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5.24: The Triangle Distribution
          

Like the semicircle distribution, the triangle distribution is based on a simple geometric shape. The distribution arises naturally
when uniformly distributed random variables are transformed in various ways.

The Standard Triangle Distribution

Distribution Functions

The standard triangle distribution with vertex at  (equivalently, shape parameter ) is a continuous distribution on 
 with probability density function  described as follows:

1. If  then  for 
2. If  then  for .
3. If  then

The shape of the probability density function justifies the name triangle distribution.

The graph of , together with the domain , forms a triangle with vertices , , and . The mode of the
distribution is .

1. If ,  is decreasing.
2. If ,  is increasing.
3. If ,  increases and then decreases.

Proof

Using  as the base, we can compute the area of the triangle as  so we see immediately that  is a valid probability
density function. The properties are obvious.

Open special distribution simulator and select the triangle distribution. Vary  (but keep the default values for the other
parameters) and note the shape of the probability density function. For selected values of , run the simulation 1000 times and
compare the empirical density function to the probability density function.

The distribution function  is given as follows:

1. If ,  for .
2. If ,  for .
3. If 

Proof

This result follows from standard calculus since .

The quantile function  is given by

1. The first quartile is  if  and is  if 
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2. The median is  if  and is  if .

3. The third quartile is  if  and is  if .

Open the special distribution calculator and select the triangle distribution. Vary  (but keep the default values for the other
parameters) and note the shape of the distribution function. For selected values of , compute the first and third quartiles.

Moments

Suppose that  has the standard triangle distribution with vertex . The moments are easy to compute.

Suppose that .

1. If , .
2. If ,

Proof

This follows from standard calculus, since .

From the general moment formula, we can compute the mean, variance, skewness, and kurtosis.

The mean and variance of  are

1. 
2. 

Proof

This follows from the general moment result. Recall that .

Note that  increases from  to  as  increases from 0 to 1. The graph of  is a parabola opening downward; the
largest value is  when  or  and the smallest value is  when .

Open the special distribution simulator and select the triangle distribution. Vary  (but keep the default values for the other
paramters) and note the size and location of the mean  standard deviation bar. For selected values of , run the simulation
1000 times and compare the empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness of  is

The kurtosis of  is .

Proof

These results follow from the general moment result and the computational formulas for skewness and kurtosis.

Note that  is positively skewed for , negatively skewed for , and symmetric for . More specifically, if we
indicate the dependence on the parameter  then . Note also that the kurtosis is independent of , and
the excess kurtosis is .

Open the special distribution simulator and select the triangle distribution. Vary  (but keep the default values for the other
paramters) and note the degree of symmetry and the degree to which the distribution is peaked. For selected values of , run
the simulation 1000 times and compare the empirical density function to the probability density function.
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Related Distributions

If  has the standard triangle distribution with parameter , then  has the standard triangle distribution with parameter 
.

Proof

For , , where  is the CDF of . The result now follows from
the formula for the CDF.

The standard triangle distribution has a number of connections with the standard uniform distribution. Recall that a simulation of a
random variable with a standard uniform distribution is a random number in computer science.

Suppose that  and  are independent random variables, each with the standard uniform distribution. Then

1.  has the standard triangle distribution with .
2.  has the standard triangle distribution with .

Proof

 and  have CDF  for 

1.  has CDF  for 
2.  has CDF  for .

Suppose again that  and  are independent random variables, each with the standard uniform distribution. Then

1.  has the standard triangle distribution with .
2.  has the standard triangle distribution with .

Proof
1. Let . Note that the event  is simply the union of two disjoint triangular regions,

each with base and height of length . Hence .
2. Let . The event  is a triangular region with height and base of length . Hence 

. For , the event  is a triangular regtion with height and base if length . Hence 
.

In the previous result, note that  is the sample mean from a random sample of size 2 from the standard uniform distribution. Since
the quantile function has a simple closed-form expression, the standard triangle distribution can be simulated using the random
quantile method.

Suppose that  is has the standard uniform distribution and . Then the random variable below has the standard
triangle distribution with parameter :

Open the random quantile experiment and select the triangle distribution. Vary  (but keep the default values for the other
parameters) and note the shape of the distribution function/quantile function. For selected values of , run the experiment 1000
times and watch the random quantiles. Compare the empirical density function, mean, and standard deviation to their
distributional counterparts.

The standard triangle distribution can also be simulated using the rejection method, which also works well since the region  under
the probability density function  is bounded. Recall that this method is based on the following fact: if  is uniformly
distributed on the rectangular region  which contains , then the conditional distribution of 

 given  is uniformly distributed on , and hence  has probability density function .

Open the rejection method experiment and select the triangle distribution. Vary  (but keep the default values for the other
parameters) and note the shape of the probability density function. For selected values of , run the experiment 1000 times and
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watch the scatterplot. Compare the empirical density function, mean, and standard deviation to their distributional counterparts.

For the extreme values of the shape parameter, the standard triangle distributions are also beta distributions.

Connections to the beta distribution:

1. The standard triangle distribution with shape parameter  is the beta distribution with left parameter  and right
parameter .

2. The standard triangle distribution with shape parameter  is the beta distribution with left parameter  and right
parameter .

Proof

These results follow directly from the form of the standard triangle PDF.

Open the special distribution simulator and select the beta distribution. For parameter values given below, run the simulation
1000 times and compare the empirical density function, mean, and standard deviation to their distributional counterparts.

1. , 
2. , 

The General Triangle Distribution

Like so many standard distributions, the standard triangle distribution is usually generalized by adding location and scale
parameters.

