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5.9: Chi-Square and Related Distribution
        

In this section we will study a distribution, and some relatives, that have special importance in statistics. In particular, the chi-
square distribution will arise in the study of the sample variance when the underlying distribution is normal and in goodness of fit
tests.

The Chi-Square Distribution

Distribution Functions

For , the gamma distribution with shape parameter  and scale parameter 2 is called the chi-square distribution
with  degrees of freedom. The probability density function  is given by

So the chi-square distribution is a continuous distribution on . For reasons that will be clear later,  is usually a positive
integer, although technically this is not a mathematical requirement. When  is a positive integer, the gamma function in the
normalizing constant can be be given explicitly.

If  then

1.  if  is even.

2.  if  is odd.

The chi-square distribution has a rich collection of shapes.

The chi-square probability density function with  degrees of freedom satisfies the following properties:

1. If ,  is decreasing with  as .
2. If ,  is decreasing with .
3. If ,  increases and then decreases with mode at .
4. If ,  is concave downward.
5. If ,  is concave downward and then upward, with inflection point at 
6. If  then  is concave upward then downward and then upward again, with inflection points at 

In the special distribution simulator, select the chi-square distribution. Vary  with the scroll bar and note the shape of the
probability density function. For selected values of , run the simulation 1000 times and compare the empirical density
function to the true probability density function.

The distribution function and the quantile function do not have simple, closed-form representations for most values of the
parameter. However, the distribution function can be given in terms of the complete and incomplete gamma functions.

Suppose that  has the chi-square distribution with  degrees of freedom. The distribution function  of  is given
by

Approximate values of the distribution and quantile functions can be obtained from the special distribution calculator, and from
most mathematical and statistical software packages.

In the special distribution calculator, select the chi-square distribution. Vary the parameter and note the shape of the probability
density, distribution, and quantile functions. In each of the following cases, find the median, the first and third quartiles, and
the interquartile range.
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1. 
2. 
3. 
4. 

Moments

The mean, variance, moments, and moment generating function of the chi-square distribution can be obtained easily from general
results for the gamma distribution.

If  has the chi-square distribution with  degrees of freedom then

1. 
2. 

In the simulation of the special distribution simulator, select the chi-square distribution. Vary  with the scroll bar and note the
size and location of the mean  standard deviation bar. For selected values of , run the simulation 1000 times and compare
the empirical moments to the distribution moments.

The skewness and kurtosis of the chi-square distribution are given next.

If  has the chi-square distribution with  degrees of freedom, then

1. 
2. 

Note that  and  as . In particular, the excess kurtosis  as .

In the simulation of the special distribution simulator, select the chi-square distribution. Increase  with the scroll bar and note
the shape of the probability density function in light of the previous results on skewness and kurtosis. For selected values of ,
run the simulation 1000 times and compare the empirical density function to the true probability density function.

The next result gives the general moments of the chi-square distribution.

If  has the chi-square distribution with  degrees of freedom, then for ,

In particular, if  then

Note also  if .

If  has the chi-square distribution with  degrees of freedom, then  has moment generating function

Relations

The chi-square distribution is connected to a number of other special distributions. Of course, the most important relationship is the
definition—the chi-square distribution with  degrees of freedom is a special case of the gamma distribution, corresponding to
shape parameter  and scale parameter 2. On the other hand, any gamma distributed variable can be re-scaled into a variable
with a chi-square distribution.
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If  has the gamma distribution with shape parameter  and scale parameter  then  has the chi-
square distribution with  degrees of freedom.

Proof

Since the gamma distribution is a scale family,  has a gamma distribution with shape parameter  and scale parameter 
. Hence  has the chi-square distribution with  degrees of freedom.

The chi-square distribution with 2 degrees of freedom is the exponential distribution with scale parameter 2.

Proof

The chi-square distribution with 2 degrees of freedom is the gamma distribution with shape parameter 1 and scale parameter 2,
which we already know is the exponential distribution with scale parameter 2.

If  has the standard normal distribution then  has the chi-square distribution with 1 degree of freedom.

