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5.25: The Irwin-Hall Distribution
          

The Irwin-Hall distribution, named for Joseph Irwin and Phillip Hall, is the distribution that governs the sum of independent
random variables, each with the standard uniform distribution. It is also known as the uniform sum distribution. Since the standard
uniform is one of the simplest and most basic distributions (and corresponds in computer science to a random number), the Irwin-
Hall is a natural family of distributions. It also serves as a nice example of the central limit theorem, conceptually easy to
understand.

Basic Theory

Definition

Suppose that  is a sequence of indpendent random variables, each with the uniform distribution on the
interval  (the standard uniform distribution). For , let

Then  has the Irwin-Hall distribution of order .

So  has a continuous distribution on the interval  for .

Distribution Functions

Let  denote the probability density function of the standard uniform distribution, so that  for  (and is 0
otherwise). It follows immediately that the probability density function  of  satisfies , where of course  is the -
fold convolution power of . We can compute  and  by hand.

The probability density function  of  is given by

Proof

Note that  takes values in  and  for . The integral reduces to  for 
 and the integral reduces to  for .

Note that the graph of  on  consists of two lines, pieced together in a continuous way at . The form given above is not
the simplest, but makes the continuity clear, and will be helpful when we generalize.

In the special distribution simulator, select the Irwin-Hall distribution and set . Note the shape of the probability density
function. Run the simulation 1000 times and compare the empirical density function to the probability density function.

The probability density function  of  is given by

Note that the graph of  on  consists of three parabolas pieced together in a continuous way at  and . The
expressions for  for  and  can be expanded and simplified, but again the form given above makes the
continuity clear, and will be helpful when we generalize.

In the special distribution simulator, select the Irwin-Hall distribution and set . Note the shape of the probability density
function. Run the simulation 1000 times and compare the empirical density function to the probability density function.
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Naturally, we don't want to perform the convolutions one at a time; we would like a general formula. To state the formula
succinctly, we need to recall the floor function:

so that  if  and .

For , the probability density function  of  is given by

Proof

Let  denote the function given by the formula above. Clearly  takes values in , so first let's note that  gives the
correct value outside of this interval. If , the sum is over an empty index set and hence is 0. Suppose . Since 

 for , we have

Using the binomial theorem,

The second sum in the last expression is 0 for  by the alternating series identity for binomial coefficients.
We will see this identity again.

To show that the formula is correct on  we use induction on . Suppose that . If , then  so

Suppose now that the formula is correct for a given . We need to show that . Note that

As often with convolutions, we must take cases. Suppose that  where . Then

Substituting the formula for  and integrating gives

Adding these together, note that the first sum in the first equation cancels the second sum in the second equation. Re-indexing
the second sum in the first equation we have

⌊x⌋ = max{n ∈ Z : n ≤ x}, x ∈ R (5.25.4)
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Finally, using the famous binomial identity  for  we have

Note that for , the graph of  on  consists of  polynomials of degree  pieced together in a continuous way.
Such a construction is known as a polynomial spline. The points where the polynomials are connected are known as knots. So  is
a polynomial spline of degree  with knots at . There is another representation of  as a sum. To state
this one succinctly, we need to recall the sign function:

For , the probability density function  of  is given by

Direct Proof

Let  denote the function defined in the theorem. We will show directly that , the probability density function given
in the previous theorem. Suppose that , so that . Note that  for  and 

 for . Hence

Adding and subtracting a copy of the first term gives

The last sum is identically 0, from the proof of the previous theorem.

Proof by induction

For  the displayed formula is

So the formula is correct for . Assume now that the formula is correct for . Then

But  for . So
substituting and re-indexing one of the sums gives

Using the famous identity  for  we finally get

( )+( ) = ( )n

k−1
n

k

n+1
k

k ∈ {1, 2, … n}

( ∗ f)(x) = (−1 ( )(x−k = (x)fn
1

n!
∑
k=0

j

)k
n+1

k
)n fn+1 (5.25.11)

n ∈ N+ fn [0,n] n n−1

fn
n−1 x ∈ {1, 2, … ,n−1} fn

sgn(x) =
⎧

⎩⎨
−1,
0,
1,

x < 0
x = 0
x > 0

(5.25.12)

n ∈ N+ fn Xn

(x) = (−1 ( )sgn(x−k)(x−k , x ∈ Rfn
1

2(n−1)!
∑
k=0

n

)k
n

k
)n−1 (5.25.13)

gn =gn fn
j≤ x < j+1 ⌊x⌋ = j sgn(x−k) = 1 k < j

sgn(x−k) = −1 k > j

(x) = (−1 ( )(x−k − (−1 ( )(x−kgn
1

2(n−1)!
∑
k=0

j

)k
n

k
)n−1 1

2(n−1)!
∑
k=j+1

n

)k
n

k
)n−1 (5.25.14)

