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1.2: Functions

Functions play a central role in probability and statistics, as they do in every other branch of mathematics. For the most part, the
proofs in this section are straightforward, so be sure to try them yourself before reading the ones in the text.

Definitions and Properties

Basic Definitions

We start with the formal, technical definition of a function. It's not very intuitive, but has the advantage that it only requires set
theory.

A function f from a set S into a set T' is a subset of the product set S x T with the property that for each element z € S, there
exists a unique element y € T such that (z,y) € f. If f is a function from S to T we write f : S — T'. If (z,y) € f we write

y=f(z).

Less formally, a function f from S into T is a “rule” (or “procedure” or “algorithm™) that assigns to each z € S a unique element
f(z) € T. The definition of a function as a set of ordered pairs, is due to Kazimierz Kuratowski. The term map or mapping is also
used in place of function, so we could say that f maps S into T'.
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Figure 1.2.1: A function f from S into T

The sets .S and 7" in the definition are clearly important.

Suppose that f : S —T'.

1. The set S is the domain of f.
2. The set T is the range space or co-domain of f.
3. The range of f is the set of function values. That is, range (f) = {y € T : y = f(z) for some z € S} .

The domain and range are completely specified by a function. That's not true of the co-domain: if f is a function from S into T,
and U is another set with 7' C U, then we can also think of f as a function from .S into U. The following definitions are natural
and important.

Suppose again that f: S — T'.

1. f maps S onto T if range (f) = T. That is, for each y € T there exists z € S such that f(z) =y.
2. f is one-to-one if distinct elements in the domain are mapped to distinct elements in the range. That is, if u, v € S and

u #£ v then f(u) # f(v).

Clearly a function always maps its domain onto its range. Note also that f is one-to-one if f(u)= f(v) implies u =v for
u, ve S.

Inverse functions

A funtion that is one-to-one and onto can be “reversed” in a sense.

If f maps S one-to-one onto T, the inverse of f is the function f~! from T onto S given by

fly)=2 < fx)=y; zc8S,yeT (1.2.1)
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If you like to think of a function as a set of ordered pairs, then £ = {(y,z) € T x S: (x,y) € f} . The fact that f is one-to-one
and onto ensures that f ! is a valid function from T" onto S. Sets S and T are in one-to-one correspondence if there exists a one-
to-one function from S onto 7'. One-to-one correspondence plays an essential role in the study of cardinality.

Restrictions

The domain of a function can be restricted to create a new funtion.

Suppose that f : S — T and that A C S The function f4 : A — T defined by f4(z) = f(z) for z € A is the restriction of f
to A.

As a set of ordered pairs, note that f4 = {(z,y) € f: z € A}.

Composition

Composition is perhaps the most important way to combine two functions to create another function.

Suppose that g: R — S and f : § — T'. The composition of f with g is the function fog: R — T defined by
(fog)(z)=f(g9(x)), zeR (1.2.2)

Composition is associative:
Suppose thath: R—S,g: S— T ,and f: T — U . Then
fo(goh)=(fog)oh (1.2.3)

Proof

Note that both functions map R into U. Using the definition of composition, the value of both functions at z € R is

1 (g(h(z))).

Thus we can write fo goh without ambiguity. On the other hand, composition is not commutative. Indeed depending on the
domains and co-domains, f o g might be defined when go f is not. Even when both are defined, they may have different domains
and co-domains, and so of course cannot be the same function. Even when both are defined and have the same domains and co-
domains, the two compositions will not be the same in general. Examples of all of these cases are given in the computational
exercises below.

Suppose thatg: R — S and f: S — T'.

1. If f and g are one-to-one then f o g is one-to-one.
2. If f and g are onto then f o g is onto.
Proof
1. Suppose that u, v € R and (f o g)(u) = (f o g)(v) . Then f (g(u)) = f (9(v)) . Since f is one-to-one, g(u) = g(v) . Since
g is one-to-one, u =v.
2. Suppose that z € T'. Since f is onto, there exist y € S with f(y) = z. Since g is onto, there exists z € R with g(z) =y.

