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5.3: Stable Distributions

This section discusses a theoretical topic that you may want to skip if you are a new student of probability.

Basic Theory

Stable distributions are an important general class of probability distributions on R that are defined in terms of location-scale
transformations. Stable distributions occur as limits (in distribution) of scaled and centered sums of independent, identically
distributed variables. Such limits generalize the central limit theorem, and so stable distributions generalize the normal distribution
in a sense. The pioneering work on stable distributions was done by Paul Lévy.

Definition
In this section, we consider real-valued random variables whose distributions are not degenerate (that is, not concentrated at a

single value). After all, a random variable with a degenerate distribution is not really random, and so is not of much interest.

Random variable X has a stable distribution if the following condition holds: If n € N, and (X7, X, ..., X, ) is a sequence
of independent variables, each with the same distribution as X, then X; + X5 +---+X,, has the same distribution as
an +b, X for some a, € R and b, € (0,00).If a, =0 for n € N, then the distribution of X is strictly stable.

1. The parameters a,, for n € N are the centering parameters.
2. The parameters b,, for n € N are the norming parameters.

Details

Since the distribution of X is not point mass at 0, note that if the distribution of a4+ bX is the same as the distribution of
c+dX for some a, c € R and b, d € (0,00), then a =c and b =d. Thus, the centering parameters a,, and the norming
parameters b,, are uniquely defined forn € N, .

Recall that two distributions on R that are related by a location-scale transformation are said to be of the same type, and that being
of the same type defines an equivalence relation on the class of distributions on R. With this terminology, the definition of stability
has a more elegant expression: X has a stable distribution if the sum of a finite number of independent copies of X is of the same
type as X. As we will see, the norming parameters are more important than the centering parameters, and in fact, only certain
norming parameters can occur.

Basic Properties

We start with some very simple results that follow easily from the definition, before moving on to the deeper results.

Suppose that X has a stable distribution with mean p and finite variance. Then the norming parameters are /7 and the
centering parameters are (n —,/n) u forn € N, .

Proof

As usual, let a,, and b,, denote the centering and norming parameters of X for n € N , and let 0> denote the (finite) variance
of X. Suppose that n € N and that (X3, X2, ..., X,) is a sequence of independent variables, each with the distribution of
X. Then X; + Xy +---+X,, has the same distribution as a,, 4+ b, X . Taking variances gives no? = b2c? and hence
b, = 4/n . Taking expected values now gives ny = a, ++/np .

It will turn out that the only stable distribution with finite variance is the normal distribution, but the result above is useful as an
intermediate step. Next, it seems fairly clear from the definition that the family of stable distributions is itself a location-scale
family.

Suppose that the distribution of X is stable, with centering parameters a,, € R and norming parameters b, € (0, co)for
neN,. If ceR and d€ (0,00), then the distribution of ¥ =c+dX is also stable, with centering parameters
da, + (n —by,)c and norming parameters b, forn € N .

Proof
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Suppose that n € N, and that (Y7,Y3,...,Y},) is a sequence of independent variables, each with the same distribution as Y.
Then Y1 +Y5+---+Y, has the same distribution nc+d(X; +Xs+---+X,) where (X1, Xs,...) is a sequence of
independent variables, each with the same distribution as X. By stability, X; + X5 +---+ X,, has the same distribution as
an+b,X. Hence Y1 +Y2+---+Y, has the same distribution as (nc+day,)+db,X , which in turn has the same
distribution as [da, + (n —by)c] +b,Y .

An important point is the the norming parameters are unchanged under a location-scale transformation.

Suppose that the distribution of X is stable, with centering parameters a,, € R and norming parameters b,, € (0, 00) for
n € N . Then the distribution of —X is stable, with centering parameters —a,, and norming parameters b,, forn € N .

Proof
If neN,; and (Xy,Xs,...,X,) is a sequence of independent variables, each with the same distribution as X then
(—X1,—Xs,...,—X,) is a sequence of independent variables each with the same distribution as —X. By stability,

— 311 X; has the same distribution as —(a,, + b, X) = —a, +b,(—X)

From the last two results, if X has a stable distribution, then so does ¢+dX , with the same norming parameters, for every
¢, d € R with d # 0. Stable distributions are also closed under convolution (corresponding to sums of independent variables) if the
norming parameters are the same.

Suppose that X and Y are independent variables. Assume also that X has a stable distribution with centering parameters
a, € R and norming parameters b,, € (0,00) for n € N, , and that Y has a stable distribution with centering parameters
¢n € R and the same norming parameters b, for n € N, . Then Z=X+Y has a stable distribution with centering
paraemters a,, + ¢, and norming parameters b, forn € N .