(x)gn = (−1 ( )(x−k − (−1 ( )(x−k
1

(n−1)!
∑
k=0

j

)k
n

k
)n−1 1

2(n−1)!
∑
k=0

n

)k
n

k
)n−1

= (x) − (−1 ( )(x−kfn
1

2(n−1)!
∑
k=0

n

)k
n

k
)n−1

n = 1

[sgn(x) −sgn(x−1)(x−1 ] = [sgn(x) −sgn(x−1)] ={
1

2
x0 )0 1

2

1,
0,

0 < x < 1
otherwise

(5.25.15)

n = 1 n ∈ N+

(x)fn+1 = ( ∗ f)(x) = (−1 ( )sgn(u−k)(u−k f(x−u)dufn ∫
R

1

2(n−1)!
∑
k=0

n

)k
n

k
)n−1

= (−1 ( ) sgn(u−k)(u−k du
1

2(n−1)!
∑
k=0

n

)k
n

k
∫

x

x−1

)n−1

(5.25.16)

(5.25.17)

sgn(u−k)(u−k du = [sgn(x−k)(x−k −sgn(x−k−1)(x−k−1 ]∫ x

x−1
)n−1 1

n
)n )n k ∈ {0, 1, … ,n}

(x) = (−1 ( )sgn(x−k)(x−k + (−1 ( )sgn(x−k)(x−kfn+1
1

2n!
∑
k=0

n

)k
n

k
)n

1

2n!
∑
k=1

n+1

)k
n

k−1
)n (5.25.18)

( )+( ) = ( )n

k

n

k−1
n+1
k

k ∈ {1, 2, … ,n}

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10365?pdf


5.25.4 https://stats.libretexts.org/@go/page/10365

which verifies the formula for .

Open the special distribution simulator and select the Irwin-Hall distribution. Start with  and increase  successively to
the maximum . Note the shape of the probability density function. For various values of , run the simulation 1000
times and compare the empirical density function to the probability density function.

For , the Irwin-Hall distribution is symmetric and unimodal, with mode at .

The distribution function  of  is given by

Proof

This follows from the first form of the PDF and integration.

So  is a polynomial spline of degree  with knots at . The alternate from of the probability density function
leads to an alternate form of the distribution function.

The distribution function  of  is given by

Proof

The result follws from the second form of the PDF and integration.

The quantile function  does not have a simple representation, but of course by symmetry, the median is .

Open the special distribution calculator and select the Irwin-Hall distribution. Vary  from 1 to 10 and note the shape of the
distribution function. For each value of  compute the first and third quartiles.

Moments

The moments of the Irwin-Hall distribution are easy to obtain from the representation as a sum of independent standard uniform
variables. Once again, we assume that  has the Irwin-Hall distribution of order .

The mean and variance of  are

1. 
2. 

Proof

This follows immediately from the representation  where  is a sequence of independent,
standard uniform variables, since  and 

Open the special distribution simulator and select the Irwin-Hall distribution. Vary  and note the shape and location of the
mean  standard deviation bar. For selected values of  run the simulation 1000 times and compare the empirical mean and
standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are
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2. 

Proof

The fact that the skweness is 0 follows immediately from the symmetry of the distribution (once we know that  has
moments of all orders). The kurtosis result follows from the usual formula and the moments of the standard uniform
distribution.

Note that , the kurtosis of the normal distribution, as . That is, the excess kurtosis  as 
.

Open the special distribution simulator and select the Irwin-Hall distribution. Vary  and note the shape and of the probability
density function in light of the previous results on skewness and kurtosis. For selected values of  run the simulation 1000
times and compare the empirical density function, mean, and standard deviation to their distributional counterparts.

The moment generating function  of  is given by  and

Proof

This follows immediately from the representation  where  is a sequence of independent
standard uniform variables. Recall that the standard uniform distribution has MGF , and the MGF of a sum of
independent variables is the product of the MGFs.

Related Distributions

The most important connection is to the standard uniform distribution in the definition: The Irwin-Hall distribution of order 
 is the distribution of the sum of  independent variables, each with the standard uniform distribution. The Irwin-Hall

distribution of order 2 is also a triangle distribution:

The Irwin-Hall distribution of order 2 is the triangle distribution with location parameter 0, scale parameter 2, and shape
parameter .

Proof

This follows immediately from the PDF .

The Irwin-Hall distribution is connected to the normal distribution via the central limit theorem.

Suppose that  has the Irwin-Hall distribution of order  for each . Then the distribution of

converges to the standard normal distribution as .

Proof

This follows immediately from the central limit theorem, since  where  is a sequence of
independent variables, each with the standard uniform distribution. Note that  is the standard score of .

Thus, if  is large,  has approximately a normal distribution with mean  and variance .

Open the special distribution simulator and select the Irwin-Hall distribution. Start with  and increase  successively to
the maximum . Note how the probability density function becomes more “normal” as  increases. For various values of

, run the simulation 1000 times and compare the empirical density function to the probability density function.

The Irwin-Hall distribution of order  is trivial to simulate, as the sum of  random numbers. Since the probability density function
is bounded on a bounded support interval, the distribution can also be simulated via the rejection method. Computationally, this is a
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dumb thing to do, of course, but it can still be a fun exercise.

Open the rejection method experiment and select the Irwin-Hall distribution. For various values of , run the simulation 2000
times. Compare the empirical density function, mean, and standard deviation to their distributional counterparts.
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