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16.12: Discrete-Time Queuing Chains
     

Basic Theory

Introduction

In a queuing model, customers arrive at a station for service. As always, the terms are generic; here are some typical examples:

The customers are persons and the service station is a store.
The customers are file requests and the service station is a web server.
The customers are packages and the service station is a processing facility.

Figure : Ten customers and a server

Queuing models can be quite complex, depending on such factors as the probability distribution that governs the arrival of
customers, the probability distribution that governs the service of customers, the number of servers, and the behavior of the
customers when all servers are busy. Indeed, queuing theory has its own lexicon to indicate some of these factors. In this section,
we will study one of the simplest, discrete-time queuing models. However, as we will see, this discrete-time chain is embedded in a
much more realistic continuous-time queuing process knows as the M/G/1 queue. In a general sense, the main interest in any
queuing model is the number of customers in the system as a function of time, and in particular, whether the servers can adequately
handle the flow of customers.

Our main assumptions are as follows:

1. If the queue is empty at a given time, then a random number of new customers arrive at the next time.
2. If the queue is nonempty at a given time, then one customer is served and a random number of new customers arrive at the

next time.
3. The number of customers who arrive at each time period form an independent, identically distributed sequence.

Thus, let  denote the number of customers in the system at time , and let  denote the number of new customers who
arrive at time . Then  is a sequence of independent random variables, with common probability density
function  on , and

 is a discrete-time Markov chain with state space  and transition probability matrix  given by

The chain  is the queuing chain with arrival distribution defined by .

Proof

The Markov property and the form of the transition matrix follow from the construction of the state process  in term of the
IID sequence . Starting in state 0 (an empty queue), a random number of new customers arrive at the next time unit,
governed by the PDF . Hence the probability of going from state 0 to state  in one step is . Starting in state , one
customer is served and a random number of new customers arrive by the next time unit, again governed by the PDF . Hence
the probability of going from state  to state  is .

Recurrence and Transience

From now on we will assume that  and . Thus, at each time unit, it's possible that no new customers
arrive or that at least 2 new customers arrive. Also, we let  denote the mean of the arrival distribution, so that
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Thus  is the average number of new customers who arrive during a time period.

The chain  is irreducible and aperiodic.

Proof

In a positive state, the chain can move at least one unit to the right and can move one unit to the left at the next step. From state
0, the chain can move two or more units to the right or can stay in 0 at the next step. Thus, every state leads to every other state
so the chain is irreducible. Since 0 leads back to 0, the chain is aperiodic.

Our goal in this section is to compute the probability that the chain reaches 0, as a function of the initial state (so that the server is
able to serve all of the customers). As we will see, there are some curious and unexpected parallels between this problem and the
problem of computing the extinction probability in the branching chain. As a corollary, we will also be able to classify the queuing
chain as transient or recurrent. Our basic parameter of interest is , where as usual,  is the
hitting probability matrix and  is the first positive time that the chain is in state 0 (possibly infinite).
Thus,  is the probability that the queue eventually empties, starting with a single customer.

The parameter  satisifes the following properties:

1.  for every .
2.  for every .

Proof
1. The critical observation is that if  then  for 

. Thus, the chain, starting in , and up until the time that it reaches  (if it does), behaves
stochastically like the chain starting in state 1, and up until it reaches 0.

2. In order to reach 0, starting in state , the chain must first reach  and then from  must reach , until
finally reaching 0 from state 1. Each of these intermediate trips has probability  by part (a) and are independent by the
Markov property.

The parameter  satisfies the equation:

Proof

This follows from the previous theorem by conditioning on the first state.

Note first that . On the other hand, by the Markov property and the previous result,

Of course  for .

Note that this is exactly the same equation that we considered for the branching chain, namely , where  is the
probability generating function of the distribution that governs the number of new customers that arrive during each period.
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Figure : The graph of  in the recurrent case

Figure : The graph of  in the transient case

 is the smallest solution in  of the equation . Moreover

1. If  then  and the chain is recurrent.
2. If  then  and the chain is transient..

Proof

This follows from our analysis of branching chains. The graphs above show the two cases. Note that the condition in (a) means
that on average, one or fewer new customers arrive for each customer served. The condition in (b) means that on average, more
than one new customer arrives for each customer served.

