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3.4: Joint Distributions
   

The purpose of this section is to study how the distribution of a pair of random variables is related to the distributions of the variables individually.
If you are a new student of probability you may want to skip the technical details.

Basic Theory

Joint and Marginal Distributions

As usual, we start with a random experiment modeled by a probability space . So to review,  is the set of outcomes,  is the collection
of events, and  is the probability measure on the sample space . Suppose now that  and  are random variables for the experiment, and
that  takes values in  while  takes values in . We can think of  as a random variable taking values in the product set . The
purpose of this section is to study how the distribution of  is related to the distributions of  and  individually.

Recall that

1. The distribution of  is the probability measure on  given by  for .
2. The distribution of  is the probability measure on  given by  for .
3. The distribution of  is the probability measure on  given by  for .

In this context, the distribution of  is called the joint distribution, while the distributions of  and of  are referred to as marginal
distributions.

Details

The sets  and  come with -algebras of admissible subssets  and , respectively, just as the collection of events  is a -algebra. The
Cartesian product set  is given the product -algebra  generated by products  where  and . The random
variables  and  are measurable, which ensures that  is also a random variable (that is, measurable). Moreover, the distribution of 

 is uniquely determined by probabilities of the form  where  and . As usual
the spaces  and  each fall into the two classes we have studied in the previous sections:

1. Discrete: the set is countable and the -algebra consists of all subsets.
2. Euclidean: the set is a measurable subset of  for some  and the -algebra consists of the measurable subsets.

The first simple but very important point, is that the marginal distributions can be obtained from the joint distribution.

Note that

1.  for 
2.  for 

The converse does not hold in general. The joint distribution contains much more information than the marginal distributions separately. However,
the converse does hold if  and  are independent, as we will show below.

Joint and Marginal Densities

Recall that probability distributions are often described in terms of probability density functions. Our goal is to study how the probability density
functions of  and  individually are related to probability density function of . But first we need to make sure that we understand our
starting point.

We assume that  has density function  in the following sense:

1. If  and  have discrete distributions on the countable sets  and  respectively, then  is defined by

2. If  and  have continuous distributions on  and  respectively, then  is defined by the condition

3. In the mixed case where  has a discrete distribution on the countable set  and  has a continuous distribution on , then  is
defined by the condition

4. In the mixed case where  has a continuous distribution on  and  has a discrete distribution on the countable set , then  is
defined by the condition

(Ω,F ,P) Ω F

P (Ω,F) X Y

X S Y T (X,Y ) S×T

(X,Y ) X Y

(X,Y ) S×T P [(X,Y ) ∈ C] C ⊆ S×T

X S P(X ∈ A) A ⊆ S

Y T P(Y ∈ B) B ⊆ T

(X,Y ) X Y

S T σ S T F σ

S×T σ S ⊗T A×B A ∈S B ∈ T
X Y (X,Y )

(X,Y ) P[(X,Y ) ∈ A×B] = P(X ∈ A,Y ∈ B) A ∈S B ∈ T
(S,S ) (T ,T )

σ

R
n n ∈ N+ σ

P(X ∈ A) = P [(X,Y ) ∈ A×T ] A ⊆ S

P(Y ∈ B) = P [(X,Y ) ∈ S×B] B ⊆ T

X Y

X Y (X,Y )

(X,Y ) f : S×T → (0, ∞)

X Y S T f

f(x, y) = P(X = x,Y = y), (x, y) ∈ S×T (3.4.1)

X Y S ⊆R
j T ⊆R

k f

P[(X,Y ) ∈ C] = f(x, y)d(x, y), C ⊆ S×T∫
C

(3.4.2)

X S Y T ⊆ Rk f

P(X = x,Y ∈ B) = f(x, y)dy, x ∈ S, B ⊆ T∫
B

(3.4.3)

X S ⊆R
j Y T f
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Details
1. In this case,  has a discrete distribution on the countable set  and  is the density function with respect to counting measure 

on .
2. In this case,  has a continuous distribution on  and  is the density function with respect to Lebesgue measure 

on . Lebesgue measure, named for Henri Lebesgue is the standard measure on Euclidean spaces.
3. In this case,  actually has a continuous distribution:

The function  is the density function with respect to the product measure formed from counting measure  on  and Lebesgue measure 
on .

4. This case is just like (c) but with the roles of  and  reversed. Once again,  has a continuous distribution and  is the density
function with respect to the product measure on  formed by Lebesgue measure  on  and counting measure  on .

In cases (b), (c), and (d), the existence of a probability density function is not guaranteed, but is an assumption that we are making. All four
cases (and many others) can be unified under the general theories of measure and integration.

First we will see how to obtain the probability density function of one variable when the other has a discrete distribution.

Suppose that  has probability density function  as described above.

1. If  has a discrete distribution on the countable set , then  has probability density function  given by  for 
2. If  has a discrete distribution on the countable set , then  has probability density function  given by 

Proof

The two results are symmetric, so we will prove (a). The main tool is the countable additivity property of probability. Suppose first that  also
has a discrete distribution on the countable set . Then for ,

Suppose next that  has a continuous distribution on . Then for ,

The interchange of sum and integral is allowed since  is nonnegative. By the meaning of the term,  has probability density function  given
by  for 

Next we will see how to obtain the probability density function of one variable when the other has a continuous distribution.

Suppose again that  has probability density function  as described above.

1. If  has a continuous distribution on  then  has probability density function  given by 
2. If  has a continuous distribution on  then  has probability density function  given by 

Proof

Again, the results are symmetric, so we show (a). Suppose first that  has a discrete distribution on the countable set . Then for 

Next suppose that  has a continuous distribution on . Then for ,

Hence by the very meaning of the term,  has probability density function  given by  for . Writing the double
integral as an iterated integral is a special case of Fubini's theorem, named for Guido Fubini.

In the context of the previous two theorems,  is called the joint probability density function of , while  and  are called the marginal
density functions of  and of , respectively. Some of the computational exercises below will make the term marginal clear.

