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2.9: Probability Spaces Reuvisited

In this section we discuss probability spaces from the more advanced point of view of measure theory. The previous two sections on positive
measures and existence and uniqueness are prerequisites. The discussion is divided into two parts: first those concepts that are shared rather
equally between probability theory and general measure theory, and second those concepts that are for the most part unique to probability
theory. In particular, it's a mistake to think of probability theory as a mere branch of measure theory. Probability has its own notation,
terminology, point of view, and applications that makes it an incredibly rich subject on its own.

Basic Concepts

Our first discussion concerns topics that were discussed in the section on positive measures. So no proofs are necessary, but you will notice that
the notation, and in some cases the terminology, is very different.

Definitions

We can now give a precise definition of the probability space, the mathematical model of a random experiment.

A probability space (S, 7, P), consists of three essential parts:

1. A set of outcomes S.
2. A o-algebra of events ..
3. A probability measure IP on the sample space (.S, ).

Often the special notation (€2, Z, P) is used for a probability space in the literature—the symbol 2 for the set of outcomes is intended to remind
us that these are all possible outcomes. However in this text, we don't insist on the special notation, and use whatever notation seems most
appropriate in a given context.

In probability, o-algebras are not just important for theoretical and foundational purposes, but are important for practical purposes as well. A o-
algebra can be used to specify partial information about an experiment—a concept of fundamental importance. Specifically, suppose that 7 is
a collection of events in the experiment, and that we know whether or not A occurred for each A € & . Then in fact, we can determine whether
or not A occurred for each A € o (&), the o-algebra generated by 7.

Technically, a random variable for our experiment is a measurable function from the sample space into another measurable space.

Suppose that (S, ., P) is a probability space and that (7', &) is another measurable space. A random variable X with values in 7' is a
measurable function from S into 7.

1. The probability distribution of X is the mapping on  given by B— P(X € B) .
2. The collection of events {{X € B} : B€ '} is asub o-algebra of .7, and is the o-algebra generated by X, denoted o(X).
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Figure 2.9.1: The event {X € B} associated with B € J

If we observe the value of X, then we know whether or not each event in o(X) has occurred. More generally, we can construct the o-algebra
associated with any collection of random variables.

suppose that (7}, J;) is a measurable space for each ¢ in an index set I, and that X; is a random variable taking values in T} for each ¢ € I.
The o-algebra generated by {X; : ¢ € I'} is

o{X;,:iel}=0c{{X€eB;}:B; €9, icl} (2.9.1)
If we observe the value of X; for each ¢ € I then we know whether or not each event in o{X; : ¢ € I} has occurred. This idea is very important
in the study of stochastic processes.

Null Events, Almost Sure Events, and Equivalence

Suppose that (.S, 7, P) is a probability space.

Define the following collections of events:
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1./ ={Ae”:P(A) =0}, the collection of null events
2.M={Ac:P(A) =1}, the collection of almost sure events
39=NUM={AcS:P(A)=00rP(A) =1} , the collection of essentially deterministic events

The collection of essentially deterministic events 2 is a sub o-algebra of ..

In the section on independence, we showed that 2 is also a collection of independent events.

Intuitively, equivalent events or random variables are those that are indistinguishable from a probabilistic point of view. Recall first that the
symmetric difference between events A and B is A/A B=(A\ B)U(B\ A) ; it is the event that occurs if and only if one of the events
occurs, but not the other, and corresponds to exclusive or. Here is the definition for events:

Events A and B are equivalent if A A B € 4, and we denote this by A = B. The relation = is an equivalence relation on .. That is, for
A, B, CeY,

1. A = A (the reflexive property).
2.1f A = B then B = A (the symmetric property).
3.1f A= B and B=C then A =C (the transitive property).

Thus A = B if and only if P(A A B) =P(A\ B)+P(B\ A)=0 if and only if P(A\ B) =P(B\ A) =0 . The equivalence relation =
partitions . into disjoint classes of mutually equivalent events. Equivalence is preserved under the set operations.

I Suppose that A, B € .#.1f A = B then A° = B°.

Suppose that A;, B; € . for 4 in a countable index set I. If A; = B; for ¢ € I then

L UieI A= Uiel B;
2. ﬂie[ A= nie] B;

Equivalent events have the same probability.

l If A, B€.# and A = B then P(A) = P(B).

The converse trivially fails, and a counterexample is given below However, the null and almost sure events do form equivalence classes.

Suppose that A € ..

1.If A€ A then A= B ifand only if B € 4.
2.1f A€ # then A=Bifandonlyif BE ./ .

