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2.4: Conditional Probability
  

The purpose of this section is to study how probabilities are updated in light of new information, clearly an absolutely essential topic.
If you are a new student of probability, you may want to skip the technical details.

Definitions and Interpretations

The Basic Definition

As usual, we start with a random experiment modeled by a probability space . Thus,  is the set of outcomes,  the
collection of events, and  the probability measure on the sample space . Suppose now that we know that an event  has
occurred. In general, this information should clearly alter the probabilities that we assign to other events. In particular, if  is another
event then  occurs if and only if  and  occur; effectively, the sample space has been reduced to . Thus, the probability of ,
given that we know  has occurred, should be proportional to .

Figure : Events  and 

However, conditional probability, given that  has occurred, should still be a probability measure, that is, it must satisfy the axioms
of probability. This forces the proportionality constant to be . Thus, we are led inexorably to the following definition:

Let  and  be events with . The conditional probability of  given  is defined to be

The Law of Large Numbers

The definition above was based on the axiomatic definition of probability. Let's explore the idea of conditional probability from the
less formal and more intuitive notion of relative frequency (the law of large numbers). Thus, suppose that we run the experiment
repeatedly. For  and an event , let  denote the number of times  occurs (the frequency of ) in the first  runs.
Note that  is a random variable in the compound experiment that consists of replicating the original experiment. In particular,
its value is unknown until we actually run the experiment  times.

If  is large, the conditional probability that  has occurred, given that  has occurred, should be close to the conditional
relative frequency of  given , namely the relative frequency of  for the runs on which  occurred: . But
note that

The numerator and denominator of the main fraction on the right are the relative frequencies of  and , respectively. So by the
law of large numbers again,  as  and  as . Hence

and we are led again to the definition above.

In some cases, conditional probabilities can be computed directly, by effectively reducing the sample space to the given event. In
other cases, the formula in the mathematical definition is better. In some cases, conditional probabilities are known from modeling
assumptions, and then are used to compute other probabilities. We will see examples of all of these situations in the computational
exercises below.

It's very important that you not confuse , the probability of  given , with , the probability of  given .
Making that mistake is known as the fallacy of the transposed conditional. (How embarrassing!)
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Conditional Distributions

Suppose that  is a random variable for the experiment with values in . Mathematically,  is a function from  into , and 
 denotes the event  for . Intuitively,  is a variable of interest in the experiment, and every

meaningful statement about  defines an event. Recall that the probability distribution of  is the probability measure on  given
by

This has a natural extension to a conditional distribution, given an event.

If  is an event with , then the conditional distribution of  given  is the probability measure on  given by

Details

Recall that  will come with a -algebra of admissible subsets so that  is a measurable space, just like the sample space 
. Random variable  is required to be measurable as a function from  into . This ensures that  is a valid

event for each , so that the definition makes sense.

Basic Theory

Preliminary Results

Our first result is of fundamental importance, and indeed was a crucial part of the argument for the definition of conditional
probability.

Suppose again that  is an event with . Then  is a probability measure on .

Proof

Clearly  for every event , and . Thus, suppose that  is a countable collection of
pairwise disjoint events. Then

But the collection of events  is also pairwise disjoint, so

It's hard to overstate the importance of the last result because this theorem means that any result that holds for probability measures
in general holds for conditional probability, as long as the conditioning event remains fixed. In particular the basic probability rules
in the section on Probability Measure have analogs for conditional probability. To give two examples,

By the same token, it follows that the conditional distribution of a random variable with values in , given in above, really does
define a probability distribution on . No further proof is necessary. Our next results are very simple.

Suppose that  and  are events with .

1. If  then .
2. If  then .
3. If  and  are disjoint then .

Proof

These results follow directly from the definition of conditional probability. In part (a), note that . In part (b) note that 
. In part (c) note that .
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Parts (a) and (c) certainly make sense. Suppose that we know that event  has occurred. If  then  becomes a certain event.
If  then  becomes an impossible event. A conditional probability can be computed relative to a probability measure that
is itself a conditional probability measure. The following result is a consistency condition.

Suppose that , , and  are events with . The probability of  given , relative to , is the same as the
probability of  given  and  (relative to ). That is,

Proof

From the definition,

Correlation

Our next discussion concerns an important concept that deals with how two events are related, in a probabilistic sense.

Suppose that  and  are events with  and .

1.  if and only if  if and only if . In this case,  and  are
positively correlated.

2.  if and only if  if and only if . In this case,  and  are
negatively correlated.

3.  if and only if  if and only if . In this case,  and  are
uncorrelated or independent.

Proof

These properties following directly from the definition of conditional probability and simple algebra. Recall that multiplying or
dividing an inequality by a positive number preserves the inequality.

