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7.4: Bayesian Estimation
           

Basic Theory

The General Method

Suppose again that we have an observable random variable  for an experiment, that takes values in a set . Suppose also that
distribution of  depends on a parameter  taking values in a parameter space . Of course, our data variable  is almost always
vector-valued, so that typically  for some . Depending on the nature of the sample space , the distribution of 
may be discrete or continuous. The parameter  may also be vector-valued, so that typically  for some .

In Bayesian analysis, named for the famous Thomas Bayes, we model the deterministic, but unknown parameter  with a random
variable  that has a specified distribution on the parameter space . Depending on the nature of the parameter space, this
distribution may also be either discrete or continuous. It is called the prior distribution of  and is intended to reflect our
knowledge of the parameter , before we gather data. After observing , we then use Bayes' theorem, to compute the
conditional distribution of  given . This distribution is called the posterior distribution of , and is an updated
distribution, given the information in the data. Here is the mathematical description, stated in terms of probability density
functions.

Suppose that the prior distribution of  on  has probability density function , and that given , the conditional
probability density function of  on  is . Then the probability density function of the posterior distribution of 
given  is

where the function in the denominator is defined as follows, in the discrete and continuous cases, respectively:

Proof

This is just Bayes' theorem with new terminology. Recall that he joint probability density function of  is the mapping
on  given by

Then the function in the denominator is the marginal probability density function of . So by definition, 
 for  is the conditional probability density function of  given .

For , note that  is simply the normalizing constant for the function . It may not be necessary to
explicitly compute , if one can recognize the functional form of  as that of a known distribution. This will
indeed be the case in several of the examples explored below.

If the parameter space  has finite measure  (counting measure in the discrete case or Lebesgue measure in the continuous case),
then one possible prior distribution is the uniform distribution on , with probability density function  for . This
distribution reflects no prior knowledge about the parameter, and so is called the non-informative prior distributioon.

Random Samples

Of course, an important and essential special case occurs when  is a random sample of size  from the
distribution of a basic variable . Specifically, suppose that  takes values in a set  and has probability density function 
for a given . In this case,  and the probability density function  of  given  is
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(7.4.1)

f(x)

f(x)

= h(θ)f(x|θ), x ∈ S∑
θ∈T

= h(θ)f(x ∣ θ)dθ, x ∈ S∫
T
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X

h(θ ∣ x) = h(θ)f(x ∣ θ)/f(x) θ ∈ T Θ X = x
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f( , , … , ∣ θ) = g( ∣ θ)g( ∣ θ) ⋯ g( ∣ θ), ( , , … , ) ∈ Sx1 x2 xn x1 x2 xn x1 x2 xn (7.4.3)
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Real Parameters

Suppose that  is a real-valued parameter, so that . Here is our main definition.

The conditional expected value  is the Bayesian estimator of .

1. If  has a discrete distribution on  then

2. If  has a continuous distribution on  then

Recall that  is a function of  and, among all functions of , is closest to  in the mean square sense. Of course, once
we collect the data and observe , the Bayesian estimate of  is . As always, the term estimator refers to a
random variable, before the data are collected, and the term estimate refers to an observed value of the random variable after the
data are collected. The definitions of bias and mean square error are as before, but now conditioned on .

Suppose that  is the Bayes estimator of .

1. The bias of  is  for .
2. The mean square error of  is  for .

As before,  and . Suppose now that we observe the random
variables  sequentially, and we compute the Bayes estimator  of  based on  for each 

. Again, the most common case is when we are sampling from a distribution, so that the sequence is independent and
identically distributed (given ). We have the natural asymptotic properties that we have seen before.

Let  be the sequence of Bayes estimators of  as above.

1.  is asymptotically unbiased if  as  for each .
2.  is mean-square consistent if  as  for each .

Often we cannot construct unbiased Bayesian estimators, but we do hope that our estimators are at least asymptotically unbiased
and consistent. It turns out that the sequence of Bayesian estimators  is a martingale. The theory of martingales provides some
powerful tools for studying these estimators.

From the Bayesian perspective, the posterior distribution of  given the data  is of primary importance. Point estimates of 
derived from this distribution are of secondary importance. In particular, the mean square error function 

, minimized as we have noted at , is not the only loss function that can be used.
(Although it's the only one that we consider.) Another possible loss function, among many, is the mean absolute error function 

, which we know is minimized at the median(s) of the posterior distribution.

