
9.1.1 https://stats.libretexts.org/@go/page/10211

9.1: Introduction to Hypothesis Testing
       

Basic Theory

Preliminaries

As usual, our starting point is a random experiment with an underlying sample space and a probability measure . In the basic
statistical model, we have an observable random variable  taking values in a set . In general,  can have quite a complicated
structure. For example, if the experiment is to sample  objects from a population and record various measurements of interest,
then

where  is the vector of measurements for the th object. The most important special case occurs when  are
independent and identically distributed. In this case, we have a random sample of size  from the common distribution.

The purpose of this section is to define and discuss the basic concepts of statistical hypothesis testing. Collectively, these concepts
are sometimes referred to as the Neyman-Pearson framework, in honor of Jerzy Neyman and Egon Pearson, who first formalized
them.

Hypotheses

A statistical hypothesis is a statement about the distribution of . Equivalently, a statistical hypothesis specifies a set of
possible distributions of : the set of distributions for which the statement is true. A hypothesis that specifies a single
distribution for  is called simple; a hypothesis that specifies more than one distribution for  is called composite.

In hypothesis testing, the goal is to see if there is sufficient statistical evidence to reject a presumed null hypothesis in favor of a
conjectured alternative hypothesis. The null hypothesis is usually denoted  while the alternative hypothesis is usually denoted 

.

An hypothesis test is a statistical decision; the conclusion will either be to reject the null hypothesis in favor of the alternative, or to
fail to reject the null hypothesis. The decision that we make must, of course, be based on the observed value  of the data vector 

. Thus, we will find an appropriate subset  of the sample space  and reject  if and only if . The set  is known as
the rejection region or the critical region. Note the asymmetry between the null and alternative hypotheses. This asymmetry is due
to the fact that we assume the null hypothesis, in a sense, and then see if there is sufficient evidence in  to overturn this
assumption in favor of the alternative.

An hypothesis test is a statistical analogy to proof by contradiction, in a sense. Suppose for a moment that  is a statement in a
mathematical theory and that  is its negation. One way that we can prove  is to assume  and work our way logically to a
contradiction. In an hypothesis test, we don't “prove” anything of course, but there are similarities. We assume  and then see if
the data  are sufficiently at odds with that assumption that we feel justified in rejecting  in favor of .

Often, the critical region is defined in terms of a statistic , known as a test statistic, where  is a function from  into another
set . We find an appropriate rejection region  and reject  when the observed value . Thus, the rejection
region in  is then . As usual, the use of a statistic often allows significant data reduction
when the dimension of the test statistic is much smaller than the dimension of the data vector.

Errors

The ultimate decision may be correct or may be in error. There are two types of errors, depending on which of the hypotheses is
actually true.

Types of errors:

1. A type 1 error is rejecting the null hypothesis  when  is true.
2. A type 2 error is failing to reject the null hypothesis  when the alternative hypothesis  is true.

Similarly, there are two ways to make a correct decision: we could reject  when  is true or we could fail to reject  when 
 is true. The possibilities are summarized in the following table:
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Hypothesis Test

State | Decision Fail to reject Reject 

 True Correct Type 1 error

 True Type 2 error Correct

Of course, when we observe  and make our decision, either we will have made the correct decision or we will have
committed an error, and usually we will never know which of these events has occurred. Prior to gathering the data, however, we
can consider the probabilities of the various errors.

If  is true (that is, the distribution of  is specified by ), then  is the probability of a type 1 error for this
distribution. If  is composite, then  specifies a variety of different distributions for  and thus there is a set of type 1 error
probabilities.

The maximum probability of a type 1 error, over the set of distributions specified by , is the significance level of the test or
the size of the critical region.

The significance level is often denoted by . Usually, the rejection region is constructed so that the significance level is a
prescribed, small value (typically 0.1, 0.05, 0.01).

If  is true (that is, the distribution of  is specified by ), then  is the probability of a type 2 error for this
distribution. Again, if  is composite then  specifies a variety of different distributions for , and thus there will be a set of
type 2 error probabilities. Generally, there is a tradeoff between the type 1 and type 2 error probabilities. If we reduce the
probability of a type 1 error, by making the rejection region  smaller, we necessarily increase the probability of a type 2 error
because the complementary region  is larger.

The extreme cases can give us some insight. First consider the decision rule in which we never reject , regardless of the
evidence . This corresponds to the rejection region . A type 1 error is impossible, so the significance level is 0. On the
other hand, the probability of a type 2 error is 1 for any distribution defined by . At the other extreme, consider the decision rule
in which we always rejects  regardless of the evidence . This corresponds to the rejection region . A type 2 error is
impossible, but now the probability of a type 1 error is 1 for any distribution defined by . In between these two worthless tests
are meaningful tests that take the evidence  into account.

