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9.6: Chi-Square Tests
       

In this section, we will study a number of important hypothesis tests that fall under the general term chi-square tests. These are named,
as you might guess, because in each case the test statistics has (in the limit) a chi-square distribution. Although there are several different
tests in this general category, they all share some common themes:

In each test, there are one or more underlying multinomial samples, Of course, the multinomial model includes the Bernoulli model
as a special case.
Each test works by comparing the observed frequencies of the various outcomes with expected frequencies under the null hypothesis.
If the model is incompletely specified, some of the expected frequencies must be estimated; this reduces the degrees of freedom in
the limiting chi-square distribution.

We will start with the simplest case, where the derivation is the most straightforward; in fact this test is equivalent to a test we have
already studied. We then move to successively more complicated models.

The One-Sample Bernoulli Model

Suppose that  is a random sample from the Bernoulli distribution with unknown success parameter .
Thus, these are independent random variables taking the values 1 and 0 with probabilities  and  respectively. We want to test 

 versus , where  is specified. Of course, we have already studied such tests in the Bernoulli model.
But keep in mind that our methods in this section will generalize to a variety of new models that we have not yet studied.

Let  and . These statistics give the number of times (frequency) that outcomes 1 and 0
occur, respectively. Moreover, we know that each has a binomial distribution;  has parameters  and , while  has parameters 
and . In particular, , , and . Moreover, recall that  is
sufficient for . Thus, any good test statistic should be a function of . Next, recall that when  is large, the distribution of  is
approximately normal, by the central limit theorem. Let

Note that  is the standard score of  under . Hence if  is large,  has approximately the standard normal distribution under ,
and therefore  has approximately the chi-square distribution with 1 degree of freedom under . As usual, let  denote the
quantile function of the chi-square distribution with  degrees of freedom.

An approximate test of  versus  at the  level of significance is to reject  if and only if .

The test above is equivalent to the unbiased test with test statistic  (the approximate normal test) derived in the section on Tests in
the Bernoulli model.

For purposes of generalization, the critical result in the next exercise is a special representation of . Let  and .
Note that these are the expected frequencies of the outcomes 0 and 1, respectively, under .

 can be written in terms of the observed and expected frequencies as follows:

This representation shows that our test statistic  measures the discrepancy between the expected frequencies, under , and the
observed frequencies. Of course, large values of  are evidence in favor of . Finally, note that although there are two terms in the
expansion of  in Exercise 3, there is only one degree of freedom since . The observed and expected frequencies could be
stored in a  table.

The Multi-Sample Bernoulli Model
Suppose now that we have samples from several (possibly) different, independent Bernoulli trials processes. Specifically, suppose that 

 is a random sample of size  from the Bernoulli distribution with unknown success parameter 
for each . Moreover, the samples  are independent. We want to test hypotheses about the unknown
parameter vector . There are two common cases that we consider below, but first let's set up the essential notation
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that we will need for both cases. For  and , let  denote the number of times that outcome  occurs in
sample . The observed frequency  has a binomial distribution;  has parameters  and  while  has parameters  and 

.

The Completely Specified Case

Consider a specified parameter vector . We want to test the null hypothesis , versus 
. Since the null hypothesis specifies the value of  for each , this is called the completely specified case. Now let 

 and let . These are the expected frequencies of the outcomes 0 and 1, respectively, from sample 
under .

If  is large for each , then under  the following test statistic has approximately the chi-square distribution with  degrees of
freedom:

Proof

This follows from the result above and independence.

As a rule of thumb, “large” means that we need  for each  and . But of course, the larger these
expected frequencies the better.

Under the large sample assumption, an approximate test of  versus  at the  level of significance is to reject  if and only if 
.

Once again, note that the test statistic  measures the discrepancy between the expected and observed frequencies, over all outcomes
and all samples. There are  terms in the expansion of  in Exercise 4, but only  degrees of freedom, since  for
each . The observed and expected frequencies could be stored in an  table.

