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16.18: Stationary and Limting Distributions of Continuous-Time Chains
       

In this section, we study the limiting behavior of continuous-time Markov chains by focusing on two interrelated ideas: invariant
(or stationary) distributions and limiting distributions. In some ways, the limiting behavior of continuous-time chains is simpler
than the limiting behavior of discrete-time chains, in part because the complications caused by periodicity in the discrete-time case
do not occur in the continuous-time case. Nonetheless as we will see, the limiting behavior of a continuous-time chain is closely
related to the limiting behavior of the embedded, discrete-time jump chain.

Review
Once again, our starting point is a time-homogeneous, continuous-time Markov chain  defined on an
underlying probability space  and with discrete state space . By definition, this means that  is countable with the
discrete topology, so that  is the -algebra of all subsets of .

Let's review what we have so far. We assume that the Markov chain  is regular. Among other things, this means that the basic
structure of  is determined by the transition times  and the jump chain . First, 
and . The time-homogeneous and Markov properties imply that the distribution of  given 

 is exponential with parameter . Part of regularity is that  is right continuous so that there are no
instantaneous states where , which would mean . On the other hand,  means that 

 is a stable state so that  has a proper exponential distribution given , with . Finally, 
 means that  is an absorbing state so that . The remaining transition times are defined

recursively:  if  and  if . Another component of regularity is that with
probability 1,  as , ruling out the explosion event of infinitely many jumps in finite time. The jump chain  is
formed by sampling  at the transition times (until the chain is sucked into an absorbing state, if that happens). That is, with 

 and for , we define  if  and  if . Then  is a discrete-time
Markov chain with one-step transition matrix  given  if  with  stable and 

 if  is absorbing.

The transition matrix  at time  is given by  for . The time-homogenous
and Markov properties imply that the collection of transition matrices  satisfies the Chapman-Kolmogorov
equations  for , and hence is a semigroup. of transition matrices The transition semigroup  and the
initial distribution of  determine all of the finite-dimensional distributions of . Since there are no instantaneous states,  is
standard which means that  as  (as matrices, and so pointwise). The fundamental relationship between  on the one
hand, and  and  on the other, is

From this, it follows that the matrix function  is differentiable (again, pointwise) and satisfies the Kolmogorov backward
equation , where the infinitesimal generator matrix  is given by  for 

. If we impose the stronger assumption that  is uniform, which means that  as  as operators on  (so
with respect to the supremum norm), then the backward equation as well as the companion Kolmogorov forward equation 

 hold as operators on . In addition, we have the matrix exponential representation  for . The
uniform assumption is equivalent to the exponential parameter function being bounded.

Finally, for , the  potential matrix  of  is . The resolvent  is the
Laplace transform of  and hence gives the same information as . From this point of view, the time-homogeneous and Markov
properties lead to the resolvent equation  for  with . For , the 
potential matrix is related to the generator by the fundamental equation . If  is uniform, then this equation, as
well as the companion  hold as operators on , which leads to .

Basic Theory
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Relations and Classification

We start our discussion with relations among states and classifications of states. These are the same ones that we studied for
discrete-time chains in our study of recurrence and transience, applied here to the jump chain . But as we will see, the relations
and classifications make sense for the continuous-time chain  as well. The discussion is complicated slightly when there are
absorbing states. Only when  is in an absorbing state can we not interpret the values of  as the values of  at the transition
times (because of course, there are no transitions when  is in an absorbing state). But  is absorbing for the continuous-time
chain  if and only if  is absorbing for the jump chain , so this trivial exception is easily handled.

For  let , the (discrete) hitting time to  for the jump chain , where as usual, . That
is,  is the first positive (discrete) time that  in in state . The analogous random time for the continuous-time chain  is ,
where naturally we take . This is the first time that  is in state , not counting the possible initial period in .
Specifically, suppose . If  then . If  then .

Define the hitting matrix  by

Then  except when  is absorbing and .

So for the continuous-time chain, if  is stable then  is the probability that, starting in , the chain  returns to  after
its initial period in . If  are distinct, then  is simply the probability that , starting in , eventually reaches . It
follows that the basic relation among states makes sense for either the continuous-time chain  as well as its jump chain .

Define the relation  on  by  if  or .

