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16.16: Transition Matrices and Generators of Continuous-Time Chains

16. Transition Matrices and Generators of Continuous-Time Chains

Preliminaries

This is the second of the three introductory sections on continuous-time Markov chains. Thus, suppose that X = {X; : t € [0,00)} isa
continuous-time Markov chain defined on an underlying probability space (2, &, P) and with state space (S, .#). By the very meaning
of Markov chain, the set of states S is countable and the o-algebra . is the collection of all subsets of S. So every subset of S is
measurable, as is every function from .S to another measurable space. Recall that . is also the Borel o algebra corresponding to the
discrete topology on S. With this topology, every function from S to another topological space is continuous. Counting measure # is the
natural measure on (S, .%), so in the context of the general introduction, integrals over S are simply sums. Also, kernels on .S can be
thought of as matrices, with rows and sums indexed by S. The left and right kernel operations are generalizations of matrix
multiplication.

A space of functions on S plays an important role. Let & denote the collection of bounded functions f:S — R. With the usual
pointwise definitions of addition and scalar multiplication, 4 is a vector space. The supremum norm on 4 is given by

[fl| =sup{|f(z)|:x € S}, feP (16.16.1)
Of course, if .S is finite, 4 is the set of all real-valued functions on S, and || f|| = max{|f(z)| : z € S} for f € A.

In the last section, we studied X in terms of when and how the state changes. To review briefly, let 7 =inf{¢ € (0, 00) : X} # Xo} .
Assuming that X is right continuous, the Markov property of X implies the memoryless property of 7, and hence the distribution of 7
given Xy ==z is exponential with parameter A(z) € [0,00) for each x € S. The assumption of right continuity rules out the
pathological possibility that A(z) = oo, which would mean that z is an instantaneous state so that P(7 =0 | Xy =) =1 . On the other
hand, if A(z) € (0,00) then z is a stable state, so that 7 has a proper exponential distribution given Xo ==z with
P(0 <7 <oo|Xog=z)=1 . Finally, if A(z) =0 then z is an absorbing state, so that P(r =00 | Xg =z) =1 . Next we define a
sequence of stopping times: First 7o = 0 and 71 = 7. Recursively, if 7, < oo then 7, =inf{t > 7, : X; # X, } , while if 7,, = co then
Tn1 = 00. With M =sup{n e N: 7, < oo} we define ¥, =X, ifneN withn <M and Y, =Yy if n € N with n > M. The
sequence Y = (Yp,Y1,...) is a discrete-time Markov chain on S with one-step transition matrix @ given by
Qz,y)=P(X, =y | Xg==) if z, y € S with z stable, and Q(z,x) =1 if z € S is absorbing. Assuming that X is regular, which
means that 7,, — oo as n — oo with probability 1 (ruling out the explosion event of infinitely many transitions in finite time), the
structure of X is completely determined by the sequence of stopping times 7= (7, 71,...) and the discrete-time jump chain
Y = (Y, Y1, .. .). Analytically, the distribution X is determined by the exponential parameter function A and the one-step transition
matrix () of the jump chain.

In this section, we sill study the Markov chain X in terms of the transition matrices in continuous time and a fundamentally important
matrix known as the generator. Naturally, the connections between the two points of view are particularly interesting.

The Transition Semigroup

Definition and basic Properties

The first part of our discussion is very similar to the treatment for a general Markov processes, except for simplifications caused by the
discrete state space. We assume that X = {X; : t € [0, 00)} is a Markov chain on S.

The transition probability matrix P; of X corresponding to ¢ € [0, 00) is
P(z,y) =P(X; =y| Xo=2), (z,9)€S" (16.16.2)
In particular, Py = I, the identity matrix on S

Proof

The mapping y + P;(z,y) is the PDF of X; given X, = x . Hence P, is a probability matrix. That is, P;(z,y) > 0 for (z,y) € S?
and ) s Py(z,y) =1 forz € S. Trivially, Py = I by definition.

Note that since we are assuming that the Markov chain is homogeneous,

Rﬁ(may) :P(Xs+t =Y ' X, :.’I}), (mvy) € 52 (16'16'3)
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for every s, t € [0, 00). The Chapman-Kolmogorov equation given next is essentially yet another restatement of the Markov property.
The equation is named for Andrei Kolmogorov and Sydney Chapman,

Suppose that P = {P; : t € [0,00)} is the collection of transition matrices for the chain X. Then P P; = Ps,; for s, t € [0, 00).

