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5.32: The Cauchy Distribution

The Cauchy distribution, named of course for the ubiquitous Augustin Cauchy, is interesting for a couple of reasons. First, it is a
simple family of distributions for which the expected value (and other moments) do not exist. Second, the family is closed under
the formation of sums of independent variables, and hence is an infinitely divisible family of distributions.

The Standard Cauchy Distribution
Distribution Functions

The standard Cauchy distribution is a continuous distribution on R with probability density function g given by
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1. g is symmetric about x =0
2. g increases and then decreases, with mode z = 0.
3. g is concave upward, then downward, and then upward again, with inflection points at z = j:ﬁ .
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Proof

Note that
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and hence g is a PDF. Parts (a)—(d) follow from basic calculus.

Thus, the graph of g has a simple, symmetric, unimodal shape that is qualitatively (but certainly not quantitatively) like the
standard normal probability density function. The probability density function g is obtained by normalizing the function
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The graph of this function is known as the witch of Agnesi, named for the Italian mathematician Maria Agnesi.

Open the special distribution simulator and select the Cauchy distribution. Keep the default parameter values to get the
standard Cauchy distribution and note the shape and location of the probability density function. Run the simulation 1000
times and compare the empirical density function to the probability density function.

The standard Cauchy distribution function G given by G(z) = % + %arctanm forx € R
Proof

Forz € R,

x
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= —arctanz + 3 (5.32.4)
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G(z) :/ g(t)dt = larctant
oo ™

The standard Cauchy quantile function G~ is given by G~ (p) = tan[r (p — 5)] forp € (0,1). In particular,

1. The first quartile is G (+) = —1
2. The median is G! (%) =0
3. The third quartile is G~! (%) =1

Proof

As usual, G™! is computed from the CDF ' by solving G(z) = p for x in terms of p.
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Of course, the fact that the median is 0 also follows from the symmetry of the distribution, as does the fact that
G'(1-p)=-G'(p) forpe (0,1).

Open the special distribution calculator and select the Cauchy distribution. Keep the default parameter values and note the
shape of the distribution and probability density functions. Compute a few quantiles.

Moments

Suppose that random variable X has the standard Cauchy distribution. As we noted in the introduction, part of the fame of this
distribution comes from the fact that the expected value does not exist.

E(X) does not exist.
Proof

By definition, E(X) = ffzo zg(z) dz . For the improper integral to exist, even as an extended real number, at least one of the
integrals ffoo zg(z) dz and faoo zg(z) dz must be finite, for some (and hence every) a € R. But by a simple substitution,

o0 o 1 1 oy |®
dx = ———dx = —In(1 = .32.
A zg(z) dx A m7r(1—|—3:2) T = n(l+z%) = (5.32.5)

and similarly, [* zg(z)dz = —oc .

By symmetry, if the expected value did exist, it would have to be 0, just like the median and the mode, but alas the mean does not
exist. Moreovetr, this is not just an artifact of how mathematicians define improper integrals, but has real consequences. Recall that
if we think of the probability distribution as a mass distribution, then the mean is center of mass, the balance point, the point where
the moment (in the sense of physics) to the right is balanced by the moment to the left. But as the proof of the last result shows, the
moments to the right and to the left at any point a € R are infinite. In this sense, 0 is no more important than any other a € R.
Finally, if you are not convinced by the argument from physics, the next exercise may convince you that the law of large numbers
fails as well.

Open the special distribution simulator and select the Cauchy distribution. Keep the default parameter values, which give the
standard Cauchy distribution. Run the simulation 1000 times and note the behavior of the sample mean.

Earlier we noted some superficial similarities between the standard Cauchy distribution and the standard normal distribution
(unimodal, symmetric about 0). But clearly there are huge quantitative differences. The Cauchy distribution is a heavy tailed
distribution because the probability density function g(x) decreases at a polynomial rate as * — oo and £ — —oo, as opposed to
an exponential rate. This is yet another way to understand why the expected value does not exist.

In terms of the higher moments, E (X™) does not exist if n is odd, and is oo if n is even. It follows that the moment generating
function m(t) =E (etX ) cannot be finite in an interval about 0. In fact, m(t) = oo for every ¢ # 0, so this generating function is

of no use to us. But every distribution on R has a characteristic function, and for the Cauchy distribution, this generating function
will be quite useful.

