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9.1: Introduction to Hypothesis Testing

Basic Theory

Preliminaries

As usual, our starting point is a random experiment with an underlying sample space and a probability measure PP. In the basic
statistical model, we have an observable random variable X taking values in a set .S. In general, X can have quite a complicated
structure. For example, if the experiment is to sample n objects from a population and record various measurements of interest,
then

X = (X1, Xs,...,Xn) (9.1.1)

where X is the vector of measurements for the ith object. The most important special case occurs when (X1, Xo, ..., X,) are
independent and identically distributed. In this case, we have a random sample of size n from the common distribution.

The purpose of this section is to define and discuss the basic concepts of statistical hypothesis testing. Collectively, these concepts
are sometimes referred to as the Neyman-Pearson framework, in honor of Jerzy Neyman and Egon Pearson, who first formalized
them.

Hypotheses

A statistical hypothesis is a statement about the distribution of X. Equivalently, a statistical hypothesis specifies a set of
possible distributions of X: the set of distributions for which the statement is true. A hypothesis that specifies a single
distribution for X is called simple; a hypothesis that specifies more than one distribution for X is called composite.

In hypothesis testing, the goal is to see if there is sufficient statistical evidence to reject a presumed null hypothesis in favor of a
conjectured alternative hypothesis. The null hypothesis is usually denoted H, while the alternative hypothesis is usually denoted
H;.

An hypothesis test is a statistical decision; the conclusion will either be to reject the null hypothesis in favor of the alternative, or to
fail to reject the null hypothesis. The decision that we make must, of course, be based on the observed value @ of the data vector
X. Thus, we will find an appropriate subset R of the sample space S and reject Hy if and only if € R. The set R is known as
the rejection region or the critical region. Note the asymmetry between the null and alternative hypotheses. This asymmetry is due
to the fact that we assume the null hypothesis, in a sense, and then see if there is sufficient evidence in @ to overturn this
assumption in favor of the alternative.

An hypothesis test is a statistical analogy to proof by contradiction, in a sense. Suppose for a moment that H; is a statement in a
mathematical theory and that Hj is its negation. One way that we can prove Hj is to assume H and work our way logically to a
contradiction. In an hypothesis test, we don't “prove” anything of course, but there are similarities. We assume Hj and then see if
the data « are sufficiently at odds with that assumption that we feel justified in rejecting Hy in favor of H;.

Often, the critical region is defined in terms of a statistic w(X), known as a test statistic, where w is a function from S into another
set T'. We find an appropriate rejection region Ry C T and reject Hy when the observed value w(x) € Ryr. Thus, the rejection
region in S is then R =w ! (Rr) = {x € S: w(x) € Rr} . As usual, the use of a statistic often allows significant data reduction
when the dimension of the test statistic is much smaller than the dimension of the data vector.

Errors
The ultimate decision may be correct or may be in error. There are two types of errors, depending on which of the hypotheses is
actually true.

Types of errors:

1. A type 1 error is rejecting the null hypothesis Hy when Hj is true.
2. A type 2 error is failing to reject the null hypothesis Hy when the alternative hypothesis H; is true.

Similarly, there are two ways to make a correct decision: we could reject Hy when Hj is true or we could fail to reject Hy when
H, is true. The possibilities are summarized in the following table:
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Hypothesis Test
State | Decision Fail to reject Hy Reject Hy
Hj True Correct Type 1 error
H; True Type 2 error Correct

Of course, when we observe X = a and make our decision, either we will have made the correct decision or we will have
committed an error, and usually we will never know which of these events has occurred. Prior to gathering the data, however, we
can consider the probabilities of the various errors.

If Hy is true (that is, the distribution of X is specified by Hy), then P(X € R) is the probability of a type 1 error for this
distribution. If Hy is composite, then Hy specifies a variety of different distributions for X and thus there is a set of type 1 error
probabilities.

The maximum probability of a type 1 error, over the set of distributions specified by Hy, is the significance level of the test or
the size of the critical region.

The significance level is often denoted by a. Usually, the rejection region is constructed so that the significance level is a
prescribed, small value (typically 0.1, 0.05, 0.01).

If Hy is true (that is, the distribution of X is specified by Hy), then P(X ¢ R) is the probability of a type 2 error for this
distribution. Again, if H; is composite then H; specifies a variety of different distributions for X, and thus there will be a set of
type 2 error probabilities. Generally, there is a tradeoff between the type 1 and type 2 error probabilities. If we reduce the
probability of a type 1 error, by making the rejection region R smaller, we necessarily increase the probability of a type 2 error
because the complementary region S\ R is larger.

The extreme cases can give us some insight. First consider the decision rule in which we never reject Hy, regardless of the
evidence @. This corresponds to the rejection region R =0. A type 1 error is impossible, so the significance level is 0. On the
other hand, the probability of a type 2 error is 1 for any distribution defined by H;. At the other extreme, consider the decision rule
in which we always rejects Hy regardless of the evidence &. This corresponds to the rejection region R =.5. A type 2 error is
impossible, but now the probability of a type 1 error is 1 for any distribution defined by Hj. In between these two worthless tests
are meaningful tests that take the evidence @ into account.

Power
If H; is true, so that the distribution of X is specified by Hj, then P(X € R), the probability of rejecting Hy is the power of
the test for that distribution.

Thus the power of the test for a distribution specified by Hj is the probability of making the correct decision.