The Equal Probability Case

Suppose now that we want to test the null hypothesis  that all of the success probabilities are the same, versus
the complementary alternative hypothesis  that the probabilities are not all the same. Note, in contrast to the previous model, that the
null hypothesis does not specify the value of the common success probability . But note also that under the null hypothesis, the 
samples can be combined to form one large sample of Bernoulli trials with success probability . Thus, a natural approach is to estimate 

 and then define the test statistic that measures the discrepancy between the expected and observed frequencies, just as before. The
challenge will be to find the distribution of the test statistic.

Let  denote the total sample size when the samples are combined. Then the overall sample mean, which in this context is
the overall sample proportion of successes, is

The sample proportion  is the best estimate of , in just about any sense of the word. Next, let  and .
These are the estimated expected frequencies of 0 and 1, respectively, from sample  under . Of course these estimated frequencies
are now statistics (and hence random) rather than parameters. Just as before, we define our test statistic

It turns out that under , the distribution of  converges to the chi-square distribution with  degrees of freedom as .

An approximate test of  versus  at the  level of significance is to reject  if and only if .

Intuitively, we lost a degree of freedom over the completely specified case because we had to estimate the unknown common success
probability . Again, the observed and expected frequencies could be stored in an  table.
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The One-Sample Multinomial Model
Our next model generalizes the one-sample Bernoulli model in a different direction. Suppose that  is a sequence
of multinomial trials. Thus, these are independent, identically distributed random variables, each taking values in a set  with 
elements. If we want, we can assume that ; the one-sample Bernoulli model then corresponds to . Let 
denote the common probability density function of the sample variables on , so that  for  and 

. The values of  are assumed unknown, but of course we must have , so there are really only  unknown
parameters. For a given probability density function  on  we want to test  versus .

By this time, our general approach should be clear. We let  denote the number of times that outcome  occurs in sample :

Note that  has the binomial distribution with parameters  and . Thus,  is the expected number of times that
outcome  occurs, under . Out test statistic, of course, is

It turns out that under , the distribution of  converges to the chi-square distribution with  degrees of freedom as . Note
that there are  terms in the expansion of , but only  degrees of freedom since .

An approximate test of  versus  at the  level of significance is to reject  if and only if .

Again, as a rule of thumb, we need  for each , but the larger the expected frequencies the better.

The Multi-Sample Multinomial Model

As you might guess, our final generalization is to the multi-sample multinomial model. Specifically, suppose that 
 is a random sample of size  from a distribution on a set  with  elements, for each .

Moreover, we assume that the samples  are independent. Again there is no loss in generality if we take 
. Then  reduces to the multi-sample Bernoulli model, and  corresponds to the one-sample

multinomial model.

Let  denote the common probability density function of the variables in sample , so that  for 
, , and . These are generally unknown, so that our vector of parameters is the vector of

probability density functions: . Of course,  for , so there are actually 
unknown parameters. We are interested in testing hypotheses about . As in the multi-sample Bernoulli model, there are two common
cases that we consider below, but first let's set up the essential notation that we will need for both cases. For  and 

, let  denote the number of times that outcome  occurs in sample . The observed frequency  has a binomial distribution
with parameters  and .

The Completely Specified Case

Consider a given vector of probability density functions on , denoted . We want to test the null hypothesis 
, versus . Since the null hypothesis specifies the value of  for each  and , this is called the completely

specified case. Let . This is the expected frequency of outcome  in sample  under .

If  is large for each , then under , the test statistic  below has approximately the chi-square distribution with 
degrees of freedom:

Proof

This follows from the one-sample multinomial case and independence.

As usual, our rule of thumb is that we need  for each  and . But of course, the larger these expected
frequencies the better.
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Under the large sample assumption, an approximate test of  versus  at the  level of significance is to reject  if and only if 
.

