
7.6.1 https://stats.libretexts.org/@go/page/10194

7.6: Sufficient, Complete and Ancillary Statistics
           

Basic Theory

The Basic Statistical Model

Consider again the basic statistical model, in which we have a random experiment with an observable random variable  taking values in a set . Once
again, the experiment is typically to sample  objects from a population and record one or more measurements for each item. In this case, the outcome
variable has the form

where  is the vector of measurements for the th item. In general, we suppose that the distribution of  depends on a parameter  taking values in a
parameter space . The parameter  may also be vector-valued. We will sometimes use subscripts in probability density functions, expected values, etc. to
denote the dependence on .

As usual, the most important special case is when  is a sequence of independent, identically distributed random variables. In this case  is a random
sample from the common distribution.

Sufficient Statistics

Let  be a statistic taking values in a set . Intuitively,  is sufficient for  if  contains all of the information about  that is available in the
entire data variable . Here is the formal definition:

A statistic  is sufficient for  if the conditional distribution of  given  does not depend on .

Sufficiency is related to the concept of data reduction. Suppose that  takes values in . If we can find a sufficient statistic  that takes values in ,
then we can reduce the original data vector  (whose dimension  is usually large) to the vector of statistics  (whose dimension  is usually much
smaller) with no loss of information about the parameter .

The following result gives a condition for sufficiency that is equivalent to this definition.

Let  be a statistic taking values in , and let  and  denote the probability density functions of  and  respectively. Then  is
suffcient for  if and only if the function on  given below does not depend on :

Proof

The joint distribution of  is concentrated on the set . The conditional PDF of  given  is 
 on this set, and is 0 otherwise.

The definition precisely captures the intuitive notion of sufficiency given above, but can be difficult to apply. We must know in advance a candidate
statistic , and then we must be able to compute the conditional distribution of  given . The Fisher-Neyman factorization theorem given next often
allows the identification of a sufficient statistic from the form of the probability density function of . It is named for Ronald Fisher and Jerzy Neyman.

Fisher-Neyman Factorization Theorem. Let  denote the probability density function of  and suppose that  is a statistic taking values
in . Then  is sufficient for  if and only if there exists  and  such that

Proof

Let  denote the PDF of  for . If  is sufficient for , then from the previous theorem, the function  for  does
not depend on . Hence  for  and so  has the form given in the theorem. Conversely,
suppose that  has the form given in the theorem. Then there exists a positive constant  such that  for  and 

. Hence  for , independent of .

Note that  depends only on the data  but not on the parameter . Less technically,  is sufficient for  if the probability density function 
depends on the data vector  and the parameter  only through .

If  and  are equivalent statistics and  is sufficient for  then  is sufficient for .

Minimal Sufficient Statistics

The entire data variable  is trivially sufficient for . However, as noted above, there usually exists a statistic  that is sufficient for  and has smaller
dimension, so that we can achieve real data reduction. Naturally, we would like to find the statistic  that has the smallest dimension possible. In many
cases, this smallest dimension  will be the same as the dimension  of the parameter vector . However, as we will see, this is not necessarily the case; 
can be smaller or larger than . An example based on the uniform distribution is given in (38).
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Suppose that a statistic  is sufficient for . Then  is minimally sufficient if  is a function of any other statistic  that is sufficient for .

Once again, the definition precisely captures the notion of minimal sufficiency, but is hard to apply. The following result gives an equivalent condition.

Let  denote the probability density function of  corresponding to the parameter value  and suppose that  is a statistic taking
values in . Then  is minimally sufficient for  if the following condition holds: for  and 

Proof

Suppose that the condition in the theorem is satisfied. Then the PDF  of  must have the form given in the factorization theorem (3) so  is
sufficient for . Next, suppose that  is another sufficient statistic for , taking values in . From the factorization theorem, there exists 

 and  such that  for . Hence if  and  then

does not depend on . Hence from the condition in the theorem,  and it follows that  is a function of .

If  and  are equivalent statistics and  is minimally sufficient for  then  is minimally sufficient for .

