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2.11: Filtrations and Stopping Times
         

Introduction

Suppose that  is a stochastic process with state space  defined on an underlying probability space 
. To review,  is the set of outcomes,  the -algebra of events, and  the probability measure on . Also  is the set

of states, and  the -algebra of admissible subsets of . Usually,  is a topological space and  the Borel -algebra generated by
the open subsets of . A standard set of assumptions is that the topology is locally compact, Hausdorff, and has a countable base,
which we will abbreviate by LCCB. For the index set, we assume that either  or that  and as usual in these cases, we
interpret the elements of  as points of time. The set  is also given a topology, the discrete topology in the first case and the standard
Euclidean topology in the second case, and then the Borel -algebra . So in discrete time with , , the power set
of , so every subset of  is measurable, as is every function from  into a another measurable space. Finally,  is a random
variable and so by definition is measurable with respect to  and  for each . We interpret  is the state of some random
system at time . Many important concepts involving  are based on how the future behavior of the process depends on the past
behavior, relative to a given current time.

For , let , the -algebra of events that can be defined in terms of the process up to time . Roughly
speaking, for a given , we can tell whether or not  has occurred if we are allowed to observe the process up to time . The
family of -algebras  has two critical properties: the family is increasing in , relative to the subset partial
order, and all of the -algebras are sub -algebras of . That is for  with , we have .

Filtrations

Basic Definitions

Sometimes we need -algebras that are a bit larger than the ones in the last paragraph. For example, there may be other random
variables that we get to observe, as time goes by, besides the variables in . Sometimes, particularly in continuous time, there are
technical reasons for somewhat different -algebras. Finally, we may want to describe how our information grows, as a family of -
algebras, without reference to a random process. For the remainder of this section, we have a fixed measurable space  which
we again think of as a sample space, and the time space  as described above.

A family of -algebras  is a filtration on  if  and  imply . The object 
 is a filtered sample space. If  is a probability measure on , then  is a filtered probability space.

So a filtration is simply an increasing family of sub- -algebras of , indexed by . We think of  as the -algebra of events up to
time . The larger the -algebras in a filtration, the more events that are available, so the following relation on filtrations is
natural.

Suppose that  and  are filtrations on . We say that  is coarser than  and  is finer
than , and we write , if  for all . The relation  is a partial order on the collection of filtrations on .
That is, if , , and  are filtrations then

1. , the reflexive property.
2. If  and  then , the antisymmetric property.
3. If  and  then , the transitive property.

Proof

The proof is a simple consequence of the fact that the subset relation defines a partial order.

1.  for each  so .
2. If  and  then  and  for each . Hence  for each  and so .
3. If  and  then  and  for each . Hence  for each  and so 

So the coarsest filtration on  is the one where  for every  while the finest filtration is the one where 
 for every . In the first case, we gain no information as time evolves, and in the second case, we have complete

information from the beginning of time. Usually neither of these is realistic.

It's also natural to consider the -algebra that encodes our information over all time.
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For a filtration  on , define . Then

1.  for .
2.  for .

Proof

These results follows since the -algebras in a filtration are increasing in time.

Of course, it may be the case that , but not necessarily. Recall that the intersection of a collection of -algebras on  is
another -algebra. We can use this to create new filtrations from a collection of given filtrations.

Suppose that  is a filtration on  for each  in a nonempty index set . Then  where 

 for  is also a filtration on . This filtration is sometimes denoted , and is the finest
filtration that is coarser than  for every .

Proof

Suppose  with . Then  for each  so it follows that .

Unions of -algebras are not in general -algebras, but we can construct a new filtration from a given collection of filtrations using
unions in a natural way.

Suppose again that  is a filtration on  for each  in a nonempty index set . Then 

where  for  is also a filtration on . This filtration is sometimes denoted , and is the

coarsest filtration that is finer than  for every .

Proof

Suppose  with . Then  for each  so it follows that , and hence 

.

Stochastic Processes

Note again that we can have a filtration without an underlying stochastic process in the background. However, we usually do have a
stochastic process , and in this case the filtration  where  is the
natural filtration associated with . More generally, the following definition is appropriate.

A stochastic process  on  is adapted to a filtration  on  if  is measureable
with respect to  for each .

