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7.2: The Method of Moments
           

Basic Theory

The Method

Suppose that we have a basic random experiment with an observable, real-valued random variable . The distribution of  has 
unknown real-valued parameters, or equivalently, a parameter vector  taking values in a parameter space, a
subset of . As usual, we repeat the experiment  times to generate a random sample of size  from the distribution of .

Thus,  is a sequence of independent random variables, each with the distribution of . The method of moments is a technique for
constructing estimators of the parameters that is based on matching the sample moments with the corresponding distribution
moments. First, let

so that  is the th moment of  about 0. Note that we are emphasizing the dependence of these moments on the vector of
parameters . Note also that  is just the mean of , which we usually denote simply by . Next, let

so that  is the th sample moment about 0. Equivalently,  is the sample mean for the random sample 

 from the distribution of . Note that we are emphasizing the dependence of the sample moments on the

sample . Note also that  is just the ordinary sample mean, which we usually just denote by  (or by  if we wish to
emphasize the dependence on the sample size). From our previous work, we know that  is an unbiased and consistent
estimator of  for each . Here's how the method works:

To construct the method of moments estimators  for the parameters  respectively, we
consider the equations

consecutively for  until we are able to solve for  in terms of .

The equations for  give  equations in  unknowns, so there is hope (but no guarantee) that the equations can be
solved for  in terms of . In fact, sometimes we need equations with . Exercise 28
below gives a simple example. The method of moments can be extended to parameters associated with bivariate or more general
multivariate distributions, by matching sample product moments with the corresponding distribution product moments. The method
of moments also sometimes makes sense when the sample variables  are not independent, but at least are
identically distributed. The hypergeometric model below is an example of this.

Of course, the method of moments estimators depend on the sample size . We have suppressed this so far, to keep the
notation simple. But in the applications below, we put the notation back in because we want to discuss asymptotic behavior.

Estimates for the Mean and Variance

Estimating the mean and variance of a distribution are the simplest applications of the method of moments. Throughout this
subsection, we assume that we have a basic real-valued random variable  with  and .
Occasionally we will also need , the fourth central moment. We sample from the distribution of  to produce a
sequence  of independent variables, each with the distribution of . For each , 

 is a random sample of size  from the distribution of . We start by estimating the mean, which is
essentially trivial by this method.

Suppose that the mean  is unknown. The method of moments estimator of  based on  is the sample mean
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1.  so  is unbiased for 
2.  for so  is consistent.

Proof

It does not get any more basic than this. The method of moments works by matching the distribution mean with the sample
mean. The fact that  and  for  are properties that we have seen several times before.

Estimating the variance of the distribution, on the other hand, depends on whether the distribution mean  is known or unknown.
First we will consider the more realistic case when the mean in also unknown. Recall that for , the sample variance
based on  is

Recall also that  so  is unbiased for , and that  so 

is consistent.

Suppose that the mean  and the variance  are both unknown. For , the method of moments estimator of  based
on  is

1.  for  so  is asymptotically unbiased.
2.  for  so  is consistent.

Proof

As before, the method of moments estimator of the distribution mean  is the sample mean . On the other hand, 
 and hence the method of moments estimator of  is , which simplifies to the result above.

Note that  for .

1. Note that , so .

2. Recall that . But . The result follows from substituting 

 given above and  in part (a).

Hence  is negatively biased and on average underestimates . Because of this result,  is referred to as the biased sample
variance to distinguish it from the ordinary (unbiased) sample variance .

Next let's consider the usually unrealistic (but mathematically interesting) case where the mean is known, but not the variance.

Suppose that the mean  is known and the variance  unknown. For , the method of moments estimator of  based
on  is

1.  so  is unbiased for 
2.  for  so  is consistent.

Proof

These results follow since  is the sample mean corresponding to a random sample of size  from the distribution of 
.