Then (fog)(z) = f(9(z)) = f(y) == .

I The identity function on a set S is the function I's from S onto S defined by Is(z) =z forz € S

The identity function acts like an identity with respect to the operation of composition.

If f: S—T then

1. folg=f
2 Irof=f
Proof

1.Note that folg: S—T .Forz € S, (fols)(z)=f(Is(z)) = f(z) .
2.Notethat Iro f: S—T .Forz € S, (Iro f)(z) = Ir (f(z)) = f(z) .

https://stats.libretexts.org/@go/page/10117


https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10117?pdf

LibreTextsw

The inverse of a function is really the inverse with respect to composition.

Suppose that f is a one-to-one function from S onto 7". Then

1. f_lonIS
2 foft=1Ir
Proof

1. Note that f Yo f: S—S.Forz €S, (fof)(x)=f"(f(z) =2 .
2.Notethat fo f:T =T .Fory €T, (fof ) (y)=Ff(f'®) =y

An element € S™ can be thought of as a function from {1,2,...,n}into S. Similarly, an element € S can be thought of as
a function from N into S. For such a sequence z, of course, we usually write ; instead of (z). More generally, if S and T' are
sets, then the set of all functions from S into 7T is denoted by T"°. In particular, as we noted in the last section, S* is also (and
more accurately) written as S™* .

Suppose that g is a one-to-one function from R onto S and that f is a one-to-one function from S onto 7. Then
(fog) ' =gtof .

Proof

Note that (fog) ™ :T—R and g lof':T—-R.For ycT, let z=(fog) '(y). Then (fog)(z)=y so that
f (9(z)) =y and hence g(x) = f ' (y) and finally z =g~ (f ' (¥)) .

Inverse Images

Inverse images of a function play a fundamental role in probability, particularly in the context of random variables.
Suppose that f: S — T'. If A C T, the inverse image of A under f is the subset of S given by
FlA)={zecS: f(z)c A} (1.2.4)

So f1(A) is the subset of S consisting of those elements that map into A.

& T
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Figure 1.2.2: The inverse image of A under f

Technically, the inverse images define a new function from Z(T) into &?(S). We use the same notation as for the inverse
function, which is defined when f is one-to-one and onto. These are very different functions, but usually no confusion results. The
following important theorem shows that inverse images preserve all set operations.

Suppose that f : S — T', and that A, B C T'. Then
1. 7(AUB) = 1 (A)U f(B)
2. f7H(ANB)=f"1(A)Nf(B)
3.1 (A\B)=f"(A)\ f(B)
4.1f AC B then f1(A) C f1(B)
5.1f A and B are disjoint, so are f *(A) and f!(B)

Proof

1.z € f1(AUB) ifandonly if f(z) € AUB ifand only if f(z) € A or f(z) € B ifand only if x € f*(A) or
z € f1(B)ifandonlyifz € f1(A)U f(B)

2. The proof is the same as (a), with intersection replacing union and with and replacing or throughout.

3. The proof is the same as (a), with set difference replacing union and with and not replacing or throughout.
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4. Suppose A C B.If z € f 1 (A) then f(z) € A and hence f(z) € B,soz € f1(B).
5.1f A and B are disjoint, then from (b), f 1 (A)Nf 1 (B)=f Y (ANB)=f1(0)=0

The result in part (a) holds for arbitrary unions, and the result in part (b) holds for arbitrary intersections. No new ideas are
involved; only the notation is more complicated.

Suppose that { 4; : ¢ € I'} is a collection of subsets of T', where I is a nonempty index set. Then
L f7 (Uier 4i) =Uier £ (4i)
2. f71 (niel Ai) = niel fil (AZ)
Proof
Lz e f (Ups Ai) ifandonly if f(z) € U, ; 4 if and only if f(z) € A; for some i € I if and only if z € f~'(A;) for
some i € I ifand only if z € J;.; f ' (4i)
2. The proof is the same as (a), with intersection replacing union and with for every replacing for some.