X has characteristic function ¢ given by xo(¢) = exp(— |¢|) fort € R.
Proof
By definition,
. Rl 1
t) =E(e"X :/ et ——— dx 5.32.6
o) =EE)= [ s (5.32.6)
We will compute this integral by evaluating a related contour integral in the complex plane using, appropriately enough,

Cauchy's integral formula (named for you know who).

Suppose first that ¢t > 0. For > 1, let I, denote the curve in the complex plane consisting of the line segment L, on the -
axis from —r to r and the upper half circle C, of radius 7 centered at the origin. We give I', the usual counter-clockwise
orientation. On the one hand we have
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——dz = ——dz+ —d 5.32.7
| Ll = e L e (6:52.7)
On L,,z=x and dz=dzx so
eitz T eitz
—dz= —d 5.32.8
/LT A(l+22) /, w(ltz2) (5.32:8)

On C,, let z = +iy . Then e* = e W1 — ¢~%[cos(tx) +isin(tz)] . Since y >0 on C, and t > 0, we have |e?*| <1.
1 1

Also, T < —— onC,. It follows that
+z re—1
itz 1
/ ° dz| < = ——— 3 0asr— oo (5.32.9)
o m(1+22) m(r? —1) r2—1

On the other hand, €%* /[r(1 + 2%)] has one singularity inside T,., at i. The residue is

eitz eitz e—t
lim(z—1) =lim == (5.32.10)
Py 71-(1 +z2) 21 7r(z-|-l) 271
Hence by Cauchy's integral formula,
eztz 67t
———dz=2mi——=¢" 5.32.11
Ar 7r(1 + 22 271 ( )
. Putting the pieces together we have
o r eita: eitz
e’ = —dz + —dz (5.32.12)
—r w(1+x2) c, m(1+22)
Letting r — oo gives
0 eitw
/ — dr=et (5.32.13)
o (1 +2?)
For ¢t < 0, we can use the substitution w = —z and our previous result to get
00 elte 0o ei(—t)u
/ ——dz =/ ——du=¢ (5.32.14)
—oo T(1+22?) —oo T(14u?)
Related Distributions
The standard Cauchy distribution a member of the Student ¢ family of distributions.
The standard Cauchy distribution is the Student ¢ distribution with one degree of freedom.
Proof
The Student ¢ distribution with one degree of freedom has PDF g given by
(1) 1 1
t)= ———(1+¢2 =——0), teR 5.32.15
9(t) ﬁr(1/2)( ) m(1+22) ( )
which is the standard Cauchy PDF.

The standard Cauchy distribution also arises naturally as the ratio of independent standard normal variables.

Suppose that Z and W are independent random variables, each with the standard normal distribution. Then X = Z /W has the
standard Cauchy distribution. Equivalently, the standard Cauchy distribution is the Student ¢ distribution with 1 degree of
freedom.

Proof
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By definition, ¥ 2 has the chi-square distribution with 1 degree of freedom, and is independent of Z. Hence, also by definition,
X=Z/vW?=2Z/W has the Student ¢ distribution with 1 degree of freedom, so the theorem follows from the previous
result.

If X has the standard Cauchy distribution, then so does Y =1/X
Proof

This is a corollary of the previous result. Suppose that Z and W are independent variables, each with the standard normal
distribution. Then X = Z/W has the standard Cauchy distribution. But then 1/X = W /Z also has the standard Cauchy
distribution.

The standard Cauchy distribution has the usual connections to the standard uniform distribution via the distribution function and
the quantile function computed above.

The standard Cauchy distribution and the standard uniform distribution are related as follows:

1. If U has the standard uniform distribution then X = G~ (U) = tan[ﬂ- (U = %)] has the standard Cauchy distribution.

2.1f X has the standard Cauchy distribution then U = G(X) = § + +arctan(X) has the standard uniform distribution.
Proof

Recall that if U has the standard uniform distribution, then G~ (U) has distribution function G. Conversely, if X has
distribution function G, then since G is strictly increasing, G(X) has the standard uniform distribution.

