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16.21: Continuous-Time Birth-Death Chains
     

Basic Theory

Introduction

A continuous-time birth-death chain is a simple class of Markov chains on a subset of  with the property that the only possible
transitions are to increase the state by 1 (birth) or decrease the state by 1 (death). It's easiest to define the birth-death process in
terms of the exponential transition rates, part of the basic structure of continuous-time Markov chains.

Suppose that  is an integer interval (that is, a set of consecutive integers), either finite or infinite. The birth-death chain with
birth rate function  and death rate function  is the Markov chain  on 
with transition rate  from  to  and transition rate  from  to , for .

If  has a minimum element , then of course we must have . If  also, then the boundary point  is
absorbing. Similarly, if  has a maximum element  then we must have . If  also then the boundary point  is
absorbing. If  is not a boundary point, then typically we have , so that  is stable. If  for all ,
then  is a pure birth process, and similarly if  for all  then  is a pure death process. From the transition rates,
it's easy to compute the parameters of the exponential holding times in a state and the transition matrix of the embedded, discrete-
time jump chain.

Consider again the birth-death chain  on  with birth rate function  and death rate function . As usual, let  denote the
exponential parameter function and  the transition matrix for the jump chain.

1.  for 
2. If  is stable, so that , then

Note that jump chain  is a discrete-time birth death chain. The probability functions , , and  of  are given as
follows: If  is stable then

If  is absorbing then of course  and . Except for the initial state, the jump chain  is deterministic for a
pure birth process, with  if  is absorbing and  if  is stable. Similarly, except for the initial state,  is
deterministic for a pure death process, with  if  is absorbing and  if  is stable. Note that the Poisson
process with rate parameter , viewed as a continuous-time Markov chain, is a pure birth process on  with birth
function  for each . More generally, a birth death process with  for all  is also
subordinate to the Poisson process with rate .

Note that  is bounded if and only if  and  are bounded (always the case if  is finite), and in this case the birth-death chain 
 is uniform. If  is unbounded, then  may not even be regular, as an example below shows. Recall that a

sufficient condition for  to be regular when  is infinite is

where  is the set of stable states. Except for the aforementioned example, we will
restrict our study to regular birth-death chains.
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= {x ∈ S : λ(x) = α(x) +β(x) > 0}S+
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Infinitesimal Generator and Transition Matrices

Suppose again that  is a continuous-time birth-death chain on an interval  with birth rate function 
and death rate function . As usual, we will let  denote the transition matrix at time  and  the infinitesimal generator.
As always, the infinitesimal generator gives the same information as the exponential parameter function and the jump transition
matrix, but in a more compact and useful form.

The generator matrix  is given by

Proof

This follows from the general theory, since  for  and  for  with 
.

The Kolmogorov backward and forward equations are

1.  for .
2.  for 

Proof

These results follow from the generator matrix  above.

1. The backward equation is .
2. The forward equation is .

Limiting Behavior and Stationary Distributions

For our discussion of limiting behavior, we will consider first the important special case of a continuous-time birth-death chain 
 on  and with  for all  and  for all . For the jump chain 

, recall that

The jump chain  is a discrete-time birth-death chain, and our notation here is consistent with the notation that we used in that
section. Note that  and  are irreducible. We first consider transience and recurrence.

The chains  and  are recurrent if and only if

Proof

Recall that  is recurrent if and only if  is recurrent. In our study of discrete-time birth-death chains we saw that  is
recurrent if and only if

But trivially,

Next we consider positive recurrence and invariant distributions. It's nice to look at this from different points of view.

The function  defined by

X = { : t ∈ [0, ∞)}Xt S ⊆Z α

β Pt t ∈ [0, ∞) G

G

G(x, x) = −[α(x) +β(x)], G(x, x+1) = α(x), G(x, x−1) = β(x), x ∈ S (16.21.3)