Power

If  is true, so that the distribution of  is specified by , then , the probability of rejecting  is the power of
the test for that distribution.

Thus the power of the test for a distribution specified by  is the probability of making the correct decision.

Suppose that we have two tests, corresponding to rejection regions  and , respectively, each having significance level .
The test with region  is uniformly more powerful than the test with region  if

Naturally, in this case, we would prefer the first test. Often, however, two tests will not be uniformly ordered; one test will be more
powerful for some distributions specified by  while the other test will be more powerful for other distributions specified by .

If a test has significance level  and is uniformly more powerful than any other test with significance level , then the test is
said to be a uniformly most powerful test at level .

Clearly a uniformly most powerful test is the best we can do.

-value

In most cases, we have a general procedure that allows us to construct a test (that is, a rejection region ) for any given
significance level . Typically,  decreases (in the subset sense) as  decreases.
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The -value of the observed value  of , denoted , is defined to be the smallest  for which ; that is, the
smallest significance level for which  is rejected, given .

Knowing  allows us to test  at any significance level for the given data : If  then we would reject  at
significance level ; if  then we fail to reject  at significance level . Note that  is a statistic. Informally, 
can often be thought of as the probability of an outcome “as or more extreme” than the observed value , where extreme is
interpreted relative to the null hypothesis .

Analogy with Justice Systems

There is a helpful analogy between statistical hypothesis testing and the criminal justice system in the US and various other
countries. Consider a person charged with a crime. The presumed null hypothesis is that the person is innocent of the crime; the
conjectured alternative hypothesis is that the person is guilty of the crime. The test of the hypotheses is a trial with evidence
presented by both sides playing the role of the data. After considering the evidence, the jury delivers the decision as either not
guilty or guilty. Note that innocent is not a possible verdict of the jury, because it is not the point of the trial to prove the person
innocent. Rather, the point of the trial is to see whether there is sufficient evidence to overturn the null hypothesis that the person is
innocent in favor of the alternative hypothesis of that the person is guilty. A type 1 error is convicting a person who is innocent; a
type 2 error is acquitting a person who is guilty. Generally, a type 1 error is considered the more serious of the two possible errors,
so in an attempt to hold the chance of a type 1 error to a very low level, the standard for conviction in serious criminal cases is
beyond a reasonable doubt.

Tests of an Unknown Parameter

Hypothesis testing is a very general concept, but an important special class occurs when the distribution of the data variable 
depends on a parameter  taking values in a parameter space . The parameter may be vector-valued, so that 
and  for some . The hypotheses generally take the form

where  is a prescribed subset of the parameter space . In this setting, the probabilities of making an error or a correct decision
depend on the true value of . If  is the rejection region, then the power function  is given by

The power function gives a lot of information about the test.

The power function satisfies the following properties:

1.  is the probability of a type 1 error when .
2.  is the significance level of the test.
3.  is the probability of a type 2 error when .
4.  is the power of the test when .

If we have two tests, we can compare them by means of their power functions.

Suppose that we have two tests, corresponding to rejection regions  and , respectively, each having significance level .
The test with rejection region  is uniformly more powerful than the test with rejection region  if  for all 

.

Most hypothesis tests of an unknown real parameter  fall into three special cases:

Suppose that  is a real parameter and  a specified value. The tests below are respectively the two-sided test, the left-
tailed test, and the right-tailed test.
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Thus the tests are named after the conjectured alternative. Of course, there may be other unknown parameters besides  (known as
nuisance parameters).

Equivalence Between Hypothesis Test and Confidence Sets

There is an equivalence between hypothesis tests and confidence sets for a parameter .

Suppose that  is a  level confidence set for . The following test has significance level  for the hypothesis 
 versus : Reject  if and only if 

Proof

By definition, . Hence if  is true so that , then the probability of a type 1 error is 
.

Equivalently, we fail to reject  at significance level  if and only if  is in the corresponding  level confidence set. In
particular, this equivalence applies to interval estimates of a real parameter  and the common tests for  given above.

In each case below, the confidence interval has confidence level  and the test has significance level .

1. Suppose that  is a two-sided confidence interval for . Reject  versus  if and only if 
 or .

2. Suppose that  is a confidence lower bound for . Reject  versus  if and only if .
3. Suppose that  is a confidence upper bound for . Reject  versus  if and only if .

Pivot Variables and Test Statistics

Recall that confidence sets of an unknown parameter  are often constructed through a pivot variable, that is, a random variable 
 that depends on the data vector  and the parameter , but whose distribution does not depend on  and is known. In

this case, a natural test statistic for the basic tests given above is .
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