Conjugate Families

Often, the prior distribution of  is itself a member of a parametric family, with the parameters specified to reflect our prior
knowledge of . In many important special cases, the parametric family can be chosen so that the posterior distribution of  given 

 belongs to the same family for each . In such a case, the family of distributions of  is said to be conjugate to the
family of distributions of . Conjugate families are nice from a computational point of view, since we can often compute the
posterior distribution through a simple formula involving the parameters of the family, without having to use Bayes' theorem
directly. Similarly, in the case that the parameter is real valued, we can often compute the Bayesian estimator through a simple
formula involving the parameters of the conjugate family.

Special Distributions

θ T ⊆R

E(Θ ∣ X) θ

Θ T

E(Θ ∣ X = x) = θh(θ ∣ x), x ∈ S∑
θ∈T

(7.4.4)
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E(Θ ∣ X = x) = θh(θ ∣ x)dθ, x ∈ S∫
T

(7.4.5)
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bias(U ∣ θ) =E(U ∣ θ) −θ mse(U ∣ θ) = var(U ∣ θ) + (U ∣ θ)bias2
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E(Θ ∣ X = x)

u ↦ E(|Θ−u| ∣ X = x)
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The Bernoulli Distribution

Suppose that  is sequence of independent variables, each having the Bernoulli distribution with unknown
success parameter . In short,  is a sequence of Bernoulli trials, given . In the usual language of reliability, 
means success on trial  and  means failure on trial . Recall that given , the Bernoulli distribution has probability density
function

Note that the number of successes in the first  trials is . Given , random variable  has the binomial distribution
with parameters  and .

Suppose now that we model  with a random variable  that has a prior beta distribution with left parameter  and right
parameter , where  and  are chosen to reflect our initial information about . So  has probability density function

and has mean . For example, if we know nothing about , we might let , so that the prior distribution is
uniform on the parameter space  (the non-informative prior). On the other hand, if we believe that  is about , we might let 

 and , so that the prior distribution is unimodal, with mean . As a random process, the sequence  with  randomized
by , is known as the beta-Bernoulli process, and is very interesting on its own, outside of the context of Bayesian estimation.

For , the posterior distribution of  given  is beta with left parameter  and right
parameter .

Proof

Fix . Let , and let . Then

Hence

As a function of  this expression is proportional to the beta PDF with parameters , . Note that it's not
necessary to compute the normalizing factor .

Thus, the beta distribution is conjugate to the Bernoulli distribution. Note also that the posterior distribution depends on the data
vector  only through the number of successes . This is true because  is a sufficient statistic for . In particular, note that the
left beta parameter is increased by the number of successes  and the right beta parameter is increased by the number of failures 

.

The Bayesian estimator of  given  is

Proof

Recall that the mean of the beta distribution is the left parameter divided by the sum of the parameters, so this result follows
from the previous result.

In the beta coin experiment, set  and , and set  and . Run the simulation 100 times and note the
estimate of  and the shape and location of the posterior probability density function of  on each run.

Next let's compute the bias and mean-square error functions.

For ,

X = ( , , …)X1 X2

p ∈ (0, 1) X p = 1Xi

i = 0Xi i p

g(x ∣ p) = (1 −p , x ∈ {0, 1}px )1−x (7.4.6)

n =Yn ∑n
i=1 Xi p Yn

n p

p P a ∈ (0, ∞)
b ∈ (0, ∞) a b p P

h(p) = (1 −p , p ∈ (0, 1)
1

B(a, b)
pa−1 )b−1 (7.4.7)

a/(a+b) p a = b = 1
(0, 1) p 2

3

a = 4 b = 2 2
3

X p

P

n ∈ N+ P = ( , , … , )Xn X1 X2 Xn a+Yn
b+(n− )Yn

n ∈ N+ x = ( , , … , ) ∈ {0, 1x1 x2 xn }n y =∑n
i=1 xi

f(x ∣ p) = g( ∣ p)g( ∣ p) ⋯ g( ∣ p) = (1 −px1 x2 xn py )n−y (7.4.8)

h(p)f(x ∣ p) = (1 −p (1 −p = (1 −p , p ∈ (0, 1)
1

B(a, b)
pa−1 )b−1py )n−y 1

B(a, b)
pa+y−1 )b+n−y−1 (7.4.9)

p a+y b+n−y

f(x)

Xn Yn Yn p

Yn
n−Yn

p Xn

=Un

a+Yn

a+b+n
(7.4.10)

n = 20 p = 0.3 a = 4 b = 2
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The sequence  is asymptotically unbiased.

Proof

Given ,  has the binomial distribution with parameters  and  so . Hence

Simplifying gives the formula above. Clearly  as .

Note also that we cannot choose  and  to make  unbiased, since such a choice would involve the true value of , which we do
not know.

