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4.11: Vector Spaces of Random Variables
       

Basic Theory

Many of the concepts in this chapter have elegant interpretations if we think of real-valued random variables as vectors in a vector space. In
particular, variance and higher moments are related to the concept of norm and distance, while covariance is related to inner product. These
connections can help unify and illuminate some of the ideas in the chapter from a different point of view. Of course, real-valued random
variables are simply measurable, real-valued functions defined on the sample space, so much of the discussion in this section is a special case of
our discussion of function spaces in the chapter on Distributions, but recast in the notation of probability.

As usual, our starting point is a random experiment modeled by a probability space . Thus,  is the set of outcomes,  is the -
algebra of events, and  is the probability measure on the sample space . Our basic vector space  consists of all real-valued random
variables defined on  (that is, defined for the experiment). Recall that random variables  and  are equivalent if 

, in which case we write . We consider two such random variables as the same vector, so that technically, our vector
space consists of equivalence classes under this equivalence relation. The addition operator corresponds to the usual addition of two real-valued
random variables, and the operation of scalar multiplication corresponds to the usual multiplication of a real-valued random variable by a real
(non-random) number. These operations are compatible with the equivalence relation in the sense that if  and  then 

 and  for . In short, the vector space  is well-defined.

Norm

Suppose that . The  norm of  is defined by

Thus,  is a measure of the size of  in a certain sense, and of course it's possible that . The following theorems establish the
fundamental properties. The first is the positive property.

Suppose again that . For ,

1. 
2.  if and only if  (so that ).

Proof

These results follow from the basic inequality properties of expected value. First  with probability 1, so . In

addition,  if and only if .

The next result is the scaling property.

Suppose again that . Then  for  and .

Proof

The next result is Minkowski's inequality, named for Hermann Minkowski, and also known as the triangle inequality.

Suppose again that . Then  for .

Proof

The first quadrant  is a convex set and  is concave on . From Jensen's
inequality, if  and  are nonnegative random variables, then

Letting  and  and simplifying gives the result. To show that  really is concave on , we can compute the second partial
derivatives. Let  so that . Then

(Ω,F ,P) Ω F σ

P (Ω,F) V

(Ω,F ,P) X1 X2

P( = ) = 1X1 X2 ≡X1 X2
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(4.11.1)
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k ∈ [1, ∞) ∥X+Y ≤ ∥X +∥Y∥k ∥k ∥k X, Y ∈ V

S = {(x, y) ∈ : x ≥ 0, y ≥ 0}R
2 g(x, y) = ( + )x1/k y1/k k

S

U V

E [( + ]≤U 1/k V 1/k)k ( + )[E(U)]1/k [E(V )]1/k
k

(4.11.3)

U = |X|k V = |Y |k g S

h(x, y) = +x1/k y1/k g = hk
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Clearly  and  for  and , so and , the diagonal entries of the second derivative matrix, are
nonpositive on . A little algebra shows that the determinant of the second derivative matrix  on . Thus, the second
derivative matrix of  is negative semi-definite.

It follows from the last three results that the set of random variables (again, modulo equivalence) with finite  norm forms a subspace of our
parent vector space , and that the  norm really is a norm on this vector space.

For ,  denotes the vector space of  with , and with norm .

In analysis,  is often used as the index rather than  as we have used here, but  seems too much like a probability, so we have broken with
tradition on this point. The  is in honor of Henri Lebesgue, who developed much of this theory. Sometimes, when we need to indicate the
dependence on the underlying -algebra , we write . Our next result is Lyapunov's inequality, named for Aleksandr Lyapunov. This
inequality shows that the -norm of a random variable is increasing in .

Suppose that  with . Then  for .

Proof

Note that  is convex and  is convex on . From Jensen's inequality, if  is a nonnegative random
variable then . Letting  and simplifying gives the result.

Lyapunov's inequality shows that if  and  then . Thus,  is a subspace of .

