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4.13: Kernels and Operators
        

The goal of this section is to study a type of mathematical object that arises naturally in the context of conditional expected value
and parametric distributions, and is of fundamental importance in the study of stochastic processes, particularly Markov processes.
In a sense, the main object of study in this section is a generalization of a matrix, and the operations generalizations of matrix
operations. If you keep this in mind, this section may seem less abstract.

Basic Theory

Definitions

Recall that a measurable space  consists of a set  and a -algebra  of subsets of . If  is a positive measure on 
, then  is a measure space. The two most important special cases that we have studied frequently are

1. Discrete:  is countable,  is the collection of all subsets of , and  is counting measure on .
2. Euclidean:  is a measurable subset of  for some ,  is the collection of subsets of  that are also measurable,

and  is -dimensional Lebesgue measure on .

More generally,  usually comes with a topology that is locally compact, Hausdorff, with a countable base (LCCB), and  is the
Borel -algebra, the -algebra generated by the topology (the collection of open subsets of ). The measure  is usually a Borel
measure, and so satisfies  if  is compact. A discrete measure space is of this type, corresponding to the discrete
topology. A Euclidean measure space is also of this type, corresponding to the Euclidean topology, if  is open or closed (which is
usually the case). In the discrete case, every function from  to another measurable space is measurable, and every from function
from  to another topological space is continuous, so the measure theory is not really necessary.

Recall also that the measure space  is -finite if there exists a countable collection  such that 
 for  and . If  is a Borel measure space corresponding to an LCCB topology, then it is -

finite.

If  is measurable, define . Of course we may well have . Let  denote the
collection of bounded measurable functions . Under the usual operations of pointwise addition and scalar multiplication,

 is a vector space, and  is the natural norm on this space, known as the supremum norm. This vector space plays an
important role.

In this section, it is sometimes more natural to write integrals with respect to the positive measure  with the differential before the
integrand, rather than after. However, rest assured that this is mere notation, the meaning of the integral is the same. So if 

 is measurable then we may write the integral of  with respect to  in operator notation as

assuming, as usual, that the integral exists. This will be the case if  is nonnegative, although  is a possible value. More
generally, the integral exists in  if  or  where  and  are the positive and negative parts of 

. If both are finite, the integral exists in  (and  is integrable with respect to ). If If  is a probability measure and we think of 
 as the sample space of a random experiment, then we can think of  as a real-valued random variable, in which case our

new notation is not too far from our traditional expected value . Our main definition comes next.

Suppose that  and  are measurable spaces. A kernel from  to  is a function 
such that

1.  is a measurable function from  into  for each .
2.  is a positive measure on  for each .

If , then  is said to be a kernel on .

There are several classes of kernels that deserve special names.

Suppose that  is a kernel from  to . Then
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1.  is -finite if the measure  is -finite for every .
2.  is finite if  for every .
3.  is bounded if  is bounded in .
4.  is a probability kernel if  for every .

Define , so that  if  is a bounded kernel and  if  is a probability kernel.

So a probability kernel is bounded, a bounded kernel is finite, and a finite kernel is -finite. The terms stochastic kernel and
Markov kernel are also used for probability kernels, and for a probability kernel  of course. The terms are consistent with
terms used for measures:  is a finite kernel if and only if  is a finite measure for each , and  is a probability kernel
if and only if  is a probability measure for each . Note that  is simply the supremum norm of the function 

.

A kernel defines two natural integral operators, by operating on the left with measures, and by operating on the right with
functions. As usual, we are often a bit casual witht the question of existence. Basically in this section, we assume that any integrals
mentioned exist.

Suppose that  is a kernel from  to .

1. If  is a positive measure on , then  defined as follows is a positive measure on :

2. If  is measurable, then  defined as follows is measurable (assuming that the integrals exist in ):

Proof
1. Clearly  for . Suppose that  is a countable collection of disjoint sets in  and 

. Then

The interchange of sum and integral is justified since the terms are nonnegative.
2. The measurability of  follows from the measurability of  and of  for , and from basic properties

of the integral.

