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3.5: Conditional Distributions

In this section, we study how a probability distribution changes when a given random variable has a known, specified value. So this is an
essential topic that deals with hou probability measures should be updated in light of new information. As usual, if you are a new student or
probability, you may want to skip the technical details.

Basic Theory

Our starting point is a random experiment modeled by a probability space (€2, .%,P). So to review,  is the set of outcomes, # is the
collection of events, and P is the probability measure on the underlying sample space (€2, ).

Suppose that X is a random variable defined on the sample space (that is, defined for the experiment), taking values in a set .S

Details

Technically, the collection of events % is a o-algebra, so that the sample space (€2, %) is a measurable space. Similarly, S will have a
o-algebra of admissible subsets, so that (S, %) is also a measurable space. Random variable X is measurable, so that {X € A} € #
for every A € .. The distribution of X is the probability measure A — P(X € A) for A € 7.

The purpose of this section is to study the conditional probability measure given X = x for € S. That is, if E is an event, we would like
to define and study the probability of E given X =z, denoted P(E | X = z). If X has a discrete distribution, the conditioning event has
positive probability, so no new concepts are involved, and the simple definition of conditional probability suffices. When X has a
continuous distribution, however, the conditioning event has probability 0, so a fundamentally new approach is needed.

The Discrete Case
Suppose first that X has a discrete distribution with probability density function g. Thus S is countable and we can assume that

gz)=P(X=2)>0 forz €S.

If E is an eventand = € S then

P(E|X=z)= (3.5.1)

Proof

The meaning of discrete distribution is that S is countable and . = Z(S) is the collection of all subsets of S. Technically, g is the
probability density function of X with respct to counting measure # on S, the standard measure for discrete spaces. In the diplayed
equation above, the comma separating the events in the numerator of the fraction means and, and thus functions just like the
intersection symbol. This result follows immediately from the definition of conditional probability:

P(E,X=2z) PE,X==2)

P(E|X =z)= =~ o) (3.5.2)

The next result is a sepcial case of the law of total probability. and will be the key to the definition when X has a continuous distribution.
If E is an event then
P(E,Xc A)=) g)P(E|X=z), ACS (3.5.3)
z€A
Conversely, this condition uniquely determines P(E | X = z).
Proof
As noted, the displayed equation is just a special case of the law of total probability. For A C .S, the countable collection of events
{{X ==z}:x € A} partitions { X € A} so
P(E,XcA)=) P(E,X=z)=)» PE|X=2)P(X=z)=) P(E|X=z)g(z) (3.5.4)
zeA z€A zeA

Conversely, suppose that the function Q(z, E), defined for z € S and E € Z, satisfies

P(E,X € A)=) g(=)Q(=,E), ACS (3.5.5)

z€A
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I Letting A = {a} forz € S gives P(E, X =z) = g(z)Q(z, E) ,s0 Q(z,E) =P(E, X =z)/g(z) =P(E| X =z) .

The Continuous Case

Suppose now that X has a continuous distribution on S CR" for some n € N, with probability density function g. We assume that
g(z) >0 for z € S. Unlike the discrete case, we cannot use simple conditional probability to define P(E | X = z) for an event E and
z € S because the conditioning event has probability 0. Nonetheless, the concept should make sense. If we actually run the experiment, X
will take on some value = (even though a priori, this event occurs with probability 0), and surely the information that X = x should in
general alter the probabilities that we assign to other events. A natural approach is to use the results obtained in the discrete case as
definitions in the continuous case.

If E is an event and z € S, the conditional probability P(E | X = z) is defined by the requirement that
]P’(E,XGA):/ o@)P(E| X =z)dz, ACS (3.5.6)
A

Details

Technically, S is a measurable subset of R™ and the o-algebra . consists of the subsets of S that are also measurable as subsets of
R™. The function g is also required to be measurable, and is the density function of X with respect to Lebesgue measure \,. Lebesgue
measure is named for Henri Lebesgue and is the standard measure on R".

We will accept the fact that P(E | X =) can be defined uniquely, up to a set of measure 0, by the condition above, but we will return
to this point in the section on Conditional Expectation in the chapter on Expected Value. Essentially the condition means that
P(E | X =) is defined so that z — g(x)P(E | X =) is a density function for the finite measure A — P(E, X € A).

Conditioning and Bayes' Theorem

Suppose again that X is a random variable with values in S and probability density function g, as described above. Our discussions above
in the discrete and continuous cases lead to basic formulas for computing the probability of an event by conditioning on X.

The law of total probability. If E is an event, then P(E) can be computed as follows:

1. If X has a discrete distribution then

P(E) =) g(=)P(E| X ==) (3.5.7)
zeS
2. If X has a continuous distribution then
P(E) = [ o@)B(B| X =2)da (3.5.8)
s

Proof

1. This follows from the discrete theorem with A = 5.
2. This follows from the fundamental definition with A = §'.

Naturally, the law of total probability is useful when P(E | X =z) and g(x) are known for z € S. Our next result is, Bayes' Theorem,
named after Thomas Bayes.

Bayes' Theorem. Suppose that F is an event with P(E) > 0. The conditional probability density function  — g(z | E) of X given
E can be computed as follows:

1. If X has a discrete distribution then
g(@)P(E| X =)

B = B X=s)

zes (3.5.9)

2. If X has a continuous distribution then

9(@)P(E| X =)
g(z | E) = T- 9B | X =3)ds , Tz€E€S (3.5.10)

Proof
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1. In the discrete case, as usual, the ordinary simple definition of conditional probability suffices. The numerator in the displayed
equation is P(X =z)P(E | X =2z) =P(E, X =z) . The denominator is P(E) by part (a) of the law of total probability. Hence
the fractionis P(E, X =z)/P(E) =P(X =z | E) .