Equivalently,  is adapted to  if  is finer than , the natural filtration associated with . That is, 
for each . So clearly, if  is adapted to a filtration, then it is adapted to any finer filtration, and  is the coarsest filtration to
which  is adapted. The basic idea behind the definition is that if the filtration  encodes our information as time goes by, then the
process  is observable. In discrete time, there is a related definition.

Suppose that . A stochastic process  is predictable by the filtration  if  is
measurable with respect to  for all .

Clearly if  is predictable by  then  is adapted to . But predictable is better than adapted, in the sense that if  encodes our
information as time goes by, then we can look one step into the future in terms of : at time  we can determine . The concept
of predictability can be extended to continuous time, but the definition is much more complicated.

Note that ultimately, a stochastic process  with sample space  and state space  can be viewed a
function from  into , so  is the state at time  corresponding to the outcome . By definition, 
is measurable for each , but it is often necessary for the process to be jointly measurable in  and .

Suppose that  is a stochastic process with sample space  and state space . Then  is measurable
if  is measurable with respect to  and .
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When we have a filtration, as we usually do, there is a stronger condition that is natural. Let  for , and let 
 be the corresponding induced -algebra.

Suppose that  is a stochastic process with sample space  and state space , and that 
 is a filtration. Then  is progressively measurable relative to  if  is measurable with

respect to  and  for each .

Clearly if  is progressively measurable with respect to a filtration, then it is progressively measurable with respect to any finer
filtration. Of course when  is discrete , then any process  is measurable, and any process  adapted to  progressively
measurable, so these definitions are only of interest in the case of continuous time.

Suppose again that  is a stochastic process with sample space  and state space , and that 
 is a filtration. If  is progressively measurable relative to  then

1.  is measurable.
2.  is adapted to .

Proof

Suppose that  is progressively measurable relative to .

1. If  then

By assumption, the th term in the union is in , so the union is in .
2. Suppose that . Then  is measurable with respect to  and . But  is just the cross

section of this function at  and hence is measurable with respect to  and .

When the state space is a topological space (which is usually the case), then as you might guess, there is a natural link between
continuity of the sample paths and progressive measurability.

Suppose that  has an LCCB topology and that  is the -algebra of Borel sets. Suppose also that  is
right continuous. Then  is progressively measurable relative to the natural filtration .

So if  is right continuous, then  is progressively measurable with respect to any filtration to which  is adapted. Recall that in the
previous section, we studied different ways that two stochastic processes can be equivalent. The following example illustrates some of
the subtleties of processes in continuous time.

Suppose that ,  is the -algebra of Borel measurable subsets of , and  is any continuous
probability measure on . Let  and . For  and , define 

 and . Then

1.  is a version of 
2.  is not adapted to the natural filtration of .

Proof
1. This was shown in the previous section, but here it is again: For , .
2. Trivially,  for every , so . But .

Completion

Suppose now that  is a probability measure on . Recall that  is complete with respect to  if , , and 
 imply  (and hence ). That is, if  is an event with probability 0 and , then  is also an event (and

also has probability 0). For a filtration, the following definition is appropriate.

The filtration  is complete with respect to a probability measure  on  if

1.  is complete with respect to 
2. If  and  then .
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Suppose  is a probability measure on  and that the filtration  is complete with respect to . If  is a
null event ( ) or an almost certain event ( ) then  for every .

Proof

This follows since almost certain events are complements of null events and since the -algebras are increasing in .

Recall that if  is a probability measure on , but  is not complete with respect to , then  can always be completed. Here's
a review of how this is done: Let

So  is the collection of null sets. Then we let  and extend  to  is the natural way: if  and 
differs from  by a null set, then . Filtrations can also be completed.

Suppose that  is a filtration on  and that  is a probability measure on . As above, let  denote

the collection of null subsets of , and for , let . Then  is a filtration on 

that is finer than  and is complete relative to .

Proof

If  with  then  and hence

and so . The probability measure  can be extended to  as described above, and hence is defined on 
for each . By construction, if  and  then  so  is complete with respect to .

Naturally,  is the completion of  with respect to . Sometimes we need to consider all probability measures on .

Let  denote the collection of probability measures on , and suppose that  is a filtration on . Let
, and let . Then  is a filtration on , known as the universal

completion of .

Proof

Note that  is a filtration on  for each , so  is a filtration on .

The last definition must seem awfully obscure, but it does have a place. In the theory of Markov processes, we usually allow arbitrary
initial distributions, which in turn produces a large collection of distributions on the sample space.

