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16.13: Discrete-Time Birth-Death Chains
     

Basic Theory

Introduction

Suppose that  is an interval of integers (that is, a set of consecutive integers), either finite or infinite. A (discrete-time) birth-
death chain on  is a discrete-time Markov chain  on  with transition probability matrix  of the
form

where , , and  are nonnegative functions on  with  for .

If the interval  has a minimum value  then of course we must have . If , the boundary point  is
absorbing and if , then  is reflecting. Similarly, if the interval  has a maximum value  then of course we must
have . If , the boundary point  is absorbing and if , then  is reflecting. Several other special models
that we have studied are birth-death chains; these are explored in below.

In this section, as you will see, we often have sums of products. Recall that a sum over an empty index set is 0, while a product
over an empty index set is 1.

Recurrence and Transience

If  is finite, classification of the states of a birth-death chain as recurrent or transient is simple, and depends only on the state
graph. In particular, if the chain is irreducible, then the chain is positive recurrent. So we will study the classification of birth-death
chains when . We assume that  for all  and that  for all  (but of course we must have 

). Thus, the chain is irreducible.

Under these assumptions, the birth-death chain on  is

1. Aperiodic if  for some .
2. Periodic with period 2 if  for all .

Proof
1. If  for some  then  and hence the chain is aperiodic.
2. If  for every  then clearly the chain starting in  can be in state  again only at even times.

We will use the test for recurrence derived earlier with , the set of positive states. That is, we will compute the probability
that the chain never hits 0, starting in a positive state.

The chain  is recurrent if and only if

Proof

Let  denote the restriction of  to , and define  by

So  is the probability that chain never reaches 0, starting in . From our general theory, we know that  satisfies
 and is the largest such function with values in . Furthermore, we know that either  for all 

or that . In the first case the chain is recurrent, and in the second case the chain is transient.

The functional equation  for a function  is equivalent to the following system of equations:

S

S X = ( , , , …)X0 X1 X2 S P

P (x, x −1) = q(x), P (x, x) = r(x), P (x, x +1) = p(x); x ∈ S (16.13.1)

p q r S p(x) +q(x) +r(x) = 1 x ∈ S

S a ∈ Z q(a) = 0 r(a) = 1 a

p(a) = 1 a S b ∈ Z

p(b) = 0 r(b) = 1 b p(b) = 1 b

S

S =N p(x) > 0 x ∈ N q(x) > 0 x ∈ N+

q(0) = 0

N

r(x) > 0 x ∈ N

r(x) = 0 x ∈ N

r(x) > 0 x ∈ N P (x, x) > 0
r(x) = 0 x ∈ N x x

A =N+

X

= ∞∑
x=0

∞ q(1) ⋯ q(x)

p(1) ⋯ p(x)
(16.13.2)

P+ P ×N+ N+ : → [0, 1]u+ N+

(x) = P( > 0, > 0, … ∣ = x), x ∈u+ X1 X2 X0 N+ (16.13.3)

(x)u+ x ∈ N+ u+

=u+ P+u+ [0, 1] (x) = 0u+ x ∈ N+

sup{ (x) : x ∈ [0, 1]} = 1u+

u = uP+ u : → [0, 1]N+
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Solving this system of equations for the differences gives

Solving this new systems gives

Note that  is increasing in  and so has a limit as . Let .

1. Suppose that . Letting  in the displayed equation above for  shows that  and so  for
all . Hence the chain is recurrent.

2. Suppose that . Define  and then more generally,

The function  takes values in  and satisfies the functional equation . Hence the chain is transient. Note that
 as  and so in fact, , the function that we discussed above that gives the probability of staying in 

 for all time. We will return to this function below in our discussion of absorption.

Note that , the function that assigns to each state  the probability of an immediate return to , plays no direct role in whether
the chain is transient or recurrent. Indeed all that matters are the ratios  for .

Positive Recurrence and Invariant Distributions

Suppose again that we have a birth-death chain  on , with  for all  and  for all . Thus the chain
is irreducible.

The function  defined by

is invariant for , and is the only invariant function, up to multiplication by constants. Hence  is positive recurrent if and
only if , in which case the (unique) invariant probability density function  is given by 
for .