Intuitively, if  and  are positively correlated, then the occurrence of either event means that the other event is more likely. If 
and  are negatively correlated, then the occurrence of either event means that the other event is less likely. If  and  are
uncorrelated, then the occurrence of either event does not change the probability of the other event. Independence is a fundamental
concept that can be extended to more than two events and to random variables; these generalizations are studied in the next section
on Independence. A much more general version of correlation, for random variables, is explored in the section on Covariance and
Correlation in the chapter on Expected Value.

Suppose that  and  are events. Note from (4) that if  or  then  and  are positively correlated. If  and  are
disjoint then  and  are negatively correlated.

Suppose that  and  are events in a random experiment.

1.  and  have the same correlation (positive, negative, or zero) as  and .
2.  and  have the opposite correlation as  and  (that is, positive-negative, negative-positive, or 0-0).

Proof
1. Using DeMorgan's law and the complement law.

Using the inclusion-exclusion law and algebra,

2. Using the difference rule and the complement law:
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A∩B = ∅ A
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The Multiplication Rule

Sometimes conditional probabilities are known and can be used to find the probabilities of other events. Note first that if  and 
are events with positive probability, then by the very definition of conditional probability,

The following generalization is known as the multiplication rule of probability. As usual, we assume that any event conditioned on
has positive probability.

Suppose that  is a sequence of events. Then

Proof

The product on the right a collapsing product in which only the probability of the intersection of all  events survives. The
product of the first two factors is , and hence the product of the first three factors is , and so
forth. The proof can be made more rigorous by induction on .

The multiplication rule is particularly useful for experiments that consist of dependent stages, where  is an event in stage .
Compare the multiplication rule of probability with the multiplication rule of combinatorics.

As with any other result, the multiplication rule can be applied to a conditional probability measure. In the context above, if  is
another event, then

Conditioning and Bayes' Theorem

Suppose that  is a countable collection of events that partition the sample space , and that  for each 
.

Figure : A partition of  induces a partition of .

The following theorem is known as the law of total probability.

If  is an event then

Proof

Recall that  is a partition of . Hence

The following theorem is known as Bayes' Theorem, named after Thomas Bayes:

If  is an event then

Proof

Again the numerator is  while the denominator is  by the law of total probability.

A B

P(A∩B) = P(A)P(B ∣ A) = P(B)P(A ∣ B) (2.4.15)
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These two theorems are most useful, of course, when we know  and  for each . When we compute the
probability of  by the law of total probability, we say that we are conditioning on the partition . Note that we can think of the
sum as a weighted average of the conditional probabilities  over , where ,  are the weight factors. In the
context of Bayes theorem,  is the prior probability of  and  is the posterior probability of  for . We will
study more general versions of conditioning and Bayes theorem in the section on Discrete Distributions in the chapter on
Distributions, and again in the section on Conditional Expected Value in the chapter on Expected Value.

Once again, the law of total probability and Bayes' theorem can be applied to a conditional probability measure. So, if  is another
event with  for  then

Examples and Applications

Basic Rules

Suppose that  and  are events in an experiment with , , . Find each of the following:

1. 
2. 
3. 
4. 
5. 

Answer

1. 
2. 
3. 
4. 
5. 

Suppose that , , and  are events in a random experiment with , , and . Find
each of the following:

1. 
2. 
3. 
4. 
5. 
6. 

Answer

1. 
2. 
3. 
4. 
5. 
6. 

Suppose that  and  are events in a random experiment with , , and .

1. Find 
2. Find 
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P( )Aj Aj P( ∣ B)Aj Aj j∈ I

E

P( ∩E) > 0Ai i ∈ I

P(B ∣ E)

P( ∣ B∩E)Aj

= P( ∣ E)P(B ∣ ∩E)∑
i∈I

Ai Ai

= , j∈ I
P( ∣ E)P(B ∣ ∩E)Aj Aj

P( ∩E)P(B ∣ ∩E)∑i∈I Ai Ai

(2.4.21)

(2.4.22)
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P(A∩B) = 1
10

P(A ∣ B)
P(B ∣ A)
P( ∣ B)Ac

P( ∣ A)Bc

P( ∣ )Ac Bc

2
5
3

10
3
5
7

10
31
45

A B C P(A ∣ C) = 1
2

P(B ∣ C) = 1
3

P(A∩B ∣ C) = 1
4

P(B∖A ∣ C)
P(A∪B ∣ C)
P( ∩ ∣ C)Ac Bc

P( ∪ ∣ C)Ac Bc

P( ∪B  ∣ C)Ac

P(A ∣ B∩C)

1
12
7

12
5

12
3
4
3
4
3
4

A B P(A) = 1
2

P(B) = 1
3

P(A ∣ B) = 3
4

P(A∩B)
P(A∪B)
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3. Find 
4. Find 
5. Are  and  positively correlated, negatively correlated, or independent?

