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16.2: Potentials and Generators for General Markov Processes
     

Our goal in this section is to continue the broad sketch of the general theory of Markov processes. As with the last section, some of the statements are not
completely precise and rigorous, because we want to focus on the main ideas without being overly burdened by technicalities. If you are a new student of
probability, or are primarily interested in applications, you may want to skip ahead to the study of discrete-time Markov chains.

Preliminaries

Basic Definitions

As usual, our starting point is a probability space , so that  is the set of outcomes,  the -algebra of events, and  the probability measure on
the sample space . The set of times  is either , discrete time with the discrete topology, or , continuous time with the usual Euclidean
topology. The time set  is given the Borel -algebra , which is just the power set if , and then the time space  is given the usual measure,
counting measure in the discrete case and Lebesgue measure in the continuous case. The set of states  has an LCCB topology (locally compact, Hausdorff,
with a countable base), and is also given the Borel -algebra . Recall that to say that the state space is discrete means that  is countable with the discrete
topology, so that  is the power set of . The topological assumptions mean that the state space  is nice enough for a rich mathematical theory and
general enough to encompass the most important applications. There is often a natural Borel measure  on , counting measure  if  is discrete, and
for example, Lebesgue measure if  for some .

Recall also that there are several spaces of functions on  that are important. Let  denote the set of bounded, measurable functions . Let 
denote the set of bounded, continuous functions , and let  denote the set of continuous functions  that vanish at  in the sense that
for every , there exists a compact set  such  for . These are all vector spaces under the usual (pointwise) addition and scalar
multiplication, and . The supremum norm, defined by  for  is the norm that is used on these spaces.

Suppose now that  is a time-homogeneous Markov process with state space  defined on the probability space . As
before, we also assume that we have a filtration , that is, an increasing family of sub -algebras of , indexed by the time space, with the
properties that  is measurable with repsect to  for . Intuitively,  is the collection of events up to time .

As usual, we let  denote the transition probability kernel for an increase in time of size . Thus

Recall that for , the transition kernel  defines two operators, on the left with measures and on the right with functions. So, if  is a measure on 
 then  is the measure on  given by

If  is the distribution of  then  is the distribution of  for . If  then  is defined by

Recall that the collection of transition operators  is a semigroup because  for . Just about everything in this section
is defined in terms of the semigroup , which is one of the main analytic tools in the study of Markov processes.

Feller Markov Processes

We make the same assumptions as in the Introduction. Here is a brief review:

We assume that the Markov process  satisfies the following properties (and hence is a Feller Markov process):

1. For  and , the distribution of  given  converges to the distribution of  given  as .
2. Given ,  converges in probability to  as .

Part (a) is an assumption on continuity in space, while part (b) is an assumption on continuity in time. If  is discrete then (a) automatically holds, and if 
is discrete then (b) automatically holds. As we will see, the Feller assumptions are sufficient for a very nice mathematical theory, and yet are general enough
to encompass the most important continuous-time Markov processes.

The process  has the following properties:

1. There is a version of  such that  is continuous from the right and has left limits.
2.  is a strong Markov process relative to the , the right-continuous refinement of the natural filtration.

The Feller assumptions on the Markov process have equivalent formulations in terms of the transition semigroup.

The transition semigroup  has the following properties:

1. If  and  then 
2. If  and  then  as .
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As before, part (a) is a condition on continuity in space, while part (b) is a condition on continuity in time. Once again, (a) is trivial if  is discrete, and (b)
trivial if  is discrete. The first condition means that  is a linear operator on  (as well as being a linear operator on ). The second condition leads to a
stronger continuity result.

For , the mapping  is continuous on . That is, for ,

Our interest in this section is primarily the continuous time case. However, we start with the discrete time case since the concepts are clearer and simpler,
and we can avoid some of the technicalities that inevitably occur in continuous time.

Discrete Time

Suppose that , so that time is discrete. Recall that the transition kernels are just powers of the one-step kernel. That is, we let  and then 
 for .

Potential Operators

For , the -potential kernel  of  is defined as follows:

1. The special case  is simply the potential kernel of .
2. For  and ,  is the expected number of visits of  to , starting at .

