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3.11: Properties of the Integral
      

Basic Theory

Again our starting point is a measure space . That is,  is a set,  is a -algebra of subsets of , and  is a positive
measure on .

Definition

In the last section we defined the integral of certain measurable functions  with respect to the measure . Recall that the
integral, denoted , may exist as a number in  (in which case  is integrable), or may exist as  or , or may fail to
exist. Here is a review of how the definition is built up in stages:

Definition of the integral

1. If  is a nonnegative simple function, so that  where  is a finite index set,  for , and 
 is measurable partition of , then

2. If  is measurable, then

3. If  is measurable, then

as long as the right side is not of the form , and where  and  denote the positive and negative parts of .
4. If  is measurable and , then the integral of  over  is defined by

assuming that the integral on the right exists.

Consider a statement on the elements of , for example an equation or an inequality with  as a free variable. (Technically
such a statement is a predicate on .) For , we say that the statement holds on  if it is true for every . We say that
the statement holds almost everywhere on  (with respect to ) if there exists  with  such that the statement holds
on  and .

Basic Properties

A few properties of the integral that were essential to the motivation of the definition were given in the last section. In this section,
we extend some of those properties and we study a number of new ones. As a review, here is what we know so far.

Properties of the integral

1. If  are measurable functions whose integrals exist, then  as long as the
right side is not of the form .

2. If  is a measurable function whose integral exists and , then .
3. If  is measurable and  on  then .
4. If  are measurable functions whose integrals exist and  on  then 
5. If  is measurable for  and  is increasing in  on  then .
6.  is measurable and the the integral of  on  exists, where  are disjoint, then 

.

(S,S ,μ) S S σ S μ

S

f : S →R μ

f dμ∫
S

R f ∞ −∞

f f = ∑i∈I ai1Ai
I ∈ [0, ∞)ai i ∈ I

{ : i ∈ I}Ai S

f dμ = μ( )∫
S

∑
i∈I

ai Ai (3.11.1)

f : S → [0, ∞)

f dμ = sup{ gdμ : g is simple and 0 ≤ g ≤ f}∫
S

∫
S

(3.11.2)

f : S →R

f dμ = dμ− dμ∫
S

∫
S

f+ ∫
S

f− (3.11.3)

∞ −∞ f+ f− f

f : S →R A ∈S f A

f dμ = f dμ∫
A

∫
S

1A (3.11.4)

S x ∈ S

S A ∈S A x ∈ A

A μ B ∈S B ⊆ A

B μ(A ∖B) = 0

f , g : S →R (f +g)dμ = f dμ+ gdμ∫
S

∫
S

∫
S

∞ −∞
f : S →R c ∈ R cf dμ = c f dμ∫S ∫S
f : S →R f ≥ 0 S f dμ ≥ 0∫

S

f , g : S →R f ≤ g S f dμ ≤ gdμ∫
S

∫
S

: S → [0, ∞)fn n ∈ N+ fn n S dμ = dμ∫S limn→∞ fn limn→∞ ∫S fn
f : S →R f A∪B A, B ∈S

f dμ = f dμ+ f dμ∫
A∪B ∫

A
∫
B
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Parts (a) and (b) are the linearity properties; part (a) is the additivity property and part (b) is the scaling property. Parts (c) and (d)
are the order properties; part (c) is the positive property and part (d) is the increasing property. Part (e) is a continuity property
known as the monotone convergence theorem. Part (f) is the additive property for disjoint domains. Properties (a)–(e) hold with 
replaced by .

Equality and Order

Our first new results are extensions dealing with equality and order. The integral of a function over a null set is 0:

Suppose that  is measurable and  with . Then .

Proof

The proof proceeds in stages via the definition of the integral.

1. Suppose that  is a nonnegative simple function with  on . Then  has the representation  where 
 and  for for . But  for each  and so 

2. Suppose that  is measurable. If  is a nonnegative simple function with , then  on  so by
(a), . Hence by part (b) of (1), .

3. Finally, suppose that  is measurable. Then . But both integrals on the right are
0 by part (b).

Two functions that are indistinguishable from the point of view of  must have the same integral.

Suppose that  is a measurable function whose integral exists. If  is measurable and  almost
everywhere on , then .

Proof

Note that  if and only if  and . Let . Then  and .
Hence by the additivity property and (3),

Similarly . Hence the integral of  exists and 

Next we have a simple extension of the positive property.

Suppose that  is measurable and  almost everywhere on . Then

1. 
2.  if and only if  almost everywhere on .

Proof
1. Let . Then  and . By the additivity of the integral over disjoint sets we have

But  by the positive property and  by the null property, so .
2. Note first that if  then both integrals in the displayed equation are 0 so . For the converse, let 

 for  and . Then  is increasing in  and . If
 then  for some . But  on , so by the increasing property, 

.

