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4.8: Expected Value and Covariance Matrices
        

The main purpose of this section is a discussion of expected value and covariance for random matrices and vectors. These topics are somewhat specialized, but are
particularly important in multivariate statistical models and for the multivariate normal distribution. This section requires some prerequisite knowledge of linear
algebra.

We assume that the various indices  that occur in this section are positive integers. Also we assume that expected values of real-valued random variables
that we reference exist as real numbers, although extensions to cases where expected values are  or  are straightforward, as long as we avoid the dreaded
indeterminate form .

Basic Theory

Linear Algebra

We will follow our usual convention of denoting random variables by upper case letters and nonrandom variables and constants by lower case letters. In this section,
that convention leads to notation that is a bit nonstandard, since the objects that we will be dealing with are vectors and matrices. On the other hand, the notation we
will use works well for illustrating the similarities between results for random matrices and the corresponding results in the one-dimensional case. Also, we will try to
be careful to explicitly point out the underlying spaces where various objects live.

Let  denote the space of all  matrices of real numbers. The  entry of  is denoted  for  and . We will
identify  with , so that an ordered -tuple can also be thought of as an  column vector. The transpose of a matrix  is denoted —the 
matrix whose  entry is the  entry of . Recall the definitions of matrix addition, scalar multiplication, and matrix multiplication. Recall also the standard
inner product (or dot product) of :

The outer product of  and  is , the  matrix whose  entry is . Note that the inner product is the trace (sum of the diagonal entries) of the outer
product. Finally recall the standard norm on , given by

Recall that inner product is bilinear, that is, linear (preserving addition and scalar multiplication) in each argument separately. As a consequence, for ,

Expected Value of a Random Matrix

As usual, our starting point is a random experiment modeled by a probability space . So to review,  is the set of outcomes,  the collection of events, and
 the probability measure on the sample space . It's natural to define the expected value of a random matrix in a component-wise manner.

Suppose that  is an  matrix of real-valued random variables, whose  entry is denoted . Equivalently,  is as a random  matrix, that is, a
random variable with values in . The expected value  is defined to be the  matrix whose  entry is , the expected value of .

Many of the basic properties of expected value of random variables have analogous results for expected value of random matrices, with matrix operation replacing
the ordinary ones. Our first two properties are the critically important linearity properties. The first part is the additive property—the expected value of a sum is the
sum of the expected values.

 if  and  are random  matrices.

Proof

This is true by definition of the matrix expected value and the ordinary additive property. Note that . The left side is the 
entry of  and the right side is the  entry of .

The next part of the linearity properties is the scaling property—a nonrandom matrix factor can be pulled out of the expected value.

Suppose that  is a random  matrix.

1.  if .
2.  if .

Proof

1. By the ordinary linearity and scaling properties, . The left side is the  entry of  and the right side is the 

 entry of .
2. The proof is similar to (a).

Recall that for independent, real-valued variables, the expected value of the product is the product of the expected values. Here is the analogous result for random
matrices.

 if  is a random  matrix,  is a random  matrix, and  and  are independent.

Proof

By the ordinary linearity properties and by the independence assumption,

m, n, p, k

∞ −∞
∞ −∞

R
m×n m ×n (i, j) a ∈ R

m×n aij i ∈ {1, 2, … , m} j ∈ {1, 2, … , n}

R
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R
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x, y ∈ R
n

⟨x, y⟩ = x ⋅ y = y =xT ∑
i=1

n

xiyi (4.8.1)

x y xyT n ×n (i, j) xiyj

R
n
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√ + +⋯ +x2
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n
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√ (4.8.2)

x, y ∈ R
n

∥x +y = ∥x +∥y +2⟨x, y⟩∥2 ∥2 ∥2 (4.8.3)

(Ω,F ,P) Ω F

P (Ω,F)

X m ×n (i, j) Xij X m ×n

R
m×n

E(X) m ×n (i, j) E ( )Xij Xij

E(X +Y ) =E(X) +E(Y ) X Y m ×n

E ( + ) =E ( ) +E ( )Xij Yij Xij Yij (i, j)
E(X +Y ) (i, j) E(X) +E(Y )

X n ×p

E(aX) = aE(X) a ∈ R
m×n

E(Xa) =E(X)a a ∈ R
p×n

E( )= E ( )∑n
j=1 aijXjk ∑n

j=1 aij Xjk (i, k) E(aX)

(i, k) aE(X)

E(XY ) =E(X)E(Y ) X m ×n Y n ×p X Y
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The left side is the  entry of  and the right side is the  entry of .

