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4.12: Uniformly Integrable Variables
        

Two of the most important modes of convergence in probability theory are convergence with probability 1 and convergence in mean. As we
have noted several times, neither mode of convergence implies the other. However, if we impose an additional condition on the sequence of
variables, convergence with probability 1 will imply convergence in mean. The purpose of this brief, but advanced section, is to explore the
additional condition that is needed. This section is particularly important for the theory of martingales.

Basic Theory
As usual, our starting point is a random experiment modeled by a probability space . So  is the set of outcomes,  is the -
algebra of events, and  is the probability measure on the sample space . In this section, all random variables that are mentioned are
assumed to be real valued, unless otherwise noted. Next, recall from the section on vector spaces that for ,  is the vector space
of random variables  with , endowed with the norm . In particular,  simply means that 

 so that  exists as a real number. From the section on expected value as an integral, recall the following notation,
assuming of course that the expected value makes sense:

Definition

The following result is motivation for the main definition in this section.

If  is a random variable then  if and only if  as .

Proof

Note that that  is nonnegative, increasing in  and  as . From the monotone
convergence theorem,  as . On the other hand,

If  then taking limits in the displayed equation shows that  as . On the other hand, 
. So if  then  for every .

Suppose now that  is a random variable for each  in a nonempty index set  (not necessarily countable). The critical definition for this
section is to require the convergence in the previous theorem to hold uniformly for the collection of random variables .

The collection  is uniformly integrable if for each  there exists  such that for all ,

Equivalently  as  uniformly in .

Properties

Our next discussion centers on conditions that ensure that the collection of random variables  is uniformly integrable.
Here is an equivalent characterization:

The collection  is uniformly integrable if and only if the following conditions hold:

1.  is bounded.
2. For each  there exists  such that if  and  then  for all .

Proof

Suppose that  is uniformly integrable. With  there exists  such that  for all . Hence

so (a) holds. For (b), let . There exists  such that  for all . Let . If  and 
 then

(Ω,F ,P) Ω F σ

P (Ω,F)
k ∈ [1, ∞) Lk

X E(|X ) < ∞|k ∥X =∥k [E( )]Xk 1/k
X ∈ L1

E(|X|) < ∞ E(X)

E(X;A) =E(X ) = XdP1A ∫
A

(4.12.1)

X E(|X|) < ∞ E(|X|; |X| ≥ x) → 0 x → ∞

|X|1(|X| ≤ x) x ∈ [0, ∞) |X|1(|X| ≤ x) → |X| x → ∞
E(|X|; |X| ≤ x) → E(|X|) x → ∞

E(|X|) =E(|X|; |X| ≤ x) +E(|X|; |X| > x) (4.12.2)

E(|X|) < ∞ E(|X| : |X| > x) → 0 x → ∞
E(|X|; |X| ≤ x) ≤ x E(|X|) = ∞ E(|X|; |X| > x) = ∞ x ∈ [0, ∞)

Xi i I

X = { : i ∈ I}Xi

X = { : i ∈ I}Xi ϵ > 0 x > 0 i ∈ I

E(| |; | | > x) < ϵXi Xi (4.12.3)

E(| |; | | > x) → 0Xi Xi x → ∞ i ∈ I

X = { : i ∈ I}Xi

X = { : i ∈ I}Xi

{E(| |) : i ∈ I}Xi

ϵ > 0 δ > 0 A ∈ F P(A) < δ E(| |;A) < ϵXi i ∈ I

X ϵ = 1 x > 0 E(| |; | | > x) < 1Xi Xi i ∈ I

E(| |) =E(| |; | | ≤ x) +E(| |; | | > x) ≤ x+1, i ∈ IXi Xi Xi Xi Xi (4.12.4)

ϵ > 0 x > 0 E(| |; | | > x) < ϵ/2Xi Xi i ∈ I δ = ϵ/2x A ∈ F

P(A) < δ

E(| |;A) =E(| |;A∩ {|X| ≤ x}) +E(| |;A∩ {|X| > x}) ≤ xP(A) +E(| |; |X| > x) < ϵ/2 + ϵ/2 = ϵXi Xi Xi Xi (4.12.5)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10340?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/04%3A_Expected_Value/4.12%3A_Uniformly_Integrable_Variables


4.12.2 https://stats.libretexts.org/@go/page/10340

Conversely, suppose that (a) and (b) hold. By (a), there exists  such that  for all . Let . By (b) there exists 
 such that if  with  then  for all . Next, by Markov's inequality,

Pick  such that , so that  for each . Then for each ,  for all  and
so in particular,  for all . Hence  is uniformly integrable.

