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11.3: The Geometric Distribution
       

Basic Theory

Definitions

Suppose again that our random experiment is to perform a sequence of Bernoulli trials  with success parameter 
. In this section we will study the random variable  that gives the trial number of the first success and the random

variable  that gives the number of failures before the first success.

Let , the trial number of the first success, and let , the number of failures before the
first success. The distribution of  is the geometric distribution on  and the distribution of  is the geometric distribution
on . In both cases,  is the success parameter of the distribution.

Since  and  differ by a constant, the properties of their distributions are very similar. Nonetheless, there are applications where
it more natural to use one rather than the other, and in the literature, the term geometric distribution can refer to either. In this
section, we will concentrate on the distribution of , pausing occasionally to summarize the corresponding results for .

The Probability Density Function

 has probability density function  given by  for .

Proof

Note first that . By independence, the probability of this event is 
.

Check that  is a valid PDF

By standard results for geometric series

A priori, we might have thought it possible to have  with positive probability; that is, we might have thought that we could
run Bernoulli trials forever without ever seeing a success. However, we now know this cannot happen when the success parameter 

 is positive.

The probability density function of  is given by  for .

In the negative binomial experiment, set  to get the geometric distribution on . Vary  with the scroll bar and note the
shape and location of the probability density function. For selected values of , run the simulation 1000 times and compare the
relative frequency function to the probability density function.

Note that the probability density functions of  and  are decreasing, and hence have modes at 1 and 0, respectively. The
geometric form of the probability density functions also explains the term geometric distribution.

Distribution Functions and the Memoryless Property

Suppose that  is a random variable taking values in . Recall that the ordinary distribution function of  is the function 
. In this section, the complementary function  will play a fundamental role. We will refer to this

function as the right distribution function of . Of course both functions completely determine the distribution of . Suppose again
that  has the geometric distribution on  with success parameter .

 has right distribution function  given by  for .

Proof from Bernoulli trials

Note that . By independence, the probability of this event is .
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Direct proof

Using geometric series,

From the last result, it follows that the ordinary (left) distribution function of  is given by

We will now explore another characterization known as the memoryless property.

For , the conditional distribution of  given  is the same as the distribution of . That is,

Proof

From the result above and the definition of conditional probability,

Thus, if the first success has not occurred by trial number , then the remaining number of trials needed to achieve the first
success has the same distribution as the trial number of the first success in a fresh sequence of Bernoulli trials. In short, Bernoulli
trials have no memory. This fact has implications for a gambler betting on Bernoulli trials (such as in the casino games roulette or
craps). No betting strategy based on observations of past outcomes of the trials can possibly help the gambler.

Conversely, if  is a random variable taking values in  that satisfies the memoryless property, then  has a geometric
distribution.

Proof

Let  for . The memoryless property and the definition of conditional probability imply that 
 for . Note that this is the law of exponents for . It follows that  for 

. Hence  has the geometric distribution with parameter .

Moments

Suppose again that  is the trial number of the first success in a sequence of Bernoulli trials, so that  has the geometric
distribution on  with parameter . The mean and variance of  can be computed in several different ways.

Proof from the density function

Using the derivative of the geometric series,

Proof from the right distribution function

Recall that since  takes positive integer values, its expected value can be computed as the sum of the right distribution
function. Hence

P(N > n) = P(N = k) = (1 −p p = = (1 −p∑
k=n+1

∞

∑
k=n+1

∞

)k−1
p(1 −p)n

1 −(1 −p)
)n (11.3.2)

N

F (n) = 1 −(1 −p , n ∈ N)n (11.3.3)
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Proof from Bernoulli trials

We condition on the first trial : If  then  and hence . If  (equivalently 
then by the memoryless property,  has the same distribution as . Hence . In short

It follows that

Solving gives .

This result makes intuitive sense. In a sequence of Bernoulli trials with success parameter  we would “expect” to wait  trials
for the first success.

Direct proof

We first compute . This is an example of a factorial moment, and we will compute the general factorial moments
below. Using derivatives of the geometric series again,

Since , it follows that  and hence 

Proof from Bernoulli trials

Recall that

and by the same reasoning, . Hence

Solving gives .

Note that  if , hardly surprising since  is deterministic (taking just the value 1) in this case. At the other
extreme,  as .

