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5.17: The Beta Distribution
         

In this section, we will study the beta distribution, the most important distribution that has bounded support. But before we can study
the beta distribution we must study the beta function.

The Beta Function

Definition

The beta function  is defined as follows:

Proof that  is well defined

We need to show that  for every . The integrand is positive on , so the integral exists, either as a
real number or . If  and , the integrand is continuous on , so of course the integral is finite. Thus, the only
cases of interest are when  or . Note that

If ,  is bounded on  and . Hence the first integral on the right in the displayed

equation is finite. Similarly, If ,  is bounded on  and . Hence the second integral

on the right in the displayed equation is also finite.

The beta function was first introduced by Leonhard Euler.

Properties

The beta function satisfies the following properties:

1.  for , so  is symmetric.
2.  for 
3.  for 

Proof
1. Using the substitution  we have

2. 
3. This follows from (a) and (b).

The beta function has a simple expression in terms of the gamma function:

If  then

Proof

From the definitions, we can express  as a double integral:

B

B(a, b) = (1 −u du; a, b ∈ (0, ∞)∫
1

0
ua−1 )b−1 (5.17.1)

B

B(a, b) < ∞ a, b ∈ (0, ∞) (0, 1)
∞ a ≥ 1 b ≥ 1 [0, 1]

0 < a < 1 0 < b < 1

(1 −u du = (1 −u du+ (1 −u du∫
1

0
ua−1 )b−1 ∫

1/2

0
ua−1 )b−1 ∫

1

1/2
ua−1 )b−1 (5.17.2)

0 < a < 1 (1 −u)b−1 (0, ]1
2

du =∫ 1/2
0

ua−1 1
a2a

0 < b < 1 ua−1 [ , 1)1
2

(1 −u du =∫ 1
1/2

)b−1 1

b2b

B(a, b) = B(b, a) a, b ∈ (0, ∞) B

B(a, 1) = 1
a

a ∈ (0, ∞)

B(1, b) = 1
b

b ∈ (0, ∞)

v= 1 −u

B(a, b) = (1 −u du = (1 −v dv= B(b, a)∫
1

0
ua−1 )b−1 ∫

1

0
)a−1vb−1 (5.17.3)

B(a, 1) = du =∫ 1
0 ua−1 1

a

a, b ∈ (0, ∞)

B(a, b) =
Γ(a)Γ(b)

Γ(a+b)
(5.17.4)

Γ(a+b)B(a, b)

Γ(a+b)B(a, b) = dx (1 −y dy = (xy [x(1 −y) x dx dy∫
∞

0
xa+b−1e−x ∫

1

0
ya−1 )b−1 ∫

∞

0
∫

1

0
)a−1 ]b−1 e−x (5.17.5)
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Next we use the transformation ,  which maps  one-to-one onto . The
inverse transformation is ,  and the absolute value of the Jacobian is

Thus, using the change of variables theorem for multiple integrals, the integral above becomes

which after simplifying is .

Recall that the gamma function is a generalization of the factorial function. Here is the corresponding result for the beta function:

If  then

Proof

Recall that  for , so this result follows from the previous one.

Let's generalize this result. First, recall from our study of combinatorial structures that for  and , the ascending power of
base  and order  is

If , and , then

Proof

Recall that , so the result follows from the representation above for the beta function in terms of the gamma
function.

.

Proof

Figure : The graph of  on the square , 

The Incomplete Beta Function

The integral that defines the beta function can be generalized by changing the interval of integration from  to  where 
.

The incomplete beta function is defined as follows

w = xy z = x(1 −y) (0, ∞) ×(0, 1) (0, ∞) ×(0, ∞)
x = w+z y = w/(w+z)

det =
∣

∣
∣

∂(x, y)

∂(w, z)

∣

∣
∣

1

(w+z)
(5.17.6)

(w+z) dw dz∫
∞

0
∫

∞

0
wa−1zb−1 e−(w+z) 1

w+z
(5.17.7)

Γ(a)Γ(b)

j, k ∈ N+

B(j, k) =
(j−1)!(k−1)!

