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2.8: Existence and Uniqueness

Suppose that S is a set and . a o-algebra of subsets of S, so that (.9, %) is a measurable space. In many cases, it is impossible to
define a positive measure p on . explicitly, by giving a “formula” for computing p(A) for each A € .. Rather, we often know
how the measure u should work on some class of sets 4 that generates .. We would then like to know that p can be extended to a
positive measure on ., and that this extension is unique. The purpose of this section is to discuss the basic results on this topic. To
understand this section you will need to review the sections on Measure Theory and Special Set Structures in the chapter on
Foundations, and the section on Measure Spaces in this chapter. If you are not interested in questions of existence and uniqueness
of positive measures, you can safely skip this section.

Basic Theory

Positive Measures on Algebras

Suppose first that 27 is an algebra of subsets of S. Recall that this means that 27 is a collection of subsets that contains S and is
closed under complements and finite unions (and hence also finite intersections). Here is our first definition:

A positive measure on & is a function p : & — [0, 0o] that satisfies the following properties:

1. u(@) =0

2.1f {A; : i € I'} is a countable, disjoint collection of sets in o7 and if | J,.; A; € & then
K (UAi> ZZN(Ai) (2.8.1)
iel iel

Clearly the definition of a positive measure on an algebra is very similar to the definition for a o-algebra. If the collection of sets in
(b) is finite, then | J,.; A; must be in the algebra 7. Thus, 1 is finitely additive. If the collection is countably infinite, then there is
no guarantee that the union is in . If it is however, then yp must be additive over this collection. Given the similarity, it is not
surprising that p shares many of the basic properties of a positive measure on a o-algebra, with proofs that are almost identical.

If A, Be &, then u(B) = u(ANB)+u(B\A) .

Proof

Note that B= (AN B)U(B\ A) , and the sets in the union are in the algebra &/ and are disjoint.

If A, B€ o and A C B then
L pu(B) = p(A)+u(B\ A)
2 1(4) < pu(B)

Proof

Part (a) follows from the previous theorem, since AN B = A . Part (b) follows from part (a).

Thus p is increasing, relative to the subset partial order C on 2 and the ordinary order < on [0, co]. Note also that if A, B € &
and p(B) < oo then p(B\ A) = u(B) — (AN B) . In the special case that A C B, this becomes p(B\ A) = u(B) —p(A4) . If
u1(S) < oo then p(A°) = pu(S) — pu(A) . These are the familiar difference and complement rules.

The following result is the subadditive property for a positive measure x4 on an algebra 7.

Suppose that { 4; : ¢ € I} is a countable collection of sets in & and that | J,_; A; € &/. Then

icl

7 (UAZ-) <> u(Ai) (2.8.2)

el el

Proof
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The proof is just like before. Assume that I =N . Let By = A; and B; = 4; \ (A;U...UA4; ;) forie {2,3,...} Then
{B;:i €I} is a disjoint collection of sets in &/ with the same union as {A4;:¢ € I'}. Also B; C A; for each ¢ so
1(B;) < u(4;) . Hence if the union is in & then

7 (U Ai) = p (U Bz-> =Y uB) <D u(4) (2.8.3)

iel iel iel iel

For a finite union of sets with finite measure, the inclusion-exclusion formula holds, and the proof is just like the one for a
probability measure.

Suppose that { 4; : ¢ € I'} is a finite collection of sets in & where #(I) =n € N, , and that u(4;) < co fors € I. Then

" <UAi) :i(—l)k‘l ooou (ﬂ A]-> (2.8.4)

iel k=1 JCI, #(J)=k  \jeJ

The continuity theorems hold for a positive measure p on an algebra 27, just as for a positive measure on a o-algebra, assuming
that the appropriate union and intersection are in the algebra. The proofs are just as before.

Suppose that (A1, As, . ..) is a sequence of sets in 7.

