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1.4: Partial Orders

Partial orders are a special class of relations that play an important role in probability theory.

Basic Theory

& Definitions

A partial order on a set S is a relation < on S that is reflexive, anti-symmetric, and transitive. The pair (S, <) is called a partially
ordered set. So forall z, y, z€ S':

1. x <X z, the reflexive property
2. If x <y and y X x then x =y, the antisymmetric property
3.Ifx Xy and y X z then < z, the transitive property

As the name and notation suggest, a partial order is a type of ordering of the elements of .S. Partial orders occur naturally in many areas
of mathematics, including probability. A partial order on a set naturally gives rise to several other relations on the set.

Suppose that < is a partial order on a set S. The relations >, <, >, L, and || are defined as follows:

1.z »yifandonly if y < .

2.z <yifandonly if z <y and z # y.

3.z >yifandonlyify < .

4.z L yifandonlyifx <yory <z.

5.z || y if and only if neither z < y nor y < z.

Note that > is the inverse of =<, and > is the inverse of <. Note also that <y if and only if either z <y or * =y, so the relation <
completely determines the relation <. The relation < is sometimes called a strict or strong partial order to distingush it from the
ordinary (weak) partial order <. Finally, note that | y means that z and y are related in the partial order, while z || y means that z and
y are unrelated in the partial order. Thus, the relations L and || are complements of each other, as sets of ordered pairs. A total or linear
order is a partial order in which there are no unrelated elements.

I A partial order < on § is a total order or linear order if for every z, y € S, eitherz <y ory < z.

Suppose that <; and =<, are partial orders on a set S. Then < is an sub-order of =<5, or equivalently =<, is an extension of < if
and only if x <; y implies z <y y forz, y € S.

Thus if < is a suborder of <, then as sets of ordered pairs, < is a subset of <,. We need one more relation that arises naturally from a
partial order.

l Suppose that < is a partial order on a set S. For z, y € S, y is said to cover z if z < y but no element z € S satisfiesz <z <y.

If S is finite, the covering relation completely determines the partial order, by virtue of the transitive property.

Suppose that < is a partial order on a finite set .S. The covering graph or Hasse graph of (.S, =) is the directed graph with vertex set
S and directed edge set F, where (z,y) € E if and only if y covers z.

Thus, ¢ < y if and only if there is a directed path in the graph from z to y. Hasse graphs are named for the German mathematician
Helmut Hasse. The graphs are often drawn with the edges directed upward. In this way, the directions can be inferred without having to
actually draw arrows.

Basic Examples

Of course, the ordinary order < is a total order on the set of real numbers R. The subset partial order is one of the most important in
probability theory:

Suppose that .S is a set. The subset relation C is a partial order on &(.S), the power set of .S.

Proof
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We proved this result in the section on sets. To review, recall that for A, B€ £(S), A C B means that z € A implies = € B.
Also A = B means that ¢ € A if and only if z € B. Thus

1.LACA
22ACBand BC A ifandonly if A=B
33 ACBandBCC imply ACC

Here is a partial order that arises naturally from arithmetic.

Let | denote the division relation on the set of positive integers N,. That is, m | n if and only if there exists k € N} such that
n =km. Then

1. is a partial order on N .
2. | is a sub-order of the ordinary order <.

Proof
1. Clearly n | n forn € N, since n =1-n, so | is reflexive. Suppose m | n and n | m, where m, n € N . Then there exist
J, k € N such that n = km and m = jn. Substituting gives n = jkn, and hence j=k=1 . Thusm =n so | is
antisymmetric. Finally, suppose m | n and n | p, where m, n, p € N, . Then there exists j, k € N} such that n = jm and
p = kn . Substituting gives p = jkm , so m | p. Thus | is transitive.
2.If m, n € N; and m | n, then there exists k € N such thatn = km. Since k > 1, m <n.

The set of functions from a set into a partial ordered set can itself be partially ordered in a natural way.

Suppose that .S is a set and that (T", <r) is a partially ordered set, and let . denote the set of functions f : S — T'. The relation <
on . defined by f < g if and only f(z) =< g(z) forall z € S is a partial order on ..

Proof

Suppose that f, g, h € <.

1. f(z) =r f(z) forallz € S,so f < f.
2.If f <gand g < f then f(z) <7 g(z) and g(z) =r f(z) forallz € S. Hence f(z) = g(z) forallz € S so f =g.
3.If f <gand g < h then f(z) =r g(z) and g(z) =7 h(z) forallz € S.Hence f(z) <7 h(z) forallz € S so f <h.