Answer

1. 
2. 
3. 
4. 
5. positively correlated.

Open the conditional probability experiment.

1. Given , , and , in the table, verify all of the other probabilities in the table.
2. Run the experiment 1000 times and compare the probabilities with the relative frequencies.

Simple Populations

In a certain population, 30% of the persons smoke cigarettes and 8% have COPD (Chronic Obstructive Pulmonary Disease).
Moreover, 12% of the persons who smoke have COPD.

1. What percentage of the population smoke and have COPD?
2. What percentage of the population with COPD also smoke?
3. Are smoking and COPD positively correlated, negatively correlated, or independent?

Answer
1. 3.6%
2. 45%
3. positively correlated.

A company has 200 employees: 120 are women and 80 are men. Of the 120 female employees, 30 are classified as managers,
while 20 of the 80 male employees are managers. Suppose that an employee is chosen at random.

1. Find the probability that the employee is female.
2. Find the probability that the employee is a manager.
3. Find the conditional probability that the employee is a manager given that the employee is female.
4. Find the conditional probability that the employee is female given that the employee is a manager.
5. Are the events female and manager positively correlated, negatively correlated, or indpendent?

Answer

1. 
2. 
3. 
4. 
5. independent

Dice and Coins

Consider the experiment that consists of rolling 2 standard, fair dice and recording the sequence of scores . Let 
denote the sum of the scores. For each of the following pairs of events, find the probability of each event and the conditional
probability of each event given the other. Determine whether the events are positively correlated, negatively correlated, or
independent.

1. , 
2. , 
3. , 
4. , 

P(B∪ )Ac

P(B ∣ A)
A B

1
4
7

12
3
4
1
2

P(A) P(B) P(A∩B)

120
200
50
200
30
120
30
50

X = ( , )X1 X2 Y

{ = 3}X1 {Y = 5}
{ = 3}X1 {Y = 7}
{ = 2}X1 {Y = 5}
{ = 3}X1 { = 2}X1
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Answer

In each case below, the answers are for , , , and 

1. , , , . Positively correlated.
2. , , , . Independent.
3. , , , . Positively correlated.
4. , , , . Negatively correlated.

Note that positive correlation is not a transitive relation. From the previous exercise, for example, note that  and 
are positively correlated,  and  are positively correlated, but  and  are negatively correlated
(in fact, disjoint).

In dice experiment, set . Run the experiment 1000 times. Compute the empirical conditional probabilities corresponding to
the conditional probabilities in the last exercise.

Consider again the experiment that consists of rolling 2 standard, fair dice and recording the sequence of scores .
Let  denote the sum of the scores,  the minimum score, and  the maximum score.

1. Find  for the appropriate values of .
2. Find  for the appropriate values of .
3. Find  for appropriate values of .
4. Find  for the appropriate values of .
5. Find  for the appropriate values of .

Answer

1.  for ,  for 
2.  for ,  for 
3.  for ,  for 
4.  for ,  for 
5.  for 

In the die-coin experiment, a standard, fair die is rolled and then a fair coin is tossed the number of times showing on the die. Let
 denote the die score and  the event that all coin tosses result in heads.

1. Find .
2. Find  for .
3. Compare the results in (b) with  for . In each case, note whether the events  and 

are positively correlated, negatively correlated, or independent.

Answer
1. 
2.  for 
3. positively correlated for  and negatively correlated for 

Run the die-coin experiment 1000 times. Let  and  be as defined in the previous exercise.

1. Compute the empirical probability of . Compare with the true probability in the previous exercise.
2. Compute the empirical probability of  given , for . Compare with the true probabilities in the

previous exercise.

Suppose that a bag contains 12 coins: 5 are fair, 4 are biased with probability of heads ; and 3 are two-headed. A coin is chosen
at random from the bag and tossed.

1. Find the probability that the coin is heads.
2. Given that the coin is heads, find the conditional probability of each coin type.

P(A) P(B) P(A ∣ B) P(B ∣ A)