=Mn

1

n
∑
i=1

n

Xi (7.2.5)

E( ) = μMn Mn n ∈ N+

var( ) = /nMn σ2 n ∈ N+ M = ( , , …)M1 M2

E( ) = μMn var( ) = /nMn σ2 n ∈ N+

μ

n ∈ {2, 3, …}
Xn

= ( −S2
n

1

n −1
∑
i=1

n

Xi Mn)2 (7.2.6)

E( ) =S2
n σ2 S2

n n ∈ {2, 3, …} var( ) = ( − )S2
n

1
n σ4

n−3
n−1

σ4 = ( , , …)S
2 S2

2 S2
3

μ σ2 n ∈ N+ σ2

Xn

= ( −T 2
n

1

n
∑
i=1

n

Xi Mn)2 (7.2.7)

bias( ) = − /nT 2
n σ2 n ∈ N+ = ( , , …)T

2 T 2
1 T 2

2

mse( ) = [(n −1 −( −5n +3) ]T 2
n

1
n3 )2σ4 n2 σ4 n ∈ N+ T

2

μ Mn

= −σ2 μ(2) μ2 σ2 = −T 2
n M

(2)
n M 2

n

=T 2
n

n−1
n S2

n n ∈ {2, 3, …}

E( ) = E( ) =T 2
n

n−1
n

S2
n

n−1
n

σ2 bias( ) = − = −T 2
n

n−1
n

σ2 σ2 1
n

σ2

mse( ) = var( ) + ( )T 2
n T 2

n bias2 T 2
n var( ) = var( )T 2

n ( )n−1
n

2
S2

n

var( )S2
n bias( )T 2

n

T 2
n σ2 T 2

n

S2
n

μ σ2 n ∈ N+ σ2

Xn

= ( −μW 2
n

1

n
∑
i=1

n

Xi )2 (7.2.8)

E( ) =W 2
n σ2 W 2

n n ∈ N+

var( ) = ( − )W 2
n

1
n

σ4 σ4 n ∈ N+ = ( , , …)W
2 W 2

1 W 2
2

\W
2
n n

(X −μ)2

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10190?pdf


7.2.3 https://stats.libretexts.org/@go/page/10190

We compared the sequence of estimators  with the sequence of estimators  in the introductory section on Estimators. Recall
that  for  but  as . There is no simple, general relationship
between  and  or between  and , but the asymptotic relationship is simple.

 and  as 

Proof

In light of the previous remarks, we just have to prove one of these limits. The first limit is simple, since the coefficients of 
and  in  are asymptotically  as .

It also follows that if both  and  are unknown, then the method of moments estimator of the standard deviation  is .
In the unlikely event that  is known, but  unknown, then the method of moments estimator of  is .

Estimating Two Parameters

There are several important special distributions with two paraemters; some of these are included in the computational exercises
below. With two parameters, we can derive the method of moments estimators by matching the distribution mean and variance with
the sample mean and variance, rather than matching the distribution mean and second moment with the sample mean and second
moment. This alternative approach sometimes leads to easier equations. To setup the notation, suppose that a distribution on  has
parameters  and . We sample from the distribution to produce a sequence of independent variables , each with
the common distribution. For ,  is a random sample of size  from the distribution. Let , 

, and  denote the sample mean, second-order sample mean, and biased sample variance corresponding to , and let 
, , and  denote the mean, second-order mean, and variance of the distribution.

If the method of moments estimators  and  of  and , respectively, can be found by solving the first two equations

then  and  can also be found by solving the equations

Proof

Recall that . In addition, . Hence the equations , 
 are equivalent to the equations , .

Because of this result, the biased sample variance  will appear in many of the estimation problems for special distributions that
we consider below.

Special Distributions

The Normal Distribution

The normal distribution with mean  and variance  is a continuous distribution on  with probability density
function  given by

This is one of the most important distributions in probability and statistics, primarily because of the central limit theorem. The
normal distribution is studied in more detail in the chapter on Special Distributions.

Suppose now that  is a random sample of size  from the normal distribution with mean  and variance 
. Form our general work above, we know that if  is unknown then the sample mean  is the method of moments estimator of 

, and if in addition,  is unknown then the method of moments estimator of  is . On the other hand, in the unlikely event
that  is known then  is the method of moments estimator of . Our goal is to see how the comparisons above simplify for the
normal distribution.
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Mean square errors of  and .

1. 
2. 
3.  for 

Proof

Recall that for the normal distribution, . Substituting this into the general results gives parts (a) and (b). Part (c)
follows from (a) and (b). Of course the asymptotic relative efficiency is still 1, from our previous theorem.

Thus,  and  are multiplies of one another;  is unbiased, but when the sampling distribution is normal,  has smaller mean
square error. Surprisingly,  has smaller mean square error even than .

Mean square errors of  and .

1. 
2.  for 

Proof

Again, since the sampling distribution is normal, . Substituting this into the gneral formula for  gives part
(a).