We can extend the notion of equivalence to random variables taking values in the same space. Thus suppose that (7', ) is another measurable
space. If X and Y are random variables with values in T, then (X,Y") is a random variable with values in T x T', which is given the usual
product o-algebra 7 ® Z . We assume that the diagonal set D = {(z,z):z € T} €  ® J , which is almost always true in applications.

Random variables X and Y taking values in 7" are equivalent if P(X =Y) =1 . Again we write X =Y . The relation = is an equivalence
relation on the collection of random variables that take values in T'. That is, for random variables X, Y, and Z with values in T,

1. X = X (the reflexive property).
2.If X =Y thenY = X (the symmetric property).
3. If X=Y and Y = Z then X = Z (the transitive property).

So the collection of random variables with values in 7" is partitioned into disjoint classes of mutually equivalent variables.

Suppose that X and Y are random variables taking values in T" and that X =Y. Then

1.{X e B} ={Y € B} forevery B€ .
2. X and Y have the same probability distribution on (T', ).

Again, the converse to part (b) fails with a passion, and a counterexample is given below. It often happens that a definition for random variables
subsumes the corresponding definition for events, by considering the indicator variables of the events. So it is with equivalence.

I Suppose that A, B€ .. Then A= B ifandonlyif 1, =15p.
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Equivalence is preserved under a deterministic transformation of the variables. For the next result, suppose that (U, %) is yet another
measurable space, along with (T, 7).

I Suppose X, Y are random variables with values in 7" and that g : 7' — U is measurable. If X =Y then g(X) =g(Y) .

Suppose again that (S, .7, P) is a probability space corresponding to a random experiment. Let ¥ denote the collection of all real-valued
random variables for the experiment, that is, all measurable functions from S into R. With the usual definitions of addition and scalar
multiplication, (¥, +, -) is a vector space. However, in probability theory, we often do not want to distinguish between random variables that
are equivalent, so it's nice to know that the vector space structure is preserved when we identify equivalent random variables. Formally, let [ X]
denote the equivalence class generated by a real-valued random variable X € ¥/, and let # denote the collection of all such equivalence
classes. In modular notation, # is the set ¥ / =. We define addition and scalar multiplication on ¥ by

[X]+[Y]=[X+4Y], c[X]=[cX]; [X], [Y]€¥, ceR (2.9.2)
I (#,+,) is a vector space.

Often we don't bother to use the special notation for the equivalence class associated with a random variable. Rather, it's understood that
equivalent random variables represent the same object. Spaces of functions in a general measure space are studied in the chapter on
Distributions, and spaces of random variables are studied in more detail in the chapter on Expected Value.

Completion
Suppose again that (9, .7, P) is a probability space, and that .4~ denotes the collection of null events, as above. Suppose that A € 4" so that

P(A)=0.1f BC A and B € ., then we know that P(B) =0 so B € .4 also. However, in general there might be subsets of A that are not
in . This leads naturally to the following definition.

l The probability space (S, ., P) is complete if A € A4 and B C A imply B € . (and hence B € /).

So the probability space is complete if every subset of an event with probability 0 is also an event (and hence also has probability 0). We know
from our work on positive measures that every o-finite measure space that is not complete can be completed. So in particular a probability
space that is not complete can be completed. To review the construction, recall that the equivalence relation = that we used above on . is
extended to Z(S) (the power set of S).

For A, BC S, define A= B if and only if there exists N € .4 such that A A B C N . The relation = is an equivalence relation on
2(S).

Here is how the probability space is completed:

Let 4y ={ACS: A= Bforsome Be ¥} .For A€ ¥, define Py(A) =P(B) where B € . and A = B. Then

1. S is a o-algebra of subsets of S and . C .7 .
2. Py is a probability measure on (.S, ).
3. (S, %, Py) is complete, and is the completion of (S, ., P).

Product Spaces

Our next discussion concerns the construction of probability spaces that correspond to specified distributions. To set the stage, suppose that
(S,,P) is a probability space. If we let X denote the identity function on S, so that X(z) =z forz € S, then {X € A} = A for Ac ¥
and hence P(X € A) =P(A) . That is, IP is the probability distribution of X. We have seen this before—every probability measure can be
thought of as the distribution of a random variable. The next result shows how to construct a probability space that corresponds to a sequence of
independent random variables with specified distributions.

