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3.9: General Distribution Functions
    

Our goal in this section is to define and study functions that play the same role for positive measures on  that (cumulative)
distribution functions do for probability measures on . Of course probability measures on  are usually associated with real-
valued random variables. These general distribution functions are useful for constructing measures on  and will appear in our
study of integrals with respect to a measure in the next section, as well as non-homogeneous Poisson processes and general renewal
processes.

Basic Theory
Throughout this section, our basic measurable space is , where  is the -algebra of Borel measurable subsets of , and as
usual, we will let  denote Lebesgue measure on . As with cumulative distribution functions, it's convenient to have
compact notation for the limits of a function  from the left and right at , and at  and  (assuming of course
that these limits exist):

Distribution Functions and Their Measures

A function  that satisfies the following properties is a distribution function on 

1.  is increasing: if  then .
2.  is continuous from the right:  for all .

Since  is increasing,  exists in . Similarly  exists, as a real number or , and  exists, as a real number or 
.

If  is a distribution function on , then there exists a unique positive measure  on  that satisfies

Proof

Let  denote the collection of subsets of  consisting of intervals of the form  where  with , and intervals
of the form  and  where . Then  is a semi-algebra. That is, if  then , and if 

 then  is the union of a finite number (actually one or two) sets in . We define  on  by ,
 and . Note that  contains the empty set via intervals of the form 

 where , but the definition gives . Next,  is finitely additive on . That is, if  is a finite,
disjoint collection of sets in  and , then

Next,  is countably subadditive on . That is, if  and  where  is a countable collection of
sets in  then

Finally,  is clearly -finite on  since  for  with , and  is a countable, disjoint union of intervals
of this form. Hence it follows from the basic extension and uniqueness theorems that  can be extended uniquely to a measure
on the .

For the final uniqueness part, suppose that  is a measure on  satisfying  for  with .
Then by the continuity theorem for increasing sets,  and  for .
Hence  is the unique measure constructed above.
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The measure  is called the Lebesgue-Stieltjes measure associated with , named for Henri Lebesgue and Thomas Joannes
Stieltjes. A very rich variety of measures on  can be constructed in this way. In particular, when the function  takes values in 

, the associated measure  is a probability measure. Another special case of interest is the distribution function defined by 
 for , in which case  is the length of the interval  and therefore , Lebesgue measure on . But

although the measure associated with a distribution function is unique, the distribution function itself is not. Note that if  then
the distribution function defined by  for  also generates Lebesgue measure. This example captures the general
situation.

Suppose that  and  are distribution functions that generate the same measure  on . Then there exists  such that 
.

Proof

For , note that . The common value is  if  and  if . Thus 
 for .

Returning to the case of a probability measure  on , the cumulative distribution function  that we studied in this chapter is the
unique distribution function satisfying . More generally, having constructed a measure from a distribution function,
let's now consider the complementary problem of finding a distribution function for a given measure. The proof of the last theorem
points the way.

Suppose that  is a positive measure on  with the property that  if  is bounded. Then there exists a
distribution function that generates .

Proof

Define  on  by

Then  by the assumption on . Also  is increasing: if  then  by the increasing
property of a positive measure. Similarly, if , the , so . Finally, if ,
then  and . Next,  is continuous from the right: Suppose that  for  and  as 

. If  then  by the continuity theorem for decreasing sets, which applies since the measures are
finite. If  then  by the continuity theorem for increasing sets. So in both cases,  as 

. Hence  is a distribution function, and it remains to show that it generates . Let  with . If  then
 by the difference property of a positive measure. Similarly, if  then 

. Finally, if  and , then 

.

In the proof of the last theorem, the use of 0 as a “reference point” is arbitrary, of course. Any other point in  would do as well,
and would produce a distribution function that differs from the one in the proof by a constant. If  has the property that 

 for , then it's easy to see that  defined by  for  is a distribution function that
generates , and is the unique distribution function with . Of course, in the case of a probability measure, this is the
cumulative distribution function, as noted above.

Properties

General distribution functions enjoy many of the same properties as the cumulative distribution function (but not all because of the
lack of uniqueness). In particular, we can easily compute the measure of any interval from the distribution function.

Suppose that  is a distribution function and  is the positive measure on  associated with . For  with ,
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2. 
3. 
4. 
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All of these results follow from the continuity theorems for a positive measure. Suppose that  is a sequence of
distinct points in .

1. If  as  then  so  as . But also 
 as .

2. This follows from (a) by taking 
3. If  as  then  so  as . But also 

 as .
4. From (a) and (b) and the difference rule,

Note that  is continuous at  if and only if . In particular,  is a continuous measure (recall that this means that 
 for all ) if and only if  is continuous on . On the other hand,  is discontinuous at  if and only if 
, so that  has an atom at . So  is a discrete measure (recall that this means that  has countable support) if and only if

 is a step function.

Suppose again that  is a distribution function and  is the positive measure on  associated with . If  then

1. 
2. 
3. 
4. 
5. 

Proof

The proofs, as before, just use the continuity theorems. Suppose that  is a sequence of distinct points in 

1. If  as  then  so  as . But also 
 as 

2. Similarly, if  as  then  so  as . But also 
 as 

3. If  as  then  so  as . But also 
 as 

4. Similarly, if  as  then  so  as . But also 
 as 

5. .

Distribution Functions on 

Positive measures and distribution functions on  are particularly important in renewal theory and Poisson processes, because
they model random times.

The discrete case. Suppose that  is discrete, so that there exists a countable set  with . Let 
 for  so that  is the density function of  with respect to counting measure on . If  is

locally bounded then

Figure : A discrete measure

In the discrete case, the distribution is often arithmetic. Recall that this means that the countable set  is of the form 
for some . In the following results,

( , , …)x1 x2

R

↑ axn n → ∞ ( , b] ↑ [a, b]xn μ( , b] ↑ μ[a, b]xn n → ∞
μ( , b] = F (b) −F ( ) → F (b) −F ( )xn xn a− n → ∞

a = b

↑ bxn n → ∞ (a, ] ↑ (a, b)xn μ(a, ] ↑ μ(a, b)xn n → ∞
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3.9.1

C {nd : n ∈ N}
d ∈ (0, ∞)
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The continuous case. Suppose that  is absolutely continuous with respect to Lebesgue measure on  with density
function . If  is locally bounded then

Figure : A continuous measure

The mixed case. Suppose that there exists a countable set  with  and , and that  restricted
to subsets of  is absolutely continuous with respect to Lebesgue measure. Let  for  and let  be a density
with respect to Lebesgue measure of  restricted to subsets of . If  is locally bounded then,

Figure : A mixed measure

The three special cases do not exhaust the possibilities, but are by far the most common cases in applied problems.
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G [0, ∞)
g : [0, ∞) → [0, ∞) u : [0, ∞) →R
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t

0
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t

0
(3.9.8)

3.9.2
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