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16.20: Chains Subordinate to the Poisson Process

Basic Theory

Introduction

Recall that the standard Poisson process with rate parameter r € (0, 0o) involves three interrelated stochastic processes. First the
sequence of interarrival times T' = (T}, T4, . ..) is independent, and each variable has the exponential distribution with parameter
r. Next, the sequence of arrival times T = (19, 71, . . .) is the partial sum sequence associated with the interrival sequence T':

=Y T;, neN (16.20.1)
i=1

For n € N, the arrival time 7, has the gamma distribution with parameters n and r. Finally, the Poisson counting process
N ={N;:te[0,00)} is defined by

Ny =max{neN:7, <t}, te]0,00) (16.20.2)

so that V; is the number of arrivals in (0, ¢] for ¢ € [0, co0). The counting variable INV; has the Poisson distribution with parameter
rt for t € [0, 00). The counting process N and the arrival time process T are inverses in the sense that 7, <t if and only if
N; >n fort € [0,00) and n € N. The Poisson counting process can be viewed as a continuous-time Markov chain.

Suppose that X, takes values in N and is independent of IN. Define X;=X,+N; for t€[0,00). Then
X ={X;:t€[0,00)} is a continuous-time Markov chain on N with exponential parameter function given by A(z) =r for
z € N and jump transition matrix @ given by Q(z,z+1)=1forz € S.

Proof

This follows directly from the basic structure of a continuous-time Markov chain. Given X; = z, the holding time in state
x € N is exponential with parameter r, and the next state is deterministically « + 1 . Note that the addition of the variable X
is just to allow us the freedom of arbitrary initial distributions on the state space, as is routine with Markov processes.

Note that the Poisson process, viewed as a Markov chain is a pure birth chain. Clearly we can generalize this continuous-time
Markov chain in a simple way by allowing a general embedded jump chain.

Suppose that X ={X;:t €[0,00)} is a Markov chain with (countable) state space S, and with constant exponential
parameter A(z) =7 € (0,00) for z € S, and jump transition matrix Q. Then X is said to be subordinate to the Poisson
process with rate parameter r.

1. The transition times (74, 72, . . .) are the arrival times of the Poisson process with rate 7.

2. The inter-transition times (7q,72 — 71, . ..) are the inter-arrival times of the Poisson process with rate r (independent, and
each with the exponential distribution with rate 7).

3. N ={N;:t€[0,00)} is the Poisson counting process, where IN; is the number of transitions in (0, t] for ¢ € [0, c0).

4. The Poisson process and the jump chain Y = (Yp, Y3, .. .) are independent, and X; = Yy, fort € [0, 00).

Proof

These results all follow from the basic structure of a continuous-time Markov chain.

Since all states are stable, note that we must have @ (z,z) =0 for € S. Note also that for z, y € S with & # y, the exponential
rate parameter for the transition from z to y is pu(z,y) =rQ(z,y) Conversely suppose that u:.S% — (0,00) satisfies
p(z,z) =0and > g p(z,y) =r for every z € S. Then the Markov chain with transition rates given by 4 is subordinate to the

Poisson process with rate r. It's easy to construct a Markov chain subordinate to the Poisson process.

Suppose that N ={N; : t € [0,00)} is a Poisson counting process with rate r € (0,00) and that Y ={Y,, : n € N} is a
discrete-time Markov chain on .S, independent of IV, whose transition matrix satisfies Q(z,z) =0 for every z € S. Let
X =Yy, for t €[0,00). Then X ={X;:t€[0,00)} is a continuous-time Markov chain subordinate to the Poisson
process.
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Generator and Transition Matrices

Next let's find the generator matrix and the transition semigroup. Suppose again that X = {X; : ¢t € [0, 00)} is a continuous-time
Markov chain on S subordinate to the Poisson process with rate r € (0, 00) and with jump transition matrix Q. As usual, let
P={P,:t€[0,00)} denote the transition semigroup and G the infinitesimal generator.

