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3.12: General Measures
     

Basic Theory

Our starting point in this section is a measurable space . That is,  is a set and  is a -algebra of subsets of . So far, we
have only considered positive measures on such spaces. Positive measures have applications, as we know, to length, area, volume,
mass, probability, counting, and similar concepts of the nonnegative “size” of a set. Moreover, we have defined the integral of a
measurable function  with respect to a positive measure, and we have studied properties of the integral.

Definition

But now we will consider measures that can take negative values as well as positive values. These measures have applications to
electric charge, monetary value, and other similar concepts of the “content” of a set that might be positive or negative. Also, this
generalization will help in our study of density functions in the next section. The definition is exactly the same as for a positive
measure, except that values in  are allowed.

A measure on  is a function  that satisfies the following properties:

1. 
2. If  is a countable, disjoint collection of sets in  then 

As before, (b) is known as countable additivity and is the critical assumption: the measure of a set that consists of a countable
number of disjoint pieces is the sum of the measures of the pieces. Implicit in the statement of this assumption is that the sum in (b)
exists for every countable disjoint collection . That is, either the sum of the positive terms is finite or the sum of the
negative terms is finite. In turn, this means that the order of the terms in the sum does not matter (a good thing, since there is no
implied order). The term signed measure is used by many, but we will just use the simple term measure, and add appropriate
adjectives for the special cases. Note that if  for all , then  is a positive measure, the kind we have already
studied (and so the new definition really is a generalization). In this case, the sum in (b) always exists in . If  for all

 then  is a finite measure. Note that in this case, the sum in (b) is absolutely convergent for every countable disjoint
collection . If  is a positive measure and  then  is a probability measure, our favorite kind. Finally, as with
positive measures,  is -finite if there exists a countable collection  of sets in  such that  and 

 for .

Basic Properties

We give a few simple properties of general measures; hopefully many of these will look familiar. Throughout, we assume that  is
a measure on . Our first result is that although  can take the value  or , it turns out that it cannot take both of these
values.

Either  for all  or  for all .

Proof

Suppose that there exist  with  and . Then  and the sets in the
union are disjoint. By the additivity assumption, . Similarly, .
The only way that both of these equations can make sense is for , , and . But
then  is undefined, and so we have a contradiction.

We will say that two measures are of the same type if neither takes the value  or if neither takes the value . Being of the same
type is trivially an equivalence relation on the collection of measures on .

The difference rule holds, as long as the sets have finite measure:

Suppose that . If  then .

Proof

Note that  and the sets in the union are disjoint. Thus . Since 
, we must have  and  also, and then the difference rule holds by subtraction.

(S,S ) S S σ S

f : S →R

=R∪ {−∞, ∞}R
∗

(S,S ) μ :S →R
∗

μ(∅) = 0
{ : i ∈ I}Ai S μ ( )= μ( )⋃i∈I Ai ∑i∈I Ai

{ : i ∈ I}Ai

μ(A) ≥ 0 A ∈S μ

[0, ∞] μ(A) ∈ R

A ∈S μ

{ : i ∈ I}Ai μ μ(S) = 1 μ

μ σ { : i ∈ I}Ai S S =⋃i∈I Ai

μ( ) ∈ RAi i ∈ I

μ

(S,S ) μ ∞ −∞

μ(A) > −∞ A ∈S μ(A) < ∞ A ∈S

A, B ∈S μ(A) = ∞ μ(B) = −∞ A = (A∩B) ∪ (A ∖B)
μ(A) = μ(A∩B) +μ(A ∖B) μ(B) = μ(A∩B) +μ(B∖A)

μ(A ∖B) = ∞ μ(B∖A) = −∞ μ(A∩B) ∈ R

μ(A△ B) = μ(A ∖B) +μ(B∖A)

∞ −∞
(S,S )

A, B ∈S μ(B) ∈ R μ(B∖A) = μ(B) −μ(A∩B)

B = (A∩B) ∪ (B∖A) μ(B) = μ(A∩B) +μ(B∖A)
μ(B) ∈ R μ(A∩B) ∈ R μ(B∖A) ∈ R
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The following corollary is the difference rule for subsets, and will be needed below.

