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17.5: Convergence
      

Basic Theory

Basic Assumptions

As in the Introduction, we start with a stochastic process  on an underlying probability space , having
state space , and where the index set  (representing time) is either  (discrete time) or  (continuous time). Next, we have
a filtration , and we assume that  is adapted to . So  is an increasing family of sub -algebras of  and 
is measurable with respect to  for . We think of  as the collection of events up to time . We assume that 

, so that the mean of  exists as a real number, for each . Finally, in continuous time where , we
need the additional assumptions that  is right continuous and has left limits, and that the filtration  is standard (that is,
right continuous and complete). Recall also that , and this is the -algebra that encodes our information over
all time.

The Martingale Convergence Theorems

If  is a sub-martingale relative to  then  has an increasing property of sorts:  for  with .
Similarly, if  is a super-martingale relative to  then  has a decreasing property of sorts, since the last inequality is reversed.
Thus, there is hope that if this increasing or decreasing property is coupled with an appropriate boundedness property, then the sub-
martingale or super-martingale might converge, in some sense, as . This is indeed the case, and is the subject of this section.
The martingale convergence theorems, first formulated by Joseph Doob, are among the most important results in the theory of
martingales. The first martingale convergence theorem states that if the expected absolute value is bounded in the time, then the
martingale process converges with probability 1.

Suppose that  is a sub-martingale or a super-martingale with respect to  and that 
is bounded in . Then there exists a random variable  that is measurable with respect to  such that 
and  as  with probability 1.

Proof

The proof is simple using the up-crossing inequality. Let  for . For  with , let 
 denote the number of up-crossings of the interval  by the process  on , and let  denote the number

of up-crossings of  by  on . Recall that  as . Suppose that  for , where .
By the up-crossing inequality,

By the monotone convergence theorem, it follows that

Hence . Therefore with probability 1,  for every  with . By our
characterization of convergence in terms of up-crossings, it follows that there exists a random variable  with values in 

 such that with probability 1,  as . Note that  is measurable with respect to . By
Fatou's lemma,

Hence .

The boundedness condition means that  is bounded (in norm) as a subset of the vector space . Here is a very simple, but
useful corollary:

If  is a nonnegative super-martingale with respect to  then there exists a random variable 
, measurable withe respect to , such that  with probability 1.
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X = { : t ∈ T}Xt F = { : t ∈ T}Ft
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Proof

Since  is a nonnegative super-martinagle,  for . Hence the previous martingale
convergence theorem applies.

Of course, the corollary applies to a nonnegative martingale as a special case. For the second martingale convergence theorem you
will need to review uniformly integrable variables. Recall also that for , the -norm of a random variable  is

and  is the normed vector space of all real-valued random variables for which this norm is finite. Convergence in mean refers to
convergence in  and more generally, convergence in th mean refers to convergence in .

Suppose that  is a uniformly integrable and is a sub-martingale or super-martingale with respect to . Then there exists a
random variable , measurable with respect to  such that  as  with probability 1 and in mean.
Moreover, if  is a martingale with respect to  then  for .

Proof

Since  is uniformly integrable,  is bounded in . Hence the by the first martingale convergence
theorem, there exists  that is measurable with respect to  such that  and  as  with
probability 1. By the uniform integrability theorem, the convergence is also in mean, so that  as .
Suppose now that  is a martingale with respect to  For fixed  we know that  as 
(with probability 1). But  for  so it follows that .

As a simple corollary, recall that if  is bounded in  for some  then  is uniformly integrable, and hence the
second martingale convergence theorem applies. But we can do better.

Suppose again that  is a sub-martingale or super-martingale with respect to  and that 
 is bounded in  for some . Then there exists a random variable  such that  as 
 in .

Proof

Suppose that  for  where . Since , we have  bounded in  so the first
martingale convergence theorem applies. Hence there exists , measurable with respect to , such that  as 

 with probability 1. Equivalently, with probability 1,

Next, for , let  define . by the norm version of the maximal inequality,

If we let , then by the montone convergence theorem

So . But  so  also. Moreover, , so applying the dominated
convergence theorem to the first displayed equation above, we have  as .