The generator matrix G of X is G =r(Q — I) . Hence for ¢ € [0, 00)

1. The Kolmogorov backward equation is P/ = r(Q — I) P,
2. The Kolmogorov forward equation is P, = rP;(Q —I)

Proof

This follows directly from the general theory since G(z,z)=-A(z)=-r for z€S§ and
G(z,y) =A(z)Q(z,y) =rQ(z,y) fordistinctz, y € S.

There are several ways to find the transition semigroup P = {P; : t € [0, 00)} . The best way is a probabilistic argument using the
underlying Poisson process.

For t € [0, 00), the transition matrix P; is given by
o~ e (12)"
_ —rt
P, _Zoe — Q" (16.20.3)
Proof from the underlying Poisson process
Let N; denote the number of transitions in (0, ¢] for ¢ € [0,00), so that N ={NN; :t € [0,00)} is the Poisson counting
process. Let Y = (Yp,Y1,...) denote the jump chain, with transition matrix . Then IN and Y are independent, and
X =Yy, fort € [0, 00). Conditioning we have
Pyz,y) =P(Xy=y|Xo=z)=P(Yy, =y | Yo =2)
o0
=Y P(Yy =y| Ny =n,Yo=y)P(N; =n| Y =y)
n=0
= = —rt (Tt)n n
= P(Yn:y|%:w)P(Nt:n):Ze | Q (:'viy)
n=0 n=0 n
Proof using the generator matrix
Note first that forn € N,
n
e =[rQ-Dr=rY (:) (—1)"kQk (16.20.4)
k=0
Hence
c_x\~t" e (P kk
_ G __ n __ n n—
e DT Db ol () [V
n=0 n=0 k=0
o0 n ( t)’n A o0 00 (Tt)" .
= ()"t = 1)@
] 22 W)
00 ’l”t)k 00 1 00 (T’t)k
_ Qk (—T't)n_k — et Qk

Potential Matrices

Next let's find the potential matrices. As with the transition matrices, we can do this in (at least) two different ways.

Suppose again that X = {X; : t € [0, 00)} is a continuous-time Markov chain on .S subordinate to the Poisson process with
rate r € (0, 00) and with jump transition matrix Q. For « € (0, 00), the potential matrix U,, of X is
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j R— r "
Ua=—— > (QM) Q (16.20.5)

Proof from the definition

Using the previous result,

[o¢) o0 o0 tn
Uatens) = [~ et Bleii= [ S e T g ar

The interchange of sum and integral is justified since the terms are nonnegative. Using the change of variables s = (r + a/)t
gives

Uy(z,y) = ! i( ! )H%Q”(m,y)/oooe_”s"ds (16.20.6)

oatr i \a+r

The last integral is n!.
Proof using the generator

From the result above,

al -G=al—7r(Q—-I)=(a+r)—7rQ =(a+7) (I— a:—rQ) (16.20.7)
Since ” a:TQH == <1 wehave
1 r - 1 & r \"
I-G)t= I— = = 16.20.8
(e ) a+r( a+rQ) a+r§(a+r> Q ( )

Recall that for p € (0, 1), the p-potential matrix of the jump chain Y is R, = > -, p"Q" . Hence we have the following nice
relationship between the potential matrix of X and the potential matrix of Y:

1

Uy = ——
@ a-+r

R, /(atr) (16.20.9)
Next recall that alU, (z, -) is the probability density function of X given X =z, where T has the exponential distribution with
parameter o and is independent of X. On the other hand, aU,(z, ) = (1 —p)R,(, -) where p =7/ (a +r) . We know from our
study of discrete potentials that (1 —p)R,(x, -) is the probability density function of Y3; where M has the geometric distribution
on N with parameter 1 —p and is independent of Y. But also X7 =Y}, . So it follows that if T" has the exponential distribution
with parameter o, N ={NN; : t € [0,00)} is a Poisson process with rate r, and is independent of 7', then Nt has the geometric
distribution on N with parameter o / (a+7). Of course, we could easily verify this directly, but it's still fun to see such
connections.

