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3.1: Discrete Distributions
   

Basic Theory

Definitions and Basic Properties

As usual, our starting point is a random experiment modeled by a probability space . So to review,  is the set of
outcomes,  the collection of events, and  the probability measure on the sample space . We use the terms probability
measure and probability distribution synonymously in this text. Also, since we use a general definition of random variable, every
probability measure can be thought of as the probability distribution of a random variable, so we can always take this point of view
if we like. Indeed, most probability measures naturally have random variables associated with them.

Recall that the sample space  is discrete if  is countable and  is the collection of all subsets of . In this
case,  is a discrete distribution and  is a discrete probabiity space.

For the remainder or our discussion we assume that  is a discrete probability space. In the picture below, the blue dots are
intended to represent points of positive probability.

Figure : A discrete distribution

It's very simple to describe a discrete probability distribution with the function that assigns probabilities to the individual points in 
.

The function  on  defined by  for  is the probability density function of , and satisfies the following
properties:

1. 
2. 
3.  for 

Proof

These properties follow from the axioms of a probability measure.

1.  since probabilities are nonnegative.
2.  by the countable additivity axiom.
3.  for  again, by the countable additivity axiom.

Property (c) is particularly important since it shows that a discrete probability distribution is completely determined by its
probability density function. Conversely, any function that satisfies properties (a) and (b) can be used to construct a discrete
probability distribution on  via property (c).

A nonnegative function  on  that satisfies  is a (discrete) probability density function on , and then 
defined as follows is a probability measure on .

Proof
1.  since  is nonnegative.
2. \) by property (b)
3. Suppose that  is a countable, disjoint collection of subsets of , and let . Then
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Note that since  is nonnegative, the order of the terms in the sum do not matter.

Technically,  is the density of  relative to counting measure  on . The technicalities are discussed in detail in the advanced
section on absolute continuity and density functions.

Figure : A discrete distribution is completely determined by its probability density function.

The set of outcomes  is often a countable subset of some larger set, such as  for some . But not always. We might want
to consider a random variable with values in a deck of cards, or a set of words, or some other discrete population of objects. Of
course, we can always map a countable set  one-to-one into a Euclidean set, but it might be contrived or unnatural to do so. In any
event, if  is a subset of a larger set, we can always extend a probability density function , if we want, to the larger set by defining

 for . Sometimes this extension simplifies formulas and notation. Put another way, the “set of values” is often a
convenience set that includes the points with positive probability, but perhaps other points as well.

Suppose that  is a probability density function on . Then  is the support set of the distribution.

Values of  that maximize the probability density function are important enough to deserve a name.

Suppose again that  is a probability density function on . An element  that maximizes  is a mode of the distribution.

When there is only one mode, it is sometimes used as a measure of the center of the distribution.

A discrete probability distribution defined by a probability density function  is equivalent to a discrete mass distribution, with
total mass 1. In this analogy,  is the (countable) set of point masses, and  is the mass of the point at . Property (c) in (2)
above simply means that the mass of a set  can be found by adding the masses of the points in .

But let's consider a probabilistic interpretation, rather than one from physics. We start with a basic random variable  for an
experiment, defined on a probability space . Suppose that  has a discrete distribution on  with probability density
function . So in this setting,  for . We create a new, compound experiment by conducting independent
repetitions of the original experiment. So in the compound experiment, we have a sequence of independent random variables 

 each with the same distribution as ; in statistical terms, we are sampling from the distribution of . Define

Note that  is the relative frequency of outcome  in the first  runs. Note also that  is a random variable for the
compound experiment for each . By the law of large numbers,  should converge to , in some sense, as .
The function  is called the empirical probability density function, and it is in fact a (random) probability density function, since it
satisfies properties (a) and (b) of (2). Empirical probability density functions are displayed in most of the simulation apps that deal
with discrete variables.

It's easy to construct discrete probability density functions from other nonnegative functions defined on a countable set.

Suppose that  is a nonnegative function defined on , and let

If , then the function  defined by  for  is a discrete probability density function on .

Proof

P(A) = f(x) = f(x) = P( )∑
x∈A

∑
i∈I

∑
x∈Ai

∑
i∈I

Ai (3.1.2)

f

f P # S

3.1.2

S R
n n ∈ N+

S

S f

f(x) = 0 x ∉ S
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Clearly  for . also

Note that since we are assuming that  is nonnegative,  if and only if  for every . At the other extreme, 
could only occur if  is infinite (and the infinite series diverges). When  (so that we can construct the probability
density function ),  is sometimes called the normalizing constant. This result is useful for constructing probability density
functions with desired functional properties (domain, shape, symmetry, and so on).

Conditional Densities

Suppose again that  is a random variable on a probability space  and that  takes values in our discrete set . The
distributionn of  (and hence the probability density function of ) is based on the underlying probability measure on the sample
space . This measure could be a conditional probability measure, conditioned on a given event  (with ).
The probability density function in this case is

Except for notation, no new concepts are involved. Therefore, all results that hold for discrete probability density functions in
general have analogies for conditional discrete probability density functions.

For fixed  with  the function  is a discrete probability density function on  That is,

1.  for .
2. 
3.  for 

Proof

This is a consequence of the fact that  is a probability measure on . The function  plays
the same role for the conditional probabliity measure that  does for the original probability measure .

In particular, the event  could be an event defined in terms of the random variable  itself.

Suppose that  and . The conditional probability density function of  given  is the function on 
defined by

Proof

This follows from the previous theorem. . The numerator is  if 
and is 0 if .

Note that the denominator is simply the normalizing constant for  restricted to . Of course,  for .

Conditioning and Bayes' Theorem

Suppose again that  is a random variable defined on a probability space  and that  has a discrete distribution on ,
with probability density function . We assume that  for  so that the distribution has support . The versions of the
law of total probability and Bayes' theorem given in the following theorems follow immediately from the corresponding results in
the section on Conditional Probability. Only the notation is different.

