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8.3: Estimation in the Bernoulli Model
       

Introduction

Recall that an indicator variable is a random variable that just takes the values 0 and 1. In applications, an indicator variable
indicates which of two complementary events in a random experiment has occurred. Typical examples include

A manufactured item subject to unavoidable random factors is either defective or acceptable.
A voter selected from a population either supports a particular candidate or does not.
A person selected from a population either does or does not have a particular medical condition.
A student in a class either passes or fails a standardized test.
A sample of radioactive material either does or does not emit an alpha particle in a specified ten-second period.

Recall also that the distribution of an indicator variable is known as the Bernoulli distribution, named for Jacob Bernoulli, and has
probability density function given by , , where  is the basic parameter. In the context
of the examples above,

 is the probability that the manufactured item is defective.
 is the proportion of voters in the population who favor the candidate.
 is the poportion of persons in the population that have the medical condition.
 is the probability that a student in the class will pass the exam.
 is the probability that the material will emit an alpha particle in the specified period.

Recall that the mean and variance of the Bernoulli distribution are  and . Often in statistical
applications,  is unknown and must be estimated from sample data. In this section, we will see how to construct interval estimates
for the parameter from sample data. A parallel section on Tests in the Bernoulli Model is in the chapter on Hypothesis Testing.

The One-Sample Model

Preliminaries

Suppose that  is a random sample from the Bernoulli distribution with unknown parameter . That
is,  is a squence of Bernoulli trials. From the examples in the introduction above, note that often the underlying experiment is to
sample at random from a dichotomous population. When the sampling is with replacement,  really is a sequence of Bernoulli
trials. When the sampling is without replacement, the variables are dependent, but the Bernoulli model is still approximately valid
if the population size is large compared to the sample size . For more on these points, see the discussion of sampling with and
without replacement in the chapter on Finite Sampling Models.

Note that the sample mean of our data vector , namely

is the sample proportion of objects of the type of interest. By the central limit theorem, the standard score

has approximately a standard normal distribution and hence is (approximately) a pivot variable for . For a given sample size ,
the distribution of  is closest to normal when  is near  and farthest from normal when  is near 0 or 1 (extreme). Because the
pivot variable is (approximately) normally distributed, the construction of confidence intervals for  in this model is similar to the
construction of confidence intervals for the distribution mean  in the normal model. But of course all of the confidence intervals
so constructed are approximate.

As usual, for , let  denote the quantile of order  for the standard normal distribution. Values of  can be obtained
from the special distribution calculator, or from most statistical software packages.
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Basic Confidence Intervals

For , the following are approximate  confidence sets for :

1. 
2. 
3. 

Proof

From our discussion above,  has approximately a standard normal distribution. Hence by definition of
the quantiles,

1. 
2. 
3. 

Solving the inequalities for  in the numerator of  for each event gives the corresponding confidence
set.

These confidence sets are actually intervals, known as the Wilson intervals, in honor of Edwin Wilson.

The confidence sets for  in (1) are intervals. Let

Then the following have approximate confidecne level  for .

1. The two-sided interval .
2. The upper bound .
3. The lower bound .

Proof

This follows by solving the inequalities in (1) for . For each inequality, we can isolate the square root term, and then square
both sides. This gives quadratic inequalities, which can be solved using the quadratic formula.

As usual, the equal-tailed confidence interval in (a) is not the only two-sided  confidence interval for . We can divide the 
probability between the left and right tails of the standard normal distribution in any way that we please.

For , an approximate two-sided  confidence interval for  is  where  is the
function in (2).

Proof

As in the proof of (1),

Solving for  with the help of the quadratic formula gives the result.

In practice, the equal-tailed  confidence interval in part (a) of (2), obtained by setting , is the one that is always used.
As , the right enpoint converges to the  confidence upper bound in part (b), and as  the left endpoint converges to
the  confidence lower bound in part (c).

Simplified Confidence Intervals

Simplified approximate  confidence intervals for  can be obtained by replacing the distribution mean  by the sample mean 
 in the extreme parts of the inequalities in (1).
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For , the following have approximate confidence level  for :

1. The two-sided interval with endpoints .
2. The upper bound .
3. The lower bound .

Proof

As noted, these results follows from the confidence set in (1) by replacing  with  in the expression .

These confidence intervals are known as Wald intervals, in honor of Abraham Wald.. Note that the Wald interval can also be
obtained from the Wilson intervals in (2) by assuming that  is large compared to , so that , , and 

. Note that this interval in (c) is symmetric about the sample proportion  but that the length of the interval, as well as
the center is random. This is the two-sided interval that is normally used.

Use the simulation of the proportion estimation experiment to explore the procedure. Use various values of  and various
confidence levels, sample sizes, and interval types. For each configuration, run the experiment 1000 times and compare the
proportion of successful intervals to the theoretical confidence level.

As always, the equal-tailed interval in (4) is not the only two-sided,  confidence interval.

For , an approximate two-sided  confidence interval for  is

The interval with smallest length is the equal-tail interval with .

Conservative Confidence Intervals

Note that the function  on the interval  is maximized when  and thus the maximum value is . We can
obtain conservative confidence intervals for  from the basic confidence intervals by using this fact.

For , the following have approximate confidence level at least  for :

1. The two-sided interval with endpoints .

2. The upper bound .

3. The lower bound .

Proof

As noted, these results follows from the confidence sets in (1) by replacing  with  in the expression .

Note that the confidence interval in (a) is symmetric about the sample proportion  and that the length of the interval is
deterministic. Of course, the conservative confidence intervals will be larger than the approximate simplified confidence intervals
in (4). The conservative estimate can be used to design the experiment. Recall that the margin of error is the distance between the
sample proportion  and an endpoint of the confidence interval.