1
6

1
9

1
4

1
6

1
6

1
6

1
6

1
6

1
6

1
9

1
4

1
6

1
6

1
6

0 0

{ = 3}X1 {Y = 5}
{Y = 5} { = 2}X1 { = 3}X1 { = 2}X1

n = 2

X = ( , )X1 X2

Y U V

P(U = u ∣ V = 4) u

P(Y = y ∣ V = 4) y

P(V = v ∣ Y = 8) v

P(U = u ∣ Y = 8) u

P[( , ) = ( , ) ∣ Y = 8]X1 X2 x1 x2 ( , )x1 x2

2
7

u ∈ {1, 2, 3} 1
7

u = 4
2
7

y ∈ {5, 6, 7} 1
7

y = 8
1
5

v= 4 2
5

v∈ {5, 6}
2
5

u ∈ {2, 3} 1
5

u = 4
1
5

( , ) ∈ {(2, 6), (6, 2), (3, 5), (5, 3), (4, 4)}x1 x2

N H

P(H)
P(N = n ∣ H) n ∈ {1, 2, 3, 4, 5, 6}

P(N = n) n ∈ {1, 2, 3, 4, 5, 6} H {N = n}

21
128
64
63

1
2n

n ∈ {1, 2, 3, 4, 5, 6}

n ∈ {1, 2} n ∈ {3, 4, 5, 6}

H N

H

{N = n} H n ∈ {1, 2, 3, 4, 5, 6}

1
3
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Answer

1. 
2.  that the coin is fair,  that the coin is biased,  that the coin is two-headed

Compare die-coin experiment and bag of coins experiment. In the die-coin experiment, we toss a coin with a fixed probability of
heads a random number of times. In the bag of coins experiment, we effectively toss a coin with a random probability of heads a
fixed number of times. The random experiment of tossing a coin with a fixed probability of heads  a fixed number of times  is
known as the binomial experiment with parameters  and . This is a very basic and important experiment that is studied in more
detail in the section on the binomial distribution in the chapter on Bernoulli Trials. Thus, the die-coin and bag of coins experiments
can be thought of as modifications of the binomial experiment in which a parameter has been randomized. In general, interesting new
random experiments can often be constructed by randomizing one or more parameters in another random experiment.

In the coin-die experiment, a fair coin is tossed. If the coin lands tails, a fair die is rolled. If the coin lands heads, an ace-six flat
die is tossed (faces 1 and 6 have probability  each, while faces 2, 3, 4, and 5 have probability  each). Let  denote the event
that the coin lands heads, and let  denote the score when the chosen die is tossed.

1. Find  for .
2. Find  for .
3. Compare each probability in part (b) with . In each case, note whether the events  and  are positively

correlated, negatively correlated, or independent.

Answer

1.  for ,  for 
2.  for ,  for 
3. Positively correlated for , negatively correlated for 

Run the coin-die experiment 1000 times. Let  and  be as defined in the previous exercise.

1. Compute the empirical probability of , for each , and compare with the true probability in the previous exercise
2. Compute the empirical probability of  given  for each , and compare with the true probability in the previous

exercise.

Cards

Consider the card experiment that consists of dealing 2 cards from a standard deck and recording the sequence of cards dealt. For
, let  be the event that card  is a queen and  the event that card  is a heart. For each of the following pairs of

events, compute the probability of each event, and the conditional probability of each event given the other. Determine whether
the events are positively correlated, negatively correlated, or independent.

1. , 
2. , 
3. , 
4. , 

Answer

The answers below are for , , , and  where  and  are the given events

1. , , , , independent.
2. , , , , negatively correlated.
3. , , , , independent.
4. , , , , independent.

In the card experiment, set . Run the experiment 500 times. Compute the conditional relative frequencies corresponding to
the conditional probabilities in the last exercise.

41
72
15
41

8
41

18
41

p n

n p

1
4

1
8

H

Y

P(Y = y) y ∈ {1, 2, 3, 4, 5, 6}
P(H ∣ Y = y) y ∈ {1, 2, 3, 4, 5, 6, }

P(H) H {Y = y}

5
24

y ∈ {1, 6} 7
48

y ∈ {2, 3, 4, 5}
3
5

y ∈ {1, 6} 3
7

y ∈ {2, 3, 4, 5}

y ∈ {1, 6} y ∈ {2, 3, 4, 5}

H Y

{Y = y} y

H {Y = y} y

i ∈ {1, 2} Qi i Hi i

Q1 H1

Q1 Q2

Q2 H2

Q1 H2

P(A) P(B) P(A ∣ B) P(B ∣ A) A B

1
13

1
4

1
13

1
4

1
13

1
13

3
51

3
51

1
13

1
4

1
13

1
4

1
13

1
4

1
13

1
4
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Consider the card experiment that consists of dealing 3 cards from a standard deck and recording the sequence of cards dealt.
Find the probability of the following events:

1. All three cards are all hearts.
2. The first two cards are hearts and the third is a spade.
3. The first and third cards are hearts and the second is a spade.

Proof

1. 
2. 
3. 

In the card experiment, set  and run the simulation 1000 times. Compute the empirical probability of each event in the
previous exercise and compare with the true probability.

Bivariate Uniform Distributions

Recall that Buffon's coin experiment consists of tossing a coin with radius  randomly on a floor covered with square tiles of
side length 1. The coordinates  of the center of the coin are recorded relative to axes through the center of the square, parallel
to the sides. Since the needle is dropped randomly, the basic modeling assumption is that  is uniformly distributed on the
square .