Suppose that  and . If  then  and .

Proof

Note that  and the sets in the union are disjoint. Thus . Since , we
must have  and  also, and then the difference rule holds by subtraction.

As a consequence, suppose that  and . If , then by the infinity rule we cannot have  and
by the difference rule we cannot have , so we must have . Similarly, if  then . The
inclusion-exclusion rules hold for general measures, as long as the sets have finite measure.

Suppose that  for each  where , and that  for . Then

Proof

For , note that  and the sets in the last union are disjoint. By the additivity axiom and the
difference rule (3),

The general result then follows by induction, just like the proof for probability measures.

The continuity properties hold for general measures. Part (a) is the continuity property for increasing sets, and part (b) is the
continuity property for decreasing sets.

Suppose that  for .

1. If  for  then .
2. If  for  and , then 

Proof

The proofs are almost the same as for positive measures, except for technicalities involving  and .

1. Let . From the infinity rule and the difference rule, if  (respectively ) for some ,
then  ( ) for  and  ( ), so the result trivially holds. Thus, assume that  for
all . Let  and let  for . Then  is a disjoint collection of sets
and also has union . Moreover, from the difference rule,  for . Thus

2. Let  for . Then  for  and . Part (a) applies, so 
. But by the difference rule,  for  and 

. All of these are real numbers, so subtracting  gives the result.

Recall that a positive measure is an increasing function, relative to the subset partial order on  and the ordinary order on ,
and this property follows from the difference rule. But for general measures, the increasing property fails, and so do other
properties that flow from it, including the subadditive property (Boole's inequality in probability) and the Bonferroni inequalities.

Constructions

It's easy to construct general measures as differences of positive measures.

Suppose that  and  are positive measures on  and that at least one of them is finite. Then  is a measure.

Proof

A, B ∈S A ⊆ B μ(B) ∈ R μ(A) ∈ R μ(B∖A) = μ(B) −μ(A)

B = A∪ (B∖A) μ(B) = μ(A) +μ(B∖A) μ(B) ∈ R

μ(A) ∈ R μ(B∖A) ∈ R

A, B ∈S A ⊆ B μ(A) = ∞ μ(B) = −∞
μ(B) ∈ R μ(B) = ∞ μ(A) = −∞ μ(B) = −∞

∈SAi i ∈ I #(I) = n μ( ) ∈ RAi i ∈ I

μ( ) = (−1 μ( )⋃
i∈I

Ai ∑
k=1

n

)k−1 ∑
J⊆I, #(J)=k

⋂
j∈J

Aj (3.12.1)

n = 2 ∪ = ∪ ( ∖ )A1 A2 A1 A2 A1

μ( ∪ ) = μ( ) +μ( ∖ ) = μ( ) +μ( ) −μ( ∩ )A1 A2 A1 A2 A1 A1 A2 A1 A2 (3.12.2)

∈SAn n ∈ N+

⊆An An+1 n ∈ N+ μ( ) = μ ( )limn→∞ An ⋃∞
i=1 Ai

⊆An+1 An n ∈ N+ μ( ) ∈ RA1 μ( ) = μ ( )limn→∞ An ⋂∞
i=1 Ai

∞ −∞

A =⋃∞
i=1 Ai μ( ) = ∞Am −∞ m ∈ N+

μ( ) = ∞An −∞ n ≥ m μ(A) = ∞ −∞ μ( ) ∈ RAn

n ∈ N+ =B1 A1 = ∖Bi Ai Ai−1 i ∈ {2, 3, …} { : i ∈ }Bi N+

A μ( ) = μ( ) −μ( )Bi Ai+1 Ai i ∈ {2, 3, …}

μ(A) = μ( ) = μ( ) = (μ( ) + [μ( ) −μ( )]) = μ( )∑
i=1

∞

Bi lim
n→∞

∑
i=1

n

Bi lim
n→∞

A1 ∑
i=2

n

Ai Ai−1 lim
n→∞

An (3.12.3)

