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1.8: Combinatorial Structures
  

The purpose of this section is to study several combinatorial structures that are of basic importance in probability.

Permutations

Suppose that  is a set with  elements. A permutation of length  from  is an ordered sequence of 
distinct elements of ; that is, a sequence of the form  where  for each  and  for .

Statistically, a permutation of length  from  corresponds to an ordered sample of size  chosen without replacement from the
population .

The number of permutations of length  from an  element set is

Proof

This follows easily from the multiplication principle. There are  ways to choose the first element,  ways to choose the
second element, and so forth.

By convention, . Recall that, in general, a product over an empty index set is 1. Note that  has  factors, starting at ,
and with each subsequent factor one less than the previous factor. Some alternate notations for the number of permutations of size 

 from a set of  objects are , , and .

The number of permutations of length  from the  element set  (these are called simply permutations of ) is

The function on  given by  is the factorial function. The general permutation formula in (2) can be written in terms of
factorials:

For  and 

Although this formula is succinct, it's not always a good idea numerically. If  and  are large,  and  are enormous,
and division of the first by the second can lead to significant round-off errors.

Note that the basic permutation formula in (2) is defined for every real number  and nonnegative integer . This extension is
sometimes referred to as the generalized permutation formula. Actually, we will sometimes need an even more general formula of
this type (particularly in the sections on Pólya's urn and the beta-Bernoulli process).

For , , and , define

1. 
2. 
3. 
4. 

The product  (our ordinary permutation formula) is sometimes called the falling power of  of order , while  is
called the rising power of  of order , and is sometimes denoted . Note that  is the ordinary th power of . In general,
note that  has  factors, starting at  and with each subsequent factor obtained by adding  to the previous factor.
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Combinations

Consider again a set  with  elements. A combination of size  from  is an (unordered) subset of 
distinct elements of . Thus, a combination of size  from  has the form , where  for each  and 

 for .

Statistically, a combination of size  from  corresponds to an unordered sample of size  chosen without replacement from the
population . Note that for each combination of size  from , there are  distinct orderings of the elements of that combination.
Each of these is a permutation of length  from . The number of combinations of size  from an -element set is denoted by .
Some alternate notations are , , and .

The number of combinations of size  from an  element set is

Proof

An algorithm for generating all permutations of size  from  is to first select a combination of size  and then to select an
ordering of the elements. From the multiplication principle it follows that . Hence 

.

The number  is called a binomial coefficient. Note that the formula makes sense for any real number  and nonnegative integer 
 since this is true of the generalized permutation formula . With this extension,  is called the generalized binomial

coefficient. Note that if  and  are positive integers and  then . By convention, we will also define  if 
. This convention sometimes simplifies formulas.

Properties of Binomial Coefficients

For some of the identities below, there are two possible proofs. An algebraic proof, of course, should be based on (5). A
combinatorial proof is constructed by showing that the left and right sides of the identity are two different ways of counting the
same collection.

.

Algebraically, the last result is trivial. It also makes sense combinatorially: There is only one way to select a subset of  with 
elements (  itself), and there is only one way to select a subset of size 0 from  (the empty set ).

If  with  then

Combinatorial Proof

Note that if we select a subset of size  from a set of size , then we leave a subset of size  behind (the complement).
Thus  is a one-to-one correspondence between subsets of size  and subsets of size .

The next result is one of the most famous and most important. It's known as Pascal's rule and is named for Blaise Pascal.

If  with  then

Combinatorial Proof

Suppose that we have  persons, one named Fred, and that we want to select a committee of size . There are  different
committees. On the other hand, there are  committees with Fred as a member, and  committees without Fred as a
member. The sum of these two numbers is also the number of committees.
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Recall that the Galton board is a triangular array of pegs: the rows are numbered  and the pegs in row  are numbered 
. If each peg in the Galton board is replaced by the corresponding binomial coefficient, the resulting table of

numbers is known as Pascal's triangle, named again for Pascal. By (8), each interior number in Pascal's triangle is the sum of the
two numbers directly above it.

