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16.7: Time Reversal in Discrete-Time Chains
      

The Markov property, stated in the form that the past and future are independent given the present, essentially treats the past and
future symmetrically. However, there is a lack of symmetry in the fact that in the usual formulation, we have an initial time 0, but
not a terminal time. If we introduce a terminal time, then we can run the process backwards in time. In this section, we are
interested in the following questions:

Is the new process still Markov?
If so, how does the new transition probability matrix relate to the original one?
Under what conditions are the forward and backward processes stochastically the same?

Consideration of these questions leads to reversed chains, an important and interesting part of the theory of Markov chains.

Basic Theory

Reversed Chains

Our starting point is a (homogeneous) discrete-time Markov chain  with (countable) state space  and
transition probability matrix . Let  be a positive integer, which we will think of as the terminal time or finite time horizon. We
won't bother to indicate the dependence on  notationally, since ultimately the terminal time will not matter. Define 
for . Thus, the process forward in time is  while the process backwards in time is

For , let

denote the  algebra of the events of the process  up to time . So of course, an event for  up to time  is an event for  from
time  forward. Our first result is that the reversed process is still a Markov chain, but not time homogeneous in general.

The process  is a Markov chain, but is not time homogenous in general. The one-step transition
matrix at time  is given by

Proof

Let  and . Then

But  and so by the Markov property for ,

By the time homogeneity of , . Substituting and simplifying gives

However, the backwards chain will be time homogeneous if  has an invariant distribution.

Suppose that  is irreducible and positive recurrent, with (unique) invariant probability density function . If  has the
invariant probability distribution, then  is a time-homogeneous Markov chain with transition matrix  given by

X = ( , , , …)X0 X1 X2 S

P m

m =X̂n Xm−n

n ∈ {0, 1, … , m} X = ( , , … , )X0 X1 Xm

= ( , , … , ) = ( , , … , )X̂ X̂0 X̂1 X̂m Xm Xm−1 X0 (16.7.1)

n ∈ {0, 1, … , m}

= σ{ , , … , } = σ{ , , … , }F̂ n X̂0 X̂1 X̂n Xm−n Xm−n+1 Xm (16.7.2)

σ X̂ n X̂ n X

m −n

= ( , , … , )X̂ X̂0 X̂1 X̂m

n ∈ {0, 1, … , m −1}

P( = y ∣ = x) = P (y, x), (x, y) ∈X̂n+1 X̂n

P( = y)Xm−n−1

P( = x)Xm−n

S2 (16.7.3)

A ∈ F̂ n x, y ∈ S

P( = y ∣ = x, A)X̂n+1 X̂n = =
P( = y, = x, A)X̂n+1 X̂n

P( = x, A)X̂n

P( = y, = x, A)Xm−n−1 Xm−n

P( = x, A)Xm−n

=
P(A ∣ = y, = x)P( = x ∣ = y)P( = y)Xm−n−1 Xm−n Xm−n Xm−n−1 Xm−n−1

P(A ∣ = x)P( = x)Xm−n Xm−n

A ∈ σ{ , … , }Xm−n Xm X

P(A ∣ = y, = x) = P(A ∣ = x)Xm−n−1 Xm−n Xm−n (16.7.4)

X P( = x ∣ = y) = P (y, x)Xm−n Xm−n−1

P( = y ∣ = x, A) = P (y, x)X̂n+1 X̂n

P( = y)Xm−n−1

P( = x)Xm−n

(16.7.5)

X0

X f X0

X̂ P̂

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10294?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/16%3A_Markov_Processes/16.07%3A_Time_Reversal_in_Discrete-Time_Chains


16.7.2 https://stats.libretexts.org/@go/page/10294

Proof

This follows from the result above. Recall that if  has PDF , then  has PDF  for each .

Recall that a discrete-time Markov chain is ergodic if it is irreducible, positive recurrent, and aperiodic. For an ergodic chain, the
previous result holds in the limit of the terminal time.

Suppose that  is ergodic, with (unique) invariant probability density function . Regardless of the distribution of ,

Proof

This follows from the conditional probability above and our study of the limiting behavior of Markov chains. Since  is
ergodic,  as  for every .

These three results are motivation for the definition that follows. We can generalize by defining the reversal of an irreducible
Markov chain, as long as there is a positive, invariant function. Recall that a positive invariant function defines a positive measure
on , but of course not in general a probability distribution.