Condition (a) means that  is bounded (in norm) as a subset of the vector space . Trivially, a finite collection of integrable random
variables is uniformly integrable.

Suppose that  is finite and that  for each . Then  is uniformly integrable.

A subset of a uniformly integrable set of variables is also uniformly integrable.

If  is uniformly integrable and  is a nonempty subset of , then  is uniformly integrable.

If the random variables in the collection are dominated in absolute value by a random variable with finite mean, then the collection is
uniformly integrable.

Suppose that  is a nonnegative random variable with  and that  for each . Then  is
uniformly integrable.

Proof

Clearly  for  and for all . The right side is independent of , and by the
theorem above, converges to 0 as . Hence  is uniformly integrable.

The following result is more general, but essentially the same proof works.

Suppose that  is uniformly integrable, and  is a set of variables with the property that for each 
 there exists  such that . Then  is uniformly integrable.

As a simple corollary, if the variables are bounded in absolute value then the collection is uniformly integrable.

If there exists  such that  for all  then  is uniformly integrable.

Just having  bounded in  (condition (a) in the characterization above) is not sufficient for  to be uniformly
integrable; a counterexample is given below. However, if  is bounded in  for some , then  is uniformly integrable.
This condition means that  is bounded (in norm) as a subset of the vector space .

If  is bounded for some , then  is uniformly integrable.

Proof

Suppose that for some  and ,  for all . Then  and so  is increasing on . So if 
 for  then

Hence  on the event . Therefore

The last expression is independent of  and converges to 0 as . Hence  is uniformly integrable.

Uniformly integrability is closed under the operations of addition and scalar multiplication.

Suppose that  and  are uniformly integrable and that . Then each of the following collections
is also uniformly integrable.

c > 0 E(| |) ≤ cXi i ∈ I ϵ > 0
δ > 0 A ∈ F P(A) < δ E(| |;A) < ϵXi i ∈ I

P(| | > x) ≤ ≤ , i ∈ IXi

E(| |)Xi

x

c

x
(4.12.6)

x > 0 c/x < δ P(| | > x) < δXi i ∈ I j∈ I E(| |; | | > x) < ϵXi Xj i ∈ I

E(| |; | | > x) < ϵXi Xi i ∈ I X

X L1

I E(| |) < ∞Xi i ∈ I X = { : i ∈ I}Xi

{ : i ∈ I}Xi J I { : j∈ J}Xj

Y E(Y ) < ∞ | | ≤ YXi i ∈ I X = { : i ∈ I}Xi

E(| |; | | > x) ≤ E(Y ;Y > x)Xi Xi x ∈ [0, ∞) i ∈ I i ∈ I

x → ∞ X

Y = { : j∈ J}Xj X = { : i ∈ I}Xi

i ∈ I j∈ J | | ≤ | |Xi Yj X

c > 0 | | ≤ cXi i ∈ I X = { : i ∈ I}Xi

E(| |)Xi i ∈ I X = { : i ∈ I}Xi

E(| )Xi|
k i ∈ I k > 1 X

X Lk

{E(| : i ∈ I}Xi|
k

k > 1 { : i ∈ I}Xi

k > 1 c > 0 E(| ) ≤ cXi|
k i ∈ I k−1 > 0 t ↦ tk−1 (0, ∞)

| | > xXi x > 0

| = | || ≥ | |Xi|
k Xi Xi|

k−1 Xi x
k−1 (4.12.7)

| | ≤ | /Xi Xi|
k xk−1 | | > xXi

E(| |; | | > x) ≤E( ; | | > x) ≤ ≤Xi Xi

|Xi|
k

xk−1
Xi

E(| )Xi|
k

xk−1

c

xk−1
(4.12.8)

i ∈ I x → ∞ X

X = { : i ∈ I}Xi Y = { : i ∈ I}Yi c ∈ R
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1. 
2. 

Proof

We use the characterization above. The proofs use standard techniques, so try them yourself.

1. There exists  such that  and  for all . Hence

Next let . There exists  such that if  with  then  for all , and similarly, there
exists  such that if  with  then  for all . Hence if  with  then

2. There exists  such that  for all . Hence

The second condition is trivial if , so suppose . For  there exists  such that if  and  then 
 for all . Hence .