The following result is the binomial theorem, and is the reason for the term binomial coefficient.

If  and  is a positive integer, then

Combinatorial Proof

Note that to get the term  in the expansion of , we must select  from  of the factors and  from the remaining
 factors. The number of ways to do this is .

If  with  then

Combinatorial Proof

Consider two procedures for selecting a committee of size  from a group of  persons, with  distinct members of the
committee as officers (chair, vice chair, etc.). For the first procedure, select the committee from the population and then select
the member of the committee to be the officers. The number of ways to perform the first step is  and the number of ways to
perform the second step is . So by the multiplication principle, the number of ways to choose the committee is the left side
of the equation. For the second procedure, select the officers of the committee from the population and then select  other
committee members from the remaining  members of the population. The number of ways to perform the first step is 
and the number of ways to perform the second step is . So by the multiplication principle, the number of committees is
the right side of the equation.

The following result is known as Vandermonde's identity, named for Alexandre-Théophile Vandermonde.

If  with , then

Combinatorial Proof

Suppose that a committee of size  is chosen form a group of  persons, consisting of  men and  women. The number
of committees with exactly  men and  women is . The sum of this product over  is the total number of
committees, which is .

The next result is a general identity for the sum of binomial coefficients.

If  with  then

Combinatorial Proof

Suppose that we pick a subset of size  from the set . For , the number of subsets
in which the largest element is  is . Hence the sum of these numbers over  is the total number of subsets of size 

, which is also .
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For an even more general version of the last result, see the section on Order Statistics in the chapter on Finite Sampling Models.
The following identity for the sum of the first  positive integers is a special case of the last result.

If  then

Proof

Let  in previous result.

There is a one-to-one correspondence between each pair of the following collections. Hence the number objects in each of
these collection is .

1. Subsets of size  from a set of  elements.
2. Bit strings of length  with exactly  1's.
3. Paths in the Galton board from  to .

Proof

Let  be a set with  elements. A one-to-one correspondence between the subsets  of  with  elements
and the bit strings  of length  with  1's can be constructed by the rule that  if and only if . In
turn, a one-to-one correspondence between the bit strings  in part (b) and the paths in Galton board in part (c) can be
constructed by the rule that in row , turn right if  and turn left if .

The following identity is known as the alternating sum identity for binomial coefficients. It turns out to be useful in the Irwin-Hall
probability distribution. We give the identity in two equivalent forms, one for falling powers and one for ordinary powers.

If ,  then

1. 

2. 

Proof
1. We use the identity above and the binomial theorem binomial theorem:

Note that it's the last step where we need .
2. This follows from (a), since  is a linear combination of  for . That is, there exists  for 

 such that . Hence

Our next identity deals with a generalized binomial coefficient.
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Proof

Note that

In particular, note that . Our last result in this discussion concerns the binomial operator and its inverse.

The binomial operator takes a sequence of real numbers  and returns the sequence of real numbers 
 by means of the formula

The inverse binomial operator recovers the sequence  from the sequence  by means of the formula

Proof

Exponential generating functions can be used for an elegant proof. Exponential generating functions are the combinatorial
equivalent of moment generating functions for discrete probability distributions on . So let  and  denote the exponential
generating functions of the sequences  and , resepectively. Then

So it follows that

But by definition,

and so the inverse formula follows.

Samples

The experiment of drawing a sample from a population is basic and important. There are two essential attributes of samples:
whether or not order is important, and whether or not a sampled object is replaced in the population before the next draw. Suppose
now that the population  contains  objects and we are interested in drawing a sample of  objects. Let's review what we know
so far:
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…

…

If order is important and sampled objects are replaced, then the samples are just elements of the product set . Hence, the
number of samples is .
If order is important and sample objects are not replaced, then the samples are just permutations of size  chosen from .
Hence the number of samples is .
If order is not important and sample objects are not replaced, then the samples are just combinations of size  chosen from .
Hence the number of samples is .