Thus, a kernel transforms measures on  into measures on , and transforms certain measurable functions from  to 
into measurable functions from  to . Again, part (b) assumes that  is integrable with respect to the measure  for every 

. In particular, the last statement will hold in the following important special case:

Suppose that  is a kernel from  to  and that .

1. If  is finite then  is defined and .
2. If  is bounded then .

Proof
1. If  is finite then
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Hence  is integrable with respect to  for each  so  is defined. Continuing with our inequalities, we have 
 so . Moreover equality holds when , the

constant function 1 on .
2. If  is bounded then  so from (a), .

The identity kernel  on the measurable space  is defined by  for  and .

Thus,  if  and  if . So  is the indicator function of , while 
is point mass at . Clearly the identity kernel is a probability kernel. If we need to indicate the dependence on the particular
space, we will add a subscript. The following result justifies the name.

Let  denote the identity kernel on .

1. If  is a positive measure on  then .
2. If  is measurable, then .

Constructions

We can create a new kernel from two given kernels, by the usual operations of addition and scalar multiplication.

Suppose that  and  are kernels from  to , and that . Then  and  defined below are also
kernels from  to .

1.  for  and .
2.  for  and .

If  and  are -finite (finite) (bounded) then  and  are -finite (finite) (bounded), respectively.

Proof

These results are simple.

1. Since  is measurable for , so is . Since  is a positive measure on 
 for , so is  since .

2. Since  and  are measurable for , so is . Since 
and  are positive measures on  for , so is .

A simple corollary of the last result is that if  then  is a kerneal from  to . In particular, if 
 are probability kernels and  then  is a probability kernel. A more interesting and important way to

form a new kernel from two given kernels is via a “multiplication” operation.

Suppose that  is a kernel from  to  and that  is a kernel from  to . Then  defined as follows
is a kernel from  to :

1. If  is finite and  is bounded then  is finite.
2. If  and  are bounded then  is bounded.
3. If  and  are stochastic then  is stochastic

Proof

The measurability of  for  follows from basic properties of the integral. For the second property, fix 
. Clearly  for . Suppose that  is a countable collection of disjoint sets in  and 

. Then
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T
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KL(x,A) = K(x, dy)L(y,A), x ∈ R, A ∈ T∫
S
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The interchange of sum and integral is justified since the terms are nonnegative.

Once again, the identity kernel lives up to its name:

Suppose that  is a kernel from  to . Then

1. 
2. 

The next several results show that the operations are associative whenever they make sense.

Suppose that  is a kernel from  to ,  is a positive measure on , , and  is measurable.
Then, assuming that the appropriate integrals exist,

1. 
2. 
3. 

Proof

These results follow easily from the definitions.

1. The common measure on  is  for .
2. The common function from  to  is  for , assuming that the integral exists for 

.
3. The common real number is , assuming that the integrals exist.

Suppose that  is a kernel from  to  and  is a kernel from  to . Suppose also that  is a positive
measure on ,  is measurable, and . Then, assuming that the appropriate integrals exist,

1. 
2. 
3. 

Proof

These results follow easily from the definitions.

1. The common measure on  is  for .
2. The common measurable function from  to  is  for , assuming that the

integral exists for .
3. The common kernel from  to  is  for  and .

Suppose that  is a kernel from  to ,  is a kernel from  to , and  is a kernel from  to 
. Then .

Proof

This results follow easily from the definitions. The common kernel from  to  is

The next several results show that the distributive property holds whenever the operations makes sense.

KL(x,A) = K(x, dy)L(x,A) = K(x, dy)( L(y, ))∫
S

∫
S

∑
j∈J

Aj

= K(x, dy)L(y, ) = KL(x, )∑
j∈J

∫
S

Aj ∑
j∈J

Aj

K (S,S ) (T ,T )

K = KIS
K = KIT

K (S,S ) (T ,T ) μ S c ∈ [0, ∞) f : T →R

c(μK) = (cμ)K
c(Kf) = (cK)f
(μK)f = μ(Kf)

T cμK(A) = c μ(dx)K(x,A)∫S A ∈ T
S R cKf(x) = c K(x, dy)f(y)∫

S
x ∈ S

x ∈ S

μKf = μ(dx) K(x, dy)f(y)∫S ∫T

K (R,R) (S,S ) L (S,S ) (T ,T ) μ

(R,R) f : T →R c ∈ [0, ∞)

