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5.29: The Logistic Distribution
         

The logistic distribution is used for various growth models, and is used in a certain type of regression, known appropriately as
logistic regression.

The Standard Logistic Distribution

Distribution Functions

The standard logistic distribution is a continuous distribution on  with distribution function  given by

Proof

Note that  is continuous, and  as  and  as . Moreover,

so  is increasing.

The probability density function  of the standard logistic distribution is given by

1.  is symmetric about .
2.  increases and then decreases with the mode .
3.  is concave upward, then downward, then upward again with inflection points at .

Proof

These result follow from standard calculus. First recall that .

1. The symmetry of  is not obvious at first, but note that

2. The first derivative of  is

3. The second derivative of  is

In the special distribution simulator, select the logistic distribution. Keep the default parameter values and note the shape and
location of the probability density function. Run the simulation 1000 times and compare the empirical density function to the
probability density function.

The quantile function  of the standard logistic distribution is given by

1. The first quartile is .
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−ln3 ≈ −1.0986
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2. The median is 0.
3. The third quartile is 

Proof

The formula for  follows by solving  for  in terms of .

Recall that  are the odds in favor of an event with probability . Thus, the logistic distribution has the interesting property
that the quantiles are the logarithms of the corresponding odds ratios. Indeed, this function of  is sometimes called the logit
function. The fact that the median is 0 also follows from symmetry, of course.

In the special distribution calculator, select the logistic distribution. Keep the default parameter values and note the shape and
location of the probability density function and the distribution function. Find the quantiles of order 0.1 and 0.9.

Moments

Suppose that  has the standard logistic distribution. The moment generating function of  has a simple representation in terms of
the beta function , and hence also in terms of the gamma function 

The moment generating function  of  is given by

Proof

Note that

Let  so that  and . Hence

The last integral, by definition, is  for 

Since the moment generating function is finite on an open interval containing 0, random variable  has moments of all orders. By
symmetry, the odd order moments are 0. The even order moments can be represented in terms of Bernoulli numbers, named of
course for Jacob Bernoulli. Let  Bernoulli number of order .

Let 

1. If  is odd then .
2. If  is even then 

Proof
1. Again, this follows from symmetry
2. Recall that the moments of  can be computed by integrating powers of the quantile function. Hence

This integral evaluates to the expression above involving the Bernoulli numbers.

In particular, we have the mean and variance.

The mean and variance of  are

1. 
2. 
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Proof
1. Again,  by symmetry.
2. The second Bernoulli number is . Hence .

In the special distribution simulator, select the logistic distribution. Keep the default parameter values and note the shape and
location of the mean  standard deviation bar. Run the simulation 1000 times and compare the empirical mean and standard
deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof
1. Again,  by the symmetry of the distribution.
2. Recall that by symmetry, . Also, , so . Hence from the

usual computational formula for kurtosis,

It follows that the excess kurtosis of  is .

Related Distributions

The standard logistic distribution has the usual connections with the standard uniform distribution by means of the distribution
function and quantile function given above. Recall that the standard uniform distribution is the continuous uniform distribution on
the interval .

Connections with the standard uniform distribution.

1. If  has the standard logistic distribution then

has the standard uniform distribution.
2. If  has the standard uniform distribution then

has the standard logistic distribution.

Since the quantile function has a simple closed form, we can use the usual random quantile method to simulate the standard logistic
distribution.

Open the random quantile experiment and select the logistic distribution. Keep the default parameter values and note the shape
of the probability density and distribution functions. Run the simulation 1000 times and compare the empirical density
function, mean, and standard deviation to their distributional counterparts.

The standard logistic distribution also has several simple connections with the standard exponential distribution (the exponential
distribution with rate parameter 1).

Connections with the standard exponential distribution:

1. If  has the standard logistic distribution, then  has the standard exponential distribution.
2. If  has the standard exponential distribution then  has the standard logistic distribution.
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Proof

These results follow from the standard change of variables formula. The transformations, inverses of each other of course, are 
 and  for  and . Let  and  denote the PDFs of  and  respectively.