Suppose that  is an irreducible Markov chain with transition matrix , and that  is invariant for . The
reversal of  with respect to  is the Markov chain  with transition probability matrix  defined by

Proof

We need to show that  is a valid transition probability matrix, so that the definition makes sense. Since  is invariant for ,

Recall that if  is a positive invariant function for  then so is  for every positive constant . Note that  and  generate the
same reversed chain. So let's consider the cases:

Suppose that  is an irreducible Markov chain on .

1. If  is recurrent, then  always has a positive invariant function that is unique up to multiplication by positive constants.
Hence the reversal of a recurrent chain  always exists and is unique, and so we can refer to the reversal of  without
reference to the invariant function.

2. Even better, if  is positive recurrent, then there exists a unique invariant probability density function, and the reversal of 
 can be interpreted as the time reversal (with respect to a terminal time) when  has the invariant distribution, as in the

motivating exercises above.
3. If  is transient, then there may or may not exist a positive invariant function, and if one does exist, it may not be unique

(up to multiplication by positive constants). So a transient chain may have no reversals or more than one.

Nonetheless, the general definition is natural, because most of the important properties of the reversed chain follow from the
balance equation between the transition matrices  and , and the invariant function :

We will see this balance equation repeated with other objects related to the Markov chains.

(x, y) = P (y, x), (x, y) ∈P̂
f(y)

f(x)
S2 (16.7.6)

X0 f Xk f k ∈ N

X f X0

P( = y ∣ = x) → P (y, x) as m → ∞X̂n+1 X̂n

f(y)

f(x)
(16.7.7)

X

P( = x) → f(x)Xk k → ∞ x ∈ S

S

X P g : S → (0, ∞) X

X g = ( , , …)X̂ X̂0 X̂1 P̂

(x, y) = P (y, x), (x, y) ∈P̂
g(y)

g(x)
S2 (16.7.8)

P̂ g X

(x, y) = g(y)P (y, x) = = 1, x ∈ S∑
y∈S

P̂
1

g(x)
∑
y∈S

g(x)

g(x)
(16.7.9)

g X cg c g cg

X S

X X

X X

X

X X

X

P P̂ g

g(x) (x, y) = g(y)P (y, x), (x, y) ∈P̂ S2 (16.7.10)
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Suppose that  is an irreducible Markov chain with invariant function , and that  is the reversal of  with
respect to . For ,

1. 
2.  if and only if 

Proof

These results follow immediately from the balance equation  for .

From part (b) it follows that the state graphs of  and  are reverses of each other. That is, to go from the state graph of one chain
to the state graph of the other, simply reverse the direction of each edge. Here is a more complicated (but equivalent) version of the
balance equation for chains of states:

Suppose again that  is an irreducible Markov chain with invariant function , and that  is the reversal of 
with respect to . For every  and every sequence of states ,

Proof

This follows from repeated applications of the basic equation. When , we have the balance equation itself:

For ,

Continuing in this manner (or using induction) gives the general result.

The balance equation holds for the powers of the transition matrix:

Suppose again that  is an irreducible Markov chain with invariant function , and that  is the reversal of 
with respect to . For every  and ,

Proof

When , the left and right sides are  if  and are 0 otherwise. When , we have the basic balance equation: 
. In general, for , by the previous result we have

We can now generalize the simple result above.

Suppose again that  is an irreducible Markov chain with invariant function , and that  is the reversal of 
with respect to . For  and ,

1. 
2.  if and only if 

In terms of the state graphs, part (b) has an obvious meaning: If there exists a path of length  from  to  in the original state
graph, then there exists a path of length  from  to  in the reversed state graph. The time reversal definition is symmetric with
respect to the two Markov chains.