Run the normal estimation experiment 1000 times for several values of the sample size  and the parameters  and .
Compare the empirical bias and mean square error of  and of  to their theoretical values. Which estimator is better in
terms of bias? Which estimator is better in terms of mean square error?

Next we consider estimators of the standard deviation . As noted in the general discussion above,  is the method of
moments estimator when  is unknown, while  is the method of moments estimator in the unlikely event that  is
known. Another natural estimator, of course, is , the usual sample standard deviation. The following sequence, defined in
terms of the gamma function turns out to be important in the analysis of all three estimators.

Consider the sequence

Then  for  and  as .

First, assume that  is known so that  is the method of moments estimator of .

For ,

1. 
2. 
3. 
4. 

Proof

Recall that  has the chi-square distribution with  degrees of freedom, and hence  has the chi distribution
with  degrees of freedom. Solving gives

From the formulas for the mean and variance of the chi distribution we have
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Thus  is negatively biased as an estimator of  but asymptotically unbiased and consistent. Of course we know that in general
(regardless of the underlying distribution),  is an unbiased estimator of  and so  is negatively biased as an estimator of .
In the normal case, since  involves no unknown parameters, the statistic  is an unbiased estimator of . Next we consider
the usual sample standard deviation .

For ,

1. 
2. 
3. 
4. 

Proof

Recall that  has the chi-square distribution with  degrees of freedom, and hence  has the chi
distribution with  degrees of freedom. The proof now proceeds just as in the previous theorem, but with  replacing 

.

As with , the statistic  is negatively biased as an estimator of  but asymptotically unbiased, and also consistent. Since 
involves no unknown parameters, the statistic  is an unbiased estimator of . Note also that, in terms of bias and mean
square error,  with sample size  behaves like  with sample size . Finally we consider , the method of moments
estimator of  when  is unknown.

For ,

1. 

2. 

3. 

4. 

Proof

The results follow easily from the previous theorem since .

The Bernoulli Distribution

Recall that an indicator variable is a random variable  that takes only the values 0 and 1. The distribution of  is known as the
Bernoulli distribution, named for Jacob Bernoulli, and has probability density function  given by

where  is the success parameter. The mean of the distribution is  and the variance is .

Suppose now that  is a random sample of size  from the Bernoulli distribution with unknown success
parameter . Since the mean of the distribution is , it follows from our general work above that the method of moments estimator
of  is , the sample mean. In this case, the sample  is a sequence of Bernoulli trials, and  has a scaled version of the
binomial distribution with parameters  and :

Note that since  for every , it follows that  and  for every . So any of the method of
moments equations would lead to the sample mean  as the estimator of . Although very simple, this is an important application,
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since Bernoulli trials are found embedded in all sorts of estimation problems, such as empirical probability density functions and
empirical distribution functions.

The Geometric Distribution

The geometric distribution on  with success parameter  has probability density function  given by

The geometric distribution on  governs the number of trials needed to get the first success in a sequence of Bernoulli trials with
success parameter . The mean of the distribution is .

Suppose that  is a random sample of size  from the geometric distribution on  with unknown
success parameter . The method of moments estimator of  is

Proof

The method of moments equation for  is .

The geometric distribution on  with success parameter  has probability density function

This version of the geometric distribution governs the number of failures before the first success in a sequence of Bernoulli trials.
The mean of the distribution is .

Suppose that  is a random sample of size  from the geometric distribution on  with unknown
parameter . The method of moments estimator of  is

Proof

The method of moments equation for  is .

The Negative Binomial Distribution

More generally, the negative binomial distribution on  with shape parameter  and success parameter  has
probability density function

If  is a positive integer, then this distribution governs the number of failures before the th success in a sequence of Bernoulli
trials with success parameter . However, the distribution makes sense for general . The negative binomial distribution
is studied in more detail in the chapter on Bernoulli Trials. The mean of the distribution is  and the variance is 

. Suppose now that  is a random sample of size  from the negative binomial distribution on 
 with shape parameter  and success parameter 

If  and  are unknown, then the corresponding method of moments estimators  and  are

Proof

Matching the distribution mean and variance to the sample mean and variance gives the equations
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As usual, the results are nicer when one of the parameters is known.

Suppose that  is known but  is unknown. The method of moments estimator  of  is

Proof

Matching the distribution mean to the sample mean gives the equation

Suppose that  is unknown but  is known. The method of moments estimator of  is

1.  so  is unbiased.
2.  so  is consistent.