So, if  almost everywhere on  then  if and only if . The simple extension of the
positive property in turn leads to a simple extension of the increasing property.

Suppose that  are measurable functions whose integrals exist, and that  almost everywhere on . Then

1. 

S

A ∈S

f : S →R A ∈S μ(A) = 0 f dμ = 0∫
A

g g = 0 Ac g g = ∑i∈I ai1Ai

∈ (0, ∞)ai ⊆ AAi i ∈ I μ( ) = 0Ai i ∈ I gdμ = μ( ) = 0∫S ∑i∈I ai Ai

f : S → [0, ∞) g g ≤ f1A g = 0 Ac

gdμ = 0∫
S

f dμ = f dμ = 0∫
A

∫
S
1A

f : S →R f dμ = dμ− dμ∫A ∫A f+ ∫A f−

μ

f : S →R g : S →R g = f

S gdμ = f dμ∫
S

∫
S

g = f =g+ f+ =g− f− A = {x ∈ S : (x) = (x)}g+ f+ A ∈S μ( ) = 0Ac

dμ = dμ+ dμ = dμ+0 = dμ+ dμ = dμ∫
S

g+ ∫
A

g+ ∫
Ac

g+ ∫
A

f+ ∫
A

f+ ∫
Ac

f+ ∫
S

f+ (3.11.5)

dμ = dμ∫
S
g− ∫

S
f− g gdμ = f dμ∫

S
∫
S

f : S →R f ≥ 0 S

f dμ ≥ 0∫
S

f = 0∫S f = 0 S

A = {x ∈ S : f(x) ≥ 0} A ∈S μ( ) = 0Ac

f dμ = f dμ+ f dμ∫
S

∫
A

∫
Ac

(3.11.6)

f dμ ≥ 0∫
A

f dμ = 0∫
Ac f dμ ≥ 0∫

S

μ(A) = 0 f dμ = 0∫S
= {x ∈ S : f(x) ≥ }Bn

1
n

n ∈ N+ B = {x ∈ S : f(x) > 0} Bn n = B⋃∞
n=1 Bn

μ(B) > 0 μ( ) > 0Bn n ∈ N+ f ≥ 1
n 1Bn A

f dμ = f dμ ≥ dμ = μ( ) > 0∫
S

∫
A

∫
A

1
n
1Bn

1
n

Bn

f ≥ 0 S f dμ > 0∫S μ{x ∈ S : f(x) > 0} > 0

f , g : S →R f ≤ g S

f ≤ g∫S ∫S
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2. Except in the case that both integrals are  or both ,  if and only if  almost everywhere on .

Proof
1. Note that  and  almost everywhere on . If  then trivially .

Otherwise, by the additive property,

By the positive property,  so .
2. Except in the case that both integrals are  or both are  we have

By assumption  almost everywhere on , and hence by the positive property, the integral on the right is 0 if and
only if  almost everywhere on .

So if  almost everywhere on  then, except in the two cases mentioned,  if and only if 
. The exclusion when both integrals are  or  is important. A counterexample when this

condition does not hold is given below. The next result is the absolute value inequality.

Suppose that  is a measurable function whose integral exists. Then

If  is integrable, then equality holds if and only if  almost everywhere on  or  almost everywhere on .

Proof

First note that  on . The integrals of all three functions exist, so the increasing property and scaling properties
give

which is equivalent to the inequality above. If  is integrable, then by the increasing property, equality holds if and only if 
 almost everywhere on  or  almost everywhere on . In the first case,  almost everywhere on  and in

the second case,  almost everywhere on .

Change of Variables

Suppose that  is another measurable space and that  is measurable. As we saw in our first study of positive
measures,  defined by

is a positive measure on . The following result is known as the change of variables theorem.

If  is measurable then, assuming that the integrals exist,

Proof

We will show that if either of the integrals exist then they both do, and are equal. The proof is a classical bootstrapping
argument that parallels the definition of the integral.

1. Suppose first that  is a nonnegative simple function on  with the representation  where  is a finite
index set,  is a measurable partition of , and  for . Recall that  is a nonnegative simple
function on , with representation . Hence

∞ −∞ f dμ = gdμ∫
S

∫
S

f = g S

g = f +(g−f) g−f ≥ 0 S f dμ = −∞∫S f dμ ≤ gdμ∫S ∫S

gdμ = f dμ+ (g−f)dμ∫
S

∫
S

∫
S

(3.11.7)

