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4.6: Generating Functions

As usual, our starting point is a random experiment modeled by a probability sace (2, %, P). A generating function of a real-valued
random variable is an expected value of a certain transformation of the random variable involving another (deterministic) variable.
Most generating functions share four important properties:

1. Under mild conditions, the generating function completely determines the distribution of the random variable.

2. The generating function of a sum of independent variables is the product of the generating functions

3. The moments of the random variable can be obtained from the derivatives of the generating function.

4. Ordinary (pointwise) convergence of a sequence of generating functions corresponds to the special convergence of the
corresponding distributions.

Property 1 is perhaps the most important. Often a random variable is shown to have a certain distribution by showing that the
generating function has a certain form. The process of recovering the distribution from the generating function is known as inversion.
Property 2 is frequently used to determine the distribution of a sum of independent variables. By contrast, recall that the probability
density function of a sum of independent variables is the convolution of the individual density functions, a much more complicated
operation. Property 3 is useful because often computing moments from the generating function is easier than computing the moments
directly from the probability density function. The last property is known as the continuity theorem. Often it is easer to show the
convergence of the generating functions than to prove convergence of the distributions directly.

The numerical value of the generating function at a particular value of the free variable is of no interest, and so generating functions
can seem rather unintuitive at first. But the important point is that the generating function as a whole encodes all of the information in
the probability distribution in a very useful way. Generating functions are important and valuable tools in probability, as they are in
other areas of mathematics, from combinatorics to differential equations.

We will study the three generating functions in the list below, which correspond to increasing levels of generality. The fist is the most
restrictive, but also by far the simplest, since the theory reduces to basic facts about power series that you will remember from calculus.
The third is the most general and the one for which the theory is most complete and elegant, but it also requires basic knowledge of
complex analysis. The one in the middle is perhaps the one most commonly used, and suffices for most distributions in applied
probability.

1. the probability generating function
2. the moment generating function
3. the characteristic function

We will also study the characteristic function for multivariate distributions, although analogous results hold for the other two types. In
the basic theory below, be sure to try the proofs yourself before reading the ones in the text.

Basic Theory

The Probability Generating Function

For our first generating function, assume that N is a random variable taking values in N.
The probability generating function P of N is defined by
P@t)=E (t") (4.6.1)

forall ¢ € R for which the expected value exists in R.

That is, P(t) is defined when E (|t\N) < 0o. The probability generating function can be written nicely in terms of the probability

density function.

Suppose that IV has probability density function f and probability generating function P. Then

Pt)=)_f(n)t", te(-rr) (4.6.2)

where r € [1, 0o] is the radius of convergence of the series.
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Proof

The expansion follows from the discrete change of variables theorem for expected value. Note that the series is a power series in ¢,
and hence by basic calculus, converges absolutely for ¢ € (—r,r) where r € [0, 00] is the radius of convergence. But since
-2 o f(n) =1 we must have r > 1, and the series converges absolutely at least for ¢ € [—1,1].

In the language of combinatorics, P is the ordinary generating function of f. Of course, if NV just takes a finite set of values in N then
r = 00. Recall from calculus that a power series can be differentiated term by term, just like a polynomial. Each derivative series has
the same radius of convergence as the original series (but may behave differently at the endpoints of the interval of convergence). We
denote the derivative of order n by P(™). Recall also that if n € N and k € N with k < n, then the number of permutations of size k
chosen from a population of n objects is

n®) =pmn—-1)---(n—k+1) (4.6.3)

The following theorem is the inversion result for probability generating functions: the generating function completely determines the
distribution.

Suppose again that N has probability density function f and probability generating function P. Then

=2 UZ'(O) , keN (4.6.4)

Proof

This is a standard result from the theory of power series. Differentiating k times gives P (*)(t) = D n®) f(n)t"* for
t € (—r,7) . Hence P (0) = k™ f(k) = k! f (k)

Our next result is not particularly important, but has a certain curiosity.

P(N iseven) = [1+P(-1)] .

Proof
Note that
P(1)+P(-1)= f: f(n)+ N (-1)*f(n)=2 f:f@k) =2P(N iseven) (4.6.5)
n=0 n=0 k=0

We can combine the two sum since we know that the series converge absolutely at 1 and —1.

Recall that the factorial moment of N of order k € N is E [N (k)] . The factorial moments can be computed from the derivatives of the
probability generating function. The factorial moments, in turn, determine the ordinary moments about 0 (sometimes referred to as raw
moments).

Suppose that the radius of convergence r > 1. Then P(k)(l) =E [N (k)] for k € N. In particular, N has finite moments of all
orders.