P(X ∈ A,Y = y) = f(x, y), dx, A ⊆ S, y ∈ T∫
A

(3.4.4)

(X,Y ) S×T f #
S×T

(X,Y ) S×T ⊆R
j+k f λj+k

S×T

(X,Y )

P[(X,Y ) = (x, y) = P(X = x,Y = y) ≤ P(Y = y) = 0, (x, y) ∈ S×T (3.4.5)

f # S λk
T

S T (X,Y ) f

S×T λj S # T

(X,Y ) f

Y T X g g(x) = f(x, y)∑y∈T x ∈ S

X S Y h h(y) = f(x, y), y ∈ T∑x∈S

X

S x ∈ S

g(x) = P(X = x) = P(X = x,Y ∈ T ) = P(X = x,Y = y) = f(x, y)∑
y∈T

∑
y∈T

(3.4.6)

X S ⊆R
j A ⊆R

j

P(X ∈ A) = P(X ∈ A,Y ∈ T ) = P(X ∈ A,Y = y) = f(x, y)dx = f(x, y), dx∑
y∈T

∑
y∈T

∫
A

∫
A

∑
y∈T

(3.4.7)

f X g

g(x) = f(x, y)∑y∈T x ∈ S

(X,Y ) f

Y T ⊆R
k X g g(x) = f(x, y)dy, x ∈ S∫

T

X S ⊆R
k Y h h(y) = f(x, y)dx, y ∈ T∫

S

X S x ∈ S

g(x) = P(X = x) = P(X = x,Y ∈ T ) = f(x, y)dy∫
T

(3.4.8)

X S ⊆R
j A ⊆ S

P(X ∈ A) = P(X ∈ A,Y ∈ T ) = P [(X,Y ) ∈ A×T ] = f(x, y)d(x, y) = f(x, y)dy∫
A×T

∫
A

∫
T

(3.4.9)

X g g(x) = f(x, y)dy∫
T

x ∈ S

f (X,Y ) g h

X Y
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Independence

When the variables are independent, the marginal distributions determine the joint distribution.

If  and  are independent, then the distribution of  and the distribution of  determine the distribution of .

Proof

If  and  are independent then,

and as noted in the details for (1), this completely determines the distribution  on .

When the variables are independent, the joint density is the product of the marginal densities.

Suppose that  and  are independent and have probability density function  and  respectively. Then  has probability density
function  given by

Proof

The main tool is the fact that an event defined in terms of  is independent of an event defined in terms of .

1. Suppose that  and  have discrete distributions on the countable sets  and  respectively. Then for ,

2. Suppose next that  and  have continuous distributions on  and  respectively. Then for  and .

As noted in the details for (1), a probability measure on  is completely determined by its values on product sets, so it follows that 
 for general . Hence  has PDF .

3. Suppose next that  has a discrete distribution on the countable set  and that  has a continuous distribution on . If  and 
,

so again it follows that  has PDF . The case where  has a continuous distribution on  and  has a discrete distribution on
the countable set  is analogous.

The following result gives a converse to the last result. If the joint probability density factors into a function of  only and a function of  only, then 
 and  are independent, and we can almost identify the individual probability density functions just from the factoring.

Factoring Theorem. Suppose that  has probability density function  of the form

where  and . Then  and  are independent, and there exists a positve constant  such that  and  have
probability density functions  and , respectively, given by

Proof

Note that the proofs in the various cases are essentially the same, except for sums in the discrete case and integrals in the continuous case.

1. Suppose that  and  have discrete distributions on the countable sets  and , respectively, so that  has a discrete distribution on 
. In this case, the assumption is

Summing over  in the displayed equation gives  for  where . Similarly, summing
over  in the displayed equation gives  for  where . Summing over 
in the displayed equation gives  so . Finally, substituting gives  for 

 so  and  are independent.
2. Suppose next that  and  have continuous distributions on  and  respectively. For  and ,

X Y X Y (X,Y )

X Y

P [(X,Y ) ∈ A×B] = P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B) A ∈S , B ∈ T (3.4.10)

(X,Y ) S×T

X Y g h (X,Y )
f

f(x, y) = g(x)h(y), (x, y) ∈ S×T (3.4.11)

X Y

X Y S T (x, y) ∈ S×T

P [(X,Y ) = (x, y)] = P(X = x,Y = y) = P(X = x)P(Y = y) = g(x)h(y) (3.4.12)

X Y S ⊆R
j T ⊆R

k A ⊆ S B ⊆ T

P [(X,Y ) ∈ A×B] = P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B) = g(x)dx h(y)dy = g(x)h(y)d(x, y)∫
A

∫
B

∫
A×B

(3.4.13)

S×T

P [(X,Y ) ∈ C] = f(x, y)d(x, y)∫C C ⊆ S×T (X,Y ) f

X S Y T ⊆R
k x ∈ S

B ⊆ T

P(X = x,Y ∈ B) = P(X = x)P(Y ∈ B) = g(x) h(y)dy = g(x)h(y)dy∫
B

∫
B

(3.4.14)

(X,Y ) f X S ⊆R
j Y

T

x y

X Y

(X,Y ) f

f(x, y) = u(x)v(y), (x, y) ∈ S×T (3.4.15)

u : S → [0, ∞) v : T → [0, ∞) X Y c X Y

g h

g(x) =

h(y) =

c u(x), x ∈ S

v(y), y ∈ T
1

c

(3.4.16)

(3.4.17)

X Y S T (X,Y )
S×T

P(X = x,Y = y) = u(x)v(y), (x, y) ∈ S×T (3.4.18)

y ∈ T g(x) = P(X = x) = cu(x) x ∈ S c = v(y)∑y∈T

x ∈ S h(y) = P(Y = y) = kv(y) y ∈ T k = u(y)∑x∈S (x, y) ∈ S×T

1 = ck k = 1/c P(X = x,Y = y) = P(X = x)P(Y = y)
(x, y) ∈ S×T X Y

X Y S ⊆R
j T ⊆R

k A ⊆ S B ⊆ T
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Letting  in the displayed equation gives  for , where . By definition,  has PDF 
. Next, letting  in the displayed equation gives  for , where . Thus,  has

PDF . Next, letting  and  in the displayed equation gives , so . Now note that the displayed equation
holds with  replaced by  and  replaced by , and this in turn gives , so  and  are
independent.

3. Suppose next that  has a discrete distribution on the countable set  and that  has a continuous distributions on . For  and 
,

Letting  in the displayed equation gives  for , where . So  has PDF . Next,
summing over  in the displayed equation gives  for , where . Thus,  has PDF 

. Next, summing over  and letting  in the displayed equation gives , so . Now note that the displayed
equation holds with  replaced by  and  replaced by , and this in turn gives , so  and 
are independent. The case where where  has a continuous distribution on  and  has a discrete distribution on the countable set 
is analogous.

The last two results extend to more than two random variables, because  and  themselves may be random vectors. Here is the explicit statement:

Suppose that  is a random variable taking values in a set  with probability density funcion  for , and that the random
variables are independent. Then the random vector  taking values in  has probability density
function  given by

The special case where the distributions are all the same is particularly important.