The leads to relation  is reflexive by definition:  for every . From our previous study of discrete-time chains, we
know it's also transitive: if  and  then  for . We also know that  if and only if there is a
directed path in the state graph from  to , if and only if  for some . For the continuous-time transition
matrices, we have a stronger result that in turn makes a stronger case that the leads to relation is fundamental for .

Suppose .

1. If  then  for all .
2. If  then  for all .

Proof

This result is proved in the section on transition matrices and generators.

This result is known as the Lévy dichotomy, and is named for Paul Lévy. Let's recall a couple of other definitions:

Suppose that  is a nonempty subset of .

1.  is closed if  and  imply .
2.  is irreducible if  is closed and has no proper closed subset.

If  is irreducible, we also say that the chain  itself is irreducible.

If  is a nonempty subset of , then  is the smallest closed set containing , and
is called the closure of .

Suppose that  is closed. Then

1. , the restriction of  to , is a transition probability matrix on  for every .
2.  restricted to  is a continuous-time Markov chain with transition semigroup .

Proof
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1. If  and , then  does not lead to  so in particular . It follows that  for 
so  is a transition probability matrix.

2. This follows from (a). If the chain starts in , then the chain remains in  for all time, and of course, the Markov property
still holds.

Define the relation  on  by  if  and  for .

The to and from relation  defines an equivalence relation on  and hence partitions  into mutually disjoint equivalence classes.
Recall from our study of discrete-time chains that a closed set is not necessarily an equivalence class, nor is an equivalence class
necessarily closed. However, an irreducible set is an equivalence class, but an equivalence class may not be irreducible. The
importance of the relation  stems from the fact that many important properties of Markov chains (in discrete or continuous time)
turn out to be class properties, shared by all states in an equivalence class. The following definition is fundamental, and once again,
makes sense for either the continuous-time chain  or its jump chain .

Let .

1. State  is transient if 
2. State  is recurrent if .

Recall from our study of discrete-time chains that if  is recurrent and  then  is recurrent and . Thus, recurrence and
transience are class properties, shared by all states in an equivalence class.

Time Spent in a State

For , let  denote the number of visits to state  by the jump chain , and let  denote the total time spent in state  by
the continuous-time chain . Thus

The expected values  and  for  define the potential matrices of 
 and , respectively. From our previous study of discrete-time chains, we know the distribution and mean of  given 

in terms of the hitting matrix . The next two results give a review:

Suppose that  are distinct. Then

1.  for 
2.  and  for 

Let's take cases. First suppose that  is recurrent. In part (a),  for all , and consequently 
. In part (b),  for , and consequently 

 while . Suppose next that  is transient. Part (a) specifies a
proper geometric distribution on  while in part (b), probability  is assigned to 0 and the remaining probability 

 is geometrically distributed over  as in (a). In both cases,  is finite with probability 1. Next we consider the expected
value, that is, the (discrete) potential. To state the results succinctly we will use the convention that  if  and 

.

Suppose again that  are distinct. Then

1. 
2. 

Let's take cases again. If  is recurrent then , and for  with , either  if  or 
 if . If  is transient,  is finite, as is  for every  with . Moreover, there is an

inverse relationship of sorts between the potential and the hitting probabilities.

Naturally, our next goal is to find analogous results for the continuous-time chain . For the distribution of  it's best to use the
right distribution function.
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Suppose that  are distinct. Then for 

1. 
2. 

Proof

The proof is by conditioning on .

1. First, if  (so that  is recurrent), then either  is absorbing with  or  is stable and
recurrent, so that . In the second case, starting in state ,  is the sum of infinitely many
independent variables, each with the exponential distribution with parameter . In both cases, 

 and so  for every . So suppose that  so that  is
transient. Then

Given ,  is the sum of  independent variables, each having the exponential distribution with parameter . So
 has the gamma distribution with parameters  and  and hence

From the previous result, . We substitute,
change the order of summation, use geometric series and then exponential series:

Simplifying gives the result.
2. The proof is similar. If  so that  is recurrent, then starting in state , either  if , which occurs

with probability  or  if , which occurs with probability . If  so that  is
transient, then the result follows from conditioning on  as in (a), except that 

.