2. In the continuous case, as usual, the argument is more subtle. We need to show that the expression in the displayed equation
satisfies the defining property of a PDF for the conditinal distribution. Once again, the denominator is I°(E) by part (b) of the law
of total probability. If A C S then using the fundamental definition,

P(E, X € A)

PE) =P(X€ A|E) (3.5.11)

1
/Ag(l’|E)d$=M/Ag(m)P(E|X:m)dm:

By the meaning of the term, z — g(z | E) is the conditional probability density function of X given E.

In the context of Bayes' theorem, g is called the prior probability density function of X and z — g(z | E) is the posterior probability
density function of X given E. Note also that the conditional probability density function of X given E is proportional to the function
z +— g(z)P(E | X =), the sum or integral of this function that occurs in the denominator is simply the normalizing constant. As with the
law of total probability, Bayes' theorem is useful when P(E | X = z) and g(z) are known for z € S.

Conditional Probability Density Functions

The definitions and results above apply, of course, if E is an event defined in terms of another random variable for our experiment. Here is

the setup:

Suppose that X and Y are random variables on the probability space, with values in sets S and T, respectively, so that (X,Y) is a
random variable with values in S x T'. We assume that (X, Y) has probability density function f, as discussed in the section on Joint
Distributions. Recall that X has probability density function g defined as follows:

1. If Y has a discrete distribution on the countable set 7" then

9@)=> f(z,y), z€S (3.5.12)

yeT

2. If Y has a continuous distribution on 1" C R* then

g($)=/Tf(x,y)dy, zeS (3.5.13)

Similary, the probability density function & of Y can be obtained by summing f over € S if X has a discrete distribution or integrating f
over S if X has a continuous distribution.

Suppose that z € S and that g(z) > 0. The function y — h(y | =) defined below is a probability density function on T":

h(y | =) = %, yeT (3.5.14)

Proof

The result is simple, since g(z) is the normalizing constant for y — h(y | z). Specifically, fix € S. Then h(y | ) >0.If Y has a
discrete distribution then

1 g(z)
Yohyla)=—=> fl@,y)=—— =1 (3.5.15)
yeT g(-'l') yeT g(l’)

Similarly, if Y has a continuous distribution then

T YR |G
/Th(ylw)dy—g(x) /Tf( y)dy o) 1 (3.5.16)

The distribution that corresponds to this probability density function is what you would expect:

For z € S, the function y — h(y | ) is the conditional probability density function of ¥ given X = . That is,

1. If Y has a discrete distribution then
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P(YeB|X=z)=)» h(y|z), BCT (3.5.17)
yeB
2. If Y has a continuous distribution then
P(YeB|X:a:):/h(y|m)dy, BCT (3.5.18)
B

Proof

There are four cases, depending on the type of distribution of X and Y, but the computations are identical, except for sums in the
discrete case and integrals in the continuous case. The main tool is the basic theorem when X has a discrete distribution and the
fundamental definition when X has a continuous distribution, with the event E replaced by {Y € B} for B C T'. The other main
element is the fact that f is the PDF of the (joint) distribution of (X, Y").

1. Suppose that Y has a discrete distribution on the countable set T". If X also has a discrete distribution on the countable set .S then

> g@)) hyle)=>Y g@hy|z)=> > flz,y)=P(XcA,YeB), ACS (3.5.19)
z€A yeB z€A yeB z€A yeB
In this jointly discrete case, there is a simpler argument of course:
_ f(z,y) _ P(X=z,Y =y)
g(z) P(X =z)

h(y | z) =PY=y|X=2), yeT (3.5.20)

If X has a continuous distribution on S C R’ then

/Ag(w)Zh(y | ) dz :/AZg(:/v)h(y | z)dx = /A Zf(:v,y) =P(Xe€AYeB), ACS (3.5.21)

yeB yeB yeB

2. Suppose that Y has continuous distributions on 7' C R¥ . If X has a discrete distribution on the countable set S then

3 g(a) /B hy ) dy=3" [ s@h(y|)dy=3" /B fey)dy=P(XcAYcB), ACS (35.22)

z€eA zcA Y B zeA

If X has a continuous distribution S C R? then

/Ag(m)/Bh(y|a:)dydz:/A/Bg(ac)h(y|ac)dydw:/A/Bf(w,y)dydm:IP’(XGA,YGB), ACS (3.5.23)

The following theorem gives Bayes' theorem for probability density functions. We use the notation established above.

Bayes' Theorem. For y € T', the conditional probability density function z — g(z | y) of X given y = y can be computed as follows:

1. If X has a discrete distribution then

9(z)h(y | z)
gz |y)==———""——"—, z€S8§ (3.5.24)
Y ses 9(8)h(y | 5)
2. If X has a continuous distribution then
g(z)h(y |z
9(z [ y) w)hly | @) (3.5.25)

~ Jsg(s)h(y] s)ds
Proof

In both cases the numerator is f(z, y) while the denominator is h(y).

In the context of Bayes' theorem, g is the prior probability density function of X and x — g(z | y) is the posterior probability density
function of X given Y =y for y € T. Note that the posterior probability density function  — g(z | y) is proportional to the function
z +— g(z)h(y | ). The sum or integral in the denominator is the normalizing constant.

Independence

Intuitively, X and Y should be independent if and only if the conditional distributions are the same as the corresponding unconditional
distributions.
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The following conditions are equivalent:

1. X and Y are independent.

2. f(z,y) =g(z)h(y) forz € S,y T
3. h(y|z)=nh(y) forxe S,yeT
4.9(z |y)=g(z) forz e S,yeT

Proof

The equivalence of (a) and (b) was established in the section on joint distributions. Parts (c) and (d) are equivalent to (b). For a
continuous distribution as described in the details in (4), a probability density function is not unique. The values of a PDF can be
changed to other nonnegative values on a set of measure 0 and the resulting function is still a PDF. So if X or Y has a continuous
distribution, the equations above have to be interpreted as holding for  or y, respectively, except on a set of measure 0.