Since the quantile function has a simple, closed form, it's easy to simulate the standard Cauchy distribution using the random
quantile method.

Open the random quantile experiment and select the Cauchy distribution. Keep the default parameter values and note again the
shape and location of the distribution and probability density functions. For selected values of the parameters, run the
simulation 1000 times and compare the empirical density function to the probability density function. Note the behavior of the
empirical mean and standard deviation.

For the Cauchy distribution, the random quantile method has a nice physical interpretation. Suppose that a light source is 1 unit
away from position 0 of an infinite, straight wall. We shine the light at the wall at an angle © (to the perpendicular) that is
uniformly distributed on the interval (—%, %) Then the position X =tan® of the light beam on the wall has the standard
Cauchy distribution. Note that this follows since © has the same distribution as 7 (Uf ;) where U has the standard uniform

distribution.

Open the Cauchy experiment and keep the default parameter values.

1. Run the experiment in single-step mode a few times, to make sure that you understand the experiment.
2. For selected values of the parameters, run the simulation 1000 times and compare the empirical density function to the
probability density function. Note the behavior of the empirical mean and standard deviation.

The General Cauchy Distribution

Like so many other “standard” distributions, the Cauchy distribution is generalized by adding location and scale parameters. Most
of the results in this subsection follow immediately from results for the standard Cauchy distribution above and general results for
location scale families.

Suppose that Z has the standard Cauchy distribution and that a € R and b € (0,00). Then X =a+bZ has the Cauchy
distribution with location parameter a and scale parameter b.

Distribution Functions

Suppose that X has the Cauchy distribution with location parameter a € R and scale parameter b € (0, 00).

I X has probability density function f given by
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b
z)=—7———7—, z€R 5.32.16
f(@) 7[b?2 + (z — a)?] ( )
1. f is symmetric about z = a.
2. f increases and then decreases, with mode x = a.
3. f is concave upward, then downward, then upward again, with inflection points at z = a4 = b

4. f(z) > 0asz — oo and as ¢ — —oo. v
Proof
Recall that
1 T—a
flz)= gg( = ) (5.32.17)

where g is the standard Cauchy PDF.

Open the special distribution simulator and select the Cauchy distribution. Vary the parameters and note the location and shape
of the probability density function. For selected values of the parameters, run the simulation 1000 times and compare the
empirical density function to the probability density function.

X has distribution function F' given by

1 1 -
F(z)=—-+ —arctan( i ) , z€eR (5.32.18)
2 b
Proof
Recall that
F(m):G(m;a) (5.32.19)
where G is the standard Cauchy CDF.
X has quantile function F ! given by
1
F‘l(p):a—l—btan[ﬂ (p—E)], p€(0,1) (5.32.20)

In particular,
1. The first quartile is F ' () =a—b.
2. The median is F ! (%) =aq
3. The third quartile is F* (2) =a+b.
Proof

Recall that F ! (p) = a+bG~!(p) where G! is the standard Cauchy quantile function.

Open the special distribution calculator and select the Cauchy distribution. Vary the parameters and note the shape and location
of the distribution and probability density functions. Compute a few values of the distribution and quantile functions.

Moments

Suppose again that X has the Cauchy distribution with location parameter a € R and scale parameter b € (0, o). Since the mean
and other moments of the standard Cauchy distribution do not exist, they don't exist for the general Cauchy distribution either.

Open the special distribution simulator and select the Cauchy distribution. For selected values of the parameters, run the
simulation 1000 times and note the behavior of the sample mean.
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But of course the characteristic function of the Cauchy distribution exists and is easy to obtain from the characteristic function of
the standard distribution.

X has characteristic function x given by x(t) = exp(ait —b|t|) fort € R.

Proof

Recall that x(¢) = e%@x, (bt) where Xy is the standard Cauchy characteristic function.

Related Distributions

Like all location-scale families, the general Cauchy distribution is closed under location-scale transformations.

Suppose that X has the Cauchy distribution with location parameter a € R and scale parameter b € (0, 00), and that ¢ € R
and d € (0,00). Then Y = c+dX has the Cauchy distribution with location parameter ¢ +da and scale parameter bd.

