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7.1: Estimators
            

The Basic Statistical Model

As usual, our starting point is a random experiment with an underlying sample space and a probability measure . In the basic
statistical model, we have an observable random variable  taking values in a set . Recall that in general, this variable can have
quite a complicated structure. For example, if the experiment is to sample  objects from a population and record various
measurements of interest, then the data vector has the form

where  is the vector of measurements for the th object. The most important special case is when  are
independent and identically distributed (IID). In this case  is a random sample of size  from the distribution of an underlying
measurement variable .

Statistics

Recall also that a statistic is an observable function of the outcome variable of the random experiment:  where  is a
known function from  into another set . Thus, a statistic is simply a random variable derived from the observation variable ,
with the assumption that  is also observable. As the notation indicates,  is typically also vector-valued. Note that the original
data vector  is itself a statistic, but usually we are interested in statistics derived from . A statistic  may be computed to
answer an inferential question. In this context, if the dimension of  (as a vector) is smaller than the dimension of  (as is usually
the case), then we have achieved data reduction. Ideally, we would like to achieve significant data reduction with no loss of
information about the inferential question at hand.

Parameters

In the technical sense, a parameter  is a function of the distribution of , taking values in a parameter space . Typically, the
distribution of  will have  real parameters of interest, so that  has the form  and thus . In
many cases, one or more of the parameters are unknown, and must be estimated from the data variable . This is one of the of the
most important and basic of all statistical problems, and is the subject of this chapter. If  is a statistic, then the distribution of 
will depend on the parameters of , and thus so will distributional constructs such as means, variances, covariances, probability
density functions and so forth. We usually suppress this dependence notationally to keep our mathematical expressions from
becoming too unwieldy, but it's very important to realize that the underlying dependence is present. Remember that the critical idea
is that by observing a value  of a statistic  we (hopefully) gain information about the unknown parameters.

Estimators

Suppose now that we have an unknown real parameter  taking values in a parameter space . A real-valued statistic 
 that is used to estimate  is called, appropriately enough, an estimator of . Thus, the estimator is a random variable

and hence has a distribution, a mean, a variance, and so on (all of which, as noted above, will generally depend on ). When we
actually run the experiment and observe the data , the observed value  (a single number) is the estimate of the parameter

. The following definitions are basic.

Suppose that  is a statistic used as an estimator of a parameter  with values in . For ,

1.  is the error.
2.  is the bias of 
3.  is the mean square error of 

Thus the error is the difference between the estimator and the parameter being estimated, so of course the error is a random
variable. The bias of  is simply the expected error, and the mean square error (the name says it all) is the expected square of the
error. Note that bias and mean square error are functions of . The following definitions are a natural complement to the
definition of bias.

Suppose again that  is a statistic used as an estimator of a parameter  with values in .

1.  is unbiased if , or equivalently , for all .
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2.  is negatively biased if , or equivalently , for all .
3.  is positively biased if , or equivalently , for all .

Thus, for an unbiased estimator, the expected value of the estimator is the parameter being estimated, clearly a desirable property.
On the other hand, a positively biased estimator overestimates the parameter, on average, while a negatively biased estimator
underestimates the parameter on average. Our definitions of negative and positive bias are weak in the sense that the weak
inequalities  and  are used. There are corresponding strong definitions, of course, using the strong inequalities  and . Note,
however, that none of these definitions may apply. For example, it might be the case that  for some , 

 for other , and  for yet other .

Proof

This follows from basic properties of expected value and variance:

In particular, if the estimator is unbiased, then the mean square error of  is simply the variance of .

Ideally, we would like to have unbiased estimators with small mean square error. However, this is not always possible, and the
result in (3) shows the delicate relationship between bias and mean square error. In the next section we will see an example with
two estimators of a parameter that are multiples of each other; one is unbiased, but the other has smaller mean square error.
However, if we have two unbiased estimators of , we naturally prefer the one with the smaller variance (mean square error).

Suppose that  and  are unbiased estimators of a parameter  with values in .

1.  is more efficient than  if .
2. The relative efficiency of  with respect to  is

Asymptotic Properties

Suppose again that we have a real parameter  with possible values in a parameter space . Often in a statistical experiment, we
observe an infinite sequence of random variables over time, , so that at time  we have observed 

. In this setting we often have a general formula that defines an estimator of  for each sample size .
Technically, this gives a sequence of real-valued estimators of :  where  is a real-valued function of  for
each . In this case, we can discuss the asymptotic properties of the estimators as . Most of the definitions are
natural generalizations of the ones above.