Proof

Recall that by convention, a product over an empty index set is 1. So first,

Next, for ,

But

u(2) −u(1)

u(x +1) −u(x)

= u(1)
q(1)

p(1)

= [u(x) −u(x −1)], x ∈ {2, 3, …}
q(x)

p(x)

(16.13.4)

(16.13.5)

u(x +1) −u(x) = u(1), x ∈
q(1) ⋯ q(x)

p(1) ⋯ p(x)
N+ (16.13.6)

u(x) = u(1) , x ∈∑
i=0

x−1 q(1) ⋯ q(i)

p(1) ⋯ p(i)
N+ (16.13.7)

u(x) x ∈ N+ x → ∞ A =∑
∞
i=0

q(1)⋯q(i)

p(1)⋯p(i)

A = ∞ x → ∞ u(x) u(1) = 0 u(x) = 0
x

A < ∞ u(1) = 1/A

u(x) = , x ∈
1

A
∑
i=0

x−1 q(1) ⋯ q(i)

p(1) ⋯ p(i)
N+ (16.13.8)

u (0, 1) u = uP+

u(x) → 1 x → ∞ u = u+

N+

r x ∈ N x

q(x)/p(x) x ∈ N+

X N p(x) > 0 x ∈ N q(x) > 0 x ∈ N+

g : N → (0, ∞)

g(x) = , x ∈ N
p(0) ⋯ p(x −1)

q(1) ⋯ q(x)
(16.13.9)

X X

B = g(x) < ∞∑∞
x=0 f f(x) = g(x)1

B

x ∈ N

(gP )(0) = g(0)P (0, 0) +g(1)P (1, 0) = g(0)r(0) +g(1)q(1)

= 1r(0) + q(1) = [1 −p(0)] +p(0) = 1 = g(0)
p(0)

q(1)

y ∈ N+

(gP )(y) = g(y −1)P (y −1, y) +g(y)P (y, y) +g(y +1)P (y +1, y)

= g(y −1)p(y −1) +g(y)r(y) +g(y +1)q(y +1)

= g(y −1)p(y −1) +g(y)[1 −p(y) −q(y)] +g(y +1)q(y +1)
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so .

Conversely, suppose that  is invariant for . We will show by induction that  for all . The
result is trivailly true for  since . Next,  gives . But 

 and , so substituting and solving for  gives

so the result is true when . Assume now that  and that the result is true for all  with . Then 
 gives

But , , and . Also, by the induction
hypothesis,  and  so substituting and using the definition of  gives

Finally, solving gives

Here is a summary of the classification:

For the birth-death chain , define

1.  is transient if 
2.  is null recurrent if  and .
3.  is positive recurrent if .

Note again that , the function that assigns to each state  the probability of an immediate return to , plays no direct role in
whether the chain is transient, null recurrent, or positive recurrent. Also, we know that an irreducible, recurrent chain has a positive
invariant function that is unique up to multiplication by positive constants, but the birth-death chain gives an example where this is
also true in the transient case.

Suppose now that  and that  is a birth-death chain on the integer interval . We
assume that  for  while  for . Of course, we must have .
With these assumptions,  is irreducible, and since the state space is finite, positive recurrent. So all that remains is to find the
invariant distribution. The result is essentially the same as when the state space is .

The invariant probability density function  is given by

Proof

g(y −1)p(y −1)

g(y +1)q(y +1)

= g(y)q(y) =
p(0) ⋯ p(y −1)

q(1) ⋯ q(y −1)

= g(y)p(y) =
p(0) ⋯ p(y)

q(1) ⋯ q(y)

(gP )(y) = g(y)

h : N →R X h(x) = h(0)g(x) x ∈ N

x = 0 g(0) = 1 (hP )(0) = h(0) h(0)P (0, 0) +h(1)P (1, 0) = h(0)
P (0, 0) = r(0) = [1 −p(0)] P (1, 0) = q(1) h(1)

h(1) = h(0) = h(0)g(1)
p(0)

q(1)
(16.13.10)

x = 1 y ∈ N+ x ∈ N x ≤ y

(hP )(y) = h(y)

h(y −1)P (y −1, y) +h(y)P (y, y) +h(y +1)P (y +1, y) = h(y) (16.13.11)