Proof

As before, PW)(¢) =32, n® f(n)t"* fort € (—r,r). Hence if r > 1 then PF)(1) =3, nM) f(n) =E [N(k)]

Suppose again that 7 > 1. Then

1.E(N) = P'(1)
2. var(N) = P"(1) + P'(1)[1 — P'(1)]

Proof
1IE( =E [N ] P(1).

E(N?)=E[N(N -1)]+E(N)=E [N®] +E(N) = P"(1)+ P'(1) .Hence from (a),
var( )= P”() P'(1)-[P' (1)
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Suppose that N; and N; are independent random variables taking values in N, with probability generating functions P; and P;
having radii of convergence r; and 7y, respectively. Then the probability generating function P of Nj 4+ N, is given by
P(t) = Pl(t)Pg(t) for |t‘ <riArg.

Proof

Recall that the expected product of independent variables is the product of the expected values. Hence

P@t)=E (t""™) =E (t"¢") =E (t"") E (t™2) = P ) Po(t), [t| <riAms (4.6.6)

The Moment Generating Function
Our next generating function is defined more generally, so in this discussion we assume that the random variables are real-valued.
The moment generating function of X is the function M defined by

M(t)=E(e¥), teR (4.6.7)

Note that since !X > 0 with probability 1, M(¢) exists, as a real number or co, for any ¢ € R. But as we will see, our interest will be
in the domain where M () < oo .

Suppose that X has a continuous distribution on R with probability density function f. Then
o0
M(t) :/ e f(z) dz (4.6.8)
—00
Proof

This follows from the change of variables theorem for expected value.

Thus, the moment generating function of X is closely related to the Laplace transform of the probability density function f. The
Laplace transform is named for Pierre Simon Laplace, and is widely used in many areas of applied mathematics, particularly
differential equations. The basic inversion theorem for moment generating functions (similar to the inversion theorem for Laplace
transforms) states that if M (¢) < oo for ¢ in an open interval about 0, then M completely determines the distribution of X. Thus, if
two distributions on R have moment generating functions that are equal (and finite) in an open interval about 0, then the distributions
are the same.

Suppose that X has moment generating function M that is finite in an open interval I about 0. Then X has moments of all orders

and
ME)=)" #t”, tel (4.6.9)
=0 n.
Proof

Under the hypotheses, the expected value operator can be interchanged with the infinite series for the exponential function:
= X L) B
_ X\ 2 )| n
M(t)=E (e )_E<; ) = ", tel (4.6.10)

The interchange is a special case of Fubini's theorem, named for Guido Fubini. For more details see the advanced section on
properties of the integral in the chapter on Distributions.

So under the finite assumption in the last theorem, the moment generating function, like the probability generating function, is a power
series in ¢.

Suppose again that X has moment generating function M that is finite in an open interval about 0. Then M (™ (0) = E (X™) for
neN

Proof

This follows by the same argument as above for the PGFE: M (")(0)/n! is the coefficient of order n in the power series above,
namely IE (X™) /n!. Hence M (™(0) = E (X™).
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Thus, the derivatives of the moment generating function at 0 determine the moments of the variable (hence the name). In the language
of combinatorics, the moment generating function is the exponential generating function of the sequence of moments. Thus, a random
variable that does not have finite moments of all orders cannot have a finite moment generating function. Even when a random variable
does have moments of all orders, the moment generating function may not exist. A counterexample is constructed below.

For nonnegative random variables (which are very common in applications), the domain where the moment generating function is
finite is easy to understand.
Suppose that X takes values in [0, co) and has moment generating function M. If M(t) < oo for t € R then M(s) < oo for
s<t.
Proof

Since X >0, if s <t then sX < tX and hence e*X < e* . Hence E (eSX) <E (etX) )

So for a nonnegative random variable, either M (t) < oo for all ¢ € R or there exists 7 € (0, co) such that M (¢) < oo for t <r. Of
course, there are complementary results for non-positive random variables, but such variables are much less common. Next we
consider what happens to the moment generating function under some simple transformations of the random variables.

Suppose that X has moment generating function M and that a, b € R. The moment generating function N of Y =a+bX is
given by N (¢) = e® M (bt) fort € R.

Proof

E [ef(etX)] = (efethX) = e*E [e(®)X] = e M(bt) for \(t\in\R).

Recall that if a € R and b € (0, 0o) then the transformation a +bX is a location-scale transformation on the distribution of X, with
location parameter a and scale parameter b. Location-scale transformations frequently arise when units are changed, such as length
changed from inches to centimeters or temperature from degrees Fahrenheit to degrees Celsius.

