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1.10: Metric Spaces
    

Basic Theory

Most of the important topological spaces that occur in applications (like probability) have an additional structure that gives a distance
between points in the space.

Definitions

A metric space consists of a nonempty set  and a function  that satisfies the following axioms: For 
,

1.  if and only if .
2. .
3. .

The function  is known as a metric or a distance function.

So as the name suggests,  is the distance between points . The axioms are intended to capture the essential properties
of distance from geometry. Part (a) is the positive property; the distance is strictly positive if and only if the points are distinct. Part
(b) is the symmetric property; the distance from  to  is the same as the distance from  to . Part (c) is the triangle inequality;
going from  to  cannot be longer than going from  to  by way of a third point .

Note that if  is a metric space, and  is a nonempty subset of , then the set  with  restricted to  is also a metric
space (known as a subspace). The next definitions also come naturally from geometry:

Suppose that  is a metric space, and that  and .

1.  is the open ball with center  and radius .
2.  is the closed ball with center  and radius .

A metric on a space induces a topology on the space in a natural way.

Suppose that  is a metric space. By definition, a set  is open if for every  there exists  such that 
. The collection  of open subsets of  is a topology.

Proof
1. Trivially  is open and vacuously  is open.
2. Suppose that  is open for  in an arbitrary index set , and let . If  then  for some . Since 

 is open, there exists  with . But then  so  is open.
3. Suppose that  is open for  in a finite index set , and let . If  then  for every . Hence for

each  there exist  such that . Let . Since  is finite,  and 
 for each . Hence , so  is open.

As the names suggests, an open ball is in fact open and a closed ball is in fact closed.

Suppose again that  is a metric space, and that  and . Then

1.  is open.
2.  is closed.

Proof
1. Let , and let , so that . If  then we have  and , so

by the triangle inequality, . Hence . Thus . It follows that 
 is open

2. We show that  is open. Suppose that , and let , so that . Let  and
suppose that , so that . By the triangle inequality again,

S d : S×S → [0, ∞)
x, y, z ∈ S

d(x, y) = 0 x = y

d(x, y) = d(y, x)
d(x, z) ≤ d(x, y) +d(y, z)

d

d(x, y) x, y ∈ S

x y y x

x z x z y

(S, d) A S A d A×A

(S, d) x ∈ S r ∈ (0, ∞)

B(x, r) = {y ∈ S : d(x, y) < r} x r

C(x, r) = {y ∈ S : d(x, y) ≤ r} x r

(S, d) U ⊆ S x ∈ U r ∈ (0, ∞)
B(x, r) ⊆ U Sd S

S ∅
Ai i I A =⋃i∈I Ai x ∈ A x ∈ Ai i ∈ I

Ai r ∈ (0, ∞) B(x, r) ⊆ Ai B(x, r) ⊆ A A

Ai i I A =⋂i∈I Ai x ∈ A x ∈ Ai i ∈ I

i ∈ I ∈ (0, ∞)ri B(x, ) ⊆ri Ai r = min{ : i ∈ I}ri I r > 0
B(x, r) ⊆ B(x, ) ⊆ri Ai i ∈ I B(x, r) ⊆ A A

(S, d) x ∈ S r ∈ (0, ∞)

B(x, r)
C(x, r)

y ∈ B(x, r) a = d(x, y) a < r z ∈ B(y, r−a) d(x, y) = a d(y, z) < r−a

d(x, z) < a+(r−a) = r z ∈ B(x, r) B(y, r−a) ⊆ B(x, r)
B(x, r)

U = [C(x, r)]c y ∈ U a = d(x, y) a > r z ∈ B(y, a−r)
z ∈ C(x, r) d(z, x) ≤ r

d(x, y) ≤ d(x, z) +d(z, y) < r+(a−r) = a (1.10.1)
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a contradiction. Hence . So .

Recall that for a general topological space, a neighborhood of a point  is a set  with the property that there exists an
open set  with . It follows that in a metric space,  is a neighborhood of  if and only if there exists  such
that . In words, a neighborhood of a point must contain an open ball about that point.

It's easy to construct new metrics from ones that we already have. Here's one such result.

Suppose that  is a nonempty set, and that  are metrics on , and . Then the following are also metrics on :

1. 
2. 

Proof
1. Recall that  is the function defined by  for . Since , it's easy to see that the axioms

are satisfied.
2. Recall that  is the function defined by  for . Again, it's easy to see that

the axioms are satisfied.

Since a metric space produces a topological space, all of the definitions for general topological spaces apply to metric spaces as well.
In particular, in a metric space, distinct points can always be separated.

A metric space  is a Hausdorff space.

Proof

Let  be distinct points in . Then . The sets  and  are open, and contain  and ,
respectively. Suppose that . By the triangle inequality,

a contradiction. Hence  and  are disjoint.

Metrizable Spaces

Again, every metric space is a topological space, but not conversely. A non-Hausdorff space, for example, cannot correspond to a
metric space. We know there are such spaces; a set  with more than one point, and with the trivial topology  is non-
Hausdorff.