Right Continuity

In continuous time, we sometimes need to refine a given filtration somewhat.

Suppose that  is a filtration on . For , define . Then 
 is also a filtration on  and is finer than .

Proof

For  note that  is a -algebra since it is the intersection of -algebras, and clearly . Next, if 
 with , then , so it follows that

Finally, for ,  for every  so .

Since the -algebras in a filtration are increasing, it follows that for ,  for every .
So if the filtration  encodes the information available as time goes by, then the filtration  allows an “infinitesimal peak into the
future” at each . In light of the previous result, the next definition is natural.

A filtration  is right continuous if , so that  for every .
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Right continuous filtrations have some nice properties, as we will see later. If the original filtration is not right continuous, the slightly
refined filtration is:

Suppose again that  is a filtration. Then  is a right continuous filtration.

Proof

For 

For a stochastic process  in continuous time, often the filtration  that is most useful is the right-continuous
refinement of the natural filtration. That is, , so that  for .

Stopping Times

Basic Properties

Suppose again that we have a fixed sample space . Random variables taking values in the time set  are important, but often as
we will see, it's necessary to allow such variables to take the value  as well as finite times. So let . We extend order
to  by the obvious rule that  for every . We also extend the topology on  to  by the rule that for each , the
set  is an open neighborhood of . That is,  is the one-point compactification of . The reason for this is to
preserve the meaning of time converging to infinity. That is, if  is a sequence in  then  as  if and only if,
for every  there exists  such that  for . We then give  the Borel -algebra  as before. In discrete
time, this is once again the discrete -algebra, so that all subsets are measurable. In both cases, we now have an enhanced time space
is . A random variable  taking values in  is called a random time.

Suppose that  is a filtration on . A random time  is a stopping time relative to  if  for
each .

In a sense, a stopping time is a random time that does not require that we see into the future. That is, we can tell whether or not 
from our information at time . The term stopping time comes from gambling. Consider a gambler betting on games of chance. The
gambler's decision to stop gambling at some point in time and accept his fortune must define a stopping time. That is, the gambler can
base his decision to stop gambling on all of the information that he has at that point in time, but not on what will happen in the future.
The terms Markov time and optional time are sometimes used instead of stopping time. If  is a stopping time relative to a filtration,
then it is also a stoping time relative to any finer filtration:

Suppose that  and  are filtrations on , and that  is finer than . If a random time  is
a stopping time relative to  then  is a stopping time relative to .

Proof

This is very simple. If  then  and hence  since .

So, the finer the filtration, the larger the collection of stopping times. In fact, every random time is a stopping time relative to the finest
filtration  where  for every . But this filtration corresponds to having complete information from the beginning of
time, which of course is usually not sensible. At the other extreme, for the coarsest filtration  where  for every ,
the only stopping times are constants. That is, random times of the form  for every , for some .

Suppose again that  is a filtration on . A random time  is a stopping time relative to  if and only if 
 for each .

Proof

This result is trivial since  for .

Suppose again that  is a filtration on , and that  is a stopping time relative to . Then

1.  for every .
2.  for every .
3.  for every .
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Proof
1. Suppose first that . Then  for . Next suppose that . Fix 

 and let  be a strictly increasing sequence in  with  as . Then 
. But  for each , so .

2. This follows from (a) since  for .
3. For  note that . Both events in the set difference are in .

Note that when , we actually showed that  and . The converse to part (a) (or equivalently (b))
is not true, but in continuous time there is a connection to the right-continuous refinement of the filtration.

Suppose that  and that  is a filtration on . A random time  is a stopping time relative to
 if and only if  for every .

Proof

So restated, we need to show that  for every  if and only if  for every . (Note
by the way, that this not the same as the statement that for every ,  if and only if , which is not
true.) Suppose first that  is a stopping time relative to . Fix  and let  be a strictly decreasing sequence in 

 with  as . Then for each , . If  then there exists  such that 
 for each . Hence  for , and so it follows that . Since this is true for

every  it follows . Conversely, suppose that  for every . Fix  and let 
 be a strictly increasing sequence in  with  as . Then . But for every 

Hence .

If  is a filtration and  is a random time that satisfies  for every , then some authors call 
a weak stopping time or say that  is weakly optional for the filtration . But to me, the increase in jargon is not worthwhile, and it's
better to simply say that  is a stopping time for the filtration . The following corollary now follows.