(g−f)dμ ≥ 0∫
S

gdμ ≥ f dμ∫
S

∫
S

∞ −∞

gdμ− f dμ = (g−f)dμ∫
S

∫
S

∫
S

(3.11.8)

g−f ≥ 0 S

g−f = 0 S

f ≤ g S f dμ < gdμ∫
S

∫
S

μ{x ∈ S : f(x) < g(x)} > 0 ∞ −∞

f : S →R

f dμ ≤ |f | dμ
∣
∣
∣∫

S

∣
∣
∣ ∫

S

(3.11.9)

f f ≥ 0 S f ≤ 0 S

−|f | ≤ f ≤ |f | S

− |f | dμ ≤ f dμ ≤ |f | dμ∫
S

∫
S

∫
S

(3.11.10)

f

f = −|f | S f = |f | S f ≤ 0 S

f ≥ 0 S

(T ,T ) u : S → T

ν

ν(B) = μ [ (B)] , B ∈ Tu−1 (3.11.11)

(T ,T )

f : T →R

f dν = (f ∘ u)dμ∫
T

∫
S

(3.11.12)

f T f = ∑i∈I bi1Bi I

{ : i ∈ I}Bi T ∈ [0, ∞)bi i ∈ I f ∘ u
S f ∘ u = ∑i∈I bi1 ( )u−1 Bi
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2. Next suppose that  is measurable, so that  is also measurable. There exists an increasing
sequence  of nonnegative simple functions on  with  as . Then  is an
increasing sequence of simple functions on  with  as . By step (a),  for
each . But by the monotone convergence theorem,  as  and 

 so we conclude that 
3. Finally, suppose that  is measurable, so that  is also measurable. Note that 

and . By part (b),

Assuming that at least one of the integrals in the displayed equations is finite, we have

The change of variables theorem will look more familiar if we give the variables explicitly. Thus, suppose that we want to evaluate

where again,  and . One way is to use the substitution , find the new measure , and then evaluate

Convergence Properties

We start with a simple but important corollary of the monotone convergence theorem that extends the additivity property to a
countably infinite sum of nonnegative functions.

Suppose that  is measurable for . Then

Proof

Let  for . Then  is measurable and  is increasing in . Moreover, by definition, 
 as . Hence by the MCT,  as . But we know the additivity property

holds for finite sums, so  and again, by definition, this sum converges to  as .

A theorem below gives a related result that relaxes the assumption that  be nonnegative, but imposes a stricter integrability
requirement. Our next result is the additivity of the integral over a countably infinite collection of disjoint domains.

Suppose that  is a measurable function whose integral exists, and that  is a disjoint collection of sets
in . Let . Then

Proof

Suppose first that  is nonnegative. Note that  and hence . Thus from the theorem above,

f dν = ν( ) = μ [ ( )] = (f ∘ u)dμ∫
T

∑
i∈I

bi Bi ∑
i∈I

bi u−1 Bi ∫
S

(3.11.13)

f : T → [0, ∞) f ∘ u : S → [0, ∞)
( , , …)f1 f2 T → ffn n → ∞ ( ∘ u, ∘ u, …)f1 f2

S ∘ u → f ∘ ufn n → ∞ dν = ( ∘ u)dμ∫T fn ∫S fn
n ∈ N+ dν → f dν∫

T
fn ∫

T
n → ∞

( ∘ u)dμ → (f ∘ u)dμ∫S fn ∫S f dν = (f ∘ u)dμ∫T ∫S
f : T →R f ∘ u : S →R (f ∘ u = ∘ u)+ f+

(f ∘ u = ∘ u)− f−

dν∫
T

f+

dν∫
T

f−

= ( ∘ u)dμ = (f ∘ u dμ∫
S

f+ ∫
S

)+

= ( ∘ u)dμ = (f ∘ u dμ∫
S

f− ∫
S

)−

(3.11.14)

(3.11.15)

f dν = dν − dν = (f ∘ u dμ− (f ∘ u dμ = (f ∘ u)dμ∫
T

∫
T

f+ ∫
T

f− ∫
S

)+ ∫
S

)− ∫
S

(3.11.16)

f [u(x)] dμ(x)∫
S

(3.11.17)

u : S → T f : T →R u = u(x) ν

g(u)dν(u)∫
T

(3.11.18)

: S → [0, ∞)fn n ∈ N+

dμ = dμ∫
S

∑
n=1

∞

fn ∑
n=1

∞

∫
S

fn (3.11.19)

=gn ∑n
i=1 fi n ∈ N+ : S → [0, ∞)gn gn n

→gn ∑∞
i=1 fi n → ∞ dμ → dμ∫S gn ∫S ∑∞

i=1 fi n → ∞
dμ = dμ∫

S
gn ∑n

i=1 ∫
S
fi dμ∑∞

i=1 ∫
S
fi n → ∞

f

f : S →R { : n ∈ }An N+

S A = ⋃∞
n=1 An

f dμ = f dμ∫
A

∑
n=1

∞

∫
An

(3.11.20)

f =1A ∑∞
n=1 1An

f = f1A ∑∞
n=1 1An
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Suppose now that  is measurable and  exists. Note that for ,  and 
. Hence from the previous argument,

Both of these are sums of nonnegative terms, and one of the sums, at least, is finite. Hence we can group the terms to get

Of course, the previous theorem applies if  is nonnegative or if  is integrable. Next we give a minor extension of the monotone
convergence theorem that relaxes the assumption that the functions be nonnegative.