Metric

The  norm, like any norm on a vector space, can be used to define a metric, or distance function; we simply compute the norm of the difference
between two vectors.

For , the  distance (or  metric) between  is defined by

The following properties are analogous to the properties in norm properties (and thus very little additional work is required for the proofs).
These properties show that the  metric really is a metric on  (as always, modulo equivalence). The first is the positive property.

Suppose again that  . Then

1. 
2.  if and only if  (so that  and ).

Proof

These results follow directly from the positive property.

Next is the obvious symmetry property:

 for .

Next is the distance version of the triangle inequality.

 for 

Proof

From Minkowski's inequality,
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gxy
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k
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(4.11.7)

k Lk

k ∈ [1, ∞) X, Y ∈ V

(X,Y ) ≥ 0dk
(X,Y ) = 0dk P(X = Y ) = 1 X ≡ Y Y

(X,Y ) = (Y ,X)dk dk X, Y ∈ V

(X,Z) ≤ (X,Y ) + (Y ,Z)dk dk dk X, Y , Z ∈ V

(X,Z) = ∥X−Z = ∥(X−Y ) +(Y −Z) ≤ ∥X−Y +∥Y −Z = (X,Y ) + (Y ,Z)dk ∥k ∥k ∥k ∥k dk dk (4.11.8)
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The last three properties mean that  is indeed a metric on  for . In particular, note that the standard deviation is simply the 2-distance
from  to its mean :

and the variance is the square of this. More generally, the th moment of  about  is simply the th power of the -distance from  to . The
2-distance is especially important for reasons that will become clear below, in the discussion of inner product. This distance is also called the
root mean square distance.

Center and Spread Revisited

Measures of center and measures of spread are best thought of together, in the context of a measure of distance. For a real-valued random
variable , we first try to find the constants  that are closest to , as measured by the given distance; any such  is a measure of center
relative to the distance. The minimum distance itself is the corresponding measure of spread.

Let us apply this procedure to the 2-distance.

For , define the root mean square error function by

For ,  is minimized when  and the minimum value is .

Proof

Note that the minimum value of  occurs at the same points as the minimum value of  (this is the mean
square error function). Expanding and taking expected values term by term gives

This is a quadratic function of  and hence the graph is a parabola opening upward. The minimum occurs at , and the minimum
value is . Hence the minimum value of  also occurs at  and the minimum value is .

We have seen this computation several times before. The best constant predictor of  is , with mean square error . The physical
interpretation of this result is that the moment of inertia of the mass distribution of  about  is minimized when , the center of mass.
Next, let us apply our procedure to the 1-distance.

For , define the mean absolute error function by

We will show that  is minimized when  is any median of . (Recall that the set of medians of  forms a closed, bounded interval.) We
start with a discrete case, because it's easier and has special interest.

Suppose that  has a discrete distribution with values in a finite set . Then  is minimized when  is any median of .

Proof

Note first that . Hence , where  and
where . Note that  is a continuous, piecewise linear function of , with corners at the values in .
That is, the function is a linear spline. Let  be the smallest median of . If  and , then the slope of the linear piece at  is
negative. Let  be the largest median of . If  and , then the slope of the linear piece at  is positive. If  then the
slope of the linear piece at  is 0. Thus  is minimized for every  in the median interval .

The last result shows that mean absolute error has a couple of basic deficiencies as a measure of error:

The function may not be smooth (differentiable).
The function may not have a unique minimizing value of .

Indeed, when  does not have a unique median, there is no compelling reason to choose one value in the median interval, as the measure of
center, over any other value in the interval.

Suppose now that  has a general distribution on . Then  is minimized when  is any median of .