Proof

Suppose that n € N, and that (Z7, X5, ..., Z,) is a sequence of independent variables, each with the same distribution as Z.
Then » " | Z; has the same distribution as > "' | X; + " ; ¥; where X = (X1, X, ..., X,) is a sequence of independent
variables, each with the same distribution as X, and Y = (Y1, Y5,...,Y,) is a sequence of independent variables, each with
the same distribution as Y, and where X and Y are independent. By stability, this is the same as the distribution of
(an +0,X) + (cn +0,Y) = (an +¢5) + b, (X +Y)

We can now give another characterization of stability that just involves two independent copies of X.

Random variable X has a stable distribution if and only if the following condition holds: If X7, X> are independent variables,
each with the same distribution as X and d;,dy € (0, 00) then dy X7 4+ ds X5 has the same distribution as a +bX for some
a€Randb € (0, 00).

Proof

Suppose that the condition in the theorem holds. We will show by induction that the condition in the definition holds. For
n = 2, the stability condition is a special case of the condition in the theorem, with d; = ds =1 . Suppose that the stability
condition holds for a given n € N . Suppose that (X7, Xs,...,X,, Xn+1) is a sequence of independent random variables,
each with the distribution of X. By the induction hypothesis, Y, = X; + X3 +---+X,, has the same distribution as
a, +b,X for some a, €R and b, € (0,00). By independence, Y, ;1 = X1 +Xs+---+X,,+X,41 has the same
distribution as a,, + b, X1 + X, 11 . By another application of the condition above, b, X; + X, 1 has the same distribution as
c¢+b,41X forsome c € R and b, 11 € (0, 00). But then Y;, 1 has the same distribution as (a, +¢) + b, +1X .

As a corollary of a couple of the results above, we have the following:

Suppose that X and Y are independent with the same stable distribution. Then the distribution of X —Y is strictly stable, with
the same norming parameters.

Note that the distribution of X —Y is symmetric (about 0). The last result is useful because it allows us to get rid of the centering
parameters when proving facts about the norming parameters. Here is the most important of those facts:

https://stats.libretexts.org/@go/page/10169


https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10169?pdf

LibreTextsw

Suppose that X has a stable distribution. Then the norming parameters have the form b, =n'/® for n € N, , for some
a € (0, 2]. The parameter « is known as the index or characteristic exponent of the distribution.

Proof

The proof is in several steps, and is based on the proof in An Introduction to Probability Theory and Its Applications, Volume
I1, by William Feller. The proof uses the basic trick of writing a sum of independent copies of X in different ways in order to
obtain relationships between the norming constants b,, .

First we can assume from our last result that the distribution of X is symmetric and strictly stable. Let (X7, X5,...) be a
sequence of independent variables, each with the distribution of X. Let Y;, = Z?:l X; forn e N, . Now letn, m € N, and
consider Y,,;,,. Directly from stability, Y;,,, has the same distribution as b,,, X. On the other hand, Y;,,,, can be thought of as a
sum of m “blocks”, where each block is a sum of n independent copies of X. Each block has the same distribution as b, X,
and since the blocks are independent, it follows that Y;,,, has the same distribution as

b X1 +bpXo+- - +0, X =by (X1 + Xo+- -+ X)) (5.3.1)

But by another application of stability, the random variable on the right has the same distribution as b, b,, X. It then follows
that b,,, = by, by, for all m, n € N which in turn leads to b,» = bk for all n, ke N, .

We use the same trick again, this time with a sum. Let m, n € N, and consider Y,,., . Directly from stability, Y;,., has the
same distribution as b, X. On the other hand, Y;,,,, can be thought of as the sum of two blocks. The first is the sum of m
independent copies of X and hence has the same distribution as b,, X, while the second is the sum of n independent copies of
X and hence has the same distribution as b,X. Since the blocks are independent, it follows that b,,., X has the same
distribution as b,, X7 + b, X5 , or equivalently, X has the same distribution as

bm, b,
U= Xi+ X5 (5.3.2)
bm+n m-+n
Next note that for z > 0,
bm n
{X1 >0,X, > b* :r} c{U >z} (5.3.3)
and so by independence,
b b
PU>z)>P (Xl >0,X, > ’Z*” .7:) =P(X; >0)P (X2 > ’Z*“ x) (5.3.4)
n n

But by symmetry, P(X; > 0) > % . Also X3 and U have the same distribution as X, so we conclude that

1 bmn

PX>z)>=P(X>22z), >0 (5.3.5)
2 by,

It follows that the ratios b, / bman are bounded for m, n € N, . If that were not the case, we could find a sequence of integers

m, n with by, 1, / b, — 0, in which case the displayed equation above would give the contradiction P(X > z) > % for all

x > 0. Restating, the ratios by /b,, are bounded for k, n € N, withk <n.