Properties of Sufficient Statistics

Sufficiency is related to several of the methods of constructing estimators that we have studied.

Suppose that  is sufficient for  and that there exists a maximum likelihood estimator of . Then there exists a maximum likelihood estimator  that
is a function of .

Proof

From the factorization theorem (3), the log likelihood function for  is

Hence a value of  that maximizes this function, if it exists, must be a function of .

In particular, suppose that  is the unique maximum likelihood estimator of  and that  is sufficient for . If  is sufficient for  then  is a function of 
 by the previous theorem. Hence it follows that  is minimally sufficient for . Our next result applies to Bayesian analysis.

Suppose that the statistic  is sufficient for the parameter  and that  is modeled by a random variable  with values in . Then the
posterior distribution of  given  is a function of .

Proof

Let  denote the prior PDF of  and  the conditional PDF of  given . By the factorization theorem (3), this conditional PDF has
the form  for  and . The posterior PDF of  given  is

where the function in the denominator is the marginal PDF of , or simply the normalizing constant for the function of  in the numerator. Let's
suppose that  has a continuous distribution on , so that  for . Then the posterior PDF simplifies to

which depends on  only through .

Continuing with the setting of Bayesian analysis, suppose that  is a real-valued parameter. If we use the usual mean-square loss function, then the
Bayesian estimator is . By the previous result,  is a function of the sufficient statistics . That is, .

The next result is the Rao-Blackwell theorem, named for CR Rao and David Blackwell. The theorem shows how a sufficient statistic can be used to
improve an unbiased estimator.

Rao-Blackwell Theorem. Suppose that  is sufficient for  and that  is an unbiased estimator of a real parameter . Then  is
also an unbiased estimator of  and is uniformly better than .

Proof

This follows from basic properties of conditional expected value and conditional variance. First, since  is a function of  and  is sufficient for , 
 is a valid statistic; that is, it does not depend on , in spite of the formal dependence on  in the expected value. Next,  is a
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function of  and  for . Thus  is an unbiased estimator of . Finally 
 for any .

Complete Statistics

Suppose that  is a statistic taking values in a set . Then  is a complete statistic for  if for any function 

To understand this rather strange looking condition, suppose that  is a statistic constructed from  that is being used as an estimator of 0 (thought of
as a function of ). The completeness condition means that the only such unbiased estimator is the statistic that is 0 with probability 1.

If  and  are equivalent statistics and  is complete for  then  is complete for .

The next result shows the importance of statistics that are both complete and sufficient; it is known as the Lehmann-Scheffé theorem, named for Erich
Lehmann and Henry Scheffé.

Lehmann-Scheffé Theorem. Suppose that  is sufficient and complete for  and that  is an unbiased estimator of a real parameter 
. Then  is a uniformly minimum variance unbiased estimator (UMVUE) of .

Proof

Suppose that  is an unbiased estimator of . By the Rao-Blackwell theorem (10),  is also an unbiased estimator of  and is uniformly
better than . Since  is a function of , it follows from completeness that  with probability 1.

Ancillary Statistics

Suppose that  is a statistic taking values in a set . If the distribution of  does not depend on , then  is called an ancillary statistic for 
.

Thus, the notion of an ancillary statistic is complementary to the notion of a sufficient statistic. A sufficient statistic contains all available information
about the parameter; an ancillary statistic contains no information about the parameter. The following result, known as Basu's Theorem and named for
Debabrata Basu, makes this point more precisely.

Basu's Theorem. Suppose that  is complete and sufficient for a parameter  and that  is an ancillary statistic for . Then  and  are
independent.

Proof

Let  denote the probability density function of  and let  denote the conditional probability density function of  given . From
properties of conditional expected value,  for . But then from completeness,  with probability 1.

If  and  are equivalent statistics and  is ancillary for  then  is ancillary for .

Applications and Special Distributions
In this subsection, we will explore sufficient, complete, and ancillary statistics for a number of special distributions. As always, be sure to try the problems
yourself before looking at the solutions.