G(x, x) = −λ(x) x ∈ S G(x, y) = λ(x)Q(x, y) (x, y) ∈ S2

x ≠ y

(x, y) = −[α(x) +β(x)] (x, y) +α(x) (x+1, y) +β(x) (x−1, y)d

dt
Pt Pt Pt Pt (x, y) ∈ S2

(x, y) = −[α(y) +β(y)] (x, y) +α(y−1) (x, y−1) +β(y+1) (x, y+1)d

dt
Pt Pt Pt Pt (x, y) ∈ S2

G

= Gd

dt
Pt Pt

= Gd

dt
Pt Pt

X = { : t ∈ [0, ∞)}Xt S =N α(x) > 0 x ∈ N β(x) > 0 x ∈ N+

Y = { : n ∈ N}Yn

p(x) = Q(x, x+1) = , q(x) = Q(x, x−1) = , x ∈ N
α(x)

α(x) +β(x)

β(x)

α(x) +β(x)
(16.21.4)

Y

X Y

X Y

= ∞∑
x=0

∞ β(1) ⋯ β(x)

α(1) ⋯α(x)
(16.21.5)

X Y Y

= ∞∑
x=0

∞ q(1) ⋯ q(x)

p(1) ⋯ p(x)
(16.21.6)

=
q(1) ⋯ q(x)

p(1) ⋯ p(x)

β(1) ⋯ β(x)
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(16.21.7)
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is invariant for , and is the only invariant function, up to multiplication by constants. Hence  is positive recurrent if and
only if , in which case the (unique) invariant probability density function  is given by 
for . Moreover,  as  for every 

Proof using the jump chain

From our study of discrete-time birth-death chains, we know that the function  defined by

is invariant for , and is the only positive invariant function up to multiplication by positive constants. It then follows from
our study of invariant functions for continuous-time chains that the function  is invariant for , and again is the only
positive invariant function up to multiplication by positive constants. But it's simple to see that

where  is the function given in the theorem. The remaining parts of the theorem follow from the general theory.

Proof from the balance equation

A function  is invariant for  if and only if it satisfies the balance equation . For our birth-death chain,
this reduces to

Substituting the equation with  on the left into the equation with  on the left gives .
Substituting this into the equation with  on the left gives . In general, the balance equations imply

Solving these new balance equations recursively gives

Letting  gives the particular invariant function in the theorem. Again, the remaining parts follow from the general
theory.

Here is a summary of the classification:

For the continuous-time birth-death chain , let

1.  is transient if .
2.  is null recurrent if  and .
3.  is positive recurrent if .

Suppose now that  and that  is a continuous-time birth-death chain on the integer interval 
. We assume that  for  while  for . Of course, we

must have . With these assumptions,  is irreducible, and since the state space is finite, positive recurrent. So all
that remains is to find the invariant distribution. The result is essentially the same as when the state space is .

The invariant probability density function  is given by

g(x) = , x ∈ N
α(0) ⋯α(x−1)

β(1) ⋯ β(x)
(16.21.8)

X X

B = g(x) < ∞∑∞
x=0 f f(x) = g(x)1

B

x ∈ N (x, y) → f(y)Pt t → ∞ x, y ∈ N

h : N → (0, ∞)

h(x) = , x ∈ N
p(0) ⋯ p(x−1)

q(1) ⋯ q(x)
(16.21.9)

Y

h/λ X

= = = g(x)
h(x)

λ(x)

h(x)

α(x) +β(x)

α(1) ⋯α(x−1)

β(1) ⋯ β(x)

1

α(0)
(16.21.10)

g

g : N → (0, ∞) X gG= 0

α(0)g(0)

[α(x) +β(x)]g(x)

= β(1)g(1)

= α(x−1)g(x−1) +β(x+1)g(x+1), x ∈ N+

x = 0 x = 1 α(1)g(1) = β(2)g(2)
x = 2 α(2)g(2) = β(3)g(3)

α(x)g(x) = β(x+1)g(x+1), x ∈ N (16.21.11)

g(x) = g(0)
α(0) ⋯α(x−1)

β(1) ⋯ β(x)
(16.21.12)

g(0) = 1

X

A = , B =∑
x=0

∞ β(1) ⋯ β(x)

α(1) ⋯α(x)
∑
x=0

∞ α(0) ⋯α(x−1)

β(1) ⋯ β(x)
(16.21.13)

X A < ∞
X A = ∞ B = ∞
X B < ∞

n ∈ N+ X = { : t ∈ [0, ∞)}Xt
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Proof

Define

The proof thet  is invariant for  is the same as before. The constant  is the normalizing constant.