Suppose that  is a sequence of independent random variables, each taking values in a set  and with common
probability density function . Then the probability density function  of  on  is given by

In probability jargon,  is a sequence of independent, identically distributed variables, a phrase that comes up so often that it is often abbreviated as
IID. In statistical jargon,  is a random sample of size  from the common distribution. As is evident from the special terminology, this situation is
very impotant in both branches of mathematics. In statistics, the joint probability density function  plays an important role in procedures such as
maximum likelihood and the identification of uniformly best estimators.

Recall that (mutual) independence of random variables is a very strong property. If a collection of random variables is independent, then any
subcollection is also independent. New random variables formed from disjoint subcollections are independent. For a simple example, suppose that 

, , and  are independent real-valued random variables. Then

1. , , and  are independent.
2.  and  are independent.
3.  and  are independent.
4.  and  are independent.
5.  and  are independent.

In particular, note that statement 2 in the list above is much stronger than the conjunction of statements 4 and 5. Restated, if  and  are dependent,
then  and  are also dependent.

Examples and Applications

Dice

Recall that a standard die is an ordinary six-sided die, with faces numbered from 1 to 6. The answers in the next couple of exercises give the joint
distribution in the body of a table, with the marginal distributions literally in the magins. Such tables are the reason for the term marginal
distibution.

Suppose that two standard, fair dice are rolled and the sequence of scores  recorded. Our ususal assumption is that the variables 
and  are independent. Let  and  denote the sum and difference of the scores, respectively.

1. Find the probability density function of .

P(X ∈ A,Y ∈ B) = P [(X,Y ) ∈ A×B] = f(x, y)d(x, y) = u(x)dx v(y)dy∫
A×B

∫
A

∫
B

(3.4.19)

B = T P(X ∈ A) = c u(x)dx∫A A ⊆ S c = v(y)dy∫T X

g = c u A = S P(Y ∈ B) = k v(y)dy∫
B

B ⊆ T k = u(x)dx∫
S

Y

g = k v A = S B = T 1 = c k k = 1/c
u g v h P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B) X Y

X S Y T ⊆R
k x ∈ S

B ⊆ T

P(X = x,Y ∈ B) = f(x, y)dy = u(x) v(y)dy∫
B

∫
B

(3.4.20)

B = T P(X ∈ x) = c u(x) x ∈ S c = v(y)dy∫T X g = c u

x ∈ S P(Y ∈ B) = k v(y)dy∫
B

B ⊆ T k = u(x)∑x∈S Y

g = k v x ∈ S B = T 1 = c k k = 1/c
u g v h P(X = x,Y ∈ B) = P(X = x)P(Y ∈ B) X Y

X S ⊆R
j Y T

X Y

Xi Ri gi i ∈ {1, 2, … ,n}
X = ( , , … , )X1 X2 Xn S = × ×⋯ ×R1 R2 Rn

f

f( , , … , ) = ( ) ( ) ⋯ ( ), ( , , … , ) ∈ Sx1 x2 xn g1 x1 g2 x2 gn xn x1 x2 xn (3.4.21)

X = ( , , … , )X1 X2 Xn R

g f X S = Rn

f( , , … , ) = g( )g( ) ⋯ g( ), ( , , … , ) ∈ Sx1 x2 xn x1 x2 xn x1 x2 xn (3.4.22)

X

X n

f

X Y Z

sin(X) cos(Y ) eZ

(X,Y ) Z

+X2 Y 2 arctan(Z)
X Z

Y Z

X Z

(X,Y ) Z

( , )X1 X2 X1

X2 Y = +X1 X2 Z = −X1 X2

(Y ,Z)
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2. Find the probability density function of .
3. Find the probability density function of .
4. Are  and  independent?

Answer

Let  denote the PDF of ,  the PDF of  and  the PDF of . The PDFs are give in the following table. Random variables  and 
are dependent

3 4 5 6 7 8 9 0 11 12

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0

1

Suppose that two standard, fair dice are rolled and the sequence of scores  recorded. Let  and 
denote the minimum and maximum scores, respectively.

1. Find the probability density function of .
2. Find the probability density function of .
3. Find the probability density function of .
4. Are  and  independent?

Answer

Let  denote the PDF of ,  the PDF of , and  the PDF of . The PDFs are given in the following table. Random variables  and 
are dependent.

2 3 4 5 6

0 0 0 0 0

2 0 0 0 0

3 0 0 0

4 0 0

5 0

6

1

The previous two exercises show clearly how little information is given with the marginal distributions compared to the joint distribution. With the
marginal PDFs alone, you could not even determine the support set of the joint distribution, let alone the values of the joint PDF.

Simple Continuous Distributions

Suppose that  has probability density function  given by  for , .

Y

Z

Y Z

f (Y ,Z) g Y h Z Y Z

f(y, z) y = 2 h(z)

z = −5 1
36

1
36

−4 1
36

1
36

2
36

−3 1
36

1
36

1
36

3
36

−2 1
36

1
36

1
36

1
36

4
36

−1 1
36

1
36

1
36

1
36

1
36

5
36

1
36

1
36

1
36

1
36

1
36

1
36

6
36

1
36

1
36

1
36

1
36

1
36

5
36

1
36

1
36

1
36

1
36

4
36

1
36

1
36

1
36

3
36

1
36

1
36

2
36

1
36

1
36

g(y) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

( , )X1 X2 U = min{ , }X1 X2 V = max{ , }X1 X2

(U,V )
U

V

U V

f (U,V ) g U h V U V

f(u, v) u = 1 h(v)

v = 1 1
36

1
36

2
36

1
36

3
36

2
36

2
36

1
36

5
36

2
36

2
36

2
36

1
36

7
36

2
36

2
36

2
36

2
36

1
36

9
36

2
36

2
36

2
36

2
36

2
36

1
36

11
36

g(u) 11
36

9
36

7
36

5
36

3
36

1
36

(X,Y ) f f(x, y) = x+y 0 ≤ x ≤ 1 0 ≤ y ≤ 1
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1. Find the probability density function of .
2. Find the probability density function of .
3. Are  and  independent?

Answer

1.  has PDF  given by  for 
2.  has PDF  given by  for 
3.  and  are dependent.

Suppose that  has probability density function  given by  for .

1. Find the probability density function of .
2. Find the probability density function of .
3. Are  and  independent?

Answer
1.  has PDF  given by  for .
2.  has PDF  given by  for .
3.  and  are dependent.