Proof

Matching the distribution mean to the sample mean gives the equation .

1.  and 

2.  and 

The Poisson Distribution

The Poisson distribution with parameter  is a discrete distribution on  with probability density function  given by

The mean and variance are both . The distribution is named for Simeon Poisson and is widely used to model the number of
“random points” is a region of time or space. The parameter  is proportional to the size of the region, with the proportionality
constant playing the role of the average rate at which the points are distributed in time or space. The Poisson distribution is studied
in more detail in the chapter on the Poisson Process.

Suppose now that  is a random sample of size  from the Poisson distribution with parameter . Since  is
the mean, it follows from our general work above that the method of moments estimator of  is the sample mean .

The Gamma Distribution

The gamma distribution with shape parameter  and scale parameter  is a continuous distribution on 
with probability density function  given by

The gamma probability density function has a variety of shapes, and so this distribution is used to model various types of positive
random variables. The gamma distribution is studied in more detail in the chapter on Special Distributions. The mean is 
and the variance is .

Suppose now that  is a random sample from the gamma distribution with shape parameter  and scale
parameter .

Suppose that  and  are both unknown, and let  and  be the corresponding method of moments estimators. Then
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Proof

Matching the distribution mean and variance with the sample mean and variance leads to the equations , 
. Solving gives the results.

The method of moments estimators of  and  given in the previous exercise are complicated, nonlinear functions of the sample
mean  and the sample variance . Thus, computing the bias and mean square errors of these estimators are difficult problems
that we will not attempt. However, we can judge the quality of the estimators empirically, through simulations.

When one of the parameters is known, the method of moments estimator of the other parameter is much simpler.

Suppose that  is unknown, but  is known. The method of moments estimator of  is

1.  so  is unbiased.
2.  so  is consistent.

Proof

If  is known, then the method of moments equation for  is . Solving gives (a). Next, 
, so  is unbiased. Finally .

Suppose that  is unknown, but  is known. The method of moments estimator of  is

1.  so  is unbiased.
2.  so that  is consistent.

Proof

If  is known, then the method of moments equation for  is . Solving gives (a). Next, 
, so  is unbiased. Finally .

Run the gamma estimation experiment 1000 times for several different values of the sample size  and the parameters  and .
Note the empirical bias and mean square error of the estimators , , , and . One would think that the estimators when
one of the parameters is known should work better than the corresponding estimators when both parameters are unknown; but
investigate this question empirically.

The Beta Distribution

The beta distribution with left parameter  and right parameter  is a continuous distribution on  with
probability density function  given by

The beta probability density function has a variety of shapes, and so this distribution is widely used to model various types of
random variables that take values in bounded intervals. The beta distribution is studied in more detail in the chapter on Special

Distributions. The first two moments are  and .

Suppose now that  is a random sample of size  from the beta distribution with left parameter  and right
parameter .

Suppose that  and  are both unknown, and let  and  be the corresponding method of moments estimators. Then

UV = M

U =V 2 T 2

k b

M T 2

k b k

=Ub

M

b
(7.2.29)

E( ) = kUb Ub

var( ) = k/nUb Ub

b Ub b = MUb

E( ) =E(M)/b = kb/b = kUb Ub var( ) = var(M)/ = k /(n ) = k/nUb b2 b2 b2

b k b

=Vk

M

k
(7.2.30)

E( ) = bVk Vk

var( ) = /knVk b2 Vk

k Vk k = MVk

E( ) =E(M)/k = kb/k = bVk Vk var( ) = var(M)/ = k /(n ) = /knVk k2 b2 k2 b2

n k b

U V Ub Vk

a ∈ (0, ∞) b ∈ (0, ∞) (0, 1)
g

g(x) = (1 −x , 0 < x < 1
1

B(a, b)
xa−1 )b−1 (7.2.31)

μ = a

a+b
=μ(2) a(a+1)

(a+b)(a+b+1)

X = ( , , … , )X1 X2 Xn n a

b

a b U V

U = , V =
M (M − )M (2)

−M (2) M 2

(1 −M)(M − )M (2)

−M (2) M 2
(7.2.32)
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Proof

The method of moments equations for  and  are

Solving gives the result.