Note that  as , and if ,  as  for . We will see this type of behavior again.
Results for the birth-death chain on  often converge to the corresponding results for the birth-death chain on  as .

Absorption

Often when the state space , the state of a birth-death chain represents a population of individuals of some sort (and so the
terms birth and death have their usual meanings). In this case state 0 is absorbing and means that the population is extinct.
Specifically, suppose that  is a regular birth-death chain on  with  and with 

 for . Thus, state 0 is absorbing and all positive states lead to each other and to 0. Let 
 denote the time until absorption, where as usual, . Many of the results concerning

extinction of the continuous-time birth-death chain follow easily from corresponding results for the discrete-time birth-death jump
chain.

One of the following events will occur:

1. Population extinction:  or equivalently,  for some  and hence  for all .
2. Population explosion:  or equivalently  as .

Proof

Part (b) follows from the general theory, since 0 is absorbing, and all positive states lead to each other and to 0. Thus the
positive states are transient and we know that with probability 1, the jump chain will visit a transient state only finitely often.
Thus  is equivalent to  as . Without the assumption that the chain is regular, population explosion
could occur in finite time.

Naturally we would like to find the probability of these complementary events, and happily we have already done so in our study of
discrete-time birth-death chains. The absorption probability function  is defined by

As before, let

1. If  then  for all .
2. If  then

Proof

The continuous-time chain is absorbed into 0 if and only if the discrete-time jump chain is absorbed into 0. So the result
follows from the corresponding result for discrete-time birth-death chains. Recall again that  for 

The mean time to extinction is considered next, so let  for . Unlike the probability of extinction,
computing the mean time to extinction cannot be easily reduced to the corresponding discrete-time computation. However, the

(x) =  for x ∈  where  =fn
1

Bn

α(0) ⋯α(x−1)

β(1) ⋯ β(x)
Nn Bn ∑

x=0

n α(0) ⋯α(x−1)

β(1) ⋯ β(x)
(16.21.14)

(x) = , x ∈gn
α(0) ⋯α(x−1)

β(1) ⋯ β(x)
Nn (16.21.15)

gn X Bn

→ BBn n → ∞ B < ∞ (x) → f(x)fn n → ∞ x ∈ N

Nn N n → ∞

S =N

X = { : t ∈ [0, ∞)}Xt N α(0) = β(0) = 0
α(x), β(x) > 0 x ∈ N+

T = min{t ∈ [0, ∞) : = 0}Xt min∅ = ∞

T < ∞ = 0Xs s ∈ [0, ∞) = 0Xt t ∈ [s, ∞)
T = ∞ → ∞Xt t → ∞

T = ∞ → ∞Xt t → ∞

v

v(x) = P(T < ∞) = P( = 0 for some t ∈ [0, ∞) ∣ = x), x ∈ NXt X0 (16.21.16)

A =∑
i=0

∞ β(1) ⋯ β(i)

α(1) ⋯α(i)
(16.21.17)

A = ∞ v(x) = 1 x ∈ N

A < ∞

v(x) = , x ∈ N
1

A
∑
i=x

∞ β(1) ⋯ β(i)

α(1) ⋯α(i)
(16.21.18)

q(x)/p(x) = β(x)/α(x)
x ∈ N+

m(x) =E(T ∣ = x)X0 x ∈ N
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method of computation does extend.

The mean absorption function is given by

Probabilisitic Proof

The time required to go from state  to  has the same distribution as the time required to go from state 1 to 0,
except with parameters  for  instead of parameters  for . So by the
additivity of expected value, we just need to compute  as a function of the parameters. Starting in state 1, the chain will
be absorbed in state 0 after a random number of returns to state 1 without absorption. Whenever the chain is in state 1,
absorption occurs at the next transition with probability  so it follows that the number of times that the chain is in state 1
before absorption has the geometric distribution on  with success parameter . The mean of this distribution is 

. On the other hand, starting in state 1, time until the chain is in state 1 again (without
absorption) has the same distribution as the return time to state 0, starting in state 0 for the irreducible birth-death chain on 
with birth and death rates  and  given by  for  and  for . Thus, let

