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8.2: Estimation the Normal Model
       

Basic Theory

The Normal Model

The normal distribution is perhaps the most important distribution in the study of mathematical statistics, in part because of the
central limit theorem. As a consequence of this theorem, a measured quantity that is subject to numerous small, random errors will
have, at least approximately, a normal distribution. Such variables are ubiquitous in statistical experiments, in subjects varying
from the physical and biological sciences to the social sciences.

So in this section, we assume that  is a random sample from the normal distribution with mean  and
standard deviation . Our goal is to construct confidence intervals for  and  individually, and then more generally, confidence
sets for . These are among of the most important special cases of set estimation. A parallel section on Tests in the Normal
Model is in the chapter on Hypothesis Testing. First we need to review some basic facts that will be critical for our analysis.

Recall that the sample mean  and sample variance  are

From our study of point estimation, recall that  is an unbiased and consistent estimator of  while  is an unbiased and
consistent estimator of . From these basic statistics we can construct the pivot variables that will be used to construct our interval
estimates. The following results were established in the section on Special Properties of the Normal Distribution.

Define

1.  has the standard normal distribution.
2.  has the student  distribution with  degrees of freedom.
3.  has the chi-square distribution with  degrees of freedom.
4.  and  are independent.

It follows that each of these random variables is a pivot variable for  since the distributions do not depend on the parameters,
but the variables themselves functionally depend on one or both parameters. Pivot variables  and  will be used to construct
interval estimates of  while  will be used to construct interval estimates of . To construct our estimates, we will need
quantiles of these standard distributions. The quantiles can be computed using the special distribution calculator or from most
mathematical and statistical software packages. Here is the notation we will use:

Let  and .

1.  denotes the quantile of order  for the standard normal distribution.
2.  denotes the quantile of order  for the student  distribution with  degrees of freedom.
3.  denotes the quantile of order  for the chi-square distribution with  degrees of freedom

Since the standard normal and student  distributions are symmetric about 0, it follows that  and 
 for  and . On the other hand, the chi-square distribution is not symmetric.

Confidence Intervals for  with  Known

For our first discussion, we assume that the distribution mean  is unknown but the standard deviation  is known. This is not
always an artificial assumption. There are often situations where  is stable over time, and hence is at least approximately known,
while  changes because of different “treatments”. Examples are given in the computational exercises below. The pivot variable 
leads to confidence intervals for .
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For ,

1.  is a  confidence interval for .

2.  is a  confidence lower bound for 

3.  is a  confidence upper bound for 

Proof

Since  has the standard normal distribution, each of the following events has probability  by definition of the

quantiles:

1. 

2. 

3. 

In each case, solving the inequality for  gives the result.

These are the standard interval estimates for  when  is known. The two-sided confidence interval in (a) is symmetric about the
sample mean , and as the proof shows, corresponds to equal probability  in each tail of the distribution of the pivot variable .
But of course, this is not the only two-sided  confidence interval; we can divide the probability  anyway we want between
the left and right tails of the distribution of .

For every , a  confidence interval for  is

1.  gives the symmetric, equal-tail confidence interval.
2.  gives the interval with the confidence upper bound.
3.  gives the interval with the confidence lower bound.

Proof

From the normal distribution of  and the definition of the quantile function,

The result then follows by solving for  in the inequality.

In terms of the distribution of the pivot variable , as the proof shows, the two-sided confidence interval above corresponds to 
in the right tail and  in the left tail. Next, let's study the length of this confidence interval.

For , the (deterministic) length of the two-sided  confidence interval above is

1.  is a decreasing function of , and  as  and  as .
2.  is a decreasing function of , and  as .
3.  is an increasing function of , and  as  and  as .
4. As a function of ,  decreases and then increases, with minimum at the point of symmetry .

The last result shows again that there is a tradeoff between the confidence level and the length of the confidence interval. If  and 
are fixed, we can decrease , and hence tighten our estimate, only at the expense of decreasing our confidence in the estimate.
Conversely, we can increase our confidence in the estimate only at the expense of increasing the length of the interval. In terms of 
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, the best of the two-sided  confidence intervals (and the one that is almost always used) is symmetric, equal-tail interval
with :

Use the mean estimation experiment to explore the procedure. Select the normal distribution and select normal pivot. Use
various parameter values, confidence levels, sample sizes, and interval types. For each configuration, run the experiment 1000
times. As the simulation runs, note that the confidence interval successfully captures the mean if and only if the value of the
pivot variable is between the quantiles. Note the size and location of the confidence intervals and compare the proportion of
successful intervals to the theoretical confidence level.

