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16.22: Continuous-Time Queuing Chains
     

Basic Theory

Introduction

In a queuing model, customers arrive at a station for service. As always, the terms are generic; here are some typical examples:

The customers are persons and the service station is a store.
The customers are file requests and the service station is a web server.

Figure : Ten customers and a server

Queuing models can be quite complex, depending on such factors as the probability distribution that governs the arrival of
customers, the probability distribution that governs the service of customers, the number of servers, and the behavior of the
customers when all servers are busy. Indeed, queuing theory has its own lexicon to indicate some of these factors. In this section,
we will discuss a few of the basic, continuous-time queuing chains. In a general sense, the main interest in any queuing model is
the number of customers in the system as a function of time, and in particular, whether the servers can adequately handle the flow
of customers. This section parallels the section on discrete-time queuing chains.

Our main assumptions are as follows:

1. There are  servers.
2. The customers arrive according to a Poisson process with rate .
3. If all of the servers are busy, a new customer goes to the end of a single line of customers waiting service.
4. The time required to service a customer has an exponential distribution with parameter .
5. The service times are independent from customer to customer, and are independent of the arrival process.

Assumption (b) means that the times between arrivals of customers are independent and exponentially distributed, with parameter 
. Assumption (c) means that we have a first-in, first-out model, often abbreviated FIFO. Note that there are three parameters in

the model: the number of servers , the exponential parameter  that governs the arrivals, and the exponential parameter  that
governs the service times. The special cases  (a single server) and  (infinitely many servers) deserve special attention.
As you might guess, the assumptions lead to a continuous-time Markov chain.

Let  denote the number of customers in the system (waiting in line or being served) at time . Then 
 is a continuous-time Markov chain on , known as the M/M/  queuing chain.

In terms of the basic structure of the chain, the important quantities are the exponential parameters for the states and the transition
matrix for the embedded jump chain.

For the M/M/  chain ,

1. The exponential parameter function  is given by  if  and  and  if  and 
.

2. The transition matrix  for the jump chain is given by

So the M/M/  chain is a birth-death chain with 0 as a reflecting boundary point. That is, in state , the next state is either 
 or , while in state 0, the next state is 1. When , the single-server queue, the exponential parameter in state 

 is  and the transition probabilities for the jump chain are
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When , the infinite server queue, the cases above for  are vacuous, so the exponential parameter in state  is 
 and the transition probabilities are

Infinitesimal Generator

The infinitesimal generator of the chain gives the same information as the exponential parameter function and the jump transition
matrix, but in a more compact form.

For the M/M/  queuing chain , the infinitesimal generator  is given by

So for , the single server queue, the generator  is given by , , while for , 
, , . For , the infinite server case, the generator  is given by 

, , and  for all .

Classification and Limiting Behavior

Again, let  denote the M/M/  queuing chain with arrival rate , service rate  and with 
servers. As noted in the introduction, of fundamental importance is the question of whether the servers can handle the flow of
customers, so that the queue eventually empties, or whether the length of the queue grows without bound. To understand the
limiting behavior, we need to classify the chain as transient, null recurrent, or positive recurrent, and find the invariant functions.
This will be easy to do using our results for more general continuous-time birth-death chains. Note first that  is irreducible. It's
best to consider the single server and infinite server cases individually.

The single server queuing chain  is

1. Transient if .
2. Null recurrent if .
3. Positive recurrent if . The invariant distribution is the geometric distribution on  with parameter . The invariant

probability density function  is given by

Proof

This follows directly from results for the continuous-time birth-death chain, with constant birth rate  on  and constant death
rate  on .

The result makes intuitive sense. If the service rate is less than the arrival rate, the chain is transient and the length of the queue
grows to infinity. If the service rate is greater than the arrival rate, the chain is positive recurrent. At the boundary between these
two cases, when the arrival and service rates are the same, the chain is null recurrent.

The infinite server queuing chain  is positive recurrent. The invariant distribution is the Poisson distribution with parameter 
. The invariant probability density function  is given by

Proof

This also follows from results for the continuous-time birth-death chain. In the notation of that section, the birth rate is
constant,  for  and the death rate is proportional to the number of customers in the system:  for 

. Hence the invariant function (unique up to multiplication by constants) is
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Normalized, this is the Poisson distribution with parameter .

This result also makes intuitive sense.

This page titled 16.22: Continuous-Time Queuing Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
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