Suppose that X; and X, are independent random variables with moment generating functions M; and M; respectively. The
moment generating function M of Y = X + X, is given by M (t) = My (¢)Ma(t) fort € R.

Proof

As with the PGF, the proof for the MGF relies on the law of exponents and the fact that the expected value of a product of
independent variables is the product of the expected values:

E [/00XD)] —E (%1 e2) —E (%) E (%) = My (1) M3 (t), tER (4.6.11)

The probability generating function of a variable can easily be converted into the moment generating function of the variable.

Suppose that X is a random variable taking values in N with probability generating function G having radius of convergence 7.
The moment generating function M of X is given by M(t) = G (e') fort <In(r).

Proof

M(t) =E (¢X) =E [(et)X} =G (e!) foret <r.

The following theorem gives the Chernoff bounds, named for the mathematician Herman Chernoff. These are upper bounds on the tail
events of a random variable.
If X has moment generating function M then

LP(X>z)<e ™M(t) fort >0
2P(X <z)<e ™M(t) fort <0

Proof
1. From Markov's inequality, P(X > z) =P (e'* > €™™) <E (e'*) /e =e ™ M(t) ift>0.
2. Similarly, P(X < z) =P (e"*

>ef") <e™M(t) ift<0.
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Naturally, the best Chernoff bound (in either (a) or (b)) is obtained by finding ¢ that minimizes e ™ M (t).

The Characteristic Function
Our last generating function is the nicest from a mathematical point of view. Once again, we assume that our random variables are real-
valued.

The characteristic function of X is the function x defined by by

x(t)=E (eitX) =E[cos(tX)] +iE [sin(tX)], teR (4.6.12)

Note that x is a complex valued function, and so this subsection requires some basic knowledge of complex analysis. The function y is
defined for all ¢ € R because the random variable in the expected value is bounded in magnitude. Indeed, |e®X | =1 foral t € R.
Many of the properties of the characteristic function are more elegant than the corresponding properties of the probability or moment
generating functions, because the characteristic function always exists.

If X has a continuous distribution on R with probability density function f and characteristic function ) then

x(t):/_ooeit“”f(m)dm, teR (4.6.13)

{o¢]

Proof

This follows from the change of variables theorem for expected value, albeit a complex version.

Thus, the characteristic function of X is closely related to the Fourier transform of the probability density function f. The Fourier
transform is named for Joseph Fourier, and is widely used in many areas of applied mathematics.

As with other generating functions, the characteristic function completely determines the distribution. That is, random variables X and
Y have the same distribution if and only if they have the same characteristic function. Indeed, the general inversion formula given next
is a formula for computing certain combinations of probabilities from the characteristic function.

Suppose again that X has characteristic function x. If a, b € R and a < b then

n ,—iat __ ,—ibt 1
/ - 27ri: x(t)dt = Pla <X <b)+ S [P(X =b) ~P(X =a)] asn — oo (4.6.14)

The probability combinations on the right side completely determine the distribution of X. A special inversion formula holds for
continuous distributions:

Suppose that X has a continuous distribution with probability density function f and characteristic function x. At every point
x € R where f is differentiable,

fz) =5 / et dt (4.6.15)

—00

This formula is essentially the inverse Fourrier transform. As with the other generating functions, the characteristic function can be
used to find the moments of X. Moreover, this can be done even when only some of the moments exist.

Suppose again that X has characteristic function x. If n € N and E (|X™|) < co. Then
~E(XF)
x(t) = Y L (i) +olt") (4.6.16)
k=0 :
and therefore x(™(0) = i"E (X™).
Details

Recall that the last term is a generic function that satisfies o(t")/¢t" — 0 as t — co.

Next we consider how the characteristic function is changed under some simple transformations of the variables.
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Suppose that X has characteristic function x and that a, b € R. The characteristic function 9 of Y =a+bX is given by
p(t) = e x(bt) fort € R.
Proof

The proof is just like the one for the MGE: ¢(t) =E [e(®*X) | =E (e X)) = ¢ E [ei®)X] = elaty(bt) fort € R.
Suppose that X; and X, are independent random variables with characteristic functions x; and x5 respectively. The characteristic
function x of Y = X; + X, is given by x(¢) = x1(¢)x2(t) fort € R.

Proof

Again, the proof is just like the one for the MGF:

x(t)=E [eit(XﬁXZ)} =E (eitX1 eitXZ) =E (eitX1 )E (eitxz) =x1(t)x2(t), teR (4.6.17)

The characteristic function of a random variable can be obtained from the moment generating function, under the basic existence
condition that we saw earlier.