In the negative binomial experiment, set  to get the geometric distribution. Vary  with the scroll bar and note the
location and size of the mean standard deviation bar. For selected values of , run the simulation 1000 times and compare the
sample mean and standard deviation to the distribution mean and standard deviation.

the probability generating function  of  is given by

Proof

This result follows from yet another application of geometric series:
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Recall again that for  and , the falling power of  of order  is . If  is a random
variable, then  is the factorial moment of  of order .

The factorial moments of  are given by

Proof from geometric series

Using derivatives of geometric series again,

Proof from the generating function

Recall that  where  is the probability generating function of . So the result follows from standard
calculus.

Suppose that . The skewness and kurtosis of  are

1. 

2. 

Proof

The factorial moments can be used to find the moments of  about 0. The results then follow from the standard computational
formulas for skewness and kurtosis.

Note that the geometric distribution is always positively skewed. Moreover,  and  as .

Suppose now that , so that  (the number of failures before the first success) has the geometric distribution on .
Then

1. 

2. 

3. 

4. 
5.  for 

Of course, the fact that the variance, skewness, and kurtosis are unchanged follows easily, since  and  differ by a constant.

The Quantile Function

Let  denote the distribution function of , so that  for . Recall that 
 for  is the quantile function of .

The quantile function of  is
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Of course, the quantile function, like the probability density function and the distribution function, completely determines the
distribution of . Moreover, we can compute the median and quartiles to get measures of center and spread.

The first quartile, the median (or second quartile), and the third quartile are

1. 
2. 
3. 

Open the special distribution calculator, and select the geometric distribution and CDF view. Vary  and note the shape and
location of the CDF/quantile function. For various values of , compute the median and the first and third quartiles.

The Constant Rate Property

Suppose that  is a random variable taking values in , which we interpret as the first time that some event of interest occurs.

The function  given by

is the rate function of .

If  is interpreted as the (discrete) lifetime of a device, then  is a discrete version of the failure rate function studied in reliability
theory. However, in our usual formulation of Bernoulli trials, the event of interest is success rather than failure (or death), so we
will simply use the term rate function to avoid confusion. The constant rate property characterizes the geometric distribution. As
usual, let  denote the trial number of the first success in a sequence of Bernoulli trials with success parameter , so that 

 has the geometric distribution on  with parameter .

 has constant rate .

Proof

From the results above,  and , so 
 for .

Conversely, if  has constant rate  then  has the geometric distrbution on  with success parameter .

Proof

Let  for . From the constant rate property,  for . Next note that 
 for . Thus,  satisfies the recurrence relation  for 

. Also  satisfies the initial condition . Solving the recurrence relation gives  for 

.

Relation to the Uniform Distribution

Suppose again that  is a sequence of Bernoulli trials with success parameter . For , recall that 
, the number of successes in the first  trials, has the binomial distribution with parameters  and . As before, 

denotes the trial number of the first success.

Suppose that . The conditional distribution of  given  is uniform on .

Proof from sampling

We showed in the last section that given , the trial numbers of the successes form a random sample of size  chosen
without replacement from . This result is a simple corollary with 

Direct proof

For 

N
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In words, the events in the numerator of the last fraction are that there are no successes in the first  trials, a success on
trial , and no successes in trials  to . These events are independent so

Note that the conditional distribution does not depend on the success parameter . If we know that there is exactly one success in
the first  trials, then the trial number of that success is equally likely to be any of the  possibilities.

Another connection between the geometric distribution and the uniform distribution is given below in the alternating coin tossing
game: the conditional distribution of  given  converges to the uniform distribution on  as .

Relation to the Exponential Distribution

The Poisson process on , named for Simeon Poisson, is a model for random points in continuous time. There are many deep
and interesting connections between the Bernoulli trials process (which can be thought of as a model for random points in discrete
time) and the Poisson process. These connections are explored in detail in the chapter on the Poisson process. In this section we just
give the most famous and important result—the convergence of the geometric distribution to the exponential distribution. The
geometric distribution, as we know, governs the time of the first “random point” in the Bernoulli trials process, while the
exponential distribution governs the time of the first random point in the Poisson process.

For reference, the exponential distribution with rate parameter  has distribution function  for 
. The mean of the exponential distribution is  and the variance is . In addition, the moment generating function

is  for .

For , suppose that  has the geometric distribution on  with success parameter , where 
as . Then the distribution of  converges to the exponential distribution with parameter  as .