Proof

The function  from  to  is measurable for  since  is measurable for each . The mapping 
 is a positive measure on  for  since  is a probability measure for each . Finally, the interpretation of 

 for  and  comes from interchanging sum and expected value, which is allowed since the terms are nonnegative:

Note that it's quite possible that  for some  and . In fact, knowing when this is the case is of considerable importance in the study
of Markov processes. As with all kernels, the potential kernel  defines two operators, operating on the right on functions, and operating on the left on
positive measures. For the right potential operator, if  is measurable then

assuming as usual that the expected values and the infinite series make sense. This will be the case, in particular, if  is nonnegative or if  and 
.

If , then  for all .

Proof

Using geometric series,

It follows that for , the right operator  is a bounded, linear operator on  with . It also follows that  is a probability
kernel. There is a nice interpretation of this kernel.

If  then  is the conditional distribution of  given , where  is independent of  and has the geometric
distribution on  with parameter .

Proof

Suppose that  and . Conditioning on  gives

But by the substitution rule and the assumption of independence,

Since  has the geometric distribution on  with parameter  we have  for . Substituting gives

S
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R(x,A) = ∞ x ∈ S A ∈S
Rα

f : S →R

f(x) = f(x) = (x, dy)f(y) = E[f( ) ∣ = x], x ∈ SRα ∑
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P( ∈ A ∣ N = n, = x) = P( ∈ A ∣ N = n, = x) = P( ∈ A ∣ = x) = (x,A)XN X0 Xn X0 Xn X0 P n (16.2.10)
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So  is a transition probability kernel, just as  is a transition probability kernel, but corresponding to the random time  (with  as a
parameter), rather than the deterministic time . An interpretation of the potential kernel  for  can be also given in economic terms.
Suppose that  and that we receive one monetary unit each time the process  visits . Then as above,  is the expected total amount of
money we receive, starting at . However, typically money that we will receive at times distant in the future has less value to us now than money that
we will receive soon. Specifically suppose that a monetary unit received at time  has a present value of , where  is an inflation factor
(sometimes also called a discount factor). Then  gives the expected, total, discounted amount we will receive, starting at . A bit more
generally, if  is a reward function, so that  is the reward (or cost, depending on the sign) that we receive when we visit state , then for 

,  is the expected, total, discounted reward, starting at .

For the left potential operator, if  is a positive measure on  then

In particular, if  is a probability measure and  has distribution  then  is the distribution of  for , so from the last result,  is
the distribution of  where again,  is independent of  and has the geometric distribution on  with parameter . The family of potential kernels
gives the same information as the family of transition kernels.

The potential kernels  completely determine the transition kernels .

Proof

Note that for  and , the function  is a power series in  with coefficients . In the language of
combinatorics,  is the ordinary generating function of the sequence . As noted above, this power series has radius of
convergence at least 1, so we can extend the domain to . Thus, given the potential kernels, we can recover the transition kernels by taking
derivatives and evaluating at 0:

Of course, it's really only necessary to determine , the one step transition kernel, since the other transition kernels are powers of . In any event, it follows
that the kernels , along with the initial distribution, completely determine the finite dimensional distributions of the Markov process 

. The potential kernels commute with each other and with the transition kernels.

Suppose that  and . Then (as kernels)

1. 
2. 

Proof

Suppose that  is nonnegative. The interchange of the sums with the kernel operation is allowed since the kernels are nonnegative. The other tool
used is the semigroup property.

1. Directly

The other direction requires an interchange.

2. First,

The other direction is similar.

The same identities hold for the right operators on the entire space , with the additional restrictions that  and . The fundamental equation that
relates the potential kernels is given next.

If  with  then (as kernels),
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∞
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f = f = ( f) = f = fRαRβ ∑
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∞
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∞
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B α < 1 β < 1

α, β ∈ (0, 1] α ≤ β

β = α +(β−α)Rβ Rα RαRβ (16.2.17)
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Proof

If  the equation is trivial, so assume . Suppose that  is nonnegative. From the previous result,

Changing variables to sum over  and  gives

Simplifying gives

Note that since ,  is a finite, so we don't have to worry about the dreaded indeterminate form .

The same identity holds holds for the right operators on the entire space , with the additional restriction that .

If , then (as kernels), .

Proof

Suppose that  is nonnegative. From the result above,

The same identity holds for the right operators on the entire space , with the additional restriction that . This leads to the following important result:

If , then as operators on the space ,

1. 
2. 

Proof

The operators are bounded, so we can subtract. The identity  leads to  and the identity  leads to 
. Hence (a) holds. Part (b) follows from (a).