Figure : Buffon's coin experiment

In Buffon's coin experiment,

1. Find 
2. Find the conditional distribution of  given that the coin does not touch the sides of the square.

Answer

1. 
2. Given ,  is uniformly distributed on this set.

Run Buffon's coin experiment 500 times. Compute the empirical probability that  given that  and compare with the
probability in the last exercise.

In the conditional probability experiment, the random points are uniformly distributed on the rectangle . Move and resize
events  and  and note how the probabilities change. For each of the following configurations, run the experiment 1000 times
and compare the relative frequencies with the true probabilities.

1.  and  in general position
2.  and  disjoint
3. 
4. 

Reliability

A plant has 3 assembly lines that produces memory chips. Line 1 produces 50% of the chips and has a defective rate of 4%; line
2 has produces 30% of the chips and has a defective rate of 5%; line 3 produces 20% of the chips and has a defective rate of 1%.
A chip is chosen at random from the plant.

11
850
13
850
13
850

n = 3

r ≤ 1
2

(X,Y )
(X,Y )

[−1/2, 1/2]2

2.4.3

P(Y > 0 ∣ X < Y )
(X,Y )

3
4

(X,Y ) ∈ [r− , −r1
2

1
2

]2 (X,Y )

Y > 0 X < Y

S

A B

A B

A B

A ⊆ B

B ⊆ A
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1. Find the probability that the chip is defective.
2. Given that the chip is defective, find the conditional probability for each line.

Answer
1. 0.037
2. 0.541 for line 1, 0.405 for line 2, 0.054 for line 3

Suppose that a bit (0 or 1) is sent through a noisy communications channel. Because of the noise, the bit sent may be received
incorrectly as the complementary bit. Specifically, suppose that if 0 is sent, then the probability that 0 is received is 0.9 and the
probability that 1 is received is 0.1. If 1 is sent, then the probability that 1 is received is 0.8 and the probability that 0 is received
is 0.2. Finally, suppose that 1 is sent with probability 0.6 and 0 is sent with probability 0.4. Find the probability that

1. 1 was sent given that 1 was received
2. 0 was sent given that 0 was received

Answer
1. 
2. 

Suppose that  denotes the lifetime of a light bulb (in 1000 hour units), and that  has the following exponential distribution,
defined for measurable :

1. Find 
2. Find 

Answer
1. 
2. 

Suppose again that  denotes the lifetime of a light bulb (in 1000 hour units), but that  is uniformly distributed on the interal 
.

1. Find 
2. Find 

Answer

1. 
2. 

Genetics

Please refer to the discussion of genetics in the section on random experiments if you need to review some of the definitions in this
section.

Recall first that the ABO blood type in humans is determined by three alleles: , , and . Furthermore,  and  are co-dominant and 
 is recessive. Suppose that the probability distribution for the set of blood genotypes in a certain population is given in the following

table:

Genotype

Probability 0.050 0.038 0.310 0.007 0.116 0.479

Suppose that a person is chosen at random from the population. Let , , , and  be the events that the person is type ,
type , type , and type  respectively. Let  be the event that the person is homozygous, and let  denote the event that the
person has an  allele. Find each of the following:

1. , , , , , 

12/13
3/4

T T

A ⊆ [0, ∞)

P(T ∈ A) = dt∫
A

e−t (2.4.23)

P(T > 3)
P(T > 5 ∣ T > 2)

e−3

e−3

T T

[0, 10]

P(T > 3)
P(T > 5 ∣ T > 2)

7
10
5
8

a b o a b

o

aa ab ao bb bo oo

A B AB O A

B AB O H D

o

P(A) P(B) P(AB) P(O) P(H) P(D)
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2. , , . Are the events  and  positively correlated, negatively correlated, or independent?
3. , , . Are the events  and  positively correlated, negatively correlated, or independent?
4. , , . Are the events  and  positively correlated, negatively correlated, or independent?
5. , , . Are the events  and  positively correlated, negatively correlated, or independent?
6. , , . Are the events  and  positively correlated, negatively correlated, or independent?

Answer
1. 0.360, 0.123, 0.038, 0.479, 0.536, 0.905
2. 0.050, 0.093, 0.139.  and  are negatively correlated.
3. 0.007, 0.013, 0.057.  and  are negatively correlated.
4. 0.310, 0.343, 0.861.  and  are negatively correlated.
5. 0.116, 0.128, 0.943.  and  are positivley correlated.
6. 0.479, 0.529, 0.894.  and  are negatively correlated.

Suppose next that pod color in certain type of pea plant is determined by a gene with two alleles:  for green and  for yellow, and
that  is dominant and  recessive.

