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4.4: Skewness and Kurtosis
       

As usual, our starting point is a random experiment, modeled by a probability space . So to review,  is the set of outcomes, 
the collection of events, and  the probability measure on the sample space . Suppose that  is a real-valued random variable for
the experiment. Recall that the mean of  is a measure of the center of the distribution of . Furthermore, the variance of  is the second
moment of  about the mean, and measures the spread of the distribution of  about the mean. The third and fourth moments of  about
the mean also measure interesting (but more subtle) features of the distribution. The third moment measures skewness, the lack of
symmetry, while the fourth moment measures kurtosis, roughly a measure of the fatness in the tails. The actual numerical measures of
these characteristics are standardized to eliminate the physical units, by dividing by an appropriate power of the standard deviation. As
usual, we assume that all expected values given below exist, and we will let  and . We assume that , so that
the random variable is really random.

Basic Theory

Skewness

The skewness of  is the third moment of the standard score of :

The distribution of  is said to be positively skewed, negatively skewed or unskewed depending on whether  is positive,
negative, or 0.

In the unimodal case, if the distribution is positively skewed then the probability density function has a long tail to the right, and if the
distribution is negatively skewed then the probability density function has a long tail to the left. A symmetric distribution is unskewed.

Suppose that the distribution of  is symmetric about . Then

1. 
2. .

Proof

By assumption, the distribution of  is the same as the distribution of . We proved part (a) in the section on properties of
expected Value. Thus, . But by symmetry and linearity, 

, so it follows that .

The converse is not true—a non-symmetric distribution can have skewness 0. Examples are given in Exercises (30) and (31) below.

 can be expressed in terms of the first three moments of .

Proof

Note tht . From the linearity of expected value we have

The second expression follows from substituting .

Since skewness is defined in terms of an odd power of the standard score, it's invariant under a linear transformation with positve slope (a
location-scale transformation of the distribution). On the other hand, if the slope is negative, skewness changes sign.

Suppose that  and . Then

1.  if 
2.  if 

Proof

(Ω,F , P ) Ω F

P (Ω,F) X

X X X

X X X

μ =E(X) = var(X)σ2 σ > 0

X X

skew(X) =E[ ]( )
X −μ

σ

3

(4.4.1)

X skew(X)

X a

E(X) = a

skew(X) = 0

a −X X −a

skew(X) =E [(X −a ] /)3 σ3

E [(X −a ] =E [(a −X ] = −E [(X −a ])3 )3 )3
E [(X −a ] = 0)3

skew(X) X

skew(X) = =
E ( )−3μE ( )+2X3 X2 μ3

σ3

E ( )−3μ −X3 σ2 μ3

σ3
(4.4.2)

(X −μ = −3 μ +3X −)3 X3 X2 μ2 μ3

E [(X −μ ] =E ( )−3μE ( )+3 E(X) − = E ( )−3μE ( )+2)3 X3 X2 μ2 μ3 X3 X2 μ3 (4.4.3)

E ( ) = +X2 σ2 μ2

a ∈ R b ∈ R ∖ {0}

skew(a +bX) = skew(X) b > 0
skew(a +bX) = −skew(X) b < 0
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Let , the standard score of . Recall from the section on variance that the standard score of  is  if 
and is  if .

Recall that location-scale transformations often arise when physical units are changed, such as inches to centimeters, or degrees
Fahrenheit to degrees Celsius.

Kurtosis

The kurtosis of  is the fourth moment of the standard score:

Kurtosis comes from the Greek word for bulging. Kurtosis is always positive, since we have assumed that  (the random variable
really is random), and therefore . In the unimodal case, the probability density function of a distribution with large kurtosis
has fatter tails, compared with the probability density function of a distribution with smaller kurtosis.

 can be expressed in terms of the first four moments of .

Proof

Note that . From linearity of expected value, we have

The second expression follows from the substitution .

Since kurtosis is defined in terms of an even power of the standard score, it's invariant under linear transformations.

Suppose that  and . Then .

Proof

As before, let  denote the standard score of . Then the standard score of  is  if  and is  if .

We will show in below that the kurtosis of the standard normal distribution is 3. Using the standard normal distribution as a benchmark,
the excess kurtosis of a random variable  is defined to be . Some authors use the term kurtosis to mean what we have
defined as excess kurtosis.

Computational Exercises
As always, be sure to try the exercises yourself before expanding the solutions and answers in the text.

Indicator Variables

Recall that an indicator random variable is one that just takes the values 0 and 1. Indicator variables are the building blocks of many
counting random variables. The corresponding distribution is known as the Bernoulli distribution, named for Jacob Bernoulli.

