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5.33: The Exponential-Logarithmic Distribution
        

The exponential-logarithmic distribution arises when the rate parameter of the exponential distribution is randomized by the logarithmic
distribution. The exponential-logarithmic distribution has applications in reliability theory in the context of devices or organisms that improve
with age, due to hardening or immunity.

The Standard Exponential-Logarithmic Distribution

Distribution Functions

The standard exponential-logarithmic distribution with shape parameter  is a continuous distribution on  with probability
density function  given by

1.  is decreasing on  with mode .
2.  is concave upward on .

Proof

Substituting ,  gives

so it follows that  is a PDF. For the shape of the graph of  note that

Open the special distribution simulator and select the exponential-logarithmic distribution. Vary the shape parameter and note the shape of
the probability density function. For selected values of the shape parameter, run the simulation 1000 times and compare the empirical
density function to the probability density function.

The distribution function  is given by

Proof

This follows from the same integral substitution used in the previous proof.

The quantile function  is given by

1. The first quartile is .
2. The median is .
3. The third quartile is .

Proof

The formula for  follows from the distribution function by solving  for  in terms of .

Open the special distribution calculator and select the exponential-logarithmic distribution. Vary the shape parameter and note the shape of
the distribution and probability density functions. For selected values of the shape parameter, computer a few values of the distribution
function and the quantile function.

The reliability function  given by

p ∈ (0, 1) [0, ∞)
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(1 −p)e−x
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∞
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g g

(x)g′

(x)g′′

= , x ∈ [0, ∞)
(1 −p)e−x

ln(p)[1 −(1 −p)e−x ]2

= − , x ∈ [0, ∞)
(1 −p) [1 +(1 −p)e−x e−x

ln(p)[1 −(1 −p)e−x ]3

(5.33.3)

(5.33.4)

G

G(x) = 1 − , x ∈ [0, ∞)
ln[1 −(1 −p) ]e−x

ln(p)
(5.33.5)

G−1

(u) = ln( ) = ln(1 −p) −ln(1 − ), u ∈ [0, 1)G−1 1 −p

1 −p1−u
p1−u (5.33.6)

= ln(1 −p) −ln(1 − )q1 p3/4

= ln(1 −p) −ln(1 − ) = ln(1 + )q2 p1/2 p–√
= ln(1 −p) −ln(1 − )q3 p1/4

G−1 u = G(x) x u

Gc
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Proof

This follows trivially from the distribution function since .

The standard exponential-logarithmic distribution has decreasing failure rate.

The failure rate function  is given by

1.  is decreasing on .
2.  is concave upward on .

Proof

Recall that  so the formula follows from the probability density function and the distribution function given above.

The Polylogarithm

The moments of the standard exponential-logarithmic distribution cannot be expressed in terms of the usual elementary functions, but can be
expressed in terms of a special function known as the polylogarithm.

The polylogarithm of order  is defined by

The polylogarithm is a power series in  with radius of convergence is 1 for each .

Proof

To show that the radius of convergence is 1, we use the ratio test from calculus. For ,

Hence the series converges absolutely for  and diverges for .

In this section, we are only interested in nonnegative integer orders, but the polylogarithm will show up again, for non-integer orders, in the
study of the zeta distribution.

The polylogarithm functions of orders 0, 1, 2, and 3.

1. The polylogarithm of order 0 is

2. The polylogarithm of order 1 is

3. The polylogarithm of order 2 is known as the dilogarithm
4. The polylogarithm of order 3 is known as the trilogarithm.

Thus, the polylogarithm of order 0 is a simple geometric series, and the polylogarithm of order 1 is the standard power series for the natural
logarithm. Note that the probability density function of  can be written in terms of the polylogarithms of orders 0 and 1:

The most important property of the polylogarithm is given in the following theorem:

The polylogarithm satisfies the following recursive integral formula:

(x) = , x ∈ [0, ∞)Gc ln[1 −(1 −p) ]e−x

ln(p)
(5.33.7)