Proof

Let . Suppose first that . Computing the expected value over the events , , and , and simplifying gives

dk Lk k ≥ 1
X μ =E(X)

sd(X) = (X,μ) = ∥X−μ =d2 ∥2 E [(X−μ ])2
− −−−−−−−−−

√ (4.11.9)

k X a k k X a

X t ∈ R X t

X ∈L2

(X, t) = ∥X− t = , t ∈ Rd2 ∥2 E [(X− t ])2
− −−−−−−−−−

√ (4.11.10)

X ∈L2 (X, t)d2 t =E(X) sd(X)

(X, t)d2 (X, t) =E [(X− t ]d2
2

)2

E [(X− t ] =E ( ) −2tE(X) +)2 X2 t2 (4.11.11)

t t =E(X)
var(X) t ↦ (X, t)d2 t =E(X) sd(X)

X E(X) var(X)
X t t = μ

X ∈L1

(X, t) = ∥X− t =E [|X− t|] , t ∈ Rd1 ∥1 (4.11.12)
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M X t > M t ∉ S t t ∈ (m,M)
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Suppose next that . Using similar methods gives

Note that the last terms on the right in these equations are nonnegative. If we take  to be a median of , then the middle terms on the right
in the equations are also nonnegative. Hence if  is a median of  and  is any other number then .

Convergence

Whenever we have a measure of distance, we automatically have a criterion for convergence.

Suppose that  for  and that , where . Then  as  in th mean if  as 
in the vector space . That is,

or equivalently  as .

When , we simply say that  as  in mean; when , we say that  as  in mean square. These are the
most important special cases.

Suppose that . If  as  in th mean then  as  in th mean.

Proof

This follows from Lyanpuov's inequality. Note that  as .

Convergence in th mean implies that the  norms converge.

Suppose that  for  and that , where . If  as  in th mean then  as 
. Equivalently, if  as  then  as .

Proof

This is a simple consequence of the reverse triangle inequality, which holds in any normed vector space. The general result is that if a
sequence of vectors in a normed vector space converge then the norms converge. In our notation here,

so if the right side converges to 0 as , then so does the left side.

The converse is not true; a counterexample is given below. Our next result shows that convergence in mean is stronger than convergence in
probability.

Suppose that  for  and that . If  as  in mean, then  as  in probability.

Proof

This follows from Markov's inequality. For ,  as .

The converse is not true. That is, convergence with probability 1 does not imply convergence in th mean; a counterexample is given below.
Also convergence in th mean does not imply convergence with probability 1; a counterexample to this is given below. In summary, the
implications in the various modes of convergence are shown below; no other implications hold in general.

Convergence with probability 1 implies convergence in probability.
Convergence in th mean implies convergence in th mean if .
Convergence in th mean implies convergence in probability.
Convergence in probability implies convergence in distribution.

However, the next section on uniformly integrable variables gives a condition under which convergence in probability implies convergence in
mean.

Inner Product

The vector space  of real-valued random variables on  (modulo equivalence of course) with finite second moment is special,
because it's the only one in which the norm corresponds to an inner product.

The inner product of  is defined by

E (|X− t|) =E (|X−s|) +(t−s) [2 P(X ≤ s) −1] +2E(t−X, s < X ≤ t) (4.11.13)

t < s

E (|X− t|) =E (|X−s|) +(t−s) [2 P(X < s) −1] +2E(X− t, t ≤ X < s) (4.11.14)

s X

s X t E (|X− t|) ≥E (|X−s|)

∈Xn Lk n ∈ N+ X ∈Lk k ∈ [1, ∞) → XXn n → ∞ k → XXn n → ∞
Lk

( ,X) = ∥ −X → 0 as n → ∞dk Xn Xn ∥k (4.11.15)

