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5.22: Discrete Uniform Distributions
          

Uniform Distributions on a Finite Set

Suppose that  is a nonempty, finite set. A random variable  taking values in  has the uniform distribution on  if

The discrete uniform distribution is a special case of the general uniform distribution with respect to a measure, in this case
counting measure. The distribution corresponds to picking an element of  at random. Most classical, combinatorial probability
models are based on underlying discrete uniform distributions. The chapter on Finite Sampling Models explores a number of such
models.

The probability density function  of  is given by

Proof

This follows from the definition of the (discrete) probability density function:  for . Or more
simply, .

Like all uniform distributions, the discrete uniform distribution on a finite set is characterized by the property of constant density
on the set. Another property that all uniform distributions share is invariance under conditioning on a subset.

Suppose that  is a nonempty subset of . Then the conditional distribution of  given  is uniform on .

Proof

For ,

If  then the expected value of  is simply the arithmetic average of the values of :

Proof

This follows from the change of variables theorem for expected value:

The entropy of  depends only on the number of points in .

The entropy of  is .

Proof

Let . Then
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Uniform Distributions on Finite Subsets of 
Without some additional structure, not much more can be said about discrete uniform distributions. Thus, suppose that  and
that  is a subset of  with  points. We will assume that the points are indexed in order, so that 

. Suppose that  has the uniform distribution on .

The probability density function  of  is given by  for .

The distribution function  of  is given by

1.  for 
2.  for  and 
3.  for 

Proof

This follows from the definition of the distribution function:  for .

The quantile function  of  is given by  for .

Proof

By definition,  for  and . It follows that  in this formulation.

The moments of  are ordinary arithmetic averages.

For 

In particular,

The mean and variance of  are

1. 
2. 

Uniform Distributions on Discrete Intervals
We specialize further to the case where the finite subset of  is a discrete interval, that is, the points are uniformly spaced.

The Standard Distribution

Suppose that  and that  has the discrete uniform distribution on . The distribution of  is the
standard discrete uniform distribution with  points.

Of course, the results in the previous subsection apply with  and .

The probability density function  of  is given by  for .

Open the Special Distribution Simulation and select the discrete uniform distribution. Vary the number of points, but keep the
default values for the other parameters. Note the graph of the probability density function. Run the simulation 1000 times and
compare the empirical density function to the probability density function.

The distribution function  of  is given by  for .

Proof

Note that  for  and . Thus  in this formulation.
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The quantile function  of  is given by  for . In particular

1.  is the first quartile.
2.  is the median.
3.  is the third quartile.

Proof

Note that  for  and . Thus  in this formulation.

Open the special distribution calculator and select the discrete uniform distribution. Vary the number of points, but keep the
default values for the other parameters. Note the graph of the distribution function. Compute a few values of the distribution
function and the quantile function.

For the standard uniform distribution, results for the moments can be given in closed form.

The mean and variance of  are

1. 
2. 

Proof

Recall that

Hence  and . Part (b) follows from .

Open the Special Distribution Simulation and select the discrete uniform distribution. Vary the number of points, but keep the
default values for the other parameters. Note the size and location of the mean standard devation bar. Run the simulation 1000
times and compare the empirical mean and standard deviation to the true mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

Recall that

Hence  and . The results now follow from the results on
the mean and varaince and the standard formulas for skewness and kurtosis. Of course, the fact that  also follows
from the symmetry of the distribution.

Note that  as . The limiting value is the skewness of the uniform distribution on an interval.

 has probability generating function  given by  and
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Proof

The General Distribution

We now generalize the standard discrete uniform distribution by adding location and scale parameters.

Suppose that  has the standard discrete uniform distribution on  points, and that  and . Then 
 has the uniform distribution on  points with location parameter  and scale parameter .

Note that  takes values in

so that  has  elements, starting at , with step size , a discrete interval. In the further special case where  and , we
have an integer interval. Note that the last point is , so we can clearly also parameterize the distribution by the
endpoints  and , and the step size . With this parametrization, the number of points is . For the remainder of
this discussion, we assume that  has the distribution in the definiiton. Our first result is that the distribution of  really is
uniform.

 has probability density function  given by  for 

Proof

Recall that  for , where  is the PDF of .

Open the Special Distribution Simulation and select the discrete uniform distribution. Vary the parameters and note the graph
of the probability density function. For various values of the parameters, run the simulation 1000 times and compare the
empirical density function to the probability density function.

The distribution function  of  is given by

Proof

Recall that  for , where  is the CDF of .

The quantile function  of  is given by  for . In particular

1.  is the first quartile.
2.  is the median.
3.  is the third quartile.

Proof

Recall that  for , where  is the quantile function of .

Open the special distribution calculator and select the discrete uniform distribution. Vary the parameters and note the graph of
the distribution function. Compute a few values of the distribution function and the quantile function.

The mean and variance of  are

1. 

P (t) = , t ∈ R ∖ {1}
1

n
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(5.22.12)
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2. 

Proof

Recall that  and , so the results follow from the corresponding results for the
standard distribution.

Note that the mean is the average of the endpoints (and so is the midpoint of the interval ) while the variance depends only on
the number of points and the step size.

Open the Special Distribution Simulator and select the discrete uniform distribution. Vary the parameters and note the shape
and location of the mean/standard deviation bar. For selected values of the parameters, run the simulation 1000 times and
compare the empirical mean and standard deviation to the true mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

Recall that skewness and kurtosis are defined in terms of the standard score, and hence are the skewness and kurtosis of  are
the same as the skewness and kurtosis of .

 has moment generating function  given by  and

Proof

Note that  where  is the probability generating function of .

Related Distributions

Since the discrete uniform distribution on a discrete interval is a location-scale family, it is trivially closed under location-scale
transformations.

Suppose that  has the discrete uniform distribution on  points with location parameter  and scale parameter 
. If  and  then  has the discrete uniform distribution on  points with location

parameter  and scale parameter .

Proof

By definition we can take  where  has the standard uniform distribution on  points. Then 
.

In terms of the endpoint parameterization,  has left endpoint , right endpoint , and step size  while  has left
endpoint , right endpoint , and step size .

The uniform distribution on a discrete interval converges to the continuous uniform distribution on the interval with the same
endpoints, as the step size decreases to 0.

Suppose that  has the discrete uniform distribution with endpoints  and , and step size , for each . Then
the distribution of  converges to the continuous uniform distribution on  as .

Proof

The CDF  of  is given by
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But  for  so  as . Hence  as  for 
, and this is the CDF of the continuous uniform distribution on .
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