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4.9: Expected Value as an Integral
        

In the introductory section, we defined expected value separately for discrete, continuous, and mixed distributions, using density functions. In the section on
additional properties, we showed how these definitions can be unified, by first defining expected value for nonnegative random variables in terms of the right-tail
distribution function. However, by far the best and most elegant definition of expected value is as an integral with respect to the underlying probability measure.
This definition and a review of the properties of expected value are the goals of this section. No proofs are necessary (you will be happy to know), since all of the
results follow from the general theory of integration. However, to understand the exposition, you will need to review the advanced sections on the integral with
respect to a positive measure and the properties of the integral. If you are a new student of probability, or are not interested in the measure-theoretic detail of the
subject, you can safely skip this section.

Definitions
As usual, our starting point is a random experiment modeled by a probability space . So  is the set of outcomes,  is the -algebra of events, and  is
the probability measure on the sample space .

Recall that a random variable  for the experiment is simply a measurable function from  into another measurable space . When , we
assume that  is Lebesgue measurable, and we take  to the -algebra of Lebesgue measurable subsets of . As noted above, here is the measure-theoretic
definition:

If  is a real-valued random variable on the probability space, the expected value of  is defined as the integral of  with respect to , assuming that the
integral exists:

Let's review how the integral is defined in stages, but now using the notation of probability theory.

Let  denote the support set of , so that  is a measurable subset of .

1. If  is finite, then .
2. If , then 
3. For general ,  as long as the right side is not of the form , and where  and  denote the positive and

negative parts of .
4. If , then , assuming that the expected value on the right exists.

Thus, as with integrals generally, an expected value can exist as a number in  (in which case  is integrable), can exist as  or , or can fail to exist. In
reference to part (a), a random variable with a finite set of values in  is a simple function in the terminology of general integration. In reference to part (b), note
that the expected value of a nonnegative random variable always exists in . In reference to part (c),  exists if and only if either  or 

.

Our next goal is to restate the basic theorems and properties of integrals, but in the notation of probability. Unless otherwise noted, all random variables are
assumed to be real-valued.

Basic Properties

The Linear Properties

Perhaps the most important and basic properties are the linear properties. Part (a) is the additive property and part (b) is the scaling property.

Suppose that  and  are random variables whose expected values exist, and that . Then

1.  as long as the right side is not of the form .
2. 

Thus, part (a) holds if at least one of the expected values on the right is finite, or if both are , or if both are . What is ruled out are the two cases where one
expected value is  and the other is , and this is what is meant by the indeterminate form .

Equality and Order

Our next set of properties deal with equality and order. First, the expected value of a random variable over a null set is 0.

If  is a random variable and  is an event with . Then .

Random variables that are equivalent have the same expected value

If  is a random variable whose expected value exists, and  is a random variable with , then .

Our next result is the positive property of expected value.

Suppose that  is a random variable and . Then

1. 
2.  if and only if .
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So, if  is a nonnegative random variable then  if and only if . The next result is the increasing property of expected value, perhaps the
most important property after linearity.

Suppose that  are random variables whose expected values exist, and that . Then

1. 
2. Except in the case that both expected values are  or both ,  if and only if .

So if  with probability 1 then, except in the two cases mentioned,  if and only if . The next result is the absolute value
inequality.

Suppose that  is a random variable whose expected value exists. Then

1. 
2. If  is finite, then equality holds in (a) if and only if  or .

Change of Variables and Density Functions

The Change of Variables Theorem

Suppose now that  is a general random variable on the probability space , taking values in a measurable space . Recall that the probability
distribution of  is the probability measure  on  given by  for . This is a special case of a new positive measure induced by a
given positive measure and a measurable function. If  is measurable, then  is a real-valued random variable. The following result shows how to
computed the expected value of  as an integral with respect to the distribution of , and is known as the change of variables theorem.

If  is measurable then, assuming that the expected value exists,

So, using the original definition and the change of variables theorem, and giving the variables explicitly for emphasis, we have

The Radon-Nikodym Theorem

Suppose now  is a positive measure on , and that the distribution of  is absolutely continuous with respect to . Recall that this means that 
implies  for . By the Radon-Nikodym theorem, named for Johann Radon and Otto Nikodym,  has a probability density function 
with respect to . That is,

In this case, we can write the expected value of  as an integral with respect to the probability density function.