Monotone Convergence Theorem. Suppose that  is a measurable function whose integral exists for each 
and that  is increasing in  on . If  then

Proof

Let  for  which exists in  since  is increasing in . If , then
by the increasing property,  for all  and , so the conclusion of the MCT trivially holds.
Thus suppose that  is integrable. Let  for  and let . Then  is nonnegative and increasing in 

 on , and  as  on . By the ordinary MCT,  as . But since  is finite, 
 and . Again since  is finite, it follows that 

 as .

Here is the complementary result for decreasing functions.

Suppose that  is a measurable function whose integral exists for each  and that  is decreasing in  on .
If  then

Proof

The functions  for  satisfy the hypotheses of the MCT for increasing functions and hence 
. By the scaling property, .

The additional assumptions on the integral of  in the last two extensions of the monotone convergence theorem are necessary. An
example is given in below.

Our next result is also a consequence of the montone convergence theorem, and is called Fatou's lemma in honor of Pierre Fatou.
Its usefulness stems from the fact that no assumptions are placed on the integrand functions, except that they be nonnegative and
measurable.

Fatou's Lemma. Suppose that  is measurable for . Then

Proof

f dμ = f dμ = f dμ = f dμ = f dμ∫
A

∫
S

1A ∫
S

∑
n=1

∞

1An ∑
n=1

∞

∫
S

1An ∑
n=1

∞

∫
An

(3.11.21)

f : S →R f dμ∫S B ∈S =( f)1B
+

1Bf
+

=( f)1B
−

1Bf
−

dμ = dμ, dμ = dμ∫
A

f+ ∑
n=1

∞

∫
An

f+ ∫
A

f− ∑
n=1

∞

∫
An

f− (3.11.22)

f dμ = dμ− dμ = ( − )dμ = f dμ∫
A

∫
A

f+ ∫
A

f− ∑
n=1

∞

∫
An

f+ f− ∑
n=1

∞

∫
An

(3.11.23)

f f

: S →Rfn n ∈ N+

fn n S dμ > −∞∫
S
f1

dμ = dμ∫
S

lim
n→∞

fn lim
n→∞

∫
S

fn (3.11.24)

f(x) = (x)limn→∞ fn x ∈ S R∪ {∞} (x)fn n ∈ N+ dμ = ∞∫
S
f1

dμ = ∞∫S fn n ∈ N+ f dμ = ∞∫S
f1 = −gn fn f1 n ∈ N g = f −f1 gn

n S → ggn n → ∞ S dμ → gdμ∫
S
gn ∫

S
n → ∞ dμ∫

S
f1

dμ = dμ− dμ∫S gn ∫S fn ∫S f1 gdμ = ∫ f dμ− dμ∫S ∫S f1 dμ∫S f1

dμ → f dμ∫S fn ∫S n → ∞

: S →Rfn n ∈ N+ fn n S

dμ < ∞∫
S
f1

dμ = dμ∫
S

lim
n→∞

fn lim
n→∞

∫
S

fn (3.11.25)

−fn n ∈ N+

− dμ = − dμ∫S limn→∞ fn limn→∞ ∫S fn dμ = dμ∫S limn→∞ fn limn→∞ ∫S fn

f1

: S → [0, ∞)fn n ∈ N+

dμ ≤ dμ∫
S

lim inf
n→∞

fn lim inf
n→∞

∫
S

fn (3.11.26)
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Let  for . Then  is measurable for ,  is increasing in ,
and by definition, . By the MCT,

But  on  for  and  so by the increasing property,  for  and 
. Hence  for  and therefore

Given the weakness of the hypotheses, it's hardly surprising that strict inequality can easily occur in Fatou's lemma. An example is
given below.

Our next convergence result is one of the most important and is known as the dominated convergence theorem. It's sometimes also
known as Lebesgue's dominated convergence theorem in honor of Henri Lebesgue, who first developed all of this stuff in the
context of . The dominated convergence theorem gives a basic condition under which we may interchange the limit and
integration operators.

Dominated Convergence Theorem. Suppose that  is measurable for  and that  exists on .
Suppose also that  for  where  is integrable. Then

Proof

First note that by the increasing property,  and hence  is integrable for . Let 
. Then  is measurable, and by the increasing property again, , so  is integrable.