In the beta coin experiment, vary the parameters and note the change in the bias. Now set  and , and set 
and . Run the simulation 1000 times. Note the estimate of  and the shape and location of the posterior probability
density function of  on each update. Compare the empirical bias to the true bias.

For ,

The sequence  is mean-square consistent.

Proof

Once again, given ,  has the binomail distribution with parameters  and  so

Hence

Simplifying gives the result. Clearly  as .

In the beta coin experiment, vary the parameters and note the change in the mean square error. Now set  and ,
and set . Run the simulation 1000 times. Note the estimate of  and the shape and location of the posterior
probability density function of  on each update. Compare the empirical mean square error to the true mean square error.

Interestingly, we can choose  and  so that  has mean square error that is independent of the unknown parameter :

Let  and let . Then

In the beta coin experiment, set  and . Vary  and note that the mean square error does not change. Now set 
 and run the simulation 1000 times. Note the estimate of  and the shape and location of the posterior probability

density function on each update. Compare the empirical bias and mean square error to the true values.

Recall that the method of moments estimator and the maximum likelihood estimator of  (on the interval ) is the sample mean
(the proportion of successes):

bias( ∣ p) = , p ∈ (0, 1)Un

a(1 −p) −bp

a+b+n
(7.4.11)

U = ( : n ∈ )Un N+

p Yn n p E( ∣ p) = npYn

bias( ∣ p) =E( ∣ p) −p = −pUn Un

a+np

a+b+n
(7.4.12)

bias( ∣ p) → 0Un n → ∞

a b Un p

n = 20 p = 0.8 a = 2
b = 6 p

p

n ∈ N+

mse( ∣ p) = , p ∈ (0, 1)Un

p[n−2 a(a+b)] + [(a+b −n] +p2 )2 a2

(a+b+n)2
(7.4.13)

( : n ∈ )Un N+

p Yn n p

var( ∣ p) =Un

np(1 −p)

(a+b+n)2
(7.4.14)

mse( ∣ p) = +Un

np(1 −p)

(a+b+n)2
[ ]
a(1 −p) −bp

a+b+n

2

(7.4.15)

mse( ∣ p) → 0Un n → ∞

n = 10 p = 0.7
a = b = 1 p

p

a b U p

n ∈ N+ a = b = /2n−−√

mse( ∣ p) = , p ∈ (0, 1)Un

n

4(n+ )n−−√
2

(7.4.16)

n = 36 a = b = 3 p

p = 0.8 p

p (0, 1)
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This estimator has mean square error . To see the connection between the estimators, note from (6) that

So  is a weighted average of  (the mean of the prior distribution) and  (the maximum likelihood estimator).

Another Bernoulli Distribution

Bayesian estimation, like other forms of parametric estimation, depends critically on the parameter space. Suppose again that 
 is a sequence of Bernoulli trials, given the unknown success parameter , but suppose now that the parameter space

is . This setup corresponds to the tossing of a coin that is either fair or two-headed, but we don't know which. We model 
with a random variable  that has the prior probability density function  given by , , where  is
chosen to reflect our prior knowledge of the probability that the coin is two-headed. If we are completely ignorant, we might let 

 (the non-informative prior). If with think the coin is more likely to be two-headed, we might let . Again let 
 for .

The posterior distribution of  given  is

1.  if  and  if 

2.  if  and  if 

Proof

Fix . Let , and let . As before,

We adopt the usual conventions (which gives the correct mathematics) that  if  but . So from Bayes'
theorem,

So if  then  while if 

Of course, . The results now follow after a bit of algebra.

Now let

The Bayes' estimator of  given  the statistic  defined by

1.  if 
2.  if 

Proof

By definition, the Bayes' estimator is . From the previous result, if  then

= =Mn

Y

n

1

n
∑
i=1

n

Xi (7.4.17)

mse( ∣ p) = p(1 −p)Mn
1
n

= +Un
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a+b+n

a

a+b

n
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Mn (7.4.18)
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2
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P h h(1) = a h ( ) = 1 −a1
2

a ∈ (0, 1)

a = 1
2

a = 3
4

=Yn ∑n
i=1 Xi n ∈ N+

P = ( , , … , )Xn X1 X2 Xn

h(1 ∣ ) =Xn
a2n

a+(1−a)2n
= nYn h(1 ∣ ) = 0Xn < nYn

h ( ∣ ) =1
2

Xn
1−a

a+(1−a)2n
= nYn h ( ∣ ) = 11

2
Xn < nYn

n ∈ N+ x = ( , , … , ) ∈ {0, 1x1 x2 xn }n y =∑n
i=1 xi

f(x ∣ p) = (1 −ppy )n−y (7.4.19)