Proof

Once again, we give the standard proof. By definition we can take X = a +bZ where Z has the standard Cauchy distribution.
Butthen Y =c+dX = (c+ad) + (bd)Z

Much more interesting is the fact that the Cauchy family is closed under sums of independent variables. In fact, this is the main
reason that the generalization to a location-scale family is justified.

Suppose that X; has the Cauchy distribution with location parameter a; € R and scale parameter b; € (0, 00) for i € {1, 2},
and that X; and X, are independent. Then Y = X; + X, has the Cauchy distribution with location parameter a; +as and
scale parameter by + b .

Proof

This follows easily from the characteristic function. Let x; denote the characteristic function of X; for ¢ =1,2 and x the
charactersitic function of Y. Then

x(t) = x1(¢)x2(t) = exp(arit — by [t]) exp(azit — b [t]) = exp[(a1 +az) it — (b1 +bs) [¢] (5.32.21)

As a corollary, the Cauchy distribution is stable, with index o = 1:

If X = (X1, X,,...,X,) is a sequence of independent variables, each with the Cauchy distribution with location parameter
a € R and scale parameter b € (0, 00), then X7 + X5 +---+X,, has the Cauchy distribution with location parameter na
and scale parameter nb.

Another corollary is the strange property that the sample mean of a random sample from a Cauchy distribution has that same
Cauchy distribution. No wonder the expected value does not exist!

Suppose that X = (X1, Xo, ..., X,,) is a sequence of independent random variables, each with the Cauchy distribution with
location parameter ¢ € R and scale parameter b € (0, 00). (That is, X is a random sample of size n from the Cauchy
distribution.) Then the sample mean M = % 374 X; also has the Cauchy distribution with location parameter a and scale
parameter b.

Proof

From the previous stability result, Y = 2?21 X; has the Cauchy distribution with location parameter na and scale parameter
nb. But then by the scaling result, M =Y /n has the Cauchy distribution with location parameter a and scale parameter b.

The next result shows explicitly that the Cauchy distribution is infinitely divisible. But of course, infinite divisibility is also a
consequence of stability.

Suppose that a € R and b € (0, 00). For every n € N the Cauchy distribution with location parameter a and scale parameter
b is the distribution of the sum of n independent variables, each of which has the Cauchy distribution with location parameters
a/n and scale parameter b/n.
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Our next result is a very slight generalization of the reciprocal result above for the standard Cauchy distribution.

Suppose that X has the Cauchy distribution with location parameter 0 and scale parameter b € (0, 00). Then Y =1/ X has the
Cauchy distribution with location parameter 0 and scale parameter 1/b.

Proof
X has the same distribution as bZ where Z has the standard Cauchy distribution. Hence % has the same distribution as %%
But by the result above, 1 also has the standard Cauchy distribution, so %% has the Cauchy distribution with location

parameter 0 and scale parameter 1/

As with its standard cousin, the general Cauchy distribution has simple connections with the standard uniform distribution via the
distribution function and quantile function computed above, and in particular, can be simulated via the random quantile method.

Suppose that a € R and b € (0, 00).

1

1. If U has the standard uniform distribution, then X = F~!(U) =a-+btan[r (U —3)] has the Cauchy distribution with

location parameter @ and scale parameter g
2. If X has the Cauchy distribution with location parameter a and scale parameter b, then

U=F(X)= % + %arctan( Xb_“) has the standard uniform distribution.

Open the random quantile experiment and select the Cauchy distribution. Vary the parameters and note again the shape and
location of the distribution and probability density functions. For selected values of the parameters, run the simulation 1000
times and compare the empirical density function to the probability density function. Note the behavior of the empirical mean
and standard deviation.

As before, the random quantile method has a nice physical interpretation. Suppose that a light source is b units away from position
a of an infinite, straight wall. We shine the light at the wall at an angle © (to the perpendicular) that is uniformly distributed on the
interval (—%, g) Then the position X =a+btan® of the light beam on the wall has the Cauchy distribution with location
parameter a and scale parameter b.
Open the Cauchy experiment. For selected values of the parameters, run the simulation 1000 times and compare the empirical
density function to the probability density function. Note the behavior of the empirical mean and standard deviation.

This page titled 5.32: The Cauchy Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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