(μK)L = μ(KL)
K(Lf) = (KL)f
c(KL) = (cK)L

(T ,T ) μKL(A) = μ(dx) K(x, dy)L(y,A)∫R ∫S A ∈ T
R R KLf(x) = K(x, dy) L(y, dz)f(z)∫

S
∫
T

x ∈ R

x ∈ S

(R,R) (T ,T ) cKL(x,A) = c K(x, dy)L(y,A)∫S x ∈ R A ∈ T

K (R,R) (S,S ) L (S,S ) (T ,T ) M (T ,T )
(U,U ) (KL)M = K(LM)
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S
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Suppose that  and  are kernels from  to  and that  and  are kernels from  to . Suppose
also that  is a positive measure on  and that  is measurable. Then, assuming that the appropriate integrals
exist,

1. 
2. 
3. 
4. 

Suppose that  is a kernel from  to , and that  and  are positive measures on , and that  and  are
measurable functions from  to . Then, assuming that the appropriate integrals exist,

1. 
2. 
3. 
4. 

In particular, note that if  is a kernel from  to , then the transformation  defined for positive measures on 
, and the transformation  defined for measurable functions  (for which  exists), are both linear

operators. If  is a positive measure on , then the integral operator  defined for measurable  (for which 
 exists) is also linear, but of course, we already knew that. Finally, note that the operator  is positive: if  then 

. Here is the important summary of our results when the kernel is bounded.

If  is a bounded kernel from  to , then  is a bounded, linear transformation from  to  and 
 is the norm of the transformation.

The commutative property for the product of kernels fails with a passion. If  and  are kernels, then depending on the measurable
spaces,  may be well defined, but not . Even if both products are defined, they may be kernels from or to different
measurable spaces. Even if both are defined from and to the same measurable spaces, it may well happen that . Some
examples are given below

If  is a kernel on  and , we let , the -fold power of . By convention, , the identity
kernel on .

Fixed points of the operators associated with a kernel turn out to be very important.

Suppose that  is a kernel from  to .

1. A positive measure  on  such that  is said to be invariant for .
2. A measurable function  such that  is said to be invariant for 

So in the language of linear algebra (or functional analysis), an invariant measure is a left eigenvector of the kernel, while an
invariant function is a right eigenvector of the kernel, both corresponding to the eigenvalue 1. By our results above, if  and  are
invariant measures and , then  and  are also invariant. Similarly, if  and  are invariant functions and ,
the  and  are also invariant.

Of couse we are particularly interested in probability kernels.

Suppose that  is a probability kernel from  to  and that  is a probability kernel from  to .
Suppose also that  is a probability measure on . Then

1.  is a probability kernel from  to .
2.  is a probability measure on .

Proof
1. We know that  is a kernel from  to . So we just need to note that

K L (R,R) (S,S ) M N (S,S ) (T ,T )
μ (R,R) f : S →R

(K+L)M = KM +LM

K(M +N) = KM +KN

μ(K+L) = μK+μL

(K+L)f = Kf +Lf

K (S,S ) (T ,T ) μ ν (S,S ) f g

T R

(μ+ν)K = μK+νK

K(f +g) = Kf +Kg

μ(f +g) = μf +μg

(μ+ν)f = μf +νf

K (S,S ) (T ,T ) μ ↦ μK

(S,S ) f ↦ Kf f : T →R Kf

μ (S,S ) f ↦ μf f : S →R

μf f ↦ Kf f ≥ 0
Kf ≥ 0

K (S,S ) (T ,T ) f ↦ Kf B(T ) B(S)
∥K∥

K L

KL LK

KL ≠ LK

K (S,S ) n ∈ N = KK⋯KKn n K = IK0

S

K (S,S ) (T ,T )

μ (S,S ) μK = μ K

f : T →R Kf = f K

μ ν

c ∈ [0, ∞) μ+ν cμ f g c ∈ R

f +g cf

P (R,R) (S,S ) Q (S,S ) (T ,T )
μ (R,R)

PQ (R,R) (T ,T )
μP (S,S )

PQ (R,R) (T ,T )

PQ(T ) = P (x, dy)Q(y,T ) = P (x, dy) = P (x,S) = 1, x ∈ R∫
S

∫
S
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2. We know that  is a positive measure on . So we just need to note that

As a corollary, it follows that if  is a probability kernel on , then so is  for .