This result shows again that the potential operator  determines the transition operator .

Examples and Applications

Our first example considers the binomial process as a Markov process.

Let  be a sequence of Bernoulli trials with success parameter . Define the Markov process  by 
 where  takes values in  and is independent of .

1. For , show that the transition probability matrix  of  is given by

2. For , show that the potential matrix  of  is given by

3. For  and , identify the probability distribution defined by .
4. For  with , interpret , the expected time in  starting in , in the context of the process .

Solutions

Recall that  is a Markov process since it has stationary, independent increments.

1. Note that for ,  is the (discrete) PDF of . The result follows since the sum of the indicator variables has the binomial
distribution with parameters  and .

2. Let  and let  with . Then

α = β α < β f ∈B

f = fRαRβ ∑
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∞

∑
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∞

αjβkP j+k (16.2.18)
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f = (β f −α f)RαRβ

1
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Rβ Rα (16.2.20)

α < 1 fRα ∞ −∞

B β < 1

α ∈ (0, 1] I +α P = I +αP =Rα Rα Rα

f ∈B
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X
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py−x )n−y+x (16.2.22)

α ∈ (0, 1] Rα X

(x, y) = , x ∈ N, y ∈ {x, x+1, …}Rα

1

1 −α+αp
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Simplifying gives the result.
3. For ,

As a function of  for fixed , this is the PDF of  where  has the geometric distribution on  with parameter .

4. Note that  for  with . Starting in state , the process eventually reaches  with probability 1. The process remains in
state  for a geometrically distributed time, with parameter . The mean of this distribution is .

Continuous Time
With the discrete-time setting as motivation, we now turn the more important continuous-time case where .

Potential Kernels

For , the -potential kernel  of  is defined as follows:

1. The special case  is simply the potential kerenl of .
2. For  and ,  is the expected amount of time that  spends in , starting at .
3. The family of kernels  is known as the reolvent of .

Proof

Since  is a Feller semigroup of transition operators, the mapping  from  to  is jointly measurable
for . Thus,  makes sense for  and  and  from  to  is measurable for . That 
is a measure on  follows from the usual interchange of sum and integral, via Fubini's theorem: Suppose that  is a countable collection of
disjoint sets in , and let 

Finally, the interpretation of  for  and  is another interchange of integrals:

The inside integral is the Lebesgue measure of .

As with discrete time, it's quite possible that  for some  and , and knowing when this is the case is of considerable interest. As
with all kernels, the potential kernel  defines two operators, operating on the right on functions, and operating on the left on positive measures. If 

 is measurable then, giving the right potential operator in its many forms,

assuming that the various integrals make sense. This will be the case in particular if  is nonnegative, or if  and .

If , then  for all .

Proof

For ,

(x, y)Rα = (x, y) = ( ) (1 −p∑
n=0

∞

αnP n ∑
n=y−x

∞

αn n

y−x
py−x )n−y+x

= (αp ( )[α(1 −p) =)y−x ∑
n=y−x

∞
n

y−x
]n−y+x (αp)y−x

[1 −α(1 −p)]n−x+1

α ∈ (0, 1)

(1 −α) (x, y) =Rα

1 −α

1 −α+αp
( )

αp

1 −α+αp

y−x

(16.2.24)

y x x+Yα Yα N 1−α

1−α+αp

R(x, y) = 1/p x, y ∈ N x ≤ y x y

y p 1/p

T = [0, ∞)

α ∈ [0, ∞) α Uα X

(x,A) = (x,A)dt, x ∈ S, A ∈SUα ∫
∞

0
e−αtPt (16.2.25)

U = U0 X

x ∈ S A ∈S U(x,A) X A x

U = { : α ∈ (0, ∞)}Uα X

P = { : t ∈ T}Pt (t, x) ↦ (x,A)Pt [0, ∞) ×S [0, 1]
A ∈S (x,A)Uα x ∈ S A ∈S x ↦ (x,A)Uα S [0, ∞) A ∈S A ↦ (x,A)Uα