Law of Total Probability. If  is an event then

Proof

f(x) ≥ 0 x ∈ S

f(x) = g(x) = = 1∑
x∈S

1

c
∑
x∈S

c

c
(3.1.5)

g c = 0 g(x) = 0 x ∈ S c = ∞

S 0 < c < ∞

f c

X (Ω,F ,P) X S

X X

(Ω,F) E ∈F P(E) > 0

f(x ∣ E) = P(X = x ∣ E), x ∈ S (3.1.6)

E ∈F P(E) > 0 x ↦ f(x ∣ E) S

f(x ∣ E) ≥ 0 x ∈ S

f(x ∣ E) = 1∑x∈S

f(x ∣ E) = P(X ∈ A ∣ E)∑x∈A ⊆ S

A ↦ P(A ∣ E) (Ω,F) x ↦ f(x ∣ E)

f P

E X

B ⊆ S P(X ∈ B) > 0 X X ∈ B B

f(x ∣ X ∈ B) = = , x ∈ B
f(x)

P(X ∈ B)

f(x)

f(y)∑y∈B

(3.1.7)

f(x ∣ X ∈ B) = P(X = x,X ∈ B)/P(X ∈ B) f(x) x ∈ B

x ∉ B

f B f(x ∣ B) = 0 x ∈ Bc

X (Ω,F ,P) X S

f f(x) > 0 x ∈ S S

E ∈F

P(E) = f(x)P(E ∣ X = x)∑
x∈S

(3.1.8)
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Note that  is a countable partition of the sample space . That is, these events are disjoint and their union
is the entire sample space . Hence

This result is useful, naturally, when the distribution of  and the conditional probability of  given the values of  are known.
When we compute  in this way, we say that we are conditioning on . Note that , as expressed by the formula, is a
weighted average of , with weight factors , over .

Bayes' Theorem. If  is an event with  then

Proof

Note that the numerator of the fraction on the right is . The denominator is 
 by the previous theorem. Hence the ratio is .

Bayes' theorem, named for Thomas Bayes, is a formula for the conditional probability density function of  given . Again, it is
useful when the quantities on the right are known. In the context of Bayes' theorem, the (unconditional) distribution of  is
referred to as the prior distribution and the conditional distribution as the posterior distribution. Note that the denominator in
Bayes' formula is  and is simply the normalizing constant for the function .

Examples and Special Cases

We start with some simple (albeit somewhat artificial) discrete distributions. After that, we study three special parametric models—
the discrete uniform distribution, hypergeometric distributions, and Bernoulli trials. These models are very important, so when
working the computational problems that follow, try to see if the problem fits one of these models. As always, be sure to try the
problems yourself before looking at the answers and proofs in the text.

Simple Discrete Distributions

Let  be the function defined by  for .

1. Find the probability density function  that is proportional to  as in .
2. Sketch the graph of  and find the mode of the distribution.
3. Find  where  has probability density function .

Answer

1.  for 
2. mode 
3. 

Let  be the function defined by  for .

1. Find the probability density function  that is proportional to .
2. Sketch the graph of  and find the mode of the distribution.
3. Find  where  has probability density function .

Answer
1.  for 
2. mode 
3. 

Let  be the function defined by  for .

1. Sketch the domain of .

{{X = x} : x ∈ S} Ω

Ω

P(E) = P(E∩ {X = x}) = P(X = x)P(E ∣ X = x) = f(x)P(E ∣ X = x)∑
x∈S

∑
x∈S

∑
x∈S

(3.1.9)

X E X

P(E) X P(E)

P(E ∣ X = x) f(x) x ∈ S

E ∈F P(E) > 0

f(x ∣ E) = , x ∈ S
f(x)P(E ∣ X = x)

f(y)P(E ∣ X = y)∑y∈S

(3.1.10)

P(X = x)P(E ∣ X = x) = P({X = x} ∩E)

P(E) P(X = x ∣ E) = f(x ∣ E)

X E

X

P(E) x ↦ f(x)P(E ∣ X = x)

g g(n) = n(10 −n) n ∈ {1, 2, … , 9}

f g

f

P(3 ≤ N ≤ 6) N f

f(n) = n(10 −n)1
165

n ∈ {1, 2, … , 9}

n = 5
94
165

g g(n) = (10 −n)n2 n ∈ {1, 2 … , 10}

f g

f

P(3 ≤ N ≤ 6) N f

f(n) = (10 −n)1
825

n2 n ∈ {1, 2, … , 9}

n = 7
428
825

g g(x, y) = x+y (x, y) ∈ {1, 2, 3}2

g
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2. Find the probability density function  that is proportional to .
3. Find the mode of the distribution.
4. Find  where  has probability density function .

Answer

1.  for 
2. mode 
3. 

Let  be the function defined by  for .

1. Sketch the domain of .
2. Find the probability density function  that is proportional to .
3. Find the mode of the distribution.
4. Find  where  has probability density function .

Answer
1.  for 
2. mode 
3. 

Consider the following game: An urn initially contains one red and one green ball. A ball is selected at random, and if the ball
is green, the game is over. If the ball is red, the ball is returned to the urn, another red ball is added, and the game continues. At
each stage, a ball is selected at random, and if the ball is green, the game is over. If the ball is red, the ball is returned to the
urn, another red ball is added, and the game continues. Let  denote the length of the game (that is, the number of selections
required to obtain a green ball). Find the probability density function of .

Solution

Note that  takes values in . Using the multiplication rule for conditional probabilities, the PDF  of  is given by

and in general,  for . By partial fractions,  for  so we can check that  is a

valid PDF:

Discrete Uniform Distributions

An element  is chosen at random from a finite set . The distribution of  is the discrete uniform distribution on .

1.  has probability density function  given by  for .
2.  for .

Proof

The phrase at random means that all outcomes are equally likely.

Many random variables that arise in sampling or combinatorial experiments are transformations of uniformly distributed variables.
The next few exercises review the standard methods of sampling from a finite population. The parameters  and  are positive
inteters.

Suppose that  elements are chosen at random, with replacement from a set  with  elements. Let  denote the ordered
sequence of elements chosen. Then  is uniformly distributed on the Cartesian power set , and has probability density
function  given by

f g

P(X > Y ) (X,Y ) f

f(x, y) = (x+y)1

36
(x, y) ∈ {1, 2, 3}2

(3, 3)
2
9

g g(x, y) = xy (x, y) ∈ {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}

g

f g

P [(X,Y ) ∈ {(1, 2), (1, 3), (2, 2), (2, 3)}] (X,Y ) f

f(x, y) = xy1
25

(x, y) ∈ {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}

(3, 3)
3
5
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3

1

4

1

3 ⋅ 4
(3.1.11)

f(x) = 1

x(x+1)
x ∈ N+ f(x) = −1

x
1

x+1
x ∈ N+ f

( − ) = ( − ) = (1 − ) = 1∑
x=1

∞
1

x

1

x+1
lim
n→∞

∑
x=1

n
1

x

1

x+1
lim
n→∞

1

n+1
(3.1.12)

X S X S

X f f(x) = 1/#(S) x ∈ S

P(X ∈ A) = #(A)/#(S) A ⊆ S
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Proof

Recall that .

