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8.4: Estimation in the Two-Sample Normal Model
        

As we have noted before, the normal distribution is perhaps the most important distribution in the study of mathematical statistics, in part
because of the central limit theorem. As a consequence of this theorem, measured quantities that are subject to numerous small, random
errors will have, at least approximately, normal distributions. Such variables are ubiquitous in statistical experiments, in subjects varying
from the physical and biological sciences to the social sciences.

In this section, we will study estimation problems in the two-sample normal model and in the bivariate normal model. This section parallels
the section on Tests in the Two-Sample Normal Model in the Chapter on Hypothesis Testing.

The Two-Sample Normal Model

Preliminaries

Suppose that  is a random sample of size  from the normal distribution with mean  and standard deviation ,
and that  is a random sample of size  from the normal distribution with mean  and standard deviation . Moreover,
suppose that the samples  and  are independent. Usually, the parameters are unknown, so the parameter space for our vector of
parameters  is .

This type of situation arises frequently when the random variables represent a measurement of interest for the objects of the population, and
the samples correspond to two different treatments. For example, we might be interested in the blood pressure of a certain population of
patients. The  vector records the blood pressures of a control sample, while the  vector records the blood pressures of the sample
receiving a new drug. Similarly, we might be interested in the yield of an acre of corn. The  vector records the yields of a sample receiving
one type of fertilizer, while the  vector records the yields of a sample receiving a different type of fertilizer.

Usually our interest is in a comparison of the parameters (either the means or standard deviations) for the two sampling distributions. In this
section we will construct confidence intervals for the difference of the distribution means  and for the ratio of the distribution
variances . As with previous estimation problems, the construction depends on finding appropriate pivot variables.

For a generic sample  from a distribution with mean , we will use our standard notation for the sample mean and for
the sample variance.

We will need to also recall the special properties of these statistics when the sampling distribution is normal. The special pivot distributions
that will play a fundamental role in this section are the standard normal, the student , and the Fisher  distributions. To construct our
interval estimates we will need the quantiles of these distributions. The quantiles can be computed using the special distribution calculator or
from most mathematical and statistical software packages. Here is the notation we will use:

Let  and let .

1.  denotes the quantile of order  for the standard normal distribution.
2.  denotes the quantile of order  for the student  distribution with  degrees of freedom.
3.  denotes the quantile of order  for the student  distribution with  degrees of freedom in the numerator and  degrees of

freedom in the denominator.

Recall that by symmetry,  and  for  and . On the other hand, there is no simple
relationship between the left and right tail probabilities of the  distribution.

Confidence Intervals for the Difference of the Means with Known Variances

First we will construct confidence intervals for  under the assumption that the distribution variances  and  are known. This is not
always an artificial assumption. As in the one sample normal model, the variances are sometime stable, and hence are at least approximately
known, while the means change under different treatments. First recall the following basic facts:

The difference of the sample means  has the normal distribution with mean  and variance . Hence
the standard score of the difference of the sample means
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has the standard normal distribution. Thus, this variable is a pivotal variable for  when  are known.

The basic confidence interval and upper and lower bound are now easy to construct.

For ,

1.  is a  confidence interval for .

2.  is a  confidence lower bound for .

3.  is a  confidence upper bound for .

Proof

The variable  given above has the standard normal distribution. Hence each of the following events has probability  by
definition of the quantiles:

1. 
2. 
3. 

In each case, solving the inequality for  gives the result.

The two-sided interval in part (a) is the symmetric interval corresponding to  in both tails of the standard normal distribution. As usual,
we can construct more general two-sided intervals by partitioning  between the left and right tails in anyway that we please.

For every , a  confidence interval for  is

1.  gives the symmetric two-sided interval.
2.  gives the interval with the confidence lower bound.
3.  gives the interval with confidence upper bound.

Proof

From the distribution of the pivot variable and the definition of the quantile function,

Solving for  in the inequality gives the confidence interval.

The following theorem gives some basic properties of the length of this interval.

The (deterministic) length of the general two-sided confidence interval is

1.  is a decreasing function of  and a decreasing function of .
2.  is an increasing function of  and an increasing function of 
3.  is an decreasing function of  and hence an increasing function of the confidence level.
4. As a function of ,  decreases and then increases, with minimum value at .

Part (a) means that we can make the estimate more precise by increasing either or both sample sizes. Part (b) means that the estimate
becomes less precise as the variance in either distribution increases. Part (c) we have seen before. All other things being equal, we can
increase the confidence level only at the expense of making the estimate less precise. Part (d) means that the symmetric, equal-tail
confidence interval is the best of the two-sided intervals.