The Bernoulli Distribution

Recall that the Bernoulli distribuiton with parameter  is a discrete distribution on  with probability density function  defined by

Suppose that  is a random sample of size  from the Bernoulli distribution with parameter . Equivalently,  is a sequence of
Bernoulli trials, so that in the usual langauage of reliability,  if trial  is a success, and  if trial  is a failure. The Bernoulli distribution is
named for Jacob Bernoulli and is studied in more detail in the chapter on Bernoulli Trials

Let  denote the number of successes. Recall that  has the binomial distribution with parameters  and , and has probability density
function  defined by

 is sufficient for . Specifically, for , the conditional distribution of  given  is uniform on the set of points

Proof

The joint PDF  of  is defined by

U [ (V ∣ U)] = (V ) = λEθ Eθ Eθ θ ∈ Θ (V ∣ U)Eθ λ
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[r(U)] = 0 for all θ ∈ T ⟹ [r(U) = 0] = 1 for all θ ∈ TEθ Pθ (7.6.9)
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where . Now let . Given ,  is concentrated on  and

Of course,  is the cardinality of .

This result is intuitively appealing: in a sequence of Bernoulli trials, all of the information about the probability of success  is contained in the number of
successes . The particular order of the successes and failures provides no additional information. Of course, the sufficiency of  follows more easily
from the factorization theorem (3), but the conditional distribution provides additional insight.

 is complete for  on the parameter space .

Proof

If , then

The last sum is a polynomial in the variable . If this polynomial is 0 for all , then all of the coefficients must be 0. Hence
we must have  for .

The proof of the last result actually shows that if the parameter space is any subset of  containing an interval of positive length, then  is complete
for . But the notion of completeness depends very much on the parameter space. The following result considers the case where  has a finite set of values.

Suppose that the parameter space  is a finite set with  elements. If the sample size  is at least , then  is not complete for .

Proof

Suppose that  and that  for . Then we have

This is a set of  linear, homogenous equations in the variables . Since , we have at least  variables, so there are
infinitely many nontrivial solutions.

The sample mean  (the sample proportion of successes) is clearly equivalent to  (the number of successes), and hence is also sufficient for 
and is complete for . Recall that the sample mean  is the method of moments estimator of , and is the maximum likelihood estimator of  on
the parameter space .

In Bayesian analysis, the usual approach is to model  with a random variable  that has a prior beta distribution with left parameter  and right
parameter . Then the posterior distribution of  given  is beta with left parameter  and right parameter . The posterior
distribution depends on the data only through the sufficient statistic , as guaranteed by theorem (9).

The sample variance  is an UMVUE of the distribution variance  for , and can be written as

Proof

Recall that the sample variance can be written as

But  since  is an indicator variable, and . Substituting gives the representation above. In general,  is an unbiased estimator
of the distribution variance . But in this case,  is a function of the complete, sufficient statistic , and hence by the Lehmann Scheffé theorem
(13),  is an UMVUE of .

The Poisson Distribution

Recall that the Poisson distribution with parameter  is a discrete distribution on  with probability density function  defined by

f(x) = g( )g( ) ⋯ g( ) = (1 −p , x = ( , , … , ) ∈ {0, 1x1 x2 xn py )n−y x1 x2 xn }n (7.6.13)
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The Poisson distribution is named for Simeon Poisson and is used to model the number of “random points” in region of time or space, under certain ideal
conditions. The parameter  is proportional to the size of the region, and is both the mean and the variance of the distribution. The Poisson distribution is
studied in more detail in the chapter on Poisson process.

Suppose now that  is a random sample of size  from the Poisson distribution with parameter . Recall that the sum of the scores 
 also has the Poisson distribution, but with parameter .

The statistic  is sufficient for . Specifically, for , the conditional distribution of  given  is the multinomial distribution with  trials, 
 trial values, and uniform trial probabilities.

Proof

The joint PDF  of  is defined by

where . Given , random vector  takes values in the set . Moreover,

The last expression is the PDF of the multinomial distribution stated in the theorem. Of course, the important point is that the conditional distribution
does not depend on .

