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17.4: Inequalities

Basic Theory

In this section, we will study a number of interesting inequalities associated with martingales and their sub-martingale and super-
martingale cousins. These turn out to be very important for both theoretical reasons and for applications. You many need to review
infimums and supremums.

Basic Assumptions

As in the Introduction, we start with a stochastic process X = {X; : t € T} on an underlying probability space (2, Z, P), having
state space R, and where the index set T' (representing time) is either N (discrete time) or [0, o) (continuous time). Next, we have
a filtration § = {%#; : t € T'} , and we assume that X is adapted to §. So § is an increasing family of sub o-algebras of # and X;
is measurable with respect to %#; for t € T'. We think of %; as the collection of events up to time ¢ € T'. We assume that
E (] X}:|) < oo, so that the mean of X exists as a real number, for each ¢ € T'. Finally, in continuous time where T' = [0, 00), we
make the standard assumptions that ¢ — X is right continuous and has left limits, and that the filtration § is right continuous and
complete.

Maximal Inequalites

For motivation, let's review a modified version of Markov's inequality, named for Andrei Markov.

If X is a real-valued random variable then
1
P(X>z) < ;E(X;X >z), z€(0,00) (17.4.1)

Proof
The modified version has essentially the same elegant proof as the original. Clearly
z1(X>z)<X1(X>z), z€(0,00) (17.4.2)

Taking expected values through the inequality gives zP(X > z) <E(X; X > z) . Dividing both sides by z gives the result
(and it is at this point that we need = > 0.).

So Markov's inequality gives an upper bound on the probability that X exceeds a given positive value , in terms of a monent of
X. Now let's return to our stochastic process X = {X; :t € T'} . To simplify the notation, let T; ={s€ T :s<t} forteT.
Here is the main definition:

For the process X, define the corresponding maximal process U = {U; : t € T} by
Uy=sup{X,:s€Ti}, teT (17.4.3)

Clearly, the maximal process is increasing, so that if s, ¢t €T with s <t then Us; <U;. A trivial application of Markov's
inequality above would give

1

But when X is a sub-martingale, the following theorem gives a much stronger result by replacing the first occurrent of U; on the
right with X;. The theorem is known as Doob's sub-martingale maximal inequality (or more simply as Doob's inequaltiy), named
once again for Joseph Doob who did much of the pioneering work on martingales. A sub-martingale has an increasing property of
sorts in the sense that if s, ¢ € T with s <t then E(X; | &%) > X}, so it's perhaps not entirely surprising that such a bound is
possible.

Suppose that X is a sub-martingale. For t € T', let U; = sup{ X, : s € T;} . Then

1
P(U; > z) < EE(Xt; Ui >z), z€(0,00) (17.4.5)
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Proof in the discrete time

So T=N and the maximal process is given by U, =max{X;:k€N,} for n€N. Let = € (0,00), and define
7, =min{k € N: X} >z} where as usual, min(f}) = co. The random time 7, is a stopping time relative to §. Moreover,
the processes {U,, : n € N} and {7, : z € (0,00)} are inverses in the sense that forn € N and z € (0, 00),

U, >zifandonlyifr, <n (17.4.6)

We have seen this type of duality before—in the Poisson process and more generally in renewal processes. Let n € N. First
note that

E(Xran) =E (Xpnn; 7o <n)+E(Xppn; Tz >n) (17.4.7)

T

If 7, <n then X, », = X, >z .On the other hand if 7, > n then X, », = X,,. So we have
E(Xran) > 2P(1: <n)+E(Xp; 7 >n) =2P(U; > ) +E(X,; 7 > n) (17.4.8)
Similarly,

E(X,) =E(Xp; 7 <n)+E(Xp; 7 >n) =E(X,; Uy > 2) +E(X,; 72 >n) (17.4.9)

But by the optional stopping theorem, E (X, »,) <E(X,,) . Hence we have

zP(U; > ) + E(Xp; 7 > n) <E(X,; Uy > x) +E(Xp; 70 > n) (17.4.10)
Subtracting the common term and then dividing both sides by x gives the result
Proof in continuous time

Fork € N, let ]D)z ={j/2*: j € N} denote the set of nonnegative dyadic rationals (or binary rationals) of rank k or less. For
t € [0,00) let T} = (D N[0,¢]) U {t}, so that T}* is the finite set of such dyadic rationals that are less than ¢, with ¢ added to
the set. Note that 7} has an ordered enumeration, so X* = {X, : s € T}} is a discrete-time sub-martingale for each k € N.