Fix r € N, . There exists a unique « € (0, 00) with b, = /@ 1t then follows from step 1 above that b, =n'/® for every
n =7l with j€ N, . Similarly, if s € N, there exists 8 € (0, 00) with by = s'/# and then b,, =m!/? for every m = s*
with k € N, . For our next step, we show that & = 3 and it then follows that b, =n'/® for every n € N, . Towards that end,
note that if m = s* with k € N there exists n = r/ with j € N, withn <m <rn . Hence

b, =m!/P < (r)V/P = rl/p2/P (5.3.6)
Therefore
l;—'” < pl/Bpe/A71 (5.3.7)

Since the coefficients b,, are unbounded in n € N, but the ratios b, /b,, are bounded for m, n € N, with m > n, the last
inequality implies that 8 < «. Reversing the roles of m and n then gives o < 8 and hence o = 3.
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All that remains to show is that & < 2. We will do this by showing that if a > 2, then X must have finite variance, in which
case the finite variance property above leads to the contradiction o = 2. Since X? is nonnegative,

o0 ) 00 2k
E (X?) :/ P(X? > ) de :/ P(X| > 7)dz :Z/k P(X|> y7)dz (5.3.8)
0 0 T J2"!
So the idea is to find bounds on the integrals on the right so that the sum converges. Towards that end, note that for ¢ > 0 and
nec N+
P(|Y,| > tb,) =P(b, | X| > tb,) =P(| X| > t) (5.3.9)

Hence we can choose ¢ so that P(|Y;| > tb,) < % . On the other hand, using a special inequality for symmetric distributions,
1
5 (1 —exp[—nP (| X| > tb,)]) < P(|Ya| > th) (5.3.10)

This implies that nlP (| X| > tb,,) is bounded in n or otherwise the two inequalities together would lead to % < i . Substituting
x = tb, = tn'/* leads to P(| X| > z) < Mz~* for some M > 0. It then follows that

ok
/ P(|X| > /z)dz < M2~/ (5.3.11)
2Ic—1
If & > 2, the series with the terms on the right converges and we have E(X?) < oo .

Every stable distribution is continuous.
Proof

As in the proof of the previous theorem, suppose that X has a symmetric stable distribution with norming parameters b, for
n € Ny . As a special case of the last proof, for n € N, X has the same distribution as
1 b,

X1+
bor1 " bpaa

Xz (5.3.12)

where X; and X, are independent and also have this distribution. Suppose now that P(X =z) =p for some z #0 where

p >0.Then
1+
P (X = %z) >P(X; =z)P(Xp=z)=p° >0 (5.3.13)
1+n
If the index a # 1, the points
(1+4b,) 1+4nlt/

neN, (5.3.14)

T x
biin (1+n)t/a™’
are distinct, which gives us infinitely many atoms, each with probability at least p>—clearly a contradiction.

Next, suppose that the only atom is = 0 and that P(X =0) =p where p € (0,1). Then X; + X5 has the same distribution
as by X. But P(X; + X, =0) =P(X; =0)P(X, =0) =p? while P(boX =0) =P(X =0) =p , another contradiction.

The next result is a precise statement of the limit theorem alluded to in the introductory paragraph.

Suppose that (X7, X>, ...) is a sequence of independent, identically distributed random variables, and let Y;, =>""" ; X; for
n € N, . If there exist constants a,, € R and b, € (0, 00) for n € N such that (Y, —a,)/b, has a (non-degenerate) limiting
distribution as n — oo, then the limiting distribution is stable.

The following theorem completely characterizes stable distributions in terms of the characteristic function.

Suppose that X has a stable distribution. The characteristic function of X has the following form, for some a € (0, 2],
Be[-1,1,ceR,andd € (0, 00)
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x(t)=E (eitX) =exp(itc —d®|t|" [L +iBsgn(t)us(t)]), tER (5.3.15)
where sgn is the usual sign function, and where
tan(%), a#l1
t)= 2 oY 5.3.16
RN PR TTA (0:3:16)

1. The parameter o is the index, as before.

2. The parameter 3 is the skewness parameter.
3. The parameter c is the location parameter.
4. The parameter d is the scale parameter.

Thus, the family of stable distributions is a 4 parameter family. The index parameter « and and the skewness parameter 8 can be
considered shape parameters. When the location parameter ¢ = 0 and the scale parameter d = 1, we get the standard form of the
stable distributions, with characteristic function

x(t)=E (eitX) =exp(—[t|* [l +iBsgn(t)ua(t)]), teR (5.3.17)

The characteristic function gives another proof that stable distributions are closed under convolution (corresponding to sums of
independent variables), if the index is fixed.