= 00k k ∈ N+ = 100

h(1 ∣ x) =
h(1)f(x ∣ 1)

h(1/2)f(x ∣ 1/2) +h(1)f(x ∣ 1)

=
a1y0n−y

(1 −a)(1/2 +a)n 1y0n−y

(7.4.20)

(7.4.21)

y < n h(1 ∣ x) = 0 y = n

h(1 ∣ x) =
a

(1 −a)(1/2 +a)n
(7.4.22)

h ( ∣ x) = 1 −h(1 ∣ x)1
2

=pn
a+(1 −a)2n+1

a+2(1 −a)2n+1
(7.4.23)

p Xn Un

=Un pn = nYn
=Un

1
2

< nYn

= E(P ∣ )Un Xn = nYn

= 1 ⋅ + ⋅Un

a2n

a+(1 −a)2n
1

2

1 −a

a+(1 −a)2n
(7.4.24)
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which simplifies to . If  then .

If we observe  then  gives the correct answer . This certainly makes sense since we know that we do not have the two-
headed coin. On the other hand, if we observe  then we are not certain which coin we have, and the Bayesian estimate  is
not even in the parameter space! But note that  as  exponentially fast. Next let's compute the bias and mean-square
error for a given .

For ,

1. 
2. 

The sequence of estimators  is asymptotically unbiased.

Proof

By definition, . Hence from the previous result,

Substituting  and  gives the results. In both cases,  as  since  and  as 
.

If , the estimator  is negatively biased; we noted this earlier. If , then  is positively biased for sufficiently large 
(depending on ).

For ,

1. 
2. 

The sequence of estimators  is mean-square consistent.

Proof

By definition, . Hence

Substituting  and  gives the results. In both cases,  as  since  and  as 
.

The Geometric distribution

Suppose that  is a sequence of independent random variables, each having the geometric distribution on 
with unknown success parameter . Recall that these variables can be interpreted as the number of trials between
successive successes in a sequence of Bernoulli trials. Given , the geometric distribution has probability density function

Once again for , let . In this setting,  is the trial number of the th success, and given , has the negative
binomial distribution with parameters  and .

Suppose now that we model  with a random variable  having a prior beta distribution with left parameter  and right
parameter . As usual,  and  are chosen to reflect our prior knowledge of .

pn < nYn U = 1 ⋅ 0 + ⋅ 1 =1
2

1
2

< nYn Un
1
2

= nYn pn
→ 1pn n → ∞

p ∈ { , 1}1
2

n ∈ N+

bias( ∣ 1) = −1Un pn

bias( ∣ ) = ( − )Un
1
2

( )1
2

n
pn

1
2

( : n ∈ )Un N+

bias( ∣ p) = E(U −p ∣ p)Un

bias(U ∣ p) = ( −p)P(Y = n ∣ p) +( −p)P(Y < n ∣ p)pn
1

2

= ( −p) +( −p) (1 − )pn pn
1

2
pn

(7.4.25)

(7.4.26)

p = 1 p = 1
2

bias( ∣ p) → 0Un n → ∞ → 1pn → 0( )1
2

n

n → ∞

p = 1 Un p = 1
2

Un n

a

n ∈ N+

mse( ∣ 1) = ( −1Un pn )2

mse ( ∣ ) =Un
1
2

( )1
2

n
( − )pn

1
2

2

U = ( : n ∈ )Un N+

mse( ∣ p) =E[( −p ∣ p]Un Un )2

mse( ∣ p)Un = ( −p P( = n ∣ p) + P( < n ∣ p)pn )2 Yn ( −p)
1

2

2

Yn

= ( −p + (1 − )pn )2pn ( −p)
1

2

2

pn

(7.4.27)

(7.4.28)

p = 1 p = 1
2

mse( ∣ p) → 0Un n → ∞ → 1pn → 0( )1
2

n

n → ∞

X = ( , , …)X1 X2 N+

p ∈ (0, 1)
p

g(x ∣ p) = p(1 −p , x ∈)x−1
N+ (7.4.29)

n ∈ N+ =Yn ∑n
i=1 Xi Yn n p

n p

p P a ∈ (0, ∞)
b ∈ (0, ∞) a b p
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The posterior distribution of  given  is beta with left parameter  and right parameter 
.

Proof

Fix . Let  and let . Then

Hence

As a function of  this expression is proportional to the beta PDF with parameters  and . Note that it's
not necessary to compute the normalizing constant .