Proof

As usual, let  and  denote the PDF and CDF of the standard normal distribution, respectivley Then for ,

Differentiating with respect to  gives the density function  of :

which we recognize as the chi-square PDF with 1 degree of freedom.

Recall that if we add independent gamma variables with a common scale parameter, the resulting random variable also has a
gamma distribution, with the common scale parameter and with shape parameter that is the sum of the shape parameters of the
terms. Specializing to the chi-square distribution, we have the following important result:

If  has the chi-square distribution with  degrees of freedom,  has the chi-square distribution with 
degrees of freedom, and  and  are independent, then  has the chi-square distribution with  degrees of
freedom.

The last two results lead to the following theorem, which is fundamentally important in statistics.

Suppose that  and that  is a sequence of independent standard normal variables. Then the sum of the
squares

has the chi-square distribution with  degrees of freedom:

This theorem is the reason that the chi-square distribution deserves a name of its own, and the reason that the degrees of freedom
parameter is usually a positive integer. Sums of squares of independent normal variables occur frequently in statistics.

From the central limit theorem, and previous results for the gamma distribution, it follows that if  is large, the chi-square
distribution with  degrees of freedom can be approximated by the normal distribution with mean  and variance . Here is the
precise statement:

If  has the chi-square distribution with  degrees of freedom, then the distribution of the standard score

converges to the standard normal distribution as .
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In the simulation of the special distribution simulator, select the chi-square distribution. Start with  and increase . Note
the shape of the probability density function in light of the previous theorem. For selected values of , run the experiment 1000
times and compare the empirical density function to the true density function.

Like the gamma distribution, the chi-square distribution is infinitely divisible:

Suppose that  has the chi-square distribution with  degrees of freedom. For ,  has the same distribution
as , where  is a sequence of independent random variables, each with the chi-square distribution
with  degrees of freedom.

Also like the gamma distribution, the chi-square distribution is a member of the general exponential family of distributions:

The chi-square distribution with with  degrees of freedom is a one-parameter exponential family with natural
parameter , and natural statistic .

Proof

This follows from the definition of the general exponential family. The PDF can be written as

The Chi Distribution
The chi distribution, appropriately enough, is the distribution of the square root of a variable with the chi-square distribution

Suppose that  has the chi-square distribution with  degrees of freedom. Then  has the chi distribution
with  degrees of freedom.

So like the chi-square distribution, the chi distribution is a continuous distribution on .

Distribution Functions

The distribution function  of the chi distribution with  degrees of freedom is given by

Proof

Suppose that  has the chi distribution with  degrees of freedom so that  has the chi-square distribution with 
degrees of freedom. For ,

where  is the chi-square distribution function with  degrees of freedom.

The probability density function  of the chi distribution with  degrees of freedom is given by

Proof

Suppose again that  has the chi distribution with  degrees of freedom so that  has the chi-square distribution with 
degrees of freedom. The transformation  maps  one-to-one onto . The inverse transformation is 
with . Hence by the standard change of variables formula,
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where  is the chi-square PDF.

The chi probability density function also has a variety of shapes.

The chi probability density function with  degrees of freedom satisfies the following properties:

1. If ,  is decreasing with  as .
2. If ,  is decreasing with  as .
3. If ,  increases and then decreases with mode 
4. If ,  is concave upward.

5. If ,  is concave downward and then upward with inflection point at 

6. If ,  is concave upward then downward then upward again with inflection points at 

Moments

The raw moments of the chi distribution are easy to comput in terms of the gamma function.

Suppose that  has the chi distribution with  degrees of freedom. Then

Proof

By definition

The change of variables , so that  and  gives (after simplification)

The last integral is .

Curiously, the second moment is simply the degrees of freedom parameter.

Suppose again that  has the chi distribution with  degrees of freedom. Then

1. 

2. 

3. 

Proof

For part (b), using the fundamental identity of the gamma function we have

The other parts follow from direct substitution.

Relations

The fundamental relationship of course is the one between the chi distribution and the chi-square distribution given in the
definition. In turn, this leads to a fundamental relationship between the chi distribution and the normal distribution.