Z =
[M(Y ) −M(X)] −(ν −μ)

/m + /nσ2 τ 2− −−−−−−−−−−
√

(8.4.3)

ν −μ σ, τ

α ∈ (0, 1)

[M(Y ) −M(X) −z (1 − ) , M(Y ) −M(X) +z (1 − ) ]α

2
+σ2

m
τ 2

n

− −−−−−−
√ α

2
+σ2

m
τ 2

n

− −−−−−−
√ 1 −α ν −μ

M(Y ) −M(X) −z(1 −α) +σ2

m
τ 2

n

− −−−−−−
√ 1 −α ν −μ

M(Y ) −M(X) +z(1 −α) +σ2

m
τ 2

n

− −−−−−−
√ 1 −α ν −μ

T 1 −α

{−z (1 − ) ≤ Z ≤ z (1 − )}α

2
α

2

{Z ≥ z(1 −α)}

{Z ≤ −z(1 −α)}

ν −μ

α/2

α

α, p ∈ (0, 1) 1 −α ν −μ

[M(Y ) −M(X) −z(1 −αp) , M(Y ) −M(X) −z(α −pα) ]+
σ2

m

τ 2

n

− −−−−−−−
√ +

σ2

m

τ 2

n

− −−−−−−−
√ (8.4.4)

p = 1
2

p → 1

p → 0

P[z(α −pα) < < z(1 −pα)] = 1 −α
[M(Y ) −M(X)] −(ν −μ)

/m + /nσ2 τ 2− −−−−−−−−−−
√

(8.4.5)

ν −μ

L = [z(1 −αp) −z(α −αp)] +
σ2

m

τ 2

n

− −−−−−−−
√ (8.4.6)

L m n

L σ τ

L α

p L p = 1
2

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10203?pdf


8.4.3 https://stats.libretexts.org/@go/page/10203

Confidence Intervals for the Difference of the Means with Unknown Variances

Our next method is a construction of confidence intervals for the difference of the means  without needing to know the standard
deviations  and . However, there is a cost; we will assume that the standard deviations are the same, , but the common value is
unknown. This assumption is reasonable if there is an inherent variability in the measurement variables that does not change even when
different treatments are applied to the objects in the population. We need to recall some basic facts from our study of special properties of
normal samples.

The pooled estimate of the common variance  is

The random variable

has the student  distribution with  degrees of freedom

Note that  is a weighted average of the sample variances, with the degrees of freedom as the weight factors. Note also that  is a
pivot variable for  and so we can construct confidence intervals for  in the usual way.

For ,

1.  is a 

confidence interval for .

2.  is a  confidence lower bound for .

3.  is a  confidence upper bound for .

Proof

The variable  given above has the standard normal distribution. Hence each of the following events has probability  by
definition of the quantiles:

1. 
2. 
3. 

In each case, solving the inequality for  gives the result.

The two-sided interval in part (a) is the symmetric interval corresponding to  in both tails of the student  distribution. As usual, we can
construct more general two-sided intervals by partitioning  between the left and right tails in anyway that we please.

For every , a  confidence interval for  is

1.  gives the symmetric two-sided interval.
2.  gives the interval with the confidence lower bound.
3.  gives the inteval with confidence upper bound.

Proof

From the distribution of the pivot variable and the definition of the quantile function,

Solving for  in the inequality gives the confidence interval.

The next result considers the length of the general two-sided interval.
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The (random) length of the two-sided interval above is

1.  is an decreasing function of  and hence an increasing function of the confidence level.
2. As a function of ,  decreases and then increases, with minimum value at .

As in the case of known variances, part (c) means that all other things being equal, we can increase the confidence level only at the expense
of making the estimate less precise. Part (b) means that the symmetric, equal-tail confidence interval is the best of the two-sided intervals.

Confidence Intervals for the Ratio of the Variances

Our next construction will produce interval estimates for the ratio of the variances  (or by taking square roots, for the ratio of the
standard deviations ). Once again, we need to recall some basic facts from our study of special properties of random samples from the
normal distribution.

The ratio

has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator, and hence
this variable is a pivot variable for .

The pivot variable  can be used to construct confidence intervals for  in the usual way.

For ,

1.  is a  confidence interval for .

2.  is a  confidence lower bound for .

3.  is a  confidence upper bound for .

Proof

The variable  given above has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in
the denominator. Hence each of the following events has probability  by definition of the quantiles:

1. 
2. 
3. 