Example and Applications

In this subsection, we consider a number of applications of the martingale convergence theorems. One indication of the importance
of martingale theory is the fact that many of the classical theorems of probability have simple and elegant proofs when formulated
in terms of martingales.

X E(| |) =E( ) ≤E( )Xt Xt X0 t ∈ T

k ∈ [1, ∞) k X

∥X =∥k [E(|X )]|k
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(17.5.4)

Lk

L1 k Lk

X F

X∞ F∞ →Xt X∞ t → ∞
X F =E( ∣ )Xt X∞ Ft t ∈ T

X = { : t ∈ T}Xt E(| |)Xt t ∈ T

X∞ F∞ E(| |) < ∞X∞ →Xt X∞ t → ∞
E(| −X|) → 0Xt t → ∞

X F s ∈ T E( ∣ ) → E( ∣ )Xt Fs X∞ Fs t → ∞
E( ∣ ) =Xt Fs Xs t ≥ s =E( ∣ )Xs X∞ Fs

∥Xt∥k t ∈ T k ∈ (1, ∞) X

X = { : t ∈ T}Xt F = { : t ∈ T}Ft

∥Xt∥k t ∈ T k ∈ (1, ∞) ∈X∞ Lk →Xt X∞

t → ∞ Lk

∥ ≤ cXt∥k t ∈ T c ∈ (0, ∞) ∥X ≤ ∥X∥1 ∥k E(| |)Xt t ∈ T

X∞ F∞ →Xt X∞

t → ∞

| − → 0 as t → ∞Xt X∞|k (17.5.5)

t ∈ T = {s ∈ T : s ≤ t}Tt = sup{| | : s ∈ }Wt Xs Tt

∥ ≤ ∥ ∥ ≤ , t ∈ TWt∥k
k

k−1
Xt

kc

k−1
(17.5.6)

= sup{| | : s ∈ T}W∞ Xs

∥ = ∥ ≤W∞∥k lim
t→∞

Wt∥k
ck

k−1
(17.5.7)

∈W∞ Lk | | ≤X∞ W∞ ∈X∞ Lk | − ≤Xt X∞|k 2kW k
∞

E(| − ) → 0Xt X∞|k t → ∞

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10303?pdf


17.5.3 https://stats.libretexts.org/@go/page/10303

Simple Random Walk

Suppose now that that  is a sequence of independent random variables with  and 
 for , where . Let  be the partial sum process associated with  so that

Recall that  is the simple random walk with parameter . From our study of Markov chains, we know that  then 
as  and if  then  as . The chain is transient in these two cases. If , the chain is (null)
recurrent and so visits every state in  infinitely often. In this case  does not converge as . But of course 

 for , so the martingale convergence theorems do not apply.

Doob's Martingale

Recall that if  is a random variable with  and we define  for , then  is a
martingale relative to  and is known as a Doob martingale, named for you know whom. So the second martingale convergence
theorem states that every uniformly integrable martingale is a Doob martingale. Moreover, we know that the Doob martingale 
constructed from  and  is uniformly integrable, so the second martingale convergence theorem applies. The last remaining
question is the relationship between  and the limiting random variable . The answer may come as no surprise.

Let  be the Doob martingale constructed from  and . Then  as  with probability 1 and
in mean, where

Of course if , which is quite possible, then . At the other extreme, if , the trivial -algebra for all 
, then , a constant.

Kolmogorov Zero-One Law

Suppose that  is a sequence of random variables with values in a general state space . Let 
 for , and let . So  is the tail -algebra of , the collection of events that depend

only on the terms of the sequence with arbitrarily large indices. For example, if the sequence is real-valued (or more generally takes
values in a metric space), then the event that  has a limit as  is a tail event. If , then the event that  for
infinitely many  is another tail event. The Kolmogorov zero-one law, named for Andrei Kolmogorov, states that if  is an
independent sequence, then the tail events are essentially deterministic.

Suppose that  is a sequence of independent random variables. If  then  or .

Proof

Let  for  so that  is the natural filtration associated with . As with our

notation above, let . Now let  be a tail event. Then  is the Doob

martingale associated with the indicator variable  and . By our results above,  as 
with probability 1. But  so . On the other hand,  and the -algebras  and  are
independent. Therefore  for each . Thus .