Suppose n € N, and that (S;, %, P;) is a probability space for ¢ € {1,2,...,n} The corresponding product measure space (.9, ., P) is
a probability space. If X;:S—S; is the ith coordinate function on S so that X;(z) =z; for @ = (z1,2,...,2,) €S then
(X1, Xa,...,X,) is a sequence of independent random variables on (S,.#,PP), and X; has distribution P; on (S;,.%#;) for each
1€{1,2,...,n}

Proof

Of course, the existence of the product space (9, ., P) follows immediately from the more general result for products of positive measure
spaces. Recall that S=T][?,S; and that . is the o-algebra generated by sets of the from [}, A; where A; € % for each
1 €{1,2,...,n} Finally, P is the unique positive measre on (S, %) satisfying
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P <ﬁ Ai> = ﬁ]?i(Ai) (2.9.3)

where again, A; € % for each ¢ € {1,2,...,n} Clearly P is a probability measure since P(S) =]]", P;(S;) =1 . Suppose that
Aje Sforie{l,2,...,n}Then{X; € A1, Xo € Ay..., X, € A} =[], Ai € . Hence

P(Xy € Ay, Xy € Ay, ..., Xy € An) =[] Pi(4i) (2.9.4)
=1

If we fix ¢ € {1,2,...,n}and let A; =S; for j# i, then the displayed equation give P(X; € A;) =P;(4;) , so X; has distribution P;
on (S;,#;). Returning to the displayed equation we have

IP(X]_ GAl,Xg GAQ,...,Xn EAn): P(Xz GA,) (295)

—.

Il
-

K%

so (X1, Xs, ..., X,) are independent.

Intuitively, the given probability spaces correspond to n random experiments. The product space then is the probability space that corresponds
to the experiments performed independently. When modeling a random experiment, if we say that we have a finite sequence of independent
random variables with specified distributions, we can rest assured that there actually is a probability space that supports this statement

We can extend the last result to an infinite sequence of probability spaces. Suppose that (S;, .#;) is a measurable space for each ¢ € N . Recall
that the product space [[;°; S; consists of all sequences @ = (1, %2, ...) such that z; € S; for each ¢ € N, . The corresponding product o-
algebra . is generated by the collection of cylinder sets. That is, . = (%) where

00

B = {HAZ : A; € & foreachi € N, and A; = S; for all but finitely many ¢ € N+} (2.9.6)
=1

Suppose that (.S;, %, P;) is a probability space for i € N . Let (S, %) denote the product measurable space so that . = o(%) where &

is the collection of cylinder sets. Then there exists a unique probability measure IP on (S, %) that satisfies

P (ﬁAZ) - ﬁIP’i(Ai), ﬁAi cB (2.9.7)
=1 =1 =1

If X;:S—S; is the ith coordinate function on S for ¢ € N, so that X;(e) ==z; for & = (z1,22,...) €5, then (X7, X>,...) is a
sequence of independent random variables on (.S, 7, P), and X has distribution IP; on (S;, .#;) foreach i € N .

Proof

The proof is similar to the one in for positive measure spaces in the section on existence and uniqueness. First recall that the collection of
cylinder sets 4 is a semi-algebra. We define P : & — [0, 1] as in the statement of the theorem. Note that all but finitely many factors are 1.
The consistency conditions are satisfied, so IP can be extended to a probability measure on the algebra .2/ generated by 8. That is, & is the
collection of all finite, disjoint unions of cylinder sets. The standard extension theorem and uniqueness theorem now apply, so P can be
extended uniquely to a measure on ¥ = o(&) . The proof that (X;, Xs,...) are independent and that X; has distribution P; for each
4 € N is just as in the previous theorem.

Once again, if we model a random process by starting with an infinite sequence of independent random variables, we can be sure that there
exists a probability space that supports this sequence. The particular probability space constructed in the last theorem is called the canonical
probability space associated with the sequence of random variables. Note also that it was important that we had probability measures rather than
just general positive measures in the construction, since the infinite product [];2; P;(4;) is always well defined. The next section on Stochastic
Processes continues the discussion of how to construct probability spaces that correspond to a collection of random variables with specified
distributional properties.

Probability Concepts

Our next discussion concerns topics that are unique to probability theory and do not have simple analogies in general measure theory.