Suppose that  is a topological space. If there exists a metric  on  such that , then  is said to be
metrizable.

It's easy to see that different metrics can induce the same topology. For example, if  is a metric and , then the metrics 
and  induce the same topology.

Let  be a nonempty set. Metrics  and  on  are equivalent, and we write , if . The relation  is an
equivalence relation on the collection of metrics on . That is, for metrics  on ,

1. , the reflexive property.
2. If  then , the symmetric property.
3. If  and  then , the transitive property.

There is a simple condition that characterizes when the topology of one metric is finer than the topology of another metric, and then
this in turn leads to a condition for equivalence of metrics.

Suppose again that  is a nonempty set and that  are metrics on . Then  is finer than  if and only if every open ball
relative to  contains an open ball relative to .

Proof

z ∈ U B(y, a−r) ⊆ U

x ∈ S A ⊆ S

U x ∈ U ⊆ A A ⊆ S x r > 0
B(x, r) ⊆ A

S d, e S c ∈ (0, ∞) S

cd

d+e

cd (cd)(x, y) = cd(x, y) (x, y) ∈ S2 c > 0

d+e (d+e)(x, y) = d(x, y) +e(x, y) (x, y) ∈ S2

(S, d)

x, y S r = d(x, y) > 0 B(x, r/2) B(y, r/2) x y

z ∈ B(x, r/2) ∩B(y, r/2)

d(x, y) ≤ d(x, z) +d(z, y) < + = r
r

2

r

2
(1.10.2)

B(x, r/2) B(y, r/2)

S S = {S, ∅}

(S,S ) d S S =Sd (S,S )

d c ∈ (0, ∞) d

cd

S d e S d ≡ e =Sd Se ≡
S d, e, f S

d ≡ d

d ≡ e e ≡ d

d ≡ e e ≡ f d ≡ f

S d, e S Se Sd

d e
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Suppose that  so that  is finer than . If  and , then the open ball  centered at  of
radius  for the metric  is in  and hence in . Thus there exists  such that . Conversely,
suppose that the condition in the theorem holds and suppose that . If  there exists  such that 

. Hence there exists  such that . So .

It follows that metrics  and  on  are equivalent if and only if every open ball relative to one of the metrics contains an open ball
relative to the other metric.

So every metrizable topology on  corresponds to an equivalence class of metrics that produce that topology. Sometimes we want to
know that a topological space is metrizable, because of the nice properties that it will have, but we don't really need to use a specific
metric that generates the topology. At any rate, it's important to have conditions that are sufficient for a topological space to be
metrizable. The most famous such result is the Urysohn metrization theorem, named for the Russian mathematician Pavel Uryshon:

Suppose that  is a regular, second-countable, Hausdorff space. Then  is metrizable.

Review of the terms

Recall that regular means that every closed set and point not in the set can be separated by disjoint open sets. As discussed
earlier, Hausdorff means that any two distinct points can be separated by disjoint open sets. Finally, second-countable means that
there is a countable base for the topology, that is, there is a countable collection of open sets with the property that every other
open set is a union of sets in the collection.

Convergence

With a distance function, the convergence of a sequence can be characterized in a manner that is just like calculus. Recall that for a
general topological space , if  is a sequence of points in  and , then  as  means that for
every neighborhood  of , there exists  such that  for .

Suppose that  is a metric space, and that  is a sequence of points in  and . Then  as 
if and only if for every  there exists  such that if  then . Equivalently,  as  if
and only if  as  (in the usual calculus sense).

Proof

Suppose that  as , and let . Then  is a neighborhood of , so there exists  such that 
 for , which is the condition in the theorem. Conversely, suppose that condition in the theorem holds, and let

 be a neighborhood of . Then there exists  such that . By assumption, there exists  such that if 
 then .

So, no matter how tiny  may be, all but finitely many terms of the sequence are within  distance of . As one might hope,
limits are unique.

Suppose again that  is a metric space. Suppose also that  is a sequence of points in  and that . If 
 as  and  as  then .

Proof

This follows immediately since a metric space is a Hausdorff space, and the limit of a sequence in a Hausdorff space is unique.
Here's a direct proof: Let . Then there exists  such that  for , and there exists  such
that  for . Let . By the triangle inequality,

So we have  for every  and hence  and thus .

Convergence of a sequence is a topological property, and so is preserved under equivalence of metrics.

Suppose that  are equivalent metrics on , and that  is a sequence of points in  and . Then  as 
 relative to  if and only if  as  relative to .