E( )→ 0| −X|Xn
k n → ∞

k = 1 → XXn n → ∞ k = 2 → XXn n → ∞

1 ≤ j≤ k → XXn n → ∞ k → XXn n → ∞ j

0 ≤ ( ,X) ≤ ( ,X) → 0dj Xn dk Xn n → ∞

k k

∈Xn Lk n ∈ N+ X ∈Lk k ∈ [1, ∞) → XXn n → ∞ k ∥ → ∥XXn∥k ∥k
n → ∞ E(| −X ) → 0Xn |k n → ∞ E(| ) → E(|X )Xn|k |k n → ∞

|∥ −∥X | ≤ ∥ −XXn∥k ∥k Xn ∥k (4.11.16)

n → ∞

∈Xn L1 n ∈ N+ X ∈L1 → XXn n → ∞ → XXn n → ∞

ϵ > 0 0 ≤ P (| −X| > ϵ) ≤E (| −X|) /ϵ → 0Xn Xn n → ∞

k

k

k j j≤ k

k

L2 (Ω,F ,P)

X, Y ∈L2
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The following results are analogous to the basic properties of covariance, and show that this definition really does give an inner product on the
vector space

For  and ,

1. , the symmetric property.
2.  and  if and only if  (so that ), the positive property.
3. , the scaling property.
4. , the additive property.

Proof
1. This property is trivial from the definition.
2. Note that  and  if and only if .
3. This follows from the scaling property of expected value: 
4. This follows from the additive property of expected value: .

From parts (a), (c), and (d) it follows that inner product is bi-linear, that is, linear in each variable with the other fixed. Of course bi-linearity
holds for any inner product on a vector space. Covariance and correlation can easily be expressed in terms of this inner product. The covariance
of two random variables is the inner product of the corresponding centered variables. The correlation is the inner product of the corresponding
standard scores.

For ,

1. 
2. 

Proof
1. This is simply a restatement of the definition of covariance.
2. This is a restatement of the fact that the correlation of two variables is the covariance of their corresponding standard scores.

Thus, real-valued random variables  and  are uncorrelated if and only if the centered variables  and  are perpendicular
or orthogonal as elements of .

For , .

Thus, the norm associated with the inner product is the 2-norm studied above, and corresponds to the root mean square operation on a random
variable. This fact is a fundamental reason why the 2-norm plays such a special, honored role; of all the -norms, only the 2-norm corresponds
to an inner product. In turn, this is one of the reasons that root mean square difference is of fundamental importance in probability and statistics.
Technically, the vector space  is a Hilbert space, named for David Hilbert.

The next result is Hölder's inequality, named for Otto Hölder.

Suppose that  and . For  and ,

Proof

Note that  is a convex set and  is concave on . From Jensen's inequality, if  and 
 are nonnegative random variables then . Substituting  and  gives the result.

To show that  really is concave on , we compute the second derivative matrix:

Since  and , the diagonal entries are negative on . The determinant simplifies to

In the context of the last theorem,  and  are called conjugate exponents. If we let  in Hölder's inequality, then we get the Cauchy-
Schwarz inequality, named for Augustin Cauchy and Karl Schwarz: For ,

⟨X,Y ⟩ =E(XY ) (4.11.17)

X, Y , Z ∈L2 a ∈ R

⟨X,Y ⟩ = ⟨Y ,X⟩

⟨X,X⟩ ≥ 0 ⟨X,X⟩ = 0 P(X = 0) = 1 X ≡ 0
⟨aX,Y ⟩ = a⟨X,Y ⟩

⟨X+Y ,Z⟩ = ⟨X,Z⟩+ ⟨Y ,Z⟩

E( ) ≥ 0X2
E( ) = 0X2

P(X = 0) = 1
E(aXY ) = aE(XY )
E[(X+Y )Z] =E(XZ) +E(Y Z)

X, Y ∈L2

cov(X,Y ) = ⟨X−E(X),Y −E(Y )⟩
cor(X,Y ) = ⟨[X−E(X)]/sd(X), [Y −E(Y )]/sd(Y )⟩

X Y X−E(X) Y −E(Y )
L2

X ∈L2 ⟨X,X⟩ = ∥X =E ( )∥2
2 X2

k

L2

j, k ∈ [1, ∞) + = 11
j

1
k

X ∈Lj Y ∈Lk

⟨|X| , |Y |⟩ ≤ ∥X ∥Y∥j ∥k (4.11.18)