Then  is the mean return time to state 0 for the chain . Specifically, note that if  then  is either transient or null
recurrent. If  then  is the invariant PDF at 0. So, it follows that

By our argument above, the mean time to go from state  to  is

In particular, note that

If  then  for all . If  then  for all 

Next we will consider a birth-death chain on a finite integer interval with both endpoints absorbing. Our interest is in the
probability of absorption in one endpoint rather than the other, and in the mean time to absorption. Thus suppose that  and
that  is a continuous-time birth-death chain on  with , 

, and ,  for . So the endpoints 0 and  are absorbing, and all other states
lead to each other and to the endpoints. Let , the time until absorption, and for  let 

 and . The definitions make sense since  is finite with probability 1.

The absorption probability function for state 0 is given by

Proof

The jump chain  is a discrete-time birth-death chain on  with  and  absorbing. Also,  is absorbed
into 0 or  if and only if  is absorbed into 0 or , respectively. So the result follows from the corresponding result for ,
since  for .

m(x) = , x ∈ N∑
j=1

x

∑
k=j−1

∞ α(j) ⋯α(k)

β(j) ⋯ β(k+1)
(16.21.19)

x ∈ N+ x−1
α(y), β(y) y ∈ {x, x+1, …} α(y), β(y) y ∈ {1, 2, …}

m(1)

q(1)
N+ q(1)

1/q(1) = [α(1) +β(1)]/β(1)
N

α′ β ′ (x) = α(x+1)α′ x ∈ N (x) = β(x+1)β ′ x ∈ N+

μ =
1

α(1) +β(1)
∑
k=0

∞ α(1) ⋯α(k)

β(2) ⋯ β(k+1)
(16.21.20)

μ X′ μ = ∞ X′

μ < ∞ 1/μ

m(1) = μ =
1

q(1)
∑
k=0

∞ α(1) ⋯α(k)

β(1) ⋯ β(k+1)
(16.21.21)

x x−1

∑
k=x−1

∞ α(x) ⋯α(k)

β(x) ⋯ β(k+1)
(16.21.22)

m(1) =∑
k=0

∞ α(1) ⋯α(k)

β(1) ⋯ β(k+1)
(16.21.23)

m(1) = ∞ m(x) = ∞ x ∈ S m(1) < ∞ m(x) < ∞ x ∈ S

n ∈ N+

X = { : t ∈ [0, ∞)}Xt = {0, 1, … ,n}Nn α(0) = β(0) = 0
α(n) = β(n) = 0 α(x) > 0 β(x) > 0 x ∈ {1, 2, … ,n−1} n

T = inf{t ∈ [0, ∞) : ∈ {0,n}}Xt x ∈ S

(x) = P( = 0 ∣ = x)vn XT X0 (x) =E(T ∣ = x)mn X0 T

(x) =  for x ∈  where  =vn
1

An

∑
i=x

n−1 β(1) ⋯ β(i)

α(1) ⋯α(i)
Nn An ∑

i=0

n−1 β(1) ⋯ β(i)

α(1) ⋯α(i)
(16.21.24)

Y = { : n ∈ N}Yn Nn 0 n X

n Y n Y

q(x)/p(x) = β(x)/α(x) x ∈ {1, 2, … ,n−1}
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Note that  as  where  is the constant above for the absorption probability at 0 with the infinite state space . If 
 then  as  for .

Time Reversal

Essentially, every irreducible continuous-time birth-death chain is reversible.

Suppose that  is a positive recurrent birth-death chain on an integer interval  with birth rate
function  and death rate function . Assume that , except at the maximum value of , if
there is one, and similarly that , except at the minimum value of , if there is one. Then  is reversible.

Proof

Note that  is irreducible. As usual, let  denote the generator matrix. It's easy to see that under the assumptions, 
 implies  for , and that the Kolmogorov cycle condition is satisfied: For every 

and every sequence ,

In the important special case of a birth-death chain on , we can verify the balance equations directly.

Suppose that  is a continuous-time birth-death chain on  and with birth rate  for all 
 and death rate  for all . Then  is reversible.