Suppose that  has probability density function  given by  for , .

1. Find the probability density function of .
2. Find the probability density function of .
3. Are  and  independent?

Answer
1.  has PDF  given by  for .
2.  has PDF  given by  for .
3.  and  are independent.

The last exercise is a good illustration of the factoring theorem. Without any work at all, we can tell that the PDF of  is proportional to  on
the interval , the PDF of  is proportional to  on the interval , and that  and  are independent. The only thing unclear is how the
constant 6 factors.

Suppose that  has probability density function  given by  for .

1. Find the probability density function of .
2. Find the probability density function of .
3. Are  and  independent?

Answer

1.  has PDF  given by  for .
2.  has PDF  given by  for .
3.  and  are dependent.

Note that in the last exercise, the factoring theorem does not apply. Random variables  and  each take values in , but the joint PDF factors
only on part of .

Suppose that  has probability density function  given  for , , .

1. Find the probability density function of each pair of variables.
2. Find the probability density function of each variable.
3. Determine the dependency relationships between the variables.

Proof
1.  has PDF  given by  for , .
2.  has PDF  given by  for , .
3.  had PDF  given by  for , .
4.  has PDF  given by  for .
5.  has PDF  given by  for .
6.  has PDF  given by  for .
7.  and  are independent;  and  are dependent.

X

Y

X Y

X g g(x) = x+ 1
2

0 ≤ x ≤ 1

Y h h(y) = y+ 1
2

0 ≤ y ≤ 1

X Y

(X,Y ) f f(x, y) = 2(x+y) 0 ≤ x ≤ y ≤ 1

X

Y

X Y

X g g(x) = (1 +3x)(1 −x) 0 ≤ x ≤ 1
Y h h(h) = 3y2 0 ≤ y ≤ 1
X Y

(X,Y ) f f(x, y) = 6 yx2 0 ≤ x ≤ 1 0 ≤ y ≤ 1

X

Y

X Y

X g g(x) = 3x2 0 ≤ x ≤ 1
Y h h(y) = 2y 0 ≤ y ≤ 1
X Y

X x ↦ x2

[0, 1] Y y ↦ y [0, 1] X Y

(X,Y ) f f(x, y) = 15 yx2 0 ≤ x ≤ y ≤ 1

X

Y

X Y

X g g(x) = (1 − )15
2
x2 x2 0 ≤ x ≤ 1

Y h h(y) = 5y4 0 ≤ y ≤ 1
X Y

X Y [0, 1]
[0, 1]2

(X,Y ,Z) f f(x, y, x) = 2(x+y)z 0 ≤ x ≤ 1 0 ≤ y ≤ 1 0 ≤ z ≤ 1

(X,Y ) f1,2 (x, y) = x+yf1,2 0 ≤ x ≤ 1 0 ≤ y ≤ 1

(X,Z) f1,3 (x, z) = 2z (x+ )f1,3
1
2

0 ≤ x ≤ 1 0 ≤ z ≤ 1

(Y ,Z) f2,3 (y, z) = 2z (y+ )f2,3
1
2

0 ≤ y ≤ 1 0 ≤ z ≤ 1

X f1 (x) = x+f1
1
2

0 ≤ x ≤ 1

Y f2 (y) = y+f2
1
2

0 ≤ y ≤ 1

Z f3 (z) = 2zf3 0 ≤ z ≤ 1
Z (X,Y ) X Y
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Suppose that  has probability density function  given by  for .

1. Find the probability density function of .
2. Find the probability density function of .
3. Are  and  independent?

Answer
1.  has PDF  given by  for .
2.  has PDF  given by  for .
3.  and  are dependent.

In the previous exercise,  has an exponential distribution with rate parameter 2. Recall that exponential distributions are widely used to model
random times, particularly in the context of the Poisson model.

Suppose that  and  are independent, and that  has probability density function  given by  for , and that 
has probability density function  given by  for .

1. Find the probability density function of .
2. Find .

Answer
1.  has PDF  given by  for , .
2. 

In the previous exercise,  and  have beta distributions, which are widely used to model random probabilities and proportions. Beta distributions
are studied in more detail in the chapter on Special Distributions.

Suppose that  and  are independent random angles, with common probability density function  given by  for .

1. Find the probability density function of .
2. Find .

Answer
1.  has PDF  given by  for , .
2. 

The common distribution of  and  in the previous exercise governs a random angle in Bertrand's problem.

Suppose that  and  are independent, and that  has probability density function  given by  for , and that  has
probability density function  given by  for .

1. Find the probability density function of .
2. Find .

Answer

1.  has PDF  given by  for , .

2. 

Both  and  in the previous exercise have Pareto distributions, named for Vilfredo Pareto. Recall that Pareto distributions are used to model
certain economic variables and are studied in more detail in the chapter on Special Distributions.

Suppose that  has probability density function  given by  for , and that  has probability density
function  given by  for , and that  and  are independent.

1. Find the probability density function of .
2. Find the probability density function of .
3. Find the probability density function of .
4. Find .

Answer
1.  has PDF  given by  for , .
2.  has PDF  given by  for , .
3.  has PDF  given by  for , .
4. 

(X,Y ) f f(x, y) = 2e−xe−y 0 ≤ x ≤ y < ∞

X

Y

X Y

X g g(x) = 2e−2x 0 ≤ x < ∞
Y h h(y) = 2 ( − )e−y e−2y 0 ≤ y < ∞
X Y

X

X Y X g g(x) = 6x(1 −x) 0 ≤ x ≤ 1 Y

h h(y) = 12 (1 −y)y2 0 ≤ y ≤ 1

(X,Y )
P(X+Y ≤ 1)

(X,Y ) f f(x, y) = 72x(1 −x) (1 −y)y2 0 ≤ x ≤ 1 0 ≤ y ≤ 1

P(X+Y ≤ 1) = 13
35

X Y

Θ Φ g g(t) = sin(t) 0 ≤ t ≤ π
2

(Θ, Φ)
P(Θ ≤ Φ)

(Θ, Φ) f f(θ,ϕ) = sin(θ) sin(ϕ) 0 ≤ θ ≤ π

2
0 ≤ ϕ ≤ π

2

P(Θ ≤ Φ) = 1
2

X Y

X Y X g g(x) = 2
x3 1 ≤ x < ∞ Y

h h(y) = 3
y4 1 ≤ y < ∞

(X,Y )
P(X ≤ Y )