Suppose that  elements are chosen at random, without replacement from a set  with  elements (so ). Let  denote
the ordered sequence of elements chosen. Then  is uniformly distributed on the set  of permutations of size  chosen from 

, and has probability density function  given by

Proof

Recall that the number of permutations of size  from  is .

Suppose that  elements are chosen at random, without replacement, from a set  with  elements (so ). Let 
denote the unordered set of elements chosen. Then  is uniformly distributed on the set  of combinations of size  chosen
from , and has probability density function  given by

Proof

Recall that the number of combinations of size  from  is .

Suppose that  is uniformly distributed on a finite set  and that  is a nonempty subset of . Then the conditional
distribution of  given  is uniform on .

Proof

From (7), the conditional probability density function of  given  is

Hypergeometric Models

Suppose that a dichotomous population consists of  objects of two different types:  of the objects are type 1 and  are type
0. Here are some typical examples:

The objects are persons, each either male or female.
The objects are voters, each either a democrat or a republican.
The objects are devices of some sort, each either good or defective.
The objects are fish in a lake, each either tagged or untagged.
The objects are balls in an urn, each either red or green.

A sample of  objects is chosen at random (without replacement) from the population. Recall that this means that the samples,
either ordered or unordered are equally likely. Note that this probability model has three parameters: the population size , the
number of type 1 objects , and the sample size . Each is a nonnegative integer with  and . Now, suppose that we
keep track of order, and let  denote the type of the th object chosen, for . Thus,  is an indicator variable
(that is, a variable that just takes values 0 and 1).

 has probability density function  given by

Proof

f(x) = , x ∈ S
1

mn
(3.1.13)

#( ) =Dn mn

n D m n ≤ m X

X S n

D f

f(x) = , x ∈ S
1

m(n)
(3.1.14)

n D m(n)

n D m n ≤ m W

W T n

D f

f(w) = , w ∈ T
1

( )m
n

(3.1.15)

n D ( )m
n

X S B S

X X ∈ B B

X X ∈ B

f(x ∣ B) = = = , x ∈ B
f(x)

P(X ∈ B)

1/#(S)

#(B)/#(S)

1

#(B)
(3.1.16)

m r m−r

n

m

r n r ≤ m n ≤ m

Xi i i ∈ {1, 2, … ,n} Xi

X = ( , , … , )X1 X2 Xn f

f( , , … , ) = , ( , , … , ) ∈ {0, 1  where y = + +⋯ +x1 x2 xn
(m−rr(y) )(n−y)

m(n)
x1 x2 xn }n x1 x2 xn (3.1.17)
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Recall again that the ordered samples are equally likely, and there are  such samples. The number of ways to select the 
type 1 objects and place them in the positions where  is . The number of ways to select the  type 0 objects and
place them in the positions where  is . Thus the result follows from the multiplication principle.

Note that the value of  depends only on , and hence is unchanged if  is
permuted. This means that  is exchangeable. In particular, the distribution of  is the same as the distribution of

, so . Thus, the variables are identically distributed. Also the distribution of  is the same as the

distribution of , so . Thus,  and  are not independent, and in fact are negatively

correlated.

Now let  denote the number of type 1 objects in the sample. Note that . Any counting variable can be written as a
sum of indicator variables.

 has probability density function  given by.

1.  if and only if  where .
2. If  is not a positive integer, there is a single mode at .
3. If  is a positive integer, then there are two modes, at  and .

Proof

Recall again that the unordered samples of size  chosen from the population are equally likely. By the multiplication
principle, the number of samples with exactly  type 1 objects and  type 0 objects is . The total number of
samples is .

1. Note that  if and only if . Writing the binomial coefficients in terms of factorials
and canceling terms gives  if and only if , where  is given above.

2. By the same argument,  if and only if . If  is not an integer then this cannot happen. Letting ,
it follows from (a) that  if  or .

3. If  is a positive integer, then by (b),  and by (a)  if  and  if .

The distribution defined by the probability density function in the last result is the hypergeometric distributions with parameters ,
, and . The term hypergeometric comes from a certain class of special functions, but is not particularly helpful in terms of

remembering the model. Nonetheless, we are stuck with it. The set of values  is a convenience set: it contains all of
the values that have positive probability, but depending on the parameters, some of the values may have probability 0. Recall our
convention for binomial coefficients: for ,  if . Note also that the hypergeometric distribution is unimodal:
the probability density function increases and then decreases, with either a single mode or two adjacent modes.

We can extend the hypergeometric model to a population of three types. Thus, suppose that our population consists of  objects; 
of the objects are type 1,  are type 2, and  are type 0. Here are some examples:

The objects are voters, each a democrat, a republican, or an independent.
The objects are cicadas, each one of three species: tredecula, tredecassini, or tredecim
The objects are peaches, each classified as small, medium, or large.
The objects are faculty members at a university, each an assistant professor, or an associate professor, or a full professor.

Once again, a sample of  objects is chosen at random (without replacement). The probability model now has four parameters: the
population size , the type sizes  and , and the sample size . All are nonnegative integers with  and .
Moreover, we now need two random variables to keep track of the counts for the three types in the sample. Let  denote the
number of type 1 objects in the sample and  the number of type 2 objects in the sample.

 has probability density function  given by

m(n) y

= 1xi r(y) n−y

= 0xi (m−r)(n−y)

f( , , … , )x1 x2 xn y = + +⋯ +x1 x2 xn ( , , … , )x1 x2 xn
( , , … , )X1 X2 Xn Xi

X1 P( = 1) =Xi
r

m
( , )Xi Xj

( , )X1 X2 P( = 1, = 1) =Xi Xj
r(r−1)

m(m−1)
Xi Xj

Y Y = ∑n
i=1 Xi

Y g

g(y) = , y ∈ {0, 1, … ,n}
( )( )r
y

m−r
n−y

( )m
n

(3.1.18)

g(y−1) < g(y) y < t t = (r+1)(n+1)/(m+2)

t ⌊t⌋

t t−1 t

n

y n−y ( )( )m
y

m−r
n−y

( )m

n

g(y−1) < g(y) ( )( ) < ( )( )r

y−1
m−r

n+1−y

r

y

m−r

n−y

g(y−1) < g(y) y < t t

f(y−1) = f(y) y = t t z = ⌊t⌋

g(y) < g(z) y < z y > z

t g(t−1) = g(t) g(y) < g(t−1) y < t−1 g(y) < g(t) y > t

m

r n

{0, 1, … ,n}

j, k ∈ N+ ( ) = 0k
j j> k

m r

s m−r−s

n

m r s n r+s ≤ m n ≤ m

Y

Z

(Y ,Z) h
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Proof

Once again, by the multiplication principle, the number of samples of size  from the population with exactly  type 1 objects, 
 type 2 objects, and  type 0 objects is . The total number of samples of size  is .