Suppose that  is an indicator variable with  where . Then

1. 
2. 
3. 

4. 

Proof

Parts (a) and (b) have been derived before. All four parts follow easily from the fact that  and hence  for 
.

Z = (X −μ)/σ X a +bX Z b > 0
−Z b < 0

X

kurt(X) =E[ ]( )
X −μ

σ

4

(4.4.4)

σ > 0
P(X ≠ μ) > 0

kurt(X) X

kurt(X) = =
E ( )−4μE ( )+6 E ( )−3X4 X3 μ2 X2 μ4

σ4

E ( )−4μE ( )+6 +3X4 X3 μ2σ2 μ4

σ4
(4.4.5)

(X −μ = −4 μ +6 −4X +)4 X4 X3 X2μ2 μ3 μ4

E [(X −μ ] =E ( )−4μE ( )+6 E ( )−4 E(X) + =E( ) −4μE( ) +6 E( ) −3)4 X4 X3 μ2 X2 μ3 μ4 X4 X3 μ2 X2 μ4 (4.4.6)

E ( ) = +X2 σ2 μ2

a ∈ R b ∈ R ∖ {0} kurt(a +bX) = kurt(X)

Z = (X −μ)/σ X a +bX Z b > 0 −Z b < 0

X kurt(X) −3

X P(X = 1) = p p ∈ (0, 1)

E(X) = p

var(X) = p(1 −p)

skew(X) =
1−2p

p(1−p)√

kurt(X) =
1−3p+3p2

p(1−p)

= XXn
E ( ) = pXn

n ∈ N+
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Open the binomial coin experiment and set  to get an indicator variable. Vary  and note the change in the shape of the
probability density function.

Dice

Recall that a fair die is one in which the faces are equally likely. In addition to fair dice, there are various types of crooked dice. Here are
three:

An ace-six flat die is a six-sided die in which faces 1 and 6 have probability  each while faces 2, 3, 4, and 5 have probability  each.
A two-five flat die is a six-sided die in which faces 2 and 5 have probability  each while faces 1, 3, 4, and 6 have probability  each.
A three-four flat die is a six-sided die in which faces 3 and 4 have probability  each while faces 1, 2, 5, and 6 have probability 
each.

A flat die, as the name suggests, is a die that is not a cube, but rather is shorter in one of the three directions. The particular probabilities
that we use (  and ) are fictitious, but the essential property of a flat die is that the opposite faces on the shorter axis have slightly larger
probabilities that the other four faces. Flat dice are sometimes used by gamblers to cheat.

A standard, fair die is thrown and the score  is recorded. Compute each of the following:

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

An ace-six flat die is thrown and the score  is recorded. Compute each of the following:

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

A two-five flat die is thrown and the score  is recorded. Compute each of the following:

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

A three-four flat die is thrown and the score  is recorded. Compute each of the following:

1. 
2. 

n = 1 p

1
4

1
8

1
4

1
8

1
4

1
8

1
4

1
8

X

E(X)
var(X)
skew(X)
kurt(X)

7
2
35
12

0
303
175

X

E(X)
var(X)
skew(X)
kurt(X)

7
2
15
4

0
37
25

X

E(X)
var(X)
skew(X)
kurt(X)

7
2
11
4

0
197
121

X

E(X)
var(X)
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3. 
4. 

Answer

1. 
2. 
3. 
4. 

All four die distributions above have the same mean  and are symmetric (and hence have skewness 0), but differ in variance and
kurtosis.

Open the dice experiment and set  to get a single die. Select each of the following, and note the shape of the probability density
function in comparison with the computational results above. In each case, run the experiment 1000 times and compare the empirical
density function to the probability density function.

1. fair
2. ace-six flat
3. two-five flat
4. three-four flat

Uniform Distributions

Recall that the continuous uniform distribution on a bounded interval corresponds to selecting a point at random from the interval.
Continuous uniform distributions arise in geometric probability and a variety of other applied problems.

Suppose that  has uniform distribution on the interval , where  and . Then

1. 
2. 
3. 
4. 

Proof

Parts (a) and (b) we have seen before. For parts (c) and (d), recall that  where  has the uniform distribution on 
 (the standard uniform distribution). Hence it follows from the formulas for skewness and kurtosis under linear transformations

that  and . Since  for , it's easy to compute the skewness and
kurtosis of  from the computational formulas skewness and kurtosis. Of course, the fact that  also follows trivially
from the symmetry of the distribution of  about the mean.

Open the special distribution simulator, and select the continuous uniform distribution. Vary the parameters and note the shape of the
probability density function in comparison with the moment results in the last exercise. For selected values of the parameter, run the
simulation 1000 times and compare the empirical density function to the probability density function.