Let U =sup{X,:s€TF} for ke N. Note that th CTFclo,t] for t€[0,00) and for j, k€N with j<k and
therefore U/ < UF < U, . It follows that for z € (0, c0),

{Uthm} c {UF >z} c{U, >z} (17.4.11)

The set D of all nonnegative dyadic rationals is dense in [0, c0) and so since X is right continuous and has left limits, it
follows that if Uy > z then Utk > x for some k € N. That is, we have

o0
{U: > 2} = {Uf > =} (17.4.12)
k=0
The maximal inequality applies to the discrete-time sub-martingale X* and so
1
PUF>z) < ;E(Xt; UF >z) (17.4.13)

for each k € N. By the monotone convergence theorem, the left side converges to P(U; > x) as k — oo and the right side
converges to E(X;U; > z) ask — 00.

There are a number of simple corollaries of the maximal inequality. For the first, recall that the positive part of z € R is
T =2zVO0,sothatzt =z ifz >0andz™ =0 if z <0.

Suppose that X is a sub-martingale. For t € T, let V; = sup{ X, : s € T}} . Then

1
P(V; > z) < ;IE(X:; Vi >z), z€(0,00) (17.4.14)

Proof

Recall that since X is a sub-martingale and x ~ ™ is increasing and convex, X+ = {X," : t € T} is also a sub-martingale.
Hence the result follows from the general maximal inequality for sub-martingales.
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As a further simple corollary, note that
1
P(V; > ) < ;E(Xj), z € (0,00) (17.4.15)

This is sometimes how the maximal inequality is given in the literature.

Suppose that X is a martingale. For t € T', let W; = sup{|X;| : s € T3} . Then

1
P(W; >z) < ;E(|Xt|;Wt >z), € (0,00) (17.4.16)

Proof

Recall that since X is a martingale, and z — |z| is convex, | X|={|X;|:¢ €T} is a sub-martingale. Hence the result
follows from the general maximal inequality for sub-martingales.

Once again, a further simple corollary is

P(W, > z) < %E(|Xt|), z € (0,00) (17.4.17)

1k
Next recall that for k € (1, 00), the k-norm of a real-valued random variable X is || X||x = {E(|X |k)] , and the vector space %,

consists of all real-valued random variables for which this norm is finite. The following theorem is the norm version of the Doob's
maximal inequality.

Suppose again that X is a martingale. For ¢t € T', let W; = sup{|X;|: s € T3} . Then for k > 1,
k
IWellx < == 1 Xellx (17.4.18)

Proof

Fix t € T. If E(| X;|") = 0o, the inequality trivial holds, so assume that E(| X;|") < oo, and thus that X, € %;. The proof
relies fundamentally on Holder's inequality, and for that inequality to work, we need to truncate the variable W; and consider
instead the the bounded random variable W; A ¢ where ¢ € (0, 00). First we need to show that

P(W, Ac>z) < %E(|Xt|;Wt/\c2m), 2 € (0,00) (17.4.19)
If c < z,bothsides are 0. If ¢ > =, {W; Ac >z} = {W; >z} and so from the maximal inequality above,
P(Wine>z)=P(W; >z) < %E(|Xt|; Wy >z)=E(|X,|; Wy Ac>z) (17.4.20)
Next recall that
Wi Acllk =E[(W; A )] = /000 k" YP(W A ¢ > z)da (17.4.21)
Applying the inequality gives
E[(W; A c)¥] S/Oookxk_2IE[|Xt|;W}/\ch}dx (17.4.22)
By Fubini's theorem we can interchange the expected value and the integral which gives
WiNe k
E[(W; Ac)] <E [/O k2 |Xt|d:c] = SB[ Wi A 0] (17.4.23)