Proof

Let  denote the CDF of . Then for 

But by a famous limit from calculus,  as , and hence  as .
But by definition,  or equivalently,  so it follows that  as 

. Hence  as , which is the CDF of the exponential distribution.

Note that the condition  as  is the same condition required for the convergence of the binomial distribution to the
Poisson that we studied in the last section.

Special Families

The geometric distribution on  is an infinitely divisible distribution and is a compound Poisson distribution. For the details, visit
these individual sections and see the next section on the negative binomial distribution.

Examples and Applications

Simple Exercises

A standard, fair die is thrown until an ace occurs. Let  denote the number of throws. Find each of the following:

1. The probability density function of .
2. The mean of .
3. The variance of .
4. The probability that the die will have to be thrown at least 5 times.

P(N = j ∣ = 1) = =Yn
P(N = j, = 1)Yn

P( = 1)Yn

P ( = 0, = 1, − = 0)Yj−1 Xj Yn Yj

P( = 1)Yn
(11.3.23)
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1
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(11.3.24)
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5. The quantile function of .
6. The median and the first and third quartiles.

Answwer

1.  for 

2. 
3. 
4. 
5.  for 
6. Quartiles , , 

A type of missile has failure probability 0.02. Let  denote the number of launches before the first failure. Find each of the
following:

1. The probability density function of .
2. The mean of .
3. The variance of .
4. The probability of 20 consecutive successful launches.
5. The quantile function of .
6. The median and the first and third quartiles.

Answer

1.  for 

2. 
3. 
4. 
5.  for 
6. Quartiles , , 

A student takes a multiple choice test with 10 questions, each with 5 choices (only one correct). The student blindly guesses
and gets one question correct. Find the probability that the correct question was one of the first 4.

Answer

0.4

Recall that an American roulette wheel has 38 slots: 18 are red, 18 are black, and 2 are green. Suppose that you observe red or
green on 10 consecutive spins. Give the conditional distribution of the number of additional spins needed for black to occur.

Answer

Geometric with 

The game of roulette is studied in more detail in the chapter on Games of Chance.

In the negative binomial experiment, set  to get the geometric distribution and set . Run the experiment 1000
times. Compute the appropriate relative frequencies and empirically investigate the memoryless property

The Petersburg Problem

We will now explore a gambling situation, known as the Petersburg problem, which leads to some famous and surprising results.
Suppose that we are betting on a sequence of Bernoulli trials with success parameter . We can bet any amount of money
on a trial at even stakes: if the trial results in success, we receive that amount, and if the trial results in failure, we must pay that
amount. We will use the following strategy, known as a martingale strategy:

N

P(N = n) = ( )5
6

n−1
1
6

n ∈ N+

E(N) = 6

var(N) = 30

P(N ≥ 5) = 525/1296

(r) = ⌈ln(1 −r)/ ln(5/6)⌉F −1 r ∈ (0, 1)

= 2q1 = 4q2 = 8q3

N

N

N

N

N

P(N = n) ( )49
50

n−1
1

50
n ∈ N+

E(N) = 50

var(N) = 2450

P(N > 20) = 0.6676

(r) = ⌈ln(1 −r)/ ln(0.98)⌉F −1 r ∈ (0, 1)

= 15q1 = 35q2 = 69q3

p = 18

38

k = 1 p = 0.3

P(V > 5 ∣ V > 2) = P(V > 3) (11.3.26)

p ∈ (0, 1)
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1. We bet  units on the first trial.
2. Whenever we lose a trial, we double the bet for the next trial.
3. We stop as soon as we win a trial.

Let  denote the number of trials played, so that  has the geometric distribution with parameter , and let  denote our net
winnings when we stop.

Proof

The first win occurs on trial , so the initial bet was doubled  times. The net winnings are

Thus,  is not random and  is independent of ! Since  is an arbitrary constant, it would appear that we have an ideal strategy.
However, let us study the amount of money  needed to play the strategy.

The expected amount of money needed for the martingale strategy is

Thus, the strategy is fatally flawed when the trials are unfavorable and even when they are fair, since we need infinite expected
capital to make the strategy work in these cases.

Compute  explicitly if  and .

Answer

$1000

In the negative binomial experiment, set . For each of the following values of , run the experiment 100 times. For each
run compute  (with ). Find the average value of  over the 100 runs:

1. 
2. 
3. 

