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5.7: The Multivariate Normal Distribution
         

The multivariate normal distribution is among the most important of multivariate distributions, particularly in statistical inference and the study of
Gaussian processes such as Brownian motion. The distribution arises naturally from linear transformations of independent normal variables. In
this section, we consider the bivariate normal distribution first, because explicit results can be given and because graphical interpretations are
possible. Then, with the aid of matrix notation, we discuss the general multivariate distribution.

The Bivariate Normal Distribution

The Standard Distribution

Recall that the probability density function  of the standard normal distribution is given by

The corresponding distribution function is denoted  and is considered a special function in mathematics:

Finally, the moment generating function  is given by

Suppose that  and  are independent random variables, each with the standard normal distribution. The distribution of  is known as
the standard bivariate normal distribution.

The basic properties of the standard bivariate normal distribution follow easily from independence and properties of the (univariate) normal
distribution. Recall first that the graph of a function  is a surface. For , the set of points  is the level
curve of  at level . The graph of  can be understood by means of the level curves.

The probability density function  of the standard bivariate normal distribution is given by

1. The level curves of  are circles centered at the origin.
2. The mode of the distribution is .
3.  is concave downward on 

Proof

By independence,  for . Parts (a) and (b) are clear. For part (c), the second derivative matrix of  is

with determinant . The determinant is positive and the diagonal entries negative on the circular region 
, so the matrix is negative definite on this region.

Clearly  has a number of symmetry properties as well:  is symmetric in  about 0 so that ;  is symmetric
in  about 0 so that ;  is symmetric in  so that . In short,  has the classical “bell
shape” that we associate with normal distributions.

Open the bivariate normal experiment, keep the default settings to get the standard bivariate normal distribution. Run the experiment 1000
times. Observe the cloud of points in the scatterplot, and compare the empirical density functions to the probability density functions.

Suppose that  has the standard bivariate normal distribution. The moment generating function  of  is given by

Proof

By independence,  for  where  is the standard normal MGF.
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The General Distribution

The general bivariate normal distribution can be constructed by means of an affine transformation on a standard bivariate normal vector. The
distribution has 5 parameters. As we will see, two are location parameters, two are scale parameters, and one is a correlation parameter.

Suppose that  has the standard bivariate normal distribution. Let ; ; and , and let  and  be new
random variables defined by

The joint distribution of  is called the bivariate normal distribution with parameters .

We can use the change of variables formula to find the joint probability density function.

Suppose that  has the bivariate normal distribution with the parameters  as specified above. The joint probability density
function  of  is given by

1. The level curves of  are ellipses centered at .
2. The mode of the distribution is .

Proof

Consider the transformation that defines  from  in the definition. The inverse transformation is given by

The Jacobian of the inverse transformation is

Note that the Jacobian is a constant, because the transformation is affine. The result now follows from the independence of  and , and the
change of variables formula

1. Note that  has the form  where  and  are positive constants and

The graph of  is a paraboloid opening upward. The level curves of  are the same as the level curves of  (but at different levels of
course).

2. The maximum of  occurs at the minimum of , at the point .

The following theorem gives fundamental properties of the bivariate normal distribution.

Suppose that  has the bivariate normal distribution with parameters  as specified above. Then

1.  is normally distributed with mean  and standard deviation .
2.  is normally distributed with mean  and standard deviation .
3. .
4.  and  are independent if and only if .

Proof

These result can be proved from the probability density function, but it's easier and more helpful to use the transformation definition. So,
assume that  is defined in terms of the standard bivariate normal pair  as in the definition.

1.  so  has the normal distribution with mean  and standard deviation . This is a basic property of the normal distribution,
and indeed is the way that the general normal variable is constructed from a standard normal variable.
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2. Since  and  are independent and each has the standard normal distribution,  is normally distributed by
another basic property. Because  and  have mean 0, it follows from the linear property of expected value that . Similarly,
since  and  have variance 1, it follows from basic properties of variance that .