For the standard confidence intervals, let  denote the distance between the sample mean  and an endpoint. That is,

where  for the two-sided interval and  for the upper or lower confidence interval. The number 
 is the margin of error of the estimate.

Note that  is deterministic, and the length of the standard two-sided interval is . In many cases, the first step in the design
of the experiment is to determine the sample size needed to estimate  with a given margin of error and a given confidence level.

The sample size needed to estimate  with confidence  and margin of error  is

Proof

This follows by solving for  in the definition of  above, and then rounding up to the next integer.

Note that  varies directly with  and with  and inversely with . This last fact implies a law of diminishing return in reducing
the margin of error. For example, if we want to reduce a given margin of error by a factor of , we must increase the sample size
by a factor of 4.

Confidence Intervals for  with  Unknown

For our next discussion, we assume that the distribution mean  and standard deviation  are unknown, the usual situation. In this
case, we can use the  pivot variable, rather than the  pivot variable, to construct confidence intervals for .

For ,

1.  is a  confidence interval for .

2.  is a  lower bound for 

3.  is a  upper bound for 

Proof

Since  has the  distribution with  degees of freedom, each of the following events has probability , by

definition of the quantiles:

1. 

2. 

3. 

In each case, solving for  in the inequality gives the result.

These are the standard interval estimates of  with  unknown. The two-sided confidence interval in (a) is symmetric about the
sample mean  and corresponds to equal probability  in each tail of the distribution of the pivot variable . As before, this is
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not the only confidence interval; we can divide  between the left and right tails any way that we want.

For every , a  confidence interval for  is

1.  gives the symmetric, equal-tail confidence interval.
2.  gives the interval with the confidence upper bound.
3.  gives the interval with the confidence lower bound.

Proof

Since  has the student  distribution with  degrees of freedom, it follows from the definition of the quantiles that

The result then follows by solving for  in the inequality.

The two-sided confidence interval above corresponds to  in the right tail and  in the left tail of the distribution of the
pivot variable . Next, let's study the length of this confidence interal.

For , the (random) length of the two-sided  confidence interval above is

1.  is a decreasing function of , and  as  and  as .
2. As a function of ,  decreases and then increases, with minimum at the point of symmetry .

3. 

4. 

Proof

Parts (a) and (b) follow from properties of the student quantile function . Parts (c) and (d) follow from the fact that 
has a chi distribution with  degrees of freedom.

Once again, there is a tradeoff between the confidence level and the length of the confidence interval. If  and  are fixed, we can
decrease , and hence tighten our estimate, only at the expense of decreasing our confidence in the estimate. Conversely, we can
increase our confidence in the estimate only at the expense of increasing the length of the interval. In terms of , the best of the
two-sided  confidence intervals (and the one that is almost always used) is symmetric, equal-tail interval with . Finally,
note that it does not really make sense to consider  as a function of , since  is a statistic rather than an algebraic variable.
Similarly, it does not make sense to consider  as a function of , since changing  means new data and hence a new value of .

Use the mean estimation experiment to explore the procedure. Select the normal distribution and the  pivot. Use various
parameter values, confidence levels, sample sizes, and interval types. For each configuration, run the experiment 1000 times.
As the simulation runs, note that the confidence interval successfully captures the mean if and only if the value of the pivot
variable is between the quantiles. Note the size and location of the confidence intervals and compare the proportion of
successful intervals to the theoretical confidence level.

Confidence Intervals for 

Next we will construct confidence intervals for  using the pivot variable  given above

For ,
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1.  is a  confidence interval for 

2.  is a  confidence lower bound for 

3.  is a  confidence upper bound for .

Proof

Since  has the chi-square distribution with  degrees of freedom, each of the following events has probability 
 by definition of the quantiles:

1. 

2. 

3. 

In each case, solving for  in the inequality give the result.

These are the standard interval estimates for . The two-sided interval in (a) is the equal-tail interval, corresponding to probability
 in each tail of the distribution of the pivot variable . Note however that this interval is not symmetric about the sample

variance . Once again, we can partition the probability  between the left and right tails of the distribution of  any way that we
like.