(j+k−1)!
(5.17.8)

Γ(n) = (n−1)! n ∈ N+

a ∈ R j∈ N

a j

= a(a+1) ⋯ [a+(j−1)]a[j] (5.17.9)

a, b ∈ (0, ∞) j, k ∈ N

=
B(a+j, b+k)

B(a, b)

a[j]b[k]

(a+b)[j+k]
(5.17.10)

Γ(a+j) = Γ(a)a[j]

B ( , ) = π1
2

1
2

5.17.1 B(a, b) 0 < a < 5 0 < b < 5

(0, 1) (0, x)
x ∈ [0, 1]

B(x; a, b) = (1 −u du, x ∈ (0, 1); a, b ∈ (0, ∞)∫
x

0
ua−1 )b−1 (5.17.11)
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Of course, the ordinary (complete) beta function is  for .

The Standard Beta Distribution

Distribution Functions

The beta distributions are a family of continuous distributions on the interval .

The (standard) beta distribution with left parameter  and right parameter  has probability density function
 given by

Of course, the beta function is simply the normalizing constant, so it's clear that  is a valid probability density function. If , 
is defined at 0, and if ,  is defined at 1. In these cases, it's customary to extend the domain of  to these endpoints. The beta
distribution is useful for modeling random probabilities and proportions, particularly in the context of Bayesian analysis. The
distribution has just two parameters and yet a rich variety of shapes (so in particular, both parameters are shape parameters).
Qualitatively, the first order properties of  depend on whether each parameter is less than, equal to, or greater than 1.

For  with , define

1. If  and ,  decreases and then increases with minimum value at  and with  as  and as 
.

2. If  and ,  is constant.
3. If  and ,  is decreasing with  as .
4. If  and ,  is increasing with  as .
5. If  and ,  is decreasing with mode at .
6. If  and ,  is increasing with mode at .
7. If  and ,  increases and then decreases with mode at .

Proof

These results follow from standard calculus. The first derivative is

From part (b), note that the special case  and  gives the continuous uniform distribution on the interval  (the
standard uniform distribution). Note also that when  or , the probability density function is unbounded, and hence the
distribution has no mode. On the other hand, if , , and one of the inequalites is strict, the distribution has a unique mode
at . The second order properties are more complicated.

For  with  and , define

For  and  or for  and , define .

1. If  and , or if  and , or if  and ,  is concave upward.
2. If  and ,  is concave upward and then downward with inflection point at .
3. If  and ,  is concave downward and then upward with inflection point at .
4. If  and ,  is concave downward.
5. If  and ,  is concave downward and then upward with inflection point at .

B(a, b) = B(1; a, b) a, b ∈ (0, ∞)

(0, 1)

a ∈ (0, ∞) b ∈ (0, ∞)
f

f(x) = (1 −x , x ∈ (0, 1)
1

B(a, b)
xa−1 )b−1 (5.17.12)

f a ≥ 1 f

b ≥ 1 f f

f

a, b ∈ (0, ∞) a+b ≠ 2

=x0
a−1

a+b−2
(5.17.13)

0 < a < 1 0 < b < 1 f x0 f(x) → ∞ x ↓ 0
x ↑ 1
a = 1 b = 1 f

0 < a < 1 b ≥ 1 f f(x) → ∞ x ↓ 0
a ≥ 1 0 < b < 1 f f(x) → ∞ x ↑ 1
a = 1 b > 1 f x = 0
a > 1 b = 1 f x = 1
a > 1 b > 1 f x0

(x) = (1 −x [(a−1) −(a+b−2)x], 0 < x < 1f ′ 1

B(a, b)
xa−2 )b−2 (5.17.14)

a = 1 b = 1 (0, 1)
a < 1 b < 1

a ≥ 1 b ≥ 1
x0

a, b ∈ (0, ∞) a+b ∉ {2, 3} (a−1)(b−1)(a+b−3) ≥ 0

x1

x2

=
(a−1)(a+b−3) − (a−1)(b−1)(a+b−3)

− −−−−−−−−−−−−−−−−−−
√

(a+b−3)(a+b−2)

=
(a−1)(a+b−3) + (a−1)(b−1)(a+b−3)

− −−−−−−−−−−−−−−−−−−
√

(a+b−3)(a+b−2)

(5.17.15)

(5.17.16)

a < 1 a+b = 2 b < 1 a+b = 2 = = 1 −a/2x1 x2

a ≤ 1 b ≤ 1 a ≤ 1 b ≥ 2 a ≥ 2 b ≤ 1 f

a ≤ 1 1 < b < 2 f x1

1 < a < 2 b ≤ 1 f x2

1 < a ≤ 2 1 < b ≤ 2 f

1 < a ≤ 2 b > 2 f x2
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6. If  and ,  is concave upward and then downward with inflection point at .
7. If  and ,  is concave upward, then downward, then upward again, with inflection points at  and .

