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16.6: Stationary and Limiting Distributions of Discrete-Time Chains
      

In this section, we study some of the deepest and most interesting parts of the theory of discrete-time Markov chains, involving two
different but complementary ideas: stationary distributions and limiting distributions. The theory of renewal processes plays a
critical role.

Basic Theory
As usual, our starting point is a (time homogeneous) discrete-time Markov chain  with (countable) state
space  and transition probability matrix . In the background, of course, is a probability space  so that  is the sample
space,  the -algebra of events, and  the probability measure on . For , let , the -
algebra of events determined by the chain up to time , so that  is the natural filtration associated with .

The Embedded Renewal Process

Let  and . We will denote the number of visits to  during the first  positive time units by

Note that  as , where

is the total number of visits to  at positive times, one of the important random variables that we studied in the section on
transience and recurrence. For , we denote the time of the th visit to  by

where as usual, we define . Note that  is the time of the first visit to , which we denoted simply by  in the
section on transience and recurrence. The times of the visits to  are stopping times for . That is,  for 
and . Recall also the definition of the hitting probability to state  starting in state :

Suppose that , and that  is recurrent and .

1. If , then the successive visits to  form a renewal process.
2. If  but , then the successive visits to  form a delayed renewal process.

Proof

Let  for convenience.

1. Given , the sequence  is the sequence of arrival times of a renewal process. Every time the chain
reaches state , the process starts over, independently of the past, by the Markov property. Thus the interarrival times 

 for  are conditionally independent, and are identically distributed, given .
2. If  but , then given , the sequence  is the sequence of arrival times of a delayed renewal

process. By the same argument as in (a), the interarrival times  for  are conditionally independent, given
, and all but  have the same distribution.

As noted in the proof,  is the sequence of arrival times and  is the associated sequence of counting
variables for the embedded renewal process associated with the recurrent state . The corresponding renewal function, given 

, is the function  where
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Thus  is the expected number of visits to  in the first  positive time units, starting in state . Note that 
 as  where  is the potential matrix that we studied previously. This matrix gives the expected total

number visits to state , at positive times, starting in state :

Limiting Behavior

The limit theorems of renewal theory can now be used to explore the limiting behavior of the Markov chain. Let 
 denote the mean return time to state , starting in . In the following results, it may be the case that 

, in which case we interpret  as 0.

If  and  is recurrent then

Proof

This result follows from the strong law of large numbers for renewal processes.

Note that  is the average number of visits to  in the first  positive time units.

If  and  is recurrent then

Proof

This result follows from the elementary renewal theorem for renewal processes.

Note that  is the expected average number of visits to  during the first  positive time units,
starting at .

If  and  is recurrent and aperiodic then

Proof

This result follows from the renewal theorem for renewal processes.

Note that  by the very definition of a recurrent state. Thus, when , the law of large numbers above gives
convergence with probability 1, and the first and second renewal theory limits above are simply . By contrast, we already
know the corresponding limiting behavior when  is transient.

If  and  is transient then

1. 
2. 
3.  as 

Proof

1. Note that . But if  is transient,  and hence 
 so the result follows from the squeeze theorem for limits.

2. Similarly, note that

(x, y)Gn y n x
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If  is transient,  and hence  as . Again the result follows from the
squeeze theorem for limits.

3. Once more, if  is transient,  and therefore  as .

On the other hand, if  is transient then  by the very definition of a transience. Thus , and so
the results in parts (b) and (c) agree with the corresponding results above for a recurrent state. Here is a summary.

For ,

If  is transient or if  is recurrent and aperiodic,

Positive and Null Recurrence

Clearly there is a fundamental dichotomy in terms of the limiting behavior of the chain, depending on whether the mean return time
to a given state is finite or infinite. Thus the following definition is natural.

Let .

1. State  is positive recurrent if .
2. If  is recurrent but  then state  is null recurrent.

Implicit in the definition is the following simple result:

If  is positive recurrent, then  is recurrent.