The Exponential Distribution

Recall that the exponential distribution is a continuous distribution on with probability density function  given by

where  is the with rate parameter. This distribution is widely used to model failure times and other “arrival times”. The
exponential distribution is studied in detail in the chapter on the Poisson Process.

Suppose that  has the exponential distribution with rate parameter . Then

1. 
2. 
3. 
4. 

Proof

skew(X)
kurt(X)

7
2
9
4

0
59
27

7
2

n = 1

X [a, b] a, b ∈ R a < b

E(X) = (a +b)1
2

var(X) = (b −a1
12

)2

skew(X) = 0

kurt(X) = 9
5

X = a +(b −a)U U

[0, 1]
skew(X) = skew(U) kurt(X) = kurt(U) E( ) = 1/(n +1)U n n ∈ N+

U skew(X) = 0
X

[0, ∞) f

f(t) = r , t ∈ [0, ∞)e−rt (4.4.7)

r ∈ (0, ∞)

X r > 0

E(X) = 1
r

var(X) = 1
r2

skew(X) = 2
kurt(X) = 9
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These results follow from the computational formulas for skewness and kurtosis and the general moment formula 
for .

Note that the skewness and kurtosis do not depend on the rate parameter . That's because  is a scale parameter for the exponential
distribution

Open the gamma experiment and set  to get the exponential distribution. Vary the rate parameter and note the shape of the
probability density function in comparison to the moment results in the last exercise. For selected values of the parameter, run the
experiment 1000 times and compare the empirical density function to the true probability density function.

Pareto Distribution

Recall that the Pareto distribution is a continuous distribution on  with probability density function  given by

where  is a parameter. The Pareto distribution is named for Vilfredo Pareto. It is a heavy-tailed distribution that is widely used
to model financial variables such as income. The Pareto distribution is studied in detail in the chapter on Special Distributions.

Suppose that  has the Pareto distribution with shape parameter . Then

1.  if 
2.  if 

3.  if 

4.  if 

Proof

These results follow from the standard computational formulas for skewness and kurtosis and the general moment formula 
 if  and .

Open the special distribution simulator and select the Pareto distribution. Vary the shape parameter and note the shape of the
probability density function in comparison to the moment results in the last exercise. For selected values of the parameter, run the
experiment 1000 times and compare the empirical density function to the true probability density function.

The Normal Distribution

Recall that the standard normal distribution is a continuous distribution on  with probability density function  given by

Normal distributions are widely used to model physical measurements subject to small, random errors and are studied in detail in the
chapter on Special Distributions.

Suppose that  has the standard normal distribution. Then

1. 
2. 
3. 
4. 

Proof

Parts (a) and (b) were derived in the previous sections on expected value and variance. Part (c) follows from symmetry. For part (d),
recall that .

More generally, for  and , recall that the normal distribution with mean  and standard deviation  is a continuous
distribution on  with probability density function  given by

E ( ) = n!/Xn rn

n ∈ N

r 1/r

n = 1

[1, ∞) f

f(x) = , x ∈ [1, ∞)
a

xa+1
(4.4.8)

a ∈ (0, ∞)

X a > 0

E(X) = a

a−1
a > 1

var(X) = a

(a−1 (a−2))
2 a > 2

skew(X) =
2(1+a)

a−3
1 − 2

a

− −−−−
√ a > 3

kurt(X) =
3(a−2)(3 +a+2)a2

a(a−3)(a−4)
a > 4

E ( ) =Xn a
a−n n ∈ N n < a

R ϕ

ϕ(z) = , z ∈ R
1

2π
−−

√
e−

1

2
z2

(4.4.9)

Z

E(Z) = 0
var(Z) = 1
skew(Z) = 0
kurt(Z) = 3

E( ) = 3E( ) = 3Z4 Z2

μ ∈ R σ ∈ (0, ∞) μ σ

R f

f(x) = exp[− ], x ∈ R
1

σ2π
−−

√

1

2
( )

x −μ

σ

2

(4.4.10)
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However, we also know that  and  are location and scale parameters, respectively. That is, if  has the standard normal distribution
then  has the normal distribution with mean  and standard deviation .

If  has the normal distribution with mean  and standard deviation , then

1. 
2. 

Proof

The results follow immediately from the formulas for skewness and kurtosis under linear transformations and the previous result.

Open the special distribution simulator and select the normal distribution. Vary the parameters and note the shape of the probability
density function in comparison to the moment results in the last exercise. For selected values of the parameters, run the experiment
1000 times and compare the empirical density function to the true probability density function.

