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12.5: The Matching Problem

Definitions and Notation

The Matching Experiment

The matching experiment is a random experiment that can the formulated in a number of colorful ways:

o Suppose that n male-female couples are at a party and that the males and females are randomly paired for a dance. A match
occurs if a couple happens to be paired together.

e An absent-minded secretary prepares n letters and envelopes to send to n different people, but then randomly stuffs the letters
into the envelopes. A match occurs if a letter is inserted in the proper envelope.

e n people with hats have had a bit too much to drink at a party. As they leave the party, each person randomly grabs a hat. A
match occurs if a person gets his or her own hat.

These experiments are clearly equivalent from a mathematical point of view, and correspond to selecting a random permutation
X = (X1, Xs,...,X,) of the population D,, ={1,2,...,n}. Here are the interpretations for the examples above:

e Number the couples from 1 to . Then X; is the number of the woman paired with the ith man.
o Number the letters and corresponding envelopes from 1 to n. Then X is the number of the envelope containing the ith letter.
o Number the people and their corresponding hats from 1 to n. Then X is the number of the hat chosen by the ith person.

Our modeling assumption, of course, is that X is uniformly distributed on the sample space of permutations of D,,. The number of
objects n is the basic parameter of the experiment. We will also consider the case of sampling with replacement from the
population D,,, because the analysis is much easier but still provides insight. In this case, X is a sequence of independent random
variables, each uniformly distributed over D,,.

Matches

We will say that a match occurs at position j if X; =j. Thus, number of matches is the random variable N defined
mathematically by

N,=>1; (12.5.1)
j=1

where I; =1(X,; = j) is the indicator variable for the event of match at position j. Our problem is to compute the probability
distribution of the number of matches. This is an old and famous problem in probability that was first considered by Pierre-Remond
Montmort; it sometimes referred to as Montmort's matching problem in his honor.

Sampling With Replacement

First let's solve the matching problem in the easy case, when the sampling is with replacement. Of course, this is not the way that
the matching game is usually played, but the analysis will give us some insight.

(I, I, ..., I,) is a sequence of n Bernoulli trials, with success probability %

Proof

The variables are independent since the sampling is with replacement. Since X; is uniformly distributed,

n

1

The number of matches N, has the binomial distribution with trial parameter n and success parameter =-.

P(N, = k) = (Z) (%)k (1 - %) n_k, ke{0,1,...,n} (12.5.2)

Proof

This follows immediately from the previous result on Bernoulli trials.
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The mean and variance of the number of matches are
1.E(N,) =1
2.var(N,) = anl

Proof

These results follow from the previous result on the binomial distribution of N,,. Recall that the binomial distribution with
parameters 7 and p has mean np and variance np(1 —p) .

The distribution of the number of matches converges to the Poisson distribution with parameter 1 as n — oo
-1
e
P(ank)%ﬂasn%ooforkeN (12.5.3)
Proof

This is a special case of the convergence of the binomial distribution to the Poisson. For a direct proof, note that

1 nk 1\""*
P(N, :k):En—k(l—E) (12.5.4)

1

® n—k -
But 2= — lasn—ooand (1—3) ~ —e ' asn— oo by a famous limit from calculus.

Sampling Without Replacement

Now let's consider the case of real interest, when the sampling is without replacement, so that X is a random permutation of the
elements of D,, ={1,2,...,n}.

Counting Permutations with Matches

To find the probability density function of IV,,, we need to count the number of permutations of D,, with a specified number of
matches. This will turn out to be easy once we have counted the number of permutations with no matches; these are called
derangements of D,,. We will denote the number of permutations of D,, with exactly k matches by b, (k) = #{N,, =k} for
ke€{0,1,...,n}. In particular, b, (0) is the number of derrangements of D,,.

The number of derrangements is

b, (0) =n! i (1Y (12.5.5)

Proof
By the complement rule for counting measure b, (0) = n! —#(U;"_; {X; =}) . From the inclusion-exclusion formula,

n

ba(0)=n!—> (1) Y #{X;=iforallic J} (12.5.6)

j=1 JCD,,, #(J)=j

But if JC D,, with #(J) =j then #{X; =i foralli € J} = (n—j)! . Finally, the number of subsets J of D, with
#(J)=jis (?) Substituting into the displayed equation and simplifying gives the result.