⊆Sd Se Se Sd x ∈ S a ∈ (0, ∞) (x, a)Bd x

a d Sd Se b ∈ (0, ∞) (x, b) ⊆ (x, a)Be Bd

U ∈Sd x ∈ U a ∈ (0, ∞)
(x, a) ⊆ UBd b ∈ (0, ∞) (x, b) ⊆ (x, a) ⊆ UBe Bd U ∈Se

d e S

S

(S,S ) (S,S )

(S,S ) ( : n ∈ )xn N+ S x ∈ S → xxn n → ∞
U x m ∈ N+ ∈ Uxn n > m

(S, d) ( : n ∈ )xn N+ S x ∈ S → xxn n → ∞
ϵ > 0 m ∈ N+ n > m d( , x) < ϵxn → xxn n → ∞

d( , x) → 0xn n → ∞

→ xxn n → ∞ ϵ > 0 B(x, ϵ) x m ∈ N+

∈ B(x, ϵ)xn n > m

U x ϵ > 0 B(x, ϵ) ⊆ U m ∈ N+

n > m ∈ B(x, ϵ) ⊆ Uxn

ϵ > 0 ϵ x

(S, d) ( : n ∈ )xn N+ S x, y ∈ S

→ xxn n → ∞ → yxn n → ∞ x = y

ϵ > 0 k ∈ N+ d( , x) < ϵ/2xn n > k m ∈ N+

d( , y) < ϵ/2xn n > m n > max{k,m}

d(x, y) ≤ d(x, ) +d( , y) < + = ϵxn xn
ϵ

2

ϵ

2
(1.10.3)

d(x, y) < ϵ ϵ > 0 d(x, y) = 0 x = y

d, e S ( : n ∈ )xn N+ S x ∈ S → xxn
n → ∞ d → xxn n → ∞ e
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Closed subsets of a metric space have a simple characterization in terms of convergent sequences, and this characterization is more
intuitive than the abstract axioms in a general topological space.

Suppose again that  is a metric space. Then  is closed if and only if whenever a sequence of points in  converges,
the limit is also in .

Proof

Suppose that  is closed and that  is a sequence of points in  with  as . Suppose that 
. Since  is open,  for  sufficiently large, a contradiction. Hence . Conversely, suppose that  has the

sequential closure property, but that  is not closed. Then  is not open. This means that there exists  with the property
that every neighborhood of  has points in . Specifically, for each  there exists  with . But
clearly  as , again a contradiction.

The following definition also shows up in standard calculus. The idea is to have a criterion for convergence of a sequence that does
not require knowing a-priori the limit. But for metric spaces, this definition takes on added importance.

Suppose again that  is a metric space. A sequence of points  in  is a Cauchy sequence if for every 
there exist  such that if  with  and  then .

Cauchy sequences are named for the ubiquitous Augustin Cauchy. So for a Cauchy sequence, no matter how tiny  may be, all
but finitely many terms of the sequence will be within  distance of each other. A convergent sequence is always Cauchy.

Suppose again that  is a metric space. If a sequence of points  in  converges, then the sequence is Cauchy.

Proof

By assumption, there exists  such that  as . Let . There exists  such that if  and 
 then . Hence if  with  and  then by the triangle inequality,

So the sequence is Cauchy.

Conversely, one might think that a Cauchy sequence should converge, but it's relatively trivial to create a situation where this is false.
Suppose that  is a metric space, and that there is a point  that is the limit of a sequence of points in  that are all distinct
from . Then the space  with the metric  restricted to  has a Cauchy sequence that does not converge.
Essentially, we have created a “convergence hole”. So our next defintion is very natural and very important.

Suppose again that  is metric space and that . Then  is complete if every Cauchy sequence in  converges to a
point in .

Of course, completeness can be applied to the entire space . Trivially, a complete set must be closed.

Suppose again that  is a metric space, and that . If  is complete, then  is closed.

Proof

Suppose that  is a sequence of points in  and that  as . Then  is a Cauchy sequence,
and so by completeness, . Hence  is closed by (12).

Completeness is such a crucial property that it is often imposed as an assumption on metric spaces that occur in applications. Even
though a Cauchy sequence may not converge, here is a partial result that will be useful latter: if a Cauchy sequence has a convergent
subsequence, then the sequence itself converges.

Suppose again the  is a metric space, and that  is a Cauchy sequence in . If there exists a subsequence 
 such that  as , then  as .

Proof

(S, d) A ⊆ S A

A

A ( : n ∈ )xn N+ A → x ∈ Sxn n → ∞
x ∈ Ac Ac ∈xn Ac n x ∈ A A

A Ac x ∈ Ac

x A n ∈ N+ ∈ B(x, 1/n)xn ∈ Axn
→ xxn n → ∞

(S, d) ( : n ∈ )xn N+ S ϵ > 0
k ∈ N+ m, n ∈ N+ m > k n > k d( , ) < ϵxm xn

ϵ > 0
ϵ

(S, d) ( : n ∈ )xn N+ S

x ∈ S → xxn n → ∞ ϵ > 0 k ∈ N+ n ∈ N+

n > k d( , x) < ϵ/2xn m, n ∈ N+ m > k n > k

d( , ) ≤ d( , x) +d(x, ) < + = ϵxm xn xm xn
ϵ

2

ϵ

2
(1.10.4)