Proof

We just need to show that the balance equation for a reversible chain holds, and this was actually done in the result above. As
before, let  be the function given by

The only nontrivial case of the balance equation  for  is

It follows from the general theory that  is invariant for  and that  is reversible with respect to . Since we actually know
from our work above that  is the only positive invariant function, up to multiplication by positive constants, we can simply
say that  is reversible.

In the positive recurrent case, it follows that the birth-death chain is stochastically the same, forward or backward in time, if the
chain has the invariant distribution.

Examples and Special Cases

Regular and Irregular Chains

Our first exercise gives two pure birth chains, each with an unbounded exponential parameter function. One is regular and one is
irregular.

Consider the pure birth process  on  with birth rate function .

1. If  for , then  is not regular.
2. If  for , then  is regular.

Proof

The jump chain  is deterministic, except for the initial state. Given , we have . Hence

1. 

2. 

→ AAn n → ∞ A N

A < ∞ (x) → v(x)vn n → ∞ x ∈ N

X = { : t ∈ [0, ∞)}Xt S ⊆Z

α : S → [0, ∞) β : S → ∞ α(x) > 0 S

β(x) > 0 X X

X G

G(x, y) = 0 G(y, x) = 0 (x, y) ∈ S2 n ∈ N+

( , , … ) ∈x1 x2 xn Sn

G( , ) ⋯G( , )G( , ) = G( , ),G( , ⋯G( , )x1 x2 xn−1 xn xn x1 x1 xn xn xn−1 x2 x1 (16.21.25)

N

X = { : t ∈ [0, ∞)}Xt S =N α(x) > 0
x ∈ N β(x) > 0 x ∈ N+ X

g : N → (0, ∞)

g(x) = , x ∈ N
α(0) ⋯α(x−1)

β(1) ⋯ β(x)
(16.21.26)

g(x)G(x, y) = g(y)G(y, x) (x, y) ∈ S2

g(x)G(x, x+1) = g(x+1)G(x+1, x)) = , x ∈ N
α(0) ⋯α(x)

β(1) ⋯ β(x)
(16.21.27)

g X X g

g

X

X = { : t ∈ [0, ∞)}Xt N+ α

α(x) = x2 x ∈ N+ X

α(x) = x x ∈ N+ X

Y = x ∈Y0 N+ = n+xYn

= < ∞∑∞
n=0

1
λ( )Yn

∑∞
n=0

1

(n+x)2

= = ∞∑∞
n=0

1
λ( )Yn

∑∞
n=0

1
n+x
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So the results follow from the general theory.

Constant Birth and Death Rates

Our next examples consider birth-death chains with constant birth and death rates, except perhaps at the endpoints. Note that such
chains will be regular since the exponential parameter function  is bounded.

Suppose that  is the birth-death chain on , with constant birth rate  on  and constant
death rate  on .

1.  is transient if .
2.  is null recurrent if .
3.  is positive recurrent if . The invariant distribution is the geometric distribution on  with parameter 

Proof

Note that  is irreducible since the birth rate is positive on  and the death rate is positive on . The series in the results
above are geometric series:

Next we consider the chain with  absorbing. As in the general discussion above, let  denote the function that gives the probability
of absorption and  the function that gives the mean time to absorption.

Suppose that  is the birth-death chain in  with constant birth rate  on , constant death
reate  on , and with 0 absorbing. Then

1. If  then  for . If  then  for .
2. If  then . If  then  for .

Next let's look at chains on a finite state space. Let  and define .

Suppose that  is a continuous-time birth-death chain on  with constant birth rate  on 
 and constant death rate  on . The invariant probability density function  is given as

follows:

1. If  then

2. If  then  for 

Note that when , the invariant distribution is uniform on . Our final exercise considers the absorption probability at 0
when both endpoints are absorbing. Let  denote the function that gives the probability of absorption into 0, rather than .

Suppose that  is the birth-death chain on  with constant birth rate  and constant death rate  on 
, and with 0 and  absorbing.