If  is measurable then, assuming that the expected value exists,

Again, giving the variables explicitly for emphasis, we have the following chain of integrals:

There are two critically important special cases.

Discrete Distributions

Suppose first that  is a discrete measure space, so that  is countable,  is the collection of all subsets of , and  is counting measure on 
. Thus,  has a discrete distribution on , and this distribution is always absolutely continuous with respect to . Specifically,  if and only if 

 and of course . The probability density function  of  with respect to , as we know, is simply  for . Moreover,
integrals with respect to  are sums, so

assuming that the expected value exists. Existence in this case means that either the sum of the positive terms is finite or the sum of the negative terms is finite, so
that the sum makes sense (and in particular does not depend on the order in which the terms are added). Specializing further, if  itself is real-valued and  we
have

which was our original definition of expected value in the discrete case.

X E(X) > 0 P(X > 0) > 0
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X
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(4.9.2)
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∫
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(4.9.7)

X g = 1

E(X) = xf(x)∑
x∈S

(4.9.8)
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Continuous Distributions

For the second special case, suppose that  is a Euclidean measure space, so that  is a Lebesgue measurable subset of  for some ,  is the 
-algebra of Lebesgue measurable subsets of , and  is Lebesgue measure on . The distribution of  is absolutely continuous with respect to  if 

 implies  for . If this is the case, then a probability density function  of  has its usual meaning. Thus,

assuming that the expected value exists. When  is a typically nice function, this integral reduces to an ordinary -dimensional Riemann integral of calculus.
Specializing further, if  is itself real-valued and  then

which was our original definition of expected value in the continuous case.

Interchange Properties

In this subsection, we review properties that allow the interchange of expected value and other operations: limits of sequences, infinite sums, and integrals. We
assume again that the random variables are real-valued unless otherwise specified.

Limits

Our first set of convergence results deals with the interchange of expected value and limits. We start with the expected value version of Fatou's lemma, named in
honor of Pierre Fatou. Its usefulness stems from the fact that no assumptions are placed on the random variables, except that they be nonnegative.

Suppose that  is a nonnegative random variable for . Then

Our next set of results gives conditions for the interchange of expected value and limits.

Suppose that  is a random variable for each . then

in each of the following cases:

1.  is nonnegative for each  and  is increasing in .
2.  exists for each , , and  is increasing in .
3.  exists for each , , and  is decreasing in .
4.  exists, and  for  where  is a nonnegative random variable with .
5.  exists, and  for  where  is a positive constant.

Statements about the random variables in the theorem above (nonnegative, increasing, existence of limit, etc.) need only hold with probability 1. Part (a) is the
monotone convergence theorem, one of the most important convergence results and in a sense, essential to the definition of the integral in the first place. Parts (b)
and (c) are slight generalizations of the monotone convergence theorem. In parts (a), (b), and (c), note that  exists (with probability 1), although the
limit may be  in parts (a) and (b) and  in part (c) (with positive probability). Part (d) is the dominated convergence theorem, another of the most important
convergence results. It's sometimes also known as Lebesgue's dominated convergence theorem in honor of Henri Lebesgue. Part (e) is a corollary of the dominated
convergence theorem, and is known as the bounded convergence theorem.

Infinite Series

Our next results involve the interchange of expected value and an infinite sum, so these results generalize the basic additivity property of expected value.

Suppose that  is a random variable for . Then

in each of the following cases:

1.  is nonnegative for each .
2. 

Part (a) is a consequence of the monotone convergence theorem, and part (b) is a consequence of the dominated convergence theorem. In (b), note that 
 and hence  is absolutely convergent with probability 1. Our next result is the additivity of the expected value over a countably infinite

collection of disjoint events.