(X,Y ) f f(x, y) = 6
x3y4

1 ≤ x < ∞ 1 ≤ y < ∞

P(X ≤ Y ) = 2
5

X Y

(X,Y ) g g(x, y) = 15 yx2 0 ≤ x ≤ y ≤ 1 Z

h h(z) = 4z3 0 ≤ z ≤ 1 (X,Y ) Z

(X,Y ,Z)
(X,Z)
(Y ,Z)

P(Z ≤ XY )

(X,Y ,Z) f f(x, y, z) = 60 yx2 z3 0 ≤ x ≤ y ≤ 1 0 ≤ z ≤ 1
(X,Z) f1,3 (x, z) = 30 (1 − )f1,3 x2 x2 z3 0 ≤ x ≤ 1 0 ≤ z ≤ 1

(Y ,Z) f2,3 (y, z) = 20f2,3 y4z3 0 ≤ y ≤ 1 0 ≤ z ≤ 1

P(Z ≤ XY ) = 15
92
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Multivariate Uniform Distributions

Multivariate uniform distributions give a geometric interpretation of some of the concepts in this section.

Recall first that for , the standard measure on  is

In particular,  is the length of ,  is the area of , and  is the volume of .

Details

Technically  is Lebesgue measure on the measurable subsets of . The integral representation is valid for the types of sets that occur in
applications. In the discussion below, all subsets are assumed to be measurable.

Suppose now that  takes values in ,  takes values in , and that  is uniformly distributed on a set . So 
and the joint probability density function  of  is given by  for . Recall that uniform distributions always
have constant density functions. Now let  and  be the projections of  onto  and  respectively, defined as follows:

Note that . Next we denote the cross sections at  and at , respectively by

Figure : The projections  and , and the cross sections at  and 

 takes values in  and  takes values in . The probability density functions  and  of  and  are proportional to the cross-sectional
measures:

1.  for 
2.  for 

Proof

From our general theory,  has PDF  given by

Technically, it's possible that  for some , but the set of such  has measure 0. That is, . The
result for  is analogous.

In particular, note from previous theorem that  and  are neither independent nor uniformly distributed in general. However, these properties do
hold if  is a Cartesian product set.

Suppose that .

1.  is uniformly distributed on .
2.  is uniformly distributed on .
3.  and  are independent.

Proof

In this case,  and  for every  and . Also, , so for  and , 
, , .

In each of the following cases, find the joint and marginal probabilit density functions, and determine if  and  are independent.

1.  is uniformly distributed on the square .
2.  is uniformly distributed on the triangle .

n ∈ N+ R
n

(A) = 1dx, A ⊆λn ∫
A

R
n (3.4.23)

(A)λ1 A ⊆R (A)λ2 A ⊆R
2 (A)λ3 A ⊆R

3

λn R
n

X R
j Y R

k (X,Y ) R ⊆R
j+k 0 < (R) < ∞λj+k

f (X,Y ) f(x, y) = 1/ (R)λj+k (x, y) ∈ R

S T R R
j

R
k

S = {x ∈ : (x, y) ∈ R for some y ∈ } , T = {y ∈ : (x, y) ∈ R for some x ∈ }R
j

R
k

R
k

R
j (3.4.24)

R ⊆ S×T x ∈ S y ∈ T

= {t ∈ T : (x, t) ∈ R}, = {s ∈ S : (s, y) ∈ R}Tx Sy (3.4.25)

3.4.1 S T x y

X S Y T g h X Y

g(x) = ( )/ (R)λk Tx λj+k x ∈ S

h(y) = ( )/ (R)λj Sy λj+k y ∈ T

X g

g(x) = f(x, y)dy = dy = , x ∈ S∫
Tx

∫
Tx

1

(R)λj+k

( )λk Tx

(R)λj+k

(3.4.26)

( ) = ∞λk Tx x ∈ S x {x ∈ S : ( ) = ∞} = 0λj λk Tx
Y

X Y

R

R = S×T

X S

Y T

X Y

= TTx = SSy x ∈ S y ∈ T (R) = (S) (T )λj+k λj λk x ∈ S y ∈ T

f(x, y) = 1/[ (S) (T )]λj λk g(x) = 1/ (S)λj h(y) = 1/ (T )λk

X Y

(X,Y ) R = [−6, 6]2

(X,Y ) R = {(x, y) : −6 ≤ y ≤ x ≤ 6}
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3.  is uniformly distributed on the circle .

Answer

In the following,  is the PDF of ,  the PDF of , and  the PDF of .

1.  for , 
 for 
 for 

 and  are independent.

2.  for 
 for 
 for 

 and  are dependent.

3.  for 
 for 
 for 

 and  are dependent.

In the bivariate uniform experiment, run the simulation 1000 times for each of the following cases. Watch the points in the scatter plot and the
graphs of the marginal distributions. Interpret what you see in the context of the discussion above.

1. square
2. triangle
3. circle

Suppose that  is uniformly distributed on the cube .

1. Give the joint probability density function of .
2. Find the probability density function of each pair of variables.
3. Find the probability density function of each variable
4. Determine the dependency relationships between the variables.

Answer
1.  has PDF  given by  for , ,  (the uniform distribution on )
2. , , and  have common PDF  given by  for ,  (the uniform distribution on )
3. , , and  have common PDF  given by  for  (the uniform distribution on )
4. , ,  are independent.

Suppose that  is uniformly distributed on .

1. Give the joint density function of .
2. Find the probability density function of each pair of variables.
3. Find the probability density function of each variable
4. Determine the dependency relationships between the variables.

Answer
1.  has PDF  given by  for 
2.  has PDF  given by  for 

 has PDF  given by  for 
 has PDF  given by  for 

3.  has PDF  given by  for 
 has PDF  given by  for 
 has PDF  given by  for 

4. Each pair of variables is dependent.

The Rejection Method

The following result shows how an arbitrary continuous distribution can be obtained from a uniform distribution. This result is useful for simulating
certain continuous distributions, as we will see. To set up the basic notation, suppose that  is a probability density function for a continuous
distribution on . Let

(X,Y ) R = {(x, y) : + ≤ 36}x2 y2

f (X,Y ) g X h Y

f(x, y) = 1
144

−6 ≤ x ≤ 6 −6 ≤ y ≤ 6

g(x) = 1
12

−6 ≤ x ≤ 6

h(y) = 1
12

−6 ≤ y ≤ 6

X Y

f(x, y) = 1
72

−6 ≤ y ≤ x ≤ 6

g(x) = (x+6)1
72

−6 ≤ x ≤ 6

h(y) = (y+6)1
72

−6 ≤ y ≤ 6

X Y

f(x, y) = 1
36π

+ ≤ 36x2 y2

g(x) = 1
18π

36 −x2
− −−−−−

√ −6 ≤ x ≤ 6

h(y) = 1
18π

36 −y2− −−−−−√ −6 ≤ y ≤ 6

X Y

(X,Y ,Z) [0, 1]3

(X,Y ,Z)