Independence

As usual, suppose that (S,.#,P) is a probability space. We have already studied the independence of collections of events and the
independence of collections of random variables. A more complete and general treatment results if we define the independence of collections of
collections of events, and most importantly, the independence of collections of o-algebras. This extension actually occurred already, when we
went from independence of a collection of events to independence of a collection of random variables, but we did not note it at the time. In spite
of the layers of set theory, the basic idea is the same.
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Suppose that &7 is a collection of events for each ¢ in an index set I. Then & = {7 : ¢ € I'} is independent if and only if for every choice
of A; € & fori € I, the collection of events { 4; : ¢ € I'} is independent. That is, for every finite J C I,

P (ﬂ Aj> =[I®«) (2.9.8)

jeJ jeJ

As noted above, independence of random variables, as we defined previously, is a special case of our new definition.

Suppose that (T}, Z;) is a measurable space for each ¢ in an index set I, and that X; is a random variable taking values in a set T; for each
i € I. The independence of { X : ¢ € I'} is equivalent to the independence of {o(X;) : ¢ € I'}.

Independence of events is also a special case of the new definition, and thus our new definition really does subsume our old one.

Suppose that A; is an event for each ¢ € I. The independence of {4; : ¢ € I'} is equivalent to the independence of {4 : ¢ € I} where
o =0{A;} ={5,0, A;, A} foreach i € I.

For every collection of objects that we have considered (collections of events, collections of random variables, collections of collections of
events), the notion of independence has the basic inheritance property.
Suppose that & is a collection of collections of events.

1. If &7 is independent then 4 is independent for every 8 C &7 .
2. 1f A is independent for every finite 8 C & then & is independent.

Our most important collections are o-algebras, and so we are most interested in the independence of a collection of o-algebras. The next result
allows us to go from the independence of certain types of collections to the independence of the o-algebras generated by these collections. To
understand the result, you will need to review the definitions and theorems concerning 7-systems and A-systems. The proof uses Dynkin's 7-A
theorem, named for Eugene Dynkin.

Suppose that &7 is a collection of events for each ¢ in an index set I, and that <% is a m-system for each ¢ € I. If {& :i € I} is
independent, then {o (%) : ¢ € I'} is independent.

Proof

In light of the previous result, it suffices to consider a finite set of collections. Thus, suppose that { &, @4, ..., %%,} is independent. Now,
fix A; € o for i €{2,3,...,n} and let E=(\,A4;. Let £={Be . :P(BNE)=P(B)P(E)} . Trivially S€.# since
P(SNE)=P(E)=P(S)P(E) .Nextsuppose that A € £ . Then

P(A°NE)=P(E)-P(ANE)=P(E)-P(A)P(E) =[1 —P(A)|P(E) =P(A°)P(E) (2.9.9)
Thus A° € £ . Finally, suppose that { A; : j € J} is a countable collection of disjoint sets in .%. Then

b [(UA) mE] P

Therefore | e Aj € Z and so .Z is a A-system. Trivially &/ C .Z by the original independence assumption, so by the 7-A theorem,
o(2) C & . Thus, we have that for every A; € o(#4) and A; € & fori € {2,3,...,n}

P (ﬁ Ai> - ﬁP(Ai) (2.9.11)

Thus we have shown that {o(&4), %4,...,2,} is independent. Repeating the argument n—1 additional times, we get that
{o(eA),0(e5),...,0(h)} is independent.

U(Aij)] =Y P(4;NE) =) P(4,)P(E) =P(E) > P(4;) =P(E)P (U A]) (2.9.10)

jeJ jeJ jeJ jeJ jeJ

The next result is a rigorous statement of the strong independence that is implied the independence of a collection of events.

Suppose that &/ is an independent collection of events, and that {Z; : j € J} is a partition of /. That is, ; N %, =0 for j# k and
Ujes Bj =< . Then {0(%;) : j € J} is independent.
Proof

Let 33]* denote the set of all finite intersections of sets in %, for each j € J. Then clearly 33]* is a w-system for each 7, and {33]* 1jed }
is independent. By the previous theorem, {c'(%;):j € J} is independent. But clearly o/(8;) = o/(%;) forje J.
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Let's bring the result down to earth. Suppose that A, B, C, D are independent events. In our elementary discussion of independence, you were
asked to show, for example, that AU B¢ and C°U D¢ are independent. This is a consequence of the much stronger statement that the o-
algebras c{ A, B} and o{C, D} are independent.