Now for , let  and let . Then 
for ,  is increasing in ,  is decreasing in , and  and  as . Moreover, 

 so by the version of the MCT above,  as . Similarly, 
, so by the MCT in (11),  as . But by the increasing property, 

 for  so by the squeeze theorem for limits,  as .

As you might guess, the assumption that  is uniformly bounded in  by an integrable function is critical. A counterexample
when this assumption is missing is given below when this assumption is missing. The dominated convergence theorem remains
true if  exists almost everywhere on . The follow corollary of the dominated convergence theorem gives a condition
for the interchange of infinite sum and integral.

Suppose that  is measurable for  and that  is integrable. then

Proof

The assumption that  is integrable implies that  almost everywhere on . In turn, this means that 
is absolutely convergent almost everywhere on . Let  if , and for completeness, let 
if . Since only the integral of  appears in the theorem, it doesn't matter how we define  on the null set where 

. Now let . Then  as  almost everywhere on  and  on . Hence by the
dominated convergence theorem,  as . But we know the additivity property holds for finite sums,
so , and in turn this converges to  as . Thus we have 

.

The following corollary of the dominated convergence theorem is known as the bounded convergence theorem.

= inf { : k ∈ {n,n+1, …}}gn fk n ∈ N+ : S → [0, ∞)gn n ∈ N+ gn n

=limn→∞ gn lim infn→∞ fn

dμ = dμ∫
S

lim inf
n→∞

fn lim
n→∞

∫
S

gn (3.11.27)

≤gn fk S n ∈ N+ k ∈ {n,n+1, …} dμ ≤ dμ∫S gn ∫S fk n ∈ N+

k ∈ {n,n+1, …} dμ ≤ inf { dμ : k ∈ {n,n+1, …}}∫S gn ∫S fk n ∈ N+

dμ ≤ dμlim
n→∞

∫
S

gn lim inf
n→∞

∫
S

fn (3.11.28)

R
n

: S →Rfn n ∈ N+ limn→∞ fn S

| | ≤ gfn n ∈ N g : S → [0, ∞)

dμ = dμ∫
S

lim
n→∞

fn lim
n→∞

∫
S

fn (3.11.29)

| | dμ ≤ gdμ < ∞∫
S
fn ∫

S
fn n ∈ N+

f = limn→∞ fn f |f | dμ < gdμ < ∞∫
S

∫
S

f

n ∈ N+ = inf { : k ∈ {n,n+1, …}}un fk = sup{ : k ∈ {n,n+1, …}}vn fk ≤ ≤un fn vn
n ∈ N+ un n vn n → fun → fvn n → ∞
dμ ≥ − gdμ > −∞∫

S
u1 ∫

S
dμ → f dμ∫

S
un ∫

S
n → ∞

dμ < gdμ < ∞∫S v1 ∫S dμ → f dμ∫S vn ∫S n → ∞
dμ ≤ dμ ≤ dμ∫

S
un ∫

S
fn ∫

S
vn n ∈ N+ dμ → f dμ∫

S
fn ∫

S
n → ∞

| |fn n

limn→∞ fn S

: S →Rfi i ∈ N+ | |∑∞
i=1 fi

dμ = dμ∫
S

∑
i=1

∞

fi ∑
i=1

∞

∫
S

fi (3.11.30)

g = | |∑∞
i=1 fi g < ∞ S ∑∞

i=1 fi
S f(x) = (x)∑∞

i=1 fi g(x) < ∞ f(x) = 0
g(x) = ∞ f f

g = ∞ =gn ∑n
i=1 fi → fgn n → ∞ S | | ≤ ggn S

dμ → f dμ∫
S
gn ∫

S
n → ∞

dμ = dμ∫S gn ∑n

i=1 ∫S fi dμ∑∞
i=1 ∫S fi n → ∞

dμ = f dμ∑∞
i=1 ∫

S
fi ∫

S
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Bounded Convergence Theorem. Suppose that  is measurable for  and there exists  such that 
,  exists on , and  is bounded in  on . Then

Proof

Suppose that  is bounded in  on  by . The constant  is integrable on  since , and 
 on  for . Thus the result follows from the dominated convergence theorem.

Again, the bounded convergence remains true if  exists almost everywhere on . For a finite measure space (and in
particular for a probability space), the condition that  automatically holds.

Product Spaces

Suppose now that  and  are -finite measure spaces. Please recall the basic facts about the product -algebra 
 of subsets of , and the product measure  on . The product measure space  is

the standard one that we use for product spaces. If  is measurable, there are three integrals we might consider. First,
of course, is the integral of  with respect to the product measure 

sometimes called a double integral in this context. But also we have the nested or iterated integrals where we integrate with
respect to one variable at a time:

How are these integrals related? Well, just as in calculus with ordinary Riemann integrals, under mild conditions the three integrals
are the same. The resulting important theorem is known as Fubini's Theorem in honor of the Italian mathematician Guido Fubini.