3. Using the bi-linear property of covariance and independence we have , and hence from (a) and (b), 
.

4. As a general property, recall that if  and  are independent then . Conversely, if  then  and 
. Since  and  are independent, so are  and .

Thus, two random variables with a joint normal distribution are independent if and only if they are uncorrelated.

In the bivariate normal experiment, change the standard deviations of  and  with the scroll bars. Watch the change in the shape of the
probability density functions. Now change the correlation with the scroll bar and note that the probability density functions do not change. For
various values of the parameters, run the experiment 1000 times. Observe the cloud of points in the scatterplot, and compare the empirical
density functions to the probability density functions.

In the case of perfect correlation (  or ), the distribution of  is also said to be bivariate normal, but degenerate. In this case, we
know from our study of covariance and correlation that  takes values on the regression line , and
hence does not have a probability density function (with respect to Lebesgue measure on ). Degenerate normal distributions will be discussed in
more detail below.

In the bivariate normal experiment, run the experiment 1000 times with the values of  given below and selected values of  and . Observe
the cloud of points in the scatterplot and compare the empirical density functions to the probability density functions.

1. 
2. 

The conditional distributions are also normal.

Suppose that  has the bivariate normal distribution with parameters  as specified above.

1. For , the conditional distribution of  given  is normal with mean  and variance 
.

2. For , the conditional distribution of  given  is normal with mean  and variance 
.

Proof from density functions

By symmetry, we need only prove (a). The conditional PDF of  given  is  where  is the joint PDF, and where  is
the PDF of , namely the normal PDF with mean  and standard deviation . The result then follows after some algebra.

Proof from random variables

Again, we only need to prove (a). We can assume that  is defined in terms of a standard normal pair  as in the definition. Hence

Since that  and  are independent, the conditional distribution of  given  is the distribution of . The
latter distribution is normal, with mean and variance specified in the theorem.

Note that the conditional variances do not depend on the value of the given variable.

In the bivariate normal experiment, set the standard deviation of  to 1.5, the standard deviation of  to 0.5, and the correlation to 0.7.

1. Run the experiment 100 times.
2. For each run, compute  the predicted value of  for the given the value of .
3. Over all 100 runs, compute the square root of the average of the squared errors between the predicted value of  and the true value of .

You may be perplexed by the lack of symmetry in how  is defined in terms of  in the original definition. Note however that the
distribution is completely determined by the 5 parameters. If we define  and  then  has the
same distribution as , namely the bivariate normal distribution with parameters  (although, of course  and  are
different random vectors). There are other ways to define the same distribution as an affine transformation of —the situation will be
clarified in the next subsection.
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Suppose that  has the bivariate normal distribution with parameters . Then  has moment generating function 
given by

Proof

Using the representation of  in terms of the standard bivariate normal vector  in the definition and collecting terms gives

Hence from independence we have

where  is the standard normal MGF. Substituting and simplifying gives the result.

We showed above that if  has a bivariate normal distribution then the marginal distributions of  and  are also normal. The converse is
not true.

Suppose that  has probability density function  given by

1.  and  each have standard normal distributions.
2.  does not have a bivariate normal distribution.

Proof

Note that  for , where  is the bivariate standard normal PDF and where  is given by 
 for . From simple calculus,  is symmetric about 0, has a local maximum at , and  as . In

particular,  for  and hence  for . Next, a helpful trick is that we can write integrals of  as expected
values of functions of a standard normal pair . In particular,

since  by the symmetry of the standard normal distribution and the symmetry of  about 0. Hence  is a valid PDF
on . Suppose now that  has PDF .

1. The PDF of  at  is

where as usual,  is the standard normal PDF on . By symmetry,  also has the standard normal distribution.
2.  does not have the form of a bivariate normal PDF and hence  does not have a bivariate normal distribution.

Transformations

Like its univariate counterpart, the family of bivariate normal distributions is preserved under two types of transformations on the underlying
random vector: affine transformations and sums of independent vectors. We start with a preliminary result on affine transformations that should
help clarify the original definition. Throughout this discussion, we assume that the parameter vector  satisfies the usual conditions: 

, and , and .