1. If the sequence is increasing, so that A, C A, 1 foreachn € N, , and Ufil A; € o, then
p (U2, Ai) = limy, o0 p(Ay) .
2. If the sequence is decreasing, so that A, 1 C A, foreachn € N, and pu(A;) < oo and ()2; 4; € &7, then
1 (NZy Ai) = limy, o0 p(A4y) -
Proof

1. Note that if 1(Aj) = oo for some k then p(A,) = oo forn >k and p (72, A;) = oo if this union is in 7. Thus,
suppose that u(A4;) < oo for each i. Let By = A; and B; = A; \ A;_ fori € {2,3,...}. Then (Bj, Bs,...) is a disjoint
sequence in &7 with the same union as (A, Ag, . ..). Also, u(B1) = p(A1) and p(B;) = p(A;) — (A1) for
i € {2,3,...}. Hence if the union is in &7,

" (fj Ai> — (DB) = > ou(B) = lim Y u(B) 2:8.5)

But 35y p(Bi) = (A1) + 353 [1(Ai) — p(Aia)] = p(An)
2. Note that 4; \ A,, € &/ and this sequence is increasing. Moreover, | J°, (41 \ 4,) = (N>, 4,)° N A; . Hence if
o, Ap € o thenJ;” (A1 \ Ay) € & . Thus using the continuity result for increasing sets,

#(ﬁ&') =p Al\D(Al\Ai) =p(A1) —p G(A1\An) (2.8.6)
= p(Ar) = lim p(Ar\ 4z) = p(Ar) = lim [p(Ar) - p(4,)] = lim p(A,) (2.8.7)

Recall that if the sequence (A, Ay, ...) is increasing, then we define lim,, .o, A, =|J,-; A, and if the sequence is decreasing

then we define lim,, .o A, = 2021 A,, . Thus the conclusion of both parts of the continuity theorem is
P ( lim An) = lim P(4,) (2.8.8)
n—oo n—oo

Finite additivity and continuity for increasing events imply countable additivity:

If p: & — [0, 00| satisfies the properties below then y is a positive measure on &.
1. u(@) =0
2. (User Ai) = Xier #(A;) if {A; : i € I} is a finite disjoint collection of sets in &/
3.1 (U2 Ai) =limy, 00 u(Ay) if (A1, Az, . ..)is an increasing sequence of events in & and | J;°; 4; € & .

Proof

https://stats.libretexts.org/@go/page/10136



https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10136?pdf

LibreTextsw

All that is left to prove is additivitiy over a countably infinite collection of sets in & when the union is also in &7. Thus
suppose that { A, : n € N} is a disjoint collection of sets in &/ with ;" A, € & . Let B, =J"; A; forn € N,. Then
B, € o/ and |J;” | B, =J,-; A, . Hence using the finite additivity and the continuity property we have

P <G A") =P (O Bn) = lim P(B,) :nlggloz":P(Ai) = i]P’(Ai) (2.8.9)

Many of the basic theorems in measure theory require that the measure not be too far removed from being finite. This leads to the
following definition, which is just like the one for a positive measure on a o-algebra.

A measure g on an algebra &7 of subsets of S is o-finite if there exists a sequence of sets (A, Aa,...) in & such that
Ure, A, =8 and p(A,) < oo for each n € N . The sequence is called a o-finite sequence for .

Suppose that p is a o-finite measure on an algebra & of subsets of S.

1. There exists an increasing o-finite sequence.
2. There exists a disjoint o-finite sequence.

Proof
We use the same tricks that we have used before. Suppose that (A1, A, . ..) is a o-finite sequence for p.

1. Let B, =J;_; A; . Then B, € & forn € N, and this sequence is increasing. Moreover, u(B,,) < Y iy u(A;) < oo
forne N, and{Jp 1 Bn=Ur 1 4, =5 .

2.LetCy = Ay andlet C, = A, \ ;:11 A; forne€{2,3,...}. Then C,, € & foreachn € N and this sequence is
disjoint. Moreover, C, € A, so u(Cy) < pu(A,) <oo and Uy, Cn =, An =S .

Extension and Uniqueness Theorems

The fundamental theorem on measures states that a positive, o-finite measure p on an algebra 2/ can be uniquely extended to
o(&). The extension part is sometimes referred to as the Carathéodory extension theorem, and is named for the Greek
mathematician Constantin Carathéodory.

If  is a positive, o-finte measure on an algebra 7, then  can be extended to a positive measure on . = o(&).