Suppose that a green-pod plant and a yellow-pod plant are bred together. Suppose further that the green-pod plant has a 
chance of carrying the recessive yellow-pod allele.

1. Find the probability that a child plant will have green pods.
2. Given that a child plant has green pods, find the updated probability that the green-pod parent has the recessive allele.

Answer

1. 
2. 

Suppose that two green-pod plants are bred together. Suppose further that with probability  neither plant has the recessive
allele, with probability  one plant has the recessive allele, and with probability  both plants have the recessive allele.

1. Find the probability that a child plant has green pods.
2. Given that a child plant has green pods, find the updated probability that both parents have the recessive gene.

Answer

1. 
2. 

Next consider a sex-linked hereditary disorder in humans (such as colorblindness or hemophilia). Let  denote the healthy allele and 
 the defective allele for the gene linked to the disorder. Recall that  is dominant and  recessive for women.

Suppose that in a certain population, 50% are male and 50% are female. Moreover, suppose that 10% of males are color blind
but only 1% of females are color blind.

1. Find the percentage of color blind persons in the population.
2. Find the percentage of color blind persons that are male.

Answer
1. 5.5%
2. 90.9%

Since color blindness is a sex-linked hereditary disorder, note that it's reasonable in the previous exercise that the probability that a
female is color blind is the square of the probability that a male is color blind. If  is the probability of the defective allele on the 
chromosome, then  is also the probability that a male will be color blind. But since the defective allele is recessive, a woman would
need two copies of the defective allele to be color blind, and assuming independence, the probability of this event is .

A man and a woman do not have a certain sex-linked hereditary disorder, but the woman has a  chance of being a carrier.

1. Find the probability that a son born to the couple will be normal.

P (A∩H) P (A ∣ H) P (H ∣ A) A H

P (B∩H) P (B ∣ H) P (H ∣ B) B H

P (A∩D) P (A ∣ D) P (D ∣ A) A D

P (B∩D) P (B ∣ D) P (D ∣ B) B D

P (H ∩D) P (H ∣ D) P (D ∣ H) H D

A H

B H

A D

B D

H D

g y

g y

1
4

7
8
1
7

1
3

1
2

1
6

23
24
3

23

h

d h d

p X

p

p2

1
3
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2. Find the probability that a daughter born to the couple will be a carrier.
3. Given that a son born to the couple is normal, find the updated probability that the mother is a carrier.

Answer

1. 
2. 
3. 

Urn Models

Urn 1 contains 4 red and 6 green balls while urn 2 contains 7 red and 3 green balls. An urn is chosen at random and then a ball is
chosen at random from the selected urn.

1. Find the probability that the ball is green.
2. Given that the ball is green, find the conditional probability that urn 1 was selected.

Answer

1. 
2. 

Urn 1 contains 4 red and 6 green balls while urn 2 contains 6 red and 3 green balls. A ball is selected at random from urn 1 and
transferred to urn 2. Then a ball is selected at random from urn 2.

1. Find the probability that the ball from urn 2 is green.
2. Given that the ball from urn 2 is green, find the conditional probability that the ball from urn 1 was green.

Answer

1. 
2. 

An urn initially contains 6 red and 4 green balls. A ball is chosen at random from the urn and its color is recorded. It is then
replaced in the urn and 2 new balls of the same color are added to the urn. The process is repeated. Find the probability of each
of the following events:

1. Balls 1 and 2 are red and ball 3 is green.
2. Balls 1 and 3 are red and ball 2 is green.
3. Ball 1 is green and balls 2 and 3 are red.
4. Ball 2 is red.
5. Ball 1 is red given that ball 2 is red.

Answer

1. 
2. 
3. 
4. 
5. 

Think about the results in the previous exercise. Note in particular that the answers to parts (a), (b), and (c) are the same, and that the
probability that the second ball is red in part (d) is the same as the probability that the first ball is red. More generally, the
probabilities of events do not depend on the order of the draws. For example, the probability of an event involving the first, second,
and third draws is the same as the probability of the corresponding event involving the seventh, tenth and fifth draws. Technically,
the sequence of events  is exchangeable. The random process described in this exercise is a special case of Pólya's urn
scheme, named after George Pólya. We sill study Pólya's urn in more detail in the chapter on Finite Sampling Models

An urn initially contains 6 red and 4 green balls. A ball is chosen at random from the urn and its color is recorded. It is then
replaced in the urn and two new balls of the other color are added to the urn. The process is repeated. Find the probability of

5
6
1
6
1
5

9
20
2
3

9
25
2
3

4
35
4

35
4

35
3
5
2
3
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each of the following events:

1. Balls 1 and 2 are red and ball 3 is green.
2. Balls 1 and 3 are red and ball 2 is green.
3. Ball 1 is green and balls 2 and 3 are red.
4. Ball 2 is red.
5. Ball 1 is red given that ball 2 is red.