Let's take cases as before. Suppose first that  is recurrent. In part (a),  for every  and hence 
. In part (b),  for every  and consequently 

 while . Suppose next that  is transient. From part (a), the
distribution of  given  is exponential with parameter . In part (b), the distribution assigns probability 

 to 0 while the remaining probability  is exponentially distributed over  as in (a). Taking expected value,
we get a very nice relationship between the potential matrix  of the continuous-time chain  and the potential matrix  of the
discrete-time jump chain :

For every ,

Proof

If  is recurrent, then  and the common value is either 0 if  or  if . So suppose
that  is transient. We can compute the expected value of  by integrating the right distribution function in the previous
theorem. In case , we have
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In the case that  and  are distinct,

In particular,  is transient if and only if  for every , if and only if  for every . On the
other hand,  is recurrent if and only if  if  and  if .

Null and Positive Recurrence

Unlike transience and recurrence, the definitions of null and positive recurrence of a state  are different for the continuous-
time chain  and its jump chain . This is because these definitions depend on the expected hitting time to , starting in , and
not just the finiteness of this hitting time. For , let , the expected (discrete) return time to  starting in

. Recall that  is positive recurrent for  if  and  is null recurrent if  is recurrent but not positive recurrent, so that 
 but . The definitions are similar for , but using the continuous hitting time .

For , let  if  is absorbing and  if  is stable. So if  is stable,  is the expected
return time to  starting in  (after the initial period in ).

1. State  is positive recurrent for  if .
2. State  is null recurrent for  if  recurrent but not positive recurrent, so that  but .

A state  can be positive recurrent for  but null recurrent for its jump chain  or can be null recurrent for  but positive
recurrent for . But like transience and recurrence, positive and null recurrence are class properties, shared by all states in an
equivalence class under the to and from equivalence relation .

Invariant Functions

Our next discussion concerns functions that are invariant for the transition matrix  of the jump chain  and functions that are
invariant for the transition semigroup  of the continuous-time chain . For both discrete-time and
continuous-time chains, there is a close relationship between invariant functions and the limiting behavior in time.

First let's recall the definitions. A function  is invariant for  (or for the chain ) if . It then follows that 
 for every . In continuous time we must assume invariance at each time. That is, a function  is

invariant for  (or for the chain ) if  for all . Our interest is in nonnegative functions, because we can think of
such a function as the density function, with respect to counting measure, of a positive measure on . We are particularly interested
in the special case that  is a probability density function, so that . If  has a probability density function  that is
invariant for , then  has probability density function  for all  and hence  is stationary. Similarly, if  has a
probability density function  that is invariant for  then  has probability density function  for every  and once
again, the chain  is stationary.

Our first result shows that there is a one-to-one correspondence between invariant functions for  and zero functions for the
generator .

Suppose . Then  if and only if , so that  is invariant for .

Proof

This is a simple consequence of the definition of the generator:

or in functional form, 

If our chain  has no absorbing states, then  is invariant for  if and only if .

Suppose that . Then  is invariant for  if and only if .
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Proof 1

Assume that  is bounded, so that the transition semigroup  is uniform. Then  for . So if 
then

Since  is nonnegative,  if and only if  (in which case  for every ).

Proof 2

Suppose that  for . Then  for . But using the Kolmogorov backward equation, 
. Letting  we conclude that . Conversely, if  then 
 for . It follows that  is constant in . Since  it follows that 

 for all .

So putting the two main results together we see that  is invariant for the continuous-time chain  if and only if  is invariant for
the jump chain . Our next result shows how functions that are invariant for  are related to the resolvent 

. To appreciate the result, recall that for  the matrix  is a probability matrix, and in fact 
 is the conditional probability density function of , given , where  is independent of  and has the

exponential distribution with parameter . So  is a transition matrix just as  is a transition matrix, but corresponding to the
exponentially distributed random time  with parameter  rather than the deterministic time .

Suppose that . If  then  for . Conversely if  for  then 
.

Proof

Recall that  for . Hence if  then

Conversely, suppose that . Then

As a function of , the integral on the right side is the Laplace transform of the time function . Hence we
must have  for , and letting  gives .

So extending our summary,  is invariant for the transition semigroup  if and only if  is
invariant for jump transition matrices  if and only if  if and only if  is invariant for the collection of
probability matrices . From our knowledge of the theory for discrete-time chains, we now have the following
fundamental result:

Suppose that  is irreducible and recurrent.

1. There exists  that is invariant for .
2. If  is invariant for , then  for some constant .

Proof

The result is trivial if  consists of a single, necessarily absorbing, state. Otherwise, there are no absorbing states, since  is
irreducible and so  for . From the result above,  is invariant for  if and only if  is invariant for . But 
is also irreducible and recurrent, so we know that there exists a strictly positive function that is invariant for , and every other
function that is invariant for  is a nonnegative multiple of this one. Hence the same is true for .