Tail events and the Kolmogorov zero-one law were studied earlier in the section on measure in the chapter on probability spaces. A
random variable that is measurable with respect to  is a tail random variable. From the Kolmogorov zero-one law, a real-valued
tail random variable for an independent sequence must be a constant (with probability 1).

Branching Processes

Recall the discussion of the simple branching process from the Introduction. The fundamental assumption is that the particles act
independently, each with the same offspring distribution on . As before, we will let  denote the (discrete) probability density
function of the number of offspring of a particle,  the mean of the distribution, and  the probability of extinction starting with a
single particle. We assume that  and  so that a particle has a positive probability of dying without
children and a positive probability of producing more than 1 child.

V = { : n ∈ N}Vn P( = 1) = pVi
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Vi (17.5.8)
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The stochastic process of interest is  where  is the number of particles in the th generation for .
Recall that  is a discrete-time Markov chain on . Since 0 is an absorbing state, and all positive states lead to 0, we know that the
positive states are transient and so are visited only finitely often with probability 1. It follows that either  as 
(extinction) or  as  (explosion). We have quite a bit of information about which of these events will occur from
our study of Markov chains, but the martingale convergence theorems give more information.

Extinction and explosion

1. If  then  and extinction is certain.
2. If  then . Either  as  or  as  at an exponential rate.

Proof

The new information is the rate of divergence to  in (b). The other statements are from our study of discrete-time branching
Markov chains. We showed in the Introduction that  is a martingale. Since this martingale is nonnegative, it
has a limit as , and the limiting random variable takes values in . So if  and  as , then the
divergence to  must be at essentially the same rate as 

The Beta-Bernoulli Process

Recall that the beta-Bernoulli process is constructed by randomizing the success parameter in a Bernoulli trials process with a beta
distribution. Specifically, we start with a random variable  having the beta distribution with parameters . Next we
have a sequence  of indicator variables with the property that  is conditionally independent given 

 with  for . Let  denote the partial sum process associated with 
, so that once again,  for . Next let  for  so that  is the sample mean of 

. Finally let

We showed in the Introduction that  is a martingale with respect to .

 and  as  with probability 1 and in mean.

Proof

We showed in the section on the beta-Bernoulli process that  as  with probability 1. Note that  for 
, so the martingale  is uniformly integrable. Hence the second martingale convergence theorem applies, and the

convergence is in mean also.

This is a very nice result and is reminiscent of the fact that for the ordinary Bernoulli trials sequence with success parameter 
 we have the law of large numbers that  as  with probability 1 and in mean.

Pólya's Urn Process

Recall that in the simplest version of Pólya's urn process, we start with an urn containing  red and  green balls. At each discrete
time step, we select a ball at random from the urn and then replace the ball and add  new balls of the same color to the urn. For the
parameters, we need  and . For , let  denote the color of the ball selected on the th draw, where 1 means
red and 0 means green. For , let , so that  is the partial sum process associated with 

. Since  is the number of red balls in the urn at time , the average number of balls at time  is 
. On the other hand, the total number of balls in the urn at time  is  so the proportion of red balls in

the urn at time  is

We showed in the Introduction, that  is a martingale. Now we are interested in the limiting behavior of  and 
 as . When , the answer is easy. In this case,  has the binomial distribution with trial parameter  and success

parameter , so by the law of large numbers,  as  with probability 1 and in mean. On the other
hand,  when . So the interesting case is when .
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Suppose that . Then there exists a random variable  such that  and  as  with probability 1
and in mean. Moreover,  has the beta distribution with left parameter  and right parameter .

Proof

In our study of Póyla's urn process we showed that when  the process  is a beta-Bernoulli process with parameters 
 and . So the result follows from our previous theorem.

Likelihood Ratio Tests

Recall the discussion of likelihood ratio tests in the Introduction. To review, suppose that  is a general measure space, and
that  is a sequence of independent, identically distributed random variables, taking values in , and having a
common probability density function with respect to . The likelihood ratio test is a hypothesis test, where the null and alternative
hypotheses are

: the probability density function is .
: the probability density function is .