The number of permutations with exactly k£ matches is
n! T (—1)

bn(k) = — —, ke{0,1,...,n} (12.5.7)
e

Proof

The following is two-step procedure that generates all permutations with exactly k£ matches: First select the k integers that will
match. The number of ways of performing this step is (Z) Second, select a permutation of the remaining n — k integers with
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| no matches. The number of ways of performing this step is b,,_(0). By the multiplication principle of combinatorics it follows

that b, (k) = (Z) by, —(0) . Using the result above for derrangements and simplifying gives the results.

The Probability Density Function

The probability density function of the number of matches is

(—})j

7

\ght

1 n
P(N, =k) = I , ke{0,1,...,n} (12.5.8)

J

Il
=}

Proof

This follows directly from the result above on permutations with matches, since P(N,, = k) = #{N, =k} /n! .

In the matching experiment, vary the parameter n and note the shape and location of the probability density function. For
selected values of n, run the simulation 1000 times and compare the empirical density function to the true probability density
function.

P(N,=n—-1)=0.
Proof

A simple probabilistic proof is to note that the event is impossible—if there are » —1 matches, then there must be n matches.
An algebraic proof can also be constructed from the probability density function of IV,, above.

The distribution of the number of matches converges to the Poisson distribution with parameter 1 as n — oo
el
P(N, =k) — < 381, keN (12.5.9)
Proof
From the power series for the exponential function,

n—

=
|
| =
N—r
<.

N Gt )
7 —>z; 7 =e  asn— oo (12.5.10)
=

Il
o

J

So the result follows from the probability density function of IV,, above.

The convergence is remarkably rapid.

In the matching experiment, increase n and note how the probability density function stabilizes rapidly. For selected values of
n, run the simulation 1000 times and compare the relative frequency function to the probability density function.

Moments

The mean and variance of the number of matches could be computed directly from the distribution. However, it is much better to
use the representation in terms of indicator variables. The exchangeable property is an important tool in this section.

E(I;) =L forje{1,2,...,n}.
Proof

X is uniformly distributed on D,, for each jso P(I; =1) =P(X; =z) =

3|~

E(N,) =1 foreachn
Proof

This follows from the previous result and basic properties of expected value.
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Thus, the expected number of matches is 1, regardless of n, just as when the sampling is with replacement.

var(l;) = "_21 forje{1,2,...,n}

n

Proof

This follows from P(I; =1) = % .

A match in one position would seem to make it more likely that there would be a match in another position. Thus, we might guess
that the indicator variables are positively correlated.

For distinct j, k € {1,2,...,n},

L cov(lj, Ii) = ks

2. cor(I;, I) = (n_11)2

Proof

Note that I;Ir is the indicator variable of the event of a match in position j and a match in position k. Hence by the
exchangeable property P(I;[y =1) =P(I; = 1)P(Iy =1 | I[; =1) = L= Asbefore, P(I; = 1) =P(I; =1) = 1 . The

n n—1
results now follow from standard computational formulas for covariance and correlation.

Note that when n = 2, the event that there is a match in position 1 is perfectly correlated with the event that there is a match in
position 2. This makes sense, since there will either be 0 matches or 2 matches.

var(N,) =1 foreveryn € {2,3,...}.

Proof

This follows from the previous two results on the variance and the covariance of the indicator variables, and basic properties of
covariance. Recall that var(N,,) =77 ; 3¢ cov(I}, i) .

In the matching experiment, vary the parameter n and note the shape and location of the mean + standard deviation bar. For
selected values of the parameter, run the simulation 1000 times and compare the sample mean and standard deviation to the
distribution mean and standard deviation.

l For distinct j, k € {1,2,...,n}, cov(I;,I;) = 0 asn — co.

Thus, the event that a match occurs in position j is nearly independent of the event that a match occurs in position k if n is large.
For large n, the indicator variables behave nearly like n Bernoulli trials with success probability %, which of course, is what
happens when the sampling is with replacement.