P (y −1, y) = p(y −1) P (y, y) = r(y) = 1 −p(y) −q(y) P (y +1, y) = q(y +1)
h(y) = h(0)g(y) h(y −1) = h(0)g(y −1) g

q(y +1)h(y +1) = [p(y) +q(y)]h(0) −p(y −1)h(0)
p(0) ⋯ p(y −1)

q(1) ⋯ q(y)

p(0) ⋯ p(y −2)

q(1) ⋯ q(y −1)

= h(0)
p(0) ⋯ p(y)

q(1) ⋯ q(y)

h(y +1) = h(0) = h(0)g(y +1)
p(0) ⋯ p(y)

q(1) ⋯ q(y +1)
(16.13.12)

X

A = , B =∑
x=0

∞ q(1) ⋯ q(x)

p(1) ⋯ p(x)
∑
x=0

∞ p(0) ⋯ p(x −1)

q(1) ⋯ q(x)
(16.13.13)

X A < ∞
X A = ∞ B = ∞
X B < ∞

r x ∈ N x

n ∈ N+ X = ( , , , …)X0 X1 X2 = {0, 1, … , n}Nn

p(x) > 0 x ∈ {0, 1, … , n −1} q(x) > 0 x ∈ {1, 2, … n} q(0) = p(n) = 0
X

N

fn

(x) =  for x ∈  where  =fn

1

Bn

p(0) ⋯ p(x −1)

q(1) ⋯ q(x)
Nn Bn ∑

x=0

n p(0) ⋯ p(x −1)

q(1) ⋯ q(x)
(16.13.14)
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Define

The proof thet  is invariant for  is the same as before. The constant  is the normalizing constant.

Note that  as , and if ,  as  for . We will see this type of behavior again.
Results for the birth-death chain on  often converge to the corresponding results for the birth-death chain on  as .

Absorption

Often when the state space , the state of a birth-death chain represents a population of individuals of some sort (and so the
terms birth and death have their usual meanings). In this case state 0 is absorbing and means that the population is extinct.
Specifically, suppose that  is a birth-death chain on  with  and with  for .
Thus, state 0 is absorbing and all positive states lead to each other and to 0. Let  denote the time until
absorption, where as usual, .

One of the following events will occur:

1. Population extinction:  or equivalently,  for some  and hence  for all .
2. Population explosion:  or equivalently  as .

Proof

Part (b) follows from the general theory, since 0 is absorbing, and all positive states lead to each other and to 0. Thus the
positive states are transient and we know that with probability 1, a Markov chain will visit a transient state only finitely often.
Thus  is equivalent to  as .

Naturally we would like to find the probability of these complementary events, and happily we have already done so in our study of
recurrence above. Let

so the absorption probability is

For the birth-death chain ,

Proof

For , note that , the function that gives the probability of staying in the
positive states for all time. The proof of the theorem on recurrence above has nothing to do with the transition probabilities in
state 0, so the proof applies in this setting as well. In that proof we showed that  as the form given above, where of course
the value is 0 if . Trivially, .

So if  then  for all . If  then  for all  and  as . For the absorption
probability,  for all  if  and so absorption is certain. If  then

Next we consider the mean time to absorption, so let  for .

The mean absorption function is given by

(x) = , x ∈gn

p(0) ⋯ p(x −1)

q(1) ⋯ q(x)
Nn (16.13.15)

gn X Bn

→ BBn n → ∞ B < ∞ (x) → f(x)fn n → ∞ x ∈ N

Nn N n → ∞

S =N

X = ( , , , …)X0 X1 X2 N r(0) = 1 p(x), q(x) > 0 x ∈ N+

N = min{n ∈ N : = 0}Xn

min∅ = ∞

N < ∞ = 0Xm m ∈ N = 0Xn n ≥ m

N = ∞ → ∞Xn n → ∞

N = ∞ → ∞Xn n → ∞

u(x) = P(N = ∞) = P( → ∞ as n → ∞ ∣ = x), x ∈ NXn X0 (16.13.16)

v(x) = 1 −u(x) = P(N < ∞) = P( = 0 for some n ∈ N ∣ = x), x ∈ NXn X0 (16.13.17)