Invariant functions have a nice interpretation in terms of occupation times, an interpretation that parallels the discrete case. The
potential gives the expected total time in a state, starting in another state, but here we need to consider the expected time in a state
during a cycle that starts and ends in another state.

λ P =Pt etG t ∈ [0, ∞) f : S → [0, ∞)

f = f( ) = f = f + fPt etG ∑
n=0

∞ tn

n!
Gn ∑
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∞ tn

n!
Gn (16.18.10)
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Pt

d

dt
Pt Pt t ∈ [0, ∞) fPt t ∈ [0, ∞) f = fP0

f = fPt t ∈ [0, ∞)

f X λf

Y X

U = { : α ∈ (0, ∞)}Uα α ∈ (0, ∞) αUα

α (x, ⋅)Uα XT = xX0 T X

α αUα Pt

T α ∈ (0, ∞) t ∈ [0, ∞)

f : S → [0, ∞) fG= 0 f(α ) = fUα α ∈ (0, ∞) f(α ) = fUα α ∈ (0, ∞)
fG= 0

I +G = αUα Uα α ∈ (0, ∞) fG= 0

f(α ) = f +fG = fUα Uα (16.18.11)

f(α ) = fUα

fG = fG dt = 0Uα ∫
∞

0
e−αt Pt (16.18.12)

α ∈ (0, ∞) t ↦ fGPt

fG = 0Pt t ∈ (0, ∞) t ↓ 0 fG= 0

f : S → [0, ∞) P = { : t ∈ [0, ∞)}Pt λf

{ : n ∈ N}Qn fG= 0 f

{α : α ∈ (0, ∞)}Uα

X

g : S → (0, ∞) X

f X f = cg c ∈ [0, ∞)

S X

λ(x) > 0 x ∈ S f X λf Y Y

Y

Y X
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For , define the function  by

so that  is the expected occupation time in state  before the first return to , starting in .

Suppose again that  is irreducible and recurrent. For ,

1. 
2.  is invariant for 
3. 
4. 

Proof

As is often the case, the proof is based on results that we already have for the embedded jump chain. For , define

so that  is the expected number of visits to  before the first return to , starting in , for the jump chain 
. Since  is irreducible and recurrent, so is . From our results in the discrete case we know that

1. 
2.  is invariant for 
3. 

From our results above, it follows that the function  satisfies properties (a), (b), and (c) in the theorem. But
each visit to  by the jump chain  has expected length  for the continuous-time chain . It follows that 

 for . By definition,  is the expected occupation time in  before the first return to ,
starting in . Hence, summing over  gives the expected return time to , starting in , so (d) holds.

So now we have some additional insight into positive and null recurrence for the continuous-time chain  and the associated jump
chain . Suppose again that the chains are irreducible and recurrent. There exist  that is invariant for , and then 

 is invariant for . The invariant functions are unique up to multiplication by positive constants. The jump chain  is positive
recurrent if and only if  while the continuous-time chain  is positive recurrent if and only if 

. Note that if  is bounded (which is equivalent to the transition semigroup  being uniform), then  is
positive recurrent if and only if  is positive recurrent.

Suppose again that  is irreducible and recurrent.

1. If  is null recurrent then  does not have an invariant probability density function.
2. If  is positive recurrent then  has a unique, positive invariant probability density function.

Proof

From the previous result, there exists  that is invariant for , and every other invariant function is a
nonnegative multiple of this one. The function  given by

is uniquely defined (that is, unchanged if we replace  by  where ).

1. If  then  for every .
2. If  then  for every  and .

x ∈ S γx

(y) = E( 1( = y)ds = x) , y ∈ Sγx ∫
τρx

0
Xs

∣
∣
∣ X0 (16.18.13)

(y)γx y x x

X x ∈ S

: S → (0, ∞)γx
γx X

(x) = 1/λ(x)γx
μ(x) = (y)∑y∈S γx

x ∈ S

(y) = E( 1( = y) = x) , y ∈ Sδx ∑
n=0

−1ρx

Yn
∣
∣
∣ Y0 (16.18.14)