Proof

Recall that if  then .

On the other hand, it is possible to have , so that  is recurrent, and also , so that 
is null recurrent. Simply put, a random variable can be finite with probability 1, but can have infinite expected value. A classic
example is the Pareto distribution with shape parameter .

Like recurrence/transience, and period, the null/positive recurrence property is a class property.

If  is positive recurrent and  then  is positive recurrent.

Proof

Suppose that  is positive recurrent and . Recall that  is recurrent and . Hence there exist  such that 
 and . Thus for every , . Averaging over  from

1 to  gives

Letting  and using renwal theory limit above gives

Therefore  and so  is also positive recurrent.
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Thus, the terms positive recurrent and null recurrent can be applied to equivalence classes (under the to and from equivalence
relation), as well as individual states. When the chain is irreducible, the terms can be applied to the chain as a whole.

Recall that a nonempty set of states  is closed if  and  implies . Here are some simple results for a finite,
closed set of states.

If  is finite and closed, then  contains a positive recurrent state.

Proof

Fix a state  and note that  for every  since  is closed. Averaging over  from
1 to  gives

for every . Note that the change in the order of summation is justified since both sums are finite. Assume now that all
states in  are transient or null recurrent. Letting  in the displayed equation gives the contradiction . Again, the
interchange of sum and limit is justified by the fact that  is finite.

If  is finite and closed, then  contains no null recurrent states.

Proof

Let . Note that  since  is closed. Suppose that  is recurrent. Note that  is also closed and finite and hence
must have a positive recurrent state by the previous result. Hence the equivalence class  is positive recurrent and thus so is 

.

If  is finite and irreducible, then  is a positive recurrent equivalence class.

Proof

We already know that  is a recurrent equivalence class, from our study of transience and recurrence. From the previous
theorem,  is positive recurrent.

In particular, a Markov chain with a finite state space cannot have null recurrent states; every state must be transient or positive
recurrent.

Limiting Behavior, Revisited

Returning to the limiting behavior, suppose that the chain  is irreducible, so that either all states are transient, all states are null
recurrent, or all states are positive recurrent. From the basic limit theorem above, if the chain is transient or if the chain is recurrent
and aperiodic, then

Note in particular that the limit is independent of the initial state . Of course in the transient case and in the null recurrent and
aperiodic case, the limit is 0. Only in the positive recurrent, aperiodic case is the limit positive, which motivates our next definition.

A Markov chain  that is irreducible, positive recurrent, and aperiodic, is said to be ergodic.

In the ergodic case, as we will see,  has a limiting distribution as  that is independent of the initial distribution.

The behavior when the chain is periodic with period  is a bit more complicated, but we can understand this behavior
by considering the -step chain  that has transition matrix . Essentially, this allows us to trade
periodicity (one form of complexity) for reducibility (another form of complexity). Specifically, recall that the -step chain is
aperiodic but has  equivalence classes ; and these are the cyclic classes of original chain .

A x ∈ A x → y y ∈ A

A ⊆ S A

x ∈ A (x,A) = (x, y) = 1P k ∑y∈A P k k ∈ N+ A k

n

= 1∑
y∈A

(x, y)Gn

n
(16.6.15)
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Figure : The cyclic classes of a chain with period 

The mean return time to state  for the -step chain  is .

Proof

Note that every single step for the -step chain corresponds to  steps for the original chain.

Let ,

1.  as  if  and  and .
2.  as  in all other cases.

Proof

These results follow from the previous theorem and the cyclic behavior of the chain.

If  is null recurrent or transient then regardless of the period of ,  as  for every .

Invariant Distributions

Our next goal is to see how the limiting behavior is related to invariant distributions. Suppose that  is a probability density
function on the state space . Recall that  is invariant for  (and for the chain ) if . It follows immediately that 

 for every . Thus, if  has probability density function  then so does  for each , and hence  is a
sequence of identically distributed random variables. A bit more generally, suppose that  is invariant for , and let 

. If  then  defined by  for  is an invariant probability density function.