X

u(x) =  for x ∈  where A =
1

A
∑
i=0

x−1 q(1) ⋯ q(i)

p(1) ⋯ p(i)
N+ ∑

i=0

∞ q(1) ⋯ q(i)

p(1) ⋯ p(i)
(16.13.18)

x ∈ N+ u(x) = P( ∈  for all n ∈ N ∣ = x)Xn N+ X0

u(x)
A = ∞ u(0) = 0

A = ∞ u(x) = 0 x ∈ S A < ∞ u(x) > 0 x ∈ N+ u(x) → 1 x → ∞
v(x) = 1 x ∈ N A = ∞ A < ∞

v(x) = , x ∈ N
1

A
∑
i=x

∞ q(1) ⋯ q(i)

p(1) ⋯ p(i)
(16.13.19)

m(x) =E(N ∣ = x)X0 x ∈ N+
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Probabilisitic Proof

The number of steps required to go from state  to  has the same distribution as the number of steps required to go
from state 1 to 0, except with parameters  for  instead of parameters  for 

. So by the additivity of expected value, we just need to compute  as a function of the parameters. Starting
in state 1, the chain will be absorbed in state 0 after a random number of returns to state 1 without absorption. Whenever the
chain is in state 1, absorption occurs at the next time with probability  so it follows that the number of times that the chain
is in state 1 before absorption has the geometric distribution on  with success parameter . The mean of this distribution
is . On the other hand, starting in state 1, the number of steps until the chain is in state 1 again (without absorption) has
the same distribution as the return time to state 0, starting in state 0 for the irreducible birth-death chain  considered above
but with birth and death functions  and  given by  for  and  for . Thus,
let

Then  is the mean return time to state 0 for the chain . Specifically, note that if  then  is either transient or null
recurrent. If  then  is the invariant PDF at 0. So, it follows that

By our argument above, the mean time to go from state  to  is

Analytic Proof

Conditioning and using the Markov property, we have

with initial condition . Equivalently,

Solving gives

Next,  for  which gives

Finally,  is given as in the first proof. The expression for  is different, but equivalent, of course.

Next we will consider a birth-death chain on a finite integer interval with both endpoints absorbing. Our interest is in the
probability of absorption in one endpoint rather than the other, and in the mean time to absorption. Thus suppose that  and
that  is a birth-death chain on  with  and with  and 
for . So the endpoints 0 and  are absorbing, and all other states lead to each other and to the endpoints. Let 

, the time until absorption, and for  let  and 
. The definitions make sense since  is finite with probability 1.

m(x) = , x ∈ N∑
j=1

x

∑
k=j−1

∞ p(j) ⋯ p(k)

q(j) ⋯ q(k +1)
(16.13.20)

x ∈ N+ x −1
p(y), q(y) y ∈ {x, x +1, …} p(y), q(y)

y ∈ {1, 2, …} m(1)

q(1)
N+ q(1)

1/q(1)
X

′

p′ q ′ (x) = p(x +1)p′ x ∈ N (x) = q(x +1)q ′ x ∈ N+

μ =∑
k=0

∞ p(1) ⋯ p(k)

q(2) ⋯ q(k +1)
(16.13.21)

μ X
′ μ = ∞ X

′

μ < ∞ 1/μ

m(1) = μ =
1

q(1)
∑
k=0

∞ p(1) ⋯ p(k)

q(1) ⋯ q(k +1)
(16.13.22)

x x −1

∑
k=x−1

∞ p(x) ⋯ p(k)

q(x) ⋯ q(k +1)
(16.13.23)

m(x) = 1 +p(x)m(x +1) +q(x)m(x −1) +r(x)m(x), x ∈ N+ (16.13.24)

m(0) = 0

m(x +1) −m(x) = [m(x) −m(x −1)] − , x ∈
q(x)

p(x)