As always, the test statistic  measures the discrepancy between the expected and observed frequencies, over all outcomes and all
samples. There are  terms in the expansion of  in Exercise 8, but we lose  degrees of freedom, since  for each 

.

The Equal PDF Case

Suppose now that we want to test the null hypothesis  that all of the probability density functions are the
same, versus the complementary alternative hypothesis  that the probability density functions are not all the same. Note, in contrast to
the previous model, that the null hypothesis does not specify the value of the common success probability density function . But note
also that under the null hypothesis, the  samples can be combined to form one large sample of multinomial trials with probability
density function . Thus, a natural approach is to estimate the values of  and then define the test statistic that measures the discrepancy
between the expected and observed frequencies, just as before.

Let  denote the total sample size when the samples are combined. Under , our best estimate of  is

Hence our estimate of the expected frequency of outcome  in sample  under  is . Again, this estimated frequency is
now a statistic (and hence random) rather than a parameter. Just as before, we define our test statistic

As you no doubt expect by now, it turns out that under , the distribution of  converges to a chi-square distribution as . But
let's see if we can determine the degrees of freedom heuristically.

The limiting distribution of  has  degrees of freedom.

Proof

There are  terms in the expansion of . We lose  degrees of freedom since  for each . We
must estimate all but one of the probabilities  for , thus losing  degrees of freedom.

An approximate test of  versus  at the  level of significance is to reject  if and only if .

A Goodness of Fit Test
A goodness of fit test is an hypothesis test that an unknown sampling distribution is a particular, specified distribution or belongs to a
parametric family of distributions. Such tests are clearly fundamental and important. The one-sample multinomial model leads to a quite
general goodness of fit test.

To set the stage, suppose that we have an observable random variable  for an experiment, taking values in a general set . Random
variable  might have a continuous or discrete distribution, and might be single-variable or multi-variable. We want to test the null
hypothesis that  has a given, completely specified distribution, or that the distribution of  belongs to a particular parametric family.

Our first step, in either case, is to sample from the distribution of  to obtain a sequence of independent, identically distributed variables
. Next, we select  and partition  into  (disjoint) subsets. We will denote the partition by 

where . Next, we define the sequence of random variables  by  if and only if  for 
 and .

 is a multinomial trials sequence with parameters  and , where  for .

The Completely Specified Case

Let  denote the statement that  has a given, completely specified distribution. Let  denote the probability density function on 
defined by  for . To test hypothesis , we can formally test  versus , which of
course, is precisely the problem we solved in the one-sample multinomial model.
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Generally, we would partition the space  into as many subsets as possible, subject to the restriction that the expected frequencies all be
at least 5.

The Partially Specified Case

Often we don't really want to test whether  has a completely specified distribution (such as the normal distribution with mean 5 and
variance 9), but rather whether the distribution of  belongs to a specified parametric family (such as the normal). A natural course of
action in this case would be to estimate the unknown parameters and then proceed just as above. As we have seen before, the expected
frequencies would be statistics  because they would be based on the estimated parameters. As a rule of thumb, we lose a degree of
freedom in the chi-square statistic  for each parameter that we estimate, although the precise mathematics can be complicated.

A Test of Independence
Suppose that we have observable random variables  and  for an experiment, where  takes values in a set  with  elements, and 
takes values in a set  with  elements. Let  denote the joint probability density function of , so that 

 for  and . Recall that the marginal probability density functions of  and  are the functions 
and  respectively, where

Usually, of course, , , and  are unknown. In this section, we are interested in testing whether  and  are independent, a basic and
important test. Formally then we want to test the null hypothesis

versus the complementary alternative .