Proof

These results follow from standard (but very tedious) calculus. The second derivative is

In the special distribution simulator, select the beta distribution. Vary the parameters and note the shape of the beta density
function. For selected values of the parameters, run the simulation 1000 times and compare the empirical density function to the
true density function.

The special case ,  is the arcsine distribution, with probability density function given by

This distribution is important in a number of applications, and so the arcsine distribution is studied in a separate section.

The beta distribution function  can be easily expressed in terms of the incomplete beta function. As usual  denotes the left
parameter and  the right parameter.

The beta distribution function  with parameters  is given by

The distribution function  is sometimes known as the regularized incomplete beta function. In some special cases, the distribution
function  and its inverse, the quantile function , can be computed in closed form, without resorting to special functions.

If  and  then

1.  for 
2.  for 

If  and  then

1.  for 
2.  for 

If  (the arcsine distribution) then

1.  for 
2.  for 

There is an interesting relationship between the distribution functions of the beta distribution and the binomial distribution, when the
beta parameters are positive integers. To state the relationship we need to embellish our notation to indicate the dependence on the
parameters. Thus, let  denote the beta distribution function with left parameter  and right parameter , and
let  denote the binomial distribution function with trial parameter  and success parameter .

If  and  then

Proof

By definition

a > 2 1 < b ≤ 2 f x1

a > 2 b > 2 f x1 x2

(x) = (1 −x [(a+b−2)(a+b−3) −2(a−1)(a+b−3)x+(a−1)(a−2)]f ′′ 1

B(a, b)
xa−3 )b−3 x2 (5.17.17)

a = 1
2

b = 1
2

f(x) = , x ∈ (0, 1)
1

π x(1 −x)
− −−−−−−

√
(5.17.18)

F a

b

F a, b ∈ (0, ∞)

F (x) = , x ∈ (0, 1)
B(x; a, b)

B(a, b)
(5.17.19)

F

F F −1

a ∈ (0, ∞) b = 1

F (x) = xa x ∈ (0, 1)

(p) =F −1 p1/a p ∈ (0, 1)

a = 1 b ∈ (0, ∞)

F (x) = 1 −(1 −x)b x ∈ (0, 1)

(p) = 1 −(1 −pF −1 )1/b p ∈ (0, 1)

a = b = 1
2

F (x) = arcsin( )2
π

x−−√ x ∈ (0, 1)

(p) = ( p)F −1 sin2 π

2
p ∈ (0, 1)

Fa,b a ∈ (0, ∞) b ∈ (0, ∞)
Gn,p n ∈ N+ p ∈ (0, 1)

j, k ∈ N+ x ∈ (0, 1)

(x) = (k−1)Fj,k Gj+k−1,1−x (5.17.20)
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Integrate by parts with  and , so that  and . The result is

But by the property of the beta function above, . Hence  and 
. Thus, the last displayed equation can be rewritten as

Recall from the special case above that . Iterating the last displayed equation gives the result.

In the special distribution calculator, select the beta distribution. Vary the parameters and note the shape of the density function
and the distribution function. In each of the following cases, find the median, the first and third quartiles, and the interquartile
range. Sketch the boxplot.

1. , 
2. , 
3. , 
4. , 
5. , 
6. , 

Moments

The moments of the beta distribution are easy to express in terms of the beta function. As before, suppose that  has the beta
distribution with left parameter  and right parameter .

If  then

In particular, if  then

Proof

Note that

If , the formula simplifies by the property of the beta function above.

From the general formula for the moments, it's straightforward to compute the mean, variance, skewness, and kurtosis.