S = {(x, y) ∈ : x ≥ 0, y ≥ 0}R
2 g(x, y) = x1/jy1/k S U

V E ( ) ≤U 1/jV 1/k [E(U)]1/j[E(V )]1/k
U = |X|j V = |Y |k

g S

[ ]
(1/j)(1/j−1)x1/j−2y1/k

(1/j)(1/k)x1/j−1y1/k−1

(1/j)(1/k)x1/j−1y1/k−1

(1/k)(1/k−1)x1/jy1/k−2
(4.11.19)

1/j< 1 1/k < 1 S

(1/j)(1/k) [1 −(1/j+1/k)] = 0x2/j−2y2/k−2 (4.11.20)

j k j= k = 2
X, Y ∈L2
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In turn, the Cauchy-Schwarz inequality is equivalent to the basic inequalities for covariance and correlations: For ,

If  are conjugate exponents then

1. .
2.  as .

The following result is an equivalent to the identity  that we studied in the section on
covariance and correlation. In the context of vector spaces, the result is known as the parallelogram rule:

If  then

Proof

This result follows from the bi-linearity of inner product:

The following result is equivalent to the statement that the variance of the sum of uncorrelated variables is the sum of the variances, which again
we proved in the section on covariance and correlation. In the context of vector spaces, the result is the famous Pythagorean theorem, named for
Pythagoras of course.

If  is a sequence of random variables in  with  for  then

Proof

Again, this follows from the bi-linearity of inner product:

The terms with  are 0 by the orthogonality assumption, so

Projections

The best linear predictor studied in the section on covariance and correlation and conditional expected values have nice interpretation in terms of
projections onto subspaces of . First let's review the concepts. Recall that  is a subspace of  if  and  is also a vector space
(under the same operations of addition and scalar multiplication). To show that  is a subspace, we just need to show the closure
properties (the other axioms of a vector space are inherited).

If  then .
If  and  then .

Suppose now that  is a subspace of  and that . Then the projection of  onto  (if it exists) is the vector  with the
property that  is perpendicular to :

The projection has two critical properties: It is unique (if it exists) and it is the vector in  closest to . If you look at the proofs of these
results, you will see that they are essentially the same as the ones used for the best predictors of  mentioned at the beginning of this subsection.
Moreover, the proofs use only vector space concepts—the fact that our vectors are random variables on a probability space plays no special role.

E (|X| |Y |) ≤ E ( )X2
− −−−−−

√ E ( )Y 2
− −−−−−

√ (4.11.21)

X, Y ∈L2

|cov(X,Y )| ≤ sd(X)sd(Y ), |cor(X,Y )| ≤ 1 (4.11.22)

j, k ∈ [1, ∞)

k = j

j−1

k ↓ 1 j ↑ ∞

var(X+Y ) +var(X−Y ) = 2 [var(X) +var(Y )]

X, Y ∈L2

∥X+Y +∥X−Y = 2∥X +2∥Y∥2
2

∥2
2

∥2
2

∥2
2

(4.11.23)

∥X+Y +∥X−Y∥2
2 ∥2

2 = ⟨X+Y ,X+Y ⟩+ ⟨X−Y ,X−Y ⟩

= (⟨X,X⟩+2⟨X,Y ⟩+ ⟨Y ,Y ⟩) +(⟨X,X⟩−2⟨X,Y ⟩+ ⟨Y ,Y ⟩) = 2∥X +2∥Y∥2 ∥2

(4.11.24)

(4.11.25)

( , , … , )X1 X2 Xn L2 ⟨ , ⟩ = 0Xi Xj i ≠ j

= ∥
∥

∥
∥∑
i=1

n

Xi

∥

∥
∥

2

2

∑
i=1

n

Xi∥2
2

(4.11.26)