Thus, the beta distribution is conjugate to the geometric distribution. Moreover, note that in the posterior beta distribution, the left
parameter is increased by the number of successes  while the right parameter is increased by the number of failures , just as
in the Bernoulli model. In particular, the posterior left parameter is deterministic and depends on the data only through the sample
size .

The Bayesian estimator of  based on is

Proof

By definition, the Bayesian estimator is the mean of the posterior distribution. Recall again that the mean of the beta
distribution is the left parameter divided by the sum of the parameters, so the result follows from our previous theorem.

Recall that the method of moments estimator of , and the maximum likelihood estimator of  on the interval  are both 
. To see the connection between the estimators, note from (19) that

So  (the reciprocal of the Bayesian estimator) is a weighted average of  (the reciprocal of the mean of the prior
distribution) and  (the reciprocal of the maximum likelihood estimator).

The Poisson Distribution

Suppose that  is a sequence of random variable each having the Poisson distribution with unknown parameter 
. Recall that the Poisson distribution is often used to model the number of “random points” in a region of time or space

and is studied in more detail in the chapter on the Poisson Process. The distribution is named for the inimitable Simeon Poisson and
given , has probability density function

Once again, for , let . Given , random variable  also has a Poisson distribution, but with parameter .

Suppose now that we model  with a random variable  having a prior gamma distribution with shape parameter  and
rate parameter . As usual  and  are chosen to reflect our prior knowledge of . Thus the prior probability density
function of  is

and the mean is . The scale parameter of the gamma distribution is , but the formulas will work out nicer if we use the
rate parameter.

P = ( , , … , )Xn X1 X2 Xn a+n

b+( −n)Yn

n ∈ N+ x = ( , , … , ) ∈x1 x2 xn N
n
+ y =∑n

i=1 xi

f(x ∣ p) = g( ∣ p)g( ∣ p) ⋯ g( ∣ p) = (1 −px1 x2 xn pn )y−n (7.4.30)

h(p)f(x ∣ p) = (1 −p (1 −p = (1 −p , p ∈ (0, 1)
1

B(a, b)
pa−1 )b−1pn )y−n 1

B(a, b)
pa+n−1 )b+y−n−1 (7.4.31)

p ∈ (0, 1) a+n b+y−n

f(x)

n Y −n

n

p Xn

=Vn
a+n

a+b+Yn
(7.4.32)

p p (0, 1)
= 1/ = n/Wn Mn Yn

= +
1

Vn

a

a+n

a+b

a

n

a+n

1

Wn

(7.4.33)

1/Vn (a+b)/a
1/Wn

X = ( , , …)X1 X2

λ ∈ (0, ∞)

λ

g(x ∣ λ) = , x ∈ Ne−λ λ
x

x!
(7.4.34)

n ∈ N+ =Yn ∑n
i=1 Xi λ Yn nλ

λ Λ k ∈ (0, ∞)
r ∈ (0, ∞) k r λ

Λ

h(λ) = , λ ∈ (0, ∞)
rk

Γ(k)
λk−1e−rλ (7.4.35)

k/r b = 1/r
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The posterior distribution of  given  is gamma with shape parameter  and rate parameter 
.

Proof

Fix . Let  and . Then

Hence

As a function of  the last expression is proportional to the gamma PDF with shape parameter  and rate
parameter . Note again that it's not necessary to compute the normalizing constant .

It follows that the gamma distribution is conjugate to the Poisson distribution. Note that the posterior rate parameter is
deterministic and depends on the data only through the sample size .

The Bayesian estimator of  based on  is

Proof

By definition, the Bayes estimator is the mean of the posterior distribution. Recall that mean of the gamma distribution is the
shape parameter divided by the rate parameter.

Since  is a linear function of , and we know the distribution of  given , we can compute the bias and mean-
square error functions.

For ,

The sequence of estimators  is asymptotically unbiased.

Proof

The computation is simple, since the distribution of  given  is Poisson with parameter .

Clearly  as .

Note that, as before, we cannot choose  and  to make  unbiased, without knowledge of .

For ,

The sequence of estimators  is mean-square consistent.

Proof

Again, the computation is easy since the distribution of  given  is Poisson with parameter .