Forward Images

Forward images of a function are a naturally complement to inverse images.
Suppose again that f : S — T'.If A C S, the forward image of A under f is the subset of T" given by
fA) ={f(z):z € A} (1.2.5)

So f(A) is the range of f restricted to A.

s T
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Figure 1.2.3: The forward image of A under f

Technically, the forward images define a new function from £?(S) into Z(T'), but we use the same symbol f for this new function
as for the underlying function from S into T that we started with. Again, the two functions are very different, but usually no
confusion results.

It might seem that forward images are more natural than inverse images, but in fact, the inverse images are much more important
than the forward ones (at least in probability and measure theory). Fortunately, the inverse images are nicer as well—unlike the
inverse images, the forward images do not preserve all of the set operations.

Suppose that f : S — T, and that A, B C S. Then

1. f(AUB) = f(A)U f(B) .

2. f(ANB) C f(A)N f(B) . Equality holds if f is one-to-one.
3. f(A)\ f(B) C f(A\ B) . Equality holds if f is one-to-one.
4.1f A C B then f(A) C f(B).

Proof

1. Suppose y € f(AUB).Theny = f(z) forsomez € AUB.Ifz € A theny € f(A) andif z € B theny € f(B). In
both cases y € f(A)U f(B). Conversely suppose y € f(A)U f(B).If y € f(A) then y = f(x) for some z € A. But
thenz € AUB soy € f(AU B). Similarly, if y € f(B) then y = f(z) for some z € B. But thenz € AU B so
y€ f(AUB).

2.Ifye f(ANB) theny = f(z) forsomex € ANB.Butthenz € Asoy € f(A) andz € B soy € f(B) and hence
y € f(A)N f(B). Conversely, suppose that y € f(A)N f(B). Theny € f(A) and y € f(B), so there exists z € A with
f(z) =y and there exists u € B with f(u) = y. At this point, we can go no further. But if f is one-to-one, then u = z
andhencex € Aandz € B.Thusz € ANB soy € f(ANB).
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3. Suppose y € f(A)\ f(B). Theny € f(A) andy ¢ f(B). Hence y = f(z) for some z € A and y # f(u) for every
u € B.Thus,z ¢ Bsox € A\ B and hence y € f(A\ B). Conversely, suppose y € f(A\ B). Theny = f(z) for some
z € A\ B.Hencez € A soy € f(A). Again, the proof breaks down at this point. However, if f is one-to-one and
f(u) =y forsome u € B, then u =z so z € B, a contradiction. Hence f(u) # y for every u € B soy ¢ f(B). Thus
ye f(A\B).

4. Suppose A C B. If y € f(A) theny = f(x) forsome z € A. Butthenz € B soy € f(B).

The result in part (a) hold for arbitrary unions, and the results in part (b) hold for arbitrary intersections. No new ideas are involved;
only the notation is more complicated.

Suppose that { 4; : ¢ € I'} is a collection of subsets of .S, where I is a nonempty index set. Then

L f(UzeIA)_UzeIf( i)
2. f (Mier 4i) € Nier f(A;). Equality holds if f is one-to-one.

Proof
Ly € f(Ues 4i) ifand only if y = f(z) for some € |J;.; A; if and only if y = f(x) for some z € A; and some i € I
if and only if y € f(A;) for some i € I if and only if y € (U, f(4i).
2.1fy € f (s 4i) then y = f(z) for some z € (,.; A;. Hence = € A; foreveryi € I soy € f(A;) forevery i € I and
thus y € (),.; f(A;). Conversely, suppose that y € (,.; f(A;). Theny € f(A;) for every i € I. Hence for every i € I
there exists x; € A; with y = f(x;). If f is one-to-one, z; = x; forall 4, j € I. Call the common value z. Then z € A;
for every i € I sox € ;.; A; and therefore y € f (N;c; Ai)-

Suppose again that f : S — T'. As noted earlier, the forward images of f define a function from £(S) into (T and the inverse
images define a function from Z(T') into £?(.S). One might hope that these functions are inverses of one another, but alas no.