The sequence of estimators  is asymptotically unbiased if  as  for every , or
equivalently,  as  for every .

Suppose that  and  are two sequences of estimators that are asymptotically unbiased. The
asymptotic relative efficiency of  to  is

assuming that the limit exists.

Naturally, we expect our estimators to improve, as the sample size  increases, and in some sense to converge to the parameter as 
. This general idea is known as consistency. Once again, for the remainder of this discussion, we assume that 

 is a sequence of estimators for a real-valued parameter , with values in the parameter space .
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1.  is consistent if  as  in probability for each . That is,  as  for every 
 and .

2.  is mean-square consistent if  as  for .

Here is the connection between the two definitions:

If  is mean-square consistent then  is consistent.

Proof

From Markov's inequality,

That mean-square consistency implies simple consistency is simply a statistical version of the theorem that states that mean-square
convergence implies convergence in probability. Here is another nice consequence of mean-square consistency.

If  is mean-square consistent then  is asymptotically unbiased.

Proof

This result follows from the fact that mean absolute error is smaller than root mean square error, which in turn is special case
of a general result for norms. See the advanced section on vector spaces for more details. So, using this result and the ordinary
triangle inequality for expected value we have

Hence  as  for .

In the next several subsections, we will review several basic estimation problems that were studied in the chapter on Random
Samples.

Estimation in the Single Variable Model

Suppose that  is a basic real-valued random variable for an experiment, with mean  and variance . We sample
from the distribution of  to produce a sequence  of independent variables, each with the distribution of . For
each ,  is a random sample of size  from the distribution of .

Estimating the Mean

This subsection is a review of some results obtained in the section on the Law of Large Numbers in the chapter on Random
Samples. Recall that a natural estimator of the distribution mean  is the sample mean, defined by

Properties of  as a sequence of estimators of .

1.  so  is unbiased for 
2.  for  so  is consistent.

The consistency of  is simply the weak law of large numbers. Moreover, there are a number of important special cases of the
results in (10). See the section on Sample Mean for the details.

Special cases of the sample mean

1. Suppose that , the indicator variable for an event  that has probability . Then the sample mean for a random
sample of size  from the distribution of  is the relative frequency or empirical probability of , denoted .
Hence  is an unbiased estimator of  for  and  is consistent..
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2. Suppose that  denotes the distribution function of a real-valued random variable . Then for fixed , the empirical
distribution function  is simply the sample mean for a random sample of size  from the distribution of the
indicator variable . Hence  is an unbiased estimator of  for  and  is
consistent.

3. Suppose that  is a random variable with a discrete distribution on a countable set  and  denotes the probability density
function of . Then for fixed , the empirical probability density function  is simply the sample mean for a
random sample of size  from the distribution of the indicator variable . Hence  is an unbiased
estimator of  for  and  is consistent.

Estimating the Variance

This subsection is a review of some results obtained in the section on the Sample Variance in the chapter on Random Samples. We
also assume that the fourth central moment  is finite. Recall that  is the kurtosis of . Recall first that if 

 is known (almost always an artificial assumption), then a natural estimator of  is a special version of the sample variance,
defined by

Properties of  as a sequence of estimators of .

1.  so  is unbiased for 
2.  for  so  is consistent.

Proof

 corresponds to sampling from the distribution of . This distribution as mean  and variance , so the
results follow immediately from theorem (10).

If  is unknown (the more reasonable assumption), then a natural estimator of the distribution variance is the standard version of
the sample variance, defined by

Properties of  as a sequence of estimators of 

1.  so  is unbiased for 

2.  for  so  is consistent sequence.

Naturally, we would like to compare the sequences  and  as estimators of . But again remember that  only makes
sense if  is known.

Comparison of  and 

1.  for .
2. The asymptotic relative efficiency of  to  is 1.

So by (a)  is better than  for , assuming that  is known so that we can actually use . This is perhaps not
surprising, but by (b)  works just about as well as  for a large sample size . Of course, the sample standard deviation  is
a natural estimator of the distribution standard deviation . Unfortunately, this estimator is biased. Here is a more general result:

Suppose that  is a parameter with possible values in  (with at least two points) and that  is a statistic with values
in . If  is an unbiased estimator of  then  is a negatively biased estimator of .