Λ = ( , , … , )Xn X1 X2 Xn k+Yn
r+n

n ∈ N+ x = ( , , … , ) ∈x1 x2 xn N
n y =∑n

i=1 xi

f(x ∣ λ) = g( ∣ λ)g( ∣ λ) ⋯ g( ∣ λ) =x1 x2 xn e−nλ λy

! ! ⋯ !x1 x2 xn
(7.4.36)

h(λ)f(x ∣ λ) =
rk

Γ(k)
λk−1e−rλe−nλ λy

! ! ⋯ !x1 x2 xn

= , λ ∈ (0, ∞)
rk

Γ(k) ! ! ⋯ !x1 x2 xn
e−(r+n)λλk+y−1

(7.4.37)

(7.4.38)

λ ∈ (0, ∞) k+y

r+n f(x)

n

λ = ( , , … , )Xn X1 X2 Xn

=Vn
k+Yn

r+n
(7.4.39)

Vn Yn Yn λ ∈ (0, ∞)

n ∈ N+

bias( ∣ λ) = , λ ∈ (0, ∞)Vn
k−rλ

r+n
(7.4.40)

V = ( : n ∈ )Vn N+

Yn λ nλ

bias( ∣ λ) =E( ∣ λ) −λ = −λ =Vn Vn
k+nλ

r+n

k−rλ

r+n
(7.4.41)

bias( ∣ λ) → 0Vn n → ∞

k r Vn λ

n ∈ N+

mse( ∣ λ) = , λ ∈ (0, ∞)Vn
nλ+(k−rλ)2

(r+n)2
(7.4.42)

V = ( : n ∈ )Vn N+

Yn λ nλ
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Clearly  as .

Recall that the method of moments estimator of  and the maximum likelihood estimator of  on the interval  are both 
, the sample mean. This estimator is unbiased and has mean square error . To see the connection between the

estimators, note from (21) that

So  is a weighted average of  (the mean of the prior distribution) and  (the maximum likelihood estimator).

The Normal Distribution

Suppose that  is a sequence of independent random variables, each having the normal distribution with
unknown mean  but known variance . Of course, the normal distribution plays an especially important role in
statistics, in part because of the central limit theorem. The normal distribution is widely used to model physical quantities subject to
numerous small, random errors. In many statistical applications, the variance of the normal distribution is more stable than the
mean, so the assumption that the variance is known is not entirely artificial. Recall that the normal probability density function
(given ) is

Again, for  let . Recall that  also has a normal distribution (given ) but with mean  and variance 
.

Suppose now that  is modeled by a random variable  that has a prior normal distribution with mean  and variance 
. As usual,  and  are chosen to reflect our prior knowledge of . An interesting special case is when we take ,

so the variance of the prior distribution of  is the same as the variance of the underlying sampling distribution.

For , the posterior distribution of  given  is normal with mean and variance given by

Proof

Fix . Suppose  and let  and . Then

On the other hand, of course

Therefore,

mse(V ∣ λ) = var( ∣ λ) + ( ∣ λ) = +Vn bias2 Vn
nλ

(r+n)2
( )
k−rλ

r+n

2

(7.4.43)

mse( ∣ λ) → 0Vn n → ∞

λ λ (0, ∞)
= /nMn Yn λ/n

= +Vn
r

r+n

k

r

n

r+n
Mn (7.4.44)

Vn k/r Mn

X = ( , , …)X1 X2

μ ∈ R ∈ (0, ∞)σ2

μ

g(x ∣ μ) = exp[− ], x ∈ R
1

σ2 π
−−−

√

1

2
( )
x−μ

σ

2

(7.4.45)

n ∈ N+ =Yn ∑n
i=1 Xi Yn μ nμ

nσ2

μ Ψ a ∈ R

∈ (0, ∞)b2 a b μ b = σ

Ψ

n ∈ N+ Ψ = ( , , … , )Xn X1 X2 Xn

E(Ψ ∣ )Xn

var(Ψ ∣ )Xn

=
+aYnb

2 σ2

n +b2 σ2

=
σ2b2

n +b2 σ2

(7.4.46)

(7.4.47)

n ∈ N+ x = ( , , … , ) ∈ Rx1 x2 xn y =∑n

i=1 xi =w2 ∑n

i=1 x
2
i

f(x ∣ μ) = g( ∣ μ)g( ∣ μ) ⋯ g( ∣ μ) = exp[− ]x1 x2 xn
1

(2π)n/2σn

1

2
∑
i=1

n

( )
−μxi

σ

2

= exp[− ( −2μy+n )]
1

(2π)n/2σn

1

2σ2
w2 μ2

(7.4.48)

(7.4.49)

h(μ) = exp[− ] = exp[− ( −2aμ+ )]
1

b2π
−−

√

1

2
( )
μ−a

b

2
1

b2π
−−

√

1

2b2
μ2 a2 (7.4.50)

h(μ)f(x ∣ μ) = C exp{− [( + ) −2( + )μ]}
1

2

1

b2

n

σ2
μ2 a

b2

y

σ2
(7.4.51)
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where  depends on , , , , , but importantly not on . So we don't really care what  is. Completing the square in  in
the expression above gives

where  is yet another factor that depends on lots of stuff, but not . As a function of , this expression is proportional to the
normal distribution with mean and variance, respectively, given by

Once again, it was not necessary to compute the normalizing constant , which would have been yet another factor that we
do not care about.