(S, d) x ∈ S S

x T = S−{x} d T ×T

(S, d) A ⊆ S A A

A

S

(S, d) A ⊆ S A A

x = ( : n ∈ N)xn A → x ∈ Sxn n → ∞ x

x ∈ A A

(S, d) ( : n ∈ )xn N+ S

( : k ∈ )xnk N+ → x ∈ Sxnk k → ∞ → xxn n → ∞
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Recall that in the construction of a subsequence, the indices  must be a strictly increasing sequence in . In
particular,  as . So let . From the hypotheses, there exists  such that if  then 

. There exists  such that if  and  then . Now let . Pick 
such that  and . By the triangle inequality,

Continuity

In metric spaces, continuity of functions also has simple characterizations in terms of that are familiar from calculus. We start with
local continuity. Recall that the general topological definition is that  is continuous at  if  is a neighborhood
of  in  for every open set  of  in .

Suppose that  and  are metric spaces, and that . The continuity of  at  is equivalent to each of the
following conditions:

1. If  is a sequence in  with  as  then  as .
2. For every , there exists  such that if  and  then .

Proof
1. This condition is sequential continuity at . Continuity at  implies sequential continuity at  for general topological spaces,

and hence for metric spaces. Conversely, suppose that sequential continuity holds at , and let  be a neighborhood of 
 in . If  is not a neighborhood of  in , then for every , there exists  with 

. But then clearly  as  but  does not converge to  as , a contradiction.
2. Suppose that  is continuous at . For ,  is a neighborhood of , and hence  is a

neighborhood of . Hence there exists  such that . But this means that if  then 
. Conversely suppose that the condition in (b) holds, and suppose that  is a neighborhood of . Then

there exists  such that . By assumpiton, there exists  such that if  then 
. This means that  is a neighborhood of .

More generally, recall that  continuous on  means that  is continuous at each , and that  continuous means that  is
continuous on . So general continuity can be characterized in terms of sequential continuity and the -  condition.

On a metric space, there are stronger versions of continuity.

Suppose again that  and  are metric spaces and that . Then  is uniformly continuous if for every 
there exists  such that if  with  then .

In the -  formulation of ordinary point-wise continuity above,  depends on the point  in addition to . With uniform continuity,
there exists a  depending only on  that works uniformly in .

Suppose again that  and  are metric spaces, and that . If  is uniformly continuous then  is continuous.

Here is an even stronger version of continuity.

Suppose again that  and  are metric spaces, and that . Then  is Höder continuous with exponent 
 if there exists  such that  for all .

The definition is named for Otto Höder. The exponent  is more important than the constant , which generally does not have a
name. If ,  is said to be Lipschitz continuous, named for the German mathematician Rudolf Lipschitz.

Suppose again that  and  are metric spaces, and that . If  is Höder continuous with exponent  then 
 is uniformly continuous.

The case where  and  is particularly important.

Suppose again that  and  are metric spaces. A function  is a contraction if there exists  such
that

( : k ∈ )nk N+ N+

→ ∞nk k → ∞ ϵ > 0 j∈ N+ k > j

d ( , x) < ϵ/2xnk N ∈ N+ m > N p > N d( , ) < ϵ/2xm xp m > N k ∈ N+

k > j > Nnk

d( , x) ≤ d ( , ) +d ( , x) ≤ + = ϵxm xm xnk xnk
ϵ

2

ϵ

2
(1.10.5)

f : S → T x ∈ S (V )f−1

x S V f(x) T

(S, d) (T , e) f : S → T f x ∈ S

( : n ∈ )xn N+ S → xxn n → ∞ f( ) → f(x)xn n → ∞
ϵ > 0 δ > 0 y ∈ S d(x, y) < δ e[f(y) −f(x)] < ϵ

x x x

x ∈ S V

f(x) T U = (V )f−1 x S n ∈ N+ ∈ B(x, 1/n)xn
∉ Uxn → xxn n → ∞ f( )xn f(x) n → ∞

f x ϵ > 0 [f(x), ϵ]BT f(x) U = ( [f(x), ϵ])f−1 BT

x δ > 0 (x, δ) ⊆ UBS d(y, x) < δ

e[f(y), f(x)] < ϵ V f(x)
ϵ > 0 [f(x), ϵ] ⊆ VBT δ > 0 y ∈ (x, δ)BS

f(y) ∈ [f(x), ϵ] ⊆ VBT (V )f−1 x

f A ⊆ S f x ∈ A f f

S ϵ δ

(S, d) (T , e) f : S → T f ϵ > 0
δ > 0 x, y ∈ S d(x, y) < δ e[f(x), f(y)] ≤ ϵ

ϵ δ δ x ϵ

δ ϵ x ∈ S

(S, d) (T , e) f : S → T f f

(S, d) (T , e) f : S → T f

α ∈ (0, ∞) C ∈ (0, ∞) e[f(x), f(y)] ≤ C[d(x, y)]α x, y ∈ S

α C

α = 1 f

(S, d) (T , e) f : S → T f α > 0
f

α = 1 C < 1

(S, d) (T , e) f : S → T C ∈ (0, 1)
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So contractions shrink distance. By the result above, a contraction is uniformly continuous. Part of the importance of contraction
maps is due to the famous Banach fixed-point theorem, named for Stefan Banach.