Suppose that  is invariant for  and satisfies . Then

Proof

Recall again that  for every  since  is invariant for . Averaging over  from 1 to  gives  for
each . Explicitly,

Letting  and using the limit theorem above gives the result. The dominated convergence theorem justifies
interchanging the limit with the sum, since the terms are positive, , and .

Note that if  is transient or null recurrent, then . Thus, a invariant function with finite sum, and in particular an invariant
probability density function must be concentrated on the positive recurrent states.

Suppose now that the chain  is irreducible. If  is transient or null recurrent, then from the previous result, the only nonnegative
functions that are invariant for  are functions that satisfy  and the function that is identically 0: . In
particular, the chain does not have an invariant distribution. On the other hand, if the chain is positive recurrent, then 

16.6.1 d
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for all . Thus, from the previous result, the only possible invariant probability density function is the function  given by 
 for . Any other nonnegative function  that is invariant for  and has finite sum, is a multiple of  (and

indeed the multiple is sum of the values). Our next goal is to show that  really is an invariant probability density function.

If  is an irreducible, positive recurrent chain then the function  given by  for  is an invariant
probability density function for .

Proof

Let  for , and let  be a finite subset of . Then  for every . Letting 
 using the basic limit above gives . The interchange of limit and sum is justified since  is finite. Since

this is true for every finite , it follows that  where . Note also that  since the chain is
positive recurrent. Next note that

for every . Letting  gives  for every . It then follows that 
 for every . Suppose that strict inequality holds for some for some . Then

Interchanging the order of summation on the left in the displayed inequality yields the contradiction . Thus  is
invariant for . Hence  is an invariant probability density function. By the uniqueness result noted earlier, it follows that 

 so that in fact .

In summary, an irreducible, positive recurrent Markov chain  has a unique invariant probability density function  given by 
 for . We also now have a test for positive recurrence. An irreducible Markov chain  is positive recurrent if

and only if there exists a positive function  on  that is invariant for  and satisfies  (and then, of course,
normalizing  would give ).

Consider now a general Markov chain  on . If  has no positive recurrent states, then as noted earlier, there are no invariant
distributions. Thus, suppose that  has a collection of positive recurrent equivalence classes  where  is a nonempty,
countable index set. The chain restricted to  is irreducible and positive recurrent for each , and hence has a unique invariant
probability density function  on  given by

We extend  to  by defining  for , so that  is a probability density function on . All invariant probability
density functions for  are mixtures of these functions:

 is an invariant probability density function for  if and only if  has the form

where  is a probability density function on the index set . That is,  for  and , and 
 otherwise.

Proof

Let , the set of positive recurrent states. Suppose that  has the form given in the theorem. Since  for 
 we have

Suppose that  for some . Since  if  and , the last sum becomes

x, y ∈ S f

f(x) = 1/μ(x) x ∈ S g P f

f

X f f(x) = 1/μ(x) x ∈ S

X

f(x) = 1/μ(x) x ∈ S A S (x, y) ≤ 1∑y∈A
1
n
Gn x ∈ S

n → ∞ f(y) ≤ 1∑y∈A A

A ⊆ S C ≤ 1 C = f(y)∑y∈S C > 0

(x, y)P (y, z) ≤ (x, z)∑
y∈A

1

n
Gn

1

n
Gn+1 (16.6.19)

x, z ∈ S n → ∞ f(y)P (y, z) ≤ f(z)∑y∈A z ∈ S

f(y)P (y, z) ≤ f(z)∑y∈S z ∈ S z ∈ S

f(y)P (y, z) < f(z)∑
z∈S

∑
y∈S

∑
z∈S

(16.6.20)

C < C f
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f/C = f C = 1

X f

f(x) = 1/μ(x) x ∈ S X

g S P g(x) < ∞∑x∈S

g f

X S X

X ( : i ∈ I)Ai I

Ai i ∈ I

fi Ai

(x) = , x ∈fi
1

μ(x)
Ai (16.6.21)

fi S (x) = 0fi x ∉ Ai fi S

X

f X f

f(x) = (x), x ∈ S∑
i∈I

pifi (16.6.22)