Explicitly,
Poii(z,2) = ZPs(w,y)Pt(y, z), z,z€S8 (16.16.4)
yes
Proof
We condition on X.
Pii(2,2) =P(Xopr =2| Xo =)= Y P(Xot =2| X, =y, Xo =2)P(X, =y | Xo =2) (16.16.5)
yes

But by the Markov and time homogeneous properties,

P(Xst =2 | Xs =y, Xo=2) =P(Xst = 2| Xs =y) = Pi(y, 2) (16.16.6)
Of course by definition, P(X; =y | Xo =) = Ps(z,y) . So the first displayed equation above becomes
Pii(z,y) =Y Pu(x,y)Pi(y, 2) = P Pi(x, 2) (16.16.7)
yes

Restated in another form of jargon, the collection P ={P;:t € [0,00)} is a semigroup of probability matrices. The semigroup of
transition matrices P, along with the initial distribution, determine the finite-dimensional distributions of X.

Suppose that X has probability density function f. If (¢1,%s,...,t,) € [0,00)" is a time sequence with 0 <¢; <--- <%, and
(zo, 21, .., 2,) € S is a state sequence, then

P(Xo ==z, Xy, =21, .. X1, =2n) = f(x0) Py (0, 1) Pry—t, (1, 22) - - Piy—ty, , (Tr—1, Tn) (16.16.8)

Proof

To simplify the notation, we will just give the cases n =1 and n =2, which capture the essence of the proof. First suppose
z,y € Sandt € [0,00). Then

P(Xo ==, X; =y) =P(Xo =2)P(X; =y | Xo =) = f(z)Pi(z,y) (16.16.9)
Next suppose that z, y, z € S and s, ¢ € [0, 00) with s < ¢. Then
PXo=2,X;=y, Xt =2)=P(Xs =z | Xo=2,X; =y)P(Xo =2z, X; =) (16.16.10)

But by the Markov and time homogeneous properties, P(X; =z | Xo =z, X; =y) = P._s(y,2) . By the n=1 case,
P(Xy =z, X, =y) = f(z)Ps(z,y) . Hence

IFD(AXO =z,Xs =y, Xt = Z) = f(m)PS(xay)‘Pt—S (y7 Z) (161611)

As with any matrix on S, the transition matrices define left and right operations on functions which are generalizations of matrix
multiplication. For a transition matrix, both have natural interpretations.

Suppose that f : S — R, and that either f is nonnegative or f € . Then for ¢ € [0, ),

Pif(z)=> P(z,y)f(y) =E[f(X:)| Xo=2], z€S (16.16.12)
yes

The mapping f — P, f is a bounded, linear operator on & and || P;|| = 1.

Proof

Since P;(z,-) is the conditional probability density function of X, given X, =z, it follows that P, f(z) =E[f(X;) | Xo =z] .
The statement about f — P; f follows from general results on probability kernels.

If f is nonnegative and S is infinte, then it's possible that P; f(x) = co. In general, the left operation of a positive kernel acts on positive
measures on the state space. In the setting here, if 4 is a positive (Borel) measure on (S, ), then the function f : S — [0, 00) given by
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f(z) =wp{z} for z € S is the density function of y with respect to counting measure # on (S,.#). This simply means that
w(A) =>4 f(z) for A C S. Conversely, given f : S — [0, c0), the set function u(A) =3 _, f(x) for A C S defines a positive
measure on (S, ) with f as its density function. So for the left operation of P;, it's natural to consider only nonnegative functions.

If f: S—[0,00) then

fR(y) =) f(@@)P(z,y), yeS (16.16.13)
zeS
If X has probability density function f then X; has probability density function f P;.
Proof
If X, has PDF f, then conditioning gives
P(X;=y)=» P(Xi=y|Xo=2)P(Xo=2)= Y Pi(z,y)f(z)=fP(z), yeS (16.16.14)

ze8 zeS

More generally, if f is the density function of a positive measure p on (S, .5) then fP; is the density function of the measure pP;,
defined by

pP(A)=> {z}P(z,A) =) f(x)P(z,A), ACS (16.16.15)

zes zeS

A function f:S — [0,00) is invariant for the Markov chain X (or for the transition semigroup P) if fP, = f for every
t € [0, 00).