The distribution defined by the density function in the last exericse is the bivariate hypergeometric distribution with parameters ,
, , and . Once again, the domain given is a convenience set; it includes the set of points with positive probability, but depending

on the parameters, may include points with probability 0. Clearly, the same general pattern applies to populations with even more
types. However, because of all of the parameters, the formulas are not worthing remembering in detail; rather, just note the pattern,
and remember the combinatorial meaning of the binomial coefficient. The hypergeometric model will be revisited later in this
chapter, in the section on joint distributions and in the section on conditional distributions. The hypergeometric distribution and the
multivariate hypergeometric distribution are studied in detail in the chapter on Finite Sampling Models. This chapter contains a
variety of distributions that are based on discrete uniform distributions.

Bernoulli Trials

A Bernoulli trials sequence is a sequence  of independent, identically distributed indicator variables. Random
variable  is the outcome of trial , where in the usual terminology of reliability, 1 denotes success while 0 denotes failure, The
process is named for Jacob Bernoulli. Let  denote the success parameter of the process. Note that the
indicator variables in the hypergeometric model satisfy one of the assumptions of Bernoulli trials (identical distributions) but not
the other (independence).

 has probability density function  given by

Proof

By definition,  and . Equivalently,  for . The
formula for  then follows by independence.

Now let  denote the number of successes in the first  trials. Note that , so we see again that a complicated random
variable can be written as a sum of simpler ones. In particular, a counting variable can always be written as a sum of indicator
variables.

 has probability density function  given by

1.  if and only if , wher .
2. If  is not a positive integer, there is a single mode at .
3. If  is a positive integer, then there are two modes, at  and .

Proof

From the previous result, any particular sequence of  Bernoulli trials with  successes and  failures has probability 
. The number of such sequences is , so the formula for  follows by the additivity of probability.

1. Note that  if and only if . Writing the binomial coefficients in
terms of factorials and canceling gives  if and only if  where .

2. By the same argument,  if and only if . If  is not an integer, this cannot happen. Letting , it
follows from (a) that  if  or .

3. If  is a positive integer, then by (b),  and by (a)  if  and  if .

h(y, z) = , (y, z) ∈ {0, 1, … ,n  with y+z ≤ n
( )( )( )r

y

s

z

m−r−s

n−y−z

( )m

n

}2 (3.1.19)

n y

z n−y−z ( )( )( )r
y

s
z

m−r−s
n−y−z n ( )m

n

m

r s n

( , , …)X1 X2

Xi i

p = P( = 1) ∈ [0, 1]Xi

X = ( , , … , )X1 X2 Xn f

f( , , … , ) = (1 −p , ( , , … , ) ∈ {0, 1 ,  where y = + +⋯ +x1 x2 xn py )n−y x1 x2 xn }n x1 x2 xn (3.1.20)

P( = 1) = pXi P( = 0) = 1 −pXi P( = x) = (1 −pXi px )1−x x ∈ {0, 1}

f

Y n Y = ∑n

i=1 Xi

Y g

g(y) =( ) (1 −p , y ∈ {0, 1, … ,n}
n

y
py )n−y (3.1.21)

g(y−1) < g(y) y < t t = (n+1)p

t ⌊t⌋

t t−1 t

n y n−y

(1 −ppy )n−y ( )ny g

g(y−1) < g(y) ( ) (1 −p < ( ) (1 −pn
y−1 py−1 )n+1−y n

y py )n−y

g(y−1) < g(y) y < t t = (n+1)p

g(y−1) = g(y) y = t t z = ⌊t⌋

g(y) < g(z) y < z y > z

t g(t−1) = g(t) g(y) < g(t−1) y < t−1 g(y) < g(t) y > t
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The distribution defined by the probability density function in the last theorem is called the binomial distribution with parameters 
and . The distribution is unimodal: the probability density function at first increases and then decreases, with either a single mode
or two adjacent modes. The binomial distribution is studied in detail in the chapter on Bernoulli Trials.

Suppose that  and let  denote the trial number of the first success. Then  has probability density function  given by

The probability density function  is decreasing and the mode is .

Proof

For , the event  means that the first  trials were failures and trial  was a success. Each trial results in
failure with probability  and success with probability , and the trials are independent, so .
Using geometric series, we can check that

The distribution defined by the probability density function in the last exercise is the geometric distribution on  with parameter 
. The geometric distribution is studied in detail in the chapter on Bernoulli Trials.

Sampling Problems

In the following exercises, be sure to check if the problem fits one of the general models above.

An urn contains 30 red and 20 green balls. A sample of 5 balls is selected at random, without replacement. Let  denote the
number of red balls in the sample.

1. Compute the probability density function of  explicitly and identify the distribution by name and parameter values.
2. Graph the probability density function and identify the mode(s).
3. Find .

Answer
1. , , , , , . Hypergeometric with 

, , 
2. mode: 
3. 

In the ball and urn experiment, select sampling without replacement and set , , and . Run the experiment
1000 times and note the agreement between the empirical density function of  and the probability density function.

An urn contains 30 red and 20 green balls. A sample of 5 balls is selected at random, with replacement. Let  denote the
number of red balls in the sample.

1. Compute the probability density function of  explicitly and identify the distribution by name and parameter values.
2. Graph the probability density function and identify the mode(s).
3. Find .

Answer
1. , , , , , . Binomial with , 

2. mode: 
3. 