X g : S → (0, ∞) X̂ X

g x, y ∈ S

(x, x) = P (x, x)P̂

(x, y) > 0P̂ P (y, x) > 0

g(x) (x, y) = g(y)P (y, x)P̂ (x, y) ∈ S2

X X̂

X g : S → (0, ∞) X̂ X

g n ∈ N+ ( , , … , , ) ∈x1 x2 xn xn+1 Sn+1

g( ) ( , ) ( , ) ⋯ ( , ) = g( )P ( , ) ⋯ P ( , )P ( , )x1 P̂ x1 x2 P̂ x2 x3 P̂ xn xn+1 xn+1 xn+1 xn x3 x2 x2 x1 (16.7.11)

n = 1

g( ) ( , ) = g( )P ( , )x1 P̂ x1 x2 x2 x2 x1 (16.7.12)

n = 2

g( ) ( , ) ( , ) = g( )P ( , ) ( , ) = g( )P ( , )P ( , )x1 P̂ x1 x2 P̂ x2 x3 x2 x2 x1 P̂ x2 x3 x3 x3 x2 x2 x1 (16.7.13)

X g : S → (0, ∞) X̂ X

g (x, y) ∈ S2 n ∈ N

g(x) (x, y) = g(y) (y, x)P̂
n

P n (16.7.14)

n = 0 g(x) x = y n = 1

g(x) (x, y) = g(y)P (y, x)P̂ n ∈ N+

g(x) (x, y)P̂
n

= g(x) (x, ) ( , ) ⋯ ( , y)∑
( ,…, )∈x1 xn−1 S n−1

P̂ x1 P̂ x1 x2 P̂ xn−1

= g(y)P (y, )P ( , ) ⋯ P ( , x) = g(y) (y, x)∑
( ,…, )∈x1 xn−1 S n−1

xn−1 xn−1 xn−2 x1 P n

X g : S → (0, ∞) X̂ X

g n ∈ N (x, y) ∈ S2

(x, x) = (x, x)P n P̂
n

(x, y) > 0P̂
n

(y, x) > 0P n

n y x

n x y
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Suppose again that  is an irreducible Markov chain with invariant function , and that  is the reversal of 
with respect to . Then

1.  is also invariant for .
2.  is also irreducible.
3.  is the reversal of  with respect to .

Proof
1. For , using the balance equation,

2. Suppose . Since  is irreducible, there exist  with . But then from the previous result, 
. Hence  is also irreducible.

3. This is clear from the symmetric relationship in the fundamental result.

The balance equation also holds for the potential matrices.

Suppose that  and  are time reversals with respect to the invariant function . For , the  potential
matrices are related by

Proof

This follows easily from the result above and the definition of the potential matrices:

Markov chains that are time reversals share many important properties:

Suppose that  and  are time reversals. Then

1.  and  are of the same type (transient, null recurrent, or positive recurrent).
2.  and  have the same period.
3.  and  have the same mean return time  for every .

Proof

Suppose that  and  are time reversals with respect to the invariant function .

1. The expected number of visits to a state , starting in , is the same for both chains: . Hence either
both chains are transient (if the common potential is finite) or both chains are recurrent (if the common potential is infinite).
If both chains are recurrent then the invariant function  is unique up to multiplication by positive constants, and both are
null recurrent if  and both are positive recurrent if .

2. This follows since  for all  and .
3. If both chains are transient or both are null recurrent, then  for all . If both chains are positive

recurrent, then for all  and , we have

The left side converges to  as  while the right side converges to  as .

X g : S → (0, ∞) X̂ X

g

g X̂

X̂

X X̂ g

y ∈ S

g(x) (x, y) = g(y)P (y, x) = g(y)∑
x∈S

P̂ ∑
x∈S

(16.7.15)

(x, y) ∈ S2
X n ∈ N (y, x) > 0P n

(x, y) > 0P̂
n

X̂

X X̂ g : S → (0, ∞) α ∈ (0, 1] α

g(x) (x, y) = g(y) (y, x), (x, y) ∈R̂α Rα S2 (16.7.16)

g(x) (x, y)R̂α = g(x) (x, y) = g(x) (x, y)∑
n=0

∞

αnP̂
n

∑
n=0

∞

αn P̂
n

= g(y) (y, x) = g(y) (y, x) = g(y) (y, x)∑
n=0

∞

αn P n ∑
n=0

∞

αnP n Rα

X X̂

X X̂

X X̂

X X̂ μ(x) x ∈ S

X X̂ g : S → (0, ∞)

x ∈ S x (x, x) = R(x, x)R̂

g

g(x) = ∞∑x∈S g(x) < ∞∑x∈S

(x, x) = (x, x)P n P̂
n

n ∈ N x ∈ S

μ(x) = (x) = ∞μ̂ x ∈ S

n ∈ N x ∈ S

(x, x) = (x, x)
1

n
∑
k=1

n

P k 1

n
∑
k=1

n

P̂
k

(16.7.17)

1/μ(x) n → ∞ 1/ (x)μ̂ n → ∞
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The main point of the next result is that we don't need to know a-priori that  is invariant for , if we can guess  and .