( : i ∈ I)pi I f(x) = (x)pifi i ∈ I x ∈ Ai

f(x) = 0

A = ⋃i∈I Ai f f(x) = 0
x ∉ A

(fP )(y) = f(x)P (x, y) = (x)P (x, y)∑
x∈S

∑
i∈I

∑
x∈Ai

pifi (16.6.23)
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because  is invariant for the  restricted to . If  then  for  so the sum above becomes 
. Hence  is invariant. Moreover,

so  is a PDF on . Conversely, suppose that  is an invariant PDF for . We know that  is concentrated on the positive
recurrent states, so  for . For  and 

since  is invariant for  and since, as noted before,  if . It follows that  restricted to  is invariant
for the chain restricted to  for each . Let , the normalizing constant for  restricted to . By
uniqueness, the restriction of  to  must be , so  has the form given in the theorem.

Invariant Measures

Suppose that  is irreducible. In this section we are interested in general functions  that are invariant for , so that
. A function  defines a positive measure  on  by the simple rule

so in this sense, we are interested in invariant positive measures for  that may not be probability measures. Technically,  is the
density function of  with respect to counting measure  on .

From our work above, We know the situation if  is positive recurrent. In this case, there exists a unique invariant probability
density function  that is positive on , and every other nonnegative invariant function  is a nonnegative multiples of . In
particular, either , the zero function on , or  is positive on  and satisfies .

We can generalize to chains that are simply recurrent, either null or positive. We will show that there exists a positive invariant
function that is unique, up to multiplication by positive constants. To set up the notation, recall that 
is the first positive time that the chain is in state . In particular, if the chain starts in  then  is the time of the first return to 

. For  we define the function  by

so that  is the expected number of visits to  before the first return to , starting in . Here is the existence result.

Suppose that  is recurrent. For ,

1. 
2.  is invariant for 
3.  for .

Proof
1. By definition, given , we have  but  for . Hence .
2. Since the chain is recurrent, with probability 1 we have  and . Hence for ,

(Note that if  then with probability 1, the  term in the first sum and the  term in the second sum are 1
and the remaining terms are 0. If , the  term in the first sum and the  term in the second sum are 0 with
probability 1, so again the the two sums are the same.) Hence

(fP )(y) = (x)P (x, y) = (y) = f(y)pj ∑
x∈Aj

fj pjfj (16.6.24)

fj P Aj y ∉ A P (x, y) = 0 x ∈ A
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f(x) = f(x) = (x) = = 1∑
x∈S

∑
i∈I

∑
x∈Ai

∑
i∈I

pi ∑
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fi ∑
i∈I

pi (16.6.25)

f S f X f

f(x) = 0 x ∉ A i ∈ I y ∈ Ai
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(16.6.26)

f P f(x)P (x, y) = 0 x ∉ Ai f Ai
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f Ai

f/pi Ai fi f

X g : S → [0, ∞) X

gP = g g : S → [0, ∞) ν S

ν(A) = g(x), A ⊆ S∑
x∈A

(16.6.27)
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x ∈ S x τx
x x ∈ S γx
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∣
∣ X0 (16.6.28)

(y)γx y x x

X x ∈ S

(x) = 1γx
γx X
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= xX0 = xX0 ≠ xXn n ∈ {1, … , −1}τx (x) = 1γx
< ∞τx = xXτx y ∈ S
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∣
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Next we partition on the values of  in the sum to obtain

But  (that is, the events depend only on . Hence by the Markov property, the
first factor in the last displayed equation is simply . Substituting and re-indexing the
sum gives

3. By the invariance in part (b),  for every . Let . Since the chain is irreducible, there exists 
such that . Hence

Similarly, there exists  such that . Hence

and therefore .

Next is the uniqueness result.