Examples and Applications

In the exercises that follow, look for special models and distributions that we have studied. A special distribution may be embedded in a

larger problem, as a conditional distribution, for example. In particular, a conditional distribution sometimes arises when a parameter of a
standard distribution is randomized.

A couple of special distributions will occur frequently in the exercises. First, recall that the discrete uniform distribution on a finite,

nonempty set S has probability density function f given by f(z) =1 / #(S) for z € S. This distribution governs an element selected at
random from S.

Recall also that Bernoulli trials (named for Jacob Bernoulli) are independent trials, each with two possible outcomes generically called
success and failure. The probability of success p € [0, 1] is the same for each trial, and is the basic parameter of the random process. The
number of successes in n € N Bernoulli trials has the binomial distribution with parameters n and p. This distribution has probability

density function f given by f(z) = (:) p*(L—p)*® for z € {0,1,...,n} The binomial distribution is studied in more detail in the
chapter on Bernoulli trials

Coins and Dice

Suppose that two standard, fair dice are rolled and the sequence of scores (Xi,X3) is recorded. Let U = min{X7, X5} and
V = max{X;, X} denote the minimum and maximum scores, respectively.
1. Find the conditional probability density function of U given V = v for each v € {1,2,3,4,5,6}.
2. Find the conditional probability density function of V' given U = u for each u € {1,2,3,4,5,6}
Answer
1. g(u|v) u=1 2 3 4 5 6
v=1 1 0 0 0 0 0
2 1
2 2 L 0 0 0 0
2 2 1
3 5 5 5 0 0 0
2 2 2 1
4 7 7 7 7 0 0
2 2 2 2 1
> 9 9 9 9 g 0
6 2 2 2 2 2 1
il 11 11 il 11 11
2 hv|w) u=1 2 3 s 5 )
1
v=1 L 0 0 0 0 0
2 1
2 Z L 0 0 0 0
2 2 1
3 i1 9 7 0 0 0
2 2 2 1
4 ) 9 7 5 0 0
2 2 2 2 1
5 ) 9 7 5 3 0
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h(v| u) u=1 2 3 4 5 6
2 2 2 2 2
6 i 9 7 5 3 1

In the die-coin experiment, a standard, fair die is rolled and then a fair coin is tossed the number of times showing on the die. Let N
denote the die score and Y the number of heads.

1. Find the joint probability density function of (N,Y).
2. Find the probability density function of Y.
3. Find the conditional probability density function of N given Y =y for each y € {0,1,2, 3,4,5,6}

Answer
1. and b.
f(n,y) n=1 2 3 4 5 6 h(y)
-0 1 L1 L L 1 1 63
y= 12 24 18 % 102 384 384
1 1 1 1 1 5 1 120
12 12 16 24 192 64 384
1 1 1 5 5 99
2 0 % 6 . % i £y
1 1 5 5 64
3 0 0 B 2 % % 384
1 5 29
4 0 0 0 96 192 128 384
1 1 8
5 0 0 0 0 T2 o e
6 0 0 0 0 0 = =
1 1 1 1 1 1
g(n) 5 5 5 s 5 5 1
3 9(n|y) n= 2 3 4 5 6
_ 32 16 8 4 2 L
y=0 63 63 63 63 63 63
16 16 1 8 5 3
1 60 60 60 60 60 60
16 24 24 20 15
2 0 % % % % %
2 4 5 5
3 0 0 6 6 6 6
4 10 15
4 0 0 0 2% % by
1 3
5 0 0 0 0 3 by
6 0 0 0 0 0 1

In the die-coin experiment, select the fair die and coin.

1. Run the simulation of 1000 times and compare the empirical density function of Y with the true probability density function in the
previous exercise

2. Run the simulation 1000 times and compute the empirical conditional density function of IV given Y = 3. Compare with the
conditional probability density functions in the previous exercise.

In the coin-die experiment, a fair coin is tossed. If the coin is tails, a standard, fair die is rolled. If the coin is heads, a standard, ace-six
flat die is rolled (faces 1 and 6 have probability % each and faces 2, 3, 4, 5 have probability % each). Let X denote the coin score (0 for
tails and 1 for heads) and Y the die score.

1. Find the joint probability density function of (X, Y).
2. Find the probability density function of Y.
3. Find the conditional probability density function of X given Y =y for eachy € {1, 2, 3,4, 5,6}
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Answer
1. and b.
f(z,y) y=1 2 3 4 5 6 9(x)
— L L L L L L 1
z=0 12 12 12 12 12 12 2
1 1 L 1 1 1 1 1
8 16 16 16 16 8 2
5 e a e s 35
h(y) 2 24 8 8 18 2 1
3 9(=|y) y=1 2 3 4 5 6
=0 2 4 4 4 4 2
= 5 7 7 7 7 5
0 3 3 3 3 3 3
5 7 7 7 7 5

In the coin-die experiment, select the settings of the previous exercise.

1. Run the simulation 1000 times and compare the empirical density function of Y with the true probability density function in the
previous exercise.

2. Run the simulation 100 times and compute the empirical conditional probability density function of X given Y = 2. Compare with
the conditional probability density function in the previous exercise.

Suppose that a box contains 12 coins: 5 are fair, 4 are biased so that heads comes up with probability %, and 3 are two-headed. A coin
is chosen at random and tossed 2 times. Let P denote the probability of heads of the selected coin, and X the number of heads.