(y)δx y x x

Y = ( , , …)Y0 Y1 X Y

: S → (0, ∞)δx
δx Y

(x) = 1δx

y ↦ (y)/λ(y)δx
y Y 1/λ(y) X

(y) = (y)/λ(y)γx δx x, y ∈ S (y)γx y x

x y ∈ S x x

X

Y g : S → (0, ∞) Y

g/λ X Y

g(x) < ∞∑x∈S X

g(x)/λ(x) < ∞∑x∈S λ P X

Y

X

X X

X X

g : S → (0, ∞) X

f

f(y) = , y ∈ S
g(y)

g(x)∑x∈S

(16.18.15)

g cg c > 0

g(x) = ∞∑x∈S f(y) = 0 y ∈ S

g(x) < ∞∑x∈S f(y) > 0 y ∈ S f(y) = 1∑y∈S
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Limiting Behavior

Our next discussion focuses on the limiting behavior of the transition semigroup . Our first result is a
simple corollary of the result above for potentials.

If  is transient, then  as  for every .

Proof

This follows from the previous result. If  is transient, then for any ,

and so we must have  as .

So we should turn our attention to the recurrent states. The set of recurrent states partitions into equivalent classes under , and
each of these classes is irreducible. Hence we can assume without loss of generality that our continuous-time chain 

 is irreducible and recurrent. To avoid trivialities, we will also assume that  has at least two states. Thus,
there are no absorbing states and so  for . Here is the main result.

Suppose that  is irreducible and recurrent. Then  exists for each ,
independently of . The function  is invariant for  and

1. If  is null recurrent then  for all .
2. If  is positive recurrent then  for all  and .

Proof sketch

The basic idea is that

The expression on the right is the limiting proportion of time spent in , starting in . This proportion is 
, so the results follow from the theorem above .

The limiting function  can be computed in a number of ways. First we find a function  that is invariant for . We
can do this by solving

 for 

 for 
 and then 

The function  is unique up to multiplication by positive constants. If , then we are in the positive recurrent case
and so  is simply  normalized:

The following result is known as the ergodic theorem for continuous-time Markov chains. It can also be thought of as a strong law
of large numbers for continuous-time Markov chains.

Suppose that  is irreducible and positive recurrent, with (unique) invariant probability density function 
. If  then

P = { : t ∈ [0, ∞)}Pt

y ∈ S (x, y) → 0Pt t → ∞ x ∈ S

y ∈ S x ∈ S

U(x, y) = (x, y)dt < ∞∫
∞

0
Pt (16.18.16)

(x, y) → 0Pt t → ∞

↔

X = { : t ∈ [0, ∞)}Xt S

λ(x) > 0 x ∈ S

X = { : t ∈ [0, ∞)}Xt f(y) = (x, y)limt→∞ Pt y ∈ S

x ∈ S f X

f(y) = , y ∈ S
(y)γx

μ(x)
(16.18.17)

X f(y) = 0 y ∈ S

X f(y) > 0 y ∈ S f(y) = 1∑y∈S

(x, y) = (x, y)dslim
t→∞

Pt lim
t→∞

1

t
∫

t

0
Ps (16.18.18)

y ∈ S x ∈ S

(y)/μ(x)γx

f g : S → (0, ∞) X

g = gPt t ∈ (0, ∞)
gG= 0
g(α ) = gUα α ∈ (0, ∞)
hQ = h g = h/λ

g g(x) < ∞∑x∈S

f g

f(y) = , y ∈ S
g(y)

g(x)∑x∈S

(16.18.19)

X = { : t ∈ [0, ∞)}Xt

f h : S → R

h( )ds → f(x)h(x) as t → ∞
1

t
∫

t

0
Xs ∑

x∈S

(16.18.20)
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with probability 1, assuming that the sum on the right converges absolutely.

Notes

First, let  and let , the indicator function of . Then given ,  is the average occupation
time in state , starting in state , over the time interval . In expected value, this is  which we know
converges to  as , independently of . So in this special case, the ergodic theorem states that the convergence is
with probability 1 also. A general function  is a linear combination of the indicator functions of the points in , so
the ergodic theorem is plausible.

Note that no assumptions are made about , so the limit is independent of the initial state. By now, this should come as no
surprise. After a long period of time, the Markov chain  “forgets” about the initial state. Note also that  is the
expected value of , thought of as a random variable on  with probability measure defined by . On the other hand, 

 is the average of the time function  on the interval . So the ergodic theorem states that the limiting
time average on the left is the same as the spatial average on the right.