In the ball and urn experiment, select sampling with replacement and set , , and . Run the experiment
1000 times and note the agreement between the empirical density function of  and the probability density function.

n

p

p > 0 N N h

h(n) = (1 −p p, n ∈)n−1
N+ (3.1.22)

h n = 1

n ∈ N+ {N = n} n−1 n

1 −p p P(N = n) = (1 −p p)n−1

h(n) = p(1 −p = = 1∑
n=1

∞

∑
n=1

∞

)n−1 p

1 −(1 −p)
(3.1.23)

N+

p

Y

Y

P(Y > 3)

f(0) = 0.0073 f(1) = 0.0686 f(2) = 0.2341 f(3) = 0.3641 f(4) = 0.2587 f(5) = 0.0673

m = 50 r = 30 n = 5

y = 3

P(Y > 3) = 0.3260

m = 50 r = 30 n = 5

Y

Y

Y

P(Y > 3)

f(0) = 0.0102 f(1) = 0.0768 f(2) = 0.2304 f(3) = 0.3456 f(4) = 0.2592 f(5) = 0.0778 n = 5

p = 3/5

y = 3

P(Y > 3) = 0.3370

m = 50 r = 30 n = 5

Y
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A group of voters consists of 50 democrats, 40 republicans, and 30 independents. A sample of 10 voters is chosen at random,
without replacement. Let  denote the number of democrats in the sample and  the number of republicans in the sample.

1. Give the probability density function of .
2. Give the probability density function of .
3. Give the probability density function of .
4. Find the probability that the sample has at least 4 democrats and at least 4 republicans.

Answer

1.  for . This is the hypergeometric distribution with parameters ,  and 

.

2.  for . This is the hypergeometric distribution with parameters ,  and 

.

3.  for  with . This is the bivariate hypergeometric distribution

with parameters , ,  and .
4. 

The Math Club at Enormous State University (ESU) has 20 freshmen, 40 sophomores, 30 juniors, and 10 seniors. A committee
of 8 club members is chosen at random, without replacement to organize -day activities. Let  denote the number of
freshman in the sample,  the number of sophomores, and  the number of juniors.

1. Give the probability density function of .
2. Give the probability density function of .
3. Give the probability density function of .
4. Give the probability density function of .
5. Give the probability density function of .
6. Find the probability that the committee has no seniors.

Answer

1.  for . This is the hypergeometric distribution with parameters , , and 

.

2.  for . This is the hypergeometric distribution with parameters , , and 

.

3.  for . This is the hypergeometric distribution with parameters , , and 

.

4.  for  with . This is the bivariate hypergeometric distribution

with parameters , ,  and .

5.  for  with . This is the tri-variate

hypergeometric distribution with parameters , , , , and .
6. 

Coins and Dice

Suppose that a coin with probability of heads  is tossed repeatedly, and the sequence of heads and tails is recorded.

X Y

X

Y

(X,Y )

g(x) =
( )( )50

x
70

10−x

( )120
10

x ∈ {0, 1, … , 10} m = 120 r = 50

n = 10

h(y) =
( )( )40

y
80

10−y

( )120
10

y ∈ {0, 1, … , 10} m = 120 r = 40

n = 10

f(x, y) =
( )( )( )50

x
40
y

30
10−x−y

( )120
10

(x, y) ∈ {0, 1, … , 10}2 x+y ≤ 10

m = 120 r = 50 s = 40 n = 10

P(X ≥ 4,Y ≥ 4) = ≈ 0.20015 137 200
75 597 113

π X

Y Z

X

Y

Z

(X,Y )

(X,Y ,Z)

(x) =fX
( )( )20

x
80

8−x

( )100
8

x ∈ {0, 1, … , 8} m = 100 r = 20

n = 8

(y) =fY
( )( )40

y
60

8−y

( )100
8

y ∈ {0, 1, … , 8} m = 100 r = 40

n = 8

(z) =fZ
( )( )30

z
70

8−z

( )100
8

z ∈ {0, 1, … , 8} m = 100 r = 30

n = 8

(x, y) =fX,Y

( )( )( )20
x

40
y

40
8−x−y

( )100
8

(x, y) ∈ {0, 1, … , 8}2 x+y ≤ 8

m = 100 r = 20 s = 40 n = 10

(x, y, z) =fX,Y,Z

( )( )( )( )20
x

40
y

30
z

10
8−x−y−z

( )100
8

(x, y, z) ∈ {0, 1, … , 8}3 x+y+z ≤ 8

m = 100 r = 20 s = 40 t = 30 n = 8

P(X+Y +Z = 8) = ≈ 0.417156 597 013

275 935 140

p
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1. Identify the underlying probability model by name and parameter.
2. Let  denote the number of heads in the first  tosses. Give the probability density function of  and identify the

distribution by name and parameters.
3. Let  denote the number of tosses needed to get the first head. Give the probability density function of  and identify the

distribution by name and parameter.

Answer
1. Bernoulli trials with success parameter .
2.  for . This is the binomial distribution with trial parameter  and success

parameter .
3.  for . This is the geometric distribution with success parameter .

Suppose that a coin with probability of heads  is tossed 5 times. Let  denote the number of heads.

1. Compute the probability density function of  explicitly.
2. Graph the probability density function and identify the mode.
3. Find .

Answer
1. , , , , , 
2. mode: 
3. 

In the binomial coin experiment, set  and . Run the experiment 1000 times and compare the empirical density
function of  with the probability density function.

Suppose that a coin with probability of heads  is tossed until heads occurs. Let  denote the number of tosses.

1. Find the probability density function of .
2. Find .

Answer
1.  for 
2. 

In the negative binomial experiment, set  and . Run the experiment 1000 times and compare the empirical
density function with the probability density function.

Suppose that two fair, standard dice are tossed and the sequence of scores  recorded. Let  denote the
sum of the scores,  the minimum score, and  the maximum score.

1. Find the probability density function of . Identify the distribution by name.
2. Find the probability density function of .
3. Find the probability density function of .
4. Find the probability density function of .
5. Find the probability density function of .

Answer

We denote the PDFs by , , , , and  respectively.