Suppose that  has the standard bivariate normal distribution. Let  and  where the
coefficients are in  and . Then  has a bivariate normal distribution with parameters given by

1. 
2. 
3. 
4. 
5. 
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Proof

A direct proof using the change of variables formula is possible, but our goal is to show that  can be written in the form given above in
the definition. First, parts (a)–(e) follow from basic properties of expected value, variance, and covariance. So, in the notation used in the

definition, we have , , , , and

(Note from the assumption on the coefficients that  and ). Simple algebra shows that

Next we define

The transformation that defines  from  is its own inverse, and has Jacobian 1. Hence it follows that  has the same joint
distribution as , namely the standard bivariate normal distribution. Simple algebra shows that

This is the form given in the definition, so it follows that  has a bivariate normal distribution.

Now it is easy to show more generally that the bivariate normal distribution is closed with respect to affine transformations.

Suppose that  has the bivariate normal distribution with parameters . Define  and 
, where the coefficients are in  and . Then  has a bivariate normal distribution with parameters

as follows:

1. 
2. 
3. 
4. 
5. 

Proof

From our original construction, we can write  and  where  has the standard bivariate
normal distribution. Then by simple substitution,  and  where , 

,  for . By simple algebra,

Hence  has a bivariate normal distribution from the previous theorem. Parts (a)–(e) follow from basic properties of expected value,
variance, and covariance.

The bivariate normal distribution is preserved with respect to sums of independent variables.

Suppose that  has the bivariate normal distribution with parameters  for , and that  and 
are independent. Then  has the bivariate normal distribution with parameters given by
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2. 
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4. 
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5.  = 

Proof

Let  denote the MGF of  for  and let  denote the MGF of . By independence, 
 for . Using the bivariate normal MGF, and basic properties of the exponential function,

Of course from basic properties of expected value, variance, and covariance,

Substituting gives the result.

The following result is important in the simulation of normal variables.

Suppose that  has the standard bivariate normal distribution. Define the polar coordinates  of  by the equations 
,  where  and . Then

1.  has probability density function  given by  for .
2.  is uniformly distributed on .
3.  and  are independent.

Proof

The Jacobian of the polar coordinate transformation that gives  from  is , as we all remember from calculus. Hence by the change
of variables theorem, the PDF  of  in terms of the from standard normal PDF  is given by

The result then follows from the factorization theorem for independent random variables.

The distribution of  is known as the standard Rayleigh distribution, named for William Strutt, Lord Rayleigh. The Rayleigh distribution studied
in more detail in a separate section.

Since the quantile function  of the normal distribution cannot be given in a simple, closed form, we cannot use the usual random quantile
method of simulating a normal random variable. However, the quantile method works quite well to simulate a Rayleigh variable, and of course
simulating uniform variables is trivial. Hence we have a way of simulating a standard bivariate normal vector with a pair of random numbers
(which, you will recall are independent random variables, each with the standard uniform distribution, that is, the uniform distribution on ).

Suppose that  and  are independent random variables, each with the standard uniform distribution. Let  and .
Define  and . Then  has the standard bivariate normal distribution.

Proof

The Rayleigh distribution function  is given by  for  and hence the quantile function is given by 
 for . Hence if  has the standard uniform distribution, then  has the Rayleigh

distribution. But  also has the standard uniform distribution so  also has the Rayleigh distribution. If  has the standard
uniform distribution then of course  is uniformly distributed on . If  and  are independent, then so are  and . By the
previous theorem, if  and , then  has the standard bivariate normal distribution.

Of course, if we can simulate  with a standard bivariate normal distribution, then we can simulate  with the general bivariate normal
distribution, with parameter  by definition (5), namely , .

The General Multivariate Normal Distribution

The general multivariate normal distribution is a natural generalization of the bivariate normal distribution studied above. The exposition is very
compact and elegant using expected value and covariance matrices, and would be horribly complex without these tools. Thus, this section requires
some prerequisite knowledge of linear algebra. In particular, recall that  denotes the transpose of a matrix  and that we identify a vector in 

 with the corresponding  column vector.