1. Find the joint probability density function of (P, X).

2. Find the probability density function of X.

3. Find the conditional probability density function of P given X =z for z € {0,1,2}.

Answer
1. and b.
f(p, z) z=0 1 2 9(p)
_ 1 5 10 5 5
pP=3 B 1 I 12
1 4 4 1 4
3 27 27 27 D)
1 3
1 0 0 . =5
109 154 169
h(z) ) ) o) 1
3 9(p|z) z=0 1 2
_1 45 &5 45
p=3 109 ™ 169
1 o 2 1
3 109 ™ 169
1 0 0 08

169

Compare the die-coin experiment with the box of coins experiment. In the first experiment, we toss a coin with a fixed probability of heads

a random number of times. In the second experiment, we effectively toss a coin with a random probability of heads a fixed number of
times.

Suppose that P has probability density function g(p) = 6p(1 —p) for p € [0, 1]. Given P = p, a coin with probability of heads p is
tossed 3 times. Let X denote the number of heads.

1. Find the joint probability density function of (P, X).
2. Find the probability density of function of X.
3. Find the conditional probability density of P given X =z for z € {0, 1, 2, 3}. Graph these on the same axes.
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Answer
1. f(p,2z) =6(})p* (1 —p)*® forpc[0,1]and z € {0,1,2,3,4}
2.h(0)=h(3)=1,h(1)=h(2)=2.
3.9(p| 0)=30p(1—p)*, g(p|1) =60p*(1-p)*, g(p| 2) = 60p°(1 —p)*, g(p | 3) = 30p* (1 —p) , in each case for p € [0,1]

Compare the box of coins experiment with the last experiment. In the second experiment, we effectively choose a coin from a box with a
continuous infinity of coin types. The prior distribution of P and each of the posterior distributions of P in part (c) are members of the
family of beta distributions, one of the reasons for the importance of the beta family. Beta distributions are studied in more detail in the
chapter on Special Distributions.

In the simulation of the beta coin experiment, set a =b =2 and n =3 to get the experiment studied in the previous exercise. For
various “true values” of p, run the experiment in single step mode a few times and observe the posterior probability density function on
each run.

Simple Mixed Distributions

Recall that the exponential distribution with rate parameter r € (0, c0) has probability density function f given by f(t) =re™™ for
t € [0, 00). The exponential distribution is often used to model random times, under certain assumptions. The exponential distribution is
studied in more detail in the chapter on the Poisson Process. Recall also that for a, b € R with a < b, the continuous uniform distribution
on the interval [a, b] has probability density function f given by f(z) = ﬁ for z € [a, b]. This distribution governs a point selected at
random from the interval.

Suppose that there are 5 light bulbs in a box, labeled 1 to 5. The lifetime of bulb n (in months) has the exponential distribution with
rate parameter n. A bulb is selected at random from the box and tested.

1. Find the probability that the selected bulb will last more than one month.
2. Given that the bulb lasts more than one month, find the conditional probability density function of the bulb number.

Answer
Let N denote the bulb number and 7" the lifetime.
1.P(T >1)=0.1156
2.t 1 2 3 4 5

g(n | T>1) 0.6364 0.2341 0.0861 0.0317 0.0117

Suppose that X is uniformly distributed on {1, 2, 3}, and given X =z € {1, 2, 3}, random variable Y is uniformly distributed on the
interval [0, z].

1. Find the joint probability density function of (X,Y").
2. Find the probability density function of Y.
3. Find the conditional probability density function of X given Y =y for y € [0, 3].

Answer

L f(z,y) = 5 fory € [0,2]and = € {1,2,3}
11
s, 0<y<l1

2. h(y) = 1%, l<y<2
L, 2<y<3

3.Forye (0,1 g(l]y)=2.92|y)==,98y) =2

Fory € (1,2, 91| y)=0,9(2|y)=2,43y) =2
Fory € (2,3],9(11y)=9(2]y)=0,93|y)=1.

The Poisson Distribution

Recall that the Poisson distribution with parameter a € (0, c0) has probability density function g(n) = e % for n € N. This distribution

is widely used to model the number of “random points” in a region of time or space; the parameter a is proportional to the size of the
region. The Poisson distribution is named for Simeon Poisson, and is studied in more detail in the chapter on the Poisson Process.
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Suppose that IV is the number of elementary particles emitted by a sample of radioactive material in a specified period of time, and has
the Poisson distribution with parameter a. Each particle emitted, independently of the others, is detected by a counter with probability
p € (0,1) and missed with probability 1 — p. Let Y denote the number of particles detected by the counter.

1. For n € N, argue that the conditional distribution of Y given N = n is binomial with parameters n and p.
2. Find the joint probability density function of (N,Y").

3. Find the probability density function of Y.

4. For y € N, find the conditional probability density function of N given Y =y.

Answer

1. Each particle, independently, is detected (success) with probability p. This is the very definition of Bernoulli trials, so given
N = n, the number of detected particles has the binomial distribution with parameters n and p
2. The PDF f of (N,Y) is defined by

Yy (1 —p)¥
f(n,y):e_“a”L'%, neN, ye{0,1,...,n} (3.5.26)
yt (n—y)!
3. The PDF h of Y is defined by
y
h(y) = e”’“@, yeN (3.5.27)

This is the Poisson distribution with parameter pa.
4. The conditional PDF of N given Y = y is defined by

_(-pa LA =p)a]" ¥
(n—y)!

This is the Poisson distribution with parameter (1 — p)a , shifted to start at y.

ginly)=e , ne{y,y+1,...} (3.5.28)

The fact that Y also has a Poisson distribution is an interesting and characteristic property of the distribution. This property is explored in
more depth in the section on thinning the Poisson process.

Simple Continuous Distributions

Suppose that (X, Y") has probability density function f defined by f(z,y) = = +y for (z,y) € (0,1)2

1. Find the conditional probability density function of X given Y =y fory € (0, 1)
2. Find the conditional probability density function of Y given X = z for z € (0, 1)
3FindP(;<Y<¥|X=1).