Actually the previous result holds if  and  are simply uncorrelated in the sense that  and  are uncorrelated for each ,  and 
. We will study covariance of random vectors in the next subsection.

Covariance Matrices

Our next goal is to define and study the covariance of two random vectors.

Suppose that  is a random vector in  and  is a random vector in .

1. The covariance matrix of  and  is the  matrix  whose  entry is  the ordinary covariance of  and .
2. Assuming that the coordinates of  and  have positive variance, the correlation matrix of  and  is the  matrix  whose  entry is 

, the ordinary correlation of  and 

Many of the standard properties of covariance and correlation for real-valued random variables have extensions to random vectors. For the following three results, 
is a random vector in  and  is a random vector in .

Proof

By the definition of the expected value of a random vector and by the defintion of matrix multiplication, the  entry of  is simply 
. The expected value of this entry is , which in turn, is the  entry of 

Thus, the covariance of  and  is the expected value of the outer product of  and . Our next result is the computational formula for
covariance: the expected value of the outer product of  and  minus the outer product of the expected values.

.

Proof

The  entry of  is , which by the standard computational formula, is , which in turn is
the  entry of .

The next result is the matrix version of the symmetry property.

.

Proof

The  entry of  is , which is the  entry of .

In the following result,  denotes the  zero matrix.

 if and only if  for each  and , so that each coordinate of  is uncorrelated with each coordinate of .

Proof

This follows immediately from the definition of .

Naturally, when , we say that the random vectors  and  are uncorrelated. In particular, if the random vectors are independent, then they are
uncorrelated. The following results establish the bi-linear properties of covariance.

The additive properties.

1.  if  and  are random vectors in  and  is a random vector in .
2.  if  is a random vector in , and  and  are random vectors in .

Proof
1. From the ordinary additive property of covariance, . The left side is the  entry of 

and the right side is the  entry of .
2. The proof is similar to (a), using the additivity of covariance in the second argument.

The scaling properties

1.  if  is a random vector in ,  is a random vector in , and .
2.  if  is a random vector in ,  is a random vector in , and .

Proof
1. Using the ordinary linearity properties of covariance in the first argument, we have

E( ) = E ( ) = E ( )E ( )∑
j=1

n

XijYjk ∑
j=1

n

XijYjk ∑
j=1

n

Xij Yjk (4.8.4)

(i, k) E(XY ) (i, k) E(X)E(Y )
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X R
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n
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X

R
m

Y R
n
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X Y
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(i, j) E (X )−E(X)Y T [E(Y )]T E ( , ) −E ( )E ( )Xi Yj Xi Yj cov ( , )Xi Yj

(i, j) cov(X, Y )

cov(Y , X) = [cov(X, Y )]T

(i, j) cov(X, Y ) cov ( , )Xi Yj (j, i) cov(Y , X)

0 m ×n

cov(X, Y ) = 0 cov ( , ) = 0Xi Yj i j X Y

cov(X, Y )

cov(X, Y ) = 0 X Y

cov(X +Y , Z) = cov(X, Z) +cov(Y , Z) X Y R
m Z R

n

cov(X, Y +Z) = cov(X, Y ) +cov(X, Z) X R
m Y Z R

n

cov ( + , ) = cov ( , ) +cov ( , )Xi Yi Zj Xi Zj Yi Zj (i, j) cov(X +Y , Z)
(i, j) cov(X, Z) +cov(Y , Z)

cov(aX, Y ) = acov(X, Y ) X R
n Y R

p a ∈ R
m×n

cov(X, aY ) = cov(X, Y )aT X R
m Y R

n a ∈ R
k×n
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The left side is the  entry of  and the right side is the  entry of .
2. The proof is similar to (a), using the linearity of covariance in the second argument.

Variance-Covariance Matrices

Suppose that  is a random vector in . The covariance matrix of  with itself is called the variance-covariance matrix of :

Recall that for an ordinary real-valued random variable , . Thus the variance-covariance matrix of a random vector in some sense plays the
same role that variance does for a random variable.

 is a symmetric  matrix with  on the diagonal.

Proof

Recall that . Also, the  entry of  is .

The following result is the formula for the variance-covariance matrix of a sum, analogous to the formula for the variance of a sum of real-valued variables.

 if  and  are random vectors in .