The Standard Distribution

Suppose that  is a vector of independent random variables, each with the standard normal distribution. Then  is said
to have the -dimensional standard normal distribution.
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2
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F F (r) = 1 −e− /2r2
r ∈ [0, ∞)

(p) =F −1 −2 ln(1 −p)
− −−−−−−−−−

√ p ∈ [0, 1) U −2 ln(1 −U)
− −−−−−−−−−

√
1 −U R = −2 lnU

− −−−−−
√ V

2πV [0, 2π) U V R Θ
Z = R cos Θ W = R sinΘ (Z,W )

(Z,W ) (X,Y )
(μ, ν, σ, τ , ρ) X = μ+σZ Y = ν +τρZ+τ W1 −ρ2

− −−−−
√

AT A

R
n n×1

Z = ( , , … , )Z1 Z2 Zn Z

n
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1.  (the zero vector in ).
2.  (the  identity matrix).

 has probability density function  given by

where as usual,  is the standard normal PDF.

Proof

By independence, .

 has moment generating function  given by

Proof

By independence,  where  is the standard normal MGF.

The General Distribution

Suppose that  has the -dimensional standard normal distribution. Suppose also that  and that  is invertible. The random
vector  is said to have an -dimensional normal distribution.

1. .
2. .

Proof
1. From the linear property of expected value, .
2. From basic properties of the variance-covariance matrix, .

In the context of this result, recall that the variance-covariance matrix  is symmetric and positive definite (and hence also
invertible). We will now see that the multivariate normal distribution is completely determined by the expected value vector  and the variance-
covariance matrix , and hence these give the basic parameters of the distribution.

Suppose that  has an -dimensional normal distribution with expected value vector  and variance-covariance matrix . The probability
density function  of  is given by

Proof

From the definition can assume that  where  is invertible and  has the -dimensional standard normal distribution,
so that  The inverse of the transformation  is  and hence the Jacobian of the inverse
transformation is . Using the multivariate change of variables theorem,

But  and hence . Also,

Suppose again that  has an -dimensional normal distribution with expected value vector  and variance-covariance matrix . The
moment generating function  of  is given by

E(Z) = 0 R
n

vc(Z) = I n×n

Z ϕn

(z) = exp(− z ⋅ z) = exp(− ), z = ( , , … , ) ∈ϕn

1

(2π)n/2

1

2

1

(2π)n/2

1

2
∑
i=1

n

z2
i z1 z2 zn R

n (5.7.32)

ϕ

(z) = ϕ( )ϕ( ) ⋯ ϕ( )ϕn z1 z2 zn

Z mn

(t) =E [exp(t ⋅ Z)] = exp[ var(t ⋅ Z)] = exp( t ⋅ t) = exp( ), t = ( , , … , ) ∈mn

1

2

1

2

1

2
∑
i=1

n

t2
i t1 t2 tn R

n (5.7.33)

E [exp(t ⋅ Z)] = m( )m( ) ⋯m( )t1 t2 tn m

Z n μ ∈ R
n A ∈ R

n×n

X = μ+AZ n

E(X) = μ

vc(X) = A AT

E(X) = μ+AE(Z) = μ

vc(X) = A vc(Z) = AAT AT

vc(X) = AAT

μ

V

X n μ V

f X

f(x) = exp[− (x −μ) ⋅ (x −μ)], x ∈
1

(2π)n/2 det(V )
− −−−−−√

1

2
V −1

R
n (5.7.34)