4. Are X and Y independent?

Answer
1.Fory € (0,1), g(z | y) = y’ff;z forz € (0,1)
2.Forz € (0,1), h(y | z) = ;:;2 fory € (0,1)

1
3.1

4. X and Y are dependent.

Suppose that (X, Y) has probability density function f defined by f(z,y) =2(z+y) for0 <z <y <1.

1. Find the conditional probability density function of X given Y =y fory € (0, 1).
2. Find the conditional probability density function of Y given X = z for z € (0, 1).
. 3 1
3FndP(Y>3|X=73).
4. Are X and Y independent?
Answer

1.Fory € (0,1), g(z | y) = % forz € (0,y).

2.Forz € (0,1),h(y| z) = % fory € (z,1).

3
3. 10

4. X and Y are dependent.
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Suppose that (X, Y") has probability density function f defined by f(z,y) = 15z?yfor0 <z <y <1.
1. Find the conditional probability density function of X given Y =y fory € (0,1).
2. Find the conditional probability density function of Y given X = z for z € (0, 1).
3.FindP(X<1|Y=3%).

4. Are X and Y independent?

Answer
1.Fory € (0,1), g(z | y) = 3?/132 forz € (0,y).
2.Forz € (0,1),h(y| z) = % fory € (z,1).

3 2T
" 64
4. X and Y are dependent.

Suppose that (X, Y") has probability density function f defined by f(z,y) = 6z2yfor0 <z <1 and0 <y <1.

1. Find the conditional probability density function of X given Y =y fory € (0, 1).
2. Find the conditional probability density function of Y given X = z for z € (0, 1).
3. Are X and Y independent?

Answer
1.Fory € (0,1), g(z | y) = 32> fory € (0,1).
2.Forz € (0,1), h(y | ) =2y fory € (0, 1).
3. X and Y are independent.

Suppose that (X, Y) has probability density function f defined by f(z,y) =2e eV for0 <z <y < oo.

1. Find the conditional probability density function of X given Y =y for y € (0, c0).
2. Find the conditional probability density function of Y given X = z for z € (0, 00).
3. Are X and Y independent?

Answer
__e*®
1. Fory € (0,00), g(z | y) = 1= forz € (0,y).
2.Forz € (0,00), h(y | z) =" fory € (z,00).
3. X and Y are dependent.

Suppose that X is uniformly distributed on the interval (0, 1), and that given X =z, Y is uniformly distributed on the interval (0, z).

1. Find the joint probability density function of (X,Y").
2. Find the probability density function of Y.
3. Find the conditional probability density function of X given Y =y fory € (0, 1).
4. Are X and Y independent?

Answer
1 f(z,y) = % for0<y<z<l
2. h(y) =—Iny fory € (0,1)
3.Fory € (0,1),9(z | y) =—
4. X and Y are dependent.

forz € (y,1).

1
zlny

Suppose that X has probability density function g defined by g(z) = 3z? forz € (0,1). The conditional probability density function
of Vgiven X =z ish(y|z)= 37,32 fory € (0, ).

=
1. Find the joint probability density function of (X, Y").
2. Find the probability density function of Y.
3. Find the conditional probability density function of X givenY =y.

4. Are X and Y independent?

Answer

2
1~f(377y)=9% for0<y<z<1.
2. h(y) = —9y*Iny fory € (0, 1).
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3.Fory € (0,1),g(z | y) =—
4. X and Y are dependent.

e forz € (y,1).

Multivariate Uniform Distributions

Multivariate uniform distributions give a geometric interpretation of some of the concepts in this section.

Recall that For n € N , the standard measure \,, on R" is given by
An(4) :/ ldz, ACR" (3.5.29)
A

In particular, A; (A) is the length of A C R, Ay(A) is the area of A C R? and A\3(A) is the volume of A C R3.
Details

Technically, A, is Lebesgue measure defined on the o-algebra of measurable subsets of R™. In the disccusion below, we assume that
all sets are measurable. The integral representation is valid for the sets that occur in typical applications.

Suppose now that X takes values in R’, ¥ takes values in R¥, and that (X,Y) is uniformly distributed on a set R C Rtk So
0 < Aj4(R) < oo and then the joint probability density function f of (X,Y’) is given by f(z,y) = 1/Aj1x(R) for (z,y) € R. Now let
S and T be the projections of R onto R’ and R¥ respectively, defined as follows:

S:{zGRj:(x,y)ERforsomeyERk}, T:{yeRk:(w,y)GRforsomeweRj} (3.5.30)
Note that R C S x T . Next we denote the cross sections at € S and at y € T, respectively by
T,={teT:(z,t)e R}, S,={scS:(s,y) €R} (3.5.31)
T IuT
R
T
VIt i
gy,
g

Figure 3.5.1: The projections S and 7', and the cross sections at  and y
In the last section on Joint Distributions, we saw that even though (X, Y") is uniformly distributed, the marginal distributions of X and Y’
are not uniform in general. However, as the next theorem shows, the conditional distributions are always uniform.
Suppose that (X, Y") is uniformly distributed on R. Then

1. The conditional distribution of Y given X = « is uniformly on T}, for each z € S.
2. The conditional distribution of X given Y =y is uniformly on S, foreachy € T'.