A conservative estimate of the sample size  needed to estimate  with confidence  and margin of error  is

where  for the two-sided interval and  for the confidence upper or lower bound.

Proof

With confidence level , the margin of error is . Setting this equal to the prescribed value  and solving gives the

result.
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As always, the equal-tailed interval in (7) is not the only two-sided, conservative,  confidence interval.

For , an approximate two-sided, conservative  confidence interval for  is

The interval with smallest length is the equal-tail interval with .

The Two-Sample Model

Preliminaries

Often we have two underlying Bernoulli distributions, with parameters  and we would like to estimate the difference 
. This problem could arise in the following typical examples:

In a quality control setting, suppose that  is the proportion of defective items produced under one set of manufacturing
conditions while  is the proportion of defectives under a different set of conditions.
In an election, suppose that  is the proportion of voters who favor a particular candidate at one point in the campaign, while 

 is the proportion of voters who favor the candidate at a later point (perhaps after a scandal has erupted).
Suppose that  is the proportion of students who pass a certain standardized test with the usual test preparation methods while 

 is the proportion of students who pass the test with a new set of preparation methods.
Suppose that  is the proportion of unvaccinated persons in a certain population who contract a certain disease, while  is the
proportion of vaccinated person who contract the disease.

Note that several of these examples can be thought of as treatment-control problems. Of course, we could construct interval
estimates  for  and  for  separately, as in the subsections above. But as we noted in the Introduction, if these two intervals
have confidence level , then the product set  has confidence level  for . So if  is our
parameter of interest, we will use a different approach.

Simplified Confidence Intervals

Suppose now that  is a random sample of size  from the Bernoulli distribution with parameter , and 
 is a random sample of size  from the Bernoulli distribution with parameter . We assume that the

samples  and  are independent. Let

denote the sample means (sample proportions) for the samples  and . A natural point estimate for , and the building
block for our interval estimate, is . As noted in the one-sample model, if  is large,  has an approximate normal
distribution with mean  and variance  for . Since the samples are independent, so are the sample means.
Hence  has an approximate normal distribution with mean  and variance . We
now have all the tools we need for a simplified, approximate confidence interval for .

For , the following have approximate confidence level  for :

1. The two-sided interval with endpoints .
2. The lower bound .
3. The upper bound .

Proof

As noted above, if  and  are large,

has approximatle a standard normal distribution, and hence so does
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1. . Solving for  gives the two-sided confidence interval.
2. . Solving for  gives the confidence upper bound.
3. . Solving for  gives the confidence lower bound.

As always, the equal-tailed interval in (a) is not the only approximate two-sided  confidence interval.

For , an approximate  confidence set for  is

Proof

As noted in the proof of the previous theorem,

has approximately a standard normal distribution if  and  are large. Hence .
Solving for  gives the two-sided confidence interval.

Conservative Confidence Intervals

Once again,  is maximized when  with maximum value . We can use this to construct approximate
conservative confidence intervals for .

For , the following have approximate confidence level at least  for :

1. The two-sided interval with endpoints .
2. The lower bound .
3. The upper bound .

Proof

These results follow from the previous theorem by replacing  and  each with .

Computational Exercises

In a poll of 1000 registered voters in a certain district, 427 prefer candidate X. Construct the 95% two-sided confidence interval
for the proportion of all registered voters in the district that prefer X.

Answer

A coin is tossed 500 times and results in 302 heads. Construct the 95% confidence lower bound for the probability of heads.
Do you believe that the coin is fair?

Answer

0.579. No, the coin is almost certainly not fair.

A sample of 400 memory chips from a production line are tested, and 30 are defective. Construct the conservative 90% two-
sided confidence interval for the proportion of defective chips.

Answer
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A drug company wants to estimate the proportion of persons who will experience an adverse reaction to a certain new drug.
The company wants a two-sided interval with margin of error 0.03 with 95% confidence. How large should the sample be?

Answer

1068

An advertising agency wants to construct a 99% confidence lower bound for the proportion of dentists who recommend a
certain brand of toothpaste. The margin of error is to be 0.02. How large should the sample be?

Answer

3382

The Buffon trial data set gives the results of 104 repetitions of Buffon's needle experiment. Theoretically, the data should
correspond to Bernoulli trials with , but because real students dropped the needle, the true value of  is unknown.
Construct a 95% confidence interval for . Do you believe that  is the theoretical value?

Answer

. The theoretical value is approximately 0.637, which is not in the confidence interval.

A manufacturing facility has two production lines for a certain item. In a sample of 150 items from line 1, 12 are defective.
From a sample of 130 items from line 2, 10 are defective. Construct the two-sided 95% confidence interval for , where 

 is the proportion of defective items from line , for 

Answer

The vaccine for influenza is tailored each year to match the predicted dominant strain of influenza. Suppose that of 500
unvaccinated persons, 45 contracted the flu in a certain time period. Of 300 vaccinated persons, 20 contracted the flu in the
same time period. Construct the two-sided 99% confidence interval for , where  is the incidence of flu in the
unvaccinated population and  the incidence of flu in the vaccinated population.

This page titled 8.3: Estimation in the Bernoulli Model is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

p = 2/π p

p p

(0.433, 0.634)

−p1 p2

pi i i ∈ {1, 2}

[−0.050, 0.056]

−p1 p2 p1

p2

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10202?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/08%3A_Set_Estimation/8.03%3A_Estimation_in_the_Bernoulli_Model
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random