For every , a  confidence interval for  is

1.  gives the equal-tail  confidence interval.
2.  gives the interval with the  upper bound
3.  gives the interval with the  lower bound.

In terms of the distribution of the pivot variable , the confidence interval above corresponds to  in the right tail and 
in the left tail. Once again, let's look at the length of the general two-sided confidence interval. The length is random, but is a
multiple of the sample variance . Hence we can compute the expected value and variance of the length.

For , the (random) length of the two-sided confidence interval in the last theorem is

1. 

2. 

To construct an optimal two-sided confidence interval, it would be natural to find  that minimizes the expected length. This is a
complicated problem, but it turns out that for large , the equal-tail interval with  is close to optimal. Of course, taking
square roots of the endpoints of any of the confidence intervals for  gives  confidence intervals for the distribution standard
deviation .

Use variance estimation experiment to explore the procedure. Select the normal distribution. Use various parameter values,
confidence levels, sample sizes, and interval types. For each configuration, run the experiment 1000 time. As the simulation
runs, note that the confidence interval successfully captures the standard deviation if and only if the value of the pivot variable
is between the quantiles. Note the size and location of the confidence intervals and compare the proportion of successful
intervals to the theoretical confidence level.
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Confidence Sets for 

In the discussion above, we constructed confidence intervals for  and for  separately (again, usually both parameters are
unknown). In our next discussion, we will consider confidence sets for the parameter point . These sets will be subsets of the
underlying parameter space .

Confidence Sets Constructed from the Pivot Variables

Each of the pivot variables , , and  can be used to construct confidence sets for . In isolation, each will produce an
unbounded confidence set, not surprising since, we are using a single pivot variable to estimate two parameters. We consider the
normal pivot variable  first.

For any , a  level confidence set for  is

The confidence set is a “cone” in the  parameter space, with vertex at  and boundary lines of slopes 
 and 

Proof

From the normal distribution of  and the definition of the quantile function,

The result then follows by solving for  in the inequality.

The confidence cone is shown in the graph below. (Note, however, that both slopes might be negative or both positive.)

Figure : The confidence set based on the normal pivot variable

The pivot variable  leads to the following result:

For every , a  level confidence set for  is

Proof

Figure : The confidence set based on the  pivot variable

By design, this confidence set gives no information about . Finally, the pivot variable  leads to the following result:

For every , a  level confidence set for  is
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Proof

Figure : The confidence set based on the pivot variable 

By design, this confidence set gives no information about .

Intersections

We can now form intersections of some of the confidence sets constructed above to obtain bounded confidence sets for . We
will use the fact that the sample mean  and the sample variance  are independent, one of the most important special properties
of a normal sample. We will also need the result from the Introduction on the intersection of confidence interals. In the following
theorems, suppose that  with .

The set  is a conservative  confidence sets for .

Figure : The confidence set 

The set  is a  confidence set for .

Figure : The confidence set 

It is interesting to note that the confidence set  is a product set as a subset of the parameter space, but is not a product set
as a subset of the sample space. By contrast, the confidence set  is not a product set as a subset of the parameter space,
but is a product set as a subset of the sample space.

Exercises

Robustness

The main assumption that we made was that the underlying sampling distribution is normal. Of course, in real statistical problems,
we are unlikely to know much about the sampling distribution, let alone whether or not it is normal. When a statistical procedure
works reasonably well, even when the underlying assumptions are violated, the procedure is said to be robust. In this subsection,
we will explore the robustness of the estimation procedures for  and .
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Suppose in fact that the underlying distribution is not normal. When the sample size  is relatively large, the distribution of the
sample mean will still be approximately normal by the central limit theorem. Thus, our interval estimates of  may still be
approximately valid.

Use the simulation of the mean estimation experiment to explore the procedure. Select the gamma distribution and select
student pivot. Use various parameter values, confidence levels, sample sizes, and interval types. For each configuration, run the
experiment 1000 times. Note the size and location of the confidence intervals and compare the proportion of successful
intervals to the theoretical confidence level.

In the mean estimation experiment, repeat the previous exercise with the uniform distribution.