Suppose that  and that  is a sequence of independent variables, each with the standard normal
distribution. Then

f
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has the chi distribution with  degrees of freedom.

Note that the random variable  in the last result is the standard Euclidean norm of , thought of as a vector in .
Note also that the chi distribution with 1 degree of freedom is the distribution of , the absolute value of a standard normal
variable, which is known as the standard half-normal distribution.

The Non-Central Chi-Square Distribution
Much of the importance of the chi-square distribution stems from the fact that it is the distribution that governs the sum of squares
of independent, standard normal variables. A natural generalization, and one that is important in statistical applications, is to
consider the distribution of a sum of squares of independent normal variables, each with variance 1 but with different means.

Suppose that  and that  is a sequence of independent variables, where  has the normal
distribution with mean  and variance 1 for . The distribution of  is the non-central chi-
square distribution with  degrees of freedom and non-centrality parameter .

Note that the degrees of freedom is a positive integer while the non-centrality parameter , but we will soon generalize
the degrees of freedom.

Distribution Functions

Like the chi-square and chi distributions, the non-central chi-square distribution is a continuous distribution on . The
probability density function and distribution function do not have simple, closed expressions, but there is a fascinating connection
to the Poisson distribution. To set up the notation, let  and  denote the probability density and distribution functions of the chi-
square distribution with  degrees of freedom. Suppose that  has the non-central chi-square distribution with 
degrees of freedom and non-centrality parameter . The following fundamental theorem gives the probability density
function of  as an infinite series, and shows that the distribution does in fact depend only on  and .

The probability density function  of  is given by

Proof

Suppose that  is a sequence of independent random variables, where  has the normal distribution
with mean  and variance 1, and where . So by definition,  has the non-central chi-square
distribution with  degrees of freedom and non-centrality parameter . The random vector  has a multivariate normal
distribution with mean vector  and variance-covariance matrix  (the  identity matrix). The (joint)
PDF  of  is symmetric about :  for . Because of this symmetry, the distribution of 
depends on  only through the parameter . It follows that  has the same distribution as  where 
are independent,  has the normal distribution with mean  and variance 1, and  are standard normal.

The distribution of  is found by the usual change of variables methods. Let  and  denote the standard normal PDF and
CDF, respectively, so that  has CDF given by  for . Thus,

Taking derivatives, the PDF  of  is given by

But  for , so substituting and simplifying gives
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Next, recall that the Taylor series for the hyperbolic cosine function is

which leads to

After a bit more algebra, we get the representation in the theorem, with . That is,

Or in functional form, .

To complete the proof, we know that  has the chi-square distribution with  degrees of freedom, and hence has
PDF , and is independent of . Therefore the distribution of  is

where  denotes convolution as usual, and where we have used the fundamental result above on the sum of independent chi-
square variables.

The function  on  is the probability density function of the Poisson distribution with parameter . So it
follows that if  has the Poisson distribution with parameter  and the conditional distribution of  given  is chi-square with
parameter , then  has the distribution discussed here—non-central chi-square with  degrees of freedom and non-
centrality parameter . Moreover, it's clear that  is a valid probability density function for any , so we can generalize
our definition a bit.

For  and , the distribution with probability density function  above is the non-central chi-square
distribution with  degrees of freedom and non-centrality parameter .

The distribution function  is given by

Proof

This follows immediately from the result for the PDF, since  and .

Moments

In this discussion, we assume again that  has the non-central chi-square distribution with  degrees of freedom and
non-centrality parameter .

The moment generating function  of  is given by

Proof

We will use the fundamental relationship mentioned above. Thus, suppose that  has the Poisson distribution with parameter 
, and that given ,  has the chi-square distribution with  degrees of freedom. Conditioning and using the MGF

of the chi-square distribution above gives

cosh(x) = , x ∈ R∑
k=0

∞
x2k

(2k)!
(5.9.24)
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The last expected value is the probability generating function of , evaluated at . Hence

The mean and variance of  are

1. 
2. 