Exchangeability

As usual, suppose that (S, ., P) is a probability space corresponding to a random experiment Roughly speaking, a sequence of events or a
sequence of random variables is exchangeable if the probability law that governs the sequence is unchanged when the order of the events or
variables is changed. Exchangeable variables arise naturally in sampling experiments and many other settings, and are a natural generalization
of a sequence of independent, identically distributed (IID) variables. Conversely, it turns out that any exchangeable sequence of variables can be
constructed from an IID sequence. First we give the definition for events:

Suppose that & = {A; : i € I} is a collection of events, where I is a nonempty index set. Then & is exchangeable if the probability of
the intersection of a finite number of the events depends only on the number of events. That is, if J and K are finite subsets of I and

#(J) = #(K) then

P (ﬂ A]) =P (ﬂ Ak> (2.9.12)

jeJ keK

Exchangeability has the same basic inheritance property that we have seen before.

Suppose that & is a collection of events.

1. If &7 is exchangeable then 43 is exchangeable for every 8 C .
2. Conversely, if 4 is exchangeable for every finite # C &/ then & is exchangeable.

For a collection of exchangeable events, the inclusion exclusion law for the probability of a union is much simpler than the general version.

Suppose that {41, A, ..., A,} is an exchangeable collection of events. For J C {1,2,...,n} with #(J) =k, let py =P (ﬂjeJ Aj) .
Then

P (0 A,») =§n:(—1)k-1 (Z)pk (2.9.13)
=1 k=1

Proof

The inclusion-exclusion rule gives
P (UAi> =y (-t NP (ﬂ Aj) (2.9.14)
i€l k=1 JCI, #(J)=k jeJ

Butp, =P (ﬂjeJ Aj) for every J C {1,2,...,n} with #(J) =k, and there are (}}) such subsets.

The concept of exchangeablility can be extended to random variables in the natural way. Suppose that (", ) is a measurable space.

Suppose that &/ is a collection of random variables, each taking values in T'. The collection & is exchangeable if for any
{X1, Xs,...,X,} C &, the distribution of the random vector (X1, Xs, ..., X,,) depends only on n.

Thus, the distribution of the random vector is unchanged if the coordinates are permuted. Once again, exchangeability has the same basic
inheritance property as a collection of independent variables.

Suppose that & is a collection of random variables, each taking values in T'.

1. If o is exchangeable then 4 is exchangeable for every Z C & .
2. Conversely, if 48 is exchangeable for every finite 4 C & then & is exchangeable.

Suppose that &7 is a collection of random variables, each taking values in 7', and that & is exchangeable. Then trivially the variables are
identically distributed: if X, Y € & and A € 7, then P(X € A) =P(Y € A) . Also, the definition of exchangeable variables subsumes the
definition for events:

Suppose that & is a collection of events, and let Z={14: A € &/} denote the corresponding collection of indicator random variables.
Then & is exchangeable if and only if 4 is exchangeable.
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Tail Events and Variables

Suppose again that we have a random experiment modeled by a probability space (.9, %, P).

Suppose that (X7, X, .. .) be a sequence of random variables. The tail sigma algebra of the sequence is

T = o{Xn, Xni1,. -} (2.9.15)

n=1

1. An event B € J is a tail event for the sequence.
2. A random variable Y that is measurable with respect to J is a tail random variable for the sequence.

Informally, a tail event (random variable) is an event (random variable) that can be defined in terms of {X,,, X;, 11, . ..} for each n € N . The
tail sigma algebra for a sequence of events (A1, As, .. .) is defined analogously (or simply let X} = 1(Ay), the indicator variable of A, for
each k). For the following results, you may need to review some of the definitions in the section on Convergence.

Suppose that (A;, A, . ..) is a sequence of events.

1. If the sequence is increasing then lim,, ., 4, = UZOZI A, is a tail event of the sequence.

2. If the sequence is decreasing then lim,, ., 4, = ﬂ;ozl A, is atail event of the sequence.
Proof

1. If the sequence is increasing then | J7° ; Ap, = Uo>;, An € 0{ Ak, Ap11,...} forevery k e N, .

2. If the sequence is decreasing then (7°; Ap, = (7"t Ar € 0{ Ak, Agy1, ...} forevery ke N,

Suppose again that (4, As, . . .) is a sequence of events. Each of the following is a tail event of the sequence:

1. lim SUpP, 00 An = 20:1 Uzn A’
2. liminf, oo 4, = U2, N2, 4
Proof

1. The events fin A; are decreasing in 7 and hence limsup,, _,., A, = lim,, U;’in A; € I by the previous result.
2. The events ()2, A; are increasing in n and hence liminf, o, A, =lim, , (>, A; € J by the previous result.

Suppose that X = (X7, X5, ...) is a sequence of real-valued random variables.

1. {X,, converges asn — oo} is a tail event for X.
2. liminf,, ., X, is a tail random variable for X.
3.limsup,,_,,, Xy, is a tail random variable for X.