The method of moments estimators of  and  given in the previous exercise are complicated nonlinear functions of the sample
moments  and . Thus, we will not attempt to determine the bias and mean square errors analytically, but you will have an
opportunity to explore them empricially through a simulation.

Suppose that  is unknown, but  is known. Let  be the method of moments estimator of . Then

Proof

If  is known then the method of moments equation for  as an estimator of  is . Solving for  gives the
result.

Suppose that  is unknown, but  is known. Let  be the method of moments estimator of . Then

Proof

If  is known then the method of moments equation for  as an estimator of  is . Solving for  gives the
result.

Run the beta estimation experiment 1000 times for several different values of the sample size  and the parameters  and .
Note the empirical bias and mean square error of the estimators , , , and . One would think that the estimators when
one of the parameters is known should work better than the corresponding estimators when both parameters are unknown; but
investigate this question empirically.

The following problem gives a distribution with just one parameter but the second moment equation from the method of moments
is needed to derive an estimator.

Suppose that  is a random sample from the symmetric beta distribution, in which the left and right
parameters are equal to an unknown value . The method of moments estimator of  is

Proof

Note that the mean  of the symmetric distribution is , independently of , and so the first equation in the method of
moments is useless. However, matching the second distribution moment to the second sample moment leads to the equation

Solving gives the result.

The Pareto Distribution

The Pareto distribution with shape parameter  and scale parameter  is a continuous distribution on 
with probability density function  given by

U V

= M , =
U

U +V

U(U +1)

(U +V )(U +V +1)
M (2) (7.2.33)

a b

M M (2)

a b Ub a

= bUb

M

1 −M
(7.2.34)

b Ub a /( +b) = MUb Ub Ub

b a Va b

= aVa

1 −M

M
(7.2.35)

a Va b a/(a + ) = MVa Va

n a b

U V Ub Va

X = ( , , … , )X1 X2 Xn

c ∈ (0, ∞) c

U =
2M (2)

1 −4M (2)
(7.2.36)

μ 1
2

c

=
U +1

2(2U +1)
M (2) (7.2.37)

a ∈ (0, ∞) b ∈ (0, ∞) (b, ∞)
g
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The Pareto distribution is named for Vilfredo Pareto and is a highly skewed and heavy-tailed distribution. It is often used to model
income and certain other types of positive random variables. The Pareto distribution is studied in more detail in the chapter on
Special Distributions. If , the first two moments of the Pareto distribution are  and .

Suppose now that  is a random sample of size  from the Pareto distribution with shape parameter 
and scale parameter .

Suppose that  and  are both unknown, and let  and  be the corresponding method of moments estimators. Then

Proof

The method of moments equations for  and  are

Solving for  and  gives the results.

As with our previous examples, the method of moments estimators are complicatd nonlinear functions of  and , so
computing the bias and mean square error of the estimator is difficult. Instead, we can investigate the bias and mean square error
empirically, through a simulation.

Run the Pareto estimation experiment 1000 times for several different values of the sample size  and the parameters  and .
Note the empirical bias and mean square error of the estimators  and .

When one of the parameters is known, the method of moments estimator for the other parameter is simpler.

Suppose that  is unknown, but  is known. Let  be the method of moments estimator of . Then

Proof

If  is known then the method of moment equation for  as an estimator of  is . Solving for  gives
the result.

Suppose that  is unknown, but  is known. Let  be the method of moments estimator of . Then

1.  so  is unbiased.
2.  so  is consistent.

Proof

If  is known then the method of moments equation for  as an estimator of  is . Solving for  gives
(a). Next,  so  is unbiased. Finally, 

g(x) = , b ≤ x < ∞
aba

xa+1
(7.2.38)

a > 2 μ = ab
a−1

=μ(2) ab2

a−2

X = ( , , … , )X1 X2 Xn n a > 2
b > 0

a b U V

U

V

= 1 +
M (2)

−M (2) M 2

− −−−−−−−−−

√

= (1 − )
M (2)

M

−M (2) M 2

M (2)

− −−−−−−−−−

√

(7.2.39)

(7.2.40)

U V

UV

U −1
UV 2

U −2

= M

= M (2)

(7.2.41)

(7.2.42)

U V

M M (2)

n a b

U V

a b Ub a

=Ub

M

M −b
(7.2.43)

b Ub a b /( −1) = MUb Ub Ub

b a Va b

= MVa

a −1

a
(7.2.44)

E( ) = bVa Va

var( ) =Va
b2

na(a−2)
Va

a Va b a /(a −1) = MVa Va

E( ) = E(M) = = bVa
a−1

a

a−1
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.