Fubini's Theorem. Suppose that  is measurable. If the double integral on the left exists, then

Proof

We will show that

The proof with the other iterated integral is symmetric. The proof proceeds in stages, paralleling the definition of the integral.

1. Suppose that  where  and . The equation holds by definition of the product measure, since the
double integral is  and the iterated integral is

2. Consider  where . The double integral is , and so as a function of  defines
the measure . On the other hand, the iterated integral is

where  is the cross-section of  at . Recall that  is a nonnegative,
measurable function of , so  makes sense. Moreover, as a function of , this integral
also forms a measure: If  is a countable, disjoint collection sets in , then  is a countable,

: S →Rfn n ∈ N+ A ∈S
μ(A) < ∞ limn→∞ fn A | |fn n ∈ N+ A

dμ = dμ∫
A

lim
n→∞

fn lim
n→∞

∫
A

fn (3.11.31)

| |fn n A c ∈ (0, ∞) c A c dμ = cμ(A) < ∞∫
A

| | ≤ cfn A n ∈ N+

limn→∞ fn A

μ(A) < ∞

(S,S ,μ) (T ,T , ν) σ σ

S ⊗T S×T μ⊗ν S ⊗T (S×T ,S ⊗T ,μ⊗ν)
f : S×T →R

f μ⊗ν

f(x, y)d(μ⊗ν)(x, y)∫
S×T

(3.11.32)

( f(x, y)dν(y)) dμ(x), ( f(x, y)dμ(x)) dν(y)∫
S

∫
T

∫
T

∫
S

(3.11.33)

f : S×T →R

f(x, y)d(μ⊗ν)(x, y) = f(x, y)dν(y)dμ(x) = f(x, y)dμ(x)dν(y)∫
S×T

∫
S

∫
T

∫
T

∫
S

(3.11.34)

f(x, y)d(μ⊗ν)(x, y) = f(x, y)dν(y)dμ(x)∫
S×T

∫
S

∫
T

(3.11.35)

f = 1A×B A ∈S B ∈ T
(μ⊗ν)(A×B)

(x, y)dν(y)dν(x) = (x) (y)dν(y)dμ(x) (x)ν(B)dμ = μ(A)ν(B)∫
S

∫
T

1A×B ∫
S

∫
T

1A 1B ∫
S

1A (3.11.36)

f = 1C C ∈S ⊗T (μ⊗ν)(C) C ∈S ⊗T
μ⊗ν

(x, y)dν(y)dμ(x) = (y)dν(y)dμ(x) = ν( )dμ(x)∫
S

∫
T

1C ∫
S

∫
T

1Cx ∫
S

Cx (3.11.37)

= {y ∈ T : (x, y) ∈ C}Cx C x ∈ S x ↦ ν( )Cx

x C ↦ ν( )dμ(x)∫S Cx C ∈S ⊗T
{ : i ∈ I}C i S ⊗T { : i ∈ I}C i

x
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disjoint collection of sets in . Cross-sections preserve set operations, so if  then . By the
additivity of the measure  and the integral we have

To summarize, the double integral and the iterated integral define positive measures on . By (a), these measure
agree on the measurable rectangles. By the uniqueness theorem, they must be the same measure. Thus the double integral
and the iterated integral agree with integrand  for every .

3. Suppose  is a nonnegative simple function on . Thus,  is a finite index set,  for ,
and  is a disjoint collection of sets in . The double integral and the iterated integral satisfy the linearity
properties, and hence by (b), agree with integrand .

4. Suppose that  is measurable. Then there exists a sequence of nonnegative simple functions 
such that  is increasing in  on , and  as  on . By the monotone convergence
theorem, . But for fixed ,  is increasing in  on  and has limit 

 as . By another application of the montone convergence theorem,  as
. But  is measurable and is increasing in  on , so by yet another application of the

monotone convergence theorem,  as . But the double
integral and the iterated integral agree with integrand  by (c) for each , so it follows that the double integral and
the iterated integral agree with integrand .

5. Suppose that  is measurable. By (d), the double integral and the iterated integral agree with integrand
functions  and . Assuming that at least one of these is finite, then by the additivity property, they agree with integrand
function .

Of course, the double integral exists, and so Fubini's theorem applies, if either  is nonnegative or integrable with respect to .
When  is nonnegative, the result is sometimes called Tonelli's theorem in honor of another Italian mathematician, Leonida Tonelli.
On the other hand, the iterated integrals may exist, and may be different, when the double integral does not exist. A
counterexample and a second counterexample are given below.