Thus, we have one case left to consider.

Unordered Samples With Replacement

An unordered sample chosen with replacement from  is called a multiset. A multiset is like an ordinary set except that elements
may be repeated.

There is a one-to-one correspondence between each pair of the following collections:

1. Mulitsets of size  from a population  of  elements.
2. Bit strings of length  with exactly  1s.
3. Nonnegative integer solutions  of the equation .

Each of these collections has  members.

Proof

Suppose that . Consider a multiset of size . Since order does not matter, we can list all of the
occurrences of  (if any) first, then the occurrences of  (if any), and so forth, until we at last list the occurrences of  (if
any). If we know we are using this data structure, we don't actually have to list the actual elements, we can simply use 1 as a
placeholder with 0 as a seperator. In the resulting bit string, 1 occurs  times and 0 occurs  times. Conversely, any such
bit string uniquely defines a multiset of size . Next, given a multiset of size  from , let  denote the number of times that 

 occurs, for . Then  satisfies the conditions in (c). Conversely, any solution to the equation
in (c) uniquely defines a multiset of size  from . We already know how to count the collection in (b): the number of bit
strings of length  with 1 occurring  times is .

Summary of Sampling Formulas

The following table summarizes the formulas for the number of samples of size  chosen from a population of  elements, based
on the criteria of order and replacement.

Sampling formulas

Number of Samples With order Without

With replacement

Without

Multinomial Coefficients

Partitions of a Set

Recall that the binomial coefficient  is the number of subsets of size  from a set  of  elements. Note also that when we select
a subset  of size  from , we effectively partition  into two disjoint subsets of sizes  and , namely  and . A natural
generalization is to partition  into a union of  distinct, pairwise disjoint subsets  where  for each 

. Of course we must have .

The number of ways to partition a set of  elements into a sequence of  sets of sizes  is

Proof

Dk

nk

k D

n(k)

k D

( )nk

D

k D n

n+k−1 k

( , , … , )x1 x2 xn + +⋯ + = kx1 x2 xn

( )n+k−1
k

D = { , , … , }d1 d2 dn k

d1 d2 dn

k n−1
k k D xi

di i ∈ {1, 2, … ,n} ( , , … , )x1 x2 xn
k D

n+k−1 k ( ) = ( )n+k−1
k

n+k−1
n−1

k n

nk ( )n+k−1
k

n(k) ( )n
k

( )n
j

j S n

A j S S j n−j A Ac

S k ( , , … , )A1 A2 Ak #( ) =Ai ni

i ∈ {1, 2, … , k} + +⋯ + = nn1 n2 nk

n k ( , , … , )n1 n2 nk

( )( )⋯( ) =
n

n1

n−n1

n2

n− −⋯ −n1 nk−1

nk

n!

! ! ⋯ !n1 n2 nk

(1.8.22)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10123?pdf


1.8.7 https://stats.libretexts.org/@go/page/10123

The left side follows from the multiplication rule. There are  ways to select the first set in the partition,  ways to
select the second set in the partition, and so forth. The right side follows by writing the binomial coefficients on the left in
terms of factorials and simplifying.

The number in (18) is called a multinomial coefficient and is denoted by

If  with  then

Combinatorial Proof

As noted before, if we select a subset of size  from an  element set, then we partition the set into two subsets of sizes  and 
.

Sequences

Consider now the set . Elements of this set are sequences of length  in which each coordinate is one of 
values. Thus, these sequences generalize the bit strings of length . Again, let  be a sequence of nonnegative
integers with .

There is a one-to-one correspondence between the following collections:

1. Partitions of  into pairwise disjoint subsets  where  for each .
2. Sequences in  in which  occurs  times for each .

Proof

Suppose that . A one-to-one correspondence between a partition  of the type in (a) and
a sequence  of the type in (b) can be constructed by the rule that  if and only if .