The mean and variance of  are

Proof

(x) = (1 − t dtFj,k
1

B(j, k)
∫

x

0
tj−1 )k−1 (5.17.21)

u = (1 − t)k−1 dv= dttj−1 du = −(k−1)(1 − t)k−2 v= /jtj

(x) = (1 −x + (1 − t dtFj,k
1

jB(j, k)
)k−1xj

k−1

jB(j, k)
∫

x

0
tj )k−2 (5.17.22)

B(j, k) = (j−1)!(k−1)!/(j+k−1)! 1/jB(j, k) = ( )j+k−1
k−1

(k−1)/jB(j, k) = 1/B(j+1, k−1)

(x) =( )(1 −x + (x)Fj,k
j+k−1

k−1
)k−1xj Fj+1,k−1 (5.17.23)

(x) =Fj+k−1,1 xj+k−1

a = 1 b = 1
a = 1 b = 3
a = 3 b = 1
a = 2 b = 4
a = 4 b = 2
a = 4 b = 4

X

a ∈ (0, ∞) b ∈ (0, ∞)

k ∈ [0, ∞)

E ( ) =Xk B(a+k, b)

B(a, b)
(5.17.24)

k ∈ N

E ( ) =Xk a[k]

(a+b)[k]
(5.17.25)

E ( ) = (1 −x dx = (1 −x dx =Xk ∫
1

0
xk

1

B(a, b)
xa−1 )b−1 1

B(a, b)
∫

1

0
xa+k−1 )b−1

B(a+k, b)

B(a, b)
(5.17.26)

k ∈ N

X

E(X)

var(X)

=
a

a+b

=
ab

(a+b (a+b+1))2

(5.17.27)

(5.17.28)
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The formula for the mean and variance follow from the formula for the moments and the computational formula 

Note that the variance depends on the parameters  and  only through the product  and the sum .

Open the special distribution simulator and select the beta distribution. Vary the parameters and note the size and location of the
mean standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare the sample
mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

Proof

These results follow from the computational formulas that give the skewness and kurtosis in terms of  for ,
and the formula for the moments above.

In particular, note that the distribution is positively skewed if , unskewed if  (the distribution is symmetric about 
in this case) and negatively skewed if .

Open the special distribution simulator and select the beta distribution. Vary the parameters and note the shape of the probability
density function in light of the previous result on skewness. For various values of the parameters, run the simulation 1000 times
and compare the empirical density function to the true probability density function.

Related Distributions

The beta distribution is related to a number of other special distributions.

If  has the beta distribution with left parameter  and right parameter  then  has the beta
distribution with left parameter  and right parameter .

Proof

This follows from the standard change of variables formula. If  and  denote the PDFs of  and  respectively, then

The beta distribution with right parameter 1 has a reciprocal relationship with the Pareto distribution.

Suppose that .

1. If  has the beta distribution with left parameter  and right parameter 1 then  has the Pareto distribution with
shape parameter .

2. If  has the Pareto distribution with shape parameter  then  has the beta distribution with left parameter  and
right parameter 1.

Proof

The two results are equivalent. In (a), suppose that  has the beta distribution with parameters  and 1. The transformation 
 maps  one-to-one onto . The inverse is  with . Recall also that .

By the change of variables formula, the PDF  of  is given by

We recognize  as the PDF of the Pareto distribution with shape parameter .

var(X) =E( ) −[E(X)X2 ]2

a b ab a+b

±

X

skew(X)

kurt(X)

=
2(b−a) a+b+1

− −−−−−−
√

(a+b+2) ab
−−

√

=
3 b+3a +6 + + +13 b+13a + + +14aba3 b3 a2b2 a3 b3 a2 b2 a2 b2

ab(a+b+2)(a+b+3)

(5.17.29)

(5.17.30)

E( )Xk k ∈ {1, 2, 3, 4}

a < b a = b x = 1
2

a > b

X a ∈ (0, ∞) b ∈ (0, ∞) Y = 1 −X

b a

f g X Y

g(y) = f(1 −y) = (1 −y = (1 −y , y ∈ (0, 1)
1

B(a, b)
)a−1yb−1 1

B(b, a)
yb−1 )a−1 (5.17.31)

a ∈ (0, ∞)

X a Y = 1/X
a

Y a X = 1/Y a

X a

y = 1/x (0, 1) (0, ∞) x = 1/y dx/dy = −1/y2 B(a, 1) = 1/a
g Y = 1/X

g(y) = f ( ) = a = , y ∈ (0, ∞)
1

y

1

y2
( )

1

y

a−1
1

y2

a

ya+1
(5.17.32)

g a
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The following result gives a connection between the beta distribution and the gamma distribution.