1

p(x)
N+ (16.13.25)

m(x +1) −m(x) = m(1) − , x ∈
q(1) ⋯ q(x)

p(1) ⋯ p(x)
∑
y=1

x q(y +1) ⋯ q(x)

p(y) ⋯ p(x)
N+ (16.13.26)

m(x) = [m(y +1) −m(y)]∑x−1
y=0 x ∈ N

m(x) = m(1) − , x ∈ N∑
y=0

x−1 q(1) ⋯ q(y)

p(1) ⋯ p(y)
∑
y=0

x−1

∑
z=1

y q(z +1) ⋯ q(y)

p(z) ⋯ p(y)
(16.13.27)

m(1) m(x)

n ∈ N+

X = ( , , , …)X0 X1 X2 = {0, 1, … , n}Nn r(0) = r(n) = 1 p(x) > 0 q(x) > 0
x ∈ {1, 2, … , n −1} n

N = min{n ∈ N : ∈ {0, n}}Xn x ∈ S (x) = P( = 0 ∣ = x)vn XN X0

(x) =E(N ∣ = x)mn X0 N
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The absorption probability function for state 0 is given by

Proof

Conditioning and using the Markov property,  satisfies the second-order linear difference equation

with boundary conditions , . As we have seen before, the difference equation can be rewritten as

Solving and applying the boundary conditions gives the result.

Note that  as  where  is the constant above for the absorption probability at 0 with the infinite state space . If 
 then  as  for .

The mean absorption time is given by

where, with  as in the previous theorem,

Proof

The probabilistic proof above with state space  and 0 absorbing does not work here, but the first part of the analytic proof
does. So,

Substituting  and applying the boundary condition , gives the result for  in the theorem.

Time Reversal

Our next discussion is on the time reversal of a birth-death chain. Essentially, every recurrent birth-death chain is reversible.

Suppose that  is an irreducible, recurrent birth-death chain on an integer interval . Then  is
reversible.

Proof

We need to show that the Kolmogorov cycle condition is satisfied. That is, for every sequence of states 
with ,

We can restrict our attention to sequences where  for each . For such sequences,
the cycle condition is trivially satisfied.

If  is finite and the chain  is irreducible, then of course  is recurrent (in fact positive recurrent), so by the previous result, 
is reversible. In the case , we can use the invariant function above to show directly that the chain is reversible.

(x) =  for x ∈  where  =vn

1

An

∑
i=x

n−1 q(1) ⋯ q(i)

p(1) ⋯ p(i)
Nn An ∑

i=0

n−1 q(1) ⋯ q(i)

p(1) ⋯ p(i)
(16.13.28)

vn

(x) = p(x) (x +1) +q(x) (x −1) +r(x) (x), x ∈ {1, 2, … , n −1}vn vn vn vn (16.13.29)

(0) = 1vn (n) = 0vn

(x +1) − (x) = [ (x) − (x −1)], x ∈ {1, 2, … , n −2}vn vn

p(x)

q(x)
vn vn (16.13.30)

→ AAn n → ∞ A N

A < ∞ (x) → v(x)vn n → ∞ x ∈ N

(x) = (1) − , x ∈mn mn ∑
y=0

x−1 q(1) ⋯ q(y)

p(1) ⋯ p(y)
∑
y=0

x−1

∑
z=1

y
q(z +1) ⋯ q(y)

p(z) ⋯ p(y)
Nn (16.13.31)

An

(1) =mn

1

An

∑
y=1

n−1

∑
z=1

y
q(z +1) ⋯ q(y)

p(z) ⋯ p(y)
(16.13.32)

N

(x) = (1) − , x ∈ {1, 2, … , n}mn mn ∑
y=0

x−1 q(1) ⋯ q(y)

p(1) ⋯ p(y)
∑
y=0

x−1

∑
z=1

y q(z +1) ⋯ q(y)

p(z) ⋯ p(y)
(16.13.33)

x = n (n) = 0mn (1)mn

X = ( , , , …)X0 X1 X2 S X

( , , , … , )x0 x1 x2 xn

=x0 xn

P ( , )P ( , ) ⋯ P ( , ) = P ( , )P ( , ) ⋯ P ( , )x0 x1 x1 x2 xn−1 xn xn xn−1 xn−1 xn−2 x1 x0 (16.13.34)

∈ { , −1, +1}xi+1 xi xi xi i ∈ {1, 2, … , n}

S X X X

S =N
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Suppose that  is a birth-death chain on  with  for  and  for . Then 
is reversible.