Suppose again that  is recurrent and that  is invariant for . For fixed ,

Proof

Let  and let . Since  is invariant,

Note that the last term is . Repeating the argument for  in the sum above gives

The last two terms are

Continuing in this way shows that for each ,

Letting  then shows that . Next, note that the function  is invariant, since it is a
difference of two invariant functions, and as just shown, is nonnegative. Also, . Let .
Since the chain is irreducible, there exists  such that . Hence

(y) =E( 1( = y, ≥ n) = x) = P( = y, ≥ n ∣ = x)γx ∑
n=1

∞

Xn τx
∣
∣
∣ X0 ∑

n=1

∞

Xn τx X0 (16.6.30)

Xn−1

(y)γx = P( = y, = z, ≥ n ∣ = x)∑
n=1

∞

∑
z∈S

Xn Xn−1 τx X0

= P( = y ∣ = z, ≥ n, = x)P( = z, ≥ n ∣ = x)∑
n=1

∞

∑
z∈S

Xn Xn−1 τx X0 Xn−1 τx X0

{ = x, ≥ n} ∈X0 τx Fn−1 ( , … , ))X0 Xn−1

P( = y ∣ = z) = P (z, y)Xn Xn−1

(y)γx = P (z, y)P( = z, ≥ n ∣ = x) = P (z, y)E( 1( = z) = x)∑
n=1

∞

∑
z∈S

Xn−1 τx X0 ∑
z∈S

∑
n=1

τx

Xn−1
∣
∣
∣ X0

= P (z, y)E( 1( = z) = x) = P (z, y) (z) = P (y)∑
z∈S

∑
m=0

−1τx

Xm
∣
∣
∣ X0 ∑

z∈S

γx γx

=γx γxP
n n ∈ N y ∈ S j∈ N

(x, y) > 0P j

(y) = (y) ≥ (x) (x, y) = (x, y) > 0 γx γxP
j γx P j P j (16.6.31)

k ∈ N (y, x) > 0P k

1 = (x) = (x) ≥ (y) (y, x)γx γxP
k γx P k (16.6.32)

(y) ≤ 1/ (y, x) < ∞γx P k

X g : S → [0, ∞) X x ∈ S

g(y) = g(x) (y), y ∈ Sγx (16.6.33)

= S−{x}Sx y ∈ S g

g(y) = gP (y) = g(z)P (z, y) = g(z)P (z, y) +g(x)P (x, y)∑
z∈S

∑
z∈Sx

(16.6.34)

g(x)P( = y, ≥ 1 ∣ = x)X1 τx X0 g(z)

g(y) = g(w)P (w, z)P (z, y) +g(x) P (x, z)P (z, y) +g(x)P (x, y)∑
z∈Sx

∑
w∈Sx

∑
z∈Sx

(16.6.35)

g(x) [P( = y, ≥ 2 ∣ = x) +P( = y, ≥ 1 ∣ = x)]X2 τx X0 X1 τx X0 (16.6.36)

n ∈ N+

g(y) ≥ g(x) P( = y, ≥ k ∣ = x)∑
k=1

n

Xk τx X0 (16.6.37)

n → ∞ g(y) ≥ g(x) (y)γx h = g−g(x)γx
h(x) = g(x) −g(x) (x) = 0γx y ∈ S

j∈ N (y, x) > 0P j
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Since  it follows that .

Thus, suppose that  is null recurrent. Then there exists an invariant function  that is positive on  and satisfies 
. Every other nonnegative invariant function is a nonnegative multiple of . In particular, either , the zero

function on , or  is positive on  and satisfies . The section on reliability chains gives an example of the
invariant function for a null recurrent chain.

The situation is complicated when  is transient. In this case, there may or may not exist nonnegative invariant functions that are
not identically 0. When they do exist, they may not be unique (up to multiplication by nonnegative constants). But we still know
that there are no invariant probability density functions, so if  is a nonnegative function that is invariant for  then either 
or . The section on random walks on graphs provides lots of examples of transient chains with nontrivial invariant
functions. In particular, the non-symmetric random walk on  has a two-dimensional space of invariant functions.