Note that we don't need a partial order on the domain S.

Basic Properties

The proofs of the following basic properties are straightforward. Be sure to try them yourself before reading the ones in the text.

The inverse of a partial order is also a partial order.
Proof

Clearly the reflexive, antisymmetric and transitive properties hold for >.

If < is a partial order on S and A is a subset of S, then the restriction of < to A is a partial order on A.
Proof

The reflexive, antisymmetric, and transitive properties given above hold for all z, y, z € S and hence hold for all z, y, z € A.

The following theorem characterizes relations that correspond to strict order.

Let S be a set. A relation < is a partial order on S if and only if < is transitive and irreflexive.
Proof

Suppose that < is a partial order on S. Recall that < is defined by z <y if and only if x <y andz #y. If z <y and y < z then
z <y and y < z,and so < z. On the other hand, if ¢ = z then z <y and y <« so x =y, a contradiction. Hence x # z and so
x < z. Therefore < is transitive. If z < y then = # y by definition, so < is irreflexive.

Conversely, suppose that < is a transitive and irreflexive relation on S. Recall that < is defined by <y if and only if x <y or
z =y. By definition then, < is reflexive: x < = for every z € S. Next, suppose that z <y andy <z.If z <y and y <z then
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z < by the transitive property of <. But this is a contradiction by the irreflexive property, so we must have z =y. Thus < is
antisymmetric. Suppose <y and y < z. There are four cases:

1.If z <y and y < z then & < z by the transitive property of <.
2.If z =y and y < 2z then & < z by substitution.
3.If z <y and y = z then & < z by substitution.
4.1f x =y and y = z then & = z by the transitive property of =.

In all cases we have ¢ < z so = is transitive. Hence < is a partial order on S.

Monotone Sets and Functions

Partial orders form a natural setting for increasing and decreasing sets and functions. Here are the definitions:

Suppose that =< is a partial order on a set .S and that A C S In the following definitions, z, y are arbitrary elements of .S.

1. A isincreasing if ¢ € A and x <y imply y € A.
2. Ais decreasing if y € A and z <y imply z € A.

Suppose that S is a set with partial order <g, T" is a set with partial order <r, and that f : § — T. In the following definitions, z, y
are arbitrary elements of S.

1. f is increasing if and only if x <g y implies f(z) =T f(y).
2. f is decreasing if and only if x <g y implies f(z) =7 f(y).
3. f is strictly increasing if and only if z <g y implies f(z) <7 f(y).
4. f is strictly decreasing if and only if z <g y implies f(z) >1 f(y).

Recall the definition of the indicator function 14 associated with a subset A of a universal set S: Forz € S,14(z) =1 if x € A and
1u(z)=0ifz ¢ A.
Suppose that =< is a partial order on a set S and that A C S'. Then
1. A is increasing if and only if 1 4 is increasing.
2. A is decreasing if and only if 1 4 is decreasing.
Proof
1. A is increasing if and only if € A and z <y impliesy € A ifand only if 1 4(z) =1 and z <y implies 14(y) =1 if and
only if 14 is increasing.
2. A is decreasing if and only if y € A and ¢ < y implies z € A if and only if 14(y) =1 and z <y implies 14(z) =1 if and
only if 14 is decreasing.

Isomorphism

Two partially ordered sets (S, <g) and (T', <7) are said to be isomorphic if there exists a one-to-one function f from S onto T'
such that z < y if and only if f(z) <7 f(y), forall z, y € S. The function f is an isomorphism.

Generally, a mathematical space often consists of a set and various structures defined in terms of the set, such as relations, operators, or a
collection of subsets. Loosely speaking, two mathematical spaces of the same type are isomorphic if there exists a one-to-one function
from one of the sets onto the other that preserves the structures, and again, the function is called an isomorphism. The basic idea is that
isomorphic spaces are mathematically identical, except for superficial matters of appearance. The word isomorphism is from the Greek
and means equal shape.