Proof

1. The Cauchy criterion for convergence (named for Augustin Cauchy of course) states that X, converges as n — oo if an only if for
every € > 0 there exists N € N (depending on €) such that if m, n > N then | X,, — X,,,| < € . In this criterion, we can without loss
of generality take € to be rational, and for a given k € N; we can insist that m, n > k. With these restrictions, the Cauchy criterion is a
countable intersection of events, each of which is in o{ Xy, Xj11,...}

2. Recall that lim inf,, o, X,, =1im,,_, inf{ X} : k >n} .

3. Similarly, recall that limsup,,_, X, =lim, o sup{ X : k> n} .

The random variable in part (b) may take the value —oo, and the random variable in (c) may take the value co. From parts (b) and (c) together,
note that if X,, — X, asm — oo on the sample space ., then X, is a tail random variable for X.

There are a number of zero-one laws in probability. These are theorems that give conditions under which an event will be essentially
deterministic; that is, have probability 0 or probability 1. Interestingly, it can sometimes be difficult to determine which of these extremes is
actually the case. The following result is the Kolmogorov zero-one law, named for Andrey Kolmogorov. It states that an event in the tail o-
algebra of an independent sequence will have probability 0 or 1.

Suppose that X = (X7, X5, . ..) is an independent sequence of random variables

1. If B is a tail event for X then P(B) =0 or P(B) =1.
2. If Y is areal-valued tail random variable for X then Y is constant with probability 1.
Proof

1. By definition B € 0{ X, 1, Xpn+2, ...} foreachn € N, and hence { X1, X, ..., X,, 15} is an independent set of random variables.
Thus { X1, Xs, ..., 1p}is an independent set of random variables. But B € o{ X1, X, ...}, so it follows that the event B is
independent of itself. Therefore P(B) =0 or P(B) =1.
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2. The function y — P(Y <y) on R is the (cumulative) distribution function of Y . This function is clearly increasing. Moreover, simple
applications of the continuity theorems show that it is right continuous and that P(Y <y) — 0 asy — —oco and P(Y <y) — 1 as
y — oo. (Explicit proofs are given in the section on distribution functions in the chapter on Distributions.) But since Y is a tail random
variable, {Y <y} is a tail event and hence P(Y < y) € {0, 1} for each y € R. It follows that there exists ¢ € R such that
P(Y <y)=0 fory<candP(Y <y)=1 fory >c.Hence P(Y =¢)=1.

From the Komogorov zero-one law and the result above, note that if (Ay, As, . ..) is a sequence of independent events, then limsup,,_,., A,
must have probability 0 or 1. The Borel-Cantelli lemmas give conditions for which of these is correct:
Suppose that (A;, As, . . .) is a sequence of independent events.

1.If 32, P(A;) < oo then P (limsup,, ., A,) =0.
2.1f 772 P(A;) = oo then P (limsup,, ., An) =1.

Another proof of the Kolmogorov zero-one law will be given using the martingale convergence theorem.

Examples and Exercises

As always, be sure to try the computational exercises and proofs yourself before reading the answers and proofs in the text.

Counterexamples

Equal probability certainly does not imply equivalent events.

Consider the simple experiment of tossing a fair coin. The event that the coin lands heads and the event that the coin lands tails have the
same probability, but are not equivalent.

Proof

Let S denote the sample space, and H the event of heads, so that H¢ is the event of tails. Since the coin is fair, P(H) = P(H¢) = % . But
HAH¢=S,s0P(HA H®)=1,s0 H and H* are as far from equivalent as possible.

Similarly, equivalent distributions does not imply equivalent random variables.

Consider the experiment of rolling a standard, fair die. Let X denote the score and Y =7 — X . Then X and Y have the same distribution
but are not equivalent.

Proof

Since the die is fair, X is uniformly distributed on S ={1,2,3,4,5,6}Also P(Y = k) =P(X =7 —k) = % forke S, soY also has

the uniform distribution on S. But P(X =Y) =P (X = %) =0 ,so X andY are as far from equivalent as possible.

Consider the experiment of rolling two standard, fair dice and recording the sequence of scores (X,Y). Then X and Y are independent and
have the same distribution, but are not equivalent.

Proof

Since the dice are fair, (X,Y") has the uniform distribution on {1, 2, 3, 4, 5, 6}?Equivalently, X and Y are independent, and each has the
uniform distribution on {1, 2, 3,4,5,6}But P(X =Y) = % ,s0 X and Y are not equivalent.
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