= 1 −GGc

r

r(x) = − , x ∈ (0, ∞)
(1 −p)e−x

[1 −(1 −p) ] ln[1 −(1 −p) ]e−x e−x
(5.33.8)

r [0, ∞)
r [0, ∞)

r(x) = g(x)/ (x)Gc

s ∈ R

(x) = , x ∈ (−1, 1)Lis ∑
k=1

∞ xk

ks
(5.33.9)

x s ∈ R

s ∈ R

= |x| → |x| as k → ∞
|x /(k+1|k+1 )s

|x /|k ks
( )

k

k+1

s

(5.33.10)

|x| < 1 |x| > 1

(x) = = , x ∈ (−1, 1)Li0 ∑
k=1

∞

xk
x

1 −x
(5.33.11)

(x) = = −ln(1 −x), x ∈ (−1, 1)Li1 ∑
k=1

∞ xk

k
(5.33.12)

X

g(x) = − = , x ∈ [0, ∞)
[(1 −p) ]Li0 e−x

ln(p)

[(1 −p) ]Li0 e−x

(1 −p)Li1
(5.33.13)
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Equivalently,  for  and .

Proof

Recall that a power series may integrated term by term, and the integrated series has the same radius of convergence. Hence for ,

When , the polylogarithm series converges at  also, and

where  is the Riemann zeta function, named for Georg Riemann. The polylogarithm can be extended to complex orders and defined for
complex  with , but the simpler version suffices for our work here.

Moments

We assume that  has the standard exponential-logarithmic distribution with shape parameter .

The moments of  (about 0) are

1.  as 
2.  as 

Proof

As noted earlier in the discussion of the polylogarithm, the PDF of  can be written as

Hence

But  and hence

1. As , the numerator in the last expression for  converges to  while the denominator diverges to .
2. As , the expression for  has the indeterminate form . An application of L'Hospital's rule and the derivative rule above

gives

But from the series definition of the polylogarithm,  as .

We will get some additional insight into the asymptotics below when we consider the limiting distribution as  and . The mean and
variance of the standard exponential logarithmic distribution follow easily from the general moment formula.

The mean and variance of  are

1. 
2. 

From the asymptotics of the general moments, note that  and  as , and  and  as .

(x) = dt; s ∈ R, x ∈ (−1, 1)Lis+1 ∫
x

0

(t)Lis
t

(5.33.14)

x (x) = (x)Li′
s+1 Lis x ∈ (−1, 1) s ∈ R

s ∈ R

dt = dt = = (x), x ∈ (−1, 1)∫
x

0

(t)Lis
t

∑
k=1

∞

∫
x

0

tk−1

ks
∑
k=1

∞ xk

sk+1
Lis+1 (5.33.15)

s > 1 x = 1

(1) = ζ(s) =Lis ∑
k=1

∞ 1

ks
(5.33.16)

ζ

z |z| < 1

X p ∈ (0, 1)

X

E( ) = −n! = n! , n ∈ NXn
(1 −p)Lin+1

ln(p)

(1 −p)Lin+1

(1 −p)Li1
(5.33.17)

E( ) → 0Xn p ↓ 0
E( ) → n!Xn p ↑ 1

X

g(x) = − (1 −p , x ∈ [0, ∞)
1

ln(p)
∑
k=1

∞

)ke−kx (5.33.18)

E( ) = − (1 −p dx = − (1 −p dxXn 1

ln(p)
∫

∞

0
∑
k=1

∞

)kxne−kx 1

ln(p)
∑
k=1

∞

)k ∫
∞

0
xne−kx (5.33.19)

dx = n!/∫
∞

0 xne−kx kn+1

E( ) = − n! = −n!Xn 1

ln(p)
∑
k=1

∞ (1 −p)k

kn+1

(1 −p)Lin+1

ln(p)
(5.33.20)

p ↓ 0 E( )Xn n!ζ(n+1) ∞

p ↑ 1 E( )Xn 0
0

E( ) = n!plim
p↑1

Xn lim
p↑1

(1 −p)Lin
1 −p

(5.33.21)

(x)/x → 1Lin x → 0

p ↓ 0 p ↑ 1

X

E(X) = − (1 −p)/ ln(p)Li2

var(X) = −2 (1 −p)/ ln(p) −Li3 [ (1 −p)/ ln(p)]Li2
2

E(X) → 0 var(X) → 0 p ↓ 0 E(X) → 1 var(X) → 1 p ↑ 1
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Open the special distribution simulator and select the exponential-logarithmic distribution. Vary the shape parameter and note the size and
location of the mean  standard deviation bar. For selected values of the shape parameter, run the simulation 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation.