Suppose that  and that  is a right-continuous filtration. A random time  is a stopping time
relative to  if and only if  for every .

The converse to part (c) of the result above holds in discrete time.

Suppose that  and that  is a filtration on . A random time  is a stopping time for  if and only if
 for every .

Proof

If  is a stopping time then as shown above,  for every . Conversely, suppose that this condition holds. For 
, . But  for  so .

Basic Constructions

As noted above, a constant element of  is a stopping time, but not a very interesting one.

Suppose  and that  for all . The  is a stopping time relative to any filtration on .

Proof

For  note that  if  and  if .

If the filtration  is complete, then a random time that is almost certainly a constant is also a stopping time. The following
theorems give some basic ways of constructing new stopping times from ones we already have.

Suppose that  is a filtration on  and that  and  are stopping times relative to . Then each of the
following is also a stopping time relative to :

T = N {τ < t} = {τ ≤ t −1} ∈ ⊆Ft−1 Ft t ∈ N T = [0, ∞)
t ∈ (0, ∞) ( , , …)s1 s2 [0, ∞) ↑ tsn n → ∞
{τ < t} = {τ ≤ }⋃∞

n=1 sn {τ ≤ } ∈ ⊆sn Fsn Ft n {τ < t} ∈Ft

{τ ≥ t} = {τ < t}c t ∈ T

t ∈ T {τ = t} = {τ ≤ t} ∖ {τ < t} Ft

T = N {τ < t} ∈Ft−1 {τ ≥ t} ∈Ft−1

T = [0, ∞) F = { : t ∈ [0, ∞)}Ft (Ω,F) τ

F+ {τ < t} ∈Ft t ∈ [0, ∞)

{τ ≤ t} ∈Ft+ t ∈ [0, ∞) {τ < t} ∈Ft t ∈ [0, ∞)
t ∈ T {τ < t} ∈Ft+ {τ ≤ t} ∈Ft

τ F t ∈ [0, ∞) ( , , …)t1 t2

[0, ∞) ↓ ttn n → ∞ k ∈ N+ {τ ≤ t} = {τ < }⋂∞
n=k tn s > t k ∈ N+

< stn n ≥ k {τ < } ∈ ⊆tn Ftn
Fs n ≥ k {τ ≤ t} ∈Fs

s > t {τ ≤ t} ∈Ft+ {τ ≤ t} ∈Ft+ t ∈ [0, ∞) t ∈ (0, ∞)
( , , …)t1 t2 (0, ∞) ↑ ttn n → ∞ {τ ≤ } = {τ < t}⋃∞

i=1 tn

n ∈ N+

{τ ≤ } ∈ =⋂ { : s ∈ ( , t)} ⊆tn F +tn Fs tn Ft (2.11.6)

{τ < t} ∈Ft

F = { : t ∈ [0, ∞)}Ft τ {τ < t} ∈Ft t ∈ T τ

τ F

τ F+

T = [0, ∞) F = { : t ∈ [0, ∞)}Ft τ

F {τ < t} ∈Ft t ∈ [0, ∞)

T = N F = { : n ∈ N}Fn (Ω,F) τ F

{τ = n} ∈Fn n ∈ N

τ {τ = n} ∈Fn n ∈ N

n ∈ N {τ ≤ n} = {τ = k}⋃n
k=0 {τ = k} ∈ ⊆Fk Fn k ∈ {0, 1, … , n} {τ ≤ n} ∈Fn

T∞

s ∈ T∞ τ(ω) = s ω ∈ Ω τ (Ω,F)

t ∈ T {τ ≤ t} = Ω s ≤ t {τ ≤ t} = ∅ s > t

{ : t ∈ T }Ft

F = { : t ∈ T }Ft (Ω,F) τ1 τ2 F

F
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1. 
2. 
3. 

Proof
1. Note that  for , so the result follows from the definition.
2. Note that  for , so the result follows from the result above.
3. This is simple when . In this case, . But for , 

 and . Hence . Suppose instead that  and 
. Then  if and only if either  and  or . Of course  so we just need to

show that the first event is also in . Note that  and  if and only if there exists a rational  such that
 and . Each of these events is in  and hence so is the union of the events over the countable collection

of rational .

It follows that if  is a finite sequence of stopping times relative to , then each of the following is also a stopping time
relative to :

We have to be careful when we try to extend these results to infinite sequences.