As before, it's easier to use the factorization theorem to prove the sufficiency of , but the conditional distribution gives some additional insight.

 is complete for .

Proof

If  then

The last sum is a power series in  with coefficients  for . If this series is 0 for all  in an open interval, then the coefficients must be 0
and hence  for .

As with our discussion of Bernoulli trials, the sample mean  is clearly equivalent to  and hence is also sufficient for  and complete for 
. Recall that  is the method of moments estimator of  and is the maximum likelihood estimator on the parameter space .

An UMVUE of the parameter  for  is

Proof

The probability generating function of  is

Hence

So  is an unbiased estimator of . Since  is a function of the complete, sufficient statistic , it follows from the Lehmann
Scheffé theorem (13) that  is an UMVUE of .

The Normal Distribution

Recall that the normal distribution with mean  and variance  is a continuous distribution on  with probability density function 
defined by

The normal distribution is often used to model physical quantities subject to small, random errors, and is studied in more detail in the chapter on Special
Distributions. Because of the central limit theorem, the normal distribution is perhaps the most important distribution in statistics.
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Suppose that  is a random sample from the normal distribution with mean  and variance . Then each of the following
pairs of statistics is minimally sufficient for 

1.  where  and .
2.  where  is the sample mean and  is the sample variance.
3.  where  is the biased sample variance.

Proof
1. The joint PDF  of  is given by

After some algebra, this can be written as

It follows from the factorization theorem (3) that  is sufficient for . Minimal sufficiency follows from the condition in theorem (6).
2. Note that . Hence  is equivalent to  and so  is also minimally sufficient for .
3. Similarly,  and . Hence  is equivalent to  and so  is also minimally sufficient for .

Recall that  and  are the method of moments estimators of  and , respectively, and are also the maximum likelihood estimators on the parameter
space .

Run the normal estimation experiment 1000 times with various values of the parameters. Compare the estimates of the parameters in terms of bias and
mean square error.

Sometimes the variance  of the normal distribution is known, but not the mean . It's rarely the case that  is known but not . Nonetheless we can
give sufficient statistics in both cases.

Suppose again that  is a random sample from the normal distribution with mean  and variance . If

1. If  is known then  is minimally sufficient for .
2. If  is known then  is sufficient for .

Proof
1. This results follow from the second displayed equation for the PDF  of  in the proof of the previous theorem.
2. This result follows from the first displayed equation for the PDF  of  in the proof of the previous theorem.

Of course by equivalence, in part (a) the sample mean  is minimally sufficient for , and in part (b) the special sample variance  is
minimally sufficient for . Moreover, in part (a),  is complete for  on the parameter space  and the sample variance  is ancillary for  (Recall
that  has the chi-square distribution with  degrees of freedom.) It follows from Basu's theorem (15) that the sample mean  and the
sample variance  are independent. We proved this by more direct means in the section on special properties of normal samples, but the formulation in
terms of sufficient and ancillary statistics gives additional insight.

The Gamma Distribution

Recall that the gamma distribution with shape parameter  and scale parameter  is a continuous distribution on  with
probability density function  given by

The gamma distribution is often used to model random times and certain other types of positive random variables, and is studied in more detail in the
chapter on Special Distributions.

Suppose that  is a random sample from the gamma distribution with shape parameter  and scale parameter . Each of the
following pairs of statistics is minimally sufficient for 

1.  where  is the sum of the scores and  is the product of the scores.
2.  where  is the sample (arithmetic) mean of  and  is the sample geometric mean of .