Suppose that  is a complete metric space and that  is a contraction. Then  has a unique fixed point. That is,
there exists exactly one  with . Let , and recursively define  for . Then 

 as .

Functions that preserve distance are particularly important. The term isometry means distance-preserving.

Suppose again that  and  are metric spaces, and that . Then  is an isometry if  for
every .

Suppose again that  and  are metric spaces, and that . If  is an isometry, then  is one-to-one and
Lipschitz continuous.

Proof

If  with , then , so . Hence  is one-to-one. Directly from the definition,
 is Höder continuous with exponent  and constant multiple .

In particular, an isometry  is uniformly continuous. If one metric space can be mapped isometrically onto another metric space, the
spaces are essentially the same.

Metric spaces  and  are isometric if there exists an isometry  that maps  onto . Isometry is an equivalence
relation on metric spaces. That is, for metric spaces , , and ,

1.  is isometric to , the reflexive property.
2. If  is isometric to  them  is isometric to , the symmetric property.
3. If  is isometric to  and  is isometric to , then  is isometric to , the transitive property.

Proof
1. The identity function  defined by  for  is an isometry from  onto .
2. If  is an isometry from  onto  then  is an isometry from  onto .
3. If  is an isometry from  onto  and  is an isometry from  onto , then  is an isometry from 

 to .

In particular, if metric spaces  and  are isometric, then as topological spaces, they are homeomorphic.

Compactness and Boundedness

In a metric space, various definitions related to a set being bounded are natural, and are related to the general concept of
compactness.

Suppose again that  is a metric space, and that . Then  is bounded if there exists  such that 
for all . The diameter of  is

Additional details

Recall that , so  if  is unbounded. In the bounded case, note that if the distance between points in 
is bounded by , then the distance is bounded by any . Hence the diameter definition makes sense.

So  is bounded if and only if . Diameter is an increasing function relative to the subset partial order.

Suppose again that  is a metric space, and that . Then .

e[f(x), f(y)] ≤ Cd(x, y), x, y ∈ S (1.10.6)

(S, d) f : S → S f

∈ Sx∗ f( ) =x∗ x∗ ∈ Sx0 = f( )xn xn−1 n ∈ N+

→xn x∗ n → ∞

(S, d) (T , e) f : S → T f e[f(x), f(y)] = d(x, y)
x, y ∈ S

(S, d) (T , e) f : S → T f f

x, y ∈ S x ≠ y e[f(x), f(y)] = d(x, y) > 0 f(x) ≠ f(y) f

f α = 1 C = 1

f

(S, d) (T , e) f S T

(S, d) (T , e) (U, ρ)

(S, d) (S, d)
(S, d) (T , e) (T , e) (S, d)
(S, d) (T , e) (T , e) (U, ρ) (S, d) (U, ρ)

I : S → S I(x) = x x ∈ S (S, d) (S, d)
f (S, d) (T , e) f−1 (T , e) (S, d)
f (S, d) (T , e) g (T , e) (U, ρ) g∘ f

(S, d) (U, ρ)

(S, d) (T , e)

(S, d) A ⊆ S A r ∈ (0, ∞) d(x, y) ≤ r

x, y ∈ A A

diam(A) = inf{r > 0 : d(x, y) < r for all x, y ∈ A} (1.10.7)

inf(∅) = ∞ diam(A) = ∞ A A

r ∈ (0, ∞) s ∈ [r, ∞)

A diam(A) < ∞

(S, d) A ⊆ B ⊆ S diam(A) ≤ diam(B)
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Our next definition is stronger, but first let's review some terminology that we used for general topological spaces: If  is a set,  a
subset of , and  a collection of subsets of , then  is said to cover  if . So with this terminology, we can talk about
open covers, closed covers, finite covers, disjoint covers, and so on.

Suppose again that  is a metric space, and that . Then  is totally bounded if for every  there is a finite cover
of  with open balls of radius .

Recall that for a general topological space, a set  is compact if every open cover of  has a finite subcover. So in a metric space,
the term precompact is sometimes used instead of totally bounded: The set  is totally bounded if every cover of  with open balls
of radius  has a finite subcover.

Suppose again that  is a metric space. If  is totally bounded then  is bounded.

Proof

There exists a finite cover of  with open balls of radius 1. Let  denote the set of centers of the balls, and let 
, the maximum distance between two centers. Since  is finite, . Now let . Since

the balls cover , there exist  with  and . By the triangle inequality (what else?)

Hence  is bounded.

Since a metric space is a Hausdorff space, a compact subset of a metric space is closed. Compactness also has a simple
characterization in terms of convergence of sequences.