Definition

Suppose that  has the standard triangle distribution with vertex at . For  and , random variable 
 has the triangle distribution with location parameter , and scale parameter , and shape parameter 

Distribution Functions

Suppose that  has the general triangle distribution given in the definition above.

 has probability density function  given as follows:

1. If ,  for .
2. If ,  for .
3. If ,

Proof

This follows from a standard result for location-scale families. Recall that

where  is the standard triangle PDF with parameter .

Once again, the shape of the probability density function justifies the name triangle distribution.

The graph of , together with the domain , forms a triangle with vertices , , and . The
mode of the distribution is .

1. If ,  is decreasing.
2. If ,  is increasing.
3. If ,  increases and then decreases.
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Clearly the general triangle distribution could be parameterized by the left endpoint , the right endpoint  and the
location of the vertex , but the location-scale-shape parameterization is better.

Open special distribution simulator and select the triangle distribution. Vary the parameters , , and , and note the shape and
location of the probability density function. For selected values of the parameters, run the simulation 1000 times and compare
the empirical density function to the probability density function.

The distribution function  of  is given as follows:

1. If ,  for 
2. If ,  for 
3. If ,

Proof

This follows from a standard result for location-scale families:

where  is the standard triangle CDF with parameter .

 has quantile function  given by

1. The first quartile is  if  and is  if 

2. The median is  if  and is  if .

3. The third quartile is  if  and is  if .

Proof

Ths follows from a standard result for location-scale families:  for , where  is the
standard triangle quantile function with parameter .

Open the special distribution simulator and select the triangle distribution. Vary the the parameters , , and , and note the
shape and location of the distribution function. For selected values of parameters, compute the median and the first and third
quartiles.

Moments

Suppose again that  has the triangle distribution with location parameter , scale parameter  and shape parameter
. Then we can take  where  has the standard triangle distribution with parameter . Hence the moments of 

 can be computed from the moments of . Using the binomial theorem and the linearity of expected value we have

The general results are rather messy.
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Proof

This follows from the results for the mean and variance of the standard triangle distribution, and simple properties of expected
value and variance.

Open the special distribution simulator and select the triangle distribution. Vary the parameters , , and , and note the size
and location of the mean  standard deviation bar. For selected values of the paramters, run the simulation 1000 times and
compare the empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness of  is

The kurtosis of  is .

Proof

These results follow immediately from the skewness and kurtosis of the standard triangle distribution. Recall that skewness and
kurtosis are defined in terms of the standard score, which is independent of the location and scale parameters.

As before, the excess kurtosis is .

Related Distributions

Since the triangle distribution is a location-scale family, it's invariant under location-scale transformations. More generally, the
family is closed under linear transformations with nonzero slope.

Suppose that  has the triangle distribution with shape parameter , scale parameter , and shape parameter 
. If  and  then

1.  has the triangle distribution with location parameter , scale parameter , and shape parameter .
2.  has the triangle distribution with location parameter , scale parameter , and shape parameter .

Proof

From the definition we can take  where  has the standard triangle distribution with parameter .

1. Note that .
2. Note that , and recall from the result above that  has the basic triangle

distribution with parameter .

As with the standard distribution, there are several connections between the triangle distribution and the continuous uniform
distribution.

Suppose that  and  are independent and are uniformly distributed on the interval , where  and 
. Then

1.  has the triangle distribution with location parameter , scale parameter , and shape parameter .
2.  has the triangle distribution with location parameter , scale parameter , and shape parameter .

Proof

The uniform distribution is itself a location-scale family, so we can write  and , where  and 
 are independent and each has the standard uniform distribution. Then  and 

 so the result follows from the corresponding result for the standard triangle distribution.

Suppose again that  and  are independent and are uniformly distributed on the interval , where  and 
. Then

1.  has the triangle distribution with location parameter 0, scale parameter , and shape parameter .
2.  has the triangle distribution with location parameter , scale parameter , and shape parameter .
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3.  has the triangle distribution with location parameter , scale parameter , and shape parameter 

Proof

As before, we can write  and , where  and  are independent and each has the standard
uniform distribution.

1.  and by the result above,  has the standard triangle distribution with parameter .
2.  and by the result above,  has the standard triangle distribution with

parameter .
3. Let . Since  also has the standard uniform distribution and is

independent of , it follows from the result above that  has the basic triangle distribution with parameter . But 
 and hence the result follows.

A special case of (b) leads to a connection between the triangle distribution and the Irwin-Hall distribution.

Suppose that  and  are independent random variables, each with the standard uniform distribution. Then  has the
triangle distribtion with location parameter , scale parameter  and shape parameter . But this is also the Irwin-Hall
distribution of order .

Open the special distribution simulator and select the Irwin-Hall distribution. Set  and note the shape and location of the
probability density function. Run the simulation 1000 times and compare the empirical density function, mean, and standard
deviation to their distributional counterparts.

Since we can simulate a variable  with the basic triangle distribution with parameter  by the random quantile method
above, we can simulate a variable with the triangle distribution that has location parameter , scale parameter ,
and shape parameter  by our very definition: . Equivalently, we could compute a random quantile using the quantile
function of .

Open the random quantile experiment and select the triangle distribution. Vary the location parameter , the scale parameter ,
and the shape parameter , and note the shape of the distribution function. For selected values of the parameters, run the
experiment 1000 times and watch the random quantiles. Compare the empirical density function, mean and standard deviation
to their distributional counterparts.

As with the standard distribution, the general triangle distribution has a bounded probability density function on a bounded interval,
and hence can be simulated easily via the rejection method.

Open the rejection method experiment and select the triangle distribution. Vary the parameters and note the shape of the
probability density function. For selected values of the parameters, run the experiment 1000 times and watch the scatterplot.
Compare the empirical density function, mean, and standard deviation to their distributional counterparts.
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