= ⟨ , ⟩ = ⟨ , ⟩
∥

∥
∥∑
i=1

n

Xi

∥

∥
∥

2

2

∑
i=1

n

Xi ∑
j=1

n

Xj ∑
i=1

n

∑
j=1

n

Xi Xj (4.11.27)

i ≠ j

= ⟨ , ⟩ = ∥
∥

∥
∥∑
i=1

n

Xi

∥

∥
∥

2

2

∑
i=1

n

Xi Xi ∑
i=1

n

Xi∥2
2 (4.11.28)

L2 U L2 U ⊆L2 U

U ⊆L2

U, V ∈U U +V ∈U
U ∈U c ∈ R cU ∈U

U L2 X ∈L2 X U V ∈U
X−V U

⟨X−V ,U⟩ = 0, U ∈U (4.11.29)

U X

X
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The projection of  onto  (if it exists) is unique.

Proof

Suppose that  and  satisfy the definition. then

Hence . The last equality in the displayed equation holds by assumption and the fact that 

Suppose that  is the projection of  onto . Then

1.  for all .
2. Equality holds in (a) if and only if 

Proof
1. If  then

But the middle terms is 0 so

2. Equality holds if and only if , if and only if .

Now let's return to our study of best predictors of a random variable.

If  then the set  is a subspace of . In fact, it is the subspace generated by  and 1.

Proof

Note that  is the set of all linear combinations of the vectors  and . If  then . If  and  then 
.

Recall that for , the best linear predictor of  based on  is

Here is the meaning of the predictor in the context of our vector spaces.

If  then  is the projection of  onto .

Proof

Note first that . Thus, we just need to show that  is perpendicular to . For this, it suffices to show

1. 
2. 

We have already done this in the earlier sections, but for completeness, we do it again. Note that . Hence 
. This gives (a). By linearity,  so (b) holds as well.

The previous result is actually just the random variable version of the standard formula for the projection of a vector onto a space spanned by
two other vectors. Note that  is a unit vector and that  is perpendicular to . Thus,  is just the sum
of the projections of  onto  and :

Suppose now that  is a sub -algebra of . Of course if  is -measurable then  is -measurables, so  is a subspace of 
.

If  then  is the projection of  onto .

Proof

This is essentially the definition of  as the only (up to equivalence) random variable in  with  for
every .

X U

V1 V2

= ⟨ − , − ⟩ = ⟨ −X+X− , − ⟩ = ⟨ −X, − ⟩+ ⟨X− , − ⟩ = 0∥ − ∥V1 V2
2
2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V1 V2 V2 V1 V2 (4.11.30)

≡V1 V2 − ∈UV1 V2

V X U

≤∥X−V ∥ 2
2 ∥X−U∥ 2

2 U ∈U
U ≡ V

U ∈U

= = +2⟨X−V ,V −U⟩+∥X−U∥2
2 ∥X−V +V −U∥ 2

2 ∥X−V ∥2
2 ∥V −U∥2

2 (4.11.31)

= + ≥∥X−U∥2
2 ∥X−V ∥2

2 ∥V −U∥2
2 ∥X−V ∥2

2 (4.11.32)

= 0∥V −U∥ 2
2 V ≡ U

X ∈L2 = {a+bX : a ∈ R, b ∈ R}WX L2 X

WX 1 X U, V ∈WX U +V ∈WX U ∈WX c ∈ R

cU ∈WX

X, Y ∈L2 Y X

L(Y ∣ X) =E(Y ) + [X−E(X)]
cov(X,Y )

var(X)
(4.11.33)

X, Y ∈L2 L(Y ∣ X) Y WX

L(Y ∣ X) ∈WX Y −L(Y ∣ X) WX

⟨Y −L(Y ∣ X),X⟩ = 0
⟨Y −L(Y ∣ X), 1⟩ = 0

E (X [X−E(X)]) = var(X)
E [XL(Y ∣ X)] =E(X)E(Y ) +cov(X,Y ) =E(XY ) E [L(Y ∣ X)] =E(Y )