A Recursion Relation

In this subsection, we will give an alternate derivation of the distribution of the number of matches, in a sense by embedding the
experiment with parameter n into the experiment with parameter n 4 1.

The probability density function of the number of matches satisfies the following recursion relation and initial condition:

1.P(N, =k) = (k+1)P(Npyyy =k+1) forke{0,1,...,n}.

2P(N;=1)=1.
Proof
First, consider the random permutation (X7, X2,...,Xn,Xnt1) of Dpyq. Note that (Xi,Xs,...,X,) is a random
permutation of D,, if and only if X,,;; =n 41 if and only if I,,;; = 1. It follows that

P(N, =k) = P(Npyy =k+1| Ly =1), ke{0,1,...,n} (12.5.11)

From the defnition of conditional probability argument we have
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]P)(ITL-H. = 1 | NTL-H. = k+1)

P(N, =k) =P(Ny.1 = k+1 ke{o,1,..., 12.5.12
(V=) =BV =+ ) 2o ST k{01, n) (12512
But P(I,41=1) = n+r1 and P(I,41 =1| Ny =k+1) = z—ﬁ . Substituting into the last displayed equation gives the

recurrence relation. The initial condition is obvious, since if n = 1 we must have one match.

This result can be used to obtain the probability density function of IV, recursively for any n.

The Probability Generating Function
Next recall that the probability generating function of IV, is given by

Gy (t) =E (t") :iP(anj)tf, teR (12.5.13)

The family of probability generating functions satisfies the following differential equations and ancillary conditions:

LG ,(t) =Gq(t) fort € R andn € N

2.Gp(1)=1forn e N,

Note also that G1(¢) =t fort € R. Thus, the system of differential equations can be used to compute G,, for any n € N .

In particular, fort € R,
1. Go(t) = 3 + 3t
2.G3(t) =3+ 3t+ 3t
3.Gylt) = 3 + gt + 2% + 55t*

Fork, n € N, withk <n,

GV (t)=Gni(t), teR (12.5.14)
Proof

This follows from differential equation for the PGF given above.

Forn e N,

1
P(N,=k) = 5 P(N\p=0), ke{0,1,...,n-1} (12.5.15)

Proof

This follows from the previous result and basic properties of generating functions.

Examples and Applications

A secretary randomly stuffs 5 letters into 5 envelopes. Find each of the following:

1. The number of outcomes with exactly k matches, for each k € {0,1,2,3,4,5}
2. The probability density function of the number of matches.
3. The covariance and correlation of a match in one envelope and a match in another envelope.

Answer
1. k 0 1 2 3 4 5
bs (k) 44 45 20 10 0 1
2 k 0 1 2 3 4 5
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P(N; = k) 0.3667 0.3750 0.1667 0.0833 0

correlation -+

q 1
3. Covariance: e T

Ten married couples are randomly paired for a dance. Find each of the following:

1. The probability density function of the number of matches.
2. The mean and variance of the number of matches.
3. The probability of at least 3 matches.

0.0083

Answer
1.k P(Nyp = k)

0 e ~ 0.3678795
1 6B ~0.3678792
2 28 ~0.1839410
3 2B ~0.06130952
4 e ~ 0.01533565
5 o7 ~ 0.003055556
6 7 ~ 0.0005208333
7 =13 ~ 0.00006613757
8 e ~ 0.00001240079
9 0
10 Toam & 2755732 % 1077

2. E(Nlo) =1 9 Va.I‘(Nw) =1

3. P(Nyp > 3) = {5291 ~0.08030037

1. The true probabilities
2. The relative frequencies from the simulation
3. The limiting Poisson probabilities

Answer

1. See part (a) of the previous problem.

In the matching experiment, set 7 = 10. Run the experiment 1000 times and compare the following for the number of matches:

3 [iE ey
0 0.3678794
| 0.3678794
2 0.1839397
3 0.06131324
4 0.01532831
5 0.003065662
6 0.0005109437
7 0.00007299195
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8 9.123994 x 1076
9 1.013777 x 1076
10 1.013777 x 1077

This page titled 12.5: The Matching Problem is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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