= ∖Cn A1 An n ∈ N+ ⊆Cn Cn+1 n ∈ N+ = ∖⋃∞
i=1 Ci A1 ⋂∞

i=1 Ai

μ( ) = μ ( )limn→∞ Cn ⋃∞
i=1 Ci μ( ) = μ( ) −μ( )Cn A1 An n ∈ N+

μ ( ) = μ( ) −μ ( )⋃∞
i=1 Ci A1 ⋂∞

i=1 Ai μ( )A1

S [0, ∞]

μ ν (S,S ) δ = μ−ν
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Suppose that  is a finite measure; the proof when  is finite is similar. First, . Suppose that 
 is a countable, disjoint collection of sets in  and let . Then

Since  for , we can combine terms to get

The collection of measures on our space is closed under scalar multiplication.

If  is a measure on  and , then  is a measure on 

Proof

First, . Next suppose that  is a countable, disjoint collection of sets in . Then

The last step is the important one, and holds since the sum exists.

If  is a finite measure, then so is  for . If  is not finite then  and  are of the same type if  and are of opposite
types if . We can add two measures to get another measure, as long as they are of the same type. In particular, the collection
of finite measures is closed under addition as well as scalar multiplication, and hence forms a vector space.

If  and  are measures on  of the same type then  is a measure on .

Proof

First, . Next suppose that  is a countable, disjoint collection of sets in .
Then

The sums can be combined because the measures are of the same type. That is, either the sum of all of the positive terms is
finite or the sum of all the negative terms is finite. In short, we don't have to worry about the dreaded indeterminate form 

.

Finally, it is easy to explicitly construct measures on a -algebra generated by a countable partition. Such -algebras are important
for counterexamples and to gain insight, and also because many -algebras that occur in applications can be constructed from
them.

Suppose that  is a countable partition of  into nonempty sets, and that . For , define 
 arbitrarily, subject only to the condition that the sum of the positive terms is finite, or the sum of the negative

terms is finite. For  where , define

Then  is a measure on .

Proof

Recall that every  has a unique representation of the form  where .

1.  in the representation gives . The sum over an empty index set is 0, so .

ν μ δ(∅) = μ(∅) −ν(∅) = 0
{ : i ∈ I}Ai S A =⋃i∈I Ai

δ(A) = μ(A) −ν(A) = μ( ) − ν( )∑
i∈I

Ai ∑
i∈I

Ai (3.12.4)

ν( ) < ∞Ai i ∈ I

δ(A) = [μ( ) −ν( )] = δ( )∑
i∈I

Ai Ai ∑
i∈I

Ai (3.12.5)

μ (S,S ) c ∈ R cμ (S,S )

(cμ)(∅) = cμ(∅) = c0 = 0 { : i ∈ I}Ai S

(cμ)( ) = cμ( ) = c μ( ) = cμ( ) = (cμ)( )⋃
i∈I

Ai ⋃
i∈I

Ai ∑
i∈I

Ai ∑
i∈I

Ai ∑
i∈I

Ai (3.12.6)

μ cμ c ∈ R μ μ cμ c > 0
c < 0

μ ν (S,S ) μ+ν (S,S )

(μ+ν)(∅) = μ(∅) +ν(∅) = 0 +0 = 0 { : i ∈ I}Ai S

(μ+ν)( )⋃
i∈I

Ai = μ( )+ν( )⋃
i∈I

Ai ⋃
i∈I

Ai

= μ( ) + ν( ) = [μ( ) +ν( ) = (μ+ν)( )∑
i∈I

Ai ∑
i∈I

Ai ∑
i∈I

Ai Ai ∑
i∈I

Ai

∞ −∞

σ σ

σ

A = { : i ∈ I}Ai S S = σ(A ) i ∈ I

μ( ) ∈Ai R
∗

A =⋃j∈J Aj J ⊆ I

μ(A) = μ( )∑
j∈J

Aj (3.12.7)

μ (S,S )

A ∈S A =⋃j∈J Aj J ⊆ I

J = ∅ A = ∅ μ(∅) = 0
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2. Suppose that  is a countable, disjoint collection of events in . Then for each  there exists 

and  such that . Hence

The fact that either the sum of all positive terms is finite or the sum of all the negative terms is finite means that we do not
have to worry about the order of summation.