Our first step, of course, is to draw a random sample  from the distribution of .
Since the state spaces are finite, this sample forms a sequence of multinomial trials. Thus, with our usual notation, let  denote the
number of times that  occurs in the sample, for each . This statistic has the binomial distribution with trial parameter 

 and success parameter . Under , the success parameter is . However, since we don't know the success parameters,
we must estimate them in order to compute the expected frequencies. Our best estimate of  is the sample proportion . Thus,
our best estimates of  and  are  and , respectively, where  is the number of times that  occurs in sample  and 
is the number of times that  occurs in sample :

Thus, our estimate of the expected frequency of  under  is

Of course, we define our test statistic by

As you now expect, the distribution of  converges to a chi-square distribution as . But let's see if we can determine the
appropriate degrees of freedom on heuristic grounds.

The limiting distribution of  has  degrees of freedom.

Proof

There are  terms in the expansion of . We lose one degree of freedom since . We must estimate all but
one of the probabilities  for , thus losing  degrees of freedom. We must estimate all but one of the probabilities 
for , thus losing  degrees of freedom.
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An approximate test of  versus  at the  level of significance is to reject  if and only if .

The observed frequencies are often recorded in a  table, known as a contingency table, so that  is the number in row  and
column . In this setting, note that  is the sum of the frequencies in the th row and  is the sum of the frequencies in the th
column. Also, for historical reasons, the random variables  and  are sometimes called factors and the possible values of the variables
categories.

Computational and Simulation Exercises

Computational Exercises

In each of the following exercises, specify the number of degrees of freedom of the chi-square statistic, give the value of the statistic and
compute the -value of the test.

A coin is tossed 100 times, resulting in 55 heads. Test the null hypothesis that the coin is fair.

Answer

1 degree of freedom, , .

Suppose that we have 3 coins. The coins are tossed, yielding the data in the following table:

Heads Tails

Coin 1 29 21

Coin 2 23 17

Coin 3 42 18

1. Test the null hypothesis that all 3 coin are fair.
2. Test the null hypothesis that coin 1 has probability of heads ; coin 2 is fair; and coin 3 has probability of heads .
3. Test the null hypothesis that the 3 coins have the same probability of heads.

Answer
1. 3 degree of freedom, , .
2. 3 degree of freedom, , .
3. 2 degree of freedom, , .

A die is thrown 240 times, yielding the data in the following table:

Score 1 2 3 4 5 6

Frequency 57 39 28 28 36 52

1. Test the null hypothesis that the die is fair.
2. Test the null hypothesis that the die is an ace-six flat die (faces 1 and 6 have probability  each while faces 2, 3, 4, and 5 have

probability  each).

Answer
1. 5 degree of freedom, , .
2. 5 degree of freedom, , .

Two dice are thrown, yielding the data in the following table:

Score 1 2 3 4 5 6

Die 1 22 17 22 13 22 24

Die 2 44 24 19 19 18 36

H0 H1 α H0 V > (1 −α)χ2
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k ×m Oi,j i

j Ni i Mj j

X Y
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V = 1 P = 0.3173
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2
3

V = 11.78 P = 0.008

V = 1.283 P = 0.733

V = 2.301 P = 0.316
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1. Test the null hypothesis that die 1 is fair and die 2 is an ace-six flat.
2. Test the null hypothesis that all the dice have have the same probability distribuiton.

Answer
1. 10 degree of freedom, , .
2. 5 degree of freedom, , .

A university classifies faculty by rank as instructors, assistant professors, associate professors, and full professors. The data, by
faculty rank and gender, are given in the following contingency table. Test to see if faculty rank and gender are independent.

Faculty Instructor Assistant Professor Associate Professor Full Professor

Male 62 238 185 115

Female 118 122 123 37

Answer

3 degrees of freedom, , .

Data Analysis Exercises

The Buffon trial data set gives the results of 104 repetitions of Buffon's needle experiment. The number of crack crossings is 56. In
theory, this data set should correspond to 104 Bernoulli trials with success probability . Test to see if this is reasonable.

Answer

1 degree of freedom, , .

Test to see if the alpha emissions data come from a Poisson distribution.