(X,Y ,Z) f f(x, y, z) = 1 0 ≤ x ≤ 1 0 ≤ y ≤ 1 0 ≤ z ≤ 1 [0, 1]3

(X,Y ) (X,Z) (Y ,Z) g g(u, v) = 1 0 ≤ u ≤ 1 0 ≤ v≤ 1 [0, 1]2

X Y Z h h(u) = 1 0 ≤ u ≤ 1 [0, 1]
X Y Z

(X,Y ,Z) {(x, y, z) : 0 ≤ x ≤ y ≤ z ≤ 1}

(X,Y ,Z)

(X,Y ,Z) f f(x, y, z) = 6 0 ≤ x ≤ y ≤ z ≤ 1

(X,Y ) f1,2 (x, y) = 6(1 −y)f1,2 0 ≤ x ≤ y ≤ 1
(X,Z) f1,3 (x, z) = 6(z−x)f1,3 0 ≤ x ≤ z ≤ 1
(Y ,Z) f2,3 (y, z) = 6yf2,3 0 ≤ y ≤ z ≤ 1

X f1 (x) = 3(1 −xf1 )2 0 ≤ x ≤ 1
Y f2 (y) = 6y(1 −y)f2 0 ≤ y ≤ 1
Z f3 (z) = 3f3 z2 0 ≤ z ≤ 1

g

S ⊆R
n

R = {(x, y) : x ∈ S and 0 ≤ y ≤ g(x)} ⊆R
n+1 (3.4.27)
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If  is uniformly distributed on , then  has probability density function .

Proof

Note that since  is a probability density function on .

Hence the probability density function  of  is given by  for . Thus, the probability density function of  is 
 for .

A picture in the case  is given below:

Figure : If  is uniformly distributed on , then  has density function .

The next result gives the rejection method for simulating a random variable with the probability density function .

Suppose now that  where  with  and that  is a sequence of independent random
variables with , , and  uniformly distributed on  for each . Let

1.  has the geometric distribution on  with success parameter .
2.  is uniformly distributed on .
3.  has probability density function .

Proof

Figure : With a sequence of independent points, uniformly distributed on , the  coordinate of the first point to land in  has probability
density function .

The point of the theorem is that if we can simulate a sequence of independent variables that are uniformly distributed on , then we can simulate a
random variable with the given probability density function . Suppose in particular that  is bounded as a subset of , which would mean that
the domain  is bounded as a subset of  and that the probability density function  is bounded on . In this case, we can find  that is the
Cartesian product of  bounded intervals with . It turns out to be very easy to simulate a sequence of independent variables, each
uniformly distributed on such a product set, so the rejection method always works in this case. As you might guess, the rejection method works best
if the size of , namely , is small, so that the success parameter  is large.

The rejection method app simulates a number of continuous distributions via the rejection method. For each of the following distributions, vary
the parameters and note the shape and location of the probability density function. Then run the experiment 1000 times and observe the results.

1. The beta distribution
2. The semicircle distribution
3. The triangle distribution
4. The U-power distribution

The Multivariate Hypergeometric Distribution

Suppose that a population consists of  objects, and that each object is one of four types. There are  type 1 objects,  type 2 objects,  type 3
objects and  type 0 objects. We sample  objects from the population at random, and without replacement. The parameters , , , 
, and  are nonnegative integers with  and . Denote the number of type 1, 2, and 3 objects in the sample by , , and ,

(X,Y ) R X g

g S

(R) = 1 d(x, y) = 1 dy dx = g(x)dx = 1λn+1 ∫
R

∫
S

∫
g(x)

0
∫
S

(3.4.28)

f (X,Y ) f(x, y) = 1 (x, y) ∈ R X

x ↦ 1 dy = g(x)∫ g(x)
0 x ∈ S

n = 1

3.4.2 (X,Y ) R X g

g

R ⊆ T T ⊆Rn+1 (T ) < ∞λn+1 (( , ), ( , ), …)X1 Y1 X2 Y2

∈Xk R
n ∈ RYk ( , )Xk Yk T k ∈ N+

N = min{k ∈ : ( , ) ∈ R} = min{k ∈ : ∈ S, 0 ≤ ≤ g ( )}N+ Xk Yk N+ Xk Yk Xk (3.4.29)

N N+ p = 1/ (T )λn+1

( , )XN YN R

XN g

3.4.3 T x R
g

T

g R R
n+1

S R
n g S T

n+1 R ⊆ T

T (T )λn+1 p

m a b c

m−a−b−c n m a b

c n a+b+c ≤ m n ≤ m X Y Z
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respectively. Hence, the number of type 0 objects in the sample is . In the problems below, the variables , , and  take values in 
.

 has a (multivariate) hypergeometric distribution with probability density function  given by

Proof

From the basic theory of combinatorics, the numerator is the number of ways to select an unordered sample of size  from the population with 
 objects of type 1,  objects of type 2,  objects of type 3, and  objects of type 0. The denominator is the total number of ways

to select the unordered sample.

 also has a (multivariate) hypergeometric distribution, with the probability density function  given by

Proof

This result could be obtained by summing the joint PDF over  for fixed . However, there is a much nicer combinatorial argument. Note
that we are selecting a random sample of size  from a population of  objects, with  objects of type 1,  objects of type 2, and 
objects of other types.

 has an ordinary hypergeometric distribution, with probability density function  given by

Proof

Again, the result could be obtained by summing the joint PDF for  over  for fixed , or by summing the joint PDF for 
over  for fixed . But as before, there is a much more elegant combinatorial argument. Note that we are selecting a random sample of size 
from a population of size  objects, with  objects of type 1 and  objects of other types.

These results generalize in a straightforward way to a population with any number of types. In brief, if a random vector has a hypergeometric
distribution, then any sub-vector also has a hypergeometric distribution. In other words, all of the marginal distributions of a hypergeometric
distribution are themselves hypergeometric. Note however, that it's not a good idea to memorize the formulas above explicitly. It's better to just note
the patterns and recall the combinatorial meaning of the binomial coefficient. The hypergeometric distribution and the multivariate hypergeometric
distribution are studied in more detail in the chapter on Finite Sampling Models.