Suppose that f : S — T.

1. AC f1[f(A)] for A C S.Equality holds if f is one-to-one.
2. f[f~(B)] € B for BC T. Equality holds if f is onto.

Proof
1.If z € A then f(z) € f(A) and hence z € f~! [f(A)]. Conversely suppose that z € f~! [f(A)]. Then f(z) € f(A) so
f(z) = f(u) for some u € A. At this point we can go no further. But if f is one-to-one, then w = z and hence z € A.
2. Suppose y € f [f1(B)]. Theny = f(z) for some = € f*(B). But then y = f(z) € B. Conversely suppose that f is
onto and y € B. There exist z € S with f(z) =y. Hencez € f~*(B) andsoy € f [f1(B)].

Spaces of Real Functions

Real-valued function on a given set S are of particular importance. The usual arithmetic operations on such functions are defined
pointwise.

Suppose thatf, g: S— R andc € R, then f+g, f—g, fg, cf, f/9: S — R are defined as follows forall z € S.
L (f+9)(z) = f(z) +g(z)

2.(f—9)(z) = f(z) —g(x)
3.(f9)(z) = f(z)g(z)
4. (cf)(z) =cf(z)
5.(f/g)(z) = f(z)/g(z) assuming that g(z) # 0 forz € S.

Now let ¥ denote the collection of all functions from the given set S into R. A fact that is very important in probability as well as
other branches of analysis is that 7, with addition and scalar multiplication as defined above, is a vector space. The zero function 0
is defined, of course, by 0(z) =0 forall z € S.

(¥, +,-) is a vector space over R. That is, forall f, g, h € ¥ anda, b€ R

1. f+g=g+ f , the commutative property of vector addition.
2. f+(g+h)=(f+g)+h ,theassociative property of vector addition.
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3.a(f+9g) =af +ag , scalar multiplication distributes over vector addition.
4.(a+b)f =af+0bf ,scalar multiplication distributive over scalar addition.
5. f4+0 = f, the existence of an zero vector.

6. f+(—f) =0, the existence of additive inverses.

7.1- f = f, the unity property.

Proof

Each of these properties follows from the corresponding property in R.

Various subspaces of ¥ are important in probability as well. We will return to the discussion of vector spaces of functions in the
sections on partial orders and in the advanced sections on metric spaces and measure theory.

Indicator Functions

For our next discussion, suppose that S is the universal set, so that all other sets mentioned are subsets of S.

Suppose that A C S'. The indicator function of A is the function 1 4 : S — {0, 1} defined as follows:

1,(z) = { (1)’ . ;j (1.2.6)

Thus, the indicator function of A simply indicates whether or not € A for each € S. Conversely, any function on S that just
takes the values 0 and 1 is an indicator function.

l If f: S — {0,1} then f is the indicator function of the set A= f {1} ={z € S: f(z) =1} .

Thus, there is a one-to-one correspondence between Z(S), the power set of S, and the collection of indicator functions {0, 1}%.
The next result shows how the set algebra of subsets corresponds to the arithmetic algebra of the indicator functions.

Suppose that A, B C S. Then

1.140=141p =min{1A, lB}

2148=1—-(1-14)(1—1p) =max{14,15}

3.1 =1-1y

4.14p5=14(1—1p)

5. ACBifandonlyifl4 <1p

Proof

1. Note that both functions on the right just take the values 0 and 1. Moreover, 14(z)1p(z) = min{14(z),15(z)} =1 if
and onlyif z € A and z € B.