The operators associated with a kernel are of fundamental importance, and we can easily recover the kernel from the operators.
Suppose that  is a kernel from  to , and let  and . Then trivially,  where as usual,

 is the indicator function of . Trivially also  where  is point mass at .

Kernel Functions

Usually our measurable spaces are in fact measure spaces, with natural measures associated with the spaces, as in the special cases
described in (1). When we start with measure spaces, kernels are usually constructed from density functions in much the same way
that positive measures are defined from density functions.

Suppose that  and  are measure spaces. As usual,  is given the product -algebra . If 
 is measurable, then the function  defined as follows is a kernel from  to :

Proof

The measurability of  for  follows from a basic property of the integral. The fact that
 is a positive measure on  for  also follows from a basic property of the integral. In

fact,  is the density of this measure with respect to .

Clearly the kernel  depends on the positive measure  on  as well as the function , while the measure  on  plays
no role (and so is not even necessary). But again, our point of view is that the spaces have fixed, natural measures. Appropriately
enough, the function  is called a kernel density function (with respect to ), or simply a kernel function.

Suppose again that  and  are measure spaces. Suppose also  is a kernel from  to  with
kernel function . If  is measurable, then, assuming that the integrals exists,

Proof

This follows since the function  is the density of the measure  with respect to :

A kernel function defines an operator on the left with functions on  in a completely analogous way to the operator on the right
above with functions on .

Suppose again that  and  are measure spaces, and that  is a kernel from  to  with kernel
function . If  is measurable, then the function  defined as follows is also measurable, assuming that
the integrals exists

The operator defined above depends on the measure  on  as well as the kernel function , while the measure  on 
playes no role (and so is not even necessary). But again, our point of view is that the spaces have fixed, natural measures. Here is
how our new operation on the left with functions relates to our old operation on the left with measures.

μP (S,S ))

μP (S) = μ(dx)P (x,S) = μ(dx) = μ(R) = 1∫
R

∫
R

(4.13.8)

P (S,S ) P n n ∈ N

K (S,S ) (T ,T ) x ∈ S A ∈ T K (x) = K(x,A)1A

1A A K(A) = K(x,A)δx δx x

(S,S ,λ) (T ,T ,μ) S×T σ S ⊗T
k : S×T → [0, ∞) K (S,S ) (T ,T )

K(x,A) = k(x, y)μ(dy), x ∈ S, A ∈ T∫
A

(4.13.9)

x ↦ K(x,A) = k(x, y)μ(dy)∫A A ∈ T
A ↦ K(x,A) = k(x, y)μ(dy)∫

A
T x ∈ S

y ↦ k(x, y) μ

K μ (T ,T ) k λ (S,S )

k μ

(S,S ,λ) (T ,T ,μ) K (S,S ) (T ,T )
k f : T →R

Kf(x) = k(x, y)f(y)μ(dy), x ∈ S∫
S

(4.13.10)

y ↦ k(x, y) A ↦ K(x,A) μ

Kf(x) = K(x, dy)f(y) = k(x, y)f(y)μ(dy), x ∈ S∫
S

∫
S

(4.13.11)

S

T

(S,S ,λ) (T ,T ,μ) K (S,S ) (T ,T )
k f : S →R fK : T →R

fK(y) = λ(dx)f(x)k(x, y), y ∈ T∫
S

(4.13.12)

λ (S,S ) k μ (T ,T )
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Suppose again that  and  are measure spaces, and that  is a kernel from  to  with kernel
function . Suppose also that  is measurable, and let  denote the measure on  that has density  with
respect to . Then  is the density of the measure  with respect to .

Proof

The main tool, as usual, is an interchange of integrals. For ,

As always, we are particularly interested in stochastic kernels. With a kernel function, we can have doubly stochastic kernels.

Suppose again that  and  are measure spaces and that  is measurable. Then  is a
double stochastic kernel function if

1.  for 
2.  for 

Of course, condition (a) simply means that the kernel associated with  is a stochastic kernel according to our original definition.