How large  needs to be for the interval estimation procedures of  to work well depends, of course, on the underlying
distribution; the more this distribution deviates from normality, the larger  must be. Fortunately, convergence to normality in the
central limit theorem is rapid and hence, as you observed in the exercises, we can get away with relatively small sample sizes (30
or more) in most cases.

In general, the interval estimation procedures for  are not robust; there is no analog of the central limit theorem to save us from
deviations from normality.

In variance estimation experiment, select the gamma distribution. Use various parameter values, confidence levels, sample
sizes, and interval types. For each configuration, run the experiment 1000 times. Note the size and location of the confidence
intervals and compare the proportion of successful intervals to the theoretical confidence level.

In variance estimation experiment, select the uniform distribution. Use various parameter values, confidence levels, sample
sizes, and interval types. For each configuration, run the experiment 1000 times. Note the size and location of the confidence
intervals and compare the proportion of successful intervals to the theoretical confidence level.

Computational Exercises

In the following exercises, use the equal-tailed construction for two-sided confidence intervals, unless otherwise instructed.

The length of a certain machined part is supposed to be 10 centimeters but due to imperfections in the manufacturing process,
the actual length is a normally distributed with mean  and variance . The variance is due to inherent factors in the process,
which remain fairly stable over time. From historical data, it is known that . On the other hand,  may be set by
adjusting various parameters in the process and hence may change to an unknown value fairly frequently. A sample of 100
parts has mean 10.2.

1. Construct the 95% confidence interval for .
2. Construct the 95% confidence upper bound for .
3. Construct the 95% confidence lower bound for .

Answer
1. 
2. 10.25
3. 10.15

Suppose that the weight of a bag of potato chips (in grams) is a normally distributed random variable with mean  and
standard deviation , both unknown. A sample of 75 bags has mean 250 and standard deviation 10.

1. Construct the 90% confidence interval for .
2. Construct the 90% confidence interval for .
3. Construct a conservative 90% confidence rectangle for .

Answer
1. 
2. 
3. 
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At a telemarketing firm, the length of a telephone solicitation (in seconds) is a normally distributed random variable with mean
 and standard deviation , both unknown. A sample of 50 calls has mean length 300 and standard deviation 60.

1. Construct the 95% confidence upper bound for .
2. Construct the 95% confidence lower bound for .

Answer
1. 314.3.
2. 51.6.

At a certain farm the weight of a peach (in ounces) at harvest time is a normally distributed random variable with standard
deviation 0.5. How many peaches must be sampled to estimate the mean weight with a margin of error  and with 95%
confidence.

Answer

25

The hourly salary for a certain type of construction work is a normally distributed random variable with standard deviation
$1.25 and unknown mean . How many workers must be sampled to construct a 95% confidence lower bound for  with
margin of error $0.25?

Answer

68

Data Analysis Exercises

In Michelson's data, assume that the measured speed of light has a normal distribution with mean  and standard deviation ,
both unknown.

1. Construct the 95% confidence interval for . Is the “true” value of the speed of light in this interval?
2. Construct the 95% confidence interval for .
3. Explore, in an informal graphical way, the assumption that the underlying distribution is normal.

Answer
1. . No, the true value is not in the interval.
2. 

In Cavendish's data, assume that the measured density of the earth has a normal distribution with mean  and standard
deviation , both unknown.

1. Construct the 95% confidence interval for . Is the “true” value of the density of the earth in this interval?
2. Construct the 95% confidence interval for .
3. Explore, in an informal graphical way, the assumption that the underlying distribution is normal.

Answer
1. . Yes, the true value is in the interval.
2. 

In Short's data, assume that the measured parallax of the sun has a normal distribution with mean  and standard deviation ,
both unknown.

1. Construct the 95% confidence interval for . Is the “true” value of the parallax of the sun in this interval?
2. Construct the 95% confidence interval for .
3. Explore, in an informal graphical way, the assumption that the underlying distribution is normal.

Answer
1. . Yes, the true value is in the interval.
2. 
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8.2.10 https://stats.libretexts.org/@go/page/10201

Suppose that the length of an iris petal of a given type (Setosa, Verginica, or Versicolor) is normally distributed. Use Fisher's
iris data to construct 90% two-sided confidence intervals for each of the following parameters.

1. The mean length of a Sertosa iris petal.
2. The mean length of a Vergnica iris petal.
3. The mean length of a Versicolor iris petal.

Answer
1. 
2. 
3. 
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