2. Note that both function on the right just take the values 0 and 1. Moreover,
1-(1-14(z))(1—1p(z)) =max{l4(z),1p(z)} =1 ifandonlyifz € A orz € B.

3. Note that 1 —1 4 just takes the values 0 and 1. Moreover, 1 —14(z) =1 ifandonlyif x ¢ A.

4. Note that 14\p = 14npc = 1415 =14 (1 —1p) by parts (a) and (c).

5. Since both functions just take the values 0 and 1, note that 14 < 1p if and only if 1 4(z) =1 implies 15(z) = 1. Butin
turn, this is equivalent to A C B.

The results in part (a) extends to arbitrary intersections and the results in part (b) extends to arbitrary unions.

Suppose that { 4; : ¢ € I'} is a collection of subsets of .S, where I is a nonempty index set. Then

L1, 4 =Ilies 14, =min{ly :7 € I}
2. ]'Uiel 4 =1 _Hiel (1 _]'Ai) :max{lAi S I}

Proof

In general, a product over an infinite index set may not make sense. But if all of the factors are either 0 or 1, as they are here,
then we can simply define the product to be 1 if all of the factors are 1, and 0 otherwise.
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1. The functions in the middle and on the right just take the values 0 and 1. Moreover, both take the value 1 at z € S if and
only if z € A; foreveryi € I.

2. The functions in the middle and on the right just take the values 0 and 1. Moreover, both take the value 1 at z € S if and
only if x € A; forsome i € I.

Multisets

A multiset is like an ordinary set, except that elements may be repeated. A multiset A (with elements from a universal set S) can be
uniquely associated with its multiplicity function my4 : S — N, where m4(z) is the number of times that element z is in A for
each z € S. So the multiplicity function of a multiset plays the same role that an indicator function does for an ordinary set.
Multisets arise naturally when objects are sampled with replacement (but without regard to order) from a population. Various
sampling models are explored in the section on Combinatorial Structures. We will not go into detail about the operations on
multisets, but the definitions are straightforward generalizations of those for ordinary sets.

Suppose that A and B are multisets with elements from the universal set S. Then

1. AC B ifand only if my <mp
2. myup =max{mgy,mp}

3. manp = min{my, mp}

4. myp=myg+mp

Product Spaces

Using functions, we can generalize the Cartesian products studied earlier. In this discussion, we suppose that S; is a set for each ¢
in a nonempty index set I.

Define the product set

H S; = {:c : ¢ is a function from I into U S; such that z(i) € S; for each i € I} (1.2.7)
iel iel
Note that except for being nonempty, there are no assumptions on the cardinality of the index set I. Of course, if I ={1,2...,n}
for some n € N, or if I =N, then this construction reduces to S; X Sy X --- xS, and to S7 X Sg X -- -, respectively. Since

we want to make the notation more closely resemble that of simple Cartesian products, we will write z; instead of z (%) for the
value of the function z at ¢ € I, and we sometimes refer to this value as the ith coordinate of x. Finally, note that if S; =S for
each ¢ € I, then [],_; S; is simply the set of all functions from I into S, which we denoted by ST above.

l For j € I define the projection p; : [[;c; Si — S; by pj(z) =x; forxz € [[;c; S;.
So pj(x) is just the jth coordinate of . The projections are of basic importance for product spaces. In particular, we have a better

way of looking at projections of a subset of a product set.

For ACT]

Proof

;1 Si and j € I, the forward image p;(A) is the projection of A onto S;.

Note that p;(A) = {p;(z) : x € A} ={z; : x € A} , the set of all jth coordinates of the points in A.

So the properties of projection that we studied in the last section are just special cases of the properties of forward images.
Projections also allow us to get coordinate functions in a simple way.

Suppose that R is a set, and that f : R — [[,.; S; . If j€ I thenpjo f: R— S; is the jth coordinate function of f.

il
Proof

Note that for z € R, (p;o f)(z) = p;[f(x)] = f;() , the jth coordinate of f(x) € [],.; Si.