Suppose that the partially ordered sets (S, <g) and (T, <r) are isomorphic, and that f : S — T is an isomorphism. Then f and
f 1 are strictly increasing.
Proof

We need to show that for z, y € S, z <g y if and only if f(z) <7 f(y). If = <g y then by definition, f(z) =r f(y). But if
f(z) = f(y) then z =y since f is one-to-one. This is a contradiction, so f(z) <7 f(y). Similarly, if f(z) <7 f(y) then by
definition, z <g y. But if x = y then f(z) = f(y), a contradiction. Hence z <g y.

https://stats.libretexts.org/@go/page/10119



https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10119?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/01%3A_Foundations/1.02%3A_Functions#Indicator_Functions_2

LibreTextsw

In a sense, the subset partial order is universal—every partially ordered set is isomorphic to (-, C) for some collection of sets ..

Suppose that < is a partial order on a set S. Then there exists . C Z(.S) such that (.S, <) is isomorphic to (7, C).

Proof
Foreachz € S,let A, ={u € S:u <z} ,and thenlet ¥ = {4, : x € S}, so that ¥ C F(S) . We will show that the function
z — A, from S onto .¥ is one-to-one, and satisfies

z=y <= A, CA4, (1.4.1)

First, suppose that , y € S and A, = A, . Then z € A, so € A, and hence z < y. Similarly, y € A, so y € A, and hence
y 2 z. Thus ¢ =y, so the mapping is one-to-one. Next, suppose that z <y. If u € A, then u <z so u <y by the transitive
property, and hence u € A, . Thus A, C A, . Conversely, suppose A, C A, . As before, z € A, ,sox € A, and hence z < y.

Extremal Elements

Various types of extremal elements play important roles in partially ordered sets. Here are the definitions:

Suppose that < is a partial order on a set S and that A C S

1. An element a € A is the minimum element of A if and only if a < z for every z € A.
2. An element a € A is a minimal element of A if and only if no € A satisfies z < a.
3. Anelement b € A is the maximum element of A if and only if b > = for every x € A.
4. An element b € A is a maximal element of A if and only if no = € A satisfies = > b.

In general, a set can have several maximal and minimal elements (or none). On the other hand,

The minimum and maximum elements of A4, if they exist, are unique. They are denoted min(A) and max(A), respectively.

Proof

Suppose that @, b are minimum elements of A. Since a, b € A we have a <b and b < a, so a = b by the antisymmetric property.
The proof for the maximum element is analogous.

Minimal, maximal, minimum, and maximum elements of a set must belong to that set. The following definitions relate to upper and
lower bounds of a set, which do not have to belong to the set.

Suppose again that < is a partial order on a set S and that A C S'. Then

1. An element u € S is a lower bound for A if and only if u < z for every € A.

2. An element v € S is an upper bound for A if and only if v = = for every « € A.

3. The greatest lower bound or infimum of A, if it exists, is the maximum of the set of lower bounds of A.
4. The least upper bound or supremum of A, if it exists, is the minimum of the set of upper bounds of A.

By (20), the greatest lower bound of A is unique, if it exists. It is denoted glb(A) or inf(A). Similarly, the least upper bound of A is
unique, if it exists, and is denoted lub(A) or sup(A). Note that every element of S is a lower bound and an upper bound for (), since the
conditions in the definition hold vacuously.

The symbols A and V are also used for infimum and supremum, respectively, so A A =inf(A4) and \/ A =sup(A) if they exist.. In
particular, for z, y € S, operator notation is more commonly used, so x Ay =inf{z,y} and z V y = sup{x, y} . Partially ordered sets
for which these elements always exist are important, and have a special name.

l Suppose that < is a partial order on a set S. Then (S, <) is a lattice if z Ay and z V y exist for every z, y € S.

For the subset partial order, the inf and sup operators correspond to intersection and union, respectively:

Let S be a set and consider the subset partial order C on £?(S), the power set of S. Let & be a nonempty subset of (S), that is, a
nonempty collection of subsets of S. Then

1.inf(ef) =N &
2.sup(#) =&
Proof
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1. First, (| & C A for every A € & and hence () & is a lower bound of 2. If B is a lower bound of & then B C A for every
A € &/ and hence B C () & . Therefore (| & is the greatest lower bound.

2. First, A C |J & for every A € &/ and hence | J & is an upper bound of & . If B is an upper bound of 7 then A C B for every
A € & and hence | J &/ C B. Therefore | J & is the least upper bound.

In particular, AAB=ANDB and AV B=AUB ,so (£(95), Q) is a lattice.

Consider the division partial order | on the set of positive integers N, and let A be a nonempty subset of N, .

1. inf(A) is the greatest common divisor of A, usually denoted gcd(A) in this context.
2.If A is infinite then sup(A) does not exist. If A is finite then sup(A) is the least common multiple of A, usually denoted
lem(A) in this context.