Therefore, the normal distribution is conjugate to the normal distribution with unknown mean and known variance. Note that the
posterior variance is deterministic, and depends on the data only through the sample size . In the special case that , the
posterior distribution of  given  is normal with mean  and variance .

The Bayesian estimator of  is

Proof

This follows immediately from the previous result.

Note that  in the special case that .

For ,

The sequence of estimators  is asymptotically unbiased.

Proof

Recall that  has mean  given . Hence

Clearly  as  for every .

When , .

For ,

The sequence of estimators  is mean-square consistent.

Proof

Recall that  as variance . Hence

C n σ a b x μ C μ

h(μ)f(x ∣ μ) = K exp − ( + )
⎡

⎣

1

2

1

b2

n

σ2
(μ− )

a/ +y/b2 σ2

1/ +n/b2 σ2

2
⎤

⎦
(7.4.52)

K μ μ

=
a/ +y/b2 σ2

1/ +n/b2 σ2

y +ab2 σ2

n +b2 σ2

=
1

1/ +n/b2 σ2

σ2b2

+nσ2 b2

(7.4.53)

(7.4.54)

f(x)

n b = σ

Ψ Xn ( +a)/(n+1)Yn /(n+1)σ2

μ

=Un

+aYnb2 σ2

n +b2 σ2
(7.4.55)

= ( +a)/(n+1)Un Yn b = σ

n ∈ N+

bias( ∣ μ) = , μ ∈ RUn

(a−μ)σ2

+nσ2 b2
(7.4.56)

U = ( : n ∈ )Un N+

Yn nμ μ

bias( ∣ μ) =E( ∣ μ) −μ = −μ =Un Un

n μ+ab2 σ2

n +b2 σ2

(a−μ)σ2

n +b2 σ2
(7.4.57)

bias( ∣ μ) → 0Un n → ∞ μ ∈ R

b = σ bias( ∣ μ) = (a−μ)/(n+1)Un

n ∈ N+

mse( ∣ μ) = , μ ∈ RUn

n + (a−μσ2b4 σ4 )2

( +nσ2 b2)2
(7.4.58)

U = ( : n ∈ )Un N+

Yn nσ2
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Clearly  as  for every .

When , . Recall that the method of moments estimator of  and the maximum
likelihood estimator of  on  are both , the sample mean. This estimator is unbiased and has mean square error 

. To see the connection between the estimators, note from (25) that

So  is a weighted average of  (the mean of the prior distribution) and  (the maximum likelihood estimator).

The Beta Distribution

Suppose that  is a sequence of independent random variables each having the beta distribution with unknown
left shape parameter  and right shape parameter . The beta distribution is widely used to model random
proportions and probabilities and other variables that take values in bounded intervals (scaled to take values in ). Recall that
the probability density function (given ) is

Suppose now that  is modeled by a random variable  that has a prior gamma distribution with shape parameter  and
rate parameter . As usual,  and  are chosen to reflect our prior knowledge of . Thus the prior probabiltiy density
function of  is

The mean of the prior distribution is .

The posterior distribution of  given  is gamma, with shape parameter  and rate parameter 
.

Proof

Fix . Let  and let  Then

Hence

As a function of  this expression is proportional to the gamma PDF with shape parameter  and scale
parameter . Once again, it's not necessary to compute the normalizing constant .

Thus, the gamma distribution is conjugate to the beta distribution with unknown left parameter and right parameter 1. Note that the
posterior shape parameter is deterministic and depends on the data only through the sample size .

The Bayesian estimator of  based on  is

Proof

The mean of the gamma distribution is the shape parameter divided by the rate parameter, so this follows from the previous
theorem.

mse( ∣ μ) = var( ∣ μ) + ( ∣ μ) = n +Un Un bias2 Un ( )
b2

n +b2 σ2

2

σ2 ( )
(a−μ)σ2

n +b2 σ2

2

(7.4.59)

mse( ∣ μ) → 0Un n → ∞ μ ∈ R

b = σ mse(U ∣ μ) = [n +(a−μ ]/(n+1σ2 )2 )2 μ

μ R = /nMn Yn
var(M) = /nσ2

= a+Un

σ2

n +b2 σ2

nb2

n +b2 σ2
Mn (7.4.60)