Proof

The proof is complicated, but here is a broad outline. First, for A C S, we define a cover of A to be a countable collection
{A; :i € I} of sets in & such that A C |J
S

et A; . Next, we define a new set function p*, the outer measure, on all subsets of

w*(4) :inf{zu(Ai) :{4;:i€ I}isacover ofA} , ACS (2.8.10)

iel
Outer measure satifies the following properties.

1. pw*(A) >0 for A C S, so p* is nonnegative.

2. p*(A) =p(A) for A € o7, so p* extends p.

3.1f A C B then p*(A) < p*(B), so p* is increasing

4.1f A; C S for each i in a countable index set I then p* (UU;c; 4i) <> ;e #*(A;) , so p* is countably subadditive.

Next, A C S is said to be measurable if

w*(B) = p*(BNA)+u*(B\A), BCS (2.8.11)

Thus, A is measurable if p* is additive with respect to the partition of B induced by { A, A°}, for every BC S. We let .#
denote the collection of measurable subsets of .S. The proof is finished by showing that o/ C .# , .# is a o-algebra of subsets
of S, and p* is a positive measure on .. It follows that o(2/) = ¥ C .# and hence p* is a measure on . that extends p
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Our next goal is the basic uniqueness result, which serves as the complement to the basic extension result. But first we need another
variation of the term o-finite.

Suppose that y is a measure on a o-algebra . of subsets of S and # C .. Then p is o-finite on 98 if there exists a countable
collection {B; : i € I} C % such that u(B;) < oo fori € I and|J,.; Bi=S.

iel

The next result is the uniqueness theorem. The proof, like others that we have seen, uses Dynkin's 77-A theorem, named for Eugene
Dynkin.

Suppose that & is a w-system and that % = o(£). If p; and pgy are positive measures on . and are o-finite on 4, and if
11 (A) = pa(A) forall A € B, then p; (A) = u2(A) forall A e 7.

Proof
Suppose that B € £ and that p; (B) = pa(B) < oo .Let g ={A € % : 1n(ANB) = w2 (ANB)} .Then S € ¥ since
11 (B) = p2(B) . If Ae L then u1(ANB) =pu(ANB) SO

11 (A°NB) = (B) — (AN B) = pug(B) — (AN B) = pa(A°N B) and hence A° € ¥p. Finally, suppose that
{4, : j€ J} is a countable, disjoint collection of events in Z5. Then p1(A; N B) = pa(A;NB) foreach j € J and hence

(UA]) QB] = (U (4; mB) > m(4;0B) (2.8.12)
jeJ jeJ jeJ

(U A]) NB

jeJ

= u2(4;NB) = pp (U(AjﬁB)) =
jeJ jeJ

Therefore UjE ;A; € Zp, and so Zp is a A-system. By assumption, 8 C %p and therefore by the m-A theorem,

54 :0'(%) g XB .

Next, by assumption there exists B; € & with p;(B;) = p(B;) < oo for each i € Ny and S = Ufil B;.If Aec.¥ then

the inclusion-exclusion rule can be applied to
(U Bi) NnA U (AN By)
=1 =1

where ke {1,2} and neN.. But the inclusion-exclusion formula only has terms of the form
7 [ﬂjeJ(AﬂBj)} = g [Aﬂ (ﬂjej Bj)] where J C {1,2,...,n}. But(;.; Bj € # since % is a w-system, so by the

(2.8.13)

(2.8.14)

previous paragraph, p4; [ﬂje (AN Bj)} = 2 [ﬂje (AN Bj)} . It then follows that for each n € N

(QBZ.)QA (UB)QA

Finally, letting n — oo and using the continuity theorem for increasing sets gives p; (A4) = p2(4) .

(2.8.15)

An algebra & of subsets of S is trivially a 7w-system. Hence, if ¢1; and po are positive measures on . = o(%/) and are o-finite on
&, and if p1(A) = p2(A) for A€ o7, then pg(A) = pa(A) for A € . This completes the second part of the fundamental
theorem.

Of course, the results of this subsection hold for probability measures. Formally, a probability measure P on an algebra 2/ of
subsets of S is a positive measure on & with the additional requirement that P(.S) = 1. Probability measures are trivially o-finite,
so a probability measure P on an algebra &/ can be uniquely extended to .¥ = o ().