Proof

The results are symmetric, so we will prove (a). Recall that X has PDF g given by

1 Ae(T%)
g(x) =/ f(z,y) dy:/ dy = , z€S (3.5.32)
T, y Ajrk(R) Ajrk(R)
Hence for ¢ € S, the conditional PDF of Y given X =z is
) 1
h(y|z) = i) _ yeT, (3.5.33)

g(z)  M(T)’
and this is the PDF of the uniform distribution on 7.
Find the conditional density of each variable given a value of the other, and determine if the variables are independent, in each of the
following cases:

1. (X,Y) is uniformly distributed on the square R = (—6,6)?.
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2. (X,Y) is uniformly distributed on the triangle R = {(z,y) € R?: —6 <y <z <6} .
3. (X, Y) is uniformly distributed on the circle R = {(x,y) € R? : 2® +y*> < 36} .
Answer
The conditional PDF of X given Y =y is denoted = — g(z | y) . The conditional PDF of Y given X = z is denoted y — h(y | z).
1. o Fory € (—6,6),g9(z|y) = 11—2 forz € (—6,6).
o Forz € (—6,6),h(y|z)= % fory € (—6,6).
o X,Y are independent.

2.0 Forye (—6,6),g(z|y) == forz e (y,6)

6-y
o Forz € (—6,6),h(y|z)= zis fory € (-6, )
o X,Y are dependent.
3.0 Forye (—6,6),g(z|y) = - 316 = forz € (—/36 —1%, /36 —y”)
-y
o Forz € (—6,6),g(z|y) = 2\/3167w2 fory € (—\/36—:1:2, \/36—$2)

o X,Y are dependent.

In the bivariate uniform experiment, run the simulation 1000 times in each of the following cases. Watch the points in the scatter plot
and the graphs of the marginal distributions.

1. square
2. triangle
3. circle

Suppose that (X, Y, Z) is uniformly distributed on R = {(z,y,2) e R*: 0 <z <y <z<1} .
1. Find the conditional density of each pair of variables given a value of the third variable.
2. Find the conditional density of each variable given values of the other two.

Answer

The subscripts 1, 2, and 3 correspond to the variables X, Y, and Z, respectively. Note that the conditions on (z,y, 2) in each case are
those in the definition of the domain R. They are stated differently to emphasize the domain of the conditional PDF as opposed to the
given values, which function as parameters. Note also that each distribution is uniform on the appropriate region.
LFor0<z<1, fiy3(z,y|2) = Z% for0<z<y<z
_
2.For0 <y <1, fisp(z,z|y) = 707
3.For0<z <1, fo31(y,2]z) = L)Z forz<y<z<l

for0<z <y andy<z<1

(1-z
4.For0<y<z<l ,f1\2,3($|yaz):% for0 <z <y
5.For0<z<z<l, fans(y|x,z -
6.For0 <z <y<1, f31.(2]z,y

forzr<y<z
fory<z<l1

zZ—T

) =
)=

- |

1-y

The Multivariate Hypergeometric Distribution

Recall the discussion of the (multivariate) hypergeometric distribution given in the last section on joint distributions. As in that discussion,
suppose that a population consists of mm objects, and that each object is one of four types. There are a objects of type 1, b objects of type 2,
and c objects of type 3, and m —a—b—c objects of type 0. We sample n objects from the population at random, and without
replacement. The parameters a, b, ¢, and n are nonnegative integers with a +b+c¢ <m and n < m. Denote the number of type 1, 2, and
3 objects in the sample by X, Y, and Z, respectively. Hence, the number of type 0 objects in the sample is n — X —Y —Z . In the
following exercises, z, y, z € N.

Suppose that z < ¢ and n —m +¢ < z <n . Then the conditional distribution of (X,Y") given Z = z is hypergeometric, and has the
probability density function defined by

a\ (b (m—a—b—c
g(w,yz)=%, z+y<n-—z (3.5.34)

n—z

Proof
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This result can be proved analytically but a combinatorial argument is better. The essence of the argument is that we are selecting a
random sample of size n — z without replacement from a population of size m — ¢, with a objects of type 1, b objects of type 2, and
m —a—b objects of type 0. The conditions on z ensure that P(Z = z) > 0 , or equivalently, that the new parameters make sense.

Suppose that y <b, 2<c¢, and n—m+b<y+2z<n . Then the conditional distribution of X given Y=y and Z=2 is
hypergeometric, and has the probability density function defined by

@)y

(m_b_c) , z<n—y—=z (3.5.35)
n—y—z

9(@ |y, 2) =

Proof

Again, this result can be proved analytically, but a combinatorial argument is better. The essence of the argument is that we are
selecting a random sample of size n —y — z from a population of size m —b — ¢, with a objects of type 1 and m —a —b—c objects
type 0. The conditions on y and z ensure that P(Y =y, Z = z) > 0 , or equivalently that the new parameters make sense.

These results generalize in a completely straightforward way to a population with any number of types. In brief, if a random vector has a
hypergeometric distribution, then the conditional distribution of some of the variables, given values of the other variables, is also
hypergeometric. Moreover, it is clearly not necessary to remember the hideous formulas in the previous two theorems. You just need to
recognize the problem as sampling without replacement from a multi-type population, and then identify the number of objects of each type
and the sample size. The hypergeometric distribution and the multivariate hypergeometric distribution are studied in more detail in the
chapter on Finite Sampling Models.

In a population of 150 voters, 60 are democrats and 50 are republicans and 40 are independents. A sample of 15 voters is selected at
random, without replacement. Let X denote the number of democrats in the sample and Y the number of republicans in the sample.
Give the probability density function of each of the following:

1. (X,Y)
2. X
3.Y given X =5
Answer
1 f(z,y) = (1 ) ( )(50) (151;27?!) A
15
> g (150 (ic) (159095) forz <15

h(y|5) = (910 ) (15°,) fory <10

Recall that a bridge hand consists of 13 cards selected at random and without replacement from a standard deck of 52 cards. Let X, Y,
and Z denote the number of spades, hearts, and diamonds, respectively, in the hand. Find the probability density function of each of
the following:

1. (X,Y,2)

2.(X,Y)

3.X

4.(X,Y) given Z =3

5. X givenY =3 and Z =2

Answer
L f(e,y,2) = 75 ()

)( )6
3. h(z) = - <13>( 9
10)

5. h(z|3,2)= 1 ( )(813) forz <8

) x

)( )(13 ;31/ z) forz +y+2<13 .