Applications and Exercises

The Two-State Chain

The continuous-time, two-state chain has been studied in the last several sections. The following result puts the pieces together and
completes the picture.

Consider the continuous-time Markov chain  on  with transition rate  from 0 to
1 and transition rate  from 1 to 0. Give each of the following

1. The transition matrix  for  at .
2. The infinitesimal generator .
3. The transition matrix  for  at .
4. The invariant probability density function for .
5. The invariant probability density function for .
6. The limiting behavior of  as .
7. The limiting behavior of  as .

Answer

Note that since the transition rates  and  are positive, the chain is irreducible.

1. First,  and then for ,  if  is odd and  if  is even.

2. .

3.  for .

4. 

5. 

6. As in (a),  and  for . So there are two sub-sequential limits. The jump chain  is periodic with
period 2.

7.  as . Each row is .

Computational Exercises

The following continuous-time chain has also been studied in the previous three sections.

Consider the Markov chain  on  with exponential parameter function  and
jump transition matrix

x, y ∈ S h = 1y y = xX0 h( )ds1
t
∫ t

0 Xs

y x [0, t] (x, y)ds1
t
∫
t

0 Ps

f(y) t → ∞ x

h : S → R S

X0

X f(x)h(x)∑x∈S

h S f

h( )ds1
t
∫ t

0 Xs s ↦ h( )Xs [0, t]

X = { : t ∈ [0, ∞)}Xt S = {0, 1} a ∈ (0, ∞)
b ∈ (0, ∞)

Qn
Y n ∈ N

G

Pt X t ∈ [0, ∞)
Y

X

Qn n → ∞
Pt t → ∞

a b

Q = [ ]
0

1

1

0
n ∈ N = QQn n = IQn n

G= [ ]
−a

b

a

−b

= [ ]− [ ]Pt
1

a+b

b

b

a

a

1
a+b

e−(a+b)t −a

b

a

−b
t ∈ [0, ∞)

= [ ]fd
1
2

1
2

= [ ]fc
b

a+b

a

a+b

= IQ2n = QQ2n+1 n ∈ N Y

→ [ ]Pt
1

a+b

b

b

a

a
t → ∞ fc

X = { : t ∈ [0, ∞)}Xt S = {0, 1, 2} λ = (4, 1, 3)
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1. Recall the generator matrix .
2. Find the invariant probability density function  for  by solving .
3. Find the invariant probability density function  for  by solving .
4. Verify that  is a multiple of .
5. Describe the limiting behavior of  as .
6. Describe the limiting behavior of  as .
7. Verify the result in (f) by recalling the transition matrix  for  at .

Answer

1. 

2. 
3. 
4. 

5.  as 

6.  as 

7.  for 

Special Models

Read the discussion of stationary and limiting distributions for chains subordinate to the Poisson process.

Read the discussion of stationary and limiting distributions for continuous-time birth-death chains.

Read the discussion of classification and limiting distributions for continuous-time queuing chains.

This page titled 16.18: Stationary and Limting Distributions of Continuous-Time Chains is shared under a CC BY 2.0 license and was authored,
remixed, and/or curated by Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts
platform.

Q =
⎡

⎣

⎢⎢

0

1
1
3

1
2

0
2
3

1
2

0

0

⎤

⎦

⎥⎥ (16.18.21)

G

fd Y Q =fd fd
fc X G= 0fc

λfc fd
Qn n → ∞
Pt t → ∞

Pt X t ∈ [0, ∞)

G=
⎡

⎣
⎢

−4

1

1

2

−1

2

2

0

−3

⎤

⎦
⎥

= [ ]fd
1

14
6 5 3

= [ ]fc
1

15 3 10 2

λ = [ ] =fc
1

15
12 10 6 28

15
fd

→Qn 1
14

⎡

⎣
⎢

6

6

6

5

5

5

3

3

3

⎤

⎦
⎥ n → ∞

→Pt
1

15

⎡

⎣
⎢

3

3

3

10

10

10

2

2

2

⎤

⎦
⎥ t → ∞

=Pt
1

15

⎡

⎣
⎢

3 +12e−5t

3 −3e−5t

3 −3e−5t

10 −10e−3t

10 +5e−3t

10 −10e−3t

2 −12 +10e−5t e−3t

2 +3 −5e−5t e−3t

2 +3 +10e−5t e−3t

⎤

⎦
⎥ t ∈ [0, ∞)
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