estimator improves as the sample size increases; this property is known as consistency.

In the ball and urn experiment, select sampling without replacement. For selected values of the parameters, run the experiment 100 times
and note the estimate of  on each run.

1. Compute the average error and the average squared error over the 100 runs.
2. Compare the average squared error with the variance in mean square error given above.

Often we just want to estimate the ratio  (particularly if we don't know  either. In this case, the natural estimator is the sample
proportion .

The estimator of  has the following properties:

1. , so the estimator is unbiased.
2. 
3.  as  so the estimator is consistent.

Estimation of  with  Known

Suppose now that the number of type 1 objects  is known, but the population size  is unknown. As an example of this type of problem,
suppose that we have a lake containing  fish where  is unknown. We capture  of the fish, tag them, and return them to the lake. Next we
capture  of the fish and observe , the number of tagged fish in the sample. We wish to estimate  from this data. In this context, the
estimation problem is sometimes called the capture-recapture problem.

Do you think that the main assumption of the sampling model, namely equally likely samples, would be satisfied for a real capture-
recapture problem? Explain.

Once again, we can use the method of moments to derive a simple estimate of , by hoping that the sample proportion of type 1 objects is
close the population proportion of type 1 objects. That is,

Thus, our estimator of  is  if  and is  if .

In the ball and urn experiment, select sampling without replacement. For selected values of the parameters, run the experiment 100 times.

1. On each run, compare the true value of  with the estimated value.
2. Compute the average error and the average squared error over the 100 runs.

If  then  maximizes  as a function of  for fixed  and . This means that  is a maximum likelihood estimator of .
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Proof

This result follows from Jensen's inequality since  is a convex function on .

Thus, the estimator is positivley biased and tends to over-estimate . Indeed, if , so that  then . For
another approach to estimating the population size , see the section on Order Statistics.

Sampling with Replacement

Suppose now that the sampling is with replacement, even though this is unrealistic in most applications. In this case,  has the binomial
distribution with parameters  and . The estimators of  with  known, , and  with  known make sense, just as before, but have
slightly different properties.

The estimator  of  with  known satisfies

1. 

2. 

The estimator  of  satisfies

1. 
2. 

Thus, the estimators are still unbiased and consistent, but have larger mean square error than before. Thus, sampling without replacement
works better, for any values of the parameters, than sampling with replacement.

In the ball and urn experiment, select sampling with replacement. For selected values of the parameters, run the experiment 100 times.

1. On each run, compare the true value of  with the estimated value.
2. Compute the average error and the average squared error over the 100 runs.

Examples and Applications

A batch of 100 computer chips contains 10 defective chips. Five chips are chosen at random, without replacement. Find each of the
following:

1. The probability density function of the number of defective chips in the sample.
2. The mean and variance of the number of defective chips in the sample
3. The probability that the sample contains at least one defective chip.

Answer

Let  denote the number of defective chips in the sample

1. 

2. , 
3. 

A club contains 50 members; 20 are men and 30 are women. A committee of 10 members is chosen at random. Find each of the
following:

1. The probability density function of the number of women on the committee.
2. The mean and variance of the number of women on the committee.
3. The mean and variance of the number of men on the committee.
4. The probability that the committee members are all the same gender.

Answer

Let  denote the number of women, so that  is the number of men.

1. 

2. 
3. , 

y↦

nr

y

(0,∞)

m n≤m−r P(Y = 0) > 0 E ( )=∞

nr

Y

m

Y

n

r

m

r m

r

m

m r

Y

m

n

r m

E ( Y )= r

m

n

var( Y )=

m

n

r(m−r)

n

Y

1

n

r

m

E ( Y )=

1

n

r

m

var( Y )= (1− )

1

n

1

n

r

m

r

m

r

Y

P(Y = y) = , y ∈ {0, 1, 2, 3, 4, 5}

( )( )

10

y

90

5−y

( )

100

5

E(Y ) = 0.5 var(Y ) = 0.432

P(Y > 0) = 0.416

Y Z = 10−Y

P(Y = y) = , y ∈ {0, 1,… , 10}

( )( )

30

y

20

10−y

( )

50

10

E(Y ) = 6, var(Y ) = 1.959

E(Z) = 4 var(Z) = 1.959

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10245?pdf


12.2.7 https://stats.libretexts.org/@go/page/10245

4. 

A small pond contains 1000 fish; 100 are tagged. Suppose that 20 fish are caught. Find each of the following:

1. The probability density function of the number of tagged fish in the sample.
2. The mean and variance of the number of tagged fish in the sample.
3. The probability that the sample contains at least 2 tagged fish.
4. The binomial approximation to the probability in (c).

Answer

Let  denote the number of tagged fish in the sample

1. 

2. , 
3. 
4. 

Forty percent of the registered voters in a certain district prefer candidate . Suppose that 10 voters are chosen at random. Find each of
the following:

1. The probability density function of the number of voters in the sample who prefer .
2. The mean and variance of the number of voters in the sample who prefer .
3. The probability that at least 5 voters in the sample prefer .

Answer

1. 
2. , 
3. 

Suppose that 10 memory chips are sampled at random and without replacement from a batch of 100 chips. The chips are tested and 2 are
defective. Estimate the number of defective chips in the entire batch.

Answer

20

A voting district has 5000 registered voters. Suppose that 100 voters are selected at random and polled, and that 40 prefer candidate .
Estimate the number of voters in the district who prefer candidate .

Answer

2000

From a certain lake, 200 fish are caught, tagged and returned to the lake. Then 100 fish are caught and it turns out that 10 are tagged.
Estimate the population of fish in the lake.

Answer

2000

Cards

Recall that the general card experiment is to select  cards at random and without replacement from a standard deck of 52 cards. The special
case  is the poker experiment and the special case  is the bridge experiment.

In a poker hand, find the probability density function, mean, and variance of the following random variables:

1. The number of spades
2. The number of aces

Answer

Let  denote the number of spades and  the number of aces.

P(Y = 0)+P(Y = 10) = 0.00294
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1. , , 

2. , , 

In a bridge hand, find each of the following:

1. The probability density function, mean, and variance of the number of hearts
2. The probability density function, mean, and variance of the number of honor cards (ace, king, queen, jack, or 10).
3. The probability that the hand has no honor cards. A hand of this kind is known as a Yarborough, in honor of Second Earl of

Yarborough.

Answer

Let  denote the number of hearts and  the number of honor cards.

1. , , 

2. , , 

3. 

The Randomized Urn

An interesting thing to do in almost any parametric probability model is to randomize one or more of the parameters. Done in the right way,
this often leads to an interesting new parametric model, since the distribution of the randomized parameter will often itself belong to a
parametric family. This is also the natural setting to apply Bayes' theorem.

In this section, we will randomize the number of type 1 objects in the basic hypergeometric model. Specifically, we assume that we have 
objects in the population, as before. However, instead of a fixed number  of type 1 objects, we assume that each of the  objects in the
population, independently of the others, is type 1 with probability  and type 0 with probability . We have eliminated one parameter, ,
in favor of a new parameter  with values in the interval . Let  denote the type of the th object in the population, so that 

 is a sequence of Bernoulli trials with success parameter . Let  denote the number of type 1 objects in
the population, so that  has the binomial distribution with parameters  and .

As before, we sample  object from the population. Again we let  denote the type of the th object sampled, and we let 
denote the number of type 1 objects in the sample. We will consider sampling with and without replacement. In the first case, the sample size
can be any positive integer, but in the second case, the sample size cannot exceed the population size. The key technique in the analysis of the
randomized urn is to condition on . If we know that , then the model reduces to the model studied above: a population of size  with 
 type 1 objects, and a sample of size .

With either type of sampling, 

Proof

Thus, in either model,  is a sequence of identically distributed indicator variables. Ah, but what about dependence?

Suppose that the sampling is without replacement. Let  and let . Then

Proof

Conditioning on  gives

Now let . Note that  is a is a probability generating function of sorts. From the binomial theorem, 
. Let  denote the partial derivative of  of order , with  derivatives with respect to the first

argument and  derivatives with respect to the second argument. From the definition of , . But from
the binomial representation, 
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From the joint distribution in the previous exercise, we see that  is a sequence of Bernoulli trials with success parameter , and hence  has
the binomial distribution with parameters  and . We could also argue that  is a Bernoulli trials sequence directly, by noting that 

 is a randomly chosen subset of .

Suppose now that the sampling is with replacement. Again, let  and let . Then

Proof

The result follows as before by conditioning on :

A closed form expression for the joint distribution of , in terms of the parameters , , and  is not easy, but it is at least clear that the joint
distribution will not be the same as the one when the sampling is without replacement. In particular,  is a dependent sequence. Note
however that  is an exchangeable sequence, since the joint distribution is invariant under a permutation of the coordinates (this is a simple
consequence of the fact that the joint distribution depends only on the sum ).

The probability density function of  is given by

Suppose that  and  are distinct indices. The covariance and correlation of  are

1. 
2. 

Proof

Conditioning on  once again we have . The results now follow from standard

formulas for covariance and correlation.

The mean and variance of  are

1. 
2. 

Proof

Part (a) follows from the distribution of the indicator variables above, and the additive property of expected value. Part (b) follows from
the previous result on covariance. Recall again that the variance of  is the sum of  over all  and .

Let's conclude with an interesting observation: For the randomized urn,  is a sequence of independent variables when the sampling is
without replacement but a sequence of dependent variables when the sampling is with replacement—just the opposite of the situation for the
deterministic urn with a fixed number of type 1 objects.

This page titled 12.2: The Hypergeometric Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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12.3: The Multivariate Hypergeometric Distribution
       

Basic Theory

The Multitype Model

As in the basic sampling model, we start with a finite population  consisting of  objects. In this section, we suppose in addition that each
object is one of  types; that is, we have a multitype population. For example, we could have an urn with balls of several different colors, or a
population of voters who are either democrat, republican, or independent. Let  denote the subset of all type  objects and let  for 

. Thus  and . The dichotomous model considered earlier is clearly a special case, with .

As in the basic sampling model, we sample  objects at random from . Thus the outcome of the experiment is  where 
 is the th object chosen. Now let  denote the number of type  objects in the sample, for . Note that  so

if we know the values of  of the counting variables, we can find the value of the remaining counting variable. As with any counting
variable, we can express  as a sum of indicator variables:

For 

We assume initially that the sampling is without replacement, since this is the realistic case in most applications.

The Joint Distribution

Basic combinatorial arguments can be used to derive the probability density function of the random vector of counting variables. Recall that
since the sampling is without replacement, the unordered sample is uniformly distributed over the combinations of size  chosen from .

The probability density funtion of  is given by

Proof

The binomial coefficient  is the number of unordered subsets of  (the type  objects) of size . The binomial coefficient  is the
number of unordered samples of size  chosen from . Thus the result follows from the multiplication principle of combinatorics and the
uniform distribution of the unordered sample

The distribution of  is called the multivariate hypergeometric distribution with parameters , , and . We
also say that  has this distribution (recall again that the values of any  of the variables determines the value of the
remaining variable). Usually it is clear from context which meaning is intended. The ordinary hypergeometric distribution corresponds to .

An alternate form of the probability density function of  is

Combinatorial Proof

The combinatorial proof is to consider the ordered sample, which is uniformly distributed on the set of permutations of size  from . The
multinomial coefficient on the right is the number of ways to partition the index set  into  groups where group  has 
elements (these are the coordinates of the type  objects). The number of (ordered) ways to select the type  objects is . The
denominator  is the number of ordered samples of size  chosen from .

Algebraic Proof

There is also a simple algebraic proof, starting from the first version of probability density function above. Write each binomial coefficient 
 and rearrange a bit.

The Marginal Distributions

For ,  has the hypergeometric distribution with parameters , , and 
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Proof

An analytic proof is possible, by starting with the first version or the second version of the joint PDF and summing over the unwanted
variables. However, a probabilistic proof is much better:  is the number of type  objects in a sample of size  chosen at random (and
without replacement) from a population of  objects, with  of type  and the remaining  not of this type.

Grouping

The multivariate hypergeometric distribution is preserved when the counting variables are combined. Specifically, suppose that 
 is a partition of the index set  into nonempty, disjoint subsets. Let  and  for 

 has the multivariate hypergeometric distribution with parameters , , and .

Proof

Again, an analytic proof is possible, but a probabilistic proof is much better. Effectively, we now have a population of  objects with 
types, and  is the number of objects of the new type . As before we sample  objects without replacement, and  is the number of
objects in the sample of the new type .

Note that the marginal distribution of  given above is a special case of grouping. We have two types: type  and not type . More generally, the
marginal distribution of any subsequence of  is hypergeometric, with the appropriate parameters.

Conditioning

The multivariate hypergeometric distribution is also preserved when some of the counting variables are observed. Specifically, suppose that 
 is a partition of the index set  into nonempty, disjoint subsets. Suppose that we observe  for . Let 

 and .

The conditional distribution of  given  is multivariate hypergeometric with parameters , , and .

Proof

Once again, an analytic argument is possible using the definition of conditional probability and the appropriate joint distributions. A
probabilistic argument is much better. Effectively, we are selecting a sample of size  from a population of size , with  objects of type 
for each .

Combinations of the grouping result and the conditioning result can be used to compute any marginal or conditional distributions of the counting
variables.

Moments

We will compute the mean, variance, covariance, and correlation of the counting variables. Results from the hypergeometric distribution and the
representation in terms of indicator variables are the main tools.

For ,

1. 
2. 

Proof

This follows immediately, since  has the hypergeometric distribution with parameters , , and .

Now let , the indicator variable of the event that the th object selected is type , for  and .

Suppose that  and  are distinct elements of , and  and  are distinct elements of . Then

Proof
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Recall that if  and  are events, then . In the first case the events are that sample item  is type 
and that sample item  is type . These events are disjoint, and the individual probabilities are  and . In the second case, the events are
that sample item  is type  and that sample item  is type . The probability that both events occur is  while the individual
probabilities are the same as in the first case.

Suppose again that  and  are distinct elements of , and  and  are distinct elements of . Then

Proof

This follows from the previous result and the definition of correlation. Recall that if  is an indicator variable with parameter  then 
.

In particular,  and  are negatively correlated while  and  are positively correlated.

For distinct ,

Sampling with Replacement

Suppose now that the sampling is with replacement, even though this is usually not realistic in applications.

The types of the objects in the sample form a sequence of  multinomial trials with parameters .

The following results now follow immediately from the general theory of multinomial trials, although modifications of the arguments above
could also be used.

 has the multinomial distribution with parameters  and :

For distinct ,

1. 
2. 
3. 

4. 

Comparing with our previous results, note that the means and correlations are the same, whether sampling with or without replacement. The
variances and covariances are smaller when sampling without replacement, by a factor of the finite population correction factor 

Convergence to the Multinomial Distribution

Suppose that the population size  is very large compared to the sample size . In this case, it seems reasonable that sampling without
replacement is not too much different than sampling with replacement, and hence the multivariate hypergeometric distribution should be well
approximated by the multinomial. The following exercise makes this observation precise. Practically, it is a valuable result, since in many cases
we do not know the population size exactly. For the approximate multinomial distribution, we do not need to know  and  individually, but
only in the ratio .

Suppose that  depends on  and that  as  for . For fixed , the multivariate hypergeometric
probability density function with parameters , , and  converges to the multinomial probability density function with
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parameters  and .

Proof

Consider the second version of the hypergeometric probability density function. In the fraction, there are  factors in the denominator and 
in the numerator. If we group the factors to form a product of  fractions, then each fraction in group  converges to .

Examples and Applications

A population of 100 voters consists of 40 republicans, 35 democrats and 25 independents. A random sample of 10 voters is chosen. Find
each of the following:

1. The joint density function of the number of republicans, number of democrats, and number of independents in the sample
2. The mean of each variable in (a).
3. The variance of each variable in (a).
4. The covariance of each pair of variables in (a).
5. The probability that the sample contains at least 4 republicans, at least 3 democrats, and at least 2 independents.

Answer

1.  for  with 

2. , , 
3. , , 
4. , , 
5. 0.2474

Cards

Recall that the general card experiment is to select  cards at random and without replacement from a standard deck of 52 cards. The special
case  is the poker experiment and the special case  is the bridge experiment.

In a bridge hand, find the probability density function of

1. The number of spades, number of hearts, and number of diamonds.
2. The number of spades and number of hearts.
3. The number of spades.
4. The number of red cards and the number of black cards.

Answer

Let , , , , and  denote the number of spades, hearts, diamonds, red cards, and black cards, respectively, in the hand.

1.  for  with 

2.  for  with 

3.  for 

4.  for  with 

In a bridge hand, find each of the following:

1. The mean and variance of the number of spades.
2. The covariance and correlation between the number of spades and the number of hearts.
3. The mean and variance of the number of red cards.

Answer

Let , , and  denote the number of spades, hearts, and red cards, respectively, in the hand.

1. , 
2. 
3. , 
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In a bridge hand, find each of the following:

1. The conditional probability density function of the number of spades and the number of hearts, given that the hand has 4 diamonds.
2. The conditional probability density function of the number of spades given that the hand has 3 hearts and 2 diamonds.

Answer

Let ,  and  denote the number of spades, hearts, and diamonds respectively, in the hand.

1.  for  with 

2.  for 

In the card experiment, a hand that does not contain any cards of a particular suit is said to be void in that suit.

Use the inclusion-exclusion rule to show that the probability that a poker hand is void in at least one suit is

In the card experiment, set . Run the simulation 1000 times and compute the relative frequency of the event that the hand is void in at
least one suit. Compare the relative frequency with the true probability given in the previous exercise.

Use the inclusion-exclusion rule to show that the probability that a bridge hand is void in at least one suit is

This page titled 12.3: The Multivariate Hypergeometric Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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12.4: Order Statistics
       

Basic Theory

Definitions

Suppose that the objects in our population are numbered from 1 to , so that . For example, the population
might consist of manufactured items, and the labels might correspond to serial numbers. As in the basic sampling model we select 

 objects at random, without replacement from . Thus the outcome is  where  is the th object
chosen. Recall that  is uniformly distributed over the set of permutations of size  chosen from . Recall also that 

 is the unordered sample, which is uniformly distributed on the set of combinations of size  chosen from
.

For  let th smallest element of . The random variable  is known as the order
statistic of order  for the sample . In particular, the extreme order statistics are

Random variable  takes values in  for .

We will denote the vector of order statistics by . Note that  takes values in

Run the order statistic experiment. Note that you can vary the population size  and the sample size . The order statistics are
recorded on each update.

Distributions

 has  elements and  is uniformly distributed on .

Proof

For ,  if and only if  is one of the  permutations of . Hence 
.

The probability density function of  is

Proof

The event that the th order statistic is  means that  sample values are less than  and  are greater than , and of
course, one of the sample values is . By the multiplication principle of combinatorics, the number of unordered samples
corresponding to this event is . The total number of unordered samples is .

In the order statistic experiment, vary the parameters and note the shape and location of the probability density function. For
selected values of the parameters, run the experiment 1000 times and compare the relative frequency function to the probability
density function.

Moments

The probability density function of  above can be used to obtain an interesting identity involving the binomial coefficients.
This identity, in turn, can be used to find the mean and variance of .

For  with ,
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Proof

This result follows immediately from the probability density function of  above

The expected value of  is

Proof

We start with the definition of expected value. Recall that . Next we use the identity above with  replaced
with ,  replaced with , and  replaced with . Simplifying gives the result.

The variance of  is

Proof

The result follows from another application of the identity above.

In the order statistic experiment, vary the parameters and note the size and location of the mean  standard deviation bar. For
selected values of the parameters, run the experiment 1000 times and compare the sample mean and standard deviation to the
distribution mean and standard deviation.

Estimators of  Based on Order Statistics

Suppose that the population size  is unknown. In this subsection we consider estimators of  constructed from the various order
statistics.

For , the following statistic is an unbiased estimator of :

Proof

From the expected value of  above and the linear property of expected value, note that .

Since  is unbiased, its variance is the mean square error, a measure of the quality of the estimator.

The variance of  is

Proof

This result follows from variance of  given above and standard properties of variance.

For fixed  and ,  decreases as  increases. Thus, the estimators improve as  increases; in particular,  is the best
and  the worst.

The relative efficiency of  with respect to  is

( )( ) =( )∑

k=i

m−n+i

k−1

i−1

m−k

n− i

m

n

(12.4.5)

X

(i)

X

(i)

E [ ] = iX

(i)

m+1

n+1

(12.4.6)

x( )= i( )

x−1

i−1

x

i

m

m+1 n n+1 i i+1

X

(i)

var [ ] = i(n− i+1)X

(i)

(m+1)(m−n)

(n+1 (n+2))

2

(12.4.7)

±

m

m m

i ∈ {1, 2,… ,n} m

= −1U

i

n+1

i

X

(i)

(12.4.8)

X

(i)

E( ) =mU

i

U

i

U

i

var( ) =U

i

(m+1)(m−n)(n− i+1)

i(n+2)

(12.4.9)

X

(i)

m n var( )U

i

i i U

n

U

1

U

j

U

i

=

var( )U

i

var( )U

j

j(n− i+1)

i(n−j+1)

(12.4.10)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10247?pdf


12.4.3 https://stats.libretexts.org/@go/page/10247

Note that the relative efficiency depends only on the orders  and  and the sample size , but not on the population size  (the
unknown parameter). In particular, the relative efficiency of  with respect to  is . For fixed  and , the asymptotic relative
efficiency of  to  is . Usually, we hope that an estimator improves (in the sense of mean square error) as the sample size 
increases (the more information we have, the better our estimate should be). This general idea is known as consistency.

 decreases to 0 as  increases from 1 to , and so  is consistent:

For fixed ,  at first increases and then decreases to 0 as  increases from  to . Thus,  is inconsistent.

Figure :  as a function of  for 

An Estimator of  Based on the Sample Mean

In this subsection, we will derive another estimator of the parameter  based on the average of the sample variables 
, (the sample mean) and compare this estimator with the estimator based on the maximum of the variables (the

largest order statistic).

.

Proof

Recall that  is uniformly distributed on  for each  and hence .

It follows that  is an unbiased estimator of . Moreover, it seems that superficially at least,  uses more information
from the sample (since it involves all of the sample variables) than . Could it be better? To find out, we need to compute the
variance of the estimator (which, since it is unbiased, is the mean square error). This computation is a bit complicated since the
sample variables are dependent. We will compute the variance of the sum as the sum of all of the pairwise covariances.

For distinct , .

Proof

First recall that given ,  is uniformly distributed on . Hence . Thus

conditioning on  gives . The result now follows from the standard formula 
.

For , .

Proof

This follows since  is uniformly distributed on .
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.

Proof

The variance of  is  times the sum of  over all . There are  covariance terms with the
value given in the variance result above (corresponding to ) and  terms with the value given in the pure covariance
result above (corresponding to ). Simplifying gives the result.

.

Proof

This follows from the variance of  above and standard properties of variance.

The variance of  is decreasing with , so  is also consistent. Let's compute the relative efficiency of the estimator based on the
maximum to the estimator based on the mean.

.

Thus, once again, the estimator based on the maximum is better. In addition to the mathematical analysis, all of the estimators
except  can sometimes be manifestly worthless by giving estimates that are smaller than some of the smaple values.

Sampling with Replacement

If the sampling is with replacement, then the sample  is a sequence of independent and identically
distributed random variables. The order statistics from such samples are studied in the chapter on Random Samples.

Examples and Applications

Suppose that in a lottery, tickets numbered from 1 to 25 are placed in a bowl. Five tickets are chosen at random and without
replacement.

1. Find the probability density function of .
2. Find .
3. Find .

Answer

1.  for 

2. 
3. 

The German Tank Problem

The estimator  was used by the Allies during World War II to estimate the number of German tanks  that had been produced.
German tanks had serial numbers, and captured German tanks and records formed the sample data. The statistical estimates turned
out to be much more accurate than intelligence estimates. Some of the data are given in the table below.

German Tank Data. Source: Wikipedia

Date Statistical Estimate Intelligence Estimate German Records

June 1940 169 1000 122

June 1941 244 1550 271

August 1942 327 1550 342

One of the morals, evidently, is not to put serial numbers on your weapons!
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Suppose that in a certain war, 5 enemy tanks have been captured. The serial numbers are 51, 3, 27, 82, 65. Compute the
estimate of , the total number of tanks, using all of the estimators discussed above.

Answer
1. 
2. 
3. 
4. 
5. 
6. 

In the order statistic experiment, and set  and . Run the experiment 50 times. For each run, compute the
estimate of  based on each order statistic. For each estimator, compute the square root of the average of the squares of the
errors over the 50 runs. Based on these empirical error estimates, rank the estimators of  in terms of quality.

Suppose that in a certain war, 10 enemy tanks have been captured. The serial numbers are 304, 125, 417, 226, 192, 340, 468,
499, 87, 352. Compute the estimate of , the total number of tanks, using the estimator based on the maximum and the
estimator based on the mean.

Answer
1. 
2. 

This page titled 12.4: Order Statistics is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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12.5: The Matching Problem
       

Definitions and Notation

The Matching Experiment

The matching experiment is a random experiment that can the formulated in a number of colorful ways:

Suppose that  male-female couples are at a party and that the males and females are randomly paired for a dance. A match
occurs if a couple happens to be paired together.
An absent-minded secretary prepares  letters and envelopes to send to  different people, but then randomly stuffs the letters
into the envelopes. A match occurs if a letter is inserted in the proper envelope.

 people with hats have had a bit too much to drink at a party. As they leave the party, each person randomly grabs a hat. A
match occurs if a person gets his or her own hat.

These experiments are clearly equivalent from a mathematical point of view, and correspond to selecting a random permutation 
 of the population . Here are the interpretations for the examples above:

Number the couples from 1 to . Then  is the number of the woman paired with the th man.
Number the letters and corresponding envelopes from 1 to . Then  is the number of the envelope containing the th letter.
Number the people and their corresponding hats from 1 to . Then  is the number of the hat chosen by the th person.

Our modeling assumption, of course, is that  is uniformly distributed on the sample space of permutations of . The number of
objects  is the basic parameter of the experiment. We will also consider the case of sampling with replacement from the
population , because the analysis is much easier but still provides insight. In this case,  is a sequence of independent random
variables, each uniformly distributed over .

Matches

We will say that a match occurs at position  if . Thus, number of matches is the random variable  defined
mathematically by

where  is the indicator variable for the event of match at position . Our problem is to compute the probability
distribution of the number of matches. This is an old and famous problem in probability that was first considered by Pierre-Remond
Montmort; it sometimes referred to as Montmort's matching problem in his honor.

Sampling With Replacement

First let's solve the matching problem in the easy case, when the sampling is with replacement. Of course, this is not the way that
the matching game is usually played, but the analysis will give us some insight.

 is a sequence of  Bernoulli trials, with success probability .

Proof

The variables are independent since the sampling is with replacement. Since  is uniformly distributed, 
.

The number of matches  has the binomial distribution with trial parameter  and success parameter .

Proof

This follows immediately from the previous result on Bernoulli trials.
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The mean and variance of the number of matches are

1. 
2. 

Proof

These results follow from the previous result on the binomial distribution of . Recall that the binomial distribution with
parameters  and  has mean  and variance .

The distribution of the number of matches converges to the Poisson distribution with parameter 1 as :

Proof

This is a special case of the convergence of the binomial distribution to the Poisson. For a direct proof, note that

But  as  and  as  by a famous limit from calculus.

Sampling Without Replacement
Now let's consider the case of real interest, when the sampling is without replacement, so that  is a random permutation of the
elements of .

Counting Permutations with Matches

To find the probability density function of , we need to count the number of permutations of  with a specified number of
matches. This will turn out to be easy once we have counted the number of permutations with no matches; these are called
derangements of . We will denote the number of permutations of  with exactly  matches by  for 

. In particular,  is the number of derrangements of .

The number of derrangements is

Proof

By the complement rule for counting measure . From the inclusion-exclusion formula,

But if  with  then . Finally, the number of subsets  of  with 
 is . Substituting into the displayed equation and simplifying gives the result.

The number of permutations with exactly  matches is

Proof

The following is two-step procedure that generates all permutations with exactly  matches: First select the  integers that will
match. The number of ways of performing this step is . Second, select a permutation of the remaining  integers with
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no matches. The number of ways of performing this step is . By the multiplication principle of combinatorics it follows
that . Using the result above for derrangements and simplifying gives the results.

The Probability Density Function

The probability density function of the number of matches is

Proof

This follows directly from the result above on permutations with matches, since .

In the matching experiment, vary the parameter  and note the shape and location of the probability density function. For
selected values of , run the simulation 1000 times and compare the empirical density function to the true probability density
function.

.

Proof

A simple probabilistic proof is to note that the event is impossible—if there are  matches, then there must be  matches.
An algebraic proof can also be constructed from the probability density function of  above.

The distribution of the number of matches converges to the Poisson distribution with parameter 1 as :

Proof

From the power series for the exponential function,

So the result follows from the probability density function of  above.

The convergence is remarkably rapid.

In the matching experiment, increase  and note how the probability density function stabilizes rapidly. For selected values of 
, run the simulation 1000 times and compare the relative frequency function to the probability density function.

Moments

The mean and variance of the number of matches could be computed directly from the distribution. However, it is much better to
use the representation in terms of indicator variables. The exchangeable property is an important tool in this section.

 for .

Proof

 is uniformly distributed on  for each  so .

 for each 

Proof

This follows from the previous result and basic properties of expected value.
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Thus, the expected number of matches is 1, regardless of , just as when the sampling is with replacement.

 for .

Proof

This follows from .

A match in one position would seem to make it more likely that there would be a match in another position. Thus, we might guess
that the indicator variables are positively correlated.

For distinct ,

1. 

2. 

Proof

Note that  is the indicator variable of the event of a match in position  and a match in position . Hence by the
exchangeable property . As before, . The
results now follow from standard computational formulas for covariance and correlation.

Note that when , the event that there is a match in position 1 is perfectly correlated with the event that there is a match in
position 2. This makes sense, since there will either be 0 matches or 2 matches.

 for every .

Proof

This follows from the previous two results on the variance and the covariance of the indicator variables, and basic properties of
covariance. Recall that .

In the matching experiment, vary the parameter  and note the shape and location of the mean  standard deviation bar. For
selected values of the parameter, run the simulation 1000 times and compare the sample mean and standard deviation to the
distribution mean and standard deviation.

For distinct ,  as .

Thus, the event that a match occurs in position  is nearly independent of the event that a match occurs in position  if  is large.
For large , the indicator variables behave nearly like  Bernoulli trials with success probability , which of course, is what
happens when the sampling is with replacement.

A Recursion Relation

In this subsection, we will give an alternate derivation of the distribution of the number of matches, in a sense by embedding the
experiment with parameter  into the experiment with parameter .

The probability density function of the number of matches satisfies the following recursion relation and initial condition:

1.  for .
2. .

Proof

First, consider the random permutation  of . Note that  is a random
permutation of  if and only if  if and only if . It follows that

From the defnition of conditional probability argument we have
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But  and . Substituting into the last displayed equation gives the
recurrence relation. The initial condition is obvious, since if  we must have one match.

This result can be used to obtain the probability density function of  recursively for any .

The Probability Generating Function

Next recall that the probability generating function of  is given by

The family of probability generating functions satisfies the following differential equations and ancillary conditions:

1.  for  and 
2.  for 

Note also that  for . Thus, the system of differential equations can be used to compute  for any .

In particular, for ,

1. 
2. 
3. 

For  with ,

Proof

This follows from differential equation for the PGF given above.

For ,

Proof

This follows from the previous result and basic properties of generating functions.

Examples and Applications

A secretary randomly stuffs 5 letters into 5 envelopes. Find each of the following:

1. The number of outcomes with exactly  matches, for each .
2. The probability density function of the number of matches.
3. The covariance and correlation of a match in one envelope and a match in another envelope.

Answer

1. 0 1 2 3 4 5

44 45 20 10 0 1

2. 0 1 2 3 4 5

P( = k) = P( = k+1) , k ∈ {0, 1,… ,n}N

n

N

n+1

P( = 1 ∣ = k+1)I

n+1

N

n+1

P( = 1)I

n+1

(12.5.12)

P( = 1) =I

n+1

1

n+1

P( = 1 ∣ = k+1) =I

n+1

N

n+1

k+1

n+1

n= 1

N

n

n

N

n

(t) =E ( )= P( = j) , t ∈ RG

n

t

N

n

∑

j=0

n

N

n

t

j

(12.5.13)

(t) = (t)G

′

n+1

G

n

t ∈ R n ∈ N

+

(1) = 1G

n

n ∈ N

+

(t) = tG

1

t ∈ R G

n

n ∈ N

+

t ∈ R

(t) = +G

2

1

2

1

2

t

2

(t) = + t+G

3

1

3

1

2

1

6

t

3

(t) = + t+ +G

4

3

8

1

3

1

4

t

2

1

24

t

4

k, n ∈ N

+

k< n

(t) = (t), t ∈ RG

(k)

n

G

n−k

(12.5.14)

n ∈ N

+

P( = k) = P( = 0), k ∈ {0, 1,… ,n−1}N

n

1

k!

N

n−k

(12.5.15)

k k ∈ {0, 1, 2, 3, 4, 5}

k

(k)b

5

k

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10248?pdf


12.5.6 https://stats.libretexts.org/@go/page/10248

0.3667 0.3750 0.1667 0.0833 0 0.0083

3. Covariance: , correlation 

Ten married couples are randomly paired for a dance. Find each of the following:

1. The probability density function of the number of matches.
2. The mean and variance of the number of matches.
3. The probability of at least 3 matches.

Answer

1. 

0

1

2

3

4

5

6

7

8

9 0

10

2. , 
3. 

In the matching experiment, set . Run the experiment 1000 times and compare the following for the number of matches:

1. The true probabilities
2. The relative frequencies from the simulation
3. The limiting Poisson probabilities

Answer
1. See part (a) of the previous problem.

3. 

0 0.3678794

1 0.3678794

2 0.1839397

3 0.06131324

4 0.01532831

5 0.003065662

6 0.0005109437

7 0.00007299195
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12.6: The Birthday Problem
        

Introduction

The Sampling Model

As in the basic sampling model, suppose that we select  numbers at random, with replacement, from the population 
. Thus, our outcome vector is  where  is the th number chosen. Recall that our basic

modeling assumption is that  is uniformly distributed on the sample space 

In this section, we are interested in the number of population values missing from the sample, and the number of (distinct)
population values in the sample. The computation of probabilities related to these random variables are generally referred to as
birthday problems. Often, we will interpret the sampling experiment as a distribution of  balls into  cells;  is the cell number
of ball . In this interpretation, our interest is in the number of empty cells and the number of occupied cells.

For , let  denote the number of times that  occurs in the sample:

 has the multinomial distribution with parameters  and :

Proof

This follows immediately from the definition of the multinomial distribution, since  is an independent
sequence, and  is uniformly distributed on  for each .

We will now define the main random variables of interest.

The number of population values missing in the sample is

and the number of (distinct) population values that occur in the sample is

Also,  takes values in  and  takes values in .

Clearly we must have  so once we have the probability distribution and moments of one variable, we can easily find
them for the other variable. However, we will first solve the simplest version of the birthday problem.

The Simple Birthday Problem
The event that there is at least one duplication when a sample of size  is chosen from a population of size  is

The (simple) birthday problem is to compute the probability of this event. For example, suppose that we choose  people at
random and note their birthdays. If we ignore leap years and assume that birthdays are uniformly distributed throughout the year,
then our sampling model applies with . In this setting, the birthday problem is to compute the probability that at least two
people have the same birthday (this special case is the origin of the name).

The solution of the birthday problem is an easy exercise in combinatorial probability.
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The probability of the birthday event is

and  for 

Proof

The complementary event  occurs if and only if the outcome vector  forms a permutation of size  from .
The number of permutations is  and of course the number of samples is .

The fact that the probability is 1 for  is sometimes referred to as the pigeonhole principle: if more than  pigeons are placed
into  holes then at least one hole has 2 or more pigeons. The following result gives a recurrence relation for the probability of
distinct sample values and thus gives another way to compute the birthday probability.

Let  denote the probability of the complementary birthday event , that the sample variables are distinct, with population
size  and sample size . Then  satisfies the following recursion relation and initial condition:

1. 
2. 

Examples

Let  (the standard birthday problem).

1. 
2. 
3. 
4. 
5. 
6. 

Figure :  as a function of , smoothed for the sake of appearance

In the birthday experiment, set  and select the indicator variable . For  run the
experiment 1000 times each and compare the relative frequencies with the true probabilities.

In spite of its easy solution, the birthday problem is famous because, numerically, the probabilities can be a bit surprising. Note that
with a just 60 people, the event is almost certain! With just 23 people, the birthday event is about ; specifically 

. Mathematically, the rapid increase in the birthday probability, as  increases, is due to the fact that  grows
much faster than .

Four fair, standard dice are rolled. Find the probability that the scores are distinct.

Answer

P ( ) = 1− , n≤mB
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In the birthday experiment, set  and select the indicator variable . Vary  with the scrollbar and note graphically how
the probabilities change. Now with , run the experiment 1000 times and compare the relative frequency of the event to
the corresponding probability.

Five persons are chosen at random.

1. Find the probability that at least 2 have the same birth month.
2. Criticize the sampling model in this setting

Answer

1. 
2. The number of days in a month varies, so the assumption that a person's birth month is uniformly distributed over the 12

months not quite accurate.

In the birthday experiment, set  and select the indicator variable . Vary  with the scrollbar and note graphically how
the probabilities change. Now with , run the experiment 1000 times and compare the relative frequency of the event to
the corresponding probability.

A fast-food restaurant gives away one of 10 different toys with the purchase of a kid's meal. A family with 5 children buys 5
kid's meals. Find the probability that the 5 toys are different.

Answer

In the birthday experiment, set  and select the indicator variable . Vary  with the scrollbar and note graphically how
the probabilities change. Now with , run the experiment 1000 times and comparethe relative frequency of the event to
the corresponding probability.

Let . Find the smallest value of  such that the probability of a duplication is at least .

Answer

The General Birthday Problem

We now return to the more general problem of finding the distribution of the number of distinct sample values and the distribution
of the number of excluded sample values.

The Probability Density Function

The number of samples with exactly  values excluded is

Proof

For , consider the event that  does not occur in the sample: . Now let  with . Using
the multiplication rule of combinatorics, it is easy to count the number of samples that do not contain any elements of :

Now the inclusion-exclusion rule of combinatorics can be used to count the number samples that are missing at least one
population value:
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Once we have this, we can use DeMorgan's law to count the number samples that contain all population values:

Now we can use a two-step procedure to generate all samples that exclude exactly  population values: First, choose the 
values that are to be excluded. The number of ways to perform this step is . Next select a sample of size  from the
remaining population values so that none are excluded. The number of ways to perform this step is the result in the last
displayed equation, but with  replacing . The multiplication principle of combinatorics gives the result.

The distributions of the number of excluded values and the number of distinct values are now easy.

The probability density function of  is given by

Proof

Since the samples are uniformly distributed,  and so the result follows from the previous exercise.

The probability density function of the number of distinct values  is given by

Proof

This follows from the previous theorem since 

In the birthday experiment, select the number of distinct sample values. Vary the parameters and note the shape and location of
the probability density function. For selected values of the parameters, run the simulation 1000 and compare the relative
frequency function to the probability density function.

The distribution of the number of excluded values can also be obtained by a recursion argument.

Let  denote the probability density function of the number of excluded values , when the population size is  and the
sample size is . Then

1. 
2. 

Moments

Now we will find the means and variances. The number of excluded values and the number of distinct values are counting variables
and hence can be written as sums of indicator variables. As we have seen in many other models, this representation is frequently
the best for computing moments.

For , let , the indicator variable of the event that  is not in the sample. Note that the number of
population values missing in the sample can be written as the sum of the indicator variables:

For distinct ,
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P(V = j) = P(U =m−j).
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1. 

2. 
3. 

Proof

Since each population value is equally likely to be chosen, . Thus, parts (a) and (b) follow from
standard results for the mean and variance of an indicator variable. Next,  is the indicator variable of the event that  and 
are both excluded, so . Part (c) then follows from the standard formula for covariance.

The expected number of excluded values and the expected number of distinct values are

1. 

2. 

Proof

Part (a) follows from the previous exericse and the representation . Part (b) follows from part (a) since 
.

The variance of the number of exluded values and the variance of the number of distinct values are

Proof

Recall that . Using the results above on the covariance of the indicator variables and
simplifying gives the variance of . Also,  since .

In the birthday experiment, select the number of distinct sample values. Vary the parameters and note the size and location of
the mean  standard-deviation bar. For selected values of the parameters, run the simulation 1000 times and compare the
sample mean and variance to the distribution mean and variance.

Examples and Applications

Suppose that 30 persons are chosen at random. Find each of the following:

1. The probability density function of the number of distinct birthdays.
2. The mean of the number of distinct birthdays.
3. The variance of the number of distinct birthdays.
4. The probability that there are at least 28 different birthdays represented.

Answer

1. 

2. 
3. 
4. 

In the birthday experiment, set  and . Run the experiment 1000 times with an update frequency of 10 and
compute the relative frequency of the event in part (d) of the last exercise.

Suppose that 10 fair dice are rolled. Find each of the following:

1. The probability density function of the number of distinct scores.
2. The mean of the number of distinct scores.
3. The variance of the number of distinct scores.
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4. The probability that there will 4 or fewer distinct scores.

Answer

1. 

2. 
3. 
4. 

In the birthday experiment, set  and . Run the experiment 1000 times and compute the relative frequency of the
event in part (d) of the last exercise.

A fast food restaurant gives away one of 10 different toys with the purchase of each kid's meal. A family buys 15 kid's meals.
Find each of the following:

1. The probability density function of the number of toys that are missing.
2. The mean of the number of toys that are missing.
3. The variance of the number of toys that are missing.
4. The probability that at least 3 toys are missing.

Answwer

1. 

2. 
3. 
4. 

In the birthday experiment, set  and . Run the experiment 1000 times and compute the relative frequency of the
event in part (d).

The lying students problem. Suppose that 3 students, who ride together, miss a mathematics exam. They decide to lie to the
instructor by saying that the car had a flat tire. The instructor separates the students and asks each of them which tire was flat.
The students, who did not anticipate this, select their answers independently and at random. Find each of the following:

1. The probability density function of the number of distinct answers.
2. The probability that the students get away with their deception.
3. The mean of the number of distinct answers.
4. The standard deviation of the number of distinct answers.

Answer

1. 1 2 3

2. 
3. 

4. 

The duck hunter problem. Suppose that there are 5 duck hunters, each a perfect shot. A flock of 10 ducks fly over, and each
hunter selects one duck at random and shoots. Find each of the following:

1. The probability density function of the number of ducks that are killed.
2. The mean of the number of ducks that are killed.
3. The standard deviation of the number of ducks that are killed.

Answer
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1. 1 2 3 4 5

2. 
3. 

This page titled 12.6: The Birthday Problem is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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12.7: The Coupon Collector Problem
       

Basic Theory

Definitions

In this section, our random experiment is to sample repeatedly, with replacement, from the population . This
generates a sequence of independent random variables , each uniformly distributed on 

We will often interpret the sampling in terms of a coupon collector: each time the collector buys a certain product (bubble gum or
Cracker Jack, for example) she receives a coupon (a baseball card or a toy, for example) which is equally likely to be any one of 
types. Thus, in this setting,  is the coupon type received on the th purchase.

Let  denote the number of distinct values in the first  selections, for . This is the random variable studied in the last
section on the Birthday Problem. Our interest is in this section is the sample size needed to get a specified number of distinct
sample values

For , let

the sample size needed to get  distinct sample values.

In terms of the coupon collector, this random variable gives the number of products required to get  distinct coupon types. Note
that the set of possible values of  is . We will be particularly interested in , the sample size needed to get the
entire population. In terms of the coupon collector, this is the number of products required to get the entire set of coupons.

In the coupon collector experiment, run the experiment in single-step mode a few times for selected values of the parameters.

The Probability Density Function

Now let's find the distribution of . The results of the previous section will be very helpful

For , the probability density function of  is given by

Proof

Note first that  if and only if  and . Hence

Using the PDF of  from the previous section gives the result.

In the coupon collector experiment, vary the parameters and note the shape of and position of the probability density function.
For selected values of the parameters, run the experiment 1000 times and compare the relative frequency function to the
probability density function.

An alternate approach to the probability density function of  is via a recursion formula.

For fixed , let  denote the probability density function of . Then

1. 
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Decomposition as a Sum

We will now show that  can be decomposed as a sum of  independent, geometrically distributed random variables. This will
provide some additional insight into the nature of the distribution and will make the computation of the mean and variance easy.

For , let  denote the number of additional samples needed to go from  distinct values to  distinct
values. Then  is a sequence of independent random variables, and  has the geometric distribution on 

 with parameter . Moreover,

This result shows clearly that each time a new coupon is obtained, it becomes harder to get the next new coupon.

In the coupon collector experiment, run the experiment in single-step mode a few times for selected values of the parameters.
In particular, try this with  large and  near .

Moments

The decomposition as a sum of independent variables provides an easy way to compute the mean and other moments of .

The mean and variance of the sample size needed to get  distinct values are

1. 

2. 

Proof

These results follow from the decomposition of  as a sum of independent variables and standard results for the geometric
distribution, since  and .

In the coupon collector experiment, vary the parameters and note the shape and location of the mean  standard deviation bar.
For selected values of the parameters, run the experiment 1000 times and compare the sample mean and standard deviation to
the distribution mean and standard deviation.

The probability generating function of  is given by

Proof

This follows from the decomposition of  as a sum of independent variables and standard results for the geometric
distribution on , since .

Examples and Applications

Suppose that people are sampled at random until 40 distinct birthdays are obtained. Find each of the following:

1. The probability density function of the sample size.
2. The mean of the sample size.
3. The variance of the sample size.
4. The probability generating function of the sample size.

Answer

Let  denote the sample size.

1.  for 
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2. 
3. 
4.  for 

Suppose that a standard, fair die is thrown until all 6 scores have occurred. Find each of the following:

1. The probability density function of the number of throws.
2. The mean of the number of throws.
3. The variance of the number of throws.
4. The probability that at least 10 throws are required.

Answer

Let  denote the number of throws.

1.  for 

2. 
3. 
4. 

A box of a certain brand of cereal comes with a special toy. There are 10 different toys in all. A collector buys boxes of cereal
until she has all 10 toys. Find each of the following:

1. The probability density function of the number boxes purchased.
2. The mean of the number of boxes purchased.
3. The variance of the number of boxes purchased.
4. The probability that no more than 15 boxes were purchased.

Answer

Let  denote the number of boxes purchased.

1. , for 

2. 
3. 
4. 

This page titled 12.7: The Coupon Collector Problem is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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12.8: Pólya's Urn Process
       

Basic Theory

The Model

Pólya's urn scheme is a dichotomous sampling model that generalizes the hypergeometric model (sampling without replacement) and the Bernoulli
model (sampling with replacement). Pólya's urn proccess leads to a famous example of a sequence of random variables that is exchangeable, but not
independent, and has deep conections with the beta-Bernoulli process.

Suppose that we have an urn (what else!) that initially contains  red and  green balls, where  and  are positive integers. At each discrete time
(trial), we select a ball from the urn and then return the ball to the urn along with  new balls of the same color. Ordinarily, the parameter  is a
nonnegative integer. However, the model actually makes sense if  is a negative integer, if we interpret this to mean that we remove the balls rather
than add them, and assuming that there are enough balls of the proper color in the urn to perform this action. In any case, the random process is
known as Pólya's urn process, named for George Pólya.

In terms of the colors of the selected balls, Pólya's urn scheme generalizes the standard models of sampling with and without replacement.

1.  corresponds to sampling with replacement.
2.  corresponds to sampling without replacement.

For the most part, we will assume that  is nonnegative so that the process can be continued indefinitely. Occasionally we consider the case  so
that we can interpret the results in terms of sampling without replacement.

The Outcome Variables

Let  denote the color of the ball selected at time , where 0 denotes green and 1 denotes red. Mathematically, our basic random process is the
sequence of indicator variables , known as the Pólya process. As with any random process, our first goal is to compute the finite
dimensional distributions of . That is, we want to compute the joint distribution of  for each . Some additional notation
will really help. Recall the generalized permutation formula in our study of combinatorial structures: for  and , we defined

Note that the expression has  factors, starting with , and with each factor obtained by adding  to the previous factor. As usual, we adopt the
convention that a product over an empty index set is 1. Hence  for every  and .

Recall that

1. , an ordinary power
2. , a descending power
3. , an ascending power
4. 
5. 

The following simple result will turn out to be quite useful.

Suppose that  and . Then

Proof

It's just a matter of grouping the factors:

The finite dimensional distributions are easy to compute using the multiplication rule of conditional probability. If we know the contents of the urn at
any given time, then the probability of an outcome at the next time is all but trivial.

Let ,  and let . Then
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Proof

By the multiplication rule for conditional probability,

Of course, if we know that the urn has, say,  red and  green balls at a particular time, then the probability of a red ball on the next draw is 
 while the probability of a green ball is . The right side of the displayed equation above has  factors. The denominators are

the total number of balls at the  times, and form the product . In the numerators,  of
the factors correspond to probabilities of selecting red balls; these factors form the product . The remaining 

 factors in the numerators correspond to selecting green balls; these factors form the product .

The joint probability in the previous exercise depends on  only through the number of red balls  in the sample. Thus, the
joint distribution is invariant under a permutation of , and hence  is an exchangeable sequence of random variables. This means
that for each , all permutations of  have the same distribution. Of course the joint distribution reduces to the formulas we have
obtained earlier in the special cases of sampling with replacement ( ) or sampling without replacement ( ), although in the latter case we
must have . When , the Pólya process is a special case of the beta-Bernoulli process, studied in the chapter on Bernoulli trials.

The Pólya process  with parameters  is the beta-Bernoulli process with parameters  and . That is, for 
, , and with ,

Proof

From the previous two results,

and this is the corresponding finite dimensional distribution of the beta-Bernoulli distribution with parameters  and .

Recall that the beta-Bernoulli process is obtained, in the usual formulation, by randomizing the success parameter in a Bernoulli trials sequence,
giving the success parameter a beta distribution. So specifically, suppose  and that random variable  has the beta distribution with
parameters  and . Suppose also that given , the random process  is a sequence of Bernoulli trials with
success parameter . Then  is the Pólya process with parameters . This is a fascinating connection between two processes that at first, seem
to have little in common. In fact however, every exchangeable sequence of indicator random variables can be obtained by randomizing the success
parameter in a sequence of Bernoulli trials. This is de Finetti's theorem, named for Bruno de Finetti, which is studied in the section on backwards
martingales. When , all of the results in this section are special cases of the corresponding results for the beta-Bernoulli process, but it's still
interesting to interpret the results in terms of the urn model.

For each 

1. 
2. 

Proof

Since the sequence is exchangeable,  has the same distribution as , so . The mean and variance now follow from
standard results for indicator variables.

Thus  is a sequence of identically distributed variables, quite surprising at first but of course inevitable for any exchangeable sequence. Compare
the joint and marginal distributions. Note that  is an independent sequence if and only if , when we have simple sampling with replacement.
Pólya's urn is one of the most famous examples of a random process in which the outcome variables are exchangeable, but dependent (in general).

Next, let's compute the covariance and correlation of a pair of outcome variables.

Suppose that  are distinct. Then

1. 

2. 

Proof

Since the variables are exchangeable, . The results now follow from standard formulas
for covariance and correlation.
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Thus, the variables are positively correlated if , negatively correlated if , and uncorrelated (in fact, independent), if . These results
certainly make sense when we recall the dynamics of Pólya's urn. It turns out that in any infinite sequence of exchangeable variables, the variables
must be nonnegatively correlated. Here is another result that explores how the variables are related.

Suppose that  and . Let . Then

Proof

Using the joint distribution,

Pólya's urn is described by a sequence of indicator variables. We can study the same derived random processes that we studied with Bernoulli trials:
the number of red balls in the first  trials, the trial number of the th red ball, and so forth.

The Number of Red Balls

For , the number of red balls selected in the first  trials is

so that  is the partial sum process associated with .

Note that

1. The number of green balls selected in the first  trials is .
2. The number of red balls in the urn after the first  trials is .
3. The number of green balls in the urn after the first  trials is .
4. The number of balls in the urn after the first  trials is .

The basic analysis of  follows easily from our work with .

The probability density function of  is given by

Proof

 is the sum of  over all  with . There are  such
sequences, and each has the probability given above.

The distribution defined by this probability density function is known, appropriately enough, as the Pólya distribution with parameters , , , and .
Of course, the distribution reduces to the binomial distribution with parameters  and  in the case of sampling with replacement ( ) and
to the hypergeometric distribution with parameters , , and  in the case of sampling without replacement ( ), although again in this case we
need . When , the Póyla distribution is a special case of the beta-binomial distribution.

If  then the Pólya distribution with parameters  is the beta-binomial distribution with parameters  and . That is,

Proof

This follows immediately from the result above that  is the beta-Bernoulli process with parameters  and . So by
definition,  has the beta-binomial distribution with parameters , , and . A direct proof is also simple using the permutation
formula above:
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The case where all three parameters are equal is particularly interesting.

If  then  is uniformly distributed on .

Proof

This follows from the previous result, since the beta-binomial distribution with parameters , 1, and 1 reduces to the uniform distribution.
Specifically, note that ,  and . So substituting gives

In general, the Pólya family of distributions has a diverse collection of shapes.

Start the simulation of the Pólya Urn Experiment. Vary the parameters and note the shape of the probability density function. In particular, note
when the function is skewed, when the function is symmetric, when the function is unimodal, when the function is monotone, and when the
function is U-shaped. For various values of the parameters, run the simulation 1000 times and compare the empirical density function to the
probability density function.

The Pólya probability density function is

1. unimodal if  and 
2. unimodal if  and 
3. U-shaped if  and 
4. U-shaped if  and 
5. increasing if 
6. decreasing if 

Proof

These results follow from solving the inequality .

Next, let's find the mean and variance. Curiously, the mean does not depend on the parameter .

The mean and variance of the number of red balls selected are

1. 

2. 

Proof

These results follow from the mean and covariance of the indicator variables given above, and basic properties of expected value and variance.

1. 
2. 

Start the simulation of the Pólya Urn Experiment. Vary the parameters and note the shape and location of the mean  standard deviation bar. For
various values of the parameters, run the simulation 1000 times and compare the empirical mean and standard deviation to the distribution mean
and standard deviation.

Explicitly compute the probability density function, mean, and variance of  when , , and for the values of .
Sketch the graph of the density function in each case.

Fix , , and , and let . Then

1. 
2. 
3. 

Proof

Note that . The numerator and denominator each have  factors. If these factors are grouped into a product of  fractions,

then the first is . The rest have the form  where  Each of these converges to 1 as . Part (b) follows by a

similar argument. Part (c) follows from (a) and (b) and the complement rule.
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Thus, the limiting distribution of  as  is concentrated on 0 and . The limiting probabilities are just the initial proportion of green and red
balls, respectively. Interpret this result in terms of the dynamics of Pólya's urn scheme.

Our next result gives the conditional distribution of  given .

Suppose that  and . Then

Proof

Let  and let . Note that the events  over  partition
the event . Conditioning on ,

But from our result above,  for every . Hence

The last sum is 1.

In particular, if  then . This is Laplace's rule of succession, another interesting connection. The rule is
named for Pierre Simon Laplace, and is studied from a different point of view in the section on Independence.

The Proportion of Red Balls

Suppose that , so that the process continues indefinitely. For , the proportion of red balls selected in the first  trials is

This is an interesting variable, since a little reflection suggests that it may have a limit as . Indeed, if , then  is just the sample mean
corresponding to  Bernoulli trials. Thus, by the law of large numbers,  converges to the success parameter  as  with probability 1. On
the other hand, the proportion of red balls in the urn after  trials is

When , of course,  so that in this case,  and  have the same limiting behavior. Note that

Since the constant term converges to 0 as  and the coefficient of  converges to 1 as , it follows that the limits of  and  as 
 will be the same, if the limit exists, for any mode of convergence: with probability 1, in mean, or in distribution. Here is the general result

when .

Suppose that . There exists a random variable  having the beta distribution with parameters  and  such that  and 
 as  with probability 1 and in mean square, and hence also in distribution.

Proof

As noted earlier, the urn process is equivalent to the beta-Bernoulli process with parameters  and . We showed in that section that 
 as  with probability 1 and in mean square, where  is the beta random variable used in the construction.

In turns out that the random process  is a martingale. The theory of martingales provides powerful
tools for studying convergence in Pólya's urn process. As an interesting special case, note that if  then the limiting distribution is the
uniform distribution on .

The Trial Number of the th Red Ball

Suppose again that , so that the process continues indefinitely. For  let  denote the trial number of the th red ball selected. Thus

Note that  takes values in . The random processes  and  are inverses of each other in a sense.
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For  with ,

1.  if and only if 
2.  if and only if  and 

The probability denisty function of  is given by

Proof

We condition on . Using the PDF of  and the result above,

Of course this probability density function reduces to the negative binomial density function with trial parameter  and success parameter 
when  (sampling with replacement). When , the distribution is a special case of the beta-negative binomial distribution.

If  then  has the beta-negative binomial distribution with parameters , , and . That is,

Proof

As with previous proofs, this result follows since the underlying process  is the beta-Bernoulli process with parameters 
and . The form of the PDF also follows easily from the previous result by dividing the numerator and denominator .

If  then

Proof

As in the corresponding proof for the number of red balls, the fraction in the PDF of  in the previous result reduces to , while the

binomial coefficient is .

Fix , , and , and let . Then

1. 
2. 

Thus, the limiting distribution of  is concentrated on  and . The limiting probabilities at these two points are just the initial proportion of red and
green balls, respectively. Interpret this result in terms of the dynamics of Pólya's urn scheme.

This page titled 12.8: Pólya's Urn Process is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via
source content that was edited to the style and standards of the LibreTexts platform.
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12.9: The Secretary Problem
       

In this section we will study a nice problem known variously as the secretary problem or the marriage problem. It is simple to state
and not difficult to solve, but the solution is interesting and a bit surprising. Also, the problem serves as a nice introduction to the
general area of statistical decision making.

Statement of the Problem
As always, we must start with a clear statement of the problem.

We have  candidates (perhaps applicants for a job or possible marriage partners). The assumptions are

1. The candidates are totally ordered from best to worst with no ties.
2. The candidates arrive sequentially in random order.
3. We can only determine the relative ranks of the candidates as they arrive. We cannot observe the absolute ranks.
4. Our goal is choose the very best candidate; no one less will do.
5. Once a candidate is rejected, she is gone forever and cannot be recalled.
6. The number of candidates  is known.

The assumptions, of course, are not entirely reasonable in real applications. The last assumption, for example, that  is known, is
more appropriate for the secretary interpretation than for the marriage interpretation.

What is an optimal strategy? What is the probability of success with this strategy? What happens to the strategy and the probability
of success as  increases? In particular, when  is large, is there any reasonable hope of finding the best candidate?

Strategies

Play the secretary game several times with  candidates. See if you can find a good strategy just by trial and error.

After playing the secretary game a few times, it should be clear that the only reasonable type of strategy is to let a certain number 
 of the candidates go by, and then select the first candidate we see who is better than all of the previous candidates (if she

exists). If she does not exist (that is, if no candidate better than all previous candidates appears), we will agree to accept the last
candidate, even though this means failure. The parameter  must be between 1 and ; if , we select the first candidate; if 

, we select the last candidate; for any other value of , the selected candidate is random, distributed on .
We will refer to this “let  go by” strategy as strategy .

Thus, we need to compute the probability of success  using strategy  with  candidates. Then we can maximize the
probability over  to find the optimal strategy, and then take the limit over  to study the asymptotic behavior.

Analysis
First, let's do some basic computations.

For the case , list the 6 permutations of  and verify the probabilities in the table below. Note that  is
optimal.

1 2 3

Answer

The following table gives the  permutations of the candidates , and the candidate selected by each strategy. The
last row gives the total number of successes for each strategy.

Permutation

1 3 3

n

n

n

n n

n= 10

k−1

k n k= 1

k= n k {k, k+1,… ,n}

k−1 k

(k)p

n

k n

k n

n= 3 {1, 2, 3} k= 2

k

(k)p

3

2

6

3

6

2

6

3! = 6 (1, 2, 3)

k = 1 k = 2 k = 3

(1, 2, 3)
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1 2 2

2 1 3

2 1 1

3 1 2

3 2 1

Total 2 3 2

In the secretary experiment, set the number of candidates to . Run the experiment 1000 times with each strategy 

For the case , list the 24 permutations of  and verify the probabilities in the table below. Note that  is
optimal. The last row gives the total number of successes for each strategy.

1 2 3 4

Answer

The following table gives the  permutations of the candidates , and the candidate selected by each strategy.

Permutation

1 4 4 4

1 3 3 3

1 4 4 4

1 3 2 2

1 3 3 3

1 2 2 2

2 1 4 4

2 1 3 3

2 1 1 4

2 1 1 1

2 1 1 3

2 1 1 1

3 1 4 4

3 1 2 2

3 2 1 4

3 2 1 1

3 1 1 2

3 2 2 1

4 1 3 3

(1, 3, 2)

(2, 1, 3)

(2, 3, 1)

(3, 1, 2)

(3, 2, 1)

n= 3

k ∈ {1, 2, 3}

n= 4 {1, 2, 3, 4} k= 2

k

(k)p

4

6

24

11

24

10

24

6

24

4! = 24 (1, 2, 3, 4)

k = 1 k = 2 k = 3 k = 4

(1, 2, 3, 4)

(1, 2, 4, 3)

(1, 3, 2, 4)

(1, 3, 4, 2)

(1, 4, 2, 3)

(1, 4, 3, 2)

(2, 1, 3, 4)

(2, 1, 4, 3)

(2, 3, 1, 4)

(2, 3, 4, 1)

(2, 4, 1, 3)

(2, 4, 3, 1)

(3, 1, 2, 4)

(3, 1, 4, 2)

(3, 2, 1, 4)

(3, 2, 4, 1)

(3, 4, 1, 2)

(3, 4, 2, 1)

(4, 1, 2, 3)
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4 1 2 2

4 2 1 3

4 2 1 1

4 3 1 2

4 3 2 1

Total 6 11 10 6

In the secretary experiment, set the number of candidates to . Run the experiment 1000 times with each strategy 

For the case , list the 120 permutations of  and verify the probabilities in the table below. Note that  is
optimal.

1 2 3 4 5

In the secretary experiment, set the number of candidates to . Run the experiment 1000 times with each strategy 

Well, clearly we don't want to keep doing this. Let's see if we can find a general analysis. With  candidates, let  denote the
number (arrival order) of the best candidate, and let  denote the event of success for strategy  (we select the best candidate).

 is uniformly distributed on .

Proof

This follows since the candidates arrive in random order.

Next we will compute the conditional probability of success given the arrival order of the best candidate.

For  and ,

Proof

For the first case, note that if the arrival number of the best candidate is , then strategy  will certainly fail. For the
second cases, note that if the arrival order of the best candidate is , then strategy  will succeed if and only if one of the
first  candidates (the ones that are automatically rejected) is the best among the first 

The two cases are illustrated below. The large dot indicates the best candidate. Red dots indicate candidates that are rejected out of
hand, while blue dots indicate candidates that are considered.

Figure : The case when 

Figure : The case when 
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Now we can compute the probability of success with strategy .

For 

Proof

When  we simply select the first candidate. This candidate will be the best one with probability . The result for 
 follows from the previous two results, by conditioning on :

Values of the function  can be computed by hand for small  and by a computer algebra system for moderate . The graph of 
 is shown below. Note the concave downward shape of the graph and the optimal value of , which turns out to be 38. The

optimal probability is about 0.37104.

Figure : The graph of 

The optimal strategy  that maximizes , the ratio , and the optimal probability  of finding the best
candidate, as functions of  are given in the following table:

Candidates Optimal strategy Ratio Optimal probability 

3 2 0.6667 0.5000

4 2 0.5000 0.4583

5 3 0.6000 0.4333

6 3 0.5000 0.4278

7 3 0.4286 0.4143

8 4 0.5000 0.4098

9 4 0.4444 0.4060

10 4 0.4000 0.3987

11 5 0.4545 0.3984

12 5 0.4167 0.3955

13 6 0.4615 0.3923

14 6 0.4286 0.3917

15 6 0.4000 0.3894
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Candidates Optimal strategy Ratio Optimal probability 

16 7 0.4375 0.3881

17 7 0.4118 0.3873

18 7 0.3889 0.3854

19 8 0.4211 0.3850

20 8 0.4000 0.3842

Apparently, as we might expect, the optimal strategy  increases and the optimal probability  decreases as . On the
other hand, it's encouraging, and a bit surprising, that the optimal probability does not appear to be decreasing to 0. It's perhaps
least clear what's going on with the ratio. Graphical displays of some of the information in the table may help:

Figure : The optimal probability 

Figure : The optimal ratio 

Could it be that the ratio  and the probability  are both converging, and moreover, are converging to the same number?
First let's try to establish rigorously some of the trends observed in the table.

The success probability  satisfies

It follows that for each , the function  at first increases and then decreases. The maximum value of  occurs at the
largest  with . This is the optimal strategy with  candidates, which we have denoted by .

As  increases,  increases and the optimal probability  decreases.
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Asymptotic Analysis
We are naturally interested in the asymptotic behavior of the function , and the optimal strategy as . The key is
recognizing  as a Riemann sum for a simple integral. (Riemann sums, of course, are named for Georg Riemann.)

If  depends on  and  as  then  as .

Proof

First note that

We recognize the sum above as the left Riemann sum for the the function  corresponding to the partition of the

interval  into  subintervals of length  each: . It follows that

The optimal strategy  that maximizes , the ratio , and the optimal probability  of finding the best
candidate, as functions of  are given in the following table:

Candidates Optimal strategy Ratio Optimal probability 

10 4 0.4000 0.3987

20 8 0.4000 0.3842

30 12 0.4000 0.3786

40 16 0.4000 0.3757

50 19 0.3800 0.3743

60 23 0.3833 0.3732

70 27 0.3857 0.3724

80 30 0.3750 0.3719

90 34 0.3778 0.3714

100 38 0.3800 0.3710

The graph below shows the true probabilities  and the limiting values  as a function of  with .

Figure : True and approximate probabilities of success as a function of  with 

For the optimal strategy , there exists  such that  as . Thus,  is the limiting proportion
of the candidates that we reject out of hand. Moreover,  maximizes  on .
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The maximum value of  occurs at  and the maximum value is also .

Proof

Figure : The graph of  on the interval 

Thus, the magic number  occurs twice in the problem. For large :

Our approximate optimal strategy is to reject out of hand the first 37% of the candidates and then select the first candidate (if
she appears) that is better than all of the previous candidates.
Our probability of finding the best candidate is about 0.37.

The article “Who Solved the Secretary Problem?” by Tom Ferguson (1989) has an interesting historical discussion of the problem,
including speculation that Johannes Kepler may have used the optimal strategy to choose his second wife. The article also discusses
many interesting generalizations of the problem. A different version of the secretary problem, in which the candidates are assigned
a score in , rather than a relative rank, is discussed in the section on Stopping Times in the chapter on Martingales

This page titled 12.9: The Secretary Problem is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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1

CHAPTER OVERVIEW

13: Games of Chance
Games of chance hold an honored place in probability theory, because of their conceptual clarity and because of their fundamental
influence on the early development of the subject. In this chapter, we explore some of the most common and basic games of
chance. Roulette, craps, and Keno are casino games. The Monty Hall problem is based on a TV game show, and has become
famous because of the controversy that it generated. Lotteries are now basic ways that governments and other institutions raise
money. In the last four sections on the game of red and black, we study various types of gambling strategies, a study which leads to
some deep and fascinating mathematics.

13.1: Introduction to Games of Chance
13.2: Poker
13.3: Simple Dice Games
13.4: Craps
13.5: Roulette
13.6: The Monty Hall Problem
13.7: Lotteries
13.8: The Red and Black Game
13.9: Timid Play
13.10: Bold Play
13.11: Optimal Strategies

This page titled 13: Games of Chance is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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13.1: Introduction to Games of Chance
       

Gambling and Probability

Games of chance are among the oldest of human inventions. The use of a certain type of animal heel bone (called the astragalus or
colloquially the knucklebone) as a crude die dates to about 3600 BCE. The modern six-sided die dates to 2000 BCE, and the term
bones is used as a slang expression for dice to this day (as in roll the bones). It is because of these ancient origins, by the way, that
we use the die as the fundamental symbol in this project.

Figure : An artificial knucklebone made of steatite, from the Arjan Verweij Dice Website

Gambling is intimately interwoven with the development of probability as a mathematical theory. Most of the early development of
probability, in particular, was stimulated by special gambling problems, such as

DeMere's problem
Pepy's problem
the problem of points
the Petersburg problem

Some of the very first books on probability theory were written to analyze games of chance, for example Liber de Ludo Aleae (The
Book on Games of Chance), by Girolamo Cardano, and Essay d' Analyse sur les Jeux de Hazard (Analytical Essay on Games of
Chance), by Pierre-Remond Montmort. Gambling problems continue to be a source of interesting and deep problems in probability
to this day (see the discussion of Red and Black for an example).

Figure : Allegory of Fortune by Dosso Dossi (c. 1591), Getty Museum. For more depictions of gambling in paintings, see the
ancillary material on art.

Of course, it is important to keep in mind that breakthroughs in probability, even when they are originally motivated by gambling
problems, are often profoundly important in the natural sciences, the social sciences, law, and medicine. Also, games of chance
provide some of the conceptually clearest and cleanest examples of random experiments, and thus their analysis can be very helpful
to students of probability.

However, nothing in this chapter should be construed as encouraging you, gentle reader, to gamble. On the contrary, our analysis
will show that, in the long run, only the gambling houses prosper. The gambler, inevitably, is a sad victim of the law of large
numbers.

13.1.1
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In this chapter we will study some interesting games of chance. Poker, poker dice, craps, and roulette are popular parlor and casino
games. The Monty Hall problem, on the other hand, is interesting because of the controversy that it generated. The lottery is a basic
way that many states and nations use to raise money (a voluntary tax, of sorts).

Terminology

Let us discuss some of the basic terminology that will be used in several sections of this chapter. Suppose that  is an event in a
random experiment. The mathematical odds concerning  refer to the probability of .

If  and  are positive numbers, then by definition, the following are equivalent:

1. the odds in favor of  are .
2. .
3. the odds against  are .
4. .

In many cases,  and  can be given as positive integers with no common factors.

Similarly, suppose that . The following are equivalent:

1. .
2. The odds in favor of  are .
3. .
4. The odds against  are .

On the other hand, the house odds of an event refer to the payout when a bet is made on the event.

A bet on event  pays  means that if a gambler bets  units on  then

1. If  occurs, the gambler receives the  units back and an additional  units (for a net profit of )
2. If  does not occur, the gambler loses the bet of  units (for a net profit of ).

Equivalently, the gambler puts up  units (betting on ), the house puts up  units, (betting on ) and the winner takes the pot.
Of course, it is usually not necessary for the gambler to bet exactly ; a smaller or larger is bet is scaled appropriately. Thus, if the
gambler bets  units and wins, his payout is .

Naturally, our main interest is in the net winnings if we make a bet on an event. The following result gives the probability density
function, mean, and variance for a unit bet. The expected value is particularly interesting, because by the law of large numbers, it
gives the long term gain or loss, per unit bet.

Suppose that the odds in favor of event  are  and that a bet on event  pays . Let  denote the winnings from a
unit bet on . Then

1. , 

2. 

3. 

In particular, the expected value of the bet is zero if and only if , positive if and only if , and negative if and
only if . The first case means that the bet is fair, and occurs when the payoff is the same as the odds against the event.
The second means that the bet is favorable to the gambler, and occurs when the payoff is greater that the odds against the event.
The third case means that the bet is unfair to the gambler, and occurs when the payoff is less than the odds against the event.
Unfortunately, all casino games fall into the third category.

More About Dice
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Shapes of Dice

The standard die, of course, is a cube with six sides. A bit more generally, most real dice are in the shape of Platonic solids, named
for Plato naturally. The faces of a Platonic solid are congruent regular polygons. Moreover, the same number of faces meet at each
vertex so all of the edges and angles are congruent as well.

The five Platonic solids are

1. The tetrahedron, with 4 sides.
2. The hexahedron (cube), with 6 sides
3. The octahedron, with 8 sides
4. The dodecahedron, with 12 sides
5. The icosahedron, with 20 sides

Figure : Blue Platonic Dice from Wikipedia

Note that the 4-sided die is the only Platonic die in which the outcome is the face that is down rather than up (or perhaps it's better
to think of the vertex that is up as the outcome).

Fair and Crooked Dice

Recall that a fair die is one in which the faces are equally likely. In addition to fair dice, there are various types of crooked dice. For
the standard six-sided die, there are three crooked types that we use frequently in this project. To understand the geometry, recall
that with the standard six-sided die, opposite faces sum to 7.

Flat Dice

1. An ace-six flat die is a six-sided die in which faces 1 and 6 have probability  each while faces 2, 3, 4, and 5 have
probability  each.

2. A two-five flat die is a six-sided die in which faces 2 and 5 have probability  each while faces 1, 3, 4, and 6 have
probability  each.

3. A three-four flat die is a six-sided die in which faces 3 and 4 have probability  each while faces 1, 2, 5, and 6 have
probability  each.

A flat die, as the name suggests, is a die that is not a cube, but rather is shorter in one of the three directions. The particular
probabilities that we use (  and ) are fictitious, but the essential property of a flat die is that the opposite faces on the shorter
axis have slightly larger probabilities (because they have slightly larger areas) than the other four faces. Flat dice are sometimes
used by gamblers to cheat.

In the Dice Experiment, select one die. Run the experiment 1000 times in each of the following cases and observe the
outcomes.

1. fair die
2. ace-six flat die
3. two-five flat die
4. three-four flat die

Simulation

It's very easy to simulate a fair die with a random number. Recall that the ceiling function  gives the smallest integer that is at
least as large as .

Suppose that  is uniformly distributed on the interval , so that  has the standard uniform distribution (a random
number). Then  is uniformly distributed on the set  and so simulates a fair six-sided die. More
generally,  is uniformly distributed on  and so simlates a fair -sided die.

13.1.3
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We can also use a real fair die to simulate other types of fair dice. Recall that if  is uniformly distributed on  and 
, then the conditional distribution of  given that  is uniformly distributed on 

. Thus, suppose that we have a real, fair, -sided die. If we ignore outcomes greater than  then we simulate a fair -
sided die. For example, suppose that we have a carefully constructed icosahedron that is a fair 20-sided die. We can simulate a fair
13-sided die by simply rolling the die and stopping as soon as we have a score between 1 and 13.

To see how to simulate a card hand, see the Introduction to Finite Sampling Models. A general method of simulating random
variables is based on the quantile function.

This page titled 13.1: Introduction to Games of Chance is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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13.2: Poker
        

Basic Theory

The Poker Hand

A deck of cards naturally has the structure of a product set and thus can be modeled mathematically by

where the first coordinate represents the denomination or kind (ace, two through 10, jack, queen, king) and where the second
coordinate represents the suit (clubs, diamond, hearts, spades). Sometimes we represent a card as a string rather than an ordered
pair (for example ).

There are many different poker games, but we will be interested in standard draw poker, which consists of dealing 5 cards at
random from the deck . The order of the cards does not matter in draw poker, so we will record the outcome of our random
experiment as the random set (hand)  where  for each  and  for .
Thus, the sample space consists of all possible poker hands:

Our basic modeling assumption (and the meaning of the term at random) is that all poker hands are equally likely. Thus, the
random variable  is uniformly distributed over the set of possible poker hands .

In statistical terms, a poker hand is a random sample of size 5 drawn without replacement and without regard to order from the
population . For more on this topic, see the chapter on Finite Sampling Models.

The Value of the Hand

There are nine different types of poker hands in terms of value. We will use the numbers 0 to 8 to denote the value of the hand,
where 0 is the type of least value (actually no value) and 8 the type of most value.

The hand value  of a poker hand is a random variable taking values 0 through 8, and is defined as follows:

0. No Value. The hand is of none of the other types.
1. One Pair. The hand has 2 cards of one kind, and one card each of three other kinds.
2. Two Pair. The hand has 2 cards of one kind, 2 cards of another kind, and one card of a third kind.
3. Three of a Kind. The hand has 3 cards of one kind and one card of each of two other kinds.
4. Straight. The kinds of cards in the hand form a consecutive sequence but the cards are not all in the same suit. An ace can

be considered the smallest denomination or the largest denomination.
5. Flush. The cards are all in the same suit, but the kinds of the cards do not form a consecutive sequence.
6. Full House. The hand has 3 cards of one kind and 2 cards of another kind.
7. Four of a Kind. The hand has 4 cards of one kind, and 1 card of another kind.
8. Straight Flush. The cards are all in the same suit and the kinds form a consecutive sequence.

Run the poker experiment 10 times in single-step mode. For each outcome, note that the value of the random variable
corresponds to the type of hand, as given above.

For some comic relief before we get to the analysis, look at two of the paintings of Dogs Playing Poker by CM Coolidge.

1. His Station and Four Aces
2. Waterloo

D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, k} ×{♣,♢,♡,♠} (13.2.1)
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The Probability Density Function

Computing the probability density function of  is a good exercise in combinatorial probability. In the following exercises, we
need the two fundamental rules of combinatorics to count the number of poker hands of a given type: the multiplication rule and
the addition rule. We also need some basic combinatorial structures, particularly combinations.

The number of different poker hands is

.

Proof

The following steps form an algorithm for generating poker hands with one pair. The number of ways of performing each step
is also given.

1. Select a kind of card: 
2. Select 2 cards of the kind in part (a): 
3. Select 3 kinds of cards, different than the kind in (a): 
4. Select a card of each of the kinds in part (c): 

.

Proof

The following steps form an algorithm for generating poker hands with two pair. The number of ways of performing each step
is also given.

1. Select two kinds of cards: 
2. Select two cards of each of the kinds in (a): 
3. Select a kind of card different from the kinds in (a): 
4. Select a card of the kind in (c): 

.

Proof

The following steps form an algorithm for generating poker hands with three of a kind. The number of ways of performing
each step is also given.

1. Select a kind of card: 
2. Select 3 cards of the kind in (a): 
3. Select 2 kinds of cards, different than the kind in (a): 
4. Select one card of each of the kinds in (c): 

.

Proof

The following steps form an algorithm for generating poker hands with a straight flush. The number of ways of performing
each step is also given.

1. Select the kind of the lowest card in the sequence: 
2. Select a suit: 

.

Proof

V

#(S) =( ) = 2 598 960

52

5

(13.2.4)

P(V = 1) = 1 098 240/2 598 960 ≈ 0.422569
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The following steps form an algorithm for generating poker hands with a straight or a straight flush. The number of ways of
performing each step is also given.

1. Select the kind of the lowest card in the sequence: 
2. Select a card of each kind in the sequence: 

Finally, we need to subtract the number of staight flushes above to get the number of hands with a straight.

.

Proof

The following steps form an algorithm for generating poker hands with a flush or a straight flush. The number of ways of
performing each step is also given.

1. Select a suit: 
2. Select 5 cards of the suit in (a): 

Finally, we need to subtract the number of straight flushes above to get the number of hands with a flush.

.

Proof

The following steps form an algorithm for generating poker hands with a full house. The number of ways of performing each
step is also given.

1. Select a kind of card: 
2. Select 3 cards of the kind in (a): 
3. Select another kind of card: 
4. Select 2 cards of the kind in (c): 

.

Proof

The following steps form an algorithm for generating poker hands with four of a kind. The number of ways of performing each
step is also given.

1. Select a kind of card: 
2. Select 4 cards of the kind in (a): 
3. Select another kind of card: 
4. Select a card of the kind in (c): 

.

Proof

By the complement rule, 

Note that the probability density function of  is decreasing; the more valuable the type of hand, the less likely the type of hand is
to occur. Note also that no value and one pair account for more than 92% of all poker hands.

In the poker experiment, note the shape of the density graph. Note that some of the probabilities are so small that they are
essentially invisible in the graph. Now run the poker hand 1000 times and compare the relative frequency function to the
density function.

In the poker experiment, set the stop criterion to the value of  given below. Note the number of poker hands required.

1. 
2. 
3. 
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4. 
5. 
6. 

Find the probability of getting a hand that is three of a kind or better.

Answer

0.0287

In the movie The Parent Trap (1998), both twins get straight flushes on the same poker deal. Find the probability of this event.

Answer

Classify  in terms of level of measurement: nominal, ordinal, interval, or ratio. Is the expected value of  meaningful?

Answer

Ordinal. No.

A hand with a pair of aces and a pair of eights (and a fifth card of a different type) is called a dead man's hand. The name is in
honor of Wild Bill Hickok, who held such a hand at the time of his murder in 1876. Find the probability of getting a dead man's
hand.

Answer

Drawing Cards

In draw poker, each player is dealt a poker hand and there is an initial round of betting. Typically, each player then gets to discard
up to 3 cards and is dealt that number of cards from the remaining deck. This leads to myriad problems in conditional probability,
as partial information becomes available. A complete analysis is far beyond the scope of this section, but we will consider a comple
of simple examples.

Suppose that Fred's hand is . Fred discards the  and  and draws two new cards, hoping to
complete the straight. Note that Fred must get a 6 and either a 3 or an 8. Since he is missing a middle denomination (6), Fred is
drawing to an inside straight. Find the probability that Fred is successful.

Answer

Suppose that Wilma's hand is . Wilma discards  and  and draws two new cards, hoping to
complete the straight. Note that Wilma must get a 2 and a 3, or a 7 and an 8, or a 3 and a 7. Find the probability that Wilma is
successful. Clearly, Wilma has a better chance than Fred.

Answer

This page titled 13.2: Poker is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services)
via source content that was edited to the style and standards of the LibreTexts platform.
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13.3: Simple Dice Games
     

In this section, we will analyze several simple games played with dice—poker dice, chuck-a-luck, and high-low. The casino game
craps is more complicated and is studied in the next section.

Figure : The Dice Players by Georges de La Tour (c. 1651). For more on the influence of probability in painting, see the
ancillary material on art.

Poker Dice

Definition

The game of poker dice is a bit like standard poker, but played with dice instead of cards. In poker dice, 5 fair dice are rolled. We
will record the outcome of our random experiment as the (ordered) sequence of scores:

Thus, the sample space is . Since the dice are fair, our basic modeling assumption is that  is a sequence of
independent random variables and each is uniformly distributed on .

Equivalently,  is uniformly distributed on :

In statistical terms, a poker dice hand is a random sample of size 5 drawn with replacement and with regard to order from the
population . For more on this topic, see the chapter on Finite Sampling Models. In particular, in this chapter
you will learn that the result of Exercise 1 would not be true if we recorded the outcome of the poker dice experiment as an
unordered set instead of an ordered sequence.

The Value of the Hand

The value  of the poker dice hand is a random variable with support set . The values are defined as follows:

0. None alike. Five distinct scores occur.
1. One Pair. Four distinct scores occur; one score occurs twice and the other three scores occur once each.
2. Two Pair. Three distinct scores occur; one score occurs twice and the other three scores occur once each.
3. Three of a Kind. Three distinct scores occur; one score occurs three times and the other two scores occur once each.
4. Full House. Two distinct scores occur; one score occurs three times and the other score occurs twice.
5. Four of a king. Two distinct scores occur; one score occurs four times and the other score occurs once.
6. Five of a kind. Once score occurs five times.
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Run the poker dice experiment 10 times in single-step mode. For each outcome, note that the value of the random variable
corresponds to the type of hand, as given above.

The Probability Density Function

Computing the probability density function of  is a good exercise in combinatorial probability. In the following exercises, we will
need the two fundamental rules of combinatorics to count the number of dice sequences of a given type: the multiplication rule and
the addition rule. We will also need some basic combinatorial structures, particularly combinations and permutations (with types of
objects that are identical).

The number of different poker dice hands is .

.

Proof

Note that the dice scores form a permutation of size 5 from .

.

Proof

The following steps form an algorithm for generating poker dice hands with one pair. The number of ways of performing each
step is also given:

1. Select the score that will appear twice: 
2. Select the 3 scores that will appear once each: 
3. Select a permutation of the 5 numbers in parts (a) and (b): 

.

Proof

The following steps form an algorithm for generating poker dice hands with two pair. The number of ways of performing each
step is also given:

1. Select two scores that will appear twice each: 
2. Select the score that will appear once: 
3. Select a permutation of the 5 numbers in parts (a) and (b): 

.

Proof

The following steps form an algorithm for generating poker dice hands with three of a kind. The number of ways of performing
each step is also given:

1. Select the score that will appear 3 times: 
2. Select the 2 scores that will appear once each: 
3. Select a permutation of the 5 numbers in parts (a) and (b): 

.

Proof

The following steps form an algorithm for generating poker dice hands with a full house. The number of ways of performing
each step is also given:

1. Select the score that will appear 3 times: 
2. Select the score that will appear twice: 
3. Select a permutation of the 5 numbers in parts (a) and (b): 

V

#(S) = = 77766

5

P(V = 0) = = 0.09259

720

7776

{1, 2, 3, 4, 5}

P(V = 1) = ≈ 0.46296

3600

7776

6

( )

5

3

( )

5

2,1,1,1

P(V = 2) = ≈ 0.23148

1800

7776

( )

6

2

4

( )

5

2,2,1

P(V = 3) = ≈ 0.15432

1200

7776

6

( )

5

2

( )

5

3,1,1

P(V = 4) = ≈ 0.03858

300

7776

6

5

( )

5

3,2
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.

Proof

The following steps form an algorithm for generating poker dice hands with four of a kind. The number of ways of performing
each step is also given:

1. Select the score that will appear 4 times: 
2. Select the score that will appear once: 5
3. Select a permutation of the 5 numbers in parts (a) and (b): 

.

Proof

There are 6 choices for the score that will appear 5 times.

Run the poker dice experiment 1000 times and compare the relative frequency function to the density function.

Find the probability of rolling a hand that has 3 of a kind or better.

Answer

0.2130

In the poker dice experiment, set the stop criterion to the value of  given below. Note the number of hands required.

1. 
2. 
3. 
4. 

Chuck-a-Luck
Chuck-a-luck is a popular carnival game, played with three dice. According to Richard Epstein, the original name was Sweat Cloth,
and in British pubs, the game is known as Crown and Anchor (because the six sides of the dice are inscribed clubs, diamonds,
hearts, spades, crown and anchor). The dice are over-sized and are kept in an hourglass-shaped cage known as the bird cage. The
dice are rolled by spinning the bird cage.

Chuck-a-luck is very simple. The gambler selects an integer from 1 to 6, and then the three dice are rolled. If exactly  dice show
the gambler's number, the payoff is . As with poker dice, our basic mathematical assumption is that the dice are fair, and
therefore the outcome vector  is uniformly distributed on the sample space .

Let  denote the number of dice that show the gambler's number. Then  has the binomial distribution with parameters 
and :

Let  denote the net winnings for a unit bet. Then

1.  if 
2.  if 

The probability density function of  is given by

1. 
2. 
3. 

P(V = 5) = = 0.01929

150

7776

6

( )

5

4,1

P(V = 6) = ≈ 0.00077

6

7776

V

V = 3

V = 4

V = 5

V = 6

k

k : 1

X = ( , , )X

1

X

2

X

3

S = {1, 2, 3, 4, 5, 6}

3

Y Y n= 3

p =

1

6

P(Y = k) =( ) , k ∈ {0, 1, 2, 3}

3

k

( )

1

6

k

( )

5

6

3−k

(13.3.3)

W

W =−1 Y = 0

W = Y Y > 0

W

P(W =−1) =
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216

P(W = 1) =
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216
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216

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10257?pdf


13.3.4 https://stats.libretexts.org/@go/page/10257

4. 

Run the chuck-a-luck experiment 1000 times and compare the empirical density function of  to the true probability density
function.

The expected value and variance of  are

1. 
2. 

Run the chuck-a-luck experiment 1000 times and compare the empirical mean and standard deviation of  to the true mean
and standard deviation. Suppose you had bet $1 on each of the 1000 games. What would your net winnings be?

High-Low
In the game of high-low, a pair of fair dice are rolled. The outcome is

high if the sum is 8, 9, 10, 11, or 12.
low if the sum is 2, 3, 4, 5, or 6
seven if the sum is 7

A player can bet on any of the three outcomes. The payoff for a bet of high or for a bet of low is . The payoff for a bet of seven
is .

Let  denote the outcome of a game of high-low. Find the probability density function of .

Answer

, , , where  denotes high,  denotes low, and  denotes seven.

Let  denote the net winnings for a unit bet. Find the expected value and variance of  for each of the three bets:

1. high
2. low
3. seven

Answer

Let  denote the net winnings on a unit bet in high-low.

1. Bet high: , 
2. Bet low: , 
3. Bet seven: , 

This page titled 13.3: Simple Dice Games is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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13.4: Craps
      

The Basic Game

Craps is a popular casino game, because of its complexity and because of the rich variety of bets that can be made.

Figure : A typical craps table

According to Richard Epstein, craps is descended from an earlier game known as Hazard, that dates to the Middle Ages. The
formal rules for Hazard were established by Montmort early in the 1700s. The origin of the name craps is shrouded in doubt, but it
may have come from the English crabs or from the French Crapeaud (for toad).

From a mathematical point of view, craps is interesting because it is an example of a random experiment that takes place in stages;
the evolution of the game depends critically on the outcome of the first roll. In particular, the number of rolls is a random variable.

Definitions

The rules for craps are as follows:

The player (known as the shooter) rolls a pair of fair dice

1. If the sum is 7 or 11 on the first throw, the shooter wins; this event is called a natural.
2. If the sum is 2, 3, or 12 on the first throw, the shooter loses; this event is called craps.
3. If the sum is 4, 5, 6, 8, 9, or 10 on the first throw, this number becomes the shooter's point. The shooter continues rolling

the dice until either she rolls the point again (in which case she wins) or rolls a 7 (in which case she loses).

As long as the shooter wins, or loses by rolling craps, she retrains the dice and continues. Once she loses by failing to make her
point, the dice are passed to the next shooter.

Let us consider the game of craps mathematically. Our basic assumption, of course, is that the dice are fair and that the outcomes of
the various rolls are independent. Let  denote the (random) number of rolls in the game and let  denote the outcome of
the th roll for . Finally, let , the sum of the scores on the th roll, and let  denote the event that
the shooter wins.

In the craps experiment, press single step a few times and observe the outcomes. Make sure that you understand the rules of the
game.

The Probability of Winning

We will compute the probability that the shooter wins in stages, based on the outcome of the first roll.

The sum of the scores  on a given roll has the probability density function in the following table:

2 3 4 5 6 7 8 9 10 11 12

13.4.1

N ( , )X

i

Y

i

i i ∈ {1, 2,… ,N} = +Z

i

X
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z
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The probability that the player makes her point can be computed using a simple conditioning argument. For example, suppose that
the player throws 4 initially, so that 4 is the point. The player continues until she either throws 4 again or throws 7. Thus, the final
roll will be an element of the following set:

Since the dice are fair, these outcomes are equally likely, so the probability that the player makes her 4 point is . A similar
argument can be used for the other points. Here are the results:

The probabilities of making the point  are given in the following table:

4 5 6 8 9 10

The probability that the shooter wins is 

Proof

This follows from the the rules of the game and the the previous result, by conditioning on the first roll:

Note that craps is nearly a fair game. For the sake of completeness, the following result gives the probability of winning, given a
“point” on the first roll.

Proof

Let . From the definition of conditional probability,

For the numerator, using our results above,

Also from previous results .

Bets
There is a bewildering variety of bets that can be made in craps. In the exercises in this subsection, we will discuss some typical
bets and compute the probability density function, mean, and standard deviation of each. (Most of these bets are illustrated in the
picture of the craps table above). Note however, that some of the details of the bets and, in particular the payout odds, vary from
one casino to another. Of course the expected value of any bet is inevitably negative (for the gambler), and thus the gambler is
doomed to lose money in the long run. Nonetheless, as we will see, some bets are better than others.

Pass and Don't Pass

A pass bet is a bet that the shooter will win and pays .

Let  denote the winnings from a unit pass bet. Then

1. , 
2. 

= {(1, 3), (2, 2), (3, 1), (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}S

4

(13.4.1)
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P(V ) = ≈ 0.49293

244

495

P(V ) = P( = z)P(I = 1 ∣ = z)∑
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Z

1

Z

1

(13.4.2)

P(V ∣ ∈ {4, 5, 6, 8, 9, 10}) = ≈ 0.406Z

1

67

165

A= {4, 5, 6, 8, 9, 10}

P(V ∣ ∈ A) =Z

1

P(V ∩{ ∈ A})Z

1

P( ∈ A)Z

1

(13.4.3)

P(V ∩{ ∈ A}) = P(V ∣ = z)P( = z) =Z

1

∑

z∈A

Z

1

Z

1

134

495

(13.4.4)
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1
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3. 

In the craps experiment, select the pass bet. Run the simulation 1000 times and compare the empirical density function and
moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000 games.
What would your net winnings be?

A don't pass bet is a bet that the shooter will lose, except that 12 on the first throw is excluded (that is, the shooter loses, of course,
but the don't pass better neither wins nor loses). This is the meaning of the phrase don't pass bar double 6 on the craps table. The
don't pass bet also pays .

Let  denote the winnings for a unit don't pass bet. Then

1. , , 
2. 
3. 

Thus, the don't pass bet is slightly better for the gambler than the pass bet.

In the craps experiment, select the don't pass bet. Run the simulation 1000 times and compare the empirical density function
and moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000 games.
What would your net winnings be?

The come bet and the don't come bet are analogous to the pass and don't pass bets, respectively, except that they are made after the
point has been established.

Field

A field bet is a bet on the outcome of the next throw. It pays  if 3, 4, 9, 10, or 11 is thrown,  if 2 or 12 is thrown, and loses
otherwise.

Let  denote the winnings for a unit field bet. Then

1. , , 
2. 
3. 

In the craps experiment, select the field bet. Run the simulation 1000 times and compare the empirical density function and
moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000 games.
What would your net winnings be?

Seven and Eleven

A 7 bet is a bet on the outcome of the next throw. It pays  if a 7 is thrown. Similarly, an 11 bet is a bet on the outcome of the
next throw, and pays  if an 11 is thrown. In spite of the romance of the number 7, the next exercise shows that the 7 bet is one
of the worst bets you can make.

Let  denote the winnings for a unit 7 bet. Then

1. , 
2. 
3. 

In the craps experiment, select the 7 bet. Run the simulation 1000 times and compare the empirical density function and
moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000 games.
What would your net winnings be?

Let  denote the winnings for a unit 11 bet. Then
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1. , 
2. 
3. 

In the craps experiment, select the 11 bet. Run the simulation 1000 times and compare the empirical density function and
moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000 games.
What would your net winnings be?

Craps

All craps bets are bets on the next throw. The basic craps bet pays  if 2, 3, or 12 is thrown. The craps 2 bet pays  if a 2 is
thrown. Similarly, the craps 12 bet pays  if a 12 is thrown. Finally, the craps 3 bet pays  if a 3 is thrown.

Let  denote the winnings for a unit craps bet. Then

1. , 
2. 
3. 

In the craps experiment, select the craps bet. Run the simulation 1000 times and compare the empirical density function and
moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000 games.
What would your net winnings be?

Let  denote the winnings for a unit craps 2 bet or a unit craps 12 bet. Then

1. , 
2. 
3. 

In the craps experiment, select the craps 2 bet. Run the simulation 1000 times and compare the empirical density function and
moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000 games.
What would your net winnings be?

In the craps experiment, select the craps 12 bet. Run the simulation 1000 times and compare the empirical density function and
moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000 games.
What would your net winnings be?

Let  denote the winnings for a unit craps 3 bet. Then

1. , 
2. 
3. 

In the craps experiment, select the craps 3 bet. Run the simulation 1000 times and compare the empirical density function and
moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000 games.
What would your net winnings be?

Thus, of the craps bets, the basic craps bet and the craps 3 bet are best for the gambler, and the craps 2 and craps 12 are the worst.

Big Six and Big Eight

The big 6 bet is a bet that 6 is thrown before 7. Similarly, the big 8 bet is a bet that 8 is thrown before 7. Both pay even money 
.

Let  denote the winnings for a unit big 6 bet or a unit big 8 bet. Then
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1. , 
2. 
3. 

In the craps experiment, select the big 6 bet. Run the simulation 1000 times and compare the empirical density function and
moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000 games.
What would your net winnings be?

In the craps experiment, select the big 8 bet. Run the simulation 1000 times and compare the empirical density function and
moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000 games.
What would your net winnings be?

Hardway Bets

A hardway bet can be made on any of the numbers 4, 6, 8, or 10. It is a bet that the chosen number  will be thrown “the hardway”
as , before 7 is thrown and before the chosen number is thrown in any other combination. Hardway bets on 4 and 10 pay

, while hardway bets on 6 and 8 pay .

Let  denote the winnings for a unit hardway 4 or hardway 10 bet. Then

1. , 
2. 
3. 

In the craps experiment, select the hardway 4 bet. Run the simulation 1000 times and compare the empirical density function
and moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000 games.
What would your net winnings be?

In the craps experiment, select the hardway 10 bet. Run the simulation 1000 times and compare the empirical density function
and moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000 games.
What would your net winnings be?

Let  denote the winnings for a unit hardway 6 or hardway 8 bet. Then

1. , 
2. 
3. 

In the craps experiment, select the hardway 6 bet. Run the simulation 1000 times and compare the empirical density and
moments of  to the true density and moments. Suppose that you bet $1 on each of the 1000 games. What would your net
winnings be?

In the craps experiment, select the hardway 8 bet. Run the simulation 1000 times and compare the empirical density function
and moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000 games.
What would your net winnings be?

Thus, the hardway 6 and 8 bets are better than the hardway 4 and 10 bets for the gambler, in terms of expected value.

The Distribution of the Number of Rolls
Next let us compute the distribution and moments of the number of rolls  in a game of craps. This random variable is of no
special interest to the casino or the players, but provides a good mathematically exercise. By definition, if the shooter wins or loses
on the first roll, . Otherwise, the shooter continues until she either makes her point or rolls 7. In this latter case, we can use
the geometric distribution on  which governs the trial number of the first success in a sequence of Bernoulli trials. The
distribution of  is a mixture of distributions.

P(W =−1) =

6

11

P(W = 1) =

5

11

E(W ) =− ≈−0.0909

1

11

sd(W ) ≈ 0.9959

W

W

n

(n/2,n/2)

7 : 1 9 : 1

W

P(W =−1) =

8

9

P(W = 7) =

1

9

E(W ) =− ≈−0.1111

1

9

sd(W ) = 2.5142

W

W

W

P(W =−1) =

10

11

P(W = 9) =

1

11

E(W ) =− ≈−0.0909

1

11

sd(W ) ≈ 2.8748

W

W

N

N = 1

N

+

N

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10258?pdf


13.4.6 https://stats.libretexts.org/@go/page/10258

The probability density function of  is

Proof

First note that  for . Next,  for 
 and for the values of  and  given in the following table:

4 5 6 8 9 10

Thus the conditional distribution of  given  is geometric with probability . The final result now follows by
conditioning on the first roll:

The first few values of the probability density function of  are given in the following table:

1 2 3 4 5

0.33333 0.18827 0.13477 0.09657 0.06926

Find the probability that a game of craps will last at least 8 rolls.

Answer

0.09235

The mean and variance of the number of rolls are

1. 
2. 

Proof

These result also can be obtained by conditioning on the first roll:

This page titled 13.4: Craps is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services)
via source content that was edited to the style and standards of the LibreTexts platform.
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13.5: Roulette
      

The Roulette Wheel

According to Richard Epstein, roulette is the oldest casino game still in operation. It's invention has been variously attributed to
Blaise Pascal, the Italian mathematician Don Pasquale, and several others. In any event, the roulette wheel was first introduced into
Paris in 1765. Here are the characteristics of the wheel:

The (American) roulette wheel has 38 slots numbered 00, 0, and 1–36.

1. Slots 0, 00 are green;
2. Slots 1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34, 36 are red;
3. Slots 2, 4, 6, 8, 10, 11, 13, 15, 17, 20, 22, 24, 26, 28, 29, 31, 33, 35 are black.

Except for 0 and 00, the slots on the wheel alternate between red and black. The strange order of the numbers on the wheel is
intended so that high and low numbers, as well as odd and even numbers, tend to alternate.

Figure : A typical roulette wheel and table

The roulette experiment is very simple. The wheel is spun and then a small ball is rolled in a groove, in the opposite direction as the
motion of the wheel. Eventually the ball falls into one of the slots. Naturally, we assume mathematically that the wheel is fair, so
that the random variable  that gives the slot number of the ball is uniformly distributed over the sample space 

. Thus,  for each .

Bets
As with craps, roulette is a popular casino game because of the rich variety of bets that can be made. The picture above shows the
roulette table and indicates some of the bets we will study. All bets turn out to have the same expected value (negative, of course).
However, the variances differ depending on the bet.

Although all bets in roulette have the same expected value, the standard deviations vary inversely with the number of numbers
selected. What are the implications of this for the gambler?

Straight Bets

A straight bet is a bet on a single number, and pays .

Let  denote the winnings on a unit straight bet. Then

1. , 
2. 
3. 

In the roulette experiment, select the single number bet. Run the simulation 1000 times and compare the empirical density
function and moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000
games. What would your net winnings be?
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Two Number Bets

A 2-number bet (or a split bet) is a bet on two adjacent numbers in the roulette table. The bet pays .

Let  denote the winnings on a unit split bet. Then

1. , 
2. 
3. 

In the roulette experiment, select the 2 number bet. Run the simulation 1000 times and compare the empirical density function
and moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000 games.
What would your net winnings be?

Three Number Bets

A 3-number bet (or row bet) is a bet on the three numbers in a vertical row on the roulette table. The bet pays .

Let  denote the winnings on a unit row bet. Then

1. , 
2. 
3. 

In the roulette experiment, select the 3-number bet. Run the simulation 1000 times and compare the empirical density function
and moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000 games.
What would your net winnings be?

Four Number Bets

A 4-number bet or a square bet is a bet on the four numbers that form a square on the roulette table. The bet pays .

Let  denote the winnings on a unit 4-number bet. Then

1. , 
2. 
3. 

In the roulette experiment, select the 4-number bet. Run the simulation 1000 times and compare the empirical density function
and moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000 games.
What would your net winnings be?

Six Number Bets

A 6-number bet or 2-row bet is a bet on the 6 numbers in two adjacent rows of the roulette table. The bet pays .

Let  denote the winnings on a unit 6-number bet. Then

1. , 
2. 
3. 

In the roulette experiment, select the 6-number bet. Run the simulation 1000 times and compuare the empirical density
function and moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000
games. What would your net winnings be?
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Twelve Number Bets

A 12-number bet is a bet on 12 numbers. In particular, a column bet is bet on any one of the three columns of 12 numbers running
horizontally along the table. Other 12-number bets are the first 12 (1-12), the middle 12 (13-24), and the last 12 (25-36). A 12-
number bet pays .