Related Distributions

The standard exponential-logarithmic distribution has the usual connections to the standard uniform distribution by means of the distribution
function and the quantile function computed above.

Suppose that .

1. If  has the standard uniform distribution then

has the standard exponential-logarithmic distribution with shape parameter .
2. If  has the standard exponential-logarithmic distribution with shape parameter  then

has the standard uniform distribution.

Proof
1. Recall that if  has the standard uniform distribution, then  has the exponential-logarithmic distribution with shape parameter 

. But  also has the standard uniform distribution and hence  also has the exponential-logarithmic distribution
with shape parameter .

2. Similarly, if  has the exponential-logarithmic distribution with shape parameter  then  has the standard uniform distribution.
Hence  also has the standard uniform distribution.

Since the quantile function of the basic exponential-logarithmic distribution has a simple closed form, the distribution can be simulated using
the random quantile method.

Open the random quantile experiment and select the exponential-logarithmic distribution. Vary the shape parameter and note the shape of
the distribution and probability density functions. For selected values of the parameter, run the simulation 1000 times and compare the
empirical density function to the probability density function.

As the name suggests, the basic exponential-logarithmic distribution arises from the exponential distribution and the logarithmic distribution via
a certain type of randomization.

Suppose that  is a sequence of independent random variables, each with the standard exponential distribution. Suppose
also that  has the logarithmic distribution with parameter  and is independent of . Then  has
the basic exponential-logarithmic distribution with shape parameter .

Proof

It's best to work with reliability functions. For ,  has the exponential distribution with rate parameter , and
hence  for . Recall also that

Hence, using the polylogarithm of order 1 (the standard power series for the logarithm),

As a function of , this is the reliability function of the exponential-logarithmic distribution with shape parameter .

Also of interest, of course, are the limiting distributions of the standard exponential-logarithmic distribution as  and as .

The standard exponential-logarithmic distribution with shape parameter  converges to

1. Point mass at 0 as .
2. The standard exponential distribution as .

±

p ∈ (0, 1)

U

X = ln( ) = ln(1 −p) −ln(1 − )
1 −p

1 −pU
pU (5.33.22)

p

X p

U =
ln[1 −(1 −p) ]e−X

ln(p)
(5.33.23)

U (U)G−1

p 1 −U X = (1 −U)G−1

p

X p G(X)
U = 1 −G(X)

T = ( , , …)T1 T2

N 1 −p ∈ (0, 1) T X = min{ , , … , }T1 T2 TN
p

n ∈ N+ min{ , , … , }T1 T2 Tn n

P(min{ , , … } > x) =T1 T2 Tn e−nx x ∈ [0, ∞)

P(N = n) = − ,n ∈
(1 −p)n

n ln(p)
N+ (5.33.24)

P(X > x) =E[P(X > x ∣ N)] = − = − =
1

ln(p)
∑
n=1

∞

e−nx
(1 −p)n

n

1

ln(p)
∑
n=1

∞ [ (1 −p)]e−x n

n

ln[1 − (1 −p)]e−x

ln(p)
(5.33.25)

x p

p → 0 p → 1

p ∈ (0, 1)

p → 0
p → 1
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Proof

It's slightly easier to work with the reliability function  rather than the ordinary (left) distribution function .

1. Note that  for every . On the other hand, if  then  as .
2.  has the indeterminate form  as . An application of L'Hospital's rule shows that

As a function of , this is the reliability function of the standard exponential distribution.

The General Exponential-Logarithmic Distribution
The standard exponential-logarithmic distribution is generalized, like so many distributions on , by adding a scale parameter.

Suppose that  has the standard exponential-logarithmic distribution with shape parameter . If , then  has the
exponential-logarithmic distribution with shape parameter  and scale parameter .