Suppose that a population of voters consists of 50 democrats, 40 republicans, and 30 independents. A sample of 10 voters is chosen at random
from the population (without replacement, of course). Let  denote the number of democrats in the sample and  the number of republicans in
the sample. Find the probability density function of each of the following:

1. 
2. 
3. 

Answer

In the formulas for the PDFs below, the variables  and  are nonnegative integers.

1.  has PDF  given by  for 

2.  has PDF  given by  for 

3.  has PDF  given by  for 

Suppose that the Math Club at Enormous State University (ESU) has 50 freshmen, 40 sophomores, 30 juniors and 20 seniors. A sample of 10
club members is chosen at random to serve on the -day committee. Let  denote the number freshmen on the committee,  the number of
sophomores, and  the number of juniors.

1. Find the probability density function of 
2. Find the probability density function of each pair of variables.

n−X−Y −Z x y z

N

(X,Y ,Z) f

f(x, y, z) = , x+y+z ≤ n
( )( )( )( )a

x

b

y

c

z

m−a−b−c

n−x−y−z

( )m

n

(3.4.30)

n

x y z n−x−y−z

(X,Y ) g

g(x, y) = , x+y ≤ n
( )( )( )a

x

b

y

m−a−b

n−x−y

( )m

n

(3.4.31)

z (x, y)
n m a b m−a−b

X h

h(x) = , x ≤ n
( )( )a

x

m−a

n−x

( )m
n

(3.4.32)

(X,Y ,Z) (y, z) x (X,Y )
y x n

m a m−a

X Y

(X,Y )
X

Y

x y

(X,Y ) f f(x, y) = ( )( )( )1

( )120
10

50
x

40
y

30
10−x−y

x+y ≤ 10

X g g(x) = ( )( )1

( )120
10

50
x

70
10−x

x ≤ 10

Y h h(y) = ( )( )1

( )120
10

40
y

80
10−y

y ≤ 10

π X Y

Z

(X,Y ,Z)
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3. Find the probability density function of each individual variable.

Answer

In the formulas for the PDFs below, the variables , , and  are nonnegative integers.

1.  has PDF  given by  for .

2.  has PDF  given by  for .

 has PDF  given by  for .

 has PDF  given by  for .

3.  has PDF  given by  for .

 has PDF  given by  for .

 has PDF  given by  for 

Multinomial Trials

Suppose that we have a sequence of  independent trials, each with 4 possible outcomes. On each trial, outcome 1 occurs with probability ,
outcome 2 with probability , outcome 3 with probability , and outcome 0 occurs with probability . The parameters , , and  are
nonnegative numbers with , and . Denote the number of times that outcome 1, outcome 2, and outcome 3 occurred in the 
trials by , , and  respectively. Of course, the number of times that outcome 0 occurs is . In the problems below, the variables 

, , and  take values in .

 has a multinomial distribution with probability density function  given by

Proof

The multinomial coefficient is the number of sequences of length  with 1 occurring  times, 2 occurring  times, 3 occurring  times, and 0
occurring  times. The result then follows by independence.

 also has a multinomial distribution with the probability density function  given by

Proof

This result could be obtained from the joint PDF above, by summing over  for fixed . However there is a much better direct argument.
Note that we have  independent trials, and on each trial, outcome 1 occurs with probability , outcome 2 with probability , and some other
outcome with probability .

 has a binomial distribution, with the probability density function  given by

Proof

Again, the result could be obtained by summing the joint PDF for  over  for fixed  or by summing the joint PDF for 
over  for fixed . But as before, there is a much better direct argument. Note that we have  independent trials, and on each trial, outcome 1
occurs with probability  and some other outcome with probability .

These results generalize in a completely straightforward way to multinomial trials with any number of trial outcomes. In brief, if a random vector
has a multinomial distribution, then any sub-vector also has a multinomial distribution. In other terms, all of the marginal distributions of a
multinomial distribution are themselves multinomial. The binomial distribution and the multinomial distribution are studied in more detail in the
chapter on Bernoulli Trials.

Suppose that a system consists of 10 components that operate independently. Each component is working with probability , idle with
probability , or failed with probability . Let  denote the number of working components and  the number of idle components. Give the
probability density function of each of the following:

x y z

(X,Y ,Z) f f(x, y, z) = ( )( )( )( )1

( )140
10

50
x

40
y

30
z

20
10−x−y−z

x+y+z ≤ 10

(X,Y ) f1,2 (x, y) = ( )( )( )f1,2
1

( )140
10

50
x

40
y

50
10−x−y x+y ≤ 10

(X,Z) f1,3 (y, z) = ( )( )( )f1,3
1

( )140
10

50
x

30
z

60
10−x−z x+z ≤ 10

(Y ,Z) f2,3 (y, z) = ( )( )( )f2,3
1

( )140
10

40
y

30
z

70
10−y−z y+z ≤ 10

X f1 (x) = ( )( )f1
1

( )120
10

50
x

90
10−x

x ≤ 10

Y f2 (y) = ( )( )f2
1

( )120
10

40
y

100
10−y

y ≤ 10

Z f3 (z) = ( )( )f3
1

( )120
10

30
z

110
10−z

z ≤ 10

n p

q r 1 −p−q−r p q r

p+q+r ≤ 1 n ∈ N+ n

X Y Z n−X−Y −Z

x y z N

(X,Y ,Z) f

f(x, y, z) =( ) (1 −p−q−r , x+y+z ≤ n
n

x, y, z
pxqyrz )n−x−y−z (3.4.33)

n x y z

n−x−y−z

(X,Y ) g

g(x, y) =( ) (1 −p−q , x+y ≤ n
n

x, y
pxqy )n−x−y (3.4.34)

z (x, y)
n p q

1 −p−q

X h

h(x) =( ) (1 −p , x ≤ n
n

x
px )n−x (3.4.35)

(X,Y ,Z) (y, z) x (X,Y )
y x n

p 1 −p

1
2

1
3

1
6

X Y
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1. 
2. 
3. 

Answer

In the formulas below, the variables  and  are nonnegative integers.

1.  has PDF  given by  for .

2.  has PDF  given by  for .

3.  has PDF  given by  for .

Suppose that in a crooked, four-sided die, face  occurs with probability  for . The die is thrown 12 times; let  denote the
number of times that score 1 occurs,  the number of times that score 2 occurs, and  the number of times that score 3 occurs.