The most common and important special case is when the two spaces are the same. Thus, if  is a measure space and 
 is measurable, then we have an operator  that operates on the left and on the right with measurable

functions :

If  is nonnegative and  is the measure on with density function , then  is the density function of the measure  (both with
respect to ).

Suppose again that  is a measure space and  is measurable. Then  is symmetric if 
 for all .

Of course, if  is a symmetric, stochastic kernel function on  then  is doubly stochastic, but the converse is not true.

Suppose that , , and  are measure spaces. Suppose also that  is a kernel from  to 
with kernel function , and that  is a kernel from  to  with kernel function . Then the kernel  from 
to  has density  given by

Proof

Once again, the main tool is an interchange of integrals via Fubini's theorem. Let  and . Then

Examples and Special Cases

(S,S ,λ) (T ,T ,μ) K (S,S ) (T ,T )
k f : S → [0, ∞) ρ (S,S ) f

λ fK ρK μ

B ∈ T

ρK(B) = ρ(dx)K(x,B) = f(x)K(x,B)λ(dx) = f(x)[ k(x, y)μ(dy)]λ(dx)∫
S

∫
S

∫
S

∫
B

= [ f(x)k(x, y)λ(dx)]μ(dy) = fK(y)μ(dy)∫
B

∫
S

∫
B

(S,S ,λ) (T ,T ,μ) k : S×T → [0, ∞) k

k(x, y)μ(dy) = 1∫
T

x ∈ S

λ(dx)k(x, y) = 1∫
S

y ∈ S

k

(S,S ,λ)
k : S×S → [0, ∞) K

f : S →R

fK(y)

Kf(x)

= λ(dx)f(x)k(x, y), y ∈ S∫
S

= k(x, y)f(y)λ(dy), x ∈ S∫
S

f μ f fK μK

λ

(S,S ,λ) k : S×S → [0, ∞) k

k(x, y) = k(y, x) (x, y) ∈ S2

k (S,S ,λ) k

(R,R,λ) (S,S ,μ) (T ,T , ρ) K (R,R) (S,S )
k L (S,S ) (T ,T ) l KL (R,R)

(T ,T ) kl

kl(x, z) = k(x, y)l(y, z)μ(dy), (x, z) ∈ R×T∫
S

(4.13.13)

x ∈ R B ∈ T

KL(x,B) = K(x, dy)L(y,B) = k(x, y)L(y,B)μ(dy)∫
S

∫
S

= k(x, y)[ l(y, z)ρ(dz)]μ(dy) = [ k(x, y)l(y, z)μ(dy)]ρ(dz) = kl(x, z)μ(dz)∫
S

∫
B

∫
B

∫
S

∫
B
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The Discrete Case

In this subsection, we assume that the measure spaces are discrete, as described in (1). Since the -algebra (all subsets) and the
measure (counting measure) are understood, we don't need to reference them. Recall that integrals with respect to counting measure
are sums. Suppose now that  is a kernel from the discrete space  to the discrete space . For  and , let 

. Then more generally,

The function  is simply the kernel function of the kernel , as defined above, but in this case we usually don't
bother with using a different symbol for the function as opposed to the kernel. The function  can be thought of as a matrix, with
rows indexed by  and columns indexed by  (and so an infinite matrix if  or  is countably infinite). With this interpretation, all
of the operations defined above can be thought of as matrix operations. If  and  is thought of as a column vector
indexed by , then  is simply the ordinary product of the matrix  and the vector ; the product is a column vector indexed by 

:

Similarly, if  and  is thought of as a row vector indexed by , then  is simple the ordinary product of the vector 
and the matrix ; the product is a row vector indexed by :

If  is another kernel from  to another discrete space , then as functions,  is the simply the matrix product of  and :

Let  and . Define the kernel  from  to  by  for . Define the
function  on  by  for , and define the function  on  by  for . Compute each of the
following using matrix algebra:

1. 
2. 