Suppose again that  is a metric space. A subset  is compact if and only if every sequence of points in  has a
subsequence that converges to a point in .

Proof

The condition in the theorem is known as sequential compactness, so we want to show that sequential compactness is equivalent
to compactness. The proof is harder than most of the others in this section, but the proof presented here is the nicest I have found,
and is due to Anton Schep.

Suppose that  is compact and that  is a sequence of points in . Let , the
unordered set of distinct points in the sequence. If  is finite, then some element of  must occur infinitely many times in
the sequence. In this case, we can construct a subsequence of  all of whose terms are , and so this subsequence trivially
converges to . Suppose next that  is infinite. Since the space is Hausdorff,  is closed, and therefore . Our
next claim is that there exists  such that for every , the set  is infinte. If the claim is false, then for
each  there exists  such that  is finite. It then follows that for each , there exists  such
that . But then  is an open cover of  that has no finite subcover,
a contradiction. So the claim is true and for some , the set  is infinite for each . We can construct a
subsequence of  that converges to .

Conversely, suppose that  is sequentially compact. If  is a Cauchy sequence in , then by assumption, 
has a subsequence that converges to some . But then by (17) the sequence  itself converges to , so it follows that  is
complete. We next show that  is totally bounded. Our goal is to show that  can be covered by a finite number of balls of an
arbitrary radius . Pick . If  then we are done. Otherwise, pick . If 

 then again we are done. Otherwise there exists . This process must
terminate in a finite number of steps or otherwise we would have a sequence of points  in  with the property
that  for every . Such a sequence does not have a convergent subsequence. Suppose now that  is an
open cover of  and let . Then  can be covered by a finite number of closed balls of with centers in  and with
radius . It follows that at least one of these balls cannot be covered by a finite subcover from . Let  denote the
intersection of this ball with . Then  is closed and is sequentially compact with . Repeating the argument,
we generate a nested sequence of close sets  such that , and with the property that  cannot be
finitely covered by  for each . Pick  for each . Then  is a Cauchy sequence in 
and hence has a subsequence that converges to some . Then  and since  as  it follows
that in fact, . Now, since  covers , there exists  such that . Since  is open, there exists 

S A

S A S A A A ⊆⋃A

(S, d) A ⊆ S A r > 0
A r

A A

A A

r

(S, d) A ⊆ S A

A C

c = max{d(u, v) : u, v∈ C} C c < ∞ x, y ∈ A

A u, v∈ C x ∈ B(u, 1) y ∈ B(v, 1)

d(x, y) ≤ d(x, u) +d(u, v) +d(v, y) ≤ 2 +c (1.10.8)

A

(S, d) C ⊆ S C

C

C x = ( : n ∈ )xn N+ C A = { : n ∈ } ⊆ Cxn N+

A a ∈ A

x a

a ∈ C A C cl(A) ⊆ C

a ∈ cl(A) r > 0 A∩B(a, r)
a ∈ cl(A) > 0ra A∩B(a, r) a ∈ A > 0ϵa
A∩B(a, ) = {a}ϵa U = {B(a, ) : a ∈ cl(A)} ∪ {[cl(A) }ϵa ]c C

a ∈ cl(A) A∩B(a, r) r > 0
x a ∈ C

C x = ( : n ∈ )xn N+ C x

x ∈ C x x C

C C

r > 0 ∈ Cx1 C ⊆ B( , r)x1 ∈ C ∖B( , r)x2 x1

C ⊆ B( , r) ∪B( , r)x1 x2 ∈ C ∖ [B( , r) ∪B( , r)]x3 x1 x2

( : n ∈ )xn N+ C

d( , ) ≥ rxn xm n, m ∈ N+ U

C c = diam(C) C C

c/4 U C1

C C1 diam( ) ≤ c/4C1

( , , …)C1 C2 diam( ) ≤ c/Cn 2n Cn

U n ∈ N+ ∈xn Cn n ∈ N+ x = ( : n ∈ )xn N+ C

x ∈ C x ∈⋂∞
n=1 Cn diam( ) → 0Cn n → ∞

= {x}⋂∞
n=1 Cn U C U ∈U x ∈ U U r > 0
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such that . Now let  be sufficiently large that  and . Then 
, which contradicts the fact that  cannot be finitely covered by .

Hausdorff Measure and Dimension

Our last discussion is somewhat advanced, but is important for the study of certain random processes, particularly Brownian motion.
The idea is to measure the “size” of a set in a metric space in a topological way, and then use this measure to define a type of
“dimension”. We need a preliminary definition, using our convenient cover terminology. If  is a metric space, , and 

, then a countable  cover of  is a countable cover  of  with the property that  for each .

Suppose again that  is a metric space and that . For  and , define

The -dimensional Hausdorff measure of  is

Additional details

Note that if  is a countable  cover of  then it is also a countable  cover of  for every . This means that  is
decreasing in  for fixed . Hence

Note that the -dimensional Hausdorff measure is defined for every , not just nonnegative integers. Nonetheless, the
integer dimensions are interesting. The 0-dimensional measure of  is the number of points in . In Euclidean space, which we
consider in (36), the measures of dimension 1, 2, and 3 are related to length, area, and volume, respectively.