The following corollary is trivial, but will be needed in our discussion of convergence below.

Suppose that  is uniformly integrable and that  is a random variable with . Then  is
uniformly integrable.

Proof

Let  for each . Then  is uniformly integrable, so the result follows from the previous theorem.

Convergence

We now come to the main results, and the reason for the definition of uniform integrability in the first place. To set up the notation, suppose
that  is a random variable for  and that  is a random variable. We know that if  as  in mean then  as 

 in probability. The converse is also true if and only if the sequence is uniformly integrable. Here is the first half:

If  as  in mean, then  is uniformly integrable.

Proof

The hypothesis means that  as  in the vector space . That is,  for , , and 
 as . From the last section, we know that this implies that  as , so  is

bounded in . Let . Then there exists  such that if  then . Since all of our variables are
in , for each  there exists  such that if  and  then . Similarly, there exists 

 such that if  and  then . Let  so . If  and 
 then

If  then  since . If  then . For all , 
 since . So for all ,  and hence  is uniformly integrable.

Here is the more important half, known as the uniform integrability theorem:

If  is uniformly integrable and  as  in probability, then  as  in mean.

Proof

Since  as  in probability, we know that there exists a subsequence  of  such that 
 as  with probability 1. By the uniform integrability,  is bounded in . Hence by Fatou's lemma

Let  for . From the corollary above, we know that  is uniformly integrable, and we also know that
 converges to 0 as  in probability. Hence we need to show that  as  in mean. Let . By uniform

X+Y = { + : i ∈ I}Xi Yi
cX = {c : i ∈ I}Xi

a, b ∈ (0, ∞) E(| |) ≤ aXi E(| |) ≤ bYi i ∈ I

E(| + |) ≤E(| | + | |) ≤E(| |) +E(| |) ≤ a+b, i ∈ IXi Yi Xi Yi Xi Yi (4.12.9)

ϵ > 0 > 0δ1 A ∈ F P(A) < δ1 E(| |;A) < ϵ/2Xi i ∈ I

> 0δ2 A ∈ F P(A) < δ2 E(| |;A) < ϵ/2Yi i ∈ I A ∈ F P(A) < ∧δ1 δ2

E(| + |;A) ≤E(| | + | |;A) =E(| |;A) +E(| |;A) < ϵ/2 + ϵ/2 = ϵ, i ∈ IXi Yi Xi Yi Xi Yi (4.12.10)

a ∈ (0, ∞) E(| |) ≤ aXi i ∈ I

E(|c |) = |c|E(| |) ≤ ca, i ∈ IXi Xi (4.12.11)

c = 0 c ≠ 0 ϵ > 0 δ > 0 A ∈ F P(A) < δ

E(| |;A) < ϵ/cXi i ∈ I E(|c |;A) = |c|E(| |;A) < ϵXi Xi

{ : i ∈ I}Xi X E(|X|) < ∞ { −X : i ∈ I}Xi

= XYi i ∈ I { : i ∈ I}Yi

Xn n ∈ N+ X → XXn n → ∞ → XXn

n → ∞

→ XXn n → ∞ { : n ∈ N}Xn

→ XXn n → ∞ L1 E(| |) < ∞Xn n ∈ N+ E(|X|) < ∞
E(| −X|) → 0Xn n → ∞ E(| |) → E(|X|)Xn n → ∞ E(| |)Xn

n ∈ N ϵ > 0 N ∈ N+ n > N E(| −X|) < ϵ/2Xn

L1 n ∈ N+ > 0δn A ∈ F P(A) < δn E(| −X|;A) < ϵ/2Xn

> 0δ0 A ∈ F P(A) < δ0 E(|X|;A) < ϵ/2 δ = min{ : n ∈ {0, 1, … ,N}}δn δ > 0 A ∈ F

P(A) < δ

E(| |;A) =E(| −X+X|;A) ≤E(| −X|;A) +E(|X|;A), n ∈Xn Xn Xn N+ (4.12.12)

n ≤ N E(| −X|;A) ≤ ϵ/2Xn δ ≤ δn n > N E(| −X|;A) ≤E(| −X|) < ϵ/2Xn Xn n

E(|X|;A) < ϵ/2 δ ≤ δ0 n ∈ N+ E(| | : A) < ϵXn { : n ∈ }Xn N+

{ : n ∈ }Xn N+ → XXn n → ∞ → XXn n → ∞

→ XXn n → ∞ ( : k ∈ )Xnk N+ ( : n ∈ )Xn N+

→ XXnk k → ∞ E(| |)Xn n ∈ N+

E(|X|) =E( | |) ≤ E (| |) ≤ E (| |) < ∞lim inf
k→∞

Xnk lim inf
n→∞

Xnk lim sup
n→∞

Xnk (4.12.13)