The Uniform Distribution

The (continuous) uniform distribution with location parameter  and scale parameter  has probability density
function  given by

The distribution models a point chosen “at random” from the interval . The mean of the distribution is  and
the variance is . The uniform distribution is studied in more detail in the chapter on Special Distributions. Suppose now
that  is a random sample of size  from the uniform distribution.

Suppose that  and  are both unknown, and let  and  denote the corresponding method of moments estimators. Then

Proof

Matching the distribution mean and variance to the sample mean and variance leads to the equations  and 
. Solving gives the result.

As usual, we get nicer results when one of the parameters is known.

Suppose that  is known and  is unknown, and let  denote the method of moments estimator of . Then

1.  so  is unbiased.
2.  so  is consistent.

Proof

Matching the distribution mean to the sample mean leads to the equation . Solving gives the result.

1. 
2. 

Suppose that  is known and  is unknown, and let  denote the method of moments estimator of . Then

1.  so  is unbiased.
2.  so  is consistent.

Proof

Matching the distribution mean to the sample mean leads to the quation . Solving gives the result.

1. 

2. 

The Hypergeometric Model

Our basic assumption in the method of moments is that the sequence of observed random variables  is a
random sample from a distribution. However, the method makes sense, at least in some cases, when the variables are identically
distributed but dependent. In the hypergeometric model, we have a population of  objects with  of the objects type 1 and the
remaining  objects type 0. The parameter , the population size, is a positive integer. The parameter , the type 1 size, is a

var( ) = var(M) = =Va ( )a−1
a

2 (a−1)
2

a2

ab2

n(a−1 (a−2))2

b2

na(a−2)

a ∈ R h ∈ (0, ∞)
g

g(x) = , x ∈ [a, a +h]
1

h
(7.2.45)

[a, a +h] μ = a + h1
2

=σ2 1
12

h2

X = ( , , … , )X1 X2 Xn n

a h U V

U = 2M − T , V = 2 T3
–

√ 3
–

√ (7.2.46)

U + V = M1
2

=1
12

V 2 T 2

a h Va h

= 2(M −a)Va (7.2.47)

E( ) = hVa V

var( ) =Va
h2

3n
Va

a + = M1
2

Va

E( ) = 2[E(M) −a] = 2(a +h/2 −a) = hVa

var( ) = 4var(M) =Va
h2

3n

h a Uh a

= M − hUh

1

2
(7.2.48)

E( ) = aUh Uh

var( ) =Uh
h2

12n
Uh

+ h = MUh
1
2

E( ) =E(M) − h = a + h − h = aUh
1
2

1
2

1
2

var( ) = var(M) =Uh
h2

12n
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nonnegative integer with . These are the basic parameters, and typically one or both is unknown. Here are some typical
examples:

1. The objects are devices, classified as good or defective.
2. The objects are persons, classified as female or male.
3. The objects are voters, classified as for or against a particular candidate.
4. The objects are wildlife or a particular type, either tagged or untagged.

We sample  objects from the population at random, without replacement. Let  be the type of the th object selected, so that our
sequence of observed variables is . The variables are identically distributed indicator variables, with 

 for each , but are dependent since the sampling is without replacement. The number of type 1
objects in the sample is . This statistic has the hypergeometric distribution with parameter , , and , and has
probability density function given by

The hypergeometric model is studied in more detail in the chapter on Finite Sampling Models.

As above, let  be the observed variables in the hypergeometric model with parameters  and . Then

1. The method of moments estimator of  is , the sample mean.
2. The method of moments estimator of  with  known is .
3. The method of moments estimator of  with  known is  if .

Proof

These results all follow simply from the fact that .

In the voter example (3) above, typically  and  are both unknown, but we would only be interested in estimating the ratio 
. In the reliability example (1), we might typically know  and would be interested in estimating . In the wildlife

example (4), we would typically know  and would be interested in estimating . This example is known as the capture-recapture
model.

Clearly there is a close relationship between the hypergeometric model and the Bernoulli trials model above. In fact, if the
sampling is with replacement, the Bernoulli trials model would apply rather than the hypergeometric model. In addition, if the
population size  is large compared to the sample size , the hypergeometric model is well approximated by the Bernoulli trials
model.
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