S { : j∈ J}Aj

S S = ⋃j∈J Aj

(x,A)Uα = (x,A)dt = [ (x, )] dt∫
∞

0
e−αtPt ∫

∞

0
∑
j∈J

e−αtPt Aj

= (x, )dt = (x, )∑
j∈J

∫
∞

0
e−αtPt Aj ∑

j∈J

Uα Aj

U(x,A) x ∈ S A ∈S

U(x,A) = (x,A)dt = E[1( ∈ A) ∣ = x] dt =E( 1( ∈ A)dt = x)∫
∞

0
Pt ∫

∞

0
Xt X0 ∫

∞

0
Xt

∣
∣∣ X0 (16.2.26)

{t ∈ [0, ∞) : ∈ A}Xt

U(x,A) = ∞ x ∈ S A ∈S
Uα

f : S →R

f(x)Uα = (x, dy)f(y) = f(x)dt∫
S

Uα ∫
∞

0
e−αtPt

= (x, dy)f(y) = E[f( ) ∣ = x] dt, x ∈ S∫
∞

0
e−αt ∫

S

Pt ∫
∞

0
e−αt Xt X0

f f ∈B α > 0

α > 0 (x,S) =Uα
1
α x ∈ S

x ∈ S

(x,S) = (x,S)dt = dt =Uα ∫
∞

0
e−αtPt ∫

∞

0
e−αt 1

α
(16.2.27)
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It follows that for , the right potential operator  is a bounded, linear operator on  with . It also follows that  is a probability
kernel. This kernel has a nice interpretation.

If  then  is the conditional distribution of  where  is independent of  and has the exponential distribution on  with
parameter .

Proof

Suppose that  and . The random time  has PDF  for . Hence, conditioning on  gives

But by the substitution rule and the assumption of independence,

Substituting gives

So  is a transition probability kernel, just as  is a transition probability kernel, but corresponding to the random time  (with  as a
parameter), rather than the deterministic time . As in the discrete case, the potential kernel can also be interpreted in economic terms. Suppose
that  and that we receive money at a rate of one unit per unit time whenever the process  is in . Then  is the expected total amount of
money that we receive, starting in state . But again, money that we receive later is of less value to us now than money that we will receive sooner.
Specifically, suppose that one monetary unit at time  has a present value of  where  is the inflation factor or discount factor. The 

 is the total, expected, discounted amount that we receive, starting in . A bit more generally, suppose that  and that  is the reward
(or cost, depending on the sign) per unit time that we receive when the process is in state . Then  is the expected, total, discounted reward,
starting in state .

For the left potential operator, if  is a positive measure on  then

In particular, suppose that  and that  is a probability measure and  has distribution . Then  is the distribution of  for , and hence
from the last result,  is the distribution of , where again,  is independent of  and has the exponential distribution on  with parameter .
The family of potential kernels gives the same information as the family of transition kernels.

The resolvent  completely determines the family of transition kernels .

Proof

Note that for  and , the function  on  is the Laplace transform of the function  on . The Laplace
transform of a function determines the function completely.

It follows that the resolvent , along with the initial distribution, completely determine the finite dimensional distributions of the Markov
process . This is much more important here in the continuous-time case than in the discrete-time case, since the transition kernels  cannot be generated
from a single transition kernel. The potential kernels commute with each other and with the transition kernels.

Suppose that . Then (as kernels),

1. 
2. 

Proof

Suppose that  is nonnegative. The interchanges of operators and integrals below are interchanges of integrals, and are justified since the
integrands are nonnegative. The other tool used is the semigroup property of .

1. Directly,

The other direction involves an interchange.

2. First

α ∈ (0, ∞) Uα B ∥ ∥ =Uα
1
α

αUα

α > 0 α (x, ⋅)Uα Xτ τ X [0, ∞)
α

x ∈ S A ∈S τ f(t) = αe−αt t ∈ [0, ∞) τ

P( ∈ A ∣ = x) = α P( ∈ A ∣ τ = t, = x)dtXτ X0 ∫
∞

0
e−αt Xτ X0 (16.2.28)

P( ∈ A ∣ τ = t, = x) = P( ∈ A ∣ τ = t, = x) = P( ∈ A ∣ = x) = (x,A)Xτ X0 Xt X0 Xt X0 Pt (16.2.29)

P( ∈ A ∣ = x) = α (x,A)dt = α (x,A)Xτ X0 ∫
∞

0
e−αtPt Uα (16.2.30)

αUα Pt τ α ∈ (0, ∞)
t ∈ [0, ∞)