Proof

This follows from the additive property of covariance:

Recall that  if  is a real-valued random variable and . Here is the analogous result for the variance-covariance matrix of a random
vector.

 if  is a random vector in  and .

Proof

This follows from the scaling property of covariance:

Recall that if  is a random variable, then , and  if and only if  is a constant (with probability 1). Here is the analogous result for a random
vector:

Suppose that  is a random vector in .

1.  is either positive semi-definite or positive definite.
2.  is positive semi-definite but not positive definite if and only if there exists  and  such that, with probability 1, 

Proof
1. From the previous result,  for every . Thus, by definition,  is either positive semi-definite or

positive definite.
2. In light of (a),  is positive semi-definite but not positive definite if and only if there exists  such that . But in

turn, this is true if and only if  is constant with probability 1.

Recall that since  is either positive semi-definite or positive definite, the eigenvalues and the determinant of  are nonnegative. Moreover, if  is
positive semi-definite but not positive definite, then one of the coordinates of  can be written as a linear transformation of the other coordinates (and hence can
usually be eliminated in the underlying model). By contrast, if  is positive definite, then this cannot happen;  has positive eigenvalues and determinant
and is invertible.

Best Linear Predictor

Suppose that  is a random vector in  and that  is a random vector in . We are interested in finding the function of  of the form , where 
and , that is closest to  in the mean square sense. Functions of this form are analogous to linear functions in the single variable case. However, unless 

, such functions are not linear transformations in the sense of linear algebra, so the correct term is affine function of . This problem is of fundamental
importance in statistics when random vector , the predictor vector is observable, but not random vector , the response vector. Our discussion here generalizes the
one-dimensional case, when  and  are random variables. That problem was solved in the section on Covariance and Correlation. We will assume that  is
positive definite, so that  is invertible, and none of the coordinates of  can be written as an affine function of the other coordinates. We write  for
the inverse instead of the clunkier .

As with the single variable case, the solution turns out to be the affine function that has the same expected value as , and whose covariance with  is the same as
that of .

Define . Then  is the only affine function of  in  satisfying

cov( , ) = cov ( , )∑
j=1

n

aijXj Yk ∑
j=1

n

aij Xj Yk (4.8.5)

(i, k) cov(aX, Y ) (i, k) acov(X, Y )

X R
n X X

vc(X) = cov(X, X) =E([X −E(X)] )[X −E(X)]T (4.8.6)

X var(X) = cov(X, X)

vc(X) n ×n (var( ), var( ), … , var( ))X1 X2 Xn

cov ( , ) = cov ( , )Xi Xj Xj Xi (i, i) vc(X) cov ( , ) = var ( )Xi Xi Xi

vc(X +Y ) = vc(X) +cov(X, Y ) +cov(Y , X) +vc(Y ) X Y R
n

vc(X +Y ) = cov(X +Y , X +Y ) = cov(X, X) +cov(X, Y ) +cov(Y , X) +cov(Y , Y ) (4.8.7)

var(aX) = var(X)a2 X a ∈ R

vc(aX) = avc(X)aT X R
n

a ∈ R
m×n

vc(aX) = cov(aX, aX) = acov(X, X)a
T (4.8.8)

X var(X) ≥ 0 var(X) = 0 X

X R
n

vc(X)
vc(X) a ∈ R

n c ∈ R X = = caT ∑n
i=1 aiXi

0 ≤ var( X) = vc ( X) = vc(X)aaT aT aT a ∈ R
n vc(X)

vc(X) a ∈ R
n vc(X)a = var( X) = 0aT aT

XaT

vc(X) vc(X) vc(X)
X

vc(X) vc(X)

X R
m Y R

n X a+bX a ∈ R
n

b ∈ R
n×m Y

a = 0 X

X Y

X Y vc(X)
vc(X) X (X)vc−1

[vc(X)]−1

Y X

Y

L(Y ∣ X) =E(Y ) +cov(Y , X) (X) [X −E(X)]vc−1 L(Y ∣ X) X R
n
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1. 
2. 

Proof

From linearity,

From linearity and the fact that a constant vector is independent (and hence uncorrelated) with any random vector,

Conversely, suppose that  for some  and , and that  and . From the second equation,
again using linearity and the uncorrelated property of constant vectors, we get  and therefore . Then from
the first equation,  so .

A simple corollary is the  is uncorrelated with any affine function of :

If  is an affine function of  then

1. 
2. 