13
y
(13 T y) forz+y <13

(
)

forx <13

2)
( )(1 (10 —a— y) forz+y <10
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Multinomial Trials

Recall the discussion of multinomial trials in the last section on joint distributions. As in that discussion, suppose that we have a sequence
of n independent trials, each with 4 possible outcomes. On each trial, outcome 1 occurs with probability p, outcome 2 with probability g,
outcome 3 with probability 7, and outcome 0 with probability 1 —p —g—r . The parameters p, ¢, r € (0,1), with p+g+r <1, and
n € N, . Denote the number of times that outcome 1, outcome 2, and outcome 3 occurs in the n trials by X, Y, and Z respectively. Of
course, the number of times that outcome 0 occurs isn — X —Y — Z . In the following exercises, x, y, z € N.

For z < n, the conditional distribution of (X,Y") given Z = z is also multinomial, and has the probability density function.
& y n—r—y—=z
n—z p q p q
, _ . = 1— - , <n-— 3.5.36
9@y |2) (m,y)(l—r) (1—7‘) ( 1—7r 1—7') Trysn-2 ( )

This result can be proved analytically, but a probability argument is better. First, let I denote the outcome of a generic trial. Then
PI=1|I#3)=PI=1)/PI#3)=p/(1-71) . Similarly, PI=2|I+#3)=g/(1-7) and
P(I=0|I#3)=(1—-p—q—r)/(1—7) . Now, the essence of the argument is that effectively, we have n—z independent
trials, and on each trial, outcome 1 occurs with probability p/(1 —) and outcome 2 with probability g/(1 —) .

Proof

For y 4+ z < n, the conditional distribution of X given Y =y and Z = z is binomial, with the probability density function
h($|yaz):( x )(m) (1—m) , T<n—y—=z (3.5.37)

Again, this result can be proved analytically, but a probability argument is better. As before, let I denote the outcome of a generic trial.
Then P(I=1|I¢{2,3})=p/(1—q—r) andP(I=0|I¢{2,3})=(1—-p—g—7)/(1—g—7r) . Thus, the essence of the
argument is that effectively, we have m —y —z independent trials, and on each trial, outcome 1 occurs with probability

p/(1—q-r).

Proof

These results generalize in a completely straightforward way to multinomial trials with any number of trial outcomes. In brief, if a random
vector has a multinomial distribution, then the conditional distribution of some of the variables, given values of the other variables, is also
multinomial. Moreover, it is clearly not necessary to remember the specific formulas in the previous two exercises. You just need to
recognize a problem as one involving independent trials, and then identify the probability of each outcome and the number of trials. The
binomial distribution and the multinomial distribution are studied in more detail in the chapter on Bernoulli Trials.

Suppose that peaches from an orchard are classified as small, medium, or large. Each peach, independently of the others is small with
probability % , medium with probability %, and large with probability % In a sample of 20 peaches from the orchard, let X denote the
number of small peaches and Y the number of medium peaches. Give the probability density function of each of the following:

1. (X,Y)

2.X

3.Y given X =5

Answer

L f(z,y) = (zoy) (%)f(%)y(%)%—w—y forz+y <20
20—z

(i) " forz <20

0
3.h(y|5)= (") (%)y(%)ww fory <15

For a certain crooked, 4-sided die, face 1 has probability %, face 2 has probability %, face 3 has probability %, and face 4 has
probability 1—10. Suppose that the die is thrown 50 times. Let X, Y, and Z denote the number of times that scores 1, 2, and 3 occur,
respectively. Find the probability density function of each of the following:

1. (X,Y,2)

2.(X,Y)

3. X

4.(X,Y) given Z=5
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5.XgivenY =10 and Z =5

Answer
(z,y,2) = ( ;J(%) (1%) (—) (%)507%1]72 forz +y+2 <50
2.9(z,y) = ( Oy (% f—o)y(%)m - forz +y <50
)a:

)(
(%) e for z <50
(%)

Bivariate Normal Distributions

The joint distributions in the next two exercises are examples of bivariate normal distributions. The conditional distributions are also
normal, an important property of the bivariate normal distribution. In general, normal distributions are widely used to model physical
measurements subject to small, random errors. The bivariate normal distribution is studied in more detail in the chapter on Special
Distributions.

Suppose that (X, Y") has the bivariate normal distribution with probability density function f defined by

fe=peew|- (5+L5)] @er (3.5.38)

1. Find the conditional probability density function of X given Y =y fory € R.
2. Find the conditional probability density function of Y given X =z for z € R.
3. Are X and Y independent?
Answer
1L.ForyeR,g(z|y) = L\/Z_e‘z /8 for z € R. This is the PDF of the normal distribution with mean 0 and variance 4.

2Forz eR,h(y|z)= %e‘y /18 for y € R. This is the PDF of the normal distribution with mean 0 and variance 9.

3. X and Y are independent.

Suppose that (X, Y") has the bivariate normal distribution with probability density function f defined by

flz,y)= exp —§($2—zy+y2) , (z,y) €R? (3.5.39)

1
V3
1. Find the conditional probability density function of X given Y =y fory € R.
2. Find the conditional probability density function of Y given X =z for z € R.
3. Are X and Y independent?

Answer

2 2
1.ForyeR,g(z|y) = 3—1675(17?’// 2" for z € R. This is the PDF of the normal distribution with mean y/2and variance 3/4

2Forz eR,h(y|z)=,/ 32 e 3=/ for y € R. This is the PDF of the normal distribution with mean « /2 and variance 3/4
3. X and Y are dependent.