Let  denote the winnings on a unit 12-number bet. Then

1. , 
2. 
3. 

In the roulette experiment, select the 12-number bet. Run the simulation 1000 times and compare the empirical density
function and moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000
games. What would your net winnings be?

Eighteen Number Bets

An 18-number bet is a bet on 18 numbers. In particular, A color bet is a bet either on red or on black. A parity bet is a bet on the
odd numbers from 1 to 36 or the even numbers from 1 to 36. The low bet is a bet on the numbers 1-18, and the high bet is the bet
on the numbers from 19-36. An 18-number bet pays .

Let  denote the winnings on a unit 18-number bet. Then

1. , 
2. 
3. 

In the roulette experiment, select the 18-number bet. Run the simulation 1000 times and compare the empirical density
function and moments of  to the true probability density function and moments. Suppose that you bet $1 on each of the 1000
games. What would your net winnings be?

This page titled 13.5: Roulette is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.

2 : 1

W

P(W =−1) =

13

19

P(W = 2) =

6

19

E(W ) =− ≈−0.0526

1

19

sd(W ) ≈ 1.3945

W

1 : 1

W

P(W =−1) =

10

19

P(W = 1) =

9

19

E(W ) =− ≈−0.0526

1

19

sd(W ) ≈ 0.9986

W

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10259?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/13%3A_Games_of_Chance/13.05%3A_Roulette
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random


13.6.1 https://stats.libretexts.org/@go/page/10260

13.6: The Monty Hall Problem
      

Preliminaries

Statement of the Problem

The Monty Hall problem involves a classical game show situation and is named after Monty Hall, the long-time host of the TV game show Let's Make a
Deal. There are three doors labeled 1, 2, and 3. A car is behind one of the doors, while goats are behind the other two:

Figure : The car and the two goats

The rules are as follows:

1. The player selects a door.
2. The host selects a different door and opens it.
3. The host gives the player the option of switching from her original choice to the remaining closed door.
4. The door finally selected by the player is opened and she either wins or loses.

The Monty Hall problem became the subject of intense controversy because of several articles by Marilyn Vos Savant in the Ask Marilyn column of Parade
magazine, a popular Sunday newspaper supplement. The controversy began when a reader posed the problem in the following way:

Suppose you're on a game show, and you're given a choice of three doors. Behind one door is a car;
behind the others, goats. You pick a door—say No. 1—and the host, who knows what's behind the
doors, opens another door—say No. 3—which has a goat. He then says to you, “Do you want to pick
door No. 2?” Is it to your advantage to switch your choice?

Marilyn's response was that the contestant should switch doors, claiming that there is a  chance that the car is behind door 1, while there is a  chance that
the car is behind door 2. In two follow-up columns, Marilyn printed a number of responses, some from academics, most of whom claimed in angry or
sarcastic tones that she was wrong and that there are equal chances that the car is behind doors 1 or 2. Marilyn stood by her original answer and offered
additional, but non-mathematical, arguments.

Think about the problem. Do you agree with Marilyn or with her critics, or do you think that neither solution is correct?

In the Monty Hall game, set the host strategy to standard (the meaning of this strategy will be explained in the below). Play the Monty Hall game 50
times with each of the following strategies. Do you want to reconsider your answer to question above?

1. Always switch
2. Never switch

In the Monty Hall game, set the host strategy to blind (the meaning of this strategy will be explained below). Play the Monty Hall game 50 times with
each of the following strategies. Do you want to reconsider your answer to question above?

1. Always switch
2. Never switch

Modeling Assumptions

When we begin to think carefully about the Monty Hall problem, we realize that the statement of the problem by Marilyn's reader is so vague that a
meaningful discussion is not possible without clarifying assumptions about the strategies of the host and player. Indeed, we will see that misunderstandings
about these strategies are the cause of the controversy.

Let us try to formulate the problem mathematically. In general, the actions of the host and player can vary from game to game, but if we are to have a random
experiment in the classical sense, we must assume that the same probability distributions govern the host and player on each game and that the games are
independent.

There are four basic random variables for a game:

1. : the number of the door containing the car.
2. : the number of the first door selected by the player.
3. : the number of the door opened by the host.
4. : the number of the second door selected by the player.

13.6.1
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Each of these random variables has the possible values 1, 2, and 3. However, because of the rules of the game, the door opened by the host cannot be either of
the doors selected by the player, so  and . In general, we will allow the possibility , that the host opens the door with the car behind it.
Whether this is a reasonable action of the host is a big part of the controversy about this problem.

The Monty Hall experiment will be completely defined mathematically once the joint distribution of the basic variables is specified. This joint distribution in
turn depends on the strategies of the host and player, which we will consider next.

Strategies

Host Strategies

In the Monty Hall experiment, note that the host determines the probability density function of the door containing the car, namely  for 
. The obvious choice for the host is to randomly assign the car to one of the three doors. This leads to the uniform distribution, and unless

otherwise noted, we will always assume that  has this distribution. Thus,  for .

The host also determines the conditional density function of the door he opens, given knowledge of the door containing the car and the first door selected by
the player, namely  for . Recall that since the host cannot open the door chosen by the player, this probability must
be 0 for .

Thus, the distribution of  and the conditional distribution of  given  and  constitute the host strategy.

The Standard Strategy

In most real game shows, the host would always open a door with a goat behind it. If the player's first choice is incorrect, then the host has no choice; he
cannot open the door with the car or the player's choice and must therefore open the only remaining door. On the other hand, if the player's first choice is
correct, then the host can open either of the remaining doors, since goats are behind both. Thus, he might naturally pick one of these doors at random.

This strategy leads to the following conditional distribution for  given  and :

This distribution, along with the uniform distribution for , will be referred to as the standard strategy for the host.

In the Monty Hall game, set the host strategy to standard. Play the game 50 times with each of the following player strategies. Which works better?

1. Always switch
2. Never switch

The Blind Strategy

Another possible second-stage strategy is for the host to always open a door chosen at random from the two possibilities. Thus, the host might well open the
door containing the car.

This strategy leads to the following conditional distribution for  given  and :

This distribution, together with the uniform distribution for , will be referred to as the blind strategy for the host. The blind strategy seems a bit odd.
However, the confusion between the two strategies is the source of the controversy concerning this problem.

In the Monty Hall game, set the host strategy to blind. Play the game 50 times with each of the following player strategies. Which works better?

1. Always switch
2. Never switch

Player Strategies

The player, on the other hand, determines the probability density function of her first choice, namely  for . The obvious first choice for
the player is to randomly choose a door, since the player has no knowledge at this point. This leads to the uniform distribution, so  for 

The player also determines the conditional density function of her second choice, given knowledge of her first choice and the door opened by the host,
namely  for  with . Recall that since the player cannot choose the door opened by the host, this probability
must be 0 for . The distribution of  and the conditional distribution of  given  and  constitute the player strategy.

Suppose that the player switches with probability . This leads to the following conditional distribution:
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In particular, if , the player always switches, while if , the player never switches.

Mathematical Analysis
We are almost ready to analyze the Monty Hall problem mathematically. But first we must make some independence assumptions to incorporate the lack of
knowledge that the host and player have about each other's actions. First, the player has no knowledge of the door containing the car, so we assume that 
and  are independent. Also, the only information about the car door that the player has when she makes her second choice is the information (if any)
revealed by her first choice and the host's subsequent selection. Mathematically, this means that  is conditionally independent of  given  and .

Distributions

The host and player strategies form the basic data for the Monty Hall problem. Because of the independence assumptions, the joint distribution of the basic
random variables is completely determined by these strategies.

The joint probability density function of  is given by

Proof

This follows from the independence assumptions and the multiplication rule of conditional probability.

The probability of any event defined in terms of the Monty Hall problem can be computed by summing the joint density over the appropriate values of 
.

With either of the basic host strategies,  is uniformly distributed on .

Suppose that the player switches with probability . With either of the basic host strategies,  is uniformly distributed on .

In the Monty Hall experiment, set the host strategy to standard. For each of the following values of , run the simulation 1000 times. Based on relative
frequency, which strategy works best?

1.  (never switch)
2. 
3. 
4. 
5.  (always switch)

In the Monty Hall experiment, set the host strategy to blind. For each of the following values of , run the experiment 1000 times. Based on relative
frequency, which strategy works best?

1.  (never switch)
2. 
3. 
4. 
5.  (always switch)

The Probability of Winning

The event that the player wins a game is . We will compute the probability of this event with the basic host and player strategies.

Suppose that the host follows the standard strategy and that the player switches with probability . Then the probability that the player wins is

In particular, if the player always switches, the probability that she wins is  and if the player never switches, the probability that she wins is .

In the Monty Hall experiment, set the host strategy to standard. For each of the following values of , run the simulation 1000 times. In each case,
compare the relative frequency of winning to the probability of winning.

1.  (never switch)
2. 
3. 
4. 
5.  (always switch)

Suppose that the host follows the blind strategy. Then for any player strategy, the probability that the player wins is

p = 1 p = 0

U

X

Y U X V

(U,X,V ,Y )

P(U = i,X = j,V = k,Y = l) = P(U = i)P(X = j)P(V = k ∣ U = i,X = j)P(Y = l ∣X = j,V = k), i, j, k, l ∈ {1, 2, 3} (13.6.4)
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In the Monty Hall experiment, set the host strategy to blind. For each of the following values of , run the experiment 1000 times. In each case, compare
the relative frequency of winning to the probability of winning.

1.  (never switch)
2. 
3. 
4. 
5.  (always switch)

For a complete solution of the Monty Hall problem, we want to compute the conditional probability that the player wins, given that the host opens a door
with a goat behind it:

With the basic host and player strategies, the numerator, the probability of winning, has been computed. Thus we need to consider the denominator, the
probability that the host opens a door with a goat. If the host use the standard strategy, then the conditional probability of winning is the same as the
unconditional probability of winning, regardless of the player strategy. In particular, we have the following result:

If the host follows the standard strategy and the player switches with probability , then

Proof

This follows from the win probability above

Once again, the probability increases from  when , so that the player never switches, to  when , so that the player always switches.

If the host follows the blind strategy, then for any player strategy,  and therefore .

In the Monty Hall experiment, set the host strategy to blind. For each of the following values of , run the experiment 500 times. In each case, compute
the conditional relative frequency of winning, given that the host shows a goat, and compare with the theoretical answer above,

1.  (never switch)
2. 
3. 
4. 
5.  (always switch)

The confusion between the conditional probability of winning for these two strategies has been the source of much controversy in the Monty Hall problem.
Marilyn was probably thinking of the standard host strategy, while some of her critics were thinking of the blind strategy. This problem points out the
importance of careful modeling, of the careful statement of assumptions. Marilyn is correct if the host follows the standard strategy; the critics are correct if
the host follows the blind strategy; any number of other answers could be correct if the host follows other strategies.

The mathematical formulation we have used is fairly complete. However, if we just want to solve Marilyn's problem, there is a much simpler analysis (which
you may have discovered yourself). Suppose that the host follows the standard strategy, and thus always opens a door with a goat. If the player's first door is
incorrect (contains a goat), then the host has no choice and must open the other door with a goat. Then, if the player switches, she wins. On the other hand, if
the player's first door is correct and she switches, then of course she loses. Thus, we see that if the player always switches, then she wins if and only if her
first choice is incorrect, an event that obviously has probability . If the player never switches, then she wins if and only if her first choice is correct, an
event with probability .

This page titled 13.6: The Monty Hall Problem is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via source
content that was edited to the style and standards of the LibreTexts platform.
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13.7: Lotteries
      

You realize the odds of winning [the lottery] are the same as being mauled by a polar bear and a regular bear in the same day.

—E*TRADE baby, January 2010.

Lotteries are among the simplest and most widely played of all games of chance, and unfortunately for the gambler, among the
worst in terms of expected value. Lotteries come in such an incredible number of variations that it is impractical to analyze all of
them. So, in this section, we will study some of the more common lottery formats.

Figure : A lottery ticket issued by the Continental Congress in 1776 to raise money for the American Revolutionary War.
Source: Wikipedia

The Basic Lottery

Basic Format

The basic lottery is a random experiment in which the gambling house (in many cases a government agency) selects  numbers at
random, without replacement, from the integers from 1 to . The integer parameters  and  vary from one lottery to another,
and of course,  cannot be larger than . The order in which the numbers are chosen usually does not matter, and thus in this case,
the sample space  of the experiment consists of all subsets (combinations) of size  chosen from the population .

Recall that

Naturally, we assume that all such combinations are equally likely, and thus, the chosen combination , the basic random variable
of the experiment, is uniformly distributed on .

The player of the lottery pays a fee and gets to select  numbers, without replacement, from the integers from 1 to . Again, order
does not matter, so the player essentially chooses a combination  of size  from the population . In many cases 

, so that the player gets to choose the same number of numbers as the house. In general then, there are three parameters in
the basic  lottery.

The player's goal, of course, is to maximize the number of matches (often called catches by gamblers) between her combination 
and the random combination  chosen by the house. Essentially, the player is trying to guess the outcome of the random
experiment before it is run. Thus, let  denote the number of catches.

The number of catches  in the , lottery has probability density function given by

The distribution of  is the hypergeometric distribution with parameters , , and , and is studied in detail in the chapter on
Finite Sampling Models. In particular, from this section, it follows that the mean and variance of the number of catches  are

13.7.1

n

N N n

n N

S n {1, 2,… ,N}

S = {x ⊆ {1, 2,… ,N} : #(x) = n} (13.7.1)

#(S) =( ) =

N

n

N !

n!(N −n)!

(13.7.2)
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Note that  if  or . However, in most lotteries,  and  is much larger than . In
these common cases, the density function is positive for the values of  given in above.

We will refer to the special case where  as the  lottery; this is the case in most state lotteries. In this case, the
probability density function of the number of catches  is

The mean and variance of the number of catches  in this special case are

Explicitly give the probability density function, mean, and standard deviation of the number of catches in the  lottery.

Answer

, 

0 0.5545644253

1 0.3648450167

2 0.0748400034

3 0.0056130003

4 0.0001369024

5 0.0000006519

Explicitly give the probability density function, mean, and standard deviation of the number of catches in the  lottery.

Answer

, 

0 0.5695196981

1 0.3559498113

2 0.0694536217

3 0.0049609730

4 0.0001153715

5 0.0000005244

Explicitly give the probability density function, mean, and standard deviation of the number of catches in the  lottery.

Answer

E(U) =

var(U) =

n

m

N

n (1− )

m

N

m

N

N −n

N −1

(13.7.5)

(13.7.6)

P(U = k) = 0 k> n k< n+m−N m ≤ n N n+m

k

m = n (N ,n)

U

P(U = k) = , k ∈ {0, 1,… ,n}

( )( )

n

k

N−n

n−k

( )

N

n

(13.7.7)

U

E(U)

var(U)

=

n

2

N

=

(N −nn

2

)

2

(N −1)N

2

(13.7.8)

(13.7.9)

(47, 5)

E(U) = 0.5319148936sd(U) = 0.6587832083

k P(U = k)

(49, 5)

E(U) = 0.5102040816sd(U) = 0.6480462207

k P(U = k)

(47, 7)
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, 

0 0.2964400642

1 0.4272224454

2 0.2197144005

3 0.0508598149

4 0.0054983583

5 0.0002604486

6 0.0000044521

7 0.0000000159

The analysis above was based on the assumption that the player's combination  is selected deterministically. Would it matter if the
player chose the combination in a random way? Thus, suppose that the player's selected combination  is a random variable taking
values in . (For example, in many lotteries, players can buy tickets with combinations randomly selected by a computer; this is
typically known as Quick Pick). Clearly,  and  must be independent, since the player (and her randomizing device) can have no
knowledge of the winning combination . As you might guess, such randomization makes no difference.

Let  denote the number of catches in the  lottery when the player's combination  is a random variable,
independent of the winning combination . Then  has the same distribution as in the deterministic case above.

Proof

This follows by conditioning on the value of :

There are many websites that publish data on the frequency of occurrence of numbers in various state lotteries. Some gamblers
evidently feel that some numbers are luckier than others.

Given the assumptions and analysis above, do you believe that some numbers are luckier than others? Does it make any
mathematical sense to study historical data for a lottery?

The prize money in most state lotteries depends on the sales of the lottery tickets. Typically, about 50% of the sales money is
returned as prize money; the rest goes for administrative costs and profit for the state. The total prize money is divided among the
winning tickets, and the prize for a given ticket depends on the number of catches . For all of these reasons, it is impossible to
give a simple mathematical analysis of the expected value of playing a given state lottery. Note however, that since the state keeps a
fixed percentage of the sales, there is essentially no risk for the state.

From a pure gambling point of view, state lotteries are bad games. In most casino games, by comparison, 90% or more of the
money that comes in is returned to the players as prize money. Of course, state lotteries should be viewed as a form of voluntary
taxation, not simply as games. The profits from lotteries are typically used for education, health care, and other essential services.
A discussion of the value and costs of lotteries from a political and social point of view (as opposed to a mathematical one) is
beyond the scope of this project.

Bonus Numbers

Many state lotteries now augment the basic , format with a bonus number. The bonus number  is selected from a specified
set of integers, in addition to the combination , selected as before. The player likewise picks a bonus number , in addition to a
combination . The player's prize then depends on the number of catches  between  and , as before, and in addition on

E(U) = 1.042553191sd(U) = 0.8783776109

k P(U = k)

y

Y

S

X Y

X

U (N ,n,m) Y

X U

Y

P(U = k) = P(U = k ∣ Y = y)P(Y = y) = P(U = k)P(Y = y) = P(U = k)∑

y∈S

∑

y∈S
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whether the player's bonus number  matches the random bonus number  chosen by the house. We will let  denote the indicator
variable of this latter event. Thus, our interest now is in the joint distribution of .

In one common format, the bonus number  is selected at random from the set of integers , independently of the
combination  of size  chosen from . Usually . Note that with this format, the game is essentially two
independent lotteries, one in the , format and the other in the , format.

Explicitly compute the joint probability density function of  for the  lottery with independent bonus number from
1 to 27. This format is used in the California lottery, among others.

Answer

Joint distribution of 

1

0.5340250022 0.0205394232

1 0.3513322383 0.0135127784

2 0.0720681514 0.0027718520

3 0.0054051114 0.0002078889

4 0.0001318320 0.0000050705

5 0.0000006278 0.0000000241

Explicitly compute the joint probability density function of  for the  lottery with independent bonus number from
1 to 42. This format is used in the Powerball lottery, among others.

Answer

Joint distribution of 

1

0.5559597053 0.0135599928

1 0.3474748158 0.0084749955

2 0.0677999641 0.0016536577

3 0.0048428546 0.0001181184

4 0.0001126245 0.0000027469

5 0.0000005119 0.0000000125

In another format, the bonus number  is chosen from 1 to , and is distinct from the numbers in the combination . To model
this game, we assume that  is uniformly distributed on , and given ,  is uniformly distributed on the set of
combinations of size  chosen from . For this format, the joint probability density function is harder to
compute.

The probability density function of  is given by

Proof

s T I

(I,U)

T {1, 2,… ,M}

X n {1, 2,… ,N} M <N

(N ,n) (M , 1)

(I,U) (47, 5)
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The second equation is obtained by conditioning on whether .

Explicitly compute the joint probability density function of  for the  lottery with bonus number chosen as
described above. This format is used in the Super 7 Canada lottery, among others.

Keno
Keno is a lottery game played in casinos. For a fixed  (usually 80) and  (usually 20), the player can play a range of basic 

 games, as described in the first subsection. Typically,  ranges from 1 to 15, and the payoff depends on  and the
number of catches . In this section, you will compute the density function, mean, and standard deviation of the random payoff,
based on a unit bet, for a typical keno game with , , and . The payoff tables are based on the
keno game at the Tropicana casino in Atlantic City, New Jersey.

Recall that the probability density function of the number of catches  above , is given by

The payoff table for  is given below. Compute the probability density function, mean, and standard deviation of the
payoff.

Pick 

Catches 0 1

Payoff 0 3

Answer

Pick , , 

0 0.75

3 0.25

The payoff table for  is given below. Compute the probability density function, mean, and standard deviation of the
payoff.

Pick 

Catches 0 1 2

Payoff 0 0 12

Answer

Pick , , 

12 0.0601265822

The payoff table for  is given below. Compute the probability density function, mean, and standard deviation of the
payoff.

Pick 

Catches 0 1 2 3

T ∈ { , ,… , }y

1

y

2

y

n

(I,U) (47, 7)

N n

(N ,n,m) m m

U

N = 80 n= 20 m ∈ {1, 2,… , 15}

U

P(U = k) = , k ∈ {0, 1,… ,m}

( )( )

m

k

80−m

20−k

( )

80

20

(13.7.13)

m = 1

m = 1

m = 1 E(V ) = 0.75 sd(V ) = 1.299038106

v P(V = v)

m = 2

m = 2

m = 2 E(V ) = 0.7353943525sd(V ) = 5.025285956

v P(V = v)

m = 3

m = 3
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Payoff 0 0 1 43

Answer

Pick , , 

0 0.8473709834

1 0.1387536514

43 0.0138753651

The payoff table for  is given below. Compute the probability density function, mean, and standard deviation of the
payoff.

Pick 

Catches 0 1 2 3 4

Payoff 0 0 1 3 130

Answer

Pick , , 

0 0.7410532505

1 0.2126354658

3 0.0432478914

130 0.0030633923

The payoff table for  is given below. Compute the probability density function, mean, and standard deviation of the
payoff.

Pick 

Catches 0 1 2 3 4 5

Payoff 0 0 0 1 10 800

Answer

Pick , , 

0 0.9033276850

1 0.0839350523

10 0.0120923380

800 0.0006449247

The payoff table for  is given below. Compute the probability density function, mean, and standard deviation of the
payoff.

m = 3 E(V ) = 0.7353943525sd(V ) = 5.025285956

v P(V = v)

m = 4

m = 4

m = 4 E(V ) = 0.7406201394sd(V ) = 7.198935911

v P(V = v)

m = 5

m = 5

m = 5 E(V ) = 0.7207981892sd(V ) = 20.33532453

v P(V = v)

m = 6
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Pick 

Catches 0 1 2 3 4 5 6

Payoff 0 0 0 1 4 95 1500

Answer

Pick , , 

0 0.8384179112

1 0.1298195475

4 0.0285379178

95 0.0030956385

1500 0.0001289849

The payoff table for  is given below. Compute the probability density function, mean, and standard deviation of the
payoff.

Pick 

Catches 0 1 2 3 4 5 6 7

Payoff 0 0 0 0 1 25 350 8000

Answer

Pick , , 

0 0.9384140492

1 0.0521909668

25 0.0086385048

350 0.0007320767

8000 0.0000244026

The payoff table for  is given below. Compute the probability density function, mean, and standard deviation of the
payoff.

Pick 

Catches 0 1 2 3 4 5 6 7 8

Payoff 0 0 0 0 0 9 90 1500 25,000

Answer

Pick , , 

0 0.9791658999

m = 6

m = 6 E(V ) = 0.7315342885sd(V ) = 17.83831647

v P(V = v)

m = 7

m = 7

m = 7 E(V ) = 0.7196008747sd(V ) = 40.69860455

v P(V = v)

m = 8

m = 8

m = 8 E(V ) = 0.7270517606sd(V ) = 55.64771986

v P(V = v)
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9 0.0183025856

90 0.0023667137

1500 0.0001604552

25,000 0.0000043457

The payoff table for  is given below. Compute the probability density function, mean, and standard deviation of the
payoff.

Pick 

Catches 0 1 2 3 4 5 6 7 8 9

Payoff 0 0 0 0 0 4 50 280 4000 50,000

Answer

Pick , , 

0 0.9791658999

9 0.0183025856

90 0.0023667137

1500 0.0001604552

25,000 0.0000043457

The payoff table for  is given below. Compute the probability density function, mean, and standard deviation of the
payoff.

Pick 

Catches 0 1 2 3 4 5 6 7 8 9 10

Payoff 0 0 0 0 0 1 22 150 1000 5000 100,000

Answer

Pick , , 

0 0.9353401224

1 0.0514276877

22 0.0114793946

150 0.0016111431

1000 0.0001354194

5000 0.0000061206

100,000 0.0000001122

m = 9

m = 9

m = 9 E(V ) = 0.7270517606sd(V ) = 55.64771986

v P(V = v)

m = 10

m = 10

m = 10 E(V ) = 0.7228896221sd(V ) = 38.10367609

v P(V = v)
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The payoff table for  is given below. Compute the probability density function, mean, and standard deviation of the
payoff.

Pick 

Catches 0 1 2 3 4 5 6 7 8 9 10 11

Payoff 0 0 0 0 0 0 8 80 400 2500 25,000 100,000

Answer

Pick , , 

0 0.9757475913

8 0.0202037345

80 0.0036078097

400 0.0004114169

2500 0.0000283736

25,000 0.0000010580

100,000 0.0000000160

The payoff table for  is given below. Compute the probability density function, mean, and standard deviation of the
payoff.

Pick 

Catche
s

0 1 2 3 4 5 6 7 8 9 10 11 12

Payoff 0 0 0 0 0 0 5 32 200 1000 5000 25,000
100,00
0

Answer

Pick , , 

0 0.9596431653

5 0.0322088520

32 0.0070273859

200 0.0010195984

1000 0.0000954010

5000 0.0000054280

25,000 0.0000001673

100,000 0.0000000021

The payoff table for  is given below. Compute the probability density function, mean, and standard deviation of the
payoff.

m = 11

m = 11

m = 11 E(V ) = 0.7138083347sd(V ) = 32.99373346

v P(V = v)

m = 12

m = 12

m = 12 E(V ) = 0.7167721544sd(V ) = 20.12030014

v P(V = v)

m = 13
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Pick 

Catch
es

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Payoff 1 0 0 0 0 0 1 20 80 600 3500
10,00
0

50,00
0

100,00
0

Proof

Pick , , 

0 0.9213238456

1 0.0638969375

20 0.0123151493

80 0.0021831401

600 0.0002598976

3500 0.0000200623

10,000 0.0000009434

50,000 0.0000000240

100,000 0.0000000002

The payoff table for  is given below. Compute the probability density function, mean, and standard deviation of the
payoff.

Pick 

Catch
es

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Payof
f

1 0 0 0 0 0 1 9 42 310 1100 8000
25,00
0

50,00
0

100,0
00

Answer

Pick , , 

0 0.898036333063

1 0.077258807301

9 0.019851285448

42 0.004181636518

310 0.000608238039

1100 0.000059737665

8000 0.000003811015

25,000 0.000000147841

50,000 0.000000003084

m = 13

m = 13 E(V ) = 0.7216651326sd(V ) = 22.68311303

v P(V = v)

m = 14

m = 14

m = 14 E(V ) = 0.7194160496sd(V ) = 21.98977077

v P(V = v)
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100,000 0.000000000026

The payoff table for  is given below. Compute the probability density function, mean, and standard deviation of the
payoff.

Pick 

Catc
hes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Payof
f

1 0 0 0 0 0 0 10 25 100 300 2800
25,0
00

50,0
00

100,
000

100,0
00

Answer

Pick , , 

0 0.95333046038902

1 0.00801614417729

10 0.02988971956684

25 0.00733144064847

100 0.00126716258122

300 0.00015205950975

2800 0.00001234249267

25,000 0.00000064960488

50,000 0.00000002067708

100,000 0.00000000035046

100,000 0.00000000000234

In the exercises above, you should have noticed that the expected payoff on a unit bet varies from about 0.71 to 0.75, so the
expected profit (for the gambler) varies from about  to . This is quite bad for the gambler playing a casino game, but as
always, the lure of a very high payoff on a small bet for an extremely rare event overrides the expected value analysis for most
players.

With , show that the top 4 prizes (25,000, 50,000, 100,000, 100,000) contribute only about 0.017 (less than 2 cents) to
the total expected value of about 0.714.

On the other hand, the standard deviation of the payoff varies quite a bit, from about 1 to about 55.

Although the game is highly unfavorable for each , with expected value that is nearly constant, which do you think is better
for the gambler—a format with high standard deviation or one with low standard deviation?

This page titled 13.7: Lotteries is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.

m = 15

m = 15

m = 15 E(V ) = 0.7144017020sd(V ) = 24.31901706

v P(V = v)

−0.25 −0.29

m = 15

m
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13.8: The Red and Black Game
      

In this section and the following three sections, we will study gambling strategies for one of the simplest gambling models. Yet in
spite of the simplicity of the model, the mathematical analysis leads to some beautiful and sometimes surprising results that have
importance and application well beyond gambling. Our exposition is based primarily on the classic book by Dubbins and Savage,
Inequalities for Stochastic Processes (How to Gamble if You Must) by Lester E Dubbins and Leonard J Savage (1965).

Basic Theory

Assumptions

Here is the basic situation: The gambler starts with an initial sum of money. She bets on independent, probabilistically identical
games, each with two outcomes—win or lose. If she wins a game, she receives the amount of the bet on that game; if she loses a
game, she must pay the amount of the bet. Thus, the gambler plays at even stakes. This particular situation (IID games and even
stakes) is known as red and black, and is named for the color bets in the casino game roulette. Other examples are the pass and
don't pass bets in craps.

Let us try to formulate the gambling experiment mathematically. First, let  denote the outcome of the th game for ,
where 1 denotes a win and 0 denotes a loss. These are independent indicator random variables with the same distribution:

where  is the probability of winning an individual game. Thus,  is a sequence of Bernoulli trials.

If , then the gambler always loses and if  then the gambler always wins. These trivial cases are not interesting, so we
will usually assume that . In real gambling houses, of course,  (that is, the games are unfair to the player), so we
will be particularly interested in this case.

Random Processes

The gambler's fortune over time is the basic random process of interest: Let  denote the gambler's initial fortune and  the
gambler's fortune after  games. The gambler's strategy consists of the decisions of how much to bet on the various games and
when to quit. Let  denote the amount of the th bet, and let  denote the number of games played by the gambler. If we want to,
we can always assume that the games go on forever, but with the assumption that the gambler bets 0 on all games after . With
this understanding, the game outcome, fortune, and bet processes are defined for all times .

The fortune process is related to the wager process as follows:

Strategies

The gambler's strategy can be very complicated. For example, the random variable , the gambler's bet on game , or the event 
, her decision to stop after  games, could be based on the entire past history of the game, up to time .

Technically, this history forms a -algebra:

Moreover, they could have additional sources of randomness. For example a gambler playing roulette could partly base her bets on
the roll of a lucky die that she keeps in her pocket. However, the gambler cannot see into the future (unfortunately from her point of
view), so we can at least assume that  and  are independent of .

At least in terms of expected value, any gambling strategy is futile if the games are unfair.

 for 

Proof

This follows from the previous result and the assumption of no prescience.

Suppose that the gambler has a positive probability of making a real bet on game , so that . Then
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1.  if 
2.  if 
3.  if 

Proof

This follows from the previous result on the expected value of .

Thus on any game in which the gambler makes a positive bet, her expected fortune strictly decreases if the games are unfair,
remains the same if the games are fair, and strictly increases if the games are favorable.

As we noted earlier, a general strategy can depend on the past history and can be randomized. However, since the underlying
Bernoulli games are independent, one might guess that these complicated strategies are no better than simple strategies in which the
amount of the bet and the decision to stop are based only on the gambler's current fortune. These simple strategies do indeed play a
fundamental role and are referred to as stationary, deterministic strategies. Such a strategy can be described by a betting function 
from the space of fortunes to the space of allowable bets, so that  is the amount that the gambler bets when her current fortune
is .

The Stopping Rule

From now on, we will assume that the gambler's stopping rule is a very simple and standard one: she will bet on the games until
she either loses her entire fortune and is ruined or reaches a fixed target fortune :

Thus, any strategy (betting function)  must satisfy  for : the gambler cannot bet what she does
not have, and will not bet more than is necessary to reach the target .

If we want to, we can think of the difference between the target fortune and the initial fortune as the entire fortune of the house.
With this interpretation, the player and the house play symmetric roles, but with complementary win probabilities: play continues
until either the player is ruined or the house is ruined. Our main interest is in the final fortune  of the gambler. Note that this
random variable takes just two values; 0 and .

The mean and variance of the final fortune are given by

1. 
2. 

Presumably, the gambler would like to maximize the probability of reaching the target fortune. Is it better to bet small amounts or
large amounts, or does it not matter? How does the optimal strategy, if there is one, depend on the initial fortune, the target fortune,
and the game win probability?

We are also interested in , the expected number of games played. Perhaps a secondary goal of the gambler is to maximize the
expected number of games that she gets to play. Are the two goals compatible or incompatible? That is, can the gambler maximize
both her probability of reaching the target and the expected number of games played, or does maximizing one quantity necessarily
mean minimizing the other?

In the next two sections, we will analyze and compare two strategies that are in a sense opposites:

Timid Play: On each game, until she stops, the gambler makes a small constant bet, say $1.
Bold Play: On each game, until she stops, the gambler bets either her entire fortune or the amount needed to reach the target
fortune, whichever is smaller.

In the final section of the chapter, we will return to the question of optimal strategies.

This page titled 13.8: The Red and Black Game is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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13.9: Timid Play
      

Basic Theory

Recall that with the strategy of timid play in red and black, the gambler makes a small constant bet, say $1, on each game until she
stops. Thus, on each game, the gambler's fortune either increases by 1 or decreases by 1, until the fortune reaches either 0 or the
target  (which we assume is a positive integer). Thus, the fortune process  is a random walk on the fortune space 

 with 0 and  as absorbing barriers.

As usual, we are interested in the probability of winning and the expected number of games. The key idea in the analysis is that
after each game, the fortune process simply starts over again, but with a different initial value. This is an example of the Markov
property, named for Andrei Markov. A separate chapter on Markov Chains explores these random processes in more detail. In
particular, this chapter has sections on Birth-Death Chains and Random Walks on Graphs, particular classes of Markov chains that
generalize the random processes that we are studying here.

Figure : The transition graph for timid play

The Probability of Winning

Our analysis based on the Markov property suggests that we treat the initial fortune as a variable. Thus, we will denote the
probability that the gambler reaches the target , starting with an initial fortune  by

The function  satisfies the following difference equation and boundary conditions:

1.  for 
2. , 

Proof

The boundary conditions are just a matter of definition. The difference equation follows from conditioning on the outcome of
the first trial. She loses this trial with probability  and if she loses, then effectively she starts a new sequence of trials but with
initial fortune . She wins the first trial with probability , and if she wins, then she effectively starts a new sequence of
trials but with initial fortune .

The difference equation is linear (in the unknown function ), homogeneous (because each term involves the unknown function ),
and second order (because 2 is the difference between the largest and smallest fortunes in the equation). Recall that linear
homogeneous difference equations can be solved by finding the roots of the characteristic equation.

The characteristic equation of the difference equation is , and that the roots are  and .

If , then the roots are distinct. In this case, the probability that the gambler reaches her target is

If , the characteristic equation has a single root 1 that has multiplicity 2. In this case, the probability that the gambler
reaches her target is simply the ratio of the initial fortune to the target fortune:

Thus, we have the distribution of the final fortune  in either casse:
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In the red and black experiment, choose Timid Play. Vary the initial fortune, target fortune, and game win probability and note
how the probability of winning the game changes. For various values of the parameters, run the experiment 1000 times and
compare the relative frequency of winning a game to the probability of winning a game.

As a function of , for fixed  and ,

1.  is increasing from 0 to .
2.  is concave upward if  and concave downward if . Of course,  is linear if .

 is continuous as a function of , for fixed  and .

Proof

An application of L'Hospital's Rule shows that the probability of winning when  converges to the probability of winning
when , as .

For fixed  and ,  increases from 0 to 1 as  increases from 0 to 1.

Figure : The graph of  for , , and 

The Expected Number of Trials

Now let us consider the expected number of games needed with timid play, when the initial fortune is :

The function  satisfies the following difference equation and boundary conditions:

1.  for 
2. , 

Proof

Again, the difference equation follows from conditioning on the first trial. She loses this trial with probability  and if she
loses, then effectively she starts a new sequence of trials but with initial fortune . She wins the first trial with probability 

, and if she wins, then she effectively starts a new sequence of trials but with initial fortune . In either case, one trial is
over.

The difference equation in the last exercise is linear, second order, but non-homogeneous (because of the constant term 1 on the
right side). The corresponding homogeneous equation is the equation satisfied by the win probability function . Thus, only a little
additional work is needed to solve the non-homogeneous equation.

If , then
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where  is the win probability function above.

If , then

Consider  as a function of the initial fortune , for fixed values of the game win probability  and the target fortune .

1.  at first increases and then decreases.
2.  is concave downward.

When , the maximum value of  is  and occurs when . When , the value of  where the maximum occurs is
rather complicated.

Figure : The graph of  for , , and 

 is continuous as a function of , for fixed  and .

Proof

The expected value when  converges to the expected value when , as .

For many parameter settings, the expected number of games is surprisingly large. For example, suppose that  and the target
fortune is 100. If the gambler's initial fortune is 1, then the expected number of games is 99, even though half of the time, the
gambler will be ruined on the first game. If the initial fortune is 50, the expected number of games is 2500.

In the red and black experiment, select Timid Play. Vary the initial fortune, the target fortune and the game win probability and
notice how the expected number of games changes. For various values of the parameters, run the experiment 1000 times and
compare the sample mean number of games to the expect value.

Increasing the Bet

What happens if the gambler makes constant bets, but with an amount higher than 1? The answer to this question may give insight
into what will happen with bold play.

In the red and black game, set the target fortune to 16, the initial fortune to 8, and the win probability to 0.45. Play 10 games
with each of the following strategies. Which seems to work best?

1. Bet 1 on each game (timid play).
2. Bet 2 on each game.
3. Bet 4 on each game.
4. Bet 8 on each game (bold play).
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We will need to embellish our notation to indicate the dependence on the target fortune. Let

Now fix  and suppose that the target fortune is  and the initial fortune is . If the gambler plays timidly (betting $1 each time),
then of course, her probability of reaching the target is . On the other hand:

Suppose that the gambler bets $2 on each game. The fortune process  corresponds to timid play with initial
fortune  and target fortune  and that therefore the probability that the gambler reaches the target is .

Thus, we need to compare the probabilities  and .

The win probability functions are related as follows:

In particular

1.  if 
2.  if 
3.  if 

Thus, it appears that increasing the bets is a good idea if the games are unfair, a bad idea if the games are favorable, and makes no
difference if the games are fair.

What about the expected number of games played? It seems almost obvious that if the bets are increased, the expected number of
games played should decrease, but a direct analysis using the expected value function above is harder than one might hope (try it!),
We will use a different method, one that actually gives better results. Specifically, we will have the $1 and $2 gamblers bet on the
same underlying sequence of games, so that the two fortune processes are defined on the same sample space. Then we can compare
the actual random variables (the number of games played), which in turn leads to a comparison of their expected values. Recall that
this general method is referred to as coupling.

Let  denote the fortune after  games for the gamble making $1 bets (simple timid play). Then  is the fortune
after  games for the gambler making $2 bets (with the same initial fortune, betting on the same sequence of games). Assume
again that the initial fortune is  and the target fortune  where . Let  denote the number of games played by
the $1 gambler, and  the number of games played by the $2 gambler, Then

1. If the $1 gambler falls to fortune , the $2 gambler is ruined (fortune 0).
2. If the $1 gambler hits fortune , the $2 gambler reaches the target .
3. The $1 gambler must hit  before hitting 0 and must hit  before hitting .
4.  given .
5. 

Of course, the expected values agree (and are both 0) if  or . This result shows that  is stochastically smaller than 
 when the gamblers are not playing the same sequence of games (so that the random variables are not defined on the same

sample space).

Generalize the analysis in this subsection to compare timid play with the strategy of betting $  on each game (let the initial
fortune be  and the target fortune .

It appears that with unfair games, the larger the bets the better, at least in terms of the probability of reaching the target. Thus, we
are naturally led to consider bold play.

This page titled 13.9: Timid Play is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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13.10: Bold Play
      

Basic Theory

Preliminaries

Recall that with the strategy of bold play in red and black, the gambler on each game bets either her entire fortune or the amount
needed to reach the target fortune, whichever is smaller. As usual, we are interested in the probability that the player reaches the
target and the expected number of trials. The first interesting fact is that only the ratio of the initial fortune to the target fortune
matters, quite in contrast to timid play.

Suppose that the gambler plays boldly with initial fortune  and target fortune . As usual, let  denote the
fortune process for the gambler. For any , the random process  is the fortune process for bold play
with initial fortune  and target fortune .

Because of this result, it is convenient to use the target fortune as the monetary unit and to allow irrational, as well as rational,
initial fortunes. Thus, the fortune space is . Sometimes in our analysis we will ignore the states 0 or 1; clearly there is no harm
in this because in these states, the game is over.

Recall that the betting function  is the function that gives the amount bet as a function of the current fortune. For bold play,
the betting function is

Figure : The betting function for bold play

The Probability of Winning

We will denote the probability that the bold gambler reaches the target  starting from the initial fortune  by .
By the scaling property, the probability that the bold gambler reaches some other target value , starting from  is 

.

The function  satisfies the following functional equation and boundary conditions:

1. 

2. , 

From the previous result, and a little thought, it should be clear that an important role is played by the following function:

Let  be the function defined on  by
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The function  is called the doubling function, mod 1, since  gives the fractional part of .

Note that until the last bet that ends the game (with the player ruined or victorious), the successive fortunes of the player follow
iterates of the map . Thus, bold play is intimately connected with the dynamical system associated with .

Figure : The doubling map, modulo 1

Binary Expansions

One of the keys to our analysis is to represent the initial fortune in binary form.

The binary expansion of  is

where  for each . This representation is unique except when  is a binary rational (sometimes also called a
dyadic rational), that is, a number of the form  where  and ; the positive integer  is
called the rank of . Binary rationals are discussed in more detail in the chapter on Foundations.

For a binary rational  of rank , we will use the standard terminating representation where  and  for . Rank
can be extended to all numbers in [0, 1) by defining the rank of 0 to be 0 (0 is also considered a binary rational) and by defining the
rank of a binary irrational to be . We will denote the rank of  by .

Applied to the binary sequences, the doubling function  is the shift operator:

For , .

Bold play in red and black can be elegantly described by comparing the bits of the initial fortune with the game bits.

Suppose that gambler starts with initial fortune . The gambler eventually reaches the target 1 if and only if there
exists a positive integer  such that  for  and . That is, the gambler wins if and only
if when the game bit agrees with the corresponding fortune bit for the first time, that bit is 1.

The random variable whose bits are the complements of the fortune bits will play an important role in our analysis. Thus, let

Note that  is a well defined random variable taking values in .

Suppose that the gambler starts with initial fortune . Then the gambler reaches the target 1 if and only if .
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Proof

This follows from the previous result.

 has a continuous distribution. That is,  for any .

From the previous two results, it follows that  is simply the distribution function of . In particular,  is an increasing function,
and since  has a continuous distribution,  is a continuous function.

The success function  is the unique continuous solution of the functional equation above.

Proof

Induction on the rank shows that any two solutions must agree at the binary rationals. But then any two continuous solutions
must agree for all .

If we introduce a bit more notation, we can give nice expression for , and later for the expected number of games . Let 
 and .

The win probability function  can be expressed as follows:

Note that  in the last expression is correct; it's not a misprint of . Thus, only terms with  are included in the sum.

 is strictly increasing on . This means that the distribution of  has support ; that is, there are no subintervals of 
 that have positive length, but 0 probability.

In particular,

1. 
2. 
3. 
4. 
5. 
6. 
7. 

If  then  for 

Proof

There are two proofs. The simplest proof is to note that  is continuous and satisfies the functional equation in functional
equation. Another proof can be constructed by using the representation of  as a sum.

Thus, for  (fair trials), the probability that the bold gambler reaches the target fortune  starting from the initial fortune  is 
, just as it is for the timid gambler. Note also that the random variable  has the uniform distribution on . When ,

the distribution of  is quite strange. To state the result succinctly, we will indicate the dependence of the of the probability
measure  on the parameter . First we define

Thus,  is the set of  for which the relative frequency of 0's in the binary expansion is .
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1. 
2. 

Proof

Part (a) follows from the strong law of large numbers. Part (b) follows from part (a) since .

When ,  does not have a probability density function (with respect to Lebesgue measure on [0, 1]), even though 
has a continuous distribution.

Proof

The proof is by contradiction. Suppose that  has probability density function . Then . But

if , . That is,  has Lebesgue measure 0. But then , a contradiction.

When ,  has derivative 0 at almost every point in , even though it is strictly increasing.

Figure : The graphs of  when , , and 

In the red and black experiment, select Bold Play. Vary the initial fortune, target fortune, and game win probability with the
scroll bars and note how the probability of winning the game changes. In particular, note that this probability depends only on 

. Now for various values of the parameters, run the experiment 1000 times and compare the relative frequency function to
the probability density function.

The Expected Number of Trials

Let  for , the expected number of trials starting at . For any other target fortune , the
expected number of trials starting at  is just .

 satisfies the following functional equation and boundary conditions:

1. 

2. , 

Proof

The functional equation follows from conditioning on the result of the first game.

Note, interestingly, that the functional equation is not satisfied at  or . As before, we can give an alternate analysis
using the binary representation of an initial fortune .

Suppose that the initial fortune of the gambler is . Then .

Proof

If  is a binary rational then  takes values in the set . Play continues until the game number agrees with the
rank of the fortune or a game bit agrees with the corresponding fortune bit, whichever is smaller. In the first case, the
penultimate fortune is , the only fortune for which the next game is always final. If  is a binary irrational then  takes
values in . Play continues until a game bit agrees with a corresponding fortune bit.
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We can give an explicit formula for the expected number of trials  in terms of the binary representation of . Recall our
special notation: , 

Suppose that . Then

Note that the  term is 1, since the product is empty. The sum has a finite number of terms if  is a binary rational, and the
sum has an infinite number of terms if  is a binary irrational.

In particular,

1. 
2. 
3. 
4. 
5. 
6. 
7. 

If  then

Figure : The expected number of games in bold play with fair games

In the red and black experiment, select Bold Play. Vary , , and  with the scroll bars and note how the expected number of
trials changes. In particular, note that the mean depends only on the ratio . For selected values of the parameters, run the
experiment 1000 times and compare the sample mean to the distribution mean.

For fixed ,  is continuous as a function of .

However, as a function of the initial fortune , for fixed , the function  is very irregular.

 is discontinuous at the binary rationals in  and continuous at the binary irrationals.

This page titled 13.10: Bold Play is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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13.11: Optimal Strategies
      

Basic Theory

Definitions

Recall that the stopping rule for red and black is to continue playing until the gambler is ruined or her fortune reaches the target
fortune . Thus, the gambler's strategy is to decide how much to bet on each game before she must stop. Suppose that we have a
class of strategies that correspond to certain valid fortunes and bets;  will denote the set of fortunes and  will denote the set of
valid bets for . For example, sometimes (as with timid play) we might want to restrict the fortunes to set of integers 

; other times (as with bold play) we might want to use the interval  as the fortune space. As for the bets, recall
that the gambler cannot bet what she does not have and will not bet more than she needs in order to reach the target. Thus, a betting
function  must satisfy

Moreover, we always restrict our strategies to those for which the stopping time  is finite.

The success function of a strategy is the probability that the gambler reaches the target  with that strategy, as a function of the
initial fortune . A strategy with success function  is optimal if for any other strategy with success function , we have 

 for .

If there exists an optimal strategy, then the optimal success function is unique.

However, there may not exist an optimal strategy or there may be several optimal strategies. Moreover, the optimality question
depends on the value of the game win probability , in addition to the structure of fortunes and bets.

A Condition for Optimality

Our main theorem gives a condition for optimality:

A strategy  with success function  is optimal if

Proof

Consider the following strategy: if the initial fortune is , we pick  and then bet  on the first game; thereafter we
follow strategy . Conditioning on the outcome of the first game, the success function for this new strategy is

Thus, the theorem can be restated as follows: If  is optimal with respect to the class of strategies just described, then  is
optimal over all strategies. Let  be an arbitrary strategy with success function . The random variable  can be
interpreted as the probability of winning if the gambler's strategy is replaced by strategy  after time . Conditioning on the
outcome of game  gives

Using the the optimality condition gives

If follows that  for  and . Now let  denote the stopping time for strategy .
Letting  we have  for . But  for . Thus 

 for .
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Favorable Trials with a Minimum Bet

Suppose now that  so that the trials are favorable (or at least not unfair) to the gambler. Next, suppose that all bets must be
multiples of a basic unit, which we might as well assume is $1. Of course, real gambling houses have this restriction. Thus the set
of valid fortunes is  and the set of valid bets for  is . Our main result for
this case is

Timid play is an optimal strategy.

Proof

Recall the success function  for timid play and recall the optimality condition. This condition holds if . If , the
condition for optimality is equivalent to

But this condition is equivalent to  which clearly holds if .

In the red and black game set the target fortune to 16, the initial fortune to 8, and the game win probability to 0.45. Define the
strategy of your choice and play 100 games. Compare your relative frequency of wins with the probability of winning with
timid play.

Favorable Trials without a Minimum Bet

We will now assume that the house allows arbitrarily small bets and that , so that the trials are strictly favorable. In this case
it is natural to take the target as the monetary unit so that the set of fortunes is , and the set of bets for  is 

. Our main result for this case is given below. The results for timid play will play an important role in the
analysis, so we will let  denote the probability of reaching an integer target , starting at the integer , with unit
bets.

The optimal success function is  for .

Proof

Fix a rational initial fortune . Let  be a positive integer and suppose that, starting at , the gambler bets 
on each game. This strategy is equivalent to timid play with target fortune , and initial fortune . Hence the probability of
reaching the target 1 under this strategy is . But  as . It follows that  if 

 is rational. But  is increasing so  for all 

Unfair Trials

We will now assume that  so that the trials are unfair, or at least not favorable. As before, we will take the target fortune as
the basic monetary unit and allow any valid fraction of this unit as a bet. Thus, the set of fortunes is , and the set of bets
for  is . Our main result for this case is

Bold play is optimal.

Proof

Let  denote the success function for bold play, and let

The optimality condition equivalent to  for . From the continuity of , it suffices to prove this
inequality when  and  are binary rationals. It's simple to see that  when  and  have rank 0: ,  or 

,  or , . Suppose now that  when  and  have rank  or less. We have the following
cases:

1. If  then .
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2. If  then .
3. If  and  then .

4. If  and  then .
5. If  and  then .
6. If  and  then .

The induction hypothesis can now be applied to each case to finish the proof.

In the red and black game, set the target fortune to 16, the initial fortune to 8, and the game win probability to 0.45. Define the
strategy of your choice and play 100 games. Compare your relative frequency of wins with the probability of winning with
bold play.

Other Optimal Strategies in the Sub-Fair Case

Consider again the sub-fair case where  so that the trials are not favorable to the gambler. We will show that bold play is not
the only optimal strategy; amazingly, there are infinitely many optimal strategies. Recall first that the bold strategy has betting
function

Figure : The betting function for bold play

Consider the following strategy, which we will refer to as the second order bold strategy:

1. With fortune , play boldly with the object of reaching  before falling to 0.
2. With fortune , play boldly with the object of reaching 1 without falling below .
3. With fortune , play boldly and bet 

The second order bold strategy has betting function  given by
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Figure : The betting function for the second order bold strategy

The second order bold strategy is optimal.

Proof

Let  denote the success function associated with strategy . Suppose first that the player starts with fortune 
under strategy . Note that the player reaches the target 1 if and only if she reaches  and then wins the final game. Consider
the sequence of fortunes until the player reaches 0 or . If we double the fortunes, then we have the fortune sequence under the
ordinary bold strategy, starting at  and terminating at either 0 or 1. Thus it follows that

Suppose next that the player starts with fortune  under strategy . Note that the player reaches the target 1 if and
only if she reaches 1 without falling back to  or falls back to  and then wins the final game. Consider the sequence of
fortunes until the player reaches  or 1. If we double the fortunes and subtract 1, then we have the fortune sequence under the
ordinary bold strategy, starting at  and terminating at either 0 or 1. Thus it follows that

But now, using the functional equation for ordinary bold play, we have  for all , and hence  is
optimal.

Once we understand how this construction is done, it's straightforward to define the third order bold strategy and show that it's
optimal as well.

Figure : The betting function for the third order bold strategy

Explicitly give the third order betting function and show that the strategy is optimal.

More generally, we can define the th order bold strategy and show that it is optimal as well.

The sequence of bold strategies can be defined recursively from the basic bold strategy  as follows:
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 is optimal for each .

Even more generally, we can define an optimal strategy  in the following way: for each  select  and let 
. The graph below shows a few of the graphs of the bold strategies. For an optimal strategy , we just need to

select, for each  a bet on one of the graphs.

Figure : The family of bold strategies

Martingales

Let's return to the unscaled formulation of red and black, where the target fortune is  and the initial fortune is 
. In the subfair case, when , no strategy can do better than the optimal strategies, so that the win probability is

bounded by  (with equality when ). Another elegant proof of this is given in the section on inequalities in the chapter on
martingales.

This page titled 13.11: Optimal Strategies is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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1

CHAPTER OVERVIEW

14: The Poisson Process
The Poisson process is one of the most important random processes in probability theory. It is widely used to model random
“points” in time and space, such as the times of radioactive emissions, the arrival times of customers at a service center, and the
positions of flaws in a piece of material. Several important probability distributions arise naturally from the Poisson process—the
Poisson distribution, the exponential distribution, and the gamma distribution. The process has a beautiful mathematical structure,
and is used as a foundation for building a number of other, more complicated random processes.

14.1: Introduction to the Poisson Process
14.2: The Exponential Distribution
14.3: The Gamma Distribution
14.4: The Poisson Distribution
14.5: Thinning and Superpositon
14.6: Non-homogeneous Poisson Processes
14.7: Compound Poisson Processes
14.8: Poisson Processes on General Spaces

This page titled 14: The Poisson Process is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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14.1: Introduction to the Poisson Process
 

The Poisson Model

We will consider a process in which points occur randomly in time. The phrase points in time is generic and could represent, for
example:

The times when a sample of radioactive material emits particles
The times when customers arrive at a service station
The times when file requests arrive at a server computer
The times when accidents occur at a particular intersection
The times when a device fails and is replaced by a new device

It turns out that under some basic assumptions that deal with independence and uniformity in time, a single, one-parameter
probability model governs all such random processes. This is an amazing result, and because of it, the Poisson process (named after
Simeon Poisson) is one of the most important in probability theory.

Run the Poisson experiment with the default settings in single step mode. Note the random points in time.

Random Variables

There are three collections of random variables that can be used to describe the process. First, let  denote the time of the first
arrival, and  the time between the st and th arrival for . Thus,  is the sequence of inter-
arrival times. Next, let  denote the time of the th arrival for . It will be convenient to define , although we do
not consider this as an arrival. Thus  is the sequence of arrival times. Clearly  is the partial sum process
associated , and so in particular each sequence determines the other:

Next, let  denote the number of arrivals in  for . The random process  is the counting process.
The arrival time process  and the counting process  are inverses of one another in a sense, and in particular each process
determines the other:

Note also that  if and only if  for  and  since each of these events means that there are at least 
arrivals in the interval .

Sometimes it will be helpful to extend the notation of the counting process. For  (measurable of course), let 
denote the number of arrivals in :

Thus,  is the counting measure associated with the random points , so in particular it is a random measure.
For our original counting process, note that  for . Thus,  is a (random) distribution function, and 

 is the (random) measure associated with this distribution function.

The Basic Assumption

The assumption that we will make can be described intuitively (but imprecisely) as follows: If we fix a time , whether constant or
one of the arrival times, then the process after time  is independent of the process before time  and behaves probabilistically just
like the original process. Thus, the random process has a strong renewal property. Making the strong renewal assumption precise
will enable use to completely specify the probabilistic behavior of the process, up to a single, positive parameter.
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Think about the strong renewal assumption for each of the specific applications given above.

Run the Poisson experiment with the default settings in single step mode. See if you can detect the strong renewal assumption.

As a first step, note that part of the renewal assumption, namely that the process “restarts” at each arrival time, independently of the
past, implies the following result:

The sequence of inter-arrival times  is an independent, identically distributed sequence

Proof

Note that  is the first arrival time after , so  must be independent of  and have the same distribution.
Similarly  is the first arrival time after , so  must be independent of  and  and have the same
distribution as . Continuing this argument,  must be an independent, identically distributed sequence.

A model of random points in time in which the inter-arrival times are independent and identically distributed (so that the process
“restarts” at each arrival time) is known as a renewal process. A separate chapter explores Renewal Processes in detail. Thus, the
Poisson process is a renewal process, but a very special one, because we also require that the renewal assumption hold at fixed
times.

Analogy with Bernoulli Trials
In some sense, the Poisson process is a continuous time version of the Bernoulli trials process. To see this, suppose that we have a
Bernoulli trials process with success parameter , and that we think of each success as a random point in discrete time.
Then this process, like the Poisson process (and in fact any renewal process) is completely determined by the sequence of inter-
arrival times  (in this case, the number of trials between successive successes), the sequence of arrival times 

 (in this case, the trial numbers of the successes), and the counting process  (in this case, the number
of successes in the first  trials). Also like the Poisson process, the Bernoulli trials process has the strong renewal property: at each
fixed time and at each arrival time, the process “starts over” independently of the past. But of course, time is discrete in the
Bernoulli trials model and continuous in the Poisson model. The Bernoulli trials process can be characterized in terms of each of
the three sets of random variables.

Each of the following statements characterizes the Bernoulli trials process with success parameter :

1. The inter-arrival time sequence  is a sequence of independent variables, and each has the geometric distributions on 
with success parameter .

2. The arrival time sequence  has stationary, independent increments, and for ,  has the negative binomial
distribution with stopping parameter  and success parameter 

3. The counting process  has stationary, independent increments, and for ,  has the binomial distribution with trial
parameter  and success parameter .

Run the binomial experiment with  and . Note the random points in discrete time.

Run the Poisson experiment with  and . Note the random points in continuous time and compare with the behavior
in the previous exercise.

As we develop the theory of the Poisson process we will frequently refer back to the analogy with Bernoulli trials. In particular, we
will show that if we run the Bernoulli trials at a faster and faster rate but with a smaller and smaller success probability, in just the
right way, the Bernoulli trials process converges to the Poisson process.

This page titled 14.1: Introduction to the Poisson Process is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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14.2: The Exponential Distribution
        

Basic Theory

The Memoryless Property

Recall that in the basic model of the Poisson process, we have “points” that occur randomly in time. The sequence of inter-arrival times is . The strong
renewal assumption states that at each arrival time and at each fixed time, the process must probabilistically restart, independent of the past. The first part of that
assumption implies that  is a sequence of independent, identically distributed variables. The second part of the assumption implies that if the first arrival has not
occurred by time , then the time remaining until the arrival occurs must have the same distribution as the first arrival time itself. This is known as the memoryless
property and can be stated in terms of a general random variable as follows:

Suppose that  takes values in . Then  has the memoryless property if the conditional distribution of  given  is the same as the distribution of 
for every . Equivalently,

The memoryless property determines the distribution of  up to a positive parameter, as we will see now.

Distribution functions

Suppose that  takes values in  and satisfies the memoryless property.

 has a continuous distribution and there exists  such that the distribution function  of  is

Proof

Let  denote the denote the right-tail distribution function of  (also known as the reliability function), so that  for . From the
definition of conditional probability, the memoryless property is equivalent to the law of exponents:

Let . Implicit in the memoryless property is  for , so . If  then

Next, if  then

so . Now suppose that  and . Then

Thus we have  for rational . For , there exists a sequence of rational numbers  with  as . We have 
 for each . But  is continuous from the right, so taking limits gives . Now let . Then  for .

The probability density function of  is

1.  is decreasing on .
2.  is concave upward on .
3.  as .

Proof

This follows since . The properties in parts (a)–(c) are simple.

A random variable with the distribution function above or equivalently the probability density function in the last theorem is said to have the exponential distribution with
rate parameter . The reciprocal  is known as the scale parameter (as will be justified below). Note that the mode of the distribution is 0, regardless of the parameter ,
not very helpful as a measure of center.

In the gamma experiment, set  so that the simulated random variable has an exponential distribution. Vary  with the scroll bar and watch how the shape of the
probability density function changes. For selected values of , run the experiment 1000 times and compare the empirical density function to the probability density
function.

The quantile function of  is
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1. The median of  is 
2. The first quartile of  is 
3. The third quartile  is 
4. The interquartile range is 

Proof

The formula for  follows easily from solving  for  in terms of .

In the special distribution calculator, select the exponential distribution. Vary the scale parameter (which is ) and note the shape of the distribution/quantile
function. For selected values of the parameter, compute a few values of the distribution function and the quantile function.

Returning to the Poisson model, we have our first formal definition:

A process of random points in time is a Poisson process with rate  if and only the interarrvial times are independent, and each has the exponential
distribution with rate .

Constant Failure Rate

Suppose now that  has a continuous distribution on  and is interpreted as the lifetime of a device. If  denotes the distribution function of , then  is
the reliability function of . If  denotes the probability density function of  then the failure rate function  is given by

If  has the exponential distribution with rate , then from the results above, the reliability function is  and the probability density function is 
, so trivially  has constant rate . The converse is also true.

If  has constant failure rate  then  has the exponential distribution with parameter .

Proof

Recall that in general, the distribution of a lifetime variable  is determined by the failure rate function . Specifically, if  denotes the reliability
function, then , so . Integrating and then taking exponentials gives

In particular, if  for , then  for .

The memoryless and constant failure rate properties are the most famous characterizations of the exponential distribution, but are by no means the only ones. Indeed,
entire books have been written on characterizations of this distribution.

Moments

Suppose again that  has the exponential distribution with rate parameter . Naturaly, we want to know the the mean, variance, and various other moments of .

If  then .

Proof

By the change of variables theorem for expected value,

Integrating by parts gives  for . Of course  so the result now follows by induction.

More generally,  for every , where  is the gamma function.

In particular.

1. 
2. 
3. 
4. 

In the context of the Poisson process, the parameter  is known as the rate of the process. On average, there are  time units between arrivals, so the arrivals come at an
average rate of  per unit time. The Poisson process is completely determined by the sequence of inter-arrival times, and hence is completely determined by the rate .

Note also that the mean and standard deviation are equal for an exponential distribution, and that the median is always smaller than the mean. Recall also that skewness
and kurtosis are standardized measures, and so do not depend on the parameter  (which is the reciprocal of the scale parameter).

The moment generating function of  is

Proof

By the change of variables theorem
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The integral evaluates to  if  and to  if .

In the gamma experiment, set  so that the simulated random variable has an exponential distribution. Vary  with the scroll bar and watch how the mean
standard deviation bar changes. For various values of , run the experiment 1000 times and compare the empirical mean and standard deviation to the distribution

mean and standard deviation, respectively.

Additional Properties

The exponential distribution has a number of interesting and important mathematical properties. First, and not surprisingly, it's a member of the general exponential
family.

Suppose that  has the exponential distribution with rate parameter . Then  has a one parameter general exponential distribution, with natural parameter 
 and natural statistic .

Proof

This follows directly from the form of the PDF,  for , and the definition of the general exponential family.

The Scaling Property

As suggested earlier, the exponential distribution is a scale family, and  is the scale parameter.

Suppose that  has the exponential distribution with rate parameter  and that . Then  has the exponential distribution with rate parameter .

Proof

For , .

Recall that multiplying a random variable by a positive constant frequently corresponds to a change of units (minutes into hours for a lifetime variable, for example).
Thus, the exponential distribution is preserved under such changes of units. In the context of the Poisson process, this has to be the case, since the memoryless property,
which led to the exponential distribution in the first place, clearly does not depend on the time units.

In fact, the exponential distribution with rate parameter 1 is referred to as the standard exponential distribution. From the previous result, if  has the standard
exponential distribution and , then  has the exponential distribution with rate parameter . Conversely, if  has the exponential distribution with rate 
then  has the standard exponential distribution.

Similarly, the Poisson process with rate parameter 1 is referred to as the standard Poisson process. If  is the th inter-arrival time for the standard Poisson process for 
, then letting  for  gives the inter-arrival times for the Poisson process with rate . Conversely if  is the th inter-arrival time of the Poisson

process with rate  for , then  for  gives the inter-arrival times for the standard Poisson process.

Relation to the Geometric Distribution

In many respects, the geometric distribution is a discrete version of the exponential distribution. In particular, recall that the geometric distribution on  is the only
distribution on  with the memoryless and constant rate properties. So it is not surprising that the two distributions are also connected through various transformations
and limits.

Suppose that  has the exponential distribution with rate parameter . Then

1.  has the geometric distributions on  with success parameter .
2.  has the geometric distributions on  with success parameter .

Proof
1. For  note that . Substituting into the distribution function and simplifying gives 

.
2. For  note that . Substituting into the distribution function and simplifying gives 

.

The following connection between the two distributions is interesting by itself, but will also be very important in the section on splitting Poisson processes. In words, a
random, geometrically distributed sum of independent, identically distributed exponential variables is itself exponential.

Suppose that  is a sequence of independent variables, each with the exponential distribution with rate . Suppose that  has the geometric
distribution on  with success parameter  and is independent of . Then  has the exponential distribution with rate .

Proof

Recall that the moment generating function of  is  where  is the common moment generating function of the terms in the sum, and  is the probability
generating function of the number of terms . But  for  and  for . Thus,

It follows that  has the exponential distribution with parameter 

The next result explores the connection between the Bernoulli trials process and the Poisson process that was begun in the Introduction.
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For , suppose that  has the geometric distribution on  with success parameter , where  as . Then the distribution of 
converges to the exponential distribution with parameter  as .

Proof

Let  denote the CDF of . Then for 

But by a famous limit from calculus,  as , and hence  as . But by definition, 
 or equivalently,  so it follows that  as . Hence  as , which is

the CDF of the exponential distribution.

To understand this result more clearly, suppose that we have a sequence of Bernoulli trials processes. In process , we run the trials at a rate of  per unit time, with
probability of success . Thus, the actual time of the first success in process  is . The last result shows that if  as , then the sequence of
Bernoulli trials processes converges to the Poisson process with rate parameter  as . We will return to this point in subsequent sections.

Orderings and Order Statistics

Suppose that  and  have exponential distributions with parameters  and , respectively, and are independent. Then

Proof

This result can be proved in a straightforward way by integrating the joint PDF of  over . A more elegant proof uses conditioning
and the moment generating function above:

The following theorem gives an important random version of the memoryless property.

Suppose that  and  are independent variables taking values in  and that  has the exponential distribution with rate parameter . Then  and 
are conditionally independent given , and the conditional distribution of  is also exponential with parameter .

Proof

Suppose that  (measurable of course) and . Then

But conditioning on  we can write the numerator as

Similarly, conditioning on  gives . Thus

Letting  we have  so given , the variable  has the exponential distribution with parameter . Letting , we see that
given , variable  has the distribution

Finally, because of the factoring,  and  are conditionally independent given .

For our next discussion, suppose that  is a sequence of independent random variables, and that  has the exponential distribution with rate
parameter  for each .

Let . Then  has the exponential distribution with parameter .

Proof

Recall that in general,  and therefore by independence,  for , where  is the
reliability function of  and  is the reliability function of  for each . When  has the exponential distribution with rate  for each , we have 

 for .

In the context of reliability, if a series system has independent components, each with an exponentially distributed lifetime, then the lifetime of the system is also
exponentially distributed, and the failure rate of the system is the sum of the component failure rates. In the context of random processes, if we have  independent
Poisson process, then the new process obtained by combining the random points in time is also Poisson, and the rate of the new process is the sum of the rates of the
individual processes (we will return to this point latter).

Let . Then  has distribution function  given by

n ∈ N

+

U

n

N

+

p

n

n → r> 0p

n

n→∞ /nU

n

r n→∞

F

n

/nU

n

x ∈ [0,∞)

(x) = P( ≤ x) = P( ≤ nx) = P ( ≤ ⌊nx⌋) = 1−F

n

U

n

n

U

n

U

n

(1− )p

n

⌊nx⌋

(14.2.15)

= →(1− )p

n

n

(1− )

np

n

n

n

e

−r

n→∞ →(1− )p

n

nx

e

−rx

n→∞

⌊nx⌋≤ nx < ⌊nx⌋+1 nx−1 < ⌊nx⌋≤ nx →(1− )p

n

⌊nx⌋

e

−rx

n→∞ (x) → 1−F

n

e

−rx

n→∞

n n

p

n

n /nU

n

n → r> 0p

n

n→∞

r n→∞

X Y a b

P(X < Y ) =

a

a+b

(14.2.16)

(X,Y ) {(x, y) : 0 < x < y <∞}

P(Y >X) =E [P(Y >X ∣X)] =E ( )=e

−bX

a

a+b

(14.2.17)

X Y [0,∞) Y r> 0 X Y −X

X < Y Y −X r

A⊆ [0,∞) t ≥ 0

P(X ∈ A,Y −X ≥ t ∣X < Y ) =

P(X ∈ A,Y −X ≥ t)

P(X < Y )

(14.2.18)

X

P(X ∈ A,Y −X > t) =E [P(X ∈ A,Y −X > t ∣X)] =E [P(Y >X+ t ∣X),X ∈ A] =E [ ,X ∈ A]= E ( ,X ∈ A)e

−r(t+X)

e

−rt

e

−r X

(14.2.19)

X P(X < Y ) =E ( )e

−r X

P(X ∈ A,Y −X > t ∣X < Y ) = e

−r t

E ( ,X ∈ A)e

−r X

E ( )e

−rX

(14.2.20)

A= [0,∞) P(Y > t) = e

−r t

X < Y Y −X r t = 0

X < Y X

A↦

E ( ,X ∈ A)e

−r X

E ( )e

−r X

(14.2.21)

X Y −X X < Y

X = ( , ,… , )X

1

X

2

X

n

X

i

> 0r

i

i ∈ {1, 2,… ,n}

U =min{ , ,… , }X

1

X

2

X

n

U ∑

n

i=1

r

i

{U > t} = { > t, > t,… , > t}X

1

X

2

X

n

(t) = (t) (t)⋯ (t)F

c

F

c

1

F

c

2

F

c

n

t ≥ 0 F

c

U F

c

i

X

i

i X

i

r

i

i

(t) = exp[−( ) t]F

c

∑

n

i=1

r

i

t ≥ 0

n

V =max{ , ,… , }X

1

X

2

X

n

V F

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10267?pdf


14.2.5 https://stats.libretexts.org/@go/page/10267

Proof

Recall that in general,  and therefore by independence,  for , where  is the
distribution function of  and  is the distribution function of  for each .

Consider the special case where  for each . In statistical terms,  is a random sample of size  from the exponential distribution with parameter .
From the last couple of theorems, the minimum  has the exponential distribution with rate  while the maximum  has distribution function  for 

. Recall that  and  are the first and last order statistics, respectively.

In the order statistic experiment, select the exponential distribution.

1. Set  (this gives the minimum ). Vary  with the scroll bar and note the shape of the probability density function. For selected values of , run the
simulation 1000 times and compare the empirical density function to the true probability density function.

2. Vary  with the scroll bar, set  each time (this gives the maximum ), and note the shape of the probability density function. For selected values of , run
the simulation 1000 times and compare the empirical density function to the true probability density function.

Curiously, the distribution of the maximum of independent, identically distributed exponential variables is also the distribution of the sum of independent exponential
variables, with rates that grow linearly with the index.

Suppose that  for each  where . Then  has distribution function  given by

Proof

By assumption,  has PDF  given by  for . We want to show that  has PDF  given by

The PDF of a sum of independent variables is the convolution of the individual PDFs, so we want to show that

The proof is by induction on . Trivially , so suppose the result holds for a given . Then

Now substitute  so that  or equivalently . After some algebra,

This result has an application to the Yule process, named for George Yule. The Yule process, which has some parallels with the Poisson process, is studied in the chapter
on Markov processes. We can now generalize the order probability above:

For ,

Proof

First, note that  for all  if and only if . But the minimum on the right is independent of  and, by result on minimums above,
has the exponential distribution with parameter . The result now follows from order probability for two events above.

Suppose that for each ,  is the time until an event of interest occurs (the arrival of a customer, the failure of a device, etc.) and that these times are independent and
exponentially distributed. Then the first time  that one of the events occurs is also exponentially distributed, and the probability that the first event to occur is event  is
proportional to the rate .

The probability of a total ordering is

Proof

Let . then

But  from the previous result, and  is independent of . Thus we have

F (t) = (1 − ) , t ∈ [0, ∞)∏

i=1

n
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− tr
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so the result follows by induction.

Of course, the probabilities of other orderings can be computed by permuting the parameters appropriately in the formula on the right.

The result on minimums and the order probability result above are very important in the theory of continuous-time Markov chains. But for that application and others, it's
convenient to extend the exponential distribution to two degenerate cases: point mass at 0 and point mass at  (so the first is the distribution of a random variable that
takes the value 0 with probability 1, and the second the distribution of a random variable that takes the value  with probability 1). In terms of the rate parameter  and
the distribution function , point mass at 0 corresponds to  so that  for . Point mass at  corresponds to  so that  for 

. The memoryless property, as expressed in terms of the reliability function , still holds for these degenerate cases on :

We also need to extend some of results above for a finite number of variables to a countably infinite number of variables. So for the remainder of this discussion, suppose
that  is a countable collection of independent random variables, and that  has the exponential distribution with parameter  for each .

Let . Then  has the exponential distribution with parameter 

Proof

The proof is almost the same as the one above for a finite collection. Note that  and so

If  then  has a proper exponential distribution with the sum as the parameter. If  then  for all  so 
.

For ,

Proof

First note that since the variables have continuous distributions and  is countable,

Next note that  for all  if and only if  where . But  is independent of  and, by previous result, has the
exponential distribution with parameter . If , then  is 0 with probability 1, and so . If , then  and 
have proper exponential distributions, and so the result now follows from order probability for two variables above.

We need one last result in this setting: a condition that ensures that the sum of an infinite collection of exponential variables is finite with probability one.

Let  and . Then  and  if and only if .

Proof

The result is trivial if  is finite, so assume that . Recall that  and hence . Trivially if  then . Conversely,
suppose that . Then  and hence . Using independence and the moment generating function above,

Next recall that if  for  then

Hence it follows that

In particular, this means that  as  and hence  as . But then

By the comparison test for infinite series, it follows that
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Computational Exercises

Show directly that the exponential probability density function is a valid probability density function.

Solution

Clearly  for . Simple integration that

Suppose that the length of a telephone call (in minutes) is exponentially distributed with rate parameter . Find each of the following:

1. The probability that the call lasts between 2 and 7 minutes.
2. The median, the first and third quartiles, and the interquartile range of the call length.

Answer

Let  denote the call length.

1. 
2. , , , 

Suppose that the lifetime of a certain electronic component (in hours) is exponentially distributed with rate parameter . Find each of the following:

1. The probability that the component lasts at least 2000 hours.
2. The median, the first and third quartiles, and the interquartile range of the lifetime.

Answer

Let  denote the lifetime

1. 
2. , , , 

Suppose that the time between requests to a web server (in seconds) is exponentially distributed with rate parameter . Find each of the following:

1. The mean and standard deviation of the time between requests.
2. The probability that the time between requests is less that 0.5 seconds.
3. The median, the first and third quartiles, and the interquartile range of the time between requests.

Answer

Let  denote the time between requests.

1. , 
2. 
3. , , , 

Suppose that the lifetime  of a fuse (in 100 hour units) is exponentially distributed with . Find each of the following:

1. The rate parameter.
2. The mean and standard deviation.
3. The median, the first and third quartiles, and the interquartile range of the lifetime.

Answer

Let  denote the lifetime.

1. 
2. , 
3. , , , 

The position  of the first defect on a digital tape (in cm) has the exponential distribution with mean 100. Find each of the following:

1. The rate parameter.
2. The probability that  given .
3. The standard deviation.
4. The median, the first and third quartiles, and the interquartile range of the position.

Answer

Let  denote the position of the first defect.

1. 
2. 
3. 
4. , , , 

Suppose that  are independent, exponentially distributed random variables with respective parameters . Find the probability of each of the 6
orderings of the variables.

Proof
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1. 
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3. 

4. 
5. 
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14.3: The Gamma Distribution
        

Basic Theory

We now know that the sequence of inter-arrival times  in the Poisson process is a sequence of independent
random variables, each having the exponential distribution with rate parameter , for some . No other distribution gives the
strong renewal assumption that we want: the property that the process probabilistically restarts, independently of the past, at each
arrival time and at each fixed time.

The th arrival time is simply the sum of the first  inter-arrival times:

Thus, the sequence of arrival times  is the partial sum process associated with the sequence of inter-arrival times 
.

Distribution Functions

Recall that the common probability density function of the inter-arrival times is

Our first goal is to describe the distribution of the th arrival .

For ,  has a continuous distribution with probability density function  given by

1.  increases and then decreases, with mode at .
2.  is concave upward.  is concave downward and then upward, with inflection point at . For ,  is

concave upward, then downward, then upward again with inflection points at .

Proof

Since  is the sum of  independent variables, each with PDF , the PDF of  is the convolution power of  of order .
That is, . A simple induction argument shows that  has the form given above. For example,

Parts (a) and (b) follow from standard calculus.

The distribution with this probability density function is known as the gamma distribution with shape parameter  and rate
parameter . It is lso known as the Erlang distribution, named for the Danish mathematician Agner Erlang. Again,  is the scale
parameter, and that term will be justified below. The term shape parameter for  clearly makes sense in light of parts (a) and (b) of
the last result. The term rate parameter for  is inherited from the inter-arrival times, and more generally from the underlying
Poisson process itself: the random points are arriving at an average rate of  per unit time. A more general version of the gamma
distribution, allowing non-integer shape parameters, is studied in the chapter on Special Distributions. Note that since the arrival
times are continuous, the probability of an arrival at any given instant of time is 0.

In the gamma experiment, vary  and  with the scroll bars and watch how the shape of the probability density function
changes. For various values of the parameters, run the experiment 1000 times and compare the empirical density function to
the true probability density function.

The distribution function and the quantile function of the gamma distribution do not have simple, closed-form expressions.
However, it's easy to write the distribution function as a sum.
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For ,  has distribution function  given by

Proof

Note that

The result follows by repeated integration by part.

Open the special distribution calculator, select the gamma distribution, and select CDF view. Vary the parameters and note the
shape of the distribution and quantile functions. For selected values of the parameters, compute the quartiles.

Moments

The mean, variance, and moment generating function of  can be found easily from the representation as a sum of independent
exponential variables.

The mean and variance of  are.

1. 
2. 

Proof

Recall that the exponential distribution with rate parameter  has mean  and variance .

1. The expected value of a sum is the sum of the expected values, so .
2. The variance of a sum of independent variables is the sum of the variances, so .

For , the moment of order  of  is

Proof

Using the standard change of variables theorem,

But the integral on the right is the moment of order  for the exponential distribution, which we showed in the last
section is . Simplifying gives the result.

More generally, the moment of order  (not necessarily an integer) is

where  is the gamma function.

In the gamma experiment, vary  and  with the scroll bars and watch how the size and location of the mean standard
deviation bar changes. For various values of  and , run the experiment 1000 times and compare the empirical moments to
the true moments.

Our next result gives the skewness and kurtosis of the gamma distribution.
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The skewness and kurtosis of  are

1. 

2. 

Proof

These results follows from the moment results above and the computational formulas for skewness and kurtosis.

In particular, note that the gamma distribution is positively skewed but  and as . Recall also that the excess
kurtosis is  as . This result is related to the convergence of the gamma distribution to the normal,
discussed below. Finally, note that the skewness and kurtosis do not depend on the rate parameter . This is because, as we show
below,  is a scale parameter.

The moment generating function of  is

Proof

Recall that the MGF of a sum of independent variables is the product of the corresponding MGFs. We showed in the last
section that the exponential distribution with parameter  has MGF  for .

The moment generating function can also be used to derive the moments of the gamma distribution given above—recall that 
.

Estimating the Rate

In many practical situations, the rate  of the process in unknown and must be estimated based on data from the process. We start
with a natural estimate of the scale parameter . Note that

is the sample mean of the first  inter-arrival times . In statistical terms, this sequence is a random sample of size
 from the exponential distribution with rate .

 satisfies the following properties:

1. 
2. 
3.  as  with probability 1

Proof

Parts (a) and (b) follow from the expected value of  and standard properties. Part (c) is the strong law of large numbers.

In statistical terms, part (a) means that  is an unbiased estimator of  and hence the variance in part (b) is the mean square
error. Part (b) means that  is a consistent estimator of  since  as . Part (c) is a stronger from of
consistency. In general, the sample mean of a random sample from a distribution is an unbiased and consistent estimator of the
distribution mean. On the other hand, a natural estimator of  itself is . However, this estimator is positively biased.

.

Proof

This follows immediately from Jensen's inequality since  is concave upward on .
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Properties and Connections

Scaling

As noted above, the gamma distribution is a scale family.

Suppose that  has the gamma distribution with rate parameter  and shape parameter . If  then 
 has the gamma distribution with rate parameter  and shape parameter .

Proof

The moment generating function of  is

The scaling property also follows from the fact that the gamma distribution governs the arrival times in the Poisson process. A time
change in a Poisson process clearly does not change the strong renewal property, and hence results in a new Poisson process.

General Exponential Family

The gamma distribution is also a member of the general exponential family of distributions.

Suppose that  has the gamma distribution with shape parameter  and rate parameter . Then  has a two
parameter general exponential distribution with natural parameters  and , and natural statistics  and .

Proof

This follows from the form of the PDF and the definition of the general exponential family:

Increments

A number of important properties flow from the fact that the sequence of arrival times  is the partial sum process
associated with the sequence of independent, identically distributed inter-arrival times .

The arrival time sequence  has stationary, independent increments:

1. If  then  has the same distribution as , namely the gamma distribution with shape parameter 
and rate parameter .

2. If  then  is an independent sequence.

Proof

The stationary and independent increments properties hold for any partial sum process associated with an independent,
identically distributed sequence.

Of course, the stationary and independent increments properties are related to the fundamental “renewal” assumption that we
started with. If we fix , then  is independent of  and has the same
distribution as . That is, if we “restart the clock” at time , then the process in the future looks just like the
original process (in a probabilistic sense) and is indpendent of the past. Thus, we have our second characterization of the Poisson
process.

A process of random points in time is a Poisson process with rate  if and only if the arrival time sequence  has
stationary, independent increments, and for ,  has the gamma distribution with shape parameter  and rate parameter
.

Sums

The gamma distribution is closed with respect to sums of independent variables, as long as the rate parameter is fixed.
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Suppose that  has the gamma distribution with shape parameter  and rate parameter ,  has the gamma
distribution with shape parameter  and rate parameter , and that  and  are independent. Then  has the
gamma distribution with shape parameter  and rate parameter .

Proof

There are at least three different proofs of this fundamental result. Perhaps the best is a probabilistic proof based on the Poisson
process. We start with an IID sequence  of independent exponentially distributed variables, each with rate parameter . Then
we can associate  with  and  with  so that  becomes . The result now follows from the
previous theorem.

Another simple proof uses moment generating functions. Recall again that the MGF of  is the product of the MGFs of 
 and of . A third, analytic proof uses convolution. Recall again that the PDF of  is the convolution of the PDFs of 
 and of .

Normal Approximation

In the gamma experiment, vary  and  with the scroll bars and watch how the shape of the probability density function
changes. Now set  and for various values of  run the experiment 1000 times and compare the empirical density
function to the true probability density function.

Even though you are restricted to relatively small values of  in the app, note that the probability density function of the th arrival
time becomes more bell shaped as  increases (for  fixed). This is yet another application of the central limit theorem, since  is
the sum of  independent, identically distributed random variables (the inter-arrival times).

The distribution of the random variable  below converges to the standard normal distribution as :

Proof

 is the standard score associated with , so the result follows from the central limit theorem.

Connection to Bernoulli Trials

We return to the analogy between the Bernoulli trials process and the Poisson process that started in the Introduction and continued
in the last section on the Exponential Distribution. If we think of the successes in a sequence of Bernoulli trials as random points in
discrete time, then the process has the same strong renewal property as the Poisson process, but restricted to discrete time. That is,
at each fixed time and at each arrival time, the process “starts over”, independently of the past. In Bernoulli trials, the time of the 

th arrival has the negative binomial distribution with parameters  and  (the success probability), while in the Poisson process,
as we now know, the time of the th arrival has the gamma distribution with parameters  and  (the rate). Because of this strong
analogy, we expect a relationship between these two processes. In fact, we have the same type of limit as with the geometric and
exponential distributions.

Fix  and suppose that for each   has the negative binomial distribution with parameters  and 
, where  as . Then the distribution of  converges to the gamma distribution

with parameters  and  as .

Proof

Suppose that  has the geometric distribution on  with success parameter . We know from our convergence result in
the last section that the distribution of  converges to the exponential distribution with rate parameter  as . It
follows that if  denotes the moment generating function of , then  as  for . But
then  is the MGF of  and clearly
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as  for . The expression on the right is the MGF of the gamma distribution with shape parameter  and rate
parameter .

Computational Exercises

Suppose that customers arrive at a service station according to the Poisson model, at a rate of  per hour. Relative to a
given starting time, find the probability that the second customer arrives sometime after 1 hour.

Answer

0.1991

Defects in a type of wire follow the Poisson model, with rate 1 per 100 meter. Find the probability that the 5th defect is located
between 450 and 550 meters.

Answer

0.1746

Suppose that requests to a web server follow the Poisson model with rate . Relative to a given starting time, compute the
mean and standard deviation of the time of the 10th request.

Answer

2, 0.6325

Suppose that  has a gamma distribution with mean 40 and standard deviation 20. Find the shape parameter  and the rate
parameter .

Answer

, 

Suppose that accidents at an intersection occur according to the Poisson model, at a rate of 8 per year. Compute the normal
approximation to the event that the 10th accident (relative to a given starting time) occurs within 2 years.

Answer

0.5752

In the gamma experiment, set  and . Run the experiment 1000 times and compute the following:

1. 
2. The relative frequency of the event 
3. The normal approximation to 

Answer
1. 0.5302
3. 0.4871

Suppose that requests to a web server follow the Poisson model. Starting at 12:00 noon on a certain day, the requests are
logged. The 100th request comes at 12:15. Estimate the rate of the process.

Answer

 hits per minute

This page titled 14.3: The Gamma Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

m→∞ s< r n

r

r= 3

r= 5

Y n

r

r= 1/10 n= 4

n= 5 r= 2

P(1.5 ≤ ≤ 3)T

t

{1.5 ≤ ≤ 3}T

5

P(1.5 ≤ ≤ 3)T

5

r= 6.67

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10268?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/14%3A_The_Poisson_Process/14.03%3A_The_Gamma_Distribution
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random


14.4.1 https://stats.libretexts.org/@go/page/10269

14.4: The Poisson Distribution
        

Basic Theory

Recall that in the Poisson model,  denotes the sequence of inter-arrival times, and  denotes the sequence of
arrival times. Thus  is the partial sum process associated with :

Based on the strong renewal assumption, that the process restarts at each fixed time and each arrival time, independently of the past, we now know
that  is a sequence of independent random variables, each with the exponential distribution with rate parameter , for some . We also
know that  has stationary, independent increments, and that for ,  has the gamma distribution with rate parameter  and scale parameter 

. Both of the statements characterize the Poisson process with rate .

Recall that for ,  denotes the number of arrivals in the interval , so that . We refer to  as
the counting process. In this section we will show that  has a Poisson distribution, named for Simeon Poisson, one of the most important
distributions in probability theory. Our exposition will alternate between properties of the distribution and properties of the counting process. The two
are intimately intertwined. It's not too much of an exaggeration to say that wherever there is a Poisson distribution, there is a Poisson process lurking
in the background.

Probability density function.

Recall that the probability density function of the th arrival time  is

We can find the distribution of  because of the inverse relation between  and . In particular, recall that

since both events mean that there are at least  arrivals in .

For , the probability density function of  is given by

Proof

Using the inverse relationship noted above, and integration by parts, we have

For  we have . Simplifying gives the result.

Note that the distribution of  depends on the paramters  and  only through the product . The distribution is called the Poisson distribution with
parameter .

In the Poisson experiment, vary  and  with the scroll bars and note the shape of the probability density function. For various values of  and ,
run the experiment 1000 times and compare the relative frequency function to the probability density function.

In general, a random variable  taking values in  is said to have the Poisson distribution with parameter  if it has the probability
density function

1.  if and only if .
2. If , there is a single mode at .
3. If , there are consecutive modes at  and .

Proof

Part (a) follows from simple algebra, and similarly,  if and only if  (and thus ). Parts (b) and (c) then follow.
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The Poisson distribution does not have simple closed-form distribution or quantile functions. Trivially, we can write the distribution function as a sum
of the probability density function.

The Poisson distribution with parameter  has distribution function  given by

Open the special distribution calculator, select the Poisson distribution, and select CDF view. Vary the parameter and note the shape of the
distribution and quantile functions. For various values of the parameter, compute the quartiles.

Sometimes it's convenient to allow the parameter  to be 0. This degenerate Poisson distribution is simply point mass at 0. That is, with the usual
conventions regarding nonnegative integer powers of 0, the probability density function  above reduces to  and  for .

Moments

Suppose that  has the Poisson distribution with parameter . Naturally we want to know the mean, variance, skewness and kurtosis, and the
probability generating function of . The easiest moments to compute are the factorial moments. For this result, recall the falling power notation for
the number of permutations of size  chosen from a population of size :

The factorial moment of  of order  is .

Proof

Using the standard change of variables formula for expected value,

The mean and variance of  are the parameter .

1. 
2. 

Proof
1. This follows directly from the first factorial moment: .
2. Note that .

Open the special distribution simulator and select the Poisson distribution. Vary the parameter and note the location and size of the mean
standard deviation bar. For selected values of the parameter, run the simulation 1000 times and compare the empirical mean and standard

deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

These results follow from the computational formulas for skewness and kurtosis and the results for factorial moments above. Specifically,

1.  and 
2.  and 

Note that the Poisson distribution is positively skewed, but  as . Recall also that the excess kurtosis is 
 as . This limit is related to the convergence of the Poisson distribution to the normal, discussed below.

Open the special distribution simulator and select the Poisson distribution. Vary the parameter and note the shape of the probability density
function in the context of the results on skewness and kurtosis above.

The probability generating function  of  is given by

Proof
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Using the change of variables formula again,

Returning to the Poisson counting process  with rate parameter , it follows that  and  for . Once
again, we see that  can be interpreted as the average arrival rate. In an interval of length , we expect about  arrivals.

In the Poisson experiment, vary  and  with the scroll bars and note the location and size of the mean standard deviation bar. For various
values of  and , run the experiment 1000 times and compare the sample mean and standard deviation to the distribution mean and standard
deviation, respectively.

Estimating the Rate

Suppose again that we have a Poisson process with rate . In many practical situations, the rate  in unknown and must be estimated based
on observing data. For fixed , a natural estimator of the rate  is .

The mean and variance of  are

1. 
2. 

Proof

These result follow easily from  and basic properties of expected value and variance.

Part (a) means that the estimator is unbiased. Since this is the case, the variance in part (b) gives the mean square error. Since  decreases to 0
as , the estimator is consistent.

Additional Properties and Connections

Increments and Characterizations

Let's explore the basic renewal assumption of the Poisson model in terms of the counting process . Recall that  is the number of
arrivals in the interval , so it follows that if  with , then  is the number of arrivals in the interval . Of course,
the arrival times have continuous distributions, so the probability that an arrival occurs at a specific point  is 0. Thus, it does not really matter if we
write the interval above as , ,  or .

The process  has stationary, independent increments.

1. If  with  then  has the same distribution as , namely Poisson with parameter .
2. If  with  then  is an independent sequence.

Statements about the increments of the counting process can be expressed more elegantly in terms of our more general counting process. Recall that
for  (measurable of course),  denotes the number of random points in :

and so in particular, . Thus, note that  is a (random) distribution function and  is the (random) measure associated
with this distribution function. Recall also that  denotes the standard length (Lebesgue) measure on . Here is our third characterization of the
Poisson process.

A process of random points in time is a Poisson process with rate  if and only if the following properties hold:.

1. If  is measurable then  has the Poisson distribution with parameter .
2. if  is a countable, disjoint collection of measurable sets in  then  is a set of independent variables.

From a modeling point of view, the assumptions of stationary, independent increments are ones that might be reasonably made. But the assumption
that the increments have Poisson distributions does not seem as clear. Our next characterization of the process is more primitive in a sense, because it
just imposes some limiting assumptions (in addition to stationary, independent increments.

A process of random points in time is a Poisson process with rate  if and only if the following properties hold:

1. If  are measurable and , then  and  have the same distribution.
2. if  is a countable, disjoint collection of measurable sets in  then  is a set of independent variables.
3. If  is measurable and  for , and if  as  then
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Proof

As usual, let , the number of arrivals in , and in addition let  for  and . Note first that 
satisfies the following differential equation and initial condition:

Hence  for . Next for ,  satisfies the following differential equation and initial condition

Hence  for  and therefore  has the Poisson distribution with parameter .

Of course, part (a) is the stationary assumption and part (b) the independence assumption. The first limit in (c) is sometimes called the rate property
and the second limit the sparseness property. In a “small” time interval of length , the probability of a single random point is approximately ,
and the probability of two or more random points is negligible.

Sums

Suppose that  and  are independent random variables, and that  has the Poisson distribution with parameter  and  has the
Poisson distribution with parameter . Then  has the Poisson distribution with parameter .

Proof from the Poisson process

There are several ways to prove this result, but the one that gives the most insight is a probabilistic proof based on the Poisson process. Thus
suppose that  is a Poisson counting process with rate 1. We can associate  with  and  with , since these
have the correct distributions and are independent. But then  is .

Proof from probability generating functions

From our result above,  has PGF  for , and  has PGF  for . Hence  has PGF 
 for . But this is the PGF of the Poisson distribution with parameter .

Proof from convolution

From our results above,  has PDF  for , and  has PDF  for . Hence the PDF of  is
the convolution . For ,

By the binomial theorem, the last sum is .

From the last theorem, it follows that the Poisson distribution is infinitely divisible. That is, a Poisson distributed variable can be written as the sum
of an arbitrary number of independent, identically distributed (in fact also Poisson) variables.

Suppose that  has the Poisson distribution with parameter . Then for ,  has the same distribution as  where 
 are independent, and each has the Poisson distribution with parameter .

Normal Approximation

Because of the representation as a sum of independent, identically distributed variables, it's not surprising that the Poisson distribution can be
approximated by the normal.

Suppose that  has the Poisson distribution with parameter . Then the distribution of the variable below converges to the standard normal
distribution as .

Proof

As usual, we can assume that  is the Poisson counting process with rate 1. Note that  is simply the standard score associated with 
. For ,  is the sum of  independent variables, each with the Poisson distribution with parameter 1. Thus, from the central limit

theorem, the distribution of  converges to the standard normal distribution as . For general , it's possible to write 
 where  and  as  (in probability and hence in distribution).

→ r as n→∞

P [N( ) = 1]A

n

λ( )A

n

→0 as n→∞

P [N( ) > 1]A

n

λ( )A

n

(14.4.13)

(14.4.14)

=N(0, t]N

t

(0, t] (t) = P( = n)P

n

N

t

t ≥ 0 n ∈ N P

0

(t) =−r (t), t > 0; (0) = 1P

′

0

P

0

P

0

(14.4.15)

(t) =P

0

e

−rt

t ≥ 0 n ∈ N

+

P

n

(t) =−r (t)+r (t), t > 0; (0) = 0P

′

n

P

n

P

n−1

P

n

(14.4.16)

(t) = (rt /n!P

n

e

−rt

)

n

t ≥ 0 N

t

rt

dt r dt

N M N a ∈ (0,∞) M

b ∈ (0,∞) N +M a+b

N = ( : t ≥ 0)N

t

N N

a

M −N

a+b

N

a

N +M N

a+b

M P (s) = e

a(s−1)

s ∈ R N Q(s) = e

b(s−1)

s ∈ R M +N

P (s)Q(s) = e

(a+b)(s−1)

s ∈ R a+b

M g(n) = /n!e

−a

a

n

n ∈ N N h(n) = /n!e

−b

b

n

n ∈ N M +N

g∗ h n ∈ N

(g∗ h)(n) = g(k)h(n−k) = =∑

k=0

n

∑

k=0

n

e

−a

a

k

k!

e

−b

b

n−k

(n−k)!

e

−(a+b)

1

n!

∑

k=0

n

n!

k!(n−k)!

a

k

b

n−k

(14.4.17)

(a+b)

n

N a ∈ (0,∞) n ∈ N

+

N ∑

n

i=1

N

i

( , ,… , )N

1

N

2

N

n

a/n

N

t

t > 0

t→∞

=Z

t

− tN

t

t

√

(14.4.18)

( : t ≥ 0)N

t

Z

t

N

t

n ∈ N

+

N

n

n

Z

n

n→∞ t ∈ [0,∞)

= +Z

t

Z

n

W

t

n= ⌊t⌋ →0W

t

t→∞

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10269?pdf


14.4.5 https://stats.libretexts.org/@go/page/10269

Thus, if  has the Poisson distribution with parameter , and  is “large”, then the distribution of  is approximately normal with mean  and
standard deviation . When using the normal approximation, we should remember to use the continuity correction, since the Poisson is a discrete
distribution.

In the Poisson experiment, set . Increase  and note how the graph of the probability density function becomes more bell-shaped.

General Exponential

The Poisson distribution is a member of the general exponential family of distributions. This fact is important in various statistical procedures.

Suppose that  has the Poisson distribution with parameter . This distribution is a one-parameter exponential family with natural
parameter  and natural statistic .

Proof

This follows from the form of the Poisson PDF:

The Uniform Distribution

The Poisson process has some basic connections to the uniform distribution. Consider again the Poisson process with rate . As usual, 
 denotes the arrival time sequence and  the counting process.

For , the conditional distribution of  given  is uniform on the interval .

Proof

Given  (one arrival in ) the arrival time  takes values in . From independent and stationary increments properties,

Hence using the Poisson distribution,

More generally, for  and , the conditional distribution of  given  is the same as the distribution of the order
statistics of a random sample of size  from the uniform distribution on the interval .

Heuristic proof

Suppose that . On the event , the probability density of  at  is the probability
density function of independent inter-arrival times  times the probability of no arrivals in the interval . Hence
given , the conditional density of  at  is

But this is the PDF of the order statistics from a sample of size  from the uniform distribution on .

Note that the conditional distribution in the last result is independent of the rate . This means that, in a sense, the Poisson model gives the most
“random” distribution of points in time.

The Binomial Distribution

The Poisson distribution has important connections to the binomial distribution. First we consider a conditional distribution based on the number of
arrivals of a Poisson process in a given interval, as we did in the last subsection.

Suppose that  is a Poisson counting process with rate . If  with , and , then the
conditional distribution of  given  is binomial with trial parameter  and success parameter .

Proof

Note that given , the number of arrivals  in  takes values in . Again, the stationary and independent increments
properties are critical for the proof.

N a a N a

a

−−

√

r= t = 1 t

N a ∈ (0,∞)

ln(a) N

g(n) = = exp[n ln(a)], n ∈ Ne

−a

a

n

n!

e

−a

n!

(14.4.19)

r> 0

T = ( , ,…)T

0

T

1

N = ( : t ≥ 0)N

t

t > 0 T

1

= 1N

t

(0, t]

= 1N

t

(0, t] T

1

(0, t]

P( ≤ s ∣ = 1) = P( = 1, − = 0 ∣ = 1) = =T

1

N

t

N

s

N

t

N

s

N

t

P( = 1, − = 0)N

s

N

t

N

s

P( = 0)N

t

P( = 1)P( − = 0)N

s

N

t

N

s

P( = 1)N

t

(14.4.20)

P( ≤ s ∣ = 1) = = , 0 < s≤ tT

1

N

t

se

−r s

e

−r(t−s)

te

−r t

s

t

(14.4.21)

t > 0 n ∈ N

+

( , ,… , )T

1

T

2

T

n

= nN

t

n (0, t]

0 < < < < tt

1

t

2

t

n

= nN

t

( , ,… , )T

1

T

2

T

n

( , ,… , )t

1

t

2

t

n

( , − ,… , − )t

1

t

2

t

1

t

n

t

n−1

( , t)t

n

= nN

t

( , ,… , )T

1

T

2

T

n

( , ,… , )t

1

t

2

t

n

=

r r ⋯ re

−rt

1

e

−r( − )t

2

t

1

e

−r( − )t

n

t

n−1

e

−r(t− )t

n

(rt /n!e

−rt

)

n

n!

t

n

(14.4.22)

n [0, t]

r

( : t ∈ [0,∞))N

t

r ∈ (0,∞) s, t ∈ (0,∞) s< t n ∈ N

+

N

s

= nN

t

n p = s/t

= nN

t

N

s

(0, s] {0, 1… ,n}

P( = k ∣ = n) = = =N

s

N

t

P( = k, = n)N

s

N

t

P( = n)N

t

P( = k, − = n−k)N

s

N

t

N

s

P( = n)N

t

P( = k)P( − = n−k)N

s

N

t

N

s

P( = n)N

t

(14.4.23)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10269?pdf


14.4.6 https://stats.libretexts.org/@go/page/10269

Subsitituting into the Poisson PDFs gives

Note again that the conditional distribution in the last result does not depend on the rate . Given , each of the  arrivals, independently of the
others, falls into the interval  with probability  and into the interval  with probability . Here is essentially the same
result, outside of the context of the Poisson process.

Suppose that  has the Poisson distribution with parameter ,  has the Poisson distribution with parameter , and that 
and  are independent. Then the conditional distribution of  given  is binomial with parameters  and .

Proof

The proof is essentially the same as the previous theorem, with minor modifications. First recall from the result above that  has the
Poisson distribution with parameter . For  with ,

Subsitituting into the Poisson PDFs gives

More importantly, the Poisson distribution is the limit of the binomial distribution in a certain sense. As we will see, this convergence result is related
to the analogy between the Bernoulli trials process and the Poisson process that we discussed in the Introduction, the section on the inter-arrival
times, and the section on the arrival times.

Suppose that  for  and that  as . Then the binomial distribution with parameters  and 
converges to the Poisson distribution with parameter  as . That is, for fixed ,

Direct proof

The binomial PDF with parameters  and  at  can be written as

But  as  for fixed . Also, using a basic theorem from calculus,  as .

Proof from generating functions

An easier proof uses probability generating functions. For , using the same basic limit from calculus,

The left side is the PGF of the binomial distribution with parameters  and , while the right side is the PGF of the Poisson distribution with
parameter .

The mean and variance of the binomial distribution converge to the mean and variance of the limiting Poisson distribution, respectively.