Positive, Negative, and Null Sets

To understand the structure of general measures, we need some basic definitions and properties. As before, we assume that  is a
measure on .

Definitions

1.  is a positive set for  if  for every  with .
2.  is a negative set for  if  for every  with .
3.  is a null set for  if  for every  with .

Note that positive and negative are used in the weak sense (just as we use the terms increasing and decreasing in this text). Of
course, if  is a positive measure, then every  is positive for , and  is negative for  if and only if  is null for  if
and only if . For a general measure,  is both positive and negative for  if and only if  is null for . In
particular,  is null for . A set  is a support set for  if and only if  is a null set for . A support set is a set where the
measure “lives” in a sense. Positive, negative, and null sets for  have a basic inheritance property that is essentially equivalent to
the definition.

Suppose .

1. If  is positive for  then  is positive for  for every  with .
2. If  is negative for  then  is negative for  for every  with .
3. If  is null for  then  is null for  for every  with .

The collections of positive sets, negative sets, and null sets for  are closed under countable unions.

Suppose that  is a countable collection of sets in .

1. If  is positive for  for  then  is positive for .
2. If  is negative for  for  then  is negative for .
3. If  is null for  for  then  is null for .

Proof

We will prove (a); the proofs for (b) and (c) are analogous. Without loss of generality, we can suppose that . Let 

. Now let  and  for . Them  is a countable,

disjoint collection in , and . If  then  and the sets in this union are disjoint. Hence
by additivity, . But  so . Hence .

It's easy to see what happens to the positive, negative, and null sets when a measure is multiplied by a non-zero constant.

Suppose that  is a measure on , , and .

1. If  then  is positive (negative) for  if and only if  is positive (negative) for .
2. If  then  is positive (negative) for  if and only if  is negative (positive) for .
3. If  then  is null for  if and only if  is null for 

Positive, negative, and null sets are also preserved under countable sums, assuming that the measures make senes.

{ : k ∈ K}Bk S k ∈ K ⊆ IJk

{ : j∈ } ⊆AAk
j Jk =Bk ⋃j∈Jk

Ak
j

μ( ) = μ( ) = μ( ) = μ( )⋃
k∈K

Bk ⋃
k∈K

⋃
j∈Jk

Ak
j ∑

k∈k

∑
j∈Jk

Ak
j ∑

k∈K

Bk (3.12.8)

μ

(S,S )

A ∈S μ μ(B) ≥ 0 B ∈S B ⊆ A

A ∈S μ μ(B) ≤ 0 B ∈S B ⊆ A

A ∈S μ μ(B) = 0 B ∈S B ⊆ A

μ A ∈S μ A ∈S μ A μ

μ(A) = 0 A ∈S μ A μ

∅ μ A ∈S μ Ac μ

μ

A ∈S

A μ B μ B ∈S B ⊆ A

A μ B μ B ∈S B ⊆ A

A μ B μ B ∈S B ⊆ A

μ

{ : i ∈ I}Ai S

Ai μ i ∈ I ⋃i∈I Ai μ

Ai μ i ∈ I ⋃i∈I Ai μ

Ai μ i ∈ I ⋃i∈I Ai μ

I =N+

A =⋃∞
n=1 An =B1 A1 = ∖( )Bn An ⋃n−1

i=1 Ai n ∈ {2, 3, …} { : n ∈ }Bn N+

S = A⋃∞
n=1 Bn C ⊆ A C = (C ∩ )⋃∞

n=1 Bn

μ(C) = μ(C ∩ )∑∞
=1 Bn C ∩ ⊆ ⊆Bn Bn An μ(C ∩ ) ≥ 0Bn μ(C) ≥ 0

μ (S,S ) c ∈ R A ∈S

c > 0 A μ A cμ

c < 0 A μ A cμ

c ≠ 0 A μ A cμ
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Suppose that  is a measure on  for each  in a countable index set , and that  is a well-defined measure
on . Let .