1. Find the probability density function of 
2. Find the probability density function of each pair of variables.
3. Find the probability density function of each individual variable.

Answer

In the formulas for the PDFs below, the variables ,  and  are nonnegative integers.

1.  has PDF , 

2.  has PDF  given by  for .

 has PDF  given by  for .

 has PDF  given by  for .

3.  has PDF  given by  for .

 has PDF  given by  for .

 has PDF  given by  for .

Bivariate Normal Distributions

Suppose that  has probability the density function  given below:

1. Find the probability density function of .
2. Find the probability density function of .
3. Are  and  independent?

Answer

1.  has PDF  given by  for .

2.  has PDF  given by  for .

3.  and  are independent.

Suppose that  has probability density function  given below:

1. Find the density function of .
2. Find the density function of .
3. Are  and  independent?

Answer

1.  has PDF  given by  for .

2.  has PDF  given by  for .
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x y
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3.  and  are dependent.

The joint distributions in the last two exercises are examples of bivariate normal distributions. Normal distributions are widely used to model
physical measurements subject to small, random errors. In both exercises, the marginal distributions of  and  also have normal distributions, and
this turns out to be true in general. The multivariate normal distribution is studied in more detail in the chapter on Special Distributions.

Exponential Distributions

Recall that the exponential distribution has probability density function

where  is the rate parameter. The exponential distribution is widely used to model random times, and is studied in more detail in the
chapter on the Poisson Process.

Suppose  and  have exponential distributions with parameters  and , respectively, and are independent. Then 
.

Suppose , , and  have exponential distributions with parameters , , and , respectively, and are
independent. Then

1. 
2. 

If , , and  are the lifetimes of devices that act independently, then the results in the previous two exercises give probabilities of various failure
orders. Results of this type are also very important in the study of continuous-time Markov processes. We will continue this discussion in the section
on transformations of random variables.

Mixed Coordinates

Suppose  takes values in the finite set ,  takes values in the interval , and that  has probability density function  given
by

1. Find the probability density function of .
2. Find the probability density function of .
3. Are  and  independent?

Answer
1.  has PDF  given by  for  (the uniform distribution on ).

2.  has PDF  given by .

3.  and  are dependent.

Suppose that  takes values in the interval ,  takes values in the finite set , and that  has probability density function 
given by

1. Find the probability density function of .
2. Find the probability density function of .
3. Are  and  independent?

Answer
1.  has PDF  given by  for .
2.  has PDF  given by , 
3.  and  are dependent.

X Y

X Y

f(x) = r , x ∈ [0, ∞)e−rt (3.4.38)
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As we will see in the section on conditional distributions, the distribution in the last exercise models the following experiment: a random probability
 is selected, and then a coin with this probability of heads is tossed 3 times;  is the number of heads. Note that  has a beta distribution.

Random Samples

Recall that the Bernoulli distribution with parameter  has probability density function  given by  for 
. Let  be a random sample of size  from the distribution. Give the probability density funcion of 

in simplified form.

Answer

 has PDF  given by  for , where 

The Bernoulli distribution is name for Jacob Bernoulli, and governs an indicator random varible. Hence if  is a random sample of size  from the
distribution then  is a sequence of  Bernoulli trials. A separate chapter studies Bernoulli trials in more detail.

Recall that the geometric distribution on  with parameter  has probability density function  given by  for 
. Let  be a random sample of size  from the distribution. Give the probability density function of  in

simplified form.

Answer

 has pdf  given by  for , where .

The geometric distribution governs the trial number of the first success in a sequence of Bernoulli trials. Hence the variables in the random sample
can be interpreted as the number of trials between successive successes.

Recall that the Poisson distribution with parameter  has probability density function  given by  for . Let 
 be a random sample of size  from the distribution. Give the probability density funcion of  in simplified

form.

Answer

 has PDF  given by  for , where .

The Poisson distribution is named for Simeon Poisson, and governs the number of random points in a region of time or space under appropriate
circumstances. The parameter  is proportional to the size of the region. The Poisson distribution is studied in more detail in the chapter on the
Poisson process.

Recall again that the exponential distribution with rate parameter  has probability density function  given by  for 
. Let  be a random sample of size  from the distribution. Give the probability density funcion of 

in simplified form.

Answer

 has PDF  given by  for , where .

The exponential distribution governs failure times and other types or arrival times under appropriate circumstances. The exponential distribution is
studied in more detail in the chapter on the Poisson process. The variables in the random sample can be interpreted as the times between successive
arrivals in the Poisson process.

Recall that the standard normal distribution has probability density function  given by  for . Let 

 be a random sample of size  from the distribution. Give the probability density funcion of  in simplified form.

Answer

 has PDF  given by  for , where .

The standard normal distribution governs physical quantities, properly scaled and centered, subject to small, random errors. The normal distribution
is studied in more generality in the chapter on the Special Distributions.

Data Analysis Exercises

For the cicada data,  denotes gender and  denotes species type.

1. Find the empirical density of .
2. Find the empirical density of .
3. Find the empirical density of .
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4. Do you believe that  and  are independent?

Answer

The empirical joint and marginal empirical densities are given in the table below. Gender and species are probably dependent (compare the joint
density with the product of the marginal densities).

1

1

2

1

For the cicada data, let  denote body weight (in grams) and  body length (in millimeters).

1. Construct an empirical density for .
2. Find the corresponding empirical density for .
3. Find the corresponding empirical density for .
4. Do you believe that  and  are independent?

Answer

The empirical joint and marginal densities, based on simple partitions of the body weight and body length ranges, are given in the table below.
Body weight and body length are almost certainly dependent.

Density Density 

0 0.0385 0.0192 0 0.0058

0.1731 0.9808 0.4231 0 0.1577

0 0.1538 0.1731 0.0192 0.0346

0 0 0 0.0192 0.0019

Density 0.8654 5.8654 3.0769 0.1923

For the cicada data, let  denote gender and  body weight (in grams).

1. Construct and empirical density for .
2. Find the empirical density for .
3. Find the empirical density for .
4. Do you believe that  and  are independent?

Answer

The empirical joint and marginal densities, based on a simple partition of the body weight range, are given in the table below. Body weight and
gender are almost certainly dependent.

Density Density 

0.1923 2.5000 2.8846 0.0962 0.5673

1 0.6731 3.3654 0.1923 0.0962 0.4327

Density 0.8654 5.8654 3.0769 0.1923

This page titled 3.4: Joint Distributions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via
source content that was edited to the style and standards of the LibreTexts platform.
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