Proof

Note that

F Y y ∈ R

(y)Fn n ∈ N+

X = 1(Y ≤ y) (y)Fn F (y) n ∈ N+ ( (y) : n ∈ )Fn N+

U S f

U u ∈ S (u)fn

n ∈ N+ X = 1(U = u) (u)fn

f(u) n ∈ N+ ( (u) : n ∈ )fn N+

=E [(X −μ ]σ4 )4 /σ4 σ4 X

μ σ2

= ( −μ , n ∈W 2
n

1

n
∑
i=1

n

Xi )2
N+ (7.1.8)

= ( , , …)W 2 W 2
1 W 2

2 σ2

E ( ) =W 2
n σ2 W 2

n n ∈ N+

var( ) = ( − )W 2
n

1
n

σ4 σ4 n ∈ N+ W 2

W 2 (X −μ)2 σ2 −σ4 σ4

μ

= ( − , n ∈ {2, 3, …}S2
n

1

n −1
∑
i=1

n

Xi Mn)2 (7.1.9)

= ( , , …)S2 S2
2 S2

3 σ2

E ( ) =S2
n σ2 S2

n n ∈ {2, 3, …}

var( ) = ( − )S2
n

1
n

σ4
n−3
n−1

σ4 n ∈ {2, 3, …} S2

W 2 S2 σ2 W 2

μ

W 2 S2

var( ) < var( )W 2
n S2

n n ∈ {2, 3, …}

W 2 S2

W 2
n S2

n n ∈ {2, 3, …} μ W 2
n

S2
n W 2

n n Sn

σ

θ T ⊆ (0, ∞) U

T U 2 θ2 U θ

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10189?pdf


7.1.5 https://stats.libretexts.org/@go/page/10189

Since  has at least two points,  cannot be deterministic so . It follows that  so  for 
.

Thus, we should not be too obsessed with the unbiased property. For most sampling distributions, there will be no statistic  with
the property that  is an unbiased estimator of  and  is an unbiased estimator of .

Estimation in the Bivariate Model

In this subsection we review some of the results obtained in the section on the Correlation and Regression in the chapter on
Random Samples

Suppose that  and  are real-valued random variables for an experiment, so that  has a bivariate distribution in . Let 
 and  denote the mean and variance of , and let  and  denote the mean and

variance of . For the bivariate parameters, let  denote the distribution covariance and  the
distribution correlation. We need one higher-order moment as well: let , and as usual, we assume that
all of the parameters exist. So the general parameter spaces are , , , and . Suppose now
that we sample from the distribution of  to generate a sequence of independent variables , each
with the distribution of . As usual, we will let  and ; these are random
samples of size  from the distributions of  and , respectively.

Since we now have two underlying variables, we need to enhance our notation somewhat. It will help to define the deterministic
versions of our statistics. So if  and  are sequences of real numbers and , we define the
mean and special covariance functions by

If  we define the variance and standard covariance functions by

It should be clear from context whether we are using the one argument or two argument version of . On this point, note that 
.

Estimating the Covariance

If  and  are known (almost always an artificial assumption), then a natural estimator of the distribution covariance  is a special
version of the sample covariance, defined by

Properties of  as a sequence of estimators of .

1.  so  is unbiased for .
2.  for  so  is consistent.

Proof

We've done this proof before, but it's so basic that it's worth repeating. Note that  corresponds to sampling from the
distribution of . This distribution as mean  and variance , so the results follow immediately from
Theorem (10).
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If  and  are unknown (usually the more reasonable assumption), then a natural estimator of the distribution covariance  is the
standard version of the sample covariance, defined by

Properties of  as a sequence of estimators of .

1.  so is unbiased for .

2.  for  so  is consistent.

Once again, since we have two competing sequences of estimators of , we would like to compare them.

Comparison of  and  as estimators of :

1.  for .
2. The asymptotic relative efficiency of  to  is 1.

Thus,  is better than  for , assuming that  and  are known so that we can actually use . But for large , 
 works just about as well as .

Estimating the Correlation

A natural estimator of the distribution correlation  is the sample correlation

Note that this statistics is a nonlinear function of the sample covariance and the two sample standard deviations. For most
distributions of , we have no hope of computing the bias or mean square error of this estimator. If we could compute the
expected value, we would probably find that the estimator is biased. On the other hand, even though we cannot compute the mean
square error, a simple application of the law of large numbers shows that  as  with probability 1. Thus, 

 is at least consistent.