1. If  is positive for  for every  then  is positive for .
2. If  is negative for  for every  then  is negative for .
3. If  is null for  for every  then  is null for .

In particular, note that  is a well-defined measure if  is a positive measure for each , or if  is finite and  is a
finite measure for each . It's easy to understand the positive, negative, and null sets for a -algebra generated by a countable
partition.

Suppose that  is a countable partition of  into nonempty sets, and that . Suppose that  is a
measure on . Define

Let , so that  for some  (and this representation is unique). Then

1.  is positive for  if and only if .
2.  is negative for  if and only if .
3.  is null for  if and only if .

The Hahn Decomposition

The fundamental results in this section and the next are two decomposition theorems that show precisely the relationship between
general measures and positive measures. First we show that if a set has finite, positive measure, then it has a positive subset with at
least that measure.

If  and  then there exists  with  such that  is positive for  and .

Proof

The proof is recursive, and works by successively removing sets of negative measure from . For the initialization step, let 
. Then trivially,  and . For the recursive step, suppose that  has been defined with 
 and . If  is positive for , let . Otherwise let 

. Note that since  is not positive for , the set in the infimum is nonempty
and hence  (and possibly ). Let  if  and let  if . Since , by
definition of the infimum, there exists  with . Let . Then  and

Now, if the recursive process terminates after a finite number of steps,  is well defined and is positive for . Otherwise, we
have a disjoint sequence of sets . Let . Then , and by countable additivity and the
difference rule,

Suppose that  and . Then  and by definition,  for every . It follows that 
 or  for every . Hence  and therefore , a contradiction since 

. Hence we must have  and thus  is positive for .

The assumption that  is critical; a counterexample is given below. Our first decomposition result is the Hahn
decomposition theorem, named for the Austrian mathematician Hans Hahn. It states that  can be partitioned into a positive set and
a negative set, and this decomposition is essentially unique.

Hahn Decomposition Theorem. There exists  such that  is positive for  and  is negative for . The pair 
is a Hahn decomposition of . If  is another Hahn decomposition, then  is null for .

Proof

μi (S,S ) i I μ =∑i∈I μi

(S,S ) A ∈S

A μi i ∈ I A μ

A μi i ∈ I A μ

A μi i ∈ I A μ

μ =∑i∈I μi μi i ∈ I I μi

i ∈ I σ

A = { : i ∈ I}Ai S S = σ(A ) μ

(S,S )

= {i ∈ I : μ( ) > 0}, = {i ∈ I : μ( ) < 0}, = {i ∈ I : μ( ) = 0}I+ Ai I− Ai I0 Ai (3.12.9)

A ∈S A =⋃j∈J Aj J ⊆ I

A μ J ⊆ ∪I+ I0

A μ J ⊆ ∪I− I0

A μ J ⊆ I0

A ∈S 0 ≤ μ(A) < ∞ P ∈S P ⊆ A P μ μ(P ) ≥ μ(A)

A

= AA0 ⊆ AA0 μ( ) ≥ μ(A)A0 ∈SAn

⊆ AAn μ( ) ≥ μ(A)An An μ P = An

= inf{μ(B) : B ∈S ,B ⊆ ,μ(B) < 0}an An An μ

< 0an −∞ = /2bn an −∞ < < 0an = −1bn = −∞an >bn an
⊆ ABn μ( ) ≤Bn bn = ∖An+1 An Bn ⊆ ⊆ AAn+1 An

μ( ) = μ( ) −μ( ) ≥ μ( ) − ≥ μ( ) ≥ μ(A)An+1 An Bn An bn An (3.12.10)

P μ

( , , …)B1 B2 P = A ∖ ( )⋃∞
i=1 Bi P ⊆ A

μ(P ) = μ(A) − μ( ) ≥ μ(A) − ≥ μ(A)∑
n=1

∞

Bn ∑
n=1

∞

bn (3.12.11)