For more information about gambling strategies, see the section on Red and Black. Martingales are studied in detail in a separate
chapter.

The Alternating Coin-Tossing Game

A coin has probability of heads . There are  players who take turns tossing the coin in round-robin style: player 1 first,
then player 2, continuing until player , then player 1 again, and so forth. The first player to toss heads wins the game.

Let  denote the number of the first toss that results in heads. Of course,  has the geometric distribution on  with parameter 
. Additionally, let  denote the winner of the game;  takes values in the set . We are interested in the probability

distribution of .

For ,  if and only if  for some . That is, using modular arithmetic,

The winning player  has probability density function

c

N N p W

W = c

N N −1

W = −c +c = c (1 − + ) = c∑
i=0

N−2

2i 2N−1 2N−1 2N−1 (11.3.27)

W W p c

Z

Z = c( −1)2N

E(Z) = {
,c

2p−1

∞,

p > 1
2

p ≤ 1
2

(11.3.28)

E(Z) c = 100 p = 0.55

k = 1 p

Z c = 1 Z

p = 0.2

p = 0.5

p = 0.8

p ∈ (0, 1] n

n

N N N+

p W W {1, 2, … ,n}

W

i ∈ {1, 2, … ,n} W = i N = i+kn k ∈ N

W = [(N −1) mod n] +1 (11.3.29)
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Proof

This follows from the previous exercise and the geometric distribution of .

 for .

Proof

This result can be argued directly, using the memoryless property of the geometric distribution. In order for player  to win, the
previous  players must first all toss tails. Then, player  effectively becomes the first player in a new sequence of tosses.
This result can be used to give another derivation of the probability density function in the previous exercise.

Note that  is a decreasing function of . Not surprisingly, the lower the toss order the better for the
player.

Explicitly compute the probability density function of  when the coin is fair ( ).

Answer

Note from the result above that  itself has a truncated geometric distribution.

The distribution of  is the same as the conditional distribution of  given :

The following problems explore some limiting distributions related to the alternating coin-tossing game.

For fixed , the distribution of  converges to the geometric distribution with parameter  as .

For fixed , the distribution of  converges to the uniform distribution on  as .

Players at the end of the tossing order should hope for a coin biased towards tails.

Odd Man Out

In the game of odd man out, we start with a specified number of players, each with a coin that has the same probability of heads.
The players toss their coins at the same time. If there is an odd man, that is a player with an outcome different than all of the other
players, then the odd player is eliminated; otherwise no player is eliminated. In any event, the remaining players continue the game
in the same manner. A slight technical problem arises with just two players, since different outcomes would make both players
“odd”. So in this case, we might (arbitrarily) make the player with tails the odd man.

Suppose there are  players and . In a single round, the probability of an odd man is

Proof

Let  denote the number of heads. If , the event that there is an odd man is . If , the event that there is an
odd man is . The result now follows since  has a binomial distribution with parameters  and .

The graph of  is more interesting than you might think.

P(W = i) = , i ∈ {1, 2, … ,n}
p(1 −p)i−1

1 −(1 −p)n
(11.3.30)

N

P(W = i) = (1 −p P(W = 1))i−1 i ∈ {1, 2, … ,n}

i

i−1 i

P(W = i) i ∈ {1, 2, … ,n}

W p = 1/2

P(W = i) = /( −1), i ∈ {1, 2, … ,n}2n−1 2n

W

W N N ≤ n

P(W = i) = P(N = i ∣ N ≤ n), i ∈ {1, 2, … ,n} (11.3.31)

p ∈ (0, 1] W p n ↑ ∞

n W {1, 2, … ,n} p ↓ 0

k ∈ {2, 3, …} p ∈ [0, 1]

(p) ={rk
2p(1 −p),

kp(1 −p +k (1 −p),)k−1 pk−1

k = 2

k ∈ {3, 4, …}
(11.3.32)

Y k = 2 {Y = 1} k ≥ 3

{Y ∈ {1, k−1}} Y k p

rk

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10235?pdf


11.3.10 https://stats.libretexts.org/@go/page/10235

Figure : The graphs of  for 

For ,  has the following properties:

1. 
2.  is symmetric about 
3. For fixed ,  as .

Proof

These properties are clear from the functional form of . Note that .