Proof
1. The joint PDF  of  is given by

From the factorization theorem (3),  is sufficient for . Minimal sufficiency follows from condition (6).
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n ∑
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f X
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M 2 (M , )T 2 (Y ,V ) (M , )T 2 (μ, )σ2

M T 2 μ σ2

R×(0, ∞)

σ2 μ μ σ2

X = ( , , … , )X1 X2 Xn μ ∈ R ∈ (0, ∞)σ2

σ2 Y =∑n

i=1 Xi μ

μ U = ( −μ∑n

i=1 Xi )2 σ2

f(x) X

f(x) bsX

M = Y /n μ W = U/n
σ2 M μ R S2 μ

(n−1) /S2 σ2 n−1 M

S2

k ∈ (0, ∞) b ∈ (0, ∞) (0, ∞)
g

g(x) = , x ∈ (0, ∞)
1

Γ(k)bk
xk−1e−x/b (7.6.29)

X = ( , , … , )X1 X2 Xn k b

(k, b)

(Y ,V ) Y =∑n
i=1 Xi V =∏n

i=1 Xi

(M ,U) M = Y /n X U = V 1/n X

f X

f(x) = g( )g( ) ⋯ g( ) = ( … , x = ( , , … , ) ∈ (0, ∞x1 x2 xn
1

(k)Γn bnk
x1x2 xn)k−1e−( + +⋯+ )/bx1 x2 xn x1 x2 xn )n (7.6.30)

(Y ,V ) (k, b)
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2. Clearly  is equivalent to  and  is equivalent to . Hence  is also minimally sufficient for .

Recall that the method of moments estimators of  and  are  and , respectively, where  is the sample mean and 
 is the biased sample variance. If the shape parameter  is known,  is both the method of moments estimator of  and the

maximum likelihood estimator on the parameter space . Note that  is not a function of the sufficient statistics , and hence estimators based
on  suffer from a loss of information.

Run the gamma estimation experiment 1000 times with various values of the parameters and the sample size . Compare the estimates of the
parameters in terms of bias and mean square error.

The proof of the last theorem actually shows that  is sufficient for  if  is known, and that  is sufficient for  if  is known.

Suppose again that  is a random sample of size  from the gamma distribution with shape parameter  and scale
parameter . Then  is complete for .

Proof

 has the gamma distribution with shape parameter  and scale parameter . Hence, if , then

The last integral can be interpreted as the Laplace transform of the function  evaluated at . If this transform is 0 for all  in an open
interval, then  almost everywhere in .

Suppose again that  is a random sample from the gamma distribution on  with shape parameter  and scale
parameter . Let  denote the sample mean and  the sample geometric mean, as before. Then

1.  is ancillary for .
2.  and  are independent.

Proof
1. We can take  for  where  is a random sample of size  from the gamma distribution with shape

parameter  and scale parameter 1 (the standard gamma distribution with shape parameter ). Then

But  for , and the distribution of  does not depend on . Hence the distribution of 
 does not depend on .

2. This follows from Basu's theorem (15), since  is complete and sufficient for  and  is ancillary for .

The Beta Distribution

Recall that the beta distribution with left parameter  and right parameter  is a continuous distribution on  with probability
density function  given by

where  is the beta function. The beta distribution is often used to model random proportions and other random variables that take values in bounded
intervals. It is studied in more detail in the chapter on Special Distribution

Suppose that  is a random sample from the beta distribution with left parameter  and right parameter . Then  is
minimally sufficient for  where  and .

Proof

The joint PDF  of  is given by

From the factorization theorem (3), it follows that  is sufficient for . Minimal sufficiency follows from condition (6).

The proof also shows that  is sufficient for  if  is known, and that  is sufficient for  if  is known. Recall that the method of moments estimators of 
 and  are

M = Y /n Y U = V 1/n V (M ,U) (k, b)

k b /M 2 T 2 /MT 2 M = 1
n ∑

n
i=1 Xi

= ( −MT 2 1
n ∑

n

i=1 Xi )2 k M1
k

b

(0, ∞) T 2 (Y ,V )
T 2

n

Y b k V k b

X = ( , , … , )X1 X2 Xn n k ∈ (0, ∞)
b ∈ (0, ∞) Y =∑n

i=1 Xi b

Y nk b r : [0, ∞) →R

E [r(Y )] = r(y)dy = r(y) dy∫
∞

0

1

Γ(nk)bnk
ynk−1e−y/b 1

Γ(nk)bnk
∫

∞

0
ynk−1 e−y/b (7.6.31)

y ↦ r(y)ynk−1 1/b b

r(y) = 0 (0, ∞)