Suppose that  is a random variable whose expected value exists, and that  is a disjoint collection events. Let . Then

(S,S , )λn S R
n n ∈ N+ S

σ S λn (S,S ) X λn
(A) = 0λn P(X ∈ A) = 0 A ∈S f X

E [g(X)] = g(x)f(x)d (x)∫
S

λn (4.9.9)

g n

X g = 1

E(X) = xf(x)dx∫
S

(4.9.10)

Xn n ∈ N+

E( )≤ E( )lim inf
n→∞

Xn lim inf
n→∞

Xn (4.9.11)

Xn n ∈ N+

E( )= E ( )lim
n→∞

Xn lim
n→∞

Xn (4.9.12)

Xn n ∈ N+ Xn n

E( )Xn n ∈ N+ E( ) > −∞X1 Xn n

E( )Xn n ∈ N+ E( ) < ∞X1 Xn n

limn→∞ Xn | | ≤ YXn n ∈ N Y E(Y ) < ∞
limn→∞ Xn | | ≤ cXn n ∈ N c

limn→∞ Xn

∞ −∞

Xn n ∈ N+

E( ) = E ( )∑
n=1

∞

Xn ∑
n=1

∞

Xn (4.9.13)
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Of course, the previous theorem applies in particular if  is nonnegative.

Integrals

Suppose that  is a -finite measure space, and that  is a real-valued random variable for each . Thus we can think of  is a stochastic
process indexed by . We assume that  is measurable, as a function from the product space  into . Our next result involves the
interchange of expected value and integral, and is a consequence of Fubini's theorem, named for Guido Fubini.

Under the assumptions above,

in each of the following cases:

1.  is nonnegative for each .
2. 

Fubini's theorem actually states that the two iterated integrals above equal the joint integral

where of course,  is the product measure on . However, our interest is usually in evaluating the iterated integral above on the left in terms
of the iterated integral on the right. Part (a) is the expected value version of Tonelli's theorem, named for Leonida Tonelli.

Examples and Exercises
You may have worked some of the computational exercises before, but try to see them in a new light, in terms of the general theory of integration.

The Cauchy Distribution

Recall that the Cauchy distribution, named for Augustin Cauchy, is a continuous distribution with probability density function  given by

The Cauchy distribution is studied in more generality in the chapter on Special Distributions.

Suppose that  has the Cauchy distribution.

1. Show that  does not exist.
2. Find 

Answer
1. 
2. 

Open the Cauchy Experiment and keep the default parameters. Run the experiment 1000 times and note the behaior of the sample mean.

The Pareto Distribution

Recall that the Pareto distribution, named for Vilfredo Pareto, is a continuous distribution with probability density function  given by

where  is the shape parameter. The Pareto distribution is studied in more generality in the chapter on Special Distributions.

Suppose that  has the Pareto distribution with shape parameter . Find  is the following cases:

1. 
2. 

Answer
1. 
2. 

Open the special distribution simulator and select the Pareto distribution. Vary the shape parameter and note the shape of the probability density function and
the location of the mean. For various values of the parameter, run the experiment 1000 times and compare the sample mean with the distribution mean.

Suppose that  has the Pareto distribution with shape parameter . Find  for .

Answer

X

(T ,T ,μ) σ Xt t ∈ T { : t ∈ T}Xt

T (ω, t) ↦ (ω)Xt (Ω ×T ,F ⊗T ) R

E [ dμ(t)] = E ( ) dμ(t)∫
T

Xt ∫
T

Xt (4.9.15)

Xt t ∈ T
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T

Xt
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Ω×T

Xt (4.9.16)
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f
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1
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X
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∞
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(4.9.18)
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Special Results for Nonnegative Variables

For a nonnegative variable, the moments can be obtained from integrals of the right-tail distribution function.

If  is a nonnegative random variable then

Proof

By Fubini's theorem we can interchange an expected value and integral when the integrand is nonnegative. Hence

When  we have . We saw this result before in the section on additional properties of expected value, but now we can understand
the proof in terms of Fubini's theorem.

For a random variable taking nonnegative integer values, the moments can be computed from sums involving the right-tail distribution function.

Suppose that  has a discrete distribution, taking values in . Then

Proof

By the theorem above, we can interchange expected value and infinite series when the terms are nonnegative. Hence

When  we have . We saw this result before in the section on additional properties of expected value, but now we can understand
the proof in terms of the interchange of sum and expected value.
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0
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n = 1 E(X) = P(X ≥ k)∑∞
k=0
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