Answer

In matrix form,

1. As a row vector indexed by , the product is 
2. As a column vector indexed by ,

Let , , and . Define the kernel  from  to , the kernel  from  to  and the kernel 
from  to  in matrix form as follows:

Compute each of the following kernels, or explain why the operation does not make sense:

σ

K S T x ∈ S y ∈ T

K(x, y) = K(x, {y})

K(x,A) = K(x, y), x ∈ S, A ⊆ T∑
y∈A

(4.13.14)

(x, y) ↦ K(x, y) K

K

S T S T

f : T →R f

T Kf K f

S

Kf(x) = K(x, y)f(y), x ∈ S∑
y∈S

(4.13.15)

f : S →R f S fK f

K T

fK(y) = f(x)K(x, y), y ∈ T∑
x∈S

(4.13.16)

L T U KL K L

KL(x, z) = K(x, y)L(x, z), (x, z) ∈ S×L∑
y∈T

(4.13.17)

S = {1, 2, 3} T = {1, 2, 3, 4} K S T K(x, y) = x+y (x, y) ∈ S×T

f S f(x) = x! x ∈ S g T g(y) = y2 y ∈ T

fK

Kg

K = , f = [ ] , g =
⎡

⎣
⎢

2

3

4

3

4

5

4

5

6

5

6

7

⎤

⎦
⎥ 1 2 6

⎡

⎣

⎢⎢⎢

1

4

9

16

⎤

⎦

⎥⎥⎥
(4.13.18)

T fK = [ ]32 41 50 59
S

Kg =
⎡

⎣
⎢

130

160

190

⎤

⎦
⎥ (4.13.19)

R = {0, 1} S = {a, b} T = {1, 2, 3} K R S L S S M

S T

K = [ ] , L = [ ] , M = [ ]
1

2

4

3

2

1

2

5

1

0

0

3

2

1
(4.13.20)
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1. 
2. 
3. 
4. 
5. 
6. 

Proof

Note that these are not just abstract matrices, but rather have rows and columns indexed by the appropriate spaces. So the
products make sense only when the spaces match appropriately; it's not just a matter of the number of rows and columns.

1.  is the kernel from  to  given by

2.  is not defined since the column space  of  is not the same as the row space  of .
3.  is not defined since the row space  is not the same as the column space .
4.  is the kernel from  to  given by

5.  is the kernel from  to  given by

6.  is the kernel from  to  given by

Conditional Probability

An important class of probability kernels arises from the distribution of one random variable, conditioned on the value of another
random variable. In this subsection, suppose that  is a probability space, and that  and  are measurable
spaces. Further, suppose that  and  are random variables defined on the probability space, with  taking values in  and that 
taking values in . Informally,  and  are random variables defined on the same underlying random experiment.

The function  defined as follows is a probability kernel from  to , known as the conditional probability kernel
of  given .

Proof

Recall that for , the conditional probability  is itself a random variable, and is measurable with respect to
. That is,  for some measurable function  from  to . Then, by definition, 

. Trivially, of course,  is a probability measure on  for .

The operators associated with this kernel have natural interpretations.

Let  be the conditional probability kernel of  given .

1. If  is measurable, then  for  (assuming as usual that the expected value exists).
2. If  is the probability distribution of  then  is the probability distribution of .

Proof

These are basic results that we have already studied, dressed up in new notation.

KL

LK

K2

L2

KM

LM

KL R S

KL = [ ]
6

7

22

19
(4.13.21)

LK S L R K

K2 R S

L2 S S

= [ ]L2 6

7

14

27
(4.13.22)

KM R T

KM = [ ]
1

2

12

9

6

7
(4.13.23)

LM S T

LM = [ ]
2

1

6

15

6

7
(4.13.24)

(Ω,F ,P) (S,S ) (T ,T )
X Y X S Y

T X Y

P (S,S ) (T ,T )
Y X

P (x,A) = P(Y ∈ A ∣ X = x), x ∈ S, A ∈ T (4.13.25)

A ∈ T P(Y ∈ A ∣ X)
σ(X) P(Y ∈ A ∣ X) = P (X,A) x ↦ P (x,A) S [0, 1]
P(Y ∈ A ∣ X = x) = P (x,A) A ↦ P (x,A) (T ,T ) x ∈ S

P Y X

f : T →R Pf(x) =E[f(Y ) ∣ X = x] x ∈ S

μ X μP Y
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1. Since  is the conditional distribution of  given ,

2. Let . Conditioning on  gives

As in the general discussion above, the measurable spaces  and  are usually measure spaces with natural measures
attached. So the conditional probability distributions are often given via conditional probability density functions, which then play
the role of kernel functions. The next two exercises give examples.

