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12.3: The Multivariate Hypergeometric Distribution
       

Basic Theory

The Multitype Model

As in the basic sampling model, we start with a finite population  consisting of  objects. In this section, we suppose in addition that each
object is one of  types; that is, we have a multitype population. For example, we could have an urn with balls of several different colors, or a
population of voters who are either democrat, republican, or independent. Let  denote the subset of all type  objects and let  for 

. Thus  and . The dichotomous model considered earlier is clearly a special case, with .

As in the basic sampling model, we sample  objects at random from . Thus the outcome of the experiment is  where 
 is the th object chosen. Now let  denote the number of type  objects in the sample, for . Note that  so

if we know the values of  of the counting variables, we can find the value of the remaining counting variable. As with any counting
variable, we can express  as a sum of indicator variables:

For 

We assume initially that the sampling is without replacement, since this is the realistic case in most applications.

The Joint Distribution

Basic combinatorial arguments can be used to derive the probability density function of the random vector of counting variables. Recall that
since the sampling is without replacement, the unordered sample is uniformly distributed over the combinations of size  chosen from .

The probability density funtion of  is given by

Proof

The binomial coefficient  is the number of unordered subsets of  (the type  objects) of size . The binomial coefficient  is the
number of unordered samples of size  chosen from . Thus the result follows from the multiplication principle of combinatorics and the
uniform distribution of the unordered sample

The distribution of  is called the multivariate hypergeometric distribution with parameters , , and . We
also say that  has this distribution (recall again that the values of any  of the variables determines the value of the
remaining variable). Usually it is clear from context which meaning is intended. The ordinary hypergeometric distribution corresponds to .

An alternate form of the probability density function of  is

Combinatorial Proof

The combinatorial proof is to consider the ordered sample, which is uniformly distributed on the set of permutations of size  from . The
multinomial coefficient on the right is the number of ways to partition the index set  into  groups where group  has 
elements (these are the coordinates of the type  objects). The number of (ordered) ways to select the type  objects is . The
denominator  is the number of ordered samples of size  chosen from .

Algebraic Proof

There is also a simple algebraic proof, starting from the first version of probability density function above. Write each binomial coefficient 
 and rearrange a bit.

The Marginal Distributions

For ,  has the hypergeometric distribution with parameters , , and 
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Proof

An analytic proof is possible, by starting with the first version or the second version of the joint PDF and summing over the unwanted
variables. However, a probabilistic proof is much better:  is the number of type  objects in a sample of size  chosen at random (and
without replacement) from a population of  objects, with  of type  and the remaining  not of this type.

Grouping

The multivariate hypergeometric distribution is preserved when the counting variables are combined. Specifically, suppose that 
 is a partition of the index set  into nonempty, disjoint subsets. Let  and  for 

 has the multivariate hypergeometric distribution with parameters , , and .

Proof

Again, an analytic proof is possible, but a probabilistic proof is much better. Effectively, we now have a population of  objects with 
types, and  is the number of objects of the new type . As before we sample  objects without replacement, and  is the number of
objects in the sample of the new type .

Note that the marginal distribution of  given above is a special case of grouping. We have two types: type  and not type . More generally, the
marginal distribution of any subsequence of  is hypergeometric, with the appropriate parameters.

Conditioning

The multivariate hypergeometric distribution is also preserved when some of the counting variables are observed. Specifically, suppose that 
 is a partition of the index set  into nonempty, disjoint subsets. Suppose that we observe  for . Let 

 and .

The conditional distribution of  given  is multivariate hypergeometric with parameters , , and .

Proof

Once again, an analytic argument is possible using the definition of conditional probability and the appropriate joint distributions. A
probabilistic argument is much better. Effectively, we are selecting a sample of size  from a population of size , with  objects of type 
for each .

Combinations of the grouping result and the conditioning result can be used to compute any marginal or conditional distributions of the counting
variables.

Moments

We will compute the mean, variance, covariance, and correlation of the counting variables. Results from the hypergeometric distribution and the
representation in terms of indicator variables are the main tools.

For ,

1. 
2. 

Proof

This follows immediately, since  has the hypergeometric distribution with parameters , , and .

Now let , the indicator variable of the event that the th object selected is type , for  and .