Proof

Suppose that  where  and . For simplicity, let 

1. From the previous result, . Hence using linearity,

2. Recall that  is the trace of  and hence has expected value 0 by part (a).

The variance-covariance matrix of , and its covariance matrix with  turn out to be the same, again analogous to the single variable case.

Additional properties of :

1. 
2. 

Proof

Recall that 

1. Using basic properties of covariance,

2. Using basic properties of variance-covariance,

Next is the fundamental result that  is the affine function of  that is closest to  in the mean square sense.

Suppose that  is an affine function of . Then

1. 
2. Equality holds in (a) if and only if  with probability 1.

Proof

Again, let  for simplicity and let  be an affine function of .

1. Using the linearity of expected value, note that

But  is an affine function of  and hence the middle term is 0 by our previous corollary. Hence 

2. From (a), equality holds in the inequality if and only if  if and only if .

The variance-covariance matrix of the difference between  and the best affine approximation is given in the next theorem.

Proof

Again, we abbreviate  by . Using basic properties of variance-covariance matrices,

But . Substituting gives the result.

E [L(Y ∣ X)] =E(Y )
cov [L(Y ∣ X), X] = cov(Y , X)

E [L(Y ∣ X)] = E(Y ) +cov(Y , X) (X) [E(X) −E(X)] = 0vc−1 (4.8.9)

cov [L(Y ∣ X), X] = cov(Y , X) (X)cov(X, X) = cov(Y , X) (X)vc(X) = cov(Y , X)vc−1 vc−1 (4.8.10)

U = a+bX a ∈ R
n

b ∈ R
m×n

E(U) =E(Y ) cov(U , X) = cov(Y , X)
bcov(X, X) = cov(Y , X) b = cov(Y , X) (X)vc−1

a+bE(X) = Y a =E(Y ) −bE(X)

Y −L(Y ∣ X) X

U X

cov [Y −L(Y ∣ X), U ] = 0

E (⟨Y −L(Y ∣ X), U⟩) = 0

U = a+bX a ∈ R
n

b ∈ R
m×n

L = L(Y ∣ X)

cov(Y , X) = cov(L, X)

cov (Y −L, U) = cov(Y −L, a) +cov(Y −L, X) = 0 +[cov(Y , X) −cov(L, X)] = 0b
T (4.8.11)

⟨Y −L, U⟩ cov(Y −L, U)

L(Y ∣ X) Y

L(Y ∣ X)

cov [Y , L(Y ∣ X)] = cov(Y , X) (X)cov(X, Y )vc−1

vc [L(Y ∣ X)] = cov(Y , X) (X)cov(X, Y )vc−1

L(Y ∣ X) =E(Y ) +cov(Y , X) (X) [X −E(X)]vc−1

cov [Y , L(Y ∣ X)] = cov [Y , X −E(X)] = cov(Y , X) (X)cov(X, Y )[cov(Y , X) (X)]vc−1 T
vc−1 (4.8.12)

vc [L(Y ∣ X)] = vc [cov(Y , X) (X)X] = cov(Y , X) (X)vc(X) = cov(Y , X) (X)cov(X, Y )vc−1 vc−1 [cov(Y , X) (X)]vc−1 T
vc−1 (4.8.13)

L(Y ∣ X) X Y

U ∈ R
n

X

E (∥Y −L(Y ∣ X) ) ≤E (∥Y −U )∥2 ∥2

U = L(Y ∣ X)

L = L(Y ∣ X) U ∈ R
n X

E (∥Y −U ) =E [∥(Y −L) +(L −U) ] =E (∥Y −L )+2E(⟨Y −L, L −U⟩) +E (∥L −U )∥2 ∥2 ∥2 ∥2 (4.8.14)

L −U X

E (∥Y −U ) =E (∥L −Y )+E (∥L −U ) ≥E (∥L −Y )∥2 ∥2 ∥2 ∥2

E (∥L −U ) = 0∥2 P(L = U) = 1

Y

vc [Y −L(Y ∣ X)] = vc(Y ) −cov(Y , X) (X)cov(X, Y )vc−1

L(Y ∣ X) L

vc(Y −L) = vc(Y ) −cov(Y , L) −cov(L, Y ) +vc(L) (4.8.15)

cov(Y , L) = cov(L, Y ) = vc(L) = cov(Y , X) (X)cov(Y , X)vc−1
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The actual mean square error when we use  to approximate , namely , is the trace (sum of the diagonal entries) of the variance-

covariance matrix above. The function of  given by

is known as the (distribution) linear regression function. If we observe  then  is our best affine prediction of .