Suppose that  and  are random variables for an experiment, taking values in . For , the conditional distribution of 
 given  is normal with mean  and standard deviation 1. Use the notation and operations of this section for the

following computations:

1. Give the kernel function for the conditional distribution of  given .
2. Find .
3. Suppose that  has the standard normal distribution. Find the probability density function of .

Answer
1. The kernel function (with respect to Lebesgue measure, of course) is

2. Let  for . Then  for 
3. The standard normal PDF  is given  for . Thus  has PDF .

This is the PDF of the normal distribution with mean 0 and variance 2.

Suppose that  and  are random variables for an experiment, with  taking values in  and  taking values in 
. The kernel function of  given  is as follows: , , and , each for 

.

1. Give the kernel  in matrix form and verify that it is a probability kernel.
2. Find  where . The result is the density function of  given that  is uniformly distributed.
3. Find  where  for . The resulting function is  for .

Answer
1.  is given in matrix form below. Note that the row sums are 1.

2. In matrix form,  and .

3. In matrix form,

A ↦ P (x,A) Y X = x

E[f(Y ) ∣ X = x] = P (x, dy)f(y) = Pf(x)∫
S

(4.13.26)

A ∈ T X

P(Y ∈ A) =E[P(Y ∈ A ∣ X)] = μ(dx)P (Y ∈ A ∣ X = x) = μ(dx)P (x,A) = μP (A)∫
S

∫
S

(4.13.27)

(S,S ) (T ,T )

X Y R x ∈ R

Y X = x x

Y X

E ( X = x)Y 2 ∣∣
X Y

p(x, y) = , x, y ∈ R
1

2π−−√
e− (y−x

1

2
)2

(4.13.28)

g(y) = y2 y ∈ R E ( X = x) = Pg(x) = 1 +Y 2 ∣∣ x2 x ∈ R

f f(x) = 1

2π√
e− /2x2

x ∈ R Y fP

fP (y) f(x)p(x, y)dx = , y ∈ R∫
∞

−∞

1

2 π−−√
e

− 1
4
y2

(4.13.29)

X Y X {a, b, c} Y

{1, 2, 3, 4} Y X P (a, y) = 1/4 P (b, y) = y/10 P (c, y) = /30y2

y ∈ {1, 2, 3, 4}

P

fP f(a) = f(b) = f(c) = 1/3 Y X

Pg g(y) = y y ∈ {1, 2, 3, 4} E(Y ∣ X = x) x ∈ {a, b, c}

P

P =

⎡

⎣

⎢⎢⎢

1
4
1

10
1

30

1
4
2

10
4

30

1
4
3

10
9

30

1
4
4

10
16
30

⎤

⎦

⎥⎥⎥ (4.13.30)

f = [ ]1
3

1
3

1
3 fP = [ ]23

180
35
180

51
180

71
180

g = , Pg =

⎡

⎣

⎢
⎢⎢

1

2

3

4

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢⎢

5
2

3
10
3

⎤

⎦

⎥⎥ (4.13.31)
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Parametric Distributions

A parametric probability distribution also defines a probability kernel in a natural way, with the parameter playing the role of the
kernel variable, and the distribution playing the role of the measure. Such distributions are usually defined in terms of a parametric
density function which then defines a kernel function, again with the parameter playing the role of the first argument and the
variable the role of the second argument. If the parameter is thought of as a given value of another random variable, as in Bayesian
analysis, then there is considerable overlap with the previous subsection. In most cases, (and in particular in the examples below),
the spaces involved are either discrete or Euclidean, as described in (1).

Consider the parametric family of exponential distributions. Let  denote the identity function on .

1. Give the probability density function as a probability kernel function  on .
2. Find .
3. Find .
4. Find , the kernel function corresponding to the product kernel .

Answer
1.  for .
2. For ,

This is the mean of the exponential distribution.
3. For ,

4. For ,

Consider the parametric family of Poisson distributions. Let  be the identity function on  and let  be the identity function
on .