I Suppose that .S is a set and that f : S — S. An element z € S is said to be a fixed point of f if f(z) = z.

The following result explores a basic fixed point theorem for a partially ordered set. The theorem is important in the study of cardinality.
Suppose that < is a partial order on a set S with the property that sup(A) exists for every A C S.1f f : S — S is increasing, then f
has a fixed point.

Proof.

Let A={z € S:2<f(z)} andletz=sup(A).Ifz € A thenz <z soz < f(z) < f(2) . Hence f(z) is an upper bound of A
s0 z < f(2).Butthen f(2) < f (f(z)) so f(z) € A.Hence f(z) < z. Therefore f(z) = z.

Note that the hypotheses of the theorem require that sup()) = min(S) exists. Theset A={z € S: 2z < f(z)} is nonempty since
min(S) € A.

If < is a total order on a set S with the property that every nonempty subset of S has a minimum element, then S is said to be well
ordered by <. One of the most important examples is N, which is well ordered by the ordinary order <. On the other hand, the well
ordering principle, which is equivalent to the axiom of choice, states that every nonempty set can be well ordered.

Orders on Product Spaces

Suppose that S and T are sets with partial orders <g and =7 respectively. Define the relation < on S x T by (z,y) <X (2, w) if and
only if £ <g z and y =< w.

1. The relation < is a partial order on S x T', called, appropriately enough, the product order.
2. Suppose that (S, <g) = (T, <7). If S has at least 2 elements, then < is not a total order on S?.

Proof

(x, ¥}

Figure 1.4.1: The product order on R?. The region shaded red is the set of points > (z,). The region shaded blue is the set of points

= (@, y). The region shaded white is the set of points that are not comparable with (z,y).
Product order extends in a straightforward way to the Cartesian product of a finite or an infinite sequence of partially ordered spaces. For
example, suppose that S; is a set with partial order <; for each i € {1,2,...,n}, where n € N, . The product order < on the product
set 51 X Sy x -+ x S, is defined as follows: for @ = (z1, 3, ...,,) and y = (y1, Y2, - - -, Y») in the product set, < y if and only
if ; <; y; foreach ¢ € {1,2,...,n}. We can generalize this further to arbitrary product sets. Suppose that .S; is a set for each ¢ in a
nonempty (both otherwise arbitrary) index set I. Recall that

H S; = {x : ¢ is a function from I into U S; such that z(z) € S; for eachi € I} (1.4.2)

el el
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To make the notation look more like a simple Cartesian product, we will write z; instead of z(z) for the value of a function z in the
product set at s € I.

Suppose that S; is a set with partial order <; for each ¢ in a nonempty index set I. Define the relation < on [ [,.; S; by <y if and
only if z; <; y; foreach i € I. Then < is a partial order on the product set, known again as the product order.

Proof
In spite of the abstraction, the proof is perfectly straightforward. Suppose that z, y, z € [],.; Si.

1. z; =; z; forevery ¢ € I, and hence ¢ < x . Thus =< is reflexive.

2. Suppose that z <y and y =X z. Then x; =<; y; and y; <; z; foreachi € I. Hence x; =y; foreach¢ € I and so z =y. Thus <
is antisymmetric

3. Suppose that <y and y < z. Then z; <; y; and y; <; z; foreach ¢ € I. Hence x; <; 2z; foreachi € I, so x < z. Thus < is

transitive.

Note again that no assumptions are made on the index set I, other than it be nonempty. In particular, no order is necessary on I. The next
result gives a very different type of order on a product space.

Suppose again that S and T are sets with partial orders <g and =<7 respectively. Define the relation < on S x T by (z,y) = (z,w)
if and only if either x <g 2, orx = 2z and y <1 w.

1. The relation < is a partial order on S x T', called the lexicographic order or dictionary order.
2. If <g and <7 are total orders on S and T, respectively, then < is a total order on S x T".

Proof

Figure 1.4.2: The lexicographic order on R%. The region shaded red is the set of points > (z,%). The region shaded blue is the set of

points = (z,y).
As with the product order, the lexicographic order can be generalized to a collection of partially ordered spaces. However, we need the
index set to be totally ordered.