It follows that the number of elements in both of these collections is

Permutations with Indistinguishable Objects

Suppose now that we have  object of  different types, with  elements of type  for each . Moreover,
objects of a given type are considered identical. There is a one-to-one correspondence between the following collections:

1. Sequences in  in which  occurs  times for each .
2. Distinguishable permutations of the  objects.

Proof

A one-to-one correspondence between a sequence  of the type in (a) and a permutation of the  objects
can be constructed by the rule that we put an object of type  in position  if and only if .

Once again, it follows that the number of elements in both collections is

The Multinomial Theorem

The following result is the multinomial theorem which is the reason for the name of the coefficients.

If  and  then
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The sum is over sequences of nonnegative integers  with . There are  terms
in this sum.

Combinatorial Proof

Note that to get  in the expansion of , we must chose  in  of the factors, for each . The
number of ways to do this is the multinomial coefficient . The number of terms in the sum follows from the
formula above.

Computational Exercises

Arrangements

In a race with 10 horses, the first, second, and third place finishers are noted. How many outcomes are there?

Answer

Eight persons, consisting of four male-female couples, are to be seated in a row of eight chairs. How many seating
arrangements are there in each of the following cases:

1. There are no other restrictions.
2. The men must sit together and the women must sit together.
3. The men must sit together.
4. Each couple must sit together.

Answer
1. 
2. 
3. 
4. 

Suppose that  people are to be seated at a round table. How many seating arrangements are there? The mathematical
significance of a round table is that there is no dedicated first chair.

Answer

. Seat one, distinguished person arbitrarily. Every seating arrangement can then be specified by giving the position of a
person (say clockwise) relative to the distinguished person.

Twelve books, consisting of 5 math books, 4 science books, and 3 history books are arranged on a bookshelf. Find the number
of arrangements in each of the following cases:

1. There are no restrictions.
2. The books of each type must be together.
3. The math books must be together.

Answer
1. 
2. 
3. 

Find the number of distinct arrangements of the letters in each of the following words:

1. statistics
2. probability

( + +⋯ + =∑( ) ⋯x1 x2 xk)n
n

, , ⋯ ,n1 n2 nk

xn1

1 xn2

2 xnk

k (1.8.27)

( , , … , )n1 n2 nk + +⋯ + = nn1 n2 nk ( )n+k−1
n

⋯xn1
1 xn2

2 x
nk
k ( + +⋯x1 x2 xk)n xi ni i

( )n

, ,…,n1 n2 nk

720

40 320
1152
2880
384

n

(n−1)!

479 001 600
103 680
4 838 400
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3. mississippi
4. tennessee
5. alabama

Answer
1. 
2. 
3. 
4. 
5. 

A child has 12 blocks; 5 are red, 4 are green, and 3 are blue. In how many ways can the blocks be arranged in a line if blocks of
a given color are considered identical?

Answer

Code Words

A license tag consists of 2 capital letters and 5 digits. Find the number of tags in each of the following cases:

1. There are no other restrictions
2. The letters and digits are all different.

Answer
1. 
2. 

Committees

A club has 20 members; 12 are women and 8 are men. A committee of 6 members is to be chosen. Find the number of different
committees in each of the following cases:

1. There are no other restrictions.
2. The committee must have 4 women and 2 men.
3. The committee must have at least 2 women and at least 2 men.

Answer
1. 
2. 
3. 

Suppose that a club with 20 members plans to form 3 distinct committees with 6, 5, and 4 members, respectively. In how many
ways can this be done.

Answer

. Note that the members not on a committee also form one of the sets in the partition.

Cards

A standard card deck can be modeled by the Cartesian product set

where the first coordinate encodes the denomination or kind (ace, 2-10, jack, queen, king) and where the second coordinate encodes
the suit (clubs, diamonds, hearts, spades). Sometimes we represent a card as a string rather than an ordered pair (for example ).

