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1.12: Special Set Structures
 

There are several other types of algebraic set structures that are weaker than -algebras. These are not particularly important in
themselves, but are important for constructing -algebras and the measures on these -algebras. You may want to skip this section
if you are not intersted in questions of existence and uniqueness of positive measures.

Basic Theory

Definitions

Throughout this section, we assume that  is a set and  is a nonempty collection of subsets of . Here are the main definitions
we will need.

 is a -system if  is closed under finite intersections: if  then .

Closure under intersection is clearly a very simple property, but  systems turn out to be useful enough to deserve a name.

 is a -system if it is closed under complements and countable disjoint unions.

1. If  then .
2. If  for  in a countable index set  and  for  then .

 is a semi-algebra if it is closed under intersection and if complements can be written as finite, disjoint unions:

1. If  then .
2. If  then there exists a finite, disjoint collection  such that .

For our final structure, recall that a sequence  of subsets of  is increasing if  for all . The
sequence is decreasing if  for all . Of course, these are the standard meanings of increasing and decreasing
relative to the ordinary order  on  and the subset partial order  on .

 is a monotone class if it is closed under increasing unions and decreasing intersections:

1. If  is an increasing sequence of sets in  then .
2. If  is a decreasing sequence of sets in  then .

If  is an increasing sequence of sets then we sometimes write . Similarly, if  is a
decreasing sequence of sets we sometimes write . The reason for this notation will become clear in the
section on Convergence in the chapter on Probability Spaces. With this notation, a monotone class  is defined by the condition
that if  is an increasing or decreasing sequence of sets in  then .

Basic Theorems

Our most important set structure, the -algebra, has all of the properties in the definitions above.

If  is a -algebra then  is a -system, a -system, a semi-algebra, and a monotone class.

If  is a -system then  and .

Proof

The proof is just like the one for an algebra. There exists  since  is non-empty. Hence  and so 
. Finally .

Any type of algebraic structure on subsets of  that is defined purely in terms of closure properties will be preserved under
intersection. That is, we will have results that are analogous to how -algebras are generated from more basic sets, with completely
straightforward and analgous proofs. In the following two theorems, the term system could mean -system, -system, or monotone
class of subsets of .
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If  is a system for each  in an index set  and  is nonempty, then  is a system of the same type.

The condition that  be nonempty is unnecessary for a -system, by the result above. Now suppose that  is a nonempty
collection of subsets of , thought of as basic sets of some sort. Then the system generated by  is the intersection of all systems
that contain .

The system  generated by  is the smallest system containing , and is characterized by the following properties:

1. .
2. If  is a system and  then .

Note however, that the previous two results do not apply to semi-algebras, because the semi-algebra is not defined purely in terms
of closure properties (the condition on  is not a closure property).

If  is a monotone class and an algebra, then  is a -algebra.

Proof

All that is needed is to prove closure under countable unions. Thus, suppose that  for . Then 
 since  is an algebra. The sequence  is increasing, so , since  is a

monotone class. But .

By definition, a semi-algebra is a -system. More importantly, a semi-algebra can be used to construct an algebra.

Suppose that  is a semi-algebra of subsets of . Then the collection  of finite, disjoint unions of sets in  is an algebra.

Proof

Suppose that . Then there exist finite, disjoint collections  and  such that 
 and . Hence

But  is a finite, disjoint collection of sets in , so . Suppose , so that there
exists a finite, disjoint collection  such that . Then . But  by definition of
semi-algebra, and we just showed that  is closed under finite intersections, so .

We will say that our nonempty collection  is closed under proper set difference if  and  implies .
The following theorem gives the basic relationship between -systems and monotone classes.

Suppose that  is a nonempty collection of subsets of .

1. If  is a -system then  is a monotone class and is closed under proper set difference.
2. If  is a monotone class, is closed under proper set difference, and contains , then  is a -system.

Proof
1. Suppose that  is a -system. Suppose that  and . Then , and  and  are disjoint, so 

. But then . Hence  is closed under proper set difference. Next
suppose that  is an increasing sequence of sets in . Let  and  for .
Then  for each . But the sequence  is disjoint and has the same union as . Hence 

. Finally, suppose that  is a decreasing sequence of sets in . Then  for
each  and  is increasing. Hence  and therefore .

2. Suppose that  is a monotone class, is closed under proper set difference, and . If  then trivially  so 
. Next, suppose that  are disjoint. Then  and , so .