1 = X−E(X) = X− ⟨X, 1⟩1X0 1 L(Y ∣ X)
Y 1 X0

L(Y ∣ X) = ⟨Y , 1⟩1 +
⟨Y , ⟩X0

⟨ , ⟩X0 X0
X0 (4.11.34)

G σ F X : Ω →R G X F (G )L2

(F)L2

X ∈ (F)L2 E(X ∣ G ) X (G )L2

E(X ∣ G ) (G )L2 E [E(X ∣ G )U] =E(XU)
U ∈ (G )L2
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But remember that  is defined more generally for . Our final result in this discussion concerns convergence.

Suppose that  and that  is a sub -algebra of .

1. If  then 
2. If  for , , and  as  in  then  as  in 

Proof
1. Note that . Since  is increasing and convex on  we have

The last step uses Jensen's inequality. Taking expected values gives

2. Using the same ideas,

By assumption, the right side converges to 0 as  and hence so does the left side.

Examples and Applications

App Exercises

In the error function app, select the root mean square error function. Click on the -axis to generate an empirical distribution, and note the
shape and location of the graph of the error function.

In the error function app, select the mean absolute error function. Click on the -axis to generate an empirical distribution, and note the
shape and location of the graph of the error function.

Computational Exercises

Suppose that  is uniformly distributed on the interval .

1. Find  for .
2. Graph  as a function of .
3. Find .

Answer

1. 

3. 1

Suppose that  has probability density function  for , where  is a parameter. Thus,  has the Pareto
distribution with shape parameter .

1. Find  for .
2. Graph  as a function of .
3. Find .

Answer

1.  if ,  if 

3. 

Suppose that  has probability density function  for , . Verify Minkowski's inequality.

Answer

1. 

2. 

E(X ∣ G ) X ∈ (F)L1

k ∈ [1, ∞) G σ F

X ∈ (F)Lk E(X ∣ G ) ∈ (G )Lk

∈ (F)Xn Lk n ∈ N+ X ∈ (F)Lk → XXn n → ∞ (F)Lk E( ∣ G ) → E(X ∣ G )Xn n → ∞ (G )Lk

|E(X ∣ G )| ≤E(|X| ∣ G ) t ↦ tk [0, ∞)

|E(X ∣ G ) ≤ [E(|X| ∣ G ) ≤E(|X ∣ G)|k ]k |k (4.11.35)

E[|E(X ∣ G ) ] ≤E(|X ) < ∞|k |k (4.11.36)

E [ ]=E [ ]≤ E[| −X ]|E( ∣ G ) −E(X ∣ G )|Xn
k |E( −X ∣ G )|Xn

k Xn |k (4.11.37)

n → ∞

x

x

X [0, 1]

∥X∥k k ∈ [1, ∞)
∥X∥k k ∈ [1, ∞)

∥Xlimk→∞ ∥k

1

(k+1)
1/k

X f(x) = a

xa+1 1 ≤ x < ∞ a > 0 X

a

∥X∥k k ∈ [1, ∞)
∥X∥k k ∈ (1, a)

∥Xlimk↑a ∥k

( )a

a−k

1/k
k < a ∞ k ≥ a

∞

(X,Y ) f(x, y) = x+y 0 ≤ x ≤ 1 0 ≤ y ≤ 1

∥X+Y =∥k ( )−22k+2

(k+2)(k+3)

1/k

∥X +∥Y = 2∥k ∥k ( + )1
k+2

1
2(k+1)

1/k
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Let  be an indicator random variable with , where . Graph  as a function of  in each of the
cases below. In each case, find the minimum value of the function and the values of  where the minimum occurs.

1. 
2. 
3. 

Answer
1. The minimum is  and occurs at .
2. The minimum is  and occurs for 
3. The minimum is  and occurs at 

Suppose that  is uniformly distributed on the interval . Find  as a function of  and sketch the graph. Find the
minimum value of the function and the value of  where the minimum occurs.