Suppose that  is a filtration on , and that  is a sequence of stopping times relative to .
Then  is also a stopping time relative to .

Proof

Let . Note that  exists in  and is a random time. For , . But each
event in the intersection is in  and hence so is the intersection.

Suppose that  is a filtration on , and that  is an increasing sequence of stopping times
relative to . Then  is a stopping time relative to .

Proof

This is a corollary of the previous theorem. Since the sequence is increasing, .

Suppose that  and that  is a filtration on . If  is a sequence of stopping times
relative to , then each of the following is a stopping time relative to :

1. 
2. 
3. 

Proof
1. Let . Then  for . Hence  is a stopping time relative to  by

the result above.
2. Recall that  and so this is a stopping time relative to  by part (a) and the

result above on supremums.
3. Similarly note that  and so this is a stopping time relative to  by part (a)

and the result above on supremums.

As a simple corollary, we have the following results:

Suppose that  and that  is a right-continuous filtration on . If  is a sequence of
stopping times relative to , then each of the following is a also a stopping time relative to :

1. 
2. 

∨ = max{ , }τ1 τ2 τ1 τ2

∧ = min{ , }τ1 τ2 τ1 τ2

+τ1 τ2

{ ∨ ≤ t} = { ≤ t} ∩ { ≤ t} ∈τ1 τ2 τ1 τ2 Ft t ∈ T

{ ∧ > t} = { > t} ∩ { > t} ∈τ1 τ2 τ1 τ2 Ft t ∈ T

T = N { + ≤ t} = { = n} ∩ { ≤ t −n}τ1 τ2 ⋃t
n=0 τ1 τ2 n ≤ t

{ = n} ∈ ⊆τ1 Fn Ft { ≤ t −n} ∈ ⊆τ2 Ft−n Ft { + ≤ t} ∈τ1 τ2 Ft T = [0, ∞)
t ∈ T + > tτ1 τ2 ≤ tτ1 > t −τ2 τ1 > tτ1 { > t} ∈τ1 Ft

Ft ≤ tτ1 > t −τ2 τ1 q ∈ [0, t]
q ≤ ≤ tτ1 ≥ t −qτ2 Ft

q ∈ [0, t]

( , , … , )τ1 τ2 τn F

F

∨ ∨ ⋯ ∨τ1 τ2 τn

∧ ∧ ⋯ ∧τ1 τ2 τn

+ +⋯ +τ1 τ2 τn

F = { : t ∈ T }Ft (Ω,F) ( : n ∈ )τn N+ F

sup{ : n ∈ }τn N+ F

τ = sup{ : n ∈ }τn N+ τ T∞ t ∈ T {τ ≤ t} = { ≤ t}⋂∞
n=1 τn

Ft

F = { : t ∈ T }Ft (Ω,F) ( : n ∈ )τn N+

F limn→∞ τn F

= sup{ : n ∈ }limn→∞ τn τn N+

T = [0, ∞) F = { : t ∈ T }Ft (Ω,F) ( : n ∈ )τn N+

F F+

inf { : n ∈ }τn N+

lim infn→∞ τn

lim supn→∞ τn

τ = inf { : n ∈ }τn N+ {τ ≥ t} = { ≥ t} ∈⋂∞
n=1 τn Ft t ∈ T τ F+

= sup{inf{ : k ≥ n} : n ∈ }lim infn→∞ τn τk N+ F+

= inf {sup{ : k ≥ n} : n ∈ }lim supn→∞ τn τk N+ F+

T = [0, ∞) F = { : t ∈ T }Ft (Ω,F) ( : n ∈ )τn N+

F F

inf { : n ∈ }τn N+

lim infn→∞ τn
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3. 

The -Algebra of a Stopping Time

Consider again the general setting of a filtration  on the sample space , and suppose that  is a stopping time
relative to . We want to define the -algebra  of events up to the random time , analagous to  the -algebra of events up to a
fixed time . Here is the appropriate definition:

Suppose that  is a filtration on  and that  is a stopping time relative to . Define 
. Then  is a -algebra.

Proof

First  since  for . If  then 
for . Finally, suppose that  for  in a countable index set . Then 

 for .

Thus, an event  is in  if we can determine if  and  both occurred given our information at time . If  is constant, then 
reduces to the corresponding member of the original filtration, which clealry should be the case, and is additional motivation for the
definition.

