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16.11: Discrete-Time Branching Chain

Basic Theory

Introduction

Generically, suppose that we have a system of particles that can generate or split into other particles of the same type. Here are
some typical examples:

o The particles are biological organisms that reproduce.
o The particles are neutrons in a chain reaction.
o The particles are electrons in an electron multiplier.

We assume that each particle, at the end of its life, is replaced by a random number of new particles that we will refer to as children
of the original particle. Our basic assumption is that the particles act independently, each with the same offspring distribution on N.
Let f denote the common probability density function of the number of offspring of a particle. We will also let
™ =f*f*---%f denote the convolution power of degree n of f; this is the probability density function of the total number of
children of n particles.

We will consider the evolution of the system in real time in our study of continuous-time branching chains. In this section, we will
study the evolution of the system in generational time. Specifically, the particles that we start with are in generation 0, and
recursively, the children of a particle in generation n are in generationn + 1.
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Figure 16.11.1: Generations 0, 1, 2, and 3 of a branching chain.
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Let X, denote the number of particles in generation n € N. One way to construct the process mathematically is to start with an
array of independent random variables (U, ; : n € N, ¢ € N ), each with probability density function f. We interpret U, ; as the
number of children of the ¢th particle in generation n (if this particle exists). Note that we have more random variables than we
need, but this causes no harm, and we know that we can construct a probability space that supports such an array of random
variables. We can now define our state variables recursively by

X,
Xny1 =3 Uni (16.11.1)
=1

X = (Xo, X1, X, ...) is a discrete-time Markov chain on N with transition probability matrix P given by

P(z,y) = **(y), (z,y)eN? (16.11.2)

The chain X is the branching chain with offspring distribution defined by f.

Proof

The Markov property and the form of the transition matrix follow directly from the construction of the state variables given
above. Since the variables (U, ;: n € N,i € N, ) are independent, each with PDF f, we have

x
P(Xpi1=y| Xo=20,..., Xn 1 =2p_1,Xp =) =P <Z Uni :y> = f*(y) (16.11.3)
=1
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The branching chain is also known as the Galton-Watson process in honor of Francis Galton and Henry William Watson who
studied such processes in the context of the survival of (aristocratic) family names. Note that the descendants of each initial particle
form a branching chain, and these chains are independent. Thus, the branching chain starting with x particles is equivalent to x
independent copies of the branching chain starting with 1 particle. This features turns out to be very important in the analysis of the
chain. Note also that 0 is an absorbing state that corresponds to extinction. On the other hand, the population may grow to infinity,
sometimes called explosion. Computing the probability of extinction is one of the fundamental problems in branching chains; we
will essentially solve this problem in the next subsection.

Extinction and Explosion

The behavior of the branching chain in expected value is easy to analyze. Let m denote the mean of the offspring distribution, so
that

m=>zf(z) (16.11.4)

Note that m € [0, oo]. The parameter m will turn out to be of fundamental importance.

Expected value properties

1. E(Xp11) =mE(X,) forneN
(X)) =m"E(X,) forneN
E(X,) »0asn—oo0 ifm <1.
E(X,)=E(X) foreachn e Nif m =1.
E(X,) > oo asn— oo if m>1and E(Xy) >

For part (a) we use a conditioning argument and the construction above. For z € N,

E(Xn41 | Xn =2) (ZUR —m) :E(iUm) = ma (16.11.5)

That is, E(X 41 | X)) =mX,, so E(X,;1) =E[E(X,41 | Xn)] =mE(X,) Part (b) follows from (a) and then parts (c),
(d), and (e) follow from (b).

Part (c) is extinction in the mean; part (d) is stability in the mean; and part (e) is explosion in the mean.

Recall that state 0 is absorbing (there are no particles), and hence {X,, =0 for some n € N} = {r < oo} is the extinction event
(where as usual, 7y is the time of the first return to 0). We are primarily concerned with the probability of extinction, as a function
of the initial state. First, however, we will make some simple observations and eliminate some trivial cases.

Suppose that f(1) =1, so that each particle is replaced by a single new particle. Then

1. Every state is absorbing.
2. The equivalence classes are the singleton sets.
3. With probability 1, X,, = X, for every n € N.