Suppose that we have two tests, corresponding to rejection regions R; and Ry, respectively, each having significance level a.
The test with region R; is uniformly more powerful than the test with region Ry if

P(X € R;) > P(X € R;) for every distribution of X specified by H; (9.1.2)
Naturally, in this case, we would prefer the first test. Often, however, two tests will not be uniformly ordered; one test will be more
powerful for some distributions specified by H; while the other test will be more powerful for other distributions specified by Hj .
If a test has significance level a and is uniformly more powerful than any other test with significance level «, then the test is
said to be a uniformly most powerful test at level .
Clearly a uniformly most powerful test is the best we can do.

P-value

In most cases, we have a general procedure that allows us to construct a test (that is, a rejection region R,) for any given
significance level a € (0, 1). Typically, R,, decreases (in the subset sense) as o decreases.
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The P-value of the observed value @ of X, denoted P(z), is defined to be the smallest o for which @ € R,,; that is, the
smallest significance level for which Hj is rejected, given X = @.

Knowing P(x) allows us to test Hy at any significance level for the given data @: If P(x) < « then we would reject Hy at
significance level «; if P(2) > o then we fail to reject Hy at significance level «.. Note that P(X) is a statistic. Informally, P ()
can often be thought of as the probability of an outcome “as or more extreme” than the observed value x, where extreme is
interpreted relative to the null hypothesis Hy.

Analogy with Justice Systems

There is a helpful analogy between statistical hypothesis testing and the criminal justice system in the US and various other
countries. Consider a person charged with a crime. The presumed null hypothesis is that the person is innocent of the crime; the
conjectured alternative hypothesis is that the person is guilty of the crime. The test of the hypotheses is a trial with evidence
presented by both sides playing the role of the data. After considering the evidence, the jury delivers the decision as either not
guilty or guilty. Note that innocent is not a possible verdict of the jury, because it is not the point of the trial to prove the person
innocent. Rather, the point of the trial is to see whether there is sufficient evidence to overturn the null hypothesis that the person is
innocent in favor of the alternative hypothesis of that the person is guilty. A type 1 error is convicting a person who is innocent; a
type 2 error is acquitting a person who is guilty. Generally, a type 1 error is considered the more serious of the two possible errors,
so in an attempt to hold the chance of a type 1 error to a very low level, the standard for conviction in serious criminal cases is
beyond a reasonable doubt.

Tests of an Unknown Parameter

Hypothesis testing is a very general concept, but an important special class occurs when the distribution of the data variable X

depends on a parameter 6 taking values in a parameter space ©. The parameter may be vector-valued, so that @ = (61,602, ..., 6,)
and © C R* for some k € N, . The hypotheses generally take the form
Hy:0€ ©gversus Hy : 0 £ O (9.1.3)

where ©y is a prescribed subset of the parameter space ©. In this setting, the probabilities of making an error or a correct decision
depend on the true value of . If R is the rejection region, then the power function @ is given by

Q) =Py(X €R), 0c© (9.1.4)

The power function gives a lot of information about the test.

The power function satisfies the following properties:

1. Q(0) is the probability of a type 1 error when 6 € O .
2.max{Q(6) : 0 € Oy} is the significance level of the test.
3.1 —Q(6) is the probability of a type 2 error when 6 ¢ ©y.
4. Q(0) is the power of the test when 6  ©y.

If we have two tests, we can compare them by means of their power functions.

Suppose that we have two tests, corresponding to rejection regions R; and Rj, respectively, each having significance level c.
The test with rejection region R; is uniformly more powerful than the test with rejection region R» if Q1(6) > Q2(6) for all
0¢ 0.

Most hypothesis tests of an unknown real parameter 6 fall into three special cases:

Suppose that 6 is a real parameter and 6y € © a specified value. The tests below are respectively the two-sided test, the left-
tailed test, and the right-tailed test.

1. Hy: 0 =0y versus Hy : 0 #£ 6,
2.Hy:0>6y versus Hy : 0 < 6,
3.Hy:0<6y versus Hy : 0 > 6,
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Thus the tests are named after the conjectured alternative. Of course, there may be other unknown parameters besides 6 (known as

nuisance parameters).

Equivalence Between Hypothesis Test and Confidence Sets

There is an equivalence between hypothesis tests and confidence sets for a parameter 6.

Suppose that C(z) is a 1 —a level confidence set for 6. The following test has significance level « for the hypothesis
Hy : 0=6, versus Hy : 6 # 6, : Reject Hy if and only if 6y ¢ C(x)

Proof
By definition, P[# € C(X)] =1 —a . Hence if Hy is true so that § =6, then the probability of a type 1 error is
PogC(X)]=«.

Equivalently, we fail to reject Hy at significance level « if and only if y is in the corresponding 1 — « level confidence set. In
particular, this equivalence applies to interval estimates of a real parameter 6 and the common tests for 6 given above.

In each case below, the confidence interval has confidence level 1 —« and the test has significance level a.

1. Suppose that [L(X, U(X)] is a two-sided confidence interval for 6. Reject Hy : @ = 6y versus Hj : 6 # 6y if and only if
0y < L(X) or 6y > U(.X)

2. Suppose that L(X) is a confidence lower bound for 6. Reject Hy : 0 < 6 versus Hy : > 6 if and only if 6y < L(X).

3. Suppose that U(X) is a confidence upper bound for 6. Reject Hy : > 6y versus H; : 0 < 6y if and only if 6y > U(X).

Pivot Variables and Test Statistics

Recall that confidence sets of an unknown parameter 6 are often constructed through a pivot variable, that is, a random variable
W (X, 6) that depends on the data vector X and the parameter 8, but whose distribution does not depend on @ and is known. In
this case, a natural test statistic for the basic tests given above is W (X, 6y).
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