Hence . Finally, suppose that  is a disjoint sequence of sets in . We just showed
that  is closed under finite, disjoint unions, so . But the sequence  is increasing, and
hence .
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The following theorem is known as the monotone class theorem, and is due to the mathematician Paul Halmos.

Suppose that  is an algebra,  is a monotone class, and . Then .

Proof

First let  denote the monotone class generated by , as defined above. The outline of the proof is to show that  is
an algebra, so that by (9),  is a -algebra. It then follows that . To show that  is an
algebra, we first show that it is closed under complements and then under simple union.

Since  is a monotone class, the collection  is also a monotone class. Moreover, 
 so it follows that . Hence if  then  so . Thus  is

closed under complements.

Let . Then  is a monotone class and  so . Next
let . Then  is also a monotone class. Let . If 
then  and hence . Hence . Thus we have , so . Finally, let 

. Then  so  and therefore  is closed under simple union.

As noted in (5), a -algebra is both a -system and a -system. The converse is also true, and is one of the main reasons for
studying these structures.

If  is a -system and a -system then  is a -algebra.

Proof

, and if  then  by definition of a -system. Thus, all that is left is to show closure under countable
unions. Thus, suppose that  is a sequence of sets in . Then  for each . Since  is also a -
system, it follows that for each ,  (by convention ). But the sequence 

 is disjoint and has the same union as . Hence .

The importance of -systems and -systems stems in part from Dynkin's -  theorem given next. It's named for the mathematician
Eugene Dynkin.

Suppose that  is a -system of subsets of ,  is a -system of subsets of , and . Then .

Proof

Let  denote the -system generated by . Then of course . For , let

We will show that  is a -system. Note that  and therefore . Next, suppose that 
and that . Then  and  and . Hence 

. Hence . Finally, suppose that  is a countable,
disjoint collection of sets in . Then  for each , and  is also a disjoint collection.
Therefore, . Hence .

Next fix . If  then , so  and hence . But  is the smallest -system containing
 so we have shown that  for every . Now fix . If  then  so  and

therefore . Again,  is the smallest -system containing  so we have now shown that  for every .
Finally, let . Then  and hence . It now follows that  is a -system, as well as a -system,
and therefore by the theorem above,  is a sigma-algebra. But  and hence .

Examples and Special Cases

Suppose that  is a set and  is a finite partition of . Then  is a semi-algebra of subsets of .

Proof

If  then . If  then 
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Euclidean Spaces

The following example is particulalry important because it will be used to construct positive measures on . Let

 is a semi-algebra of subsets of .

Proof

Note that the intersection of two intervals of the type in  is another interval of this type. The complement of an interval of
this type is either another interval of this type or the union of two disjoint intervals of this type.

It follows from the theorem above that the collection  of finite disjoint unions of intervals in  is an algebra. Recall also that 
 is the Borel -algebra of , named for Émile Borel. We can generalize all of this to  for 

The collection  is a semi-algebra of subsets of .

Recall also that  is the -algebra of Borel sets of .

Product Spaces

The examples in this discussion are important for constructing positive measures on product spaces.

Suppose that  is a semi-algebra of subsets of a set  and that  is a semi-algebra of subsets of a set . Then

is a semi-algebra of subsets of .

Proof
1. Suppose that , so that  and . Recall that 

. But  and  so .
2. Suppose that  so that  and . Then

There exists a finite, disjoint collection  of sets in  and a finite, disjoint collection  of sets in 
such that  and . Hence

All of the product sets in this union are in  and the product sets are disjoint.

This result extends in a completely straightforward way to a product of a finite number of sets.

Suppose that  and that  is a semi-algebra of subsets of a set  for . Then

is a semi-algebra of subsets of .

Note that the semi-algebra of products of intervals in  described above is a special case of this result. For the product of an
infinite sequence of sets, the result is bit more tricky.

Suppose that  is a semi-algebra of subsets of a set  for . Then
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is a semi-algebra of subsets of .

Proof

The proof is very much like the previous ones.

1. Suppose that  and , so that  for  and  for all but finitely
many  and  for all but finitely many . Then . Also,  for 

 and  for all but finitely many . So .
2. Suppose that , where  for  and  for , for some . Then 

 where

Note that the product sets in this union are disjoint. But for each  there exists a finite disjoint collection 
 such that . Substituting and distributing then gives  as a finite, disjoint union of sets in

.

Note that this result would not be true with . In general, the complement of a set in 
cannot be written as a finite disjoint union of sets in .
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