Suppose that X has moment generating function M that satisfies M(t) < oo for ¢ in an open interval I about 0. Then the
characteristic function ) of X satisfies x(t) = M (it) fort € I.

The final important property of characteristic functions that we will discuss relates to convergence in distribution. Suppose that
(X1, X2, ...)is a sequence of real-valued random with characteristic functions (x1, X2, - - -) respectively. Since we are only concerned
with distributions, the random variables need not be defined on the same probability space.

The Continuity Theorem

1. If the distribution of X, converges to the distribution of a random variable X as n — oo and X has characteristic function Y,
then x,, (t) — x(¢) asn — oo forall ¢t € R.

2. Conversely, if x,, (¢) converges to a function x(t) as m — oo for ¢ in an open interval about 0, and if  is continuous at 0, then
x is the characteristic function of a random variable X, and the distribution of X,, converges to the distribution of X as
n—00.

There are analogous versions of the continuity theorem for probability generating functions and moment generating functions. The
continuity theorem can be used to prove the central limit theorem, one of the fundamental theorems of probability. Also, the continuity
theorem has a straightforward generalization to distributions on R".

The Joint Characteristic Function

All of the generating functions that we have discussed have multivariate extensions. However, we will discuss the extension only for
the characteristic function, the most important and versatile of the generating functions. There are analogous results for the other
generating functions. So in this discussion, we assume that (X, Y") is a random vector for our experiment, taking values in R2.

The (joint) characteristic function x of (X,Y) is defined by
x(s,t) =E [exp(isX +itY)], (s,t) € R? (4.6.18)

Once again, the most important fact is that y completely determines the distribution: two random vectors taking values in RR? have the
same characteristic function if and only if they have the same distribution.

The joint moments can be obtained from the derivatives of the characteristic function.
Suppose that (X, Y) has characteristic function x. If m, n € Nand E (| X™Y "|) < oo then

x™™(0,0) =& ™E (X™Y ™) (4.6.19)

The marginal characteristic functions and the characteristic function of the sum can be easily obtained from the joint characteristic
function:

https://stats.libretexts.org/@go/page/10161



https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10161?pdf

LibreTextsw

Suppose again that (X,Y") has characteristic function X, and let x1, X2, and x- denote the characteristic functions of X, Y, and
X +Y, respectively. Fort € R

L x(t,0) = xa ()

2.x(0,1) = x2(t)

3. x(t,t) = x+(t)
Proof

All three results follow immediately from the definitions.

Suppose again that x1, X2, and x are the characteristic functions of X, Y, and (X, Y’) respectively. Then X and Y are independent
if and only if x(s,t) = x1(s)x2(t) forall (s,t) € R%.

Naturally, the results for bivariate characteristic functions have analogies in the general multivariate case. Only the notation is more
complicated.

Examples and Applications

As always, be sure to try the computational problems yourself before expanding the solutions and answers in the text.

Dice

Recall that an ace-six flat die is a six-sided die for which faces numbered 1 and 6 have probability i each, while faces numbered 2, 3,

4, and 5 have probability % each. Similarly, a 3-4 flat die is a six-sided die for which faces numbered 3 and 4 have probability % each,
while faces numbered 1, 2, 5, and 6 have probability % each.
Suppose that an ace-six flat die and a 3-4 flat die are rolled. Use probability generating functions to find the probability density
function of the sum of the scores.
Solution
Let X and Y denote the score on the ace-six die and 3-4 flat die, respectively. Then X and Y have PGFs P and @ given by
1 1 1 1 1 1
Pt) ==t+-t?+ =3+ =t'+ =5+ =15 teR
®) 4+8 +8 +8 +8 +4’

1 1, 1, 1, 1, 1,
) = —t+ B4ttt -P+ =15 teR
Q) =gttgt+t +t +gt +gt, te€

Hence X +Y has PGF PQ. Expanding (a computer algebra program helps) gives
1 3 3 1 1 5 1 1 3 3 1
P)Q(t)=—=t"+ =3+ =t + =0+ 0+ —tT+ =¥+ — 9+ — 10+ —¢1 4+ —¢12 teR  (4.6.20
Q) 32 64 32 8 8 32 8 8 32 64 32 ( )
Thus the PDF f of X+Y is given by f(2)=f(12)=5. fB)=Ff11)=g, f4)=710)==,
f(5)=£(6)=£(8)=f(9) =5 and f(7)=1;.

Two fair, 6-sided dice are rolled. One has faces numbered (0,1, 2, 3,4, 5)and the other has faces numbered (0, 6,12, 18, 24, 30)
Use probability generating functions to find the probability density function of the sum of the scores, and identify the distribution.