1.  as 
2.  as 

Of course the convergence of the means is precisely our basic assumption, and is further evidence that this is the essential assumption. But for a
deeper look, let's return to the analogy between the Bernoulli trials process and the Poisson process. Recall that both have the strong renewal property
that at each fixed time, and at each arrival time, the process stochastically starts over, independently of the past. The difference, of course, is that time
is discrete in the Bernoulli trials process and continuous in the Poisson process. The convergence result is a special case of the more general fact that
if we run Bernoulli trials at a faster and faster rate but with a smaller and smaller success probability, in just the right way, the Bernoulli trials process
converges to the Poisson process. Specifically, suppose that we have a sequence of Bernoulli trials processes. In process  we perform the trials at a
rate of  per unit time, with success probability . Our basic assumption is that  as  where . Now let  denote the number
of successes in the time interval  for Bernoulli trials process , and let  denote the number of arrivals in this interval for the Poisson process
with rate . Then  has the binomial distribution with parameters  and , and of course  has the Poisson distribution with parameter .
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For , the distribution of  converges to the distribution of  as .

Proof

Note that  and hence . Since  and  as , it follows from the squeeze
theorem for limits that  as . Thus, the result follows from our previous convergence theorem.

Compare the Poisson experiment and the binomial timeline experiment.

1. Open the Poisson experiment and set  and . Run the experiment a few times and note the general behavior of the random points in
time. Note also the shape and location of the probability density function and the mean standard deviation bar.

2. Now open the binomial timeline experiment and set  and . Run the experiment a few times and note the general behavior of
the random points in time. Note also the shape and location of the probability density function and the mean standard deviation bar.

From a practical point of view, the convergence of the binomial distribution to the Poisson means that if the number of trials  is “large” and the
probability of success  “small”, so that  is small, then the binomial distribution with parameters  and  is well approximated by the Poisson
distribution with parameter . This is often a useful result, because the Poisson distribution has fewer parameters than the binomial distribution
(and often in real problems, the parameters may only be known approximately). Specifically, in the approximating Poisson distribution, we do not
need to know the number of trials  and the probability of success  individually, but only in the product . The condition that  be small means
that the variance of the binomial distribution, namely  is approximately , the variance of the approximating Poisson
distribution.

Recall that the binomial distribution can also be approximated by the normal distribution, by virtue of the central limit theorem. The normal
approximation works well when  and  are large; the rule of thumb is that both should be at least 5. The Poisson approximation works
well, as we have already noted, when  is large and  small.

Computational Exercises

Suppose that requests to a web server follow the Poisson model with rate  per minute. Find the probability that there will be at least 8
requests in a 2 minute period.

Answer

0.7798

Defects in a certain type of wire follow the Poisson model with rate 1.5 per meter. Find the probability that there will be no more than 4 defects
in a 2 meter piece of the wire.

Answer

0.8153

Suppose that customers arrive at a service station according to the Poisson model, at a rate of . Find the mean and standard deviation of the
number of customers in an 8 hour period.

Answer

32, 5.657

In the Poisson experiment, set  and . Run the experiment 1000 times and compute the following:

1. 
2. The relative frequency of the event .
3. The normal approximation to .

Answer
1. 0.6157
3. 0.6025

Suppose that requests to a web server follow the Poisson model with rate  per minute. Compute the normal approximation to the probability
that there will be at least 280 requests in a 1 hour period.

Answer

0.8818

Suppose that requests to a web server follow the Poisson model, and that 1 request comes in a five minute period. Find the probability that the
request came during the first 3 minutes of the period.

Answer
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0.6

Suppose that requests to a web server follow the Poisson model, and that 10 requests come during a 5 minute period. Find the probability that at
least 4 requests came during the first 3 minutes of the period.

Answer

0.9452

In the Poisson experiment, set  and . Run the experiment 100 times.

1. For each run, compute the estimate of  based on .
2. Over the 100 runs, compute the average of the squares of the errors.
3. Compare the result in (b) with .

Suppose that requests to a web server follow the Poisson model with unknown rate  per minute. In a one hour period, the server receives 342
requests. Estimate .

Answer

 per minute

In the binomial experiment, set  and , and run the simulation 1000 times. Compute and compare each of the following:

1. 
2. The relative frequency of the event 
3. The Poisson approximation to 

Answer
1. 0.8245
3. 0.8153

Suppose that we have 100 memory chips, each of which is defective with probability 0.05, independently of the others. Approximate the
probability that there are at least 3 defectives in the batch.

Answer

0.7350

In the binomial timeline experiment, set  and  and run the simulation 1000 times. Compute and compare each of the following:

1. 
2. The relative frequency of the event 
3. The Poisson approximation to 
4. The normal approximation to 

Answer
1. 0.2063
3. 0.2149
4. 0.2146

In the binomial timeline experiment, set  and  and run the simulation 1000 times. Compute and compare each of the following:

1. 
2. The relative frequency of the event 
3. The Poisson approximation to 
4. The normal approximation to 

Answer
1. 0.6066
3. 0.5837
4. 0.6247

A text file contains 1000 words. Assume that each word, independently of the others, is misspelled with probability .

1. If , approximate the probability that the file contains at least 20 misspelled words.
2. If , approximate the probability that the file contains at least 3 misspelled words.

Answer
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The true distribution of the number of misspelled words is binomial, with  and .

1. The normal approximation (with  and ) is 0.120858. The Poisson approximation (with parameter 
) is 0.124781. The true binomial probability is 0.123095.

2. The Poisson approximation (with parameter ) is 0.0803014. The true binomial probability is 0.0802093.
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14.5: Thinning and Superpositon
        

Thinning

Thinning or splitting a Poisson process refers to classifying each random point, independently, into one of a finite number of
different types. The random points of a given type also form Poisson processes, and these processes are independent. Our
exposition will concentrate on the case of just two types, but this case has all of the essential ideas.

The Two-Type Process

We start with a Poisson process with rate . Recall that this statement really means three interrelated stochastic processes: the
sequence of inter-arrival times , the sequence of arrival times , and the counting process 

. Suppose now that each arrival, independently of the others, is one of two types: type 1 with probability  and
type 0 with probability , where  is a parameter. Here are some common examples:

The arrivals are radioactive emissions and each emitted particle is either detected (type 1) or missed (type 0) by a counter.
The arrivals are customers at a service station and each customer is classified as either male (type 1) or female (type 0).

We want to consider the type 1 and type 0 random points separately. For this reason, the new random process is usually referred to
as thinning or splitting the original Poisson process. In some applications, the type 1 points are accepted while the type 0 points are
rejected. The main result of this section is that the type 1 and type 0 points form separate Poisson processes, with rates  and 

 respectively, and are independent. We will explore this important result from several points of view.

Bernoulli Trials

In the previous sections, we have explored the analogy between the Bernoulli trials process and the Poisson process. Both have the
strong renewal property that at each fixed time and at each arrival time, the process stochastically “restarts”, independently of the
past. The difference, of course, is that time is discrete in the Bernoulli trials process and continuous in the Poisson process. In this
section, we have both processes simultaneously, and given our previous explorations, it's perhaps not surprising that this leads to
some interesting mathematics.

Thus, in addition to the processes , , and , we have a sequence of Bernoulli trials  with success parameter .
Indicator variable  specifies the type of the th arrival. Moreover, because of our assumptions,  is independent of , , and .
Recall that , the trial number of the th success has the negative binomial distribution with parameters  and  for . We
take  by convention. Also, , the number of trials needed to go from the st success to the th success has the
geometric distribution with success parameter  for . Moreover,  is independent and  is
the partial sum process associated with :

As noted above, the Bernoulli trials process can be thought of as random points in discrete time, namely the trial numbers of the
successes. With this understanding,  is the sequence of inter-arrival times and  is the sequence of arrival times.

The Inter-arrival Times

Now consider just the type 1 points in our Poisson process. The time between the arrivals of st and th type 1 point is

Note that  has  terms. The next result shows that the type 1 points form a Poisson process with rate .

 is a sequence of independent variables and each has the exponential distribution with rate parameter 
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From the renewal properties of the Poisson process and the Bernoulli trials process, the inter-arrival times are independent and
identically distributed. Each inter-arrival time is the sum of a random number of independent terms; each term has the
exponential distribution with rate , and the number of terms has the geometric distribution on  with parameter .
Moreover, the number of terms is independent of the terms themselves. We showed in the section on the exponential
distribution that a random sum of this form has the exponential distribution with parameter .

Similarly, if  is the sequence of interarrvial times for the type 0 points, then  is a sequence of independent
variables, and each has the exponential distribution with rate . Moreover,  and  are independent.

Counting Processes

For , let  denote the number of type 1 arrivals in  and  the number of type 0 arrivals in . Thus, 
 and  are the counting processes for the type 1 arrivals and for the type 0 arrivals. The next

result follows from the previous subsection, but a direct proof is interesting.

For ,  has the Poisson distribution with parameter ,  has the Poisson distribution with parameter , and 
 and  are independent.

Proof

The important observation is that the conditional distribution of  given  is binomial with parameters  and . Thus
for  and ,

In the two-type Poisson experiment vary , , and  with the scroll bars and note the shape of the probability density functions.
For various values of the parameters, run the experiment 1000 times and compare the relative frequency functions to the
probability density functions.

Estimating the Number of Arrivals

Suppose that the type 1 arrivals are observable, but not the type 0 arrivals. This setting is natural, for example, if the arrivals are
radioactive emissions, and the type 1 arrivals are emissions that are detected by a counter, while the type 0 arrivals are emissions
that are missed. Suppose that for a given , we would like to estimate the total number arrivals  after observing the number
of type 1 arrivals .

The conditional distribution of  given  is the same as the distribution of .

Proof

Recall from the basic splitting result above that  and  are independent. Thus, for ,

The form of the probability density function follows since  as the Poisson distribution with parameter .
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This follows easily from our previous theorem since .

Thus, if the overall rate  of the process and the probability  that an arrival is type 1 are known, then it follows form the general
theory of conditional expectation that the best estimator of  based on , in the least squares sense, is

The mean square error is .

Proof

Note that . Thus the mean square error is just .

The Multi-Type Process

As you might guess, the results above generalize from 2 types to  types for general . Once again, we start with a Poisson
process with rate . Suppose that each arrival, independently of the others, is type  with probability  for 

. Of course we must have  for each  and . Then for each , the type  points form a
Poisson process with rate , and these processes are independent.

Superposition
Complementary to splitting or thinning a Poisson process is superposition: if we combine the random points in time from
independent Poisson processes, then we have a new Poisson processes. The rate of the new process is the sum of the rates of the
processes that were combined. Once again, our exposition will concentrate on the superposition of two processes. This case
contains all of the essential ideas.

Two Processes

Suppose that we have two independent Poisson processes. We will denote the sequence of inter-arrival times, the sequence of
arrival times, and the counting variables for the process  by , , and 

, and we assume that process  has rate . The new process that we want to consider is
obtained by simply combining the random points. That is, the new random points are , but of
course then ordered in time. We will denote the sequence of inter-arrival times, the sequence of arrival times, and the counting
variables for the new process by , , and . Clearly if  is an interval in 

 then

the number of combined points in  is simply the sum of the number of point in  for processes 1 and 2. It's also worth noting that

the first arrival for the combined process is the smaller of the first arrival times for processes 1 and 2. The other inter-arrival times,
and hence also the arrival times, for the combined process are harder to state.

The combined process is a Poisson process with rate . Moreover,

Proof

As noted above, if  is a subinterval of  then . The first term has the Poisson distribution
with parameter , the second term has the Poisson distribution with parameter , and the terms are independent.
Hence  has the Poisson distribution with parameter . Thus the counting process has
stationary, Poisson distributed increments. Next, if  is a sequence of disjoint subintervals of  then

is an independent sequence, so the counting process has independent increments.
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Computational Exercises

In the two-type Poisson experiment, set , , and . Run the experiment 1000 times, Compute the appropriate
relative frequency functions and investigate empirically the independence of the number of type 1 points and the number of
type 0 points.

Suppose that customers arrive at a service station according to the Poisson model, with rate  per hour. Moreover, each
customer, independently, is female with probability 0.6 and male with probability 0.4. Find the probability that in a 2 hour
period, there will be at least 20 women and at least 15 men.

Answer

0.5814

In the two-type Poisson experiment, set , , and . Run the experiment 100 times.

1. Compute the estimate of  based on  for each run.
2. Over the 100 runs, compute average of the sum of the squares of the errors.
3. Compare the result in (b) with the result in Exercise 8.

Suppose that a piece of radioactive material emits particles according to the Poisson model at a rate of  per second.
Moreover, assume that a counter detects each emitted particle, independently, with probability 0.9. Suppose that the number of
detected particles in a 5 second period is 465.

1. Estimate the number of particles emitted.
2. Compute the mean square error of the estimate.

Answer
1. 515
2. 50

This page titled 14.5: Thinning and Superpositon is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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14.6: Non-homogeneous Poisson Processes
        

Basic Theory

A non-homogeneous Poisson process is similar to an ordinary Poisson process, except that the average rate of arrivals is allowed to
vary with time. Many applications that generate random points in time are modeled more faithfully with such non-homogeneous
processes. The mathematical cost of this generalization, however, is that we lose the property of stationary increments.

Non-homogeneous Poisson processes are best described in measure-theoretic terms. Thus, you may need to review the sections on
measure theory in the chapters on Foundations, Probability Measures, and Distributions. Our basic measure space in this section is 

 with the -algebra of Borel measurable subsets (named for Émile Borel). As usual,  denotes Lebesgue measure on this
space, named for Henri Lebesgue. Recall that the Borel -algebra is the one generated by the intervals, and  is the generalization
of length on intervals.

Definition and Basic Properties

Of all of our various characterizations of the ordinary Poisson process, in terms of the inter-arrival times, the arrival times, and the
counting process, the characterizations involving the counting process leads to the most natural generalization to non-homogeneous
processes. Thus, consider a process that generates random points in time, and as usual, let  denote the number of random points
in the interval  for , so that  is the counting process. More generally,  denotes the number of
random points in a measurable , so  is our random counting measure. As before,  is a (random) distribution
function and  is the (random) measure associated with this distribution function.

Suppose now that  is measurable, and define  by

From properties of the integral,  is increasing and right-continuous on  and hence is distribution function. The positive
measure on  associated with  (which we will also denote by ) is defined on a measurable  by

Thus, , and for  with , . Finally, note that the measure  is absolutely
continuous with respect to , and  is the density function. Note the parallels between the random distribution function and
measure  and the deterministic distribution function and measure . With the setup involving  and  complete, we are ready
for our first definition.

A process that produces random points in time is a non-homogeneous Poisson process with rate function  if the counting
process  satisfies the following properties:

1. If  is a countable, disjoint collection of measurable subsets of  then  is a collection of
independent random variables.

2. If  is measurable then  has the Poisson distribution with parameter .

Property (a) is our usual property of independent increments, while property (b) is a natural generalization of the property of
Poisson distributed increments. Clearly, if  is a positive constant, then  for  and as a measure,  is
proportional to Lebesgue measure . In this case, the non-homogeneous process reduces to an ordinary, homogeneous Poisson
process with rate . However, if  is not constant, then  is not linear, and as a measure, is not proportional to Lebesgue measure.
In this case, the process does not have stationary increments with respect to , but does of course, have stationary increments with
respect to . That is, if  are measurable subsets of  and  then  and  will not in general have
the same distribution, but of course they will have the same distribution if .

In particular, recall that the parameter of the Poisson distribution is both the mean and the variance, so 
 for measurable , and in particular,  for . The
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function  is usually called the mean function. Since  (if  is continuous at ), it makes sense to refer to  as the rate
function. Locally, at , the arrivals are occurring at an average rate of  per unit time.

As before, from a modeling point of view, the property of independent increments can reasonably be evaluated. But we need
something more primitive to replace the property of Poisson increments. Here is the main theorem.

A process that produces random points in time is a non-homogeneous Poisson process with rate function  if and only if the
counting process  satisfies the following properties:

1. If  is a countable, disjoint collection of measurable subsets of  then  is a set of
independent variables.

2. For ,

So if  is “small” the probability of a single arrival in  is approximately , while the probability of more than 1
arrival in this interval is negligible.

Arrival Times and Time Change

Suppose that we have a non-homogeneous Poisson process with rate function , as defined above. As usual, let  denote the time
of the th arrival for . As with the ordinary Poisson process, we have an inverse relation between the counting process 

 and the arrival time sequence , namely , 
, and , since both events mean at least  random points in . The last

relationship allows us to get the distribution of .

For ,  has probability density function  given by

Proof

Using the inverse relationship above and the Poisson distribution of , the distribution function of  is

Differentiating with respect to  gives

The last sum collapses to .

In particular,  has probability density function  given by

Recall that in reliability terms,  is the failure rate function, and that the reliability function is the right distribution function:

In general, the functional form of  is clearly similar to the probability density function of the gamma distribution, and indeed, 
can be transformed into a random variable with a gamma distribution. This amounts to a time change which will give us additional
insight into the non-homogeneous Poisson process.

Let  for . Then  has the gamma distribution with shape parameter  and rate parameter 
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Proof

Let  denote the PDF of . Since  is strictly increasing and differentiable, we can use the standard change of variables
formula. So letting , the relationship is

Simplifying gives  for .

Thus, the time change  transforms the non-homogeneous Poisson process into a standard (rate 1) Poisson process. Here is
an equivalent way to look at the time change result.

For , let  where . Then  is the counting process for a standard, rate 1
Poisson process.

Proof
1. Suppose that  os a sequence of points in  with . Since  is strictly increasing, we

have , where of course . By assumption, the sequence of random variables 
 is independent, but this is also the sequence .

2. Suppose that  with , and let  and . Then  and so 
has the Poisson distribution with parameter .

Equivalently, we can transform a standard (rate 1) Poisson process into a a non-homogeneous Poisson process with a time change.

Suppose that  is the counting process for a standard Poisson process, and let  for 
. Then  is the counting process for a non-homogeneous Poisson process with mean function 

(and rate function ).

Proof
1. Let  be a sequence of points in  with . Since  is strictly increasing, we have 

. Hence  is a sequence of independent variables. But this
sequence is simply .

2. If  with . Then  has the Poisson distribution with parameter .
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14.7: Compound Poisson Processes
        

In a compound Poisson process, each arrival in an ordinary Poisson process comes with an associated real-valued random variable
that represents the value of the arrival in a sense. These variables are independent and identically distributed, and are independent
of the underlying Poisson process. Our interest centers on the sum of the random variables for all the arrivals up to a fixed time ,
which thus is a Poisson-distributed random sum of random variables. Distributions of this type are said to be compound Poisson
distributions, and are important in their own right, particularly since some surprising parametric distributions turn out to be
compound Poisson.

Basic Theory

Definition

Suppose we have a Poisson process with rate . As usual, we wil denote the sequence of inter-arrival times by 
, the sequence of arrival times by , and the counting process by .

To review some of the most important facts briefly, recall that  is a sequence of independent random variables, each having the
exponential distribution on  with rate . The sequence  is the partial sum sequence associated with , and has stationary
independent increments. For , the th arrival time  has the gamma distribution with parameters  and . The process 
is the inverse of , in a certain sense, and also has stationary independent increments. For , the number of arrivals  in

 has the Poisson distribution with parameter .

Suppose now that each arrival has an associated real-valued random variable that represents the value of the arrival in a certain
sense. Here are some typical examples:

The arrivals are customers at a store. Each customer spends a random amount of money.
The arrivals are visits to a website. Each visitor spends a random amount of time at the site.
The arrivals are failure times of a complex system. Each failure requires a random repair time.
The arrivals are earthquakes at a particular location. Each earthquake has a random severity, a measure of the energy released.

For , let  denote the value of the th arrival. We assume that  is a sequence of independent,
identically distributed, real-valued random variables, and that  is independent of the underlying Poisson process. The common
distribution may be discrete or continuous, but in either case, we let  denote the common probability density function. We will let 

 denote the common mean,  the common variance, and  the common moment generating function, so
that  for  in some interval  about 0. Here is our main definition:

The compound Poisson process associated with the given Poisson process  and the sequence  is the stochastic process 
 where

Thus,  is the total value for all of the arrivals in . For the examples above

 is the total income to the store up to time .
 is the total time spent at the site by the customers who arrived up to time .
 is the total repair time for the failures up to time .
 is the total energy released up to time .

Recall that a sum over an empty index set is 0, so .

Properties

Note that for fixed ,  is a random sum of independent, identically distributed random variables, a topic that we have studied
before. In this sense, we have a special case, since the number of terms  has the Poisson distribution with parameter . But we
also have a new wrinkle, since the process is indexed by the continuous time parameter , and so we can study its properties as a
stochastic process. Our first result is a pair of properties shared by the underlying Poisson process.
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1. If  with , then  has the same distribution as .
2. If  is a sequence of points in  with  then  is a

sequence of independent variables.

Proof
1. For ,

The number of terms in the last sum is , which has the same distribution as . Since the variables in the
sequence  are identically distributed, it follows that  has the same distribution as .

2. Suppose that  and let . Then for , as in (a)

The number of terms in this sum is . Since  has independent increments, and the variables in  are
independent, and since the indices between  and  are disjoint over , it follows that the random
variables  are independent over .

Next we consider various moments of the compound process.

For , the mean and variance of  are

1. 
2. 

Proof

Again, these are special cases of general results for random sums of IID variables, but we give separate proofs for
completeness. The basic tool is conditional expected value and conditional variance. Recall also that .

1. Note that .
2. Similarly, note that  and hence 

.

For , the moment generating function of  is given by

Proof

Again, this is a special case of the more general result for random sums of IID variables, but we give a another proof for
completeness. As with the last theorem, the key is to condition on  and recall that the MGF of a sum of independent
variables is the product of the MGFs. Thus

where  is the probability generating function of . But we know from our study of the Poisson distribution that 
 for .

By exactly the same argument, the same relationship holds for characteristic functions and, in the case that the variables in  take
values in , for probability generating functions.. That is, if the variables in  have generating function , then the generating
function  of  is given by

for  in the domain of , where generating function can be any of the three types we have discussed: probability, moment, or
characteristic.
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Examples and Special Cases

The Discrete Case

First we note that Thinning a Poisson process can be thought of as a special case of a compound Poisson process. Thus, suppose
that  is a Bernoulli trials sequence with success parameter , and as above, that  is independent of the
Poisson process . In the usual language of thinning, the arrivals are of two types (1 and 0), and  is the type of the th arrival.
Thus the compound process  constructed above is the thinned process, so that  is the number of type 1 points up to time . We
know that  is also a Poisson process, with rate .

The results above for thinning generalize to the case where the values of the arrivals have a discrete distribution. Thus, suppose 
takes values in a countable set , and as before, let  denote the common probability density function so that 

 for  and . For , let  denote the number of arrivals up to time  that have the value , and
let  denote the corresponding stochastic process. Armed with this setup, here is the result:

The compound Poisson process  associated with  and  can be written in the form

The processes  are independent Poisson processes, and  has rate  for .

Proof

Note that  and hence

The fact that  are independent Poisson processes, and that  has rate  for  follows from our result
on thinning.

Compound Poisson Distributions

A compound Poisson random variable can be defined outside of the context of a Poisson process. Here is the formal definition:

Suppose that  is a sequence of independent, identically distributed random variables, and that  is
independent of  and has the Poisson distribution with parameter . Then  has a compound Poisson
distribution.

But in fact, compound Poisson variables usually do arise in the context of an underlying Poisson process. In any event, the results
on the mean and variance above and the generating function above hold with  replaced by . Compound Poisson distributions are
infinitely divisible. A famous theorem of William Feller gives a partial converse: an infinitely divisible distribution on  must be
compound Poisson.

The negative binomial distribution on  is infinitely divisible, and hence must be compound Poisson. Here is the construction:

Let . Suppose that  is a sequence of independent variables, each having the logarithmic series
distribution with shape parameter . Suppose also that  is independent of  and has the Poisson distribution with
parameter . Then  has the negative binomial distribution on  with parameters  and .

Proof

As noted above, the probability generating function of  is  where  is the parameter of the
Poisson variable  and  is the common PGF of the the terms in the sum. Using the PGF of the logarithmic series
distribution, and the particular values of the parameters, we have

Using properties of logarithms and simple algebra, this reduces to
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which is the PGF of the negative binomial distribution with parameters  and .

As a special case ( ), it follows that the geometric distribution on  is also compound Poisson.

This page titled 14.7: Compound Poisson Processes is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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14.8: Poisson Processes on General Spaces
        

Basic Theory

The Process

So far, we have studied the Poisson process as a model for random points in time. However there is also a Poisson model for random points in space. Some specific
examples of such “random points” are

Defects in a sheet of material.
Raisins in a cake.
Stars in the sky.

The Poisson process for random points in space can be defined in a very general setting. All that is really needed is a measure space . Thus,  is a set (the
underlying space for our random points),  is a -algebra of subsets of  (as always, the allowable sets), and  is a positive measure on  (a measure of the
size of sets). The most important special case is when  is a (Lebesgue) measurable subset of  for some ,  is the -algebra of measurable subsets of ,
and  is -dimensional Lebesgue measure. Specializing further, recall the lower dimensional spaces:

1. When ,  and  is length measure.
2. When ,  and  is area measure.
3. When ,  and  is volume measure.

Of course, the characterizations of the Poisson process on , in term of the inter-arrival times and the characterization in terms of the arrival times do not
generalize because they depend critically on the order relation on . However the characterization in terms of the counting process generalizes perfectly to our
new setting. Thus, consider a process that produces random points in , and as usual, let  denote the number of random points in . Thus  is a
random, counting measure on 

The random measure  is a Poisson process or a Poisson random measure on  with density parameter  if the following axioms are satisfied:

1. If  then  has the Poisson distribution with parameter .
2. If  is a countable, disjoint collection of sets in  then  is a set of independent random variables.

To draw parallels with the Poison process on , note that axiom (a) is the generalization of stationary, Poisson-distributed increments, and axiom (b) is the
generalization of independent increments. By convention, if  then  with probability 1, and if  then  with probability 1.
(These distributions are considered degenerate members of the Poisson family.) On the other hand, note that if  then  has support .

In the two-dimensional Poisson process, vary the width  and the rate . Note the location and shape of the probability density function of . For selected
values of the parameters, run the simulation 1000 times and compare the empirical density function to the true probability density function.

For 

1. 
2. 

Proof

These result follow of course form our previous study of the Poisson distribution. Recall that the parameter of the Poisson distribution is both the mean and the
variance.

In particular,  can be interpreted as the expected density of the random points (that is, the expected number of points in a region of unit size), justifying the name of
the parameter.

In the two-dimensional Poisson process, vary the width  and the density parameter . Note the size and location of the mean standard deviation bar of . For
various values of the parameters, run the simulation 1000 times and compare the empirical mean and standard deviation to the true mean and standard
deviation.

The Distribution of the Random Points

As before, the Poisson model defines the most random way to distribute points in space, in a certain sense. Assume that we have a Poisson process  on 
with density parameter .

Given that  contains exactly one random point, the position  of the point is uniformly distributed on .

Proof

For  with ,

Using the Poisson distributions we have
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As a function of , this is the uniform distribution on  (with respect to ).

More generally, if  contains  points, then the positions of the points are independent and each is uniformly distributed in .

Suppose that  and . For , the conditional distribution of  given  is the binomial distribution with trial parameter 
and success parameter .

Proof

For ,

Using the Poisson distribtuions,

Canceling factors and letting , we have

Thus, given , each of the  random points falls into , independently, with probability , regardless of the density parameter .

More generally, suppose that  and that  is partitioned into  subsets  in . Then the conditional distribution of 
 given  is the multinomial distribution with parameters  and , where  for 

.

Thinning and Combining

Suppose that  is a Poisson random process on  with density parameter . Thinning (or splitting) this process works just like thinning the
Poisson process on . Specifically, suppose that the each random point, independently of the others is either type 1 with probability  or type 0 with probability

, where  is a new parameter. Let  and  denote the random counting measures associated with the type 1 and type 0 points, respectively. That is,
 is the number of type  random points in , for  and .

 and  are independent Poisson processes on  with density parameters  and , respectively.

Proof

The proof is like the one for the Poisson process on . For ,

But given , the number of type 1 points  has the binomial distribution with parameters  and . Hence letting  to simplify the
notation, we have

It follows from the factorization theorem that  has the Poisson distribution with parameter ,  has the Poisson distribution with parameter 
, and  and  are independent. Next suppose that  is a countable, disjoint collection of sets in . Then 

and  are each independent sets of random variables, and the two sets are independent of each other.

This result extends naturally to  types. As in the standard case, combining independent Poisson processes produces a new Poisson process, and the density
parameters add.

Suppose that  and  are independent Poisson processes on , with density parameters  and , respectively. Then the process obtained by
combining the random points is also a Poisson process on  with density parameter .

Proof

The new random measure, of course, is simply . Thus for , . But  has the Poisson distribution with
parameter  for , and the variables are independent, so  has the Poisson distribution with parameter 

. Next suppose that  is a countable, disjoint collection of sets in . Then 
 is a set of independent random variables.

Applications and Special Cases

Non-homogeneous Poisson Processes

A non-homogeneous Poisson process on  can be thought of simply as a Poisson process on  with respect to a measure that is not the standard Lebesgue
measure  on . Thus suppose that  is piece-wise continuous with , and let
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Consider the non-homogeneous Poisson process with rate function  (and hence mean function ). Recall that the Lebesgue-Stieltjes measure on  associated
with  (which we also denote by ) is defined by the condition

Equivalently,  is the measure that is absolutely continuous with respect to , with density function . That is, if  is a measurable subset of  then

The non-homogeneous Poisson process on  with rate function  is the Poisson process on  with respect to the measure .

Proof

This follows directly from the definitions. If  denotes the counting process associated with the non-homogeneous Poisson process, then  has stationary
increments, and for  with ,  has the Poisson distribution with parameter .

Nearest Points in 

In this subsection, we consider a rather specialized topic, but one that is fun and interesting. Consider the Poisson process on  with density parameter 
, where as usual,  is the -algebra of Lebesgue measurable subsets of , and  is -dimensional Lebesgue measure. We use the usual Euclidean norm on

:

For , let  denote the ball of radius  centered at the origin. Recall that  where

is the measure of the unit ball in , and where  is the gamma function. Of course, , , .

For , let , the number of random points in the ball , or equivalently, the number of random points within distance  of the origin. From our
formula for the measure of  above, it follows that  has the Poisson distribution with parameter .

Now let  and for  let  denote the distance of the th closest random point to the origin. Note that  is analogous to the th arrival time for the
Poisson process on . Clearly the processes  and  are inverses of each other in the sense that  if and only if 

. Both of these events mean that there are at least  random points within distance  of the origin.

Distributions

1.  has the gamma distribution with shape parameter  and rate parameter .
2.  has probability density function  given by

Proof

Let .

1. From the inverse relationship above,

But  has the Poisson distribution with parameter  so

which we know is the gamma CDF with parameters  and 
2. Let  denote the gamma PDF with parameters  and  and let . From the standard change of variables formula,

Substituting and simplifying gives the result.

 are independent for  and each has the exponential distribution with rate parameter .

Computational Exercises

Suppose that defects in a sheet of material follow the Poisson model with an average of 1 defect per 2 square meters. Consider a 5 square meter sheet of
material.
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1. Find the probability that there will be at least 3 defects.
2. Find the mean and standard deviation of the number of defects.

Answer
1. 0.4562
2. 2.5, 1.581

Suppose that raisins in a cake follow the Poisson model with an average of 2 raisins per cubic inch. Consider a slab of cake that measures 3 by 4 by 1 inches.

1. Find the probability that there will be at no more than 20 raisins.
2. Find the mean and standard deviation of the number of raisins.

Answer
1. 0.2426
2. 24, 4.899

Suppose that the occurrence of trees in a forest of a certain type that exceed a certain critical size follows the Poisson model. In a one-half square mile region of
the forest there are 40 trees that exceed the specified size.

1. Estimate the density parameter.
2. Using the estimated density parameter, find the probability of finding at least 100 trees that exceed the specified size in a square mile region of the forest

Answer
1.  per square mile
2. 0.0171

Suppose that defects in a type of material follow the Poisson model. It is known that a square sheet with side length 2 meters contains one defect. Find the
probability that the defect is in a circular region of the material with radius  meter.

Answer

0.0491

Suppose that raisins in a cake follow the Poisson model. A 6 cubic inch piece of the cake with 20 raisins is divided into 3 equal parts. Find the probability that
each piece has at least 6 raisins.

Answer

0.2146

Suppose that defects in a sheet of material follow the Poisson model, with an average of 5 defects per square meter. Each defect, independently of the others is
mild with probability 0.5, moderate with probability 0.3, or severe with probability 0.2. Consider a circular piece of the material with radius 1 meter.

1. Give the mean and standard deviation of the number of defects of each type in the piece.
2. Find the probability that there will be at least 2 defects of each type in the piece.

Answer
1. Mild: 7.854, 2.802; Moderate: 4.712, 2.171; Severe: 3.142, 1.772
2. 0.7762
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CHAPTER OVERVIEW

15: Renewal Processes
A renewal process is an idealized stochastic model for “events” that occur randomly in time (generically called renewals or
arrivals). The basic mathematical assumption is that the times between the successive arrivals are independent and identically
distributed. Renewal processes have a very rich and interesting mathematical structure and can be used as a foundation for building
more realistic models. Moreover, renewal processes are often found embedded in other stochastic processes, most notably Markov
chains.

15.1: Introduction
15.2: Renewal Equations
15.3: Renewal Limit Theorems
15.4: Delayed Renewal Processes
15.5: Alternating Renewal Processes
15.6: Renewal Reward Processes
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15.1: Introduction
       

A renewal process is an idealized stochastic model for “events” that occur randomly in time. These temporal events are generically
referred to as renewals or arrivals. Here are some typical interpretations and applications.

The arrivals are “customers” arriving at a “service station”. Again, the terms are generic. A customer might be a person and the
service station a store, but also a customer might be a file request and the service station a web server.
A device is placed in service and eventually fails. It is replaced by a device of the same type and the process is repeated. We do
not count the replacement time in our analysis; equivalently we can assume that the replacement is immediate. The times of the
replacements are the renewals
The arrivals are times of some natural event, such as a lightening strike, a tornado or an earthquake, at a particular geographical
point.
The arrivals are emissions of elementary particles from a radioactive source.

Basic Processes
The basic model actually gives rise to several interrelated random processes: the sequence of interarrival times, the sequence of
arrival times, and the counting process. The term renewal process can refer to any (or all) of these. There are also several natural
“age” processes that arise. In this section we will define and study the basic properties of each of these processes in turn.

Interarrival Times

Let  denote the time of the first arrival, and  the time between the st and th arrivals for . Our basic
assumption is that the sequence of interarrival times  is an independent, identically distributed sequence of
random variables. In statistical terms,  corresponds to sampling from the distribution of a generic interarrival time . We assume
that  takes values in  and , so that the interarrival times are nonnegative, but not identically 0. Let 

 denote the common mean of the interarrival times. We allow that possibility that . On the other hand,

.

Proof

This is a basic fact from properties of expected value. For a simple proof, note that if  then  for every 
 by Markov's inequality. But then .

If , we will let  denote the common variance of the interarrival times. Let  denote the common distribution
function of the interarrival times, so that

The distribution function  turns out to be of fundamental importance in the study of renewal processes. We will let  denote the
probability density function of the interarrival times if the distribution is discrete or if the distribution is continuous and has a
probability density function (that is, if the distribution is absolutely continuous with respect to Lebesgue measure on ). In the
discrete case, the following definition turns out to be important:

If  takes values in the set  for some , then  (or its distribution) is said to be arithmetic (the terms
lattice and periodic are also used). The largest such  is the span of .

The reason the definition is important is because the limiting behavior of renewal processes turns out to be more complicated when
the interarrival distribution is arithmetic.

The Arrival Times

Let
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We follow our usual convention that the sum over an empty index set is 0; thus . On the other hand,  is the time of the 
th arrival for . The sequence  is called the arrival time process, although note that  is not considered

an arrival. A renewal process is so named because the process starts over, independently of the past, at each arrival time.

Figure : The interarrival times and arrival times

The sequence  is the partial sum process associated with the independent, identically distributed sequence of interarrival times 
. Partial sum processes associated with independent, identically distributed sequences have been studied in several places in this

project. In the remainder of this subsection, we will collect some of the more important facts about such processes. First, we can
recover the interarrival times from the arrival times:

Next, let  denote the distribution function of , so that

Recall that if  has probability density function  (in either the discrete or continuous case), then  has probability density
function , the -fold convolution power of .

The sequence of arrival times  has stationary, independent increments:

1. If  then  has the same distribution as  and thus has distribution function 
2. If  then  is a sequence of independent random variables.

Proof

Recall that these are properties that hold generally for the partial sum sequence associated with a sequence of IID variables.

If  then

1. 
2. 
3. 

Proof

Part (a) follows, of course, from the additive property of expected value, and part (b) from the additive property of variance for
sums of independent variables. For part (c), assume that . Then . But  and  are
independent, so

Recall the law of large numbers:  as 

1. With probability 1 (the strong law).
2. In probability (the weak law).

Note that  for  since the interarrival times are nonnegative. Also . This can
be positive, so with positive probability, more than one arrival can occur at the same time. On the other hand, the arrival times are
unbounded:

 as  with probability 1.

Proof

Since , there exits  such that . From the second Borel-Cantelli lemma it follows that with
probability 1,  for infinitely many . Therefore  with probability 1.
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The Counting Process

For , let  denote the number of arrivals in the interval :

We will refer to the random process  as the counting process. Recall again that  is not considered an
arrival, but it's possible to have  for , so there may be one or more arrivals at time 0.

 for .

If  and  then  is the number of arrivals in .

Note that as a function of ,  is a (random) step function with jumps at the distinct values of ; the size of the jump at
an arrival time is the number of arrivals at that time. In particular,  is an increasing function of .

Figure : The counting process

More generally, we can define the (random) counting measure corresponding to the sequence of random points  in 
. Thus, if  is a (measurable) subset of , we will let  denote the number of the random points in :

In particular, note that with our new notation,  for  and  for . Thus, the random
counting measure is completely determined by the counting process. The counting process is the “cumulative measure function” for
the counting measure, analogous the cumulative distribution function of a probability measure.

For  and ,

1.  if and only if 
2.  if and only if 

Proof

Note that the event in part (a) means that at there are at least  arrivals in . The event in part (b) means that there are
exactly  arrivals in .

Of course, the complements of the events in (a) are also equivalent, so  if and only if . On the other hand, neither of
the events  and  implies the other. For example, we couse easily have  and . Taking
complements, neither of the events  and  implies the other. The last result also shows that the arrival time process 
and the counting process  are inverses of each other in a sense.

The following events have probability 1:
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The event in part (a) occurs if and only if  as , which occurs with probability 1 by the result above. The event
in part (b) occurs if and only if  for all  which also occurs with probability 1.

All of the results so far in this subsection show that the arrival time process  and the counting process  are inverses of one
another in a sense. The important equivalences above can be used to obtain the probability distribution of the counting variables in
terms of the interarrival distribution function .

For  and ,

1. 
2. 

The next result is little more than a restatement of the result above relating the counting process and the arrival time process.
However, you may need to review the section on filtrations and stopping times to understand the result

For ,  is a stopping time for the sequence of interarrival times 

Proof

Note that  takes values in , so we need to show that the event  is measurable with respect to 
 for . But from the result above,  if and only if  if and only if 

. The last event is clearly measurable with respect to .

The Renewal Function

The function  that gives the expected number of arrivals up to time  is known as the renewal function:

The renewal function turns out to be of fundamental importance in the study of renewal processes. Indeed, the renewal function
essentially characterizes the renewal process. It will take awhile to fully understand this, but the following theorem is a first step:

The renewal function is given in terms of the interarrival distribution function by

Proof

Recall that . Taking expected values gives the result. Note that the interchange of sum and expected
value is valid because the terms are nonnegative.

Note that we have not yet shown that  for , and note also that this does not follow from the previous theorem.
However, we will establish this finiteness condition in the subsection on moment generating functions below. If  is
differentiable, the derivative  is known as the renewal density, so that  gives the expected rate of arrivals per unit
time at .

More generally, if  is a (measurable) subset of , let , the expected number of arrivals in .

 is a positive measure on . This measure is known as the renewal measure.

Proof

 is a measure on  (albeit a random one). So if  is a sequence of disjoint, measurable subsets of 
then

Taking expected values gives
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Again, the interchange of sum and expected value is justified since the terms are nonnegative.

The renewal measure is also given by

Proof

Recall that . Taking expected values gives the result. Again, the interchange of expected value and
infinite series is justified since the terms are nonnegative.

If  with  then , the expected number of arrivals in .

The last theorem implies that the renewal function actually determines the entire renewal measure. The renewal function is the
“cumulative measure function”, analogous to the cumulative distribution function of a probability measure. Thus, every renewal
process naturally leads to two measures on , the random counting measure corresponding to the arrival times, and the
measure associated with the expected number of arrivals.

The Age Processes

For , . That is,  is in the random renewal interval .

Consider the reliability setting in which whenever a device fails, it is immediately replaced by a new device of the same type. Then
the sequence of interarrival times  is the sequence of lifetimes, while  is the time that the th device is placed in service. There
are several other natural random processes that can be defined.

The random variable

is called the current life at time . This variable takes values in the interval  and is the age of the device that is in service at
time . The random process  is the current life process.

The random variable

is called the remaining life at time . This variable takes values in the interval  and is the time remaining until the device
that is in service at time  fails. The random process  is the remaining life process.

Figure : The current and remaining life at time 

The random variable

is called the total life at time . This variable takes values in  and gives the total life of the device that is in service at
time . The random process  is the total life process.

Tail events of the current and remaining life can be written in terms of each other and in terms of the counting variables.

Suppose that , , and . Then
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1. 
2. 
3. 

Proof

Figure : The events of interest for the current and remaining life

Of course, the various equivalent events in the last result must have the same probability. In particular, it follows that if we know
the distribution of  for all  then we also know the distribution of  for all , and in fact we know the joint distribution of 

 for all  and hence also the distribution of  for all .

For fixed  the total life at  (the lifetime of the device in service at time ) is stochastically larger than a generic lifetime.
This result, a bit surprising at first, is known as the inspection paradox. Let  denote fixed interarrival time.

 for .

Proof

Recall that . The proof is by conditioning on . An important tool is the fact that if  and  are nested events in
a probability space (one a subset of the other), then the events are positively correlated, so that . Recall that 

 is the common CDF of the interarrival times. First

Next, for ,

We condition this additionally on , the time of the th arrival. For , and since  is independent of , we have

It follows that  for every , and hence

Basic Comparison

The basic comparison in the following result is often useful, particularly for obtaining various bounds. The idea is very simple: if
the interarrival times are shortened, the arrivals occur more frequently.

Suppose now that we have two interarrival sequences,  and  defined on the same
probability space, with  (with probability 1) for each . Then for  and ,

1. 
2. 
3. 

Examples and Special Cases

Bernoulli Trials

Suppose that  is a sequence of Bernoulli trials with success parameter . Recall that  is a sequence of
independent, identically distributed indicator variables with .

Recall the random processes derived from :

1.  where  the number of success in the first  trials. The sequence  is the partial sum process
associated with . The variable  has the binomial distribution with parameters  and .
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2.  where  the number of trials needed to go from success number  to success number . These are
independent variables, each having the geometric distribution on  with parameter .

3.  where  is the trial number of success . The sequence  is the partial sum process associated with .
The variable  has the negative binomial distribution with parameters  and .

It is natural to view the successes as arrivals in a discrete-time renewal process.

Consider the renewal process with interarrival sequence . Then

1. The basic assumptions are satisfied and that the mean interarrival time is .
2.  is the sequence of arrival times.
3.  is the counting process (restricted to ).
4. The renewal function is  for .

It follows that the renewal measure is proportional to counting measure on .

Run the binomial timeline experiment 1000 times for various values of the parameters  and . Compare the empirical
distribution of the counting variable to the true distribution.

Run the negative binomial experiment 1000 times for various values of the parameters  and . Comare the empirical
distribution of the arrival time to the true distribution.

Consider again the renewal process with interarrival sequence . For ,

1. The current life and remaining life at time  are independent.
2. The remaining life at time  has the same distribution as an interarrival time , namely the geometric distribution on 

with parameter .
3. The current life at time  has a truncated geometric distribution with parameters  and :

Proof

These results follow from age process events above.

This renewal process starts over, independently of the past, not only at the arrival times, but at fixed times  as well. The
Bernoulli trials process (with the successes as arrivals) is the only discrete-time renewal process with this property, which is a
consequence of the memoryless property of the geometric interarrival distribution.

We can also use the indicator variables as the interarrival times. This may seem strange at first, but actually turns out to be useful.

Consider the renewal process with interarrival sequence .

1. The basic assumptions are satisfied and that the mean interarrival time is .
2.  is the sequence of arrival times.
3. The number of arrivals at time 0 is  and the number of arrivals at time  is .
4. The number of arrivals in the interval  is  for . This gives the counting process.
5. The renewal function is  for .

The age processes are not very interesting for this renewal process.

For  (with probability 1),
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The Moment Generating Function of the Counting Variables

As an application of the last renewal process, we can show that the moment generating function of the counting variable  in an
arbitrary renewal process is finite in an interval about 0 for every . This implies that  has finite moments of all orders
and in particular that  for every .

Suppose that  is the interarrival sequence for a renewal process. By the basic assumptions, there exists 
such that . We now consider the renewal process with interarrival sequence , where 

 for . The renewal process with interarrival sequence  is just like the renewal process with
Bernoulli interarrivals, except that the arrival times occur at the points in the sequence , instead of .

For each ,  has finite moment generating function in an interval about 0, and hence  has moments of all orders
at 0.

Proof

Note first that  for each . Recall the moment generating function  of the geometric distribution with
parameter  is

But as with the process with Bernoulli interarrival times,  can be written as  where  and where 
 is a sum of  IID geometric variables, each with parameter . We don't really care about the explicit form of the

MGF of , but it is clearly finite in an interval of the from  where . But , so its MGF is also finite
on this interval.

The Poisson Process

The Poisson process, named after Simeon Poisson, is the most important of all renewal processes. The Poisson process is so
important that it is treated in a separate chapter in this project. Please review the essential properties of this process:

Properties of the Poisson process with rate .

1. The interarrival times have an exponential distribution with rate parameter . Thus, the basic assumptions above are
satisfied and the mean interarrival time is .

2. The exponential distribution is the only distribution with the memoryless property on .
3. The time of the th arrival  has the gamma distribution with shape parameter  and rate parameter .
4. The counting process  has stationary, independent increments and  has the Poisson distribution with

parameter  for .
5. In particular, the renewal function is  for . Hence, the renewal measure is a multiple of the standard

length measure (Lebesgue measure) on .

Consider again the Poisson process with rate parameter . For ,

1. The current life and remaining life at time  are independent.
2. The remaining life at time  has the same distribution as an interarrival time , namely the exponential distribution with

rate parameter .
3. The current life at time  has a truncated exponential distribution with parameters  and :

Proof

These results follow from age process events given above.

The Poisson process starts over, independently of the past, not only at the arrival times, but at fixed times  as well. The
Poisson process is the only renewal process with this property, which is a consequence of the memoryless property of the
exponential interarrival distribution.
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Run the Poisson experiment 1000 times for various values of the parameters  and . Compare the empirical distribution of the
counting variable to the true distribution.

Run the gamma experiment 1000 times for various values of the parameters  and . Compare the empirical distribution of the
arrival time to the true distribution.

Simulation Exercises

Open the renewal experiment and set . For each of the following interarrival distributions, run the simulation 1000 times
and note the shape and location of the empirical distribution of the counting variable. Note also the mean of the interarrival
distribution in each case.

1. The continuous uniform distribution on the interval  (the standard uniform distribution).
2. the discrete uniform distribution starting at , with step size , and with  points.
3. The gamma distribution with shape parameter  and scale parameter .
4. The beta distribution with left shape parameter  and right shape parameter .
5. The exponential-logarithmic distribution with shape parameter  and scale parameter .
6. The Gompertz distribution with shape paraemter  and scale parameter .
7. The Wald distribution with mean  and shape parameter .
8. The Weibull distribution with shape parameter  and scale parameter .

This page titled 15.1: Introduction is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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15.2: Renewal Equations
       

Many quantities of interest in the study of renewal processes can be described by a special type of integral equation known as a renewal
equation. Renewal equations almost always arise by conditioning on the time of the first arrival and by using the defining property of a
renewal process—the fact that the process restarts at each arrival time, independently of the past. However, before we can study renewal
equations, we need to develop some additional concepts and tools involving measures, convolutions, and transforms. Some of the results in
the advanced sections on measure theory, general distribution functions, the integral with respect to a measure, properties of the integral,
and density functions are needed for this section. You may need to review some of these topics as necessary. As usual, we assume that all
functions and sets that are mentioned are measurable with respect to the appropriate -algebras. In particular,  which is our basic
temporal space, is given the usual Borel -algebra generated by the intervals.

Measures, Integrals, and Transforms

Distribution Functions and Positive Measures

Recall that a distribution function on  is a function  that is increasing and continuous from the right. The
distribution function  defines a positive measure on , which we will also denote by , by means of the formula  for 

.

Figure :  is the cumulative measure at 

Hopefully, our notation will not cause confusion and it will be clear from context whether  refers to the positive measure (a set function)
or the distribution function (a point function). More generally, if  and  then . Note that the
positive measure associated with a distribution function is locally finite in the sense that  is  is bounded. Of course,
if  is unbounded,  may well be infinite. The basic structure of a distribution function and its associated positive measure occurred
several times in our preliminary discussion of renewal processes:

Distributions associated with a renewal process.

1. The distribution function  of the interarrival times defines a probability measure on 
2. The counting process  defines a (random) counting measure on 
3. the renewal function  defines a (deterministic) positive measure on 

Suppose again that  is a distribution function on . Recall that the integral associated with the positive measure  is also called the
Lebesgue-Stieltjes integral associated with the distribution function  (named for Henri Lebesgue and Thomas Stieltjes). If 
and  (measurable of course), the integral of  over  (if it exists) is denoted

We use the more conventional  for the integral over  and  for the integral over . On the other
hand,  means the integral over  for , and  means the integral over . Thus, the additivity of
the integral over disjoint domains holds, as it must. For example, for ,

This notation would be ambiguous without the clarification, but is consistent with how the measure works:  for , 
 for , etc. Of course, if  is continuous as a function, so that  is also continuous as a measure, then none

of this matters—the integral over an interval is the same whether or not endpoints are included. . The following definition is a natural
complement to the locally finite property of the positive measures that we are considering.

A function  is locally bounded if it is measurable and is bounded on  for each .

The locally bounded functions form a natural class for which our integrals of interest exist.

Suppose that  is a distribution function on  and  is locally bounded. Then  defined by 
 is also locally bounded.
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Proof

Suppose that  for  and . Then

Hence  is integrable on  and the integral is bounded by  for .

Note that if  and  are locally bounded, then so are  and . If  is increasing on  then  is locally bounded, so in particular, a
distribution function on  is locally bounded. If  is continuous on  then  is locally bounded. Similarly, if  and  are
distribution functions on  and if , then  and  are also distribution functions on . Convolution, which we
consider next, is another way to construct new distributions on  from ones that we already have.

Convolution

The term convolution means different things in different settings. Let's start with the definition we know, the convolution of probability
density functions, on our space of interest .

Suppose that  and  are independent random variables with values in  and with probability density functions  and ,
respectively. Then  has probability density function  given as follows, in the discrete and continuous cases, respectively

In the discrete case, it's understood that  is a possible value of , and the sum is over the countable collection of  with  a
value of  and  a value of . Often in this case, the random variables take values in , in which case the sum is simply over the set 

 for . The discrete and continuous cases could be unified by defining convolution with respect to a general positive
measure on . Moreover, the definition clearly makes sense for functions that are not necessarily probability density functions.

Suppose that  ae locally bounded and that  is a distribution function on . The convolution of  and  with
respect to  is the function on  defined by

If  and  are probability density functions for discrete distributions on a countable set  and if  is counting measure on , we
get discrete convolution, as above. If  and  are probability density functions for continuous distributions on  and if  is Lebesgue
measure, we get continuous convolution, as above. Note however, that if  is nonnegative then  for 
defines another distribution function on , and the convolution integral above is simply . This motivates our next
version of convolution, the one that we will use in the remainder of this section.

Suppose that  is locally bounded and that  is a distribution function on . The convolution of the function  with
the distribution  is the function  defined by

Note that if  and  are distribution functions on , the convolution  makes sense, with  simply as a function and  as a
distribution function. The result is another distribution function. Moreover in this case, the operation is commutative.

If  and  are distribution functions on  then  is also a distribution function on , and 

Proof

Let  and  denote the usual product measures on . For , let 
, the triangular region with vertices , , and . Then

|f(s)| ≤C

t

s ∈ [0, t] t ∈ [0,∞)

|f(x)| dG(x) ≤ G(s) ≤ G(t), t ∈ [0,∞)∫

s

0

C

t

C

t

(15.2.3)

f [0, s] G(t)C

t

s ∈ [0, t]

f g f +g fg f [0,∞) f

[0,∞) f [0,∞) f G H

[0,∞) c ∈ (0,∞) G+H cG [0,∞)

[0,∞)

[0,∞)

X Y [0,∞) f g

X+Y f ∗ g

(f ∗ g)(t)

(f ∗ g)(t)

= f(t−s)g(s)∑

s∈[0,t]

= f(t−s)g(s)ds∫

t

0

(15.2.4)

(15.2.5)

t X+Y s ∈ [0, t] s

X t−s Y N

{0, 1,… , t} t ∈ N

[0,∞)

f , g : [0,∞)→R H [0,∞) f g

H [0,∞)

t↦ f(t−s)g(s)dH(s)∫

t

0

(15.2.6)

f g C ⊆ [0,∞) H C

f g [0,∞) H

g G(t) = g(s)dH(s)∫

t

0

t ∈ [0,∞)

[0,∞) f(t−s)dG(s)∫

t

0

f : [0,∞)→R G [0,∞) f

G f ∗G

(f ∗G)(t) = f(t−s)dG(s), t ∈ [0,∞)∫

t

0

(15.2.7)

F G [0,∞) F ∗G F G

F G [0,∞) F ∗G [0,∞) F ∗G=G∗F

F ⊗G G⊗F [0,∞ = [0,∞)×[0,∞))

2

t ∈ [0,∞)

= {(r, s) ∈ [0,∞ : r+s≤ t}T

t

)

2

(0, 0) (t, 0) (0, t)

(F ∗G)(t) = F (t−s)dG(s) = dF (r)dG(s) = (F ⊗G) ( )∫

t

0

∫

t

0

∫

t−s

0

T

t

(15.2.8)
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This clearly defines a distribution function. Specifically, if  then  so 
. Hence  is decreasing. If  and  for 

with  as  then  (in the subset sense) as  so by the continuity property of  we have 
 as . Hence  is continuous from the right.

For the commutative property, we have  and . By the symmetry of the triangle
 with respect to the diagonal , these are the same.

If  and  are probability distribution functions corresponding to independent random variables  and  with values in , then 
 is the probabiltiy distribution function of . Suppose now that  is locally bounded and that  and  are

distribution functions on . From the previous result, both  and  make sense. Fortunately, they are the same so
that convolution is associative.

Suppose that  is locally bounded and that  and  are distribution functions on . Then

Proof

For ,

Finally, convolution is a linear operation. That is, convolution preserves sums and scalar multiples, whenever these make sense.

Suppose that  are locally bounded,  is a distribution function on , and . Then

1. 
2. 

Proof

These properties follow easily from linearity properties of the integral.

1. 
2. 

Suppose that  is locally bounded,  and  are distribution functions on , and that . Then

1. 
2. 

Proof

These properties also follow from linearity properties of the integral.

1. 
2. 

Laplace Transforms

Like convolution, the term Laplace transform (named for Pierre Simon Laplace of course) can mean slightly different things in different
settings. We start with the usual definition that you may have seen in your study of differential equations or other subjects:

The Laplace transform of a function  is the function  defined as follows, for all  for which the integral
exists in :

Suppose that  is nonnegative, so that the integral defining the transform exists in  for every . If  for some 
 then  for . The transform of a general function  exists (in ) if and only if the transform of  is finite at .

It follows that if  has a Laplace transform, then the transform  is defined on an interval of the form  for some . The

0 ≤ s≤ t <∞ ⊆T

s

T

t

(F ∗G)(s) = (F ⊗G)( ) ≤ (F ⊗G)( ) = (F ∗G)(t)T

s

T

t

F ∗G t ∈ [0,∞) ∈ [0,∞)t

n

n ∈ N

+

↓ tt

n

n→∞ ↓T

t

n

T

t

n→∞ F ⊗G

(F ∗G)( ) = (F ⊗G) ( ) ↓ (F ⊗G)( ) = (F ∗G)(t)t

n

T

t

n

T

t

n→∞ F ∗G

(F ∗G)(t) = (F ⊗G)( )T

t

(G∗F )(t) = (G⊗F )( )T

t

T

t

{(s, s) : s ∈ [0,∞)}

F G X Y [0,∞)

F ∗G X+Y f : [0,∞)→R G H

[0,∞) (f ∗G) ∗H f ∗ (G∗H)

f : [0,∞)→R G H [0,∞)

(f ∗G) ∗H = f ∗ (G∗H) (15.2.9)

t ∈ [0,∞)

[(f ∗G) ∗H](t) = (f ∗G)(t−s)dH(s) = f(t−s−r)dG(r)dH(s) = [f ∗ (G∗H)](t)∫

t

0

∫

t

0

∫

t−s

0

(15.2.10)

f , g : [0,∞)→R H [0,∞) c ∈ R

(f +g) ∗H = (f ∗H)+(g∗H)

(cf) ∗H = c(f ∗H)

[(f +g) ∗H](t) = (f +g)(t−s)dH(s) = f(t−s)dH(s)+ g(t−s)dH(s) = (f ∗H)(t)+(g∗H)(t)∫

t

0

∫

t

0

∫

t

0

[(cf) ∗H](t) = cf(t−s)dH(s) = c f(t−s)dH(s) = c(f ∗H)(t)∫

t

0

∫

t

0

f : [0,∞)→R G H [0,∞) c ∈ (0,∞)

f ∗ (G+H) = (f ∗G)+(f ∗H)

f ∗ (cG) = c(f ∗G)

[f ∗ (G+H)](t) = f(t−s)d(G+H)(s) = f(t−s)dG(s)+ f(t−s)dH(s) = (f ∗G)(t)+(f ∗H)(t)∫

t

0

∫

t

0

∫

t

0

[f ∗ (cG)](t) = f(t−s)d(cG)(s) = c f(t−s)dG(s) = c(f ∗G)(t)∫

t

0

∫

t

0

f : [0,∞)→R ϕ s ∈ (0,∞)

R

ϕ(s) = f(t)dt∫

∞

0

e

−st

(15.2.11)

f [0,∞] s ∈ (0,∞) ϕ( ) <∞s

0

∈ (0,∞)s

0

ϕ(s) <∞ s≥ s

0

f R |f | s

f ϕ (a,∞) a ∈ (0,∞)
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actual domain is of very little importance; the main point is that the Laplace transform, if it exists, will be defined for all sufficiently large .
Basically, a nonnegative function will fail to have a Laplace transform if it grows at a “hyper-exponential rate” as .

We could generalize the Laplace transform by replacing the Riemann or Lebesgue integral with the integral over a positive measure on 
.

Suppose that that  is a distribution on . The Laplace transform of  with respect to  is the function given
below, defined for all  for which the integral exists in :

However, as before, if  is nonnegative, then  for  defines another distribution function, and the previous
integral is simply . This motivates the definiton for the Laplace transform of a distribution.

The Laplace transform of a distribution  on  is the function  defined as follows, for all  for which the integral is
finite:

Once again if  has a Laplace transform, then the transform will be defined for all sufficiently large . We will try to be explicit
in explaining which of the Laplace transform definitions is being used. For a generic function, the first definition applies, and we will use a
lower case Greek letter. If the function is a distribution function, either definition makes sense, but it is usually the the latter that is
appropriate, in which case we use an upper case Greek letter. Fortunately, there is a simple relationship between the two.

Suppose that  is a distribution function on . Let  denote the Laplace transform of the distribution  and  the Laplace
transform of the function . Then .

Proof

The main tool is Fubini's theorem (named for Guido Fubini), which allow us to interchange the order of integration for a nonnegative
function.

For a probability distribution, there is also a simple relationship between the Laplace transform and the moment generating function.

Suppose that  is a random variable with values in  and with probability distribution function . The Laplace transform  and
the moment generating function  of the distribution  are given as follows, and so for all .

In particular, a probability distribution  on  always has a Laplace transform , defined on . Note also that if  (so
that  is not deterministically 0), then  for .

Laplace transforms are important for general distributions on  for the same reasons that moment generating functions are important
for probability distributions: the transform of a distribution uniquely determines the distribution, and the transform of a convolution is the
product of the corresponding transforms (and products are much nicer mathematically than convolutions). The following theorems give the
essential properties of Laplace transforms. We assume that the transforms exist, of course, and it should be understood that equations
involving transforms hold for sufficiently large .

Suppose that  and  are distributions on  with Laplace transforms  and , respectively. If  for  sufficiently
large, then 

s

t→∞

[0,∞)

G [0,∞) f : [0,∞)→R G

s ∈ (0,∞) R

s↦ f(t)dG(t)∫

∞

0

e

−st

(15.2.12)

f H(t) = f(x)dG(x)∫

t

0

t ∈ [0,∞)

dH(t)∫

∞

0

e

−st

F [0,∞) Φ s ∈ (0,∞)

Φ(s) = dF (t)∫

∞

0

e

−st

(15.2.13)

F s ∈ (0,∞)

F [0,∞) Φ F ϕ

F Φ(s) = sϕ(s)

ϕ(s) = F (t)dt = ( dF (x)) dt∫

∞

0

e

−st

∫

∞

0

e

−st

∫

t

0

= ( dt) dF (x) = dF (x) = Φ(s)∫

∞

0

∫

∞

x

e

−st

∫

∞

0

1

s

e

−sx

1

s

(15.2.14)

(15.2.15)

X [0,∞) F Φ

Γ F Φ(s) = Γ(−s) s ∈ (0,∞)

Φ(s)

Γ(s)

=E ( )= dF (t)e

−sX

∫

∞

0

e

−st

=E ( )= dF (t)e

sX

∫

∞

0

e

st

(15.2.16)

(15.2.17)

F [0,∞) Φ (0,∞) F (0) < 1

X Φ(s) < 1 s ∈ (0,∞)

[0,∞)

s ∈ (0,∞)

F G [0,∞) Φ Γ Φ(s) = Γ(s) s

G=H
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In the case of general functions on , the conclusion is that  except perhaps on a subset of  of measure 0. The Laplace
transform is a linear operation.

Suppose that  have Laplace transforms  and , respectively, and  then

1.  has Laplace transform 
2.  has Laplace transform 

Proof

These properties follow from the linearity of the integral. For  sufficiently large,

1. 
2. 

The same properties holds for distributions on  with . Integral transforms have a smoothing effect. Laplace transforms are
differentiable, and we can interchange the derivative and integral operators.

Suppose that  has Lapalce transform . Then  has derivatives of all orders and

Restated,  is the Laplace transform of the function . Again, one of the most important properties is that the Laplace
transform turns convolution into products.

Suppose that  is locally bounded with Laplace transform , and that  is a distribution function on  with Laplace
transform . Then  has Laplace transform .

Proof
By definition, the Laplace transform of  is

Writing  and reversing the order of integration, the last iterated integral can be written as

The interchange is justified, once again, by Fubini's theorem, since our functions are integrable (for sufficiently large ).
Finally with the substitution  the last iterated integral can be written as a product

If  and  are distributions on , then so is . The result above applies, of course, with  and  thought of as functions and 
 as a distribution, but multiplying through by  and using the theorem above, it's clear that the result is also true with all three as

distributions.

Renewal Equations and Their Solutions
Armed with our new analytic machinery, we can return to the study of renewal processes. Thus, suppose that we have a renewal process
with interarrival sequence , arrival time sequence , and counting process . As
usual, let  denote the common distribution function of the interarrival times, and let  denote the renewal function, so that 

 for . Of course, the probability distribution function  defines a probability measure on , but as noted
earlier,  is also a distribution functions and so defines a positive measure on . Recall that  is the right distribution
function (or reliability function) of an interarrival time.

The distributions of the arrival times are the convolution powers of . That is, .

Proof

This follows from the definitions:  is the distribution function of , and . Since  is an independent, identically
distributed sequence, 

[0,∞) f = g [0,∞)

f , g : [0,∞)→R ϕ γ c ∈ R

f +g ϕ+γ

cf cϕ

s

[f(t)+g(t)] dt = f(t)dt+ g(t)dt = ϕ(s)+γ(s)∫

∞

0

e

−st

∫

∞

0

e

−st

∫

∞

0

e

−st

cf(t)dt = c f(t)dt = cϕ(s)∫

∞

0

e

−st

∫

∞

0

e

−st

[0,∞) c ∈ (0,∞)

f : [0,∞)→R ϕ ϕ

(s) = (−1 f(t)dtϕ

(n)

∫

∞

0

)

n

t

n

e

−st

(15.2.18)

(−1)

n

ϕ

(n)

t↦ f(t)t

n

f : [0,∞)→R ϕ G [0,∞)

Γ f ∗G ϕ ⋅ Γ

f ∗G

(f ∗G)(t)dt = ( f(t−x)dG(x)) dt∫

∞

0

e

−st

∫

∞

0

e

−st

∫

t

0

(15.2.19)

=e

−st

e

−s(t−x)

e

−sx

( f(t−x)dt) dG(x)∫

∞

0

e

−sx

∫

∞

x

e

−s(t−x)

(15.2.20)

s ∈ (0,∞)

y = t−x

( f(y)dy)( sxdG(x)) = ϕ(s)Γ(s)∫

∞

0

e

−sy

∫

∞

0

e

−

(15.2.21)

F G [0,∞) F ∗G F F ∗G

G s

X = ( , ,…)X

1

X

2

T = ( , ,…)T

0

T

1

N = { : t ∈ [0,∞)}N

t

F M

M(t) =E( )N

t

t ∈ [0,∞) F [0,∞)

M [0,∞) = 1−FF

c

F = = F ∗F ∗⋯∗FF

n

F

∗n

F

n

T

n

=T

n

∑

n

i=1

X

i

X

=F

n

F

∗n
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The next definition is the central one for this section.

Suppose that  is locally bounded. An integral equation of the form

for an unknown function  is called a renewal equation for .

Often  where  is a random process of interest associated with the renewal process. The renewal equation
comes from conditioning on the first arrival time , and then using the defining property of the renewal process—the fact that the
process starts over, interdependently of the past, at the arrival time. Our next important result illustrates this.

Renewal equations for  and :

1. 
2. 

Proof
1. We condition on the time of the first arrival  and break the domain of integration  into the two parts  and :

If  then . If , then by the renewal property, . Hence we have

2. From (a) and the commutative property of convolution given above (recall that  is also a distribution function), we have 

Thus, the renewal function itself satisfies a renewal equation. Of course, we already have a “formula” for , namely .
However, sometimes  can be computed more easily from the renewal equation directly. The next result is the transform version of the
previous result:

The distributions  and  have Laplace transfroms  and , respectively, that are related as follows:

Proof from the renewal equation

Taking Laplace transforms through the renewal equation  (and treating all terms as distributions), we have 
. Solving for  gives the result. Recall that since  is a probability distribution on  with , we know that 
 for . The second equation follows from the first by simple algebra.

Proof from convolution

Recall that . Taking Laplace trasforms (again treating all terms as distributions), and using geometric series we have

Recall again that  for . Once again, the second equation follows from the first by simple algebra.

In particular, the renewal distribution  always has a Laplace transform. The following theorem gives the fundamental results on the
solution of the renewal equation.

Suppose that  is locally bounded. Then the unique locally bounded solution to the renewal equation  is 
.

Direct proof

Suppose that . Then . But from the renewal equation for  above, .
Hence we have . But  by definition of , so 

 and hence  is a solution to the renewal equation. Next since  is locally bounded, so is . Suppose now
that  is another locally bounded solution of the integral equation, and let . Then  is locally bounded and 

a : [0,∞)→R

u = a+u ∗F (15.2.22)

u : [0,∞)→R u

u(t) =E( )U

t

{ : t ∈ [0,∞)}U

t

=T

1

X

1

M F

M = F +M ∗F

F =M −F ∗M

X

1

[0,∞) [0, t] (t,∞)

M(t) =E( ) = E( ∣ = s)dF (s) = E( ∣ = s)dF (s)+ E( ∣ = s)dF (s)N

t

∫

∞

0

N

t

X

1

∫

t

0

N

t

X

1

∫

∞

t

N

t

X

1

(15.2.23)

s> t E( ∣ = s) = 0N

t

X

1

0 ≤ s≤ t E( ∣ = s) = 1+M(t−s)N

t

X

1

M(t) = [1+M(t−s)] dF (s) = F (t)+(M ∗F )(t)∫

t

0

(15.2.24)

M

F =M −M ∗F =M −F ∗M

M M =∑

∞

n=1

F

n

M

F M Φ Γ

Γ= , Φ =

Φ

1−Φ

Γ

Γ+1

(15.2.25)

M = F +M ∗F

Γ=Φ+ΓΦ Γ F [0,∞) F (0) < 1

0 <Φ(s) < 1 s ∈ (0,∞)

M =∑

∞

n=1

F

∗n

Γ= =∑

n=1

∞

Φ

n

Φ

1−Φ

(15.2.26)

0 <Φ(s) < 1 s ∈ (0,∞)

M

a : [0,∞)→R u = a+u ∗F

u = a+a∗M

u = a+a∗M u ∗F = a∗F +a∗M ∗F M M ∗F =M −F

u ∗F = a∗F +a∗ (M −F ) = a∗ [F +(M −F )] = a∗M a∗M = u−a u

u = a+u ∗F u a u = a+a∗M

v w = u−v w
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. Hence  for . Suppose that  for 
. Then  for . Since  it follows that  as . Hence 

 for  and so .

Proof from Laplace transforms

Let  and  denote the Laplace transforms of the functions  and , respectively, and  the Laplace transform of the distribution .
Taking Laplace transforms through the renewal equations gives the simple algebraic equation . Solving give

where  is the Laplace transform of the distribution . Thus  is the transform of .

Returning to the renewal equations for  and  above, we now see that the renewal function  completely determines the renewal
process: from  we can obtain , and everything is ultimately constructed from the interarrival times. Of course, this is also clear from the
Laplace transform result above which gives simple algebraic equations for each transform in terms of the other.

The Distribution of the Age Variables

Let's recall the definition of the age variables. A deterministic time  falls in the random renewal interval . The
current life (or age) at time  is , the remaining life at time  is , and the total life at time  is 

. In the usual reliability setting,  is the age of the device that is in service at time , while  is the time until that
device fails, and  is the total lifetime of the device.

For , let

and let . Note that  is the right distribution function of . We will derive and then solve a renewal equation
for  by conditioning on the time of the first arrival. We can then find integral equations that describe the distribution of the current age
and the joint distribution of the current and remaining ages.

For ,  satisfies the renewal equation  and hence for ,

Proof

As usual, we condition on the time of the first renewal:

We are naturally led to break the domain  of the integral into three parts , , and , which we take one at a
time.

Note first that  for 

The event  given  when 
Age1

Next note that  for 

The event  given  when 
Age2.png

Finally note that  for 

The event  given  when 
Age3.png

Putting the pieces together we have

In terms of our function notation, the first integral is , the second integral is 0 of course, and the third integral is 
. Thus the renewal equation is satisfied and the formula for  follows the fundamental theorem on

w ∗F = (u ∗F )−(v∗F ) = [(u−a)−(v−a) = u−v=w w =w ∗F

n

n ∈ N

+

|w(s)| ≤D

t

0 ≤ s≤ t |w(t)| ≤ (t)D

t

F

n

n ∈ N

+

M(t) = (t) <∞∑

∞

n=1

F

n

(t) → 0F

n

n→∞

w(t) = 0 t ∈ [0,∞) u = v

α θ a u Φ F

θ= α+θΦ

θ= = α(1+ ) = α+αΓ

α

1−Φ

Φ

1−Φ

(15.2.27)

Γ =

Φ

1−Φ

M θ a+a∗M

M F M

M F

t ∈ [0,∞) [ , )T
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t

T

+1N

t

t = t−C

t

T

N

t

t = − tR
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T

+1N

t

t

= −L

t

T

+1N

t

T

N

t

C

t

t R

t

L

t

t, y ∈ [0,∞)

(t) = P( > y) = P (N(t, t+y] = 0)r

y

R

t

(15.2.28)

(t) = (t+y)F

c

y

F

c

y↦ (t)r

y

R

t

r

y

y ∈ [0,∞) r

y

= + ∗Fr

y

F

c

y
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renewal equations.

We can now describe the distribution of the current age.

For ,

Proof

This follows from the previous theorem and the fact that  for .

Finally we get the joint distribution of the current and remaining ages.

For ,

Proof

Recall that . The result now follows from the result above for the remaining life.

Examples and Special Cases

Uniformly Distributed Interarrivals

Consider the renewal process with interarrival times uniformly distributed on . Thus the distribution function of an interarrival time is 
 for . The renewal function  can be computed from the general renewal equation for  by successively solving

differential equations. The following exercise give the first two cases.

On the interval , show that  is given as follows:

1.  for 
2.  for 

Solution

Figure : The graph of  on the interval 

Show that the Laplace transform  of the interarrival distribution  and the Laplace transform  of the renewal distribution  are
given by

Solution

First note that

The formula for  follows from .

Open the renewal experiment and select the uniform interarrival distribution on the interval . For each of the following values of
the time parameter, run the experiment 1000 times and note the shape and location of the empirical distribution of the counting variable.

t ∈ [0,∞)

P( ≥ x) = (t)+ (t−s)dM(s), x ∈ [0, t]C

t

F

c

∫
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P( ≥ x, > y) = P( > x+y)C

t
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Φ F Γ M

Φ(s) = , Γ(s) = ; s ∈ (0,∞)

1−e

−s

s

1−e

−s

s−1+e

−s

(15.2.34)
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1. 
2. 
3. 
4. 
5. 
6. 

The Poisson Process

Recall that the Poisson process has interarrival times that are exponentially distributed with rate parameter . Thus, the interarrival
distribution function  is given by  for . The following exercises give alternate proofs of fundamental results
obtained in the Introduction.

Show that the renewal function  is given by  for 

1. Using the renewal equation
2. Using Laplace transforms

Solution
1. The renewal equation gives

Substituting  in the integral gives

Multiplying through by , differentiating with respect to , and simplifying gives  for . Since , the
result follows.

2. The Laplace transform  of the distribution  is given by

So the Laplace transform  of the distribution  is given by

But this is the Laplace transform of the distribution .

Show that the current and remaining life at time  satisfy the following properties:

1.  and  are independent.
2.  has the same distribution as an interarrival time, namely the exponential distribution with rate parameter .
3.  has a truncated exponential distribution with parameters  and :

Solution

Recall again that  for . Using the result above on the joint distribution of the current and remaining life, and some
standard calculus, we have

Letting  gives  for . Letting  gives  for . But then also 
 for  and  so the variables are independent.

t = 5

t = 10

t = 15

t = 20

t = 25

t = 30

r> 0

F F (x) = 1−e

−rx

x ∈ [0,∞)
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−rt

∫

t

0
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e

rt

t (t) = rM

′

t ≥ 0 M(0) = 0
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Bernoulli Trials

Consider the renewal process for which the interarrival times have the geometric distribution with parameter . Recall that the probability
density function is

The arrivals are the successes in a sequence of Bernoulli trials. The number of successes  in the first  trials is the counting variable for 
. The renewal equations in this section can be used to give alternate proofs of some of the fundamental results in the Introduction.

Show that the renewal function is  for 

1. Using the renewal equation
2. Using Laplace transforms

Proof
1. The renewal equation for  is

So substituting values of  successively we have

and so forth.
2. The Laplace transform  of the distribution  is

Hence the Laplace transform of the distribution  is

But  is the transform of the distribution  on . That is,

Show that the current and remaining life at time  satisfy the following properties:.

1.  and  are independent.
2.  has the same distribution as an interarrival time, namely the geometric distribution with parameter .
3.  has a truncated geometric distribution with parameters  and :

Solution

Recall again that  for . Using the result above on the joint distribution of the current and remaining life and
geometric series, we have

Letting  gives  for . Letting  gives  for . But then
also  for  and  so the variables are independent.

p

f(n) = (1−p p, n ∈)

n−1

N
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A Gamma Interarrival Distribution

Consider the renewal process whose interarrival distribution  is gamma with shape parameter  and rate parameter . Thus

Recall also that  is the distribution of the sum of two independent random variables, each having the exponential distribution with rate
parameter .

Show that the renewal distribution function  is given by

Solution

The exponential distribution with rate parameter  has Laplace transform  and hence the Laplace transform  of the
interarrival distribution  is given by

So the Laplace transform  of the distribution  is

Using a partial fraction decomposition,

But the  is the Laplace transform of the distribution  and  is the Laplace transform of the distribution  (the
exponential distribution with parameter ).

Note that  as .

Figure : The graph of  on the interval  when 

Open the renewal experiment and select the gamma interarrival distribution with shape parameter  and scale parameter  (so
the rate parameter  is also 1). For each of the following values of the time parameter, run the experiment 1000 times and note the
shape and location of the empirical distribution of the counting variable.

1. 
2. 
3. 
4. 
5. 
6. 
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F 2 r ∈ (0,∞)

F (t) = 1−(1+rt) , t ∈ [0,∞)e

−rt

(15.2.52)

F

r

M

M(t) =− + rt+ , t ∈ [0,∞)

1

4

1

2

1

4

e

−2rt

(15.2.53)

r s↦ r/(r+s) Φ

F

Φ(s) =( )

r

r+s

2

(15.2.54)

Γ M

Γ(s) = =

Φ(s)

1−Φ(s)

r

2

s(s+2r)

(15.2.55)

Γ(s) = − = −

r

2s

r

2(s+2r)

1

2

r

s

1

4

2r

s+2r

(15.2.56)

r/s rt 2r/(s+2r) 1−e

−2rt

2r

M(t) ≈− + rt

1

4

1

2

t→∞

15.2.3 M [0, 5] r= 1

k= 2 b = 1

r=

1

b

t = 5

t = 10

t = 15

t = 20

t = 25

t = 30

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10278?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/15%3A_Renewal_Processes/15.02%3A_Renewal_Equations
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random


15.3.1 https://stats.libretexts.org/@go/page/10279

15.3: Renewal Limit Theorems
       

We start with a renewal process as constructed in the introduction. Thus,  is the sequence of interarrival times.
These are independent, identically distributed, nonnegative variables with common distribution function  (satisfying )
and common mean . When , we let . When , we let  denote the common standard deviation. Recall also
that  is the right distribution function (or reliability function). Then,  is the arrival time sequence,
where  and

is the time of the th arrival for . Finally,  is the counting process, where for ,

is the number of arrivals in . The renewal function  is defined by  for .

We noted earlier that the arrival time process and the counting process are inverses, in a sense. The arrival time process is the
partial sum process for a sequence of independent, identically distributed variables. Thus, it seems reasonable that the fundamental
limit theorems for partial sum processes (the law of large numbers and the central limit theorem theorem), should have analogs for
the counting process. That is indeed the case, and the purpose of this section is to explore the limiting behavior of renewal
processes. The main results that we will study, known appropriately enough as renewal theorems, are important for other stochastic
processes, particularly Markov chains.

Basic Theory

The Law of Large Numbers

Our first result is a strong law of large numbers for the renewal counting process, which comes as you might guess, from the law of
large numbers for the sequence of arrival times.

If  then  as  with probability 1.

Proof

Recall that  for . Hence, if ,

Recall that  as  with probability 1. Recall also that by the strong law of large numbers that  as 
 with probability 1. It follows that  as  with probability 1. Also,  as 

with probability 1. Therefore

as  with probability 1. Hence by the squeeze theorem for limits,  as  with probability 1.

Thus,  is the limiting average rate of arrivals per unit time.

Open the renewal experiment and set . For a variety of interarrival distributions, run the simulation 1000 times and note
how the empirical distribution is concentrated near .

The Central Limit Theorem

Our next goal is to show that the counting variable  is asymptotically normal.

Suppose that  and  are finite, and let

X = ( , ,…)X

1
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2
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c
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n
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n
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The distribution of  converges to the standard normal distribution as .

Proof

For , let

The distribution of  converges to the standard normal distribution as , by the ordinary central limit theorem. Next,
for ,  where . Also, 
where

But  as  and  as . Recall that , where as usual,  is the standard
normal distribution function. Thus, we conclude that  as .

Open the renewal experiment and set . For a variety of interarrival distributions, run the simulation 1000 times and note
the “normal” shape of the empirical distribution. Compare the empirical mean and standard deviation to  and ,
respectively

The Elementary Renewal Theorem

The elementary renewal theorem states that the basic limit in the law of large numbers above holds in mean, as well as with
probability 1. That is, the limiting mean average rate of arrivals is . The elementary renewal theorem is of fundamental
importance in the study of the limiting behavior of Markov chains, but the proof is not as easy as one might hope. In particular,
recall that convergence with probability 1 does not imply convergence in mean, so the elementary renewal theorem does not follow
from the law of large numbers.

 as .

Proof

We first show that . Note first that this result is trivial if , so assume that . Next,
recall that  is a stopping time for the sequence of interarrival times . Recall also that  for . From
Wald's equation it follows that

Therefore  for . Hence .

Next we show that . For this part of the proof, we need to truncate the arrival times, and use the
basic comparison method. For , let

and consider the renewal process with the sequence of interarrival times . We will use the standard
notation developed in the introductory section. First note that  for  and . From Wald's equation
again, it follows that . Therefore

But  for  and  and therefore
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(15.3.5)

Z

t

t→∞

n ∈ N

+

=W

n

−nμT

n

σ n

−−

√

(15.3.6)

W

n

n→∞

z ∈ R P( ≤ z) = P ( > t)Z

t

T

n(z,t)

n(z, t) = ⌊t/μ+zσ ⌋t/μ

3

− −−−

√ P( ≤ z) = P [ >w(z, t)]Z

t

W

n(z,t)

w(z, t) =−

z

1+zσ/ t/μ

−−−

√

− −−−−−−−−−−

√

(15.3.7)

n(z, t) →∞ t→∞ w(z, t) →−z t→∞ 1−Φ(−z) = Φ(z) Φ

P( ≤ z) →Φ(z)Z

t

t→∞

t = 50

t/μ σ t/μ

3

− −−−

√

1/μ

M(t)/t→1/μ t→∞

M(t)/t ≥ 1/μlim inf

t→∞

μ=∞ μ<∞

+1N

t

X > tT

+1N

t

t > 0

E ( ) =E( +1)μ= [M(t)+1]μ> tT

+1N

t

N

t

(15.3.8)

M(t)/t > 1/μ−1/t t > 0 M(t)/t ≥ 1/μlim inf

t→∞

M(t)/t ≤ 1/μlim sup

t→∞

a> 0

={X

a,i

,X

i

a,

≤ aX

i

> aX

i

(15.3.9)

= ( , ,…)X

a

X

a,1

X

a,2

≤ t+aT

a, +1N

a,t

t > 0 a> 0

[ (t)+1] ≤ t+aM

a

μ

a

≤( + )− , a, t > 0

(t)M

a

t

1

μ

a

a

tμ

a

1

t

(15.3.10)

M(t) ≤ (t)M

a

t > 0 a> 0

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10279?pdf


15.3.3 https://stats.libretexts.org/@go/page/10279

Hence  for . Finally,  as  by the monotone convergence theorem, so it
follows that 

Open the renewal experiment and set . For a variety of interarrival distributions, run the experiment 1000 times and
once again compare the empirical mean and standard deviation to  and , respectively.

The Renewal Theorem

The renewal theorem states that the expected number of renewals in an interval is asymptotically proportional to the length of the
interval; the proportionality constant is . The precise statement is different, depending on whether the renewal process is
arithmetic or not. Recall that for an arithmetic renewal process, the interarrival times take values in a set of the form 
for some , and the largest such  is the span of the distribution.

For ,  as  in each of the following cases:

1. The renewal process is non-arithmetic
2. The renewal process is arithmetic with span , and  is a multiple of 

The renewal theorem is also known as Blackwell's theorem in honor of David Blackwell. The final limit theorem we will study is
the most useful, but before we can state the theorem, we need to define and study the class of functions to which it applies.

Direct Riemann Integration

Recall that in the ordinary theory of Riemann integration, the integral of a function on the interval  exists if the upper and
lower Riemann sums converge to a common number as the partition is refined. Then, the integral of the function on  is
defined to be the limit of the integral on , as . For our new definition, a function is said to be directly Riemann
integrable if the lower and upper Riemann sums on the entire unbounded interval  converge to a common number as the
partition is refined, a more restrictive definition than the usual one.

Suppose that . For  and , let  and 
. The lower and upper Riemann sums of  on  corresponding to  are

The sums exist in  and satisfy the following properties:

1.  for 
2.  increases as  decreases
3.  decreases as  decreases

It follows that  and  exist in  and . Naturally, the case where the
limits are finite and agree is what we're after.

A function  is directly Riemann integrable if  for every  and

The common value is .

Ordinary Riemann integrability on  allows functions that are unbounded and oscillate wildly as , and these are the
types of functions that we want to exclude for the renewal theorems. The following result connects ordinary Riemann integrability
with direct Riemann integrability.
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If  is integrable (in the ordinary Riemann sense) on  for every  and if  for some
 then  is directly Riemann integrable.

Here is a simple and useful class of functions that are directly Riemann integrable.

Suppose that  is decreasing with . Then  is directly Riemann integrable.

The Key Renewal Theorems

The key renewal theorem is an integral version of the renewal theorem, and is the most useful of the various limit theorems.

Suppose that the renewal process is non-arithmetic and that  is directly Riemann integrable. Then

Connections

Our next goal is to see how the various renewal theorems relate.

The renewal theorem implies the elementary renewal theorem:

Proof

Let  for . From the renewal theorem,  as . Therefore  as .
It follows that  as . But the renewal function is increasing so for ,

From the the squeeze theorem for limits it follows that  as .

Conversely, the elementary renewal theorem almost implies the renewal theorem.

Proof

Assume that  exists for each . (This assumption is the reason that the proof is
incomplete.) Note that

Let  to conclude that  for all  and . It follows that  is increasing and 
for  where  is a constant. Exactly as in the proof of the previous theorem, it follows that  as .
From the elementary renewal theorem, we can conclude that .

The key renewal theorem implies the renewal theorem

Proof

This result follows by applying the key renewal theorem to the function  where .

Conversely, the renewal theorem implies the key renewal theorem.

The Age Processes

The key renewal theorem can be used to find the limiting distributions of the current and remaining age. Recall that for 
the current life at time  is  and the remaining life at time  is .

If the renewal process is non-arithmetic, then

Proof

g : [0,∞)→ [0,∞) [0, t] t ∈ [0,∞) (h) <∞U

g

h ∈ (0,∞) g

g : [0,∞)→ [0,∞) g(t)dt <∞∫

∞

0

g

g : [0,∞)→ [0,∞)

(g∗M)(t) = g(t−s)dM(s) → g(x)dx as t→∞∫

t

0

1

μ

∫

∞

0
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M(t)/t→1/μ t→∞

g(x) = [M(t+x)−M(t)]lim

t→∞

x > 0

M(t+x+y)−M(t) = [M(t+x+y)−M(t+x)] +[M(t+x)−M(t)] (15.3.16)

t→∞ g(x+u) = g(x)+g(y) x ≥ 0 y ≥ 0 g g(x) = cx

x ≥ 0 c M(n)/n→ c n→∞
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t = t−C

t

T

N

t

t = − tR
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Recall that

But  as , and by the key renewal theorem, the integral converges to . Finally a
change of variables in the limiting integral gives the result.

If the renewal process is aperiodic, then

Proof

Recall that, since the renewal process is aperiodic,

Again,  as . The change of variables  changes the integral into . By the
key renewal theorem, this integral converges .

The current and remaining life have the same limiting distribution. In particular,

Proof

By the previous two theorems, the limiting right distribution functions of  and  are the same. The ordinary (left) limiting
distribution function is

But recall that  so the result follows since 

The fact that the current and remaining age processes have the same limiting distribution may seem surprising at first, but there is a
simple intuitive explanation. After a long period of time, the renewal process looks just about the same backward in time as
forward in time. But reversing the direction of time reverses the rolls of current and remaining age.

Examples and Special Cases

The Poisson Process

Recall that the Poisson process, the most important of all renewal processes, has interarrival times that are exponentially distributed
with rate parameter . Thus, the interarrival distribution function is  for  and the mean interarrival time
is .

Verify each of the following directly:

1. The law of large numbers for the counting process.
2. The central limit theorem for the counting process.
3. The elementary renewal theorem.
4. The renewal theorem.

Bernoulli Trials

Suppose that  is a sequence of Bernoulli trials with success parameter . Recall that  is a sequence of
independent, identically distributed indicator variables with . We have studied a number of random processes

P( > x) = (t+x)+ (t+x−s)dM(s), x ∈ [0,∞)R

t

F

c

∫

t

0

F

c

(15.3.18)

(t+x) → 0F

c

t→∞ (x+y)dy

1

μ

∫

∞

0

F

c

P( > x) → (y)dy as t→∞, x ∈ [0,∞)R

t

1

μ

∫

∞

x

F

c
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P( > x) = (t)+ (t−s)dM(s), x ∈ [0, t]C
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∫
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(t) → 0F

c
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∫
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∫
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∞
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∫
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derived from :

Random processes associated with Bernoulli trials.

1.  where  the number of successes in the first  trials. The sequence  is the partial sum process
associated with . The variable  has the binomial distribution with parameters  and .

2.  where  the number of trials needed to go from success number  to success number . These are
independent variables, each having the geometric distribution on  with parameter .

3.  where  is the trial number of success . The sequence  is the partial sum process associated with .
The variable  has the negative binomial distribution with parameters  and .

Consider the renewal process with interarrival sequence . Thus,  is the mean interarrival time, and  is the counting
process. Verify each of the following directly:

1. The law of large numbers for the counting process.
2. The central limit theorem for the counting process.
3. The elementary renewal theorem.

Consider the renewal process with interarrival sequence . Thus, the mean interarrival time is  and the number of
arrivals in the interval  is  for . Verify each of the following directly:

1. The law of large numbers for the counting process.
2. The central limit theorem for the counting process.
3. The elementary renewal theorem.

This page titled 15.3: Renewal Limit Theorems is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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15.4: Delayed Renewal Processes
       

Basic Theory

Preliminaries

A delayed renewal process is just like an ordinary renewal process, except that the first arrival time is allowed to have a different
distribution than the other interarrival times. Delayed renewal processes arise naturally in applications and are also found
embedded in other random processes. For example, in a Markov chain (which we study in the next chapter), visits to a fixed state,
starting in that state form the random times of an ordinary renewal process. But visits to a fixed state, starting in another state
form a delayed renewal process.

Suppose that  is a sequence of independent variables taking values in , with  identically
distributed. Suppose also that  for . The stochastic process with  as the sequence of interarrival times
is a delayed renewal process.

As before, the actual arrival times are the partial sums of . Thus let

so that  and  is the time of the th arrival for . Also as before,  is the number of arrivals in  (not
counting ):

If we restart the clock at time , we have an ordinary renewal process with interarrival sequence . We use
some of the standard notation developed in the Introduction for this renewal process. In particular,  denotes the common
distribution function and  the common mean of  for . Similarly  denotes the distribution function of
the sum of  independent variables with distribution function , and  denotes the renewal function:

On the other hand, we will let  denote the distribution function of  (the special interarrival time, different from the rest), and
we will let  denote the distribution function of  for . As usual,  and  are the corresponding
right-tail distribution functions.

 for .

Proof

The follows from the fact that  is the sum of  independent random variables; the first has distribution function  and the
remaining  have distribution function .

Finally, we will let  denote the renewal function for the delayed renewal process. Thus,  is the expected number of
arrivals in  for .

The delayed renewal function satisfies

Proof

The proof is just as before.
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The delayed renewal function  satisfies the equation ; that is,

Proof

The proof follows from conditioning on the time of the first arrival . Note first that  if  and
 if . Hence

The delayed renewal function  satisfies the renewal equation ; that is,

Proof

Note that

Asymptotic Behavior

In a delayed renewal process only the first arrival time is changed. Thus, it's not surprising that the asymptotic behavior of a
delayed renewal process is the same as the asymptotic behavior of the corresponding regular renewal process. Our first result is the
strong law of large numbers for the delayed renewal process.

 as  with probability 1.

Proof

We will show that  as  with probability 1. Then, the proof is exactly like the proof of the law of large
numbers for a regular renewal process. For ,

But  as  with probability 1; of course  as ; and  as  with
probability 1 by the ordinary strong law of large numbers.

Our next result is the elementary renewal theorem for the delayed renewal process.

 as .

Next we have the renewal theorem for the delayed renwal process, also known as Blackwell's theorem, named for David Blackwell.

For ,  as  in each of the following cases:

1.  is non-arithmetic
2.  is arithmetic with span , and  is a multiple of .

Finally we have the key renewal theorem for the delayed renewal process.

U(t) =E( ) =E( 1( ≤ t)) = P( ≤ t) = (t)N
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∑
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∑
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∞
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U U =G+M ∗G

U(t) =G(t)+ M(t−s)dG(s), t ∈ [0,∞)∫
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Suppose that the renewal process is non-arithmetic and that  is directly Riemann integrable. Then

Stationary Point Processes

Recall that a point process is a stochastic process that models a discrete set of random points in a measure space . Often,
of course,  for some  and  is the corresponding -dimensional Lebesgue measure. The special cases  with
counting measure and  with length measure are of particular interest, in part because renewal and delayed renewal
processes give rise to point processes in these spaces.

For a general point process on , we use our standard notation and denote the number of random points  by . There
are a couple of natural properties that a point process may have. In particular, the process is said to be stationary if 
implies that  and  have the same distribution for . In  the term stationary increments is often used,
because the stationarity property means that for , the distribution of  depends only on .

Consider now a regular renewal process. We showed earlier that the asymptotic distributions of the current life and remaining life
are the same. Intuitively, after a very long period of time, the renewal process looks pretty much the same forward in time or
backward in time. This suggests that if we make the renewal process into a delayed renewal process by giving the first arrival time
this asymptotic distribution, then the resulting point process will be stationary. This is indeed the case. Consider the setting and
notation of the preliminary subsection above.

For the delayed renewal process, the point process  is stationary if and only if the initial arrival time has distribution function

in which case the renewal function is  for .

Proof

Suppose first that  has stationary increments. In particular, this means that the arrival times have continuous distributions.
For ,

A theorem from analysis states that the only increasing solutions to such a functional equation are linear functions, and hence 
 for some positive constant . Substituting  into the renewal equation above gives

Integrating by parts in the last integral and simplifying gives

Finally, if we let , the left side converges to 1 and the right side to , so . Thus  has the form given in the
statement of the theorem and  for .

Conversely, suppose that  has the form given in the theorem. Note that this is a continuous distribution with density function 
. Substituting into the renewal equation above, it follows that the renewal density  satisfies

Hence  for . Next, the process  has stationary increments if and only if the remaining life  at time  has
distribution function  for each . Arguing just as in Section 2, we have

g : [0,∞)→ [0,∞)

(g∗U)(t) = g(t−s)dU(s) → g(x)dx as t→∞∫
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But  and , so substituting into the last displayed equation and using a simple
substitution in the integral gives

Examples and Applications

Patterns in Multinomial Trials

Suppose that  is a sequence of independent, identically distributed random variables taking values in a finite set 
, so that  is a sequence of multinomial trials. Let  denote the common probability density function so that for a generic trial

variable , we have  for . We assume that all outcomes in  are actually possible, so  for .

In this section, we interpret  as an alphabet, and we write the sequence of variables in concatenation form,  rather
than standard sequence form. Thus the sequence is an infinite string of letters from our alphabet . We are interested in the
repeated occurrence of a particular finite substring of letters (that is, a “word” or “pattern”) in the infinite sequence.

So, fix a word  (again, a finite string of elements of ), and consider the successive random trial numbers  where the
word  is completed in . Since the sequence  is independent and identically distributed, it seems reasonable that these variables
are the arrival times of a renewal process. However there is a slight complication. An example may help.

Suppose that  is a sequence of Bernoulli trials (so ). Suppose that the outcome of  is

1. For the word  note that , , 
2. For the word , note that , , , 

In this example, you probably noted an important difference between the two words. For , a suffix of the word (a proper substring
at the end) is also a prefix of the word (a proper substring at the beginning. Word  does not have this property. So, once we
“arrive” at , there are ways to get to  again (taking advantage of the suffix-prefix) that do not exist starting from the beginning of
the trials. On the other hand, once we arrive at , arriving at  again is just like with a new sequence of trials. Thus we are lead to
the following definition.

Suppose that  is a finite word from the alphabet . If no proper suffix of  is also a prefix, then  is simple. Otherwise,  is
compound.

Returning to the general setting, let  and then let  for . For , let .
For occurrences of the word ,  is the sequence of interarrival times,  is the sequence of
arrival times, and  is the counting process. If  is simple, these form an ordinary renewal process. If  is
compound, they form a delayed renewal process, since  will have a different distribution than . Since the structure
of a delayed renewal process subsumes that of an ordinary renewal process, we will work with the notation above for the delayed
process. In particular, let  denote the renewal function. Everything in this paragraph depends on the word  of course, but we
have suppressed this in the notation.

Suppose , where  for each , so that  is a word of length . Note that  takes values in 
. If  is simple, this applies to the other interarrival times as well. If  is compound, the situation is more

complicated  will have some minimum value , but the possible values are positive integers, of course, and
include . In any case, the renewal process is arithmetic with span 1. Expanding the definition of the probability
density function , let

so that  is the probability of forming  with  consecutive trials. Let  denote the common mean of  for 
, so  is the mean number of trials between occurrences of . Let , so that  is the mean time
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number of trials until  occurs for the first time. Our first result is an elegant connection between  and , which has a
wonderfully simple proof from renewal theory.

If  is a word in  then

Proof

Suppose that  has length , and consider the discrete interval . By the renewal
theorem,  as . But , the number of times that  occurs in the interval, is either 1 or
0. Hence  for any .

Our next goal is to compute  in the case that  is a compound word.

Suppose that  is a compound word, and that  is the largest word that is a proper suffix and prefix of . Then

Proof

Since  is the largest prefix-suffix, the expected number of trials to go from  to  is the same as the expected number of trials
to go from  to , namely . (Note that the paths from  to  are the same as the paths from  to .) But to form the word 

 initially, the word  must be formed first, so this result follows from the additivity of expected value and the previous result.

By repeated use of the last result, we can compute the expected number of trials needed to form any compound word.

Consider Bernoulli trials with success probability , and let . For each of the following strings, find the
expected number of trials between occurrences and the expected number of trials to the first occurrence.

1. 
2. 
3. 
4.  (  times)

Answer

1. 

2. , 

3. , 

4.  

Recall that an ace-six flat die is a six-sided die for which faces 1 and 6 have probability  each while faces 2, 3, 4, and 5 have
probability  each. Ace-six flat dice are sometimes used by gamblers to cheat.

Suppose that an ace-six flat die is thrown repeatedly. Find the expected number of throws until the pattern  first
occurs.

Solution

From our main theorem,

a μ(a) f(a)

a S

μ(a) =

1

f(a)

(15.4.21)
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Suppose that a monkey types randomly on a keyboard that has the 26 lower-case letter keys and the space key (so 27 keys).
Find the expected number of keystrokes until the monkey produces each of the following phrases:

1. it was the best of times
2. to be or not to be

Proof
1. 
2. 

This page titled 15.4: Delayed Renewal Processes is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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15.5: Alternating Renewal Processes
       

Basic Theory

Preliminaries

An alternating renewal process models a system that, over time, alternates between two states, which we denote by 1 and 0 (so the
system starts in state 1). Generically, we can imagine a device that, over time, alternates between on and off states. Specializing
further, suppose that a device operates until it fails, and then is replaced with an identical device, which in turn operates until failure
and is replaced, and so forth. In this setting, the times that the device is functioning correspond to the on state, while the replacement
times correspond to the off state. (The device might actually be repaired rather than replaced, as long as the repair returns the device
to pristine, new condition.) The basic assumption is that the pairs of random times successively spent in the two states form an
independent, identically distributed sequence. Clearly the model of a system alternating between two states is basic and important, but
moreover, such alternating processes are often found embedded in other stochastic processes.

Let's set up the mathematical notation. Let  denote the successive lengths of time that the system is in state 1, and
let  the successive lengths of time that the system is in state 0. So to be clear, the system starts in state 1 and remains
in that state for a period of time , then goes to state 0 and stays in this state for a period of time , then back to state 1 for a period
of time , and so forth. Our basic assumption is that  is an independent, identically distributed
sequence. It follows that  and  each are independent, identically distributed sequences, but  and  might well be dependent. In
fact,  might be a function of  for . Let  denote the mean of a generic time period  in state 1 and let 

 denote the mean of a generic time period  in state 0. Let  denote the distribution function of a time period  in state 1,
and as usual, let  denote the right distribution function (or reliability function) of .

Clearly it's natural to consider returns to state 1 as the arrivals in a renewal process. Thus, let  for  and
consider the renewal process with interarrival times . Clearly this makes sense, since  is an independent,
identically distributed sequence of nonnegative variables. For the most part, we will use our usual notation for a renewal process, so
the common distribution function of  is denoted by , the arrival time process is , the counting
process is , and the renewal function is . But note that the mean interarrival time is now .

The renwal process associated with  as constructed above is known as an alternating renewal
process.

The State Process

Our interest is the state  of the system at time , so  is a stochastic process with state space .
Clearly the stochastic processes  and  are equivalent in the sense that we can recover one from the other. Let ,
the probability that the device is on at time . Our first main result is a renewal equation for the function .

The function  satisfies the renewal equation  and hence .

Proof

By now, the approach should be clear—we're going to condition on the first arrival :

But  so . By the fundamental renewal property (the
process restarts, independently of the past, at each arrival)  for . Hence we have

or equivalently, . By the fundamental theorem on renewal equations, the solution is , so 

We can now apply the key renewal theorem to get the asymptotic behavior of .
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If the renewal process is non-arithmetic, then

Proof

From the result above, . First,  as  as a basic property of the right distribution function. Next,
by the key renewal theorem,

But by another basic property of the right distribution function, .

Thus, the limiting probability that the system is on is simply the ratio of the mean of an on period to the mean of an on-off period. It
follows, of course, that

so in particular, the fact that the system starts in the on state makes no difference in the limit. We will return to the asymptotic
behavior of the alternating renewal process in the next section on renewal reward processes.

Applications and Special Cases
With a clever definition of on and off, many stochastic processes can be turned into alternating renewal processes, leading in turn to
interesting limits, via the basic limit theorem above.

Age Processes

The last remark applies in particular to the age processes of a standard renewal process. So, suppose that we have a renewal process
with interarrival sequence , arrival sequence , and counting process . As usual, let  denote the mean and  the probability
distribution function of an interarrival time, and let  denote the right distribution function (or reliability function).