1. If  then

2. If  then  for .

λ

X = { : t ∈ [0, ∞)}Xt N α ∈ (0, ∞) N

β ∈ (0, ∞) N+

X β < α

X β = α

X β > α N α/β

f(x) =(1 − ) , x ∈ N
α

β
( )
α

β

x

(16.21.28)

X N N+

= , = , x ∈ N
β(1) ⋯ β(x)

α(1) ⋯α(x)
( )
β

α

x α(0) ⋯α(x−1)

β(1) ⋯ β(x)
( )
α

β

x

(16.21.29)

0 v

m

X = { : t ∈ [0, ∞)}Xt N α ∈ (0, ∞) N+

β ∈ (0, ∞) N+

β ≥ α v(x) = 1 x ∈ N β < α v(x) = (β/α)x x ∈ N

α ≥ β m(x) = ∞ α < β m(x) = x/(β−α) x ∈ N

n ∈ N+ = {0, 1, … ,n}Nn

X = { : t ∈ [0, ∞)}Xt Nn α ∈ (0, ∞)
{0, 1, … ,n−1} β ∈ (0, ∞) {1, 2, … n} fn

α ≠ β

(x) = , x ∈fn
(α/β (1 −α/β))x

1 −(α/β)n+1
Nn (16.21.30)

α = β (x) = 1/(n+1)fn x ∈ Nn

α = β Nn

vn n

X = { : t ∈ [0, ∞)}Xt Nn α β

{1, 2, … ,n−1} n

α ≠ β

(x) = , x ∈vn
(β/α −(β/α)x )n

1 −(β/α)n
Nn (16.21.31)

α = β (x) = (n−x)/nvn x ∈ Nn

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10394?pdf


16.21.8 https://stats.libretexts.org/@go/page/10394

Linear Birth and Death Rates

For our next discussion, consider individuals that act identically and independently. Each individual splits into two at exponential
rate  and dies at exponential rate .

Let  denote the population at time . Then  is a regular, continuous-time birth-death chain
with birth and death rate functions given by  and  for .

Proof

The fact that  is a continuous-time Markov chain follows from the assumptions. Moreover, since the individuals act
independently, the overall birth and death rates when the population is  is simple  times the individual birth and death
rates. The chain is regular since

Note that  is absorbing since the population is extinct, so as usual, our interest is in the probability of absorption and the mean
time to absorption as functions of the initial state. The probability of absorption is the same as for the chain with constant birth and
death rates discussed above.

The absorption probability function  is given as follows:

1.  for all  if .
2.  for  if .

Proof

These results follow from the general results above since  for . Hence for ,

The mean time to absorption is more interesting.

The mean time to absorption function  is given as follows:

1. If  then  for .
2. If  then

Proof
1. From the general results above, note that

The sum is infinite if .
2. If  then again from the general formula above,

The inner series converges absolutely. Moreover, for ,

Substituting and interchanging the sum and integral gives

a ∈ (0, ∞) b ∈ (0, ∞)

Xt t ∈ [0, ∞) X = { : t ∈ [0, ∞)}Xt

α(x) = ax β(x) = bx x ∈ N

X

x ∈ N x

= ∞∑
x=1

∞ 1

(a+b)x
(16.21.32)

0

v

v(x) = 1 x ∈ N b ≥ a

v(x) = (b/a)x x ∈ N b < a

β(x)/α(x) = b/a x ∈ N+ x ∈ N

(b/a ={∑
i=x

∞

)i
∞
(b/a)x

1−b/a

b ≥ a

b < a
(16.21.33)

m

a ≥ b m(x) = ∞ x ∈ N+

a < b

m(x) = du, x ∈ N∑
j=1

x bj−1

aj
∫

a/b

0

uj−1

1 −u
(16.21.34)

m(1) =∑
k=0

∞ 1

(k+1)b
( )
a

b

k

(16.21.35)

a ≥ b

α < β

m(x) = =∑
j=1

x

∑
k=j−1

∞ 1

(k+1)b
( )
a

b

k−j+1
∑
j=1

x 1

b
( )
b

a

j

∑
k=j−1

∞ 1

k+1
( )
a

b

k+1
(16.21.36)

k ∈ N

= du
1

k+1
( )
a

b

k+1
∫

a/b

0
uk (16.21.37)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10394?pdf


16.21.9 https://stats.libretexts.org/@go/page/10394

For small values of , the integrals in the case  can be done by elementary methods. For example,

However, a general formula requires the introduction of a special function that is not much more helpful than the integrals
themselves. The Markov chain  is actually an example of a branching chain. We will revisit this chain in that section.