Suppose that X; and X, are independent random variables, and that X; and X, have the stable distribution with common
index a € (0, 2], skewness parameter () € [—1, 1], location parameter c; € R, and scale parameter dj, € (0,00). Then

X7 + X5 has the stable distribution with index «, location parameter ¢ = ¢; + ¢» , scale parameter d = (df“ —i—dg‘) Y @, and
skewness parameter
prd; + Bady
= -2 5.3.18
B dy +dy ( )

Proof

Let xx denote the characteristic function of X}, for k € {1,2}. Then X; + X, has characteristic function x = x1X2 . The
result follows from using the form of the characteristic function above and some algebra.

Special Cases

Three special parametric families of distributions studied in this chapter are stable. In the proofs in this subsection, we use the
definition of stability and various important properties of the distributions. These properties, in turn, are verified in the sections
devoted to the distributions. We also give proofs based on the characteristic function, which allows us to identify the skewness
parameter.

The normal distribution is stable with index o = 2. There is no skewness parameter.
Proof

If ne N, and (Z1,Z2,...,2Zy) is a sequence of independent variables, each with the standard normal distribution, then
Z1+Zy+---+Z, has the normal distribution with mean 0 and variance n. But this is also the distribution of 1/nZ where
Z has the standard normal distribution. Hence the standard normal distribution is strictly stable, with index ov = 2. The normal
distribution with mean p € R and standard deviation o € (0, 00) is the distribution of g+ ¢ Z. From our basic properties
above, this distribution is stable with index oc = 2 and centering parameters (n —/n) u forn € N.

In terms of the characteristic function, note that if & =2 then u,(¢) =tan(w) =0 so the skewness parameter 8 drops out
completely. The characteristic function in standard form x(t) = e for t € R, which is the characteristic function of the
normal distribution with mean 0 and variance 2.

Of course, the normal distribution has finite variance, so once we know that it is stable, it follows from the finite variance property
above that the index must be 2. Moreover, the characteristic function shows that the normal distribution is the only stable
distribution with index 2, and hence the only stable distribution with finite variance.
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Open the special distribution simulator and select the normal distribution. Vary the parameters and note the shape and location
of the probability density function. For various values of the parameters, run the simulation 1000 times and compare the
empirical density function to the probability density function.

The Cauchy distribution is stable with index e =1 and skewness parameter 5 = 0.
Proof

If neN, and (Z1,Zs,...,2Z,) is a sequence of independent variables, each with the standard Cauchy distribution, then
Z1+Zs+---+Z, has the Cauchy distribution scale parameter n. By definition this is the same as the distribution of nZ
where Z has the standard Cauchy distribution. Hence the standard Cauchy distribution is strictly stable, with index ac = 1. The
Cauchy distribution with location parameter a € R and scale parameter b € (0, 00) is the distribution of a +bZ. From our
basic properties above, this distribution is strictly stable with index o = 1.

When a =1 and 8 = 0 the characteristic function in standard form is x(¢) = exp(— |¢|) for¢ € R, which is the characteristic
function of the standard Cauchy distribution.

Open the special distribution simulator and select the Cauchy distribution. Vary the parameters and note the shape and location
of the probability density function. For various values of the parameters, run the simulation 1000 times and compare the
empirical density function to the probability density function.

The Lévy distribution is stable with index a = % and skewness parameter § = 1.
Proof

If neN, and (Z1,Zs,...,2Z,) is a sequence of independent variables, each with the standard Lévy distribution, then
Zy+Zy+-+-+2Z, has the Lévy distribution scale parameter n2. By definition this is the same as the distribution of n?Z
where Z has the standard Lévy distribution. Hence the standard Lévy distribution is strictly stable, with index o = % . The
Lévy distribution with location parameter a € R and scale parameter b € (0, 0o) is the distribution of a +bZ . From our basic

properties above, this distribution is stable with index o = % and centering parameters (n —n?)a forn € N, .

When a = % note that u, (t) = tan(%) =1 . So the characteristic function in standard form with o = % and3=11is

X(t) = exp(—|t|1/2 [1+i sgn(t)]) (5.3.19)

which is the characteristic function of the standard Lévy distribution.

Open the special distribution simulator and select the Lévy distribution. Vary the parameters and note the shape and location of
the probability density function. For various values of the parameters, run the simulation 1000 times and compare the empirical
density function to the probability density function.

The normal, Cauchy, and Lévy distributions are the only stable distributions for which the probability density function is known in
closed form.
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