Proof

With the function  defined above, it suffices to show the reversibility condition  for all .
It then follows that  is invariant for  and that  is reversible with respect to . But since  is the only positive invariant
function for , up to multiplication by positive constants, we can omit the qualifying phrase “with respect to ”. For 
and  we have

For  and  we have

In all other cases, the reversibility condition is trivially satisfied.

Thus, in the positive recurrent case, when the variables are given the invariant distribution, the transition matrix  describes the
chain forward in time and backwards in time.

Examples and Special Cases

As always, be sure to try the problems yourself before looking at the solutions.

Constant Birth and Death Probabilities

Our first examples consider birth-death chains on  with constant birth and death probabilities, except at the boundary points. Such
chains are often referred to as random walks, although that term is used in a variety of different settings. The results are special
cases of the general results above, but sometimes direct proofs are illuminating.

Suppose that  is the birth-death chain on  with constant birth probability  on  and
constant death probability  on , with . Then

1.  is transient if 
2.  is null recurrent if 
3.  is positive recurrent if , and the invariant distribution is the geometric distribution on  with parameter 

Next we consider the random walk on  with 0 absorbing. As in the discussion of absorption above,  denotes the absorption
probability and  the mean time to absorption, starting in state .

Suppose that  is the birth-death chain on  with constant birth probability  on  and constant
death probability  on , with . Assume also that , so that 0 is absorbing.

1. If  then  for all . If  then  for .
2. If  then  for all . If  then  for .

Proof
1. This follows from the general result above for the absorption probability.
2. This also follows from the general result above for the mean absorption time, but we will give a direct proof using the same

ideas. If  then  and hence  for . So suppose that  so that 
 for . Because of the spatial homogeneity, the time required to reach state  starting

in state  has the same distribution as the time required to reach state 0 starting in state 1. By the additivity of
expected value, it follows that  for . So it remains for us to compute . Starting in state 1, the
chain will be absorbed into state 0 after a random number of intermediate returns to state 1 with absorption. In state 1, the

X = ( , , , …)X0 X1 X2 N p(x) > 0 x ∈ N q(x) > 0 x ∈ N+ X

g g(x)P (x, y) = g(y)P (y, x) x, y ∈ N

g X X g g

X g x ∈ N

y = x +1

g(x)P (x, y) = g(y)P (y, x) =
p(0) ⋯ p(x)

q(1) ⋯ q(x)
(16.13.35)

x ∈ N+ y = x −1

g(x)P (x, y) = g(y)P (y, x) =
p(0) ⋯ p(x −1)

q(1) ⋯ q(x −1)
(16.13.36)

P

N

X = ( , , , …)X0 X1 X2 N p ∈ (0, ∞) N

q ∈ (0, ∞) N+ p +q ≤ 1

X q < p

X q = p

X q > p N p/q

f(x) =(1 − ) , x ∈ N
p

q
( )

p

q

x

(16.13.37)

N v(x)
m(x) x ∈ N

X = ( , , …)X0 X1 N p ∈ (0, ∞) N+

q ∈ (0, ∞) N+ p +q ≤ 1 r(0) = 1

q ≥ p v(x) = 1 x ∈ N q < p v(x) = (q/p)x x ∈ N

q ≤ p m(x) = ∞ x ∈ N+ q > p m(x) = x/(q −p) x ∈ N

q < p P(N = ∞ ∣ = x) > 0X0 m(x) = ∞ x ∈ N+ q ≥ p

P(N < ∞ ∣ = x) = 1X0 x ∈ N x −1
x ∈ N+

m(x) = x m(1) x ∈ N m(1)
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probability of absorption at the next step is , so the number of times that the chain is in state 1 before absorption has the
geometric distribution on  with success parameter . So the mean number of visits is . In state 1, the number of steps
before a return to step 1 without absorption has the same distribution as the return time to state 0, starting in 0, for the
recurrent chain considered in the previous exercise. The mean of this distribution is  if  and is  if ,
were  is the invariant distribution. It follows that

This chain is essentially the gambler's ruin chain. Consider a gambler who bets on a sequence of independent games, where  and 
 are the probabilities of winning and losing, respectively. The gambler receives one monetary unit when she wins a game and must

pay one unit when she loses a game. So  is the gambler's fortune after playing  games.