It follows that if X has an invariant probability density function f, then X; has probability density function f for every ¢ € [0, 00), so
X is identically distributed. Invariant and limiting distributions are fundamentally important for continuous-time Markov chains.
Standard Semigroups

Suppose again that X = {X; :t € [0,00)} is a Markov chain on S with transition semigroup P ={P, :t € [0,00)}. Once again,
continuity assumptions need to be imposed on X in order to rule out strange behavior that would otherwise greatly complicate the
theory. In terms of the transition semigroup P, here is the basic assumption:

I The transition semigroup P is standard if P;(z,z) — 1 ast | 0 foreachz € S.

Since Py(z,z) =1 for z € S, the standard assumption is clearly a continuity assumption. It actually implies much stronger smoothness
properties that we will build up by stages.

If the transition semigroup P ={P;:t € [0,00)} is standard, then the function ¢ — P;(z,y) is right continuous for each
(z,y) € 8%

Proof

First note that if (z,y) € S% with  # y then Py (z,y) <1— Py(z,z) — 0 as h ] 0. Hence Py (z,y) — I(x,y) as h ] 0 for all
(z,y) € S%. Suppose next that ¢ € (0, c0) and (z,y) € S2. By the semigroup property,

Py (z,y) = P:Py(z,y) =ZPt(m,z)Ph(z,y) (16.16.16)

28

But P,(z,y) — I(2,y) as h | 0 so by the bounded convergence theorem, P;.p (z,y) — P:(x,y) ash | 0.
Our next result connects one of the basic assumptions in the section on transition times and the embedded chain with the standard
assumption here.

If the Markov chain X has no instantaneous states then the transition semigroup P is standard.
Proof

Given Xy = € S note that 7 > ¢ implies X; = = . Hence

P(z,z)=P(X; =z | Xo=2) >P(r>t| Xg=x) =e N (16.16.17)

Since X has no instantaneous states, 0 < A(z) < 0o so e M@t 51 ast 0.
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Recall that the non-existence of instantaneous states is essentially equivalent to the right continuity of X. So we have the nice result that
if X is right continuous, then so is P. For the remainder of our discussion, we assume that X = {X; : ¢ € [0, 00)} is a regular Markov
chain on S with transition semigroup P = {P; : t € [0,00)}, exponential function A and one-step transition matrix @ for the jump
chain. Our next result is the fundamental integral equations relating P, A, and Q.

Fort € [0, 00),
t
Pi(z,y) = I(z,y)e ! —|—/ Mz)e M QP,_,(z,y)ds, (z,y)eS> (16.16.18)
0

Proof

If z is an absorbing state, then the equation trivially holds, since A(z) =0 and P;(z,y) = I(x,y). So suppose that  is a stable
state, and as above, let 7 =inf{t € [0,00) : X; # X} . Given Xy =z, 7 has a proper exponential distribution with parameter
A(z) € (0, 00) . Taking cases,

P(z,y) =P(X;=y | Xo=2)=P(Xy =y, 7>t | Xo=2)+P(Xs =y, 7<t| Xo=2) (16.16.19)
The first term on the right is 0 if y # x and is P(7 >t | Xg = z) = e A®' if y = z. In short,
P(X; =y,7>t| Xo=2) = I(z,y)e @* (16.16.20)

For the second term on the right in the displayed equation, we condition on 7 and Y1 = X-. By a result in the last section on
transition times and the embedded chain, the joint PDF of (7,Y;) at s € [0,00) and z € S, given Xy =z, is A(z)e M®*Q(z, 2)
(continuous in time, discrete in space). Also, given 7 =s € [0,¢] and Y] =z € S, we can use the strong Markov property to
“restart the clock” at s giving

PX;=y|Xo=z,7=5Y1=2)=P(X;—s =y | Xo=2) =P (2y) (16.16.21)

Putting the pieces together we have

P(X, =y,7 <t| Xp=2)= /Otk(me—“”sZQ(m,z)Pt_s(z,y) i = /Otk(me-wscm_s(w,y) ds (16.16.22)

28

We can now improve on the continuity result that we got earlier. First recall the leads to relation for the jump chain Y: For (z,y) € S2,
z leads to y if Q™ (z,y) > 0 for some n € N. So by definition, z leads to z for each = € S, and for (z,y) € S? with z # y, = leads to y
if and only if the discrete-time chain starting in = eventually reaches y with positive probability.