The Beta Distribution

The distributions in this subsection belong to the family of beta distributions, which are continuous distributions on  widely used to
model random proportions and probabilities. The beta distribution is studied in detail in the chapter on Special Distributions.

Suppose that  has probability density function  given by  for . Find each of the following:

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

Suppose that  has probability density function  given by  for . Find each of the following:

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

Suppose that  has probability density function  given by  for . Find each of the following:

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

μ σ Z

X = μ +σZ μ σ

X μ ∈ R σ ∈ (0, ∞)

skew(X) = 0
kurt(X) = 3

[0, 1]

X f f(x) = 6x(1 −x) x ∈ [0, 1]

E(X)
var(X)
skew(X)
kurt(X)

1
2
1

20

0
15
7

X f f(x) = 12 (1 −x)x2 x ∈ [0, 1]

E(X)
var(X)
skew(X)
kurt(X)

3
5
1

25

− 2
7

33
14

X f f(x) = 12x(1 −x)2 x ∈ [0, 1]

E(X)
var(X)
skew(X)
kurt(X)

2
5
1

25
2
7
33
14
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Open the special distribution simulator and select the beta distribution. Select the parameter values below to get the distributions in
the last three exercises. In each case, note the shape of the probability density function in relation to the calculated moment results.
Run the simulation 1000 times and compare the empirical density function to the probability density function.

1. , 
2. , 
3. , 

Suppose that  has probability density function  given by  for . Find

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 0
4. 96

The particular beta distribution in the last exercise is also known as the (standard) arcsine distribution. It governs the last time that the
Brownian motion process hits 0 during the time interval . The arcsine distribution is studied in more generality in the chapter on
Special Distributions.

Open the Brownian motion experiment and select the last zero. Note the shape of the probability density function in relation to the
moment results in the last exercise. Run the simulation 1000 times and compare the empirical density function to the probability
density function.

Counterexamples

The following exercise gives a simple example of a discrete distribution that is not symmetric but has skewness 0.

Suppose that  is a discrete random variable with probability density function  given by , , . Find
each of the following and then show that the distribution of  is not symmetric.

1. 
2. 
3. 
4. 

Answer
1. 0
2. 3
3. 0
4. 

The PDF  is clearly not symmetric about 0, and the mean is the only possible point of symmetry.

The following exercise gives a more complicated continuous distribution that is not symmetric but has skewness 0. It is one of a collection
of distributions constructed by Erik Meijer.

Suppose that , , and  are independent random variables, and that  is normally distributed with mean  and variance 
,  is normally distributed with mean  and variance , and  is an indicator variable with . Let 

. Find each of the following and then show that the distribution of  is not symmetric.

1. 
2. 
3. 
4. 

a = 2 b = 2
a = 3 b = 2
a = 2 b = 3

X f f(x) = 1

π x(1−x)√
x ∈ (0, 1)

E(X)
var(X)
skew(X)
kurt(X)

1
2
1
8

[0, 1]

X f f(−3) = 1
10

f(−1) = 1
2

f(2) = 2
5

X

E(X)
var(X)
skew(X)
kurt(X)

5
3

f

U V I U μ = −2

= 1σ2 V ν = 1 = 2τ 2 I P(I = 1) = p = 1
3

X = IU +(1 −I)V X

E(X)
var(X)
skew(X)
kurt(X)
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Solution

The distribution of  is a mixture of normal distributions. The PDF is  where  is the normal PDF of  and  is
the normal PDF of . However, it's best to work with the random variables. For , note that  and 
and note also that the random variable  just takes the value 0. It follows that

So now, using standard results for the normal distribution,

1. .
2. 
3.  so 
4.  so 

The graph of the PDF  of  is given below. Note that  is not symmetric about 0. (Again, the mean is the only possible point of
symmetry.)

The PDF of 
PDF
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X f = pg +(1 −p)h g U h

V n ∈ N+ = II n (1 −I = 1 −I)n

I(1 −I)

= I +(1 −I) , n ∈Xn U n V n
N+ (4.4.11)

E(X) = pμ +(1 −p)ν = 0

var(X) =E( ) = p( + ) +(1 −p)( + ) =X2 σ2 μ2 τ 2 ν2 11
3

E( ) = p(3μ + ) +(1 −p)(3ν + ) = 0X3 σ2 μ3 τ 2 ν3 skew(X) = 0

E( ) = p(3 +6 + ) +(1 −p)(3 +6 + ) = 31X4 σ4 σ2μ2 μ4 τ 4 τ 2ν2 ν4 kurt(X) = ≈ 2.306279
121

f X f

X
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