Multiple linear regression is more powerful than it may at first appear, because it can be applied to non-linear transformations of the random vectors. That is, if 
 and  then  is the affine function of  that is closest to  in the mean square sense. Of course, we must be able to

compute the appropriate means, variances, and covariances.

Moreover, Non-linear regression with a single, real-valued predictor variable can be thought of as a special case of multiple linear regression. Thus, suppose that  is
the predictor variable,  is the response variable, and that  is a sequence of real-valued functions. We can apply the results of this section to find the
linear function of  that is closest to  in the mean square sense. We just replace  with  for each . Again, we must be able to
compute the appropriate means, variances, and covariances to do this.

Examples and Applications

Suppose that  has probability density function  defined by  for , . Find each of the following:

1. 
2. 

Answer

1. 

2. 

Suppose that  has probability density function  defined by  for . Find each of the following:

1. 
2. 

Answer

1. 

2. 

Suppose that  has probability density function  defined by  for , . Find each of the following:

1. 
2. 

Answer

Note that  and  are independent.

1. 

2. 

Suppose that  has probability density function  defined by  for . Find each of the following:

1. 
2. 
3. 
4. 
5. Sketch the regression curves on the same set of axes.

Answer

1. 

2. 

3. 
4. 

Suppose that  is uniformly distributed on the region . Find each of the following:

1. 
2. 

L(Y ∣ X) Y E( )∥Y −L(Y ∣ X)∥ 2

x

L(Y ∣ X = x) =E(Y ) +cov(Y , X) (X) [x −E(X)]vc−1 (4.8.16)

x L(Y ∣ X = x) Y

g : →R
m

R
j h : →R

n
R

k L [h(Y ) ∣ g(X)] g(X) h(Y )

X

Y ( , , … , )g1 g2 gn

( (X), (X), … , (X))g1 g2 gn Y Xi (X)gi i

(X, Y ) f f(x, y) = x +y 0 ≤ x ≤ 1 0 ≤ y ≤ 1

E(X, Y )
vc(X, Y )

( , )7
12

7
12

[ ]
11
144

− 1
144

− 1
144

11
144

(X, Y ) f f(x, y) = 2(x +y) 0 ≤ x ≤ y ≤ 1

E(X, Y )
vc(X, Y )

( , )5
12

3
4

[ ]
43
720
1

48

1
48
3

80

(X, Y ) f f(x, y) = 6 yx2 0 ≤ x ≤ 1 0 ≤ y ≤ 1

E(X, Y )
vc(X, Y )

X Y

( , )3
4

2
3

[ ]
3

80

0

0
1

18

(X, Y ) f f(x, y) = 15 yx2 0 ≤ x ≤ y ≤ 1

E(X, Y )
vc(X, Y )
L(Y ∣ X)
L [Y ∣ (X, )]X2

( , )5
8

5
6

[ ]
17
448
5

336

5
336
5

252

+ X10
17

20
51

+ X +49
76

10
57

7
38

X2

(X, Y , Z) {(x, y, z) ∈ : 0 ≤ x ≤ y ≤ z ≤ 1}R
3

E(X, Y , Z)
vc(X, Y , Z)
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3. 
4. 
5. 
6. 

Answer

1. 

2. 

3. . Note that there is no  term.
4. . Note that this is the midpoint of the interval .
5. . Note that there is no  term.

6. 

Suppose that  is uniformly distributed on , and that given , random variable  is uniformly distributed on . Find each of the following:

1. 
2. 

Answer

1. 

2. 
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L [Z ∣ (X, Y )]
L [Y ∣ (X, Z)]
L [X ∣ (Y , Z)]
L [(Y , Z) ∣ X]

( , , )1
4

1
2

3
4

⎡

⎣

⎢⎢⎢

3
80
1

40
1

80

1
40
1

20
1

40

1
80
1

40
3

80

⎤

⎦

⎥⎥⎥

+ Y1
2

1
2

X

X + Z1
2

1
2

[X, Z]

Y1
2

Z

[ ]
+ X1

3
2
3

+ X2
3

1
3

X (0, 1) X Y (0, X)

E(X, Y )
vc(X, Y )

( , )1
2

1
4

[ ]
1

12
1

24

1
24
7

144
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