For , recall that the current life, remaining life and total life at time  are

respectively. In the usual terminology of reliability,  is the age of the device in service at time ,  is the time remaining until this
device fails, and  is total life of the device. We will use limit theorem above to derive the limiting distributions these age processes.
The limiting distributions were obtained earlier, in the section on renewal limit theorems, by a direct application of the key renewal
theorem. So the results are not new, but the method of proof is interesting.

If the renewal process is non-arithmetic then

Proof

Fix . For the current life limit, define the on period corresponding to the interarrival time  to be 
for , so that the off period is . Note that the system is on at time  if and only if 

, and hence . It follows from the limit theorem above that

where  is a generic interarrival time. But
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For the remaining life limit we reverse the on-off periods. Thus, define the on period corresponding to the interarrival time  to
be  for , so that the off period is . Note that the system is off at time  if and
only if , and hence . From the limit theorem above,

As we have noted before, the fact that the limiting distributions are the same is not surprising after a little thought. After a long time,
the renewal process looks the same forward and backward in time, and reversing the arrow of time reverses the roles of current and
remaining time.

If the renewal process is non-arithmetic then

Proof

Fix . For , define the on period associated with interarrival time  by . Of course, the
off period corresponding to  is . Thus, each renewal period is either totally on or totally off, depending on
whether or not the interarrival time is greater than . Note that the system is on at time  if and only if , so from
the basic limit theorem above,

where  is a generic interarrival time. But

This page titled 15.5: Alternating Renewal Processes is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

X

n

= −min{ , x}U

n

X

n

X

n

n ∈ N

+

=min{ , x}V

n

X

n

t

≤ xR

t

1−p(t) = P( ≤ x)R

t

P( ≤ x) →  as t→∞R

t

E[min{X, x}]

μ

(15.5.11)

P( ≤ x) = y dF (y), x ∈ [0,∞)lim

t→∞

L

t

1

μ

∫

x

0

(15.5.12)

x ∈ [0,∞) n ∈ N

+

X

n

= 1( > x)U

n

X

n

X

n

X

n

= −V

n

X

n

U

n

x t ∈ [0,∞) > xL

t

P( > x) → E[X1(X > x)]L

t

1

μ

(15.5.13)

X

E[X1(X > x)] = y dF (y)∫

∞

x

(15.5.14)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10281?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/15%3A_Renewal_Processes/15.05%3A_Alternating_Renewal_Processes
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random


15.6.1 https://stats.libretexts.org/@go/page/10282

15.6: Renewal Reward Processes
       

Basic Theory

Preliminaries

In a renewal reward process, each interarrival time is associated with a random variable that is generically thought of as the reward
associated with that interarrival time. Our interest is in the process that gives the total reward up to time . So let's set up the usual
notation. Suppose that  are the interarrival times of a renewal process, so that  is a sequence of independent,
identically distributed, nonnegative variables with common distribution function  and mean . As usual, we assume that 

 so that the interarrival times are not deterministically 0, and in this section we also assume that . Let

so that  is the time of the th arrival for  and  is the arrival time sequence. Finally, Let

so that  is the number of arrivals in  and  is the counting process. As usual, let  for 
 so that  is the renewal function.

Suppose now that  is a sequence of real-valued random variables, where  is thought of as the reward associated
with the interarrival time . However, the term reward should be interpreted generically since  might actually be a cost or
some other value associated with the interarrival time, and in any event, may take negative as well as positive values. Our basic
assumption is that the interarrival time and reward pairs  form an independent and identically
distributed sequence. Recall that this implies that  is an IID sequence, as required by the definition of the renewal process, and
that  is also an IID sequence. But  and  might well be dependent, and in fact  might be a function of  for . Let 

 denote the mean of a generic reward , which we assume exists in .

The stochastic process  defined by

is the reward renewal process associated with . The function  given by  for  is the reward function.

As promised,  is the total reward up to time . Here are some typical examples:

The arrivals are customers at a store. Each customer spends a random amount of money.
The arrivals are visits to a website. Each visitor spends a random amount of time at the site.
The arrivals are failure times of a complex system. Each failure requires a random repair time.
The arrivals are earthquakes at a particular location. Each earthquake has a random severity, a measure of the energy released.

So  is a random sum of random variables for each . In the special case that  and  independent, the distribution of 
 is known as a compound distribution, based on the distribution of  and the distribution of a generic reward . Specializing

further, if the renewal process is Poisson and is independent of , the process  is a compound Poisson process.

Note that a renewal reward process generalizes an ordinary renewal process. Specifically, if  for each , then 
 for , so that the reward process simply reduces to the counting process, and then  reduces to the renewal

function .

The Renewal Reward Theorem

For , the average reward on the interval  is , and the expected average reward on that interval is . The
fundamental theorem on renewal reward processes gives the asymptotic behavior of these averages.
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The renewal reward theorem

1.  as  with probability 1.
2.  as 

Proof
1. Note that

But by the ordinary strong law of large numbers for the IID sequence ,

as  with probability 1. Recal also that  as  with probability 1. Hence it follows that

as  with probability 1. From the law or large numbers for the renewal process, we know that  as 
 with probability 1.

2. Note first that

Next Recall that  is a stopping time for the sequence of interarrival times  for , and hence is also a
stopping time for the sequence of interarrival time, reward pairs . (If a random time is a stopping time for a filtration, then
it's a stopping time for any larger filtration.) By Wald's equation,

By the elementary renewal theorem,

Thus returning to the first displayed equation above, it remains to show that

Let  for . Taking cases for the first arrival time  we have

But  if and only if  so the first term is , which we will note by . We have assumed that
the expected reward  exists in . Hence  so that  is bounded, and  as . For the
second term, if the first arrival occurs at time , then the renewal process restarts, independently of the past, so

It follows that  satisfies the renewal equation . By the fundamental theorem on renewal equations, the
solution is . Now, fix . There exists  such that  for . So for ,

/t→ ν/μR

t

t→∞

r(t)/t→ ν/μ t→∞

=

R

t

t

R

t

N

t

N

t

t

(15.6.4)

Y

→ ν

1

n

∑

i=1

n

Y

i

(15.6.5)

n→∞ →∞N

t

t→∞

= → ν

R

t

N

t

1

N

t

∑

i=1

N

t

Y

i

(15.6.6)

t→∞ /t→1/μN

t

t→∞

= = −R

t

∑

i=1

N

t

Y

i

∑

i=1

+1N

t

Y

i

Y

N(t)+1

(15.6.7)

+1N

t

X t ∈ (0,∞)

Z

E( ) = νE ( +1) = ν[M(t)+1] = ν M(t)+ν∑

i=1

+1N

t

Y

i

N

t

(15.6.8)

= ν + →  as t→∞

ν M(t)+ν

t

M(t)

t

ν

t

ν

μ

(15.6.9)

→ 0 as t→∞

E [ ]Y

+1N

t

t

(15.6.10)

u(t) =E [ ]Y

+1N

t

t ∈ [0,∞) X

1

u(t) =E [ 1( > t)] +E [ 1( ≤ t)]Y

+1N

t

X

1

Y

+1N

t

X

1

(15.6.11)

> tX

1

= 0N

t

E [ 1( > t)]Y

1

X

1

a(t)

ν R |a(t)| ≤E (| |) <∞Y

1

a a(t) → 0 t→∞

s ∈ [0, t]

E [ 1( ≤ t)] = u(t−s)dF (s), t ∈ [0,∞)Y

+1N

t

X

1

∫

t

0

(15.6.12)

u u = a+u ∗F

u = a+a∗M ϵ> 0 T ∈ (0,∞) |a(t)| < ϵ t > T t > T

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10282?pdf


15.6.3 https://stats.libretexts.org/@go/page/10282

Using the elementary renewal theorem again, the last expression converges to  as . Since  is arbitrary, it
follows that  as .

Part (a) generalizes the law of large numbers and part (b) generalizes elementary renewal theorem, for a basic renewal process.
Once again, if  for each , then (a) becomes  as  and (b) becomes  as . It's not
surprising then that these two theorems play a fundamental role in the proof of the renewal reward theorem.

General Reward Processes

The renewal reward process  above is constant, taking the value , on the renewal interval 
 for each . Effectively, the rewards are received discretely:  at time , an additional  at time , and so forth.

It's possible to modify the construction so the rewards accrue continuously in time or in a mixed discrete/continuous manner. Here
is a simple set of conditions for a general reward process.

Suppose again that  is the sequence of interarrival times and rewards. A stochastic process 
 (on our underlying probability space) is a reward process associated with  if the following conditions

hold:

1.  for 
2.  is between  and  for  and 

In the continuous case, with nonnegative rewards (the most important case), the reward process will typically have the following
form:

Suppose that the rewards are nonnegative and that  is a nonnegative stochastic process (on our
underlying probability space) with

1.  piecewise continous
2.  for 

Let  for . Then  is a reward process associated with .

Proof

By the additivity of the integral and (b),  for . Since  is nonnegative,  is increasing, so 
 for 

Thus in this special case, the rewards are being accrued continuously and  is the rate at which the reward is being accrued at
time . So  plays the role of a reward density process. For a general reward process, the basic renewal reward theorem still holds.

Suppose that  is a reward process associated with , and let 
for  be the corresponding reward function.

1.  as  with probability 1.
2.  as .

Proof

Suppose first that the reward variables  are nonnegative. Then

From the proof of the renewal reward theorem above,  as  with probability 1, and  as 
with probability 1. Hence (a) holds. Taking expected values,

∣

∣

∣

u(t)

t

∣

∣

∣ ≤ [|a(t)| + |a(t−s)| dM(s)+ |a(t−s)| dM(s)]

1

t

∫

t−T

0

∫

t

t−M

≤ [ϵ+ ϵM(t−T )+E | | [M(t)−M(t−T )]]

1

t

Y

1

ϵ/μ t→∞ ϵ> 0

u(t)/t→0 t→∞

=1Y

n

n /t→1/μN

t

t→∞ M(t)/t→1/μ t→∞

R = { : t ∈ [0,∞)}R

t

∑

n

i=1

Y

i

[ , )T

n

T

n+1

n ∈ N Y

1

T

1

Y

2

T

2

Z = (( , ), ( , ),…)X

1

Y

1

X

2

Y

2

V = { : t ∈ [0,∞)}V

t

Z

=V

T

n

∑

n

i=1

Y

i

n ∈ N

V

t

V

T

n

V

T

n+1

t ∈ ( , )T

n

T

n+1

n ∈ N

U = { : t ∈ [0,∞)}U

t

t↦U

t

dt =∫

T

n+1

T

n

U

t

Y

n+1

n ∈ N

= dsV

t

∫

t

0

U

s

t ∈ [0,∞) V = { : t ∈ [0,∞)}V

t

Z

=V

T

n

∑

n

i=1

Y

i

n ∈ N U V

≤ ≤V

T

n

V

t

V

T

n+1

t ∈ ( , )T

n

T

n+1

U

t

t U

V = { : t ∈ [0,∞)}V

t

Z = (( , ), ( , ),…)X

1

Y

1

X

2

Y

2

v(t) =E ( )V

t

t ∈ [0,∞)

/t→ ν/μV

t

t→∞

v(t)/t→ ν/μ t→∞

Y

≤ ≤ +

R

t

t

V

t

t

R

t

t

Y

+1N

t

t

(15.6.13)

/t→ ν/μR

t

t→∞ /t→0Y

+1N

t

t→∞

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10282?pdf


15.6.4 https://stats.libretexts.org/@go/page/10282

But again from the renewal reward theorem above,  as  and  as . Hence (b)
holds. A similar argument works if the reward variables are negative. If the reward variables take positive and negative values,
we split the variables into positive and negative parts in the usual way.

Here is the corollary for a continuous reward process.

Suppose that the rewards are positive, and consider the continuous reward process with density process 
 as above. Let  for . Then

1.  as  with probability 1

2.  as 

Special Cases and Applications
With a clever choice of the “rewards”, many interesting renewal processes can be turned into renewal reward processes, leading in
turn to interesting limits via the renewal reward theorem.

Alternating Renewal Processes

Recall that in an alternating renewal process, a system alternates between on and off states (starting in the on state). If we let 
 be the lengths of the successive time periods in which the system is on, and  the lengths of the

successive time periods in which the system is off, then the basic assumptions are that  is an independent,
identically distributed sequence, and that the variables  for  form the interarrival times of a standard
renewal process. Let  denote the mean of a time period that the device is on, and  the mean of a time period
that the device is off. Recall that  denotes the state (1 or 0) of the system at time , so that  is the
state process. The state probability function  is given by  for .

Limits for the alternating renewal process.

1.  as  with probability 1

2.  as 

Proof

Consider the renewal reward process where the reward associated with the interarrival time  is , the on period for that
renewal period. The rewards  are nonnegative and clearly . So  for  defines a
continuous reward process of the form given above. Parts (a) and (b) follow directly from the reward renewal theorem above.

Thus, the asymptotic average time that the device is on, and the asymptotic mean average time that the device is on, are both
simply the ratio of the mean of an on period to the mean of an on-off period. In our previous study of alternating renewal processes,
the fundamental result was that in the non-arithmetic case,  as . This result implies part (b) in the
theorem above.

Age Processes

Renewal reward processes can be used to derive some asymptotic results for the age processes of a standard renewal process So,
suppose that we have a renewal process with interarrival sequence , arrival sequence , and counting process . As usual, let 

 denote the mean of an interarrival time, but now we will also need , the second moment. We assume that
both moments are finite.

For , recall that the current life, remaining life and total life at time  are

respectively. In the usual terminology of reliability,  is the age of the device in service at time ,  is the time remaining until
this device fails, and  is total life of the device. (To avoid notational clashes, we are using different notation than in past
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sections.) Let , , and  for , the corresponding mean functions. To derive our
asymptotic results, we simply use the current life and the remaining life as reward densities (or rates) in a renewal reward process.

Limits for the current life process.

1.  as  with probability 1

2.  as 

Proof

Consider the renewal reward process where the reward associated with the interarrival time  is  for . The

process  for  is a continuous reward process for this sequence of rewards, as defined above. To see
this, note that for , we have , so with a change of variables and noting that  we
have

The results now follow from the renewal reward theorem above.

Limits for the remaining life process.

1.  as  with probability 1

2.  as 

Proof

Consider again the renewal reward process where the reward associated with the interarrival time  is  for . The
process  for  is a continuous reward process for this sequence of rewards, as defined above. To see
this, note that for , we have , so once again with a change of variables and noting that 

 we have

The results now follow from the renewal reward theorem above.

With a little thought, it's not surprising that the limits for the current life and remaining life processes are the same. After a long
period of time, a renewal process looks stochastically the same forward or backward in time. Changing the “arrow of time”
reverses the role of the current and remaining life. Asymptotic results for the total life process now follow trivially from the results
for the current and remaining life processes.

Limits for the total life process

1.  as  with probability 1

2.  as 

Replacement Models

Consider again a standard renewal process as defined in the Introduction, with interarrival sequence , arrival
sequence , and counting process . One of the most basic applications is to reliability,
where a device operates for a random lifetime, fails, and then is replaced by a new device, and the process continues. In this model,

 is the lifetime and  the failure time of the th device in service, for , while  is the number of failures in  for 
. As usual,  denotes the distribution function of a generic lifetime , and  the corresponding right

distribution function (reliability function). Sometimes, the device is actually a system with a number of critical components—the
failure of any of the critical components causes the system to fail.

Replacement models are variations on the basic model in which the device is replaced (or the critical components replaced) at times
other than failure. Often the cost  of a planned replacement is less than the cost  of an emergency replacement (at failure), so
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replacement models can make economic sense. We will consider the the most common model.

In the age replacement model, the device is replaced either when it fails or when it reaches a specified age . This model
gives rise to a new renewal process with interarrival sequence  where  for . If 

 are the costs of planned and unplanned replacements, respectively, then the cost associated with the renewal period 
 is

Clearly  satisfies the assumptions of a renewal reward process given above. The model makes
mathematical sense for any  but if , so that the planned cost of replacement is at least as large as the unplanned
cost of replacement, then  for , so the model makes no financial sense. Thus we assume that .

In the age replacement model, with planned replacement at age ,

1. The expected cost of a renewal period is .
2. The expected length of a renewal period is 

The limiting expected cost per unit time is

Proof

Parts (a) and (b) follow from the definition of the reward  and the renewal period , and then the formula for  follows
from the reward renewal theorem above

So naturally, given the costs  and , and the lifetime distribution function , the goal is be to find the value of  that minimizes 
; this value of  is the optimal replacement time. Of course, the optimal time may not exist.

Properties of 

1.  as 
2.  as 

Proof
1. Recall that  and  as 
2. As  note that ,  and 

As , the age replacement model becomes the standard (unplanned) model with limiting expected average cost .

Suppose that the lifetime of the device (in appropriate units) has the standard exponential distribution. Find  and solve the
optimal age replacement problem.

Answer

The exponential reliability function is  for . After some algebra, the long term expected average cost
per unit time is

But clearly  is strictly decreasing in , with limit , so there is no minimum value.

The last result is hardly surprising. A device with an exponentially distributed lifetime does not age—if it has not failed, it's just as
good as new. More generally, age replacement does not make sense for any device with decreasing failure rate. Such devices
improve with age.

Suppose that the lifetime of the device (in appropriate units) has the gamma distribution with shape parameter  and scale
parameter 1. Suppose that the costs (in appropriate units) are  and .

1. Find .
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2. Sketch the graph of .
3. Solve numerically the optimal age replacement problem.

Answer

The gamma reliability function is  for 

1. 

2. The graph of  on the interval 
Cost function

3.  is minimized for replacement time . The optimal cost is about 2.26476.

Suppose again that the lifetime of the device (in appropriate units) has the gamma distribution with shape parameter  and
scale parameter 1. But suppose now that the costs (in appropriate units) are  and .

1. Find .
2. Sketch the graph of .
3. Solve the optimal age replacement problem.

Answer

The gamma reliability function is  for 

1. 

2. The graph of  on the interval 
Cost function

3.  is strictly decreasing on  with limit 1, so there is no minimum value.

In the last case, the difference between the cost of an emergency replacement and a planned replacement is not great enough for age
replacement to make sense.

Suppose that the lifetime of the device (in appropriately scaled units) is uniformly distributed on the interval . Find 
and solve the optimal replacement problem. Give the results explicitly for the following costs:

1. , 
2. , 
3. , 

Proof

The reliability function is  for . After standard computations,

After more standard calculus, the optimal replacement time is

1. , 
2. , 

3. , 

Thinning

We start with a standard renewal process with interarrival sequence , arrival sequence  and
counting process . As usual, let  denote the mean of an interarrival time. For , suppose
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now that arrival  is either accepted or rejected, and define random variable  to be 1 in the first case and 0 in the second. Let 
 denote the interarrival time and rejection variable pair for , and assume that  is an

independent, identically distributed sequence.

Note that we have the structure of a renewal reward process, and so in particular,  is a sequence of Bernoulli
trials. Let  denote the parameter of this sequence, so that  is the probability of accepting an arrival. The procedure of accepting or
rejecting points in a point process is known as thinning the point process. We studied thinning of the Poisson process. In the
notation of this section, note that the reward process  is the thinned counting process. That is,

is the number of accepted points in  for . So then  is the expected number of accepted points in .
The renewal reward theorem gives the asymptotic behavior.

Limits for the thinned process.

1.  as 
2.  as 

Proof

This follows immediately from the renewal reward theorem above, since .
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CHAPTER OVERVIEW

16: Markov Processes
A Markov process is a random process in which the future is independent of the past, given the present. Thus, Markov processes
are the natural stochastic analogs of the deterministic processes described by differential and difference equations. They form one
of the most important classes of random processes.
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16.1: Introduction to Markov Processes
      

A Markov process is a random process indexed by time, and with the property that the future is independent of the past, given the present. Markov
processes, named for Andrei Markov, are among the most important of all random processes. In a sense, they are the stochastic analogs of differential
equations and recurrence relations, which are of course, among the most important deterministic processes.

The complexity of the theory of Markov processes depends greatly on whether the time space  is  (discrete time) or  (continuous time) and
whether the state space is discrete (countable, with all subsets measurable) or a more general topological space. When  or when the state
space is a general space, continuity assumptions usually need to be imposed in order to rule out various types of weird behavior that would otherwise
complicate the theory.

When the state space is discrete, Markov processes are known as Markov chains. The general theory of Markov chains is mathematically rich and
relatively simple.

When  and the state space is discrete, Markov processes are known as discrete-time Markov chains. The theory of such processes is
mathematically elegant and complete, and is understandable with minimal reliance on measure theory. Indeed, the main tools are basic probability
and linear algebra. Discrete-time Markov chains are studied in this chapter, along with a number of special models.
When  and the state space is discrete, Markov processes are known as continuous-time Markov chains. If we avoid a few technical
difficulties (created, as always, by the continuous time space), the theory of these processes is also reasonably simple and mathematically very nice.
The Markov property implies that the process, sampled at the random times when the state changes, forms an embedded discrete-time Markov chain,
so we can apply the theory that we will have already learned. The Markov property also implies that the holding time in a state has the memoryless
property and thus must have an exponential distribution, a distribution that we know well. In terms of what you may have already studied, the
Poisson process is a simple example of a continuous-time Markov chain.

For a general state space, the theory is more complicated and technical, as noted above. However, we can distinguish a couple of classes of Markov
processes, depending again on whether the time space is discrete or continuous.

When  and , a simple example of a Markov process is the partial sum process associated with a sequence of independent, identically
distributed real-valued random variables. Such sequences are studied in the chapter on random samples (but not as Markov processes), and revisited
below.
In the case that  and  or more generally , the most important Markov processes are the diffusion processes. Generally,
such processes can be constructed via stochastic differential equations from Brownian motion, which thus serves as the quintessential example of a
Markov process in continuous time and space.

The goal of this section is to give a broad sketch of the general theory of Markov processes. Some of the statements are not completely rigorous and
some of the proofs are omitted or are sketches, because we want to emphasize the main ideas without getting bogged down in technicalities. If you are a
new student of probability you may want to just browse this section, to get the basic ideas and notation, but skipping over the proofs and technical
details. Then jump ahead to the study of discrete-time Markov chains. On the other hand, to understand this section in more depth, you will need to
review topcis in the chapter on foundations and in the chapter on stochastic processes.

Basic Theory

Preliminaries

As usual, our starting point is a probability space , so that  is the set of outcomes,  the -algebra of events, and  the probability measure
on . The time set  is either  (discrete time) or  (continuous time). In the first case,  is given the discrete topology and in the second
case  is given the usual Euclidean topology. In both cases,  is given the Borel -algebra , the -algebra generated by the open sets. In the discrete
case when , this is simply the power set of  so that every subset of  is measurable; every function from  to another measurable space is
measurable; and every function from  to another topological space is continuous. The time space  has a natural measure; counting measure 
in the discrete case, and Lebesgue in the continuous case.

The set of states  also has a -algebra  of admissible subsets, so that  is the state space. Usually  has a topology and  is the Borel -
algebra generated by the open sets. A typical set of assumptions is that the topology on  is LCCB: locally compact, Hausdorff, and with a countable
base. These particular assumptions are general enough to capture all of the most important processes that occur in applications and yet are restrictive
enough for a nice mathematical theory. Usually, there is a natural positive measure  on the state space . When  has an LCCB topology and 
is the Borel -algebra, the measure  wil usually be a Borel measure satisfying  if  is compact. The term discrete state space means
that  is countable with , the collection of all subsets of . Thus every subset of  is measurable, as is every function from  to another
measurable space. This is the Borel -algebra for the discrete topology on , so that every function from  to another topological space is continuous.
The compact sets are simply the finite sets, and the reference measure is , counting measure. If  for some  (another common case), then
we usually give  the Euclidean topology (which is LCCB) so that  is the usual Borel -algebra. The compact sets are the closed, bounded sets, and
the reference measure  is -dimensional Lebesgue measure.

Clearly, the topological and measure structures on  are not really necessary when , and similarly these structures on  are not necessary when 
is countable. But the main point is that the assumptions unify the discrete and the common continuous cases. Also, it should be noted that much more
general state spaces (and more general time spaces) are possible, but most of the important Markov processes that occur in applications fit the setting we
have described here.
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Various spaces of real-valued functions on  play an important role. Let  denote the collection of bounded, measurable functions . With the
usual (pointwise) addition and scalar multiplication,  is a vector space. We give  the supremum norm, defined by .

Suppose now that  is a stochastic process on  with state space  and time space . Thus,  is a random variable taking
values in  for each , and we think of  as the state of a system at time . We also assume that we have a collection 
of -algebras with the properties that  is measurable with respect to  for , and the  for  with . Intuitively,  is
the collection of event up to time . Technically, the assumptions mean that  is a filtration and that the process  is adapted to . The most basic

(and coarsest) filtration is the natural filtration  where , the -algebra generated by the process up to

time . In continuous time, however, it is often necessary to use slightly finer -algebras in order to have a nice mathematical theory. In particular,
we often need to assume that the filtration  is right continuous in the sense that  for  where . We can
accomplish this by taking  so that for , and in this case,  is referred to as the right continuous refinement of the natural
filtration. We also sometimes need to assume that  is complete with respect to  in the sense that if  with  and  then .
That is,  contains all of the null events (and hence also all of the almost certain events), and therefore so does  for all .

Definitions

The random process  is a Markov process if

for all  and .

The defining condition, known appropriately enough as the the Markov property, states that the conditional distribution of  given  is the same as
the conditional distribution of  just given . Think of  as the present time, so that  is a time in the future. If we know the present state ,
then any additional knowledge of events in the past is irrelevant in terms of predicting the future state . Technically, the conditional probabilities in
the definition are random variables, and the equality must be interpreted as holding with probability 1. As you may recall, conditional expected value is
a more general and useful concept than conditional probability, so the following theorem may come as no surprise.

The random process  is a Markov process if and only if

for every  and every .

Proof sketch

The condition in this theorem clearly implies the Markov property, by letting , the indicator function of . The converse is a classical
bootstrapping argument: the Markov property implies the expected value condition

1. First when  for  (by definition).
2. Next when  is a simple function, by linearity.
3. Next when  is nonnegative, by the monotone convergence theorem.
4. Finally for general  by considering positive and negative parts.

Technically, we should say that  is a Markov process relative to the filtration . If  satisfies the Markov property relative to a filtration, then it
satisfies the Markov property relative to any coarser filtration.

Suppose that the stochastic process  is adapted to the filtration  and that  is a filtration that
is finer than . If  is a Markov process relative to  then  is a Markov process relative to .

Proof

First recall that  is adapted to  since  is adapted to . If  and  then

The first equality is a basic property of conditional expected value. The second uses the fact that  is Markov relative to , and the third follows
since  is measurable with respect to .

In particular, if  is a Markov process, then  satisfies the Markov property relative to the natural filtration . The theory of Markov processes is
simplified considerably if we add an additional assumption.

A Markov process  is time homogeneous if

for every ,  and .

So if  is homogeneous (we usually don't bother with the time adjective), then the process  given  is equivalent (in distribution)
to the process  given . For this reason, the initial distribution is often unspecified in the study of Markov processes—if the process
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is in state  at a particular time , then it doesn't really matter how the process got to state ; the process essentially “starts over”,
independently of the past. The term stationary is sometimes used instead of homogeneous.

From now on, we will usually assume that our Markov processes are homogeneous. This is not as big of a loss of generality as you might think. A non-
homogenous process can be turned into a homogeneous process by enlarging the state space, as shown below. For a homogeneous Markov process, if 

, , and , then

Feller Processes

In continuous time, or with general state spaces, Markov processes can be very strange without additional continuity assumptions. Suppose (as is
usually the case) that  has an LCCB topology and that  is the Borel -algebra. Let  denote the collection of bounded, continuous functions 

. Let  denote the collection of continuous functions  that vanish at . The last phrase means that for every , there exists a
compact set  such that  if . With the usual (pointwise) operations of addition and scalar multiplication,  is a vector subspace
of , which in turn is a vector subspace of . Just as with , the supremum norm is used for  and .

A Markov process  is a Feller process if the following conditions are satisfied.

1. Continuity in space: For  and , the distribution of  given  converges to the distribution of  given  as .
2. Continuity in time: Given  for ,  converges in probability to  as .

Additional details
1. This means that  as  for every .
2. This means that  as  for every neighborhood  of .

Feller processes are named for William Feller. Note that if  is discrete, (a) is automatically satisfied and if  is discrete, (b) is automatically satisfied.
In particular, every discrete-time Markov chain is a Feller Markov process. There are certainly more general Markov processes, but most of the
important processes that occur in applications are Feller processes, and a number of nice properties flow from the assumptions. Here is the first:

If  is a Feller process, then there is a version of  such that  is continuous from the right and has left limits for every
.

Again, this result is only interesting in continuous time . Recall that for , the function  is a sample path of the process. So
we will often assume that a Feller Markov process has sample paths that are right continuous have left limits, since we know there is a version with
these properties.

Stopping Times and the Strong Markov Property

For our next discussion, you may need to review again the section on filtrations and stopping times.To give a quick review, suppose again that we start
with our probability space  and the filtration  (so that we have a filtered probability space).

Since time (past, present, future) plays such a fundamental role in Markov processes, it should come as no surprise that random times are important. We
often need to allow random times to take the value , so we need to enlarge the set of times to . The topology on  is extended to 
by the rule that for , the set  is an open neighborhood of . This is the one-point compactification of  and is used so that the
notion of time converging to infinity is preserved. The Borel -algebra  is used on , which again is just the power set in the discrete case.

If  is a stochastic process on the sample space , and if  is a random time, then naturally we want to consider the state  at
the random time. There are two problems. First if  takes the value ,  is not defined. The usual solution is to add a new “death state”  to the set of
states , and then to give  the  algebra . A function  is extended to  by the rule . The
second problem is that  may not be a valid random variable (that is, measurable) unless we assume that the stochastic process  is measurable.
Recall that this means that  is measurable relative to  and . (This is always true in discrete time.)

Recall next that a random time  is a stopping time (also called a Markov time or an optional time) relative to  if  for each .
Intuitively, we can tell whether or not  from the information available to us at time . In a sense, a stopping time is a random time that does not
require that we see into the future. Of course, the concept depends critically on the filtration. Recall that if a random time  is a stopping time for a
filtration  then it is also a stopping time for a finer filtration , so that  for . Thus, the finer the
filtration, the larger the collection of stopping times. In fact if the filtration is the trivial one where  for all  (so that all information is
available to us from the beginning of time), then any random time is a stopping time. But of course, this trivial filtration is usually not sensible.

Next, recall that if  is a stopping time for the filtration , then the -algebra  associated with  is given by

Intuitively,  is the collection of events up to the random time , analogous to the  which is the collection of events up to the deterministic time 
. If  is a stochastic process adapted to  and if  is a stopping time relative to , then we would hope that  is measurable

with respect to  just as  is measurable with respect to  for deterministic . However, this will generally not be the case unless  is
progressively measurable relative to , which means that  is measurable with respect to  and  where 
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and  the corresponding Borel -algebra. This is always true in discrete time, of course, and more generally if  has an LCCB topology with  the
Borel -algebra, and  is right continuous. If  is progressively measurable with respect to  then  is measurable and  is adapted to .

The strong Markov property for our stochastic process  states that the future is independent of the past, given the present, when the
present time is a stopping time.

The random process  is a strong Markov process if

for every , stopping time , and .

As with the regular Markov property, the strong Markov property depends on the underlying filtration . If the property holds with respect to a given
filtration, then it holds with respect to a coarser filtration.

Suppose that the stochastic process  is progressively measurable relative to the filtration  and that the
filtration  is finer than . If  is a strong Markov process relative to  then  is a strong Markov process relative to .

Proof

Recall again that since  is adapted to , it is also adapted to . Suppose that  is a finite stopping time for  and that  and . Then 
is also a stopping time for , and . Hence

The first equality is a basic property of conditional expected value. The second uses the fact that  has the strong Markov property relative to ,
and the third follows since  measurable with respect to . In continuous time, it's last step that requires progressive measurability.

So if  is a strong Markov process, then  satisfies the strong Markov property relative to its natural filtration. Again there is a tradeoff: finer
filtrations allow more stopping times (generally a good thing), but make the strong Markov property harder to satisfy and may not be reasonable (not so
good). So we usually don't want filtrations that are too much finer than the natural one.

With the strong Markov and homogeneous properties, the process  given  is equivalent in distribution to the process 
 given . Clearly, the strong Markov property implies the ordinary Markov property, since a fixed time  is trivially also a

stopping time. The converse is true in discrete time.

Suppose that  is a (homogeneous) Markov process in discrete time. Then  is a strong Markov process.

As always in continuous time, the situation is more complicated and depends on the continuity of the process  and the filtration . Here is the
standard result for Feller processes.

If  is a Feller Markov process, then  is a strong Markov process relative to filtration , the right-continuous refinement of
the natural filtration..

Transition Kernels of Markov Processes

For our next discussion, you may need to review the section on kernels and operators in the chapter on expected value. Suppose again that 
 is a (homogeneous) Markov process with state space  and time space , as described above. The kernels in the following

definition are of fundamental importance in the study of 

For , let

Then  is a probability kernel on , known as the transition kernel of  for time .

Proof

Fix . The measurability of  for  is built into the definition of conditional probability. Also, of course, 
 is a probability measure on  for . In general, the conditional distribution of one random variable, conditioned

on a value of another random variable defines a probability kernel.

That is,  is the conditional distribution of  given  for  and . By the time homogenous property,  is also the
conditional distribution of  given  for :

Note that , the identity kernel on  defined by  for  and , so that  if  and 
if . Recall also that usually there is a natural reference measure  on . In this case, the transition kernel  will often have a transition
density  with respect to  for . That is,
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The next theorem gives the Chapman-Kolmogorov equation, named for Sydney Chapman and Andrei Kolmogorov, the fundamental relationship
between the probability kernels, and the reason for the name transition kernel.

Suppose again that  is a Markov process on  with transition kernels . If , then . That
is,

Proof

The Markov property and a conditioning argument are the fundamental tools. Recall again that  is the conditional distribution of  given 
 for . Let . Conditioning on  gives

But by the Markov and time-homogeneous properties,

Substituting we have

In the language of functional analysis,  is a semigroup. Recall that the commutative property generally does not hold for the product operation on
kernels. However the property does hold for the transition kernels of a homogeneous Markov process. That is,  for . As a
simple corollary, if  has a reference measure, the same basic relationship holds for the transition densities.

Suppose that  is the reference measure on  and that  is a Markov process on  and with transition densities 
. If  then . That is,

Proof

The transition kernels satisfy . But  has density ,  has density , and  has density . From a basic result on kernel
functions,  has density  as defined in the theorem.

If  (discrete time), then the transition kernels of  are just the powers of the one-step transition kernel. That is, if we let  then 
for .

Recall that a kernel defines two operations: operating on the left with positive measures on  and operating on the right with measurable, real-
valued functions. For the transition kernels of a Markov process, both of the these operators have natural interpretations.

Suppose that . If  is the distribution of  then  has distribution . That is,

Proof

Let . Conditioning on  gives

So if  denotes the collection of probability measures on , then the left operator  maps  back into . In particular, if  has distribution 
 (the initial distribution) then  has distribution  for every .

A positive measure  on  is invariant for  if  for every .

Hence if  is a probability measure that is invariant for , and  has distribution , then  has distribution  for every  so that the process 
is identically distributed. In discrete time, note that if  is a positive measure and  then  for every , so  is invariant for . The
operator on the right is given next.

Suppose that . If  then (assuming that the expected value exists),
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Proof

This follows directly from the definitions:

and  is the conditional distribution of  given .

In particular, the right operator  is defined on , the vector space of bounded, linear functions , and in fact is a linear operator on . That
is, if  and , then  and . Moreover,  is a contraction operator on , since  for 

. It then follows that  is a continuous operator on  for .

For the right operator, there is a concept that is complementary to the invariance of of a positive measure for the left operator.

A measurable function  is harmonic for  if  for all .

Again, in discrete time, if  then  for all , so  is harmonic for .

Combining two results above, if  has distribution  and  is measurable, then (again assuming that the expected value exists), 
 for . That is,

The result above shows how to obtain the distribution of  from the distribution of  and the transition kernel  for . But we can do more.
Recall that one basic way to describe a stochastic process is to give its finite dimensional distributions, that is, the distribution of 
for every  and every . For a Markov process, the initial distribution and the transition kernels determine the finite
dimensional distributions. It's easiest to state the distributions in differential form.

Suppose  is a Markov process with transition operators , and that  with .
If  has distribution , then in differential form, the distribution of  is

Proof

This follows from induction and repeated use of the Markov property. For example, if  with , then conditioning on  gives

for . So in differential form, the distribution of  is . If  with , then conditioning on 
and using our previous result gives

for . But by the Markov property,

Hence in differential form, the distribution of  is . Continuing in this manner gives the general result.

This result is very important for constructing Markov processes. If we know how to define the transition kernels  for  (based on modeling
considerations, for example), and if we know the initial distribution , then the last result gives a consistent set of finite dimensional distributions.
From the Kolmogorov construction theorem, we know that there exists a stochastic process that has these finite dimensional distributions. In continuous
time, however, two serious problems remain. First, it's not clear how we would construct the transition kernels so that the crucial Chapman-Kolmogorov
equations above are satisfied. Second, we usually want our Markov process to have certain properties (such as continuity properties of the sample paths)
that go beyond the finite dimensional distributions. The first problem will be addressed in the next section, and fortunately, the second problem can be
resolved for a Feller process.

Suppose that  is a Markov process on an LCCB state space  with transition operators . Then  is
a Feller process if and only if the following conditions hold:

1. Continuity in space: If  and  then 
2. Continuity in time: If  and  then  as .
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A semigroup of probability kernels  that satisfies the properties in this theorem is called a Feller semigroup. So the theorem states
that the Markov process  is Feller if and only if the transition semigroup of transition  is Feller. As before, (a) is automatically satisfied if  is
discrete, and (b) is automatically satisfied if  is discrete. Condition (a) means that  is an operator on the vector space , in addition to being an
operator on the larger space . Condition (b) actually implies a stronger form of continuity in time.

Suppose that  is a Feller semigroup of transition operators. Then  is continuous (with respect to the supremum norm) for
.

Additional details

This means that for  and ,

So combining this with the remark above, note that if  is a Feller semigroup of transition operators, then  is continuous on  for fixed 
, and  is continuous on  for fixed . Again, the importance of this is that we often start with the collection of probability kernels 

 and want to know that there exists a nice Markov process  that has these transition operators.

Sampling in Time

If we sample a Markov process at an increasing sequence of points in time, we get another Markov process in discrete time. But the discrete time
process may not be homogeneous even if the original process is homogeneous.

Suppose that  is a Markov process with state space  and that  is a sequence in  with 
. Let  for . Then  is a Markov process in discrete time.

Proof

For , let , so that  is the natural filtration associated with . Note that  and  is
measurable with respect to  for . Let  and let . Then

If we sample a homogeneous Markov process at multiples of a fixed, positive time, we get a homogenous Markov process in discrete time.

Suppose that  is a homogeneous Markov process with state space  and transition kernels . Fix 
with  and define  for . Then  is a homogeneous Markov process in discrete time, with one-step transition
kernel  given by

In some cases, sampling a strong Markov process at an increasing sequence of stopping times yields another Markov process in discrete time. The point
of this is that discrete-time Markov processes are often found naturally embedded in continuous-time Markov processes.

Enlarging the State Space

Our first result in this discussion is that a non-homogeneous Markov process can be turned into a homogenous Markov process, but only at the expense
of enlarging the state space.

Suppose that  is a non-homogeneous Markov process with state space . Suppose also that  is a random variable taking
values in , independent of . Let  and let  for . Then  is a homogeneous Markov process with
state space . For , the transition kernel  is given by

Proof

By definition and the substitution rule,

But  is independent of , so the last term is

The important point is that the last expression does not depend on , so  is homogeneous.

The trick of enlarging the state space is a common one in the study of stochastic processes. Sometimes a process that has a weaker form of “forgetting
the past” can be made into a Markov process by enlarging the state space appropriately. Here is an example in discrete time.
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Suppose that  is a random process with state space  in which the future depends stochastically on the last two states.
That is, for 

where  is the natural filtration associated with the process . Suppose also that the process is time homogeneous in the sense that

independently of . Let  for . Then  is a homogeneous Markov process with state space 
. The one step transition kernel  is given by

Proof

Note first that for ,  so the natural filtration associated with the process  is 
. If  then

by the given assumption on . Hence  is a Markov process. Next,

The last result generalizes in a completely straightforward way to the case where the future of a random process in discrete time depends stochastically
on the last  states, for some fixed .

Examples and Applications

Recurrence Relations and Differential Equations

As noted in the introduction, Markov processes can be viewed as stochastic counterparts of deterministic recurrence relations (discrete time) and
differential equations (continuous time). Our goal in this discussion is to explore these connections.

Suppose that  is a stochastic process with state space  and that  satisfies the recurrence relation

where  is measurable. Then  is a homogeneous Markov process with one-step transition operator  given by  for a
measurable function .

Proof

Clearly  is uniquely determined by the initial state, and in fact  for  where  is the -fold composition power of . So the
only possible source of randomness is in the initial state. The Markov and time homogeneous properties simply follow from the trivial fact that 

, so that . That is, the state at time  is completely determined by the state at time  (regardless
of the previous states) and the time increment . In particular,  for measurable  and .
Note that for , the -step transition operator is given by .

In the deterministic world, as in the stochastic world, the situation is more complicated in continuous time. Nonetheless, the same basic analogy applies.

Suppose that  with state space satisfies the first-order differential equation

where  is Lipschitz continuous. Then  is a Feller Markov process

Proof

Recall that Lipschitz continuous means that there exists a constant  such that  for . This is a standard
condition on  that guarantees the existence and uniqueness of a solution to the differential equation on . So as before, the only source of
randomness in the process comes from the initial value . Let  denote the unique solution with  for . The Markov
and homogenous properties follow from the fact that  for  and . That is, the state at time  depends
only on the state at time  and the time increment . The Feller properties follow from the continuity of  and the continuity of 

. The latter is the continuous dependence on the initial value, again guaranteed by the assumptions on . Note that the transition
operator is given by  for a measurable function  and .
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In differential form, the process can be described by . This essentially deterministic process can be extended to a very important class
of Markov processes by the addition of a stochastic term related to Brownian motion. Such stochastic differential equations are the main tools for
constructing Markov processes known as diffusion processes.

Processes with Stationary, Independent Increments

For our next discussion, we consider a general class of stochastic processes that are Markov processes. Suppose that  is a random
process with  as the set of states. The state space can be discrete (countable) or “continuous”. Typically,  is either  or  in the discrete case,
and is either  or  in the continuous case. In any case,  is given the usual -algebra  of Borel subsets of  (which is the power set in the
discrete case). Also, the state space  has a natural reference measure measure , namely counting measure in the discrete case and Lebesgue
measure in the continuous case. Let  denote the natural filtration, so that  for .

The process  has

1. Independent increments if  is independent of  for all .
2. Stationary increments if the distribution of  is the same as the distribution of  for all .

A difference of the form  for  is an increment of the process, hence the names. Sometimes the definition of stationary increments is
that  have the same distribution as . But this forces  with probability 1, and as usual with Markov processes, it's best to keep the
initial distribution unspecified. If  has stationary increments in the sense of our definition, then the process  has
stationary increments in the more restricted sense. For the remainder of this discussion, assume that  has stationary, independent
increments, and let  denote the distribution of  for .

 for .

Proof

For ,  is the distribution of , and by the stationary property,  is the distribution of . By the independence
property,  and  are independent. Hence  is the distribution of . But by
definition, this variable has distribution 

So the collection of distributions  forms a semigroup, with convolution as the operator. Note that  is simply point mass at 0.

The process  is a homogeneous Markov process. For , the transition operator  is given by

Proof

Suppose that  and ,

since  is independent of . Moreover, by the stationary property,

Clearly the semigroup property of  (with the usual operator product) is equivalent to the semigroup property of 
(with convolution as the product).

Suppose that for positive , the distribution  has probability density function  with respect to the reference measure . Then the transition
density is

Of course, from the result above, it follows that  for , where here  refers to the convolution operation on probability density
functions.

If  as  then  is a Feller Markov process.

Thus, by the general theory sketched above,  is a strong Markov process, and there exists a version of  that is right continuous and has left limits.
Such a process is known as a Lévy process, in honor of Paul Lévy.

For a real-valued stochastic process , let  and  denote the mean and variance functions, so that

assuming of course that the these exist. The mean and variance functions for a Lévy process are particularly simple.

d = g( )dtX

t

X

t

X = { : t ∈ T}X

t

S ⊆R S N Z

[0,∞) R S σ S S

(S,S ) λ

F= { : t ∈ T}F

t

= σ{ : s ∈ T , s≤ t}F

t

X

s

t ∈ T

X

−X

s+t

X

s

F

s

s, t ∈ T

−X

s+t

X

s

−X

t

X

0

s, t ∈ T

−X

s+t

X

s

s, t ∈ T

−X

s+t

X

s

X

t

= 0X

0

X Y = { = − : t ∈ T}Y

t

X

t

X

0

X = { : t ∈ T}X

t

Q

t

−X

t

X

0

t ∈ T

∗ =Q

s

Q

t

Q

s+t

s, t ∈ T

s, t ∈ T Q

s

−X

s

X

0

Q

t

−X

s+t

X

s

−X

s

X

0

−X

s+t

X

s

∗Q

s

Q

t

[ − ]+[ − ] = −X

s

X

0

X

s+t

X

s

X

s+t

X

0

Q

s+t

Q = { : t ∈ T}Q

t

Q

0

X t ∈ T P

t

f(x) = f(x+y) (dy), f ∈BP

t

∫

S

Q

t

(16.1.36)

s, t ∈ T f ∈B

E[f( ) ∣ ] =E[f( − + ) ∣ ] =E[f( ) ∣ ]X

s+t

F

s

X

s+t

X

s

X

s

F

s

X

s+t

X

s

(16.1.37)

−X

s+t

X

s

F

s

E[f( ) ∣ = x] = f(x+y) (dy), x ∈ SX

s+t

X

s

∫

S

Q

t

(16.1.38)

P = { : t ∈ T}P

t

Q = { : t ∈ T}Q

t

t ∈ T Q

t

g

t

λ

(x, y) = (y−x), x, y ∈ Sp

t

g

t

(16.1.39)

∗ =g

s

g

t

g

s+t

s, t ∈ T ∗

→Q

t

Q

0

t ↓ 0 X

X X

X = { : t ∈ T}X

t

m v

m(t) =E( ), v(t) = var( ); t ∈ TX

t

X

t

(16.1.40)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10288?pdf


16.1.10 https://stats.libretexts.org/@go/page/10288

Suppose again that  has stationary, independent increments.

1. If  and  then  for .
2. If in addition,  and  then  for .

Proof

The proofs are simple using the independent and stationary increments properties. For , let  and 
. denote the mean and variance functions for the centered process . Now let .

1. From the additive property of expected value and the stationary property,

2. From the additive property of variance for independent variables and the stationary property,

So  and  satisfy the Cauchy equation. In discrete time, it's simple to see that there exists  and  such that  and 
. The same is true in continuous time, given the continuity assumptions that we have on the process . Substituting  we have 

 and , so the results follow,

It's easy to describe processes with stationary independent increments in discrete time.

A process  has independent increments if and only if there exists a sequence of independent, real-valued random variables 
 such that

In addition,  has stationary increments if and only if  are identically distributed.

Proof

Suppose first that  is a sequence of independent, real-valued random variables, and define  for . Note that 
 for . If  with , then  which is independent of  by the

independence assumption on . Hence  has independent increments. Suppose in addition that  are identically distributed. Then the
increment  above has the same distribution as . Hence  has stationary increments.

Conversely, suppose that  has independent increments. Let  and  for . Then 
 for . As before  for . Since  has independent increments,  is

independent of  for , so  are mutually independent. If in addition,  has stationary increments,  has
the same distribution as  for . Hence  are identically distributed.

Thus suppose that  is a sequence of independent, real-valued random variables, with  identically distributed with
common distribution . Then from our main result above, the partial sum process  associated with  is a homogeneous Markov
process with one step transition kernel  given by

More generally, for , the -step transition kernel is  for  and . This Markov process is known as a random
walk (although unfortunately, the term random walk is used in a number of other contexts as well). The idea is that at time , the walker moves a
(directed) distance  on the real line, and these steps are independent and identically distributed. If  has probability density function  with respect to
the reference measure , then the one-step transition density is

Consider the random walk on  with steps that have the standard normal distribution. Give each of the following explicitly:

1. The one-step transition density.
2. The -step transition density for .

Proof
1. For ,  is the normal PDF with mean  and variance 1:

2. For ,  is the normal PDF with mean  and variance :
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In continuous time, there are two processes that are particularly important, one with the discrete state space  and one with the continuous state space 
.

For , let  denote the probability density function of the Poisson distribution with parameter , and let  for 
. Then  is the collection of transition densities for a Feller semigroup on 

Proof

Recall that

We just need to show that  satisfies the semigroup property, and that the continuity result holds. But we already know that if 
are independent variables having Poisson distributions with parameters , respectively, then  has the Poisson distribution with
parameter . That is, . Moreover,  as .

So a Lévy process  with these transition densities would be a Markov process with stationary, independent increments and with
sample paths are right continuous and have left limits. We do know of such a process, namely the Poisson process with rate 1.

Open the Poisson experiment and set the rate parameter to 1 and the time parameter to 10. Run the experiment several times in single-step mode
and note the behavior of the process.

For , let  denote the probability density function of the normal distribution with mean 0 and variance , and let 
for . Then  is the collection of transition densities of a Feller semigroup on .

Proof

Recall that for ,

We just need to show that  satisfies the semigroup property, and that the continuity result holds. But we already know that if 
are independent variables having normal distributions with mean 0 and variances , respectively, then  has the normal
distribution with mean 0 and variance . That is, . Moreover, we also know that the normal distribution with variance  converges
to point mass at 0 as .

So a Lévy process  on  with these transition densities would be a Markov process with stationary, independent increments,
and whose sample paths are continuous from the right and have left limits. In fact, there exists such a process with continuous sample paths. This
process is Brownian motion, a process important enough to have its own chapter.

Run the simulation of standard Brownian motion and note the behavior of the process.

This page titled 16.1: Introduction to Markov Processes is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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16.2: Potentials and Generators for General Markov Processes
     

Our goal in this section is to continue the broad sketch of the general theory of Markov processes. As with the last section, some of the statements are not
completely precise and rigorous, because we want to focus on the main ideas without being overly burdened by technicalities. If you are a new student of
probability, or are primarily interested in applications, you may want to skip ahead to the study of discrete-time Markov chains.

Preliminaries

Basic Definitions

As usual, our starting point is a probability space , so that  is the set of outcomes,  the -algebra of events, and  the probability measure on
the sample space . The set of times  is either , discrete time with the discrete topology, or , continuous time with the usual Euclidean
topology. The time set  is given the Borel -algebra , which is just the power set if , and then the time space  is given the usual measure,
counting measure in the discrete case and Lebesgue measure in the continuous case. The set of states  has an LCCB topology (locally compact, Hausdorff,
with a countable base), and is also given the Borel -algebra . Recall that to say that the state space is discrete means that  is countable with the discrete
topology, so that  is the power set of . The topological assumptions mean that the state space  is nice enough for a rich mathematical theory and
general enough to encompass the most important applications. There is often a natural Borel measure  on , counting measure  if  is discrete, and
for example, Lebesgue measure if  for some .

Recall also that there are several spaces of functions on  that are important. Let  denote the set of bounded, measurable functions . Let 
denote the set of bounded, continuous functions , and let  denote the set of continuous functions  that vanish at  in the sense that
for every , there exists a compact set  such  for . These are all vector spaces under the usual (pointwise) addition and scalar
multiplication, and . The supremum norm, defined by  for  is the norm that is used on these spaces.

Suppose now that  is a time-homogeneous Markov process with state space  defined on the probability space . As
before, we also assume that we have a filtration , that is, an increasing family of sub -algebras of , indexed by the time space, with the
properties that  is measurable with repsect to  for . Intuitively,  is the collection of events up to time .

As usual, we let  denote the transition probability kernel for an increase in time of size . Thus

Recall that for , the transition kernel  defines two operators, on the left with measures and on the right with functions. So, if  is a measure on 
 then  is the measure on  given by

If  is the distribution of  then  is the distribution of  for . If  then  is defined by

Recall that the collection of transition operators  is a semigroup because  for . Just about everything in this section
is defined in terms of the semigroup , which is one of the main analytic tools in the study of Markov processes.

Feller Markov Processes

We make the same assumptions as in the Introduction. Here is a brief review:

We assume that the Markov process  satisfies the following properties (and hence is a Feller Markov process):

1. For  and , the distribution of  given  converges to the distribution of  given  as .
2. Given ,  converges in probability to  as .

Part (a) is an assumption on continuity in space, while part (b) is an assumption on continuity in time. If  is discrete then (a) automatically holds, and if 
is discrete then (b) automatically holds. As we will see, the Feller assumptions are sufficient for a very nice mathematical theory, and yet are general enough
to encompass the most important continuous-time Markov processes.

The process  has the following properties:

1. There is a version of  such that  is continuous from the right and has left limits.
2.  is a strong Markov process relative to the , the right-continuous refinement of the natural filtration.

The Feller assumptions on the Markov process have equivalent formulations in terms of the transition semigroup.

The transition semigroup  has the following properties:

1. If  and  then 
2. If  and  then  as .
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μ (A) = μ(dx) (x,A), A ∈SP
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∫

S
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P = { : t ∈ T}P
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0

X
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= x ∈ SX

0

X

t

x t ↓ 0

S T

X = { : t ∈ T}X
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X F

0
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0
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As before, part (a) is a condition on continuity in space, while part (b) is a condition on continuity in time. Once again, (a) is trivial if  is discrete, and (b)
trivial if  is discrete. The first condition means that  is a linear operator on  (as well as being a linear operator on ). The second condition leads to a
stronger continuity result.

For , the mapping  is continuous on . That is, for ,

Our interest in this section is primarily the continuous time case. However, we start with the discrete time case since the concepts are clearer and simpler,
and we can avoid some of the technicalities that inevitably occur in continuous time.

Discrete Time

Suppose that , so that time is discrete. Recall that the transition kernels are just powers of the one-step kernel. That is, we let  and then 
 for .

Potential Operators

For , the -potential kernel  of  is defined as follows:

1. The special case  is simply the potential kernel of .
2. For  and ,  is the expected number of visits of  to , starting at .

Proof

The function  from  to  is measurable for  since  is measurable for each . The mapping 
 is a positive measure on  for  since  is a probability measure for each . Finally, the interpretation of 

 for  and  comes from interchanging sum and expected value, which is allowed since the terms are nonnegative:

Note that it's quite possible that  for some  and . In fact, knowing when this is the case is of considerable importance in the study
of Markov processes. As with all kernels, the potential kernel  defines two operators, operating on the right on functions, and operating on the left on
positive measures. For the right potential operator, if  is measurable then

assuming as usual that the expected values and the infinite series make sense. This will be the case, in particular, if  is nonnegative or if  and 
.

If , then  for all .

Proof

Using geometric series,

It follows that for , the right operator  is a bounded, linear operator on  with . It also follows that  is a probability
kernel. There is a nice interpretation of this kernel.

If  then  is the conditional distribution of  given , where  is independent of  and has the geometric
distribution on  with parameter .

Proof

Suppose that  and . Conditioning on  gives

But by the substitution rule and the assumption of independence,

Since  has the geometric distribution on  with parameter  we have  for . Substituting gives

S

T P

t

C

0

B

f ∈ C

0

t↦ fP

t

T t ∈ T

∥ f − f∥ = sup{| f(x)− f(x)| : x ∈ S} → 0 as s→ tP

s

P

t

P

s

P

t
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T =N P = P

1

=P

n

P

n

n ∈ N

α ∈ (0, 1] α R

α

X

(x,A) = (x,A), x ∈ S, A ∈SR

α

∑

n=0

∞

α

n

P

n
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R=R

1

X

x ∈ S A ∈S R(x,A) X A x

x↦ (x,A)R

α

S [0,∞) A ∈S x↦ (x,A)P

n

n ∈ N

A↦ (x,A)R

α

S x ∈ S A↦ (x,A)P

n

n ∈ N

R(x,A) x ∈ S A ∈S

R(x,A) = (x,A) = E[1( ∈ A) ∣ = x] =E( 1( ∈ A) = x) =E[#{n ∈ N : ∈ A} ∣ = x]∑
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∞
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∞

X

n

X

0
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∞

X

n

∣

∣

∣X

0

X

n

X
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R(x,A) =∞ x ∈ S A ∈S

R

α

f : S→R

f(x) = f(x) = (x, dy)f(y) = E[f( ) ∣ = x], x ∈ SR

α

∑

n=0

∞

α

n

P

n

∑
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∞

α

n

∫

S

P

n

∑
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∞

α

n

X

n

X

0
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f p ∈ (0, 1)

f ∈B

α ∈ (0, 1) (x,S) =R

α

1

1−α

x ∈ S

(x,S) = (x,S) = =R

α

∑
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∞

α

n

P

n
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∞

α

n

1
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α ∈ (0, 1) R

α

B ∥ ∥ =R

α

1

1−α

(1−α)R

α

α ∈ (0, 1) (1−α) (x, ⋅)R

α

X

N

= x ∈ SX

0

N X

N 1−α

x ∈ S A ∈S N

P( ∈ A ∣ = x) = P(N = n)P( ∈ A ∣ N = n, = x)X

N

X

0

∑
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∞

X

N

X
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X

0

X

n
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0
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X

0

P
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So  is a transition probability kernel, just as  is a transition probability kernel, but corresponding to the random time  (with  as a
parameter), rather than the deterministic time . An interpretation of the potential kernel  for  can be also given in economic terms.
Suppose that  and that we receive one monetary unit each time the process  visits . Then as above,  is the expected total amount of
money we receive, starting at . However, typically money that we will receive at times distant in the future has less value to us now than money that
we will receive soon. Specifically suppose that a monetary unit received at time  has a present value of , where  is an inflation factor
(sometimes also called a discount factor). Then  gives the expected, total, discounted amount we will receive, starting at . A bit more
generally, if  is a reward function, so that  is the reward (or cost, depending on the sign) that we receive when we visit state , then for 

,  is the expected, total, discounted reward, starting at .

For the left potential operator, if  is a positive measure on  then

In particular, if  is a probability measure and  has distribution  then  is the distribution of  for , so from the last result,  is
the distribution of  where again,  is independent of  and has the geometric distribution on  with parameter . The family of potential kernels
gives the same information as the family of transition kernels.

The potential kernels  completely determine the transition kernels .

Proof

Note that for  and , the function  is a power series in  with coefficients . In the language of
combinatorics,  is the ordinary generating function of the sequence . As noted above, this power series has radius of
convergence at least 1, so we can extend the domain to . Thus, given the potential kernels, we can recover the transition kernels by taking
derivatives and evaluating at 0:

Of course, it's really only necessary to determine , the one step transition kernel, since the other transition kernels are powers of . In any event, it follows
that the kernels , along with the initial distribution, completely determine the finite dimensional distributions of the Markov process 

. The potential kernels commute with each other and with the transition kernels.

Suppose that  and . Then (as kernels)

1. 
2. 

Proof

Suppose that  is nonnegative. The interchange of the sums with the kernel operation is allowed since the kernels are nonnegative. The other tool
used is the semigroup property.

1. Directly

The other direction requires an interchange.

2. First,

The other direction is similar.

The same identities hold for the right operators on the entire space , with the additional restrictions that  and . The fundamental equation that
relates the potential kernels is given next.

If  with  then (as kernels),

P( ∈ A ∣ = x) = (1−α) (x,A) = (1−α) (x,A)X

N

X

0

∑

n=0

∞

α

n

P

n

R

α

(16.2.11)

(1−α)R

α

P

n

N α ∈ (0, 1)
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α
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f ∈B f(x) x ∈ S
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α
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∞
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n
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∞
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α
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P P
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∞
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∞

β
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B α < 1 β < 1

α, β ∈ (0, 1] α ≤ β

β = α +(β−α)R

β

R

α

R

α

R

β

(16.2.17)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10289?pdf


16.2.4 https://stats.libretexts.org/@go/page/10289

Proof

If  the equation is trivial, so assume . Suppose that  is nonnegative. From the previous result,

Changing variables to sum over  and  gives

Simplifying gives

Note that since ,  is a finite, so we don't have to worry about the dreaded indeterminate form .

The same identity holds holds for the right operators on the entire space , with the additional restriction that .

If , then (as kernels), .

Proof

Suppose that  is nonnegative. From the result above,

The same identity holds for the right operators on the entire space , with the additional restriction that . This leads to the following important result:

If , then as operators on the space ,

1. 
2. 

Proof

The operators are bounded, so we can subtract. The identity  leads to  and the identity  leads to 
. Hence (a) holds. Part (b) follows from (a).

This result shows again that the potential operator  determines the transition operator .

Examples and Applications

Our first example considers the binomial process as a Markov process.

Let  be a sequence of Bernoulli trials with success parameter . Define the Markov process  by 
 where  takes values in  and is independent of .

1. For , show that the transition probability matrix  of  is given by

2. For , show that the potential matrix  of  is given by

3. For  and , identify the probability distribution defined by .
4. For  with , interpret , the expected time in  starting in , in the context of the process .

Solutions

Recall that  is a Markov process since it has stationary, independent increments.

1. Note that for ,  is the (discrete) PDF of . The result follows since the sum of the indicator variables has the binomial
distribution with parameters  and .

2. Let  and let  with . Then

α = β α < β f ∈B

f = fR

α

R

β

∑
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∞

∑
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Simplifying gives the result.
3. For ,

As a function of  for fixed , this is the PDF of  where  has the geometric distribution on  with parameter .

4. Note that  for  with . Starting in state , the process eventually reaches  with probability 1. The process remains in
state  for a geometrically distributed time, with parameter . The mean of this distribution is .

Continuous Time
With the discrete-time setting as motivation, we now turn the more important continuous-time case where .

Potential Kernels

For , the -potential kernel  of  is defined as follows:

1. The special case  is simply the potential kerenl of .
2. For  and ,  is the expected amount of time that  spends in , starting at .
3. The family of kernels  is known as the reolvent of .

Proof

Since  is a Feller semigroup of transition operators, the mapping  from  to  is jointly measurable
for . Thus,  makes sense for  and  and  from  to  is measurable for . That 
is a measure on  follows from the usual interchange of sum and integral, via Fubini's theorem: Suppose that  is a countable collection of
disjoint sets in , and let 

Finally, the interpretation of  for  and  is another interchange of integrals:

The inside integral is the Lebesgue measure of .

As with discrete time, it's quite possible that  for some  and , and knowing when this is the case is of considerable interest. As
with all kernels, the potential kernel  defines two operators, operating on the right on functions, and operating on the left on positive measures. If 

 is measurable then, giving the right potential operator in its many forms,

assuming that the various integrals make sense. This will be the case in particular if  is nonnegative, or if  and .

If , then  for all .

Proof

For ,
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∞

α

n

n

y−x

p

y−x

)

n−y+x

= (αp ( )[α(1−p) =)

y−x

∑

n=y−x

∞

n

y−x

]

n−y+x

(αp)

y−x

[1 −α(1−p)]

n−x+1

α ∈ (0, 1)

(1−α) (x, y) =R

α

1−α

1−α+αp

( )

αp

1−α+αp

y−x
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It follows that for , the right potential operator  is a bounded, linear operator on  with . It also follows that  is a probability
kernel. This kernel has a nice interpretation.

If  then  is the conditional distribution of  where  is independent of  and has the exponential distribution on  with
parameter .

Proof

Suppose that  and . The random time  has PDF  for . Hence, conditioning on  gives

But by the substitution rule and the assumption of independence,

Substituting gives

So  is a transition probability kernel, just as  is a transition probability kernel, but corresponding to the random time  (with  as a
parameter), rather than the deterministic time . As in the discrete case, the potential kernel can also be interpreted in economic terms. Suppose
that  and that we receive money at a rate of one unit per unit time whenever the process  is in . Then  is the expected total amount of
money that we receive, starting in state . But again, money that we receive later is of less value to us now than money that we will receive sooner.
Specifically, suppose that one monetary unit at time  has a present value of  where  is the inflation factor or discount factor. The 

 is the total, expected, discounted amount that we receive, starting in . A bit more generally, suppose that  and that  is the reward
(or cost, depending on the sign) per unit time that we receive when the process is in state . Then  is the expected, total, discounted reward,
starting in state .

For the left potential operator, if  is a positive measure on  then

In particular, suppose that  and that  is a probability measure and  has distribution . Then  is the distribution of  for , and hence
from the last result,  is the distribution of , where again,  is independent of  and has the exponential distribution on  with parameter .
The family of potential kernels gives the same information as the family of transition kernels.

The resolvent  completely determines the family of transition kernels .

Proof

Note that for  and , the function  on  is the Laplace transform of the function  on . The Laplace
transform of a function determines the function completely.

It follows that the resolvent , along with the initial distribution, completely determine the finite dimensional distributions of the Markov
process . This is much more important here in the continuous-time case than in the discrete-time case, since the transition kernels  cannot be generated
from a single transition kernel. The potential kernels commute with each other and with the transition kernels.

Suppose that . Then (as kernels),

1. 
2. 

Proof

Suppose that  is nonnegative. The interchanges of operators and integrals below are interchanges of integrals, and are justified since the
integrands are nonnegative. The other tool used is the semigroup property of .

1. Directly,

The other direction involves an interchange.

2. First

α ∈ (0,∞) U

α

B ∥ ∥ =U

α

1

α

αU

α

α > 0 α (x, ⋅)U

α

X

τ

τ X [0,∞)

α

x ∈ S A ∈S τ f(t) = αe

−αt

t ∈ [0,∞) τ

P( ∈ A ∣ = x) = α P( ∈ A ∣ τ = t, = x)dtX

τ

X

0

∫

∞

0

e

−αt

X

τ

X

0
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P( ∈ A ∣ τ = t, = x) = P( ∈ A ∣ τ = t, = x) = P( ∈ A ∣ = x) = (x,A)X

τ

X

0

X

t

X

0

X

t

X

0

P

t

(16.2.29)

P( ∈ A ∣ = x) = α (x,A)dt = α (x,A)X

τ

X

0

∫

∞

0

e

−αt

P

t

U

α
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αU

α

P

t

τ α ∈ (0,∞)

t ∈ [0,∞)

A ∈S X A U(x,A)

x ∈ S

t ∈ [0,∞) e

−αt
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(x,A)U

α

x ∈ S f ∈B f(x)

x ∈ S f(x)U

α

x ∈ S

μ S

μ (A)U

α

= μ(dx) (x,A) = μ (A)dt∫

S

U

α

∫

∞

0

e

−αt

P

t

= [ μ(dx) (x,A)]dt = [ μ(dx)P( ∈ A)]dt, A ∈S∫

∞

0

e

−αt

∫

S

P

t

∫

∞

0

e

−αt

∫

S

X

t

α > 0 μ X

0

μ μP

t

X

t

t ∈ [0,∞)

αμU

α

X

τ

τ X [0,∞) α

U = { : α ∈ (0,∞)}U

α

P = { : t ∈ (0,∞)}P

t

x ∈ S A ∈S α↦ (x,A)U

α

(0,∞) t↦ (x,A)P

t

[0,∞)

{ : α ∈ [0,∞)}U

α

X P

t

α, β, t ∈ [0,∞)

= = dsP

t

U

α

U

α

P

t

∫

∞

0

e

−αs

P

s+t

= dsdtU

α

U

β

∫

∞

0

∫

∞

0

e

−αs

e

−βt

P

s+t

f ∈B

P = { : t ∈ [0,∞)}P

t

f = f ds= f dsU

α

P

t

∫

∞

0

e

−αs

P

s

P

t

∫
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e

−αs

P
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f = f ds= f ds= f dsP

t

U

α

P

t

∫

∞
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e

−αs

P

s

∫

∞
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e

−αs

P
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s
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∞
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The other direction is similar.

The same identities hold for the right operators on the entire space  under the additional restriction that  and . The fundamental equation that
relates the potential kernels, known as the resolvent equation, is given in the next theorem:

If  with  then (as kernels) .

Proof

If  the equation is trivial, so assume . Suppose that  is nonnegative. From the previous result,

The transformation  maps  one-to-one onto . The inverse transformation is  with
Jacobian . Hence we have

Simplifying gives the result. Note that  is finite since .

The same identity holds for the right potential operators on the entire space , under the additional restriction that . For ,  is also an
operator on the space .

If  and  then .

Proof

Suppose that  and that  is a sequence in . Then  for . Hence if  as  then 
 as  for each . By the dominated convergence theorem,

Hence  is continuous. Next suppose that  as . This means that for every compact , there exist  such that  for
. Them  as  for each . Again by the dominated convergence theorem,

So .

If  then  as .

Proof

Convergence is with respect to the supremum norm on , of course. Suppose that . Note first that with a change of variables ,

and hence

So it follows that

But  as  and hence by the dominated convergence theorem,  as .
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α

U
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∫

∞
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∫

∞
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P
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u = s+ t, v= s [0,∞)

2

{(u, v) ∈ [0,∞ : u ≥ v})
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∞
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n→∞ t ∈ [0,∞)
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fU

α

→∞x

n
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∉ Cx
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P
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f ∈U
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C
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f ∈ C
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α f = α f dt = f dsU
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|α f −f | = ( f −f)ds ≤ f −f ds≤ f −f dsU
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∥α f −f∥ ≤ f −f dsU
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f −f →0
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Infinitesimal Generator

In continuous time, it's not at all clear how we could construct a Markov process with desired properties, say to model a real system of some sort. Stated
mathematically, the existential problem is how to construct the family of transition kernels  so that the semigroup property  is
satisfied for all . The answer, as for similar problems in the deterministic world, comes essentially from calculus, from a type of derivative.

The infinitesimal generator of the Markov process  is the operator  defined by

on the domain  for which the limit exists.

As usual, the limit is with respect to the supremum norm on , so  and  means that  and

So in particular,

The domain  is a subspace of  and the generator  is a linear operator on 

1. If  and  then  and .
2. If  then  and .

Proof

These are simple results that depend on the linearity of  for  and basic results on convergence.

1. If  then

2. If  then

Note  is the (right) derivative at 0 of the function . Because of the semigroup property, this differentiability property at  implies differentiability
at arbitrary . Moreover, the infinitesimal operator and the transition operators commute:

If  and , then  and the following derivative rules hold with respect to the supremum norm.

1. , the Kolmogorov forward equation
2. , the Kolmogorov backward equation

Proof

Let . All limits and statements about derivatives and continuity are with respect to the supremum norm.

1. By assumption,

Since  is a bounded, linear operator on the space , it preserves limits, so

This proves the result for the derivative from the right. But since  is continuous, the the result is also true for the two-sided derivative.
2. From part (a), we now know that

By definition, this means that  and .

The last result gives a possible solution to the dilema that motivated this discussion in the first place. If we want to construct a Markov process with desired
properties, to model a a real system for example, we can start by constructing an appropriate generator  and then solve the initial value problem

{ : t ∈ [0,∞)}P

t

=P

s

P

t

P

s+t

s, t ∈ [0,∞)

X G : D→ C

0

Gf = lim

t↓0

f −fP

t

t

(16.2.39)

D ⊆C

0
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0

f ∈ D Gf = g f , g ∈ C

0
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∥

∥

∥
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∥

∥

∣

∣

∣

f(x)−f(x)P

t

t

∣

∣

∣ (16.2.40)

Gf(x) = = , x ∈ Slim

t↓0

f(x)−f(x)P

t

t
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t↓0

E[f( ) ∣ = x] −f(x)X

t

X

0

t
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D C

0

G D

f ∈ D c ∈ R cf ∈ D G(cf) = cGf

f , g ∈ D f +g ∈ D G(f +g) =Gf +Gg
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t
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t

t

f −fP

t

t
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f , g ∈ D

= + →Gf +Gg as t ↓ 0

(f +g)−(f +g)P

t

t

f −fP

t

t

g−gP

t

t
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G t↦ fP
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t↦ fP

t

( f − f) = ( f − f) → Gf  as h→0

1

h

P

h

P

t

P

t

1

h

P

t+h

P

t

P

t
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to obtain the transition operators . The next theorem gives the relationship between the potential operators and the infinitesimal
operator, which in some ways is better. This relationship is analogous to the relationship between the potential operators and the one-step operator given
above in discrete time

Suppose .

1. If  the  and 
2. If  then  and .

Proof
1. By definition, if  then . Hence using the previous result,

Integrating by parts (with  and ) gives

But  as  while . The last term is .
2. Suppose that . From the result above and the substitution ,

Hence

Adding and subtracting  and combining integrals gives

Since  is continuous, the first term converges to  as . The second term converges to  as .

For , the operators  and  have an inverse relationship.

Suppose again that .

1. 
2. 

Proof

Recall that  and 

1. By part(a) the previous result we have  so . By part (b) we have  so .
2. This follows from (a).

So, from the generator  we can determine the potential operators , which in turn determine the transition operators 
. In continuous time, transition operators  can be obtained from the single, infinitesimal operator  in a way

that is reminiscent of the fact that in discrete time, the transition operators  can be obtained from the single, one-step operator .

Examples and Applications

Our first example is essentially deterministic.

Consider the Markov process  on  satisfying the ordinary differential equation

where  is Lipschitz continuous. The infinitesimal operator  is given by  for  on the domain  of functions 
 where  and .

Proof

Recall that the only source of randomness in this process is the initial sate . By the continuity assumptions on , there exists a unique solution 
to the differential equation with initial value , defined for all . The transition operator  for  is defined on  by 

 for . By the ordinary chain rule, if  is differentiable,

P = { : t ∈ [0,∞)}P

t
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∣

∣
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f →0e
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g : R→R G Gf(x) = (x)g(x)f

′

x ∈ R D

f : R→R f ∈ C
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X
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g (x)X
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Our next example considers the Poisson process as a Markov process. Compare this with the binomial process above.

Let  denote the Poisson process on  with rate . Define the Markov process  by 
 where  takes values in  and is independent of .

1. For , show that the probability transition matrix  of  is given by

2. For , show that the potential matrix  of  is given by

3. For  and , identify the probability distribution defined by .
4. Show that the infinitesimal matrix  of  is given by ,  for .

Solutions
1. Note that for  and ,  is the (discrete) PDF of  since  has the Poisson distribution with parameter .
2. Let  and let  with . Then

The change of variables  gives

But the last integral is . Simplifying gives the result.
3. For ,

As a function of  for fixed , this is the PDF of  where  has the geometric distribution with parameter .

4. Note that for , . By simple calculus, this is  if ,  if , and 0 otherwise.

This page titled 16.2: Potentials and Generators for General Markov Processes is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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N = { : t ∈ [0,∞)}N

t

N β ∈ (0,∞) X = { : t ∈ [0,∞)}X

t

= +X

t

X

0

N

t

X

0

N N

t ∈ [0,∞) P

t

X

(x, y) = , x, y ∈ N, y ≥ xP

t

e

−βt

(βt)

y−x

(y−x)!

(16.2.54)
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Γ(y−x+1) = (y−x)!
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16.3: Introduction to Discrete-Time Chains
      

In this and the next several sections, we consider a Markov process with the discrete time space  and with a discrete (countable) state space. Recall that a
Markov process with a discrete state space is called a Markov chain, so we are studying discrete-time Markov chains.

Review
We will review the basic definitions and concepts in the general introduction. With both time and space discrete, many of these definitions and concepts
simplify considerably. As usual, our starting point is a probability space , so  is the sample space,  the -algebra of events, and  the
probability measure on . Let  be a stochastic process defined on the probability space, with time space  and with countable
state space . In the context of the general introduction,  is given the power set  as the -algebra, so all subsets of  are measurable, as are all
functions from  into another measurable space. Counting measure  is the natural measure on , so integrals over  are simply sums. The same comments
apply to the time space : all subsets of  are measurable and counting measure  is the natural measure on .

The vector space  consisting of bounded functions  will play an important role. The norm that we use is the supremum norm defined by

For , let , the -algebra generated by the process up to time . Thus  is the natural filtration
associated with . We also let , the -algebra generated by the process from time  on. So if  represents the present time,
then  contains the events in the past and  the events in the future.

Definitions

We start with the basic definition of the Markov property: the past and future are conditionally independent, given the present.

 is a Markov chain if  for every ,  and .

There are a number of equivalent formulations of the Markov property for a discrete-time Markov chain. We give a few of these.

 is a Markov chain if either of the following equivalent conditions is satisfied:

1.  for every  and .
2.  for every  and .

Part (a) states that for , the conditional probability density function of  given  is the same as the conditional probability density function of 
 given . Part (b) also states, in terms of expected value, that the conditional distribution of  given  is the same as the conditional

distribution of  given . Both parts are the Markov property looking just one time step in the future. But with discrete time, this is equivalent to the
Markov property at general future times.

 is a Markov chain if either of the following equivalent conditions is satisfied:

1.  for every  and .
2.  for every  and .

Part (a) states that for , the conditional probability density function of  given  is the same as the conditional probability density function of
 given . Part (b) also states, in terms of expected value, that the conditional distribution of  given  is the same as the conditional

distribution of  given . In discrete time and space, the Markov property can also be stated without explicit reference to -algebras. If you are not
familiar with measure theory, you can take this as the starting definition.

 is a Markov chain if for every  and every sequence of states ,

The theory of discrete-time Markov chains is simplified considerably if we add an additional assumption.

A Markov chain  is time homogeneous if

for every  and every .

That is, the conditional distribution of  given  depends only on . So if  is homogeneous (we usually don't bother with the time adjective),
then the chain  given  is equivalent (in distribution) to the chain  given . For this reason, the initial
distribution is often unspecified in the study of Markov chains—if the chain is in state  at a particular time , then it doesn't really matter how the
chain got to state ; the process essentially “starts over”, independently of the past. The term stationary is sometimes used instead of homogeneous.

From now on, we will usually assume that our Markov chains are homogeneous. This is not as big of a loss of generality as you might think. A non-
homogenous Markov chain can be turned into a homogeneous Markov process by enlarging the state space, as shown in the introduction to general Markov
processes, but at the cost of creating an uncountable state space. For a homogeneous Markov chain, if , , and , then
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Stopping Times and the Strong Markov Property

Consider again a stochastic process  with countable state space , and with the natural filtration  as given
above. Recall that a random variable  taking values in  is a stopping time or a Markov time for  if  for each . Intuitively,
we can tell whether or not  by observing the chain up to time . In a sense, a stopping time is a random time that does not require that we see into the
future. The following result gives the quintessential examples of stopping times.

Suppose again  is a discrete-time Markov chain with state space  as defined above. For , the following random times are
stopping times:

1. , the entrance time to .
2. , the hitting time to .

Proof

For 

1. 
2. 

An example of a random time that is generally not a stopping time is the last time that the process is in :

We cannot tell if  without looking into the future:  for .

If  is a stopping time for , the -algebra associated with  is

Intuitively,  contains the events that can be described by the process up to the random time , in the same way that  contains the events that can be
described by the process up to the deterministic time . For more information see the section on filtrations and stopping times.

The strong Markov property states that the future is independent of the past, given the present, when the present time is a stopping time. For a discrete-time
Markov chain, the ordinary Markov property implies the strong Markov property.

If  is a discrete-time Markov chain then  has the strong Markov property. That is, if  is a finite stopping time for  then

1.  for every  and .
2.  for every  and .

Part (a) states that the conditional probability density function of  given  is the same as the conditional probability density function of  given
just . Part (b) also states, in terms of expected value, that the conditional distribution of  given  is the same as the conditional distribution of 

 given just . Assuming homogeneity as usual, the Markov chain  given  is equivalent in distribution to the chain 
 given .

Transition Matrices

Suppose again that  is a homogeneous, discrete-time Markov chain with state space . With a discrete state space, the transition
kernels studied in the general introduction become transition matrices, with rows and columns indexed by  (and so perhaps of infinite size). The kernel
operations become familiar matrix operations. The results in this section are special cases of the general results, but we sometimes give independent proofs
for completeness, and because the proofs are simpler. You may want to review the section on kernels in the chapter on expected value.

For  let

The matrix  is the -step transition probability matrix for .

Thus,  is the probability density function of  given . In particular,  is a probability matrix (or stochastic matrix) since 
 for  and  for . As with any nonnegative matrix on ,  defines a kernel on  for :

So  is the probability distribution of  given . The next result is the Chapman-Kolmogorov equation, named for Sydney Chapman
and Andrei Kolmogorov. It gives the basic relationship between the transition matrices.

If  then 

Proof

This follows from the Markov and time-homogeneous properties and a basic conditioning argument. If  then

E[f( ) ∣ = x] =E[f( ) ∣ = x]X

k+n

X

k

X

n

X

0

(16.3.4)

X = ( , , , …)X

0

X

1

X

2

S F = ( , , , …)F

0

F

1

F

2

τ N∪ {∞} X {τ = n} ∈F

n

n ∈ N

τ = n n

X = { : n ∈ N}X

n

S A ⊆ S

= inf{n ∈ N : ∈ A}ρ

A

X

n

A

= inf{n ∈ : ∈ A}τ

A

N

+

X

n

A

n ∈ N

{ = n} = { ∉ A, ∉ A, … , ∉ A, ∈ A} ∈ρ

A

X

0

X

1

X

n−1

X

n

F

n

{ = n} = { ∉ A, ∉ A, … , ∉ A, ∈ A} ∈τ

A

X

1

X

2

X

n−1

X

n

F

n

A

= max{n ∈ : ∈ A}ζ

A

N

+

X

n

(16.3.5)

= nζ

A

{ = n} = { ∈ A, ∉ A, ∉ A, …}ζ

A

X

n

X

n+1

X

n+2

n ∈ N

τ X σ τ

= {A ∈F : A∩ {τ = n} ∈  for all n ∈ N}F

τ

F

n

(16.3.6)

F

τ

τ F

n

n ∈ N

X = ( , , , …)X

0

X

1

X

2

X τ X

P( = x ∣ ) = P( = x ∣ )X

τ+k

F

τ

X

τ+k

X

τ

k ∈ N x ∈ S

E[f( ) ∣ ] =E[f( ) ∣ ]X

τ+k

F

τ

X

τ+k

X

τ

k ∈ N f ∈B

X

τ+k

F

τ

X

τ+k

X

τ

X

τ+k

F

τ

X

τ+k

X

τ

{ : n ∈ N}X

τ+n

= xX

τ

{ : n ∈ N}X

n

= xX

0

X = ( , , , …)X

0

X

1

X

2

S

S

n ∈ N

(x, y) = P( = y ∣ = x), (x, y) ∈ S×SP

n

X

n

X

0

(16.3.7)

P

n

n X

y ↦ (x, y)P

n

X

n

= xX

0

P

n

(x, y) ≥ 0P

n

(x, y) ∈ S

2

P (x, y) = 1∑

y∈S

x ∈ S S P

n

S n ∈ N

(x,A) = (x, y) = P( ∈ A ∣ = x), x ∈ S, A ⊆ SP

n

∑

y∈A

P

n

X

n

X

0

(16.3.8)

A ↦ (x,A)P

n

X

n

= xX

0

m, n ∈ N =P

m

P

n

P

m+n

x, z ∈ S

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10290?pdf


16.3.3 https://stats.libretexts.org/@go/page/10290

But by the Markov property and time-homogeneous properties

Of course also  Hence we have

The right side, by definition, is .

It follows immediately that the transition matrices are just the matrix powers of the one-step transition matrix. That is, letting  we have  for
all . Note that , the identity matrix on  given by  if  and 0 otherwise. The right operator corresponding to  yields an
expected value.

Suppose that  and that . Then, assuming that the expected value exists,

Proof

This follows easily from the definitions:

The existence of the expected value is only an issue if  is infinte. In particular, the result holds if  is nonnegative or if  (which in turn would always
be the case if  is finite). In fact,  is a linear contraction operator on the space  for . That is, if  then  and . The
left operator corresponding to  is defined similarly. For 

assuming again that the sum makes sense (as before, only an issue when  is infinite). The left operator is often restricted to nonnegative functions, and we
often think of such a function as the density function (with respect to ) of a positive measure on . In this sense, the left operator maps a density function
to another density function.

A function  is invariant for  (or for the chain ) if .

Clearly if  is invariant, so that  then  for all . If  is a probability density function, then so is .

If  has probability density function , then  has probability density function  for .

Proof

Again, this follows easily from the definitions and a conditioning argument.

In particular, if  has probability density function , and  is invariant for , then  has probability density function  for all , so the sequence of
variables  is identically distributed. Combining two results above, suppose that  has probability density function  and that 

. Assuming the expected value exists, . Explicitly,

It also follows from the last theorem that the distribution of  (the initial distribution) and the one-step transition matrix determine the distribution of 
for each . Actually, these basic quantities determine the finite dimensional distributions of the process, a stronger result.

Suppose that  has probability density function . For any sequence of states ,

Proof

This follows directly from the Markov property and the multiplication rule of conditional probability:
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But by the Markov property, this reduces to

Computations of this sort are the reason for the term chain in the name Markov chain. From this result, it follows that given a probability matrix  on  and
a probability density function  on , we can construct a Markov chain  such that  has probability density function  and the
chain has one-step transition matrix . In applied problems, we often know the one-step transition matrix  from modeling considerations, and again, the
initial distribution is often unspecified.

There is a natural graph (in the combinatorial sense) associated with a homogeneous, discrete-time Markov chain.

Suppose again that  is a Markov chain with state space  and transition probability matrix . The state graph of  is the
directed graph with vertex set  and edge set .

That is, there is a directed edge from  to  if and only if state  leads to state  in one step. Note that the graph may well have loops, since a state can
certainly lead back to itself in one step. More generally, we have the following result:

Suppose again that  is a Markov chain with state space  and transition probability matrix . For  and , there is
a directed path of length  in the state graph from  to  if and only if .

Proof

This follows since  if and only if there exists a sequence of states  with 
. This is also precisely the condition for the existence of a directed path  of

length  from  to  in the state graph.

Potential Matrices

For , the -potential matrix  of  is

1.  is simply the potential matrix of .
2.  is the expected number of visits by  to , starting at .

Proof

First the definition of  as an infinite series of matrices makes sense since  is a nonnegative matrix for each . The interpretation of  for 
 comes from interchanging sum and expected value, again justified since the terms are nonnegative.

Note that it's quite possible that  for some . In fact, knowing when this is the case is of considerable importance in recurrence and
transience, which we study in the next section. As with any nonnegative matrix, the -potential matrix defines a kernel and defines left and right operators.
For the kernel,

In particular,  is the expected number of visits by the chain to  starting in :

If , then  for all .

Proof

Using geometric series,

Hence  is a bounded matrix for  and  is a probability matrix. There is a simple interpretation of this matrix.

If  then  for , where  is independent of  and has the geometric distribution on 
with parameter .
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Proof

Let . Conditioning on  gives

But by the substitution rule and the assumption of independence,

Since  has the geometric distribution on  with parameter  we have . Hence

So  can be thought of as a transition matrix just as  is a transition matrix, but corresponding to the random time  (with  as a paraamter)
rather than the deterministic time . An interpretation of the potential matrix  for  can also be given in economic terms. Suppose that we
receive one monetary unit each time the chain visits a fixed state . Then  is the expected total reward, starting in state . However,
typically money that we will receive at times distant in the future have less value to us now than money that we will receive soon. Specifically suppose that a
monetary unit at time  has a present value of , so that  is an inflation factor (sometimes also called a discount factor). Then  gives the
expected total discounted reward, starting at .

The potential kernels  completely determine the transition kernels .

Proof

Note that for , the function  is a power series in  with coefficients . In the language of combinatorics, 
 is the ordinary generating function of the sequence . As noted above, this power series has radius of convergence at least

1, so we can extend the domain to . Thus, given the potential matrices, we can recover the transition matrices by taking derivatives and
evaluating at 0:

Of course, it's really only necessary to determine , the one step transition kernel, since the other transition kernels are powers of . In any event, it follows
that the matrices , along with the initial distribution, completely determine the finite dimensional distributions of the Markov chain 

. The potential matrices commute with each other and with the transition matrices.

If  and , then

1. 
2. 

Proof

Distributing matrix products through matrix sums is allowed since the matrices are nonnegative.

1. Directly

The other direction requires an interchange.

2. First,

The other direction is similar.

The fundamental equation that relates the potential matrices is given next.

If  with  then

Proof

If  the equation is trivial, so assume . From the previous result,

(x, y) ∈ S

2

N

P( = y ∣ = x) = P(N = n)P( = y ∣ = x,N = n)X

N

X

0

∑

n=0

∞

X

N

X

0

(16.3.24)

P( = y ∣ N = n, = x) =E( = y ∣ N = n, = x) = P( = y ∣ = x) = (x, y)X

N

X

0

X

n

X

0

X

n

X

0

P

n

(16.3.25)

N N 1−α P(N = n) = (1−α)α

n

P( = y ∣ = x) = (1−α) (x, y) = (1−α) (x, y)X

N

X

0

∑

n=0

∞

α

n

P

n

R

α

(16.3.26)

(1−α)R

α

P

n

N α

n R

α

α ∈ (0, 1)

y ∈ S R(x, y) x ∈ S

n ∈ N α

n

α (x, y)R

α

x ∈ S

R = { : α ∈ (0, 1)}R

α

P = { : n ∈ N}P

n

(x, y) ∈ S

2

α↦ (x, y)R

α

α n↦ (x, y)P

n

α↦ (x, y)R

α

n↦ (x, y)P

n

α ∈ (−1, 1)

(x, y) =P

n

1

n!

[ (x, y)]

d

n

dα

n

R

α

α=0

(16.3.27)

P P

R = { : α ∈ (0, 1)}R

α

X

α, β ∈ (0, 1] k ∈ N

= =P

k

R

α

R

α

P

k

∑

∞

n=0

α

n

P

n+k

= =R

α

R

β

R

β

R

α

∑

∞

m=0

∑

∞

n=0

α

m

β

n

P

m+n

= =R

α

P

k

∑

n=0

∞

α

n

P

n

P

k

∑

n=0

∞

α

n

P

n+k
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= = =P

k

R

α

P

k

∑

n=0

∞

α

n

P

n

∑

n=0

∞

α

n

P

k

P

n

∑

n=0

∞

α

n

P

n+k
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= = ( ) = =R

α

R

β

∑

m=0

∞

α

m

P

m

R

β

∑

m=0

∞

α

m

P

m

∑

n=0

∞

β

n

P

n

∑

m=0

∞

∑

n=0

∞

α

m

β

n

P

m

P

n

∑

m=0

∞

∑

n=0

∞

α

m

β

n

P

m+n
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α, β ∈ (0, 1] α ≥ β

α = β +(α−β)R

α

R

β

R

α

R

β

(16.3.31)

α = β α > β
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Changing variables to sum over  and  gives

Simplifying gives

Note that since , the matrix  has finite values, so we don't have to worry about the dreaded indeterminate form .

If  then .

Proof

From the result above,

This leads to an important result: when , there is an inverse relationship between  and .

If , then

1. 
2. 

Proof

The matrices have finite values, so we can subtract. The identity  leads to  and the identity  leads
to . Hence (a) holds. Part (b) follows from (a).

This result shows again that the potential matrix  determines the transition operator .

Sampling in Time

If we sample a Markov chain at multiples of a fixed time , we get another (homogeneous) chain.

Suppose that  is an Markov chain with state space  and transition probability matrix . For fixed , the sequence 
 is a Markov chain on  with transition probability matrix .

If we sample a Markov chain at a general increasing sequence of time points  in , then the resulting stochastic process 
, where  for , is still a Markov chain, but is not time homogeneous in general.

Recall that if  is a nonempty subset of , then  is the matrix  restricted to . So  is a sub-stochastic matrix, since the row sums may be less
than 1. Recall also that  means , not ; in general these matrices are different.

If  is a nonempty subset of  then for ,

That is,  is the probability of going from state  to  in  steps, remaining in  all the while. In terms of the state graph of , it is the sum of
products of probabilities along paths of length  from  to  that stay inside .

Examples and Applications

Computational Exercises

Let  be the Markov chain on  with transition matrix

For the Markov chain ,

1. Draw the state graph.
2. Find 

=R

α

R

β

∑

j=0

∞

∑

k=0

∞

α

j

q

k

P

j+k

(16.3.32)

n= j+k k

= = =R

α

R

β

∑

n=0

∞

∑

k=0

n

α

n−k

β

k

P

n

∑

n=0

∞

∑

k=0

n

( )

β

α

k

α

n

P

n

∑

n=0

∞ 1−( )

β

α

n+1

1−

β

α

α

n

P

n
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= [α −β ]R

α

R

β

1

α−β

R

α

R

β

(16.3.34)

β < 1 R

β

∞−∞

α ∈ (0, 1] I+α P = I+αP =R

α

R

α

R

α

I+α P = I+αP = I+ = =R

α

R

α

∑

n=0

∞

α

n+1

P

n+1

∑

n=0

∞

α

n

P

n

R

α
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α ∈ (0, 1) P R

α

α ∈ (0, 1)

= (I−αPR

α

)

−1

P = (I− )

1

α

R

−1

α

I+α P =R

α

R

α

(I−αP ) = IR

α

I+αP =R

α

R

α

(I−αP ) = IR

α

R

α

P

k

X = ( , , ,…)X

0

X

1

X

2

S P k ∈ N

+

= ( , , ,…)X

k

X

0

X

k

X

2k

S P

k

0 < < <⋯n

1

n

2

N

Y = ( , , ,…)Y

0

Y

1

Y

2

=Y

k

X

n

k

k ∈ N

A S P

A

P A×A P

A

P

n

A

(P

A

)

n

(P

n

)

A

A S n ∈ N

(x, y) = P( ∈ A, ∈ A,… , ∈ A, = y ∣ = x), (x, y) ∈ A×AP

n

A

X

1

X

2

X

n−1

X

n

X

0
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(x, y)P

n

A

x y n A X

n x y A

X = ( , ,…)X

0

X

1

S = {a, b, c}

P =

⎡

⎣

⎢

⎢

1

2

1

4

1

1

2

0

0

0

3

4

0
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3. Find 
4. Suppose that  is given by , , . Find  for .
5. Suppose that  has the uniform distribution on . Find the probability density function of .

Answer
1. The edge set is 
2. 
3. By standard matrix multiplication,

4. In matrix form,

5. In matrix form,  has PDF , and  has PDF .

Let . Find each of the following:

1. 
2. 
3. 

Proof

1. 

2. 

3. 

Find the invariant probability density function of 

Answer

Solving  subject to the condition that  is a PDF gives 

Compute the -potential matrix  for .

Answer

Computing  gives

As a check on our work, note that the row sums are .

The Two-State Chain

Perhaps the simplest, non-trivial Markov chain has two states, say  and the transition probability matrix given below, where  and 
 are parameters.

For ,

Proof

P

2

g : S→R g(a) = 1 g(b) = 2 g(c) = 3 E[g( ) ∣ = x]X

2

X

0

x ∈ S

X

0

S X

2

E = {(a, a), (a, b), (b, a), (b, c), (c, a)}

P (a, a)P (a, b)P (b, c) =

3

16

=P

2

⎡

⎣

⎢

⎢

⎢

3

8

7

8

1

2

1

4

1

8

1

2

3

8

0

0

⎤

⎦

⎥

⎥

⎥
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g= , g=

⎡

⎣

⎢

1

2

3

⎤

⎦
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2

⎡

⎣

⎢

⎢

2

9

8

3

2

⎤

⎦

⎥

⎥
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X

0
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1
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P

A

P

2

A
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2
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A
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1

2

1

4
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2

0
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2

A

3

8

1

8

1

4

1

8

( = [ ]P

2

)

A

3

8

7

8

1

4

1

8

X

fP = f f f = [ ]

8

15

4
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3
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α R

α

α ∈ (0, 1)

= (I−αPR

α

)

−1

=R

α

1

(1−α)(8+4α+3 )α

2

⎡

⎣

⎢

8

2α+6α

2
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4α

8−4α

4α

2

3α

2

6α−3α

2

8−4α−α

2
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⎦
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1

1−α

S = {0, 1} p ∈ (0, 1)

q ∈ (0, 1)

P = [ ]

1−p

q

p

1−q

(16.3.41)

n ∈ N

= [ ]P

n

1

p+q

q+p(1−p−q)

n

q−q(1−p−q)

n

p−p(1−p−q)

n

p+q(1−p−q)

n
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The eigenvalues of  are 1 and . Next,  where

Hence , which gives the expression above.

As ,

Proof

Note that  and so . Hence  as .

Open the simulation of the two-state, discrete-time Markov chain. For various values of  and , and different initial states, run the simulation 1000
times. Compare the relative frequency distribution to the limiting distribution, and in particular, note the rate of convergence. Be sure to try the case 

The only invariant probability density function for the chain is

Proof

Let . The matrix equation  leads to  so . The condition  for  to be a PDF then gives , 

For , the -potential matrix is

Proof

In this case,  can be computed directly as  using geometric series.

In spite of its simplicity, the two state chain illustrates some of the basic limiting behavior and the connection with invariant distributions that we will study
in general in a later section.

Independent Variables and Random Walks

Suppose that  is a sequence of independent random variables taking values in a countable set , and that  are
identically distributed with (discrete) probability density function .

 is a Markov chain on  with transition probability matrix  given by  for . Also,  is invariant for .

Proof

As usual, let  for . Since the sequence  is independent,

Also,

As a Markov chain, the process  is not very interesting, although of course it is very interesting in other ways. Suppose now that , the set of
integers, and consider the partial sum process (or random walk)  associated with :

 is a Markov chain on  with transition probability matrix  given by  for .

Proof

Again, let  for . Then also,  for . Hence

since the sequence  is independent. In particular,

P 1−p−q PB=DB

−1

B= [ ] , D= [ ]

1

1

−p

q

1

0

0

1−p−q

(16.3.43)

=BP

n

D

n

B

−1

n→∞

→ [ ]P

n

1

p+q

q

q

p

p

(16.3.44)

0 < p+q < 2 −1 < 1−(p+q) < 1 (1−p−q →0)

n

n→∞

p q

p = q = 0.01

f = [ ]

q

p+q

p

p+q
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f = [ ]

a b

fP = f −pa+qb = 0 b = a

p

q

a+b = 1 f a=

q

p+q

b =

p

p+q

α ∈ (0, 1) α

= [ ]+ [ ]R

α

1

(p+q)(1−α)

q

q

p

p

1

(p+q (1−α))

2

p

−q

−p

q

(16.3.46)
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∞
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n

P

n

X = ( , , ,…)X

0

X

1

X

2

S ( , ,…)X

1

X

2

f

X S P P (x, y) = f(y) (x, y) ∈ S×S f P

= σ{ , … , }F

n

X

0

X

1

X

n

n ∈ N X

P( = y ∣ ) = P( = y) = f(y), y ∈ SX

n+1

F

n

X

n+1
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fP (y) = f(x)P (x, y) = f(x)f(y) = f(y), y ∈ S∑

x∈S

∑

x∈S

(16.3.48)

X S =Z

Y X

= , n ∈ NY

n

∑

i=0

n

X

i

(16.3.49)

Y Z Q Q(x, y) = f(y−x) (x, y) ∈ Z×Z

= σ{ , ,… , }F

n

X

0

X

1

X

n

n ∈ N = σ{ , ,… , }F

n

Y

0

Y

1

Y

n

n ∈ N

P( = y ∣ ) = P( + = y ∣ ) = P( + = y ∣ ), y ∈ ZY

n+1

F

n

Y

n

X

n+1

F

n

Y

n
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n+1
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Thus the probability density function  governs the distribution of a step size of the random walker on .

Consider the special case of the random walk on  with  and , where .

1. Give the transition matrix  explicitly.
2. Give  explicitly for .

Answer
1. ,  for .
2. For 

This corresponds to  steps to the right and  steps to the left.

This special case is the simple random walk on . When  we have the simple, symmetric random walk. The simple random walk on  is studied in
more detail in the section on random walks on graphs. The simple symmetric random walk is studied in more detail in the chapter on Bernoulli Trials.

Doubly Stochastic Matrices

A matrix  on  is doubly stochastic if it is nonnegative and if the row and columns sums are 1:

Suppose that  is a Markov chain on a finite state space  with doubly stochastic transition matrix . Then the uniform distribution on  is invariant.

Proof

Constant functions are left invariant. Suppose that  for . Then

Hence if  is finite, the uniform PDF  given by  for  is invariant.

If  and  are doubly stochastic matrices on , then so is .

Proof

For ,

The interchange of sums is valid since the terms are nonnegative.

It follows that if  is doubly stochastic then so is  for .

Suppose that  is the Markov chain with state space  and with transition matrix

1. Draw the state graph.
2. Show that  is doubly stochastic
3. Find .
4. Show that the uniform distribution on  is the only invariant distribution for .
5. Suppose that  has the uniform distribution on . For , find  and .
6. Find the -potential matrix  for .

Proof
1. The edge set is 
2. Just note that the row sums and the column sums are 1.
3. By matrix multiplication,

P( = y ∣ = x) = P(x+ = y ∣ = x) = P( = y−x) = f(y−x), (x, y) ∈Y

n+1

Y

n

X

n+1

Y

n

X

n+1

Z

2
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f Z

Z f(1) = p f(−1) = 1−p p ∈ (0, 1)

Q

Q

n

n ∈ N

Q(x, x−1) = 1−p Q(x, x+1) = p x ∈ Z

k ∈ {0, 1,… ,n}

(x, x+2k−n) =( ) (1−pQ

n

n

k

p

k

)

n−k

(16.3.52)

k n−k

Z p =

1

2

Z

P S

P (x, u) = 1, P (u, y) = 1, (x, y) ∈ S×S∑

u∈S

∑

u∈s

(16.3.53)

X S P S

f(x) = c x ∈ S

fP (y) = f(x)P (x, y) = c P (x, y) = c, y ∈ S∑

x∈S

∑

x∈S

(16.3.54)

S f f(x) = 1/#(S) x ∈ S

P Q S PQ

y ∈ S

PQ(x, y) = P (x, z)Q(z, y) = Q(z, y) P (x, z) = Q(z, y) = 1∑

x∈S

∑

x∈S

∑

z∈S

∑

z∈S

∑

x∈S

∑

z∈S
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P P

n

n ∈ N

X = ( , ,…)X

0

X

1

S = {−1, 0, 1}

P =

⎡

⎣

⎢

⎢

1

2

0

1

2

1

2

1

2

0

0

1
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2

⎤

⎦

⎥

⎥
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P

P

2

S X

X

0

S n ∈ N E( )X

n

var( )X

n

α R

α

α ∈ (0, 1)
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4. Let . Solving the equation  gives . The requirement that  be a PDF then forces the common value to be .
5. If  has the uniform distribution on , then so does  for every , so  and .

6. 

Recall that a matrix  indexed by a countable set  is symmetric if  for all .

If  is a symmetric, stochastic matrix then  is doubly stochastic.