Solution

Let X and Y denote the score on the first die and the second die described, respectively. Then X and ¥ have PGFs P and @ given
by

1 5
P(t) =th’“ teR
k=0

il s
== t¥ teR
Q) 6;

Hence X +Y has PGF PQ. Simplifying gives
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ot

5

35
POREM =35 1Dt = >0, teR (@.6.21)
n=0

J=0 k=0

Hence X +Y is uniformly distributed on {0, 1,2,...,35}
Suppose that random variable Y has probability generating function P given by

2 3 1 1 5
Pt)= | =t+ —t*+ =3+ —t* teR 4.6.22
®) (5 EETHRET L B (4.6.22)

1. Interpret Y in terms of rolling dice.
2. Use the probability generating function to find the first two factorial moments of Y.
3. Use (b) to find the variance of Y.

Answer

1. A four-sided die has faces numbered (1, 2, 3, 4) with respective probabilities (%, 13—0, %, %) Y is the sum of the scores when

the die is rolled 5 times.
2E(Y)=P'(1)=10,E[Y(Y -1)]=P"(1)=95
3.var(Y)=5

Bernoulli Trials

Suppose X is an indicator random variable with p =P(X =1), where p € [0,1] is a parameter. Then X has probability
generating function P(t) =1 —p+pt fort € R.

Proof
P(t)=E(tX) =t°(1 —p)+t'p=1-p+pt fortcR.

Recall that a Bernoulli trials process is a sequence (X7, Xo, .. .) of independent, identically distributed indicator random variables. In
the usual language of reliability, X; denotes the outcome of trial ¢, where 1 denotes success and O denotes failure. The probability of
success p = P(X; =1) is the basic parameter of the process. The process is named for Jacob Bernoulli. A separate chapter on the
Bernoulli Trials explores this process in more detail.

For n € N, , the number of successes in the first n trials is Y, = Z?:l X; . Recall that this random variable has the binomial
distribution with parameters n and p, which has probability density function f,, given by

faly) = (Z>py(1 -p)"Y, ye{0,1,...,n} (4.6.23)

Random variable Y;, has probability generating function P, given by P, (t) = (1 —p+pt)" fort € R.
Proof

This follows immediately from the PGE of an indicator variable and the result for sums of independent variables.

Rando variable Y;, has the following parameters:

1.E [Yn(k)} =nk)pk
2E(Y,)=np

3.var(Y,) =np(l —p)

4.P(Y,, iseven) = %[1 —(1-2p)"

Proof
1. Repeated differentiation gives P(*)(t) = n®)p*(1 —p +pt)"* . Hence P¥)(1) = n¥)p*  which is E [X(k)] by the moment
result above.
2. This follows from the formula for mean.
3. This follows from the formula for variance.
4, This follows from the even value formula.
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Suppose that U has the binomial distribution with parameters m € N; and p € [0,1], V' has the binomial distribution with
parameters n € N and ¢ € [0, 1], and that U and V" are independent.

1. If p = g then U + V' has the binomial distribution with parameters m +n and p.

2.1f p # q then U +V does not have a binomial distribution.
Proof
From the result for sums of independent variables and the PGF of the binomial distribution, note that the probability generating
functionof U4V is P(t) = (1 —p+pt)"(1 —g+qt)" forteR.

1.Ifp=gq then U +V has PGF P(t) = (1 —p+pt)™™ , which is the PGF of the binomial distribution with parameters
m+mn and p.
2. On the other hand, if p # ¢, the PGF P does not have the functional form of a binomial PGF.

Suppose now that p € (0, 1]. The trial number N of the first success in the sequence of Bernoulli trials has the geometric distribution
on N with success parameter p. The probability density function A is given by

h(n)=p(1-p)"~!, neN; (4.6.24)
The geometric distribution is studied in more detail in the chapter on Bernoulli trials.

Let @ denote the probability generating function of N. Then

LQ(t) =1 (1 — f01r—L <t<+p
2 E[NW] =2 forkeN
BE(N)=1

4.var(N) = %

5.P(N iseven) = ;—:i

Proof

1. Using the formula for the sum of a geometric series,

= ) 1,4n _ _ pt .

2 (1—p)* 'pt pt; (1 —p)t]™ Toa (1-p)t| <1 (4.6.25)

2. Repeated differentiation gives H® (t) = k!p(1 —p)¥~1[1 — (1 —p)t] ~**) and then the result follows from the inversion
formula.