This will look more familiar for a simple cartesian product. If f: R — S; X Sy x---x S, , then f = (f1, fo,..., fn) where
fj+ R—S; is the jth coordinate function for j € {1,2,...,n}.
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Cross sections of a subset of a product set can be expressed in terms of inverse images of a function. First we need some additional
notation. Suppose that our index set I has at least two elements. For j € I and u € S, define j, : [[,c;_ i) Si = [Lic; Si by
Ju(z) =y where y; =x; fori € I —{j} and y; = u. In words, j, takes a point € Hiel_{j} S; and assigns u to coordinate j to
produce the point y € []..; Si.

In the setting above, if j € I, u € Sjand A C [[,; Si then j,*(A) is the cross section of A in the jth coordinate at w.

iel
Proof

This follows from the definition of cross section: 5, ' (A) is the set of all z € [];c 1-{;) Si such that y defined above is in A

and has jth coordinate w.

Let's look at this for the product of two sets S and T'. For x € S, the function 1, : T — S xT is given by 1,(y) = (z,y).
Similarly, for y € T', the function 2, : § = S x T is given by 2,(z) = (x,y). Suppose now that AC S xT . If z € S, then
1,7 (A) ={y € T: (z,y) € A}, the very definition of the cross section of A in the first coordinate at . Similarly, if y € T, then

2,'(A)={z € S: (z,y) € A}, the very definition of the cross section of A in the second coordinate at y. This construction is
not particularly important except to show that cross sections are inverse images. Thus the fact that cross sections preserve all of the

set operations is a simple consequence of the fact that inverse images generally preserve set operations.

Operators

Sometimes functions have special interpretations in certain settings.

Suppose that S is a set.

1. A function f : S — S is sometimes called a unary operator on S.
2. A function g: S x S — S is sometimes called a binary operator on S.

As the names suggests, a unary operator f operates on an element ¢ € S to produce a new element f(z) € S. Similarly, a binary
operator g operates on a pair of elements (x,y) € S xS to produce a new element g(z,y) € S. The arithmetic operators are
quintessential examples:

The following are operators on R:

1. minus(z) = —z is a unary operator.
2.sum(z,y) =z +y is a binary operator.

3. product(z, y) = z y is a binary operator.

4. difference(z,y) = ¢ —y is a binary operator.

For a fixed universal set .S, the set operators studied in the section on Sets provide other examples.

For a given set S, the following are operators on Z(S):

1. complement(A) = A° is a unary operator.
2. union(A, B) = AU B is a binary operator.
3. intersect(A4, B) = AN B is a binary operator.
4. difference(A, B) = A\ B is a binary operator.

As these examples illustrate, a binary operator is often written as x f y rather than f(x, y). Still, it is useful to know that operators
are simply functions of a special type.

Suppose that f is a unary operator on a set S, g is a binary operator on S, and that A C S'.

1. A is closed under f if z € A implies f(z) € A.
2. A is closed under g if (z,y) € A x A implies g(z,y) € A.

Thus if A is closed under the unary operator f, then f restricted to A is unary operator on A. Similary if A is closed under the
binary operator g, then g restricted to A x A is a binary operator on A. Let's return to our most basic example.
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For the arithmetic operatoes on R,

1. N is closed under plus and times, but not under minus and difference.
2. Z is closed under plus, times, minus, and difference.
3. Q is closed under plus, times, minus, and difference.

Many properties that you are familiar with for special operators (such as the arithmetic and set operators) can now be formulated
generally.

Suppose that f and g are binary operators on a set S. In the following definitions, z, y, and z are arbitrary elements of S.

1. f is commutative if f(z,y) = f(y,z), thatis,z fy=y fz
2. f is associative if f(z, f(y,2)) = f(f(z,y), 2), thatis,z f (y f2) =(z fy) f =
3. g distributes over f (on the left) if g(z, f(y, 2)) = f(9(z,v), 9(z, 2)), thatis, z g (y f 2) = (x gy) f (x g2)

The Axiom of Choice

Suppose that . is a collection of nonempty subsets of a set S. The axiom of choice states that there exists a function
f:# — S with the property that f(A) € A for each A € .. The function f is known as a choice function.