X = ( , , … , )X1 X2 Xn (0, ∞) k ∈ (0, ∞)
b ∈ (0, ∞) M = 1

n
∑n

i=1 Xi U = ( …X1X2 Xn)1/n

M/U b

M M/U

= bXi Zi i ∈ {1, 2, … ,n} Z = ( , , … , )Z1 X2 Zn n

k k

= = =
M

U

1

n
∑
i=1

n Xi

( ⋯X1X2 Xn)1/n

1

n
∑
i=1

n

( )
Xn

i

⋯X1X2 Xn

1/n
1

n
∑
i=1

n

( )∏
j≠i

Xi

Xj

1/n
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/ = /Xi Xj Zi Zj i ≠ j { / : i, j∈ {1, 2, … ,n}, i ≠ j}Zi Zj b

M/U b

M b M/U b

a ∈ (0, ∞) b ∈ (0, ∞) (0, 1)
g

g(x) = (1 −x , x ∈ (0, 1)
1

B(a, b)
xa−1 )b−1 (7.6.33)

B

X = ( , , … , )X1 X2 Xn a b (P ,Q)
(a, b) P =∏n

i=1 Xi Q = (1 − )∏n
i=1 Xi

f X

f(x) = g( )g( ) ⋯ g( ) = ( ⋯ [(1 − )(1 − ) ⋯ (1 − ) , x = ( , , … , ) ∈ (0, 1x1 x2 xn
1

(a, b)Bn
x1x2 xn)a−1 x1 x2 xn ]b−1 x1 x2 xn )n (7.6.34)

(U,V ) (a, b)

P a b Q b a

a b

U = , V =
M (M − )M (2)

−M (2) M 2

(1 −M)(M − )M (2)

−M (2) M 2
(7.6.35)
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respectively, where  is the sample mean and  is the second order sample mean. If  is known, the method of
moments estimator of  is , while if  is known, the method of moments estimator of  is . None of these
estimators is a function of the sufficient statistics  and so all suffer from a loss of information. On the other hand, if , the maximum likelihood
estimator of  on the interval  is , which is a function of  (as it must be).

Run the beta estimation experiment 1000 times with various values of the parameters. Compare the estimates of the parameters.

The Pareto Distribution

Recall that the Pareto distribution with shape parameter  and scale parameter  is a continuous distribution on  with
probability density function  given by

The Pareto distribution, named for Vilfredo Pareto, is a heavy-tailed distribution often used to model income and certain other types of random variables.
It is studied in more detail in the chapter on Special Distribution.

Suppose that  is a random sample from the Pareto distribution with shape parameter  and scale parameter . Then 
is minimally sufficient for  where  is the product of the sample variables and where  is the first
order statistic.

Proof

The joint PDF  of  at  is given by

which can be rewritten as

So the result follows from the factorization theorem (3). Minimal sufficiency follows from condition (6).

The proof also shows that  is sufficient for  if  is known (which is often the case), and that  is sufficient for  if  is known (much less likely).
Recall that the method of moments estimators of  and  are

respectively, where as before  is the sample mean and  the second order sample mean. These estimators are not
functions of the sufficient statistics and hence suffers from loss of information. On the other hand, the maximum likelihood estimators of  and  on the
interval  are

respectively. These are functions of the sufficient statistics, as they must be.

Run the Pareto estimation experiment 1000 times with various values of the parameters  and  and the sample size . Compare the method of
moments estimates of the parameters with the maximum likelihood estimates in terms of the empirical bias and mean square error.

The Uniform Distribution

Recall that the continuous uniform distribution on the interval , where  is the location parameter and  is the scale parameter,
has probability density function  given by

Continuous uniform distributions are widely used in applications to model a number chosen “at random” from an interval. Continuous uniform
distributions are studied in more detail in the chapter on Special Distributions. Let's first consider the case where both parameters are unknown.

Suppose that  is a random sample from the uniform distribution on the interval . Then  is minimally
sufficient for , where  is the first order statistic and  is the last order statistic.