But X; € %, and (Wy Ac)" ! € % where j=k/(k—1) is the exponent conjugate to k. So an application of Holder's
inequality gives

k - k .
W Aclli SﬁHXtHkH(Wt/\C)k 1||j:m”Xt”k”Wt/\CHll§ ! (17.4.24)
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where we have used the simple fact that [|(W; A ¢)*~!||; = | W; Ac||; " . Dividing by this factor gives
k
IWe Aellk < =11 Xellx (17.4.25)

Finally, |Wi Ac|lx T ||Wi||x as ¢ — oo by the monotone convergence theorem. So letting ¢ — oo in the last displayed
equation gives

k
IWellie < =11 Xellw (17.4.26)

Once again, W ={W;:t €T} is the maximal process associated with |X|={|X:|:t€T}. As noted in the proof,
j=k/(k—1) is the exponent conjugate to k, satisfying 1/j+1/k =1 . So this version of the maximal inequality states that the
k norm of the maximum of the martingale X on 7; is bounded by j times the k norm of X;, where j and k are conjugate
exponents. Stated just in terms of expected value, rather than norms, the .%;, maximal inequality is

E O\
E (|Wt|k) < <ﬁ) E (|Xt|k) (17.4.27)
Our final result in this discussion is a variation of the maximal inequality for super-martingales.
Suppose that X = {X; : t € T'} is a nonnegative super-martingale, and let Uy, =sup{X; :t € T'} . Then
1
P(Uy > z) < —E(Xy), € (0,00) (17.4.28)
x

Proof

LetY; = —X; fort € T. Since X is a super-martingale, Y is a sub-martinagle. And since X is nonnegative, YtJr =X; for
teT.LetU; =sup{X;:s€Ti} = sup{Ys+ :s €T} fort € T. By the maximal inequality for sub-martingales, and since
X is a super-martingale we have for ¢t € T,

1 1 1
Next note that Us T Uso as t — 00. Let z € (0,00) and e € (0,z). If Uss >« then Uz > x —e for sufficiently large t € T'.
Hence
(U 22} S| J{Uk 27 —¢} (17.4.30)
k=1

Using the continuity theorem for increasing events, and our result above we have

1
P(Uy > z) < lim P(Up >z —€) < ——E(X)) (17.4.31)
k—o0 Tr —€

Since this holds for all € € (0, z), it follows that P(Us, > ) < %]E(Xo) .

The Up-Crossing Inequality

The up-crossing inequality gives a bound on how much a sub-martingale (or super-martingale) can oscillate, and is the main tool in
the martingale convergence theorems that will be studied in the next section. It should come as no surprise by now that the
inequality is due to Joseph Doob. We start with the discrete-time case.

Suppose that € = (z, : n € N) is a sequence of real numbers, and that a, b € R with a <b. Define #;(2) =0 and then
recursively define

sgr1(e) =inf{n e N:n > (2),z, <a}, keN
tir1(e) =inf{n e N:n>spy(2), 2, > b}, keN

1. The number of up-crossings of the interval [a, b] by the sequence @ up to time n € N is

un(a,b, ) =sup{k € N: t;(x) <n} (17.4.32)
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2. The total number of up-crossings of the interval [a, b] by the sequence @ is
Uso(a, b, ®) =sup{k € N: t;(x) < oo} (17.4.33)
Details

As usual, we define inf()) = oo . Note that if ¢z () < oo for k € N, then (z,, : n = sg(),...t;(2)) is the kth up-crossing
of the interval [a, b] by the sequence .

So informally, as the name suggests, uy, (a, b, ) is the number of times that the sequence (zg, 1, . . . , Z, ) goes from a value below
a to one above b, and u(a, b, ) is the number of times the entire sequence & goes from a value below a to one above b. Here are a

few of simple properties:
Suppose again that & = (z,, : n € N) is a sequence of real numbers and that a, b € R witha <b.

1. u,(a, b, @) is increasing in n € N.

2. up(a,b,2) > ula,b,x) asn — co.

3.Ife,de R witha<c<d<b thenu,(c,d,®)>u,(a,b, ) forn €N, and u(c,d, ®) > u(a, b, x).
Proof

1. Notethat {k e N: tp(z) <n} C{keN:f(z) <n+1} .

2. Note that | J7” {k € N: t(z) <n} ={k e N:t;(z) < oo} .
3. Every up-crossing of [a, b] is also an up-crossing of [c, dJ.