Stripped of most of the mathematical jargon, the idea is very simple. Since each set A € . is nonempty, we can select an element
of A; we will call the element we select f(A) and thus our selections define a function. In fact, you may wonder why we need an
axiom at all. The problem is that we have not given a rule (or procedure or algorithm) for selecting the elements of the sets in the
collection. Indeed, we may not know enough about the sets in the collection to define a specific rule, so in such a case, the axiom of
choice simply guarantees the existence of a choice function. Some mathematicians, known as constructionists do not accept the
axiom of choice, and insist on well defined rules for constructing functions.

A nice consequence of the axiom of choice is a type of duality between one-to-one functions and onto functions.

Suppose that f is a function from a set .S onto a set T'. There exists a one-to-one function g from 7" into .S.
Proof.

For each y € T, the set f _l{y} is non-empty, since f is onto. By the axiom of choice, we can select an element g(y) from
f~1{y}for each y € T'. The resulting function g is one-to-one.

Suppose that f is a one-to-one function from a set S into a set T'. There exists a function g from 7" onto S.

Proof.

Fix a special element zq € S. If y € range( f), there exists a unique € S with f(z) = y. Define g(y) = = . If y £ range(f),
define g(y) = o . The function g is onto.

Computational Exercises

Some Elementary Functions

Each of the following rules defines a function from R into R.

Find the range of the function and determine if the function is one-to-one in each of the following cases:

1. f
2.9
3.h
4. u
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Answer
1. Range [0, o). Not one-to-one.
2. Range [—1, 1]. Not one-to-one.
3. Range Z. Not one-to-one.
4. Range (0, 1). One-to-one.

Find the following inverse images:

1 f1[4,9]
2.97'{0}

3.h 1{2,3,4}
Answer
1.[-3,-2]U[2, 3]
2 {nm:necZ}
3.[2,5)

The function u is one-to-one. Find (that is, give the domain and rule for) the inverse function v .

Answer

ut(p) :ln(l%p) forp € (0,1)

Give the rule and find the range for each of the following functions:

L fog
2.gof
3. hogof

Answer
1. (fo g)(z) =sin®(z) . Range [0, 1]
2. (go f)(z) =sin(z?) . Range [-1,1]
3. (hogo f)(z) = |sin(z?)] . Range {—1,0,1}

Note that fo g and go f are well-defined functions from R into R, but fog# go f .

Dice
Let $ ={1,2,3,4,5,6}2 This is the set of possible outcomes when a pair of standard dice are thrown. Let f, g, u, and v be the
functions from S into Z defined by the following rules:

« flzy)=z+y
s glz,y) =y -z
e u(z,y) =min{z,y}
e v(z,y) =max{z,y}

In addition, let ' and U be the functions defined by F' = (f, g) and U = (u,v).

Find the range of each of the following functions:

1. f
2.9
3.u

4. v
5.U

Answer
1. {2,3,4,...,12}
2.{-5,—4,...,4,5}
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3.{1,2,3,4,5,6}
4. {1, 2,3,4, 5,6}
5.{(:,5) €{1,2,3,4,5,6}* : i < j}

Give each of the following inverse images in list form:

L f71{6}
2.u1{3}
3.v71 {4}
4.U{(3,4)}

Answer

Find each of the following compositions:

1. foU

2.goU
3.uoF

4. vo F
5.FoU
6.UoF
Answer

1. foU=Ff
2.goU =|g|
BuoF =g
4voF=f

5. FoU=(f,lgl)
6.UoF =(g,f)

Note that while f o U is well-defined, U o f is not. Note also that f o U = f even though U is not the identity function on S.