1.  for . This is the uniform distribution on .
2. , , , , , 
3. , , , , , 
4. , , , , , 
5.  if ,  if  where  with 

Y n Y

N N

p

f(k) = ( ) (1 −pn
k
pk )n−k k ∈ {0, 1, … ,n} n

p

g(n) = p(1 −p)n−1 n ∈ N+ p

p = 0.4 Y

Y

P(Y > 3)

f(0) = 0.0778 f(1) = 0.2592 f(2) = 0.3456 f(3) = 0.2304 f(4) = 0.0768 f(5) = 0.0102

k = 2

P(Y > 3) = 0.0870

n = 5 p = 0.4

Y

p = 0.2 N

N

P(N ≤ 5)

f(n) = (0.8 0.2)n−1 n ∈ N+

P(N ≤ 5) = 0.67232

k = 1 p = 0.2

( , )X1 X2 Y = +X1 X2

U = min{ , }X1 X2 V = max{ , }X1 X2

( , )X1 X2

Y

U

V

(U,V )

f g h1 h2 h

f( , ) =x1 x2
1

36
( , ) ∈ {1, 2, 3, 4, 5, 6x1 x2 }2 {1, 2, 3, 4, 5, 6}2

g(2) = g(12) = 1
36

g(3) = g(11) = 2
36

g(4) = g(10) = 3
36

g(5) = g(9) = 4
36

g(6) = g(8) = 5
36

g(7) = 6
36

(1) =h1
11
36

(2) =h1
9

36
(3) =h1

7

36
(4) =h1

5

36
(5) =h1

3

36
(6) =h1

1
36

(1) =h2
1

36
(2) =h2

3
36

(3) =h2
5

36
(4) =h2

7
36

(5) =h2
9

36
(6) =h2

11
36

h(u, v) = 2
36

u < v h(u, v) = 1
36

u = v (u, v) ∈ {1, 2, 3, 4, 5, 6}2 u ≤ v
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Note that  in the last exercise could serve as the outcome of the experiment that consists of throwing two standard dice if we
did not bother to record order. Note from the previous exercise that this random vector does not have a uniform distribution when
the dice are fair. The mistaken idea that this vector should have the uniform distribution was the cause of difficulties in the early
development of probability.

In the dice experiment, select  fair dice. Select the following random variables and note the shape and location of the
probability density function. Run the experiment 1000 times. For each of the following variables, compare the empirical
density function with the probability density function.

1. , the sum of the scores.
2. , the minimum score.
3. , the maximum score.

In the die-coin experiment, a fair, standard die is rolled and then a fair coin is tossed the number of times showing on the die.
Let  denote the die score and  the number of heads.

1. Find the probability density function of . Identify the distribution by name.
2. Find the probability density function of .

Answer

1.  for . This is the uniform distribution on .
2. , , , , , , 

Run the die-coin experiment 1000 times. For the number of heads, compare the empirical density function with the probability
density function.

Suppose that a bag contains 12 coins: 5 are fair, 4 are biased with probability of heads ; and 3 are two-headed. A coin is
chosen at random from the bag and tossed 5 times. Let  denote the probability of heads of the selected coin and let  denote
the number of heads.

1. Find the probability density function of .
2. Find the probability density function of .

Answer
1. , , 
2. , , , , , 

Compare thedie-coin experiment with the bag of coins experiment. In the first experiment, we toss a coin with a fixed probability of
heads a random number of times. In second experiment, we effectively toss a coin with a random probability of heads a fixed
number of times. In both cases, we can think of starting with a binomial distribution and randomizing one of the parameters.

In the coin-die experiment, a fair coin is tossed. If the coin lands tails, a fair die is rolled. If the coin lands heads, an ace-six flat
die is tossed (faces 1 and 6 have probability  each, while faces 2, 3, 4, 5 have probability  each). Find the probability
density function of the die score .

Answer

 for ,  for 

Run the coin-die experiment 1000 times, with the settings in the previous exercise. Compare the empirical density function
with the probability density function.

Suppose that a standard die is thrown 10 times. Let  denote the number of times an ace or a six occurred. Give the probability
density function of  and identify the distribution by name and parameter values in each of the following cases:

1. The die is fair.

(U,V )

n = 2

Y

U

V

N Y

N

Y

g(n) = 1
6

n ∈ {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6}

h(0) = 63
384

h(1) = 120
384

h(2) = 90
384

h(3) = 64
384

h(4) = 29
384

h(5) = 8
384

h(6) = 1
384

1
3

V Y

V

Y

g(1/2) = 5/12 g(1/3) = 4/12 g(1) = 3/12

h(0) = 5311/93312h(1) = 16315/93312h(2) = 22390/93312h(3) = 17270/93312h(4) = 7355/93312

h(5) = 24671/93312

1
4

1
8

Y

f(y) = 5/24 y ∈ {1, 6} f(y) = 7/24 y ∈ {2, 3, 4, 5}

Y

Y
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2. The die is an ace-six flat.

Answer

1.  for . This is the binomial distribution with trial parameter  and success
parameter 

2.  for . This is the binomial distribution with trial parameter  and success
parameter 

Suppose that a standard die is thrown until an ace or a six occurs. Let  denote the number of throws. Give the probability
density function of  and identify the distribution by name and parameter values in each of the following cases:

1. The die is fair.
2. The die is an ace-six flat.

Answer

1.  for . This is the geometric distribution with success parameter 
2.  for . This is the geometric distribution with success parameter 

Fred and Wilma takes turns tossing a coin with probability of heads : Fred first, then Wilma, then Fred again, and so
forth. The first person to toss heads wins the game. Let  denote the number of tosses, and  the event that Wilma wins.

1. Give the probability density function of  and identify the distribution by name.
2. Compute  and sketch the graph of this probability as a function of .
3. Find the conditional probability density function of  given .

Answer
1.  for . This is the geometric distribution with success parameter .
2. 
3.  for 

The alternating coin tossing game is studied in more detail in the section on The Geometric Distribution in the chapter on Bernoulli
trials.

Suppose that  players each have a coin with probability of heads , where  and where .

1. Suppose that the players toss their coins at the same time. Find the probability that there is an odd man, that is, one player
with a different outcome than all the rest.

2. Suppose now that the players repeat the procedure in part (a) until there is an odd man. Find the probability density
function of , the number of rounds played, and identify the distribution by name.

Answer
1. The probability is  if , and is  if .
2. Let  denote the probability in part (a).  has PDF  for , and has the geometric distribution

with parameter .

The odd man out game is treated in more detail in the section on the Geometric Distribution in the chapter on Bernoulli Trials.