Mixtures of Distributions

With our usual sets S and T, as above, suppose that P, is a probability measure on T for each z € S. Suppose also that g is a probability
density function on .S. We can obtain a new probability measure on T by averaging (or mixing) the given distributions according to g.

First suppose that g is the probability density function of a discrete distribution on the countable set S. Then the function IP defined
below is a probability measure on 7T':

=) g@)P:(B), BCT (3.5.40)
zeS

Proof
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Clearly P(B) >0 for BCT and P(T) =), ¢ g(x)1 =1 . Suppose that {B; : i € I'} is a countable, disjoint collection of subsets
of T'. Then

P (UBZ-> => g(=)P; (UBZ) =Y g@)) P(B) =) g(x)P:.(B:)=> P(B) (3.5.41)

el zeS el zes el i€l zeS el

Reversing the order of summation is justified since the terms are nonnegative.

In the setting of the previous theorem, suppose that P, has probability density function h, for each z € S. Then P has probability
density function h given by

h(y) =Y g@)ha(y), yeT (3.5.42)
ze8
Proof
As usual, we will consider the discrete and continuous cases for the distributions on 7" separately.

1. Suppose that T is countable so that P, is a discrete probability measure for each € S'. By definition, for each z € S,
h:(y) =P, ({y}) fory € T'. So the probability density function h of P is given by

h(y) =P({y}) =Y g@)P.({y}) =D g(@)h(y), yeT (3.5.43)
zesS zes
2. Suppose now that P, has a continuous distribution on T' C R* , with PDF g, foreachxz € S, For BC T,
=S a@)PB) =Y o(o) [ et du= [ Y o@ho )y = [ by (3.5.44)
zes zeS B zes B

So by definition, A is the PDF of IP. Again, the interchange of sum and integral is justified because the functions are nonnegative.
Technically, we also need y — h,(y) to be measurable for z € S so that the integral makes sense.

Conversely, given a probability density function g on S and a probability density function h, on T for each « € S, the function h defined
in the previous theorem is a probability density function on 7'.

Suppose now that g is the probability density function of a continuous distribution on S C R’ . Then the function P defined below is a
probability measure on 7'

P(B) = /S g(z)P,(B)dz, BCT (3.5.45)

Proof

The proof is just like the proof of Theorem (45) with integrals over S replacing the sums over S. Clearly P(B) >0 for BC T and
= [49(z) P,(T)dz = [gg(xz)dz =1 . Suppose that {B; : i € I'} is a countable, disjoint collection of subsets of . Then

P(UIB,-) :/g(m)P (UIB> / ZIP(B)—ZI/g(a: B)_ZI]P’ (3.5.46)

Reversing the integral and the sum is justified since the terms are nonnegative. Technically, we need the subsets of 7" and the mapping
z — P,(B) to be measurable.

In the setting of the previous theorem, suppose that P, is a discrete (respectively continuous) distribution with probability density
function h,, for each € S. Then P is also discrete (respectively continuous) with probability density function & given by

h(y)=/Sg(w)hz(y)dw, yeT (3.5.47)

Proof

The proof is just like the proof of Theorem (46) with integrals over S replacing the sums over S.

1. Suppose that 7" is countable so that P, is a discrete probability measure for each € S. By definition, for each z € S,
hy(y) =P, ({y}) fory € T. So the probability density function h of P is given by
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h(y) = P({y}) = /S o@)P:({y}) dz = /S o@)hs(y)dz, yeT (3.5.48)

Technically, we need z — P, ({y}) = h.(y) to be measurable fory € T'.
2. Suppose now that P, has a continuous distribution on 7" C R* | with PDF g, foreachz € S,For BC T,

?(5) = [ d@P.(B)do = [ o) [ mdyda= [ [gemtidzdy= [ nyay @549

So by definition, A is the PDF of IP. Again, the interchange of sum and integral is justified because the functions are nonnegative.
Technically, we also need (z,y) — h,(y) to be measurable so that the integral makes sense.

In both cases, the distribution PP is said to be a mixture of the set of distributions { P, : z € S}, with mixing density g.

One can have a mixture of distributions, without having random variables defined on a common probability space. However, mixtures are
intimately related to conditional distributions. Returning to our usual setup, suppose that X and Y are random variables for an experiment,
taking values in S and T respectively and that X probability density function g. The following result is simply a restatement of the law of
total probability.
The distribution of Y is a mixture of the conditional distributions of Y given X =z, over « € S, with mixing density g.
Proof
Only the notation is different.
1. If X has a discrete distribuion on the countable set S then
P(Y €B)=) g&)P(Y € B|X=g), BCT (3.5.50)
zeS

2. If X has a continuous distribution .S C R’ then

P(YeB):/g(x)P(YeB\Xzz)dx, BCT (3.5.51)
S

Finally we note that a mixed distribution (with discrete and continuous parts) really is a mixture, in the sense of this discussion.

Suppose that IP is a mixed distribution on a set T'. Then IP is a mixture of a discrete distribution and a continuous distribution.
Proof

Recall that mixed distribution means that 7' can be partitioned into a countable set D and a set C C R" for some n € N, with the
properties that P({z}) > 0 forz € D, P({z}) =0 forz € C, and p =P(D) € (0,1) . Let S = {d, c} and define the PDF g on S by
g(d) =p and g(c) =1 —p . Recall that the conditional distribution P; defined by Py(A) =P(AND)/P(D) for A CT is a discrete
distribution on T' and similarly the conditional distribution P, defined by P.(4) =P(ANC)/P(C) for ACT is a continuous
distribution on T'. Clearly with this setup,

P(4) =g(c)P.(A) +g(d)Pa(A), ACT (3.5.52)

This page titled 3.5: Conditional Distributions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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