Suppose that S; is a set with partial order <; for each 4 in a nonempty index set I. Suppose also that < is a total order on I. Define
the relation =< on the product set [ [,_; S; as follows: # < y if and only if there exists j € I such that x; =y; if ¢ < j and z; <; y;.
Then

i€l

1. < is a partial order on .S, known again as the lexicographic order.
2. If <; is a total order for each ¢ € I, and [ is well ordered by <, then < is a total order on S.

Proof

1. By the result on strong orders, we need to show that < is irreflexive and transitive. First, no z € HiE 1 S; satisfies z <z since
x; =x; foralli € I.Hence < is irreflexive. Next, suppose that , y, z € [[,; S; and that z <y and y < z. Then there exists
j€ I suchthatz; =y; if i < j and ; <; y;. Similarly, there exists k € I such that y; = 2; if ¢ <k and yp <y 2. Again,
since I is totally ordered, either j <k ork<jorj=k.Ifj<k,thenz; =y; =2 ifi <jandz; <;y; =2; . If k <j, then
=y =2 ifi<kandzp =y <r2x . ffj=Fk, thenz; =y; =2 ifi <jandz; <;y; <; z;. Inall cases, z < z so < is
transitive.

2. Suppose now that =; is a total order on S; for each i € I and that I is well ordered by <. Letz, y € [],.; Si with z # y. Let
J={i€l:x; #vy;} . Then J+# ] by assumption, and hence has a minimum element j. If ¢ < j then ¢ ¢ J and hence
x; = y; . On the other hand, ; # y; since j € J and therefore, since <; is totally ordered, we must have either z; <; y; or
y; <j ;. In the first case, z <y and in the second case y < x . Hence = is totally ordered.
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The term lexicographic comes from the way that we order words alphabetically: We look at the first letter; if these are different, we
know how to order the words. If the first letters are the same, we look at the second letter; if these are different, we know how to order
the words. We continue in this way until we find letters that are different, and we can order the words. In fact, the lexicographic order is
sometimes referred to as the first difference order. Note also that if S; is a set and =<; a total order on S; for ¢ € I, then by the well
ordering principle, there exists a well ordering < of I, and hence there exists a lexicographic total order on the product space [[,.; S;.
As a mathematical structure, the lexicographic order is not as obscure as you might think.

(R, <) is isomorphic to the lexicographic product of (Z, <) with ([0, 1), <), where < is the ordinary order for real numbers.
Proof

Every z € R can be uniquely expressed in the form z =n +t where n = |z| € Z is the integer part and t =z —n € [0,1) is
the remainder. Thus x — (n,t) is a one-to-one function from R onto Z x [0,1). For example, 5.3 maps to (5,0.3), while —6.7
maps to (—7,0.3). Suppose that z =m+s, y=n+t € R , where of course m, n € Z are the integer parts of  and y,
respectively, and s, ¢ € [0, 1) are the corresponding remainders. Then z < y if and only if m <n orm =n and s < t. Again, to
illustrate with real real numbers, we can tell that 5.3 < 7.8 just by comparing the integer parts: 5 < 7. We can ignore the
remainders. On the other hand, to see that 6.4 < 6.7 we need to compare the remainders: 0.4 < 0.7 since the integer parts are the
same.

Limits of Sequences of Real Numbers

Suppose that (a1, as, . . .) is a sequence of real numbers.

l The sequence inf{ay,, a,1 ...} is increasing inn € N .

Since the sequence of infimums in the last result is increasing, the limit exists in R U {oo}, and is called the limit inferior of the original
sequence:

liminfa, = lim inf{a,, ant1,...} (1.4.3)

n—o0 n—00

I The sequence sup{an,, an+1, - . - } is decreasing inn € N .

Since the the sequence of supremums in the last result is decreasing, the limit exists in R U {—oo}, and is called the limit superior of the
original sequence:

limsup a, = lim sup{a,,ani1,...} (1.4.4)
n—00 n—0o0

Note that liminf, ., a, <limsup,,_,,, a, and equality holds if and only if lim,, , a, exists (and is the common value).