A poker hand (in draw poker) consists of 5 cards dealt without replacement and without regard to order from a deck of 52
cards. Find the number of poker hands in each of the following cases:

50 400
9 979 200
34 650
3780
210

27 720

67 600 000
19 656 000

38 760
13 860
30 800

9 777 287 520

D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, k} ×{♣,♢,♡,♠} (1.8.28)

q♡
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1. There are no restrictions.
2. The hand is a full house (3 cards of one kind and 2 of another kind).
3. The hand has 4 of a kind.
4. The cards are all in the same suit (so the hand is a flush or a straight flush).

Answer
1. 
2. 
3. 
4. 

The game of poker is studied in detail in the chapter on Games of Chance.

A bridge hand consists of 13 cards dealt without replacement and without regard to order from a deck of 52 cards. Find the
number of bridge hands in each of the following cases:

1. There are no restrictions.
2. The hand has exactly 4 spades.
3. The hand has exactly 4 spades and 3 hearts.
4. The hand has exactly 4 spades, 3 hearts, and 2 diamonds.

Answer
1. 
2. 
3. 
4. 

A hand of cards that has no cards in a particular suit is said to be void in that suit. Use the inclusion-exclusion formula to find
each of the following:

1. The number of poker hands that are void in at least one suit.
2. The number of bridge hands that are void in at least one suit.

Answer
1. 
2. 

A bridge hand that has no honor cards (cards of denomination 10, jack, queen, king, or ace) is said to be a Yarborough, in
honor of the Second Earl of Yarborough. Find the number of Yarboroughs.

Answer

A bridge deal consists of dealing 13 cards (a bridge hand) to each of 4 distinct players (generically referred to as north, south,
east, and west) from a standard deck of 52 cards. Find the number of bridge deals.

Answer

This staggering number is about the same order of magnitude as the number of atoms in your body, and is one of the reasons that
bridge is a rich and interesting game.

Find the number of permutations of the cards in a standard deck.

Answer

2 598 960
3744
624
5148

635 013 559 600
151 519 319 380
47 079 732 700
11 404 407 300

1 913 496
32 427 298 180

347 373 600

53 644 737 765 488 792 839 237 440 000 ≈ 5.36 ×1028

52! ≈ 8.0658 ×1067
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This number is even more staggering. Indeed if you perform the experiment of dealing all 52 cards from a well-shuffled deck, you
may well generate a pattern of cards that has never been generated before, thereby ensuring your immortality. Actually, this
experiment shows that, in a sense, rare events can be very common. By the way, Persi Diaconis has shown that it takes about seven
standard riffle shuffles to thoroughly randomize a deck of cards.

Dice and Coins

Suppose that 5 distinct, standard dice are rolled and the sequence of scores recorded.

1. Find the number of sequences.
2. Find the number of sequences with the scores all different.

Answer
1. 
2. 

Suppose that 5 identical, standard dice are rolled. How many outcomes are there?

Answer

A coin is tossed 10 times and the outcome is recorded as a bit string (where 1 denotes heads and 0 tails).

1. Find the number of outcomes.
2. Find the number of outcomes with exactly 4 heads.
3. Find the number of outcomes with at least 8 heads.

Answer
1. 
2. 
3. 

Polynomial Coefficients

Find the coefficient of  in .

Answer

Find the coefficient of  in .

Answer

Find the coefficient of  in .

Answer

The Galton Board

In the Galton board game,

1. Move the ball from  to  along a path of your choice. Note the corresponding bit string and subset.
2. Generate the bit string . Note the corresponding subset and path.
3. Generate the subset . Note the corresponding bit string and path.
4. Generate all paths from  to . How many paths are there?

Answer

7776
720

252

1024
210
56

x3 y4 (2 x−4 y)7

71 680

x5 (2 +3 x)8

108 864

x3 y7 z5 (x+y+z)15

360 360

(0, 0) (10, 6)
0011101001

{1, 4, 5, 7, 8, 10}
(0, 0) (5, 3)
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4. 10

Generate Pascal's triangle up to .