We assume that  and  are positive on . Also, it makes no sense for  and  to be the same, so we assume that  on a
set of positive measure. The test is based on the likelihood ratio test statistic

We showed that under the alternative hypothesis ,  is a martingale with respect to , known as the
likelihood ratio martingale.

Under ,  as  with probability 1.

Proof

Assume that  is true.  is a nonnegative martingale, so the first martingale convergence theorem applies, and hence there
exists a random variable  with values in  such that  as  with probability 1. Next note that

The variables  for  are also independent and identically distributed, so let  denote the common
mean. The natural logarithm is concave and the martingale  has mean 1, so by Jensen's inequality,

Hence . By the strong law of large numbers,  as  with probability 1. Hence we must have 
 as  with probability 1. But by continuity,  as  with probability 1, so 

 with probability 1.

This result is good news, statistically speaking. Small values of  are evidence in favor of , so the decision rule is to reject 
in favor of  if  for a chosen critical value . If  is true and the sample size  is sufficiently large, we will
reject . In the proof, note that  must diverge to  at least as fast as  diverges to . Hence  as 
exponentially fast, at least. It also worth noting that  is a mean 1 martingale (under ) so trivially  as  even
though  as  with probability 1. So the likelihood ratio martingale is a good example of a sequence where the
interchange of limit and expected value is not valid.

Partial Products

Suppose that  is an independent sequence of nonnegative random variables with  for .
Let

c ∈ N+ P → PMn → PZn n → ∞
P a/c b/c

c ∈ N+ X

a/c b/c
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( )g1 Xi

(17.5.12)
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m ∈ [−∞, 0) ln( ) → m1
n

Ln n → ∞

ln( ) → −∞Ln n → ∞ ln( ) → ln( )Ln L∞ n → ∞
= 0L∞

Ln H1 H0

H1 ≤ lLn l ∈ (0, ∞) H1 n

H0 ln( )Ln −∞ n ∞ → 0Ln n → ∞
L H1 E( ) → 1Ln n → ∞
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https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10303?pdf


17.5.6 https://stats.libretexts.org/@go/page/10303

so that  is the partial product process associated with . From our discussion of this process in the
Introduction, we know that  is a martingale with respect to . Since  is nonnegative, the second martingale convergence
theorem applies, so there exists a random variable  such that  as  with probability 1. What more can we say?
The following result, known as the Kakutani product martingale theorem, is due to Shizuo Kakutani.

Let  for  and let .

1. If  then  as  in mean and .
2. If  then  with probability 1.

Proof

Note that  for  since  is nonnegative and . Also, since  is concave on  it
follows from Jensen's inequality that

Let  for . Since  for , it follows that  for  and that  is decreasing
in  with limit . Next let  for , so that  is the partial
product process associated with . Since  for , the process  is also a
nonnegative martingale, so there exists a random variable  such that  as  with probability 1. Note that 

, , and  for .

1. Suppose that . Since the martingale  has mean 1,

Let  for  so that  is the maximal process associated with 
. Also, let  and note that  as . By the  maximal inequality,

By the monotone convergence theorem, . Since  is strictly increasing on 
,  and so  for . Since , it follows that the martingale  is

uniformly integrable. Hence by the third martingale convergence theorem above,  is mean. Since convergence in
mean implies that the means converge, .

2. Suppose that . Then  as  with probability 1. Note that in this case, the
convergence is not in mean, and trivially .

Density Functions

This discussion continues the one on density functions in the Introduction. To review, we start with our probability space 
and a filtration  in discrete time. Recall again that . Suppose now that  is a finite measure
on the sample space . For each , the restriction of  to  is a measure on  and similarly the
restriction of  to  is a probability measure on . To save notation and terminology, we will refer to these as  and  on 

, respectively. Suppose now that  is absolutely continuous with respect to  on  for each . By the Radon-Nikodym
theorem,  has a density function (or Radon-Nikodym derivative)  with respect to  on  for each . The
theorem and the derivative are named for Johann Radon and Otto Nikodym. In the Introduction we showed that 

 is a martingale with respect to . Here is the convergence result:

There exists a random variable  such that  as  with probability 1.

1. If  is absolutely continuous with respect to  on  then  is a density function of  with respect to  on .
2. If  and  are mutually singular on  then  with probability 1.