For (z,y) € §2,

1.t — P;(z,y) is continuous.
2. If z leads to y then P;(z,y) > 0 for every ¢ € (0, 00).
3. If  does not lead to y then P;(z,y) = 0 for every ¢ € (0, 00).

Proof

For ¢ € [0, 00), we can use the change of variables » =t — s in the fundamental integral equation to get
¢
P,(z,y) = I(z,y)e M 4+ A(z)e A / QP (z,y)dr, (z,y) €S2 (16.16.23)
0

1. In the displayed equation, r — P,(z,y) is right continuous for every (z,y) € S 2 and hence by the bounded convergence
theorem again, so is 7 — Q P,.(z, y) . Since the integrand in the displayed equation is bounded and right continuous, the integral
is a continuous function of ¢. Hence ¢ — P;(z, y) is continuous for (z,y) € S2.

2. Forz € S, note that P;(z,z) > e @)t >0 fort € [0,00). If z leads to y and = # y then there exists n € N, and
(z1,Z2,...,Tn—1) € S such that Q(z,z1) >0, ... Q(zn_1,y) > 0. Then

Pt(mvy) :P(Xt =Y | Xo ::13) ZP(},I =%1,.., Y01 =Tp_1,Yn =¥, T §t<7'n+1) >0 (16-16-24)

3. This is clear from the definition of the embedded chain Y.

Parts (b) and (c) are known as the Lévy dichotomy, named for Paul Lévy. It's possible to prove the Lévy dichotomy just from the
semigroup property of P, but this proof is considerably more complicated. In light of the dichotomy, the leads to relation clearly makes

@ 0 16.16.4 https://stats.libretexts.org/@go/page/10389



https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10389?pdf

LibreTextsw

sense for the continuous-time chain X as well as the discrete-time embedded chain Y.
The Generator Matrix

Definition and Basic Properties

In this discussion, we assume again that X ={X;:t € [0,00)} is a regular Markov chain on S with transition semigroup
P={P,:te€[0,00)}, exponential parameter function A and one-step transition matrix ) for the embedded jump chain. The
fundamental integral equation above now implies that the transition probability matrix P, is differentiable in ¢. The derivative at 0 is
particularly important.

The matrix function ¢ — P; has a (right) derivative at 0:
P—1I

—~Gast]0 (16.16.25)

where the infinitesimal generator matrix G is given by G(z,y) = —\(z)I(z,y) + A(z)Q(z, y) for (z,y) € S2.
Proof

As before the change of variables r =t — s in the fundamental integral equation gives
¢
Pi(z,y) = I(z,y)e M@ 4 \(z)e o)t / QP (z,y) dr (16.16.26)
0

The first term is clearly differentiable in ¢, and the second term is also differentiable in ¢ since we now know that the integrand is a
continuous function of r. The result then follows from standard calculus.

Note that A(z)Q(z, z) = 0 for every = € S, since A(z) =0 is z is absorbing, while Q(z,z) =0 if z is stable. So G(z,z) = —A(z)
forz € S, and G(z,y) = A\(z)Q(z, y) for (x,y) € S% with y # x. Thus, the generator matrix G' determines the exponential parameter
function A and the jump transition matrix (), and thus determines the distribution of the Markov chain X.