Cards

Recall that a poker hand consists of 5 cards chosen at random and without replacement from a standard deck of 52 cards. Let 
 denote the number of spades in the hand and  the number of hearts in the hand. Give the probability density function of

each of the following random variables, and identify the distribution by name:

1. 
2. 
3. 

f(k) = ( )10
k

( )1
3

k
( )2

3

10−k
k ∈ {0, 1, … , 10} n = 10

p = 1
3

f(k) = ( )10
k ( )1

2

10
k ∈ {0, 1, … , 10} n = 10

p = 1
2

N

N

g(n) = ( )2
3

n−1 1
3

n ∈ N+ p = 1
3

g(n) = ( )1
2

n
n ∈ N+ p = 1

2

p ∈ (0, 1)

N W

N

P(W ) p

N W

f(n) = p(1 −p)n−1 n ∈ N+ p

P(W ) =
1−p

2−p

f(n ∣ W ) = p(2 −p)(1 −p)n−2 n ∈ {2, 4, …}

k p k ∈ {2, 3, …} p ∈ (0, 1)

N

2p(1 −p) k = 2 kp(1 −p +k (1 −p))k−1 pk−1 k > 2

rk N f(n) = (1 −rk)n−1rk n ∈ N

rk

X Y

X

Y

(X,Y )
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Answer

1.  for . This is the hypergeometric distribution with population size , type

parameter , and sample size 

2.  for . This is the same hypergeometric distribution as in part (a).

3.  for  with . This is a bivariate hypergeometric distribution.

Recall that a bridge hand consists of 13 cards chosen at random and without replacement from a standard deck of 52 cards. An
honor card is a card of denomination ace, king, queen, jack or 10. Let  denote the number of honor cards in the hand.

1. Find the probability density function of  and identify the distribution by name.
2. Find the probability that the hand has no honor cards. A hand of this kind is known as a Yarborough, in honor of Second

Earl of Yarborough.

Answer

1.  for . This is the hypergeometric distribution with population size , type

parameter  and sample size .
2. 0.00547

In the most common high card point system in bridge, an ace is worth 4 points, a king is worth 3 points, a queen is worth 2
points, and a jack is worth 1 point. Find the probability density function of , the point value of a random bridge hand.

Reliability

Suppose that in a batch of 500 components, 20 are defective and the rest are good. A sample of 10 components is selected at
random and tested. Let  denote the number of defectives in the sample.

1. Find the probability density function of  and identify the distribution by name and parameter values.
2. Find the probability that the sample contains at least one defective component.

Answer

1.  for . This is the hypergeometric distribution with population size , type

parameter , and sample size .

2. 

A plant has 3 assembly lines that produce a certain type of component. Line 1 produces 50% of the components and has a
defective rate of 4%; line 2 has produces 30% of the components and has a defective rate of 5%; line 3 produces 20% of the
components and has a defective rate of 1%. A component is chosen at random from the plant and tested.

1. Find the probability that the component is defective.
2. Given that the component is defective, find the conditional probability density function of the line that produced the

component.

Answer

Let  the event that the item is defective, and  the PDF of the line number given .

1. 
2. , , 

g(x) =
( )( )13

x
39

5−x

( )52
5

x ∈ {0, 1, 2, 3, 4, 5} m = 52

r = 13 n = 5

h(y) =
( )( )13

y
39

5−y

( )52
5

y ∈ {0, 1, 2, 3, 4, 5}

f(x, y) =
( )( )( )13

x
13
y

26
5−x−y

( )52
5

(x, y) ∈ {0, 1, 2, 3, 4, 5}2 x+y ≤ 5

N

N

f(n) =
( )( )20

n
32

13−n

( )52
13

n ∈ {0, 1, … , 13} m = 52

r = 20 n = 13

V

X

X

f(x) =
( )( )20

x
480

10−x

( )500
10

x ∈ {0, 1, … , 10} m = 500

r = 20 n = 10

P(X ≥ 1) = 1 − ≈= 0.3377
( )480

10

( )500
10

D f(⋅ ∣ D) D

P(D) = 0.037

f(1 ∣ D) = 0.541 f(2 ∣ D) = 0.405 f(3 ∣ D) = 0.054
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Recall that in the standard model of structural reliability, a systems consists of  components, each of which, independently of the
others, is either working for failed. Let  denote the state of component , where 1 means working and 0 means failed. Thus, the
state vector is . The system as a whole is also either working or failed, depending only on the states of the
components. Thus, the state of the system is an indicator random variable  that depends on the states of the components
according to a structure function . In a series system, the system works if and only if every components works.
In a parallel system, the system works if and only if at least one component works. In a  out of  system, the system works if and
only if at least  of the  components work.

The reliability of a device is the probability that it is working. Let  denote the reliability of component , so that 
 is the vector of component reliabilities. Because of the independence assumption, the system reliability

depends only on the component reliabilities, according to a reliability function . Note that when all component
reliabilities have the same value , the states of the components form a sequence of  Bernoulli trials. In this case, the system
reliability is, of course, a function of the common component reliability .

Suppose that the component reliabilities all have the same value . Let  denote the state vector and  denote the number of
working components.

1. Give the probability density function of .
2. Give the probability density function of  and identify the distribution by name and parameter.
3. Find the reliability of the  out of  system.

Answer
1.  for  where 
2.  for . This is the binomial distribution with trial parameter  and success

parameter .
3. 

Suppose that we have 4 independent components, with common reliability . Let  denote the number of working
components.

1. Find the probability density function of  explicitly.
2. Find the reliability of the parallel system.
3. Find the reliability of the 2 out of 4 system.
4. Find the reliability of the 3 out of 4 system.
5. Find the reliability of the series system.

Answer
1. , , , 
2. 
3. 
4. 
5. 

Suppose that we have 4 independent components, with reliabilities , , , and . Let  denote
the number of working components.

1. Find the probability density function of .
2. Find the reliability of the parallel system.
3. Find the reliability of the 2 out of 4 system.
4. Find the reliability of the 3 out of 4 system.
5. Find the reliability of the series system.