1. By definition,  for  so

which is the PDF of the standard exponential distribution.
2. By definition,  for  so

which is the PDF of the standard logistic distribution.

Suppose that  and  are independent random variables, each with the standard exponential distribution. Then 
has the standard logistic distribution.

Proof

For ,

Recall that  for  and  has PDF  on . We condition on :

As a function of , this is the distribution function of the standard logistic distribution.

There are also simple connections between the standard logistic distribution and the Pareto distribution.

Connections with the Pareto distribution:

1. If  has the standard logistic distribution, then  has the Pareto distribution with shape parameter 1.
2. If  has the Pareto distribution with shape parameter 1, then  has the standard logistic distribution.

Proof

These results follow from the basic change of variables theorem. The transformation, inverses of one another of course, are 
,  for  and . Let  and  denote PDFs of  and  respectively.

1. By definition,  for . Hence

which is the PDF of the Pareto distribution with shape parameter 1.
2. By definition,  for . Hence

which is the PDF of the standard logistic distribution.

Finally, there are simple connections to the extreme value distribution.

If  and  are independent and each has the standard Gumbel distribution, them  has the standard logistic
distribution.
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Proof

The distribution function of  is  for  and the density function of  is  for 
. For , conditioning on  gives

Substituting  gives

As a function of , this is the standard logistic distribution function.

The General Logistic Distribution

The general logistic distribution is the location-scale family associated with the standard logistic distribution.

Suppose that  has the standard logistic distribution. For  and , random variable  has the logistic
distribution with location parameter  and scale parameter .

Distribution Functions

Analogies of the results above for the general logistic distribution follow easily from basic properties of the location-scale
transformation. Suppose that  has the logistic distribution with location parameter  and scale parameter .

The probability density function  of  is given by

1.  is symmetric about .
2.  increases and then decreases, with mode .
3.  is concave upward, then downward, then upward again, with inflection points at .

Proof

Recall that

where  is the standard logistic PDF.

In the special distribution simulator, select the logistic distribution. Vary the parameters and note the shape and location of the
probability density function. For selected values of the parameters, run the simulation 1000 times and compare the empirical
density function to the probability density function.

The distribution function  of  is given by

Proof

Recall that

where  is the standard logistic CDF.
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The quantile function  of  is given by

1. The first quartile is .
2. The median is .
3. The third quartile is 

Proof

Recall that  for , where  is the standard logistic quantile function.

In the special distribution calculator, select the logistic distribution. Vary the parameters and note the shape and location of the
probability density function and the distribution function. For selected values of the parameters, find the quantiles of order 0.1
and 0.9.

Moments

Suppose again that  has the logistic distribution with location parameter  and scale parameter . Recall that 
denotes the beta function and  the gamma function.

The moment generating function  of  is given by

Proof

Recall that  where  is the standard logistic MGF.

The mean and variance of  are

1. 
2. 

Proof

By definition we can assume  where  has the standard logistic distribution. Using the mean and variance of 
we have

1. 
2. 

In the special distribution simulator, select the logistic distribution. Vary the parameters and note the shape and location of the
mean  standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare the empirical
mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

Recall that skewness and kurtosis are defined in terms of the standard score, and hence are invariant under location-scale
transformations. So the skewness and kurtosis of  are the same as the skewness and kurtosis of .

Once again, it follows that the excess kurtosis of  is . The central moments of  can be given in terms of the
Bernoulli numbers. As before, let  denote the Bernoulli number of order .

Let .
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1. If  is odd then .
2. If  is even then 

Proof

Again by definition we can take  where  has the standard logistic distribution. Then 
so the results follow from the moments of .

Related Distributions

The general logistic distribution is a location-scale family, so it is trivially closed under location-scale transformations.

Suppose that  has the logistic distribution with location parameter  and scale parameter , and that  and
. Then  has the logistic distribution with location parameter  and scale parameter .

Proof

Again by definition we can take  where  has the standard logistic distribution. Then 
.
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