Linear Birth and Death with Immigration

We continue our previous discussion but generalizing a bit. Suppose again that we have individuals that act identically and
independently. An individual splits into two at exponential rate  and dies at exponential rate . Additionally,
new individuals enter the population at exponential rate . This is the immigration effect, and when  we have the
birth-death chain in the previous discussion.

Let  denote the population at time . Then  is a regular, continuous-time birth-death chain
with birth and death rate functions given by  and  for .

Proof

The fact that  is a continuous-time Markov chain follows from the assumptions. Moreover, since the individuals act
independently, the overall birth rate when the population is  is  while the death rate is . The chain is regular
since

The infinitesimal matrix  is given as follows, for :

1. 
2. 
3. 

The backward and forward equations are given as follows, for  and 

1. 
2. )

We can use the forward equation to find the expected population size. Let  for  and .

For  and , the mean population size  is given as follows:

1. If  then .
2. If  then

Proof

First note that  for . Multiplying the forward equation above by  and summing over 
gives

m(x) = ( ) du = du∑
j=1

x bj−1

aj
∫

a/b

0
∑
k=j−1

∞

uk ∑
j=1

x bj−1

aj
∫

a/b

0

uj−1

1 −u
(16.21.38)

x ∈ N a < b

m(1)

m(2)

m(3)

= − ln(1 − )
1

a

a

b

= m(1) − − ln(1 − )
1

a

b

a2

a

b

= m(2) − − − ln(1 − )
1

2a

b

a2

b2

a3

a

b

X

a ∈ [0, ∞) b ∈ [0, ∞)
c ∈ [0, ∞) c = 0

Xt t ∈ [0, ∞) X = { : t ∈ [0, ∞)}Xt

α(x) = ax+c β(x) = bx x ∈ N

X

x ∈ N ax+c bx

= ∞∑
x=1

∞ 1

((a+b)x+c
(16.21.39)

G x ∈ N

G(x, x) = −[(a+b)x+c]
G(x, x+1) = ax+c

G(x, x−1) = bx

(x, y) ∈ N
2 t ∈ (0, ∞)

(x, y) = −[(a+b)x+c] (x, y) +(ax+c) (x+1, y) +bx (x−1, y)d

dt
Pt Pt Pt Pt

(x, y) = −[(a+b)y+c] (x, y) +[a(y−1) +c] (x, y−1) +b(y+1) (x, y+1d

dt
Pt Pt Pt Pt

(x) =E( , ∣ = x)Mt Xt X0 t ∈ [0, ∞) x ∈ N

t ∈ [0, ∞) x ∈ N (x)Mt

a = b (x) = ct+xMt

a ≠ b

(x) = [ −1]+xMt

c

a−b
e(a−b)t e(a−b)t (16.21.40)

(x) = y (x, y)Mt ∑∞
y=0 Pt x ∈ N y y ∈ N
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Re-indexing the sums and using some algebra gives the first-order differential equation

with initial condition . Solving the differential equation gives the result.

Note that , so that the individual death rate exceeds the birth rate, then  as  for . If  so
that the birth rate equals or exceeds the death rate, then  as  for .

Next we will consider the special case with no births, but only death and immigration. In this case, the invariant distribution is easy
to compute, and is one of our favorites.

Suppose that  and that . Then  is positive recurrent. The invariant distribution is Poisson with parameter :

Proof

In terms of the general theory above, note that the invariant function , unique up to multiplication by positive constants, is
given by

Hence  and therefore the chain is positive recurrent with invariant PDF

This is the PDF of the Poisson distribution with parameter .

The Logistics Chain

Consider a population that fluctuates between a minimum value  and a maximum value , where of course, .
Given the population size, the individuals act independently and identically. Specifically, if the population is 

 then an individual splits in two at exponential rate  and dies at exponential rate , where 
. Thus, an individual's birth rate decreases linearly with the population size from  to  while the death rate

increases linearly with the population size from  to . These assumptions lead to the following definition.

The continuous-time birth-death chain  on  with birth rate function  and
death rate function  given by

is the logistic chain on  with parameters  and .

Justification

Since the individuals act independently and identically, the overall birth rate and death rates when the population is  is
simply  times the birth and death rate for an individual.