Proof

These properties are obvious since P(z,z) =1 for every z € N.

Suppose that f(0) > 0 so that with positive probability, a particle will die without offspring. Then

1. Every state leads to 0.

2. Every positive state is transient.

3. With probability 1 either X,, = 0 for some n € N (extinction) or X,, — oo as n — oo (explosion).
Proof

1. Note that P(z,0) =[f(0)]* > 0 for z € N, so every state leads to 0 in one step.
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2. This follows from (a). If z € N, then z leads to the absorbing state 0 with positive probability. Hence a return to z,
starting in &, cannot have probability 1.

3. This follows from (a) and (b). With probability 1, every positive state is visited only finitely many times. Hence the only
possibilities are X,, =0 for some n € N or X,, — 00 asn — 0c0.

Suppose that f(0) =0 and f(1) < 1, so that every particle is replaced by at least one particle, and with positive probability,
more than one. Then

1. Every positive state is transient.
2.P(X,, > o0asn—oo| Xg=x)=1 foreveryz € N,, so that explosion is certain, starting with at least one particle.

Proof
1. Let z € N, . Under the assumptions on f, state = leads to some state y > = but y does not lead back to «. Hence with

positive probability, the chain starting in  will not return to .
2. This follows from (a) and that the fact that positive states do not lead to 0.

Suppose that f(0) >0 and f(0)+ f(1) =1, so that with positive probability, a particle will die without offspring, and with
probability 1, a particle is not replaced by more than one particle. Then

1. Every state leads to 0.
2. Every positive state is transient.
3. With probability 1, X,, =0 for some n € N, so extinction is certain.

Proof
1. As before, P(z,0) = [£(0)]® >0 for z € N, so z leads to 0 in one step.
2. This follows from (a) and the fact that 0 is absorbing.
3. Under the assumptions on f, state = leads to state y only if y < x. So this follows from (a) and (b).

Thus, the interesting case is when f(0) >0 and f(0)+ f(1) <1, so that with positive probability, a particle will die without
offspring, and also with positive probability, the particle will be replaced by more than one new particles. We will assume these
conditions for the remainder of our discussion. By the state classification above all states lead to 0 (extinction). We will denote the
probability of extinction, starting with one particle, by

g=P(rp <oo|Xg=1)=P(X, =0forsomen c N| Xy =1) (16.11.6)
The set of positive states N, is a transient equivalence class, and the probability of extinction starting with € N particles is

¢ =P(rp <0 | Xg=2)=P(X, =0forsomen € N| X; =z) (16.11.7)
Proof

Under the assumptions on f, from any positive state the chain can move 2 or more units to the right and one unit to the left in
one step. It follows that every positive state leads to every other positive state. On the other hand, every positive state leads to
0, which is absorbing. Thus, N is a transient equivalence class.

Recall that the branching chain starting with @ € N, particles acts like « independent branching chains starting with one
particle. Thus, the extinction probability starting with = particles is g*.

The parameter g satisfies the equation

qzif(x)q’” (16.11.8)

z=0
Proof

This result follows from conditioning on the first state.

g=P(m<oo|Xo=1)=) P(n<oo|Xo=1,X1 =2)P(X1 =2 | Xo=1) (16.11.9)
=0
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But by the Markov property and the previous result,
Plo<oo|Xo=1,X1=z)=P(nn <oo| X1 =z)=4q" (16.11.10)
and of course P(X; =z | Xo =1)=P(1,z) = f(z) .

Thus the extinction probability g starting with 1 particle is a fixed point of the probability generating function ® of the offspring
distribution:

o0
)= fla)", tel0,1] (16.11.11)
=0
Moreover, from the general discussion of hitting probabilities in the section on recurrence and transience, g is the smallest such
number in the interval (0, 1]. If the probability generating function ® can be computed in closed form, then g can sometimes be
computed by solving the equation ®(t) =¢.

& satisfies the following properties:
1. ®(0) = f(0).
2.8(1) =1.
3.%'(t) >0 fort € (0,1) so ® in increasing on (0, 1).
4.9"(t) >0 fort € (0,1) so ® in concave upward on (0, 1).
5.m = limy ®'(2).