However, usually we start with a collection that is more primitive than an algebra. The next result combines the definition with the
main theorem associated with the definition. For a proof see the section on Special Set Structures in the chapter on Foundations.

Suppose that 44 is a nonempty collection of subsets of S and let
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o = {U B, : {B; :i € I} is a finite, disjoint collection of sets in 93} (2.8.16)
iel
If the following conditions are satisfied, then 48 is a semi-algebra of subsets of S, and then .2/ is the algebra generated by 2.

1.1f By, Bo € 8 then BN By € A.
2.1f B€ % then B € & .

Suppose now that we know how a measure p should work on a semi-algebra 4 that generates an algebra & and then a o-algebra
S =o()=0(H). That is, we know u(B) € [0, oo] for each B € £. Because of the additivity property, there is no question as
to how we should extend p to /. We must have

p(A) =" u(B;) (2.8.17)
iel
if A=J,.; B; for some finite, disjoint collection {B; : 4 € I} of sets in 4 (so that A € &). However, we cannot assign the
values p(B) for B € A arbitrarily. The following extension theorem states that, subject just to some essential consistency
conditions, the extension of y from the semi-algebra £ to the algebra & does in fact produce a measure on /. The consistency
conditions are that y be finitely additive and countably subadditive on 2.

Suppose that 4 is a semi-algebra of subsets of S and that &/ is the algebra of subsets of S generated by . A function
w: B —[0,00] can be uniquely extended to a measure on 2 if and only if y satisfies the following properties:

L.If 0 € B then p(0) =0.
2.1f {B; : i € I} is a finite, disjoint collection of sets in % and B = J,.; B; € # then u(B) =", ; u(By) .
3.1f B€ % and B C |J,.; B; where {B; : i € I} is a countable collection of sets in 8 then p(B) < >, u(B;)

If the measure p on the algebra & is o-finite, then the extension theorem and the uniqueness theorem apply, so w4 can be extended
uniquely to a measure on the o-algebra . = o(&/) = 0(%). This chain of extensions, starting with a semi-algebra 4, is often
how measures are constructed.

Examples and Applications

Product Spaces

Suppose that (S, %) and (T, ) are measurable spaces. For the Cartesian product set S x T', recall that the product o-algebra is
ST =c{AxB:Ac ¥, Bec T} (2.8.18)

the o-algebra generated by the Cartesian products of measurable sets, sometimes referred to as measurable rectangles.

Suppose that (S, ., ) and (T', 7, v) are o-finite measure spaces. Then there exists a unique o-finite measure y®v on
(ST, ®7) such that

(u®V)(AxB)=p(Aw(B); AeS, BeT (2.8.19)
The measure space (S x T, . ® 7, n®v) is the product measure space associated with (S, ., u) and (T, 7, v).
Proof

Recall that the collection Z={AXxB: A€ .¥,B€ J} is a semi-algebra: the intersection of two product sets is another
product set, and the complement of a product set is the union of two disjoint product sets. We define p: % — [0, 00] by
p(A x B) = pu(A)v(B) . The consistency conditions hold, so p can be extended to a measure on the algebra & generated by
2. The algebra & is the collection of all finite, disjoint unions of products of measurable sets. We will now show that the
extended measure p is o-finite on . Since y is o-finite, there exists, an increasing sequence (A, As, . ..) of sets in . with
w(A;) < oo and | Ji2; A; = S. Similarly, there exists an increasing sequence (By, By, .. .) of sets in 7 with ¥(B;) < co and
U7, Bj =T . Then p(A4; x B;j) = pu(A;)v(B;) < oo , and since the sets are increasing, |J, A;xBj=8xT .

4,5)EN, xN,

The standard extension theorem and uniqueness theorem uniqueness theorem now apply, so p can be extended uniquely to a
measure on o () = Q T .
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Recall that for C C S x T', the cross section of C' in the first coordinate at z € S is C, ={y € T : (z,y) € C}. Similarly, the
cross section of C in the second coordinate at y € T is CY ={z € S: (z,y) € C}. We know that the cross sections of a
measurable set are measurable. The following result shows that the measures of the cross sections of a measurable set form
measurable functions.