Vector Spaces of Functions

Suppose that S is a nonempty set, and recall that the set ¥ of functions f : S — R is a vector space, under the usual pointwise definition
of addition and scalar multiplication. As noted in (9), ¥ is also a partial ordered set, under the pointwise partial order: f < g if and only
if f(z) < g(z) forall z € S. Consistent with the definitions (19), f € ¥ is bounded if there exists C' € (0, co) such that | f(z)| < C for
all z € S. Now let % denote the set of bounded functions f : S — R, and for f € % define

If|l = sup{|f(2)| : = € S} (1.4.5)

% is a vector subspace of # and || - || is a norm on %.
Proof
To show that % is a subspace, we just have to note that it is closed under addition and scalar multiplication. That is, if f, g: S - R

are bounded, and if ¢ € R, then f+g and cf are bounded. Next we show that || - || satisfies the axioms of a norm. Again, let
f,9€% andce R

1. Clearly || f|| > Oand || f|| = 0if and only if f(z) =0 forall z € S if and only if f = 0, the zero function on S.

2. |lef|l = sup{lef(z)| : @ € S} = |c|sup{| f(2)| : = € S} = || || 7]
3. By the usual triangle inequality on R, | f(z) + g(z)| <|f(z)| +|g(z)| forz € S.Hence

sup{| £(2) +9(a)| : @ € S} <sup{| f(a)| +|g()|: 2 € S} <sup{|f(2)] : 2 € S} +sup{lg(a)| sz € S} (1.4.6)
Thatis, || £ +ll < 1] +llgl.
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I Recall that part (a) is the positive property, part (b) is the scaling property, and part (c) is the triangle inequality.

Appropriately enough, || - || is called the supremum norm on %/. Vector spaces of bounded, real-valued functions, with the supremum
norm are especially important in probability and random processes. We will return to this discussion again in the advanced sections on
metric spaces and measure theory.

Computational Exercises
Let S ={2,3,4,6,12}.

1. Sketch the Hasse graph corresponding to the ordinary order < on S.
2. Sketch the Hasse graph corresponding to the division partial order | on S.

Answer
1. The Hasse graph of (.5, <)
|+ Hasse graph
2. The Hasse graph of (S, |)
|+ Hasse graph

Consider the ordinary order < on the set of real numbers R, and let A = [a, b) where a < b. Find each of the following that exist:

1. The set of minimal elements of A
2. The set of maximal elements of A
3. min(A)

4. max(A)

5. The set of lower bounds of A

6. The set of upper bounds of A
7.inf(A)

8. sup(A4)

Answer
1. {a}
2.0
3.a
4. Does not exist
5. (—o0, a]
6. [b, 00)
7.a
8.b

Again consider the division partial order | on the set of positive integers N and let A = {2, 3,4, 6,12}. Find each of the following
that exist:

1. The set of minimal elements of A
2. The set of maximal elements of A
3. min(A)

4. max(A)

5. The set of lower bounds of A

6. The set of upper bounds of A
7.inf(A)

8. sup(4).

Answer

1.{2,3}
2. {12}
3. Does not exist

4.12

5.{1}
6.{12,24,36,...}
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Let S={a,b,c}.
1. Give () in list form.
2. Describe the Hasse graph of (£(.5), C)

Answer

1. 2(5) ={0,{a},{b},{c},{a,b},{a,c},{b, c}, S}

2.For Ae P(S) andz € S\ A, there is a directed edge from A to AU{z}

Note that the Hasse graph of O looks the same as the graph of C, except for the labels on the vertices. This symmetry is because of
the complement relationship.

Let S={a,b,c,d}.
1. Give £(S) in list form.
2. Describe the Hasse graph of (£(S), C)

Answer
L 2(8) ={0,{a},{b},{c},{d},{a,b},{a,c},{a,d},{b,c},{b,d},{c,d},{a,b,c} ,{a,b,d},{a,c,d},{b,c,d}, S}
2.For Ae P(S) andz € S\ A, there is a directed edge from A to AU {z}

Note again that the Hasse graph of O looks the same as the graph of C, except for the labels on the vertices. This symmetry is
because the complement relationship.

Suppose that A and B are subsets of a universal set S. Let 2/ denote the collection of the 16 subsets of S that can be constructed
from A and B using the set operations. Show that (&, C) is isomorphic to the partially ordered set in the previous exercise. Use the
Venn diagram app to help.

Proof
Leta=ANB,b=ANB°,c=A°NB,d= A°NB° . Our basic assumption is that A and B are in “general position”, so that

a, b, ¢, dare distinct and nonempty. Note also that {a, b, ¢, d} partitions S. Now, map each subset . of {a, b, c,d} to | J. This
function is an isomorphism from . to &. That is, for # and Z subsets of {a, b, ¢,d}, ¥ C Z ifandonly if ¥ C|J 7.

This page titled 1.4: Partial Orders is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services)
via source content that was edited to the style and standards of the LibreTexts platform.
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