Answer

We partition of  into 17 subsets: ,  for , and . There are 15 degrees of freedom. The
estimated Poisson parameter is 8.367, , .

Test to see if Michelson's velocity of light data come from a normal distribution.

Answer

Using the following partition of : 
. We

have 8 degrees of freedom, , .

Simulation Exercises

In the simulation exercises below, you will be able to explore the goodness of fit test empirically.

In the dice goodness of fit experiment, set the sampling distribution to fair, the sample size to 50, and the significance level to 0.1.
Set the test distribution as indicated below and in each case, run the simulation 1000 times. In case (a), give the empirical estimate
of the significance level of the test and compare with 0.1. In the other cases, give the empirical estimate of the power of the test.
Rank the distributions in (b)-(d) in increasing order of apparent power. Do your results seem reasonable?

1. fair
2. ace-six flats
3. the symmetric, unimodal distribution
4. the distribution skewed right

In the dice goodness of fit experiment, set the sampling distribution to ace-six flats, the sample size to 50, and the significance level
to 0.1. Set the test distribution as indicated below and in each case, run the simulation 1000 times. In case (a), give the empirical
estimate of the significance level of the test and compare with 0.1. In the other cases, give the empirical estimate of the power of the
test. Rank the distributions in (b)-(d) in increasing order of apparent power. Do your results seem reasonable?

1. fair

V = 6.2 P = 0.798

V = 7.103 P = 0.213

V = 70.111 P ≈ 0

p = 2
π

V = 4.332 P = 0.037

N {0, 1} {x} x ∈ {2, 3, … , 16} {17, 18, …}

V = 9.644 P = 0.842

R

{(−∞, 750), [750, 775), [775, 800), [800, 825), [825, 850), [850, 875), [875, 900), [900, 925), [925, 950), [950, 975), [975, ∞)}

V = 11.443 P = 0.178

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10216?pdf


9.6.8 https://stats.libretexts.org/@go/page/10216

2. ace-six flats
3. the symmetric, unimodal distribution
4. the distribution skewed right

In the dice goodness of fit experiment, set the sampling distribution to the symmetric, unimodal distribution, the sample size to 50,
and the significance level to 0.1. Set the test distribution as indicated below and in each case, run the simulation 1000 times. In case
(a), give the empirical estimate of the significance level of the test and compare with 0.1. In the other cases, give the empirical
estimate of the power of the test. Rank the distributions in (b)-(d) in increasing order of apparent power. Do your results seem
reasonable?

1. the symmetric, unimodal distribution
2. fair
3. ace-six flats
4. the distribution skewed right

In the dice goodness of fit experiment, set the sampling distribution to the distribution skewed right, the sample size to 50, and the
significance level to 0.1. Set the test distribution as indicated below and in each case, run the simulation 1000 times. In case (a), give
the empirical estimate of the significance level of the test and compare with 0.1. In the other cases, give the empirical estimate of the
power of the test. Rank the distributions in (b)-(d) in increasing order of apparent power. Do your results seem reasonable?

1. the distribution skewed right
2. fair
3. ace-six flats
4. the symmetric, unimodal distribution

Suppose that  and  are different distributions. Is the power of the test with sampling distribution  and test distribution 
the same as the power of the test with sampling distribution  and test distribution ? Make a conjecture based on your results in
the previous three exercises.

In the dice goodness of fit experiment, set the sampling and test distributions to fair and the significance level to 0.05. Run the
experiment 1000 times for each of the following sample sizes. In each case, give the empirical estimate of the significance level and
compare with 0.05.

1. 
2. 
3. 
4. 

In the dice goodness of fit experiment, set the sampling distribution to fair, the test distributions to ace-six flats, and the significance
level to 0.05. Run the experiment 1000 times for each of the following sample sizes. In each case, give the empirical estimate of the
power of the test. Do the powers seem to be converging?

1. 
2. 
3. 
4. 
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