Suppose that  and  are distinct elements of , and  and  are distinct elements of . Then
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Recall that if  and  are events, then . In the first case the events are that sample item  is type 
and that sample item  is type . These events are disjoint, and the individual probabilities are  and . In the second case, the events are
that sample item  is type  and that sample item  is type . The probability that both events occur is  while the individual
probabilities are the same as in the first case.

Suppose again that  and  are distinct elements of , and  and  are distinct elements of . Then

Proof

This follows from the previous result and the definition of correlation. Recall that if  is an indicator variable with parameter  then 
.

In particular,  and  are negatively correlated while  and  are positively correlated.

For distinct ,

Sampling with Replacement

Suppose now that the sampling is with replacement, even though this is usually not realistic in applications.

The types of the objects in the sample form a sequence of  multinomial trials with parameters .

The following results now follow immediately from the general theory of multinomial trials, although modifications of the arguments above
could also be used.

 has the multinomial distribution with parameters  and :

For distinct ,

1. 
2. 
3. 

4. 

Comparing with our previous results, note that the means and correlations are the same, whether sampling with or without replacement. The
variances and covariances are smaller when sampling without replacement, by a factor of the finite population correction factor 

Convergence to the Multinomial Distribution

Suppose that the population size  is very large compared to the sample size . In this case, it seems reasonable that sampling without
replacement is not too much different than sampling with replacement, and hence the multivariate hypergeometric distribution should be well
approximated by the multinomial. The following exercise makes this observation precise. Practically, it is a valuable result, since in many cases
we do not know the population size exactly. For the approximate multinomial distribution, we do not need to know  and  individually, but
only in the ratio .

Suppose that  depends on  and that  as  for . For fixed , the multivariate hypergeometric
probability density function with parameters , , and  converges to the multinomial probability density function with
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parameters  and .

Proof

Consider the second version of the hypergeometric probability density function. In the fraction, there are  factors in the denominator and 
in the numerator. If we group the factors to form a product of  fractions, then each fraction in group  converges to .

Examples and Applications

A population of 100 voters consists of 40 republicans, 35 democrats and 25 independents. A random sample of 10 voters is chosen. Find
each of the following:

1. The joint density function of the number of republicans, number of democrats, and number of independents in the sample
2. The mean of each variable in (a).
3. The variance of each variable in (a).
4. The covariance of each pair of variables in (a).
5. The probability that the sample contains at least 4 republicans, at least 3 democrats, and at least 2 independents.

Answer

1.  for  with 

2. , , 
3. , , 
4. , , 
5. 0.2474

Cards

Recall that the general card experiment is to select  cards at random and without replacement from a standard deck of 52 cards. The special
case  is the poker experiment and the special case  is the bridge experiment.

In a bridge hand, find the probability density function of

1. The number of spades, number of hearts, and number of diamonds.
2. The number of spades and number of hearts.
3. The number of spades.
4. The number of red cards and the number of black cards.

Answer

Let , , , , and  denote the number of spades, hearts, diamonds, red cards, and black cards, respectively, in the hand.

1.  for  with 

2.  for  with 

3.  for 

4.  for  with 

In a bridge hand, find each of the following:

1. The mean and variance of the number of spades.
2. The covariance and correlation between the number of spades and the number of hearts.
3. The mean and variance of the number of red cards.

Answer

Let , , and  denote the number of spades, hearts, and red cards, respectively, in the hand.

1. , 
2. 
3. , 
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In a bridge hand, find each of the following:

1. The conditional probability density function of the number of spades and the number of hearts, given that the hand has 4 diamonds.
2. The conditional probability density function of the number of spades given that the hand has 3 hearts and 2 diamonds.

Answer

Let ,  and  denote the number of spades, hearts, and diamonds respectively, in the hand.

1.  for  with 

2.  for 

In the card experiment, a hand that does not contain any cards of a particular suit is said to be void in that suit.

Use the inclusion-exclusion rule to show that the probability that a poker hand is void in at least one suit is

In the card experiment, set . Run the simulation 1000 times and compute the relative frequency of the event that the hand is void in at
least one suit. Compare the relative frequency with the true probability given in the previous exercise.

Use the inclusion-exclusion rule to show that the probability that a bridge hand is void in at least one suit is
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