B ⊆ P μ(B) < 0 B ⊆ An ≤ μ(B)an n ∈ N+

≤ μ(B)bn
1
2

= −1bn n ∈ N+ = −∞∑∞
n=1 bn μ(P ) = ∞

μ(A) < ∞ μ(B) ≥ 0 P μ

μ(A) < ∞
S

P ∈S P μ P c μ (P , )P c

S (Q, )Qc P △ Q μ
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Suppose first that  does not take the value . As with the previous result, the proof is recursive. For the initialization step, let
. Then trivially,  is positive for . For the recursive step, suppose that  is positive for . If  is negative for

, let . Otherwise let . Since  is not negative for , it follows that  (and
possibly ). Let  if  and  if . Then  so there exists  with 
and . By the previous lemma, there exists  with ,  positive for , and .
Let . Then  is positive for .

If the recursive process ends after a finite number of steps, then  is well-defined and  is a Hahn decomposition.
Otherwise we generate an infinite sequence  of disjoint sets in , each positive for . Let . Then 

 is positive for  by the closure result above. Let . If  then  for every . Hence 
 or  for every . But then

a contradiction. Hence  so  is negative for  and thus  is a Hahn decomposition.

Suppose that  is another Hahn decomposition of . Then  and  are both positive and negative for  and
hence are null for . Hence  is null for .

Finally, suppose that  takes the value . Then  does not take the value  by the infinity rule and hence  does not take
the value . By our proof so far, there exists a Hahn decomposition  for  that is essentially unique. But then 

 is a Hahn decomposition for .

It's easy to see the Hahn decomposition for a measure on a -algebra generated by a countable partition.

Suppose that  is a countable partition of  into nonempty sets, and that . Suppose that  is a
measure on . Let  and . Then  is a Hahn decomposition of 

 if and only if the positive set  has the form  where  and .

The Jordan Decomposition

The Hahn decomposition leads to another decomposition theorem called the Jordan decomposition theorem, named for the French
mathematician Camille Jordan. This one shows that every measure is the difference of positive measures. Once again we assume
that  is a measure on .

Jordan Decomposition Theorem. The measure  can be written uniquely in the form  where  and  are
positive measures, at least one finite, and with the property that if  is any Hahn decomposition of , then  is a null
set of  and  is a null set of . The pair  is the Jordan decomposition of .

Proof

Let  be a Hahn decomposition of  relative to . Define  and  for 
. Then  and  are positive measures and . Moreover, since  cannot take both  and  as values

by the infinity rule, one of these two positive measures is finite.

Suppose that  is an arbitrary Hahn decomposition. If , then  since  is a null
set of  by the Hahn decomposition theorem. Similarly if  then  since  is a null set
of .

Suppose that  is another decomposition with the same properties. If  then 
. But also 

. Hence  and therefore also .

The Jordan decomposition leads to an important set of new definitions.

Suppose that  has Jordan decomposition .

1. The positive measure  is called the positive variation measure of .
2. The positive measure  is called the negative variation measure of .

μ ∞
= ∅P0 P0 μ ∈SPn μ P c

n

μ P = Pn = sup{μ(A) : A ∈S ,A ⊆ }an P c
n P c

n μ > 0an
∞ = /2bn an 0 < < ∞an = 1bn = ∞an <bn an ∈SBn ⊆Bn P c

n

μ( ) ≥ > 0Bn bn ∈SAn ⊆An Bn An μ μ( ) ≥ μ( )An Bn

= ∪Pn+1 Pn An ∈SPn+1 μ

P (P , )P c

( , , …)A1 A2 S μ P =⋃∞
n=1 An

P ∈S μ A ⊆ P c μ(A) > 0 μ(A) ≤ an n ∈ N+

≥ μ(A)bn
1
2

= 1bn n ∈ N+

μ(P ) = μ( ) ≥ μ( ) ≥ = ∞∑
n=1

∞

An ∑
n=1

∞

Bn ∑
n=1

∞

bn (3.12.12)