In each case, solving the inequality for  gives the result.

The two-sided confidence interval in part (a) is the equal-tail confidence interval, and is the one commonly used. But as usual, we can
partition  between the left and right tails of the distribution of the pivot variable in any way that we please.

For every , a  confidence set for  is

1.  gives the equal-tail, two-sided interval.
2.  gives the interval with the confidence lower bound.
3.  gives the inteval with confidence upper bound.

Proof

From the  pivot variable and the definition of the quantile function,

Solving for  in the inequality.
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The length of the general confidence interval is considered next.

The (random) length of the general two-sided confidence interval above is

Assuming that  and ,

1.  is an decreasing function of  and hence an increasing function of the confidence level.
2. 

3. 

Proof

Parts (b) and (c) follow since  as the  distribution with  degrees of freedom in the numerator and  degrees of

freedom in the denominator.

Optimally, we might want to choose  so that  is minimized. However, this is difficult computationally, and fortunately the equal-tail
interval with  is not too far from optimal when the sample sizes  and  are large.

Estimation in the Bivariate Normal Model

In this subsection, we consider a model that is superficially similar to the two-sample normal model, but is actually much simpler. Suppose
that

is a random sample of size  from the bivariate normal distribution of a random vector , with , , , 
, and .

Thus, instead of a pair of samples, we have a sample of pairs. This type of model frequently arises in before and after experiments, in which
a measurement of interest is recorded for a sample of  objects from the population, both before and after a treatment. For example, we
could record the blood pressure of a sample of  patients, before and after the administration of a certain drug. The critical point is that in
this model,  and  are measurements made on the same underlying object in the sample. As with the two-sample normal model, the
interest is usually in estimating the difference of the means.

We will use our usual notation for the sample means and variances of  and . Recall also that
the sample covariance of , is

(not to be confused with the pooled estimate of the standard deviation in the two sample model).

The vector of differences  is a random sample of size  from the distribution of ,
which is normal with

1. 
2. 

The sample mean and variance of the sample of differences are given by

1. 
2. 

Thus, the sample of differences  fits the normal model for a single variable. The section on Estimation in the Normal Model could be
used to obtain confidence sets and intervals for the parameters .

In the setting of this subsection, suppose that  and  are independent. Mathematically this
fits both models—the two-sample normal model and the bivariate normal model. Which procedure would work better for estimating the
difference of means ?
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1. If the standard deviations  and  are known.
2. If the standard deviations  and  are unknown.

Answer
1. The two methods are equivalent.
2. The bivariate normal model works better.

Although the setting in the last problem fits both models mathematically, only one model would make sense in a real problem. Again, the
critical point is whether  makes sense as a pair of random variables (measurements) corresponding to a given object in the sample.

Computational Exercises

A new drug is being developed to reduce a certain blood chemical. A sample of 36 patients are given a placebo while a sample of 49
patients are given the drug. Let  denote the measurement for a patient given the placebo and  the measurement for a patient given
the drug (in mg). The statistics are , , , .

1. Compute the 90% confidence interval for .
2. Assuming that , compute the 90% confidence interval for .
3. Based on (a), is the assumption that  reasonable?
4. Based on (b), is the drug effective?

Answer
1. 
2. 
3. Perhaps not.
4. Yes

A company claims that an herbal supplement improves intelligence. A sample of 25 persons are given a standard IQ test before and after
taking the supplement. Let  denote the IQ of a subject before taking the supplement and  the IQ of the subject after the supplement.
The before and after statistics are , , , , . Do you believe the company's
claim?

Answer

A 90% confidence lower bound for the difference in IQ is 2.675. There may be a vary small increase.

In Fisher's iris data, let  denote consider the petal length of a Versicolor iris and  the petal length of a Virginica iris.

1. Compute the 90% confidence interval for .
2. Assuming that , compute the 90% confidence interval for .
3. Based on (a), is the assumption that  reasonable?

Answer
1. 
2. 
3. Yes

A plant has two machines that produce a circular rod whose diameter (in cm) is critical. Let  denote the diameter of a rod from the
first machine and  the diameter of a rod from the second machine. A sample of 100 rods from the first machine as mean 10.3 and
standard deviation 1.2. A sample of 100 rods from the second machine has mean 9.8 and standard deviation 1.6.

1. Compute the 90% confidence interval for .
2. Assuming that , compute the 90% confidence interval for .
3. Based on (a), is the assumption that  reasonable?

Answer
1. 
2. 
3. Perhaps not.
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