Samples

A shipment contains 12 good and 8 defective items. A sample of 5 items is selected. Find the number of samples that contain
exactly 3 good items.

Answer

In the  lottery,  numbers are chosen without replacement from the set of integers from 1 to  (where  and 
). Order does not matter.

1. Find the number of outcomes in the general  lottery.
2. Explicitly compute the number of outcomes in the  lottery (a common format).

Answer
1. 
2. 

For more on this topic, see the section on Lotteries in the chapter on Games of Chance.

Explicitly compute each formula in the sampling table above when  and .

Answer
1. Ordered samples with replacement: 
2. Ordered samples without replacement: 
3. Unordered samples with replacement: 
4. Unordered samples without replacement: 

Greetings

Suppose there are  people who shake hands with each other. How many handshakes are there?

Answer

. Note that a handshake can be thought of as a subset of size 2 from the set of  people.

There are  men and  women. The men shake hands with each other; the women hug each other; and each man bows to each
woman.

1. How many handshakes are there?
2. How many hugs are there?
3. How many bows are there?
4. How many greetings are there?

Answer
1. 
2. 
3. 
4. 

Integer Solutions

Find the number of integer solutions of  in each of the following cases:

1.  for each .

n = 10

6160

(n, k) k n n, k ∈ N+

k < n

(n, k)
(44, 6)

( )n
k

7 059 052

n = 10 k = 4

10 000
5040

715
210

n

( )n
2

n

m n

( )m

2

( )n2
mn

( )+( )+mn = ( )m
2

n
2

m+n
2

+ + = 10x1 x2 x3

≥ 0xi i
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2.  for each .

Answer
1. 
2. 

Generalized Coefficients

Compute each of the following:

1. 

2. 

3. 

Answer
1. 
2. 
3. 

Compute each of the following:

1. 
2. 
3. 

Answer

1. 
2. 
3. 

Birthdays

Suppose that  persons are selected and their birthdays noted. (Ignore leap years, so that a year has 365 days.)

1. Find the number of outcomes.
2. Find the number of outcomes with distinct birthdays.

Answer
1. .
2. .

Chess

Note that the squares of a chessboard are distinct, and in fact are often identified with the Cartesian product set

Find the number of ways of placing 8 rooks on a chessboard so that no rook can capture another in each of the following cases.

1. The rooks are distinguishable.
2. The rooks are indistinguishable.

Answer
1. 
2. 

> 0xi i

66
36

(−5)(3)

( )1
2

(4)

(− )1
3

(5)

−210

− 15
16

− 3640
243

( )1/2
3

( )−5
4

( )−1/3
5

1
16

70

− 91
729

n

365n

365(n)

{a, b, c, d, e, f , g,h} ×{1, 2, 3, 4, 5, 6, 7, 8} (1.8.29)

1 625 702 400
40 320
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Gifts

Suppose that 20 identical candies are distributed to 4 children. Find the number of distributions in each of the following cases:

1. There are no restrictions.
2. Each child must get at least one candy.

Answer
1. 
2. 

In the song The Twelve Days of Christmas, find the number of gifts given to the singer by her true love. (Note that the singer
starts afresh with gifts each day, so that for example, the true love gets a new partridge in a pear tree each of the 12 days.)

Answer

Teams

Suppose that 10 kids are divided into two teams of 5 each for a game of basketball. In how many ways can this be done in each
of the following cases:

1. The teams are distinguishable (for example, one team is labeled “Alabama” and the other team is labeled “Auburn”).
2. The teams are not distinguishable.

Answer
1. 
2. 

This page titled 1.8: Combinatorial Structures is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

1771
969

364

252
126

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10123?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/01%3A_Foundations/1.08%3A_Combinatorial_Structures
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random