Suppose that  is uniformly distributed on the set . Find  as a function of  and sketch the graph. Find
the minimum value of the function and the values of  where the minimum occurs.

Suppose that  has probability density function  for , . Verify Hölder's inequality in the
following cases:

1. 
2. , 

Answer

1. 
2. 

Counterexamples

The following exercise shows that convergence with probability 1 does not imply convergence in mean.

Suppose that  is a sequence of independent random variables with

1.  as  with probability 1.
2.  as  in probability.
3.  as .

Proof
1. This follows from the basic characterization of convergence with probability 1:  for .
2. This follows since convergence with probability 1 implies convergence in probability.
3. Note that  for .

The following exercise shows that convergence in mean does not imply convergence with probability 1.

Suppose that  is a sequence of independent indicator random variables with

1. .
2. .
3. .
4.  as  in th mean for every .

Proof
1. This follows from the second Borel-Cantelli lemma since 
2. This also follows from the second Borel-Cantelli lemma since .
3. This follows from parts (a) and (b).
4. Note that  as .

X P(X = 1) = p 0 ≤ p ≤ 1 E (|X− t|) t ∈ R

t

p < 1
2

p = 1
2

p > 1
2

p t = 0
1
2

t ∈ [0, 1]

1 −p t = 1

X [0, 1] (X, t) =E (|X− t|)d1 t

t

X [0, 1] ∪ [2, 3] (X, t) =E (|X− t|)d1 t

t

(X,Y ) f(x, y) = x+y 0 ≤ x ≤ 1 0 ≤ y ≤ 1

j= k = 2

j= 3 k = 3
2

∥X ∥Y =∥2 ∥2
5

12

∥X +∥Y ≈ 0.4248∥3 ∥3/2

( , , …)X1 X2

P (X = ) = , P( = 0) = 1 − ; n ∈n3 1

n2
Xn

1

n2
N+ (4.11.38)

→ 0Xn n → ∞
→ 0Xn n → ∞

E( ) → ∞Xn n → ∞

P( > ϵ) = 1/ < ∞∑∞
n=1 Xn ∑∞

n=1 n2 0 < ϵ < 1

E( ) = / = nXn n3 n2 n ∈ N+

( , , …)X1 X2

P( = 1) = , P( = 0) = 1 − ; n ∈Xn

1

n
Xn

1

n
N+ (4.11.39)

P( = 0 for infinitely many n) = 1Xn

P( = 1 for infinitely many n) = 1Xn

P(  does not converge as n → ∞) = 1Xn

→ 0Xn n → ∞ k k ≥ 1

P( = 1) = 1/n = ∞∑∞
n=1 Xn ∑∞

n=1

P( = 0) = (1 −1/n) = ∞∑∞
n=1 Xn ∑∞

n=1

E( ) = 1/n → 0Xn n → ∞
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The following exercise show that convergence of the th means does not imply convergence in th mean.

Suppose that  has the Bernoulli distribution with parmaeter , so that . Let  for  and let 
. Let . Then

1.  for , so  as 
2.  for  so  does not converge to  as  in .

Proof
1. Note that  for , since  just takes values 0 and 1. Also,  and  have the same distribution so 

.
2. Note that  for . Again,  just takes values 0 and 1, so .
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k k

U 1
2

P(U = 1) = P(U = 0) = 1
2

= UXn n ∈ N+

X = 1 −U k ∈ [1, ∞)

E( ) =E( ) =Xk
n Xk 1

2
n ∈ N+ E( ) → E( )Xk

n Xk n → ∞

E(| −X ) = 1Xn |k n ∈ N Xn X n → ∞ Lk

= = UXk
n U k n ∈ N+ U U 1 −U

E(U) =E(1 −U) = 1
2

−X = U −(1 −U) = 2U −1Xn n ∈ N+ U |2U −1| = 1
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