X = μ+AZ A ∈ R
n×n Z n

V = AAT x = μ+Az z = (x −μ)A−1

det( ) = 1/ det(A)A−1

f(x) = [ (x −μ)] = exp[− (x −μ) ⋅ (x −μ)], x ∈
1

|det(A)|
ϕn A−1 1

(2π |det(A)|)n/2

1

2
A−1 A−1

R
n (5.7.35)

det(V ) = det(A ) = det(A) det( ) =AT AT [det(A)]2 |det(A)| = det(V )
− −−−−−√

(x −μ) ⋅ (x −μ)A−1 A−1 = (x −μ) = (x −μ (x −μ)[ (x −μ)]A−1 T
A−1 )T ( )A−1 T

A−1

= (x −μ (x −μ) = (x −μ (x −μ))T ( )AT −1
A−1 )T (A )AT −1

= (x −μ (x −μ) = (x −μ) ⋅ (x −μ))T V −1 V −1

(5.7.36)

(5.7.37)

(5.7.38)

X n μ V

M X

M(t) =E [exp(t ⋅ X)] = exp[E(t ⋅ X) + var(t ⋅ X)] = exp(t ⋅ μ+ t ⋅ V t), t ∈
1

2

1

2
R
n (5.7.39)
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Proof

Once again we start with the definition and assume that  where  is invertible. we have 
. But  so using the MGF of  we have

Of course, the moment generating function completely determines the distribution. Thus, if a random vector  in  has a moment generating
function of the form given above, for some  and symmetric, positive definite , then  has the -dimensional normal
distribution with mean  and variance-covariance matrix .

Note again that in the representation , the distribution of  is uniquely determined by the expected value vector  and the
variance-covariance matrix , but not by  and . In general, for a given positive definite matrix , there are many invertible matrices 

 such that  (the matrix  is a bit like a square root of ). A theorem in matrix theory states that there is a unique lower triangular
matrix  with this property. The representation  is known as the canonical representation of .

If  has bivariate normal distribution with parameters , then the lower triangular matrix  such that 
is

Proof

Note that

Note that the matrix  above gives the canonical representation of  in terms of the standard normal vector  in the original
definition, namely , .

If the matrix  in the definition is not invertible, then the variance-covariance matrix  is symmetric, but only positive semi-
definite. The random vector  takes values in a lower dimensional affine subspace of  that has measure 0 relative to -
dimensional Lebesgue measure . Thus,  does not have a probability density function relative to , and so the distribution is degenerate.
However, the formula for the moment generating function still holds. Degenerate normal distributions are discussed in more detail below.

Transformations

The multivariate normal distribution is invariant under two basic types of transformations on the underlying random vectors: affine
transformations (with linearly independent rows), and concatenation of independent vectors. As simple corollaries of these two results, the normal
distribution is also invariant with respect to subsequences of the random vector, re-orderings of the terms in the random vector, and sums of
independent random vectors. The main tool that we will use is the moment generating function. We start with the first main result on affine
transformations.

Suppose that  has the -dimensional normal distribution with mean vector  and variance-covariance matrix . Suppose also that 
and that  has linearly independent rows (thus, ). Then  has an -dimensional normal distribution, with

1. 
2. 

Proof

For , . but , so using the MGF of  we have

But  and , so letting  and  and putting the pieces
together, we have .

A clearly important special case is , which generalizes the definition. Thus, if  and  is invertible, then 
has an -dimensional normal distribution. Here are some other corollaries:

Suppose that  has an -dimensional normal distribution. If  is a set of distinct indices, then 
 has an -dimensional normal distribution.

X = μ+AX A ∈ R
n×n

E [exp(t ⋅ X] = exp(t ⋅ μ)E [exp(t ⋅ AZ)] t ⋅ AZ = ( t) ⋅ ZAT Z

E [exp(t ⋅ AZ)] = exp[ ( t) ⋅ ( t)] = exp[ A t] = exp[ t ⋅ V t]
1

2
AT AT 1

2
tT AT 1

2
(5.7.40)

X R
n

μ ∈ R
n V ∈ R

n×n X n

μ V

X = μ+AZ X μ

V = AAT μ A V

A V = AAT A V

L X = μ+LZ X

X = (X,Y ) (μ, ν, σ, τ , ρ) L L = vc(X)LT

L = [ ]
σ

τρ

0

τ 1 −ρ2− −−−−
√

(5.7.41)