The importance of the definitions is found in the following theorem. Recall that R* =R U {—o0, 00} is the set of extended real
numbers, and Q is the set of rational real numbers.

Suppose again that @ = (z,, : n € N) is a sequence of real numbers. Then lim, . x, exists in R* is and only if
Ueo (@, b, &) < oo forevery a, b € Q witha <b.
Proof

We prove the contrapositive. Note that the following statements are equivalent:

1. lim,,_, &, does not exist in in R*.

2. liminf, o , <limsup,,_,., Zx .

3. There exists a, b € Q with a < b and with x,, < a for infinitely many n € N and x,, > b for infinitely many n € N.
4. There exists a, b € Q with a <b and u(a,b, ) = 0.

Clearly the theorem is true with Q replaced with R, but the countability of @Q will be important in the martingale convergence
theorem. As a simple corollary, if  is bounded and u(a, b, &) < 0o for every a, b € Q with a < b, then & converges in R. The
up-crossing inequality for a discrete-time martingale X gives an upper bound on the expected number of up-crossings of X up to
time n € N in terms of a moment of X,,.

Suppose that X ={X,, : n € N} satisfies the basic assumptions with respect to the filtration § = {%#, : n € N}, and let
a, b€ Rwitha <b.Let U, =u,(a,b, X), the random number of up-crossings of [a, b] by X up to time n € N.

1. If X is a super-martingale relative to § then

1 _ 1
o El&n—a) ] < -—

_ 1
E(U,) < [E(X7)+lal] < 7= [E(Xal)+lall, neN  (17.434)
2. If X is a sub-martingale relative to § then

1
b—a

E(U,) < T E[(X, )] € 7 [EGG) +]a]] < 7= [E(Xal)+lall, neN  (17.435)

b—a
Proof

In the context of the up-crossing definition above, let oy, = s(X) and 74 = t;(X) . These are the random times that define
the up-crossings of X. Let Y = X, , — X5, An and then define Z,, = 22:1 Y. . To understand the sum, let's take cases for
the kth term Yy:
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o Ifrp <nthenY, =X, — X, >b—a .By definition, the first U,, terms are of this form.
o Ifop, <n<m thenY; =X, — X, > X, —a .Thereis at most one such term, with index k =U,, +1 .
o Ifop, >nthenY, =X, —X,,=0.

Hence Z, > (b—a)U, + (X, —a)l(oy,+1 <n) and so (b—a)U, <Z,— (X, —a)l(oy,+1 <n) Next note that
or An and 7, A n are bounded stopping times and of course o, An < TR A .

1. If X is a super-martingale, it follows from the optional stopping theorem that

E(Y:) =E (X:an) —E (Xoan) <0 (17.4.36)
and therefore E(Z,) < 0. Finally, —(X, —a)1 (oy,+1 <n) < (X, —a)~ . Taking expected values gives
(b—a)E(U,) <E(Z,)+E[(X,—a) | <E[(X,—a)”] (17.4.37)

The remaining parts of the inequality follow since (z —a)” <z~ +|a| < |z|+]|a| forz € R.
Additional details

The process Z = {Z,, : n € N} in the proof can be viewed as a transform of X = {X,, : n € N} by a predictable process.
Specifically, forn € N, let I, =1 if o, <n <7 for some k € N, and let I, =0 otherwise. Since o and 7, are stopping

times, note that {I, =1} € %, _; for n € N, . Hence the process I ={I,:n € N, } is predictable with respect to §.
Moreover, the transform of X by I is

mn

(I -X),= Z L(X;—X;) = Z (Xron — Xopan) = Zny, mEN (17.4.38)
J=1 k=1

Since I is a nonnegative process, if X is a martingale (sub-martingale, super-martingale), then I - X is also a martingale (sub-
martingale, super-martingale).

Of course if X is a martingale with respect to § then both inequalities apply. In continuous time, as usual, the concepts are more
complicated and technical.