Proof

These are basic properties of the probability generating function. Recall that the series that defines ® is a power series about 0
with radius of convergence r > 1. A function defined by a power series is infinitely differentiable within the open interval of
convergence, and the derivates can be computed term by term. So

') =Y zf(x)t*! >0, te(0,1)

NgE

=il

NgE

') =Y z(x—1)f(x)t*2>0, tec(0,1)

||
[\

&

If r >1 thenm = ®'(1). If r = 1, the limit result is the best we can do.

Our main result is next, and relates the extinction probability q and the mean of the offspring distribution m.

The extinction probability ¢ and the mean of the offspring distribution m are related as follows:

1. If m <1 then ¢ = 1, so extinction is certain.
2.If m >1 then 0 < g <1, so there is a positive probability of extinction and a positive probability of explosion.

Proof
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Figure 16.11.2 The case of certain extinction.
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Figure 16.11.3 The case of possible extinction and possible explosion.

Computational Exercises
Consider the branching chain with offspring probability density function f given by f(0) =1 —p, f(2) = p, where p € (0, 1)
is a parameter. Thus, each particle either dies or splits into two new particles. Find each of the following.

1. The transition matrix P.

2. The mean m of the offspring distribution.

3. The generating function @ of the offspring distribution.
4. The extinction probability q.

Answer
Note that an offspring variable has the form 21 where I is an indicator variable with parameter p.

1. For z € N, f*® is the PDF of 2U where U has the binomial distribution with parameters « and p. Hence

P(z,y) = f*(y) = (y‘;z)py”(l —p)* Y2, ye{0,2,...,2z} (16.11.12)

2. m =2p.
3.9(t)=pt’+ (1 —p) forteR.

. 1 1-p .. 1
4.9=1if0<p<3 andq:Tlf5<p<1.

Graphs of ¢ — ®(t) and ¢ — t whenp = %
|+ Graphs

Graphs of ¢t — ®(t) and ¢t — ¢t whenp = %
|.Graphs

Consider the branching chain whose offspring distribution is the geometric distribution on N with parameter 1 —p, where
p € (0,1). Thus f(n) = (1 —p)p™ for n € N. Find each of the following:

1. The transition matrix P.
2. The mean m of the offspring distribution.
3. The generating function ® of the offspring distribution.
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4. The extinction probability q.

Answer
1. For z € N, f** is the PDF of the negative binomial distribution on N with parameter 1 —p . So

z+y—1

Y _ z
e1 )p 1-p)% yeN (16.11.13)

P(z,y) = f*(y) = (

P
2.m=1—.
-p

_ 1 1
3.2(t) = Tt for It < 5.
4.9q=1if0<p<% andg==L ifL <p<1.

Graphs of ¢t — ®(t) and ¢t — ¢ whenp = %
| Graphs

Graphs of ¢ — ®(t) and ¢ — t whenp = %
|+ Graphs

Curiously, the extinction probability is the same as for the previous problem.

Consider the branching chain whose offspring distribution is the Poisson distribution with parameter m € (0, c0). Thus
f(n) =e™m™/n! forn € N. Find each of the following:

1. The transition matrix P.

2. The mean m of the offspring distribution.

3. The generating function ® of the offspring distribution.

4. The approximate extinction probability ¢ when m = 2 and when m = 3.

Answer
1. For z € N, f** is the PDF of the Poisson distribution with parameter mz. So

e ()
y!
2. The parameter m is the mean of the Poisson distribution, so the notation is consistent.
3. 8(t) =™ fort e R.
4.9=1if 0 <m <1.If m > 1 then g is the solution in (0, 1) of the equation e™91) = ¢ which can be expressed in terms
of a special function known as the Lambert W function:

q:—iW (—me™™) (16.11.15)
m

P(z,y)=f"(y) = yeN (16.11.14)

)

Form =2, ¢~ 0.20319 Form =3, ¢ ~ 0.059520

Graphs of ¢t — ®(t) and ¢t — ¢t when m = %
| .Graphs

Graphs of ¢t — ®(t) and ¢ — ¢ whenm =2
|+ Graphs
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