For ,  has the following properties:

1.  increases and then decreases, with maximum at .
2.  is concave downward

Proof

This follows by computing the first derivatives: , , , and the second
derivatives: , , .

For ,  has the following properties:

1. The maximum occurs at two points of the form  and  where  and  as .
2. The maximum value  as .
3. The graph has a local minimum at .

Proof sketch

Note that  where  for . Also,  is the dominant term when
 while  is the dominant term when . A simple analysis of the derivative shows that  increases

and then decreases, reaching its maximum at . Moreover, the maximum value is 
 as . Also,  is concave upward and then downward, wit inflection point at 

.

Suppose , and let  denote the number of rounds until an odd man is eliminated, starting with  players. Then 
has the geometric distribution on  with parameter . The mean and variance are

1. 
2. 

As we might expect,  and  as  for fixed . On the other hand, from the result above, 
 and  as .

Suppose we start with  players and . The number of rounds until a single player remains is 
 where  are independent and  has the geometric distribution on  with parameter .

The mean and variance are

1. 
2. 

11.3.1 rk k ∈ {3, 4, 5, 6}

k ∈ {2, 3, …} rk

(0) = (1) = 0rk rk
rk p = 1

2

p ∈ [0, 1] (p) → 0rk k → ∞

(p)rk (p) = (1 −p)rk rk

k ∈ {2, 3, 4} rk

rk p = 1
2

rk

(p) = 2(1 −2p)r′
2 (p) = 3(1 −2p)r′

3 (p) = 4(1 −2pr′
4 )3

(p) = −4r′′
2 (p) = −6r′′

3 (p) = −24(1 −2pr′′
4

)2

k ∈ {5, 6, …} rk

pk 1 −pk ∈ (0, )pk
1
2

→ 0pk k → ∞

( ) → 1/e ≈ 0.3679rk pk k → ∞

p = 1
2

(p) = (p) + (1 −p)rk sk sk (t) = k (1 − t)sk tk−1 t ∈ [0, 1] p ↦ (p)sk

p > 1

2
p ↦ (1 −p)sk p < 1

2
sk

(k−1)/k

[(k−1)/k] = (1 −1/k →sk )k−1 e−1 k → ∞ sk
(k−2)/k

p ∈ (0, 1) Nk k Nk

N+ (p)rk

(p) = 1/ (p)μk rk
(p) = [1 − (p)] / (p)σ2

k
rk r2

k

(p) → ∞μk (p) → ∞σ2
k

k → ∞ p ∈ (0, 1)

( ) → eμk pk ( ) → −eσ2
k
pk e2 k → ∞

k ∈ {2, 3, …} p ∈ (0, 1)

=Mk ∑k
j=2 Nj ( , , … , )N2 N3 Nk Nj N+ (p)rj

E( ) = 1/ (p)Mk ∑k

j=2 rj

var( ) = [1 − (p)] / (p)Mk ∑k

j=2 rj r2
j
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Proof

The form of  follows from the previous result:  is the number of rounds until the first player is eliminated. Then the
game continues independently with  players, so  is the number of additional rounds until the second player is
eliminated, and so forth. Parts (a) and (b) follow from the previous result and standard properties of expected value and
variance.

Starting with  players and probability of heads , the total number of coin tosses is . The mean and
variance are

1. 
2. 

Proof

As before, the form of  follows from result above:  is the number of rounds until the first player is eliminated, and each
these rounds has  tosses. Then the game continues independently with  players, so  is the number of additional
rounds until the second player is eliminated with each round having  tosses, and so forth. Parts (a) and (b) also follow
from the result above and standard properties of expected value and variance.

Number of Trials Before a Pattern

Consider again a sequence of Bernoulli trials  with success parameter . Recall that the number of
trials  before the first success (outcome 1) occurs has the geometric distribution on  with parameter . A natural generalization
is the random variable that gives the number of trials before a specific finite sequence of outcomes occurs for the first time. (Such a
sequence is sometimes referred to as a word from the alphabet  or simply a bit string). In general, finding the distribution of
this variable is a difficult problem, with the difficulty depending very much on the nature of the word. The problem of finding just
the expected number of trials before a word occurs can be solved using powerful tools from the theory of renewal processes and
from the theory of martingalges.

To set up the notation, let  denote a finite bit string and let  denote the number of trials before  occurs for the first time.
Finally, let . Note that  takes values in . In the following exercises, we will consider , a success followed by
a failure. As always, try to derive the results yourself before looking at the proofs.