Proof

The PDF  of  is given by

M = 1
n ∑

n
i=1 Xi =M (2) 1

n ∑
n
i=1 X

2
i b

a = bM/(1 −M)Ub a b = a(1 −M)/MVa
(P ,Q) b = 1

a (0, ∞) W = −n/ ln∑n
i=1 Xi P

a ∈ (0, ∞) b ∈ (0, ∞) [b, ∞)
g

g(x) = , b ≤ x < ∞
aba

xa+1
(7.6.36)

X = ( , , … , )X1 X2 Xn a b (P , )X(1)

(a, b) P =∏n
i=1 Xi = min{ , , … , }X(1) X1 X2 Xn

f X x = ( , , … , )x1 x2 xn

f(x) = g( )g( ) ⋯ g( ) = , ≥ b, ≥ b, … , ≥ bx1 x2 xn
anbna

( ⋯x1x2 xn)a+1
x1 x2 xn (7.6.37)

f(x) = g( )g( ) ⋯ g( ) = 1 ( ≥ b) , ( , , … , ) ∈ (0, ∞x1 x2 xn
anbna

( ⋯x1x2 xn)a+1
x(n) x1 x2 xn )n (7.6.38)

P a b X(1) b a

a b

U = 1 + , V = (1 − )
M (2)

−M (2) M 2

− −−−−−−−−−

√
M (2)

M

−M (2) M 2

M (2)

− −−−−−−−−−

√ (7.6.39)

M = 1
n
∑n

i=1 Xi =M (2) ∑n
i=1 X

2
i

a b

(0, ∞)

W = ,
n

ln −n ln∑n
i=1 Xi X(1)

X(1) (7.6.40)

a b n

[a, a+h] a ∈ R h ∈ (0, ∞)
g

g(x) = , x ∈ [a, a+h]
1

h
(7.6.41)

X = ( , , … , )X1 X2 Xn [a, a+h] ( , )X(1) X(n)

(a,h) = min{ , , … , }X(1) X1 X2 Xn = max{ , , … , }X(n) X1 X2 Xn
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We can rewrite the PDF as

It then follows from the factorization theorem (3) that  is sufficient for . Next, suppose that  and that  or 
. For a given , we can easily find values of  such that  and , and other values of  such that 

. By condition (6),  is minimally sufficient.

If the location parameter  is known, then the largest order statistic is sufficient for the scale parameter . But if the scale parameter  is known, we still
need both order statistics for the location parameter . So in this case, we have a single real-valued parameter, but the minimally sufficient statistic is a pair
of real-valued random variables.

Suppose again that  is a random sample from the uniform distribution on the interval .

1. If  is known, then  is sufficient for .
2. If  is known, then  is minimally sufficient for .

Proof

Both parts follow easily from the analysis given in the proof of the last theorem.

Run the uniform estimation experiment 1000 times with various values of the parameter. Compare the estimates of the parameter.

Recall that if both parameters are unknown, the method of moments estimators of  and  are  and , respectively, where 
 is the sample mean and  is the biased sample variance. If  is known, the method of moments estimator of 

is , while if  is known, the method of moments estimator of  is . None of these estimators are functions of the
minimally sufficient statistics, and hence result in loss of information.

The Hypergeometric Model

So far, in all of our examples, the basic variables have formed a random sample from a distribution. In this subsection, our basic variables will be
dependent.

Recall that in the hypergeometric model, we have a population of  objects, and that  of the objects are type 1 and the remaining  are type 0. The
population size  is a positive integer and the type 1 size  is a nonnegative integer with . Typically one or both parameters are unknown. We select
a random sample of  objects, without replacement from the population, and let  be the type of the th object chosen. So our basic sequence of random
variables is . The variables are identically distributed indicator variables with  for , but are
dependent. Of course, the sample size  is a positive integer with .