3. This follows from (b) and the formula for mean.

4. This follows from (b) and the formula for variance.

5. This follows from even value formula.

The probability that IV is even comes up in the alternating coin tossing game with two players.
The Poisson Distribution
Recall that the Poisson distribution has probability density function f given by

f(n)= 67“(:1—7:, neN (4.6.26)

where a € (0, 00) is a parameter. The Poisson distribution is named after Simeon Poisson and is widely used to model the number of
“random points” in a region of time or space; the parameter is proportional to the size of the region of time or space. The Poisson
distribution is studied in more detail in the chapter on the Poisson Process.

Suppose that N has Poisson distribution with parameter a € (0, 00). Let P, denote the probability generating function of N. Then

1. P,(t) = et fort € R
2.E[N®W] =g

3.E(N) =

4.var(N)=a
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5.P(N iseven) = % (1+e29)
Proof
1. Using the exponential series,
o0 an o0
— e—a —a
D et =),

n=0 : n=0

(a)"

n!

e e, teR (4.6.27)

2. Repeated differentiation gives P," (t) = ea(t-1)ak | so the result follows from inversion formula,
3. This follows from (b) and the formula for mean.

4. This follows from (b) and the formula for variance.

5. This follows from even value formula.

The Poisson family of distributions is closed with respect to sums of independent variables, a very important property.

Suppose that X, Y have Poisson distributions with parameters a, b € (0, 00), respectively, and that X and Y are independent.
Then X 4+ Y has the Poisson distribution with parameter a +b .

Proof

In the notation of the previous result, note that P, P, = P,y .

The right distribution function of the Poisson distribution does not have a simple, closed-form expression. The following exercise gives
an upper bound.
Suppose that NV has the Poisson distribution with parameter a > 0. Then
a\n
P(N >n) §e”’“(—) , m>a (4.6.28)
n
Proof

The PGF of N is P(t) = e**) and hence the MGF is P (e!) = exp(ae’ —a) . From the Chernov bounds we have
P(N >n) <e ™ exp(ae’ —a) = exp(ae’ —a—tn) (4.6.29)

If n > a the expression on the right is minimized when ¢ = In(n/a). Substituting gives the upper bound.

The following theorem gives an important convergence result that is explored in more detail in the chapter on the Poisson process.
Suppose that p, € (0,1) for n € N and that np, — a € (0,00) as n — co. Then the binomial distribution with parameters n
and p,, converges to the Poisson distribution with parameter a as n — oo.

Proof

Let P, denote the probability generating function of the binomial distribution with parameters n and p,,. From the PGF of the
binomial distribution we have

n

Pn(t):[l—f—pn(t—l)]”:[1+npn( 1)] teR (4.6.30)

Using a famous theorem from calculus, P, () — e**"1) as n — co. But this is the PGF of the Poisson distribution with parameter
a, so the result follows from the continuity theorem for PGFs.

The Exponential Distribution

Recall that the exponential distribution is a continuous distribution on [0, co) with probability density function f given by
fit)y=re™, te(0,00) (4.6.31)

where r € (0,00) is the rate parameter. This distribution is widely used to model failure times and other random times, and in
particular governs the time between arrivals in the Poisson model. The exponential distribution is studied in more detail in the chapter
on the Poisson Process.
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Suppose that T has the exponential distribution with rate parameter r € (0, o) and let M denote the moment generating function
of T'. Then

L. M(s) = == for s € (—oo,r).

2.E(T") =n!/r" forn e N
Proof
(s)=E(eT) = [T etretdt = [ rettdt = L fors<r.
() (s) = forn € N

rn!

(r—g)™*1

1. M
2. M

Suppose that (77,75, ...) is a sequence of independent random variables, each having the exponential distribution with rate
parameter r € (0, 00). For n € N, , the moment generating function M, of U, =>_" | T; is given by

Mn(s):< ! )n s € (00, 7) (4.6.32)

Proof

This follows from the previous result and the result for sums of independent variables.

Random variable U,, has the Erlang distribution with shape parameter n and rate parameter r, named for Agner Erlang. This
distribution governs the nth arrival time in the Poisson model. The Erlang distribution is a special case of the gamma distribution and
is studied in more detail in the chapter on the Poisson Process.

Uniform Distributions

Suppose that a, b € R and a < b. Recall that the continuous uniform distribution on the interval [a, b] has probability density function
f given by

1
b—a’

f(z)= z € [a,b] (4.6.33)

The distribution corresponds to selecting a point at random from the interval. Continuous uniform distributions arise in geometric
probability and a variety of other applied problems.