Suppose again that (S, ., 1) and (T, 7, v) are o-finite measure spaces. If C € ¥ ® J then

1. z — v(C;) is a measurable function from S to [0, co].
2.y — p(CY) is a measurable function from 7 to [0, co].

Proof

We prove part (a), since of course the proof for part (b) is symmetric. Suppose first that the measure spaces are finite. Let
Z={AxB:Ac Bec T} denote the set of measurable rectangles. Let
€={Cec ST :z—v(C,)ismeasurable} . If AXxBecZ, then AXxBe ¥, since v[(AxB),]| =v(B)1,(x).
Next, suppose C' € €. Then (C¢), = (C;)¢, so v[(C¢),] =v(T)—v(C,) and this is a measurable function of z € S.
Hence C¢ € €. Next, suppose that {C; : i € I'} is a countable, disjoint collection of sets in % and let C' = J,.; C; . Then
{(Ci)z : i € I} is a countable, disjoint collection of sets in .7, and C, = J,.;(C;). . Hence v(C;) =>"..; ¥[(C;).], and
this is a measurable function of z € S. Hence C € % . It follows that % is a A-system that contains &, which in turn is a 7-
system. It follows from Dynkins -\ theorem, that ¥ ® J =0(#) C¥¢ . Thus¥ = T .

Consider now the general case where the measure spaces are o-finite. There exists a countable, increasing sequence of sets
C,e QT forne N, with (p®v)(C,) <o forneN,.IfC e S ®T,then CNC, is increasing in n € N, and
C=U,.,(CNC,) . Hence, for x €S, (CNC,), is increasing in n € N and C, =J,-;(CNCy), . Therefore
v(Cy) =lim, 00 v[(CNCy),] . Butz — v[(CNCYy),] is a measurable function of z € S for each n € N by the previous
argument, so ¢ — v(C;) is a measurable function of z € S..

In the next chapter, where we study integration with respect to a measure, we will see that for C € ¥ ® 7, the product measure
(u®v)(C) can be computed by integrating v(C, ) over z € S with respect to p or by integrating u(C?) over y € T with respect
to v. These results, generalizing the definition of the product measure, are special cases of Fubini's theorem, named for the Italian
mathematician Guido Fubini.

Except for more complicated notation, these results extend in a perfectly straightforward way to the product of a finite number of
o-finite measure spaces.

Suppose that n € N and that (S;, ., ;) is a o-finite measure space for i € {1,2,...,n} Let S=][",; S; and let .%/
denote the corresponding product o-algebra. There exists a unique o-finite measure g on (.9, %) satisfying

m (HA,-) = qm(Ai), A; € Fiforie {1,2,...,n} (2.8.20)
=1 i=

The measure space (S, ., ) is the product measure space associated with the given measure spaces.

Lebesgue Measure

The next discussion concerns our most important and essential application. Recall that the Borel o-algebra on IR, named for Emile
Borel, is the g-algebra & generated by the standard Euclidean topology on R. Equivalently, Z = o(.#) where .# is the collection
of intervals of R (of all types—bounded and unbounded, with any type of closure, and including single points and the empty set).
Next recall how the length of an interval is defined. For a, b € R with a <b, each of the intervals (a, b), [a,b), (a, b], and [a, b]
has length b —a . For a € R, each of the intervals (a, 00), [a, 00), (—00, @), (—00, a] has length oo, as does R itself. The standard
measure on & generalizes the length measurement for intervals.

There exists a unique measure A on & such that A(I) = length(I) for I € .#. The measure A is Lebesgue measure on

(R, Z).

Proof

Recall that .# is a semi-algebra: The intersection of two intervals is another interval, and the complement of an interval is
either another interval or the union of two disjoint intervals. Define A on .# by A(I) =length(I) for I € .#. Then A satisfies
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the consistency condition and hence A can be extended to a measure on the algebra ¢ generated by .#, namely the collection
of finite, disjoint unions of intervals. The measure A on _¢ is clearly o-finite, since R can be written as a countably infinite
union of bounded intervals. Hence the standard extension theorem and uniqueness theorem apply, so A can be extended to a
measure on Z = o (%) .

The is name in honor of Henri Lebesgue, of course. Since A is o-finite, the o-algebra of Borel sets % can be completed with
respect to .

l The completion of the Borel o-algebra Z with respect to X is the Lebesgue o-algebra 22~ .