The probability density function  of  is given as follows:

1. If  then

2. If  then  for .

Proof

For , the event  can only occur if there is an initial string of 0s of length  followed by a
string of 1s of length  and then 1 on trial  and 0 on trial . Hence

The stated result then follows from standard results on geometric series.

It's interesting to note that  is symmetric in  and , that is, symmetric about . It follows that the distribution function,
probability generating function, expected value, and variance, which we consider below, are all also symmetric about . It's
also interesting to note that , and this is the largest value. So regardless of  the distribution is
bimodal with modes 0 and 1.

The distribution function  of  is given as follows:

Mk Nk

k−1 Nk−1

k p ∈ (0, 1) = jTk ∑k
j=2 Nj

E( ) = j/ (p)Tk ∑k
j=2 rj

var( ) = [1 − (p)] / (p)Tk ∑k
j=2 j

2 rj r2
j

Mk Nk

k k−1 Nk−1

k−1

X = ( , , …)X1 X2 p ∈ (0, 1)

M N p

{0, 1}

x Mx x

q = 1 −p Mx N x = 10

f10 M10

p ≠ 1
2

(n) = pq , n ∈ Nf10
−pn+1 qn+1

p−q
(11.3.33)

p = 1
2

(n) = (n+1)f10 ( )1
2

n+2
n ∈ N

n ∈ N { = n}M10 k ∈ {0, 1, … ,n}

n−k n+1 n+2

(n) = P( = n) = pq, n ∈ Nf10 M10 ∑
k=0

n

qkpn−k (11.3.34)

f p q p = 1
2

p = 1
2

(0) = (1) = pqf10 f10 p ∈ (0, 1)

F10 M10
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1. If  then

2. If  then  for .

Proof

By definition,  for . The stated result then follows from the previous theorem, standard results
on geometric series, and some algebra.

The probability generating function  of  is given as follows:

1. If  then

2. If  then  for 

Proof

By definition,

for all  for which the series converges absolutely. The stated result then follows from the theorem above, and once again,
standard results on geometric series.

The mean of  is given as follows:

1. If  then

2. If  then .

Proof

Recall that  so the stated result follows from calculus, using the previous theorem on the probability
generating function. The mean can also be computed from the definition  using standard results
from geometric series, but this method is more tedious.

The graph of  as a function of  is given below. It's not surprising that  as  and as , and
that the minimum value occurs when .

Figure :  as a function of 

The variance of  is given as follows:

p ≠ 1
2

(n) = 1 − , n ∈ NF10
−pn+3 qn+3

p−q
(11.3.35)

p = 1
2

= 1 −(n+3)F10 ( )1
2

n+2
n ∈ N

(n) = (k)F10 ∑n
k=0 f10 n ∈ N

P10 M10

p ≠ 1
2

(t) = ( − ) , |t| < min{1/p, 1/q}P10
pq

p−q

p

1 − tp

q

1 − tq
(11.3.36)

p = 1
2

(t) = 1/(t−2P10 )2 |t| < 2

(t) =E ( ) = (n)P10 tM10 ∑
n=0

∞

f10 tn (11.3.37)

t ∈ R

M10

p ≠ 1
2

E( ) =M10
−p4 q4

pq(p−q)
(11.3.38)

p = 1
2

E( ) = 2M10

E( ) = (1)M10 P ′
10

E( ) = n (n)M10 ∑∞
n=0 f10

E( )M10 p ∈ (0, 1) E( ) → ∞M10 p ↓ 0 p ↑ 1

p = 1
2

11.3.2 E( )M10 p

M10
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1. If  then

2. If  then .

Proof

Recall that , the second factorial moment, and so

The stated result then follows from calculus and the theorem above giving the probability generating function.

This page titled 11.3: The Geometric Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
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p ≠ 1
2

var( ) = ( )+ ( )−M10
2

p2q2

−p6 q6

p−q

1

pq

−p4 q4

p−q

1

p2q2
( )

−p4 q4

p−q

2

(11.3.39)

p = 1
2

var( ) = 4M10

(1) =E[ ( −1)]P ′′
10 M10 M10

var( ) = (1) + (1) −[ (1)M10 P ′′
10 P ′

10 P ′
10 ]2 (11.3.40)
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