Estimating the regression coefficients

Recall that the distribution regression line, with  as the predictor variable and  as the response variable, is  where

On the other hand, the sample regression line, based on the sample of size , is  where

Of course, the statistics  and  are natural estimators of the parameters  and , respectively, and in a sense are derived from
our previous estimators of the distribution mean, variance, and covariance. Once again, for most distributions of , it would
be difficult to compute the bias and mean square errors of these estimators. But applications of the law of large numbers show that
with probability 1,  and  as , so at least  and  are consistent.

Exercises and Special Cases

The Poisson Distribution

Let's consider a simple example that illustrates some of the ideas above. Recall that the Poisson distribution with parameter 
 has probability density function  given by
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The Poisson distribution is often used to model the number of random “points” in a region of time or space, and is studied in more
detail in the chapter on the Poisson process. The parameter  is proportional to the size of the region of time or space; the
proportionality constant is the average rate of the random points. The distribution is named for Simeon Poisson.

Suppose that  has the Poisson distribution with parameter . . Hence

1. 
2. 
3. 

Proof

Recall the permutation notation  for  and . The expected value  is the
factorial moment of  of order . It's easy to see that he factorial moments are  for . The results follow
from this.

Suppose now that we sample from the distribution of  to produce a sequence of independent random variables 
, each having the Poisson distribution with unknown parameter . Again, 

is a random sample of size  from the from the distribution for each . From the previous exercise,  is both the mean
and the variance of the distribution, so that we could use either the sample mean  or the sample variance  as an estimator of 

. Both are unbiased, so which is better? Naturally, we use mean square error as our criterion.

Comparison of  to  as estimators of .

1.  for .

2.  for .

3.  so  for .
4. The asymptotic relative efficiency of  to  is .

So our conclusion is that the sample mean  is a better estimator of the parameter  than the sample variance  for 
, and the difference in quality increases with .

Run the Poisson experiment 100 times for several values of the parameter. In each case, compute the estimators  and .
Which estimator seems to work better?

The emission of elementary particles from a sample of radioactive material in a time interval is often assumed to follow the
Poisson distribution. Thus, suppose that the alpha emissions data set is a sample from a Poisson distribution. Estimate the rate
parameter .

1. using the sample mean
2. using the sample variance

Answer
1. 8.367
2. 8.649

Simulation Exercises

In the sample mean experiment, set the sampling distribution to gamma. Increase the sample size with the scroll bar and note
graphically and numerically the unbiased and consistent properties. Run the experiment 1000 times and compare the sample
mean to the distribution mean.

Run the normal estimation experiment 1000 times for several values of the parameters.

1. Compare the empirical bias and mean square error of  with the theoretical values.
2. Compare the empirical bias and mean square error of  and of  to their theoretical values. Which estimator seems to

work better?
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In matching experiment, the random variable is the number of matches. Run the simulation 1000 times and compare

1. the sample mean to the distribution mean.
2. the empirical density function to the probability density function.

Run the exponential experiment 1000 times and compare the sample standard deviation to the distribution standard deviation.

Data Analysis Exercises

For Michelson's velocity of light data, compute the sample mean and sample variance.

Answer

852.4, 6242.67

For Cavendish's density of the earth data, compute the sample mean and sample variance.

Answer

5.448, 0.048817

For Short's parallax of the sun data, compute the sample mean and sample variance.

Answer

8.616, 0.561032

Consider the Cicada data.

1. Compute the sample mean and sample variance of the body length variable.
2. Compute the sample mean and sample variance of the body weight variable.
3. Compute the sample covariance and sample correlation between the body length and body weight variables.

Answer
1. 24.0, 3.92
2. 0.180, 0.003512
3. 0.0471, 0.4012

Consider the M&M data.

1. Compute the sample mean and sample variance of the net weight variable.
2. Compute the sample mean and sample variance of the total number of candies.
3. Compute the sample covariance and sample correlation between the number of candies and the net weight.

Answer
1. 57.1, 5.68
2. 49.215, 2.3163
3. 2.878, 0.794

Consider the Pearson data.

1. Compute the sample mean and sample variance of the height of the father.
2. Compute the sample mean and sample variance of the height of the son.
3. Compute the sample covariance and sample correlation between the height of the father and height of the son.

Answer
1. 67.69, 7.5396
2. 68.68, 7.9309
3. 3.875, 0.501
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The estimators of the mean, variance, and covariance that we have considered in this section have been natural in a sense.
However, for other parameters, it is not clear how to even find a reasonable estimator in the first place. In the next several sections,
we will consider the problem of constructing estimators. Then we return to the study of the mathematical properties of estimators,
and consider the question of when we can know that an estimator is the best possible, given the data.
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