Limiting Behavior and Stationary Distributions

Once again, suppose that X = {X; : t € [0, 00)} is a continuous-time Markov chain on .S subordinate to the Poisson process with
rate € (0, 00) and with jump transition matrix Q. Let Y ={Y,, : n € N} denote the jump process. The limiting behavior and
stationary distributions of X are closely related to those of Y.

Suppose that X (and hence Y’) are irreducible and positive recurrent

1.g: S — (0,00) is invariant for X if and only if g is invariant for Y.
2. f is an invariant probability density function for X if and only if f is an invariant probability density function for Y.
3. X is null recurrent if and only if Y" is null recurrent, and in this case, lim,, ,oc @"(, y) = limy ;o Pi(z,y) =0 for
(z,y) € S2.
4. X is positive recurrent if and only if Y is positive recurrent. If Y is aperiodic, then
lim,, oo Q"(z,y) = limy .o P;(z,y) = f(y) for (z,y) € S2, where f is the invariant probability density function.
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Proof

All of these results follow from the basic theory of stationary and limiting distributions for continuous-time chains, and the fact
that the exponential parameter function A is constant.

Time Reversal

Once again, suppose that X = {X; : t € [0, 00)} is a continuous-time Markov chain on .S subordinate to the Poisson process with
rate 7 € (0, 00) and with jump transition matrix Q. Let Y ={Y;, : n € N} denote the jump process. We assume that X (and
hence Y) are irreducible. The time reversal of X is closely related to that of Y.

Suppose that g: .S — (0, 00) is invariant for X. The time reversal X with respect to g is also subordinate to the Poisson

process with rate r. The jump chain Y of X is the (discrete) time reversal of Y™ with respect to g.

Proof

From the previous result, g is also invariant for Y. From the general theory of time reversal, X has the same exponential
parameter function as X (namely the constant function ) and so is also subordinate to the Poisson process with rate r. Finally,

the jump chain Y of X is the reversal of Y with respect to rg and hence also with respect to g.

In particular, X is reversible with respect to g if and only if Y is reversible with respect to g. As noted earlier, X and Y are of the
same type: both transient or both null recurrent or both positive recurrent. In the recurrent case, there exists a positive invariant
function that is unique up to multiplication by constants. In this case, the reversal of X is unique, and is the chain subordinate to
the Poisson process with rate  whose jump chain is the reversal of Y.

Uniform Chains

In the construction above for a Markov chain X = {X; : ¢t € [0,00)} that is subordinate to the Poisson process with rate r and
jump transition kernel @, we assumed of course that Q(x,z) =0 for every & € S. So there are no absorbing states and the
sequence (71, T2, ...) of arrival times of the Poisson process are the jump times of the chain X. However in our introduction to
continuous-time chains, we saw that the general construction of a chain starting with the function A and the transition matrix @
works without this assumption on @), although the exponential parameters and transition probabilities change. The same idea works
here.

Suppose that N ={N; : t € [0,00)} is a counting Poisson process with rate r € (0,00) and that Y ={Y,, : n € N} is a
discrete-time Markov chain with transition matrix @ on S x S satisfying Q(z,z) < 1 for ¢ € S. Assume also that N and Y
are independent. Define X; =Yy, for ¢ €[0,00). Then X ={X;:¢€[0,00)} is a continuous-Markov chain with
exponential parameter function A(z) = 7[1 — Q(z, )] for € S and jump transition matrix @ given by

A Q(may)

Qz,y) = 7 Q@) (z,y) € S* ¢ #y (16.20.10)

Proof

This follows from the result in the introduction.

The Markov chain constructed above is no longer a chain subordinate to the Poisson process by our definition above, since the
exponential parameter function is not constant, and the transition times of X are no longer the arrival times of the Poisson process.
Nonetheless, many of the basic results above still apply.

Let X ={X;:t €[0,00)} be the Markov chain constructed in the previous theorem. Then

1. For t € [0, 00), the transition matrix P; is given by

P, :ie—”%m (16.20.11)

n=0

2. For a € (0, 00), the a potential matrix is given by
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1 & T n
Uo=—— > (aM) Q (16.20.12)

n=0

3. The generator matrix is G = 7(Q —I)
4.g: S — (0,00) is invariant for X if and only if g is invariant for Y.

Proof

The proofs are just as before.