Suppose that  : [0, 00) — R and that that a, b € R witha <b.
1.1f I C [0, 0o) is finite, define ¢! () = 0 and then recursively define
stq(x) =inf{tel:t>tl(x),z,<a}, keN
ti(e) =inf{tel:t>s  (x),z >b}, keN
The number of up-crossings of the interval [a, b] by the function @ restricted to I is
ur(a,b,x) =sup {k € N: t(x) < oo} (17.4.39)
2.If I C [0, 00) is infinte, the number of up-crossings of the interval [a, b] by @ restricted to I is

ur(a, b, @) =sup{us(a,b,x): Jis finite and J C I} (17.4.40)

To simplify the notation, we will let u;(a, b, ) =, q(a,b,x), the number of up-crossings of [a,b] by  on [0,t], and
Uoo (@, b, ®) = Ujg o) (a, b, &), the total number of up-crossings of [a, b] by . In continuous time, the definition of up-crossings is
built out of finte subsets of [0, co) for measurability concerns, which arise when we replace the deterministic function @ with a
stochastic process X. Here are the simple properties that are analogous to our previous ones.

Suppose again that « : [0, 00) — R and that a, b € R witha <b.

1.1t I, J C[0,00) with I C J, then us(a, b, 2) <wuy(a,b,x).
2.1f (I, : n € N) is an increasing sequence of sets in [0, 00) and J = |J,— I,, thenuy, (a,b,x) — us(a,b,x) asn — co.
3.Ife,deRwitha<ec<d<b and I C [0, 00) then us(c,d, ) > us(a,b, ).

Proof

1. The result follows easily from the definitions if I is finite (and J either finite or infinite). If I is infinite (and hence so is
J), note that

https://stats.libretexts.org/@go/page/10302


https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10302?pdf

LibreTextsw

2. Since I,, is increasing in n € N (in the subset partial order), note that if K C [0, co) is finite, then K C J if and only if
K C1I, forsomen € N.
3. Every up-crossing of [a, b] is an up-crossing of [c, d].

{uk(a,b, ) : K is finite and K C I'} C {ug(a,b, z) : K is finite and K C J} (17.4.41)

The following result is the reason for studying up-crossings in the first place. Note that the definition built from finite set is
sufficient.

Suppose that @ : [0, 00) — R. Then lim; ,+, z; exists in R* if and only if us (a, b, ) < co forevery a, b € Q witha <b.

Proof

As in the discrete-time case, we prove the contrapositive. The proof is almost the same: The following statements are
equivalent:

1. lims_.o x+ does not exist in in R*.

2. liminf; ,, z; <limsup, ., @ .

3. There exists a, b € Q with a < b and there exists s,, t, € [0, 00) with z;, <a forn € N and z;, >b forn € N.
4. There exists a, b € Q with a < b and u(a, b, 2) = co.

Finally, here is the up-crossing inequality for martingales in continuous time. Once again, the inequality gives a bound on the
expected number of up-crossings.

Suppose that X = {X; : ¢t € [0,00)} satisfies the basic assumptions with respect to the filtration § = {%; : t € [0, 00)}, and
leta, b € R witha <b. Let U; = us(a, b, X), the random number of up-crossings of [a, b] by X up to time ¢ € [0, 00).
1. If X is a super-martingale relative to § then
1 1

—E[(Xi—a)] < ;—

E(U) < - [E(X;)+lal] < T [E(X]) +lal), t€[0,00) (17.4.42)

2. If X is a sub-martingale relative to § then

1 1
E[(X; —a)T] <
T (X a)]_b_a

E(T) < [ECG) +lal] < 7= [B(Xil) +lal], te[0,00) (17.4.43)

Proof

Suppose that X is a sub-martingale; the proof for a super-martingale is analogous. Fix ¢ € [0, 00) and a, b € R with a <b.
For I C [0, 00) let Ur =uy(a,b, X), the number of up-crossings of [a, b] by X restricted to I. Suppose that I is finite and
that ¢ € I is the maximum of I. Since X restricted to I is also a sub-martingale, the discrete-time up-crossing theorem applies
and so

1
E(Ur) < b—E[(Xt —a)*] (17.4.44)
—a
Since Uy = sup{Uj : I is finite and I C [0,¢]} , there exists finite I,, for n € N with Uy, 1 U; as n — oo. In particular, U; is
measurable. By property (a) in the theorem above, there exists such a sequence with I,, increasing in n and ¢ € I,, for each

n € N. By the monotone convergence theorem, E (Uy,) — E(U;) asn — co. So by the displayed equation above,

E(U,) < ﬁE[(Xt —a)] (17.4.45)

Examples and Applications

Kolmogorov's Inequality

Suppose that X = {X,, : n € N, } is a sequence of independent variables with E(X,,) =0 and var(X,) =E(X?) <oco for
n €N, .LetY ={Y, : n € N} be the partial sum process associated with X, so that
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Y,=) Xi;, neN (17.4.46)

From the Introduction we know that Y is a martingale. A simple application of the maximal inequality gives the following result,
which is known as Kolmogorov's inequality, named for Andrei Kolmogorov.