Examples and Applications

Finite Chains

Consider again the general two-state chain on  with transition probability matrix given below, where  and 
 are parameters.

1. Find the invariant distribution.
2. Find the mean return time to each state.
3. Find  without having to go to the trouble of diagonalizing , as we did in the introduction to discrete-time

chains.

Answer

1. 

2. 

3.  as .

Consider a Markov chain with state space  and transition matrix  given below:

1. Draw the state diagram.
2. Determine the equivalent classes and classify each as transient or positive recurrent.
3. Find all invariant probability density functions.
4. Find the mean return time to each state.
5. Find .

Answer

1. State graph
State1.png

2.  recurrent;  recurrent;  transient.

3. , 

4. 

0 = h(x) = h (x) ≥ h(y) (y, x) ≥ 0P j P j (16.6.38)

(y, x) > 0P j h(y) = 0

X g S

g(x) = ∞∑x∈S g g = 0

S g S g(x) = ∞∑x∈S

X

g X g = 0

g(x) = ∞∑x∈S

Z

S = {0, 1} p ∈ (0, 1)
q ∈ (0, 1)

P = [ ]
1 −p

q

p

1 −q
(16.6.39)

limn→∞ P n P

f = ( , )
q

p+q

p

p+q

μ = ( , )
p+q

q

p+q

p

→ [ ]P n 1
p+q

q

q

p

p
n → ∞

S = {a, b, c, d} P

P =

⎡

⎣

⎢
⎢⎢⎢

1
3

1

0
1
4

2
3

0

0
1
4

0

0

1
1
4

0

0

0
1
4

⎤

⎦

⎥
⎥⎥⎥

(16.6.40)

limn→∞ P n

{a, b} {c} {d}

f = ( p, p, 1 −p, 0)3
5

2
5

0 ≤ p ≤ 1

μ = ( , , 1, ∞)5
3

5
2
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5.  as 

Consider a Markov chain with state space  and transition matrix  given below:

1. Sketch the state graph.
2. Find the equivalence classes and classify each as transient or positive recurrent.
3. Find all invariant probability density functions.
4. Find the mean return time to each state.
5. Find .

Answer

1. State graph
State2.png

2.  recurrent;  transient;  recurrent.

3. 

4. 

5.  as .

Consider a Markov chain with state space  and transition matrix  given below:

1. Sketch the state graph.
2. Find the equivalence classes and classify each as transient or positive recurrent.
3. Find all invariant probability density functions.
4. Find the mean return time to each state.
5. Find .

Answer

→P n

⎡

⎣

⎢⎢⎢⎢
⎢

3
5
3
5

0
2
5

2
5
2
5

0
4

15

0

0

1
1
3

0

0

0

0

⎤

⎦

⎥⎥⎥⎥
⎥

n → ∞

S = {1, 2, 3, 4, 5, 6} P

P =

⎡

⎣

⎢
⎢⎢⎢
⎢⎢
⎢⎢⎢
⎢

0

0
1
4

0

0

0

0

0

0

0

0
1
4

1
2

0
1
2

0
1
3
1
4

0

0

0

1

0
1
4

1
2

0
1
4

0
2
3

0

0

1

0

0

0
1
4

⎤

⎦

⎥
⎥⎥⎥
⎥⎥
⎥⎥⎥
⎥

(16.6.41)

limn→∞ P n

{1, 3, 5} {2, 6} {4}

f = ( p, 0, p, 1 −p, p, 0) , 0 ≤ p ≤ 12
19

8
19

9
19

μ = ( , ∞, , 1, , ∞)19
2

19
8

19
8

→P n

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

2
19
1

19
2

19

0
2

19
1

19

0

0

0

0

0

0

8
19
4

19
8

19

0
8

19
4

19

0

1
2

0

1

0

1
2

9
19
9

38
9

19

0
9

19
9

38

0

0

0

0

0

0

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

n → ∞

S = {1, 2, 3, 4, 5, 6} P

P =

⎡

⎣

⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢

1
2
1
4
1
4
1
4

0

0

1
2
3
4

0

0

0

0

0

0
1
2
1
4

0

0

0

0
1
4
1
4

0

0

0

0

0

0
1
2
1
2

0

0

0
1
4
1
2
1
2

⎤

⎦

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥

(16.6.42)

limn→∞ P n
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1. State graph
State3.png

