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5.22: Discrete Uniform Distributions

Uniform Distributions on a Finite Set

Suppose that S is a nonempty, finite set. A random variable X taking values in S has the uniform distribution on S if

#HA) s (5.22.1)

]P(XEA):M» =

The discrete uniform distribution is a special case of the general uniform distribution with respect to a measure, in this case
counting measure. The distribution corresponds to picking an element of S at random. Most classical, combinatorial probability
models are based on underlying discrete uniform distributions. The chapter on Finite Sampling Models explores a number of such
models.

The probability density function f of X is given by
fl@)=——=—, z€8 (5.22.2)

Proof

This follows from the definition of the (discrete) probability density function: P(X € A) =3 _, f(z) for AC S. Or more
simply, f(z) = (X =) = 1/#(S) .

Like all uniform distributions, the discrete uniform distribution on a finite set is characterized by the property of constant density
on the set. Another property that all uniform distributions share is invariance under conditioning on a subset.

Suppose that R is a nonempty subset of S. Then the conditional distribution of X given X € R is uniform on R.
Proof
For ACR,
P(Xe A A S A
P(XeA|XeR)= ( ):#( )/#():#( ) (5.22.3)
P(XER) #(R)/#(S) #(R)
If h: S— R then the expected value of h(X) is simply the arithmetic average of the values of h:
1
Eh(X)] = —— h(z) (5.22.4)
7S 2
Proof
This follows from the change of variables theorem for expected value:
1
E[h(X)] =) f(z)h(z) = e > h(x) (5.22.5)
zeS zeS
The entropy of X depends only on the number of points in .S.
The entropy of X is H(X) = In[#(S)].
Proof
Let n = #(S) . Then
H(X) =E{~[f(X0)]} =3 -In( =) L =—1n( ) =1n(n) (5.22.6)
= nj)n n
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Uniform Distributions on Finite Subsets of R

Without some additional structure, not much more can be said about discrete uniform distributions. Thus, suppose that n € N and
that S={x1,22,...,2,} is a subset of R with n points. We will assume that the points are indexed in order, so that
Ty <Xy <--- <z, .Suppose that X has the uniform distribution on S.

l The probability density function f of X is given by f(z) = % forzreS.

The distribution function F' of X is given by

1. F(z)=0forz <
2.F(z)=%forz, <z <zp andke{1,2,...n—1}
3.F(z)=1forz >z,

Proof

This follows from the definition of the distribution function: F(z) =P(X < z) forz € R.

The quantile function F~* of X is given by F ! (p) = Ty forp e (0,1].
Proof

By definition, F ! (p) =z, for kn;l <p<% andke{1,2,...,n}. It follows that k = [np] in this formulation.

The moments of X are ordinary arithmetic averages.

Forke N

E(X*) == ¥ (5.22.7)

In particular,

The mean and variance of X are
_ 157 .
Lp== 1%

2.0% = % i (i — p)?

Uniform Distributions on Discrete Intervals
We specialize further to the case where the finite subset of R is a discrete interval, that is, the points are uniformly spaced.

The Standard Distribution

Suppose that n € N, and that Z has the discrete uniform distribution on S ={0,1,...,n —1}. The distribution of Z is the
standard discrete uniform distribution with n points.

Of course, the results in the previous subsection apply with z; =4 —1 andi € {1,2,...,n}.

l The probability density function g of Z is given by g(z) = % forze S.
Open the Special Distribution Simulation and select the discrete uniform distribution. Vary the number of points, but keep the
default values for the other parameters. Note the graph of the probability density function. Run the simulation 1000 times and
compare the empirical density function to the probability density function.
The distribution function G of Z is given by G(z) = +(|z] +1) forz € [0,n—1].
Proof

Note that G(z) :% fork—1<z<k andke {1,2,...n—1}.Thusk—1=|z] in this formulation.
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The quantile function G~ of Z is given by G*(p) = [np] — 1 for p € (0, 1]. In particular

1. G1(1/4) = [n/4] —1 is the first quartile.
2.G71(1/2) = [n/2] —1 is the median.
3.G71(3/4) = [3n/4] —1 is the third quartile.

Proof

Note that G (p) =k —1 for % <p< % andk € {1,2,...,n} Thus k = [np] in this formulation.

Open the special distribution calculator and select the discrete uniform distribution. Vary the number of points, but keep the
default values for the other parameters. Note the graph of the distribution function. Compute a few values of the distribution
function and the quantile function.

For the standard uniform distribution, results for the moments can be given in closed form.

The mean and variance of Z are

1.E(Z)= %(n -1)
2.var(Z) = ﬁ(n2 —1)
Proof
Recall that
n—1 1
k= an(n— 1) (5.22.8)
k=0
n—1 1
K = gn(n—1)@2n-1) (5.22.9)

E
o

Hence E(Z) = %(n —1) and E(Z?%) = %(n —1)(2n—1) . Part (b) follows from var(Z) = E(Z?) — [E(2))* .
Open the Special Distribution Simulation and select the discrete uniform distribution. Vary the number of points, but keep the
default values for the other parameters. Note the size and location of the mean+standard devation bar. Run the simulation 1000

times and compare the empirical mean and standard deviation to the true mean and standard deviation.