It's a remarkable fact that every continuous-time Markov chain with bounded exponential parameters can be constructed as in the
last theorem, a process known as uniformization. The name comes from the fact that in the construction, the exponential parameters
become constant, but at the expense of allowing the embedded discrete-time chain to jump from a state back to that state. To review
the definition, suppose that X ={X;:¢ € [0,00)} is a continuous-time Markov chain on S with transition semigroup
P={P,:t€[0,00)}, exponential parameter function A and jump transition matrix Q. Then P is uniform if Pi(z,z) — 1 as
t | 0 uniformly in z, or equivalently if A is bounded.

Suppose that A : S — (0,00) is bounded and that @ is a transition matrix on S with Q(z,z) =0 for every z € S. Let
r € (0, 00) be an upper bound on A and N = {N; : ¢t € [0,00)} a Poisson counting process with rate . Define the transition

matrix Q on S by
zeS

Q(;v’y) = /\TQ(xay) (éL‘,y) € 52, T £y

and let Y = {Y,, : n € N} be a discrete-time Markov chain with transition matrix Q, independent of IN. Define X; =Yy, for
t €[0,00). Then X ={X; :t € [0,00)} is a continuous-time Markov chain with exponential parameter function A and jump
transition matrix Q.

Proof

Note that é(w,y) >0 for every (z,y) € S? and D yes C}(m, y) =1 for every z € S. Thus é is a transition matrix on S.
Note also that Q(z, z) < 1 for every z € S. By construction, A(z) =r[1 —Q(z,z)] forz € S and

Q(x,y)

- , (z,y)e8 z#y (16.20.13)
1 —Q($,$)

Q('Tay) =

So the result now follows from the theorem above.

Note in particular that if the state space S is finite then of course A is bounded so the previous theorem applies. The theorem is
useful for simulating a continuous-time Markov chain, since the Poisson process and discrete-time chains are simple to simulate. In
addition, we have nice representations for the transition matrices, potential matrices, and the generator matrix.

Suppose that X = {X; : t € [0, 00} is a continuous-time Markov chain on S with bounded exponential parameter function
A: 8 — (0,00) and jump transition matrix Q. Define r and @ as in the last theorem. Then

1. For ¢ € [0, 00), the transition matrix P; is given by

P=) e ——Q (16.20.14)

2. For a € (0, 00), the a potential matrix is given by

1 = r " an
o= 16.20.1
U a—H";(a—H")Q (6 0 5)

3. The generator matrix is G = r(Q — I)
4.9: S — (0,00) is invariant for X if and only if g is invariant for Q
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Proof

These results follow from the theorem above.

Examples
The Two-State Chain

The following exercise applies the uniformization method to the two-state chain.

Consider the continuous-time Markov chain X ={X;:t € [0,00)} on S=1{0,1} with exponential parameter function
A = (a,b), where a, b € (0, 00). Thus, states 0 and 1 are stable and the jump chain has transition matrix

01
= 16.20.16
o=[} (16.20.16)
Let 7 =a+b, an upper bound on A. Show that
b a
1
L. Q—n[b a]
3.P = —a+be (@)t Q fort € [0, 00)
4.Ua=EQ—mG fOl‘CYE(O OO)
Proof

The form of @ follows easily from the definition ((above ). Note that the rows of Q are the invariant PDF. It then follows that

AR A
Q@ =@ forn € N, . The results for the transition matrix P; and the potential U,, then follow easily from the theorem above.

Although we have obtained all of these results for the two-state chain before, the derivation based on uniformization is the easiest.

This page titled 16.20: Chains Subordinate to the Poisson Process is shared under a CC BY 2.0 license and was authored, remixed, and/or curated
by Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

@ 0 16.20.6 https://stats.libretexts.org/@go/page/10393


https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10393?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/16%3A_Markov_Processes/16.20%3A_Chains_Subordinate_to_the_Poisson_Process
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random