1. Give the probability density function  as a probability kernel function from  to .
2. Show that .
3. Show that .

Answer

1.  for  and .
2. For ,  is the mean of the Poisson distribution with parameter :

3. For ,

Clearly the Poisson distribution has some very special and elegant properties. The next family of distributions also has some very
special properties. Compare this exercise with the exercise (30).

Consider the family of normal distributions, parameterized by the mean and with variance 1.

1. Give the probability density function as a probability kernel function  on .

f (0, ∞)

p (0, ∞)
Pf

fP

p2 P 2

p(r, x) = re−rx r, x ∈ (0, ∞)
r ∈ (0, ∞)

Pf(r) = p(r, x)f(x)dx = xr dx =∫
∞

0
∫

∞

0
e−rx 1

r
(4.13.32)

x ∈ (0, ∞)

fP (x) = f(r)p(r, x)dr = dr =∫
∞

0
∫

∞

0
r2e−rx 2

x3
(4.13.33)

r, y ∈ (0, ∞)

(r, y) = p(r, x)p(x, y)dx = = rx dx =p2 ∫
∞

0
∫

∞

0
∫

∞

0
e−(r+y)x r

(r+y)2
(4.13.34)

f N g

(0, ∞)

p (0, ∞) N

Pf = g

gP = f

p(r,n) = e−r rn

n! r ∈ (0, ∞) n ∈ N

r ∈ (0, ∞) Pf(r) r

Pf(r) = p(r,n)f(n) = n = r∑
n=0

∞

∑
n=0

∞

e−r r
n

n!
(4.13.35)

n ∈ N

gP (n) = g(r)p(r,n)dr = dr = n∫
∞

0
∫

∞

0
e−r r

n+1

n!
(4.13.36)

p R
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2. Show that  is symmetric.
3. Let  be the identity function on . Show that  and .
4. For , find  the kernel function for the operator .

Answer
1. For ,

That is,  is the normal probability density function with mean  and variance 1.
2. Note that  for . So  is the normal probability density function with mean  and

variance 1.
3. Since  for , this follows from the previous two parts:  for  and  for 
4. For ,

so that  is the normal PDF with mean  and variance 2. By induction,

for  and . Thus  is the normal PDF with mean  and variance .

For each of the following special distributions, express the probability density function as a probability kernel function. Be sure
to specify the parameter spaces.

1. The general normal distribution on .
2. The beta distribution on .
3. The negative binomial distribution on .

Answer
1. The normal distribution with mean  and standard deviation  defines a kernel function  from  to  given by

2. The beta distribution with left parameter  and right parameter  defines a kernel function  from  to  given
by

where  is the beta function.
3. The negative binomial distribution with stopping parameter  and success parameter  defines a kernel function  from 

 to  given by
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p

f R Pf = f fP = f

n ∈ N pn P n

μ, x ∈ R

p(μ, x) =
1

2π−−√
e− (x−μ

1
2

)2

(4.13.37)

x ↦ p(x,μ) μ

p(μ, x) = p(x,μ) μ, x ∈ R μ ↦ p(μ, x) x

f(x) = x x ∈ R Pf(μ) = μ μ ∈ R fP (x) = x x ∈ R

μ, y ∈ R

(μ, x) = p(μ, t)p(t, y)dt =p2 ∫
∞

−∞

1

4π
−−√

e
− (x−μ

1

4
)2

(4.13.38)

x ↦ (μ, x)p2 μ

(μ, x) =pn
1

2πn
− −−

√
e

− (x−μ1
2n

)2

(4.13.39)

n ∈ N+ μ, x ∈ R x ↦ (μ, x)pn μ n

R

(0, 1)
N

μ σ p R×(0, ∞) R

p[(μ, σ), x] = exp[− ]
1

σ2π−−√
( )
x−μ

σ

2

(4.13.40)

a b p (0, ∞)2 (0, 1)

p[(a, b), x] =
1

B(a, b)
xa−1yb−1 (4.13.41)

B

k α p

(0, ∞) ×(0, 1) N

p[(n,α), k] =( ) (1 −α
n+k−1

n
αk )n (4.13.42)
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