μ(A) ≤ 0 P c μ (P , )P c

(Q, )Qc S P ∩Qc Q∩P c μ

μ P △ Q = (P ∩ ) ∪ (Q∩ )Qc P c μ

μ ∞ μ −∞ −μ

∞ (P , )P c −μ

( ,P )P c μ

σ

A = { : i ∈ I}Ai S S = σ(A ) μ

(S,S ) = {i ∈ I : μ( ) > 0}I+ Ai = {i ∈ I : μ( ) = 0I0 Ai (P , )P c

μ P P =⋃j∈J Aj J = ∪KI+ K ⊆ I0

μ (S,S )

μ μ = −μ+ μ− μ+ μ−

(P , )P c S P c

μ+ P μ− ( , )μ+ μ− μ

(P , )P c S μ (A) = μ(A∩P )μ+ (A) = −μ(A∩ )μ− P c

A ∈S μ+ μ− μ = −μ+ μ− μ ∞ −∞

(Q, )Qc A ⊆ Qc (A) = μ(P ∩A) = 0μ+ P ∩Qc

μ A ⊆ Q (A) = μ( ∩A) = 0μ− P c ∩QP c

μ

μ = −ν+ ν− A ∈S
(A) = μ(A∩P ) = [ (A∩P ) − (A∩P )] = (A∩P )]μ+ ν+ ν− ν+

(A) = (A∩P ) + (A∩ ) = (A∩P )ν+ ν+ ν+ P c ν+ =ν+ μ+ =ν− μ−

μ μ = −μ+ μ−

μ+ μ

μ− μ

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10152?pdf


3.12.7 https://stats.libretexts.org/@go/page/10152

3. The positive measure  is called the total variation measure of .
4.  is the total variation of .

Note that, in spite of the similarity in notation,  and  are not simply the positive and negative parts of the (extended)
real number , nor is  the absolute value of . Also, be careful not to confuse the total variation of , a number in 

, with the total variation measure. The positive, negative, and total variation measures can be written directly in terms of .

For ,

1. 
2. 
3. 
4. 

The total variation measure is related to sum and scalar multiples of measures in a natural way.

Suppose that  and  are measures of the same type and that . Then

1.  if and only if  (the zero measure).
2. 
3. 

Proof
1. Since ,  and  are positive measures,  if and only if  if and only if .
2. If  then  and . If  then  and . Of course, if  then 

. In all cases,

3. From the theorem above,  and . So

You may have noticed that the properties in the last result look a bit like norm properties. In fact, total variation really is a norm on
the vector space of finite measures on :

Suppose that  and  are measures of the same type and that . Then

1.  if and only if  (the zero property)
2.  (the scaling property)
3.  (the triangle inequality)

Proof
1. Since  is a positive measure,  if and only if . From part (a) of the previous theorem,  if

and only if .
2. From part (b) of the previous theorem, .
3. From part (c) of the previous theorem, .

Every norm on a vector space leads to a corresponding measure of distance (a metric). Let  denote the collection of finite
measures on . Then , under the usual definition of addition and scalar multiplication of measures, is a vector space, and
as the last theorem shows,  is a norm on . Here are the corresponding metric space properties:

Suppose that  and . Then

1. , the symmetric property
2.  if and only if , the zero property
3. , the triangle inequality

|μ| = +μ+ μ− μ

∥μ∥ = |μ| (S) μ

(A)μ+ (A)μ−

μ(A) |μ| (A) μ(A) μ

[0, ∞] μ

A ∈S

(A) = sup{μ(B) : B ∈S ,B ⊆ A}μ+

(A) = −inf{μ(B) : B ∈S ,B ⊆ A}μ−

|μ(A)| = sup{ μ( ) : { : i ∈ I} is a finite, measurable partition of A}∑i∈I Ai Ai

∥μ∥ = sup{ μ( ) : { : i ∈ I} is a finite, measurable partition of S}∑i∈I Ai Ai

μ ν c ∈ R

|μ| = 0 μ = 0
|cμ| = |c| |μ|
|μ+ν| ≤ |μ| + |ν|

μ+ μ− |μ| = +μ+ μ− |μ| = 0 = = 0μ+ μ− μ = 0
c > 0 (cμ = cμ)+ (cμ = c)− μ− c < 0 (cμ = −c)+ μ− (cμ = −c)− μ+ c = 0