Un a Mn

X = ( , , …)X1 X2

a ∈ (0, ∞) b = 1
(0, 1)

a

g(x ∣ a) = a , x ∈ (0, 1)xa−1 (7.4.61)

a A k ∈ (0, ∞)
r ∈ (0, ∞) k r a

A

h(a) = , a ∈ (0, ∞)
rk

Γ(k)
ak−1e−ra (7.4.62)

k/r

A = ( , , … , )Xn X1 X2 Xn k+n

r−ln( ⋯ )X1X2 Xn

n ∈ N+ x = ( , , … , ) ∈ (0, 1x1 x2 xn )n z = ⋯x1x2 xn

f(x ∣ a) = g( ∣ a)g( ∣ a) ⋯ g( ∣ a) = =x1 x2 xn anza−1 an

z
ea ln z (7.4.63)

h(a)f(x ∣ a) = , a ∈ (0, ∞)
rk

zΓ(k)
an+k−1e−a(r−ln z) (7.4.64)

a ∈ (0, ∞) n+k

r−lnz f(x)

n

a Xn

=Un

k+n

r−ln( ⋯ )X1X2 Xn

(7.4.65)
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Given the complicated structure, the bias and mean square error of  given  would be difficult to compute explicitly.
Recall that the maximum likelihood estimator of  is . To see the connection between the estimators,
note from (29) that

So  (the reciprocal of the Bayesian estimator) is a weighted average of  (the reciprocal of the mean of the prior
distribution) and  (the reciprocal of the maximum likelihood estimator).

The Pareto Distribution

Suppose that  is a sequence of independent random variables each having the Pareto distribution with unknown
shape parameter  and scale parameter . The Pareto distribution is used to model certain financial variables and
other variables with heavy-tailed distributions, and is named for Vilfredo Pareto. Recall that the probability density function (given 

) is

Suppose now that  is modeled by a random variable  that has a prior gamma distribution with shape parameter  and
rate parameter . As usual,  and  are chosen to reflect our prior knowledge of . Thus the prior probabiltiy density
function of  is

For , the posterior distribution of  given  is gamma, with shape parameter  and rate
parameter .

Proof

Fix . Let  and let  Then

Hence

As a function of  this expression is proportional to the gamma PDF with shape parameter  and scale
parameter . Once again, it's not necessary to compute the normalizing constant .

Thus, the gamma distribution is conjugate to Pareto distribution with unknown shape parameter. Note that the posterior shape
parameter is deterministic and depends on the data only through the sample size .

The Bayesian estimator of  based on  is

Proof

Once again, the mean of the gamma distribution is the shape parameter divided by the rate parameter, so this follows from the
previous theorem.

Given the complicated structure, the bias and mean square error of  given  would be difficult to compute explicitly.
Recall that the maximum likelihood estimator of  is . To see the connection between the estimators,
note from (31) that

Un a ∈ (0, ∞)
a = −n/ ln( ⋯ )Wn X1 X2 Xn

= +
1

Un

k

k+n

r

k

n

k+n

1

Wn

(7.4.66)

1/Un r/k
1/Wn

X = ( , , …)X1 X2

a ∈ (0, ∞) b = 1

a

g(x ∣ a) = , x ∈ [1, ∞)
a

xa+1
(7.4.67)

a A k ∈ (0, ∞)
r ∈ (0, ∞) k r a

A

h(a) = , a ∈ (0, ∞)
rk

Γ(k)
ak−1e−ra (7.4.68)

n ∈ N+ A = ( , , … , )Xn X1 X2 Xn k+n

r+ln( ⋯ )X1X2 Xn

n ∈ N+ x = ( , , … , ) ∈ [1, ∞x1 x2 xn )n z = ⋯x1x2 xn

f(x ∣ a) = g( ∣ a)g( ∣ a) ⋯ g( ∣ a) = =x1 x2 xn
an

za+1

an

z
e−a ln z (7.4.69)

h(a)f(x ∣ a) = , a ∈ (0, ∞)
rk

zΓ(k)
an+k−1e−a(r+ln z) (7.4.70)

a ∈ (0, ∞) n+k

r+lnz f(x)

n

a Xn

=Un

k+n

r+ln( ⋯ )X1X2 Xn

(7.4.71)

U a ∈ (0, ∞)
a = n/ ln( ⋯ )Wn X1 X2 Xn
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So  (the reciprocal of the Bayesian estimator) is a weighted average of  (the reciprocal of the mean of the prior
distribution) and  (the maximum likelihood estimator).

This page titled 7.4: Bayesian Estimation is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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