Proof

This is trivial since

The converse is not true. The doubly stochastic matrix in the exercise above is not symmetric. But since a symmetric, stochastic matrix on a finite state space
is doubly stochastic, the uniform distribution is invariant.

Suppose that  is the Markov chain with state space  and with transition matrix

1. Draw the state graph.
2. Show that  is symmetric
3. Find .
4. Find all invariant probability density functions for .
5. Find the -potential matrix  for .

Proof
1. The edge set is 
2. Just note that  is symmetric with respect to the main diagonal.
3. By matrix multiplication,

4. Let . Solving the equation  gives simply . The requirement that  be a PDF forces . Thus the invariant
PDFs are  where . The special case  gives the uniform distribution on .

5. 

Special Models

The Markov chains in the following exercises model interesting processes that are studied in separate sections.

Read the introduction to the Ehrenfest chains.

Read the introduction to the Bernoulli-Laplace chain.

Read the introduction to the reliability chains.

Read the introduction to the branching chain.

Read the introduction to the queuing chains.
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⎢

⎢
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⎥
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M S M(x, y) =M(y, x) x, y ∈ S

P P
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Read the introduction to random walks on graphs.

Read the introduction to birth-death chains.
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16.4: Transience and Recurrence for Discrete-Time Chains
      

The study of discrete-time Markov chains, particularly the limiting behavior, depends critically on the random times between visits to a
given state. The nature of these random times leads to a fundamental dichotomy of the states.

Basic Theory
As usual, our starting point is a probability space , so that  is the sample space,  the -algebra of events, and  the
probability measure on . Suppose now that  is a (homogeneous) discrete-time Markov chain with
(countable) state space  and transition probability matrix . So by definition,

for  and . Let , the -algebra of events defined by the chain up to time , so that 
 is the natural filtration associated with .

Hitting Times and Probabilities

Let  be a nonempty subset of . Recall that the hitting time to  is the random variable that gives the first positive time that the chain
is in :

Since the chain may never enter , the random variable  takes values in  (recall our convention that the minimum of the
empty set is ). Recall also that  is a stopping time for . That is,  for . Intuitively, this means that we can
tell if  by observing the chain up to time . This is clearly the case, since explicitly

When  for , we will simplify the notation to . This random variable gives the first positive time that the chain is in
state . When the chain enters a set of states  for the first time, the chain must visit some state in  for the first time, so it's clear that

Next we define two functions on  that are related to the hitting times.

For ,  (nonempty), and  define

1. 
2. 

So .

Note that  is the probability density function of , given , except that the density function may be defective in
the sense that the sum  may be less than 1, in which case of course, . Again, when 

, we will simplify the notation to  and , respectively. In particular,  is the probability, starting at ,
that the chain eventually returns to . If ,  is the probability, starting at , that the chain eventually reaches . Just
knowing when  is 0, positive, and 1 will turn out to be of considerable importance in the overall structure and limiting behavior
of the chain. As a function on , we will refer to  as the hitting matrix of . Note however, that unlike the transition matrix , we
do not have the structure of a kernel. That is,  is not a measure, so in particular, it is generally not true that 

. The same remarks apply to  for . However, there are interesting relationships between the
transition matrix and the hitting matrix.

 if and only if  for some .

Proof

Note that  for all , and . From the increasing property
of probability and Boole's inequality it follows that for each ,

(Ω,F ,P) Ω F σ P

(Ω,F) X = ( , , , …)X

0

X

1

X

2

S P

P (x, y) = P( = y ∣ = x)X

n+1

X

n

(16.4.1)

x, y ∈ S n ∈ N = σ{ , , … , }F
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σ n ∈ N

F = ( , , …)F

0

F

1

X

A S A

A

= min{n ∈ : ∈ A}τ

A

N

+

X

n
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A τ
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∪ {∞}N
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∞ τ

A

X { = n} ∈τ

A
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n

n ∈ N

+

= nτ

A

n

{ = n} = { ∉ A, … , ∉ A, ∈ A}τ

A

X

1

X

n−1

X

n
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A = {x} x ∈ S τ

x

x A A

= min{ : x ∈ A}, A ⊆ Sτ

A

τ

x

(16.4.4)

S

x ∈ S A ⊆ S n ∈ N

+

(x,A) = P( = n ∣ = x)H

n
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A

X

0

H(x,A) = P( < ∞ ∣ = x)τ

A

X

0

H(x,A) = (x,A)∑

∞
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H

n
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= xX

0
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0

A = {y} (x, y)H
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H(x, y) H(x, x) x

x x ≠ y H(x, y) x y
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S

2

H X P
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H(x,A) = H(x, y)∑

y∈A

H

n

n ∈ N
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y
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The following result gives a basic relationship between the sequence of hitting probabilities and the sequence of transition probabilities.

Suppose that . Then

Proof

This result follows from conditioning on . Starting in state , the chain is in state  at time  if and only if the chain hits  for the
first time at some previous time , and then returns to  in the remaining  steps. More formally,

But the event  implies  and is in . Hence by the Markov property,

Of course, by definition, , so the result follows by substitution.

Suppose that  and . Then

1.  for 
2. 

Proof

These results follow form conditioning on .

1. Starting in state , the chain first enters  at time  if and only if the chain goes to some state  at time 1, and then
from state , first enters  in  steps.

But  for . By the Markov and time homogeneous properties, 
 for . Of course 

. So the result follows by substitution.
2. Starting in state , the chain eventually enters  if and only if it either enters  at the first step, or moves to some other state 

 at the first step, and then eventually enters  from .

But  for . By the Markov and homogeneous properties, 
 for . Substituting we have

The following definition is fundamental for the study of Markov chains.

Let .

1. State  is recurrent if .
2. State  is transient if .

Thus, starting in a recurrent state, the chain will, with probability 1, eventually return to the state. As we will see, the chain will return to
the state infinitely often with probability 1, and the times of the visits will form the arrival times of a renewal process. This will turn out
to be the critical observation in the study of the limiting behavior of the chain. By contrast, if the chain starts in a transient state, then
there is a positive probability that the chain will never return to the state.

(x, y) ∈ S

2

(x, y) = (x, y) (y, y), n ∈P

n

∑

k=1

n

H

k

P

n−k

N

+
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P( <∞ ∣ = y, = x) = 1τ
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X

1
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0

τ

A

X

0

y ∉ A

H(x,A) = P (x, y)+ P (x, y)H(y,A) = P (x,A)+ P (x, y)H(y,A)∑

y∈A

∑

y∉A

∑

y∉A

(16.4.11)

x ∈ S

x H(x, x) = 1

x H(x, x) < 1

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10291?pdf


16.4.3 https://stats.libretexts.org/@go/page/10291

Counting Variables and Potentials

Again, suppose that  is a nonempty set of states. A natural complement to the hitting time to  is the counting variable that gives the
number of visits to  (at positive times). Thus, let

Note that  takes value in . We will mostly be interested in the special case  for , and in this case, we will
simplify the notation to .

Let  for  and . Then  is a kernel on  and

Proof

Note that

The interchange of sum and expected value is justified since the terms are nonnegative. For fixed ,  is a
positive measure on  since  is a probability measure on  for each . Note also that  is a random,
counting measure on  and hence  is a (deterministic) positive measure on .

Thus  is the expected number of visits to  at positive times. As usual, when  for  we simplify the notation to 
, and then more generally we have  for . So, as a matrix on , . The matrix 

is closely related to the potential matrix  of , given by . So , and  gives the expected number of
visits to  at all times (not just positive times), starting at . The matrix  is more useful for our purposes in this section.

The distribution of  has a simple representation in terms of the hitting probabilities. Note that because of the Markov property and
time homogeneous property, whenever the chain reaches state , the future behavior is independent of the past and is stochastically the
same as the chain starting in state  at time 0. This is the critical observation in the proof of the following theorem.

If  then

1. 
2.  for 

Proof

Figure : Visits to state  starting in state 

The essence of the proof is illustrated in the graphic above. The thick lines are intended as reminders that these are not one step
transitions, but rather represent all paths between the given vertices. Note that in the special case that  we have

In all cases, the counting variable  has essentially a geometric distribution, but the distribution may well be defective, with some of
the probability mass at . The behavior is quite different depending on whether  is transient or recurrent.

If  and  is transient then

1. 
2. 
3. 

Proof
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1. If  is transient then . Hence using the result above and geometric series,

Hence

2. Using the derivative of the geometric series,

3. From (b),  so solving for  gives . Substituting this
back into (b) gives .

if  and  is recurrent then

1.  and 
2.  if  and  if 
3.  and 

Proof
1. If  is recurrent,  and so from the result above,  for all . Hence 

.
2. If  then , so . If  then  so 

.
3. From the result above,  for all , so .

Note that there is an invertible relationship between the matrix  and the matrix ; if we know one we can compute the other. In
particular, we can characterize the transience or recurrence of a state in terms of . Here is our summary so far:

Let .

1. State  is transient if and only if  if and only if .
2. State  is recurrent if and only if  if and only if .

Of course, the classification also holds for the potential matrix . That is, state  is transient if and only if 
and state  is recurrent if and only if .

Relations

The hitting probabilities suggest an important relation on the state space .

For , we say that  leads to  and we write  if either  or .

It follows immediately from the result above that  if and only if  for some . In terms of the state graph of the
chain,  if and only if  or there is a directed path from  to . Note that the leads to relation is reflexive by definition: 
for every . The relation has another important property as well.

The leads to relation is transitive: For , if  and  then .

Proof

If  and , then there exist  such that  and . But then 
 so .
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The leads to relation naturally suggests a couple of other definitions that are important.

Suppose that  is nonempty.

1.  is closed if  and  implies .
2.  is irreducible if  is closed and has no proper closed subsets.

Suppose that  is closed. Then

1. , the restriction of  to , is a transition probability matrix on .
2.  restricted to  is a Markov chain with transition probability matrix .
3.  for .

Proof
1. If  and , then  does not lead to  so in particular . It follows that  for  so 

is a transition probability matrix.
2. This follows from (a). If the chain starts in , then the chain remains in  for all time, and of course, the Markov property still

holds.
3. Again, this follows from (a).

Of course, the entire state space  is closed by definition. If it is also irreducible, we say the Markov chain  itself is irreducible.
Recall that for a nonempty subset  of  and for , the notation  refers to  and not . In general, these are not the
same, and in fact for ,

the probability of going from  to  in  steps, remaining in  all the while. But if  is closed, then as noted in part (c), this is just 
.

Suppose that  is a nonempty subset of . Then  is the smallest closed set containing 
, and is called the closure of . That is,

1.  is closed.
2. .
3. If  is closed and  then 

Proof
1. Suppose that  and that . Then there exists  such that . By the transitive property,  and hence

.
2. If  then  so .
3. Suppose that  is closed and that . If , then there exists  such that . Hence  and .

Since  is closed, it follows that . Hence .

Recall that for a fixed positive integer ,  is also a transition probability matrix, and in fact governs the -step Markov chain 
. It follows that we could consider the leads to relation for this chain, and all of the results above would still hold

(relative, of course, to the -step chain). Occasionally we will need to consider this relation, which we will denote by , particularly in

our study of periodicity.

Suppose that . If  and  then .

Proof

If  then there exists  such that . If , there exists  such that . Hence 

 so .

By combining the leads to relation  with its inverse, the comes from relation , we can obtain another very useful relation.

For , we say that  to and from  and we write  if  and .
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x y n A A

(x, y)P

n

A S cl(A) = {y ∈ S : x → y for some x ∈ A}

A A

cl(A)

A ⊆ cl(A)

B A ⊆B cl(A) ⊆B

x ∈ cl(A) x → y a ∈ A a → x a → y

y ∈ cl(A)

x ∈ A x → x x ∈ cl(A)

B A ⊆B x ∈ cl(A) a ∈ A a → x a ∈ B a → x

B x ∈ B cl(A) ⊆B

k P

k

k

( , , , …)X

0

X

k

X

2k

k →

k

j, k ∈ N

+

x y→

k

j ∣ k x y→

j

x y→

k

n ∈ N (x, y) > 0P

nk

j ∣ k m ∈ N

+

k =mj

(x, y) > 0P

nmj

x y→

j

→ ←
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By definition, this relation is symmetric: if  then . From our work above, it is also reflexive and transitive. Thus, the to and
from relation is an equivalence relation. Like all equivalence relations, it partitions the space into mutually disjoint equivalence classes.
We will denote the equivalence class of a state  by

Thus, for any two states , either  or , and moreover, .

Figure : The equivalence relation partitions  into mutually disjoint equivalence classes

Two negative results:

1. A closed set is not necessarily an equivalence class.
2. An equivalence class is not necessarily closed.

Example

Consider the trivial Markov chain with state space  and transition matrix . So state 0 leads

deterministically to 1 in one step, while state 1 is absorbing. For the leads to relation, the only relationships are , , and 
. Thus, the equivalence classes are  and .

1. The entire state space  is closed, but is not an equivalence class.
2.  is an equivalence class but is not closed.

On the other hand, we have the following result:

If  is irreducible, then  is an equivalence class.

Proof

Fix  (recall that closed sets are nonempty by definition). Since  is closed it follows that . Since  is irreducible, 
 for each  and in particular, . It follows that  for each . Hence .

The to and from equivalence relation is very important because many interesting state properties turn out in fact to be class properties,
shared by all states in a given equivalence class. In particular, the recurrence and transience properties are class properties.

Transient and Recurrent Classes

Our next result is of fundamental importance: a recurrent state can only lead to other recurrent states.

If  is a recurrent state and  then  is recurrent and .

Proof

The result trivially holds if , so we assume . Let  denote the probability, starting at , that the chain reaches 
without an intermediate return to . It must be the case that  since . In terms of the graph of , if there is a path
from  to , then there is a path from  to  without cycles. Starting at , the chain could fail to return to  by first reaching 
without an intermediate return to , and then from  never reaching . From the Markov and time homogeneous properties, it
follows that . But  so it follows that . So we now know that
there exist positive integers  such that  and . Hence for every ,

Recall that  since  is recurrent. Thus, summing over  in the displayed equation gives . Hence  is
recurrent. Finally, reversing the roles of  and , if follows that 

From the last theorem, note that if  is recurrent, then all states in  are also recurrent. Thus, for each equivalence class, either all
states are transient or all states are recurrent. We can therefore refer to transient or recurrent classes as well as states.

x↔ y y↔ x

x ∈ S

[x] = {y ∈ S : x↔ y} (16.4.18)

x, y ∈ S [x] = [y] [x] ∩ [y] = ∅ [x] = S⋃

x∈S

16.4.2 S

S = {0, 1} P = [ ]

0

0

1

1

0 → 0 0 → 1

1 → 1 {0} {1}

S

{0}

A⊆ S A

x ∈ A A [x] ⊆A A

cl(y) =A y ∈ A cl(x) =A x↔ y y ∈ A A⊆ [x]

x x→ y y H(x, y) =H(y, x) = 1

x = y x ≠ y α(x, y) x y

x α(x, y) > 0 x→ y X

x y x y x x y

x y x

1−H(x, x) ≥ α(x, y)[1−H(y, x)] ≥ 0 H(x, x) = 1 H(y, x) = 1

j, k (x, y) > 0P

j

(y, x) > 0P

k

n ∈ N

(y, y) ≥ (y, x) (x, x) (x, y)P

j+k+n

P

k

P

n

P

j

(16.4.19)

G(x, x) =∞ x n G(y, y) =∞ y

x y H(x, y) = 1

x [x]
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If  is a recurrent equivalence class then  is irreducible.

Proof

Suppose that  and that . Since  is recurrent,  is also recurrent and . Hence  and so  since  is an
equivalence class. Suppose that  is closed. Since  is nonempty by definition, there exists  and so  also. For
every ,  so  since  is closed. Thus  so  is irreducible.

If  is finite and closed then  has a recurrent state.

Proof

Fix . Since  is closed, it follows that . Since  is finite, it follows that 
 for some . But then  is recurrent.

If  is finite and irreducible then  is a recurrent equivalence class.

Proof

Note that  is an equivalence class by a result above, and  has a recurrent state by previous result. It follows that all states in 
are recurrent.

Thus, the Markov chain  will have a collection (possibly empty) of recurrent equivalence classes  where  is a countable
index set. Each  is irreducible. Let  denote the set of all transient states. The set  may be empty or may consist of a number of
equivalence classes, but the class structure of  is usually not important to us. If the chain starts in  for some  then the chain
remains in  forever, visiting each state infinitely often with probability 1. If the chain starts in , then the chain may stay in 
forever (but only if  is infinite) or may enter one of the recurrent classes , never to escape. However, in either case, the chain will
visit a given transient state only finitely many time with probability 1. This basic structure is known as the canonical decomposition of
the chain, and is shown in graphical form below. The edges from  are in gray to indicate that these transitions may not exist.

Figure : The canonical decomposition of the state space

Staying Probabilities and a Classification Test

Suppose that  is a proper subset of . Then

1.  for 
2.  for 

Proof

Recall that  means  where  is the restriction of  to .

1. This is a consequence of the Markov property, and is the probability that the chain stays in  at least through time , starting in 
.

2. This follows from (a) and the continuity theorem for decreasing events. This is the probability that the chain stays in  forever,
starting in .

Let  denote the function defined by part (b), so that

The staying probability function  is an interesting complement to the hitting matrix studied above. The following result characterizes
this function and provides a method that can be used to compute it, at least in some cases.

A A

x ∈ A x→ y x y y→ x x↔ y y ∈ A A

B⊆A B x ∈ B x ∈ A

y ∈ A x↔ y y ∈ B B A=B A

A A

x ∈ A A P( =∞ ∣ = x) = 1N

A

X

0

A

P( =∞ ∣ = x) > 0N

y

X

0

y ∈ A y

A A

A A A

X { : j∈ J}A

j

J

A

j

B B

B A

j

j∈ J

A

j

B B

B A

j

B

16.4.3

A S

(x,A) = P( ∈ A, ∈ A,… , ∈ A ∣ = x)P

n

A
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1

X

2

X

n

X

0

x ∈ A

(x,A) = P( ∈ A, ∈ A… ∣ = x)lim

n→∞

P

n

A

X

1

X

2

X

0

x ∈ A

P

n

A

(P

A

)

n

P

A

P A×A

A n

x ∈ A

A

x ∈ A

g

A

(x) = P( ∈ A, ∈ A,… ∣ = x), x ∈ Ag

A

X

1

X

2

X

0

(16.4.20)
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For ,  is the largest function on  that takes values in  and satisfies . Moreover, either  or 
.

Proof

Note that  for . Taking the limit as  and using the bounded convergence theorem gives 
. Suppose now that  is a function on  that takes values in  and satisfies . Then  and hence 

 for all . Letting  it follows that . Next, let . Then  and hence 
 for each . Letting  gives . It follows that either  or .

Note that the characterization in the last result includes a zero-one law of sorts: either the probability that the chain stays in  forever is
0 for every initial state , or we can find states in  for which the probability is arbitrarily close to 1. The next two results explore
the relationship between the staying function and recurrence.

Suppose that  is an irreducible, recurrent chain with state space . Then  for every proper subset  of .

Proof

Fix  and note that  for every . But  since the chain is irreducible and recurrent.
Hence  for .

Suppose that  is an irreducible Markov chain with state space  and transition probability matrix . If there exists a state  such
that  where , then  is recurrent.

Proof

With  as defined above, note that . Hence , so  is recurent. Since the  is
irreducible, it follows that  is recurrent.

More generally, suppose that  is a Markov chain with state space  and transition probability matrix . The last two theorems can be
used to test whether an irreducible equivalence class  is recurrent or transient. We fix a state  and set . We then try
to solve the equation  on . If the only solution taking values in  is , then the class  is recurrent by the previous
result. If there are nontrivial solutions, then  is transient. Often we try to choose  to make the computations easy.

Computing Hitting Probabilities and Potentials

We now know quite a bit about Markov chains, and we can often classify the states and compute quantities of interest. However, we do
not yet know how to compute:

 when  and  are transient
 when  is transient and  is transient or recurrent.

These problems are related, because of the general inverse relationship between the matrix  and the matrix  noted in our discussion
above. As usual, suppose that  is a Markov chain with state space , and let  denote the set of transient states. The next result shows
how to compute , the matrix  restricted to the transient states. Recall that the values of this matrix are finite.

 satisfies the equation  and is the smallest nonnegative solution. If  is finite then .

Proof

First note the  since a path between two transient states can only pass through other transient states. Thus 
. From the monotone convergence theorem it follows that . Suppose now that  is a

nonnegative matrix on  satisfying . Then  for each . Hence  for
every  and therefore . It follows that . If  is finite, the matrix  is invertible.

Now that we can compute , we can also compute  using the result above. All that remains is for us to compute the hitting
probability  when  is transient and  is recurrent. The first thing to notice is that the hitting probability is a class property.

Suppose that  is transient and that  is a recurrent class. Then  for .

That is, starting in the transient state , the hitting probability to  is constant for , and is just the hitting probability to the
class . As before, let  denote the set of transient states and suppose that  is a recurrent equivalence class. Let  denote the
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function on  that gives the hitting probability to class , and let  denote the function on  that gives the probability of entering 
on the first step:

.

Proof

First note that  for . The result then follows by summing over .

This result is adequate if we have already computed  (using the result in above, for example). However, we might just want to
compute  directly.

 satisfies the equation  and is the smallest nonnegative solution. If  is finite, .

Proof

First, conditioning on  gives . Next suppose that  is nonnegative and satisfies . Then 
 for each . Hence . Letting  gives . The

representation when  is finite follows from the result above.

Examples and Applications

Finite Chains

Consider a Markov chain with state space  and transition matrix  given below:

1. Draw the state graph.
2. Find the equivalent classes and classify each as transient or recurrent.
3. Compute the matrix .
4. Compute the matrix .

Answer

1. State graph
State1.png

2.  recurrent;  recurrent;  transient.

3. 

4. 

Consider a Markov chain with state space  and transition matrix  given below:

B A p

A

B A

(x) =H(x,A), (x) = P (x,A), x ∈ Bh

A

p

A

(16.4.21)
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1. Sketch the state graph.
2. Find the equivalence classes and classify each as recurrent or transient.
3. Compute the matrix .
4. Compute the matrix .

Answer

1. State graph
State2.png

2.  recurrent;  transient;  recurrent.

3. 

4. 

Consider a Markov chain with state space  and transition matrix  given below:

1. Sketch the state graph.
2. Find the equivalence classes and classify each as recurrent or transient.
3. Compute the matrix .
4. Compute the matrix .

Answer

1. State graph
State3.png

2.  recurrent;  transient;  recurrent.
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3. 

4. 

Special Models

Read again the definitions of the Ehrenfest chains and the Bernoulli-Laplace chains. Note that since these chains are irreducible and
have finite state spaces, they are recurrent.

Read the discussion on recurrence in the section on the reliability chains.

Read the discussion on random walks on  in the section on the random walks on graphs.

Read the discussion on extinction and explosion in the section on the branching chain.

Read the discussion on recurrence and transience in the section on queuing chains.

Read the discussion on recurrence and transience in the section on birth-death chains.

This page titled 16.4: Transience and Recurrence for Discrete-Time Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or
curated by Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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16.5: Periodicity of Discrete-Time Chains
      

A state in a discrete-time Markov chain is periodic if the chain can return to the state only at multiples of some integer larger than
1. Periodic behavior complicates the study of the limiting behavior of the chain. As we will see in this section, we can eliminate the
periodic behavior by considering the -step chain, where  is the period, but only at the expense of introducing additional
equivalence classes. Thus, in a sense, we can trade one form of complexity for another.

Basic Theory

Definitions and Basic Results

As usual, our starting point is a (time homogeneous) discrete-time Markov chain  with (countable) state
space  and transition probability matrix .

The period of state  is

State  is aperiodic if  and periodic if .

Thus, starting in , the chain can return to  only at multiples of the period , and  is the largest such integer. Perhaps the most
important result is that period, like recurrence and transience, is a class property, shared by all states in an equivalence class under
the to and from relation.

If  then .

Proof

Suppose that . The result is trivial if , so let's assume that . Recall that there exist  such that 
 and . But then  and hence . Suppose now that

 is a positive integer with . Then  and hence 
. It follows that . From the definition of period, . Reversing the roles of  and  we

also have . Hence .

Thus, the definitions of period, periodic, and aperiodic apply to equivalence classes as well as individual states. When the chain is
irreducible, we can apply these terms to the entire chain.

Suppose that . If  then  (and hence the equivalence class of ) is aperiodic.

Proof

By assumption,  and hence the greatest common divisor of this set is 1.

The converse is not true, of course. A simple counterexample is given below.

The Cyclic Classes

Suppose now that  is irreducible and is periodic with period . There is no real loss in generality in
assuming that the chain is irreducible, for if this were not the case, we could simply restrict our attention to one of the irreducible
equivalence classes. Our exposition will be easier and cleaner if we recall the congruence equivalence relation modulo  on ,
which in turn is based on the divison partial order. For ,  if and only if , equivalently  is an
integer multiple of , equivalently  and  have the same remainder after division by . The basic fact that we will need is that 

 is preserved under sums and differences. That is, if  and if  and , then  and 
.

Now, we fix a reference state , and for , define

That is,  if and only if there exists  with  and .

d d ∈ N

+

X = ( , , , …)X
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X

1

X

2

S P

x ∈ S

d(x) = gcd{n ∈ : (x, x) > 0}N

+

P

n
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m+p n+q≡
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Suppose that .

1. If  and  for  then  for some 
2. Conversely, if  for some , then there exists  such that ,  and 

.
3. The sets  partition .

Proof

Suppose first that . By definition,  leads to  in  steps for some . Since the chain is irreducible,  leads
back to , say in  steps. It follows that  leads back to  in  steps. But because  has period , we must have 

 and hence .

Next suppose that  and . We know that  leads to  in  steps for some , and we now know that  leads
to  in  steps for some . Since the chain is irreducible,  leads to , say in  steps. It follows that  leads back to 
in  steps. Again, since  has period ,  and it follows that 

Next, note that since the chain is irreducible and since  is the set of all remainders modulo , we must have 
. Suppose that  and  for some . Then  and  for some 

. By the same argument as the last paragraph, we must have .

All that remains is to show that the sets are disjoint, and that amounts to the same old argument yet again. Suppose that 
 for some . Then  leads to  in  steps for some  and  leads to  in  steps

for some . Hence  leads back to  in  steps. Since the chain has period  we have  and therefore
. Since  it follows that .

 are the equivalence classes for the -step to and from relation  that governs the -step chain 

 that has transition matrix .

The sets  are known as the cyclic classes. The basic structure of the chain is shown in the state diagram below:

Figure : The cyclic classes of a chain with period 

Examples and Special Cases

Finite Chains

Consider the Markov chain with state space  and transition matrix  given below:

1. Sketch the state graph and show that the chain is irreducible.
2. Show that the chain is aperiodic.
3. Note that  for all .

Answer

x, y ∈ S
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1. The state graph has edge set .
2. Note that  and . Hence  since 2 and 3 are relatively prime. Since the chain is

irreducible, it is aperiodic.

Consider the Markov chain with state space  and transition matrix  given below:

1. Sketch the state graph and show that the chain is irreducible.
2. Find the period .
3. Find .
4. Identify the cyclic classes.

Answer

1. State graph
State4.png

2. Period 3

3. 

4. Cyclic classes: , , 

Special Models

Review the definition of the basic Ehrenfest chain. Show that this chain has period 2, and find the cyclic classes.

Review the definition of the modified Ehrenfest chain. Show that this chain is aperiodic.

Review the definition of the simple random walk on . Show that the chain is periodic with period 2, and find the cyclic
classes.

This page titled 16.5: Periodicity of Discrete-Time Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by
Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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16.6: Stationary and Limiting Distributions of Discrete-Time Chains
      

In this section, we study some of the deepest and most interesting parts of the theory of discrete-time Markov chains, involving two
different but complementary ideas: stationary distributions and limiting distributions. The theory of renewal processes plays a
critical role.

Basic Theory
As usual, our starting point is a (time homogeneous) discrete-time Markov chain  with (countable) state
space  and transition probability matrix . In the background, of course, is a probability space  so that  is the sample
space,  the -algebra of events, and  the probability measure on . For , let , the -
algebra of events determined by the chain up to time , so that  is the natural filtration associated with .

The Embedded Renewal Process

Let  and . We will denote the number of visits to  during the first  positive time units by

Note that  as , where

is the total number of visits to  at positive times, one of the important random variables that we studied in the section on
transience and recurrence. For , we denote the time of the th visit to  by

where as usual, we define . Note that  is the time of the first visit to , which we denoted simply by  in the
section on transience and recurrence. The times of the visits to  are stopping times for . That is,  for 
and . Recall also the definition of the hitting probability to state  starting in state :

Suppose that , and that  is recurrent and .

1. If , then the successive visits to  form a renewal process.
2. If  but , then the successive visits to  form a delayed renewal process.

Proof

Let  for convenience.

1. Given , the sequence  is the sequence of arrival times of a renewal process. Every time the chain
reaches state , the process starts over, independently of the past, by the Markov property. Thus the interarrival times 

 for  are conditionally independent, and are identically distributed, given .
2. If  but , then given , the sequence  is the sequence of arrival times of a delayed renewal

process. By the same argument as in (a), the interarrival times  for  are conditionally independent, given
, and all but  have the same distribution.

As noted in the proof,  is the sequence of arrival times and  is the associated sequence of counting
variables for the embedded renewal process associated with the recurrent state . The corresponding renewal function, given 

, is the function  where

X = ( , , ,…)X

0

X

1

X

2

S P (Ω,F ,P) Ω

F σ P (Ω,F) n ∈ N = σ{ , ,… , }F

n

X

0

X

1

X

n

σ

n F= { , ,…}F

0

F

1

X

y ∈ S n ∈ N

+

y n

= 1( = y)N

y,n

∑

i=1

n

X

i

(16.6.1)

→N

y,n

N

y

n→∞

= 1( = y)N

y

∑

i=1

∞

X

i

(16.6.2)

y

n ∈ N

+

n y

=min{k ∈ : = n}τ

y,n

N

+

N

y,k

(16.6.3)

min(∅) =∞ τ

y,1

y τ

y

y X { = k} ∈τ

y,n

F

k

n ∈ N

+

k ∈ N y x

H(x, y) = P ( <∞ ∣ = x) , (x, y) ∈τ

y

X

0

S

2

(16.6.4)

x, y ∈ S y = xX

0

x = y y

x ≠ y x→ y y

= 0τ

y,0

= yX

0

( , ,…)τ

y,1

τ

y,2

y

−τ

y,n+1

τ

y,n

n ∈ N = yX

0

x ≠ y x→ y = xX

0

( , ,…)τ

y,1

τ

y,2

−τ

y,n+1

τ

y,n

n ∈ N

= xX

0

τ

y,1

( , ,…)τ

y,1

τ

y,2

( , ,…)N

y,1

N

y,2

y

= xX

0

n↦ (x, y)G

n

(x, y) =E ( ∣ = x) = (x, y), n ∈ NG

n

N

y,n

X

0

∑

k=1

n

P

k

(16.6.5)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10293?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/16%3A_Markov_Processes/16.06%3A_Stationary_and_Limiting_Distributions_of_Discrete-Time_Chains


16.6.2 https://stats.libretexts.org/@go/page/10293

Thus  is the expected number of visits to  in the first  positive time units, starting in state . Note that 
 as  where  is the potential matrix that we studied previously. This matrix gives the expected total

number visits to state , at positive times, starting in state :

Limiting Behavior

The limit theorems of renewal theory can now be used to explore the limiting behavior of the Markov chain. Let 
 denote the mean return time to state , starting in . In the following results, it may be the case that 

, in which case we interpret  as 0.

If  and  is recurrent then

Proof

This result follows from the strong law of large numbers for renewal processes.

Note that  is the average number of visits to  in the first  positive time units.

If  and  is recurrent then

Proof

This result follows from the elementary renewal theorem for renewal processes.

Note that  is the expected average number of visits to  during the first  positive time units,
starting at .

If  and  is recurrent and aperiodic then

Proof

This result follows from the renewal theorem for renewal processes.

Note that  by the very definition of a recurrent state. Thus, when , the law of large numbers above gives
convergence with probability 1, and the first and second renewal theory limits above are simply . By contrast, we already
know the corresponding limiting behavior when  is transient.

If  and  is transient then

1. 
2. 
3.  as 

Proof

1. Note that . But if  is transient,  and hence 
 so the result follows from the squeeze theorem for limits.

2. Similarly, note that
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If  is transient,  and hence  as . Again the result follows from the
squeeze theorem for limits.

3. Once more, if  is transient,  and therefore  as .

On the other hand, if  is transient then  by the very definition of a transience. Thus , and so
the results in parts (b) and (c) agree with the corresponding results above for a recurrent state. Here is a summary.

For ,

If  is transient or if  is recurrent and aperiodic,

Positive and Null Recurrence

Clearly there is a fundamental dichotomy in terms of the limiting behavior of the chain, depending on whether the mean return time
to a given state is finite or infinite. Thus the following definition is natural.

Let .

1. State  is positive recurrent if .
2. If  is recurrent but  then state  is null recurrent.

Implicit in the definition is the following simple result:

If  is positive recurrent, then  is recurrent.

Proof

Recall that if  then .

On the other hand, it is possible to have , so that  is recurrent, and also , so that 
is null recurrent. Simply put, a random variable can be finite with probability 1, but can have infinite expected value. A classic
example is the Pareto distribution with shape parameter .

Like recurrence/transience, and period, the null/positive recurrence property is a class property.

If  is positive recurrent and  then  is positive recurrent.

Proof

Suppose that  is positive recurrent and . Recall that  is recurrent and . Hence there exist  such that 
 and . Thus for every , . Averaging over  from

1 to  gives

Letting  and using renwal theory limit above gives

Therefore  and so  is also positive recurrent.
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Thus, the terms positive recurrent and null recurrent can be applied to equivalence classes (under the to and from equivalence
relation), as well as individual states. When the chain is irreducible, the terms can be applied to the chain as a whole.

Recall that a nonempty set of states  is closed if  and  implies . Here are some simple results for a finite,
closed set of states.

If  is finite and closed, then  contains a positive recurrent state.

Proof

Fix a state  and note that  for every  since  is closed. Averaging over  from
1 to  gives

for every . Note that the change in the order of summation is justified since both sums are finite. Assume now that all
states in  are transient or null recurrent. Letting  in the displayed equation gives the contradiction . Again, the
interchange of sum and limit is justified by the fact that  is finite.

If  is finite and closed, then  contains no null recurrent states.

Proof

Let . Note that  since  is closed. Suppose that  is recurrent. Note that  is also closed and finite and hence
must have a positive recurrent state by the previous result. Hence the equivalence class  is positive recurrent and thus so is 

.

If  is finite and irreducible, then  is a positive recurrent equivalence class.

Proof

We already know that  is a recurrent equivalence class, from our study of transience and recurrence. From the previous
theorem,  is positive recurrent.

In particular, a Markov chain with a finite state space cannot have null recurrent states; every state must be transient or positive
recurrent.

Limiting Behavior, Revisited

Returning to the limiting behavior, suppose that the chain  is irreducible, so that either all states are transient, all states are null
recurrent, or all states are positive recurrent. From the basic limit theorem above, if the chain is transient or if the chain is recurrent
and aperiodic, then

Note in particular that the limit is independent of the initial state . Of course in the transient case and in the null recurrent and
aperiodic case, the limit is 0. Only in the positive recurrent, aperiodic case is the limit positive, which motivates our next definition.

A Markov chain  that is irreducible, positive recurrent, and aperiodic, is said to be ergodic.

In the ergodic case, as we will see,  has a limiting distribution as  that is independent of the initial distribution.

The behavior when the chain is periodic with period  is a bit more complicated, but we can understand this behavior
by considering the -step chain  that has transition matrix . Essentially, this allows us to trade
periodicity (one form of complexity) for reducibility (another form of complexity). Specifically, recall that the -step chain is
aperiodic but has  equivalence classes ; and these are the cyclic classes of original chain .

A x ∈ A x → y y ∈ A

A ⊆ S A

x ∈ A (x,A) = (x, y) = 1P

k

∑

y∈A

P

k

k ∈ N

+

A k

n

= 1∑

y∈A

(x, y)G

n

n

(16.6.15)

n ∈ N

+

A n → ∞ 0 = 1

A

A ⊆ S A

x ∈ A [x] ⊆ A A x [x]

[x]

x

A ⊆ S A

A

A

X

(x, y) →  as n → ∞ for every x ∈ SP

n

1

μ(y)

(16.6.16)

x

X

X

n

n → ∞

d ∈ {2, 3, …}

d = ( , , , …)X

d

X

0

X

d

X

2d

P

d

d

d ( , , … , )A

0

A

1

A

d−1

X
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Figure : The cyclic classes of a chain with period 

The mean return time to state  for the -step chain  is .

Proof

Note that every single step for the -step chain corresponds to  steps for the original chain.

Let ,

1.  as  if  and  and .
2.  as  in all other cases.

Proof

These results follow from the previous theorem and the cyclic behavior of the chain.

If  is null recurrent or transient then regardless of the period of ,  as  for every .

Invariant Distributions

Our next goal is to see how the limiting behavior is related to invariant distributions. Suppose that  is a probability density
function on the state space . Recall that  is invariant for  (and for the chain ) if . It follows immediately that 

 for every . Thus, if  has probability density function  then so does  for each , and hence  is a
sequence of identically distributed random variables. A bit more generally, suppose that  is invariant for , and let 

. If  then  defined by  for  is an invariant probability density function.

Suppose that  is invariant for  and satisfies . Then

Proof

Recall again that  for every  since  is invariant for . Averaging over  from 1 to  gives  for
each . Explicitly,

Letting  and using the limit theorem above gives the result. The dominated convergence theorem justifies
interchanging the limit with the sum, since the terms are positive, , and .

Note that if  is transient or null recurrent, then . Thus, a invariant function with finite sum, and in particular an invariant
probability density function must be concentrated on the positive recurrent states.

Suppose now that the chain  is irreducible. If  is transient or null recurrent, then from the previous result, the only nonnegative
functions that are invariant for  are functions that satisfy  and the function that is identically 0: . In
particular, the chain does not have an invariant distribution. On the other hand, if the chain is positive recurrent, then 

16.6.1 d

x d X

d

(x) = μ(x)/dμ

d

d d

i, j, k ∈ {0, 1,… , d−1}

(x, y) → d/μ(y)P

nd+k

n→∞ x ∈ A

i

y ∈ A

j

j= (i+k) mod d

(x, y) → 0P

nd+k

n→∞

y ∈ S y (x, y) → 0P

n

n→∞ x ∈ S

f

S f P X fP = f

f = fP

n

n ∈ N X

0

f X

n

n ∈ N X

g : S→ [0,∞) P

C = g(x)∑

x∈S

0 <C <∞ f f(x) = g(x)/C x ∈ S

g : S→ [0,∞) P g(x) <∞∑

x∈S

g(y) = g(x)H(x, y), y ∈ S

1

μ(y)

∑

x∈S

(16.6.17)

g = gP

k

k ∈ N g P k n g /n= gG

n

n ∈ N

+

g(x) = g(y), y ∈ S∑

x∈S

(x, y)G

n

n

(16.6.18)

n→∞

(x, y) ≤ 1

1

n

G

n

g(x) <∞∑

x∈S

y g(y) = 0

X X

P g(x) =∞∑

x∈S

g= 0

H(x, y) = 1
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for all . Thus, from the previous result, the only possible invariant probability density function is the function  given by 
 for . Any other nonnegative function  that is invariant for  and has finite sum, is a multiple of  (and

indeed the multiple is sum of the values). Our next goal is to show that  really is an invariant probability density function.

If  is an irreducible, positive recurrent chain then the function  given by  for  is an invariant
probability density function for .

Proof

Let  for , and let  be a finite subset of . Then  for every . Letting 
 using the basic limit above gives . The interchange of limit and sum is justified since  is finite. Since

this is true for every finite , it follows that  where . Note also that  since the chain is
positive recurrent. Next note that

for every . Letting  gives  for every . It then follows that 
 for every . Suppose that strict inequality holds for some for some . Then

Interchanging the order of summation on the left in the displayed inequality yields the contradiction . Thus  is
invariant for . Hence  is an invariant probability density function. By the uniqueness result noted earlier, it follows that 

 so that in fact .

In summary, an irreducible, positive recurrent Markov chain  has a unique invariant probability density function  given by 
 for . We also now have a test for positive recurrence. An irreducible Markov chain  is positive recurrent if

and only if there exists a positive function  on  that is invariant for  and satisfies  (and then, of course,
normalizing  would give ).

Consider now a general Markov chain  on . If  has no positive recurrent states, then as noted earlier, there are no invariant
distributions. Thus, suppose that  has a collection of positive recurrent equivalence classes  where  is a nonempty,
countable index set. The chain restricted to  is irreducible and positive recurrent for each , and hence has a unique invariant
probability density function  on  given by

We extend  to  by defining  for , so that  is a probability density function on . All invariant probability
density functions for  are mixtures of these functions:

 is an invariant probability density function for  if and only if  has the form

where  is a probability density function on the index set . That is,  for  and , and 
 otherwise.

Proof

Let , the set of positive recurrent states. Suppose that  has the form given in the theorem. Since  for 
 we have

Suppose that  for some . Since  if  and , the last sum becomes

x, y ∈ S f

f(x) = 1/μ(x) x ∈ S g P f

f

X f f(x) = 1/μ(x) x ∈ S

X

f(x) = 1/μ(x) x ∈ S A S (x, y) ≤ 1∑

y∈A

1

n

G

n

x ∈ S

n→∞ f(y) ≤ 1∑

y∈A

A

A⊆ S C ≤ 1 C = f(y)∑

y∈S

C > 0

(x, y)P (y, z) ≤ (x, z)∑

y∈A

1

n

G

n

1

n

G

n+1

(16.6.19)

x, z ∈ S n→∞ f(y)P (y, z) ≤ f(z)∑

y∈A

z ∈ S

f(y)P (y, z) ≤ f(z)∑

y∈S

z ∈ S z ∈ S

f(y)P (y, z) < f(z)∑

z∈S

∑

y∈S

∑

z∈S

(16.6.20)

C <C f

P f/C

f/C = f C = 1

X f

f(x) = 1/μ(x) x ∈ S X

g S P g(x) <∞∑

x∈S

g f

X S X

X ( : i ∈ I)A

i

I

A

i

i ∈ I

f

i

A

i

(x) = , x ∈f

i

1

μ(x)

A

i

(16.6.21)

f

i

S (x) = 0f

i

x ∉ A

i

f

i

S

X

f X f

f(x) = (x), x ∈ S∑

i∈I

p

i

f

i

(16.6.22)

( : i ∈ I)p

i

I f(x) = (x)p

i

f

i

i ∈ I x ∈ A

i

f(x) = 0

A=⋃

i∈I

A

i

f f(x) = 0

x ∉ A

(fP )(y) = f(x)P (x, y) = (x)P (x, y)∑

x∈S

∑

i∈I

∑

x∈A

i

p

i

f

i

(16.6.23)

y ∈ A

j

j∈ I P (x, y) = 0 x ∈ A

i

i ≠ j
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because  is invariant for the  restricted to . If  then  for  so the sum above becomes 
. Hence  is invariant. Moreover,

so  is a PDF on . Conversely, suppose that  is an invariant PDF for . We know that  is concentrated on the positive
recurrent states, so  for . For  and 

since  is invariant for  and since, as noted before,  if . It follows that  restricted to  is invariant
for the chain restricted to  for each . Let , the normalizing constant for  restricted to . By
uniqueness, the restriction of  to  must be , so  has the form given in the theorem.

Invariant Measures

Suppose that  is irreducible. In this section we are interested in general functions  that are invariant for , so that
. A function  defines a positive measure  on  by the simple rule

so in this sense, we are interested in invariant positive measures for  that may not be probability measures. Technically,  is the
density function of  with respect to counting measure  on .

From our work above, We know the situation if  is positive recurrent. In this case, there exists a unique invariant probability
density function  that is positive on , and every other nonnegative invariant function  is a nonnegative multiples of . In
particular, either , the zero function on , or  is positive on  and satisfies .

We can generalize to chains that are simply recurrent, either null or positive. We will show that there exists a positive invariant
function that is unique, up to multiplication by positive constants. To set up the notation, recall that 
is the first positive time that the chain is in state . In particular, if the chain starts in  then  is the time of the first return to 

. For  we define the function  by

so that  is the expected number of visits to  before the first return to , starting in . Here is the existence result.

Suppose that  is recurrent. For ,

1. 
2.  is invariant for 
3.  for .

Proof
1. By definition, given , we have  but  for . Hence .
2. Since the chain is recurrent, with probability 1 we have  and . Hence for ,

(Note that if  then with probability 1, the  term in the first sum and the  term in the second sum are 1
and the remaining terms are 0. If , the  term in the first sum and the  term in the second sum are 0 with
probability 1, so again the the two sums are the same.) Hence

(fP )(y) = (x)P (x, y) = (y) = f(y)p

j

∑

x∈A

j

f

j

p

j

f

j
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f

j

P A

j

y ∉ A P (x, y) = 0 x ∈ A

(fP )(y) = 0 = f(y) f

f(x) = f(x) = (x) = = 1∑

x∈S

∑

i∈I

∑

x∈A

i

∑

i∈I

p

i

∑

x∈A

i

f

i

∑

i∈I

p

i
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f S f X f

f(x) = 0 x ∉ A i ∈ I y ∈ A

i

f(x)P (x, y) = f(x)P (x, y) = f(y)∑

x∈A

i

∑

x∈S

(16.6.26)

f P f(x)P (x, y) = 0 x ∉ A

i

f A

i

A

i

i ∈ I = f(x)p

i

∑

x∈A

i

f A

i

f/p

i

A

i

f

i

f

X g : S→ [0,∞) X

gP = g g : S→ [0,∞) ν S

ν(A) = g(x), A⊆ S∑

x∈A

(16.6.27)

X g

ν # S

X

f S g f

g= 0 S g S g(x) <∞∑

x∈S

=min{k ∈ : = x}τ

x

N

+

X

k

x ∈ S x τ

x

x x ∈ S γ

x

(y) =E( 1( = y) = x) , y ∈ Sγ

x

∑

n=0

−1τ

x

X

n

∣

∣

∣X

0

(16.6.28)

(y)γ

x

y x x

X x ∈ S

(x) = 1γ

x

γ

x

X

(y) ∈ (0,∞)γ

x

y ∈ S

= xX

0

= xX

0

≠ xX

n

n ∈ {1,… , −1}τ

x

(x) = 1γ

x

<∞τ

x

= xX

τ

x

y ∈ S

(y) =E( 1( = y) = x) =E( 1( = y) = x)γ

x

∑

n=0

−1τ

x

X

n

∣

∣

∣X

0

∑

n=1

τ

x

X

n

∣

∣

∣X

0
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x = y n= 0 n= τ
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Next we partition on the values of  in the sum to obtain

But  (that is, the events depend only on . Hence by the Markov property, the
first factor in the last displayed equation is simply . Substituting and re-indexing the
sum gives

3. By the invariance in part (b),  for every . Let . Since the chain is irreducible, there exists 
such that . Hence

Similarly, there exists  such that . Hence

and therefore .

Next is the uniqueness result.

Suppose again that  is recurrent and that  is invariant for . For fixed ,

Proof

Let  and let . Since  is invariant,

Note that the last term is . Repeating the argument for  in the sum above gives

The last two terms are

Continuing in this way shows that for each ,

Letting  then shows that . Next, note that the function  is invariant, since it is a
difference of two invariant functions, and as just shown, is nonnegative. Also, . Let .
Since the chain is irreducible, there exists  such that . Hence

(y) =E( 1( = y, ≥ n) = x) = P( = y, ≥ n ∣ = x)γ

x

∑

n=1

∞

X

n

τ

x

∣

∣

∣X

0

∑

n=1

∞

X

n

τ

x

X

0

(16.6.30)

X

n−1

(y)γ
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∞
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z∈S

X

n

X

n−1

τ

x

X

0
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∞

∑
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n−1

τ

x
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0
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0
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( ,… , ))X

0
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n−1
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n−1

(y)γ
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n=1

∞

∑

z∈S

X
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X

0

∑

z∈S

∑
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∣

∣

∣X

0
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∑

m=0

−1τ
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X

m

∣

∣

∣X

0

∑

z∈S

γ

x

γ

x

=γ

x

γ

x

P

n

n ∈ N y ∈ S j∈ N

(x, y) > 0P

j
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x
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k ∈ N (y, x) > 0P

k

1 = (x) = (x) ≥ (y) (y, x)γ

x

γ

x

P

k

γ

x

P

k
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(y) ≤ 1/ (y, x) <∞γ

x

P

k

X g : S→ [0,∞) X x ∈ S

g(y) = g(x) (y), y ∈ Sγ

x

(16.6.33)

= S−{x}S

x

y ∈ S g

g(y) = gP (y) = g(z)P (z, y) = g(z)P (z, y)+g(x)P (x, y)∑

z∈S

∑

z∈S

x

(16.6.34)

g(x)P( = y, ≥ 1 ∣ = x)X

1

τ

x

X

0

g(z)
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z∈S

x
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g(x) [P( = y, ≥ 2 ∣ = x)+P( = y, ≥ 1 ∣ = x)]X

2

τ

x

X

0
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1

τ
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n ∈ N

+

g(y) ≥ g(x) P( = y, ≥ k ∣ = x)∑
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X
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n→∞ g(y) ≥ g(x) (y)γ

x

h = g−g(x)γ

x

h(x) = g(x)−g(x) (x) = 0γ

x
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Since  it follows that .

Thus, suppose that  is null recurrent. Then there exists an invariant function  that is positive on  and satisfies 
. Every other nonnegative invariant function is a nonnegative multiple of . In particular, either , the zero

function on , or  is positive on  and satisfies . The section on reliability chains gives an example of the
invariant function for a null recurrent chain.

The situation is complicated when  is transient. In this case, there may or may not exist nonnegative invariant functions that are
not identically 0. When they do exist, they may not be unique (up to multiplication by nonnegative constants). But we still know
that there are no invariant probability density functions, so if  is a nonnegative function that is invariant for  then either 
or . The section on random walks on graphs provides lots of examples of transient chains with nontrivial invariant
functions. In particular, the non-symmetric random walk on  has a two-dimensional space of invariant functions.

Examples and Applications

Finite Chains

Consider again the general two-state chain on  with transition probability matrix given below, where  and 
 are parameters.

1. Find the invariant distribution.
2. Find the mean return time to each state.
3. Find  without having to go to the trouble of diagonalizing , as we did in the introduction to discrete-time

chains.

Answer

1. 

2. 

3.  as .

Consider a Markov chain with state space  and transition matrix  given below:

1. Draw the state diagram.
2. Determine the equivalent classes and classify each as transient or positive recurrent.
3. Find all invariant probability density functions.
4. Find the mean return time to each state.
5. Find .

Answer

1. State graph
State1.png

2.  recurrent;  recurrent;  transient.

3. , 

4. 

0 = h(x) = h (x) ≥ h(y) (y, x) ≥ 0P

j

P

j

(16.6.38)
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j
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x∈S
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⎢
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5.  as 

Consider a Markov chain with state space  and transition matrix  given below:

1. Sketch the state graph.
2. Find the equivalence classes and classify each as transient or positive recurrent.
3. Find all invariant probability density functions.
4. Find the mean return time to each state.
5. Find .

Answer

1. State graph
State2.png

2.  recurrent;  transient;  recurrent.

3. 

4. 

5.  as .

Consider a Markov chain with state space  and transition matrix  given below:

1. Sketch the state graph.
2. Find the equivalence classes and classify each as transient or positive recurrent.
3. Find all invariant probability density functions.
4. Find the mean return time to each state.
5. Find .
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1. State graph
State3.png

2.  recurrent;  transient;  recurrent.
3. 
4. 

5.  as 

Consider the Markov chain with state space  and transition matrix  given below:

1. Sketch the state digraph, and show that the chain is irreducible with period 3.
2. Identify the cyclic classes.
3. Find the invariant probability density function.
4. Find the mean return time to each state.
5. Find .
6. Find .
7. Find .

Answer

1. State graph
State4.png

2. Cyclic classes: , , 
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6.  as 

7.  as 

Special Models

Read the discussion of invariant distributions and limiting distributions in the Ehrenfest chains.

Read the discussion of invariant distributions and limiting distributions in the Bernoulli-Laplace chain.

Read the discussion of positive recurrence and invariant distributions for the reliability chains.

Read the discussion of positive recurrence and limiting distributions for the birth-death chain.

Read the discussion of positive recurrence and for the queuing chains.

Read the discussion of positive recurrence and limiting distributions for the random walks on graphs.

This page titled 16.6: Stationary and Limiting Distributions of Discrete-Time Chains is shared under a CC BY 2.0 license and was authored,
remixed, and/or curated by Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts
platform.
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16.7: Time Reversal in Discrete-Time Chains
      

The Markov property, stated in the form that the past and future are independent given the present, essentially treats the past and
future symmetrically. However, there is a lack of symmetry in the fact that in the usual formulation, we have an initial time 0, but
not a terminal time. If we introduce a terminal time, then we can run the process backwards in time. In this section, we are
interested in the following questions:

Is the new process still Markov?
If so, how does the new transition probability matrix relate to the original one?
Under what conditions are the forward and backward processes stochastically the same?

Consideration of these questions leads to reversed chains, an important and interesting part of the theory of Markov chains.

Basic Theory

Reversed Chains

Our starting point is a (homogeneous) discrete-time Markov chain  with (countable) state space  and
transition probability matrix . Let  be a positive integer, which we will think of as the terminal time or finite time horizon. We
won't bother to indicate the dependence on  notationally, since ultimately the terminal time will not matter. Define 
for . Thus, the process forward in time is  while the process backwards in time is

For , let

denote the  algebra of the events of the process  up to time . So of course, an event for  up to time  is an event for  from
time  forward. Our first result is that the reversed process is still a Markov chain, but not time homogeneous in general.

The process  is a Markov chain, but is not time homogenous in general. The one-step transition
matrix at time  is given by

Proof

Let  and . Then

But  and so by the Markov property for ,

By the time homogeneity of , . Substituting and simplifying gives

However, the backwards chain will be time homogeneous if  has an invariant distribution.

Suppose that  is irreducible and positive recurrent, with (unique) invariant probability density function . If  has the
invariant probability distribution, then  is a time-homogeneous Markov chain with transition matrix  given by
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Proof

This follows from the result above. Recall that if  has PDF , then  has PDF  for each .

Recall that a discrete-time Markov chain is ergodic if it is irreducible, positive recurrent, and aperiodic. For an ergodic chain, the
previous result holds in the limit of the terminal time.

Suppose that  is ergodic, with (unique) invariant probability density function . Regardless of the distribution of ,

Proof

This follows from the conditional probability above and our study of the limiting behavior of Markov chains. Since  is
ergodic,  as  for every .

These three results are motivation for the definition that follows. We can generalize by defining the reversal of an irreducible
Markov chain, as long as there is a positive, invariant function. Recall that a positive invariant function defines a positive measure
on , but of course not in general a probability distribution.

Suppose that  is an irreducible Markov chain with transition matrix , and that  is invariant for . The
reversal of  with respect to  is the Markov chain  with transition probability matrix  defined by

Proof

We need to show that  is a valid transition probability matrix, so that the definition makes sense. Since  is invariant for ,

Recall that if  is a positive invariant function for  then so is  for every positive constant . Note that  and  generate the
same reversed chain. So let's consider the cases:

Suppose that  is an irreducible Markov chain on .

1. If  is recurrent, then  always has a positive invariant function that is unique up to multiplication by positive constants.
Hence the reversal of a recurrent chain  always exists and is unique, and so we can refer to the reversal of  without
reference to the invariant function.

2. Even better, if  is positive recurrent, then there exists a unique invariant probability density function, and the reversal of 
 can be interpreted as the time reversal (with respect to a terminal time) when  has the invariant distribution, as in the

motivating exercises above.
3. If  is transient, then there may or may not exist a positive invariant function, and if one does exist, it may not be unique

(up to multiplication by positive constants). So a transient chain may have no reversals or more than one.

Nonetheless, the general definition is natural, because most of the important properties of the reversed chain follow from the
balance equation between the transition matrices  and , and the invariant function :

We will see this balance equation repeated with other objects related to the Markov chains.
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Suppose that  is an irreducible Markov chain with invariant function , and that  is the reversal of  with
respect to . For ,

1. 
2.  if and only if 

Proof

These results follow immediately from the balance equation  for .

From part (b) it follows that the state graphs of  and  are reverses of each other. That is, to go from the state graph of one chain
to the state graph of the other, simply reverse the direction of each edge. Here is a more complicated (but equivalent) version of the
balance equation for chains of states:

Suppose again that  is an irreducible Markov chain with invariant function , and that  is the reversal of 
with respect to . For every  and every sequence of states ,

Proof

This follows from repeated applications of the basic equation. When , we have the balance equation itself:

For ,

Continuing in this manner (or using induction) gives the general result.

The balance equation holds for the powers of the transition matrix:

Suppose again that  is an irreducible Markov chain with invariant function , and that  is the reversal of 
with respect to . For every  and ,

Proof

When , the left and right sides are  if  and are 0 otherwise. When , we have the basic balance equation: 
. In general, for , by the previous result we have

We can now generalize the simple result above.

Suppose again that  is an irreducible Markov chain with invariant function , and that  is the reversal of 
with respect to . For  and ,

1. 
2.  if and only if 

In terms of the state graphs, part (b) has an obvious meaning: If there exists a path of length  from  to  in the original state
graph, then there exists a path of length  from  to  in the reversed state graph. The time reversal definition is symmetric with
respect to the two Markov chains.
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Suppose again that  is an irreducible Markov chain with invariant function , and that  is the reversal of 
with respect to . Then

1.  is also invariant for .
2.  is also irreducible.
3.  is the reversal of  with respect to .

Proof
1. For , using the balance equation,

2. Suppose . Since  is irreducible, there exist  with . But then from the previous result, 
. Hence  is also irreducible.

3. This is clear from the symmetric relationship in the fundamental result.

The balance equation also holds for the potential matrices.

Suppose that  and  are time reversals with respect to the invariant function . For , the  potential
matrices are related by

Proof

This follows easily from the result above and the definition of the potential matrices:

Markov chains that are time reversals share many important properties:

Suppose that  and  are time reversals. Then

1.  and  are of the same type (transient, null recurrent, or positive recurrent).
2.  and  have the same period.
3.  and  have the same mean return time  for every .

Proof

Suppose that  and  are time reversals with respect to the invariant function .

1. The expected number of visits to a state , starting in , is the same for both chains: . Hence either
both chains are transient (if the common potential is finite) or both chains are recurrent (if the common potential is infinite).
If both chains are recurrent then the invariant function  is unique up to multiplication by positive constants, and both are
null recurrent if  and both are positive recurrent if .

2. This follows since  for all  and .
3. If both chains are transient or both are null recurrent, then  for all . If both chains are positive

recurrent, then for all  and , we have

The left side converges to  as  while the right side converges to  as .
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The main point of the next result is that we don't need to know a-priori that  is invariant for , if we can guess  and .

Suppose again that  is irreducible with transition probability matrix . If there exists a a function  and a
transition probability matrix  such that  for all , then

1.  is invariant for .
2.  is the transition matrix of the reversal of  with respect to .

Proof

1. Since  is a transition probability matrix, we have the same computation we have seen before:

2. This follows from (a) and the definition.

As a corollary, if there exists a probability density function  on  and a transition probability matrix  such that 
 for all  then in addition to the conclusions above, we know that the chains  and  are

positive recurrent.

Reversible Chains

Clearly, an interesting special case occurs when the transition matrix of the reversed chain turns out to be the same as the original
transition matrix. A chain of this type could be used to model a physical process that is stochastically the same, forward or
backward in time.

Suppose again that  is an irreducible Markov chain with transition matrix  and invariant function 
. If the reversal of  with respect to  also has transition matrix , then  is said to be reversible with respect

to . That is,  is reversible with respect to  if and only if

Clearly if  is reversible with respect to the invariant function  then  is reversible with respect to the invariant
function  for every . So again, let's review the cases.

Suppose that  is an irreducible Markov chain on .

1. If  is recurrent, there exists a positive invariant function that is unique up to multiplication by positive constants. So  is
either reversible or not, and we don't have to reference the invariant function .

2. If  is positive recurrent then there exists a unique invariant probability density function , and again, either 
 is reversible or not. If  is reversible, then  is the transition matrix of  forward or backward in time, when the chain

has the invariant distribution.
3. If  is transient, there may or may not exist positive invariant functions. If there are two or more positive invariant

functions that are not multiplies of one another,  might be reversible with respect to one function but not the others.

The non-symmetric simple random walk on  falls into the last case. Using the last result in the previous subsection, we can tell
whether  is reversible with respect to  without knowing a-priori that  is invariant.

Suppose again that  is irreducible with transition matrix . If there exists a function  such that 
 for all , then

1.  is invariant for .
2.  is reversible with respect to 

If we have reason to believe that a Markov chain is reversible (based on modeling considerations, for example), then the condition
in the previous theorem can be used to find the invariant functions. This procedure is often easier than using the definition of
invariance directly. The next two results are minor generalizations:
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Suppose again that  is irreducible and that . Then  is invariant and  is reversible with respect to  if and
only if for every  and every sequence of states ,

Suppose again that  is irreducible and that . Then  is invariant and  is reversible with respect to  if and
only if for every  and ,

Here is the condition for reversibility in terms of the potential matrices.

Suppose again that  is irreducible and that . Then  is invariant and  is reversible with respect to  if and
only if

In the positive recurrent case (the most important case), the following theorem gives a condition for reversibility that does not
directly reference the invariant distribution. The condition is known as the Kolmogorov cycle condition, and is named for Andrei
Kolmogorov

Suppose that  is irreducible and positive recurrent. Then  is reversible if and only if for every sequence of states 
,

Proof

Suppose that  is reversible. Applying the chain result above to the sequence  gives the Kolmogorov
cycle condition. Conversely, suppose that the Kolmogorov cycle condition holds, and let  denote the invariant probability
density function of . From the cycle condition we have  for every  and 

. Averaging over  from 1 to  gives

Letting  gives  for , so  is reversible.

Note that the Kolmogorov cycle condition states that the probability of visiting states  in sequence, starting in
state  is the same as the probability of visiting states  in sequence, starting in state . The cycle condition
is also known as the balance equation for cycles.

Figure : The Kolmogorov cycle condition

Examples and Applications

Finite Chains

Recall the general two-state chain  on  with the transition probability matrix

where  are parameters. The chain  is reversible and the invariant probability density function is 

.
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n→∞ f(x)P (x, y) = f(y)P (y, x) (x, y) ∈ S
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Proof

All we have to do is note that

Suppose that  is a Markov chain on a finite state space  with symmetric transition probability matrix . Thus 
 for all . The chain  is reversible and that the uniform distribution on  is invariant.

Proof

All we have to do is note that  where  is the constant function 1 on .

Consider the Markov chain  on  with transition probability matrix  given below:

1. Draw the state graph of  and note that the chain is irreducible.
2. Find the invariant probability density function .
3. Find the mean return time to each state.
4. Find the transition probability matrix  of the time-reversed chain .
5. Draw the state graph of .

Answer

1. State graph of 
State1.png

2. 

3. 

4. 

5. State graph of 
State1.png

Special Models

Read the discussion of reversibility for the Ehrenfest chains.

Read the discussion of reversibility for the Bernoulli-Laplace chain.

Read the discussion of reversibility for the random walks on graphs.

Read the discussion of time reversal for the reliability chains.

Read the discussion of reversibility for the birth-death chains.

This page titled 16.7: Time Reversal in Discrete-Time Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by
Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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16.8: The Ehrenfest Chains
      

Basic Theory

The Ehrenfest chains, named for Paul Ehrenfest, are simple, discrete models for the exchange of gas molecules between two containers. However, they
can be formulated as simple ball and urn models; the balls correspond to the molecules and the urns to the two containers. Thus, suppose that we have
two urns, labeled 0 and 1, that contain a total of  balls. The state of the system at time  is the number of balls in urn 1, which we will denote by 

. Our stochastic process is  with state space . Of course, the number of balls in urn 0 at time  is .

The Models

In the basic Ehrenfest model, at each discrete time unit, independently of the past, a ball is selected at random and moved to the other urn.

Figure : The Ehrenfest model

 is a discrete-time Markov chain on  with transition probability matrix  given by

Proof

We will give a construction of the chain from a more basic process. Let  be the ball selected at time . Thus  is a
sequence of independent random variables, each uniformly distributed on . Let  be independent of . (We can start the
process any way that we like.) Now define the state process recursively as follows:

In the Ehrenfest experiment, select the basic model. For selected values of  and selected values of the initial state, run the chain for 1000 time
steps and note the limiting behavior of the proportion of time spent in each state.

Suppose now that we modify the basic Ehrenfest model as follows: at each discrete time, independently of the past, we select a ball at random and a urn
at random. We then put the chosen ball in the chosen urn.

 is a discrete-time Markov chain on  with the transition probability matrix  given by

Proof

Again, we can construct the chain from a more basic process. Let  and  be as in Theorem 1. Let  be the urn selected at time . Thus 
 is a sequence of independent random variables, each uniformly distributed on  (so that  is a fair, Bernoulli trials

sequence). Also,  is independent of  and . Now define the state process recursively as follows:

Note that  for .

In the Ehrenfest experiment, select the modified model. For selected values of  and selected values of the initial state, run the chain for 1000 time
steps and note the limiting behavior of the proportion of time spent in each state.

Classification

The basic and modified Ehrenfest chains are irreducible and positive recurrent.

Proof

The chains are clearly irreducible since every state leads to every other state. It follows that the chains are positive recurrent since the state space 
is finite.
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The basic Ehrenfest chain is periodic with period 2. The cyclic classes are the set of even states and the set of odd states. The two-step transition
matrix is

Proof

Note that returns to a state can only occur at even times, so the chain has period 2. The form of  follows from the formula for  above.

The modified Ehrenfest chain is aperiodic.

Proof

Note that  for each .

Invariant and Limiting Distributions

For the basic and modified Ehrenfest chains, the invariant distribution is the binomial distribution with trial parameter  and success parameter .
So the invariant probability density function  is given by

Proof

For the basic chain we have

The last step uses a fundamental identity for binomial coefficients. For the modified chain we can use the result for the basic chain:

Thus, the invariant distribution corresponds to placing each ball randomly and independently either in urn 0 or in urn 1.

The mean return time to state  for the basic or modified Ehrenfest chain is .

Proof

This follows from the general theory and the invariant distribution above.

For the basic Ehrenfest chain, the limiting behavior of the chain is as follows:

1.  as  if  have the same parity (both even or both odd). The limit is 0 otherwise.

2.  as  if  have oppositie parity (one even and one odd). The limit is 0 otherwise.

Proof

These results follow from the general theory and the invariant distribution above, and the fact that the chain is periodic with period 2, with the odd
and even integers in  as the cyclic classes.

For the modified Ehrenfest chain,  as  for .

Proof

Again, this follows from the general theory and the invariant distribution above, and the fact that the chain is aperiodic.

In the Ehrenfest experiment, the limiting binomial distribution is shown graphically and numerically. For each model and for selected values of 
and selected values of the initial state, run the chain for 1000 time steps and note the limiting behavior of the proportion of time spent in each state.
How do the choices of , the initial state, and the model seem to affect the rate of convergence to the limiting distribution?

Reversibility

The basic and modified Ehrenfest chains are reversible.
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Proof

Let  for . The crucial observations are  and  for all . For the
basic chain, if  then

In all other cases, . The reversibility condition for the modified chain follows trivially from that of the basic chain
since  for  (and of course the reversibility condition is trivially satisfied when ). Note that the invariant PDF 
is simply  normalized. The reversibility condition gives another (and better) proof that  is invariant.

Run the simulation of the Ehrenfest experiment 10,000 time steps for each model, for selected values of , and with initial state 0. Note that at first,
you can see the “arrow of time”. After a long period, however, the direction of time is no longer evident.

Computational Exercises

Consider the basic Ehrenfest chain with  balls, and suppose that  has the uniform distribution on .

1. Compute the probability density function, mean and variance of .
2. Compute the probability density function, mean and variance of .
3. Compute the probability density function, mean and variance of .
4. Sketch the initial probability density function and the probability density functions in parts (a), (b), and (c) on a common set of axes.

Answer

1. , , 

2. , , 

3. , , 

Consider the modified Ehrenfest chain with  balls, and suppose that the chain starts in state 2 (with probability 1).

1. Compute the probability density function, mean and standard deviation of .
2. Compute the probability density function, mean and standard deviation of .
3. Compute the probability density function, mean and standard deviation of .
4. Sketch the initial probability density function and the probability density functions in parts (a), (b), and (c) on a common set of axes.

Answer
1. , , 
2. , , 
3. , , 

This page titled 16.8: The Ehrenfest Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via
source content that was edited to the style and standards of the LibreTexts platform.
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16.9: The Bernoulli-Laplace Chain
     

Basic Theory

Introduction

The Bernoulli-Laplace chain, named for Jacob Bernoulli and Pierre Simon Laplace, is a simple discrete model for the diffusion of two
incompressible gases between two containers. Like the Ehrenfest chain, it can also be formulated as a simple ball and urn model. Thus, suppose
that we have two urns, labeled 0 and 1. Urn 0 contains  balls and urn 1 contains  balls, where . Of the  balls,  are red and the
remaining  are green. Thus  and . At each discrete time, independently of the past, a ball is selected at random
from each urn and then the two balls are switched. The balls of different colors correspond to molecules of different types, and the urns are the
containers. The incompressible property is reflected in the fact that the number of balls in each urn remains constant over time.

Figure : The Bernoulli-Laplace model

Let  denote the number of red balls in urn 1 at time . Then

1.  is the number of green balls in urn 1 at time .
2.  is the number of red balls in urn 0 at time .
3.  is the number of green balls in urn 0 at time .

 is a discrete-time Markov chain with state space  and with transition matrix 
 given by

Proof

For the state space, note from the previous result that the number of red balls  in urn 1 must satisfy the inequalities , , ,
and . The Markov property is clear from the model. For the transition probabilities, note that to go from state  to state  we
must select a green ball from urn 0 and a red ball from urn 1. The probabilities of these events are  and  for  and 
in , and the events are independent. Similarly, to go from state  to state  we must select a red ball from urn 0 and a green ball from
urn 1. The probabilities of these events are  and  for  and  in , and the events are independent. Finally, to go
from state  back to state , we must select a red ball from both urns or a green ball from both urns. Of course also, 

.

This is a fairly complicated model, simply because of the number of parameters. Interesting special cases occur when some of the parameters are
the same.

Consider the special case , so that each urn has the same number of balls. The state space is 
and the transition probability matrix is

Consider the special case , so that the number of red balls is the same as the number of balls in urn 0. The state space is 
 and the transition probability matrix is

Consider the special case , so that the number of red balls is the same as the number of balls in urn 1. The state space is 
 and the transition probability matrix is

j k j, k ∈ N

+

j+k r

j+k−r r ∈ N

+

0 < r< j+k

16.9.1

X

n

n ∈ N

k−X

n

n

r−X

n

n

j−r+X

n

n

X = ( , , ,…)X

0

X

1

X

2

S = {max{0, r−j},… ,min{k, r}}
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(16.9.1)
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Consider the special case , so that each urn has the same number of balls, and this is also the number of red balls. The state space
is  and the transition probability matrix is

Run the simulation of the Bernoulli-Laplace experiment for 10000 steps and for various values of the parameters. Note the limiting behavior
of the proportion of time spent in each state.

Invariant and Limiting Distributions

The Bernoulli-Laplace chain is irreducible.

Proof

Note that  whenever , and  whenever . Hence every state leads to every other
state so the chain is irreducible.

Except in the trivial case , the Bernoulli-Laplace chain aperiodic.

Proof

Consideration of the state probabilities shows that except when , the chain has a state  with , so state  is
aperiodic. Since the chain is irreducible by the previous result, all states are aperiodic.

The invariant distribution is the hypergeometric distribution with population parameter , sample parameter , and type parameter .
The probability density function is

Proof

A direct proof that  for all  is straightforward but tedious. A better proof follows from the reversibility condition
below.

Thus, the invariant distribution corresponds to selecting a sample of  balls at random and without replacement from the  balls and placing
them in urn 1. The mean and variance of the invariant distribution are

The mean return time to each state  is

Proof

This follows from the general theory and the invariant distribution above.

 as  for .

Proof

This follows from the general theory and the invariant distribution above.

In the simulation of the Bernoulli-Laplace experiment, vary the parameters and note the shape and location of the limiting hypergeometric
distribution. For selected values of the parameters, run the simulation for 10000 steps and and note the limiting behavior of the proportion of
time spent in each state.

Reversibility

The Bernoulli-Laplace chain is reversible.

Proof

j= k= r

S = {0, 1,… , k}

P (x, x−1) = , P (x, x) = , P (x, x+1) = ; x ∈ S
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2
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2
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2
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2

(16.9.5)
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Let

It suffices to show the reversibility condition  for all . It then follows that  is reversible and that  is
invariant for . For  and , the left and right sides of the reversibility condition reduce to

For  and , the left and right sides of the reversibility condition reduce to

For all other values of , the reversibility condition is trivially satisfied. The hypergeometric PDF  above is simply  normalized,
so this proves that  is also invariant.

Run the simulation of the Bernoulli-Laplace experiment 10,000 time steps for selected values of the parameters, and with initial state 0.
Note that at first, you can see the “arrow of time”. After a long period, however, the direction of time is no longer evident.

Computational Exercises

Consider the Bernoulli-Laplace chain with , , and . Suppose that  has the uniform distribution on . Explicitly give
each of the following:

1. The state space 
2. The transition matrix .
3. The probability density function, mean and variance of .
4. The probability density function, mean and variance of .
5. The probability density function, mean and variance of .

Answer
1. 

2. 

3. 
4. 
5. 

Consider the Bernoulli-Laplace chain with  and . Give each of the following explicitly:

1. The state space 
2. The transition matrix 
3. The invariant probability density function.

Answer
1. 

2. 

3. 

g(x) =( )( ), x ∈ S

r

x

j+k−r

k−x

(16.9.9)

g(x)P (x, y) = g(y)P (y, x) x, y ∈ S X g

X x ∈ S y = x−1 ∈ S

1

jk
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(16.9.10)

x ∈ S y = x+1 ∈ S
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(16.9.11)
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16.10: Discrete-Time Reliability Chains
     

The Success-Runs Chain

Suppose that we have a sequence of trials, each of which results in either success or failure. Our basic assumption is that if there
have been  consecutive successes, then the probability of success on the next trial is , independently of the past, where 

. Whenever there is a failure, we start over, independently, with a new sequence of trials. Appropriately enough,  is
called the success function. Let  denote the length of the run of successes after  trials.

 is a discrete-time Markov chain with state space  and transition probability matrix  given by

The Markov chain  is called the success-runs chain.

Figure : State graph of the success-runs chain

Now let  denote the trial number of the first failure, starting with a fresh sequence of trials. Note that in the context of the
success-runs chain , , the first return time to state 0, starting in 0. Note that  takes values in , since
presumably, it is possible that no failure occurs. Let  for , the probability of at least  consecutive
successes, starting with a fresh set of trials. Let  for , the probability of exactly  consecutive
successes, starting with a fresh set of trails.

The functions , , and  are related as follows:

1.  for 
2.  for 
3.  for 
4.  for 
5.  for 

Thus, the functions , , and  give equivalent information. If we know one of the functions, we can construct the other two, and
hence any of the functions can be used to define the success-runs chain. The function  is the reliability function associated with .

The function  is characterized by the following properties:

1.  is positive.
2. 
3.  is strictly decreasing.

The function  is characterized by the following properties:

1.  is positive.
2. 

Essentially,  is the probability density function of , except that it may be defective in the sense that the sum of its values
may be less than 1. The leftover probability, of course, is the probability that . This is the critical consideration in the
classification of the success-runs chain, which we will consider shortly.

Verify that each of the following functions has the appropriate properties, and then find the other two functions:

1.  is a constant in .
2.  for .
3.  for .

x ∈ N p(x)

p : N→(0, 1) p

X

n

n

X = ( , , ,…)X
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X
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N P

P (x, x+1) = p(x), P (x, 0) = 1−p(x); x ∈ N (16.10.1)
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4.  for .

Answer
1.  for .  for .  for .
2.  for .  for .  for .

3.  for .  for .  for .

4.  for .  for .  for .

In part (a), note that the trials are Bernoulli trials. We have an app for this case.

The success-runs app is a simulation of the success-runs chain based on Bernoulli trials. Run the simulation 1000 times for
various values of  and various initial states, and note the general behavior of the chain.

The success-runs chain is irreducible and aperiodic.

Proof

The chain is irreducible, since 0 leads to every other state, and every state leads back to 0. The chain is aperiodic since 
.

Recall that  has the same distribution as , the first return time to 0 starting at state 0. Thus, the classification of the chain as
recurrent or transient depends on . Specifically, the success-runs chain is transient if  and recurrent if .
Thus, we see that the chain is recurrent if and only if a failure is sure to occur. We can compute the parameter  in terms of each of
the three functions that define the chain.

In terms of , , and ,

Compute  and determine whether the success-runs chain  is transient or recurrent for each of the examples above.

Answer
1. , recurrent.
2. , recurrent.
3. , transient.
4. , recurrent.

Run the simulation of the success-runs chain 1000 times for various values of , starting in state 0. Note the return times to
state 0.

Let , the expected trial number of the first failure, starting with a fresh sequence of trials.

 is related to , , and  as follows:

1. If  then 
2. If  then 
3. 

Proof
1. If  then .
2. If , so that  takes values in , then  is the PDF of , so .
3. This is a basic result from the general theory of expected value: .

The success-runs chain  is positive recurrent if and only if .
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Proof

Since  is the return time to 0, starting at 0, and since the chain is irreducible, it follows from the general theory that the chain
is positive recurrent if and only if .

If  is recurrent, then  is invariant for . In the positive recurrent case, when , the invariant distribution has
probability density function  given by

Proof

If  then from the result above,

For , using the result above again,

If the chain is recurrent,  as  so the last sum collapses to . Recall that . Hence if 
, so that the chain is positive recurrent, the function  (which is just  normalized) is the invariant PDF.

When  is recurrent, we know from the general theory that every other nonnegative left invariant function is a nonnegative
multiple of 

Determine whether the success-runs chain  is transient, null recurrent, or positive recurrent for each of the examples above.
If the chain is positive recurrent, find the invariant probability density function.

Answer

1. , positive recurrent.  for .
2. , , null recurrent.
3. , transient.
4. , positive recurrent.  for .

From (a), the success-runs chain corresponding to Bernoulli trials with success probability  has the geometric distribution
on , with parameter , as the invariant distribution.

Run the simulation of the success-runs chain 1000 times for various values of  and various initial states. Compare the
empirical distribution to the invariant distribution.

The Remaining Life Chain

Consider a device whose (discrete) time to failure  takes values in , with probability density function . We assume that 
 for . When the device fails, it is immediately (and independently) replaced by an identical device. For , let 

 denote the time to failure of the device that is in service at time .

 is a discrete-time Markov chain with state space  and transition probability matrix  given by

The Markov chain  is called the remaining life chain with lifetime probability density function , and has the state graph below.

T

μ=E(T ) <∞

X r X μ<∞

g

g(x) = , x ∈ N
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(16.10.3)
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Figure : State graph of the remaining life chain

We have an app for the remaining life chain whose lifetime distribution is the geometric distribution on , with parameter 
.

Run the simulation of the remaining-life chain 1000 times for various values of  and various initial states. Note the general
behavior of the chain.

If  denotes the lifetime of a device, as before, note that  is the return time to 0 for the chain , starting at 0.

 is irreducible, aperiodic, and recurrent.

Proof

From the assumptions on , state 0 leads to every other state (including 0), and every positive state leads (deterministically) to
0. Thus the chain is irreducible and aperiodic. By assumption,  so  and hence the chain is
recurrent.

Now let  for  and let . Note that  and 
.

The success-runs chain  is positive recurrent if and only if , in which case the invariant distribution has probability
density function  given by

Proof

Since the chain is irreducible, it is positive recurrent if and only if . The function  is invariant for : for 

In the positive recurrent case,  is the normalizing constant for , so  is the invariant PDF.

Suppose that  is the remaining life chain whose lifetime distribution is the geometric distribution on  with parameter 
. Then this distribution is also the invariant distribution.

Proof

By assumption,  for , and the mean of this distribution is . Hence 
, and  for . Hence .

Run the simulation of the success-runs chain 1000 times for various values of  and various initial states. Compare the
empirical distribution to the invariant distribution.

Time Reversal

You probably have already noticed similarities, in notation and results, between the success-runs chain and the remaining-life
chain. There are deeper connections.

Suppose that  is a probability density function on  with  for . Let  be the success-runs chain associated
with  and  the remaining life chain associated with . Then  and  are time reversals of each other.

Proof
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Under the assumptions on , both chains are recurrent and irreducible. Hence it suffices to show that

It will then follow that the chains are time reversals of each other, and that  is a common invariant function (unique up to
multiplication by positive constants). In the case that , the function  is the common invariant
PDF. There are only two cases to consider. With , we have  and .
But  by the result above. When  and , we have  and 

. But  by the result above.

In the context of reliability, it is also easy to see that the chains are time reversals of each other. Consider again a device whose
random lifetime takes values in , with the device immediately replaced by an identical device upon failure. For , we can
think of  as the age of the device in service at time  and  as the time remaining until failure for that device.

Run the simulation of the success-runs chain 1000 times for various values of , starting in state 0. This is the time reversal of
the simulation in the next exercise

Run the simulation of the remaining-life chain 1000 times for various values of , starting in state 0. This is the time reversal
of the simulation in the previous exercise.

This page titled 16.10: Discrete-Time Reliability Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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16.11: Discrete-Time Branching Chain
     

Basic Theory

Introduction

Generically, suppose that we have a system of particles that can generate or split into other particles of the same type. Here are
some typical examples:

The particles are biological organisms that reproduce.
The particles are neutrons in a chain reaction.
The particles are electrons in an electron multiplier.

We assume that each particle, at the end of its life, is replaced by a random number of new particles that we will refer to as children
of the original particle. Our basic assumption is that the particles act independently, each with the same offspring distribution on .
Let  denote the common probability density function of the number of offspring of a particle. We will also let 

 denote the convolution power of degree  of ; this is the probability density function of the total number of
children of  particles.

We will consider the evolution of the system in real time in our study of continuous-time branching chains. In this section, we will
study the evolution of the system in generational time. Specifically, the particles that we start with are in generation 0, and
recursively, the children of a particle in generation  are in generation .

Figure : Generations 0, 1, 2, and 3 of a branching chain.

Let  denote the number of particles in generation . One way to construct the process mathematically is to start with an
array of independent random variables , each with probability density function . We interpret  as the
number of children of the th particle in generation  (if this particle exists). Note that we have more random variables than we
need, but this causes no harm, and we know that we can construct a probability space that supports such an array of random
variables. We can now define our state variables recursively by

 is a discrete-time Markov chain on  with transition probability matrix  given by

The chain  is the branching chain with offspring distribution defined by .

Proof

The Markov property and the form of the transition matrix follow directly from the construction of the state variables given
above. Since the variables  are independent, each with PDF , we have
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The branching chain is also known as the Galton-Watson process in honor of Francis Galton and Henry William Watson who
studied such processes in the context of the survival of (aristocratic) family names. Note that the descendants of each initial particle
form a branching chain, and these chains are independent. Thus, the branching chain starting with  particles is equivalent to 
independent copies of the branching chain starting with 1 particle. This features turns out to be very important in the analysis of the
chain. Note also that 0 is an absorbing state that corresponds to extinction. On the other hand, the population may grow to infinity,
sometimes called explosion. Computing the probability of extinction is one of the fundamental problems in branching chains; we
will essentially solve this problem in the next subsection.

Extinction and Explosion

The behavior of the branching chain in expected value is easy to analyze. Let  denote the mean of the offspring distribution, so
that

Note that . The parameter  will turn out to be of fundamental importance.

Expected value properties

1.  for 
2.  for 
3.  as  if .
4.  for each  if .
5.  as  if  and .

Proof

For part (a) we use a conditioning argument and the construction above. For ,

That is,  so  Part (b) follows from (a) and then parts (c),
(d), and (e) follow from (b).

Part (c) is extinction in the mean; part (d) is stability in the mean; and part (e) is explosion in the mean.

Recall that state 0 is absorbing (there are no particles), and hence  is the extinction event
(where as usual,  is the time of the first return to 0). We are primarily concerned with the probability of extinction, as a function
of the initial state. First, however, we will make some simple observations and eliminate some trivial cases.

Suppose that , so that each particle is replaced by a single new particle. Then

1. Every state is absorbing.
2. The equivalence classes are the singleton sets.
3. With probability 1,  for every .

Proof

These properties are obvious since  for every .

Suppose that  so that with positive probability, a particle will die without offspring. Then

1. Every state leads to 0.
2. Every positive state is transient.
3. With probability 1 either  for some  (extinction) or  as  (explosion).

Proof
1. Note that  for , so every state leads to 0 in one step.

x x
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2. This follows from (a). If , then  leads to the absorbing state 0 with positive probability. Hence a return to ,
starting in , cannot have probability 1.

3. This follows from (a) and (b). With probability 1, every positive state is visited only finitely many times. Hence the only
possibilities are  for some  or  as .

Suppose that  and , so that every particle is replaced by at least one particle, and with positive probability,
more than one. Then

1. Every positive state is transient.
2.  for every , so that explosion is certain, starting with at least one particle.

Proof
1. Let . Under the assumptions on , state  leads to some state  but  does not lead back to . Hence with

positive probability, the chain starting in  will not return to .
2. This follows from (a) and that the fact that positive states do not lead to 0.

Suppose that  and , so that with positive probability, a particle will die without offspring, and with
probability 1, a particle is not replaced by more than one particle. Then

1. Every state leads to 0.
2. Every positive state is transient.
3. With probability 1,  for some , so extinction is certain.

Proof
1. As before,  for , so  leads to 0 in one step.
2. This follows from (a) and the fact that 0 is absorbing.
3. Under the assumptions on , state  leads to state  only if . So this follows from (a) and (b).

Thus, the interesting case is when  and , so that with positive probability, a particle will die without
offspring, and also with positive probability, the particle will be replaced by more than one new particles. We will assume these
conditions for the remainder of our discussion. By the state classification above all states lead to 0 (extinction). We will denote the
probability of extinction, starting with one particle, by

The set of positive states  is a transient equivalence class, and the probability of extinction starting with  particles is

Proof

Under the assumptions on , from any positive state the chain can move 2 or more units to the right and one unit to the left in
one step. It follows that every positive state leads to every other positive state. On the other hand, every positive state leads to
0, which is absorbing. Thus,  is a transient equivalence class.

Recall that the branching chain starting with  particles acts like  independent branching chains starting with one
particle. Thus, the extinction probability starting with  particles is .

The parameter  satisfies the equation

Proof

This result follows from conditioning on the first state.
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But by the Markov property and the previous result,

and of course .

Thus the extinction probability  starting with 1 particle is a fixed point of the probability generating function  of the offspring
distribution:

Moreover, from the general discussion of hitting probabilities in the section on recurrence and transience,  is the smallest such
number in the interval . If the probability generating function  can be computed in closed form, then  can sometimes be
computed by solving the equation .

 satisfies the following properties:

1. .
2. .
3.  for  so  in increasing on .
4.  for  so  in concave upward on .
5. .

Proof

These are basic properties of the probability generating function. Recall that the series that defines  is a power series about 0
with radius of convergence . A function defined by a power series is infinitely differentiable within the open interval of
convergence, and the derivates can be computed term by term. So

If  then . If , the limit result is the best we can do.

Our main result is next, and relates the extinction probability  and the mean of the offspring distribution .

The extinction probability  and the mean of the offspring distribution  are related as follows:

1. If  then , so extinction is certain.
2. If  then , so there is a positive probability of extinction and a positive probability of explosion.
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Figure : The case of certain extinction.

Figure : The case of possible extinction and possible explosion.

Computational Exercises

Consider the branching chain with offspring probability density function  given by , , where 
is a parameter. Thus, each particle either dies or splits into two new particles. Find each of the following.

1. The transition matrix .
2. The mean  of the offspring distribution.
3. The generating function  of the offspring distribution.
4. The extinction probability .

Answer

Note that an offspring variable has the form  where  is an indicator variable with parameter .

1. For ,  is the PDF of  where  has the binomial distribution with parameters  and . Hence

2. .
3.  for .
4.  if  and  if .

Graphs of  and  when 
Graphs

Graphs of  and  when 
Graphs

Consider the branching chain whose offspring distribution is the geometric distribution on  with parameter , where 
. Thus  for . Find each of the following:

1. The transition matrix .
2. The mean  of the offspring distribution.
3. The generating function  of the offspring distribution.
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4. The extinction probability .

Answer
1. For ,  is the PDF of the negative binomial distribution on  with parameter . So

2. .

3.  for .

4.  if  and  if .

Graphs of  and  when 
Graphs

Graphs of  and  when 
Graphs

Curiously, the extinction probability is the same as for the previous problem.

Consider the branching chain whose offspring distribution is the Poisson distribution with parameter . Thus 
 for . Find each of the following:

1. The transition matrix .
2. The mean  of the offspring distribution.
3. The generating function  of the offspring distribution.
4. The approximate extinction probability  when  and when .

Answer
1. For ,  is the PDF of the Poisson distribution with parameter . So

2. The parameter  is the mean of the Poisson distribution, so the notation is consistent.
3.  for .
4.  if . If  then  is the solution in  of the equation  which can be expressed in terms

of a special function known as the Lambert  function:

For , . For , .

Graphs of  and  when 
Graphs

Graphs of  and  when 
Graphs

This page titled 16.11: Discrete-Time Branching Chain is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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16.12: Discrete-Time Queuing Chains
     

Basic Theory

Introduction

In a queuing model, customers arrive at a station for service. As always, the terms are generic; here are some typical examples:

The customers are persons and the service station is a store.
The customers are file requests and the service station is a web server.
The customers are packages and the service station is a processing facility.

Figure : Ten customers and a server

Queuing models can be quite complex, depending on such factors as the probability distribution that governs the arrival of
customers, the probability distribution that governs the service of customers, the number of servers, and the behavior of the
customers when all servers are busy. Indeed, queuing theory has its own lexicon to indicate some of these factors. In this section,
we will study one of the simplest, discrete-time queuing models. However, as we will see, this discrete-time chain is embedded in a
much more realistic continuous-time queuing process knows as the M/G/1 queue. In a general sense, the main interest in any
queuing model is the number of customers in the system as a function of time, and in particular, whether the servers can adequately
handle the flow of customers.

Our main assumptions are as follows:

1. If the queue is empty at a given time, then a random number of new customers arrive at the next time.
2. If the queue is nonempty at a given time, then one customer is served and a random number of new customers arrive at the

next time.
3. The number of customers who arrive at each time period form an independent, identically distributed sequence.

Thus, let  denote the number of customers in the system at time , and let  denote the number of new customers who
arrive at time . Then  is a sequence of independent random variables, with common probability density
function  on , and

 is a discrete-time Markov chain with state space  and transition probability matrix  given by

The chain  is the queuing chain with arrival distribution defined by .

Proof

The Markov property and the form of the transition matrix follow from the construction of the state process  in term of the
IID sequence . Starting in state 0 (an empty queue), a random number of new customers arrive at the next time unit,
governed by the PDF . Hence the probability of going from state 0 to state  in one step is . Starting in state , one
customer is served and a random number of new customers arrive by the next time unit, again governed by the PDF . Hence
the probability of going from state  to state  is .

Recurrence and Transience

From now on we will assume that  and . Thus, at each time unit, it's possible that no new customers
arrive or that at least 2 new customers arrive. Also, we let  denote the mean of the arrival distribution, so that

16.12.1
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n ∈ N U

n

n ∈ N

+

U = ( , ,…)U

1

U

2

f N

={ , n ∈ NX
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n+1

( −1)+ ,X

n
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= 0X

n

> 0X

n
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0
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P (x, y)

= f(y), y ∈ N

= f(y−x+1), x ∈ , y ∈ {x−1, x, x+1,…}N

+

(16.12.2)
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Thus  is the average number of new customers who arrive during a time period.

The chain  is irreducible and aperiodic.

Proof

In a positive state, the chain can move at least one unit to the right and can move one unit to the left at the next step. From state
0, the chain can move two or more units to the right or can stay in 0 at the next step. Thus, every state leads to every other state
so the chain is irreducible. Since 0 leads back to 0, the chain is aperiodic.

Our goal in this section is to compute the probability that the chain reaches 0, as a function of the initial state (so that the server is
able to serve all of the customers). As we will see, there are some curious and unexpected parallels between this problem and the
problem of computing the extinction probability in the branching chain. As a corollary, we will also be able to classify the queuing
chain as transient or recurrent. Our basic parameter of interest is , where as usual,  is the
hitting probability matrix and  is the first positive time that the chain is in state 0 (possibly infinite).
Thus,  is the probability that the queue eventually empties, starting with a single customer.

The parameter  satisifes the following properties:

1.  for every .
2.  for every .

Proof
1. The critical observation is that if  then  for 

. Thus, the chain, starting in , and up until the time that it reaches  (if it does), behaves
stochastically like the chain starting in state 1, and up until it reaches 0.

2. In order to reach 0, starting in state , the chain must first reach  and then from  must reach , until
finally reaching 0 from state 1. Each of these intermediate trips has probability  by part (a) and are independent by the
Markov property.

The parameter  satisfies the equation:

Proof

This follows from the previous theorem by conditioning on the first state.

Note first that . On the other hand, by the Markov property and the previous result,

Of course  for .

Note that this is exactly the same equation that we considered for the branching chain, namely , where  is the
probability generating function of the distribution that governs the number of new customers that arrive during each period.

m = xf(x)∑

x=0

∞

(16.12.4)

m

X

q =H(1, 0) = P( <∞ ∣ = 1)τ

0

X

0
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=min{n ∈ : = 0}τ

0

N

+

X

n

q

q

q =H(x, x−1) x ∈ N

+

=H(x, 0)q

x

x ∈ N

+

x ∈ N

+

P (x, y) = P (1, y−x+1) = f(y−x+1)
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+
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q
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x=0

∞

q

x
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P( <∞ ∣ = 1) = P( <∞ ∣ = 1, = x)P( = x ∣ = 1)τ

0
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∞

τ

0

X

0

X

1

X

1

X

0

(16.12.6)

P( <∞ ∣ = 1, = 0) = 1 =τ

0

X

0

X

1

q

0
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0
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0

X

1
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0
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1
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Figure : The graph of  in the recurrent case

Figure : The graph of  in the transient case

 is the smallest solution in  of the equation . Moreover

1. If  then  and the chain is recurrent.
2. If  then  and the chain is transient..

Proof

This follows from our analysis of branching chains. The graphs above show the two cases. Note that the condition in (a) means
that on average, one or fewer new customers arrive for each customer served. The condition in (b) means that on average, more
than one new customer arrives for each customer served.

Positive Recurrence

Our next goal is to find conditions for the queuing chain to be positive recurrent. Recall that  is the mean of the probability
density function ; that is, the expected number of new customers who arrive during a time period. As before, let  denote the first
positive time that the chain is in state 0. We assume that the chain is recurrent, so  and .

Let  denote the probability generating function of , starting in state 1. Then

1.  is also the probability generating function of  starting in state 0.
2.  is the probability generating function of  starting in state .

Proof
1. The transition probabilities starting in state 1 are the same as those starting in state 0:  for 

.
2. Starting in state , the random time to reach 0 is the sum of the time to reach , the additional time to reach 

 from , and so forth, ending with the time to reach 0 from state 1. These random times are independent by the
Markov property, and each has the same distribution as the time to reach 0 from state 1 by our argument above. Finally,
recall that the PGF of a sum of independent variables is the product of the corresponding PGFs.

 for .

Proof

16.12.2 ϕ

16.12.3 ϕ

q (0, 1] Φ(t) = t

m ≤ 1 q = 1

m > 1 0 < q < 1

m

f τ

0

m ≤ 1 P( <∞) = 1τ

0

Ψ τ

0

Ψ τ

0

Ψ

x

τ

0
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+

P (0, x) = P (1, x) = f(x)
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+
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Once again, the trick is to condition on the first state:

First note that . On the other hand, by the Markov property and the previous
theorem,

Of course . Hence we have

The PGF of any variable that takes positive integer values is defined on , and maps this interval back into itself. Hence
the representation is valid at least for .

The deriviative of  is

Proof

Recall that a PGF is infinitely differentiable on the open interval of convergence. Hence using the result in the previous
theorem and the product and chain rules,

Solving for  gives the result.

As usual, let , the mean return time to state 0 starting in state 0. Then

1.  if  and therefore the chain is positive recurrent.
2.  if  and therefore the chain is null recurrent.

Proof

Recall that  is the probability generating function of , starting at 0. From basic properties of PGFs we know that , 
, , and  as . So letting  in the result of the previous theorem, we have 

if  and  if .

So to summarize, the queuing chain is positive recurrent if , null recurrent if , and transient if . Since  is the
expected number of new customers who arrive during a service period, the results are certainly reasonable.

Computational Exercises

Consider the queuing chain with arrival probability density function  given by , , where  is a
parameter. Thus, at each time period, either no new customers arrive or two arrive.

1. Find the transition matrix .
2. Find the mean  of the arrival distribution.
3. Find the generating function  of the arrival distribution.
4. Find the probability  that the queue eventually empties, starting with one customer.
5. Classify the chain as transient, null recurrent, or positive recurrent.
6. In the positive recurrent case, find , the mean return time to 0.

Answer
1. , . For , , .
2. .
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∣

∣
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∣

∣
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3.  for .
4.  if  and  if .
5. The chain is transient if , null recurrent if , and positive recurrent if .
6.  for .

Graphs of  and  when 
Graphs

Graphs of  and  when 
Graphs

Consider the queuing chain whose arrival distribution is the geometric distribution on  with parameter , where 
. Thus  for .

1. Find the transition matrix .
2. Find the mean  of the arrival distribution.
3. Find the generating function  of the arrival distribution.
4. Find the probability  that the queue eventually empties, starting with one customer.
5. Classify the chain as transient, null recurrent, or positive recurrent.
6. In the positive recurrent case, find , the mean return time to 0.

Answer
1.  for . For ,  for .
2. .

3.  for .

4.  if  and  if .
5. The chain is transient if , null recurrent if , and positive recurrent if .

6.  for .

Graphs of  and  when 
Graphs

Graphs of  and  when 
Graphs

Curiously, the parameter  and the classification of the chain are the same in the last two models.

Consider the queuing chain whose arrival distribution is the Poisson distribution with parameter . Thus 
 for . Find each of the following:

1. The transition matrix 
2. The mean  of the arrival distribution.
3. The generating function  of the arrival distribution.
4. The approximate value of  when  and when .
5. Classify the chain as transient, null recurrent, or positive recurrent.
6. In the positive recurrent case, find , the mean return time to 0.

Answer
1.  for . For ,  for .
2. The parameter  is the mean of the Poisson distribution, so the notation is consistent.
3.  for .
4.  if . If  then  is the solution in  of the equation  which can be expressed in terms

of a special function known as the Lambert  function:

For , . For , .
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5. The chain is transient if , null recurrent if , and positive recurrent if .
6.  for .

Graphs of  and  when 
Graphs

Graphs of  and  when 
Graphs
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16.13: Discrete-Time Birth-Death Chains
     

Basic Theory

Introduction

Suppose that  is an interval of integers (that is, a set of consecutive integers), either finite or infinite. A (discrete-time) birth-
death chain on  is a discrete-time Markov chain  on  with transition probability matrix  of the
form

where , , and  are nonnegative functions on  with  for .

If the interval  has a minimum value  then of course we must have . If , the boundary point  is
absorbing and if , then  is reflecting. Similarly, if the interval  has a maximum value  then of course we must
have . If , the boundary point  is absorbing and if , then  is reflecting. Several other special models
that we have studied are birth-death chains; these are explored in below.

In this section, as you will see, we often have sums of products. Recall that a sum over an empty index set is 0, while a product
over an empty index set is 1.

Recurrence and Transience

If  is finite, classification of the states of a birth-death chain as recurrent or transient is simple, and depends only on the state
graph. In particular, if the chain is irreducible, then the chain is positive recurrent. So we will study the classification of birth-death
chains when . We assume that  for all  and that  for all  (but of course we must have 

). Thus, the chain is irreducible.

Under these assumptions, the birth-death chain on  is

1. Aperiodic if  for some .
2. Periodic with period 2 if  for all .

Proof
1. If  for some  then  and hence the chain is aperiodic.
2. If  for every  then clearly the chain starting in  can be in state  again only at even times.

We will use the test for recurrence derived earlier with , the set of positive states. That is, we will compute the probability
that the chain never hits 0, starting in a positive state.

The chain  is recurrent if and only if

Proof

Let  denote the restriction of  to , and define  by

So  is the probability that chain never reaches 0, starting in . From our general theory, we know that  satisfies
 and is the largest such function with values in . Furthermore, we know that either  for all 

or that . In the first case the chain is recurrent, and in the second case the chain is transient.

The functional equation  for a function  is equivalent to the following system of equations:

S

S X = ( , , ,…)X

0

X

1

X

2

S P

P (x, x−1) = q(x), P (x, x) = r(x), P (x, x+1) = p(x); x ∈ S (16.13.1)

p q r S p(x)+q(x)+r(x) = 1 x ∈ S
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Solving this system of equations for the differences gives

Solving this new systems gives

Note that  is increasing in  and so has a limit as . Let .

1. Suppose that . Letting  in the displayed equation above for  shows that  and so  for
all . Hence the chain is recurrent.

2. Suppose that . Define  and then more generally,

The function  takes values in  and satisfies the functional equation . Hence the chain is transient. Note that
 as  and so in fact, , the function that we discussed above that gives the probability of staying in 

 for all time. We will return to this function below in our discussion of absorption.

Note that , the function that assigns to each state  the probability of an immediate return to , plays no direct role in whether
the chain is transient or recurrent. Indeed all that matters are the ratios  for .

Positive Recurrence and Invariant Distributions

Suppose again that we have a birth-death chain  on , with  for all  and  for all . Thus the chain
is irreducible.

The function  defined by

is invariant for , and is the only invariant function, up to multiplication by constants. Hence  is positive recurrent if and
only if , in which case the (unique) invariant probability density function  is given by 
for .