Suppose that X is uniformly distributed on the interval [a, b] and let M denote the moment generating function of X. Then

bt _gat

LM@t)= W ift#£0 and M(0)=1
2.E(X") = m forn € N
Proof

L M(t) = [ e 7 do = S if ¢ £0. Trivially M(0) =1

2. This is a case where the MGF is not helpful, and it's much easier to compute the moments directly:

ny _ b n 1 o bn+1_an+1
EX") =/ a5, de= (n+1)(b—a)

Suppose that (X, Y") is uniformly distributed on the triangle T = {(z,y) € R? : 0 <z < y < 1} . Compute each of the following:

1. The joint moment generating function of (X,Y").
2. The moment generating function of X.

3. The moment generating function of Y.

4. The moment generating function of X +Y .

Answer

1. M(s,t) =25 =L 91

s(s+t) st lfs#oat#OM(0,0):]_
2 Mi(s)=2 (5 -5 -1) ifs#0.04(0)=1

S

3. My(t) =254 if £ £0. M (0) =1

4. M ()= 25 it £0. M, (0) =1
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A Bivariate Distribution

Suppose that (X,Y) has probability density function f given by f(z,y) ==z +y for (z,y) € [0,1]% Compute each of the
following:

1. The joint moment generating function (X, Y").
2. The moment generating function of X.

3. The moment generating function of Y.

4. The moment generating function of X +Y .

Answer

St —2st+s e’(st—s—t)+s
l.M(s,t):8+( 2st+s+t)+e’ (st—s—t)+s+t its£0,¢£0.M(0,0)=1

s2t2
2. My(s) = 2220222 if 5 20 My (0) =
3. My(t) = 3220842 54 £ (). Mo (0) =1

2t2
PUCDH 4oy 40 pr, (0) =1

3

4. M, (t) =

The Normal Distribution

Recall that the standard normal distribution is a continuous distribution on R)withprobabilitydensity function\ (¢given by
1

V2T

Normal distributions are widely used to model physical measurements subject to small, random errors and are studied in more detail in

the chapter on Special Distributions.

b(z2) = ——e 7, zeR (4.6.34)

Suppose that Z has the standard normal distribution and let M denote the moment generating function of Z. Then

1

l.M(): 3t forte]R
2E(Z") = -+-(n—1) ifnisevenand E (Z") =0 if n is odd.

Proof
1. First,

00 1 o q 2
M(t) — K (etZ) :/ etz \/ﬂe_ﬂ/Z dz:/ mexp(—% +t2) dZ (4635)

. . . 2 12
Completing the square in z gives exp(—% —l—tz) = exp[%t2 = %(z—t)ﬂ =e2’ exp[—% (z—t)?] . hence

t)—e_t2/ mexp[—l(z t)}dz:eétz (4.6.36)

because the function of z in the last integral is the probability density function for the normal distribution with mean ¢ and
variance 1.

2. Note that M (t) = t M (t). Thus, repeated differentiation gives M (™) (t) = p, (t)M(t) for n € N, where p,, is a polynomial of
degree n satisfying p/, , (t) = tpn(t) +p,(t) . Since pg = 1, it's easy to see that p, has only even or only odd terms,
depending on whether n is even or odd, respectively. Thus, E (X") = p,,(0) . This is 0 if n is odd, and is the constant term
1-3---(n—1) if n is even. Of course, we can also see that the odd order moments must be 0 by symmetry.

More generally, for 4 € R and o € (0, 00), recall that the normal distribution with mean g and standard deviation o is a continuous
distribution on R with probability density function f given by

f(m):Lexpl—%c_“)Z], zeR (4.6.37)

g

Moreover, if Z has the standard normal distribution, then X = 1+ 0 Z has the normal distribution with mean p and standard deviation
0. Thus, we can easily find the moment generating function of X:

I Suppose that X has the normal distribution with mean p and standard deviation o. The moment generating function of X is
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M (t) = exp (ut + %Uth) , teR (4.6.38)

Proof

This follows easily the previous result and the result for linear transformations: X = u+0Z where Z has the standard normal
distribution. Hence

M(@)=E (etX) = eME (e"tz) = e”te%”%z, teR (4.6.39)

So the normal family of distributions in closed under location-scale transformations. The family is also closed with respect to sums of
independent variables:

If X and Y are independent, normally distributed random variables then X +Y has a normal distribution.

Proof

Suppose that X has the normal distribution with mean g € R and standard deviation o € (0, 00), and that Y has the normal
distribution with mean » € R and standard deviation 7 € (0, c0). By (14), the MGF of X +Y is

1 1 1
Mx.y(t) = Mx(t)My(t) = exp (ut + EUZtZ) exp (l/t + 572t2> =exp [(;H—z/)t + 5(02 +7'2) t* (4.6.40)

which we recognize as the MGF of the normal distribution with mean g+ v and variance ¢ +72 . Of course, we already knew
that E(X+Y)=E(X)+E(Y) , and since X and Y are independent, var(X +Y)=var(X)+var(Y) , so the new
information is that the distribution is also normal.