The skewness and kurtosis of Z are

1. skew(Z) =0
2. kurt(Z) = £ 32T
Proof
Recall that
n—1 1
K ==(n-1)*n? (5.22.10)
4
k=1
n—1 1
B =—(n-1)(2n-1)3n*-3n—1) (5.22.11)
- 30

Hence E(Z%) = 1(n—1)?n and E(Z*) = 5-(n—1)(2n—1)(3n® —3n—1) . The results now follow from the results on
the mean and varaince and the standard formulas for skewness and kurtosis. Of course, the fact that skew(Z) =0 also follows
from the symmetry of the distribution.

Note that skew(Z) — % as n — oo . The limiting value is the skewness of the uniform distribution on an interval.

Z has probability generating function P given by P(1) =1 and
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1
t)=— teR\{1 5.22.12
(t)=-7— teR\{1} (5.22.12)
Proof
n—1
1 11-—-¢t"
P@#)=E (t?) == k=~ 5.22.13
®) ( ) n & n 1—t ( )

The General Distribution

We now generalize the standard discrete uniform distribution by adding location and scale parameters.

Suppose that Z has the standard discrete uniform distribution on n € N points, and that a € R and h € (0,00). Then
X =a+hZ has the uniform distribution on n points with location parameter a and scale parameter h.

Note that X takes values in
S={a,a+h,a+2h,...,a+(n—1)h} (5.22.14)

so that S has n elements, starting at a, with step size h, a discrete interval. In the further special case where a € Z and h =1, we
have an integer interval. Note that the last point is b=a+ (n —1)h , so we can clearly also parameterize the distribution by the
endpoints a and b, and the step size h. With this parametrization, the number of points is m =1+ (b —a)/h . For the remainder of
this discussion, we assume that X has the distribution in the definiiton. Our first result is that the distribution of X really is
uniform.

X has probability density function f given by f(z) = L forz € §

Proof

Recall that f(z) =g (”‘;a ) forz € S, where g is the PDF of Z.

Open the Special Distribution Simulation and select the discrete uniform distribution. Vary the parameters and note the graph
of the probability density function. For various values of the parameters, run the simulation 1000 times and compare the

empirical density function to the probability density function.

The distribution function F' of z is given by

F@;):%(V;“J +1>, z € [a,b] (5.22.15)

Proof

Recall that F(z) = G (%) for z € S, where G is the CDF of Z.

The quantile function F~lof Xis given by @ (p) =a+h([np] —1) forp € (0,1]. In particular
1.F1(1/4)=a+h([n/4] —1) is the first quartile.
22F1(1/2)=a+h([n/2] —1) is the median.
3.F1(3/4)=a+h([3n/4] —1) is the third quartile.

Proof

Recall that F ! (p) = a+hG1(p) forp € (0,1], where G is the quantile function of Z.

Open the special distribution calculator and select the discrete uniform distribution. Vary the parameters and note the graph of
the distribution function. Compute a few values of the distribution function and the quantile function.

The mean and variance of X are

LE(X)=a+1(n—1)h=1(a+bd)
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2. var(X) = %(n2 —1)h% = %(b—a)(b—a+2h)

Proof

Recall that E(X)=a+hE(Z) and var(X)=h’var(Z), so the results follow from the corresponding results for the
standard distribution.

Note that the mean is the average of the endpoints (and so is the midpoint of the interval [a, b]) while the variance depends only on
the number of points and the step size.

Open the Special Distribution Simulator and select the discrete uniform distribution. Vary the parameters and note the shape
and location of the mean/standard deviation bar. For selected values of the parameters, run the simulation 1000 times and
compare the empirical mean and standard deviation to the true mean and standard deviation.

The skewness and kurtosis of Z are

1. skew(X) =0
2. kurt(X) = $ 22T
Proof

Recall that skewness and kurtosis are defined in terms of the standard score, and hence are the skewness and kurtosis of X are
the same as the skewness and kurtosis of 7.

X has moment generating function M given by M(0) =1 and

h
M(t) = Lpaloe™ eR\ {0} (5.22.16)
n  1—eth’ o

Proof
Note that M(t) =E (e'*) = ¢"E (e™?) = €™ P (e™) where P is the probability generating function of Z.

Related Distributions

Since the discrete uniform distribution on a discrete interval is a location-scale family, it is trivially closed under location-scale
transformations.

Suppose that X has the discrete uniform distribution on n € N points with location parameter a € R and scale parameter
he(0,00). If ceR and w € (0,00) then Y =c+wX has the discrete uniform distribution on n points with location
parameter ¢ +wa and scale parameter wh.

Proof

By definition we can take X =a+hZ where Z has the standard uniform distribution on n points. Then
Y =c+wX =(c+wa)+(wh)Z

In terms of the endpoint parameterization, X has left endpoint a, right endpoint a + (n — 1)k , and step size h while ¥ has left
endpoint ¢ + wa, right endpoint (¢ +wa) + (n — 1)wh , and step size wh.
The uniform distribution on a discrete interval converges to the continuous uniform distribution on the interval with the same

endpoints, as the step size decreases to 0.

Suppose that X, has the discrete uniform distribution with endpoints a and b, and step size (b —a)/n, for each n € N, . Then
the distribution of X, converges to the continuous uniform distribution on [a, b] as n — 0.

Proof
The CDF F,, of X, is given by

Fn(m):l{nx_aJ, z € [a, b] (5.22.17)
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But ny—1<|ny|] <ny for yeR so |ny|/n—y as n —oo. Hence F,(z) = (x—a)/(b—a) as n— oo for
z € [a, b], and this is the CDF of the continuous uniform distribution on [a, b].

This page titled 5.22: Discrete Uniform Distributions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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