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18.2: Brownian Motion with Drift and Scaling
         

Basic Theory

Definition

We start with the assumptions that govern standard Brownian motion, except that we relax the restrictions on the parameters of the
normal distribution.

Suppose that  and . Brownian motion with drift parameter  and scale parameter  is a random process 
 with state space  that satisfies the following properties:

1.  (with probability 1).
2.  has stationary increments. That is, for  with , the distribution of  is the same as the

distribution of .
3.  has independent increments. That is, for  with , the random variables 

 are independent.
4.  has the normal distribution with mean  and variance  for .
5. With probability 1,  is continuous on .

Note that we cannot assign the parameters of the normal distribution of  arbitrarily. We know that since  has stationary,
independent increments,  and  must be linear functions of .

Open the simulation of Brownian motion with drift and scaling. Run the simulation in single step mode several times for
various values of the parameters. Note the behavior of the sample paths. For selected values of the parameters, run the
simulation 1000 times and compare the empirical density function and moments to the true density function and moments.

It's easy to construct Brownian motion with drift and scaling from a standard Brownian motion, so we don't have to worry about the
existence question.

Relation to standard Brownian motion.

1. Suppose that  is a standard Brownian motion, and that  and . Let 
for . Then  is a Brownian motion with drift parameter  and scale parameter .

2. Conversely, suppose that  is a Brownian motion with drift parameter  and scale parameter 
. Let  for . Then  is a standard Brownian motion.

Proof

It's straightforwrd to show that the processes  and  satisfy the appropriate set of assumptions.

In differential form, part (a) can be written as

Finite Dimensional Distributions

Suppose that  is Brownian motion with drift parameter  and scale parameter . It follows
from part (d) of the definition that  has probability density function  given by

This family of density functions determines the finite dimensional distributions of .

If  with  then  has probability density function  given
by
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Proof

This follows because  has stationary, independent increments.

 is a Gaussian process with mean function mean function  and covariance function  given by

1.  for 
2.  for .

Proof

The fact that  is a Gaussian process follows from the construction  for , where  is a standard
Brownian motion. We know that  is a Gaussian process. The form of the mean and covariance functions follow because 
has stationary, independent increments. Note that  and  are the mean and variance of .

The correlation function is independent of the parameters, and thus is the same as for standard Brownian motion. This is hardly
surprising since correlation is a standardized measure of association.

Transformations

There are a couple simple transformations that preserve Brownian motion, but perhaps change the drift and scale parameters. Our
starting place is a Brownian motion  with drift parameter  and scale parameter . Our first
result involves scaling  is time and space (and possible reflecting in the spatial origin).

Let  and . Define  for . Then  is also a Brownian motion with drift
parameter  and scale parameter .

Proof

Clearly the new process is still a Gaussian process. The mean function is  for . The
covariance function is  for . Finally,
since  is continuous, so is .

Suppose that  in the previous theorem, so that we are scaling temporally and spatially. In order to preserve the original drift
parameter  we must have  (if ). In order to preserve the original scale parameter , we must have . We can't
have both unless , which leads to a slight generalization of one of our results for standard Brownian motion:

Suppose that  is a Brownian motion with drift parameter  and scale parameter . Suppose also that  and let 
 for . Then  is also a Brownian motion with drift parameter 0 and scale parameter .

Our next result is related to the Markov property, which we explore in more detail below. We return to the general case where 
 is a Brownian motion with drift parameter  and scale parameter . If we “restart”

Brownian motion at a fixed time , and shift the origin to , then we have another Brownian motion with the same parameters.

Fix  and define  for . Then  is also a Brownian motion with the same
drift and scale parameters.

Proof

Clearly  is also a Gaussian process. Moreover,  for . Also, if 
 with  then

Finally,  is continuous by the continuity of .
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The Markov Property and Stopping Times

As usual, we start with a Brownian motion  with drift parameter  and scale parameter . Recall again that
a Markov process has the property that the future is independent of the past, given the present state. Because of the stationary,
independent increments property, Brownian motion has the property. As a minor note, to view  as a Markov process, we
sometimes need to relax Assumption 1 and let  have an arbitrary value in . Let , the sigma-algebra
generated by the process up to time . The family of -algebras  is known as a filtration.

Brownian motion is a time-homogeneous Markov process with transition probability density  given by

Proof

Fix . The theorem follows from the fact that the process  is another standard Brownian
motion, as noted above, and is independent of .

The transtion density  satisfies the following diffusion equations. The first is known as the forward equation and the second as
the backward equation.

Proof

These results follows from standard calculus.

The diffusion equations are so named, because the spatial derivative in the first equation is with respect to , the state forward at
time , while the spatial derivative in the second equation is with respect to , the state backward at time 0.

Recall again that a random time  taking values in  is a stopping time with respect to the process  if  for
every . The -algebra associated with  is

See the section on Filtrations and Stopping Times for more information on filtrations, stopping times, and the -algebra associated
with a stopping time. Brownian motion  is also a strong Markov process.

Suppose that  is a stopping time and define  for . Then  is a Brownian
motion with the same drift and scale parameters, and is independent of .
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X = { : t ∈ [0, ∞)}Xt μ σ

X

X0 R = σ{ : 0 ≤ s ≤ t}Ft Xs

t ∈ [0, ∞) σ F = { : t ∈ [0, ∞)}Ft

p

(x, y) = (y−x) = exp[− (y−x−μt ], t ∈ (0, ∞); x, y ∈ Rpt ft
1

σ 2πt
−−−

√

1

2 tσ2
)2 (18.2.8)

s ∈ [0, ∞) { − : t ∈ [0, ∞)}Xs+t Xs

Fs

p

(x, y)
∂

∂t
pt

(x, y)
∂

∂t
pt

= −μ (x, y) + (x, y)
∂

∂y
pt

1

2
σ2 ∂2

∂y2
pt

= μ (x, y) + (x, y)
∂

∂x
pt

1

2
σ2 ∂2

∂x2
pt

(18.2.9)

(18.2.10)

y

t x

τ [0, ∞] X {τ ≤ t} ∈ Ft

t ∈ [0, ∞) σ τ

= {B ∈ F : B∩ {τ ≤ t} ∈  for all t ≥ 0}Fτ Ft (18.2.11)

σ

X

τ = −Yt Xτ+t Xτ t ∈ [0, ∞) Y = { : t ∈ [0, ∞)}Yt
Fτ

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10404?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/18%3A_Brownian_Motion/18.02%3A_Brownian_Motion_with_Drift_and_Scaling
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random