Proof

Recall that by convention, a product over an empty index set is 1. So first,

Next, for ,

But

u(2)−u(1)

u(x+1)−u(x)

= u(1)

q(1)

p(1)

= [u(x)−u(x−1)], x ∈ {2, 3,…}

q(x)

p(x)

(16.13.4)

(16.13.5)

u(x+1)−u(x) = u(1), x ∈

q(1)⋯ q(x)

p(1)⋯ p(x)

N

+

(16.13.6)

u(x) = u(1) , x ∈∑
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x−1

q(1)⋯ q(i)

p(1)⋯ p(i)

N

+

(16.13.7)

u(x) x ∈ N
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u (0, 1) u = uP

+

u(x) → 1 x→∞ u = u

+

N

+

r x ∈ N x

q(x)/p(x) x ∈ N

+

X N p(x) > 0 x ∈ N q(x) > 0 x ∈ N

+
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g(x) = , x ∈ N

p(0)⋯ p(x−1)
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(16.13.9)

X X
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f f(x) = g(x)

1

B

x ∈ N

(gP )(0) = g(0)P (0, 0)+g(1)P (1, 0) = g(0)r(0)+g(1)q(1)

= 1r(0)+ q(1) = [1−p(0)] +p(0) = 1 = g(0)

p(0)
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+
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so .

Conversely, suppose that  is invariant for . We will show by induction that  for all . The
result is trivailly true for  since . Next,  gives . But 

 and , so substituting and solving for  gives

so the result is true when . Assume now that  and that the result is true for all  with . Then 
 gives

But , , and . Also, by the induction
hypothesis,  and  so substituting and using the definition of  gives

Finally, solving gives

Here is a summary of the classification:

For the birth-death chain , define

1.  is transient if 
2.  is null recurrent if  and .
3.  is positive recurrent if .

Note again that , the function that assigns to each state  the probability of an immediate return to , plays no direct role in
whether the chain is transient, null recurrent, or positive recurrent. Also, we know that an irreducible, recurrent chain has a positive
invariant function that is unique up to multiplication by positive constants, but the birth-death chain gives an example where this is
also true in the transient case.

Suppose now that  and that  is a birth-death chain on the integer interval . We
assume that  for  while  for . Of course, we must have .
With these assumptions,  is irreducible, and since the state space is finite, positive recurrent. So all that remains is to find the
invariant distribution. The result is essentially the same as when the state space is .

The invariant probability density function  is given by

Proof

g(y−1)p(y−1)

g(y+1)q(y+1)

= g(y)q(y) =

p(0)⋯ p(y−1)

q(1)⋯ q(y−1)

= g(y)p(y) =

p(0)⋯ p(y)

q(1)⋯ q(y)

(gP )(y) = g(y)

h : N→R X h(x) = h(0)g(x) x ∈ N

x = 0 g(0) = 1 (hP )(0) = h(0) h(0)P (0, 0)+h(1)P (1, 0) = h(0)

P (0, 0) = r(0) = [1−p(0)] P (1, 0) = q(1) h(1)

h(1) = h(0) = h(0)g(1)

p(0)

q(1)

(16.13.10)

x = 1 y ∈ N

+

x ∈ N x ≤ y

(hP )(y) = h(y)

h(y−1)P (y−1, y)+h(y)P (y, y)+h(y+1)P (y+1, y) = h(y) (16.13.11)

P (y−1, y) = p(y−1) P (y, y) = r(y) = 1−p(y)−q(y) P (y+1, y) = q(y+1)

h(y) = h(0)g(y) h(y−1) = h(0)g(y−1) g

q(y+1)h(y+1) = [p(y)+q(y)]h(0) −p(y−1)h(0)

p(0)⋯ p(y−1)

q(1)⋯ q(y)

p(0)⋯ p(y−2)

q(1)⋯ q(y−1)

= h(0)

p(0)⋯ p(y)

q(1)⋯ q(y)

h(y+1) = h(0) = h(0)g(y+1)

p(0)⋯ p(y)

q(1)⋯ q(y+1)

(16.13.12)

X

A= , B=∑

x=0

∞

q(1)⋯ q(x)

p(1)⋯ p(x)

∑

x=0

∞

p(0)⋯ p(x−1)

q(1)⋯ q(x)

(16.13.13)

X A<∞

X A=∞ B=∞

X B<∞

r x ∈ N x

n ∈ N

+

X = ( , , ,…)X

0

X

1

X

2

= {0, 1,… ,n}N

n

p(x) > 0 x ∈ {0, 1,… ,n−1} q(x) > 0 x ∈ {1, 2,… n} q(0) = p(n) = 0

X

N

f

n

(x) =  for x ∈  where  =f

n

1

B

n

p(0)⋯ p(x−1)

q(1)⋯ q(x)

N

n

B

n

∑

x=0

n

p(0)⋯ p(x−1)

q(1)⋯ q(x)

(16.13.14)
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Define

The proof thet  is invariant for  is the same as before. The constant  is the normalizing constant.

Note that  as , and if ,  as  for . We will see this type of behavior again.
Results for the birth-death chain on  often converge to the corresponding results for the birth-death chain on  as .

Absorption

Often when the state space , the state of a birth-death chain represents a population of individuals of some sort (and so the
terms birth and death have their usual meanings). In this case state 0 is absorbing and means that the population is extinct.
Specifically, suppose that  is a birth-death chain on  with  and with  for .
Thus, state 0 is absorbing and all positive states lead to each other and to 0. Let  denote the time until
absorption, where as usual, .

One of the following events will occur:

1. Population extinction:  or equivalently,  for some  and hence  for all .
2. Population explosion:  or equivalently  as .

Proof

Part (b) follows from the general theory, since 0 is absorbing, and all positive states lead to each other and to 0. Thus the
positive states are transient and we know that with probability 1, a Markov chain will visit a transient state only finitely often.
Thus  is equivalent to  as .

Naturally we would like to find the probability of these complementary events, and happily we have already done so in our study of
recurrence above. Let

so the absorption probability is

For the birth-death chain ,

Proof

For , note that , the function that gives the probability of staying in the
positive states for all time. The proof of the theorem on recurrence above has nothing to do with the transition probabilities in
state 0, so the proof applies in this setting as well. In that proof we showed that  as the form given above, where of course
the value is 0 if . Trivially, .

So if  then  for all . If  then  for all  and  as . For the absorption
probability,  for all  if  and so absorption is certain. If  then

Next we consider the mean time to absorption, so let  for .

The mean absorption function is given by

(x) = , x ∈g

n

p(0) ⋯ p(x−1)

q(1) ⋯ q(x)

N

n

(16.13.15)

g

n

X B

n

→BB

n

n → ∞ B < ∞ (x) → f(x)f

n

n → ∞ x ∈ N

N

n

N n → ∞

S =N

X = ( , , , …)X

0

X

1

X

2

N r(0) = 1 p(x), q(x) > 0 x ∈ N

+

N = min{n ∈ N : = 0}X

n

min∅ = ∞

N < ∞ = 0X

m

m ∈ N = 0X

n

n ≥m

N = ∞ → ∞X

n

n → ∞

N = ∞ → ∞X

n

n → ∞

u(x) = P(N = ∞) = P( → ∞ as n → ∞ ∣ = x), x ∈ NX

n

X

0

(16.13.16)

v(x) = 1 −u(x) = P(N < ∞) = P( = 0 for some n ∈ N ∣ = x), x ∈ NX

n

X

0

(16.13.17)

X

u(x) =  for x ∈  where A =

1

A

∑

i=0

x−1

q(1) ⋯ q(i)

p(1) ⋯ p(i)

N

+

∑

i=0

∞

q(1) ⋯ q(i)

p(1) ⋯ p(i)

(16.13.18)

x ∈ N

+

u(x) = P( ∈  for all n ∈ N ∣ = x)X

n

N

+

X

0

u(x)

A = ∞ u(0) = 0

A = ∞ u(x) = 0 x ∈ S A < ∞ u(x) > 0 x ∈ N

+

u(x) → 1 x → ∞

v(x) = 1 x ∈ N A = ∞ A < ∞

v(x) = , x ∈ N

1

A

∑

i=x

∞

q(1) ⋯ q(i)

p(1) ⋯ p(i)

(16.13.19)

m(x) =E(N ∣ = x)X

0

x ∈ N

+
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Probabilisitic Proof

The number of steps required to go from state  to  has the same distribution as the number of steps required to go
from state 1 to 0, except with parameters  for  instead of parameters  for 

. So by the additivity of expected value, we just need to compute  as a function of the parameters. Starting
in state 1, the chain will be absorbed in state 0 after a random number of returns to state 1 without absorption. Whenever the
chain is in state 1, absorption occurs at the next time with probability  so it follows that the number of times that the chain
is in state 1 before absorption has the geometric distribution on  with success parameter . The mean of this distribution
is . On the other hand, starting in state 1, the number of steps until the chain is in state 1 again (without absorption) has
the same distribution as the return time to state 0, starting in state 0 for the irreducible birth-death chain  considered above
but with birth and death functions  and  given by  for  and  for . Thus,
let

Then  is the mean return time to state 0 for the chain . Specifically, note that if  then  is either transient or null
recurrent. If  then  is the invariant PDF at 0. So, it follows that

By our argument above, the mean time to go from state  to  is

Analytic Proof

Conditioning and using the Markov property, we have

with initial condition . Equivalently,

Solving gives

Next,  for  which gives

Finally,  is given as in the first proof. The expression for  is different, but equivalent, of course.

Next we will consider a birth-death chain on a finite integer interval with both endpoints absorbing. Our interest is in the
probability of absorption in one endpoint rather than the other, and in the mean time to absorption. Thus suppose that  and
that  is a birth-death chain on  with  and with  and 
for . So the endpoints 0 and  are absorbing, and all other states lead to each other and to the endpoints. Let 

, the time until absorption, and for  let  and 
. The definitions make sense since  is finite with probability 1.

m(x) = , x ∈ N∑

j=1

x

∑

k=j−1

∞

p(j)⋯ p(k)

q(j)⋯ q(k+1)

(16.13.20)

x ∈ N

+

x−1

p(y), q(y) y ∈ {x, x+1,…} p(y), q(y)

y ∈ {1, 2,…} m(1)

q(1)

N

+

q(1)

1/q(1)

X

′

p

′

q

′

(x) = p(x+1)p

′

x ∈ N (x) = q(x+1)q

′

x ∈ N

+

μ=∑

k=0

∞

p(1)⋯ p(k)

q(2)⋯ q(k+1)

(16.13.21)

μ X

′

μ=∞ X

′

μ<∞ 1/μ

m(1) = μ=

1

q(1)

∑

k=0

∞

p(1)⋯ p(k)

q(1)⋯ q(k+1)

(16.13.22)

x x−1

∑

k=x−1

∞

p(x)⋯ p(k)

q(x)⋯ q(k+1)

(16.13.23)

m(x) = 1+p(x)m(x+1)+q(x)m(x−1)+r(x)m(x), x ∈ N

+

(16.13.24)

m(0) = 0

m(x+1)−m(x) = [m(x)−m(x−1)]− , x ∈

q(x)

p(x)

1

p(x)

N

+

(16.13.25)

m(x+1)−m(x) = m(1)− , x ∈

q(1)⋯ q(x)

p(1)⋯ p(x)

∑

y=1

x

q(y+1)⋯ q(x)

p(y)⋯ p(x)

N

+

(16.13.26)

m(x) = [m(y+1)−m(y)]∑

x−1

y=0

x ∈ N

m(x) =m(1) − , x ∈ N∑

y=0

x−1

q(1)⋯ q(y)

p(1)⋯ p(y)

∑

y=0

x−1

∑

z=1

y

q(z+1)⋯ q(y)

p(z)⋯ p(y)

(16.13.27)

m(1) m(x)

n ∈ N

+

X = ( , , ,…)X

0

X

1

X

2

= {0, 1,… ,n}N

n

r(0) = r(n) = 1 p(x) > 0 q(x) > 0

x ∈ {1, 2,… ,n−1} n

N =min{n ∈ N : ∈ {0,n}}X

n

x ∈ S (x) = P( = 0 ∣ = x)v

n

X

N

X

0

(x) =E(N ∣ = x)m

n

X

0

N
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The absorption probability function for state 0 is given by

Proof

Conditioning and using the Markov property,  satisfies the second-order linear difference equation

with boundary conditions , . As we have seen before, the difference equation can be rewritten as

Solving and applying the boundary conditions gives the result.

Note that  as  where  is the constant above for the absorption probability at 0 with the infinite state space . If 
 then  as  for .

The mean absorption time is given by

where, with  as in the previous theorem,

Proof

The probabilistic proof above with state space  and 0 absorbing does not work here, but the first part of the analytic proof
does. So,

Substituting  and applying the boundary condition , gives the result for  in the theorem.

Time Reversal

Our next discussion is on the time reversal of a birth-death chain. Essentially, every recurrent birth-death chain is reversible.

Suppose that  is an irreducible, recurrent birth-death chain on an integer interval . Then  is
reversible.

Proof

We need to show that the Kolmogorov cycle condition is satisfied. That is, for every sequence of states 
with ,

We can restrict our attention to sequences where  for each . For such sequences,
the cycle condition is trivially satisfied.

If  is finite and the chain  is irreducible, then of course  is recurrent (in fact positive recurrent), so by the previous result, 
is reversible. In the case , we can use the invariant function above to show directly that the chain is reversible.

(x) =  for x ∈  where  =v

n

1

A

n

∑

i=x

n−1

q(1)⋯ q(i)

p(1)⋯ p(i)

N

n

A

n

∑

i=0

n−1

q(1)⋯ q(i)

p(1)⋯ p(i)

(16.13.28)

v

n

(x) = p(x) (x+1)+q(x) (x−1)+r(x) (x), x ∈ {1, 2,… ,n−1}v

n

v

n

v

n

v

n

(16.13.29)

(0) = 1v

n

(n) = 0v

n

(x+1)− (x) = [ (x)− (x−1)], x ∈ {1, 2,… ,n−2}v

n

v

n

p(x)

q(x)

v

n

v

n

(16.13.30)

→AA

n

n→∞ A N

A<∞ (x) → v(x)v

n

n→∞ x ∈ N

(x) = (1) − , x ∈m

n

m

n

∑

y=0

x−1

q(1)⋯ q(y)

p(1)⋯ p(y)

∑

y=0

x−1

∑

z=1

y

q(z+1)⋯ q(y)

p(z)⋯ p(y)

N

n

(16.13.31)

A

n

(1) =m

n

1

A

n

∑

y=1

n−1

∑

z=1

y

q(z+1)⋯ q(y)

p(z)⋯ p(y)

(16.13.32)

N

(x) = (1) − , x ∈ {1, 2,… ,n}m

n

m

n

∑

y=0

x−1

q(1)⋯ q(y)

p(1)⋯ p(y)

∑

y=0

x−1

∑

z=1

y

q(z+1)⋯ q(y)

p(z)⋯ p(y)

(16.13.33)

x = n (n) = 0m

n

(1)m

n

X = ( , , ,…)X

0

X

1

X

2

S X

( , , ,… , )x

0

x

1

x

2

x

n

=x

0

x

n

P ( , )P ( , )⋯P ( , ) = P ( , )P ( , )⋯P ( , )x

0

x

1

x

1

x

2

x

n−1

x

n

x

n

x

n−1

x

n−1
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x

1

x
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Suppose that  is a birth-death chain on  with  for  and  for . Then 
is reversible.

Proof

With the function  defined above, it suffices to show the reversibility condition  for all .
It then follows that  is invariant for  and that  is reversible with respect to . But since  is the only positive invariant
function for , up to multiplication by positive constants, we can omit the qualifying phrase “with respect to ”. For 
and  we have

For  and  we have

In all other cases, the reversibility condition is trivially satisfied.

Thus, in the positive recurrent case, when the variables are given the invariant distribution, the transition matrix  describes the
chain forward in time and backwards in time.

Examples and Special Cases

As always, be sure to try the problems yourself before looking at the solutions.

Constant Birth and Death Probabilities

Our first examples consider birth-death chains on  with constant birth and death probabilities, except at the boundary points. Such
chains are often referred to as random walks, although that term is used in a variety of different settings. The results are special
cases of the general results above, but sometimes direct proofs are illuminating.

Suppose that  is the birth-death chain on  with constant birth probability  on  and
constant death probability  on , with . Then

1.  is transient if 
2.  is null recurrent if 
3.  is positive recurrent if , and the invariant distribution is the geometric distribution on  with parameter 

Next we consider the random walk on  with 0 absorbing. As in the discussion of absorption above,  denotes the absorption
probability and  the mean time to absorption, starting in state .

Suppose that  is the birth-death chain on  with constant birth probability  on  and constant
death probability  on , with . Assume also that , so that 0 is absorbing.

1. If  then  for all . If  then  for .
2. If  then  for all . If  then  for .

Proof
1. This follows from the general result above for the absorption probability.
2. This also follows from the general result above for the mean absorption time, but we will give a direct proof using the same

ideas. If  then  and hence  for . So suppose that  so that 
 for . Because of the spatial homogeneity, the time required to reach state  starting

in state  has the same distribution as the time required to reach state 0 starting in state 1. By the additivity of
expected value, it follows that  for . So it remains for us to compute . Starting in state 1, the
chain will be absorbed into state 0 after a random number of intermediate returns to state 1 with absorption. In state 1, the

X = ( , , ,…)X

0

X

1

X

2

N p(x) > 0 x ∈ N q(x) > 0 x ∈ N

+

X

g g(x)P (x, y) = g(y)P (y, x) x, y ∈ N

g X X g g

X g x ∈ N

y = x+1

g(x)P (x, y) = g(y)P (y, x) =

p(0)⋯ p(x)

q(1)⋯ q(x)

(16.13.35)

x ∈ N

+

y = x−1

g(x)P (x, y) = g(y)P (y, x) =

p(0)⋯ p(x−1)

q(1)⋯ q(x−1)

(16.13.36)

P

N

X = ( , , ,…)X

0

X

1

X

2

N p ∈ (0,∞) N

q ∈ (0,∞) N

+

p+q ≤ 1

X q < p

X q = p

X q > p N p/q

f(x) =(1− ) , x ∈ N

p

q

( )

p

q

x

(16.13.37)

N v(x)

m(x) x ∈ N

X = ( , ,…)X

0

X

1

N p ∈ (0,∞) N

+

q ∈ (0,∞) N

+

p+q ≤ 1 r(0) = 1

q ≥ p v(x) = 1 x ∈ N q < p v(x) = (q/p)

x

x ∈ N

q ≤ p m(x) =∞ x ∈ N

+

q > p m(x) = x/(q−p) x ∈ N

q < p P(N =∞ ∣ = x) > 0X

0

m(x) =∞ x ∈ N

+

q ≥ p

P(N <∞ ∣ = x) = 1X

0

x ∈ N x−1

x ∈ N
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probability of absorption at the next step is , so the number of times that the chain is in state 1 before absorption has the
geometric distribution on  with success parameter . So the mean number of visits is . In state 1, the number of steps
before a return to step 1 without absorption has the same distribution as the return time to state 0, starting in 0, for the
recurrent chain considered in the previous exercise. The mean of this distribution is  if  and is  if ,
were  is the invariant distribution. It follows that

This chain is essentially the gambler's ruin chain. Consider a gambler who bets on a sequence of independent games, where  and 
 are the probabilities of winning and losing, respectively. The gambler receives one monetary unit when she wins a game and must

pay one unit when she loses a game. So  is the gambler's fortune after playing  games.

Next we consider random walks on a finite interval.

Suppose that  is the birth-death chain on  with constant birth probability  on 
 and constant death probability  on , with . Then  is positive recurrent

and the invariant probability density function  is given as follows:

1. If  then

2. If  then  for .

Note that if  then the invariant distribution is a truncated geometric distribution, and  for  where  is the
invariant probability density function of the birth-death chain on  considered above. If , the invariant distribution is uniform
on , certainly a reasonable result. Next we consider the chain with both endpoints absorbing. As before,  is the function that
gives the probability of absorption in state 0, while  is the function that gives the mean time to absorption.

Suppose that  is the birth-death chain on  with constant birth probability  and
death probability  on , where . Assume also that , so that  and  are
absorbing.

1. If  then

2. If  then  for 

Note that if  then  as  for .

Suppose again that  is the birth-death chain on  with constant birth probability 
 and death probability  on , where . Assume also that , so

that  and  are absorbing.

1. If  then

2. If  then

q
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q 1/q

∞ q = p 1/f(0) q > p

f
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(x) = , x ∈v

n

(q/p −(q/p)

x

)

n

1−(q/p)

n

N

n

(16.13.40)

p = q (x) = 1−x/nv

n

x ∈ N

n

q < p (x) → v(x)v

n

n→∞ x ∈ N

X = ( , ,…)X

0

X

1

= {0, 1,… ,n}N

n

p ∈ (0, 1) q ∈ (0,∞) {1, 2,… ,n−1} p+q ≤ 1 r(0) = r(n) = 1

0 n

p ≠ q

(x) = + , x ∈m

n

n

p−q

1−(q/p)

x

1−(q/p)

n

x

q−p

N

n

(16.13.41)

p = q

(x) = x(n−x), x ∈m

n

1

2p

N

n

(16.13.42)
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Special Birth-Death Chains

Some of the random processes that we have studied previously are birth-death Markov chains.

Describe each of the following as a birth-death chain.

1. The Ehrenfest chain.
2. The modified Ehrenfest chain.
3. The Bernoulli-Laplace chain
4. The simple random walk on .

Answer
1. The Ehrenfest chain with parameter  is a birth death chain on  with  and 

 for .
2. The modified Ehrenfest chain with parameter  is a birth death chain on  with , 

, and  for .
3. The Bernoulli-Laplace chain with parameters  with  is a birth-death chain on 

 with , , and  for 

.
4. The simple random walk on  with parameter  is a birth-death chain on  with  and  for 

.

Other Examples

Consider the birth-death process on  with , , and  for .

1. Find the invariant function .
2. Classify the chain.

Answer

1. Note that  and  for . Hence .
2. Note that

So the chain is positive recurrent, with invariant PDF  given by

Also, the chain is periodic with period 2.

This page titled 16.13: Discrete-Time Birth-Death Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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+

r< j+k

S = {max{0, r−j},… ,min{k, r}} q(x) =
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1

x+1
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∞
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16.14: Random Walks on Graphs
     

Basic Theory

Introduction

Suppose that  is a graph with vertex set  and edge set . We assume that the graph is undirected (perhaps a
better term would be bi-directed) in the sense that  if and only if . The vertex set  is countable, but may be
infinite. Let  denote the set of neighbors of a vertex , and let  denote the
degree of . We assume that  for , so  has no isolated points.

Suppose now that there is a conductance  associated with each edge . The conductance is symmetric in the
sense that  for . We extend  to a function on all of  by defining  for . Let

so that  is the total conductance of the edges coming from . Our main assumption is that  for . As the
terminology suggests, we imagine a fluid of some sort flowing through the edges of the graph, so that the conductance of an edge
measures the capacity of the edge in some sense. One of the best interpretation is that the graph is an electrical network and the
edges are resistors. In this interpretation, the conductance of a resistor is the reciprocal of the resistance.

In some applications, specifically the resistor network just mentioned, it's appropriate to impose the additional assumption that 
has no loops, so that  for each . However, that assumption is not mathematically necessary for the Markov chains
that we will consider in this section.

The discrete-time Markov chain  with state space  and transition probability matrix  given by

is called a random walk on the graph .

Justification

First,  for . Next, by definition of ,

sp  is a valid transition matrix on . Also,  if and only if  if and only if , so the state graph
of  is , the graph we started with.

This chain governs a particle moving along the vertices of . If the particle is at vertex  at a given time, then the particle will
be at a neighbor of  at the next time; the neighbor is chosen randomly, in proportion to the conductance. In the setting of an
electrical network, it is natural to interpret the particle as an electron. Note that multiplying the conductance function  by a
positive constant has no effect on the associated random walk.

Suppose that  for each  and that  is constant on the edges. Then

1.  for every .
2. The transition matrix  is given by  for  and , and  otherwise.

The discrete-time Markov chain  is the symmetric random walk on .

Proof
1.  for .
2.  for  and 

G= (S,E) S E ⊆ S

2

(x, y) ∈ E (y, x) ∈ E S

N(x) = {y ∈ S : (x, y) ∈ E} x ∈ S d(x) =#[N(x)]

x N(x) ≠ ∅ x ∈ S G

c(x, y) > 0 (x, y) ∈ E

c(x, y) = c(y, x) (x, y) ∈ E c S×S c(x, y) = 0 (x, y) ∉ E

C(x) = c(x, y), x ∈ S∑

y∈S

(16.14.1)

C(x) x C(x) <∞ x ∈ S

G

(x, x) ∉ E x ∈ S

X = ( , , ,…)X

0

X

1

X

2

S P

P (x, y) = , (x, y) ∈

c(x, y)

C(x)

S

2

(16.14.2)

G

P (x, y) ≥ 0 x, y ∈ S C

P (x, y) = = = 1, x ∈ S∑

y∈S

∑

y∈S

c(x, y)

C(x)

C(x)

C(x)

(16.14.3)

P S P (x, y) > 0 c(x, y) > 0 (x, y) ∈ E

X G

G x ∈ S

x

c

d(x) <∞ x ∈ S c

C(x) = cd(x) x ∈ S

P P (x, y) =

1

d(x)

x ∈ S y ∈N(x) P (x, y) = 0

X G

C(x) = c(x, y) = c#[N(x)] = cd(x)∑

y∈N(x)

x ∈ S

P (x, y) = c(x, y)/C(x) = c/cd(x) = 1/d(x) x ∈ S y ∈N(x)
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Thus, for the symmetric random walk, if the state is  at a given time, then the next state is equally likely to be any of the
neighbors of . The assumption that each vertex has finite degree means that the graph  is locally finite.

Let  be a random walk on a graph .

1. If  is connected then  is irreducible.
2. If  is not connected then the equivalence classes of  are the components of  (the maximal connected subsets of ).

Proof
1. Recall that there is a path of length  between distinct states  in the state graph of  if and only if 

. If  is connected, there is a path between each pair of distinct vertices and hence the chain  is irreducible.
2. This follows from (a).

So as usual, we will usually assume that  is connected, for otherwise we could simply restrict our attention to a component of .
In the case that  has no loops (again, an important special case because of applications), it's easy to characterize the periodicity of
the chain. For the theorem that follows, recall that  is bipartite if the vertex set  can be partitioned into nonempty, disjoint sets 

 and  (the parts) such that every edge in  has one endpoint in  and one endpoint in .

Suppose that  is a random walk on a connected graph  with no loops. Then  is either aperiodic or has period 2.
Moreover,  has period 2 if and only if  is bipartite, in which case the parts are the cyclic classes of .

Proof

First note that since  is connected, the chain  is irreducible, and so all states have the same period. If  then 
 also, so returns to , starting at  can always occur at even positive integers. If  is bipartite, then returns to 

 starting at  can clearly only occur at even postive integers, so the period is 2. Conversely, if  is not bipartite then  has a
cycle of odd length . If  is a vertex on the cycle, then returns to , starting at , can occur in 2 steps or in  steps, so the
period of  is 1.

Positive Recurrence and Invariant Distributions

Suppose again that  is a random walk on a graph , and assume that  is connected so that  is irreducible.

The function  is invariant for . The random walk  is positive recurrent if and only if

in which case the invariant probability density function  is given by  for .

Proof

For ,

so  is invariant for . The other results follow from the general theory.

Note that  is the total conductance over all edges in . In particular, of course, if  is finite then  is positive recurrent, with 
as the invariant probability density function. For the symmetric random walk, this is the only way that positive recurrence can
occur:

The symmetric random walk on  is positive recurrent if and only if the set of vertices  is finite, in which case the invariant
probability density function  is given by

where  is the degree function and where  is the number of undirected edges.

Proof

x ∈ S

x G

X G

G X

G X G S

n ∈ N

+

x, y ∈ S X

(x, y) > 0P

n

G X

G G

G

G S

A B E A B

X G X

X G X

G X (x, y) ∈ E

(y, x) ∈ E x ∈ S x G

x x G G

k x x x k

x

X G G X

C P X

K = C(x) = c(x, y) <∞∑

x∈S

∑

(x,y)∈S

2

(16.14.4)

f f(x) =C(x)/K x ∈ S

y ∈ S

(CP )(y) = C(x)P (x, y) = C(x) = c(x, y) =C(y)∑

x∈S

∑

x∈N(y)

c(x, y)

C(x)

∑

x∈N(y)

(16.14.5)

C P

K G S X f

G S

f

f(x) = , x ∈ S

d(x)

2m

(16.14.6)
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If we take the conductance function to be the constant 1 on the edges, then  and .

On the other hand, when  is infinite, the classification of  as recurrent or transient is complicated. We will consider an
interesting special case below, the symmetric random walk on .

Reversibility

Essentially, all reversible Markov chains can be interpreted as random walks on graphs. This fact is one of the reasons for studying
such walks.

If  is a random walk on a connected graph , then  is reversible with respect to .

Proof

Since the graph is connected,  is irreducible. The crucial observation is that

If  the left side is  and the right side is . If , both sides are 0. It then follows from the
general theory that  is invariant for  and that  is reversible with respect to .

Of course, if  is recurrent, then  is the only positive invariant function, up to multiplication by positive constants, and so  is
simply reversible.

Conversely, suppose that  is an irreducible Markov chain on  with transition matrix  and positive invariant function . If 
 is reversible with respect to  then  is the random walk on the state graph with conductance function  given by 

 for .

Proof

Since  is reversible with respect to ,  and  satisfy  for every . Note that the state
graph  of  is bi-directed since  if and only if , and that the function  given in the theorem is
symmetric, so that  for all . Finally, note that

so that  for , as required.

Again, in the important special case that  is recurrent, there exists a positive invariant function  that is unique up to
multiplication by positive constants. In this case the theorem states that an irreducible, recurrent, reversible chain is a random walk
on the state graph.

Examples and Applications

The Wheatstone Bridge Graph

The graph below is called the Wheatstone bridge in honor of Charles Wheatstone.

Figure : The Wheatstone bridge network, with conductance values in red

In this subsection, let  be the random walk on the Wheatstone bridge above, with the given conductance values.

For the random walk ,

1. Explicitly give the transition probability matrix .
2. Given , find the probability density function of .

Answer

C(x) = d(x) K = 2m

S X

Z

k

X G X C

X

C(x)P (x, y) =C(y)P (y, x), (x, y) ∈ S

2

(16.14.7)

(x, y) ∈ E c(x, y) c(y, x) (x, y) ∉ E

C X X C

X C X

X S P g

X g X c

c(x, y) = g(x)P (x, y) (x, y) ∈ S

2

X g g P g(x)P (x, y) = g(y)P (y, x) (x, y) ∈ S

2

G X P (x, y) > 0 P (y, x) > 0 c

c(x, y) = c(y, x) (x, y) ∈ S

2

C(x) = c(x, y) = g(x)P (x, y) = g(x), x ∈ S∑

y∈S

∑

y∈S

(16.14.8)

P (x, y) = c(x, y)/C(x) (x, y) ∈ S

2

X g

16.14.1

X

X

P

= aX

0

X

2
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For the matrix and vector below, we use the ordered state space .

1. 

2. 

For the random walk ,

1. Show that  is aperiodic.
2. Find the invariant probability density function.
3. Find the mean return time to each state.
4. Find .

Answer

For the matrix and vectors below, we use the ordered state space .

1. The chain is aperiodic since the graph is not bipartite. (Note that the graph has triangles.)

2. 

3. 

4.  as 

The Cube Graph

The graph below is the 3-dimensional cube graph. The vertices are bit strings of length 3, and two vertices are connected by an
edge if and only if the bit strings differ by a single bit.

Figure : The cube graph with conductance values in red

In this subsection, let  denote the random walk on the cube graph above, with the given conductance values.

For the random walk ,

1. Explicitly give the transition probability matrix .
2. Suppose that the initial distribution is the uniform distribution on . Find the probability density

function of .

Answer

For the matrix and vector below, we use the ordered state space .

S = (a, b, c, d)

P =

⎡

⎣

⎢
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⎢

⎢
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⎦
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⎦
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1. 

2. 

For the random walk ,

1. Show that the chain has period 2 and find the cyclic classes.
2. Find the invariant probability density function.
3. Find the mean return time to each state.
4. Find .
5. Find .

Answer

For the matrix and vector below, we use the ordered state space .

1. The chain has period 2 since the graph is bipartite. The cyclic classes are  (bit strings with an even
number of 1's) and  (bit strings with an odd number of 1's).

2. 

3. 

4.  as 

5. 

6.  as 
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Special Models

Recall that the basic Ehrenfest chain with  balls is reversible. Interpreting the chain as a random walk on a graph,
sketch the graph and find a conductance function.

Answer

The state graph  of the basic Ehrenfest chain with  balls is the path from 0 to  with no loops. A conductance function  is
 for .

Recall that the modified Ehrenfest chain with  balls is reversible. Interpreting the chain as a random walk on a graph,
sketch the graph and find a conductance function.

Answer

The state graph  of the modified Ehrenfest chain with  balls is the path from 0 to  with loops. A conductance function 
is  for  and  for .

Recall that the Bernoulli-Laplace chain with  balls in urn 0,  balls in urn 1, and with  of the
balls red, is reversible. Interpreting the chain as a random walk on a graph, sketch the graph and find a conductance function.
Simplify the conductance function in the special case that .

Answer

The state graph  of the Bernoulli-Lapace chain with  balls in urn 0,  balls in urn 1, and with  of the balls red, is the path
from  to  with loops. A conductance function  is given by

In the special case that , a conductance function is

Random Walks on 

Random walks on integer lattices are particularly interesting because of their classification as transient or recurrent. We consider
the one-dimensional case in this subsection, and the higher dimensional case in the next subsection.

Let  be the discrete-time Markov chain with state space  and transition probability matrix  given by

where . The chain  is called the simple random walk on  with parameter .

The term simple is used because the transition probabilities starting in state  do not depend on . Thus the chain is spatially
as well as temporally homogeneous. In the special case , the chain  is the simple symmetric random walk on . Basic
properties of the simple random walk on , and in particular, the simple symmetric random walk were studied in the chapter on
Bernoulli Trials. Of course, the state graph  of  has vertex set , and the neighbors of  are  and . It's not
immediately clear that  is a random walk on  associated with a conductance function, which after all, is the topic of this
section. But that fact and more follow from the next result.

Let  be the function on  defined by
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Then

1.  for all 
2.  is invariant for 
3.  is reversible with respect to 
4.  is the random walk on  with conductance function  given by  for .

Proof
1. For , we only need to consider .

2. This follows from (a) and the general theory.
3. This follows from (a) and (b) and the general theory.
4. From the result above,  is the random walk on  associated with the conductance function  given by 

. By symmetry, it suffices to consider the edge , and in this case,  is given in the second
displayed equation above.

In particular, the simple symmetric random walk is the symmetric random walk on .

The chain  is irreducible and periodic with period 2. Moreover

Proof

The chain is irreducible since  is connected. The chain is periodic since  has no loops and is bipartite, with the parts being
the odd and even integers. Finally, note that starting in state 0, the chain returns to 0 at time  if and only if there are  steps
to the right and  steps to the left.

Classification of the simple random walk on .

1. If  then  is transient.
2. If  then  is null recurrent.

Proof

From the previous result and Stirling's approximation,

Let  for , so that  is the potential matrix. Recall that  is the expected number
of visits to  starting in  for . If  then  and hence  is transient. If  then 
and hence  is recurrent. In this case  must be null recurrent from our general results above, since the vertex set is infinite.

So for the one-dimensional lattice , the random walk  is transient in the non-symmetric case, and null recurrent in the
symmetric case. Let's return to the invariant functions of 

Consider again the random walk  on  with parameter . The constant function  on  and the function  given by

are invariant for . All other invariant functions are linear combinations of these two functions.

Proof
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The condition for  to be invariant, , leads to the following linear, second order difference equation:

The characteristic equation is  which has roots  and . The solutions
corresponding to the roots are  and , respectively. Hence the result follows from the general theory of linear difference
equations.

Note that when , the constant function  is the only positive invariant function, up to multiplication by positive constants.
But we know this has to be the case since the chain is recurrent when . Moreover, the chain is reversible. In the non-
symmetric case, when , we have an example of a transient chain which nonetheless has non-trivial invariant functions—in
fact a two dimensional space of such functions. Also,  is reversible with respect to , as shown above, but the reversal of  with
respect to  is the chain with transition matrix  given by  for . This chain is just the simple random
walk on  with parameter . So the non-symmetric simple random walk is an example of a transient chain that is reversible
with respect to one invariant measure but not with respect to another invariant measure.

Random walks on 

More generally, we now consider , where . For , let  denote the unit vector with 1 in position 
and 0 elsewhere. The -dimensional integer lattice  has vertex set , and the neighbors of  are  for 

. So in particular, each vertex has  neighbors.

Let  be the Markov chain on  with transition probability matrix  given by

where ,  for  and . The chain  is the simple random walk on  with
parameters  and .

Again, the term simple means that the transition probabilities starting at  do not depend on , so that the chain is spatially
homogeneous as well as temporally homogeneous. In the special case that  for ,  is the simple
symmetric random walk on . The following theorem is the natural generalization of the result abpve for the one-dimensional
case.

Define the function  by

Then

1.  for all 
2.  is invariant for .
3.  is reversible with respect to .
4.  is the random walk on  with conductance function  given by  for .

Proof
1. For , the only cases of interest are  for , since in all other cases,

the left and right sides are 0. But

2. This follows from (a).
3. This follows from (a) and (b).

h hP = h

(1−p)h(y+1)−h(y)+(1+p)h(y−1), y ∈ Z (16.14.14)
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4. This also follows from the general result above.

It terms of recurrence and transience, it would certainly seem that the larger the dimension , the less likely the chain is to be
recurrent. That's generally true:

Classification of the simple random walk on .

1. For ,  is null recurrent in the symmetric case and transient for all other values of the parameters.
2. For ,  is transient for all values of the parameters.

Proof sketch

For certain of the non-symmetric cases, we can use the result for dimension 1. Suppose  with . If we
consider the times when coordinate  of the random walk  changes, we have an embedded one-dimensional random walk
with parameter  (the probability of a step in the positive direction). Since , this embedded random
walk is transient and so will fail to return to 0, starting at 0, with positive probability. But if this embedded random walk fails
to return to 0, starting at 0, then the parent random walk  fails to return to  starting at . Hence  is transient.

For the symmetric case, the general proof is similar in to the proof for dimension 1, but the details are considerably more
complex. A return to  can occur only at even times and

Thus for the potential matrix  we have  and the chain is recurrent if  while  and the
chain is transient if .

So for the simple, symmetric random walk on the integer lattice , we have the following interesting dimensional phase shift: the
chain is null recurrent in dimensions 1 and 2 and transient in dimensions 3 or more.

Let's return to the positive invariant functions for . Again, the results generalize those for the one-dimensional case.

For , define  on  by

Let  denote the simple random walk on  with transition matrix , corresponding to the parameter vectors  and ,
wherre ,  for , and ,  for . Then

1.  for all 
2.  is invariant for .
3.  is reversal of  with respect to .

Proof

Part (a) follows from simple substitution. Parts (b) and (c) follow from (a) and the general theory.

Note that when ,  and when , , the invariant function introduced above. So in the completely
non-symmetric case where  for every , the random walk  has  positive invariant functions that are
linearly independent, and  is reversible with respect to one of them.

This page titled 16.14: Random Walks on Graphs is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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16.15: Introduction to Continuous-Time Markov Chains
      

This section begins our study of Markov processes in continuous time and with discrete state spaces. Recall that a Markov process with a discrete
state space is called a Markov chain, so we are studying continuous-time Markov chains. It will be helpful if you review the section on general
Markov processes, at least briefly, to become familiar with the basic notation and concepts. Also, discrete-time chains plays a fundamental role,
so you will need review this topic also.

We will study continuous-time Markov chains from different points of view. Our point of view in this section, involving holding times and the
embedded discrete-time chain, is the most intuitive from a probabilistic point of view, and so is the best place to start. In the next section, we
study the transition probability matrices in continuous time. This point of view is somewhat less intuitive, but is closest to how other types of
Markov processes are treated. Finally, in the third introductory section we study the Markov chain from the view point of potential matrices. This
is the least intuitive approach, but analytically one of the best. Naturally, the interconnections between the various approaches are particularly
important.

Preliminaries
As usual, we start with a probability space , so that  is the set of outcomes,  the -algebra of events, and  the probability measure
on the sample space . The time space is  where as usual,  is the Borel -algebra on  corresponding to the standard
Euclidean topology. The state space is  where  is countable and  is the power set of . So every subset of  is measurable, as is every
function from  to another measurable space. Recall that  is also the Borel  algebra corresponding to the discrete topology on . With this
topology, every function from  to another topological space is continuous. Counting measure  is the natural measure on , so in the
context of the general introduction, integrals over  are simply sums. Also, kernels on  can be thought of as matrices, with rows and sums
indexed by . The left and right kernel operations are generalizations of matrix multiplication.

Suppose now that  is stochastic process with state space . For , let , so that 
 is the -algebra of events defined by the process up to time . The collection of -algebras  is the natural filtration

associated with . For technical reasons, it's often necessary to have a filtration  that is slightly finer than the natural one,
so that  for  (or in equivlaent jargon,  is adapted to ). See the general introduction for more details on the common ways
that the natural filtration is refined. We will also let , the -algebra of events defined by the process from time  onward.
If  is thought of as the present time, then  is the collection of events in the past and  is the collection of events in the future.

It's often necessary to impose assumptions on the continuity of the process  in time. Recall that  is right continuous if  is right
continuous on  for every , and similarly  has left limits if  has left limits on  for every . Since  has the
discrete topology, note that if  is right continuous, then for every  and , there exists  (depending on  and ) such that 

 for . Similarly, if  has left limits, then for every  and  there exists  (depending on  and ) such
that  is constant for .

The Markov Property

There are a number of equivalent ways to state the Markov property. At the most basic level, the property states that the past and future are
conditionally independent, given the present.

The process  is a Markov chain on  if for every , , and ,

Another version is that the conditional distribution of a state in the future, given the past, is the same as the conditional distribution just given the
present state.

The process  is a Markov chain on  if for every , and ,

Technically, in the last two definitions, we should say that  is a Markov process relative to the filtration . But recall that if  satisfies the
Markov property relative to a filtration, then it satisfies the Markov property relative to any coarser filtration, and in particular, relative to the
natural filtration. For the natural filtration, the Markov property can also be stated without explicit reference to -algebras, although at the cost of
additional clutter:

The process  is a Markov chain on  if and only if for every , time sequence  with 
, and state sequence ,
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As usual, we also assume that our Markov chain  is time homogeneous, so that  for 
 and . So, for a homogeneous Markov chain on , the process  given , is independent of 

and equivalent to the process  given , for every  and . That is, if the chain is in state  at a
particular time , it does not matter how the chain got to ; the chain essentially starts over in state .

The Strong Markov Property

Random times play an important role in the study of continuous-time Markov chains. It's often necessary to allow random times to take the value 
, so formally, a random time  is a random variable on the underlying sample space  taking values in . Recall also that a random

time  is a stopping time (also called a Markov time or an optional time) if  for every . If  is a stopping time, the -
algebra associated with  is

So  is the collection of events up to the random time  in the same way that  is the collection of events up to the deterministic time 
. We usually want the Markov property to extend from deterministic times to stopping times.

The process  is a strong Markov chain on  if for every stopping time , , and ,

So, for a homogeneous strong Markov chain on , the process  given , is independent of  and equivalent to the
process  given , for every stopping time  and . That is, if the chain is in state  at a stopping time , then
the chain essentially starts over at , independently of the past.

Holding Times and the Jump Chain
For our first point of view, we sill study when and how our Markov chain  changes state. The discussion depends heavily on properties of the
exponential distribution, so we need a quick review.

The Exponential Distribution

A random variable  has the exponential distribution with rate parameter  if  has a continuous distribution on  with probability
density function  given by  for . Equivalently, the right distribution function  is given by

The mean of the distribution is  and the variance is . The exponential distribution has an amazing number of characterizations. One of the
most important is the memoryless property which states that a random variable  with values in  has an exponential distribution if and only
if the conditional distribution of  given  is the same as the distribution of  itself, for every . It's easy to see that the
memoryless property is equivalent to the law of exponents for right distribution function , namely  for .
Since  is right continuous, the only solutions are exponential functions.

For our study of continuous-time Markov chains, it's helpful to extend the exponential distribution to two degenerate cases,  with
probability 1, and  with probability 1. In terms of the parameter, the first case corresponds to  so that  for
every , and the second case corresponds to  so that  for every . Note that in both cases, the
function  satisfies the law of exponents, and so corresponds to a memoryless distribution in a general sense. In all cases, the mean of the
exponential distribution with parameter  is , where we interpret  and .

Holding Times

The Markov property implies the memoryless property for the random time when a Markov process first leaves its initial state. It follows that this
random time must have an exponential distribution.

Suppose that  is a Markov chain on , and let . For , the conditional
distribution of  given  is exponential with parameter .

Proof

Let  and . The events  and  imply . By the Markov property, given , the chain starts over at
time  in state , independent of  and , since both events are in . Hence for ,

It follows that  has the memoryless property, and hence has an exponential distribution with parameter .

So, associated with the Markov chain  on  is a function  that gives the exponential parameters for the holding times in the
states. Considering the ordinary exponential distribution, and the two degenerate versions, we are led to the following classification of states:
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Suppose again that  is a Markov chain on  with exponential parameter function . Let .

1. If  then , and  is said to be an absorbing state.
2. If  then  and  is said to be an stable state.
3. If  then , and  is said to be an instantaneous state.

As you can imagine, an instantaneous state corresponds to weird behavior, since the chain starting in the state leaves the state at times arbitrarily
close to 0. While mathematically possible, instantaneous states make no sense in most applications, and so are to be avoided. Also, the proof of
the last result has some technical holes. We did not really show that  is a valid random time, let alone a stopping time. Fortunately, one of our
standard assumptions resolves these problems.

Suppose again that  is a Markov chain on . If the process  and the filtration  are right continuous, then

1.  is a stopping time.
2.  has no instantaneous states.
3.  if  is stable.
4.  is a strong Markov process.

Proof
1. Let . By right continuity,

But for , . The last event in the displayed equation is a countable union, so . Since  is
right continuous,  is a stopping time.

2. Suppose that  and . Since  is right continuous, there exists  such that  for  and hence 
. So .

3. Similarly, suppose that  and that  and . Since  is right continuous, there exists  such that 
 for . But by definition of , there exists  with . Hence 

.

There is actually a converse to part (b) that states that if  has no instantaneous states, then there is a version of  that is right continuous. From
now on, we will assume that our Markov chains are right continuous with probability 1, and hence have no instantaneous states. On the other
hand, absorbing states are perfectly reasonable and often do occur in applications. Finally, if the chain enters a stable state, it will stay there for a
(proper) exponentially distributed time, and then leave.

The Jump Chain

Without instantaneous states, we can now construct a sequence of stopping times. Basically, we let  denote the th time that the chain changes
state for , unless the chain has previously been caught in an absorbing state. Here is the formal construction:

Suppose again that  is a Markov chain on . Let  and . Recursively, suppose
that  is defined for . If  let . Otherwise, let

Let .

In the definition of , of course, , so  is the number of changes of state. If , the chain was sucked into an absorbing state
at time . Since we have ruled out instantaneous states, the sequence of random times in strictly increasing up until the (random) term . That
is, with probability 1, if  and  then . Of course by construction, if  then . The increments 
for  with  are the times spent in the states visited by . The process at the random times when the state changes forms an embedded
discrete-time Markov chain.

Suppose again that  is a Markov chain on . Let  denote the stopping times and  the random index,
as defined above. For , let  if  and  if . Then  is a (homogenous) discrete-time
Markov chain on , known as the jump chain of .

Proof

For  let , the -algebra of events for the process , up to the discrete time . Let . If  is stable, then
given , the random times  and  are finite with probability 1. (Note that we cannot get to  from an absorbing state.) So

But by the strong Markov property, given , the chain starts over at time  in state , independent of . Hence
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On the other hand, if  is an absorbing state, then by construction,

where  is the identity matrix on .

As noted in the proof, the one-step transition probability matrix  for the jump chain  is given for  by

where  is the identity matrix on . Of course  satisfies the usual properties of a probability matrix on , namely  for 
and  for . But  satisfies another interesting property as well. Since the the state actually changes at time  starting in a
stable state, we must have  if  is stable and  if  is absorbing.

Given the initial state, the holding time and the next state are independent.

If  and  then 

Proof

Suppose that  is a stable state, so that given , the stopping time  has a proper exponential distribution with parameter 
. Note that

Note that if  and  then  also. By the Markov property, given , the chain starts over at time  in state ,
independent of  and , both events in . Hence

Of course .

If  is an absorbing state then , , and . Hence

The following theorem is a generalization. The changes in state and the holding times are independent, given the initial state.

Suppose that  and that  is a sequence of stable states and  is a sequence in . Then

Proof

The proof is by induction, and the essence is captured in the case . So suppose that  are stable states and .
Then

But  by the previous theorem. Next, by definition,

But by the strong Markov property, given , the chain starts over at time  in state , independent of the events  and 
 (both events in ). Hence using the previous theorem again,

Regularity

We now know quite a bit about the structure of a continuous-time Markov chain  (without instantaneous states). Once the
chain enters a given state , the holding time in state  has an exponential distribution with parameter , after which the next
state  is chosen, independently of the holding time, with probability . However, we don't know everything about the chain. For the
sequence  defined above, let , which exists in  of course, since the sequence is increasing. Even though the
holding time in a state is positive with probability 1, it's possible that  with positive probability, in which case we know nothing about 
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for . The event  is known as explosion, since it means that the  makes infinitely many transitions before the finite time .
While not as pathological as the existence of instantaneous states, explosion is still to be avoided in most applications.

A Markov chain  on  is regular if each of the following events has probability 1:

1.  is right continuous.
2.  as .

There is a simple condition on the exponential parameters and the embedded chain that is equivalent to condition (b).

Suppose that  is a right-continuous Markov chain on  with exponential parameter function  and embedded chain 
. Then  as  with probability 1 if and only if  with probability 1.

Proof

Given , the distribution of  is the distribution of  where  are independent,
and  has the exponential distribution with parameter . Note that . In the section on the exponential
distribution, it's shown that  if and only if .

If  is bounded, then  is regular.

Suppose that  is a Markov chain on  with exponential parameter function . If  is bounded, then  is regular.

Proof

Suppose that  for , where . Then in particular,  has no instantaneous states and so is right continuous. Moreover,
 for  so  with probability 1, where as ususal,  is the jump chain of .

Here is another sufficient condition that is useful when the state space is infinite.

Suppose that  is a Markov chain on  with exponential parameter function . Let 
. Then  is regular if

Proof

By assumption,  for , so there are no instantaneous states and so we can take  to be right continuous. Next,

where  is the number of times that the jump chain  is in state . Suppose that . Note that it
must be the case that , and hence , is infinite. With probability 1, either  enters an absorbing state (a state  with ), or 

 for some , or  for infinitely many . In any case,

As a corollary, note that if  is finite then  is bounded, so a continuous-time Markov chain on a finite state space is regular. So to review, if the
exponential parameter function  is finite, the chain  has no instantaneous states. Even better, if  is bounded or if the conditions in the last
theorem are satisfied, then  is regular. A continuous-time Markov chain with bounded exponential parameter function  is called uniform, for
reasons that will become clear in the next section on transition matrices. As we will see in later section, a uniform continuous-time Markov chain
can be constructed from a discrete-time chain and an independent Poisson process. For the next result, recall that to say that  has left limits with
probability 1 means that the random function  has limits from the left on  with probability 1.

If  is regular then  has left limits with probability 1.

Proof

Suppose first that there are no absorbing states. Under the assumptions, with probability 1,  for each  and  as 
. Moreover,  for  and . So  has left limits on  with probability 1. The same basic

argument works with absorbing states, except that possibly .

Thus, our standard assumption will be that  is a regular Markov chain on . For such a chain, the behavior of  is
completely determined by the exponential parameter function  that governs the holding times, and the transition probability matrix  of the
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jump chain . Conversely, when modeling real stochastic systems, we often start with  and . It's then relatively straightforward to construct
the continuous-time Markov chain that has these parameters. For simplicity, we will assume that there are no absorbing states. The inclusion of
absorbing states is not difficult, but mucks up the otherwise elegant exposition.

Suppose that  is bounded and that  is a probability matrix on  with the property that  for every . The
regular, continuous-time Markov chain  with exponential parameter function  and jump transition matrix  can be
constructed as follows:

1. First construct the jump chain  having transition matrix .
2. Next, given , the transition times  are constructed so that the holding times  are

independent and exponentially distributed with parameters 
3. Again given , define  for  and for , define  for .

Additional details

Using product sets and product measures, it's straightforward to construct a probability space  with the following objects and
properties:

1.  is a Markov chain on  with transition matrix .
2.  is a collection of independent random variables with values in  such that  has the exponential distribution

with parameter  for each .
3.  and  are independent.

Define  as follows: First,  and  for . Recursively, if  is defined on , let 
 and then let  for for . Since  is bounded,  as , so  is well defined for 

. By construction,  is right continuous and has left limits. The Markov property holds by the memoryless property of the
exponential distribution and the fact that  is a Markov chain. Finally, by construction,  has exponential parameter function  and jump
chain .

Often, particularly when  is finite, the essential structure of a standard, continuous-time Markov chain can be succinctly summarized with a
graph.

Suppose again that  is a regular Markov chain on , with exponential parameter function  and embedded transition
matrix . The state graph of  is the graph with vertex set  and directed edge set . The graph is labeled
as follows:

1. Each vertex  is labeled with the exponential parameter .
2. Each edge  is labeled with the transition probability .

So except for the labels on the vertices, the state graph of  is the same as the state graph of the discrete-time jump chain . That is, there is a
directed edge from state  to state  if and only if the chain, when in , can move to  after the random holding time in . Note that the only
loops in the state graph correspond to absorbing states, and for such a state there are no outward edges.

Let's return again to the construction above of a continuous-time Markov chain from the jump transition matrix  and the exponential parameter
function . Again for simplicity, assume there are no absorbing states. We assume that  for all , so that the state really does
change at the transition times. However, if we drop this assumption, the construction still produces a continuous-time Markov chain, but with an
altered jump transition matrix and exponential parameter function.

Suppose that  is a transition matrix on  with  for , and that  is bounded. The stochastic process 
 constructed above from  and  is a regular, continuous-time Markov chain with exponential parameter function 

and jump transition matrix  given by

Proof 1

As before, the fact that  is a continuous-time Markov chain follows from the memoryless property of the exponential distribution and the
Markov property of the jump chain . By construction,  is right continuous and has left limits. The main point, however, is that 

 is not necessarily the sequence of transition times, when the state actually changes. So we just need to determine the parameters.
Suppose  and let  have the exponential distribution with parameter , as in the construction. Let  denote the time
when the state actually does change. For , the event  can happen in two ways: either  or  for some , the
chain jumps back into state  at time , and the process then stays in  for a period of at least . Thus let .
Taking the two cases, conditioning on , and using the Markov property gives
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Using the change of variables  and simplifying gives

Differentiating with respect to  then gives

with the initial condition . The solution of course is  for . When the state does
change, the new state  is chosen with probability

Proof 2

As in the first proof, we just need to determine the parameters. Given , the discrete time  when  first changes state has the
geometric distribution on  with success parameter . Hence the time until  actually changes state has the distribution of 

 where  is a sequence of independent variables, each exponentially distributed with parameter  and
with  independent of . In the section on the exponential distribution, it is shown that  also has the exponential distribution, but with
parameter . (The proof is simple using generating functions.) As in the first proof, when the state does change, the new
state  is chosen with probability

This construction will be important in our study of chains subordinate to the Poisson process.

Transition Times

The structure of a regular Markov chain on , as described above, can be explained purely in terms of a family of independent, exponentially
distributed random variables. The main tools are some additional special properties of the exponential distribution, that we need to restate in the
setting of our Markov chain. Our interest is in how the process evolves among the stable states until it enters an absorbing state (if it does). Once
in an absorbing state, the chain stays there forever, so the behavior from that point on is trivial.

Suppose that  is a regular Markov chain on , with exponential parameter function  and transition probability
matrix . Define  for . Then

1.  for .
2.  if  and  is stable.

The main point is that the new parameters  for  determine the exponential parameters  for , and the transition
probabilities  when  is stable and . Of course we know that if , so that  is absorbing, then . So in fact,
the new parameters, as specified by the function , completely determine the old parmeters, as specified by the functions  and . But so what?

Consider the functions , , and  as given in the previous result. Suppose that  has the exponential distribution with parameter 
for each  and that  is a set of independent random variables. Then

1.  has the exponential distribution with parameter  for .
2.  for .

Proof

These are basic results proved in the section on the exponential distribution.

So here's how we can think of a regular, continuous-time Markov chain on : There is a timer associated with each , set to the random
time . All of the timers function independently. When the chain enters state , the timers on  for  are started simultaneously.
As soon as the first alarm goes off for a particular , the chain immediately moves to state , and the process repeats. Of course, if 

 then  with probability 1, so only the timers with  and  matter (these correspond to the non-loop edges
in the state graph). In particular, if  is absorbing, then the timers on  are set to infinity for each , and no alarm ever sounds.

The new collection of exponential parameters can be used to give an alternate version of the state graph. Again, the vertex set is  and the edge
set is . But now each edge  is labeled with the exponential rate parameter . The exponential rate
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parameters are closely related to the generator matrix, a matrix of fundamental importance that we will study in the next section.

Examples and Exercises

The Two-State Chain

The two-state chain is the simplest non-trivial, continuous-time Markov chain, but yet this chain illustrates many of the important properties of
general continuous-time chains. So consider the Markov chain  on the set of states , with transition rate 

 from 0 to 1 and transition rate  from 1 to 0.

The transition matrix  for the embedded chain is given below. Draw the state graph in each case.

1.  if  and , so that both states are stable.

2.  if  and , so that  is absorbing and  is stable.

3.  if  and , so that  is stable and  is absorbing.

4.  if  and , so that both states are absorbing.

We will return to the two-state chain in subsequent sections.

Computational Exercises

Consider the Markov chain  on  with exponential parameter function  and embedded
transition matrix

1. Draw the state graph and classify the states.
2. Find the matrix of transition rates.
3. Classify the jump chain in terms of recurrence and period.
4. Find the invariant distribution of the jump chain.

Answer
1. The edge set is . All states are stable.
2. The matrix of transition rates is

3. The jump chain is irreducible, positive recurrent, and aperiodic.
4. The invariant distribution for the jump chain has PDF

Special Models

Read the introduction to chains subordinate to the Poisson process.

Read the introduction to birth-death chains.

Read the introduction to continuous-time queuing chains.

Read the introduction to continuous-time branching chains.

This page titled 16.15: Introduction to Continuous-Time Markov Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

X = { : t ∈ [0,∞)}X

t

S = {0, 1}

a ∈ [0,∞) b ∈ [0,∞)

Q

Q = [ ]

0

1

1

0

a> 0 b > 0

Q = [ ]

1

1

0

0

a= 0 b > 0 a b

Q = [ ]

0

0

1

1

a> 0 b = 0 a b

Q = [ ]

1

0

0

1

a= 0 b = 0

X = { : t ∈ [0,∞)}X

t

S = {0, 1, 2} λ = (4, 1, 3)

Q =

⎡

⎣

⎢

⎢

0

1

1

3

1

2

0

2

3

1

2

0

0

⎤

⎦

⎥

⎥

(16.15.27)

E = {(0, 1), (0, 2), (1, 0), (2, 0), (2, 1)}

⎡

⎣

⎢

0

1

1

2

0

2

2

0

0

⎤

⎦

⎥

(16.15.28)

f = [ ]

6

14

5

14

3

14

(16.15.29)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10388?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/16%3A_Markov_Processes/16.15%3A_Introduction_to_Continuous-Time_Markov_Chains
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random


16.16.1 https://stats.libretexts.org/@go/page/10389

16.16: Transition Matrices and Generators of Continuous-Time Chains
      

16. Transition Matrices and Generators of Continuous-Time Chains

Preliminaries

This is the second of the three introductory sections on continuous-time Markov chains. Thus, suppose that  is a
continuous-time Markov chain defined on an underlying probability space  and with state space . By the very meaning
of Markov chain, the set of states  is countable and the -algebra  is the collection of all subsets of . So every subset of  is
measurable, as is every function from  to another measurable space. Recall that  is also the Borel  algebra corresponding to the
discrete topology on . With this topology, every function from  to another topological space is continuous. Counting measure  is the
natural measure on , so in the context of the general introduction, integrals over  are simply sums. Also, kernels on  can be
thought of as matrices, with rows and sums indexed by . The left and right kernel operations are generalizations of matrix
multiplication.

A space of functions on  plays an important role. Let  denote the collection of bounded functions . With the usual
pointwise definitions of addition and scalar multiplication,  is a vector space. The supremum norm on  is given by

Of course, if  is finite,  is the set of all real-valued functions on , and  for .

In the last section, we studied  in terms of when and how the state changes. To review briefly, let .
Assuming that  is right continuous, the Markov property of  implies the memoryless property of , and hence the distribution of 
given  is exponential with parameter  for each . The assumption of right continuity rules out the
pathological possibility that , which would mean that  is an instantaneous state so that . On the other
hand, if  then  is a stable state, so that  has a proper exponential distribution given  with 

. Finally, if  then  is an absorbing state, so that . Next we define a
sequence of stopping times: First  and . Recursively, if  then , while if  then

. With  we define  if  with  and  if  with . The
sequence  is a discrete-time Markov chain on  with one-step transition matrix  given by 

 if  with  stable, and  if  is absorbing. Assuming that  is regular, which
means that  as  with probability 1 (ruling out the explosion event of infinitely many transitions in finite time), the
structure of  is completely determined by the sequence of stopping times  and the discrete-time jump chain 

. Analytically, the distribution  is determined by the exponential parameter function  and the one-step transition
matrix  of the jump chain.

In this section, we sill study the Markov chain  in terms of the transition matrices in continuous time and a fundamentally important
matrix known as the generator. Naturally, the connections between the two points of view are particularly interesting.

The Transition Semigroup

Definition and basic Properties

The first part of our discussion is very similar to the treatment for a general Markov processes, except for simplifications caused by the
discrete state space. We assume that  is a Markov chain on .

The transition probability matrix  of  corresponding to  is

In particular, , the identity matrix on 

Proof

The mapping  is the PDF of  given . Hence  is a probability matrix. That is,  for 
and  for . Trivially,  by definition.

Note that since we are assuming that the Markov chain is homogeneous,
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for every . The Chapman-Kolmogorov equation given next is essentially yet another restatement of the Markov property.
The equation is named for Andrei Kolmogorov and Sydney Chapman,

Suppose that  is the collection of transition matrices for the chain . Then  for .
Explicitly,

Proof

We condition on .

But by the Markov and time homogeneous properties,

Of course by definition, . So the first displayed equation above becomes

Restated in another form of jargon, the collection  is a semigroup of probability matrices. The semigroup of
transition matrices , along with the initial distribution, determine the finite-dimensional distributions of .

Suppose that  has probability density function . If  is a time sequence with  and 
 is a state sequence, then

Proof

To simplify the notation, we will just give the cases  and , which capture the essence of the proof. First suppose 
 and . Then

Next suppose that  and  with . Then

But by the Markov and time homogeneous properties, . By the  case, 
. Hence

As with any matrix on , the transition matrices define left and right operations on functions which are generalizations of matrix
multiplication. For a transition matrix, both have natural interpretations.

Suppose that , and that either  is nonnegative or . Then for ,

The mapping  is a bounded, linear operator on  and .

Proof

Since  is the conditional probability density function of  given , it follows that .
The statement about  follows from general results on probability kernels.

If  is nonnegative and  is infinte, then it's possible that . In general, the left operation of a positive kernel acts on positive
measures on the state space. In the setting here, if  is a positive (Borel) measure on , then the function  given by 
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 for  is the density function of  with respect to counting measure  on . This simply means that 
 for . Conversely, given , the set function  for  defines a positive

measure on  with  as its density function. So for the left operation of , it's natural to consider only nonnegative functions.

If  then

If  has probability density function  then  has probability density function .

Proof

If  has PDF , then conditioning gives

More generally, if  is the density function of a positive measure  on  then  is the density function of the measure ,
defined by

A function  is invariant for the Markov chain  (or for the transition semigroup ) if  for every 
.

It follows that if  has an invariant probability density function , then  has probability density function  for every , so 
 is identically distributed. Invariant and limiting distributions are fundamentally important for continuous-time Markov chains.

Standard Semigroups

Suppose again that  is a Markov chain on  with transition semigroup . Once again,
continuity assumptions need to be imposed on  in order to rule out strange behavior that would otherwise greatly complicate the
theory. In terms of the transition semigroup , here is the basic assumption:

The transition semigroup  is standard if  as  for each .

Since  for , the standard assumption is clearly a continuity assumption. It actually implies much stronger smoothness
properties that we will build up by stages.

If the transition semigroup  is standard, then the function  is right continuous for each 
.

Proof

First note that if  with  then  as . Hence  as  for all 
. Suppose next that  and . By the semigroup property,

But  as  so by the bounded convergence theorem,  as .

Our next result connects one of the basic assumptions in the section on transition times and the embedded chain with the standard
assumption here.

If the Markov chain  has no instantaneous states then the transition semigroup  is standard.

Proof

Given  note that  implies . Hence

Since  has no instantaneous states,  so  as .

f(x) = μ{x} x ∈ S μ # (S,S )

μ(A) = f(x)∑

x∈A

A⊆ S f : S→ [0,∞) μ(A) = f(x)∑

x∈A

A⊆ S

(S,S ) f P

t

f : S→ [0,∞)

f (y) = f(x) (x, y), y ∈ SP

t

∑

x∈S

P

t
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f μ (S,S ) fP
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t
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2
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2

x ≠ y (x, y) ≤ 1− (x, x) → 0P

h

P

h

h ↓ 0 (x, y) → I(x, y)P

h
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(x, y) ∈ S

2
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2
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P

t

P
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∑
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X P

= x ∈ SX

0

τ > t = xX

t

(x, x) = P( = x ∣ = x) ≥ P(τ > t ∣ = x) =P

t

X

t

X

0

X

0

e
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Recall that the non-existence of instantaneous states is essentially equivalent to the right continuity of . So we have the nice result that
if  is right continuous, then so is . For the remainder of our discussion, we assume that  is a regular Markov
chain on  with transition semigroup , exponential function  and one-step transition matrix  for the jump
chain. Our next result is the fundamental integral equations relating , , and .

For ,

Proof

If  is an absorbing state, then the equation trivially holds, since  and . So suppose that  is a stable
state, and as above, let . Given ,  has a proper exponential distribution with parameter 

. Taking cases,

The first term on the right is 0 if  and is  if . In short,

For the second term on the right in the displayed equation, we condition on  and . By a result in the last section on
transition times and the embedded chain, the joint PDF of  at  and , given , is 
(continuous in time, discrete in space). Also, given  and , we can use the strong Markov property to
“restart the clock” at  giving

Putting the pieces together we have

We can now improve on the continuity result that we got earlier. First recall the leads to relation for the jump chain : For , 
 leads to  if  for some . So by definition,  leads to  for each , and for  with ,  leads to 

if and only if the discrete-time chain starting in  eventually reaches  with positive probability.

For ,

1.  is continuous.
2. If  leads to  then  for every .
3. If  does not lead to  then  for every .

Proof

For , we can use the change of variables  in the fundamental integral equation to get

1. In the displayed equation,  is right continuous for every , and hence by the bounded convergence
theorem again, so is . Since the integrand in the displayed equation is bounded and right continuous, the integral
is a continuous function of . Hence  is continuous for .

2. For , note that  for . If  leads to  and  then there exists  and 
 such that . Then

3. This is clear from the definition of the embedded chain .

Parts (b) and (c) are known as the Lévy dichotomy, named for Paul Lévy. It's possible to prove the Lévy dichotomy just from the
semigroup property of , but this proof is considerably more complicated. In light of the dichotomy, the leads to relation clearly makes

X
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sense for the continuous-time chain  as well as the discrete-time embedded chain .

The Generator Matrix

Definition and Basic Properties

In this discussion, we assume again that  is a regular Markov chain on  with transition semigroup 
, exponential parameter function  and one-step transition matrix  for the embedded jump chain. The

fundamental integral equation above now implies that the transition probability matrix  is differentiable in . The derivative at  is
particularly important.

The matrix function  has a (right) derivative at 0:

where the infinitesimal generator matrix  is given by  for .

Proof

As before the change of variables  in the fundamental integral equation gives

The first term is clearly differentiable in , and the second term is also differentiable in  since we now know that the integrand is a
continuous function of . The result then follows from standard calculus.

Note that  for every , since  is  is absorbing, while  if  is stable. So 
for , and  for  with . Thus, the generator matrix  determines the exponential parameter
function  and the jump transition matrix , and thus determines the distribution of the Markov chain .

Given the generator matrix  of ,

1.  for 
2.  if  is stable and 

The infinitesimal generator has a nice interpretation in terms of our discussion in the last section. Recall that when the chain first enters a
stable state , we set independent, exponentially distributed “timers” on (x, y), for each . Note that  is the
exponential parameter for the timer on . As soon as an alarm sounds for a particular , the chain moves to state  and the
process continues.

The generator matrix  satisfies the following properties for every :

1. 
2. 

The matrix function  is differentiable on , and satisfies the Kolmogorov backward equation: . Explicitly,

Proof

The proof is just like before, and follows from standard calculus and the integral equation

The backward equation is named for Andrei Kolmogorov. In continuous time, the transition semigroup  can be
obtained from the single, generator matrix  in a way that is reminiscent of the fact that in discrete time, the transition semigroup 

 can be obtained from the single, one-step matrix . From a modeling point of view, we often start with the
generator matrix  and then solve the the backward equation, subject to the initial condition , to obtain the semigroup of
transition matrices .

X Y
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As with any matrix on , the generator matrix  defines left and right operations on functions that are analogous to ordinary matrix
multiplication. The right operation is defined for functions in .

If  then  is given by

Proof

By definition,

In the second term, we can sum over all  since  if  is absorbing and  if  is stable. Note that  is
well defined since

But note that  is not in  unless . Without this additional assumption,  is a linear operator from the vector space  of
bounded functions from  to  into the vector space of all functions from  to . We will return to this point in our next discussion.

Uniform Transition Semigroups

We can obtain stronger results for the generator matrix if we impose stronger continuity assumptions on .

The transition semigroup  is uniform if  as  uniformly in .

If  is uniform, then the operator function  is continuous on the vector space .

Proof

The statement means that for , the function  is continuous with respect to the supremum norm on .

As usual, we want to look at this new assumption from different points of view.

The following are equivalent:

1. The transition semigroup  is uniform.
2. The exponential parameter function  is bounded.
3. The generator matrix  defiens a bounded linear operator on .

Proof

From our remarks above we know that  if and only if the generator matrix  defines a bounded linear operator on . So we
just need to show the equivalence of (a) and (b). If  then

The last term converges to 1 as  uniformly in .

So when the equivalent conditions are satisfied, the Markov chain  is also said to be uniform. As we will see in a
later section, a uniform, continuous-time Markov chain can be constructed from a discrete-time Markov chain and an independent
Poisson process. For a uniform transition semigroup, we have a companion to the backward equation.

Suppose that  is a uniform transition semigroup. Then  satisfies the Kolmogorov forward equation . Explicitly,

The backward equation holds with more generality than the forward equation, since we only need the transition semigroup  to be
standard rather than uniform. It would seem that we need stronger conditions on  for the forward equation to hold, for otherwise it's not
even obvious that  is finite for . On the other hand, the forward equation is sometimes easier to

S G
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f ∈B Gf
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y∈S
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solve than the backward equation, and the assumption that  is bounded is met in many applications (and of course holds automatically
if  is finite).

As a simple corollary, the transition matrices and the generator matrix commute for a uniform semigroup:  for .
The forward and backward equations formally look like the differential equations for the exponential function. This actually holds with
the operator exponential.

Suppose again that  is a uniform transition semigroup with generator . Then

Proof

First  is well defined as a bounded linear operator on  for  (and hence also simply as a matrix), since  is a bounded
linear operator on . Trivially , and by basic properties of the matrix exponential,

It follows that  for .

We can characterize the generators of uniform transition semigroups. We just need the minimal conditions that the diagonal entries are
nonpositive and the row sums are 0.

Suppose that  a matrix on  with . Then  is the generator of a uniform transition semigroup  if
and only if for every ,

1. 
2. 

Proof

We know of course that if  is the generator of a transition semigroup, then conditions (a) and (b) hold. For the converse, we can
use the previous result. Let

which makes sense since  is bounded in norm. Then  for . By part (b),  for every 
 and , and hence  for . Finally, the semigroup property is a consequence of

the law of exponents, which holds for the exponential of a matrix.

Examples and Exercises

The Two-State Chain

Let  be the Markov chain on the set of states , with transition rate  from 0 to 1 and
transition rate  from 1 to 0. This two-state Markov chain was studied in the previous section. To avoid the trivial case with
both states absorbing, we will assume that .

The generator matrix is

Show that for ,

1. By solving the Kolmogorov backward equation.
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2. By solving the Kolmogorov forward equation.
3. By computing .

You probably noticed that the forward equation is easier to solve because there is less coupling of terms than in the backward equation.

Define the probability density function  on  by , . Show that

1.  as , the matrix with  in both rows.

2.  for all , so that  is invariant for .
3. .

Computational Exercises

Consider the Markov chain  on  with exponential parameter function  and
embedded transition matrix

1. Draw the state graph and classify the states.
2. Find the generator matrix .
3. Find the transition matrix  for .
4. Find .

Answer
1. The edge set is . All states are stable.
2. The generator matrix is

3. For ,

4. 

Special Models

Read the discussion of generator and transition matrices for chains subordinate to the Poisson process.

Read the discussion of the infinitesimal generator for continuous-time birth-death chains.

Read the discussion of the infinitesimal generator for continuous-time queuing chains.

Read the discussion of the infinitesimal generator for continuous-time branching chains.
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16.17: Potential Matrices
      

Prelimnaries

This is the third of the introductory sections on continuous-time Markov chains. So our starting point is a time-homogeneous Markov chain 
 defined on an underlying probability space  and with discrete state space . Thus  is countable and  is

the power set of , so every subset of  is measurable, as is every function from  into another measurable space. In addition,  is given the discret
topology so that  can also be thought of as the Borel -algebra. Every function from  to another topological space is continuous. Counting
measure  is the natural measure on , so in the context of the general introduction, integrals over  are simply sums. Also, kernels on  can
be thought of as matrices, with rows and sums indexed by , so the left and right kernel operations are generalizations of matrix multiplication. As
before, let  denote the collection of bounded functions . With the usual pointwise definitions of addition and scalar multiplication,  is
a vector space. The supremum norm on  is given by

Of course, if  is finite,  is the set of all real-valued functions on , and  for . The time space is 
where as usual,  is the Borel -algebra on  corresponding to the standard Euclidean topology. Lebesgue measure is the natural measure on 

.

In our first point of view, we studied  in terms of when and how the state changes. To review briefly, let .
Assuming that  is right continuous, the Markov property of  implies the memoryless property of , and hence the distribution of  given 
is exponential with parameter  for each . The assumption of right continuity rules out the pathological possibility that 

, which would mean that  is an instantaneous state so that . On the other hand, if  then  is a
stable state, so that  has a proper exponential distribution given  with . Finally, if  then  is an
absorbing state, so that . Next we define a sequence of stopping times: First  and . Recursively, if 
then , while if  then . With  we define  if  with 

 and  if  with . The sequence  is a discrete-time Markov chain on  with one-step transition matrix 
 given by  if  with  stable, and  if  is absorbing. Assuming that  is regular, which

means that  as  with probability 1 (ruling out the explosion event of infinitely many transitions in finite time), the structure of  is
completely determined by the sequence of stopping times  and the embedded discrete-time jump chain .
Analytically, the distribution  is determined by the exponential parameter function  and the one-step transition matrix  of the jump chain.

In our second point of view, we studied  in terms of the collection of transition matrices , where for ,

The Markov and time-homogeneous properties imply the Chapman-Kolmogorov equations  for , so that  is a semigroup
of transition matrices. The semigroup , along with the initial distribution of , completely determines the distribution of . For a regular Markov
chain , the fundamental integral equation connecting the two points of view is

which is obtained by conditioning on  and . It then follows that the matrix function  is differentiable, with the derivative satisfying the
Kolmogorov backward equation  where the generator matrix  is given by

If the exponential parameter function  is bounded, then the transition semigroup  is uniform, which leads to stronger results. The generator  is a
bounded operator on , the backward equation holds as well as a companion forward equation , as operators on  (so with respect to the
supremum norm rather than just pointwise). Finally, we can represent the transition matrix as an exponential:  for .

In this section, we study the Markov chain  in terms of a family of matrices known as potential matrices. This is the least intuitive of the three
points of view, but analytically one of the best approaches. Essentially, the potential matrices are transforms of the transition matrices.

Basic Theory
We assume again that  is a regular Markov chain on  with transition semigroup . Our first
discussion closely parallels the general theory, except for simplifications caused by the discrete state space.

Definitions and Properties

For , the -potential matrix  of  is defined as follows:

X = { : t ∈ [0,∞)}X

t

(Ω,F ,P) (S,S ) S S

S S S S

S σ S

# (S,S ) S S

S

B f : S→R B

B

∥f∥ = sup{|f(x)| : x ∈ S}, f ∈B (16.17.1)
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1. The special case  is simply the potential matrix of .
2. For ,  is the expected amount of time that  spends in , starting at .
3. The family of matrices  is known as the reolvent of .

Proof

Since  is continuous,  makes sense for . The interpretation of  involves an interchange of integrals:

The inside integral is the Lebesgue measure of .

It's quite possible that  for some , and knowing when this is the case is of considerable interest. If  and ,
then giving the right operation in its many forms,

assuming, as always, that the sums and integrals make sense. This will be the case in particular if  is nonnegative (although  is a possible value),
or as we will now see, if  and .

If , then  for all .

Proof

For ,

It follows that for , the right potential operator  is a bounded, linear operator on  with . It also follows that  is a
probability matrix. This matrix has a nice interpretation.

If  then  is the conditional probability density function of  given , where  is independent of  and has the
exponential distribution on  with parameter .

Proof

Suppose that . The random time  has PDF  for . Hence, conditioning on  gives

But by the substitution rule and the assumption of independence,

Substituting gives

So  is a transition probability matrix, just as  is a transition probability matrix, but corresponding to the random time  (with  as a
parameter), rather than the deterministic time . The potential matrix can also be interpreted in economic terms. Suppose that we receive
money at a rate of one unit per unit time whenever the process  is in a particular state . Then  is the expected total amount of money
that we receive, starting in state . But money that we receive later is of less value to us now than money that we will receive sooner.
Specifically, suppose that one monetary unit at time  has a present value of  where  is the inflation factor or discount
factor. Then  is the total, expected, discounted amount that we receive, starting in . A bit more generally, suppose that  and that 

 is the reward (or cost, depending on the sign) per unit time that we receive when the process is in state . Then  is the expected,
total, discounted reward, starting in state .

 as .

Proof

Note first that with a change of variables ,
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But for ,  and hence  as . The result then follows from the dominated convergence theorem.

If , then giving the left potential operation in its various forms,

In particular, suppose that  and that  is the probability density function of . Then  is the probability density function of  for 
, and hence from the last result,  is the probability density function of , where again,  is independent of  and has the

exponential distribution on  with parameter . The family of potential kernels gives the same information as the family of transition kernels.

The resolvent  completely determines the family of transition kernels .

Proof

Note that for , the function  on  is the Laplace transform of the function  on . The Laplace
transform of a continuous function determines the function uniquely.

Although not as intuitive from a probability view point, the potential matrices are in some ways nicer than the transition matrices because of
additional smoothness. In particular, the resolvent , along with the initial distribution, completely determine the finite dimensional
distributions of the Markov chain . The potential matrices commute with the transition matrices and with each other.

Suppose that . Then

1. 
2. 

Proof

The interchanges of matrix multiplication and integrals below are interchanges of sums and integrals, and are justified since the underlying
integrands are nonnegative. The other tool used is the semigroup property of . You may want to write out the proofs
explicitly to convince yourself

1. First,

Similarly

2. First

The other direction is similar.

The equations above are matrix equations, and so hold pointwise. The same identities hold for the right operators on the space  under the additional
restriction that  and . The fundamental equation that relates the potential kernels, known as the resolvent equation, is given in the next
theorem:

If  with  then .

Proof

If  the equation is trivial, so assume . From the previous result,

The transformation  maps  one-to-one onto . The inverse transformation is 
 with Jacobian . Hence we have
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Simplifying gives the result. Note that  is finite since , so we don't have to worry about the dreaded indeterminate form .

The equation above is a matrix equation, and so holds pointwise. The same identity holds for the right potential operators on the space , under the
additional restriction that .

Connections with the Generator

Once again, assume that  is a regular Markov chain on  with transition semigroup , infinitesimal
generator , resolvent , exponential parameter function , and one-step transition matrix  for the jump chain. There are
fundamental connections between the potential  and the generator matrix , and hence between  and the function  and the matrix .

If  then . In terms of  and ,

Proof 1

First,

Passing  through the integrand is justified since  is a sum with just one negative term for . The second identity in the
displayed equation follows from the backward equation. Integrating by parts then gives

Proof 2

This proof use the fundamental integral equation relating , , and  as well as the definition of  and interchanges of integrals. The
interchange is justified since the integrand is nonnegative. So for  and ,

Proof 3

Recall that  where  is independent of  and has the exponential distribution with parameter . This proof
works by conditioning on whether  or :

But  and  imply  so . And by a basic property of independent exponential
variables that we have seen many times before,

Next, for the first factor in the second term of the displayed equation, we condition on :
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But by the strong Markov property, given , we can restart the clock at time  in state . Moreover, by the memoryless property and
independence, the distribution of  given  is the same as the distribution of , mainly exponential with parameter . It follows that

Also,  is independent of  and  so

Finally using the basic property of exponential distributions again,

Putting all the pieces together we have

As before, we can get stronger results if we assume that  is bounded, or equivalently, the transition semigroup  is uniform.

Suppose that  is bounded and . Then as operators on  (and hence also as matrices),

1. 
2. 

Proof

Since  is bounded,  is a bounded operator on . The proof of (a) then proceeds as before. For (b) we know from the forward and backward
equations that  for  and hence  for .

As matrices, the equation in (a) holds with more generality than the equation in (b), much as the Kolmogorov backward equation holds with more
generality than the forward equation. Note that

If  is unbounded, it's not clear that the second sum is finite.

Suppose that  is bounded and . Then as operators on  (and hence also as matrices),

1. 
2. 

Proof
1. This follows immediately from the previous result, since  and 
2. This follows from (a):  so 

So the potential operator  and the generator  have a simple, elegant inverse relationship. Of course, these results hold in particular if  is finite,
so that all of the various matrices really are matrices in the elementary sense.

Examples and Exercises

The Two-State Chain

Let  be the Markov chain on the set of states , with transition rate  from 0 to 1 and transition rate 
 from 1 to 0. To avoid the trivial case with both states absorbing, we will assume that . The first two results below are a review

from the previous two sections.

The generator matrix  is

The transition matrix at time  is

P( = y ∣ = x,T ≥ ) = P( = y ∣ = x, = z,T ≥ )P( = z ∣ = x,T ≥ )X

T

X

0

τ

1

∑

z∈S

X

T

X

0

X

τ

1

τ

1

X

τ

1

X

0

τ

1
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= zX

τ

1

τ

1

z

T −τ

1

T ≥ τ

1

T α

P( = y ∣ = x, = z,T ≥ ) = P( = y ∣ = z) = α (z, y)X

T

X

0

X

τ

1

τ

1

X

T

X

0

U

α
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X

τ

1

τ

1

T

P( = z ∣ = x,T ≥ ) =Q(x, z)X

τ

1

X

0

τ

1
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P(T ≥ ∣ = x) =τ

1

X

0

λ(x)

α+λ(x)

(16.17.24)

α (x, y) = I(x, y) = Q(x, z)α (z, y) = I(x, y)+ Qα (x, y)U

α

α

α+λ(x)

λ(x)

α+λ(x)

∑

z∈S

U

α

α

α+λ(x)

λ(x)

α+λ(x)

U

α
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λ P

λ α ∈ (0,∞) B

I+G = αU

α

U

α

I+ G= αU

α

U

α

λ G B

G = GP

t

P

t

t ∈ [0,∞) G = GU

α

U

α

α ∈ (0,∞)

G(x, y) = (x, z)G(z, y) =−λ(y) (x, y)+ (x, z)λ(z)Q(z, y), (x, y) ∈U

α

∑

z∈S

U

α

U

α
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U

α

S

2
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λ

λ α ∈ (0,∞) B

= (αI−GU

α
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−1

G= αI−U
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α
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α

(αI−G) = IU

α
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−1

α
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−1

α

U
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G S
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G
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b
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Now we can find the potential matrix in two ways.

For , show that the potential matrix  is

1. From the definition.
2. From the relation .

Computational Exercises

Consider the Markov chain  on  with exponential parameter function  and jump transition
matrix

1. Draw the state graph and classify the states.
2. Find the generator matrix .
3. Find the potential matrix  for .

Answer
1. The edge set is . All states are stable.
2. The generator matrix is

3. For ,

Special Models

Read the discussion of potential matrices for chains subordinate to the Poisson process.

This page titled 16.17: Potential Matrices is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via
source content that was edited to the style and standards of the LibreTexts platform.

= [ ]− [ ] , t ∈ [0,∞)P
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b

b

a
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1
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−b
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α ∈ (0,∞) U
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16.18: Stationary and Limting Distributions of Continuous-Time Chains
       

In this section, we study the limiting behavior of continuous-time Markov chains by focusing on two interrelated ideas: invariant
(or stationary) distributions and limiting distributions. In some ways, the limiting behavior of continuous-time chains is simpler
than the limiting behavior of discrete-time chains, in part because the complications caused by periodicity in the discrete-time case
do not occur in the continuous-time case. Nonetheless as we will see, the limiting behavior of a continuous-time chain is closely
related to the limiting behavior of the embedded, discrete-time jump chain.

Review
Once again, our starting point is a time-homogeneous, continuous-time Markov chain  defined on an
underlying probability space  and with discrete state space . By definition, this means that  is countable with the
discrete topology, so that  is the -algebra of all subsets of .

Let's review what we have so far. We assume that the Markov chain  is regular. Among other things, this means that the basic
structure of  is determined by the transition times  and the jump chain . First, 
and . The time-homogeneous and Markov properties imply that the distribution of  given 

 is exponential with parameter . Part of regularity is that  is right continuous so that there are no
instantaneous states where , which would mean . On the other hand,  means that 

 is a stable state so that  has a proper exponential distribution given , with . Finally, 
 means that  is an absorbing state so that . The remaining transition times are defined

recursively:  if  and  if . Another component of regularity is that with
probability 1,  as , ruling out the explosion event of infinitely many jumps in finite time. The jump chain  is
formed by sampling  at the transition times (until the chain is sucked into an absorbing state, if that happens). That is, with 

 and for , we define  if  and  if . Then  is a discrete-time
Markov chain with one-step transition matrix  given  if  with  stable and 

 if  is absorbing.

The transition matrix  at time  is given by  for . The time-homogenous
and Markov properties imply that the collection of transition matrices  satisfies the Chapman-Kolmogorov
equations  for , and hence is a semigroup. of transition matrices The transition semigroup  and the
initial distribution of  determine all of the finite-dimensional distributions of . Since there are no instantaneous states,  is
standard which means that  as  (as matrices, and so pointwise). The fundamental relationship between  on the one
hand, and  and  on the other, is

From this, it follows that the matrix function  is differentiable (again, pointwise) and satisfies the Kolmogorov backward
equation , where the infinitesimal generator matrix  is given by  for 

. If we impose the stronger assumption that  is uniform, which means that  as  as operators on  (so
with respect to the supremum norm), then the backward equation as well as the companion Kolmogorov forward equation 

 hold as operators on . In addition, we have the matrix exponential representation  for . The
uniform assumption is equivalent to the exponential parameter function being bounded.

Finally, for , the  potential matrix  of  is . The resolvent  is the
Laplace transform of  and hence gives the same information as . From this point of view, the time-homogeneous and Markov
properties lead to the resolvent equation  for  with . For , the 
potential matrix is related to the generator by the fundamental equation . If  is uniform, then this equation, as
well as the companion  hold as operators on , which leads to .

Basic Theory
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Relations and Classification

We start our discussion with relations among states and classifications of states. These are the same ones that we studied for
discrete-time chains in our study of recurrence and transience, applied here to the jump chain . But as we will see, the relations
and classifications make sense for the continuous-time chain  as well. The discussion is complicated slightly when there are
absorbing states. Only when  is in an absorbing state can we not interpret the values of  as the values of  at the transition
times (because of course, there are no transitions when  is in an absorbing state). But  is absorbing for the continuous-time
chain  if and only if  is absorbing for the jump chain , so this trivial exception is easily handled.

For  let , the (discrete) hitting time to  for the jump chain , where as usual, . That
is,  is the first positive (discrete) time that  in in state . The analogous random time for the continuous-time chain  is ,
where naturally we take . This is the first time that  is in state , not counting the possible initial period in .
Specifically, suppose . If  then . If  then .

Define the hitting matrix  by

Then  except when  is absorbing and .

So for the continuous-time chain, if  is stable then  is the probability that, starting in , the chain  returns to  after
its initial period in . If  are distinct, then  is simply the probability that , starting in , eventually reaches . It
follows that the basic relation among states makes sense for either the continuous-time chain  as well as its jump chain .

Define the relation  on  by  if  or .

The leads to relation  is reflexive by definition:  for every . From our previous study of discrete-time chains, we
know it's also transitive: if  and  then  for . We also know that  if and only if there is a
directed path in the state graph from  to , if and only if  for some . For the continuous-time transition
matrices, we have a stronger result that in turn makes a stronger case that the leads to relation is fundamental for .

Suppose .

1. If  then  for all .
2. If  then  for all .

Proof

This result is proved in the section on transition matrices and generators.

This result is known as the Lévy dichotomy, and is named for Paul Lévy. Let's recall a couple of other definitions:

Suppose that  is a nonempty subset of .

1.  is closed if  and  imply .
2.  is irreducible if  is closed and has no proper closed subset.

If  is irreducible, we also say that the chain  itself is irreducible.

If  is a nonempty subset of , then  is the smallest closed set containing , and
is called the closure of .

Suppose that  is closed. Then

1. , the restriction of  to , is a transition probability matrix on  for every .
2.  restricted to  is a continuous-time Markov chain with transition semigroup .

Proof
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1. If  and , then  does not lead to  so in particular . It follows that  for 
so  is a transition probability matrix.

2. This follows from (a). If the chain starts in , then the chain remains in  for all time, and of course, the Markov property
still holds.

Define the relation  on  by  if  and  for .

The to and from relation  defines an equivalence relation on  and hence partitions  into mutually disjoint equivalence classes.
Recall from our study of discrete-time chains that a closed set is not necessarily an equivalence class, nor is an equivalence class
necessarily closed. However, an irreducible set is an equivalence class, but an equivalence class may not be irreducible. The
importance of the relation  stems from the fact that many important properties of Markov chains (in discrete or continuous time)
turn out to be class properties, shared by all states in an equivalence class. The following definition is fundamental, and once again,
makes sense for either the continuous-time chain  or its jump chain .

Let .

1. State  is transient if 
2. State  is recurrent if .

Recall from our study of discrete-time chains that if  is recurrent and  then  is recurrent and . Thus, recurrence and
transience are class properties, shared by all states in an equivalence class.

Time Spent in a State

For , let  denote the number of visits to state  by the jump chain , and let  denote the total time spent in state  by
the continuous-time chain . Thus

The expected values  and  for  define the potential matrices of 
 and , respectively. From our previous study of discrete-time chains, we know the distribution and mean of  given 

in terms of the hitting matrix . The next two results give a review:

Suppose that  are distinct. Then

1.  for 
2.  and  for 

Let's take cases. First suppose that  is recurrent. In part (a),  for all , and consequently 
. In part (b),  for , and consequently 

 while . Suppose next that  is transient. Part (a) specifies a
proper geometric distribution on  while in part (b), probability  is assigned to 0 and the remaining probability 

 is geometrically distributed over  as in (a). In both cases,  is finite with probability 1. Next we consider the expected
value, that is, the (discrete) potential. To state the results succinctly we will use the convention that  if  and 

.

Suppose again that  are distinct. Then

1. 
2. 

Let's take cases again. If  is recurrent then , and for  with , either  if  or 
 if . If  is transient,  is finite, as is  for every  with . Moreover, there is an

inverse relationship of sorts between the potential and the hitting probabilities.

Naturally, our next goal is to find analogous results for the continuous-time chain . For the distribution of  it's best to use the
right distribution function.
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Suppose that  are distinct. Then for 

1. 
2. 

Proof

The proof is by conditioning on .

1. First, if  (so that  is recurrent), then either  is absorbing with  or  is stable and
recurrent, so that . In the second case, starting in state ,  is the sum of infinitely many
independent variables, each with the exponential distribution with parameter . In both cases, 

 and so  for every . So suppose that  so that  is
transient. Then

Given ,  is the sum of  independent variables, each having the exponential distribution with parameter . So
 has the gamma distribution with parameters  and  and hence

From the previous result, . We substitute,
change the order of summation, use geometric series and then exponential series:

Simplifying gives the result.
2. The proof is similar. If  so that  is recurrent, then starting in state , either  if , which occurs

with probability  or  if , which occurs with probability . If  so that  is
transient, then the result follows from conditioning on  as in (a), except that 

.

Let's take cases as before. Suppose first that  is recurrent. In part (a),  for every  and hence 
. In part (b),  for every  and consequently 

 while . Suppose next that  is transient. From part (a), the
distribution of  given  is exponential with parameter . In part (b), the distribution assigns probability 

 to 0 while the remaining probability  is exponentially distributed over  as in (a). Taking expected value,
we get a very nice relationship between the potential matrix  of the continuous-time chain  and the potential matrix  of the
discrete-time jump chain :

For every ,

Proof

If  is recurrent, then  and the common value is either 0 if  or  if . So suppose
that  is transient. We can compute the expected value of  by integrating the right distribution function in the previous
theorem. In case , we have
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∞
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In the case that  and  are distinct,

In particular,  is transient if and only if  for every , if and only if  for every . On the
other hand,  is recurrent if and only if  if  and  if .

Null and Positive Recurrence

Unlike transience and recurrence, the definitions of null and positive recurrence of a state  are different for the continuous-
time chain  and its jump chain . This is because these definitions depend on the expected hitting time to , starting in , and
not just the finiteness of this hitting time. For , let , the expected (discrete) return time to  starting in

. Recall that  is positive recurrent for  if  and  is null recurrent if  is recurrent but not positive recurrent, so that 
 but . The definitions are similar for , but using the continuous hitting time .

For , let  if  is absorbing and  if  is stable. So if  is stable,  is the expected
return time to  starting in  (after the initial period in ).

1. State  is positive recurrent for  if .
2. State  is null recurrent for  if  recurrent but not positive recurrent, so that  but .

A state  can be positive recurrent for  but null recurrent for its jump chain  or can be null recurrent for  but positive
recurrent for . But like transience and recurrence, positive and null recurrence are class properties, shared by all states in an
equivalence class under the to and from equivalence relation .

Invariant Functions

Our next discussion concerns functions that are invariant for the transition matrix  of the jump chain  and functions that are
invariant for the transition semigroup  of the continuous-time chain . For both discrete-time and
continuous-time chains, there is a close relationship between invariant functions and the limiting behavior in time.

First let's recall the definitions. A function  is invariant for  (or for the chain ) if . It then follows that 
 for every . In continuous time we must assume invariance at each time. That is, a function  is

invariant for  (or for the chain ) if  for all . Our interest is in nonnegative functions, because we can think of
such a function as the density function, with respect to counting measure, of a positive measure on . We are particularly interested
in the special case that  is a probability density function, so that . If  has a probability density function  that is
invariant for , then  has probability density function  for all  and hence  is stationary. Similarly, if  has a
probability density function  that is invariant for  then  has probability density function  for every  and once
again, the chain  is stationary.

Our first result shows that there is a one-to-one correspondence between invariant functions for  and zero functions for the
generator .

Suppose . Then  if and only if , so that  is invariant for .

Proof

This is a simple consequence of the definition of the generator:

or in functional form, 

If our chain  has no absorbing states, then  is invariant for  if and only if .

Suppose that . Then  is invariant for  if and only if .

U(y, y) = exp{−λ(y)[1−H(y, y)]t} dt = =∫

∞

0

1

λ(y)[1−H(y, y)]

R(y, y)

λ(y)
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x y

U(x, y) = H(x, y) exp{−λ(y)[1−H(y, y)]t} dt = =∫

∞

0

H(x, y)

λ(y)[1−H(y, y)]

R(x, y)

λ(y)

(16.18.8)

y ∈ S R(x, y) <∞ x ∈ S U(x, y) <∞ x ∈ S

y R(x, y) =U(x, y) =∞ x→ y R(x, y) =U(x, y) = 0 x↛ y
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X Y x x
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x
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x x x

x X μ(x) <∞

x X x H(x, x) = 1 μ(x) =∞

x ∈ S X Y X

Y

↔

Q Y

P = { : t ∈ [0,∞)}P

t

X

f : S→ [0,∞) Q Y fQ = f

f = fQ

n

n ∈ N f : S→ [0,∞)

P X f = fP

t

t ∈ [0,∞)

S

f f(x) = 1∑

x∈S

Y

0

f

Q Y

n

f n ∈ N Y X

0

f P X

t

f t ∈ [0,∞)

X

Q

G

f : S→ [0,∞) fG= 0 (λf)Q = λf λf Q

fG(y) = f(x)G(x, y) =−λ(y)f(y)+ f(x)λ(x)Q(x, y), y ∈ S∑

x∈S

∑

x∈S
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fG=−λf +(λf)Q

X f : S→ [0,∞) Q (f/λ)G= 0

f : S→ [0,∞) f P fG= 0
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Proof 1

Assume that  is bounded, so that the transition semigroup  is uniform. Then  for . So if 
then

Since  is nonnegative,  if and only if  (in which case  for every ).

Proof 2

Suppose that  for . Then  for . But using the Kolmogorov backward equation, 
. Letting  we conclude that . Conversely, if  then 
 for . It follows that  is constant in . Since  it follows that 

 for all .

So putting the two main results together we see that  is invariant for the continuous-time chain  if and only if  is invariant for
the jump chain . Our next result shows how functions that are invariant for  are related to the resolvent 

. To appreciate the result, recall that for  the matrix  is a probability matrix, and in fact 
 is the conditional probability density function of , given , where  is independent of  and has the

exponential distribution with parameter . So  is a transition matrix just as  is a transition matrix, but corresponding to the
exponentially distributed random time  with parameter  rather than the deterministic time .

Suppose that . If  then  for . Conversely if  for  then 
.

Proof

Recall that  for . Hence if  then

Conversely, suppose that . Then

As a function of , the integral on the right side is the Laplace transform of the time function . Hence we
must have  for , and letting  gives .

So extending our summary,  is invariant for the transition semigroup  if and only if  is
invariant for jump transition matrices  if and only if  if and only if  is invariant for the collection of
probability matrices . From our knowledge of the theory for discrete-time chains, we now have the following
fundamental result:

Suppose that  is irreducible and recurrent.

1. There exists  that is invariant for .
2. If  is invariant for , then  for some constant .

Proof

The result is trivial if  consists of a single, necessarily absorbing, state. Otherwise, there are no absorbing states, since  is
irreducible and so  for . From the result above,  is invariant for  if and only if  is invariant for . But 
is also irreducible and recurrent, so we know that there exists a strictly positive function that is invariant for , and every other
function that is invariant for  is a nonnegative multiple of this one. Hence the same is true for .

Invariant functions have a nice interpretation in terms of occupation times, an interpretation that parallels the discrete case. The
potential gives the expected total time in a state, starting in another state, but here we need to consider the expected time in a state
during a cycle that starts and ends in another state.

λ P =P

t

e

tG

t ∈ [0,∞) f : S→ [0,∞)

f = f( ) = f = f + fP

t

e

tG

∑
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∞
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n
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n
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∞

t

n

n!

G

n
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f(α ) = fU

α

fG = fG dt = 0U

α

∫
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α ∈ (0,∞) t↦ fGP
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fG = 0P

t
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t
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For , define the function  by

so that  is the expected occupation time in state  before the first return to , starting in .

Suppose again that  is irreducible and recurrent. For ,

1. 
2.  is invariant for 
3. 
4. 

Proof

As is often the case, the proof is based on results that we already have for the embedded jump chain. For , define

so that  is the expected number of visits to  before the first return to , starting in , for the jump chain 
. Since  is irreducible and recurrent, so is . From our results in the discrete case we know that

1. 
2.  is invariant for 
3. 

From our results above, it follows that the function  satisfies properties (a), (b), and (c) in the theorem. But
each visit to  by the jump chain  has expected length  for the continuous-time chain . It follows that 

 for . By definition,  is the expected occupation time in  before the first return to ,
starting in . Hence, summing over  gives the expected return time to , starting in , so (d) holds.

So now we have some additional insight into positive and null recurrence for the continuous-time chain  and the associated jump
chain . Suppose again that the chains are irreducible and recurrent. There exist  that is invariant for , and then 

 is invariant for . The invariant functions are unique up to multiplication by positive constants. The jump chain  is positive
recurrent if and only if  while the continuous-time chain  is positive recurrent if and only if 

. Note that if  is bounded (which is equivalent to the transition semigroup  being uniform), then  is
positive recurrent if and only if  is positive recurrent.

Suppose again that  is irreducible and recurrent.

1. If  is null recurrent then  does not have an invariant probability density function.
2. If  is positive recurrent then  has a unique, positive invariant probability density function.

Proof

From the previous result, there exists  that is invariant for , and every other invariant function is a
nonnegative multiple of this one. The function  given by

is uniquely defined (that is, unchanged if we replace  by  where ).

1. If  then  for every .
2. If  then  for every  and .

x ∈ S γ

x

(y) =E( 1( = y)ds = x) , y ∈ Sγ

x

∫
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ρ
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0

X

s

∣

∣

∣X

0
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(y)γ

x

y x x

X x ∈ S

: S→(0,∞)γ

x

γ

x

X

(x) = 1/λ(x)γ

x

μ(x) = (y)∑

y∈S

γ

x

x ∈ S

(y) =E( 1( = y) = x) , y ∈ Sδ

x

∑

n=0

−1ρ

x

Y

n

∣

∣

∣ Y

0

(16.18.14)
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x, y ∈ S (y)γ

x

y x

x y ∈ S x x

X

Y g : S→(0,∞) Y

g/λ X Y

g(x) <∞∑

x∈S

X

g(x)/λ(x) <∞∑

x∈S

λ P X
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X X

X X
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f(y) = , y ∈ S
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g cg c > 0

g(x) =∞∑

x∈S

f(y) = 0 y ∈ S

g(x) <∞∑

x∈S
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Limiting Behavior

Our next discussion focuses on the limiting behavior of the transition semigroup . Our first result is a
simple corollary of the result above for potentials.

If  is transient, then  as  for every .

Proof

This follows from the previous result. If  is transient, then for any ,

and so we must have  as .