Suppose again that  is a metric space and that . The Hausdorff dimension of  is

Of special interest, as before, is the case when  for some  and  is the standard Euclidean distance, reviewed in (36).
As you might guess, the Hausdorff dimension of a point is 0, the Hausdorff dimension of a “simple curve” is 1, the Hausdorff
dimension of a “simple surface” is 2, and so on. But there are also sets with fractional Hausdorff dimension, and the stochastic
process Brownian motion provides some fascinating examples. The graph of standard Brownian motion has Hausdorff dimension 

 while the set of zeros has Hausdorff dimension .

Examples and Special Cases

Normed Vector Spaces

A norm on a vector space generates a metric on the space in a very simple, natural way.

Suppose that  is a vector space, and that  is a norm on the space. Then  defined by  for 
is a metric on .

Proof

The metric axioms follow easily from the norm axioms.

1. The positive property for  follows since  if and only if .
2. The symmetric property for  follows since .
3. The triangle inequality for  follows from the triangle inequality for the norm: .

On , we have a variety of norms, and hence a variety of metrics.

For  and , the function  given below is a metric on :

B(x, r) ⊆ U n ∈ N+ d(x, ) ≤ r/2xn diam( ) < r/2Cn

⊆ B(x, r) ⊆ UCn Cn U

(S, d) A ⊆ S

δ ∈ (0, ∞) δ A B A diam(B) < δ B ∈B

(S, d) A ⊆ S δ ∈ (0, ∞) k ∈ [0, ∞)

(A) = inf{ :B is a countable δ cover of A}H k
δ

∑
B∈B

[diam(B)]k (1.10.9)

k A

(A) = sup{ (A) : δ > 0} = (A)H k H k
δ

lim
δ↓0

H k
δ

(1.10.10)

B δ A ϵ A ϵ > δ (A)H k
δ

δ ∈ (0, ∞) k ∈ [0, ∞)

sup{ (A) : δ > 0} = (A)H k
δ

lim
δ↓0

H k
δ

(1.10.11)

k k ∈ [0, ∞)
A A

(S, d) A ⊆ S A

(A) = inf{k ∈ [0, ∞) : (A) = 0}dimH H k (1.10.12)

S =R
n n ∈ N+ d

3/2 1/2

(S, +, ⋅) ∥ ⋅ ∥ d d(x, y) = ∥y−x∥ x, y ∈ S

S

d ∥x∥ = 0 x = 0
d ∥ −x∥ = ∥x∥

d ∥x+y∥ ≤ ∥x∥ +∥y∥

R
n

n ∈ N+ k ∈ [1, ∞) dk R
n
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Proof

This follows from the general result above, since  defined below is a norm on :

Of course the metric  is Euclidean distance, named for Euclid of course. This is the most important one, in a practical sense
because it's the usual one that we use in the real world, and in a mathematical sense because the associated norm corresponds to the
standard inner product on  given by

For , the function  defined below is a metric on :

Proof

This follows from the general result above, since  defined below is a norm on :

To justify the notation, recall that  as  for , and hence  as  for 
.

Figure : From inside out, the boundaries of the unit balls centered at the origin in  for the metrics  with 
.

Suppose now that  is a nonempty set. Recall that the collection  of all functions  is a vector space under the usual
pointwise definition of addition and scalar multiplication. That is, if  and , then  and  are defined
by  and  for . Recall further that the collection  of bounded functions 
is a vector subspace of , and moreover,  defined by  is a norm on , known as the supremum
norm. It follow that  is a metric space with the metric  defined by

Vector spaces of bounded, real-valued functions, with the supremum norm are very important in the study of probability and
stochastic processes. Note that the supremum norm on  generalizes the maximum norm on , since we can think of a point in 
as a function from  into . Later, as part of our discussion on integration with respect to a positive measure, we will see
how to generalize the  norms on  to spaces of functions.

Products of Metric Spaces

If we have a finite number of metric spaces, then we can combine the individual metrics, together with an norm on the vector space 
, to create a norm on the Cartesian product space.