Using the same terminology as the exponential distribution,  is called the rate parameter.

Distribution Functions

Suppose that  has the exponential-logarithmic distribution with shape parameter  and scale parameter .

 has probability density function  given by

1.  is decreasing on  with mode .
2.  is concave upward on .

Proof

Recall that  for  where  is the PDF of the standard distribution.

Open the special distribution simulator and select the exponential-logarithmic distribution. Vary the shape and scale parameters and note the
shape and location of the probability density function. For selected values of the parameters, run the simulation 1000 times and compare the
empirical density function to the probability density function.

 has distribution function  given by

Proof

Recall that  for  where  is the CDF of the standard distribution.

 has quantile function  given by

1. The first quartile is .
2. The median is .
3. The third quartile is .

Proof

Recall that  where  is the quantile function of the standard distribution.

Open the special distribution calculator and select the exponential-logarithmic distribution. Vary the shape and scale parameter and note the
shape and location of the probability density and distribution functions. For selected values of the parameters, computer a few values of the
distribution function and the quantile function.

Gc G

(0) = 1Gc p ∈ (0, 1) x > 0 (x) → 0Gc p → 0

(x)Gc 0
0

p → 1

(x) = = , x ∈ [0, ∞)lim
p→1

Gc lim
p→1

pe−x

1 −(1 −p)e−x
e−x (5.33.26)

x

[0, ∞)

Z p ∈ (0, 1) b ∈ (0, ∞) X = bZ

p b

1/b

X p ∈ (0, 1) b ∈ (0, ∞)

X f

f(x) = − , x ∈ [0, ∞)
(1 −p)e−x/b

b ln(p)[1 −(1 −p) ]e−x/b
(5.33.27)

f [0, ∞) x = 0
f [0, ∞)

f(x) = g( )1
b

x

b
x ∈ [0, ∞) g

X F

F (x) = 1 − , x ∈ [0, ∞)
ln[1 −(1 −p) ]e−x/b

ln(p)
(5.33.28)

F (x) = G(x/b) x ∈ [0, ∞) G

X F −1

(u) = b ln( ) = b [ln(1 −p) −ln(1 − )] , u ∈ [0, 1)F −1 1 −p

1 −p1−u
p1−u (5.33.29)

= b [ln(1 −p) −ln(1 − )]q1 p3/4

= b [ln(1 −p) −ln(1 − )] = b ln(1 + )q2 p1/2 p–√
= b [ln(1 −p) −ln(1 − )]q3 p1/4

(u) = b (u)F −1 G−1 G−1
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 has reliability function  given by

Proof

This follows trivially from the distribution function since .

The exponential-logarithmic distribution has decreasing failure rate.

The failure rate function  of  is given by.

1.  is decreasing on .
2.  is concave upward on .

Proof

Recall that  for , where  is the failure rate function of the standard distribution. Alternately, 

.

Moments

Suppose again that  has the exponential-logarithmic distribution with shape parameter  and scale parameter . The
moments of  can be computed easily from the representation  where  has the basic exponential-logarithmic distribution.

The moments of  (about 0) are

1.  as 
2.  as 

Proof

These results follow from basic properties of expected value and the corresponding results for the standard distribution. We can write 
 where  has the standard exponential-logarithmic distribution with shape parameter . Hence .

The mean and variance of  are

1. 

2. 

From the general moment results, note that  and  as , while  and  as .

Open the special distribution simulator and select the exponential-logarithmic distribution. Vary the shape and scale parameters and note the
size and location of the mean  standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare
the empirical mean and standard deviation to the distribution mean and standard deviation.

Related Distributions

Since the exponential-logarithmic distribution is a scale family for each value of the shape parameter, it is trivially closed under scale
transformations.

Suppose that  has the exponential-logarithmic distribution with shape parameter  and scale parameter . If 
, then  has the exponential-logarithmic distribution with shape parameter  and scale parameter .

Proof

By definition, we can take  where  has the standard exponential-logarithmic distribution with shape parameter . But then 
.