A special case of Fubini's theorem (and indeed part of the proof) is that we can compute the measure of a set in the product space
by integrating the cross-sectional measures.

If  then

where  for , and  for .

In particular, if  have the property that  for all , or  for all  (that is, 
 and  have the same cross-sectional measures with respect to one of the variables), then . In  with

area, and in  with volume (Lebesgue measure in both cases), this is known as Cavalieri's principle, named for Bonaventura
Cavalieri, yet a third Italian mathematician. Clearly, Italian mathematicians cornered the market on theorems of this sort.

A simple corollary of Fubini's theorem is that the double integral of a product function over a product set is the product of the
integrals. This result has important applications to independent random variables.

Suppose that  and  are measurable, and are either nonnegative or integrable with respect to  and ,
respectively. Then

Recall that a discrete measure space consists of a countable set with the -algebra of all subsets and with counting measure. In such
a space, integrals are simply sums and so Fubini's theorem allows us to rearrange the order of summation in a double sum.

T C = ⋃i∈I C
i =Cx ⋃i∈I C

i
x

ν

ν( )dμ(x) = ν( ) dμ(x) = ν ( ) dμ(x) = ν ( ) dμ(x)∫
S

Cx ∫
S

⋃
i∈I

C i
x ∫

S

∑
i∈I

C i
x ∑

i∈I

∫
S

C i
x (3.11.38)

S ⊗T

f = 1C C ∈S ⊗T
f = ∑i∈I ci1Ci S×T I ∈ [0, ∞)ci i ∈ I

{ : i ∈ I}Ci S ⊗T
f

f : S → [0, ∞) , n ∈gn N+

gn n ∈ N+ S×T → fgn n → ∞ S×T

d(μ⊗ν) → f d(μ⊗ν)∫
S×T

gn ∫
S×T

x ∈ S y ↦ (x, y)gn n T

f(x, y) n → ∞ (x, y)dν(y) → f(x, y)dν(y)∫T gn ∫T
n → ∞ x ↦ (x, y)dν(y)∫

T
gn n ∈ N+ S

(x, y)dν(y)dμ(x) → f(x, y)dν(y)dμ(x)∫
S

∫
T
gn ∫

S
∫
T

n → ∞
gn n ∈ N+

f

f : S×T →R

f+ f−

f = −f+ f−

f μ⊗ν

f

C ∈S ⊗T

(μ⊗ν)(C) = ν ( ) dμ(x) = μ ( ) dν(y)∫
S

Cx ∫
T

C y (3.11.39)

= {y ∈ T : (x, y) ∈ C}Cx x ∈ S = {x ∈ S : (x, y) ∈ C}C y y ∈ T

C, D ∈S ⊗T ν( ) = ν( )Cx Dx x ∈ S μ ( ) = μ ( )C y Dy y ∈ T

C D (μ⊗ν)(C) = (μ⊗ν)(D) R
2

R
3

g : S →R h : T →R μ ν

g(x)h(y)d(μ⊗ν)(x, y) =( g(x)dμ(x))( h(y)dν(y))∫
S×T

∫
S

∫
T

(3.11.40)

σ
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Suppose that  and  are countable and that  for  and . If the sum of the positive terms or the sum of the
negative terms is finite, then

Often , and in this case,  can be viewed as an infinite array, with  the row number and  the column
number:

The significant point is that  is totally ordered. While there is no implied order of summation in the double sum ,
the iterated sum  is obtained by summing over the rows in order and then summing the results by column in order,
while the iterated sum  is obtained by summing over the columns in order and then summing the results by row in
order.

Of course, only one of the product spaces might be discrete. Theorems (9) and (15) which give conditions for the interchange of
sum and integral can be viewed as applications of Fubini's theorem, where one of the measure spaces is  and the other is 

 with counting measure.

Examples and Applications

Probability Spaces

Suppose that  is a probability space, so that  is the set of outcomes of a random experiment,  is the -algebra of
events, and  is a probability measure on the sample space . Suppose also that  is another measurable space, and that

 is a random variable for the experiment, taking values in . Of course, this simply means that  is a measurable function from 
 to . Recall that the probability distribution of  is the probability measure  on  defined by

Since  is just probability notation for the inverse image of  under ,  is simply a special case of constructing a new
positive measure from a given positive measure via a change of variables. Suppose now that  is measurable, so that 
is a real-valued random variable. The integral of  (assuming that it exists) is known as the expected value of  and is of
fundamental importance. We will study expected values in detail in the next chapter. Here, we simply note different ways to write
the integral. By the change of variables formula (8) we have

Now let  denote the distribution function of . By another change of variables,  has a probability distribution  on 
, which is also a Lebesgue-Stieltjes measure, named for Henri Lebesgue and Thomas Stiletjes. Recall that this probability

measure is characterized by

With another application of our change of variables theorem, we can add to our chain of integrals:

Of course, the last two integrals are simply different notations for exactly the same thing. In the section on absolute continuity and
density functions, we will see other ways to write the integral.