Answer

1. 
2. 
3. 
4. 
5. 

Think about the results in the previous exercise, and compare with Pólya's urn. Note that the answers to parts (a), (b), and (c) are not
all the same, and that the probability that the second ball is red in part (d) is not the same as the probability that the first ball is red. In
short, the sequence of events  is not exchangeable.

Diagnostic Testing

Suppose that we have a random experiment with an event  of interest. When we run the experiment, of course, event  will either
occur or not occur. However, suppose that we are not able to observe the occurrence or non-occurrence of  directly. Instead we
have a diagnostic test designed to indicate the occurrence of event ; thus the test that can be either positive for  or negative for .
The test also has an element of randomness, and in particular can be in error. Here are some typical examples of the type of situation
we have in mind:

The event is that a person has a certain disease and the test is a blood test for the disease.
The event is that a woman is pregnant and the test is a home pregnancy test.
The event is that a person is lying and the test is a lie-detector test.
The event is that a device is defective and the test consists of a sensor reading.
The event is that a missile is in a certain region of airspace and the test consists of radar signals.
The event is that a person has committed a crime, and the test is a jury trial with evidence presented for and against the event.

Let  be the event that the test is positive for the occurrence of . The conditional probability  is called the sensitivity of
the test. The complementary probability

is the false negative probability. The conditional probability  is called the specificity of the test. The complementary
probability

is the false positive probability. In many cases, the sensitivity and specificity of the test are known, as a result of the development of
the test. However, the user of the test is interested in the opposite conditional probabilities, namely , the probability of the
event of interest, given a positive test, and , the probability of the complementary event, given a negative test. Of course,
if we know  then we also have , the probability of the complementary event given a positive
test. Similarly, if we know  then we also have , the probability of the event given a negative test. Computing
the probabilities of interest is simply a special case of Bayes' theorem.

The probability that the event occurs, given a positive test is

The probability that the event does not occur, given a negative test is

6
35
6

35
16
105
17
30
9

17

( , , …)R1 R2

A A

A

A A A

T A P(T ∣ A)

P( ∣ A) = 1 −P(T ∣ A)T c (2.4.24)

P( ∣ )T c Ac

P(T ∣ ) = 1 −P( ∣ )Ac T c Ac (2.4.25)

P(A ∣ T )
P( ∣ )Ac T c

P(A ∣ T ) P( ∣ T ) = 1 −P(A ∣ T )Ac

P( ∣ )Ac T c
P(A ∣ )T c

P(A ∣ T ) =
P(A)P(T ∣ A)

P(A)P(T ∣ A) +P( )P(T ∣ )Ac Ac
(2.4.26)

P( ∣ ) =Ac T c P( )P( ∣ )Ac T c Ac

P(A)P( ∣ A) +P( )P( ∣ )T c Ac T c Ac
(2.4.27)
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There is often a trade-off between sensitivity and specificity. An attempt to make a test more sensitive may result in the test being
less specific, and an attempt to make a test more specific may result in the test being less sensitive. As an extreme example, consider
the worthless test that always returns positive, no matter what the evidence. Then  so the test has sensitivity 1, but specificity
0. At the opposite extreme is the worthless test that always returns negative, no matter what the evidence. Then  so the test has
specificity 1 but sensitivity 0. In between these extremes are helpful tests that are actually based on evidence of some sort.

Suppose that the sensitivity  and the specificity  are fixed. Let  denote the
prior probability of the event  and  the posterior probability of  given a positive test.

 as a function of  is given by

1.  increases continuously from 0 to 1 as  increases from 0 to 1.
2.  is concave downward if . In this case  and  are positively correlated.
3.  is concave upward if . In this case  and  are negatively correlated.
4.  if . In this case,  and  are uncorrelated (independent).

Proof

The formula for  in terms of  follows from (42) and algebra. For part (a), note that

For parts (b)-(d), note that

If ,  so  is concave downward on  and hence  for . If , 
so  is concave upward on  and hence  for . Trivially if ,  for .

Of course, part (b) is the typical case, where the test is useful. In fact, we would hope that the sensitivity and specificity are close to
1. In case (c), the test is worse than useless since it gives the wrong information about . But this case could be turned into a useful
test by simply reversing the roles of positive and negative. In case (d), the test is worthless and gives no information about . It's
interesting that the broad classification above depends only on the sum of the sensitivity and specificity.