Proof

Again, as shown in the Introduction,  is a martingale with respect to . Moreover,  (the total variation of )
for each . Since  is a finite measure,  so the first martingale convergence theorem applies. Hence there exists
a random variable , measurable with respect to , such that  as .
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Y X Y

Y∞ →Yn Y∞ n → ∞

=E ( )an Xn
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A = 0 = → 0 ⋅ = 0Yn A2

nZ
2
n Z2

∞ n → ∞
E( ) = 0Y∞

(Ω,F ,P)
F = { : n ∈ N}Fn = σ ( )F∞ ⋃∞

n=0Fn μ

(Ω,F) n ∈ N∪ {∞} μ Fn (Ω, )Fn

P Fn (Ω, )Fn μ P

Fn μ P Fn n ∈ N

μ : Ω →RXn P Fn n ∈ N

X = { : n ∈ N}Xn F

X∞ →Xn X∞ n → ∞

μ P F∞ X∞ μ P F∞

μ P F∞ = 0X∞

X F E(| |) = ∥μ∥Xn μ

n ∈ N μ ∥μ∥ < ∞
X∞ F∞ →Xn X∞ n → ∞
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1. If  is absolutely continuous with respect to  on , then  has a density function  with respect to  on . Our
goal is to show that  with probability 1. By defintion,  is measurable with respect to  and

Suppose now that  and . Then again by definition, . But  also, so 
. So to summarize,  is -measurable and  for each . By

definition, this means that , so  is the Doob martingale associated with . Letting  and
using the result above gives  (with probability 1, of course).

2. Suppose that  and  are mutually singular on . Assume first that  is a positive measure, so that  is nonnegative
for . By the definition of mutually singularity, there exists  such that  and ,
so that . Our goal is to show that  for every . Towards that end, let

Suppose that , so that  for some . Then  for all  and therefore 
 for all . By Fatou's lemmas,

so . Next, suppose that  is an increasing or decreasing sequence in , and let 
(the union in the first case and the intersection in the second case). Then  for each . By the
continuity theorems,  and  as . Therefore 
and so . It follows that  is a monotone class. Since  contains the algebra , it then follows from the
monotone class theorem that . In particular , so  and therefore 

 with probability 1. If  is a general finite measure, then by the Jordan decomposition theorem,  can be written
uniquely in the form  where  and  are finite positive measures. Moreover,  is the density function
of  on  and  is the density function of  on . By the first part of the proof, , , and also 

, all with probability 1.

The martingale approach can be used to give a probabilistic proof of the Radon-Nikodym theorem, at least in certain cases. We start
with a sample set . Suppose that  is a countable partition of  for each . Thus  is countable, 

 for distinct , and . Suppose also that  refines  for each  in the sense that  is
a union of sets in  for each . Let . Thus  is generated by a countable partition, and so the sets in 
are of the form  where . Moreover, by the refinement property  for , so that 
is a filtration. Let , so that our sample space is . Finally, suppose that  is a
probability measure on  with the property that  for  and . We now have a probability space 

. Interesting probability spaces that occur in applications are of this form, so the setting is not as specialized as you might
think.

Suppose now that  a finte measure on . From our assumptions, the only null set for  on  is , so  is automatically
absolutely continuous with respect to  on . Moreover, for , we can give the density function of  with respect to  on 

 explicitly:

The density function of  with respect to  on  is the random variable  whose value on  is  for each 
. Equivalently,

Proof

We need to show that  for each . So suppose  where . Then

μ P F∞ μ Y∞ P F∞

=X∞ Y∞ Y∞ F∞

dP=E( ;A) = μ(A), A ∈∫
A

Y∞ Y∞ F∞ (17.5.19)

n ∈ N A ∈Fn E( ;A) = μ(A)Xn A ∈F∞

E( ;A) = μ(A)Y∞ Xn Fn E( : A) =E( ;A)Xn Y∞ A ∈Fn

=E( ∣ )Xn Y∞ Fn X Y∞ n → ∞
=E( ∣ ) =X∞ Y∞ F∞ Y∞

μ P F∞ μ Xn

n ∈ N∪ {∞} B ∈F∞ (B) = 0μ∞ ( ) = 0P∞ Bc

P(B) = 1 E( ;A) ≤ μ(A)X∞ A ∈F∞

M = {A ∈ : E( ;A) ≤ μ(A)}F∞ X∞ (17.5.20)