= −XYn Xn n ∈ N+ { : n ∈ }Yn N+

Yn n → ∞ → 0Yn n → ∞ ϵ > 0
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integrability, there exists  such that if  and  then  for all . Since  as  in
probability, there exists  such that if  then . Hence if  then

Hence  as  in mean.

As a corollary, recall that if  as  with probability 1, then  as  in probability. Hence if 
 is uniformly integrable then  as  in mean.

Examples
Our first example shows that bounded  norm is not sufficient for uniform integrability.

Suppose that  is uniformly distributed on the interval  (so  has the standard uniform distribution). For , let 
. Then

1.  for all 
2.  for ,  with 

Proof

First note that  since .

1. By definition,  for .
2. If  then  if and only if  if and only if . Hence  as

before.

By part (b),  does not converge to 0 as  uniformly in , so  is not uniformly
integrable.

The next example gives an important application to conditional expected value. Recall that if  is a random variable with  and
 is a sub -algebra of  then  is the expected value of  given the information in , and is the -measurable random variable

closest to  in a sense. Indeed if  then  is the projection of  onto . The collection of all conditional expected
values of  is uniformly integrable:

Suppose that  is a real-valued random variable with . Then  is uniformly
integrable.

Proof

We use the characterization above. Let  be a sub -algebra of . Recall that  and hence

So property (a) holds. Next let . Since , there exists  such that if  and  then .
Suppose that  with . Then  so

So condition (b) holds. Note that the first equality in the displayed equation holds since .

Note that the collection of sub -algebras of , and so also the collection of conditional expected values above, might well be uncountable.
The conditional expected values range from , when  to  itself, when .
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δ > 0 A ∈ F P(A) < δ E(| | : A) < ϵ/2Yn n ∈ N → 0Yn n → ∞
N ∈ N+ n > N P(| | > ϵ/2) < δYn n > N

E(| |) =E(| |; | | ≤ ϵ/2) +E(| |; | | > ϵ/2) < ϵ/2 + ϵ/2 = ϵYn Yn Yn Yn Yn (4.12.14)

→ 0Yn n → ∞

→ XXn n → ∞ → XXn n → ∞
X = { : n ∈ }Xn N+ → XXn n → ∞

L1

U (0, 1) U n ∈ N+

= n1(U ≤ 1/n)Xn

E(| |) = 1Xn n ∈ N+

E(| |; | | > x) = 1Xn Xn x > 0 n ∈ N+ n > x

| | =Xn Xn ≥ 0Xn

E( ) = nP(U ≤ 1/n) = n/n = 1Xn n ∈ N+

n > x > 0 > xXn = nXn U ≤ 1/n E( ; > x) = nP(U ≤ 1/n) = 1Xn Xn

E(| |; | | > x)Xn Xn x → ∞ n ∈ N+ X = { : n ∈ }Xn N+

X E(|X|) < ∞
G σ F E(X ∣ G ) X G G

X X ∈ (F)L2 E(X ∣ G ) X (G )L2

X

X E(|X|) < ∞ {E(X ∣ G ) : G  is a sub σ-algebra of F}

G σ F |E(X ∣ G )| ≤E(|X| ∣ G )

E[|E(X ∣ G )|] ≤E[E(|X| ∣ G )] =E(|X|) (4.12.15)

ϵ > 0 E(|X|) < ∞ δ > 0 A ∈ F P(A) < δ E(|X|;A) < ϵ

A ∈ G P(A) < δ |E(X ∣ G )| ≤E(|X| ∣ G )1A 1A

E[|E(X ∣ G )|;A] ≤E[E(|X| ∣ G );A] =E[E(|X| ∣ G ] =E(|X|;A) < ϵ1A (4.12.16)

A ∈ G

σ F

E(X) G = {Ω, ∅} X G =F
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