(cμ = (cμ = 0)+ )−

|cμ| = (cμ +(cμ = |c|( + ) = |c||μ|)+ )− μ+ μ− (3.12.13)

(μ+ν ≤ +)+ μ+ ν+ (μ+ν ≤ +)− μ− ν−

|μ+ν| = (μ+ν +(μ+ν ≤ ( + ) +( + ))+ )− μ+ ν+ μ− ν−

= ( + ) +( + ) = |μ| + |ν|μ+ μ− ν+ ν−

(S,S )

μ ν c ∈ R

∥μ∥ = 0 μ = 0
∥cμ∥ = |c| ∥μ∥
∥μ+ν∥ ≤ ∥μ∥ +∥ν∥

|μ| ∥μ∥ = |μ(S)| = 0 |μ| = 0 |μ| = 0
μ = 0

∥cμ∥ = |cμ(S)| = |c||μ(S)| = |c|∥μ∥
∥μ+μ∥ = |μ+ν|(S) ≤ |μ|(S) +|ν|(S) = ∥μ∥ +∥ν∥

M

(S,S ) M

∥ ⋅ ∥ M

μ, ν, ρ ∈M c ∈ R

∥μ−ν∥ = ∥ν −μ∥
∥μ∥ = 0 μ = 0
∥μ−ρ∥ ≤ ∥μ−ν∥ +∥ν −ρ∥
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Now that we have a metric, we have a corresponding criterion for convergence.

Suppose that  for  and . We say that  as  in total variation if  as 
.

Of course,  includes the probability measures on , so we have a new notion of convergence to go along with the others
we have studied or will study. Here is a list:

convergence with probability 1
convergence in probability
convergence in distribution
convergence in th mean
convergence in total variation

The Integral

Armed with the Jordan decomposition, the integral can be extended to general measures in a natural way.

Suppose that  is a measure on  and that  is measurable. We define

assuming that the integrals on the right exist and that the right side is not of the form .

We will not pursue this extension, but as you might guess, the essential properties of the integral hold.

Complex Measures

Again, suppose that  is a measurable space. The same axioms that work for general measures can be used to define complex
measures. Recall that  denotes the set of complex numbers, where  is the imaginary unit.

A complex measure on  is a function  that satisfies the following properties:

1. 
2. If  is a countable, disjoint collection of sets in  then 

Clearly a complex measure  can be decomposed as  where  and  are finite (real) measures on . We will have
no use for complex measures in this text, but from the decomposition into finite measures, it's easy to see how to develop the
theory.

Computational Exercises

Counterexamples

The lemma needed for the Hahn decomposition theorem can fail without the assumption that .

Let  be a set with subsets  and  satisfying . Let  be the -algebra generated by .
Define , , .

1. Draw the Venn diagram of , , .
2. List the sets in .
3. Using additivity, give the value of  on each set in .
4. Show that  does not have a positive subset  with .
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∈Mμn n ∈ N+ μ ∈M → μμn n → ∞ ∥ −μ∥ → 0μn

n → ∞

M (S,S )

k

μ (S,S ) f : S →R

f dμ = f d − f d∫
S

∫
S

μ+ ∫
S

μ− (3.12.14)

∞ −∞

(S,S )
C = {x+ iy : x, y ∈ R} i

(S,S ) μ :S →C

μ(∅) = 0
{ : i ∈ I}Ai S μ ( )= μ( )⋃i∈I Ai ∑i∈I Ai

μ μ = ν + iρ ν ρ (S,S )

μ(A) < ∞

S A B ∅ ⊂ B ⊂ A ⊂ S S = σ{A,B} σ {A,B}
μ(B) = −1 μ(A ∖B) = ∞ μ( ) = 1Ac

A B S

S

μ S

A P ∈S μ(P ) ≥ μ(A)
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