A ∈⋃∞
k=0 Fk A ∈Fk k ∈ N A ∈Fn n ≥ k

E( ;A) = μ(A)Xn n ≥ k

E( ;A) ≤ E( ;A) ≤ μ(A)X∞ lim inf
n→∞

Xn (17.5.21)

A ∈M { : n ∈ N}An M =A∞ limn→∞ An

E( ; ) ≤ μ( )X∞ An An n ∈ N

E( ; ) → E( ; )X∞ An X∞ A∞ μ( ) → μ( )An A∞ n → ∞ E( ; ) ≤ μ( )X∞ A∞ A∞

∈MA∞ M M ⋃∞
n=0Fn

⊆MF∞ B ∈M E( ) =E( ;B) ≤ μ(B) = 0X∞ X∞

= 0X∞ μ μ

μ = −μ+ μ− μ+ μ− X+
n

μ+ Fn X−
n μ− Fn = 0X+ = 0X−

X = 0

Ω = { : i ∈ }An An
i In Ω n ∈ N In

∩ = ∅An
i An

j i, j∈ In = Ω⋃i∈In
An

i An+1 An n ∈ N An
i

An+1 i ∈ In = σ( )Fn An Fn Fn

⋃j∈J A
n
j J ⊆ In ⊆Fn Fn+1 n ∈ N F = { : n ∈ N}Fn

F = = σ ( ) = σ ( )F∞ ⋃∞
n=0Fn ⋃∞

n=0An (Ω,F) P

(Ω,F) P( ) > 0An
i n ∈ N i ∈ In

(Ω,F ,P)

μ (Ω,F) P Fn ∅ μ

P Fn n ∈ N μ P

Fn

μ P Fn Xn An
i μ( )/P( )An

i An
i

i ∈ In

= 1( )Xn ∑
i∈In

μ( )An
i

P( )An
i

An
i (17.5.22)

μ(A) =E( ;A)Xn A ∈Fn A =⋃j∈J A
n
j J ⊆ In

E( ;A) = E( ; ) = P( ) = μ( ) = μ(A)Xn ∑
j∈J

Xn An
j ∑

j∈J

μ( )An
j

P( )An
j

An
j ∑

j∈J

An
j (17.5.23)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10303?pdf


17.5.8 https://stats.libretexts.org/@go/page/10303

By our theorem above, there exists a random variable  such that  as  with probability 1. If  is absolutely
continuous with respect to  on , then  is a density function of  with respect to  on . The point is that we have given a
more or less explicit construction of the density.

For a concrete example, consider . For , let

This is the partition of  into  subintervals of equal length , based on the dyadic rationals (or binary rationals) of rank 
 or less. Note that every interval in  is the union of two adjacent intervals in , so the refinement property holds. Let  be

ordinary Lebesgue measure on  so that  for  and . As above, let 
and . The dyadic rationals are dense in , so  is the ordinary Borel -algebra on .
Thus our probability space  is simply  with the usual Euclidean structures. If  is a finite measure on 
then the density function of  on  is the random variable  whose value on the interval  is 

. If  is absolutely continuous with respect to  on  (so absolutely continuous in the usual sense), then a
density function of  is .
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X → XXn n → ∞ μ

P F X μ P F

Ω = [0, 1) n ∈ N

={[ , ) : j∈ {0, 1, … , −1}}An

j

2n
j+1

2n
2n (17.5.24)

[0, 1) 2n 1/2n

n An An+1 P

[0, 1) P( ) = 1/An
i 2n n ∈ N i ∈ {0, 1, … , −1}2n = σ( )Fn An

F = σ ( ) = σ ( )⋃∞
n=0Fn ⋃∞

n=0An [0, 1) F σ [0, 1)
(Ω,F ,P) [0, 1) μ ([0, 1),F)

μ Fn Xn [j/ , (j+1)/ )2n 2n

μ[j/ , (j+1)/ )2n 2n 2n μ P F

μ X = limn→∞ Xn
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