Note that the logistics chain is a stochastic counterpart of the logistics differential equation, which typically has the form

y (x, y) =∑
y=0

∞
d

dt
Pt a y(y−1) (x, y−1) +c y (x, y−1)∑

y=2

∞

Pt ∑
y=1

∞

Pt

−(a+b) (x, y) −c y (x, y) +b y(y+1) (x, y+1)∑
y=0

∞

y2Pt ∑
y=0

∞

Pt ∑
y=0

∞

Pt

(x) = c+(a−b) (x), x ∈ N, t ∈ (0, ∞)
d

dt
Mt Mt (16.21.41)

(x) = xM0

b > a (x) → c/(b−a)Mt t → ∞ x ∈ N a ≥ b

(x) → ∞Mt t → ∞ x ∈ N+

a = 0 b, c > 0 X c/b

f(x) = , x ∈ Ne−c/b (c/b)x

x!
(16.21.42)

g

g(x) = = = , x ∈ N
α(0) ⋯α(x)

β(1) ⋯ β(x)

cx

x!bx

(c/b)x

x!
(16.21.43)

B = g(x) = < ∞∑∞
x=0 ec/b

f(x) = g(x) = , x ∈ N
1

B
e−c/b (c/b)x

x!
(16.21.44)

c/b

m ∈ N+ n ∈ N+ m < n

x ∈ {m,m+1, … ,n} a(n−x) b(x−m)
a, b ∈ (0, ∞) a(n−m) 0

0 b(n−m)

X = { : t ∈ [0, ∞)}Xt S = {m,m+1, … ,n} α

β

α(x) = ax(n−x), β(x) = bx(x−m), x ∈ S (16.21.45)

S a b

x ∈ S

x

= c(x−m)(n−x)
dx

dt
(16.21.46)
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where  and . Starting in , the solution remains in  for all . Of course, the
logistics differential equation models a system that is continuous in time and space, whereas the logistics Markov chain models a
system that is continuous in time and discrete is space.

For the logistics chain

1. The exponential parameter function  is given by

2. The transition matrix  of the jump chain is given by

In particular,  and  are reflecting boundary points, and so the chain is irreducible.

The generator matrix  for the logistics chain is given as follows, for :

1. 
2. 
3. 

Since  is finite,  is positive recurrent. The invariant distribution is given next.

Define  by

Then  is invariant for .

Proof

Since we know that  is reversible, we just need to show that  for . For the logistics
chain, the only non-trivial equation is  for . Simple substitution and algebra
show that both sides reduce to

Of course it now follows that the invariant probability density function  for  is given by  for  where  is
the normalizing constant

The limiting distribution of  has probability density function .

Other Special Birth-Death Chains

There are a number of special birth-death chains that are studied in other sections, because the models are important and lead to
special insights and analytic tools. These include

Queuing chains
The pure death branching chain
The Yule process, a pure birth branching chain
The general birth-death branching chain

This page titled 16.21: Continuous-Time Birth-Death Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by
Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

m, n, c ∈ (0, ∞) m < n x(0) ∈ (m,n) (m,n) t ∈ [0, ∞)

λ

λ(x) = ax(n−x) +bx(x−m), x ∈ S (16.21.47)

Q

Q(x, x−1) = , Q(x, x+1) = , x ∈ S
b(x−m)

a(n−x) +b(x−m)

a(n−x)

a(n−x) +b(x−m)
(16.21.48)

m n

G x ∈ S

G(x, x) = −x[a(n−x) +b(x−m)]
G(x, x−1) = bx(x−m)
G(x, x+1) = ax(n−x)

S X

g : S → (0, ∞)

g(x) = ( ) , x ∈ S
1

x

n−m

x−m
( )
a

b

x−m

(16.21.49)

g X

X g(x)G(x, y) = g(y)G(y, x) (x, y) ∈ S2

g(x)G(x, x+1) = g(x+1)G(x+1, x) x ∈ S

(n−m)!

(x−m)!(n−x−1)!

ax−m+1

bx−m
(16.21.50)

f X f(x) = g(x)/c x ∈ S c

c = ( )∑
x=m

n 1

x

n−m

x−m
( )
a

b

x−m

(16.21.51)
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