X F c

(x) = , x ∈ [0, ∞)F c
ln[1 −(1 −p) ]e−x/b

ln(p)
(5.33.30)

= 1 −FF c

R X

R(x) = − , x ∈ [0, ∞)
(1 −p)e−x/b

b [1 −(1 −p) ] ln[1 −(1 −p) ]e−x/b e−x/b
(5.33.31)

R [0, ∞)
R [0, ∞)

R(x) = r( )1
b

x

b
x ∈ [0, ∞) r

R(x) = f(x)/ (x)F c

X p ∈ (0, 1) b ∈ (0, ∞)
X X = bZ Z

X

E( ) = − n! , n ∈ NXn bn
(1 −p)Lin+1

ln(p)
(5.33.32)

E( ) → 0Xn p ↓ 0
E( ) → n!Xn bn p ↑ 1

X = bZ Z p E( ) = E( )Xn bn Zn

X

E(X) = −b (1 −p)/ ln(p)Li2

var(X) = (−2 (1 −p)/ ln(p) − )b2 Li3 [ (1 −p)/ ln(p)]Li2
2

E(X) → 0 var(X) → 0 p ↓ 0 E(X) → b var(X) → b2 p ↑ 1

±

X p ∈ (0, 1) b ∈ (0, ∞)
c ∈ (0, ∞) Y = cX p bc

X = bZ Z p

Y = cX = (bc)Z
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Once again, the exponential-logarithmic distribution has the usual connections to the standard uniform distribution by means of the distribution
function and quantile function computed above.

Suppose that  and .

1. If  has the standard exponential distribution then

has the exponential-logarithmic distribution with shape parameter  and scale parameter .
2. If  has the exponential-logarithmic distribution with shape parameter  and scale parameter , then

has the standard uniform distribution.

Proof

These results follow from the representation , where  has the standard exponential-logarithmic distribution with shape parameter 
, and the corresponding result for .

Again, since the quantile function of the exponential-logarithmic distribution has a simple closed form, the distribution can be simulated using
the random quantile method.

Open the random quantile experiment and select the exponential-logarithmic distribution. Vary the shape and scale parameters and note the
shape and location of the distribution and probability density functions. For selected values of the parameters, run the simulation 1000 times
and compare the empirical density function to the probability density function.

Suppose that  is a sequence of independent random variables, each with the exponential distribution with scale parameter 
. Suppose also that  has the logarithmic distribution with parameter  and is independent of . Then 

 has the exponential-logarithmic distribution with shape parameter  and scale parameter .

Proof

Note that  has the standard exponential distribution. Hence by the corresponding result above,  has the
basic exponential-logarithmic distribution with shape parameter . Hence  has the exponential-logarithmic distribution with shape
parameter  and scale parameter .

The limiting distributions as  and as  also follow easily from the corresponding results for the standard case.

For fixed , the exponential-logarithmic distribution with shape parameter  and scale parameter  converges to

1. Point mass at 0 as .
2. The exponential distribution with scale parameter  as .

Proof

Suppose that  has the exponential-logarithmic distribution with shape parameter  and scale parameter , so that  where  has the
standard exponential-logarithmic distribution with shape parameter . Using the corresponding result above,

1. The distribution of  converges to point mass at 0 as  and hence so does the distribution of .
2. The distribution of  converges to the standard exponential distribution as  and hence the the distribution of  converges to the

exponential distribution with scale parameter .
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p ∈ (0, 1) b ∈ (0, ∞)

U

X = b [ln( )] = b [ln(1 −p) −ln(1 − )]
1 −p

1 −pU
pU (5.33.33)

p b

X p b

U =
ln[1 −(1 −p) ]e−X/b

ln(p)
(5.33.34)

X = bZ Z

p Z

T = ( , , …)T1 T2

b ∈ (0, ∞) N 1 −p ∈ (0, 1) T

X = min{ , , … , }T1 T2 TN p b

= /bVi Ti Z = min{ , , … , }V1 V2 VN
p X = bZ

p b

p ↓ 0 p ↑ 1

b ∈ (0, ∞) p ∈ (0, 1) b

p ↓ 0
b p ↑ 1

X p b X = bZ Z

p

Z p ↓ 0 X

Z p ↑ 1 X

b
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