Next we consider random walks on a finite interval.

Suppose that  is the birth-death chain on  with constant birth probability  on 
 and constant death probability  on , with . Then  is positive recurrent

and the invariant probability density function  is given as follows:

1. If  then

2. If  then  for .

Note that if  then the invariant distribution is a truncated geometric distribution, and  for  where  is the
invariant probability density function of the birth-death chain on  considered above. If , the invariant distribution is uniform
on , certainly a reasonable result. Next we consider the chain with both endpoints absorbing. As before,  is the function that
gives the probability of absorption in state 0, while  is the function that gives the mean time to absorption.

Suppose that  is the birth-death chain on  with constant birth probability  and
death probability  on , where . Assume also that , so that  and  are
absorbing.

1. If  then

2. If  then  for 

Note that if  then  as  for .

Suppose again that  is the birth-death chain on  with constant birth probability 
 and death probability  on , where . Assume also that , so

that  and  are absorbing.

1. If  then

2. If  then

q

N+ q 1/q

∞ q = p 1/f(0) q > p

f

m(1) = =
1

q

1

1 −p/q

1

q −p
(16.13.38)

p

q

Xn n

X = ( , , …)X0 X1 = {0, 1, … , n}Nn p ∈ (0, ∞)
{0, 1, … , n −1} q ∈ (0, ∞) {1, 2, … , n} p +q ≤ 1 X

fn

p ≠ q

(x) = , x ∈fn

(p/q (1 −p/q))x

1 −(p/q)n+1
Nn (16.13.39)

p = q (x) = 1/(n +1)fn x ∈ Nn

p < q (x) → f(x)fn x ∈ N f

N p = q

Nn vn

mn

X = ( , , …)X0 X1 = {0, 1, … , n}Nn p ∈ (0, 1)
q ∈ (0, ∞) {1, 2, … , n −1} p +q ≤ 1 r(0) = r(n) = 1 0 n

p ≠ q

(x) = , x ∈vn

(q/p −(q/p)x )n

1 −(q/p)n
Nn (16.13.40)

p = q (x) = 1 −x/nvn x ∈ Nn

q < p (x) → v(x)vn n → ∞ x ∈ N

X = ( , , …)X0 X1 = {0, 1, … , n}Nn

p ∈ (0, 1) q ∈ (0, ∞) {1, 2, … , n −1} p +q ≤ 1 r(0) = r(n) = 1
0 n

p ≠ q

(x) = + , x ∈mn

n

p −q

1 −(q/p)x

1 −(q/p)n

x

q −p
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p = q

(x) = x(n −x), x ∈mn

1

2p
Nn (16.13.42)
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Special Birth-Death Chains

Some of the random processes that we have studied previously are birth-death Markov chains.

Describe each of the following as a birth-death chain.

1. The Ehrenfest chain.
2. The modified Ehrenfest chain.
3. The Bernoulli-Laplace chain
4. The simple random walk on .

Answer
1. The Ehrenfest chain with parameter  is a birth death chain on  with  and 

 for .
2. The modified Ehrenfest chain with parameter  is a birth death chain on  with , 

, and  for .
3. The Bernoulli-Laplace chain with parameters  with  is a birth-death chain on 

 with , , and  for 

.
4. The simple random walk on  with parameter  is a birth-death chain on  with  and  for 

.

Other Examples

Consider the birth-death process on  with , , and  for .

1. Find the invariant function .
2. Classify the chain.

Answer

1. Note that  and  for . Hence .
2. Note that

So the chain is positive recurrent, with invariant PDF  given by

Also, the chain is periodic with period 2.

This page titled 16.13: Discrete-Time Birth-Death Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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f

f(x) = , x ∈ Ne−2 (x +1)

x!
(16.13.44)
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