Figure :  as a function of  in the three cases

Suppose that a diagnostic test has sensitivity 0.99 and specificity 0.95. Find  for each of the following values of :

1. 0.001
2. 0.01
3. 0.2
4. 0.5
5. 0.7
6. 0.9

T = S

T = ∅

a = P(T ∣ A) ∈ (0, 1) b = P( ∣ ) ∈ (0, 1)T c Ac p = P(A)
A P = P(A ∣ T ) A

P p

P = , p ∈ [0, 1]
ap

(a+b−1)p+(1 −b)
(2.4.28)

P p

P a+b > 1 A T

P a+b < 1 A T

P = p a+b = 1 A T

P p

= > 0
dP

dp

a(1 −b)

[(a+b−1)p+(1 −b)]2
(2.4.29)

=
Pd2

dp2

−2a(1 −b)(a+b−1)

[(1 +b−1)p+(1 −b)]3
(2.4.30)

a+b > 1 P/d < 0d2 p2 P [0, 1] P > p 0 < p < 1 a+b < 1 P/d > 0d2 p2

P [0, 1] P < p 0 < p < 1 a+b = 1 P = p 0 ≤ p ≤ 1

A

A

2.4.4 P = P(A ∣ T ) p = P(A)

P(A ∣ T ) P(A)
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Answer
1. 0.0194
2. 0.1667
3. 0.8319
4. 0.9519
5. 0.9788
6. 0.9944

With sensitivity 0.99 and specificity 0.95, the test in the last exercise superficially looks good. However the small value of 
for small values of  is striking (but inevitable given the properties above). The moral, of course, is that  depends
critically on  not just on the sensitivity and specificity of the test. Moreover, the correct comparison is  with , as
in the exercise, not  with —Beware of the fallacy of the transposed conditional! In terms of the correct
comparison, the test does indeed work well;  is significantly larger than  in all cases.

A woman initially believes that there is an even chance that she is or is not pregnant. She takes a home pregnancy test with
sensitivity 0.95 and specificity 0.90 (which are reasonable values for a home pregnancy test). Find the updated probability that
the woman is pregnant in each of the following cases.

1. The test is positive.
2. The test is negative.

Answer
1. 0.905
2. 0.053

Suppose that 70% of defendants brought to trial for a certain type of crime are guilty. Moreover, historical data show that juries
convict guilty persons 80% of the time and convict innocent persons 10% of the time. Suppose that a person is tried for a crime
of this type. Find the updated probability that the person is guilty in each of the following cases:

1. The person is convicted.
2. The person is acquitted.

Answer
1. 0.949
2. 0.341

The “Check Engine” light on your car has turned on. Without the information from the light, you believe that there is a 10%
chance that your car has a serious engine problem. You learn that if the car has such a problem, the light will come on with
probability 0.99, but if the car does not have a serious problem, the light will still come on, under circumstances similar to yours,
with probability 0.3. Find the updated probability that you have an engine problem.

Answer

0.268

The standard test for HIV is the ELISA (Enzyme-Linked Immunosorbent Assay) test. It has sensitivity and specificity of 0.999.
Suppose that a person is selected at random from a population in which 1% are infected with HIV, and given the ELISA test.
Find the probability that the person has HIV in each of the following cases:

1. The test is positive.
2. The test is negative.

Answer
1. 0.9098
2. 0.00001

The ELISA test for HIV is a very good one. Let's look another test, this one for prostate cancer, that's rather bad.

P(A ∣ T )
P(A) P(A ∣ T )

P(A) P(A ∣ T ) P(A)
P(A ∣ T ) P(T ∣ A)

P(A ∣ T ) P(A)
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The PSA test for prostate cancer is based on a blood marker known as the Prostate Specific Antigen. An elevated level of PSA is
evidence for prostate cancer. To have a diagnostic test, in the sense that we are discussing here, we must decide on a definite
level of PSA, above which we declare the test to be positive. A positive test would typically lead to other more invasive tests
(such as biopsy) which, of course, carry risks and cost. The PSA test with cutoff 2.6 ng/ml has sensitivity 0.40 and specificity
0.81. The overall incidence of prostate cancer among males is 156 per 100000. Suppose that a man, with no particular risk
factors, has the PSA test. Find the probability that the man has prostate cancer in each of the following cases:

1. The test is positive.
2. The test is negative.

Answer
1. 0.00328
2. 0.00116

Diagnostic testing is closely related to a general statistical procedure known as hypothesis testing. A separate chapter on hypothesis
testing explores this procedure in detail.

Data Analysis Exercises

For the M&M data set, find the empirical probability that a bag has at least 10 reds, given that the weight of the bag is at least 48
grams.

Answer

.

Consider the Cicada data.

1. Find the empirical probability that a cicada weighs at least 0.25 grams given that the cicada is male.
2. Find the empirical probability that a cicada weighs at least 0.25 grams given that the cicada is the tredecula species.

Answer
1. 
2. 
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