Suppose again that  is a filtration on . Fix  and define  for all . Then .

Proof

Suppose that . Then  and for ,  if  and  if . In either case, 
 and hence . Conversely, suppose that . Then .

Clearly, if we have the information available in , then we should know the value of  itself. This is also true:

Suppose again that  is a filtration on  and that  is a stopping time relative to . Then  is measureable
with respect to .

Proof

It suffices to show that  for each . For ,

Hence .

Here are other results that relate the -algebra of a stopping time to the original filtration.

Suppose again that  is a filtration on  and that  is a stopping time relative to . If  then for 
,

1. 
2. 

Proof
1. By definition, . But  and . Hence 

.
2. similarly  and . Hence 

The -algebra of a stopping time relative to a filtration is related to the -algebra of the stopping time relative to a finer filtration in
the natural way.

Suppose that  and  are filtrations on  and that  is finer than . If  is a stopping time
relative to  then .

Proof

From the result above,  is also a stopping time relative to , so the statement makes sense. If  then for , 
, so .

lim supn→∞ τn

σ

F = { : t ∈ T }Ft (Ω,F) τ

F σ Fτ τ Ft σ

t ∈ T

F = { : t ∈ T }Ft (Ω,F) τ F

= {A ∈F : A ∩ {τ ≤ t} ∈  for all t ∈ T }Fτ Ft Fτ σ

Ω ∈Fτ Ω ∩ {τ ≤ t} = {τ ≤ t} ∈Ft t ∈ T A ∈Fτ ∩ {τ ≤ t} = {τ ≤ t} ∖ (A ∩ {τ ≤ t}) ∈Ac Ft

t ∈ T ∈Ai Fτ i I

( )∩ {τ ≤ t} = ( ∩ {τ ≤ t}) ∈⋃i∈I Ai ⋃i∈I Ai Ft t ∈ T

A Fτ A τ ≤ t t τ Fτ

F = { : t ∈ T }Ft (Ω,F) s ∈ T τ(ω) = s ω ∈ Ω =Fτ Fs

A ∈Fs A ∈F t ∈ T A ∩ {τ ≤ t} = A s ≤ t A ∩ {τ ≤ t} = ∅ s > t

A ∩ {τ ≤ t} ∈Ft A ∈Fτ A ∈Fτ A = A ∩ {τ ≤ s} ∈Fs

Fτ τ

F = { : t ∈ T }Ft (Ω,F) τ F τ

Fτ

{τ ≤ s} ∈Fτ s ∈ T s, t ∈ T

{τ ≤ t} ∩ {τ ≤ s} = {τ ≤ s ∧ t} ∈ ⊆Fs∧t Ft (2.11.7)

{τ ≤ s} ∈Fτ

σ

F = { : t ∈ T }Ft (Ω,F) τ F A ∈Fτ

t ∈ T

A ∩ {τ < t} ∈Ft

A ∩ {τ = t} ∈Ft

A ∩ {τ ≤ t} ∈Ft {τ < t} ⊆ {τ ≤ t} {τ < t} ∈Ft

A ∩ {τ < t} = A ∩ {τ ≤ t} ∩ {τ < t} ∈Ft

{τ = t} ⊆ {τ ≤ t} {τ = t} ∈Ft A ∩ {τ = t} = A ∩ {τ ≤ t} ∩ {τ = t} ∈Ft

σ σ

F = { : t ∈ T }Ft G = { : t ∈ T }Gt (Ω,F) G F τ

F ⊆Fτ Gτ

τ G A ∈Fτ t ∈ T

A ∩ {τ ≤ t} ∈ ⊆Ft Gt A ∈ Gτ
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When two stopping times are ordered, their -algebras are also ordered.

Suppose that  is a filtration on  and that  and  are stopping times for  with . Then .

Proof

Suppose that  and . Note that . By definition,  and . Hence 
, so .

Suppose again that  is a filtration on , and that  and  are stopping times for . Then each of the
following events is in  and in .

1. 
2. 
3. 
4. 
5. 

Proof

The proofs are easy when .

1. Let . Then

But each event in the union is in .
2. Similarly, let . Then

and again each event in the union is in .
3. This follows from symmetry, reversing the roles of  and  in part (a).
4. Note that .
5. Similarly, note that .

We can “stop” a filtration at a stopping time. In the next subsection, we will stop a stochastic process in the same way.