Positive Recurrence

Our next goal is to find conditions for the queuing chain to be positive recurrent. Recall that  is the mean of the probability
density function ; that is, the expected number of new customers who arrive during a time period. As before, let  denote the first
positive time that the chain is in state 0. We assume that the chain is recurrent, so  and .

Let  denote the probability generating function of , starting in state 1. Then

1.  is also the probability generating function of  starting in state 0.
2.  is the probability generating function of  starting in state .

Proof
1. The transition probabilities starting in state 1 are the same as those starting in state 0:  for 

.
2. Starting in state , the random time to reach 0 is the sum of the time to reach , the additional time to reach 

 from , and so forth, ending with the time to reach 0 from state 1. These random times are independent by the
Markov property, and each has the same distribution as the time to reach 0 from state 1 by our argument above. Finally,
recall that the PGF of a sum of independent variables is the product of the corresponding PGFs.

 for .
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Once again, the trick is to condition on the first state:

First note that . On the other hand, by the Markov property and the previous
theorem,

Of course . Hence we have

The PGF of any variable that takes positive integer values is defined on , and maps this interval back into itself. Hence
the representation is valid at least for .

The deriviative of  is

Proof

Recall that a PGF is infinitely differentiable on the open interval of convergence. Hence using the result in the previous
theorem and the product and chain rules,

Solving for  gives the result.

As usual, let , the mean return time to state 0 starting in state 0. Then

1.  if  and therefore the chain is positive recurrent.
2.  if  and therefore the chain is null recurrent.

Proof

Recall that  is the probability generating function of , starting at 0. From basic properties of PGFs we know that , 
, , and  as . So letting  in the result of the previous theorem, we have 

if  and  if .

So to summarize, the queuing chain is positive recurrent if , null recurrent if , and transient if . Since  is the
expected number of new customers who arrive during a service period, the results are certainly reasonable.

Computational Exercises

Consider the queuing chain with arrival probability density function  given by , , where  is a
parameter. Thus, at each time period, either no new customers arrive or two arrive.

1. Find the transition matrix .
2. Find the mean  of the arrival distribution.
3. Find the generating function  of the arrival distribution.
4. Find the probability  that the queue eventually empties, starting with one customer.
5. Classify the chain as transient, null recurrent, or positive recurrent.
6. In the positive recurrent case, find , the mean return time to 0.

Answer
1. , . For , , .
2. .
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3.  for .
4.  if  and  if .
5. The chain is transient if , null recurrent if , and positive recurrent if .
6.  for .

Graphs of  and  when 
Graphs

Graphs of  and  when 
Graphs

Consider the queuing chain whose arrival distribution is the geometric distribution on  with parameter , where 
. Thus  for .

1. Find the transition matrix .
2. Find the mean  of the arrival distribution.
3. Find the generating function  of the arrival distribution.
4. Find the probability  that the queue eventually empties, starting with one customer.
5. Classify the chain as transient, null recurrent, or positive recurrent.
6. In the positive recurrent case, find , the mean return time to 0.

Answer
1.  for . For ,  for .
2. .

3.  for .

4.  if  and  if .
5. The chain is transient if , null recurrent if , and positive recurrent if .

6.  for .

Graphs of  and  when 
Graphs

Graphs of  and  when 
Graphs

Curiously, the parameter  and the classification of the chain are the same in the last two models.

Consider the queuing chain whose arrival distribution is the Poisson distribution with parameter . Thus 
 for . Find each of the following:

1. The transition matrix 
2. The mean  of the arrival distribution.
3. The generating function  of the arrival distribution.
4. The approximate value of  when  and when .
5. Classify the chain as transient, null recurrent, or positive recurrent.
6. In the positive recurrent case, find , the mean return time to 0.

Answer
1.  for . For ,  for .
2. The parameter  is the mean of the Poisson distribution, so the notation is consistent.
3.  for .
4.  if . If  then  is the solution in  of the equation  which can be expressed in terms

of a special function known as the Lambert  function:

For , . For , .
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m = 2 q ≈ 0.20319 m = 3 q ≈ 0.059520

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10385?pdf


16.12.6 https://stats.libretexts.org/@go/page/10385

5. The chain is transient if , null recurrent if , and positive recurrent if .
6.  for .

Graphs of  and  when 
Graphs

Graphs of  and  when 
Graphs
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