The Pareto Distribution

Recall that the Pareto distribution is a continuous distribution on [1, co)withprobabilitydensity function\ (fgiven by
a
fl@)=—x

i © €[1,00) (4.6.41)

where a € (0, 00) is the shape parameter. The Pareto distribution is named for Vilfredo Pareto. It is a heavy-tailed distribution that is
widely used to model financial variables such as income. The Pareto distribution is studied in more detail in the chapter on Special
Distributions.

Suppose that X has the Pareto distribution with shape parameter a, and let M denote the moment generating function of X. Then

LE(X")=-—ifn<aandE(X")=o0 ifn>a
2. M(t) =00 fort >0

Proof

o0 n_a

1. We have seen this computation before. E (X") = [, z ot -

a—n

dz = [{° "' dz . The integral evaluates to ifn<a
andoo ifn>a.

2. This follows from part (a). Since X > 1, M(t) is increasing in ¢. Thus M (¢) <1 if ¢t <0.If M(¢) < oo for some ¢ > 0, then
M (t) would be finite for ¢ in an open interval about 0, in which case X would have finite moments of all orders. Of course, it's

also easy to see directly from the integral that M (¢) = oco fort >0

On the other hand, like all distributions on R, the Pareto distribution has a characteristic function. However, the characteristic function
of the Pareto distribution does not have a simple, closed form.

The Cauchy Distribution
Recall that the (standard) Cauchy distribution is a continuous distribution on R with probability density function f given by

fle) = —

- z€R 4.6.42
m(1+x2) v ( )

and is named for Augustin Cauchy. The Cauch distribution is studied in more generality in the chapter on Special Distributions. The
graph of f is known as the Witch of Agnesi, named for Maria Agnesi.

I Suppose that X has the standard Cauchy distribution, and let M denote the moment generating function of X. Then
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1. E(X) does not exist.
2. M(t) =00 fort #0.
Proof

&2
0 (1+z2)

dz = —oo foreverya € R, so [*° dz

1. We have seen this computation before. [* —*— dz = oo and [*

n(14z?) 1+:1: )

does not exist.
2. Note that [~

dm—o<>1f1£>0andfoo dzr =00 ift <0.

1+ ) 1+ac2)

Once again, all distributions on R have characteristic functions, and the standard Cauchy distribution has a particularly simple one.

Let x denote the characteristic function of X. Then x(t) =e !l fort € R.
Proof

The proof of this result requires contour integrals in the complex plane, and is given in the section on the Cauchy distribution in the
chapter on special distributions.

Counterexample

For the Pareto distribution, only some of the moments are finite; so course, the moment generating function cannot be finite in an
interval about 0. We will now give an example of a distribution for which all of the moments are finite, yet still the moment generating
function is not finite in any interval about 0. Furthermore, we will see two different distributions that have the same moments of all
orders.

Suppose that Z has the standard normal distribution and let X = eZ . The distribution of X is known as the (standard) lognormal
distribution. The lognormal distribution is studied in more generality in the chapter on Special Distributions. This distribution has finite
moments of all orders, but infinite moment generating function.

X has probability density function f given by

(@) = — exp(——an(w)), z>0 (4.6.43)

LE(X") = er™ forneN.
2.E (e*) = oo fort >0.
Proof
We use the change of variables theorem. The transformation is z = e* so the inverse transformation is z =Inz for z € (0, c0)

and z € R. Letting ¢ denote the PDF of Z, it follows that the PDF of X is f(z) = ¢(z) dz/dx = ¢ (Inz) /z forz > 0.

1. We use the moment generating function of the standard normal distribution given above: E (X") =E (&%) = /2 .
2. Note that

E(etX)=lEli (ti)nlzi o =3 ~ t"=o00, t>0 (4.6.44)

n=0 n=0 n=0

The interchange of expected value and sum is justified since X is nonnegative. See the advanced section on properties of the
integral in the chapter on Distributions for more details.

Next we construct a different distribution with the same moments as X.

Let h be the function defined by h(z) = sin(27Inz) for > 0 and let g be the function defined by g(z) = f(z) [1 + h(z)] for
x > 0. Then

1. g is a probability density function.
2. If Y has probability density function g then E (Y") = e forn eN

Proof
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Figure 4.6.1: The graphs of f and g, probability density functions for two distributions with the same moments of all orders.
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