Given the generator matrix G of X,

1. Az)=-G(z,z) forz € S
2.Q(z,y) = —G(z,y)/G(z,z)if v € Sisstableand y € S — {x}

The infinitesimal generator has a nice interpretation in terms of our discussion in the last section. Recall that when the chain first enters a
stable state =, we set independent, exponentially distributed “timers” on (x, y), for each y € S—{z}. Note that G(z,y) is the
exponential parameter for the timer on (x,y). As soon as an alarm sounds for a particular (z,y), the chain moves to state y and the
process continues.
The generator matrix G satisfies the following properties for every « € S:

1. G(z,z) <0

2.3 s G(z,y)=0

The matrix function ¢ — P, is differentiable on [0, co), and satisfies the Kolmogorov backward equation: P} = GP; . Explicitly,

P/(z,y) = -Az)Pi(z,y) + Y A@)Q(x,2)P(2y), (z,y) €S (16.16.27)

zeS
Proof

The proof is just like before, and follows from standard calculus and the integral equation

t
Pi(z,y) = I(z,y)e @) +)\(w)e"\(’”)t/ QP (z,y) dr (16.16.28)
0

The backward equation is named for Andrei Kolmogorov. In continuous time, the transition semigroup P ={P; : ¢t € [0,00)} can be
obtained from the single, generator matrix G in a way that is reminiscent of the fact that in discrete time, the transition semigroup
P ={P":neN} can be obtained from the single, one-step matrix P. From a modeling point of view, we often start with the
generator matrix G and then solve the the backward equation, subject to the initial condition Py = I, to obtain the semigroup of
transition matrices P.

https://stats.libretexts.org/@go/page/10389
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As with any matrix on S, the generator matrix G defines left and right operations on functions that are analogous to ordinary matrix
multiplication. The right operation is defined for functions in 4.

If f € 4 then Gf is given by

Gf(x)=-A@)f(2)+)_A=)Q(z,y)f(y), =€S (16.16.29)
yes
Proof
By definition,
Gf(z) =) Gz, 9)f(y) = A=) f(z)+ Y. M2)Q(z,y)f(y) (16.16.30)
yes yeS—{z}

In the second term, we can sum over all y € S since A(z) =0 if z is absorbing and @ (z,z) =0 if z is stable. Note that Gf is
well defined since

> A@)Q@,y)f@) < DY A@)Q@y)lfl =A@)|fI (16.16.31)

yeS—{z} yeS—{z}

But note that Gf is not in Z unless A € . Without this additional assumption, G is a linear operator from the vector space % of
bounded functions from S to R into the vector space of all functions from .S to R. We will return to this point in our next discussion.

Uniform Transition Semigroups

We can obtain stronger results for the generator matrix if we impose stronger continuity assumptions on P.

I The transition semigroup P ={P; : t € [0,00)} is uniform if P,(z,z) — 1 ast | 0 uniformly inz € S.

If P is uniform, then the operator function ¢ — P; is continuous on the vector space 4.
Proof

The statement means that for f € 4, the function ¢ — P, f is continuous with respect to the supremum norm on 4.

As usual, we want to look at this new assumption from different points of view.

The following are equivalent:

1. The transition semigroup P is uniform.
2. The exponential parameter function A is bounded.
3. The generator matrix G defiens a bounded linear operator on .

Proof

From our remarks above we know that A € £ if and only if the generator matrix G defines a bounded linear operator on Z. So we
just need to show the equivalence of (a) and (b). If A € & then

P(z,z) =P(X; =z | Xg=2) >P(r >t | Xo =) = exp[—A(z)t] > exp(—||A||t) (16.16.32)

The last term converges to 1 as ¢ |. 0 uniformly in .

So when the equivalent conditions are satisfied, the Markov chain X = { X : t € [0, 00)} is also said to be uniform. As we will see in a
later section, a uniform, continuous-time Markov chain can be constructed from a discrete-time Markov chain and an independent
Poisson process. For a uniform transition semigroup, we have a companion to the backward equation.

Suppose that P is a uniform transition semigroup. Then ¢ — P, satisfies the Kolmogorov forward equation P/ = P,G . Explicitly,

P/(z,y) = -AW)Pi(z,9) + Y _ P(z,2)A(2)Q(2,y), (2,y) € S? (16.16.33)

28

The backward equation holds with more generality than the forward equation, since we only need the transition semigroup P to be
standard rather than uniform. It would seem that we need stronger conditions on A for the forward equation to hold, for otherwise it's not

even obvious that ), ¢ Pi(z, 2)A(2)Q(z,¥) is finite for (z,y) € S. On the other hand, the forward equation is sometimes easier to

https://stats.libretexts.org/@go/page/10389
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solve than the backward equation, and the assumption that A is bounded is met in many applications (and of course holds automatically
if S is finite).