Recall that completed means that if A € 2", A\(A) =0 and BC A, then B € #Z* (and then A\(B) = 0). The Lebesgue measure A
on R, with either the Borel o-algebra %, or its completion Z* is the standard measure that is used for the real numbers. Other
properties of the measure space (R, %, \) are given below, in the discussion of Lebesgue measure on R".

Forn € N, , let %, denote the Borel o-algebra corresponding to the the standard Euclidean topology on R™, so that (R", %,,) is
the n-dimensional Euclidean measurable space. The o-algebra, %, is also the n-fold power of £, the Borel g-algebra of R. That
iS,Zn=ZJIXRQ--- QI (n times). It is also the o-algebra generated by the products of intervals:

%"20'{.[1 X Iy x -+ I, ZIj S ffOI‘jG{l,Z,...n}} (2821)
As above, let A denote Lebesgue measure on (R, Z).

Forn € N, the n-fold power of A, denoted \,, is Lebesgue measure on (R™, %,,). In particular,

/\n(Al XA2 Xoeo XAn):)\(Al))\(Az))\(An), Al, ,An ER (2822)

Specializing further, if I; € # is an interval for j € {1,2,...,n} then
An (It X Iy x - - - x I,) =length(I )length(Iy) - - - length(Z,) (2.8.23)

In particular, Ay extends the area measure on %> and A3 extends the volume measure on Zs. In general, A\, (A) is sometimes
referred to as n-dimensional volume of A € %, . As in the one-dimensional case, %, can be completed with respect to A,
essentially adding all subsets of sets of measure 0 to Z%,,. The completed o-algebra is the o-algebra of Lebesgue measurable sets.
Since A\, (U) >0 if U CR" is open, the support of A, is all of R™. In addition, Lebesgue measure has the regularity properties
that are concerned with approximating the measure of a set, from below with the measure of a compact set, and from above with
the measure of an open set.

The measure space (R", %, A,) is regular. That is, for A € %, ,

1. A (A) = sup{ A, (C) : C'is compact and C C A} , (inner regularity)
2.2, (A) =inf{\,(U): Uisopenand A CU} (outer regulairty).

The following theorem describes how the measure of a set is changed under certain basic transformations. These are essential
properties of Lebesgue measure. To setup the notation, suppose thatn € N. , ACR",z € R", ¢ € (0, 00) and that T' is an n X n
matrix. Define

A+z={a+z:a€ A}, cA={ca:ac A}, TA={Ta:ac A} (2.8.24)

Suppose that A € £, .

1. If z € R" then A, (A+z) = A\, (A) (translation invariance)
2. If ¢ € (0, 00) then A\, (cA) = c" A, (A) (dialation property)
3.If T is an n X n matrix then A, (T'A) = | det(T)|An(A) (the scaling property)

Lebesgue-Stieltjes Measures on R

The construction of Lebesgue measure on R can be generalized. Here is the definition that we will need.

A function ' : R — R that satisfis the following properties is a distribution function on R
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1. F is increasing: if z <y then F(z) < F(y).
2. F is continuous from the right: limy, F'(¢t) = F(z) forall z € R.

Since F is increasing, the limit from the left at # € R exists in R and is denoted F(z™)=lim, F(t). Similarly
F(o0) =lim,_,, F(z) exists, as a real number or 0o, and F'(—o0) =1lim,_,_, F(x) exists, as a real number or —co.

If F is a distribution function on R, then there exists a unique measure p on % that satisfies

u(a,b] =F(b)—F(a), —oo<a<b<oo (2.8.25)

The measure p is called the Lebesgue-Stielties measure associated with F', named for Henri Lebesgue and Thomas Joannes
Stieltjes. Distribution functions and the measures associated with them are studied in more detail in the chapter on Distributions.
When the function F' takes values in [0, 1], the associated measure P is a probability measure, and the function F is the probability
distribution function of IP. Probability distribution functions are also studied in much more detail (but with less technicality) in the
chapter on Distributions.

Note that the identity function z —  for z € R is a distribution function, and the measure associated with this function is ordinary
Lebesgue measure on R constructed in(15).
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