Suppose again that  is a filtration on , and that  is a stopping times for . For  define 
. Then  is a filtration and is coarser than .

Proof

The random time  is a stopping time for each  by the result above, so  is a sub -algebra of . If , then by
definition,  if and only if  for every . But for ,  if  and 

 if . Hence  if and only if  for  and . So in particular, 
is coarser than . Further, suppose  with , and that . Let . If  then . If 

 then  and  so again . Finally if  then . Hence 
.

Stochastic Processes

As usual, the most common setting is when we have a stochastic process  defined on our sample space  and
with state space . If  is a random time, we are often interested in the state  at the random time. But there are two issues.
First,  may take the value infinity, in which case  is not defined. The usual solution is to introduce a new “death state” , and
define . The -algebra  on  is extended to  in the natural way, namely .

Our other problem is that we naturally expect  to be a random variable (that is, measurable), just as  is a random variable for a
deterministic . Moreover, if  is adapted to a filtration , then we would naturally also expect  to be

σ

F = { : t ∈ T }Ft (Ω,F) ρ τ F ρ ≤ τ ⊆Fρ Fτ

A ∈Fρ t ∈ T {τ ≤ t} ⊆ {ρ ≤ t} A ∩ {ρ ≤ t} ∈Ft {τ ≤ t} ∈Ft

A ∩ {τ ≤ t} = A ∩ {ρ ≤ t} ∩ {τ ≤ t} ∈Ft A ∈Fτ

F = { : t ∈ T }Ft (Ω,F) ρ τ F

Fτ Fρ

{ρ < τ}
{ρ = τ}
{ρ > τ}
{ρ ≤ τ}
{ρ ≥ τ}

T = N

t ∈ T

{ρ < τ} ∩ {τ ≤ t} = {τ = n, ρ = k}⋃
n=0

t

⋃
k=0

n−1

(2.11.8)

Ft

t ∈ T

{ρ = τ} ∩ {τ ≤ t} = {ρ = n, τ = n}⋃
n=0

t

(2.11.9)

Ft

ρ τ

{ρ ≤ τ} = {ρ < τ} ∪ {ρ = τ} ∈Fτ

{ρ ≥ τ} = {ρ > τ} ∪ {ρ = τ} ∈Fτ

F = { : t ∈ T }Ft (Ω,F) τ F t ∈ T

=F
τ
t Ft∧τ = { : t ∈ T }F

τ
F

τ
t F

t ∧ τ t ∈ T F
τ
t σ F t ∈ T

A ∈F
τ
t A ∩ {t ∧ τ ≤ r} ∈Fr r ∈ T r ∈ T {t ∧ τ ≤ r} = Ω r ≥ t

{t ∧ τ ≤ r} = {τ ≤ r} r < t A ∈F
τ
t A ∩ {τ ≤ r} ∈Fr r < t A ∈Ft F

τ

F s, t ∈ T s ≤ t A ∈F
τ
s r ∈ T r < s A ∩ {τ ≤ r} ∈Fr

s ≤ r < t A ∈ ⊆Fs Fr {τ ≤ r} ∈Fr A ∩ {τ ≤ r} ∈Fr r ≥ t A ∈ ⊆Fs Ft

A ∈F
τ
t

X = { : t ∈ T }Xt (Ω,F)
(S,S ) τ Xτ

τ Xτ δ

= δX∞ σ S S = S ∪ {δ}Sδ = σ(S ∪ {δ})Sδ

Xτ Xt

t ∈ T X F = { : t ∈ T }Ft Xτ

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10139?pdf


2.11.10 https://stats.libretexts.org/@go/page/10139

measurable with respect to , just as  is measurable with respect to  for deterministic . But this is not obvious, and in fact
is not true without additional assumptions. Note that  is a random state at a random time, and so depends on an outcome  in
two ways: .

Suppose that  is a stochastic process on the sample space  with state space , and that  is
measurable. If  is a finite random time, then  is measurable. That is,  is a random variable with values in .

Proof

Note that  is the composition of the function  from  to  with the function 
from  to . The first function is measurable because the two coordinate functions are measurable. The second function is
measurable by assumption.

This result is one of the main reasons for the definition of a measurable process in the first place. Sometimes we literally want to stop
the random process at a random time . As you might guess, this is the origin of the term stopping time.