Proof

These results can be obtained by taking derivatives of the MGF, but the derivation using the connection with the Poisson
distribution is more interesting. So suppose again that  has the Poisson distribution with parameter  and that the
conditional distribution of  given  is chi-square with  degrees of freedom. Conditioning and using the means and
variances of the chi-square and Poisson distributions, we have

1. 
2. 

The skewness and kurtosis of  are

1. 

2. 

Note that  as  or as . Note also that the excess kurtosis is . So 

 (the kurtosis of the normal distribution) as  or as .

Relations

Trivially of course, the ordinary chi-square distribution is a special case of the non-central chi-square distribution, with non-
centrality parameter 0. The most important relation is the orignal definition above. The non-central chi-square distribution with 

 degrees of freedom and non-centrality parameter  is the distribution of the sum of the squares of  independent
normal variables with variance 1 and whose means satisfy . The next most important relation is the one that arose in
the probability density function and was so useful for computing moments. We state this one again for emphasis.

Suppose that  has the Poisson distribution with parameter , where , and that the conditional distribution of 
given  is chi-square with  degrees of freedom, where . Then the (unconditional) distribution of  is non-
central chi-square with  degree of freedom and non-centrality parameter .

Proof

For , let  denote the chi-square PDF with  degrees of freedom. Then from the assumptions, the PDF  of  is given
by

which is the PDF of the non-central chi-square distribution with  degrees of freedom and non-centrality parameter , derived
above.

As the asymptotic results for the skewness and kurtosis suggest, there is also a central limit theorem.

Suppose that  has the non-central chi-square distribution with  degrees of freedom and non-centrality parameter 
. Then the distribution of the standard score

E ( ) =E [E ( ∣ N)] =E( ) = E[ ]etY etY
1

(1 −2t)(n+2N)/2
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Y

E(Y ) = n+λ

var(Y ) = 2(n+2λ)

N λ/2
Y N n+2N

E(Y ) =E[E(Y ∣ N)] =E(n+2N) = n+2(λ/2) = n+λ

var(Y ) =E[var(Y ∣ N)] +var[E(Y ∣ N)] =E[2(n+2N)] +var(n+2N) = 2n+4(λ/2) +4λ/2 = 2n+4λ

Y

skew(Y ) = 23/2 n+3λ

(n+2λ)
3/2

kurt(Y ) = 3 +12 n+4λ

(n+2λ)
2

skew(Y ) → 0 n → ∞ λ → ∞ kurt(Y ) −3 = 12 n+4λ

(n+2λ)
2

kurt(Y ) → 3 n → ∞ λ → ∞

n ∈ N+ λ ∈ [0, ∞) n

= λ∑n
k=1 μ

2
k

N λ/2 λ ∈ (0, ∞) Y

N n+2N n ∈ (0, ∞) Y

n λ

j∈ N+ fj j g Y

g(y) = P(N = k) (y) = (y), y ∈ (0, ∞)∑
n=0

∞

fn+2k ∑
n=0

∞

e−λ/2
(λ/2)k

k!
fn+2k (5.9.32)

n λ

Y n ∈ (0, ∞)
λ ∈ (0, ∞)
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converges to the standard normal distribution as  or as .

Computational Exercises

Suppose that a missile is fired at a target at the origin of a plane coordinate system, with units in meters. The missile lands at 
 where  and  are independent and each has the normal distribution with mean 0 and variance 100. The missile will

destroy the target if it lands within 20 meters of the target. Find the probability of this event.

Answer

Let  denote the distance from the missile to the target. 

Suppose that  has the chi-square distribution with  degrees of freedom. For each of the following, compute the true
value using the special distribution calculator and then compute the normal approximation. Compare the results.

1. 
2. The 75th percentile of .

Answer
1. , 
2. , 
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Y −(n+λ)

2(n+2λ)
− −−−−−−−

√
(5.9.33)

n → ∞ λ → ∞

(X,Y ) X Y

Z P(Z < 20) = 1 − ≈ 0.8647e−2

X n = 18

P(15 < X < 20)
X

P(15 < X < 20) = 0.3252 P(15 < X < 20) ≈ 0.3221
= 21.605x0.75 ≈ 22.044x0.75
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