Answer
1. , , , , 
2. 
3. 

n

Xi i

X = ( , , … , )X1 X2 Xn

U = u(X)

u : {0, 1 → {0, 1}}n

k n

k n

= P( = 1)pi Xi i

p = ( , , … , )p1 p2 pn
r(p) = P(U = 1)

p n

p

p X Y

X

Y

k n

f( , , … , ) = (1 −px1 x2 xn py )n−y ( , , … , ) ∈ {0, 1x1 x2 xn }n y = + ⋯ +x1 x2 xn
g(k) = ( ) (1 −pn

y
py )n−y y ∈ {0, 1, … ,n} n

p

r(p) = ( ) (1 −p∑n
i=k

n

i
pi )n−i

p = 0.8 Y

Y

g(0) = 0.0016 g(1) = 0.0256 g(2) = 0.1536 g(3) = g(4) = 0.4096

= 0.9984r4,1

= 0.9729r4,2

= 0.8192r4,3

= 0.4096r4,4

= 0.6p1 = 0.7p2 = 0.8p3 = 0.9p4 Y

Y

g(0) = 0.0024 g(1) = 0.0404 g(2) = 0.2.144 g(3) = 0.4404 g(4) = 0.3024

= 0.9976r4,1

= 0.9572r4,2
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4. 
5. 

The Poisson Distribution

Suppose that . Define  by

1.  is a probability density function.
2.  if and only if .
3. If  is not a positive integer, there is a single mode at 
4. If  is a positive integer, there are two modes at  and .

Proof
1. Recall from calculus, the exponential series

Hence  is a probability density function.
2. Note that  if and only if  if and only if .

3. By the same argument,  if and only if . If  is not a positive integer this cannot happen. Hence,
letting , it follows from (b) that  if  or .

4. If  is a positive integer, then . From (b),  if  and  if .

The distribution defined by the probability density function in the previous exercise is the Poisson distribution with parameter ,
named after Simeon Poisson. Note that like the other named distributions we studied above (hypergeometric and binomial), the
Poisson distribution is unimodal: the probability density function at first increases and then decreases, with either a single mode or
two adjacent modes. The Poisson distribution is studied in detail in the Chapter on Poisson Processes, and is used to model the
number of “random points” in a region of time or space, under certain ideal conditions. The parameter  is proportional to the size
of the region of time or space.

Suppose that the customers arrive at a service station according to the Poisson model, at an average rate of 4 per hour. Thus,
the number of customers  who arrive in a 2-hour period has the Poisson distribution with parameter 8.

1. Find the modes.
2. Find .

Answer
1. modes: 7, 8
2. 

In the Poisson experiment, set  and . Run the simulation 1000 times and compare the empirical density function to
the probability density function.

Suppose that the number of flaws  in a piece of fabric of a certain size has the Poisson distribution with parameter 2.5.

1. Find the mode.
2. Find .

Answer
1. mode: 2
2. 

Suppose that the number of raisins  in a piece of cake has the Poisson distribution with parameter 10.

= 0.7428r4,3

= 0.3024r4,4

a > 0 f

f(n) = , n ∈ Ne−a a
n

n!
(3.1.24)

f

f(n−1) < f(n) n < a

a ⌊a⌋

a a−1 a

=∑
n=0

∞
an

n!
ea (3.1.25)

f

f(n−1) < f(n) <an−1

(n−1)!

an

n!
1 < a

n

f(n−1) = f(n) a = n a

k = ⌊a⌋ f(n) < f(k) n < k n > k

a f(a−1) = f(a) f(n) < f(a−1) n < a−1 f(n) < f(a) n > a

a

a

N

P(N ≥ 6)

P(N > 6) = 0.8088

r = 4 t = 2

N

P(N > 4)

P(N > 4) = 0.1088

N
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1. Find the modes.
2. Find .

Answer
1. modes: 9, 10
2. 

A Zeta Distribution

Let  be the function defined by  for .

1. Find the probability density function  that is proportional to .
2. Find the mode of the distribution.
3. Find  where  has probability density function .

Answer

1.  for . Recall that 
2. Mode 
3. 

The distribution defined in the previous exercise is a member of the zeta family of distributions. Zeta distributions are used to
model sizes or ranks of certain types of objects, and are studied in more detail in the chapter on Special Distributions.

Benford's Law

Let  be the function defined by  for . (The logarithm function is
the base 10 common logarithm, not the base  natural logarithm.)

1. Show that  is a probability density function.
2. Compute the values of  explicitly, and sketch the graph.
3. Find  where  has probability density function .

Answer

1. Note that . The sum collapses.

2. 1 2 3 4 5 6 7 8 9

0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0458

3. 

The distribution defined in the previous exercise is known as Benford's law, and is named for the American physicist and engineer
Frank Benford. This distribution governs the leading digit in many real sets of data. Benford's law is studied in more detail in the
chapter on Special Distributions.

Data Analysis Exercises

In the M&M data, let  denote the number of red candies and  the total number of candies. Compute and graph the
empirical probability density function of each of the following:

1. 
2. 
3.  given 

Answer

We denote the PDF of  by  and the PDF of  by 

1. 3 4 5 6 8 9 10 11 12 14 15 20

P(8 ≤ N ≤ 12)

P(8 ≤ N ≤ 12) = 0.5713

g g(n) = 1

n2 n ∈ N+

f g

P(N ≤ 5) N f

f(n) = 6

π2n2
n ∈ N+ =∑∞

n=1
1

n2

π2

6

n = 1

P(N ≤ 5) = 5269

600π2

f f(d) = log(d+1) −log(d) = log(1 + )1
d

d ∈ {1, 2, … , 9}

e

f

f

P(X ≤ 3) X f

f(d) = log(10) = 1∑9
d=1

d

f(d)

log(4) ≈ 0.6020

R N

R

N

R N > 57

R f N g

r
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2. 50 53 54 55 56 57 58 59 60 61

3. 3 4 6 8 9 11 12 14 15

In the Cicada data, let  denotes gender,  species type, and  body weight (in grams). Compute the empirical probability
density function of each of the following:

1. 
2. 
3. 
4.  given  grams.

Answer

We denote the PDF of  by , the PDF of  by  and the PDF of  by .

1. , 
2. , , 
3. , , , , , 
4. , 
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30
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30
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30

r

f(r ∣ N > 57)1
16

1
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16

3
16

3
16

1
16
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16
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16
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16

G S W

G

S

(G,S)

G W > 0.20

G g S h (G,S) f

g(0) = 59

104
g(1) = 45

104

h(0) = 44

104
h(1) = 6

104
h(2) = 54

104

f(0, 0) = 16

104
f(0, 1) = 3

104
f(0, 2) = 40

104
f(1, 0) = 28

104
f(1, 1) = 3

104
f(1, 2) = 14

104

g(0 ∣ W > 0.2) = 31
73

g(1 ∣ W > 0.2) = 42
73
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