2.  recurrent;  transient;  recurrent.
3. 
4. 

5.  as 

Consider the Markov chain with state space  and transition matrix  given below:

1. Sketch the state digraph, and show that the chain is irreducible with period 3.
2. Identify the cyclic classes.
3. Find the invariant probability density function.
4. Find the mean return time to each state.
5. Find .
6. Find .
7. Find .

Answer

1. State graph
State4.png

2. Cyclic classes: , , 
3. 

4. 

5.  as 

{1, 2} {3, 4} {5, 6}

f = ( p, p, 0, 0, (1 −p), (1 −p)) , 0 ≤ p ≤ 11
3

2
3

1
2

1
2

μ = (3, , ∞, ∞, 2, 2)3
2

→P n

⎡

⎣

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎢

1
3
1
3
4

15
1
5

0

0

2
3
2
3
8

15
2
5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1
5
1
2
1
2

0

0

0

1
5
1
2
1
2

⎤

⎦

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎥

n → ∞

S = {1, 2, 3, 4, 5, 6, 7} P

P =

⎡

⎣

⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢

0

0

0

0

0
1
2
1
4

0

0

0

0

0
1
2
3
4

1
2
1
3

0

0

0

0

0

1
4

0

0

0

0

0

0

1
4
2
3

0

0

0

0

0

0

0
1
3
1
2
3
4

0

0

0

0
2
3
1
2
1
4

0

0

⎤

⎦

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥

(16.6.43)

limn→∞ P 3n

limn→∞ P 3n+1

limn→∞ P 3n+2

{1, 2} {3, 4, 5} {6, 7}

f = (232, 363, 237, 58, 300, 333, 262)1
1785

μ = 1785( , , , , , )1
232

1
363

1
237

1
58

1
300

1
333

1
262

→P 3n 1
585

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢

232

232

0

0

0

0

0

363

363

0

0

0

0

0

0

0

237

237

237

0

0

0

0

58

58

58

0

0

0

0

300

300

300

0

0

0

0

0

0

0

333

333

0

0

0

0

0

262

262

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥

n → ∞
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6.  as 

7.  as 

Special Models

Read the discussion of invariant distributions and limiting distributions in the Ehrenfest chains.

Read the discussion of invariant distributions and limiting distributions in the Bernoulli-Laplace chain.

Read the discussion of positive recurrence and invariant distributions for the reliability chains.

Read the discussion of positive recurrence and limiting distributions for the birth-death chain.

Read the discussion of positive recurrence and for the queuing chains.

Read the discussion of positive recurrence and limiting distributions for the random walks on graphs.

This page titled 16.6: Stationary and Limiting Distributions of Discrete-Time Chains is shared under a CC BY 2.0 license and was authored,
remixed, and/or curated by Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts
platform.

→P 3n+1 1
585

⎡

⎣

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢

0

0

0

0

0

232

232

0

0

0

0

0

363

363

237

237

0

0

0

0

0

58

58

0

0

0

0

0

300

300

0

0

0

0

0

0

0

333

333

333

0

0

0

0

262

262

262

0

0

⎤

⎦

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥

n → ∞

→P 3n+2 1
585

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢

0

0

232

232

232

0

0

0

0

363

363

363

0

0

0

0

0

0

0

237

237

0

0

0

0

0

58

58

0

0

0

0

0

300

300

333

333

0

0

0

0

0

262

262

0

0

0

0

0

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥

n → ∞
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