So we should turn our attention to the recurrent states. The set of recurrent states partitions into equivalent classes under , and
each of these classes is irreducible. Hence we can assume without loss of generality that our continuous-time chain 

 is irreducible and recurrent. To avoid trivialities, we will also assume that  has at least two states. Thus,
there are no absorbing states and so  for . Here is the main result.

Suppose that  is irreducible and recurrent. Then  exists for each ,
independently of . The function  is invariant for  and

1. If  is null recurrent then  for all .
2. If  is positive recurrent then  for all  and .

Proof sketch

The basic idea is that

The expression on the right is the limiting proportion of time spent in , starting in . This proportion is 
, so the results follow from the theorem above .

The limiting function  can be computed in a number of ways. First we find a function  that is invariant for . We
can do this by solving

 for 

 for 
 and then 

The function  is unique up to multiplication by positive constants. If , then we are in the positive recurrent case
and so  is simply  normalized:

The following result is known as the ergodic theorem for continuous-time Markov chains. It can also be thought of as a strong law
of large numbers for continuous-time Markov chains.

Suppose that  is irreducible and positive recurrent, with (unique) invariant probability density function 
. If  then

P = { : t ∈ [0,∞)}P

t

y ∈ S (x, y) → 0P

t

t→∞ x ∈ S

y ∈ S x ∈ S

U(x, y) = (x, y)dt <∞∫

∞

0

P

t
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with probability 1, assuming that the sum on the right converges absolutely.

Notes

First, let  and let , the indicator function of . Then given ,  is the average occupation
time in state , starting in state , over the time interval . In expected value, this is  which we know
converges to  as , independently of . So in this special case, the ergodic theorem states that the convergence is
with probability 1 also. A general function  is a linear combination of the indicator functions of the points in , so
the ergodic theorem is plausible.

Note that no assumptions are made about , so the limit is independent of the initial state. By now, this should come as no
surprise. After a long period of time, the Markov chain  “forgets” about the initial state. Note also that  is the
expected value of , thought of as a random variable on  with probability measure defined by . On the other hand, 

 is the average of the time function  on the interval . So the ergodic theorem states that the limiting
time average on the left is the same as the spatial average on the right.

Applications and Exercises

The Two-State Chain

The continuous-time, two-state chain has been studied in the last several sections. The following result puts the pieces together and
completes the picture.

Consider the continuous-time Markov chain  on  with transition rate  from 0 to
1 and transition rate  from 1 to 0. Give each of the following

1. The transition matrix  for  at .
2. The infinitesimal generator .
3. The transition matrix  for  at .
4. The invariant probability density function for .
5. The invariant probability density function for .
6. The limiting behavior of  as .
7. The limiting behavior of  as .

Answer

Note that since the transition rates  and  are positive, the chain is irreducible.

1. First,  and then for ,  if  is odd and  if  is even.

2. .

3.  for .

4. 

5. 

6. As in (a),  and  for . So there are two sub-sequential limits. The jump chain  is periodic with
period 2.

7.  as . Each row is .

Computational Exercises

The following continuous-time chain has also been studied in the previous three sections.

Consider the Markov chain  on  with exponential parameter function  and
jump transition matrix

x, y ∈ S h = 1
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y = xX
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1. Recall the generator matrix .
2. Find the invariant probability density function  for  by solving .
3. Find the invariant probability density function  for  by solving .
4. Verify that  is a multiple of .
5. Describe the limiting behavior of  as .
6. Describe the limiting behavior of  as .
7. Verify the result in (f) by recalling the transition matrix  for  at .

Answer

1. 

2. 
3. 
4. 

5.  as 

6.  as 

7.  for 

Special Models

Read the discussion of stationary and limiting distributions for chains subordinate to the Poisson process.

Read the discussion of stationary and limiting distributions for continuous-time birth-death chains.

Read the discussion of classification and limiting distributions for continuous-time queuing chains.

This page titled 16.18: Stationary and Limting Distributions of Continuous-Time Chains is shared under a CC BY 2.0 license and was authored,
remixed, and/or curated by Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts
platform.
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16.19: Time Reversal in Continuous-Time Chains
      

Earlier, we studied time reversal of discrete-time Markov chains. In continous time, the issues are basically the same. First, the
Markov property stated in the form that the past and future are independent given the present, essentially treats the past and future
symmetrically. However, there is a lack of symmetry in the fact that in the usual formulation, we have an initial time 0, but not a
terminal time. If we introduce a terminal time, then we can run the process backwards in time. In this section, we are interested in the
following questions:

Is the new process still Markov?
If so, how are the various parameters of the reversed Markov chain related to those of the original chain?
Under what conditions are the forward and backward Markov chains stochastically the same?

Consideration of these questions leads to reversed chains, an important and interesting part of the theory of continuous-time Markov
chains. As always, we are also interested in the relationship between properties of a continuous-time chain and the corresponding
properties of its discrete-time jump chain. In this section we will see that there are simple and elegant connections between the time
reversal of a continuous-time chain and the time-reversal of the jump chain.

Basic Theory

Reversed Chains

Our starting point is a (homogeneous) continuous-time Markov chain  with (countable ) state space . We
will assume that  is irreducible, so that every state in  leads to every other state, and to avoid trivialities, we will assume that there
are at least two states. The irreducibility assumption involves no serious loss of generality since otherwise we could simply restrict
our attention to an irreducible equivalence class of states. With our usual notation, we will let  denote the
semigroup of transition matrices of  and  the infinitesimal generator. Let  denote the exponential parameter for the holding
time in state  and  the transition matrix for the discrete-time jump chain . Finally, let 

 denote the collection of potential matrices of . We will assume that the chain  is regular, which gives us
the following properties:

 as  for .
There are no instantaneous states, so  for .
The transition times  satisfy  as .
We may assume that the chain  is right continuous and has left limits.

The assumption of regularity rules out various types of weird behavior that, while mathematically possible, are usually not
appropriate in applications. If  is uniform, a stronger assumption than regularity, we have the following additional properties:

 as  uniformly in .
 is bounded.

 for .
 for .

Now let . We will think of  as the terminal time or time horizon so the chains in our first discussion will be defined on
the time interval . Notationally, we won't bother to indicate the dependence on , since ultimately the time horizon won't matter.
Define  for . Thus, the process forward in time is  while the process backwards in time is

Similarly let

So  is the -algebra of events of the process  up to time , which of course, is also the -algebra of events of  from time 
forward. Our first result is that the chain reversed in time is still Markov

The process  is a Markov chain, but is not time homogeneous in general. For  with , the
transition matrix from  to  is

X = { : t ∈ [0,∞)}X

t

S

X S

P = { : t ∈ [0,∞)}P

t

X G λ(x)

x ∈ S Q Y = ( , ,…)Y
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X X
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n→∞

X

X

(x, x) → 1P

t

t ↓ 0 x ∈ S

λ

=P

t

e

tG

t ∈ [0,∞)

= (αI−GU

α

)

−1

α ∈ (0,∞)

h ∈ (0,∞) h

[0, h] h

=X

^

t

X

h−t

t ∈ [0, h] X = { : t ∈ [0,h]}X
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^
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X
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^
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Proof

Let  and . Then

But  and , so by the Markov property for ,

By the time homogeneity of , . Substituting and simplifying gives

However, the backwards chain will be time homogeneous if  has an invariant distribution.

Suppose that  is positive recurrent, with (unique) invariant probability density function . If  has the invariant distribution,
then  is a time-homogeneous Markov chain. The transition matrix at time  (for every terminal time ), is given
by

Proof

This follows from the result above. Recall that if  has PDF , then  and  also have PDF .

The previous result holds in the limit of the terminal time, regardless of the initial distribution.

Suppose again that  is positive recurrent, with (unique) invariant probability density function . Regardless of the distribution
of ,

Proof

This follows from the conditional probability above and our study of the limiting behavior of continuous-time Markov chains.
Since  is irreducible and positive recurrent,  and  as  for every .

These three results are motivation for the definition that follows. We can generalize by defining the reversal of an irreducible Markov
chain, as long as there is a positive, invariant function. Recall that a positive invariant function defines a positive measure on , but
of course not in general a probability measure.

Suppose that  is invariant for . The reversal of  with respect to  is the Markov chain 
 with transition semigroup  defined by

Justification

We need to show that the definition makes sense, namely that  defines a transition semigroup for a Markov chain  satisfying
the same assumptions that we have imposed on . First let . Since  is invariant for ,

(x, y) = (y, x), (x, y) ∈P

^

s,t

P( = y)X

h−t

P( = x)X

h−s

P

t−s

S

2

(16.19.3)
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Hence  is a valid transition matrix. Next we show that the Chapman-Kolmogorov equations (the semigroup property) holds.
Let  and . Then

Next note that  for every . Hence  as  for , so  is also a standard transition
semigroup. Note also that if  is uniform, then so is . Finally, since  is irreducible,  for every  and 

. Since  is positive, it follows that  for every  and , and hence  is also
irreducible.

Recall that if  is a positive invariant function for  then so is  for every constant . Note that  and  generate the
same reversed chain. So let's consider the cases:

Suppose again that  is a Markov chain satisfying the assumptions above.

1. If  is recurrent, then  always has a positive invariant function , unique up to multiplication by positive constants. Hence
the reversal of a recurrent chain  always exists and is unique, and so we can refer to the reversal of  without reference to
the invariant function.

2. Even better, if  is positive recurrent, then there exists a unique invariant probability density function, and the reversal of 
can be interpreted as the time reversal (relative to a time horizon) when  has the invariant distribution, as in the motivating

result  above.
3. If  is transient, then there may or may not exist a positive invariant function, and if one does exist, it may not be unique (up

to multiplication by positive constants). So a transient chain may have no reversals or more than one.

Nonetheless, the general definition is natural, because most of the important properties of the reversed chain follow from the basic
balance equation relating the transition semigroups  and , and the invariant function :

We will see the balance equation repeated for other objects associated with the Markov chains.

Suppose again that  is invariant for , and that  is the time reversal of  with respect to . Then

1.  is also invariant for .
2.  is the time reversal of  with respect to .

Proof
1. For ,

2. This follows from the symmetry of the fundamental equation:  for  and .

In the balance equation for the transition semigroups, it's not really necessary to know a-priori that the function  is invariant, if we
know the two transition semigroups.

Suppose that . Then  is invariant and the Markov chains  and  are time reversals with respect to  if and
only if
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Proof

All that is left to show is that the balance equation implies that  is invariant. The computation is exactly the same as in the last
result:

Here is a slightly more complicated (but equivalent) version of the balance equation for the transition probabilities.

Suppose again that . Then  is invariant and the chains  and  are time reversals with respect to  if and only
if

for all , , and .

Proof

All that is necessary is to show that the basic balance equation implies the balance equation in the theorem. When , we
have the basic balance equation itself:

For ,

Continuing in this manner (or using induction) gives the general result.

The balance equation holds for the potenetial matrices.

Suppose again that . Then  is invariant and the chains  and  are time reversals with respect to  if and only
if the potential matrices satisfy

Proof

We just need to show that the balance equation for the transition semigroups is equivalent to the balance equation above for the
potential matrices. Suppose first  for  and . Then

Conversely, suppose that  for  and . As above,

So for fixed , the function  is the Laplace transform of the time function .
Similarly,  is the Laplace transform of the . The Laplace transform of a continuous function
uniquely determines the function so it follows that  for  and .

As a corollary, continuous-time chains that are time reversals are of the same type.

If  and  are time reversals, then  and  are of the same type: transient, null recurrent, or positive recurrent.

Proof
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Suppose that  and  are time reversals with respect to the invariant function . Then from the previous result, 
 for . The chains are transient if the common potential is finte for each  and recurrent if the

potential is infinite for each . Suppose that the chains are recurrent. Then  is unique up to multiplication by positive
constants and the chains are both positive recurrent if  and both null recurrent if .

The balance equation extends to the infinitesimal generator matrices.

Suppose again that . Then  is invariant and the Markov chains  and  are time reversals if and only if the
infinitesimal generators satisfy

Proof

We need to show that the balance equation for the transition semigroups is equivalent to the balance equation for the generators.
Suppose first that  for  and . Taking derivatives with respect to  and using
Kolmogorov's backward equation gives  for  and . Evaluating at 
gives . Conversely, suppose that  for . Then repeated
application (or induction) shows that  for every  and . If the transition matrices
are uniform, we can express them as exponentials of the generators. Hence for  and ,

This leads to further results and connections:

Suppose again that . Then  is invariant and  and  are time reversals with respect to  if and only if

1.  and  have the same exponential parmeter function .
2. The jump chains  and  are (discrete) time reversals with respect to .

Proof

The exponential parameter functions are related to the generator matrices by  and  for 
. The transition matrices for the jump chains are related to the generator matrices by  and 

 for  with . Hence conditions (a) and (b) are equivalent to

Recall also from the general theory, that if  is invariant for  then  is invariant for the jump chain .

In our original discussion of time reversal in the positive recurrent case, we could have argued that the previous results must be true.
If we run the positive recurrent chain  backwards in time to obtain the time reversed chain 

, then the exponential parameters for  must the be same as those for , and the jump chain  for  must
be the time reversal of the jump chain  for .

Reversible Chains

Clearly an interesting special case is when the time reversal of a continuous-time Markov chain is stochastically the same as the
original chain. Once again, we assume that we have a regular Markov chain  that is irreducible on the state
space , with transition semigroup . As before,  denotes the collection of potential
matrices, and  the infinitesimal generator. Finally,  denotes the exponential parameter function,  the jump
chain, and  the transition matrix of . Here is the definition of reversibility:

Suppose that  is invariant for . Then  is reversible with respect to  if the time reversed chain 
 also has transition semigroup . That is,
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Clearly if  is reversible with respect to  then  is reversible with respect to  for every . So here is another review of
the cases:

Suppose that  is a Markov chain satisfying the assumptions above.

1. If  is recurrent, then there exists an invariant function  that is unique up to multiplication by positive
constants. So  is either reversible or not, and we do not have to reference the invariant function.

2. Even better, if  is positive recurrent, then there exists a unique invariant probability density function . Again,  is either
reversible or not, but if it is, then with the invariant distribution, the chain  is stochastically the same, forward in time or
backward in time.

3. If  is transient, then a positive invariant function may or may not exist. If such a function does exist, it may not be unique,
up to multiplication by positive constants. So in the transient case,  may be reversible with respect to one invariant function
but not with respect to others.

The following results are corollaries of the results above for time reversals. First, we don't need to know a priori that the function  is
invariant.

Suppose that . Then  is invariant and  is reversible with respect to  if and only if

Suppose again that . Then  is invariant and  is reversible with respect to  if and only if

for all , , and .

Suppose again that . Then  is invariant and  is reversible with respect to  if and only if

Suppose again that . Then  is invariant and  is reversible with respect to  if and only if

Suppose again that . Then  is invariant and  is reversible if and only if the jump chain  is reversible with
respect to .

Recall that  is recurrent if and only if the jump chain  is recurrent. In this case, the invariant functions for  and  exist and are
unique up to positive constants. So in this case, the previous theorem states that  is reversible if and only if  is reversible. In the
positive recurrent case (the most important case), the following theorem gives a condition for reversibility that does not directly
reference the invariant distribution. The condition is known as the Kolmogorov cycle condition, and is named for Andrei Kolmogorov

Suppose that  is positive recurrent. Then  is reversible if and only if for every sequence of distinct states ,

Proof

Suppose that  is reversible, and let  denote the invariant PDF of . Then  for .

Substituting gives the Kolmogorov cycle condition. Conversely, suppose that the Kolmogorov cycle condition holds for .
Recall that  for . Substituting into the cycle condition for  gives the cycle condition for .
Hence  is reversible and therefore so is .

Note that the Kolmogorov cycle condition states that the transition rate of visiting states  in sequence, starting in
state  is the same as the transition rate of visiting states  in sequence, starting in state . The cycle
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condition is also known as the balance equation for cycles.

Figure : The Kolmogorov cycle condition

Applications and Exercises

The Two-State Chain

The continuous-time, two-state chain has been studied in our previous sections on continuous-time chains, so naturally we are
interested in time reversal.

Consider the continuous-time Markov chain  on  with transition rate  from 0 to 1
and transition rate  from 1 to 0. Show that  is reversible

1. Using the transition semigroup .
2. Using the resolvent .
3. Using the generator matrix .

Solutions

First note that  is irreducible since  and . Since  is finite,  is positive recurrent.

1. Recall that

All we have to do is find a positive function  on  with the property that . The other conditions
are trivially satisfied. Note that ,  satisfies the property. It follows that  is invariant for , unique up to
multiplication by positive constants, and that  is reversible.

2. Recall that

Again, we just need to find a positive function  on  with the property that . The other
conditions are trivially satisfied. The function  in part (a) satisfies, the condition, which of course must be the case.

3. Recall that . Once again, we just need to find a positive function  on  with the property that 

. The function  given in (a) satisfies the condition. Note that this procedure is the easiest of the
three.

Of course, the invariant PDF  is , .

Computational Exercises

The Markov chain in the following exercise has also been studied in previous sections.

Consider the Markov chain  on  with exponential parameter function  and
jump transition matrix

Give each of the following for the time reversed chain :

1. The state graph.
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2. The semigroup of transition matrices .
3. The resolvent of potential matrices .
4. The generator matrix .
5. The transition matrix of the jump chain .

Solutions

Note that the chain is irreducible, and since  is finite, positive recurrent. We found previously that an invariant function (unique
up to multiplication by positive constants) is .

1. The edge set is . The exponential parameter function  is the same as for 
.

2. The transition matrix at  is

3. The potential matrix at  is

4. The generator matrix is

5. The transition matrix of the jump chain is

Special Models

Read the discussion of time reversal for chains subordinate to the Poisson process.

Read the discussion of time reversal for continuous-time birth-death chains.

This page titled 16.19: Time Reversal in Continuous-Time Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by
Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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16.20: Chains Subordinate to the Poisson Process
     

Basic Theory

Introduction

Recall that the standard Poisson process with rate parameter  involves three interrelated stochastic processes. First the
sequence of interarrival times  is independent, and each variable has the exponential distribution with parameter 
. Next, the sequence of arrival times  is the partial sum sequence associated with the interrival sequence :

For , the arrival time  has the gamma distribution with parameters  and . Finally, the Poisson counting process 
 is defined by

so that  is the number of arrivals in  for . The counting variable  has the Poisson distribution with parameter 
 for . The counting process  and the arrival time process  are inverses in the sense that  if and only if 

 for  and . The Poisson counting process can be viewed as a continuous-time Markov chain.

Suppose that  takes values in  and is independent of . Define  for . Then 
 is a continuous-time Markov chain on  with exponential parameter function given by  for 

 and jump transition matrix  given by  for .

Proof

This follows directly from the basic structure of a continuous-time Markov chain. Given , the holding time in state 
 is exponential with parameter , and the next state is deterministically . Note that the addition of the variable 

is just to allow us the freedom of arbitrary initial distributions on the state space, as is routine with Markov processes.

Note that the Poisson process, viewed as a Markov chain is a pure birth chain. Clearly we can generalize this continuous-time
Markov chain in a simple way by allowing a general embedded jump chain.

Suppose that  is a Markov chain with (countable) state space , and with constant exponential
parameter  for , and jump transition matrix . Then  is said to be subordinate to the Poisson
process with rate parameter .

1. The transition times  are the arrival times of the Poisson process with rate .
2. The inter-transition times  are the inter-arrival times of the Poisson process with rate  (independent, and

each with the exponential distribution with rate ).
3.  is the Poisson counting process, where  is the number of transitions in (0, t] for .
4. The Poisson process and the jump chain  are independent, and  for .

Proof

These results all follow from the basic structure of a continuous-time Markov chain.

Since all states are stable, note that we must have  for . Note also that for  with , the exponential
rate parameter for the transition from  to  is . Conversely suppose that  satisfies 

 and  for every . Then the Markov chain with transition rates given by  is subordinate to the
Poisson process with rate . It's easy to construct a Markov chain subordinate to the Poisson process.

Suppose that  is a Poisson counting process with rate  and that  is a
discrete-time Markov chain on , independent of , whose transition matrix satisfies  for every . Let 

 for . Then  is a continuous-time Markov chain subordinate to the Poisson
process.
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Generator and Transition Matrices

Next let's find the generator matrix and the transition semigroup. Suppose again that  is a continuous-time
Markov chain on  subordinate to the Poisson process with rate  and with jump transition matrix . As usual, let 

 denote the transition semigroup and  the infinitesimal generator.

The generator matrix  of  is . Hence for 

1. The Kolmogorov backward equation is 
2. The Kolmogorov forward equation is 

Proof

This follows directly from the general theory since  for  and 
 for distinct .

There are several ways to find the transition semigroup . The best way is a probabilistic argument using the
underlying Poisson process.

For , the transition matrix  is given by

Proof from the underlying Poisson process

Let  denote the number of transitions in  for , so that  is the Poisson counting
process. Let  denote the jump chain, with transition matrix . Then  and  are independent, and 

 for . Conditioning we have

Proof using the generator matrix

Note first that for ,

Hence

Potential Matrices

Next let's find the potential matrices. As with the transition matrices, we can do this in (at least) two different ways.

Suppose again that  is a continuous-time Markov chain on  subordinate to the Poisson process with
rate  and with jump transition matrix . For , the potential matrix  of  is
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Proof from the definition

Using the previous result,

The interchange of sum and integral is justified since the terms are nonnegative. Using the change of variables 
gives

The last integral is .

Proof using the generator

From the result above,

Since  we have

Recall that for , the -potential matrix of the jump chain  is . Hence we have the following nice
relationship between the potential matrix of  and the potential matrix of :

Next recall that  is the probability density function of  given , where  has the exponential distribution with
parameter  and is independent of . On the other hand,  where . We know from our
study of discrete potentials that  is the probability density function of  where  has the geometric distribution
on  with parameter  and is independent of . But also . So it follows that if  has the exponential distribution
with parameter ,  is a Poisson process with rate , and is independent of , then  has the geometric
distribution on  with parameter . Of course, we could easily verify this directly, but it's still fun to see such
connections.

Limiting Behavior and Stationary Distributions

Once again, suppose that  is a continuous-time Markov chain on  subordinate to the Poisson process with
rate  and with jump transition matrix . Let  denote the jump process. The limiting behavior and
stationary distributions of  are closely related to those of .

Suppose that  (and hence ) are irreducible and positive recurrent

1.  is invariant for  if and only if  is invariant for .
2.  is an invariant probability density function for  if and only if  is an invariant probability density function for .
3.  is null recurrent if and only if  is null recurrent, and in this case,  for 

.
4.  is positive recurrent if and only if  is positive recurrent. If  is aperiodic, then 

 for , where  is the invariant probability density function.
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Proof

All of these results follow from the basic theory of stationary and limiting distributions for continuous-time chains, and the fact
that the exponential parameter function  is constant.

Time Reversal

Once again, suppose that  is a continuous-time Markov chain on  subordinate to the Poisson process with
rate  and with jump transition matrix . Let  denote the jump process. We assume that  (and
hence ) are irreducible. The time reversal of  is closely related to that of .

Suppose that  is invariant for . The time reversal  with respect to  is also subordinate to the Poisson
process with rate . The jump chain  of  is the (discrete) time reversal of  with respect to .

Proof

From the previous result,  is also invariant for . From the general theory of time reversal,  has the same exponential
parameter function as  (namely the constant function ) and so is also subordinate to the Poisson process with rate . Finally,
the jump chain  of  is the reversal of  with respect to  and hence also with respect to .

In particular,  is reversible with respect to  if and only if  is reversible with respect to . As noted earlier,  and  are of the
same type: both transient or both null recurrent or both positive recurrent. In the recurrent case, there exists a positive invariant
function that is unique up to multiplication by constants. In this case, the reversal of  is unique, and is the chain subordinate to
the Poisson process with rate  whose jump chain is the reversal of .

Uniform Chains

In the construction above for a Markov chain  that is subordinate to the Poisson process with rate  and
jump transition kernel , we assumed of course that  for every . So there are no absorbing states and the
sequence  of arrival times of the Poisson process are the jump times of the chain . However in our introduction to
continuous-time chains, we saw that the general construction of a chain starting with the function  and the transition matrix 
works without this assumption on , although the exponential parameters and transition probabilities change. The same idea works
here.

Suppose that  is a counting Poisson process with rate  and that  is a
discrete-time Markov chain with transition matrix  on  satisfying  for . Assume also that  and 
are independent. Define  for . Then  is a continuous-Markov chain with
exponential parameter function  for  and jump transition matrix  given by

Proof

This follows from the result in the introduction.

The Markov chain constructed above is no longer a chain subordinate to the Poisson process by our definition above, since the
exponential parameter function is not constant, and the transition times of  are no longer the arrival times of the Poisson process.
Nonetheless, many of the basic results above still apply.

Let  be the Markov chain constructed in the previous theorem. Then

1. For , the transition matrix  is given by

2. For , the  potential matrix is given by
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3. The generator matrix is 
4.  is invariant for  if and only if  is invariant for .

Proof

The proofs are just as before.

It's a remarkable fact that every continuous-time Markov chain with bounded exponential parameters can be constructed as in the
last theorem, a process known as uniformization. The name comes from the fact that in the construction, the exponential parameters
become constant, but at the expense of allowing the embedded discrete-time chain to jump from a state back to that state. To review
the definition, suppose that  is a continuous-time Markov chain on  with transition semigroup 

, exponential parameter function  and jump transition matrix . Then  is uniform if  as 
 uniformly in , or equivalently if  is bounded.

Suppose that  is bounded and that  is a transition matrix on  with  for every . Let 
 be an upper bound on  and  a Poisson counting process with rate . Define the transition

matrix  on  by

and let  be a discrete-time Markov chain with transition matrix , independent of . Define  for 
. Then  is a continuous-time Markov chain with exponential parameter function  and jump

transition matrix .

Proof

Note that  for every  and  for every . Thus  is a transition matrix on .

Note also that  for every . By construction,  for  and

So the result now follows from the theorem above.

Note in particular that if the state space  is finite then of course  is bounded so the previous theorem applies. The theorem is
useful for simulating a continuous-time Markov chain, since the Poisson process and discrete-time chains are simple to simulate. In
addition, we have nice representations for the transition matrices, potential matrices, and the generator matrix.

Suppose that  is a continuous-time Markov chain on  with bounded exponential parameter function 
 and jump transition matrix . Define  and  as in the last theorem. Then

1. For , the transition matrix  is given by

2. For , the  potential matrix is given by

3. The generator matrix is 
4.  is invariant for  if and only if  is invariant for .
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Proof

These results follow from the theorem above.

Examples

The Two-State Chain

The following exercise applies the uniformization method to the two-state chain.

Consider the continuous-time Markov chain  on  with exponential parameter function 
, where . Thus, states 0 and 1 are stable and the jump chain has transition matrix

Let , an upper bound on . Show that

1. 

2. 

3.  for 

4.  for 

Proof

The form of  follows easily from the definition above . Note that the rows of  are the invariant PDF. It then follows that 

 for . The results for the transition matrix  and the potential  then follow easily from the theorem above.

Although we have obtained all of these results for the two-state chain before, the derivation based on uniformization is the easiest.

This page titled 16.20: Chains Subordinate to the Poisson Process is shared under a CC BY 2.0 license and was authored, remixed, and/or curated
by Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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16.21: Continuous-Time Birth-Death Chains
     

Basic Theory

Introduction

A continuous-time birth-death chain is a simple class of Markov chains on a subset of  with the property that the only possible
transitions are to increase the state by 1 (birth) or decrease the state by 1 (death). It's easiest to define the birth-death process in
terms of the exponential transition rates, part of the basic structure of continuous-time Markov chains.

Suppose that  is an integer interval (that is, a set of consecutive integers), either finite or infinite. The birth-death chain with
birth rate function  and death rate function  is the Markov chain  on 
with transition rate  from  to  and transition rate  from  to , for .

If  has a minimum element , then of course we must have . If  also, then the boundary point  is
absorbing. Similarly, if  has a maximum element  then we must have . If  also then the boundary point  is
absorbing. If  is not a boundary point, then typically we have , so that  is stable. If  for all ,
then  is a pure birth process, and similarly if  for all  then  is a pure death process. From the transition rates,
it's easy to compute the parameters of the exponential holding times in a state and the transition matrix of the embedded, discrete-
time jump chain.

Consider again the birth-death chain  on  with birth rate function  and death rate function . As usual, let  denote the
exponential parameter function and  the transition matrix for the jump chain.

1.  for 
2. If  is stable, so that , then

Note that jump chain  is a discrete-time birth death chain. The probability functions , , and  of  are given as
follows: If  is stable then

If  is absorbing then of course  and . Except for the initial state, the jump chain  is deterministic for a
pure birth process, with  if  is absorbing and  if  is stable. Similarly, except for the initial state,  is
deterministic for a pure death process, with  if  is absorbing and  if  is stable. Note that the Poisson
process with rate parameter , viewed as a continuous-time Markov chain, is a pure birth process on  with birth
function  for each . More generally, a birth death process with  for all  is also
subordinate to the Poisson process with rate .

Note that  is bounded if and only if  and  are bounded (always the case if  is finite), and in this case the birth-death chain 
 is uniform. If  is unbounded, then  may not even be regular, as an example below shows. Recall that a

sufficient condition for  to be regular when  is infinite is

where  is the set of stable states. Except for the aforementioned example, we will
restrict our study to regular birth-death chains.
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Infinitesimal Generator and Transition Matrices

Suppose again that  is a continuous-time birth-death chain on an interval  with birth rate function 
and death rate function . As usual, we will let  denote the transition matrix at time  and  the infinitesimal generator.
As always, the infinitesimal generator gives the same information as the exponential parameter function and the jump transition
matrix, but in a more compact and useful form.

The generator matrix  is given by

Proof

This follows from the general theory, since  for  and  for  with 
.

The Kolmogorov backward and forward equations are

1.  for .
2.  for 

Proof

These results follow from the generator matrix  above.

1. The backward equation is .
2. The forward equation is .

Limiting Behavior and Stationary Distributions

For our discussion of limiting behavior, we will consider first the important special case of a continuous-time birth-death chain 
 on  and with  for all  and  for all . For the jump chain 

, recall that

The jump chain  is a discrete-time birth-death chain, and our notation here is consistent with the notation that we used in that
section. Note that  and  are irreducible. We first consider transience and recurrence.

The chains  and  are recurrent if and only if

Proof

Recall that  is recurrent if and only if  is recurrent. In our study of discrete-time birth-death chains we saw that  is
recurrent if and only if

But trivially,

Next we consider positive recurrence and invariant distributions. It's nice to look at this from different points of view.

The function  defined by
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is invariant for , and is the only invariant function, up to multiplication by constants. Hence  is positive recurrent if and
only if , in which case the (unique) invariant probability density function  is given by 
for . Moreover,  as  for every 

Proof using the jump chain

From our study of discrete-time birth-death chains, we know that the function  defined by

is invariant for , and is the only positive invariant function up to multiplication by positive constants. It then follows from
our study of invariant functions for continuous-time chains that the function  is invariant for , and again is the only
positive invariant function up to multiplication by positive constants. But it's simple to see that

where  is the function given in the theorem. The remaining parts of the theorem follow from the general theory.

Proof from the balance equation

A function  is invariant for  if and only if it satisfies the balance equation . For our birth-death chain,
this reduces to

Substituting the equation with  on the left into the equation with  on the left gives .
Substituting this into the equation with  on the left gives . In general, the balance equations imply

Solving these new balance equations recursively gives

Letting  gives the particular invariant function in the theorem. Again, the remaining parts follow from the general
theory.

Here is a summary of the classification:

For the continuous-time birth-death chain , let

1.  is transient if .
2.  is null recurrent if  and .
3.  is positive recurrent if .

Suppose now that  and that  is a continuous-time birth-death chain on the integer interval 
. We assume that  for  while  for . Of course, we

must have . With these assumptions,  is irreducible, and since the state space is finite, positive recurrent. So all
that remains is to find the invariant distribution. The result is essentially the same as when the state space is .

The invariant probability density function  is given by
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Proof

Define

The proof thet  is invariant for  is the same as before. The constant  is the normalizing constant.

Note that  as , and if ,  as  for . We will see this type of behavior again.
Results for the birth-death chain on  often converge to the corresponding results for the birth-death chain on  as .

Absorption

Often when the state space , the state of a birth-death chain represents a population of individuals of some sort (and so the
terms birth and death have their usual meanings). In this case state 0 is absorbing and means that the population is extinct.
Specifically, suppose that  is a regular birth-death chain on  with  and with 

 for . Thus, state 0 is absorbing and all positive states lead to each other and to 0. Let 
 denote the time until absorption, where as usual, . Many of the results concerning

extinction of the continuous-time birth-death chain follow easily from corresponding results for the discrete-time birth-death jump
chain.

One of the following events will occur:

1. Population extinction:  or equivalently,  for some  and hence  for all .
2. Population explosion:  or equivalently  as .

Proof

Part (b) follows from the general theory, since 0 is absorbing, and all positive states lead to each other and to 0. Thus the
positive states are transient and we know that with probability 1, the jump chain will visit a transient state only finitely often.
Thus  is equivalent to  as . Without the assumption that the chain is regular, population explosion
could occur in finite time.

Naturally we would like to find the probability of these complementary events, and happily we have already done so in our study of
discrete-time birth-death chains. The absorption probability function  is defined by

As before, let

1. If  then  for all .
2. If  then

Proof

The continuous-time chain is absorbed into 0 if and only if the discrete-time jump chain is absorbed into 0. So the result
follows from the corresponding result for discrete-time birth-death chains. Recall again that  for 

The mean time to extinction is considered next, so let  for . Unlike the probability of extinction,
computing the mean time to extinction cannot be easily reduced to the corresponding discrete-time computation. However, the

(x) =  for x ∈  where  =f

n

1

B

n

α(0) ⋯α(x−1)

β(1) ⋯ β(x)

N

n

B

n

∑

x=0

n

α(0) ⋯α(x−1)

β(1) ⋯ β(x)

(16.21.14)

(x) = , x ∈g

n

α(0) ⋯α(x−1)

β(1) ⋯ β(x)

N

n

(16.21.15)

g

n

X B

n

→BB

n

n → ∞ B < ∞ (x) → f(x)f

n

n → ∞ x ∈ N

N

n

N n → ∞

S =N

X = { : t ∈ [0, ∞)}X

t

N α(0) = β(0) = 0

α(x), β(x) > 0 x ∈ N

+

T = min{t ∈ [0, ∞) : = 0}X

t

min∅ = ∞

T < ∞ = 0X

s

s ∈ [0, ∞) = 0X

t

t ∈ [s, ∞)

T = ∞ → ∞X

t

t → ∞

T = ∞ → ∞X

t

t → ∞

v

v(x) = P(T < ∞) = P( = 0 for some t ∈ [0, ∞) ∣ = x), x ∈ NX

t

X

0
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A =∑

i=0

∞

β(1) ⋯ β(i)

α(1) ⋯α(i)
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A = ∞ v(x) = 1 x ∈ N

A < ∞

v(x) = , x ∈ N

1

A

∑

i=x

∞

β(1) ⋯ β(i)

α(1) ⋯α(i)
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method of computation does extend.

The mean absorption function is given by

Probabilisitic Proof

The time required to go from state  to  has the same distribution as the time required to go from state 1 to 0,
except with parameters  for  instead of parameters  for . So by the
additivity of expected value, we just need to compute  as a function of the parameters. Starting in state 1, the chain will
be absorbed in state 0 after a random number of returns to state 1 without absorption. Whenever the chain is in state 1,
absorption occurs at the next transition with probability  so it follows that the number of times that the chain is in state 1
before absorption has the geometric distribution on  with success parameter . The mean of this distribution is 

. On the other hand, starting in state 1, time until the chain is in state 1 again (without
absorption) has the same distribution as the return time to state 0, starting in state 0 for the irreducible birth-death chain on 
with birth and death rates  and  given by  for  and  for . Thus, let

Then  is the mean return time to state 0 for the chain . Specifically, note that if  then  is either transient or null
recurrent. If  then  is the invariant PDF at 0. So, it follows that

By our argument above, the mean time to go from state  to  is

In particular, note that

If  then  for all . If  then  for all 

Next we will consider a birth-death chain on a finite integer interval with both endpoints absorbing. Our interest is in the
probability of absorption in one endpoint rather than the other, and in the mean time to absorption. Thus suppose that  and
that  is a continuous-time birth-death chain on  with , 

, and ,  for . So the endpoints 0 and  are absorbing, and all other states
lead to each other and to the endpoints. Let , the time until absorption, and for  let 

 and . The definitions make sense since  is finite with probability 1.

The absorption probability function for state 0 is given by

Proof

The jump chain  is a discrete-time birth-death chain on  with  and  absorbing. Also,  is absorbed
into 0 or  if and only if  is absorbed into 0 or , respectively. So the result follows from the corresponding result for ,
since  for .

m(x) = , x ∈ N∑

j=1

x

∑

k=j−1

∞

α(j)⋯α(k)

β(j)⋯ β(k+1)

(16.21.19)

x ∈ N

+

x−1

α(y), β(y) y ∈ {x, x+1,…} α(y), β(y) y ∈ {1, 2,…}

m(1)

q(1)

N

+

q(1)

1/q(1) = [α(1)+β(1)]/β(1)

N

α

′

β

′

(x) = α(x+1)α

′

x ∈ N (x) = β(x+1)β

′

x ∈ N

+

μ=

1

α(1)+β(1)

∑

k=0

∞

α(1)⋯α(k)

β(2)⋯ β(k+1)

(16.21.20)

μ X

′

μ=∞ X

′

μ<∞ 1/μ

m(1) = μ=

1

q(1)

∑

k=0

∞

α(1)⋯α(k)

β(1)⋯ β(k+1)

(16.21.21)

x x−1

∑

k=x−1

∞

α(x)⋯α(k)

β(x)⋯ β(k+1)

(16.21.22)

m(1) =∑

k=0

∞

α(1)⋯α(k)

β(1)⋯ β(k+1)

(16.21.23)

m(1) =∞ m(x) =∞ x ∈ S m(1) <∞ m(x) <∞ x ∈ S

n ∈ N

+

X = { : t ∈ [0,∞)}X

t

= {0, 1,… ,n}N

n

α(0) = β(0) = 0

α(n) = β(n) = 0 α(x) > 0 β(x) > 0 x ∈ {1, 2,… ,n−1} n

T = inf{t ∈ [0,∞) : ∈ {0,n}}X

t

x ∈ S

(x) = P( = 0 ∣ = x)v

n

X

T

X

0

(x) =E(T ∣ = x)m

n

X

0

T

(x) =  for x ∈  where  =v

n

1

A

n

∑

i=x

n−1

β(1)⋯ β(i)

α(1)⋯α(i)

N

n

A

n

∑

i=0

n−1

β(1)⋯ β(i)

α(1)⋯α(i)
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Y = { : n ∈ N}Y

n
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0 n X

n Y n Y
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Note that  as  where  is the constant above for the absorption probability at 0 with the infinite state space . If 
 then  as  for .

Time Reversal

Essentially, every irreducible continuous-time birth-death chain is reversible.

Suppose that  is a positive recurrent birth-death chain on an integer interval  with birth rate
function  and death rate function . Assume that , except at the maximum value of , if
there is one, and similarly that , except at the minimum value of , if there is one. Then  is reversible.

Proof

Note that  is irreducible. As usual, let  denote the generator matrix. It's easy to see that under the assumptions, 
 implies  for , and that the Kolmogorov cycle condition is satisfied: For every 

and every sequence ,

In the important special case of a birth-death chain on , we can verify the balance equations directly.

Suppose that  is a continuous-time birth-death chain on  and with birth rate  for all 
 and death rate  for all . Then  is reversible.

Proof

We just need to show that the balance equation for a reversible chain holds, and this was actually done in the result above. As
before, let  be the function given by

The only nontrivial case of the balance equation  for  is

It follows from the general theory that  is invariant for  and that  is reversible with respect to . Since we actually know
from our work above that  is the only positive invariant function, up to multiplication by positive constants, we can simply
say that  is reversible.

In the positive recurrent case, it follows that the birth-death chain is stochastically the same, forward or backward in time, if the
chain has the invariant distribution.

Examples and Special Cases

Regular and Irregular Chains

Our first exercise gives two pure birth chains, each with an unbounded exponential parameter function. One is regular and one is
irregular.

Consider the pure birth process  on  with birth rate function .

1. If  for , then  is not regular.
2. If  for , then  is regular.

Proof

The jump chain  is deterministic, except for the initial state. Given , we have . Hence

1. 

2. 

→AA

n

n→∞ A N

A<∞ (x) → v(x)v

n

n→∞ x ∈ N
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+
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1
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1
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N

X = { : t ∈ [0,∞)}X
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S =N α(x) > 0

x ∈ N β(x) > 0 x ∈ N

+

X
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g(x) = , x ∈ N

α(0)⋯α(x−1)

β(1)⋯ β(x)

(16.21.26)

g(x)G(x, y) = g(y)G(y, x) (x, y) ∈ S

2

g(x)G(x, x+1) = g(x+1)G(x+1, x)) = , x ∈ N
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(16.21.27)
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So the results follow from the general theory.

Constant Birth and Death Rates

Our next examples consider birth-death chains with constant birth and death rates, except perhaps at the endpoints. Note that such
chains will be regular since the exponential parameter function  is bounded.

Suppose that  is the birth-death chain on , with constant birth rate  on  and constant
death rate  on .

1.  is transient if .
2.  is null recurrent if .
3.  is positive recurrent if . The invariant distribution is the geometric distribution on  with parameter 

Proof

Note that  is irreducible since the birth rate is positive on  and the death rate is positive on . The series in the results
above are geometric series:

Next we consider the chain with  absorbing. As in the general discussion above, let  denote the function that gives the probability
of absorption and  the function that gives the mean time to absorption.

Suppose that  is the birth-death chain in  with constant birth rate  on , constant death
reate  on , and with 0 absorbing. Then

1. If  then  for . If  then  for .
2. If  then . If  then  for .

Next let's look at chains on a finite state space. Let  and define .

Suppose that  is a continuous-time birth-death chain on  with constant birth rate  on 
 and constant death rate  on . The invariant probability density function  is given as

follows:

1. If  then

2. If  then  for 

Note that when , the invariant distribution is uniform on . Our final exercise considers the absorption probability at 0
when both endpoints are absorbing. Let  denote the function that gives the probability of absorption into 0, rather than .

Suppose that  is the birth-death chain on  with constant birth rate  and constant death rate  on 
, and with 0 and  absorbing.

1. If  then

2. If  then  for .

λ

X = { : t ∈ [0,∞)}X

t

N α ∈ (0,∞) N
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X β < α

X β = α
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(16.21.28)
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n

X = { : t ∈ [0,∞)}X

t

N

n

α ∈ (0,∞)

{0, 1,… ,n−1} β ∈ (0,∞) {1, 2,… n} f

n

α ≠ β

(x) = , x ∈f

n

(α/β (1−α/β))

x

1−(α/β)

n+1

N

n

(16.21.30)
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Linear Birth and Death Rates

For our next discussion, consider individuals that act identically and independently. Each individual splits into two at exponential
rate  and dies at exponential rate .

Let  denote the population at time . Then  is a regular, continuous-time birth-death chain
with birth and death rate functions given by  and  for .

Proof

The fact that  is a continuous-time Markov chain follows from the assumptions. Moreover, since the individuals act
independently, the overall birth and death rates when the population is  is simple  times the individual birth and death
rates. The chain is regular since

Note that  is absorbing since the population is extinct, so as usual, our interest is in the probability of absorption and the mean
time to absorption as functions of the initial state. The probability of absorption is the same as for the chain with constant birth and
death rates discussed above.

The absorption probability function  is given as follows:

1.  for all  if .
2.  for  if .

Proof

These results follow from the general results above since  for . Hence for ,

The mean time to absorption is more interesting.

The mean time to absorption function  is given as follows:

1. If  then  for .
2. If  then

Proof
1. From the general results above, note that

The sum is infinite if .
2. If  then again from the general formula above,

The inner series converges absolutely. Moreover, for ,

Substituting and interchanging the sum and integral gives

a ∈ (0,∞) b ∈ (0,∞)

X

t

t ∈ [0,∞) X = { : t ∈ [0,∞)}X

t

α(x) = ax β(x) = bx x ∈ N

X

x ∈ N x

=∞∑

x=1

∞

1

(a+b)x
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m(1) =∑

k=0

∞

1

(k+1)b

( )

a

b

k

(16.21.35)

a≥ b

α < β

m(x) = =∑

j=1

x

∑

k=j−1

∞

1

(k+1)b

( )

a

b

k−j+1

∑

j=1

x

1

b

( )

b

a

j

∑

k=j−1

∞

1

k+1

( )

a

b

k+1

(16.21.36)

k ∈ N

= du

1

k+1

( )

a

b

k+1

∫

a/b

0

u

k

(16.21.37)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10394?pdf


16.21.9 https://stats.libretexts.org/@go/page/10394

For small values of , the integrals in the case  can be done by elementary methods. For example,

However, a general formula requires the introduction of a special function that is not much more helpful than the integrals
themselves. The Markov chain  is actually an example of a branching chain. We will revisit this chain in that section.

Linear Birth and Death with Immigration

We continue our previous discussion but generalizing a bit. Suppose again that we have individuals that act identically and
independently. An individual splits into two at exponential rate  and dies at exponential rate . Additionally,
new individuals enter the population at exponential rate . This is the immigration effect, and when  we have the
birth-death chain in the previous discussion.

Let  denote the population at time . Then  is a regular, continuous-time birth-death chain
with birth and death rate functions given by  and  for .

Proof

The fact that  is a continuous-time Markov chain follows from the assumptions. Moreover, since the individuals act
independently, the overall birth rate when the population is  is  while the death rate is . The chain is regular
since

The infinitesimal matrix  is given as follows, for :

1. 
2. 
3. 

The backward and forward equations are given as follows, for  and 

1. 
2. )

We can use the forward equation to find the expected population size. Let  for  and .

For  and , the mean population size  is given as follows:

1. If  then .
2. If  then

Proof

First note that  for . Multiplying the forward equation above by  and summing over 
gives

m(x) = ( ) du = du∑
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∫
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(16.21.38)
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Re-indexing the sums and using some algebra gives the first-order differential equation

with initial condition . Solving the differential equation gives the result.

Note that , so that the individual death rate exceeds the birth rate, then  as  for . If  so
that the birth rate equals or exceeds the death rate, then  as  for .

Next we will consider the special case with no births, but only death and immigration. In this case, the invariant distribution is easy
to compute, and is one of our favorites.

Suppose that  and that . Then  is positive recurrent. The invariant distribution is Poisson with parameter :

Proof

In terms of the general theory above, note that the invariant function , unique up to multiplication by positive constants, is
given by

Hence  and therefore the chain is positive recurrent with invariant PDF

This is the PDF of the Poisson distribution with parameter .

The Logistics Chain

Consider a population that fluctuates between a minimum value  and a maximum value , where of course, .
Given the population size, the individuals act independently and identically. Specifically, if the population is 

 then an individual splits in two at exponential rate  and dies at exponential rate , where 
. Thus, an individual's birth rate decreases linearly with the population size from  to  while the death rate

increases linearly with the population size from  to . These assumptions lead to the following definition.

The continuous-time birth-death chain  on  with birth rate function  and
death rate function  given by

is the logistic chain on  with parameters  and .

Justification

Since the individuals act independently and identically, the overall birth rate and death rates when the population is  is
simply  times the birth and death rate for an individual.

Note that the logistics chain is a stochastic counterpart of the logistics differential equation, which typically has the form
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where  and . Starting in , the solution remains in  for all . Of course, the
logistics differential equation models a system that is continuous in time and space, whereas the logistics Markov chain models a
system that is continuous in time and discrete is space.

For the logistics chain

1. The exponential parameter function  is given by

2. The transition matrix  of the jump chain is given by

In particular,  and  are reflecting boundary points, and so the chain is irreducible.

The generator matrix  for the logistics chain is given as follows, for :

1. 
2. 
3. 

Since  is finite,  is positive recurrent. The invariant distribution is given next.

Define  by

Then  is invariant for .

Proof

Since we know that  is reversible, we just need to show that  for . For the logistics
chain, the only non-trivial equation is  for . Simple substitution and algebra
show that both sides reduce to

Of course it now follows that the invariant probability density function  for  is given by  for  where  is
the normalizing constant

The limiting distribution of  has probability density function .

Other Special Birth-Death Chains

There are a number of special birth-death chains that are studied in other sections, because the models are important and lead to
special insights and analytic tools. These include

Queuing chains
The pure death branching chain
The Yule process, a pure birth branching chain
The general birth-death branching chain

This page titled 16.21: Continuous-Time Birth-Death Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by
Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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16.22: Continuous-Time Queuing Chains
     

Basic Theory

Introduction

In a queuing model, customers arrive at a station for service. As always, the terms are generic; here are some typical examples:

The customers are persons and the service station is a store.
The customers are file requests and the service station is a web server.

Figure : Ten customers and a server

Queuing models can be quite complex, depending on such factors as the probability distribution that governs the arrival of
customers, the probability distribution that governs the service of customers, the number of servers, and the behavior of the
customers when all servers are busy. Indeed, queuing theory has its own lexicon to indicate some of these factors. In this section,
we will discuss a few of the basic, continuous-time queuing chains. In a general sense, the main interest in any queuing model is
the number of customers in the system as a function of time, and in particular, whether the servers can adequately handle the flow
of customers. This section parallels the section on discrete-time queuing chains.

Our main assumptions are as follows:

1. There are  servers.
2. The customers arrive according to a Poisson process with rate .
3. If all of the servers are busy, a new customer goes to the end of a single line of customers waiting service.
4. The time required to service a customer has an exponential distribution with parameter .
5. The service times are independent from customer to customer, and are independent of the arrival process.

Assumption (b) means that the times between arrivals of customers are independent and exponentially distributed, with parameter 
. Assumption (c) means that we have a first-in, first-out model, often abbreviated FIFO. Note that there are three parameters in

the model: the number of servers , the exponential parameter  that governs the arrivals, and the exponential parameter  that
governs the service times. The special cases  (a single server) and  (infinitely many servers) deserve special attention.
As you might guess, the assumptions lead to a continuous-time Markov chain.

Let  denote the number of customers in the system (waiting in line or being served) at time . Then 
 is a continuous-time Markov chain on , known as the M/M/  queuing chain.

In terms of the basic structure of the chain, the important quantities are the exponential parameters for the states and the transition
matrix for the embedded jump chain.

For the M/M/  chain ,

1. The exponential parameter function  is given by  if  and  and  if  and 
.

2. The transition matrix  for the jump chain is given by

So the M/M/  chain is a birth-death chain with 0 as a reflecting boundary point. That is, in state , the next state is either 
 or , while in state 0, the next state is 1. When , the single-server queue, the exponential parameter in state 

 is  and the transition probabilities for the jump chain are
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When , the infinite server queue, the cases above for  are vacuous, so the exponential parameter in state  is 
 and the transition probabilities are

Infinitesimal Generator

The infinitesimal generator of the chain gives the same information as the exponential parameter function and the jump transition
matrix, but in a more compact form.

For the M/M/  queuing chain , the infinitesimal generator  is given by

So for , the single server queue, the generator  is given by , , while for , 
, , . For , the infinite server case, the generator  is given by 

, , and  for all .

Classification and Limiting Behavior

Again, let  denote the M/M/  queuing chain with arrival rate , service rate  and with 
servers. As noted in the introduction, of fundamental importance is the question of whether the servers can handle the flow of
customers, so that the queue eventually empties, or whether the length of the queue grows without bound. To understand the
limiting behavior, we need to classify the chain as transient, null recurrent, or positive recurrent, and find the invariant functions.
This will be easy to do using our results for more general continuous-time birth-death chains. Note first that  is irreducible. It's
best to consider the single server and infinite server cases individually.

The single server queuing chain  is

1. Transient if .
2. Null recurrent if .
3. Positive recurrent if . The invariant distribution is the geometric distribution on  with parameter . The invariant

probability density function  is given by

Proof

This follows directly from results for the continuous-time birth-death chain, with constant birth rate  on  and constant death
rate  on .

The result makes intuitive sense. If the service rate is less than the arrival rate, the chain is transient and the length of the queue
grows to infinity. If the service rate is greater than the arrival rate, the chain is positive recurrent. At the boundary between these
two cases, when the arrival and service rates are the same, the chain is null recurrent.

The infinite server queuing chain  is positive recurrent. The invariant distribution is the Poisson distribution with parameter 
. The invariant probability density function  is given by

Proof

This also follows from results for the continuous-time birth-death chain. In the notation of that section, the birth rate is
constant,  for  and the death rate is proportional to the number of customers in the system:  for 

. Hence the invariant function (unique up to multiplication by constants) is
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Normalized, this is the Poisson distribution with parameter .

This result also makes intuitive sense.

This page titled 16.22: Continuous-Time Queuing Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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16.23: Continuous-Time Branching Chains
      

Basic Theory

Introduction

Generically, suppose that we have a system of particles that can generate or split into other particles of the same type. Here are some
typical examples:

The particles are biological organisms that reproduce.
The particles are neutrons in a chain reaction.
The particles are electrons in an electron multiplier.

We assume that the lifetime of each particle is exponentially distributed with parameter , and at the end of its life, is replaced
by a random number of new particles that we will refer to as children of the original particle. The number of children  of a particle has
probability density function  on . The particles act independently, so in addition to being identically distributed, the lifetimes and the
number of children are independent from particle to particle. Finally, we assume that , so that a particle cannot simply die and be
replaced by a single new particle. Let  and  denote the mean and variance of the number of offspring of a single particle. So

We assume that  is finite and so  makes sense. In our study of discrete-time Markov chains, we studied branching chains in terms of
generational time. Here we want to study the model in real time.

Let  denote the number of particles at time . Then  is a continuous-time Markov chain on ,
known as a branching chain. The exponential parameter function  and jump transition matrix  are given by

1.  for 
2.  for  and .

Proof

That  is a continuous-time Markov chain follows from the assumptions and the basic structure of continuous-time Markov chains.
In turns out that the assumption that  implies that  is regular, so that  as , where  is the time of the th
jump for .

1. Starting with  particles, the time of the first state change is the minimum of  independent variables, each exponentially
distributed with parameter . As we know, this minimum is also exponentially distributed with parameter .

2. Starting in state , the next state will be  for , if the particle dies and leaves  children in her place. This
happens with probability .

Of course 0 is an absorbing state, since this state means extinction with no particles. (Note that  and so by default, .)
So with a branching chain, there are essentially two types of behavior: population extinction or population explosion.

For the branching chain  one of the following events occurs with probability 1:

1. Extinction:  for some  and hence  for all .
2. Explosion:  as .

Proof

If  then all states lead to the absorbing state 0 and hence the set of positive staties  is transient. With probability 1, the
jump chain  visits a transient state only finitely many times, so with probability 1 either  for some  or  as 

. If  then  is strictly increasing in , since  by assumption. Hence with probability 1,  as 

.

Without the assumption that , explosion can actually occur in finite time. On the other hand, the assumption that  is for
convenience. Without this assumption,  would still be a continuous-time Markov chain, but as discussed in the Introduction, the
exponential parameter function would be  for  and the jump transition matrix would be
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Because all particles act identically and independently, the branching chain starting with  particles is essentially  independent
copies of the branching chain starting with 1 particle. In many ways, this is the fundamental insight into branching chains, and in
particular, means that we can often condition on .

Generator and Transition Matrices

As usual, we will let  denote the semigroup of transition matrices of , so that 
for . Similarly,  denotes the infinitesimal generator matrix of .

The infinitesimal generator  is given by

Proof

This follows immediately from the exponential parameter function and the jump transition matrix above.

The Kolmogorov backward equation is

Proof

The backward equation is , so the result follows from the previous theorem.

Unlike some of our other continuous-time models, the jump chain  governed by  is not the discrete-time version of the model. That is, 
 is not a discrete-time branching chain, since in discrete time, the index  represents the th generation, whereas here it represent the 

th time that a particle reproduces. However, there are lots of discrete-time branching chain embedded in the continuous-time chain.

Fix  and define . Then  is a discrete-time branching chain with offspring probability density
function  given by  for .

Proof

In general, we know that sampling a (homogeneous) continuous-time Markov chain at multiples of a fixed , results in a
(homogeneous) discrete-time Markov chain. For  to be a branching chain, we just need to note that

where  is the convolution power of  of order . This is a consequence of the fundamental fact that  given  has the
same distribution as the sum of  independent copies of  given . Recall that the PDF of a sum of independent variables is
the convolution of the individual PDFs.

Probability Generating Functions

As in the discrete case, probability generating functions are an important analytic tool for continuous-time branching chains.

For  let  denote the probability generating function of  given 

Let  denote the probability generating function of 

The generating functions are defined (the series are absolutely convergent) at least for .
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The collection of generating functions  gives the same information as the collection of probability density
functions . With the fundamental insight that the branching process starting with one particle determines the
branching process in general,  actually determines the transition semigroup .

For  and , the probability generating function of  given  is :

Proof

Again, given , the number of particles  at time  has the same distribution as the sum of  independent copies of  given 
. Recall that the PGF of a sum of independent variables is the product of the PGFs of the variables.

Note that  is the generating function of the offspring distribution for the embedded discrete-time branching chain 
for . On the other hand,  is the generating function of the offspring distribution for the continuous-time chain. So our main
goal in this discussion is to see how  is built from . Because  is a semigroup under matrix multiplication, and because the particles
act identically and independently,  is a semigroup under composition.

 for .

Proof

Using the semigroup property (the Chapman-Kolmogorov equations) and the previous result we have

Note also that  for all . This also follows from the semigroup property: . The
fundamental relationship between the collection of generating functions  and the generating function  is given in the following
theorem:

The mapping  satisfies the differential equation

Proof

Using the Kolmogorov backward equation we have

Using the generator above,

Substituting and using the result above gives

This differential equation, along with the initial condition  for all  determines the collection of generating functions . In
fact, an implicit solution for  is given by the integral equation
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Another relationship is given in the following theorem. Here,  refers to the derivative of the generating function  with respect to its
argument, of course (so , not ).

For ,

Proof

From the semigroup property, we have  for . Differentiating with respect to  and using the chain
rule along with the previous theorem gives

Evaluating at  and using the condition  we have

Using the previous theorem once again gives

Solving for  gives the result.

Moments

In this discussion, we wil study the mean and variance of the number of particles at time . Let

so that  and  are the mean and variance, starting with a single particle. As always with a branching process, it suffices to consider a
single particle:

For  and ,

1. 
2. 

Proof

Once again, the distribution of  given  is the same as the distribution of the sum of  independent copies of  given 
. Recall that the mean of a sum of variables is the sum of the individual means, and the variance of the sum of independent

variables is the sum of the individual variances.

Recall also that  and  are the the mean and variance of the number of offspring of a particle. Here is the connection between the
means:

 for .

1. If  then  as . This is extinction in the mean.
2. If  then  as . This is explosion in the mean.
3. If  then  for all . This is stability in the mean.

Proof

From the proof of the previous theorem,

Differentiating with respect to , interchanging the order of integration on the left, and using the product rule on the right gives
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Now let  and recall that . We get

From the basic theory of probability generating functions,  and similarly, . Hence we have

Of course we have the initial condition .

This result is intuitively very appealing. As a function of time, the expected number of particles either grows or decays exponentially,
depending on whether the expected number of offspring of a particle is greater or less than one. The connection between the variances is
more complicated. We assume that .

If  then

If  then .

1. If  then  as 
2. If  then  as 

Proof

Probability generating functions are naturally connected to factorial moments, so it's best to work with these. Thus, let 
 for  and let . These are the factorial moments of order 2. In the proof of

the last theorem we showed that

Differentiating with respect to  again gives

Now substitute . Recall that , , , , and . We get the
differential equation

with the initial condition .

Suppose that . Then using standard methods for a linear, first order differential equations with constant coefficients and an
exponential forcing function, the solution is

But , and similarly  with . Substitution and some algebra then gives the result.

Suppose now that . Then also  for all  and so  and . The differential equation above reduces
simply to

with initial condition  so trivially . Finally, in the context of part (b), note that if  we must have  since
we have assumed that .
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If  so that  as  and we have extinction in the mean, then  as  also. If  so that  as 
 and we have explosion in the mean, then  as  also. We would expect these results. On the other hand, if  so

that  for all  and we have stability in the mean, then  grows linearly in . This gives some insight into what to expect
next when we consider the probability of extinction.

The Probability of Extinction

As shown above, there are two types of behavior for a branching process, either population extinction or population explosion. In this
discussion, we study the extinction probability, starting as usual with a single particle:

Need we say it? The extinction probability starting with an arbitrary number of particles is easy.

For ,

Proof

Given , extinction has occurred by time  if and only if extinction has occurred by time  for each of the  independent
branching chains formed from the descendents of the  initial particles.

We can easily relate extinction for the continuous-time branching chain  to extinction for any of the embedded discrete-time branching
chains.

If extinction occurs for  then extinction occurs for  for every . Conversely if extinction occurs for  for some 
 then extinction occurs for  for every  and extinction occurs for . Hence  is the minimum solution in 

of the equation  for every .

Proof

The statements about the extinction event follow immediately from the fact that  is absorbing, so that if  for some 
then  for every . The result for the extinction probability  follows from the theory of discrete-time branching
chains.

So whether or not extinction is certain depends on the critical parameter .

The extinction probability  and the mean of the offspring distribution  are related as follows:

1. If  then , so extinction is certain.
2. If  then , so there is a positive probability of extinction and a positive probability of explosion.

Proof

These results follow from the corresponding results for discrete-time branching chains. Fix  and recall that  is the mean
of the offspring distribution for the discrete-time chain . From the result above,

1. If  then .
2. If  then .

It would be nice to have an equation for  in terms of the offspring probability generating function . This is also easy

The probability of extinction  is the minimum solution in  of the equation .

Proof

From the result above,  for every . Substituting  in the differential equation above, we have 
and hence . As in the theory of discrete branching chains, the equation  has only the solution 1 in (0, 1] if 

 or there are two solutions  and  if . In both cases,  is the smaller solution.

Special Models

We now turn our attention to a number of special branching chains that are important in applications or lead to interesting insights. We
will use the notation established above, so that  is the parameter of the exponential lifetime of a particle,  is the transition matrix of the
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jump chain,  is the infinitesimal generator matrix, and  is the transition matrix at time . Similarly, , 
, and  are the mean, variance, and generating function of the number of particles at time , starting

with a single particle. As always, be sure to try these exercises yourself before looking at the proofs and solutions.

The Pure Death Branching Chain

First we consider the branching chain in which each particle simply dies without offspring. Sadly for these particles, extinction is
inevitable, but this case is still a good place to start because the analysis is simple and lead to explicit formulas. Thus, suppose that 

 is a branching process with lifetime parameter  and offspring probability density function  with 
.

The transition matrix of the jump chain and the generator matrix are given by

1.  and  for 
2.  for  and  for 

The time-varying functions are more interesting.

Let . Then

1. 
2. 
3.  for 
4. Given  the distribution of  is binomial with trial parameter  and success parameter .

Direct Proof

All of these results follow from the general methods above, with  and  for . But it's helpful to give direct
proofs. Given , let  be the time until the first transition, which is simply the lifetime of the particle. So  has the exponential
distribution with parameter . For ,  is an indicator random variable (taking just values 0 and 1) with

Part (a), (b), and (c) are standard results for an indicator variable. For part (d), given , each of the  particles, independently,
is still alive at time  with probability . Hence the number of particles still alive has the binomial distribution with parameters 
and .

In particular, note that  as . that is, the probability of extinction by time  increases to 1 exponentially
fast. Since we have an explicit formula for the transition matrices, we can find an explicit formula for the potential matrices as well. The
result uses the beta function .

For  the potential matrix  is given by

For , the potential matrix  is given by

1.  for 
2.  for  and .

Proof

Suppose that  and that  with . By definition

Substitute  so that  or equivalently . After some algebra, the result is
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By definition, the last integral is .

1. For ,

2. For  with , the derivation above and properties of the beta function give

We could argue the results for the potential  directly. Recall that  is the expected time spent in state  starting in state . Since 0
is absorbing and all states lead to 0,  for . If  and , then  leads to  with probability 1. Once in state 

 the time spent in  has an exponential distribution with parameter , and so the mean is . Of course, when the chain
leaves , it never returns.

Recall that  is a transition probability matrix for , and in fact  is the probability density function of  given 
where  is independent of  has the exponential distribution with parameter . For the next result, recall the ascending power notation

For  and , the function  is the beta-binomial probability density function with parameters , , and 1.

Proof

From the previous result and properties of the beta function.

But from properties of the beta function,

Substituting gives the result

The Yule Process

Next we consider the pure birth branching chain in which each particle, at the end of its life, is replaced by 2 new particles. Equivalently,
we can think of particles that never die, but each particle gives birth to a new particle at a constant rate. This chain could serve as the
model for an unconstrained nuclear reaction, and is known as the Yule process, named for George Yule. So specifically, let 

 be the branching chain with exponential parameter  and offspring probability density function given
by . Explosion is inevitable, starting with at least one particle, but other properties of the Yule process are interesting. in
particular, there are fascinating parallels with the pure death branching chain. Since 0 is an isolated, absorbing state, we will sometimes
restrict our attention to positive states.

The transition matrix of the jump chain and the generator matrix are given by

1.  and  for 
2.  for  and  for 

Since the Yule process is a pure birth process and the birth rate in state  is , the process is also called the linear birth chain. As
with the pure death process, we can give the distribution of  specifically.

Let . Then

1. 
2. 
3.  for 
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4. Given ,  has the negative binomial distribution on  with stopping parameter  and success parameter .

Proof from the general results

Parts (a) and (b) follow from the general moment results above, with  and . For part (c), note that  for ,
so the integral equation for  is

From partial fractions, , so the result follows by standard integration and algebra. We recognize  as the
probability generating function of the geometric distribution on  with success parameter , so for part (d) we use our standard
argument. Given ,  has the same distribution as the sum of  independent copies of  given , and so this is
the distribution of the sum of  independent variables each with the geometric distribution on  with parameter . But this is the
negative binomial distribution on  with parameters  and .

Direct proof

As usual, let  and let  denote the time of the th transition (birth) for . Given , the population is  at time 
. So the random interval  (the time until the next birth) has the exponential distribution with parameter  and these

intervals are independent as  varies. From a result in the section on the exponential distribution, it follows that 
 has distribution function given by

Curiously, this is also the distribution function of the maximum of  independent variables, each with the exponential distribution
with rate . Hence

and therefore

So given ,  has the geometric distribution with parameter . The other results then follow easily.

Recall that the negative binomial distribution with parameters  and  governs the trial number of the th success in a
sequence of Bernoulli trials with success parameter . So the occurrence of this distribution in the Yule process suggests such an
interpretation. However this interpretation is not nearly as obvious as with the binomial distribution in the pure death branching chain.
Next we give the potential matrices.

For  the potential matrix  is given by

If , the function  is the beta-negative binomial probability density function with parameters , , and 1:

Proof

The proof is very similar to the one above. Suppose that  and that  with . By definition

Substitute  so that  or equivalently . After some algebra, the result is
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By definition, the last integral is .

If we think of the Yule process in terms of particles that never die, but each particle gives birth to a new particle at rate , then we can
study the age of the particles at a given time. As usual, we can start with a single, new particle at time 0. So to set up the notation, let 

 be the Yule branching chain with birth rate , and assume that . Let  and for ,
let  denote the time of the th transition (birth).

For , let  denote the total age of the particles at time . Then

The random process  is the age process.

Proof

Note that there have been  births in the interval . For , the age at time  of the particle born at time 
 is .

Here is another expression for the age process.

Again, let  be the age process for the Yule chain starting with a single particle. Then

Proof

Suppose that  where , so that . Note that  for  and , while 
 for . Hence

From the previous result,

With the last representation, we can easily find the expected total age at time .

Again, let  be the age process for the Yule chain starting with a single particle. Then

Proof

We can interchange the expected value and the integral by Fubini's theorem. So using the moment result above,

The General Birth-Death Branching Chain

Next we consider the continuous-time branching chain in which each particle, at the end of its life, leaves either no children or two
children. At each transition, the number of particles either increases by 1 or decreases by 1, and so such a branching chain is also a
continuous-time birth-death chain. Specifically, let  be a continuous-time branching chain with lifetime parameter 

 and offspring probability density function  given by , , where . When  we have the
pure death chain, and when  we have the Yule process. We have already studied these, so the interesting case is when  so
that both extinction and explosion are possible.

The transition matrix of the jump chain and the generator matrix are given by
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1. , and ,  for 
2.  for , and ,  for 

As mentioned earlier,  is also a continuous-time birth-death chain on , with 0 absorbing. In state , the birth rate is  and the
death rate is . The moment functions are given next.

For ,

1. 
2. If ,

If , .

Proof

These results follow from the general formulas above for  and , since  and .

The next result gives the generating function of the offspring distribution and the extinction probability.

For the birth-death branching chain,

1.  for .
2.  if  and  if .

Proof

Figure : Graphs of  and  when 

Figure : Graphs of  and  when 

For , the generating function  is given by

Solution

The integral equation for  is
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The denominator in the integral factors into . If , use partial fractions, standard integration, and some
algebra. If  the factoring is  and partial fractions is not necessary. Again, use standard integration and algebra.
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17: Martingales
Martingalges, and their cousins sub-martingales and super-martingales are real-valued stochastic processes that are abstract
generalizations of fair, favorable, and unfair gambling processes. The importance of martingales extends far beyond gambling, and
indeed these random processes are among the most important in probability theory, with an incredible number and diversity of
applications.
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17.1: Introduction to Martingalges
      

Basic Theory

Basic Assumptions

For our basic ingredients, we start with a stochastic process  on an underlying probability space , having state
space , and where the index set  (representing time) is either  (discrete time) or  (continuous time). So to review what all this
means,  is the sample space,  the -algebra of events,  the probability measure on , and  is a random variable with values in

 for each . Next, we have a filtration , and we assume that  is adapted to . To review again,  is an increasing
family of sub -algebras of , so that  for  with , and  is measurable with respect to  for . We
think of  as the collection of events up to time , thus encoding the information available at time . Finally, we assume that 

, so that the mean of  exists as a real number, for each .

There are two important special cases of the basic setup. The simplest case, of course, is when  for , so
that  is the natural filtration associated with . Another case that arises frequently is when we have a second stochastic process 

 on  with values in a general measure space , and  is the natural filtration associated with . So in
this case, our main assumption is that  is measurable with respect to  for .

The theory of martingales is beautiful, elegant, and mostly accessible in discrete time, when . But as with the theory of Markov
processes, martingale theory is technically much more complicated in continuous time, when . In this case, additional
assumptions about the continuity of the sample paths  and the filtration  are often necessary in order to have a nice theory.
Specifically, we will assume that the process  is right continuous and has left limits, and that the filtration  is right continuous and
complete. These are the standard assumptions in continuous time.

Definitions

For the basic definitions that follow, you may need to review conditional expected value with respect to a -algebra.

The process  is a martingale with respect to  if  for all  with .

In the special case that  is the natural filtration associated with , we simply say that  is a martingale, without reference to the
filtration. In the special case that we have a second stochastic process  and  is the natural filtration associated with ,
we say that  is a martingale with respect to .

The term martingale originally referred to a portion of the harness of a horse, and was later used to describe gambling strategies, such as
the one used in the Petersburg paradox, in which bets are doubled when a game is lost. To interpret the definitions above in terms of
gambling, suppose that a gambler is at a casino, and that  represents her fortune at time  and  the information available to her at
time . Suppose now that  with  and that we think of  as the current time, so that  is a future time. If  is a martingale with
respect to  then the games are fair in the sense that the gambler's expected fortune at the future time  is the same as her current fortune at
time . To venture a bit from the casino, suppose that  is the price of a stock, or the value of a stock index, at time . If  is a
martingale, then the expected value at a future time, given all of our information, is the present value.

Figure : An English-style breastplate with a running martingale attachement. By Danielle M., CC BY 3.0, from Wikipedia

But as we will see, martingales are useful in probability far beyond the application to gambling and even far beyond financial applications
generally. Indeed, martingales are of fundamental importance in modern probability theory. Here are two related definitions, with equality
in the martingale condition replaced by inequalities.

Suppose again that the process  and the filtration  satisfy the basic assumptions above.

1.  is a sub-martingale with respect to  if  for all  with .
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2.  is a super-martingale with respect to  if  for all  with .

In the gambling setting, a sub-martingale models games that are favorable to the gambler on average, while a super-martingale models
games that are unfavorable to the gambler on average. To venture again from the casino, suppose that  is the price of a stock, or the
value of a stock index, at time . If  is a sub-martingale, the expected value at a future time, given all of our information, is greater
than the present value, and if  is a super-martingale then the expected value at the future time is less than the present value. One hopes
that a stock index is a sub-martingale.

Clearly  is a martingale with respect to  if and only if it is both a sub-martingale and a super-martingale. Finally, recall that the
conditional expected value of a random variable with respect to a -algebra is itself a random variable, and so the equations and
inequalities in the definitions should be interpreted as holding with probability 1. In this section generally, statements involving random
variables are assumed to hold with probability 1.

The conditions that define martingale, sub-martingale, and super-martingale make sense if the index set  is any totally ordered set. In
some applications that we will consider later,  for fixed . In the section on backwards martingales, 

 or . In the case of discrete time when , we can simplify the definitions slightly.

Suppose that  satisfies the basic assumptions above.

1.  is a martingale with respect to  if and only if  for all .
2.  is a sub-martingale with respect to  if and only if  for all .
3.  is a super-martingale with respect to  if and only if  for all .

Proof

The conditions in the definitions clearly imply the conditions here, so we just need to show the opposite implications. Thus, assume
that the condition in (a) holds and suppose that  with . Then  so  and hence

Repeating the argument, we get to

The proof for sub and super-martingales is analogous, with inequalities replacing the last equality.

The relations that define martingales, sub-martingales, and super-martingales hold for the ordinary (unconditional) expected values.

Suppose that  with .

1. If  is a martingale with respect to  then .
2. If  is a sub-martingale with respect to  then .
3. If  is a super-martingale with respect to  then .

Proof

The results follow directly from the definitions, and the critical fact that  for .

So if  is a martingale then  has constant expected value, and this value is referred to as the mean of .

Examples

The goal for the remainder of this section is to give some classical examples of martingales, and by doing so, to show the wide variety of
applications in which martingales occur. We will return to many of these examples in subsequent sections. Without further ado, we assume
that all random variables are real-valued, unless otherwise specified, and that all expected values mentioned below exist in . Be sure to
try the proofs yourself before expanding the ones in the text.

Constant Sequence

Our first example is rather trivial, but still worth noting.

Suppose that  is a filtration on the probability space  and that  is a random variable that is measurable
with respect to  and satisfies . Let  for . Them  is a martingale with respect to .
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Since  is measurable with respect to , it is measurable with respect to  for all . Hence  is adapted to . If  with
, then .

Partial Sums

For our next discussion, we start with one of the most basic martingales in discrete time, and the one with the simplest interpretation in
terms of gambling. Suppose that  is a sequence of independent random variables with  for . Let

so that  is simply the partial sum process associated with .

For the partial sum process ,

1. If  for  then  is a sub-martingale.
2. If  for  then  is a super-martingale.
3. If  for  then  is a martingale.

Proof

Let  for . Note first that

Next,

The last equality holds since  is measurable with respect to  and  is independent of . The results now follow from the
definitions.

In terms of gambling, if  is the gambler's initial fortune and  is the gambler's net winnings on the th game, then  is the
gamblers net fortune after  games for . But partial sum processes associated with independent sequences are important far beyond
gambling. In fact, much of classical probability deals with partial sums of independent and identically distributed variables. The entire
chapter on Random Samples explores this setting.

Note that . Hence condition (a) is equivalent to  increasing, condition (b) is equivalent to 
decreasing, and condition (c) is equivalent to  constant. Here is another martingale associated with the partial sum process,
known as the second moment martingale.

Suppose that  for  and  for . Let

Then  is a martingale with respect to .

Proof

Again, let  for . Since the sequence  is independent, note that

Also,  since  for . In particular,  for . Next for ,

since  is measurable with respect to  and  is independent of . But  and 
. Hence we have  for .

So under the assumptions in this theorem, both  and  are martingales. We will generalize the results for partial sum processes below in
the discussion on processes with independent increments.
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Martingale Difference Sequences

In the last discussion, we saw that the partial sum process associated with a sequence of independent, mean 0 variables is a martingale.
Conversely, every martingale in discrete time can be written as a partial sum process of uncorrelated mean 0 variables. This representation
gives some significant insight into the theory of martingales generally. Suppose that  is a martingale with respect to the
filtration .

Let  and  for . The process  is the martingale difference sequence associated
with  and

As promised, the martingale difference variables have mean 0, and in fact satisfy a stronger property.

Suppose that  is the martingale difference sequence associated with . Then

1.  is adapted to .
2.  for  with .
3.  for 

Proof
1. Of course  is measurable with respect to . For ,  and , and hence  are measurable with respect to 

2. Let . By the martingale and adapted properties,

Next by the tower property,

Continuing (or using induction) gives the general result.
3. Since  is a martingale, it has constant mean, as noted above. Hence  for . We could

also use part (b).

Also as promised, if the martingale variables have finite variance, then the martingale difference variables are uncorrelated.

Suppose again that  is the martingale difference sequence associated with the martingale . Assume that 
 for . Then  is an uncorrelated sequence. Moreover,

Proof

Let  with . To show that  and  are uncorrelated, we just need to show that  (since ). But
by the previous result,

Finally, the variance of a sum of uncorrelated variables is the sum of the variances. Since  has mean 0,  for 
. Hence the formula for  holds.

We now know that a discrete-time martingale is the partial sum process associated with a sequence of uncorrelated variables. Hence we
might hope that there are martingale versions of the fundamental theorems that hold for a partial sum process associated with an
independent sequence. This turns out to be true, and is a basic reason for the importance of martingales.

Discrete-Time Random Walks

Suppose that  is a sequence of independent random variables with  identically distributed. We assume
that  for  and we let  denote the common mean of . Let  be the partial sum
process associated with  so that
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This setting is a special case of the more general partial sum process considered above. The process  is sometimes called a (discrete-
time) random walk. The initial position  of the walker can have an arbitrary distribution, but then the steps that the walker takes
are independent and identically distributed. In terms of gambling,  is the initial fortune of the gambler playing a sequence of
independent and identical games. If  is the amount won (or lost) on game , then  is the gambler's net fortune after  games.

For the random walk ,

1.  is a martingale if .
2.  is a sub-martingale if .
3.  is a super-martingale if 

For the second moment martingale, suppose that  has common mean  and common variance  for , and that 
.

Let  for . Then  is a martingale with respect to .

Proof

This follows from the corresponding result for a general partial sum process, above, since

We will generalize the results for discrete-time random walks below, in the discussion on processes with stationary, independent
increments.

Partial Products

Our next discussion is similar to the one on partial sum processes above, but with products instead of sums. So suppose that 
 is an independent sequence of nonnegative random variables with  for . Let

so that  is the partial product process associated with .

For the partial product process ,

1. If  for  then  is a martingale with respect to 
2. If  for  then  is a sub-martingale with respect to 
3. If  for  then  is a super-martingale with respect to 

Proof

Let  for . Since the variables are independent,

Next,

since  is measurable with respect to  and  is independent of . The results now follow from the definitions.

As with random walks, a special case of interest is when  is an identically distributed sequence.

The Simple Random Walk

Suppose now that that  is a sequence of independent random variables with  and 
for , where . Let  be the partial sum process associated with  so that
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Then  is the simple random walk with parameter , and of course, is a special case of the more general random walk studied above. In
terms of gambling, our gambler plays a sequence of independent and identical games, and on each game, wins €1 with probability  and
loses €1 with probability . So if  is the gambler's initial fortune, then  is her net fortune after  games.

For the simple random walk,

1. If  then  is a sub-martingale.
2. If  then  is a super-martingale.
3. If  then  is a martingale.

Proof

Note that  for , so the results follow from the theorem above.

So case (a) corresponds to favorable games, case (b) to unfavorable games, and case (c) to fair games.

Open the simulation of the simple symmetric random. For various values of the number of trials , run the simulation 1000 times and
note the general behavior of the sample paths.

Here is the second moment martingale for the simple, symmetric random walk.

Consider the simple random walk with parameter , and let  for . Then  is a
martingale with respect to 

Proof

Note that  and  for each , so the result follows from the general result above.

But there is another martingale that can be associated with the simple random walk, known as De Moivre's martingale and named for one
of the early pioneers of probability theory, Abraham De Moivre.

For  define

Then  is a martingale with respect to .

Proof

Note that

and

So the result follows from the theorem above on partial products.

The Beta-Bernoulli Process

Recall that the beta-Bernoulli process is constructed by randomizing the success parameter in a Bernoulli trials process with a beta
distribution. Specifically we have a random variable  that has the beta distribution with parameters , and a sequence of
indicator variables  such that given ,  is a sequence of independent variables with  for 

. As usual, we couch this in reliability terms, so that  means success on trial  and  means failure. In our study of this
process, we showed that the finite-dimensional distributions are given by
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where we use the ascending power notation  for  and . Next, let  denote the
partial sum process associated with , so that once again,

Of course  is the number of success in the first  trials and has the beta-binomial distribution defined by

Now let

This variable also arises naturally. Let  for . Then as shown in the section on the beta-Bernoulli process, 
. In statistical terms, the second equation means that  is the Bayesian estimator of the unknown

success probability  in a sequence of Bernoulli trials, when  is modeled by the random variable .

 is a martingale with respect to .

Proof

Note that  so  for . Next,

As noted above, . Substituting into the displayed equation above and doing a bit of algebra
we have

Open the beta-Binomial experiment. Run the simulation 1000 times for various values of the parameters, and compare the empirical
probability density function with the true probability density function.

Pólya's Urn Process

Recall that in the simplest version of Pólya's urn process, we start with an urn containing  red and  green balls. At each discrete time
step, we select a ball at random from the urn and then replace the ball and add  new balls of the same color to the urn. For the parameters,
we need  and . For , let  denote the color of the ball selected on the th draw, where 1 means red and 0 means
green. The process  is a classical example of a sequence of exchangeable yet dependent variables. Let 

 denote the partial sum process associated with , so that once again,

Of course  is the total number of red balls selected in the first  draws. Hence at time , the total number of red balls in the urn is 
, while the total number of balls in the urn is  and so the proportion of red balls in the urn is

 is a martingale with respect to .

Indirect proof

If  then  for  so  is a constant martingale. If  then  is equivalent to the beta-Bernoulli process
with parameters  and . Moreover,
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So  is a martingale by the previous theorem.

Direct Proof

Trivially,  so  for . Let . For ,

since  is measurable with respect to . But the probability of selecting a red ball on draw , given the history of the process
up to time , is simply the proportion of red balls in the urn at time . That is,

Substituting and simplifying gives .

Open the simulation of Pólya's Urn Experiment. Run the simulation 1000 times for various values of the parameters, and compare the
empirical probability density function of the number of red ball selected to the true probability density function.

Processes with Independent Increments.

Our first example above concerned the partial sum process  associated with a sequence of independent random variables . Such
processes are the only ones in discrete time that have independent increments. That is, for  with ,  is
independent of . The random walk process has the additional property of stationary increments. That is, the distribution
of  is the same as the distribution of  for  with . Let's consider processes in discrete or continuous
time with these properties. Thus, suppose that  satisfying the basic assumptions above relative to the filtration 

. Here are the two definitions.

The process  has

1. Independent increments if  is independent of  for all  with .
2. Stationary increments if  has the same distribution as  for all .

Processes with stationary and independent increments were studied in the Chapter on Markov processes. In continuous time (with the
continuity assumptions we have imposed), such a process is known as a Lévy process, named for Paul Lévy, and also as a continuous-time
random walk. For a process with independent increments (not necessarily stationary), the connection with martingales depends on the
mean function  given by  for .

Suppose that  has independent increments.

1. If  is increasing then  is a sub-martingale.
2. If  is decreasing then  is a super-martingale.
3. If  is constant then  is a martingale

Proof

The proof is just like the one above for partial sum processes. Suppose that  with . Then

But  is measurable with respect to  and  is independent of  So

Compare this theorem with the corresponding theorem for the partial sum process above. Suppose now that  is a
stochastic process as above, with mean function , and let  for . The process  is
sometimes called the compensated process associated with  and has mean function 0. If  has independent increments, then clearly so
does . Hence the following result is a trivial corollary to our previous theorem.

Suppose that  has independent increments. The compensated process  is a martingale.
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Next we give the second moment martingale for a process with independent increments, generalizing the second moment martingale for a
partial sum process.

Suppose that  has independent increments with constant mean function and and with  for .
Then  is a martingale where

Proof

The proof is essentially the same as for the partial sum process in discrete time. Suppose that  with . Note that 
. Next,

But  is independent of ,  is measurable with respect to , and  so

But also by independence and since  has mean 0,

Putting the pieces together gives

Of course, since the mean function is constant,  is also a martingale. For processes with independent and stationary increments (that is,
random walks), the last two theorems simplify, because the mean and variance functions simplify.

Suppose that  has stationary, independent increments, and let . Then

1.  is a martingale if 
2.  is a sub-martingale if 
3.  is a super-martingale if 

Proof

Recall that the mean function  is given by  for , so the result follows from the corresponding result for a
process with independent increments.

Compare this result with the corresponding one above for discrete-time random walks. Our next result is the second moment martingale.
Compare this with the second moment martingale for discrete-time random walks.

Suppose that  has stationary, independent increments with  and . Then 
 is a martingale where

Proof

Recall that if  then  has constant mean function. Also, , so the result follows from the
corresponding result for a process with independent increments.

In discrete time, as we have mentioned several times, all of these results reduce to the earlier results for partial sum processes and random
walks. In continuous time, the Poisson processes, named of course for Simeon Poisson, provides examples. The standard (homogeneous)
Poisson counting process  with constant rate  has stationary, independent increments and mean function
given by  for . More generally, suppose that  is piecewise continuous (and non-constant). The
non-homogeneous Poisson counting process  with rate function  has independent increments and mean function
given by

The increment  has the Poisson distribution with parameter  for  with , so the process does not
have stationary increments. In all cases,  is increasing, so the following results are corollaries of our general results:
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Let  be the Poisson counting process with rate function . Then

1.  is a sub-martingale
2. The compensated process  is a martinagle.

Open the simulation of the Poisson counting experiment. For various values of  and , run the experiment 1000 times and compare
the empirical probability density function of the number of arrivals with the true probability density function.

We will see further examples of processes with stationary, independent increments in continuous time (and so also examples of continuous-
time martingales) in our study of Brownian motion.

Likelihood Ratio Tests

Suppose that  is a general measure space, and that  is a sequence of independent, identically distributed
random variables, taking values in . In statistical terms,  corresponds to sampling from the common distribution, which is usually not
completely known. Indeed, the central problem in statistics is to draw inferences about the distribution from observations of . Suppose
now that the underlying distribution either has probability density function  or probability density function , with respect to . We
assume that  and  are positive on . Of course the common special cases of this setup are

 is a measurable subset of  for some  and  is -dimensional Lebesgue measure on .
 is a countable set and  is counting measure on .

The likelihood ratio test is a hypothesis test, where the null and alternative hypotheses are

: the probability density function is .
: the probability density function is .

The test is based on the test statistic

known as the likelihood ratio test statistic. Small values of the test statistic are evidence in favor of the alternative hypothesis . Here is
our result.

Under the alternative hypothesis , the process  is a martingale with respect to , known as the likelihood ratio
martingale.

Proof

Let . For ,

Since  is measurable with respect to  and  is independent of . But under , and using the change of
variables formula for expected value, we have

This result also follows essentially from the theorem above on partial products. The sequence  given by 
 for  is independent and identically distributed, and as just shown, has mean 1 under .

Branching Processes

In the simplest model of a branching process, we have a system of particles each of which can die out or split into new particles of the
same type. The fundamental assumption is that the particles act independently, each with the same offspring distribution on . We will let 

 denote the (discrete) probability density function of the number of offspring of a particle,  the mean of the distribution, and  the
probability generating function of the distribution. Thus, if  is the number of children of a particle, then  for , 

, and  defined at least for .

Our interest is in generational time rather than absolute time: the original particles are in generation 0, and recursively, the children a
particle in generation  belong to generation . Thus, the stochastic process of interest is  where  is the
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number of particles in the th generation for . The process  is a Markov chain and was studied in the section on discrete-time
branching chains. In particular, one of the fundamental problems is to compute the probability  of extinction starting with a single particle:

Then, since the particles act independently, the probability of extinction starting with  particles is simply . We will assume that 
 and . This is the interesting case, since it means that a particle has a positive probability of dying without

children and a positive probability of producing more than 1 child. The fundamental result, you may recall, is that  is the smallest fixed
point of  (so that ) in the interval . Here are two martingales associated with the branching process:

Each of the following is a martingale with respect to .

1.  where  for .
2.  where  for .

Proof

Let . For , note that  can be written in the form

where  is a sequence of independent variables, each with PDF  (and hence mean  and PGF ), and with 
independent of . Think of  as the number of children of the th particle in generation .

1. For ,

2. For 

Doob's Martingale

Our next example is one of the simplest, but most important. Indeed, as we will see later in the section on convergence, this type of
martingale is almost universal in the sense that every uniformly integrable martingale is of this type. The process is constructed by
conditioning a fixed random variable on the -algebras in a given filtration, and thus accumulating information about the random variable.

Suppose that  is a filtration on the probability space , and that  is a real-valued random variable with 
. Define  for . Then  is a martingale with respect to .

Proof

For , recall that . Taking expected values gives . Suppose that 
 with . Using the tower property of conditional expected value,

The martingale in the last theorem is known as Doob's martingale and is named for Joseph Doob who did much of the pioneering work on
martingales. It's also known as the Lévy martingale, named for Paul Lévy.

Doob's martingale arises naturally in the statistical context of Bayesian estimation. Suppose that  is a sequence of
independent random variables whose common distribution depends on an unknown real-valued parameter , with values in a parameter
space . For each , let  so that  is the natural filtration associated with . In
Bayesian estimation, we model the unknown parameter  with a random variable  taking values in  and having a specified prior
distribution. The Bayesian estimator of  based on the sample  is

So it follows that the sequence of Bayesian estimators  is a Doob martingale. The estimation referred to in the
discussion of the beta-Bernoulli process above is a special case.
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Density Functions

For this example, you may need to review general measures and density functions in the chapter on Distributions. We start with our
probability space  and filtration  in discrete time. Suppose now that  is a finite measure on the sample space

. For each , the restriction of  to  is a measure on the measurable space , and similarly the restriction of  to 
is a probability measure on . To save notation and terminology, we will refer to these as  and  on , respectively. Suppose
now that  is absolutely continuous with respect to  on  for each . Recall that this means that if  and  then 

 for every  with . By the Radon-Nikodym theorem,  has a density function  with respect to  on 
 for each . The density function of a measure with respect to a positive measure is known as a Radon-Nikodym derivative. The

theorem and the derivative are named for Johann Radon and Otto Nikodym. Here is our main result.

 is a martingale with respect to .

Proof

Let . By definition,  is measurable with respect to . Also,  (the total variation of ) for each . Since
 is a finite measure, . By definition,

On the other hand, if  then  and so . So to summarize,  is -measurable and 
 for all . By definition, this means that , and so  is a martingale with respect

to .

Note that  may not be absolutely continuous with respect to  on  or even on . On the other hand, if  is
absolutely continuous with respect to  on  then  has a density function  with respect to  on . So a natural question in this
case is the relationship between the martingale  and the random variable . You may have already guessed the answer, but at any rate it
will be given in the section on convergence.

This page titled 17.1: Introduction to Martingalges is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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17.2: Properties and Constructions
      

Basic Theory

Preliminaries

As in the Introduction, we start with a stochastic process  on an underlying probability space , having
state space , and where the index set  (representing time) is either  (discrete time) or  (continuous time). Next, we have
a filtration , and we assume that  is adapted to . So  is an increasing family of sub -algebras of  and 
is measurable with respect to  for . We think of  as the collection of events up to time . We assume that 

, so that the mean of  exists as a real number, for each . Finally, in continuous time where , we
make the standard assumptions that  is right continuous and has left limits, and that the filtration  is right continuous and
complete. Please recall the following from the Introduction:

Definitions

1.  is a martingale with respect to  if  for all  with .
2.  is a sub-martingale with respect to  if  for all  with .
3.  is a super-martingale with respect to  if  for all  with .

Our goal in this section is to give a number of basic properties of martingales and to give ways of constructing martingales from
other types of processes. The deeper, fundamental theorems will be studied in the following sections.

Basic Properties

Our first result is that the martingale property is preserved under a coarser filtration.

Suppose that the process  and the filtration  satisfy the basic assumptions above and that  is a filtration coarser than  so
that  for . If  is a martingale (sub-martingale, super-martingale) with respect to  and  is adapted to  then 

 is a martingale (sub-martingale, super-martingale) with respect to .

Proof

Suppose that  with . The proof uses the tower and increasing properties of conditional expected value, and the
fact that  is adapted to 

1. If  is a martingale with respect to  then

2. If  is a sub-martinagle with respect to  then

3. If  is a super-martinagle with respect to  then

In particular, if  is a martingale (sub-martingale, super-martingale) with respect to some filtration, then it is a martingale (sub-
martingale, super-martingale) with respect to its own natural filtration.

The relations that define martingales, sub-martingales, and super-martingales hold for the ordinary (unconditional) expected values.
We had this result in the last section, but it's worth repeating.

Suppose that  with .

1. If  is a martingale with respect to  then .
2. If  is a sub-martingale with respect to  then .
3. If  is a super-martingale with respect to  then .

Proof
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The results follow directly from the definitions, and the critical fact that  for .

So if  is a martingale then  has constant expected value, and this value is referred to as the mean of . The martingale
properties are preserved under sums of the stochastic processes.

For the processes  and , let . If  and  are martingales
(sub-martingales, super-martinagles) with respect to  then  is a martingale (sub-martingale, super-martinagle) with
respect to .

Proof

The results follow easily from basic properties of expected value and conditional expected value. First note that 
 for . Next  for  with

.

The sub-martingale and super-martingale properties are preserved under multiplication by a positive constant and are reversed
under multiplication by a negative constant.

For the process  and the constant , let .

1. If  is a martingale with respect to  then  is also a martingale with respect to 
2. If  is a sub-martingale with respect to , then  is a sub-martingale if , a super-martingale if , and a

martingale if .
3. If  is a super-martingale with respect to , then  is a super-martingale if , a sub-martingale if , and a

martingale if .

Proof

The results follow easily from basic properties of expected value and conditional expected value. First note that 
 for . Next  for  with .

Property (a), together with the previous additive property, means that the collection of martingales with respect to a fixed filtration 
 forms a vector space. Here is a class of transformations that turns martingales into sub-martingales.

Suppose that  takes values in an interval  and that  is convex with  for . If either of
the following conditions holds then  is a sub-martingale with respect to :

1.  is a martingale.
2.  is a sub-martingale and  is also increasing.

Proof

Figure : A convex function and several supporting lines

Here is the most important special case of the previous result:

Suppose again that  is a martingale with respect to . Let  and suppose that  for . Then the

process  is a sub-martingale with respect to 

Proof
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Figure : The graphs of ,  and  on the interval 

In particular, if  is a martingale relative to  then  is a sub-martingale relative to . Here is a related result
that we will need later. First recall that the positive and negative parts of  are  and , so
that , , , and .

Figure : The graph of  on the interval 

If  is a sub-martingale relative to  then  is also a sub-martingale
relative to .

Proof

As shown in the graph above, the function  is increasing and convex on .

Our last result of this discussion is that if we sample a continuous-time martingale at an increasing sequence of time points, we get
a discrete-time martingale.

Suppose again that the process  and the filtration  satisfy the basic assumptions
above. Suppose also that  is a strictly increasing sequence of time points with , and define 

 and  for . If  is a martingale (sub-martingale, super-martingale) with respect to  then 
 is a martingale (sub-martingale, super-martingale) with respect to .

Proof

Since the time points are increasing, it's clear that  is a discrete-time filtration. Next, . Finally,
suppose that  is a martingale and  with . Then  so

Hence  is also a martingale. The proofs for sub and super-martingales are similar, but with inequalities replacing the second
equality.

This result is often useful for extending proofs of theorems in discrete time to continuous time.

The Martingale Transform

Our next discussion, in discrete time, shows how to build a new martingale from an existing martingale and an predictable process.
This construction turns out to be very useful, and has an interesting gambling interpretation. To review the definition, recall that 

 is predictable relative to the filtration  if  is measurable with respect to  for .
Think of  as the bet that a gambler makes on game . The gambler can base the bet on all of the information she has at
that point, including the outcomes of the previous  games. That is, she can base the bet on the information encoded in .
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Suppose that  is adapted to the filtration  and that  is predictable
relative to . The transform of  by  is the process  defined by

The motivating example behind the transfrom, in terms of a gambler making a sequence of bets, is given in an example below.
Note that  is also adapted to . Note also that the transform depends on  only through  and . If 

 is a martingale, this sequence is the martingale difference sequence studied Introduction.

Suppose  is adapted to the filtration  and that  is a bounded
process, predictable relative to .

1. If  is a martingale relative to  then  is also a martingale relative to .
2. If  is a sub-martingle relative to  and  is nonnegative, then  is also a sub-martingale relative to .
3. If  is a super-martingle relative to  and  is nonnegative, then  is also a super-martingale relative to .

Proof

Suppose that  for  where . Then

Next, for ,

since ,  and  are -measurable. The results now follow from the definitions of martingle, sub-martingale,
and super-martingale.

This construction is known as a martingale transform, and is a discrete version of the stochastic integral that we will study in the
chapter on Brownian motion. The result also holds if instead of  being bounded, we have  bounded and  for 

The Doob Decomposition

The next result, in discrete time, shows how to decompose a basic stochastic process into a martingale and a predictable process.
The result is known as the Doob decomposition theorem and is named for Joseph Doob who developed much of the modern theory
of martingales.

Suppose that  satisfies the basic assumptions above relative to the filtration . Then 
 for  where  is a martingale relative to  and  is predictable

relative to . The decomposition is unique.

1. If  is a sub-martingale relative to  then  is increasing.
2. If  is a super-martingale relative to  then  is decreasing.

Proof

Recall that the basic assumptions mean that  is adapted to  and  for . Define 
and

Then  is measurable with respect to  for  so  is predictable with respect to . Now define
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Then  and trivially  for . Next,

Hence  is a martingale. Conversely, suppose that  has the decomposition in terms of  and  given in the theorem. Since 
 is a martingale and  is predictable,

Also  so  uniquely determines . But  for , so  uniquely determines  also.

1. If  is a sub-martingale then  for  so  is increasing.
2. If  is a super-martingale then  for  so  is decreasing.

A decomposition of this form is more complicated in continuous time, in part because the definition of a predictable process is
more subtle and complex. The decomposition theorem holds in continuous time, with our basic assumptions and the additional
assumption that the collection of random variables  is uniformly integrable. The result
is known as the Doob-Meyer decomposition theorem, named additionally for Paul Meyer.

Markov Processes

As you might guess, there are important connections between Markov processes and martingales. Suppose that 
is a (homogeneous) Markov process with state space , relative to the filtration . Let 
denote the collection of transition kernesl of , so that

Recall that (like all probability kernels),  operates (on the right) on (measurable) functions  by the rule

assuming as usual that the expected value exists. Here is the critical definition that we will need.

Suppose that  and that  for .

1.  is harmonic for  if  for .
2.  is sub-harmonic for  if  for .
3.  is super-harmonic for  if  for .

The following theorem gives the fundamental connection between the two types of stochastic processes. Given the similarity in the
terminology, the result may not be a surprise.

Suppose that  and  for . Define .

1.  is harmonic for  if and only if  is a martingale with respect to .
2.  is sub-harmonic for  if and only if  is a sub-martingale with respect to .
3.  is super-harmonic for  if and only if  is a super-martingale with respect to .

Proof

Suppose that  with . Then by the Markov property,

So if  is harmonic,  so  is a martingale. Conversely, if  is a
martingale, then . Letting  and  gives  so  is harmonic. The proofs for sub
and super-martingales are similar, with inequalities replacing the equalities.
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Several of the examples given in the Introduction can be re-interpreted in the context of harmonic functions of Markov chains. We
explore some of these below.

Examples
Let  denote the usual set of Borel measurable subsets of , and for  and  let . Let 
denote the identity function on , so that  for . We will need this notation in a couple of our applications below.

Random Walks

Suppose that  is a sequence of independent, real-valued random variables, with  identically
distributed and having common probability measure  on  and mean . Recall from the Introduction that the partial
sum process  associated with  is given by

and that  is a (discrete-time) random walk. But  is also a discrete-time Markov process with one-step transition kernel  given
by  for  and .

The identity function  is

1. Harmonic for  if .
2. Sub-harmonic for  if .
3. Super-harmonic for  if .

Proof

Note that

Since  and  are independent. The results now follow from the definitions.

It now follows from our theorem above that  is a martingale if , a sub-martingale if , and a super-martingale if .
We showed these results directly from the definitions in the Introduction.

The Simple Random Walk

Suppose now that that  is a sequence of independent random variables with  and 
 for , where . Let  be the partial sum process associated with  so that

Then  is the simple random walk with parameter . In terms of gambling, our gambler plays a sequence of independent and
identical games, and on each game, wins €1 with probability  and loses €1 with probability . So if  is the gambler's initial
fortune, then  is her net fortune after  games. In the Introduction we showed that  is a martingale if , a super-
martingale if , and a sub-martingale if . But suppose now that instead of making constant unit bets, the gambler makes
bets that depend on the outcomes of previous games. This leads to a martingale transform as studied above.

Suppose that the gambler bets  on game  (at even stakes), where  depends on 
and satisfies . So the process  is predictable with respect to , and the gambler's net
winnings after  games is

1.  is a sub-martingale if .
2.  is a super-martingale if .
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3.  is a martingale if .

Proof

These result follow immediately the theorem for martingale transforms above.

The simple random walk  is also a discrete-time Markov chain on  with one-step transition matrix  given by 
, .

The function  given by  for  is harmonic for .

Proof

For ,

It now follows from our theorem above that the process  given by  for  is a martingale.

We showed this directly from the definition in the Introduction. As you may recall, this is De Moivre's martingale and named for
Abraham De Moivre.

Branching Processes

Recall the discussion of the simple branching process from the Introduction. The fundamental assumption is that the particles act
independently, each with the same offspring distribution on . As before, we will let  denote the (discrete) probability density
function of the number of offspring of a particle,  the mean of the distribution, and  the probability generating function of the
distribution. We assume that  and  so that a particle has a positive probability of dying without children
and a positive probability of producing more than 1 child. Recall that  denotes the probability of extinction, starting with a single
particle.

The stochastic process of interest is  where  is the number of particles in the th generation for .
Recall that  is a discrete-time Markov chain on  with one-step transition matrix  given by  for 
where  denotes the convolution power of order  of .

The function  given by  for  is harmonic for .