L = [ ] = vc(X,Y )LT σ2

στρ

στρ

τ 2
(5.7.42)

L (X,Y ) (Z,W )

X = μ+σZ Y = ν +τρZ+τ W1 −ρ2− −−−−√

A ∈ R
n×n V = AAT

X = μ+AZ R
n n

λn X λn

X n μ V a ∈ R
m

A ∈ R
m×n m ≤ n Y = a+AX m

E(Y ) = a+Aμ

vc(Y ) = AV AT

t ∈ R
m

E [exp(t ⋅ Y )] = exp(t ⋅ a)E [t ⋅ AX] t ⋅ AX = ( t) ⋅ XAT X

E [exp(t ⋅ AX)] = exp[( t) ⋅ μ+ ( t) ⋅ V ( t)]AT 1

2
AT AT (5.7.43)

( t) ⋅ μ = t ⋅ AμAT ( t) ⋅ V ( t) = t ⋅ (AV ) tAT AT AT b = a+Aμ U = AV AT

E [exp(t ⋅ Y )] = exp[b ⋅ t + t ⋅ Ut]1
2

m = n a ∈ R
n A ∈ R

n×n Y = a+AX

n

X = ( , , … , )X1 X2 Xn n { , , … , }i1 i2 im
Y = ( , , … , )Xi1 Xi2 Xim m
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Proof

Let  be the matrix defined by the condition that for , row  has 1 in position  and has 0 in all other positions.
Then  has linearly independent rows (since the  are distinct in ) and . Thus the result follows from the general theorem on
affine transformations.

In the context of the previous result, if  has mean vector  and variance-covariance matrix , then  has mean vector  and variance-
covariance matrix , where  is the 0-1 matrix defined in the proof. As simple corollaries, note that if  has an -
dimensional normal distribution, then any permutation of the coordinates of  also has an -dimensional normal distribution, and 

 has an -dimensional normal distribution for any . Here is a slight extension of the last statement.

Suppose that  is a random vector in ,  is a random vector in , and that  has an -dimensional normal distribution.
Then

1.  has an -dimensional normal distribution.
2.  has an -dimensional normal distribution.
3.  and  are independent if and only if  (the  zero matrix).

Proof

As we already noted, parts (a) and (b) are a simple consequence of the previous theorem. Thus, we just need to verify (c). In block form, note
that

Now let  denote the moment generating function of ,  the MGF of , and  the MGF of . From the form of the MGF, note
that  for all ,  if and only if , the  zero matrix.

Next is the converse to part (c) of the previous result: concatenating independent normally distributed vectors produces another normally
distributed vector.

Suppose that  has the -dimensional normal distribution with mean vector  and variance-covariance matrix ,  has the -dimensional
normal distribution with mean vector  and variance-covariance matrix , and that  and  are independent. Then  has the 

-dimensional normal distribution with

1. 

2.  where  is the  zero matrix.

Proof

For , write  in block form as  where  and . By independence, the MGF of  is

Using the formula for the normal MGF we have

But  and  so the proof is complet

Just as in the univariate case, the normal family of distributions is closed with respect to sums of independent variables. The proof follows easily
from the previous result.

Suppose that  has the -dimensional normal distribution with mean vector  and variance-covariance matrix ,  has the -dimensional
normal distribution with mean vector  and variance-covariance matrix , and that  and  are independent. Then  has the -
dimensional normal distribution with

1. 
2. 

Proof

From the previous result  has a -dimensional normal distribution. Moreover,  where  is the  matrix
defined by the condition that for , row  has 1 in positions  and  and  in all other positions. The matrix  has linearly

A ∈ R
m×n j∈ {1, 2, … ,m} j ij

A ij j Y = AX

X μ V Y Aμ

AV AT A X = ( , , … , )X1 X2 Xn n

X n

( , , … , )X1 X2 Xm m m ≤ n

X R
m Y R

n (X, Y ) (m+n)

X m

Y n

X Y cov(X, Y ) = 0 m×n

vc(X, Y ) = [ ]
vc(X)

cov(Y , X)

cov(X, Y )

vc(Y )
(5.7.44)