Suppose again that  is irreducible with transition probability matrix . If there exists a a function  and a
transition probability matrix  such that  for all , then

1.  is invariant for .
2.  is the transition matrix of the reversal of  with respect to .

Proof

1. Since  is a transition probability matrix, we have the same computation we have seen before:

2. This follows from (a) and the definition.

As a corollary, if there exists a probability density function  on  and a transition probability matrix  such that 
 for all  then in addition to the conclusions above, we know that the chains  and  are

positive recurrent.

Reversible Chains

Clearly, an interesting special case occurs when the transition matrix of the reversed chain turns out to be the same as the original
transition matrix. A chain of this type could be used to model a physical process that is stochastically the same, forward or
backward in time.

Suppose again that  is an irreducible Markov chain with transition matrix  and invariant function 
. If the reversal of  with respect to  also has transition matrix , then  is said to be reversible with respect

to . That is,  is reversible with respect to  if and only if

Clearly if  is reversible with respect to the invariant function  then  is reversible with respect to the invariant
function  for every . So again, let's review the cases.

Suppose that  is an irreducible Markov chain on .

1. If  is recurrent, there exists a positive invariant function that is unique up to multiplication by positive constants. So  is
either reversible or not, and we don't have to reference the invariant function .

2. If  is positive recurrent then there exists a unique invariant probability density function , and again, either 
 is reversible or not. If  is reversible, then  is the transition matrix of  forward or backward in time, when the chain

has the invariant distribution.
3. If  is transient, there may or may not exist positive invariant functions. If there are two or more positive invariant

functions that are not multiplies of one another,  might be reversible with respect to one function but not the others.

The non-symmetric simple random walk on  falls into the last case. Using the last result in the previous subsection, we can tell
whether  is reversible with respect to  without knowing a-priori that  is invariant.

Suppose again that  is irreducible with transition matrix . If there exists a function  such that 
 for all , then

1.  is invariant for .
2.  is reversible with respect to 

If we have reason to believe that a Markov chain is reversible (based on modeling considerations, for example), then the condition
in the previous theorem can be used to find the invariant functions. This procedure is often easier than using the definition of
invariance directly. The next two results are minor generalizations:

g X g P̂

X P g : S → (0, ∞)

P̂ g(x) (x, y) = g(y)P (y, x)P̂ (x, y) ∈ S2

g X

P̂ X g

P̂

gP (x) = g(y)P (y, x) = g(x) (x, y) = g(x), x ∈ S∑
y∈S

∑
y∈S

P̂ (16.7.18)

f S P̂

f(x) (x, y) = f(y)P (y, x)P̂ (x, y) ∈ S2
X X̂

X = ( , , , …)X0 X1 X2 P

g : S → (0, ∞) X g P X

g X g

g(x)P (x, y) = g(y)P (y, x), (x, y) ∈ S2 (16.7.19)

X g : S → (0, ∞) X

cg c ∈ (0, ∞)

X S

X X

g

X f : S → (0, 1)

X X P X

X

X

Z

X g g

X P g : S → (0, ∞)

g(x)P (x, y) = g(y)P (y, x) (x, y) ∈ S2

g X

X g
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Suppose again that  is irreducible and that . Then  is invariant and  is reversible with respect to  if and
only if for every  and every sequence of states ,

Suppose again that  is irreducible and that . Then  is invariant and  is reversible with respect to  if and
only if for every  and ,

Here is the condition for reversibility in terms of the potential matrices.

Suppose again that  is irreducible and that . Then  is invariant and  is reversible with respect to  if and
only if

In the positive recurrent case (the most important case), the following theorem gives a condition for reversibility that does not
directly reference the invariant distribution. The condition is known as the Kolmogorov cycle condition, and is named for Andrei
Kolmogorov

Suppose that  is irreducible and positive recurrent. Then  is reversible if and only if for every sequence of states 
,

Proof

Suppose that  is reversible. Applying the chain result above to the sequence  gives the Kolmogorov
cycle condition. Conversely, suppose that the Kolmogorov cycle condition holds, and let  denote the invariant probability
density function of . From the cycle condition we have  for every  and 

. Averaging over  from 1 to  gives

Letting  gives  for , so  is reversible.