I J ∈ Raij i ∈ I j∈ J

= =∑
(i,j)∈I×J

aij ∑
i∈I

∑
j∈J

aij ∑
j∈J

∑
i∈I

aij (3.11.41)

I = J =N+ aij i ∈ N+ j∈ N+

a11 a12 a13 …

a21 a22 a23 …

a31 a32 a33 …

⋮ ⋮ ⋮ ⋮

N+ ∑(i,j)∈N2
+
aij

∑∞
i=1 ∑∞

j=1 aij

∑∞
j=1 ∑∞

i=1 aij

(S,S ,μ)
N+

(Ω,F ,P) Ω F σ

P (Ω,F) (S,S )
X S X

Ω S X PX (S,S )

(A) = P(X ∈ A), A ∈SPX (3.11.42)

{X ∈ A} A X PX

r : S →R r(X)
r(X) r(X)

r [X(ω)] dP(ω) = r(x)d (x)∫
Ω

∫
S

PX (3.11.43)

FY Y = r(X) Y PY

R

(a, b] = P(a < Y ≤ b) = (b) − (a); a, b ∈ R, a < bPY FY FY (3.11.44)

r [X(ω)] dP(ω) = r(x)d (x) = y d (y) = y d (y)∫
Ω

∫
S

PX ∫
R

PY ∫
R

FY (3.11.45)
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Counterexamples

In the first three exercises below,  is the standard one-dimensional Euclidean space, so  is -algebra of
Lebesgue measurabel sets and  is Lebesgue measure.

Let  and . Show that

1.  on 
2. 
3. 

This example shows that the strict increasing property can fail when the integrals are infinite.

Let  for . Show that

1.  is decreasing in  on .
2.  as  on .
3.  for each .

This example shows that the monotone convergence theorem can fail if the first integral is infinite. It also illustrates strict
inequality in Fatou's lemma.

Let  for . Show that

1.  on  so 
2.  for  so 
3.  on 

This example shows that the dominated convergence theorem can fail if  is not bounded by an integrable function. It also
shows that strict inequality can hold in Fatou's lemma.

Consider the product space  with the usual Lebesgue measurable subsets and Lebesgue measure. Let  be
defined by

Show that

1.  does not exist.

2. 
3. 

This example shows that Fubini's theorem can fail if the double integral does not exist.

For  define the sequence  as follows:  and  for ,  otherwise.

1. Give  in array form with  as the row number and  as the column number
2. Show that  does not exist
3. Show that 
4. Show that 

This example shows that the iterated sums can exist and be different when the double sum does not exist, a counterexample to
the corollary to Fubini's theorem for sums when the hypotheses are not satisfied.

Computational Exercises

Compute  in each case below for the given  and .

1. , 

(R,R,λ) mathscrR σ

λ

f = 1[1,∞) g = 1[0,∞)

f ≤ g R

λ{x ∈ R : f(x) < g(x)} = 1
f dλ = gdλ = ∞∫

R
∫
R

=fn 1[n,∞) n ∈ N+

fn n ∈ N+ R

→ 0fn n → ∞ R

dλ = ∞∫
R
fn n ∈ N+

=fn 1[n,n+1] n ∈ N+

= 0limn→∞ fn R dμ = 0∫
R

limn→∞ fn
dλ = 1∫

R
fn n ∈ N+ dλ = 1limn→∞ ∫

R
fn

sup{ : n ∈ } =fn N+ 1[1,∞) R

| |fn

[0, 1]2 f : [0, 1 →R]2

f(x, y) =
−x2 y2

( +x2 y2)2
(3.11.46)

f(x, y)d(x, y)∫[0,1]2

f(x, y)dx dy = −∫ 1
0 ∫ 1

0
π

4

f(x, y)dy dx =∫ 1
0 ∫ 1

0
π
4

i, j∈ N+ aij = 1aii = −1ai+1,i i ∈ N+ = 0aij

aij i ∈ N+ j∈ N+

∑(i,j)∈N2
+
aij

= 1∑∞
i=1 ∑∞

j=1 aij

= 0∑∞
j=1 ∑∞

i=1 aij

f(x, y)d(x, y)∫D D ⊆R
2 f : D →R

f(x, y) = e−2xe−3y D = [0, ∞) ×[0, ∞)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10151?pdf


3.11.11 https://stats.libretexts.org/@go/page/10151

2. , 

Integrals of the type in the last exercise are useful in the study of exponential distributions.
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f(x, y) = e−2xe−3y D = {(x, y) ∈ : 0 ≤ x ≤ y < ∞}R
2
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