Forn € N, let U, =max {|Y;| : ¢ € N, }. Then

P(U, >z) < %Var(Yn) == ZE(Xg), z € (0,00) (17.4.47)

Proof

As noted above, Y is a martingale. Since the function  — z2 on R is convex, Y2 = {Y,2 : n € N} is a sub-martingale. Let
Vi =max{Y2:i€N,} forn € N, and let z € (0, 00). Applying the maximal inequality for sub-martingales we have

1

1
P(U, > z) =P(V, >z°) < w—zE(Ynz) = —var(Y) (17.4.48)

Finally, since X is an independent sequence,

n

var(Y,) = Zvar(Xi) = Z E(X?) (17.4.49)

i=1

Red and Black

In the game of red and black, a gambler plays a sequence of Bernoulli games with success parameter p € (0, 1) at even stakes. The
gambler starts with an initial fortune = and plays until either she is ruined or reaches a specified target fortune a, where
z, a € (0,00) with z < a. When p < L 5o that the games are fair or unfair, an optimal strategy is bold play: on each game, the
gambler bets her entire fortune or just what is needed to reach the target, whichever is smaller. In the section on bold play we
showed that when p = %, so that the games are fair, the probability of winning (that is, reaching the target a starting with x) is
x /a. We can use the maximal inequality for super-martingales to show that indeed, one cannot do better.

To set up the notation and review various concepts, let X, denote the gambler's initial fortune and let X,, denote the outcome of
game n € N, where 1 denotes a win and —1 a loss. So {X, :n €N} is a sequence of independent variables with
P(X,=1)=p and P(X,, =—1)=1—p forn € N, . (The initial fortune X has an unspecified distribution on (0, c0).) The
gambler is at a casino after all, so of course p < % . Let

Y,=) Xi;, neN (17.4.50)
=0

so that Y ={Y,, : n € N} is the partial sum process associated with X ={X,, : n € N}. Recall that Y is also known as the
simple random walk with parameter p, and since p < %, is a super-martingale. The process {X, : n € N} is the difference
sequence associated with Y. Next let Z, denote the amount that the gambler bets on game n &€ N;,. The process
Z={Z,:neN,} is predictable with respect to X ={X, :n €N}, so that Z, is measurable with respect to

o{Xo, X1,...,Xn_1}forn € N, . So the gambler's fortune after n games is
Wo=Xo+ Y ZiXi=Xo+Y Zi(Y:i—Yi1) (17.4.51)
i=1 i=1

Recall that W = {W,, : n € N} is the transform of Z with Y, denoted W = Z-Y . The gambler is not allowed to go into debt
and so we must have Z,, < W,,_; for n € N : the gambler's bet on game n cannot exceed her fortune after game n — 1. What's
the probability that the gambler can ever reach or exceed the target a starting with fortune z < a?

Let Uy, = sup{W,, : n € N} . Suppose that z, a € (0, c0) with < a and that X, = . Then

P(Ux >a) <

o8

(17.4.52)

Proof

https://stats.libretexts.org/@go/page/10302
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Since Y is a super-martingale and Z is nonnegative, the transform W = Z-Y is also a super-martingale. By the inequality
for nonnegative super-martingales above:

P(Us > a) < E(Wp) =

SR

(17.4.53)

Note that the only assumptions made on the gambler's sequence of bets Z is that the sequence is predictable, so that the gambler
cannot see into the future, and that gambler cannot go into debt. Under these basic assumptions, no strategy can do any better than
bold play. However, there are strategies that do as well as bold play; these are variations on bold play.

Open the simulation of the red and black game. Select bold play and p = % Play the game with various values of initial and
target fortunes.
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