Suppose that  has the gamma distribution with shape parameter  and rate parameter ,  has the gamma
distribution with shape parameter  and rate parameter , and that  and  are independent. Then 
has the beta distribution with left parameter  and right parameter .

Proof

Let  and . We will actually prove stronger results:  and  are independent,  has the gamma
distribution with shape parameter  and rate parameter , and  has the beta distribution with parameters  and . First note
that  has joint PDF  given by

The transformation  and  maps  one-to-one onto . The inverse is 
,  and the absolute value of the Jacobian is

Hence by the multivariate change of variables theorem, the PDF  of  is given by

The results now follow from the factorization theorem. The factor in  is the gamma PDF with shape parameter  and rate
parameter  while the factor in  is the beta PDF with parameters  and .

The following result gives a connection between the beta distribution and the  distribution. This connection is a minor variation of
the previous result.

If  has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the
denominator then

has the beta distribution with left parameter  and right parameter .

Proof

If  has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator
then  can be written as

where  has the chi-square distribution with  degrees of freedom,  has the chi-square distribution with  degrees of freedom,
and  and  are independent. Hence

But the chi-square distribution is a special case of the gamma distribution. Specifically,  has the gamma distribution with shape
parameter  and rate parameter ,  has the gamma distribution with shape parameter  and rate parameter , and

X a ∈ (0, ∞) r ∈ (0, ∞) Y

b ∈ (0, ∞) r X Y V = X/(X+Y )
a b

U = X+Y V = X/(X+Y ) U V U

a+b r V a b

(X,Y ) f

f(x, y) = = ; x, y ∈ (0, ∞)
ra

Γ(a)
xa−1e−rx rb

Γ(b)
yb−1e−ry ra+b

Γ(a)Γ(b)
xa−1yb−1e−r(x+y) (5.17.33)

u = x+y v= x/(x+y) (0, ∞) ×(0, ∞) (0, ∞) ×(0, 1)
x = uv y = u(1 −v)

det = u
∣

∣
∣

∂(x, y)

∂(u, v)

∣

∣
∣ (5.17.34)

g (U,V )

g(u, v) = f [uv, u(1 −v)]u = (uv [u(1 −v) u
ra+b

Γ(a)Γ(b)
)a−1 ]b−1e−ru

= (1 −v
ra+b

Γ(a)Γ(b)
ua+b−1e−ruva−1 )b−1

= (1 −v ; u ∈ (0, ∞), v∈ (0, 1)
ra+b

Γ(a+b)
ua+b−1e−ru Γ(a+b)

Γ(a)Γ(b)
va−1 )b−1

(5.17.35)

(5.17.36)

(5.17.37)

u a+b

r v a b

F

X F n ∈ (0, ∞) d ∈ (0, ∞)

Y =
(n/d)X

1 +(n/d)X
(5.17.38)

a = n/2 b = d/2

X F n > 0 d > 0
X

X =
U/n

V /d
(5.17.39)

U n V d

U V

Y = = =
(n/d)X

1 +(n/d)X

U/V

1 +U/V

U

U +V
(5.17.40)

U

n/2 1/2 V d/2 1/2
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again  and  are independent. Hence by the previous result,  has the beta distribution with left parameter  and right
parameter .

Our next result is that the beta distribution is a member of the general exponential family of distributions.

Suppose that  has the beta distribution with left parameter  and right parameter . Then the distribution is
a two-parameter exponential family with natural parameters  and , and natural statistics  and .

Proof

This follows from the definition of the general exponential distribution, since the PDF  of  can be written as

The beta distribution is also the distribution of the order statistics of a random sample from the standard uniform distribution.

Suppose  and that  is a sequence of independent variables, each with the standard uniform
distribution. For , the th order statistics  has the beta distribution with left parameter  and right
parameter .

Proof

See the section on order statistics.

One of the most important properties of the beta distribution, and one of the main reasons for its wide use in statistics, is that it forms
a conjugate family for the success probability in the binomial and negative binomial distributions.