Note that the Kolmogorov cycle condition states that the probability of visiting states  in sequence, starting in
state  is the same as the probability of visiting states  in sequence, starting in state . The cycle condition
is also known as the balance equation for cycles.

Figure : The Kolmogorov cycle condition

Examples and Applications

Finite Chains

Recall the general two-state chain  on  with the transition probability matrix

where  are parameters. The chain  is reversible and the invariant probability density function is 

.

X g : S → (0, ∞) g X g

n ∈ N+ ( , , … , ) ∈x1 x2 xn xn+1 Sn+1

g( )P ( , )P ( , ) ⋯ P ( , ) = g( )P ( , ), ⋯ P ( , )P ( , )x1 x1 x2 x2 x3 xn xn+1 xn+1 xn+1 xn x3 x2 x2 x1 (16.7.20)

X g : S → (0, ∞) g X g

(x, y) ∈ S2 n ∈ N+

g(x) (x, y) = g(y) (y, x)P n P n (16.7.21)

X g : S → (0, ∞) g X g

g(x) (x, y) = g(y) (y, x), α ∈ (0, 1], (x, y) ∈Rα Rα S2 (16.7.22)

X X

( , , … , )x1 x2 xn

P ( , )P ( , ) ⋯ P ( , )P ( , ) = P ( , )P ( , ) ⋯ P ( , )P ( , )x1 x2 x2 x3 xn−1 xn xn x1 x1 xn xn xn−1 x3 x2 x2 x1 (16.7.23)

X ( , , … , , )x1 x2 xn x1

f

X P (x, y) (y, x) = P (y, x) (x, y)P k P k (x, y) ∈ S

k ∈ N+ k n

P (x, y) (y, x) = P (y, x) (x, y), (x, y) ∈ , n ∈
1

n
∑
k=1

n

P k 1

n
∑
k=1

n

P k S2
N+ (16.7.24)

n → ∞ f(x)P (x, y) = f(y)P (y, x) (x, y) ∈ S2 X

( , , … , , )x2 x3 xn x1

x1 ( , , … , , )xn xn−1 x2 x1 x1

16.7.1

X S = {0, 1}

P = [ ]
1 −p

q

p

1 −q
(16.7.25)

p, q ∈ (0, 1) X

f = ( , )
q

p+q

p

p+q
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Proof

All we have to do is note that

Suppose that  is a Markov chain on a finite state space  with symmetric transition probability matrix . Thus 
 for all . The chain  is reversible and that the uniform distribution on  is invariant.

Proof

All we have to do is note that  where  is the constant function 1 on .

Consider the Markov chain  on  with transition probability matrix  given below:

1. Draw the state graph of  and note that the chain is irreducible.
2. Find the invariant probability density function .
3. Find the mean return time to each state.
4. Find the transition probability matrix  of the time-reversed chain .
5. Draw the state graph of .

Answer

1. State graph of 
State1.png

2. 

3. 

4. 

5. State graph of 
State1.png

Special Models

Read the discussion of reversibility for the Ehrenfest chains.

Read the discussion of reversibility for the Bernoulli-Laplace chain.

Read the discussion of reversibility for the random walks on graphs.

Read the discussion of time reversal for the reliability chains.

Read the discussion of reversibility for the birth-death chains.

This page titled 16.7: Time Reversal in Discrete-Time Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by
Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

[ ] [ ] = [ ]q p
1 −p

q

p

1 −q
q p (16.7.26)

X S P

P (x, y) = P (y, x) (x, y) ∈ S2
X S

1(x)P (x, y) = 1(y)P (y, x) 1 S

X S = {a, b, c} P

P =

⎡

⎣

⎢⎢⎢

1
4

1
3

1
2

1
4

1
3

1
2

1
2

1
3

0

⎤

⎦

⎥⎥⎥ (16.7.27)

X

f

P̂ X̂

X̂

X

f = ( , , )6

17

6

17

5

17

μ = ( , , )17
6

17
6

17
5

=P̂

⎡

⎣

⎢⎢⎢

1
4

1
4

3
5

1
3

1
3

2
5

5
12

5
12

0

⎤

⎦

⎥⎥⎥

X̂
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