Proof

For ,

The last expression is the probability generating function of  evaluated at . But this PGF is simply  and  is a fixed
point of  so we have

It now follows from our theorem above that the process  is a martingale where  for . We
showed this directly from the definition in the Introduction. We also showed that the process  is a martingale
where  for . But we can't write  for a function  defined on the state space, so we can't interpret
this martingale in terms of a harmonic function.

General Random Walks

Suppose that  is a stochastic process satisfying the basic assumptions above relative to the filtration 
. Recall from the Introduction that the term increment refers to a difference of the form  for .

Y ⋅X p =

1

2

X Z P

P (x, x+1) = p P (x, x−1) = 1−p

h h(x) = ( )

1−p

p

x

x ∈ Z X

x ∈ Z

Ph(x) = ph(x+1)+(1−p)h(x−1) = p +(1−p)( )

1−p

p

x+1

( )

1−p

p

x−1

+ = [(1−p)+p] = h(x)

(1−p)

x+1

p

x

(1−p)

x

p

x−1

( )

1−p

p

x

Z = { : n ∈ N}Z

n

=Z

n

( )

1−p

p

X

n

n ∈ N

N f

m ϕ

f(0) > 0 f(0)+f(1) < 1

q

X = { : n ∈ N}X

n

X

n

n n ∈ N

X N P P (x, y) = (y)f

∗x

x, y ∈ N

f

∗x

x f

h h(x) = q

x

x ∈ N X

x ∈ N

Ph(x) = P (x, y)h(y) = (y)∑

y∈N

∑

y∈N

f

∗x

q

y

(17.2.16)

f

∗x

q ϕ

x

q

ϕ

Ph(x) = [ϕ(q) = = h(x)]

x

q

x

(17.2.17)

Z = { : n ∈ N}Z

n

=Z

n

q

X

n

n ∈ N

Y = { : n ∈ N}Y

n

= /Y

n

X

n

m

n

n ∈ N = h( )Y

n

X

n

h

X = { : t ∈ T}X

t

F= { : t ∈ T}F

t

−X

s+t

X

s

s, t ∈ T

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10300?pdf


17.2.8 https://stats.libretexts.org/@go/page/10300

The process  has independent increments if this increment is always independent of , and has stationary increments this
increment always has the same distribution as . In discrete time, a process with stationary, independent increments is
simply a random walk as discussed above. In continuous time, a process with stationary, independent increments (and with the
continuity assumptions we have imposed) is called a continuous-time random walk, and also a Lévy process, named for Paul Lévy.

So suppose that  has stationary, independent increments. For  let  denote the probability distribution of  on 
, so that  is also the probability distribution aof  for every . From our previous study, we know that 

 is a Markov processes with transition kernel  at time  given by

We also know that  for  where  (assuming of course that the last expected value exists in 
).

The identity function  is .

1. Harmonic for  if .
2. Sub-harmonic for  if .
3. Super-harmonic for  if .

Proof

Note that

since  is independent of . The results now follow from the definitions.

It now follows that  is a martingale if , a sub-martingale if , and a super-martingale if . We showed this directly
in the Introduction. Recall that in continuous time, the Poisson counting process has stationary, independent increments, as does
standard Brownian motion

This page titled 17.2: Properties and Constructions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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17.3: Stopping Times
     

Basic Theory

As in the Introduction, we start with a stochastic process  on an underlying probability space , having
state space , and where the index set  (representing time) is either  (discrete time) or  (continuous time). Next, we have
a filtration , and we assume that  is adapted to . So  is an increasing family of sub -algebras of  and 
is measurable with respect to  for . We think of  as the collection of events up to time . We assume that 

, so that the mean of  exists as a real number, for each . Finally, in continuous time where , we
make the standard assumption that  is right continuous and has left limits, and that the filtration  is right continuous and
complete.

Our general goal in this section is to see if some of the important martingale properties are preserved if the deterministic time 
 is replaced by a (random) stopping time. Recall that a random time  with values in  is a stopping time relative to 

if  for . So a stopping time is a random time that does not require that we see into the future. That is, we can
tell if  from the information available at time . Next recall that the -algebra associated with the stopping time  is

So  is the collection of events up to the random time  just as  is the collection of events up to the deterministic time .
In terms of a gambler playing a sequence of games, the time that the gambler decides to stop playing must be a stopping time, and
in fact this interpretation is the origin of the name. That is, the time when the gambler decides to stop playing can only depend on
the information that the gambler has up to that point in time.

Optional Stopping

The basic martingale equation  for  with  can be generalized by replacing both  and  by
bounded stopping times. The result is known as the Doob's optional stopping theorem and is named again for Joseph Doob.
Suppose that  satisfies the basic assumptions above with respect to the filtration 

Suppose that are bounded stopping times relative to  with .

1. If  is a martingale relative to  then .
2. If  is a sub-martingale relative to  then .
3. If  is a super-martingale relative to  then .

Proof in discrete time
1. Suppose that  where  and let . For  with , . Hence by the martingale

property,

Since  is an upper bound on , the events  for  partition , so summing the displayed
equation over  gives . By definition of conditional expectation, . But since  is
also an upper bound for  we also have . Finally using the tower property we have

2. If  is a sub-martingale, then by the Doob decomposition theorem,  for  where 
is a martingale relative to  and  is increasing and is predictable relative to . So

But  by part (a) and since  is increasing, . Hence .
3. The proof when  is a super-martingale is just like (b), except that the process  is decreasing.

Proof in continuous time

Suppose that  is a martingale. We need to show that  for every . Let  and 
 for . The stopping times  and  take values in a countable set  for each , and  and 
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 as . The process  is a discrete-time martingale for each . By the right continuity of ,

Suppose next that  where  so that  also. Then  and  for  so the discrete
stopping times are uniformly bounded. From the discrete version of the theorem,  and 

 for . It then follows that the sequences  and  are uniformly
integrable and hence  and  as  in mean as well as with probability 1. Now let . Since 

,  and so  for each . By the theorem in discrete time,

Letting  gives . The proofs in parts (b) and (c) are as in the discrete time.

The assumption that the stopping times are bounded is critical. A counterexample when this assumption does not hold is given
below. Here are a couple of simple corollaries:

Suppose again that  and  are bounded stopping times relative to  with .

1. If  is a martingale relative to  then .
2. If  is a sub-martingale relative to  then .
3. If  is a super-martingale relative to  then .

Proof

Recall that , so the results are immediate from the optional stopping theorem.

Suppose that  is a bounded stopping time relative to .

1. If  is a martingale relative to  then .
2. If  is a sub-martingale relative to  then .
3. If  is a super-martingale relative to  then .

The Stopped Martingale

For our next discussion, we first need to recall how to stop a stochastic process at a stopping time.

Suppose that  satisfies the assumptions above and that  is a stopping time relative to the filtration . The stopped proccess 
 is defined by

Details

In continuous time, our standard assumptions ensure that  is a valid stochastic process and is adapted to . That is,  is
measurable with respect to  for each . Moreover,  is also right continuous and has left limits.

So  if  and  if . In particular, note that . If  is the fortune of a gambler at time ,
then  is the revised fortune at time  when  is the stopping time of the gamber. Our next result, known as the elementary
stopping theorem, is that a martingale stopped at a stopping time is still a martingale.

Suppose again that  satisfies the assumptions above, and that  is a stopping time relative to .

1. If  is a martingale relative to  then so is .
2. If  is a sub-martingale relative to  then so is .
3. If  is a super-martingale relative to  then so is .

General proof

If  with  then  and  are bounded stopping times with . So the results follows
immediately from the optional stopping theorem above.

Special proof in discrete time
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In discrete time, there is a simple direct proof using the martingale transform. So suppose that  and define the process 
 by

By definition of a stopping time,  for , so the process  is predictable. Of course,  is a
bounded, nonnegative process also. The transform of  by  is

But note that  if  and  if . That is, 
. Hence

But if  is a martingale (sub-martingale) (super-martingale), then so is the transform .

The elementary stopping theorem is bad news for the gambler playing a sequence of games. If the games are fair or unfavorable,
then no stopping time, regardless of how cleverly designed, can help the gambler. Since a stopped martingale is still a martingale,
the the mean property holds.

Suppose again that  satisfies the assumptions above, and that  is a stopping time relative to . Let .

1. If  is a martingale relative to  then 
2. If  is a sub-martingale relative to  then 
3. If  is a super-martingale relative to  then 

Optional Stopping in Discrete Time

A simple corollary of the optional stopping theorem is that if  is a martingale and  a bounded stopping time, then 
 (with the appropriate inequalities if  is a sub-martingale or a super-martingale). Our next discussion centers on

other conditions which give these results in discrete time. Suppose that  satisfies the basic assumptions above
with respect to the filtration , and that  is a stopping time relative to .

Suppose that  is bounded uniformly in  and that  is finite.

4. If  is a martingale then .
5. If  is a sub-martingale then .
6. If  is a super-martingale then .

Proof

Assume that  is a super-martingale. The proof for a sub-martingale are similar, and then the results follow immediately for a
martingale. The main tool is the mean property above for the stopped super-martingale:

Since  with probability 1,  as , also with probability 1. Since  is bounded in , it follows
from the bounded convergence theorem that  as . Letting  in the displayed equation gives 

.

Suppose that  is bounded uniformly in  and that .

4. If  is a martingale then .
5. If  is a sub-martingale then .
6. If  is a super-martingale then .

Proof

T =N

Y = { : n ∈ }Y

n

N

+

= 1(τ ≥ n) = 1−1(τ ≤ n−1), n ∈Y

n

N

+

(17.3.8)

{τ ≤ n−1} ∈F

n−1

n ∈ N

+

Y Y

X Y

(Y ⋅X = + ( − ) = + 1(τ ≥ k)( − ), n ∈)

n

X

0

∑

k=1

n

Y

k

X

k

X

k−1

X

0

∑

k=1

n

X

k

X

k−1

N

+

(17.3.9)

− = −X

τ

k

X

τ

k−1

X

k

X

k−1

τ ≥ k − = − = 0X

τ

k

X

τ

k−1

X

τ

X

τ

τ < k

− = 1(τ ≥ k)( − )X

τ

k

X

τ

k−1

X

k

X

k−1

(Y ⋅X = + ( − ) = + − = , n ∈)

n

X

0

∑

k=1

n

X

τ

k

X

τ

k−1

X

0

X

τ

n

X

τ

0

X

τ

n

N

+

(17.3.10)

X Y ⋅X =X

τ

X τ F t ∈ T

X F E( ) =E( )X

t∧τ

X

0

X F E( ) ≥E( )X

t∧τ

X

0

X F E( ) ≤E( )X

t∧τ

X

0

X τ

E( ) =E( )X

τ

X

0

X

X = { : n ∈ N}X

n

F= { : n ∈ N}F

n

τ F

| |X

n

n ∈ N τ

X E( ) =E( )X

τ

X

0

X E( ) ≥E( )X

τ

X

0

X E( ) ≤E( )X

τ

X

0

X

E( ) ≤E( ), n ∈ NX

τ∧n

X

0

(17.3.11)

τ <∞ τ ∧n→ τ n→∞ | |X

n

n ∈ T

E( ) → E( )X

τ∧n

X

τ

n→∞ n→∞

E( ) ≤E( )X

τ

X

0

| − |X

n+1

X

n

n ∈ N E(τ) <∞

X E( ) =E( )X

τ

X

0

X E( ) ≥E( )X

τ

X

0

X E( ) ≤E( )X

τ

X

0

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10301?pdf


17.3.4 https://stats.libretexts.org/@go/page/10301

Assume that  is a super-martingale. The proofs for a sub-martingale are similar, and then the results follow immediately for a
martingale. The main tool once again is the mean property above for the stopped super-martingale:

Suppose that  where . Then

Hence . Since  we know that  with probability 1, so as before,  as .
Also  so by the dominated convergence theorem,  as . So again letting 

 in the displayed equation gives .

Let's return to our original interpretation of a martingale  representing the fortune of a gambler playing fair games. The gambler
could choose to quit at a random time , but  would have to be a stopping time, based on the gambler's information encoded in the
filtration . Under the conditions of the theorem, no such scheme can help the gambler in terms of expected value.

Examples and Applications

The Simple Random Walk

Suppose that  is a sequence if independent, identically distributed random variables with  and 
 for , where . Let  be the partial sum process associated with  so

that

Then  is the simple random walk with parameter . In terms of gambling, our gambler plays a sequence of independent and
identical games, and on each game, wins €1 with probability  and loses €1 with probability . So  is the the gambler's total
net winnings after  games. We showed in the Introduction that  is a martingale if  (the fair case), a sub-martingale if 

 (the favorable case), and a super-martingale if  (the unfair case). Now, for , let

where as usual, . So  is the first time that the gambler's fortune reaches . What if the gambler simply continues
playing until her net winnings is some specified positive number (say €  )? Is that a workable strategy?

Suppose that  and that .

1. 
2. 
3. 

Proof

Parts (a) and (c) hold since  is a null recurrent Markov chain. Part (b) follows from (a) since trivially  if .

Note that part (b) does not contradict the optional stopping theorem because of part (c). The strategy of waiting until the net
winnings reaches a specified goal  is unsustainable. Suppose now that the gambler plays until the net winnings either falls to a
specified negative number (a loss that she can tolerate) or reaches a specified positive number (a goal she hopes to reach).

Suppose again that . For , let . Then

1. 
2. 
3. 

Proof
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1. We will let  have an arbitrary value in the set , so that we can use Markov chain techniques.
Let  for  in this set. Conditioning on the first state and using the Markov property we have

with boundary conditions . The linear recurrence relation can be solved explicitly, but all that we care
about is the fact that the solution is finite.

2. The optional sampling theorem applies, so .
3. Let  so that . By definition,  if  and  if . So

from (b),  and therefore .

So gambling until the net winnings either falls to  or reaches  is a workable strategy, but alas has expected value 0. Here's
another example that shows that the first version of the optional sampling theorem can fail if the stopping times are not bounded.

Suppose again that . Let  with . Then  but

Proof

Since , the process  must reach  before reaching . As before,  but  since  is a null recurrent
Markov chain.

This result does not contradict the optional stopping theorem since the stopping times are not bounded.

Wald's Equation

Wald's equation, named for Abraham Wald is a formula for the expected value of the sum of a random number of independent,
identically distributed random variables. We have considered this before, in our discussion of conditional expected value and our
discussion of random samples, but martingale theory leads to a particularly simple and elegant proof.

Suppose that  is a sequence of independent, identically distributed variables with common mean .
If  is a stopping time for  with  then

Proof

Let  denote the natural filtration associated with . Let , so that by assumption, . Finally, let

Then  is a martingale relative to , with mean 0. Note that

Hence a discrete version of the optional stopping theorem applies and we have . Therefore

Patterns in Multinomial Trials

Patterns in multinomial trials were studied in the chapter on Renewal Processes. As is often the case, martingales provide a more
elegant solution. Suppose that  is a sequence of independent, identically distributed random variables taking
values in a finite set , so that  is a sequence of multinomial trials. Let  denote the common probability density function so that
for a generic trial variable , we have  for . We assume that all outcomes in  are actually possible, so 

 for .
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In this discussion, we interpret  as an alphabet, and we write the sequence of variables in concatenation form, 
rather than standard sequence form. Thus the sequence is an infinite string of letters from our alphabet . We are interested in the
first occurrence of a particular finite substring of letters (that is, a “word” or “pattern”) in the infinite sequence. The following
definition will simplify the notation.

If  is a word of length  from the alphabet , define

so  is the probability of  consecutive trials producing word .

So, fix a word  of length  from the alphabet , and consider the number of trials  until  is completed.
Our goal is compute . We do this by casting the problem in terms of a sequence of gamblers playing fair games and
then using the optional stopping theorem above. So suppose that if a gambler bets  on a letter  on a trial, then the
gambler wins  if  occurs on that trial and wins 0 otherwise. The expected value of this bet is

and so the bet is fair. Consider now a gambler with an initial fortune 1. When she starts playing, she bets 1 on . If she wins, she
bet her entire fortune  on the next trial on . She continues in this way: as long as she wins, she bets her entire fortune on
the next trial on the next letter of the word, until either she loses or completes the word . Finally, we consider a sequence of
independent gamblers playing this strategy, with gambler  starting on trial  for each .

For a finite word  from the alphabet ,  is the total winnings by all of the players at time .

Proof

Let  denote the total fortunes of all of the gamblers after trial . Since all of the bets are fair,  is
a martingale with mean 0. We will show that the conditions in the discrete version of the optional sampling theorem hold. First,
consider disjoint blocks of trials of length , that is

Let  denote the index of the first such block that forms the letter . This variable has the geometric distribution on  with
success parameter  and so in particular, . But clearly  so . Next note
that all of the gamblers have stopped playing by time , so clearly  for . So the optional
stopping theorem applies, and hence . But note that  can also be interpreted as the expected amount of
money invested by the gamblers (1 unit at each time until the game ends at time ), and hence this must also be the total
winnings at time  (which is deterministic).

Given , we can compute the total winnings precisely. By definition, trials  form the word  for the first time.
Hence for , gambler  loses at some point. Also by definition, gambler  wins all of her bets, completes word 

 and so collects . The complicating factor is that gamblers  may or may not have won all of their bets
at the point when the game ends. The following exercise illustrates this.

Suppose that  is a sequence of Bernoulli trials (so ) with success probability . For each of the following
strings, find the expected number of trials needed to complete the string.

1. 001
2. 010

Solution

Let .

1. For the word 001, gambler  wins  on her three bets. Gambler  makes two bets, winning the first but losing

the second. Gambler  loses her first (and only) bet. Hence 
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2
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a
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k
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2. For the word 010, gambler  wins  on her three bets as before. Gambler  loses his first bet. Gambler  wins

 on his first (and only) bet. So 

The difference between the two words is that the word in (b) has a prefix (a proper string at the beginning of the word) that is also a
suffix (a proper string at the end of the word). Word  has no such prefix. Thus we are led naturally to the following dichotomy:

Suppose that  is a finite word from the alphabet . If no proper prefix of  is also a suffix, then  is simple. Otherwise,  is
compound.

Here is the main result, which of course is the same as when the problem was solved using renewal theory.

Suppose that  is a finite word in the alphabet .

1. If  is simple then .
2. If  is compound, then  where  is the longest word that is both a prefix and a suffix of .

Proof

The ingredients are in place from our previous discussion. Suppose that  has length .

1. If  is simple, only player  wins, and she wins .
2. Suppose  is compound and  is the largest proper prefix-suffix. player  wins  as always. The winnings

of players  are the same as the winnings of a new sequence of gamblers playing a new sequence of trials
with the goal of reaching word .

For a compound word, we can use (b) to reduce the computation to simple words.

Consider Bernoulli trials with success probability . Find the expected number of trials until each of the following
strings is completed.

1. 
2.  (  times)

Solutions

Again, let .

1. 

2. Let  denote a string of  1s for . If  then . Hence

Recall that an ace-six flat die is a six-sided die for which faces 1 and 6 have probability  each while faces 2, 3, 4, and 5 have
probability  each. Ace-six flat dice are sometimes used by gamblers to cheat.

Suppose that an ace-six flat die is thrown repeatedly. Find the expected number of throws until the pattern  occurs.

Solution

From our main theorem,

Suppose that a monkey types randomly on a keyboard that has the 26 lower-case letter keys and the space key (so 27 keys).
Find the expected number of keystrokes until the monkey produces each of the following phrases:
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1. it was the best of times
2. to be or not to be

Solution

1. 
2. 

The Secretary Problem

The secretary problem was considered in the chapter on Finite Sampling Models. In this discussion we will solve a variation of the
problem using martingales. Suppose that there are  candidates for a job, or perhaps potential marriage partners. The
candidates arrive sequentially in random order and are interviewed. We measure the quality of each candidate by a number in the
interval . Our goal is to select the very best candidate, but once a candidate is rejected, she cannot be recalled. Mathematically,
our assumptions are that the sequence of candidate variables  is independent and that each is uniformly
distributed on the interval  (and so has the standard uniform distribution). Our goal is to select a stopping time  with respect
to  that maximizes , the expected value of the chosen candidate. The following sequence will play a critical role as a
sequence of thresholds.

Define the sequence  by  and  for . Then

1.  for .
2.  for .
3.  as .
4. If  is uniformly distributed on  then  for .

Proof

1. Note that . Suppose that  for some . Then 
2. Note that . Suppose that  for some . Then .
3. Since the sequence is increasing and bounded above,  exists. Taking limits in the recursion relation gives 

 or equivalently .
4. For ,

Since , all of the terms of the sequence are in  by (a). Approximations of the first 10 terms are

Property (d) gives some indication of why the sequence is important for the secretary probelm. At any rate, the next theorem gives
the solution. To simplify the notation, let  and .

The stopping time  is optimal for the secretary problem with  candidates. The optimal value
is .

Proof

Let  be the natural filtration of , and suppose that  is a stopping time for . Define 
 by  and  for . We will show that  is a super-martingale with respect

to . First, on the event ,

where we have used the fact that  is measurable with respect to  and the fact that the sequence  is
increasing. On the event ,

where we have used the fact that  and  are independent, and part (d) of the previous result. Since  is a super-
martingale and  is bounded, the optional stopping theorem applies and we have
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so  is an upper bound on the expected value of the candidate chosen by the stopping time .

Next, we will show that in the special case that , the process  is a martingale. On the event  we have 
 as before. But by definition,  so on this event,

On the event  we have  as before. But on this event, . Now since  is a
martingale and  is bounded, the optional stopping theorem applies and we have

Here is a specific example:

For , the decision rule is as follows:

1. Select candidate 1 if ; otherwise,
2. select candidate 2 if ; otherwise,
3. select candidate 3 if ; otherwise,
4. select candidate 4 if ; otherwise,
5. select candidate 5.

The expected value of our chosen candidate is 0.775.

In our original version of the secretary problem, we could only observe the relative ranks of the candidates, and our goal was to
maximize the probability of picking the best candidate. With , the optimal strategy is to let the first two candidates go by and
then pick the first candidate after that is better than all previous candidates, if she exists. If she does not exist, of course, we must
select candidate 5. The probability of picking the best candidate is 0.433

This page titled 17.3: Stopping Times is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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17.4: Inequalities
        

Basic Theory

In this section, we will study a number of interesting inequalities associated with martingales and their sub-martingale and super-
martingale cousins. These turn out to be very important for both theoretical reasons and for applications. You many need to review
infimums and supremums.

Basic Assumptions

As in the Introduction, we start with a stochastic process  on an underlying probability space , having
state space , and where the index set  (representing time) is either  (discrete time) or  (continuous time). Next, we have
a filtration , and we assume that  is adapted to . So  is an increasing family of sub -algebras of  and 
is measurable with respect to  for . We think of  as the collection of events up to time . We assume that 

, so that the mean of  exists as a real number, for each . Finally, in continuous time where , we
make the standard assumptions that  is right continuous and has left limits, and that the filtration  is right continuous and
complete.

Maximal Inequalites

For motivation, let's review a modified version of Markov's inequality, named for Andrei Markov.

If  is a real-valued random variable then

Proof

The modified version has essentially the same elegant proof as the original. Clearly

Taking expected values through the inequality gives . Dividing both sides by  gives the result
(and it is at this point that we need ).

So Markov's inequality gives an upper bound on the probability that  exceeds a given positive value , in terms of a monent of 
. Now let's return to our stochastic process . To simplify the notation, let  for .

Here is the main definition:

For the process , define the corresponding maximal process  by

Clearly, the maximal process is increasing, so that if  with  then . A trivial application of Markov's
inequality above would give

But when  is a sub-martingale, the following theorem gives a much stronger result by replacing the first occurrent of  on the
right with . The theorem is known as Doob's sub-martingale maximal inequality (or more simply as Doob's inequaltiy), named
once again for Joseph Doob who did much of the pioneering work on martingales. A sub-martingale has an increasing property of
sorts in the sense that if  with  then , so it's perhaps not entirely surprising that such a bound is
possible.

Suppose that  is a sub-martingale. For , let . Then
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Proof in the discrete time

So  and the maximal process is given by  for . Let , and define 
 where as usual, . The random time  is a stopping time relative to . Moreover,

the processes  and  are inverses in the sense that for  and ,

We have seen this type of duality before—in the Poisson process and more generally in renewal processes. Let . First
note that

If  then . On the other hand if  then . So we have

Similarly,

But by the optional stopping theorem, . Hence we have

Subtracting the common term and then dividing both sides by  gives the result

Proof in continuous time

For , let  denote the set of nonnegative dyadic rationals (or binary rationals) of rank  or less. For 
 let , so that  is the finite set of such dyadic rationals that are less than , with  added to

the set. Note that  has an ordered enumeration, so  is a discrete-time sub-martingale for each .
Let  for . Note that  for  and for  with  and
therefore . It follows that for ,

The set  of all nonnegative dyadic rationals is dense in  and so since  is right continuous and has left limits, it
follows that if  then  for some . That is, we have

The maximal inequality applies to the discrete-time sub-martingale  and so

for each . By the monotone convergence theorem, the left side converges to  as  and the right side
converges to  as .

There are a number of simple corollaries of the maximal inequality. For the first, recall that the positive part of  is 
, so that  if  and  if .

Suppose that  is a sub-martingale. For , let . Then

Proof

Recall that since  is a sub-martingale and  is increasing and convex,  is also a sub-martingale.
Hence the result follows from the general maximal inequality for sub-martingales.
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As a further simple corollary, note that

This is sometimes how the maximal inequality is given in the literature.

Suppose that  is a martingale. For , let . Then

Proof

Recall that since  is a martingale, and  is convex,  is a sub-martingale. Hence the result
follows from the general maximal inequality for sub-martingales.

Once again, a further simple corollary is

Next recall that for , the -norm of a real-valued random variable  is , and the vector space 

consists of all real-valued random variables for which this norm is finite. The following theorem is the norm version of the Doob's
maximal inequality.

Suppose again that  is a martingale. For , let . Then for ,

Proof

Fix . If , the inequality trivial holds, so assume that , and thus that . The proof
relies fundamentally on Hölder's inequality, and for that inequality to work, we need to truncate the variable  and consider
instead the the bounded random variable  where . First we need to show that

If , both sides are 0. If ,  and so from the maximal inequality above,

Next recall that

Applying the inequality gives

By Fubini's theorem we can interchange the expected value and the integral which gives

But  and  where  is the exponent conjugate to . So an application of Hölder's
inequality gives
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where we have used the simple fact that . Dividing by this factor gives

Finally,  as  by the monotone convergence theorem. So letting  in the last displayed
equation gives

Once again,  is the maximal process associated with . As noted in the proof, 
 is the exponent conjugate to , satisfying . So this version of the maximal inequality states that the 

 norm of the maximum of the martingale  on  is bounded by  times the  norm of , where  and  are conjugate
exponents. Stated just in terms of expected value, rather than norms, the  maximal inequality is

Our final result in this discussion is a variation of the maximal inequality for super-martingales.

Suppose that  is a nonnegative super-martingale, and let . Then

Proof

Let  for . Since  is a super-martingale,  is a sub-martinagle. And since  is nonnegative,  for 
. Let  for . By the maximal inequality for sub-martingales, and since

 is a super-martingale we have for ,

Next note that  as . Let  and . If  then  for sufficiently large .
Hence

Using the continuity theorem for increasing events, and our result above we have

Since this holds for all , it follows that .

The Up-Crossing Inequality

The up-crossing inequality gives a bound on how much a sub-martingale (or super-martingale) can oscillate, and is the main tool in
the martingale convergence theorems that will be studied in the next section. It should come as no surprise by now that the
inequality is due to Joseph Doob. We start with the discrete-time case.

Suppose that  is a sequence of real numbers, and that  with . Define  and then
recursively define

1. The number of up-crossings of the interval  by the sequence  up to time  is
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2. The total number of up-crossings of the interval  by the sequence  is

Details

As usual, we define . Note that if  for , then  is the th up-crossing
of the interval  by the sequence .

So informally, as the name suggests,  is the number of times that the sequence  goes from a value below
 to one above , and  is the number of times the entire sequence  goes from a value below  to one above . Here are a

few of simple properties:

Suppose again that  is a sequence of real numbers and that  with .

1.  is increasing in .
2.  as .
3. If  with  then  for , and .

Proof
1. Note that .
2. Note that .
3. Every up-crossing of  is also an up-crossing of .

The importance of the definitions is found in the following theorem. Recall that  is the set of extended real
numbers, and  is the set of rational real numbers.

Suppose again that  is a sequence of real numbers. Then  exists in  is and only if 
 for every  with .

Proof

We prove the contrapositive. Note that the following statements are equivalent:

1.  does not exist in in .
2. .
3. There exists  with  and with  for infinitely many  and  for infinitely many .
4. There exists  with  and .

Clearly the theorem is true with  replaced with , but the countability of  will be important in the martingale convergence
theorem. As a simple corollary, if  is bounded and  for every  with , then  converges in . The
up-crossing inequality for a discrete-time martingale  gives an upper bound on the expected number of up-crossings of  up to
time  in terms of a moment of .

Suppose that  satisfies the basic assumptions with respect to the filtration , and let 
 with . Let , the random number of up-crossings of  by  up to time .

1. If  is a super-martingale relative to  then

2. If  is a sub-martingale relative to  then

Proof

In the context of the up-crossing definition above, let  and . These are the random times that define
the up-crossings of . Let  and then define . To understand the sum, let's take cases for
the th term :
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If  then . By definition, the first  terms are of this form.
If  then . There is at most one such term, with index .
If  then .

Hence  and so  Next note that 
 and  are bounded stopping times and of course .

1. If  is a super-martingale, it follows from the optional stopping theorem that

and therefore . Finally, . Taking expected values gives

The remaining parts of the inequality follow since  for .

Additional details

The process  in the proof can be viewed as a transform of  by a predictable process.
Specifically, for , let  if  for some , and let  otherwise. Since  and  are stopping
times, note that  for . Hence the process  is predictable with respect to .
Moreover, the transform of  by  is

Since  is a nonnegative process, if  is a martingale (sub-martingale, super-martingale), then  is also a martingale (sub-
martingale, super-martingale).

Of course if  is a martingale with respect to  then both inequalities apply. In continuous time, as usual, the concepts are more
complicated and technical.

Suppose that  and that that  with .

1. If  is finite, define  and then recursively define

The number of up-crossings of the interval  by the function  restricted to  is

2. If  is infinte, the number of up-crossings of the interval  by  restricted to  is

To simplify the notation, we will let , the number of up-crossings of  by  on , and 
, the total number of up-crossings of  by . In continuous time, the definition of up-crossings is

built out of finte subsets of  for measurability concerns, which arise when we replace the deterministic function  with a
stochastic process . Here are the simple properties that are analogous to our previous ones.

Suppose again that  and that  with .

1. If  with , then .
2. If  is an increasing sequence of sets in  and  then  as .
3. If  with  and  then .

Proof
1. The result follows easily from the definitions if  is finite (and  either finite or infinite). If  is infinite (and hence so is 
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2. Since  is increasing in  (in the subset partial order), note that if  is finite, then  if and only if 
 for some .

3. Every up-crossing of  is an up-crossing of .

The following result is the reason for studying up-crossings in the first place. Note that the definition built from finite set is
sufficient.

Suppose that . Then  exists in  if and only if  for every  with .

Proof

As in the discrete-time case, we prove the contrapositive. The proof is almost the same: The following statements are
equivalent:

1.  does not exist in in .
2. .
3. There exists  with  and there exists  with  for  and  for .
4. There exists  with  and .

Finally, here is the up-crossing inequality for martingales in continuous time. Once again, the inequality gives a bound on the
expected number of up-crossings.

Suppose that  satisfies the basic assumptions with respect to the filtration , and
let  with . Let , the random number of up-crossings of  by  up to time .

1. If  is a super-martingale relative to  then

2. If  is a sub-martingale relative to  then

Proof

Suppose that  is a sub-martingale; the proof for a super-martingale is analogous. Fix  and  with .
For  let , the number of up-crossings of  by  restricted to . Suppose that  is finite and
that  is the maximum of . Since  restricted to  is also a sub-martingale, the discrete-time up-crossing theorem applies
and so

Since , there exists finite  for  with  as . In particular,  is
measurable. By property (a) in the theorem above, there exists such a sequence with  increasing in  and  for each 

. By the monotone convergence theorem,  as . So by the displayed equation above,

Examples and Applications

Kolmogorov's Inequality

Suppose that  is a sequence of independent variables with  and  for 
. Let  be the partial sum process associated with , so that
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From the Introduction we know that  is a martingale. A simple application of the maximal inequality gives the following result,
which is known as Kolmogorov's inequality, named for Andrei Kolmogorov.

For , let . Then

Proof

As noted above,  is a martingale. Since the function  on  is convex,  is a sub-martingale. Let 
 for , and let . Applying the maximal inequality for sub-martingales we have

Finally, since  is an independent sequence,

Red and Black

In the game of red and black, a gambler plays a sequence of Bernoulli games with success parameter  at even stakes. The
gambler starts with an initial fortune  and plays until either she is ruined or reaches a specified target fortune , where 

 with . When , so that the games are fair or unfair, an optimal strategy is bold play: on each game, the
gambler bets her entire fortune or just what is needed to reach the target, whichever is smaller. In the section on bold play we
showed that when , so that the games are fair, the probability of winning (that is, reaching the target  starting with ) is 

. We can use the maximal inequality for super-martingales to show that indeed, one cannot do better.

To set up the notation and review various concepts, let  denote the gambler's initial fortune and let  denote the outcome of
game , where 1 denotes a win and  a loss. So  is a sequence of independent variables with 

 and  for . (The initial fortune  has an unspecified distribution on .) The
gambler is at a casino after all, so of course . Let

so that  is the partial sum process associated with . Recall that  is also known as the
simple random walk with parameter , and since , is a super-martingale. The process  is the difference
sequence associated with . Next let  denote the amount that the gambler bets on game . The process 

 is predictable with respect to , so that  is measurable with respect to 
 for . So the gambler's fortune after  games is

Recall that  is the transform of  with , denoted . The gambler is not allowed to go into debt
and so we must have  for : the gambler's bet on game  cannot exceed her fortune after game . What's
the probability that the gambler can ever reach or exceed the target  starting with fortune ?

Let . Suppose that  with  and that . Then

Proof
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Since  is a super-martingale and  is nonnegative, the transform  is also a super-martingale. By the inequality
for nonnegative super-martingales above:

Note that the only assumptions made on the gambler's sequence of bets  is that the sequence is predictable, so that the gambler
cannot see into the future, and that gambler cannot go into debt. Under these basic assumptions, no strategy can do any better than
bold play. However, there are strategies that do as well as bold play; these are variations on bold play.

Open the simulation of the red and black game. Select bold play and . Play the game with various values of initial and
target fortunes.

This page titled 17.4: Inequalities is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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17.5: Convergence
      

Basic Theory

Basic Assumptions

As in the Introduction, we start with a stochastic process  on an underlying probability space , having
state space , and where the index set  (representing time) is either  (discrete time) or  (continuous time). Next, we have
a filtration , and we assume that  is adapted to . So  is an increasing family of sub -algebras of  and 
is measurable with respect to  for . We think of  as the collection of events up to time . We assume that 

, so that the mean of  exists as a real number, for each . Finally, in continuous time where , we
need the additional assumptions that  is right continuous and has left limits, and that the filtration  is standard (that is,
right continuous and complete). Recall also that , and this is the -algebra that encodes our information over
all time.

The Martingale Convergence Theorems

If  is a sub-martingale relative to  then  has an increasing property of sorts:  for  with .
Similarly, if  is a super-martingale relative to  then  has a decreasing property of sorts, since the last inequality is reversed.
Thus, there is hope that if this increasing or decreasing property is coupled with an appropriate boundedness property, then the sub-
martingale or super-martingale might converge, in some sense, as . This is indeed the case, and is the subject of this section.
The martingale convergence theorems, first formulated by Joseph Doob, are among the most important results in the theory of
martingales. The first martingale convergence theorem states that if the expected absolute value is bounded in the time, then the
martingale process converges with probability 1.

Suppose that  is a sub-martingale or a super-martingale with respect to  and that 
is bounded in . Then there exists a random variable  that is measurable with respect to  such that 
and  as  with probability 1.

Proof

The proof is simple using the up-crossing inequality. Let  for . For  with , let 
 denote the number of up-crossings of the interval  by the process  on , and let  denote the number

of up-crossings of  by  on . Recall that  as . Suppose that  for , where .
By the up-crossing inequality,

By the monotone convergence theorem, it follows that

Hence . Therefore with probability 1,  for every  with . By our
characterization of convergence in terms of up-crossings, it follows that there exists a random variable  with values in 

 such that with probability 1,  as . Note that  is measurable with respect to . By
Fatou's lemma,

Hence .

The boundedness condition means that  is bounded (in norm) as a subset of the vector space . Here is a very simple, but
useful corollary:

If  is a nonnegative super-martingale with respect to  then there exists a random variable 
, measurable withe respect to , such that  with probability 1.
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Proof

Since  is a nonnegative super-martinagle,  for . Hence the previous martingale
convergence theorem applies.

Of course, the corollary applies to a nonnegative martingale as a special case. For the second martingale convergence theorem you
will need to review uniformly integrable variables. Recall also that for , the -norm of a random variable  is

and  is the normed vector space of all real-valued random variables for which this norm is finite. Convergence in mean refers to
convergence in  and more generally, convergence in th mean refers to convergence in .

Suppose that  is a uniformly integrable and is a sub-martingale or super-martingale with respect to . Then there exists a
random variable , measurable with respect to  such that  as  with probability 1 and in mean.
Moreover, if  is a martingale with respect to  then  for .

Proof

Since  is uniformly integrable,  is bounded in . Hence the by the first martingale convergence
theorem, there exists  that is measurable with respect to  such that  and  as  with
probability 1. By the uniform integrability theorem, the convergence is also in mean, so that  as .
Suppose now that  is a martingale with respect to  For fixed  we know that  as 
(with probability 1). But  for  so it follows that .

As a simple corollary, recall that if  is bounded in  for some  then  is uniformly integrable, and hence the
second martingale convergence theorem applies. But we can do better.

Suppose again that  is a sub-martingale or super-martingale with respect to  and that 
 is bounded in  for some . Then there exists a random variable  such that  as 
 in .

Proof

Suppose that  for  where . Since , we have  bounded in  so the first
martingale convergence theorem applies. Hence there exists , measurable with respect to , such that  as 

 with probability 1. Equivalently, with probability 1,

Next, for , let  define . by the norm version of the maximal inequality,

If we let , then by the montone convergence theorem

So . But  so  also. Moreover, , so applying the dominated
convergence theorem to the first displayed equation above, we have  as .

Example and Applications

In this subsection, we consider a number of applications of the martingale convergence theorems. One indication of the importance
of martingale theory is the fact that many of the classical theorems of probability have simple and elegant proofs when formulated
in terms of martingales.

X E(| |) =E( ) ≤E( )X

t

X

t

X

0

t ∈ T

k ∈ [1,∞) k X

∥X =∥

k

[E(|X )]|

k

1/k

(17.5.4)

L

k

L

1

k L

k

X F

X

∞

F

∞

→X

t

X

∞

t→∞

X F =E( ∣ )X

t

X

∞

F

t

t ∈ T

X = { : t ∈ T}X

t

E(| |)X

t

t ∈ T

X

∞

F

∞

E(| |) <∞X

∞

→X

t

X

∞

t→∞

E(| −X|) → 0X

t

t→∞

X F s ∈ T E( ∣ ) → E( ∣ )X

t

F

s

X

∞

F

s

t→∞

E( ∣ ) =X

t

F

s

X

s

t ≥ s =E( ∣ )X

s

X

∞

F

s

∥X

t

∥

k

t ∈ T k ∈ (1,∞) X

X = { : t ∈ T}X

t

F= { : t ∈ T}F

t

∥X

t

∥

k

t ∈ T k ∈ (1,∞) ∈X

∞

L

k

→X

t

X

∞

t→∞ L

k

∥ ≤ cX

t

∥

k

t ∈ T c ∈ (0,∞) ∥X ≤ ∥X∥

1

∥

k

E(| |)X

t

t ∈ T

X

∞

F

∞

→X

t

X

∞

t→∞

| − →0 as t→∞X

t

X

∞

|

k

(17.5.5)

t ∈ T = {s ∈ T : s≤ t}T

t

= sup{| | : s ∈ }W

t

X

s

T

t

∥ ≤ ∥ ∥ ≤ , t ∈ TW

t

∥

k

k

k−1

X

t

kc

k−1

(17.5.6)

= sup{| | : s ∈ T}W

∞

X

s

∥ = ∥ ≤W

∞

∥

k

lim

t→∞

W

t

∥

k

ck

k−1

(17.5.7)

∈W

∞

L

k

| | ≤X

∞

W

∞

∈X

∞

L

k

| − ≤X

t

X

∞

|

k

2

k

W

k

∞

E(| − )→ 0X

t

X

∞

|

k

t→∞

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10303?pdf


17.5.3 https://stats.libretexts.org/@go/page/10303

Simple Random Walk

Suppose now that that  is a sequence of independent random variables with  and 
 for , where . Let  be the partial sum process associated with  so that

Recall that  is the simple random walk with parameter . From our study of Markov chains, we know that  then 
as  and if  then  as . The chain is transient in these two cases. If , the chain is (null)
recurrent and so visits every state in  infinitely often. In this case  does not converge as . But of course 

 for , so the martingale convergence theorems do not apply.

Doob's Martingale

Recall that if  is a random variable with  and we define  for , then  is a
martingale relative to  and is known as a Doob martingale, named for you know whom. So the second martingale convergence
theorem states that every uniformly integrable martingale is a Doob martingale. Moreover, we know that the Doob martingale 
constructed from  and  is uniformly integrable, so the second martingale convergence theorem applies. The last remaining
question is the relationship between  and the limiting random variable . The answer may come as no surprise.

Let  be the Doob martingale constructed from  and . Then  as  with probability 1 and
in mean, where

Of course if , which is quite possible, then . At the other extreme, if , the trivial -algebra for all 
, then , a constant.

Kolmogorov Zero-One Law

Suppose that  is a sequence of random variables with values in a general state space . Let 
 for , and let . So  is the tail -algebra of , the collection of events that depend

only on the terms of the sequence with arbitrarily large indices. For example, if the sequence is real-valued (or more generally takes
values in a metric space), then the event that  has a limit as  is a tail event. If , then the event that  for
infinitely many  is another tail event. The Kolmogorov zero-one law, named for Andrei Kolmogorov, states that if  is an
independent sequence, then the tail events are essentially deterministic.

Suppose that  is a sequence of independent random variables. If  then  or .

Proof

Let  for  so that  is the natural filtration associated with . As with our

notation above, let . Now let  be a tail event. Then  is the Doob

martingale associated with the indicator variable  and . By our results above,  as 
with probability 1. But  so . On the other hand,  and the -algebras  and  are
independent. Therefore  for each . Thus .

Tail events and the Kolmogorov zero-one law were studied earlier in the section on measure in the chapter on probability spaces. A
random variable that is measurable with respect to  is a tail random variable. From the Kolmogorov zero-one law, a real-valued
tail random variable for an independent sequence must be a constant (with probability 1).

Branching Processes

Recall the discussion of the simple branching process from the Introduction. The fundamental assumption is that the particles act
independently, each with the same offspring distribution on . As before, we will let  denote the (discrete) probability density
function of the number of offspring of a particle,  the mean of the distribution, and  the probability of extinction starting with a
single particle. We assume that  and  so that a particle has a positive probability of dying without
children and a positive probability of producing more than 1 child.
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The stochastic process of interest is  where  is the number of particles in the th generation for .
Recall that  is a discrete-time Markov chain on . Since 0 is an absorbing state, and all positive states lead to 0, we know that the
positive states are transient and so are visited only finitely often with probability 1. It follows that either  as 
(extinction) or  as  (explosion). We have quite a bit of information about which of these events will occur from
our study of Markov chains, but the martingale convergence theorems give more information.

Extinction and explosion

1. If  then  and extinction is certain.
2. If  then . Either  as  or  as  at an exponential rate.

Proof

The new information is the rate of divergence to  in (b). The other statements are from our study of discrete-time branching
Markov chains. We showed in the Introduction that  is a martingale. Since this martingale is nonnegative, it
has a limit as , and the limiting random variable takes values in . So if  and  as , then the
divergence to  must be at essentially the same rate as 

The Beta-Bernoulli Process

Recall that the beta-Bernoulli process is constructed by randomizing the success parameter in a Bernoulli trials process with a beta
distribution. Specifically, we start with a random variable  having the beta distribution with parameters . Next we
have a sequence  of indicator variables with the property that  is conditionally independent given 

 with  for . Let  denote the partial sum process associated with 
, so that once again,  for . Next let  for  so that  is the sample mean of 

. Finally let

We showed in the Introduction that  is a martingale with respect to .

 and  as  with probability 1 and in mean.

Proof

We showed in the section on the beta-Bernoulli process that  as  with probability 1. Note that  for 
, so the martingale  is uniformly integrable. Hence the second martingale convergence theorem applies, and the

convergence is in mean also.

This is a very nice result and is reminiscent of the fact that for the ordinary Bernoulli trials sequence with success parameter 
 we have the law of large numbers that  as  with probability 1 and in mean.

Pólya's Urn Process

Recall that in the simplest version of Pólya's urn process, we start with an urn containing  red and  green balls. At each discrete
time step, we select a ball at random from the urn and then replace the ball and add  new balls of the same color to the urn. For the
parameters, we need  and . For , let  denote the color of the ball selected on the th draw, where 1 means
red and 0 means green. For , let , so that  is the partial sum process associated with 

. Since  is the number of red balls in the urn at time , the average number of balls at time  is 
. On the other hand, the total number of balls in the urn at time  is  so the proportion of red balls in

the urn at time  is

We showed in the Introduction, that  is a martingale. Now we are interested in the limiting behavior of  and 
 as . When , the answer is easy. In this case,  has the binomial distribution with trial parameter  and success

parameter , so by the law of large numbers,  as  with probability 1 and in mean. On the other
hand,  when . So the interesting case is when .
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Suppose that . Then there exists a random variable  such that  and  as  with probability 1
and in mean. Moreover,  has the beta distribution with left parameter  and right parameter .

Proof

In our study of Póyla's urn process we showed that when  the process  is a beta-Bernoulli process with parameters 
 and . So the result follows from our previous theorem.

Likelihood Ratio Tests

Recall the discussion of likelihood ratio tests in the Introduction. To review, suppose that  is a general measure space, and
that  is a sequence of independent, identically distributed random variables, taking values in , and having a
common probability density function with respect to . The likelihood ratio test is a hypothesis test, where the null and alternative
hypotheses are

: the probability density function is .
: the probability density function is .

We assume that  and  are positive on . Also, it makes no sense for  and  to be the same, so we assume that  on a
set of positive measure. The test is based on the likelihood ratio test statistic

We showed that under the alternative hypothesis ,  is a martingale with respect to , known as the
likelihood ratio martingale.

Under ,  as  with probability 1.

Proof

Assume that  is true.  is a nonnegative martingale, so the first martingale convergence theorem applies, and hence there
exists a random variable  with values in  such that  as  with probability 1. Next note that

The variables  for  are also independent and identically distributed, so let  denote the common
mean. The natural logarithm is concave and the martingale  has mean 1, so by Jensen's inequality,

Hence . By the strong law of large numbers,  as  with probability 1. Hence we must have 
 as  with probability 1. But by continuity,  as  with probability 1, so 

 with probability 1.

This result is good news, statistically speaking. Small values of  are evidence in favor of , so the decision rule is to reject 
in favor of  if  for a chosen critical value . If  is true and the sample size  is sufficiently large, we will
reject . In the proof, note that  must diverge to  at least as fast as  diverges to . Hence  as 
exponentially fast, at least. It also worth noting that  is a mean 1 martingale (under ) so trivially  as  even
though  as  with probability 1. So the likelihood ratio martingale is a good example of a sequence where the
interchange of limit and expected value is not valid.

Partial Products

Suppose that  is an independent sequence of nonnegative random variables with  for .
Let
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so that  is the partial product process associated with . From our discussion of this process in the
Introduction, we know that  is a martingale with respect to . Since  is nonnegative, the second martingale convergence
theorem applies, so there exists a random variable  such that  as  with probability 1. What more can we say?
The following result, known as the Kakutani product martingale theorem, is due to Shizuo Kakutani.

Let  for  and let .

1. If  then  as  in mean and .
2. If  then  with probability 1.

Proof

Note that  for  since  is nonnegative and . Also, since  is concave on  it
follows from Jensen's inequality that

Let  for . Since  for , it follows that  for  and that  is decreasing
in  with limit . Next let  for , so that  is the partial
product process associated with . Since  for , the process  is also a
nonnegative martingale, so there exists a random variable  such that  as  with probability 1. Note that 

, , and  for .

1. Suppose that . Since the martingale  has mean 1,

Let  for  so that  is the maximal process associated with 
. Also, let  and note that  as . By the  maximal inequality,

By the monotone convergence theorem, . Since  is strictly increasing on 
,  and so  for . Since , it follows that the martingale  is

uniformly integrable. Hence by the third martingale convergence theorem above,  is mean. Since convergence in
mean implies that the means converge, .

2. Suppose that . Then  as  with probability 1. Note that in this case, the
convergence is not in mean, and trivially .

Density Functions

This discussion continues the one on density functions in the Introduction. To review, we start with our probability space 
and a filtration  in discrete time. Recall again that . Suppose now that  is a finite measure
on the sample space . For each , the restriction of  to  is a measure on  and similarly the
restriction of  to  is a probability measure on . To save notation and terminology, we will refer to these as  and  on 

, respectively. Suppose now that  is absolutely continuous with respect to  on  for each . By the Radon-Nikodym
theorem,  has a density function (or Radon-Nikodym derivative)  with respect to  on  for each . The
theorem and the derivative are named for Johann Radon and Otto Nikodym. In the Introduction we showed that 

 is a martingale with respect to . Here is the convergence result:

There exists a random variable  such that  as  with probability 1.

1. If  is absolutely continuous with respect to  on  then  is a density function of  with respect to  on .
2. If  and  are mutually singular on  then  with probability 1.

Proof

Again, as shown in the Introduction,  is a martingale with respect to . Moreover,  (the total variation of )
for each . Since  is a finite measure,  so the first martingale convergence theorem applies. Hence there exists
a random variable , measurable with respect to , such that  as .
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1. If  is absolutely continuous with respect to  on , then  has a density function  with respect to  on . Our
goal is to show that  with probability 1. By defintion,  is measurable with respect to  and

Suppose now that  and . Then again by definition, . But  also, so 
. So to summarize,  is -measurable and  for each . By

definition, this means that , so  is the Doob martingale associated with . Letting  and
using the result above gives  (with probability 1, of course).

2. Suppose that  and  are mutually singular on . Assume first that  is a positive measure, so that  is nonnegative
for . By the definition of mutually singularity, there exists  such that  and ,
so that . Our goal is to show that  for every . Towards that end, let

Suppose that , so that  for some . Then  for all  and therefore 
 for all . By Fatou's lemmas,

so . Next, suppose that  is an increasing or decreasing sequence in , and let 
(the union in the first case and the intersection in the second case). Then  for each . By the
continuity theorems,  and  as . Therefore 
and so . It follows that  is a monotone class. Since  contains the algebra , it then follows from the
monotone class theorem that . In particular , so  and therefore 

 with probability 1. If  is a general finite measure, then by the Jordan decomposition theorem,  can be written
uniquely in the form  where  and  are finite positive measures. Moreover,  is the density function
of  on  and  is the density function of  on . By the first part of the proof, , , and also 

, all with probability 1.

The martingale approach can be used to give a probabilistic proof of the Radon-Nikodym theorem, at least in certain cases. We start
with a sample set . Suppose that  is a countable partition of  for each . Thus  is countable, 

 for distinct , and . Suppose also that  refines  for each  in the sense that  is
a union of sets in  for each . Let . Thus  is generated by a countable partition, and so the sets in 
are of the form  where . Moreover, by the refinement property  for , so that 
is a filtration. Let , so that our sample space is . Finally, suppose that  is a
probability measure on  with the property that  for  and . We now have a probability space 

. Interesting probability spaces that occur in applications are of this form, so the setting is not as specialized as you might
think.

Suppose now that  a finte measure on . From our assumptions, the only null set for  on  is , so  is automatically
absolutely continuous with respect to  on . Moreover, for , we can give the density function of  with respect to  on 

 explicitly:

The density function of  with respect to  on  is the random variable  whose value on  is  for each 
. Equivalently,

Proof

We need to show that  for each . So suppose  where . Then
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By our theorem above, there exists a random variable  such that  as  with probability 1. If  is absolutely
continuous with respect to  on , then  is a density function of  with respect to  on . The point is that we have given a
more or less explicit construction of the density.

For a concrete example, consider . For , let

This is the partition of  into  subintervals of equal length , based on the dyadic rationals (or binary rationals) of rank 
 or less. Note that every interval in  is the union of two adjacent intervals in , so the refinement property holds. Let  be

ordinary Lebesgue measure on  so that  for  and . As above, let 
and . The dyadic rationals are dense in , so  is the ordinary Borel -algebra on .
Thus our probability space  is simply  with the usual Euclidean structures. If  is a finite measure on 
then the density function of  on  is the random variable  whose value on the interval  is 

. If  is absolutely continuous with respect to  on  (so absolutely continuous in the usual sense), then a
density function of  is .
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17.6: Backwards Martingales
      

Basic Theory

A backwards martingale is a stochastic process that satisfies the martingale property reversed in time, in a certain sense. In some ways,
backward martingales are simpler than their forward counterparts, and in particular, satisfy a convergence theorem similar to the convergence
theorem for ordinary martingales. The importance of backward martingales stems from their numerous applications. In particular, some of the
fundamental theorems of classical probability can be formulated in terms of backward martingales.

Definitions

As usual, we start with a stochastic process  on an underlying probability space , having state space , and where
the index set  (representing time) is either  (discrete time) or  (continuous time). So to review what all this means,  is the sample
space,  the -algebra of events,  the probability measure on , and  is a random variable with values in  for each . But at
this point our formulation diverges. Suppose that  is a sub -algebra of  for each , and that  is decreasing so that if 

 with  then . Let . We assume that  is measurable with respect to  and that  for each 
.

The process  is a backwards martingale (or reversed martingale) with respect to  if 
for all  with .

A backwards martingale can be formulated as an ordinary martingale by using negative times as the indices. Let , so that if
 (the discrete case) then  is the set of non-positive integers, and if  (the continuous case) then . Recall also

that the standard martingale definitions make sense for any totally ordered index set.

Suppose again that  is a backwards martingale with respect to . Let  and  for 
. Then  is a martingale with respect to .

Proof

Since  is a decreasing family of sub -algebras of , the collection  is an increasing family of sub -algebras of , and hence is a
filtration. Next,  is measurable with respect to  for , so  is adapted to . Finally, if  with 
then  so

Most authors define backwards martingales with negative indices, as above, in the first place. There are good reasons for doing so, since some
of the fundamental theorems of martingales apply immediately to backwards martingales. However, for the applications of backwards
martingales, this notation is artificial and clunky, so for the most part, we will use our original definition. The next result is another way to view
a backwards martingale as an ordinary martingale. This one preserves nonnegative time, but introduces a finite time horizon. For , let 

, a notation we have used often before.

Suppose again that  is a backwards martingale with respect to . Fix  and define  and 
 for . Then  is a martingale relative to .

Proof

The proof is essentially the same as for the previous result. Since  is a decreasing family of sub -algebras of , the collection  is an
increasing family of sub -algebras of , and hence is a filtration. Next,  is measurable with respect to  for ,
so  is adapted to . Finally, if  with  then  so

Properties

Backwards martingales satisfy a simple and important property.

Suppose that  is a backwards martingale with repsect to . Then  for  and hence 
 is uniformly integrable.

Proof

The fact that  for  follows directly from the definition of a backwards martingale. Since we have assumed that 
, it follows from a basic property that  is uniformly integrable.
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Here is the Doob backwards martingale, analogous to the ordinary Doob martingale, and of course named for Joseph Doob. In a sense, this is
the converse to the previous result.

Suppose that  is a random variable on our probability space  with , and that  is a decreasing
family of sub -algebras of , as above. Let  for . Then  is a backwards martingale with respect
to .

Proof

By definition,  is measurable with respect to . Also,

Next, suppose that  with . Then  so by the tower property of conditional expected value,

The convergence theorems are the most important results for the applications of backwards martingales. Recall once again that for ,
the k-norm of a real-valued random variable  is

and the normed vector space  consists of all  with . Convergence in the space  is also referred to as convergence in mean,
and convergence in the space  is referred to as convergence in mean square. Here is the primary backwards martingale convergence
theorem:

Suppose again that  is a backwards martingale with respect to . Then there exists a random variable 
 such that

1.  as  with probability 1.
2.  as  in mean.
3. .

Proof

The proof is essentially the same as the ordinary martingale convergence theorem if we use the martingale constructed from  above. So,
fix  and let . Let  and  for , so that  is a martingale relative
to . Now, for  with , let  denote the number of up-crossings of  by  on . Note that 

 is also the number of down-crossings of  by  on . By the up-crossing inequality applied to the martingale ,

Now let  denote the number of down-crossings of  by  on all of . Since  as  it follows from the
monotone convergence theorem that

Hence with probability 1,  for every  with . By the characterization of convergence in terms of down-
crossings (completely analogous to the one for up-crossings), there exists a random variable  with values in  such
that  as . By Fatou's lemma,

In particular, . Since  is uniformly integrable, and , it follows that  as  in  also.

It remains to show that . Let . Then  for every . Since  it follows by definition
that  for every . Letting  and using the dominated convergence theorem, gives .
Hence .

As a simple extension of the last result, if  for some  then the convergence is in  also.

Suppose again that  is a backwards martingale relative to . If  for some  then 
 as  in .
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The previous result applies, of course, so we know that there exists a random variable  such that  as  with
probability 1 and in . The function  is convex on  so by Jensen's inequality for conditional expected value,

so  for every . By Fatou's lemma,

so  also. Next, since  and  is measurable with respect to , we can use Jensen's inequality again to get

It follows that the family of random variables  is uniformly integrable, and hence  as .

Applications

The Strong Law of Large Numbers

The strong law of large numbers is one of the fundamental theorems of classical probability. Our previous proof required that the underlying
distribution have finite variance. Here we present an elegant proof using backwards martingales that does not require this extra assumption. So,
suppose that  is a sequence of independent, identically distributed random variables with common mean . In
statistical terms,  corresponds to sampling from the underlying distribution. Next let

so that  is the partial sum process associated with . Recall that the sequence  is also a discrete-time random walk.
Finally, let  for  so that  is the sequence of sample means.

The law of large numbers

1.  as  with probability 1.
2.  as  in mean.

Proof

As usual, let  denote the underlying probability space. Also, equalities involving random variables (and particularly conditional
expected values) are assumed to hold with probability 1. Now, for , let

so that  is a decreasing family of sub -algebras of . The core of the proof is to show that  is a backwards
martingale relative to . Let . Clearly  is measurable with respect to . By independence,  for 

. By symmetry (the sequence  is exchangeable),  for . Hence for 

so that  for each . Next,

Dividing by  gives  and hence  is a backwards martingale with respect to . From the backwards martingale
convergence theorem, there exists  such that  as  with probability 1 and in mean. Next, for  simple
algebra gives

Letting  then shows that
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for every . Hence  is a tail random variable for the IID sequence . From the Kolmogorov 0-1 law,  must be a constant.
Finally, convergence in mean implies that the means converge, and since  for each , it follows that .

Exchangeable Variables

We start with a probability space  and another measurable space . Suppose that  is a sequence of random
variables each taking values in . Recall that  is exchangeable if for every , every permutation of  has the same
distribution on  (where  is the -fold product -algebra). Clearly if  is a sequence of independent, identically distributed
variables, then  is exchangeable. Conversely, if  is exchangeable then the variables are identically distributed (by definition), but are not
necessarily independent. The most famous example of a sequence that is exchangeable but not independent is Pólya's urn process, named for
George Pólya. On the other hand, conditionally independent and identically distributed sequences are exchangeable. Thus suppose that 
is another measurable space and that  is a random variable taking values in .

If  is conditionally independent and identically distributed given , then  is exchangeable.

Proof

Implicit in the statement is that the variables in the sequence have a regular conditional distribution  given . Then for every ,
the conditional distribution of every permutation of , given , is  on , where  is the -fold product
measure. Unconditionally, the distribution of any permutation is  for .

Often the setting of this theorem arises when we start with a sequence of independent, identically distributed random variables that are
governed by a parametric distribution, and then randomize one of the parameters. In a sense, we can always think of the setting in this way:
Imagine that  is a parameter for a distribution on . A special case is the beta-Bernoulli process, in which the success parameter  in
sequence of Bernoulli trials is randomized with the beta distribution. On the other hand, Pólya's urn process is an example of an exchangeable
sequence that does not at first seem to have anything to do with randomizing parameters. But in fact, we know that Pólya's urn process is a
special case of the beta-Bernoulli process. This connection gives a hint of de Finetti's theorem, named for Bruno de Finetti, which we consider
next. This theorem states any exchangeable sequence of indicator random variables corresponds to randomizing the success parameter in a
sequence of Bernoulli trials.

de Finetti's Theorem. Suppose that  is an exchangeable sequence of random variables, each taking values in .
Then there exists a random variable  with values in , such that given ,  is a sequence of Bernoulli trials with
success parameter .

Proof

As usual, we need some notation. First recall the falling power notation  for  and . Next for 
 and , let

That is,  is the set of bit strings of length  with 1 occurring exactly  times. Of course, .

Suppose now that  is an exchangeable sequence of variables with values in . For  let  and 
. So  is the partial sum process associated with  and  the sequence of sample

means. Let  and . The family of -algebras  is decreasing. The key to the
proof is to find two backwards martingales and use the backwards martingale convergence theorem.

Let  and  The crucial insight is that by exchangeability, given , the random vector  is
uniformly distributed on . So if  and , the random vector , again given , fits the
hypergeometric model: a sample of size  chosen at random and without replacement from a population of  objects of which  are type 1
and  are type 0. Thus, if  and  then

Equivalently,

Given , the variables  give no additional information about the distribution of  and hence
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For fixed , , and , the conditional expected value in the middle of the displayed equation, as a function of , is a
Doob backward martingale with respect to  and hence converges to  as .

Next we show that  is a backwards martingale with respect to . Trivially  is measurable with respect to  and  for
each . Thus we need to show that  for  with . From our previous work with 

 we know that the conditional distribution of  given  is hypergeometric with parameters , , and :

Recall that the mean of the hypergeometric distribution is the sample size times the proportion of type 1 objects in the population. Thus,

Or equivalently, . Once again, given , the variables  give no additional information and so 
. Hence  is a backwards martingale with respect to . From the backwards martingale convergence theorem, there

exists a random variable  such that  as  with probability 1.

It just remains to connect the dots. Suppose now that  and  and that  and . From
simple calculus, if  and  are fixed and  as  then

(You may recall that this computation is used in the proof of the convergence of the hypergeometric distribution to the binomial.) Returning
to the joint distribution, recall that if  then

Let . Since  as  we get

Random variable  is measurable with respect to  so

Given ,  is a sequence of Bernoulli trials with success parameter .

De Finetti's theorem has been extended to much more general sequences of exchangeable variables. Basically, if  is an
exchangeable sequence of random variables, each taking values in a significantly nice measurable space  then there exists a random
variable  such that  is independent and identically distributed given . In the proof, the result that  as  with probability 1,
where , is known as de Finetti's strong law of large numbers. De Finetti's theorem, and it's generalizations are important in
Bayesian statistical inference. For an exchangeable sequence of random variables (our observations in a statistical experiment), there is a
hidden, random parameter . Given , the variables are independent and identically distributed. We gain information about  by
imposing a prior distribution on  and then updating this, based on our observations and using Baye's theorem, to a posterior distribution.

Stated more in terms of distributions, de Finetti's theorem states that the distribution of  distinct variables in the exchangeable sequence is a
mixture of product measures. That is, if  is the distribution of a generic  on  given , and  is the distribution of  on ,
then the distribution of  of the variables on  is

This page titled 17.6: Backwards Martingales is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

18: Brownian Motion
Brownian motion is a stochastic process of great theoretical importance, and as the basic building block of a variety of other
processes, of great practical importance as well. In this chapter we study Brownian motion and a number of random processes that
can be constructed from Brownian motion. We also study the Ito stochastic integral and the resulting calculus, as well as two
remarkable representation theorems involving stochastic integrals.

18.1: Standard Brownian Motion
18.2: Brownian Motion with Drift and Scaling
18.3: The Brownian Bridge
18.4: Geometric Brownian Motion

This page titled 18: Brownian Motion is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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18.1: Standard Brownian Motion
          

Basic Theory

History

In 1827, the botanist Robert Brown noticed that tiny particles from pollen, when suspended in water, exhibited continuous but very jittery and
erratic motion. In his “miracle year” in 1905, Albert Einstein explained the behavior physically, showing that the particles were constantly being
bombarded by the molecules of the water, and thus helping to firmly establish the atomic theory of matter. Brownian motion as a mathematical
random process was first constructed in rigorous way by Norbert Wiener in a series of papers starting in 1918. For this reason, the Brownian
motion process is also known as the Wiener process.

Run the two-dimensional Brownian motion simulation several times in single-step mode to get an idea of what Mr. Brown may have observed
under his microscope.

Along with the Bernoulli trials process and the Poisson process, the Brownian motion process is of central importance in probability. Each of these
processes is based on a set of idealized assumptions that lead to a rich mathematial theory. In each case also, the process is used as a building block
for a number of related random processes that are of great importance in a variety of applications. In particular, Brownian motion and related
processes are used in applications ranging from physics to statistics to economics.

Definition

A standard Brownian motion is a random process  with state space  that satisfies the following properties:

1.  (with probability 1).
2.  has stationary increments. That is, for  with , the distribution of  is the same as the distribution of .
3.  has independent increments. That is, for  with , the random variables 

 are independent.
4.  is normally distributed with mean 0 and variance  for each .
5. With probability 1,  is continuous on .

To understand the assumptions physically, let's take them one at a time.

1. Suppose that we measure the position of a Brownian particle in one dimension, starting at an arbitrary time which we designate as , with
the initial position designated as . Then this assumption is satisfied by convention. Indeed, occasionally, it's convenient to relax this
assumption and allow  to have other values.

2. This is a statement of time homogeneity: the underlying dynamics (namely the jostling of the particle by the molecules of water) do not change
over time, so the distribution of the displacement of the particle in a time interval  depends only on the length of the time interval.

3. This is an idealized assumption that would hold approximately if the time intervals are large compared to the tiny times between collisions of
the particle with the molecules.

4. This is another idealized assumption based on the central limit theorem: the position of the particle at time  is the result of a very large number
of collisions, each making a very small contribution. The fact that the mean is 0 is a statement of spatial homogeneity: the particle is no more
or less likely to be jostled to the right than to the left. Next, recall that the assumptions of stationary, independent increments means that 

 for some positive constant . By a change in time scale, we can assume , although we will consider more general
Brownian motions in the next section.

5. Finally, the continuity of the sample paths is an essential assumption, since we are modeling the position of a physical particle as a function of
time.

Of course, the first question we should ask is whether there exists a stochastic process satisfying the definition. Fortunately, the answer is yes,
although the proof is complicated.

There exists a probability space  and a stochastic process  on this probability space satisfying the
assumptions in the definition.

Proof sketch

The assumptions in the definition lead to a consistent set of finite dimensional distributions (which are given below). Thus by Kolmogorov
existence theorem, there exists a stochastic process  that has these finite dimensional distributions. However,  does
not have continuous sample paths, but we can construct from  an equivalent process that does have continuous sample paths.

First recall that a binary rational (or dyadic rational) in  is a number of the form  where . Let  denote the set of all
binary rationals in , and recall that  is countable but also dense in  (that is, if  then there exists  for 

 such that  as ).
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Now, for , let  if  is a binary rational of the form  for some . If  is not such a binary rational, define  by
linear interpolation between the the closest binary rationals of this form on either side of . Then  as  for every ,
and with probability 1, the convergence is uniform on  for each . It then follows that  is continuous on  with
probability 1.

For the last step, let  for . The limit exists since  is continuous on  with probability 1. The process 
 is continuous on  with probability 1, and has the same finite dimensional distributions as .

Run the simulation of the standard Brownian motion process a few times in single-step mode. Note the qualitative behavior of the sample
paths. Run the simulation 1000 times and compare the empirical density function and moments of  to the true probabiltiy density function
and moments.

Brownian Motion as a Limit of Random Walks

Clearly the underlying dynamics of the Brownian particle being knocked about by molecules suggests a random walk as a possible model, but with
tiny time steps and tiny spatial jumps. Let  be the symmetric simple random walk. Thus,  where 

 is a sequence of independent variables with  for each . Recall that  and 
 for . Also, since  is the partial sum process associated with an IID sequence,  has stationary, independent increments (but

of course in discrete time). Finally, recall that by the central limit theorem,  converges to the standard normal distribution as .
Now, for  the continuous time process

is a jump process with jumps at  and with jumps of size . Basically we would like to let  and , but this cannot be done
arbitrarily. Note that  but . Thus, by the central limit theorem, if we take  then the distribution of 

 will converge to the normal distribution with mean 0 and variance  as . More generally, we might hope that all of requirements in
the definition are satisfied by the limiting process, and if so, we have a standard Brownian motion.

Run the simulation of the random walk process for increasing values of . In particular, run the simulation several times with .
Compare the qualitative behavior with the standard Brownian motion process. Note that the scaling of the random walk in time and space is
effecitvely accomplished by scaling the horizontal and vertical axes in the graph window.

Finite Dimensional Distributions

Let  be a standard Brownian motion. It follows from part (d) of the definition that  has probability density function 
given by

This family of density functions determines the finite dimensional distributions of .

If  with  then  has probability density function  given by

Proof

This follows because  has stationary, independent increments.

 is a Gaussian process with mean function mean function  for  and covariance function  for 
.

Proof

The fact that  is a Gaussian process follows because  is normally distributed for each  and  has stationary, independent
increments. The mean function is 0 by assumption. For the covariance function, suppose  with . Since  and  are
independent, we have

Recall that for a Gaussian process, the finite dimensional (multivariate normal) distributions are completely determined by the mean function 
and the covariance function . Thus, it follows that a standard Brownian motion is characterized as a continuous Gaussian process with the mean
and covariance functions in the last theorem. Note also that
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We can also give the higher moments and the moment generating function for .

For  and ,

1. 
2. 

Proof

These moments follow from standard results, since  is normally distributed with mean 0 and variance .

For ,  has moment generating function given by

Proof

Again, this is a standard result for the normal distribution.

Simple Transformations

There are several simple transformations that preserve standard Brownian motion and will give us insight into some of its properties. As usual, our
starting place is a standard Brownian motion . Our first result is that reflecting the paths of  in the line  gives
another standard Brownian motion

Let  for . Then  is also a standard Brownian motion.

Proof

Clearly the new process is still a Gaussian process, with mean function  for  and covariance function 
 for . Finally, since  is continuous, so is .

Our next result is related to the Markov property, which we explore in more detail below. If we “restart” Brownian motion at a fixed time , and
shift the origin to , then we have another standard Brownian motion. This means that Brownian motion is both temporally and spatially
homogeneous.

Fix  and define  for . Then  is also a standard Brownian motion.

Proof

Since  has stationary, independent increments, the process  is equivalent in distribution to . Clearly also  is continuous since  is.

Our next result is a simple time reversal, but to state this result, we need to restrict the time parameter to a bounded interval of the form 
where . The upper endpoint  is sometimes referred to as a finite time horizon. Note that  still satisfies the definition, but
with the time parameters restricted to .

Define  for . Then  is also a standard Brownian motion on .

Proof

 is a Gaussian process, since a finite, linear combination of variables from this process reduces to a finite, linear combination of variables
from . Next, . Next, if  with  then

Finally,  is continuous on  with probability 1, since  is continuous on  with probability 1.

Our next transformation involves scaling  both temporally and spatially, and is known as self-similarity.

Let  and define  for . Then  is also a standard Brownian motion.

Proof

Once again,  is a Gaussian process, since finite, linear combinations of variables in  reduce to finite, linear combinations of variables in 
. Next,  for , and for  with ,
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Finally  is a continuous process since  is continuous.

Note that the graph of  can be obtained from the graph of  by scaling the time axis  by a factor of  and scaling the spatial axis  by a factor
of . The fact that the temporal scale factor must be the square of the spatial scale factor is clearly related to Brownian motion as the limit of
random walks. Note also that this transformation amounts to “zooming in or out” of the graph of  and hence Brownian motion has a self-similar,
fractal quality, since the graph is unchanged by this transformation. This also suggests that, although continuous,  is highly irregular. We
consider this in the next subsection.

Our final transformation is referred to as time inversion.

Let  and  for . Then  is also a standard Brownian motion.

Proof

Clearly  is a Gaussian process, since finite, linear combinations of variables in  reduce to finite, linear combinations of variables in .
Next,  for , and for  with ,

Since  is continuous on  with probability 1,  is continuous on  with probability 1. Thus, all that remains is to show
continuity at . Thus we need to show that with probability 1,  as . or equivalently,  as . But this last
statement holds by the law of the iterated logarithm, given below.

Irregularity

The defining properties suggest that standard Brownian motion  cannot be a smooth, differentiable function. Consider the
usual difference quotient at ,

By the stationary increments property, if , the numerator has the same distribution as , while if , the numerator has the same
distribution as , which in turn has the same distribution as . So, in both cases, the difference quotient has the same distribution as 

, and this variable has the normal distribution with mean 0 and variance . So the variance of the difference quotient
diverges to  as , and hence the difference quotient does not even converge in distribution, the weakest form of convergence.

The temporal-spatial transformation above also suggests that Brownian motion cannot be differentiable. The intuitive meaning of differentiable at 
 is that the function is locally linear at —as we zoon in, the graph near  begins to look like a line (whose slope, of course, is the derivative). But

as we zoon in on Brownian motion, (in the sense of the transformation), it always looks the same, and in particular, just as jagged. More formally,
if  is differentiable at , then so is the transformed process , and the chain rule gives . But  is also a standard Brownian
motion for every , so something is clearly wrong. While not rigorous, these examples are motivation for the following theorem:

With probability 1,  is nowhere differentiable on .

Run the simulation of the standard Brownian motion process. Note the continuity but very jagged quality of the sample paths. Of course, the
simulation cannot really capture Brownian motion with complete fidelity.

The following theorems gives a more precise measure of the irregularity of standard Brownian motion.

Standard Brownian motion  has Hölder exponent . That is,  is Hölder continuous with exponent  for every , but is not Hölder
continuous with exponent  for any .

In particular,  is not Lipschitz continuous, and this shows again that it is not differentiable. The following result states that in terms of Hausdorff
dimension, the graph of standard Brownian motion lies midway between a simple curve (dimension 1) and the plane (dimension 2).

The graph of standard Brownian motion has Hausdorff dimension .

Yet another indication of the irregularity of Brownian motion is that it has infinite total variation on any interval of positive length.

Suppose that  with . Then the total variation of  on  is .
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The Markov Property and Stopping Times

As usual, we start with a standard Brownian motion . Recall that a Markov process has the property that the future is
independent of the past, given the present state. Because of the stationary, independent increments property, Brownian motion has the property. As
a minor note, to view  as a Markov process, we sometimes need to relax Assumption 1 and let  have an arbitrary value in . Let 

, the sigma-algebra generated by the process up to time . The family of -algebras  is
known as a filtration.

Standard Brownian motion is a time-homogeneous Markov process with transition probability density  given by

Proof

Fix . The theorem follows from the fact that the process  is another standard Brownian motion, as shown
above, and is independent of .

The transtion density  satisfies the following diffusion equations. The first is known as the forward equation and the second as the backward
equation.

Proof

These results follows from standard calculus.

The diffusion equations are so named, because the spatial derivative in the first equation is with respect to , the state forward at time , while the
spatial derivative in the second equation is with respect to , the state backward at time 0.

Recall that a random time  taking values in  is a stopping time with respect to the process  if  for
every . Informally, we can determine whether or not  by observing the process up to time . An important special case is the first
time that our Brownian motion hits a specified state. Thus, for  let . The random time  is a stopping time.

For a stopping time , we need the -algebra of events that can be defined in terms of the process up to the random time , analogous to , the -
algebra of events that can be defined in terms of the process up to a fixed time . The appropriate definition is

See the section on Filtrations and Stopping Times for more information on filtrations, stopping times, and the -algebra associated with a stopping
time.

The strong Markov property is the Markov property generalized to stopping times. Standard Brownian motion  is also a strong Markov process.
The best way to say this is by a generalization of the temporal and spatial homogeneity result above.

Suppose that  is a stopping time and define  for . Then  is a standard Brownian motion
and is independent of .

The Reflection Principle

Many interesting properties of Brownian motion can be obtained from a clever idea known as the reflection principle. As usual, we start with a
standard Brownian motion . Let  be a stopping time for . Define

Thus, the graph of  can be obtained from the graph of  by reflecting in the line  after time . In particular, if the
stopping time  is , the first time that the process hits a specified state , then the graph of  is obtained from the graph of  by reflecting
in the line  after time .

Open the simulation of reflecting Brownian motion. This app shows the process  corresponding to the the stopping time , the time of first
visit to a positive state . Run the simulation in single step mode until you see the reflected process several times. Make sure that you
understand how the process  works.

The reflected process  is also a standard Brownian motion.
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Run the simulation of the reflected Brownian motion process 1000 times. Compaure the empirical density function and moments of  to the
true probability density function and moments.

Martingales

As usual, let  be a standard Brownian motion, and let  for , so that 
 is the natural filtration for . There are several important martingales associated with . We will study a couple of them

in this section, and others in subsequent sections. Our first result is that  itself is a martingale, simply by virtue of having stationary, independent
increments and 0 mean.

 is a martingale with respect to .

Proof

Again, this is true of any process with stationary, independent increments and 0 mean, but we give the proof anyway, for completeness. Let 
 with . Since  is measurable with respect to  and  is independent of  we have

The next martingale is a little more interesting.

Let  for . Then  is a martingale with respect to .

Proof

Let  with . Then

Since  is measurable with respect to  and  is independent of  we have

But  and  so .

Maximums and Hitting Times

As usual, we start with a standard Brownian motion . For  recall that  is the first
time that the process hits state . Of course, . For , let , the maximum value of  on the interval 

. Note that  is well defined by the continuity of , and of course . Thus we have two new stochastic processes: 
and . Both have index set  and (as we will see) state space . Moreover, the processes are inverses of each other in a
sense:

For ,  if and only if .

Proof

Since standard Brownian motion starts at 0 and is continuous, both events mean that the the process hits state  in the interval .

Thus, if we can compute the distribution of  for each  then we can compute the distribution of  for each , and
conversely.

For ,  has the same distribution as , where  is a standard normal variable. The probability density function  is given by

Proof

Let . From the previous result, note that . Hence

But from the strong Markov property above,  is another standard Brownian motion. Hence .
Therefore

The second integral follows from the first by the change of variables . We can recognize this integral as  where 
has a standard normal distribution. Taking the derivative of the integral with respect to  gives the PDF.
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The distribution of  is the Lévy distribution with scale parameter , and is named for the French mathematician Paul Lévy. The Lévy
distribution is studied in more detail in the chapter on special distributions.

Open the hitting time experiment. Vary  and note the shape and location of the probability density function of . For selected values of the
parameter, run the simulation in single step mode a few times. Then run the experiment 1000 times and compare the empirical density
function to the probability density function.

Open the special distribution simulator and select the Lévy distribution. Vary the parameters and note the shape and location of the probability
density function. For selected values of the parameters, run the simulation 1000 times and compare the empirical density function to the
probability density function.

Standard Brownian motion is recurrent. That is,  for every .

Proof

Suppose first that . From the proof of the last theorem,

Note that the integral above is equivalent to the integral of the standard normal PDF over . In particular, the function  given above really is
a valid PDF. If  then by symmetry,  has the same distribution as , so . Trivially, .

Thus, for each ,  eventually hits  with probability 1. Actually we can say more:

With probability 1,  visits every point in .

Proof

By continuity, if  reaches  then  visits every point in . By symmetry, a similar statement holds for . Thus the event that 
visits every point in  is . The probability of a countable intersection of events with probability 1 still has
probability 1.

On the other hand,

Standard Brownian motion is null recurrent. That is,  for every .

Proof

By symmetry, it suffices to consider . From the result above on the distribution of ,

Changing the order of integration gives

Next we get a lower bound on the last integral by integrating over the interval  and noting that  on this integral. Thus,

The process  has stationary, independent increments.

Proof

The proof relies on the temporal and spatial homogeneity of Brownian motion and the strong Markov property. Suppose that 
with . By continuity,  must reach  before reaching . Thus, . But  is the hitting time to  for the
process , and as shown above, this process is also a standard Brownian motion, independent of . Hence  is
independent of  and has the same distribution as .

The family of probability density functions  is closed under convolution. That is,  for .

Proof

This follows immediately from the previous theorem. A direct proof is an interesting exercise.
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Now we turn our attention to the maximum process , the “inverse” of the hitting process .

For ,  has the same distribution as , known as the half-normal distribution with scale parameter . The probability density function
is

Proof

From the inverse relation and the distribution of ,  for . By definition, 
has the half-normal distribution with parameter . In particular,

Taking the negative derivative of the integral above, with respect to , gives the PDF.

The half-normal distribution is a special case of the folded normal distribution, which is studied in more detail in the chapter on special
distributions.

For , the mean and variance of  are

1. 

2. 

Proof

These follow from standard results for the half-normal distribution.

In the standard Brownian motion simulation, select the maximum value. Vary the parameter  and note the shape of the probability density
function and the location and size of the mean-standard deviation bar. Run the simulation 1000 times and compare the empirical density and
moments to the true probability density function and moments.

Open the special distribution simulator and select the folded-normal distribution. Vary the parameters and note the shape and location of the
probability density function and the size and location of the mean-standard deviation bar. For selected values of the parameters, run the
simulation 1000 times and compare the empirical density function and moments to the true density function and moments.

Zeros and Arcsine Laws

As usual, we start with a standard Brownian motion . Study of the zeros of  lead to a number of probability laws
referred to as arcsine laws, because as we might guess, the probabilities and distributions involve the arcsine function.

For  with , let  be the event that  has a zero in the time interval . That is, 
. Then

Proof

Conditioning on  and using symmetry gives

But by the homogeneity of  in time and space, note that for , . That is, a process in state 
at time  that hits 0 before time  is the same as a process in state 0 at time 0 reaching state  before time . Hence

where  is the PDF of  given above. Substituting gives

Finally substituting  in the last integral give
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In paricular,  for every , so with probability 1,  has a zero in . Actually, we can say a bit more:

For ,  has infinitely many zeros in  with probability 1.

Proof

The event that  has infinitely many zeros in  is . The intersection of a countable collection of events with probability 1
still has probability 1.

The last result is further evidence of the very strange and irregular behavior of Brownian motion. Note also that  depends only on the
ratio . Thus,  and  for every . So, for example the probability of at least one zero
in the interval  is the same as the probability of at least one zero in , the same as the probability of at least one zero in , and
the same as the probability of at least one zero in .

For , let  denote the time of the last zero of  before time . That is, . Then  has the arcsine
distribution with parameter . The distribution function  and the probability density function  are given by

Proof

For , the event  is the same as , that there are no zeros in the interval . Hence the formula for 
follows from the result above. Taking the derivative of  and simplifying gives the formula for .

The density function of  is -shaped and symmetric about the midpoint , so the points with the largest density are those near the endpoints 0
and , a surprising result at first. The arcsine distribution is studied in more detail in the chapter on special distributions.

The mean and variance of  are

1. 
2. 

Proof

These are standard results for the arcsine distribution. That the mean is the midpoint  also follows from symmetry, of course.

In the simulation of standard Brownian motion, select the last zero variable. Vary the parameter  and note the shape of the probability density
function and the size and location of the mean-standard deviation bar. For selected values of  run the simulation is single step mode a few
times and note the position of the last zero. Finally, run the simulation 1000 times and compare the empirical density function and moments to
the true probability density function and moments.

Open the special distribution simulator and select the arcsine distribution. Vary the parameters and note the shape and location of the
probability density function and the size and location of the mean-standard deviation bar. For selected values of the parameters, run the
simulation 1000 times and compare the empirical density function and moments to the true density function and moments.

Now let  denote the set of zeros of , so that  is a random subset of . The theorem below gives some of the
strange properties of the random set , but to understand these, we need to review some definitions. A nowhere dense set is a set whose closure
has empty interior. A perfect set is a set with no isolated points. As usual, we let  denote Lebesgue measure on .

With probability 1,

1.  is closed.
2. 
3.  is nowhere dense.
4.  is perfect.

Proof
1. Note that  is the inverse image of the closed set  under the function . Since this function is continuous with probability 1,  is

closed with probability 1.

P [E(s, t)] = dv= arctan( ) = 1− arcsin( )
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2. For each  note that  since  has a continuous distribution. Using Fubini's theorem

and hence ,
3. Since  is closed and has Lebesgue measure 0, it's interior is empty (all of these statements with probability 1).
4. Suppose that . Then by the temporal and spatial homogeneity properties,  is also a standard Brownian motion. But then by

the result above on zeros, with probability 1,  has a zero in the interval  for every . Hence  is not an isolated point
of .

The following theorem gives a deeper property of . The Hausdorff dimension of  is midway between that of a point (dimension 0) and a line
(dimension 1).

 has Hausdorff dimension .

The Law of the Iterated Logarithm

As usual, let  be standard Brownian motion. By definition, we know that  has the normal distribution with mean 0 and
standard deviation , so the function  gives some idea of how the process grows in time. The precise growth rate is given by the famous
law of the iterated logarithm

With probability 1,

Computational Exercises

In the following exercises,  is a standard Brownian motion process.

Explicitly find the probability density function, covariance matrix, and correlation matrix of .

This page titled 18.1: Standard Brownian Motion is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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18.2: Brownian Motion with Drift and Scaling
         

Basic Theory

Definition

We start with the assumptions that govern standard Brownian motion, except that we relax the restrictions on the parameters of the
normal distribution.

Suppose that  and . Brownian motion with drift parameter  and scale parameter  is a random process 
 with state space  that satisfies the following properties:

1.  (with probability 1).
2.  has stationary increments. That is, for  with , the distribution of  is the same as the

distribution of .
3.  has independent increments. That is, for  with , the random variables 

 are independent.
4.  has the normal distribution with mean  and variance  for .
5. With probability 1,  is continuous on .

Note that we cannot assign the parameters of the normal distribution of  arbitrarily. We know that since  has stationary,
independent increments,  and  must be linear functions of .

Open the simulation of Brownian motion with drift and scaling. Run the simulation in single step mode several times for
various values of the parameters. Note the behavior of the sample paths. For selected values of the parameters, run the
simulation 1000 times and compare the empirical density function and moments to the true density function and moments.

It's easy to construct Brownian motion with drift and scaling from a standard Brownian motion, so we don't have to worry about the
existence question.

Relation to standard Brownian motion.

1. Suppose that  is a standard Brownian motion, and that  and . Let 
for . Then  is a Brownian motion with drift parameter  and scale parameter .

2. Conversely, suppose that  is a Brownian motion with drift parameter  and scale parameter 
. Let  for . Then  is a standard Brownian motion.

Proof

It's straightforwrd to show that the processes  and  satisfy the appropriate set of assumptions.

In differential form, part (a) can be written as

Finite Dimensional Distributions

Suppose that  is Brownian motion with drift parameter  and scale parameter . It follows
from part (d) of the definition that  has probability density function  given by

This family of density functions determines the finite dimensional distributions of .

If  with  then  has probability density function  given
by
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Proof

This follows because  has stationary, independent increments.

 is a Gaussian process with mean function mean function  and covariance function  given by

1.  for 
2.  for .

Proof

The fact that  is a Gaussian process follows from the construction  for , where  is a standard
Brownian motion. We know that  is a Gaussian process. The form of the mean and covariance functions follow because 
has stationary, independent increments. Note that  and  are the mean and variance of .

The correlation function is independent of the parameters, and thus is the same as for standard Brownian motion. This is hardly
surprising since correlation is a standardized measure of association.

Transformations

There are a couple simple transformations that preserve Brownian motion, but perhaps change the drift and scale parameters. Our
starting place is a Brownian motion  with drift parameter  and scale parameter . Our first
result involves scaling  is time and space (and possible reflecting in the spatial origin).

Let  and . Define  for . Then  is also a Brownian motion with drift
parameter  and scale parameter .

Proof

Clearly the new process is still a Gaussian process. The mean function is  for . The
covariance function is  for . Finally,
since  is continuous, so is .

Suppose that  in the previous theorem, so that we are scaling temporally and spatially. In order to preserve the original drift
parameter  we must have  (if ). In order to preserve the original scale parameter , we must have . We can't
have both unless , which leads to a slight generalization of one of our results for standard Brownian motion:

Suppose that  is a Brownian motion with drift parameter  and scale parameter . Suppose also that  and let 
 for . Then  is also a Brownian motion with drift parameter 0 and scale parameter .

Our next result is related to the Markov property, which we explore in more detail below. We return to the general case where 
 is a Brownian motion with drift parameter  and scale parameter . If we “restart”

Brownian motion at a fixed time , and shift the origin to , then we have another Brownian motion with the same parameters.

Fix  and define  for . Then  is also a Brownian motion with the same
drift and scale parameters.

Proof

Clearly  is also a Gaussian process. Moreover,  for . Also, if 
 with  then

Finally,  is continuous by the continuity of .
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The Markov Property and Stopping Times

As usual, we start with a Brownian motion  with drift parameter  and scale parameter . Recall again that
a Markov process has the property that the future is independent of the past, given the present state. Because of the stationary,
independent increments property, Brownian motion has the property. As a minor note, to view  as a Markov process, we
sometimes need to relax Assumption 1 and let  have an arbitrary value in . Let , the sigma-algebra
generated by the process up to time . The family of -algebras  is known as a filtration.

Brownian motion is a time-homogeneous Markov process with transition probability density  given by

Proof

Fix . The theorem follows from the fact that the process  is another standard Brownian
motion, as noted above, and is independent of .

The transtion density  satisfies the following diffusion equations. The first is known as the forward equation and the second as
the backward equation.

Proof

These results follows from standard calculus.

The diffusion equations are so named, because the spatial derivative in the first equation is with respect to , the state forward at
time , while the spatial derivative in the second equation is with respect to , the state backward at time 0.

Recall again that a random time  taking values in  is a stopping time with respect to the process  if  for
every . The -algebra associated with  is

See the section on Filtrations and Stopping Times for more information on filtrations, stopping times, and the -algebra associated
with a stopping time. Brownian motion  is also a strong Markov process.

Suppose that  is a stopping time and define  for . Then  is a Brownian
motion with the same drift and scale parameters, and is independent of .

This page titled 18.2: Brownian Motion with Drift and Scaling is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by
Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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18.3: The Brownian Bridge
         

Basic Theory

Definition and Constructions

In the most common formulation, the Brownian bridge process is obtained by taking a standard Brownian motion process , restricted to the interval 
, and conditioning on the event that . Since  also, the process is “tied down” at both ends, and so the process in between forms a

“bridge” (albeit a very jagged one). The Brownian bridge turns out to be an interesting stochastic process with surprising applications, including a very
important application to statistics. In terms of a definition, however, we will give a list of characterizing properties as we did for standard Brownian motion
and for Brownian motion with drift and scaling.

A Brownian bridge is a stochastic process  with state space  that satisfies the following properties:

1.  and  (each with probability 1).
2.  is a Gaussian process.
3.  for .
4.  for .
5. With probability 1,  is continuous on .

So, in short, a Brownian bridge  is a continuous Gaussian process with , and with mean and covariance functions given in (c) and (d),
respectively. Naturally, the first question is whether there exists such a process. The answer is yes, of course, otherwise why would we be here? But in fact,
we will see several ways of constructing a Brownian bridge from a standard Brownian motion. To help with the proofs, recall that a standard Brownian
motion process  is a continuous Gaussian process with ,  for  and  for 

. Here is our first construction:

Suppose that  is a standard Brownian motion, and let  for . Then  is a
Brownian bridge.

Proof
1. Note that  and .
2. Linear combinations of the variables in  reduce to linear combinations of the variables in  and hence have normal distributions. Thus  is a

Gaussian process.
3.  for 
4.  for 

.
5.  is continuous on  since  is continuous on .

Let's see the Brownian bridge in action.

Run the simulation of the Brownian bridge process in single step mode a few times.

For the Brownian bridge , note in particular that  is normally distributed with mean 0 and variance  for . Thus, the variance
increases and then decreases on  reaching a maximum of  at . Of course, the variance is 0 at  and , since 
deterministically.

Open the simulation of the Brownian bridge process. Vary  and note the change in the probability density function and moments. For various values
of , run the simulation 1000 times and compare the empirical density function and moments to the true density function and moments.

Conversely to the construction above, we can build a standard Brownian motion on the time interval  from a Brownian bridge.

Suppose that  is a Brownian bridge, and suppose that  is a random variable with a standard normal distribution, independent
of . Let  for . Then  is a standard Brownian motion on .

Proof
1. Note that .
2. Linear combinations of the variables in  reduce to linear combinations of the variables in  and hence have normal distributions. Thus  is a

Gaussian process.
3.  for .
4. 

for .
5.  is continuous on  since  is continuous on .

Here's another way to construct a Brownian bridge from a standard Brownian motion.
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Suppose that  is a standard Brownian motion. Define  and

Then  is a Brownian bridge.

Proof
1. Note that  and by definition, .
2. Linear combinations of variables in  reduce to linear combinations of variables in  and hence have normal distributions. Thus  is a Gaussian

process.
3. For ,

4. If  with  then  so

5. Finally,  is continuous with probability 1 on , and with probability 1,  as .

Conversely, we can construct a standard Brownian motion from a Brownian bridge.

Suppose that  is a Brownian bridge. Define

Then  is a standard Brownian motion process.

Proof
1. Note that 
2. Linear combinations of the variables in  reduce to linear combinations of the variables in , and hence have normal distributions. Thus  is a

Gaussian process.
3. For ,

4. If  with  Then  so

5. Since  is continuous,  is continuous

We return to the comments at the beginning of this section, on conditioning a standard Brownian motion to be 0 at time 1. Unlike the previous two
constructions, note that we are not transforming the random variables, rather we are changing the underlying probability measure.

Suppose that  is a standard Brownian motion. Then conditioned on , the process  is a Brownian
bridge process.

Proof

Part of the argument is based on properties of the multivariate normal distribution. The conditioned process is still continuous and is still a Gaussian
process. In particular, suppose that  with . Then  has a joint normal distribution with parameters specified by the mean and
covariance functions of . By standard computations, the conditional distribution of  given  is normal with mean 0 and variance .
Similarly, the joint distribution of  is normal with parameters specified by the mean and covariance functions of . Again, by standard
computations, the conditional distribution of  given  is bivariate normal with 0 means and with .

Finally, the Brownian bridge can be defined in terms a stochastic integral

Suppose that  is standard Brownian motions. Define  and

Then  is a Brownian bridge process.

Proof

Z = { : t ∈ [0,∞)}Z

t

= 0X

1

= (1− t)Z( ) , t ∈ [0, 1)X

t

t

1− t

(18.3.1)
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0
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= 0X

1

X Z X
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(18.3.2)

s, t ∈ [0, 1) s< t s/(1−s) < t/(1− t)

cov( , ) = cov[(1−s)Z( ) , (1− t)Z( )]= (1−s)(1− t) = s(1− t)X

s

X
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1−s

t
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t↦X

t

[0, 1) = (1− t)Z [t/(1− t)] →0X

t

t ↑ 1

X = { : t ∈ [0, 1]}X

t

= (1+ t)X( ) , t ∈ [0,∞)Z

t

t

1+ t

(18.3.4)
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s, t ∈ [0, 1] s< t s/(1+s) < t/(1+ t)
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1. Note that  and by definition, .
2. Since the integrand in the stochastic integral is deterministic,  is a Gaussian process.
3.  is continuous on  with probability 1, as a basic property of stochastic integrals. Moreover,  as  as a consequence of the

martingale inequality.
4.  since the stochastic integral has mean 0.
5. Suppose that  with . Then

But  and  are independent,

But then by the Ito isometry,

In differential form, the process above can be written as

The General Brownian Bridge

The processes constructed above (in several ways!) is the standard Brownian bridge. it's a simple matter to generalize the process so that it starts at  and
ends at , for arbitrary .

Suppose that  is a standard Brownian bridge process. Let  and define  for . Then 
 is a Brownian bridge process from  to .

Of course, any of the constructions above for standard Brownian bridge can be modified to produce a general Brownian bridge. Here are the characterizing
properties.

The Brownian bridge process  from  to  is characterized by the following properties:

1.  and  (each with probability 1).
2.  is a Gaussian process.
3.  for .
4.  for .
5. With probability 1,  is continuous on .

Applications

The Empirical Distribution Function

We start with a problem that is one of the most basic in statistics. Suppose that  is a real-valued random variable with an unknown distribution. Let 
denote the distribution function of , so that  for . Our goal is to construct an estimator of , so naturally our first step is to
sample from the distribution of . This generates a sequence  of independent variables, each with the distribution of  (and so with
distribution function ). Think of  as a sequence of independent copies of . For  and , the natural estimator of  based on the first 
sample values is

which is simply the proportion of the first  sample values that fall in the interval . Appropriately enough,  is known as the empirical
distribution function corresponding to the sample of size . Note that  is a sequence of independent, identically distributed
indicator variables (and hence is a sequence of Bernoulli trials), and corresponds to sampling from the distribution of . The estimator  is
simply the sample mean of the first  of these variables. The numerator, the number of the original sample variables with values in , has the
binomial distribution with parameters  and . Like all sample means from independent, identically distributed samples,  satisfies some basic
and important properties. A summary is given below, but to make sense of some of these facts, you need to recall the mean and variance of the indicator
variable that we are sampling from: , 

For fixed ,

1.  so  is an unbiased estimator of 
2.  so  is a consistent estimator of 
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cov( , ) = (1−s)(1− t) du = (1−s)(1− t)( −1) = (1− t)sX
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d = dt+d , = 0X
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3.  as  with probability 1, the strong law of large numbers.
4.  has mean 0 and variance  and converges to the normal distribution with these parameters as , the

central limit theorem.

The theorem above gives us a great deal of information about  for fixed , but now we want to let  vary and consider the expression in (d), namely 
, as a random process for each . The key is to consider a very special distribution first.

Suppose that  has the standard uniform distribution, that is, the continuous uniform distribution on the interval . In this case the distribution function
is simply  for , so we have the sequence of stochastic processes  for , where

Of course, the previous results apply, so the process  has mean function 0, variance function , and for fixed , the distribution 
 converges to the corresponding normal distribution as . Here is the new bit of information, the covariance function of  is the same as

that of the Brownian bridge!

 for .

Proof

Suppose that . From basic properties of covariance,

But if , the variables  and  are independent, and hence have covariance 0. On the other hand,

hence

This page titled 18.3: The Brownian Bridge is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via source
content that was edited to the style and standards of the LibreTexts platform.
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18.4: Geometric Brownian Motion
         

Basic Theory

Geometric Brownian motion, and other stochastic processes constructed from it, are often used to model population growth,
financial processes (such as the price of a stock over time), subject to random “noise”.

Definition

Suppose that  is standard Brownian motion and that  and . Let

The stochastic process  is geometric Brownian motion with drift parameter  and volatility parameter 
.

Note that the stochastic process

is Brownian motion with drift parameter  and scale parameter , so geometric Brownian motion is simply the exponential
of this process. In particular, the process is always positive, one of the reasons that geometric Brownian motion is used to model
financial and other processes that cannot be negative. Note also that , so the process starts at 1, but we can easily change
this. For , the process  is geometric Brownian motion starting at . You may well wonder about
the particular combination of parameters  in the definition. The short answer to the question is given in the following
theorem:

Geometric Brownian motion  satisfies the stochastic differential equation

Note that the deterministic part of this equation is the standard differential equation for exponential growth or decay, with rate
parameter .

Run the simulation of geometric Brownian motion several times in single step mode for various values of the parameters. Note
the behavior of the process.

Distributions

For ,  has the lognormal distribution with parameters  and . The probability density function 

is given by

1.  increases and then decreases with mode at 

2.  is concave upward, then downward, then upward again with inflection points at 

Proof

Since the variable  has the normal distribution with mean  and standard deviation ,
it follows that  has the lognormal distribution with these parameters. These result for the PDF then follow
directly from the corresponding results for the lognormal PDF.

In particular, geometric Brownian motion is not a Gaussian process.
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Open the simulation of geometric Brownian motion. Vary the parameters and note the shape of the probability density function
of . For various values of the parameters, run the simulation 1000 times and compare the empirical density function to the
true probability density function.

For , the distribution function  of  is given by

where  is the standard normal distribution function.

Proof

Again, this follows directly from the CDF of the lognormal distribution.

For , the quantile function  of  is given by

where  is the standard normal quantile function.

Proof

This follows directly from the lognormal quantile function.

Moments

For  and ,

Proof

This follows from the formula for the moments of the lognormal distribution.

In terms of the order of the moment , the dominant term inside the exponential is . If  then 
 so  as . The mean and variance follow easily from the general moment result.

For ,

1. 

2. 

In particular, note that the mean function  for  satisfies the deterministic part of the stochastic
differential equation above. If  then  as . If  then  for all . If  then 

 as .

Open the simulation of geometric Brownian motion. The graph of the mean function  is shown as a blue curve in the main
graph box. For various values of the parameters, run the simulation 1000 times and note the behavior of the random process in
relation to the mean function.

Open the simulation of geometric Brownian motion. Vary the parameters and note the size and location of the mean standard
deviation bar for . For various values of the parameter, run the simulation 1000 times and compare the empirical mean and
standard deviation to the true mean and standard deviation.

Properties

The parameter  determines the asymptotic behavior of geometric Brownian motion.

Asymptotic behavior:
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1. If  then  as  with probability 1.
2. If  then  as  with probability 1.
3. If  then  has no limit as  with probability 1.

Proof

These results follow from the law of the iterative logarithm. Asymptotically, the term  dominates the term  as 
.

It's interesting to compare this result with the asymptotic behavior of the mean function, given above, which depends only on the
parameter . When the drift parameter is 0, geometric Brownian motion is a martingale.

If , geometric Brownian motion  is a martingale with respect to the underlying Brownian motion .

Proof from stochastic integrals

This is the simplest proof. When ,  satisfies the stochastic differential equation  and therefore

The process associated with a stochastic integral is always a martingale, assuming the usual assumptions on the integrand
process (which are satisfied here).

Direct proof

Let  for , so that  is the natural filtration associated with . Let 
 with . We use our usual trick of writing , to take advantage of the stationary and

independent increments properties of Brownian motion. Thus,

Since  is measurable with respect to  and  is independent of  we have

But  has the normal distribution with mean 0 and variance , so from the formula for the moment generating
function of the normal distribution, we have

Substituting gives

This page titled 18.4: Geometric Brownian Motion is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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