(x, y) = , x = ( , , … , ), y = ( , , … , ) ∈dk ( )∑
i=1

n

| − |xi yi
k

1/k

x1 x2 xn y1 y2 yn R
n (1.10.13)

∥ ⋅ ∥k R
n

∥x = , x = ( , , … , ) ∈∥k ( )∑
i=1

k

| |xi
k

1/k

x1 x2 xn R
n (1.10.14)

d2

R
n

⟨x, y⟩ = , x = ( , , … , ), y = ( , , … , ) ∈∑
i=1

n

xiyi x1 x2 xn y1 y2 yn R
n (1.10.15)

n ∈ N+ d∞ R
n

(x, y) = max{| − | : i ∈ {1, 2 … ,n}}, x = ( , , … , ) ∈d∞ xi yi x1 x2 xn R
n (1.10.16)

∥ ⋅ ∥∞ R
n

∥x = max{| | : i ∈ {1, 2, … ,n}}, x = ( , , … , ) ∈∥∞ xi x1 x2 xn R
n (1.10.17)

∥x → ∥x∥k ∥∞ k → ∞ x ∈ R
n (x, y) → (x, y)dk d∞ k → ∞

x, y ∈ R
n

1.10.1 R
2 dk

k ∈ {1, 3/4, 2, 3, ∞}

S V f : S →R

f , g ∈ V c ∈ R f +g ∈ V cf ∈ V
(f +g)(x) = f(x) +g(x) (cf)(x) = cf(x) x ∈ S U f : S →R

V ∥ ⋅ ∥ ∥f∥ = sup{|f(x)| : x ∈ S} U

U d

d(f , g) = ∥f −g∥ = sup{|f(x) −g(x)| : x ∈ S} (1.10.18)

U R
n

R
n

{1, 2, … ,n} R

k R
n

R
n
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Suppose , and that  is a metric space for each . Suppose also that  is a norm on .
Then the function  given as follows is a metric on :

Proof
1. Note that  if and only if  for  if and only if  for  if and

only if .
2. Since  for , we have .
3. The triangle inequality follows from the triangle inequality for each metric, and the triangle inequality for the norm.

Graphs

Recall that a graph (in the combinatorial sense) consists of a countable set  of vertices and a set  of edges. In this
discussion, we assume that the graph is undirected in the sense that  if and only if , and has no loops so that 

 for . Finally, recall that a path of length  from  to  is a sequence  such
that , , and  for . The graph is connected if there exists a path of finite length between
any two distinct vertices in . Such a graph has a natural metric:

Suppose that  is a connected graph. Then  defined as follows is a metric on :  for , and 
is the length of the shortest path from  to  for distinct .

Proof
1. The positive property follows from the definition:  if and only if 
2. The symmetric property follows since the graph is undirected:  for all .
3. For the triangle inequality, suppose that , and that  and . Then there is a path of length 

from  to  and a path of length  from  to . Concatenating the paths produces a path of length  from  to . But 
 is the length of the shortest such path, so it follows that .

The Discrete Topology

Suppose that  is a nonempty set. Recall that the discrete topology on  is , the power set of , so that every subset of  is
open (and closed). The discrete topology is metrizable, and there are lots of metrics that generate this topology.

Suppose again that  is a nonempty set. A metric  on  with the property that there exists  such that  for
distinct  generates the discrete topology.

Proof

Note that  for . Hence  is open for each .

So any metric that is bounded from below (for distinct points) generates the discrete topology. It's easy to see that there are such
metrics.

Suppose again that  is a nonempty set. The function  on  defined by  for  and  for distinct 
 is a metric on , known as the discrete metric. This metric generates the discrete topology.

Proof

Clearly  if and only if , and  for , so the positive and symmetric properties hold.
For the triangle inequality, suppose . The inequality trivially holds if the points are not distinct. If the points are
distinct, then  and .

In probability applications, the discrete topology is often appropriate when  is countable. Note also that the discrete metric is the
graph distance if  is made into the complete graph, so that  is an edge for every pair of distinct vertices .
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n ∈ {2, 3, …} ( , )Si di in ∈ {1, 2, … ,n} ∥ ⋅ ∥ R
n

d S = × ×⋯ ×S1 S2 Sn

d(x, y) = ∥( ( , ), ( , ), … , ( , ))∥ , x = ( , , … , ), y = ( , , … , ) ∈ Sd1 x1 y1 d2 x2 y2 dn xn yn x1 x2 xn y1 y2 yn (1.10.19)

d(x, y) = 0 ( , ) = 0di xi yi i ∈ {1, 2, … ,n} =xi yi i ∈ {1, 2, … ,n}
x = y

( , ) = ( , )di xi yi di yi xi i ∈ {1, 2, … ,n} d(x, y) = d(y, x)

S E ⊆ S×S

(x, y) ∈ E (y, x) ∈ E

(x, x) ∉ E x ∈ S n ∈ N+ x ∈ S y ∈ S ( , , … , ) ∈x0 x1 xn Sn+1

= xx0 = yxn ( , ) ∈ Exi−1 xi i ∈ {1, 2, … ,n}
S
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x y x, y ∈ S
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x, y, z ∈ S m = d(x, y) n = d(y, z) m

x y n y z m+n x z

d(x, z) d(x, z) ≤ m+n

S S P(S) S S

S d S c ∈ (0, ∞) d(x, y) ≥ c

x, y ∈ S

B(x, c) = {x} x ∈ S {x} x ∈ S

S d S×S d(x, x) = 0 x ∈ S d(x, y) = 1
x, y ∈ S S

d(x, y) = 0 x = y d(x, y) = d(y, x) x, y ∈ S
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S
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