Bit Strings

Letn € N} and let S={0,1}" and T ={0,1,...,n}. Recall that the elements of S are bit strings of length n, and could
represent the possible outcomes of n tosses of a coin (where 1 means heads and 0 means tails). Let f: .S — T be the function
defined by f(z1,%2,...,2Zn) = Y11 ;. Note that f(x) is just the number of 1s in the the bit string . Let g: T — S be the
function defined by g(k) = @;, where @;, denotes the bit string with k 1s followed by n —k 0s.

Find each of the following
L. fog
2.g0 f
Answer
1.fog:T—T and(fog)(k)=k.
2.gof:8— S and (go f) (¢) =x where k= f(x)=>.", z; .Inwords, (go f) (&) is the bit string with the same
number of 1s as @, but rearranged so that all the 1s come first.

In the previous exercise, note that fo g and go f are both well-defined, but have different domains, and so of course are not the
same. Note also that f o g is the identity function on 7', but f is not the inverse of g. Indeed f is not one-to-one, and so does not
have an inverse. However, f restricted to {zy : k € T'} (the range of g) is one-to-one and is the inverse of g.
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Letn =4. Give f 1 ({k}) in list form for each k € T

Answer
“1({0}) = {0000}
“1({1}) = {1000, 0100, 0010, 0001}
3 f 1({2}) = {1100, 1010,1001,0110, 0101, 0011}
4. f-1({3}) = {1110,1101,1011,0111}
5. f71({4}) = {1111}
Againletn =4.Let A ={1000,1010}and B = {1000, 1100} Give each of the following in list form:
L f(A)
2. f(B)
3. f(AnB)
F(A)Nf(B)
5. £ (f(4))
Answer
1.{1,2}
2.{1,2}
3. {1}
4.{1,2}

5. {1000,0100,0010, 0001, 1100, 1010,1001,0110,0101,0011}

In the previous exercise, note that f(AN B) C f(A)Nf(B) and A C 71 (f(4)).
Indicator Functions

Suppose that A and B are subsets of a universal set S. Express, in terms of 14 and 1p, the indicator function of each of the 14
non-trivial sets that can be constructed from A and B. Use the Venn diagram app to help.

Answer

1.14

2.1p

3.1ye=1—-1y

4.1 =1—-1p

5 1408 =1413p
6.1au=14+1p—141p

7. 140 =14 —141p

8.1pnac =1p—141p

9. 10 =1—1+141p
10. 1guac =1 —-14+141p

11.14eqpe =1—-14 —15+141p
12. 14euge =1 —141p
13. LanpeyuBna) =1a+1p—2141p
14. L anpyuacnp) =1 —14 —1p+2141p

Suppose that A, B, and C are subsets of a universal set S. Give the indicator function of each of the following, in terms of 1 4,
1, and 1¢ in sum-product form:

1. D ={z € S: z is an element of exactly one of the given sets}
2. E={z € S: z is an element of exactly two of the given sets}
Answer

1L1p=14+15+1c—2(141lp+1alc+1plc)+314151¢
21 =141+1410+11c —314151¢
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Operators

Recall the standard arithmetic operators on R discussed above.

We all know that sum is commutative and associative, and that product distributes over sum.

1. Is difference commutative?

2. Is difference associative?

3. Does product distribute over difference?

4. Does sum distributed over product?
Answer

1L.No.z—y#y—=x

2No.z—(y—2)#£(xz—y)—=2

3. Yes. z(y — 2) = (zy) — (z2)

4.No.z+ (yz) # (z +y)(z +2)

Multisets

Express the multiset A in list form that has the multiplicity function m : {a,b, ¢,d, e} — N given by m(a) =2, m(b) =3,
m(c)=1,m(d) =0, m(e) =4.

Answer

A={a,a,b,b,b,c,e,e, e e}

Express the prime factors of 360 as a multiset in list form.

Answer

{2,2,2,3,3,5}

This page titled 1.2: Functions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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