As a simple corollary, the transition matrices and the generator matrix commute for a uniform semigroup: P,G = GP; for t € [0, 00).
The forward and backward equations formally look like the differential equations for the exponential function. This actually holds with

the operator exponential.

Suppose again that P = {P; : t € [0,00)} is a uniform transition semigroup with generator G. Then

P=e=) —G", tecl0,00) (16.16.34)

Proof

First e'C is well defined as a bounded linear operator on 4 for ¢ € [0, 00) (and hence also simply as a matrix), since G is a bounded
linear operator on 8. Trivially e’® = I, and by basic properties of the matrix exponential,

%etG =Ge', te(0,00) (16.16.35)

It follows that P; = !¢ for t € [0, 00).

We can characterize the generators of uniform transition semigroups. We just need the minimal conditions that the diagonal entries are
nonpositive and the row sums are 0.

Suppose that G a matrix on S with ||G|| < co. Then G is the generator of a uniform transition semigroup P ={P; : t € [0, 00)} if
and only if for every z € S,

1. G(z,z) <0

2.3 s G(z,y)=0
Proof
We know of course that if G is the generator of a transition semigroup, then conditions (a) and (b) hold. For the converse, we can
use the previous result. Let

n

iyt

G", te[0,00) (16.16.36)

R
t

n=0

|

S

which makes sense since G is bounded in norm. Then P;(z,y) > 0 for (z,y) € S%. By part (b), > yes G"(z,y) =0 for every
z€Sandn €N, andhence Y ¢ Pi(z,y) =) sI(z,y)=1 forz € S. Finally, the semigroup property is a consequence of
the law of exponents, which holds for the exponential of a matrix.

P,P, = ¢CelC = elsTC =P, (16.16.37)

Examples and Exercises

The Two-State Chain

Let X ={X;:t€[0,00)} be the Markov chain on the set of states S ={0,1}, with transition rate a € [0, c0) from 0 to 1 and
transition rate b € [0, co) from 1 to 0. This two-state Markov chain was studied in the previous section. To avoid the trivial case with
both states absorbing, we will assume thata +b >0 .

The generator matrix is
G= [‘b‘l “b} (16.16.38)
Show that for ¢ € [0, 00),
1 [b a 1 —-a a
P=——r — —— (et 16.16.39
t a—i—b[b a] atb’ b b ( )
1. By solving the Kolmogorov backward equation.
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2. By solving the Kolmogorov forward equation.
3. By computing P, = €C .

You probably noticed that the forward equation is easier to solve because there is less coupling of terms than in the backward equation.

Define the probability density function f on S by f(0) = a;—bo—b , f(1) = =55 Show that

I.B%L[b a} as t — oo, the matrix with f in both rows.
atb | p g

2. fP, = f forall t € [0, 00), so that f is invariant for P.
3. fG=0.
Computational Exercises

Consider the Markov chain X ={X;:¢€[0,00)} on S=1{0,1,2} with exponential parameter function A = (4,1,3) and
embedded transition matrix

o 1 1
2 2
Q=1 0 0 (16.16.40)
12
3 3
1. Draw the state graph and classify the states.
2. Find the generator matrix G.
3. Find the transition matrix P; for ¢ € [0, 00).
4. Find limy_., P;.
Answer
1. The edge set is E = {(0, 1), (0, 2), (1,0), (2,0), (2, 1)} All states are stable.
2. The generator matrix is
-4 2 2
G=|1 -1 o0 (16.16.41)
1 2 -3
3.Fort € [0, 00),
3+12e™® 10-10e7% 2—12e % +10e %
P = HER 3e 5 10+5e % 24+3e % —5e 3 (16.16.42)
3—3e% 10-10e% 2+3e % +10e7%
4, 1 3 10 2
P — I 3 10 2 (16.16.43)
3 10 2

Special Models

I Read the discussion of generator and transition matrices for chains subordinate to the Poisson process.
I Read the discussion of the infinitesimal generator for continuous-time birth-death chains.
I Read the discussion of the infinitesimal generator for continuous-time queuing chains.

I Read the discussion of the infinitesimal generator for continuous-time branching chains.
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