The variable  is the number of type 1 objects in the sample. This variable has the hypergeometric distribution with parameters , , and ,
and has probability density function  given by

(Recall the falling power notation ). The hypergeometric distribution is studied in more detail in the chapter on Finite
Sampling Models.

 is sufficient for . Specifically, for , the conditional distribution of  given  is uniform on
the set of points

Proof

By a simple application of the multiplication rule of combinatorics, the PDF  of  is given by

where . If , the conditional distribution of  given  is concentrated on  and

Of course,  is the cardinality of .

f(x) = g( )g( ) ⋯ g( ) = , x = ( , , … ) ∈ [a, a+hx1 x2 xn
1

hn
x1 x2 xn ]n (7.6.42)

f(x) = 1[ ≥ a]1[ ≤ a+h], x = ( , , … , ) ∈
1

hn
x(1) x(n) x1 x2 xn R

n (7.6.43)
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a ∈ R X(n) h

h ∈ (0, ∞) ( , )X(1) X(n) a

a h U = 2M − T3
–

√ V = 2 T3
–

√

M = 1
n
∑n

i=1 Xi = ( −MT 2 1
n
∑n

i=1 Xi )2 a h

= 2(M −a)Va h h = M − hUh
1
2

N r N −r

N r r ≤ N

n Xi i
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= x(x−1) ⋯ (x−k+1)x(k)

Y (N , r) y ∈ {max{0,N −n+r}, … , min{n, r}} X Y = y

= {( , , … , ) ∈ {0, 1 : + +⋯ + = y}Dy x1 x2 xn }n x1 x2 xn (7.6.45)

f X

f(x) = , x = ( , , … , ) ∈ {0, 1
(N −rr(y) )(n−y)

N (n)
x1 x2 xn }n (7.6.46)

y =∑n
i=1 xi y ∈ {max{0,N −n+r}, … , min{n, r}} X Y = y Dy

P(X = x ∣ Y = y) = = = , x ∈
P(X = x)
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y
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There are clearly strong similarities between the hypergeometric model and the Bernoulli trials model above. Indeed if the sampling were with
replacement, the Bernoulli trials model with  would apply rather than the hypergeometric model. It's also interesting to note that we have a single
real-valued statistic that is sufficient for two real-valued parameters.

Once again, the sample mean  is equivalent to  and hence is also sufficient for . Recall that the method of moments estimator of  with 
 known is  and the method of moment estimator of  with  known is . The estimator of  is the one that is used in the capture-recapture

experiment.

Exponential Families

Suppose now that our data vector  takes values in a set , and that the distribution of  depends on a parameter vector  taking values in a parameter
space . The distribution of  is a -parameter exponential family if  does not depend on  and if the probability density function of  can be written
as

where  and  are real-valued functions on , and where  and  are real-valued functions on . Moreover,  is assumed to
be the smallest such integer. The parameter vector  is sometimes called the natural parameter of the distribution, and the
random vector  is sometimes called the natural statistic of the distribution. Although the definition may look
intimidating, exponential families are useful because they have many nice mathematical properties, and because many special parametric families are
exponential families. In particular, the sampling distributions from the Bernoulli, Poisson, gamma, normal, beta, and Pareto considered above are
exponential families. Exponential families of distributions are studied in more detail in the chapter on special distributions.

 is minimally sufficient for .

Proof

That  is sufficient for  follows immediately from the factorization theorem. That  is minimally sufficient follows since  is the smallest integer in
the exponential formulation.

It turns out that  is complete for  as well, although the proof is more difficult.

This page titled 7.6: Sufficient, Complete and Ancillary Statistics is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.

p = r/N

M = Y /n Y (N , r) r

N NM N r r/M r

X S X θ

Θ X k S θ X

(x) = α(θ)r(x) exp( (θ) (x)); x ∈ S, θ ∈ Θfθ ∑
i=1

k

βi ui (7.6.48)

α ( , , … , )β1 β2 βk Θ r ( , , … , )u1 u2 uk S k

β = ( (θ), (θ), … , (θ))β1 β2 βk
U = ( (X), (X), … , (X))u1 u2 uk

U θ

U θ U k

U θ

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10194?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/07%3A_Point_Estimation/7.06%3A_Sufficient_Complete_and_Ancillary_Statistics
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random