Suppose again that  is a stochastic process on the sample space  with state space , and that  is
measurable. If  is a random time, then the process  defined by  for  is the process 
stopped at .

Proof

For each , note that  is a finite random time, and hence  is measurable by the previous result. Thus  is a well-
defined stochastic process on  with state space .

When the original process is progressively measurable, so is the stopped process.

Suppose again that  is a stochastic process on the sample space  with state space , and that  is
progressively measurable with respect to a filtration . If  is a stopping time relative to , then the stopped
process  is progressively measurable with respect to the stopped filtration .

Since  is finer than , it follows that  is also progressively measurable with respect to .

Suppose again that  is a stochastic process on the sample space  with state space , and that  is
progressively measurable with respect to a filtration  on . If  is a finite stopping time relative to  then 

 is measurable with respect to .

For many random processes, the first time that the process enters or hits a set of states is particularly important. In the discussion that
follows, let , the set of positive times.

Suppose that  is a stochastic process on  with state space . For , define

1. , the first entry time to .
2. , the first hitting time to .

As usual,  so  if  for all , so that the process never enters , and  if  for all ,
so that the process never hits . In discrete time, it's easy to see that these are stopping times.

Suppose that  is a stochastic process on  with state space . If  then  and  are stopping
times relative to the natural filtration .

Proof

Let . Note that . Similarly, 
.

So of course in discrete time,  and  are stopping times relative to any filtration  to which  is adapted. You might think that 
and  should always be a stopping times, since  if and only if  for some  with , and  if and only if

 for some  with . It would seem that these events are known if one is allowed to observe the process up to time .

Fτ Xt Ft t ∈ T

Xτ ω ∈ Ω
(ω)Xτ(ω)

X = { : t ∈ T }Xt (Ω,F) (S,S ) X

τ Xτ Xτ S

: Ω → SXτ ω ↦ (ω, τ(ω)) Ω Ω ×T (ω, t) ↦ (ω)Xt

Ω ×T S

τ

X = { : t ∈ T }Xt (Ω,F) (S,S ) X

τ = { : t ∈ T }Xτ Xτ
t =Xτ

t Xt∧τ t ∈ T X

τ

t ∈ T t ∧ τ Xt∧τ X
τ

(Ω,F) (S,S )

X = { : t ∈ T }Xt (Ω,F) (S,S ) X

F = { : t ∈ T }Ft τ F

= { : t ∈ T }X
τ Xτ

t Fτ

F F
τ

X
τ F

X = { : t ∈ T }Xt (Ω,F) (S,S ) X

F = { : t ∈ T }Ft (Ω,F) τ F

Xτ Fτ

= {t ∈ T : t > 0}T+

X = { : t ∈ T }Xt (Ω,F) (S,S ) A ∈S

= inf{t ∈ T : ∈ A}ρA Xt A

= inf{t ∈ : ∈ A}τA T+ Xt A

inf(∅) = ∞ = ∞ρA ∉ AXt t ∈ T A = ∞τA ∉ AXt t ∈ T+

A

{ : n ∈ N}Xn (Ω,F) (S,S ) A ∈S τA ρA

F
0

n ∈ N { > n} = { ∉ A, ∉ A, … , ∉ A} ∈ σ{ , , … , }ρA X0 X1 Xn X0 X1 Xn

{ > n} = { ∉ A, ∉ A … , ∉ A} ⊆ σ{ , , … , }τA X1 X2 Xn X0 X1 Xn

τA ρA F X τA

ρA ≤ tτA ∈ AXs s ∈ T+ s ≤ t ≤ tρA

∈ AXs s ∈ T s ≤ t t
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The problem is that when , these are uncountable unions, so we need to make additional assumptions on the stochastic
process  or the filtration , or both.

Suppose that  has an LCCB topology, and that  is the -algebra of Borel sets. Suppose also that  is
right continuous and has left limits. Then  and  are stopping times relative to  for every open .

Here is another result that requires less of the stochastic process , but more of the filtration .

Suppose that  is a stochastic process on  that is progressively measurable relative to a complete,
right-continuous filtration . If  then  and  are stopping times relative to .
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T = [0, ∞)
X F

S S σ X = { : t ∈ [0, ∞)}Xt

τA ρA F
0
+ A ∈S

X F

X = { : t ∈ [0, ∞)}Xt (Ω,F)
F = { : t ∈ [0, ∞)}Ft A ∈S ρA τA F
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