Suppose that  is a random probability having the beta distribution with left parameter  and right parameter 
. Suppose also that  is a random variable such that the conditional distribution of  given  is

binomial with trial parameter  and success parameter . Then the conditional distribution of  given  is beta with
left parameter  and right parameter .

Proof

The joint PDF  of  on  is given by

The conditional PDF of  given  is simply the normalized version of the function . We can tell from the
functional form that this distribution is beta with the parameters given in the theorem.

Suppose again that  is a random probability having the beta distribution with left parameter  and right parameter 
. Suppose also that  is a random variable such that the conditional distribution of  given  is

negative binomial with stopping parameter  and success parameter . Then the conditional distribution of  given 
 is beta with left parameter  and right parameter .

Proof

The joint PDF  of  on  is given by

The conditional PDF of  given  is simply the normalized version of the function . We can tell from the
functional form that this distribution is beta with the parameters given in the theorem.

in both cases, note that in the posterior distribution of , the left parameter is increased by the number of successes and the right
parameter by the number of failures. For more on this, see the section on Bayesian estimation in the chapter on point estimation.

U V Y n/2
d/2

X a ∈ (0, ∞) b ∈ (0, ∞)
a−1 b−1 ln(X) ln(1 −X)

f X

f(x) = exp[(a−1) ln(x) +(b−1) ln(1 −x)], x ∈ (0, 1)
1

B(a, b)
(5.17.41)

n ∈ N+ ( , , … , )X1 X2 Xn

k ∈ {1, 2, … ,n} k X(k) a = k

b = n−k+1

P a ∈ (0, ∞)
b ∈ (0, ∞) X X P = p ∈ (0, 1)

n ∈ N+ p P X = k

a+k b+n−k

f (P ,X) (0, 1) ×{0, 1, … n}

f(p, k) = (1 −p ( ) (1 −p = ( ) (1 −p
1

B(a, b)
pa−1 )b−1 n

k
pk )n−k 1

B(a, b)

n

k
pa+k−1 )b+n−k−1 (5.17.42)

P X = k p ↦ f(p, k)

P a ∈ (0, ∞)
b ∈ (0, ∞) N N P = p ∈ (0, 1)

k ∈ N+ p P

N = n a+k b+n−k

f (P ,N) (0, 1) ×{k, k+1, …}

f(p,n) = (1 −p ( ) (1 −p = ( ) (1 −p
1

B(a, b)
pa−1 )b−1 n−1

k−1
pk )n−k 1

B(a, b)

n−1

k−1
pa+k−1 )b+n−k−1 (5.17.43)

P N = n p ↦ f(p,n)

P
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The General Beta Distribution
The beta distribution can be easily generalized from the support interval  to an arbitrary bounded interval using a linear
transformation. Thus, this generalization is simply the location-scale family associated with the standard beta distribution.

Suppose that  has the standard beta distibution with left parameter  and right parameter . For  and 
 random variable  has the beta distribution with left parameter , right parameter , location parameter 

and scale parameter .

For the remainder of this discussion, suppose that  has the distribution in the definition above.

 has probability density function

Proof

This follows from a standard result for location-scale families. If  denotes the standard beta PDF of , then  has PDF  given
by

Most of the results in the previous sections have simple extensions to the general beta distribution.

The mean and variance of  are

1. 
2. 

Proof

This follows from the standard mean and variance and basic properties of expected value and variance.

1. 
2. 

Recall that skewness and variance are defined in terms of standard scores, and hence are unchanged under location-scale
transformations. Hence the skewness and kurtosis of  are just as for the standard beta distribution.

This page titled 5.17: The Beta Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

(0, 1)

Z a ∈ (0, ∞) b ∈ (0, ∞) c ∈ R

d ∈ (0, ∞) X = c+dZ a b c

d

X

X

f(x) = (x−c (c+d−x , x ∈ (c, c+d)
1

B(a, b)da+b−1
)a−1 )b−1 (5.17.44)

g Z X f

f(x) = g( ) , x ∈ (c, c+d)
1

d

x−c

d
(5.17.45)

X

E(X) = c+d a

a+b

var(X) = d2 ab

(a+b (a+b+1))2

E(X) = c+dE(Z)
var(X) = var(Z)d2

X
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