M (X, Y ) M1 X M2 Y

M(s, t) = (s) (t)M1 M2 s ∈ R
m t ∈ R

n cov(X, Y ) = 0 m×n

X m μ U Y n

ν V X Y Z = (X, Y )
m+n

E(X, Y ) = (μ, ν)

vc(X, Y ) = [ ]
vc(X)

0
T

0

vc(Y )
0 m×n

t ∈ R
m+n t t = (r, s) r ∈ R

m s ∈ R
n (X, Y )

E (exp[t ⋅ (X, Y )]) =E [r ⋅ X +s ⋅ Y ] =E [exp(r ⋅ X)]E [exp(s ⋅ Y )] (5.7.45)

E (exp[t ⋅ (X, Y )]) = exp(r ⋅ μ+ r ⋅ U r) exp(s ⋅ ν + s ⋅ V s) = exp[(r ⋅ μ+s ⋅ ν) + (r ⋅ Ur +s ⋅ V s)]
1

2

1

2

1

2
(5.7.46)

r ⋅ μ+s ⋅ ν = t ⋅ (μ, ν) r ⋅ Ur +s ⋅ V s = t ⋅ [ ] t
vc(X)

0
T

0

vc(Y )

X n μ U Y n

ν V X Y X +Y n

E(X +Y ) = μ+ν

vc(X +Y ) = U +V

(X, Y ) 2n X +Y = A(X, Y ) A n×2n
i ∈ {1, 2, … ,n} i i n+ i 0 A

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10173?pdf


5.7.10 https://stats.libretexts.org/@go/page/10173

independent rows and thus the result follows from the general theorem on affine transformations. Parts (a) and (b) are standard results for
sums of independent random vectors.

We close with a trivial corollary to the general result on affine transformation, but this corollary points the way to a further generalization of the
multivariate normal distribution that includes the degenerate distributions.

Suppose that  has an -dimensional normal distribution with mean vector  and variance-covariance matrix , and that  with 
. Then  has a (univariate) normal distribution with

1. 
2. 

Proof

Note again that . Since , the single row of  is linearly independent and hence the result follows from the general
theorem on affine transformations.

A Further Generalization
The last result can be used to give a simple, elegant definition of the multivariate normal distribution that includes the degenerate distributions as
well as the ones we have considered so far. First we will adopt our general definition of the univariate normal distribution that includes constant
random variables.

A random variable  that takes values in  has an -dimensional normal distribution if and only if  has a univariate normal
distribution for every .

Although an -dimensional normal distribution may not have a probability density function with respect to -dimensional Lebesgue measure ,
the form of the moment generating function is unchanged.

Suppose that  has mean vector  and variance-covariance matrix , and that  has an -dimensional normal distribution. The moment
generating function of  is given by

Proof

If , then by definition,  has a univariate normal distribution. Thus  is simply the moment generating function of 
, evaluated at the argument 1. The results then follow from the univariate MGF.

Our new general definition really is a generalization.

Suppose that  has an -dimensional normal distribution in the sense of the general definition, and that the distribution of  has a
probability density function on  with respect to Lebesgue measure . Then  has an -dimensional normal distribution in the sense of
our original definition.

Proof

This follows from our previous results, since both the MGF and the PDF completely determine the distribution of .
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X n μ V a ∈ R
n

a ≠ 0 Y = a ⋅ X

E(Y ) = a ⋅ μ

var(Y ) = a ⋅ V a

a ⋅ X = XaT a ≠ 0 aT

X R
n n a ⋅ X

a ∈ R
n

n n λn

X μ V X n

X

E [exp(t ⋅ X)] = exp[E(t ⋅ X) + var(t ⋅ X)] = exp(t ⋅ μ+ t ⋅ V t), t ∈
1

2

1

2
R
n (5.7.47)

t ∈ R
n t ⋅ X E [exp(t ⋅ X)]

t ⋅ X

X n X

R
n λn X n

X
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