A ∈S X A U(x,A)
x ∈ S

t ∈ [0, ∞) e−αt α ∈ (0, ∞)
(x,A)Uα x ∈ S f ∈B f(x)

x ∈ S f(x)Uα

x ∈ S

μ S

μ (A)Uα = μ(dx) (x,A) = μ (A)dt∫
S

Uα ∫
∞

0
e−αt Pt

= [ μ(dx) (x,A)]dt = [ μ(dx)P( ∈ A)]dt, A ∈S∫
∞

0
e−αt ∫

S

Pt ∫
∞

0
e−αt ∫

S

Xt

α > 0 μ X0 μ μPt Xt t ∈ [0, ∞)
αμUα Xτ τ X [0, ∞) α

U = { : α ∈ (0, ∞)}Uα P = { : t ∈ (0, ∞)}Pt

x ∈ S A ∈S α ↦ (x,A)Uα (0, ∞) t ↦ (x,A)Pt [0, ∞)

{ : α ∈ [0, ∞)}Uα

X Pt

α, β, t ∈ [0, ∞)

= = dsPtUα UαPt ∫ ∞
0 e−αsPs+t

= dsdtUαUβ ∫ ∞
0

∫ ∞
0

e−αse−βtPs+t

f ∈B
P = { : t ∈ [0, ∞)}Pt

f = f ds = f dsUαPt ∫
∞

0
e−αsPsPt ∫

∞

0
e−αsPs+t (16.2.31)

f = f ds = f ds = f dsPtUα Pt ∫
∞

0
e−αsPs ∫

∞

0
e−αsPtPs ∫

∞

0
e−αsPs+t (16.2.32)
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The other direction is similar.

The same identities hold for the right operators on the entire space  under the additional restriction that  and . The fundamental equation that
relates the potential kernels, known as the resolvent equation, is given in the next theorem:

If  with  then (as kernels) .

Proof

If  the equation is trivial, so assume . Suppose that  is nonnegative. From the previous result,

The transformation  maps  one-to-one onto . The inverse transformation is  with
Jacobian . Hence we have

Simplifying gives the result. Note that  is finite since .

The same identity holds for the right potential operators on the entire space , under the additional restriction that . For ,  is also an
operator on the space .

If  and  then .

Proof

Suppose that  and that  is a sequence in . Then  for . Hence if  as  then 
 as  for each . By the dominated convergence theorem,

Hence  is continuous. Next suppose that  as . This means that for every compact , there exist  such that  for
. Them  as  for each . Again by the dominated convergence theorem,

So .

If  then  as .

Proof

Convergence is with respect to the supremum norm on , of course. Suppose that . Note first that with a change of variables ,

and hence

So it follows that

But  as  and hence by the dominated convergence theorem,  as .

fUαUβ = f ds = f dt∫
∞

0
e−αsPsUβ ∫

∞

0
e−αsPs ∫

∞

0
e−βtPt

= f dsdt = f dsdt∫
∞

0
e−αs ∫

∞

0
e−βtPsPt ∫

∞

0
∫

∞

0
e−αse−βtPs+t

B α > 0 β > 0

α, β ∈ [0, ∞) α ≤ β = +(β−α)Uα Uβ UαUβ

α = β α < β f ∈B

f = f dt dsUαUβ ∫
∞

0
∫

∞

0
e−αse−βtPs+t (16.2.33)

u = s+ t, v= s [0, ∞)2 {(u, v) ∈ [0, ∞ : u ≥ v})2 s = v, t = u−v

−1

fUαUβ = f dvdu = ( dv) f du∫
∞

0
∫

u

0
e−αve−β(u−v)Pu ∫

∞

0
∫

u

0
e(β−α)v e−βuPu

= [ −1] fdu
1

β−α
∫

∞

0
e(β−α)u e−βuPu

= ( f du− f du) = ( f − f)
1

β−α
∫

∞

0
e−αuPu ∫

∞

0
e−βuPu

1

β−α
Uα Uβ

fUβ β > 0

B α > 0 α ∈ (0, ∞) Uα

C0

α ∈ (0, ∞) f ∈ C0 f ∈Uα C0

f ∈ C0 ( , , …)x1 x2 S f ∈Pt C0 t ∈ [0, ∞) → x ∈ Sxn n → ∞
f( ) → f(x)e−αtPt xn e−αtPt n → ∞ t ∈ [0, ∞)

f( ) = f( )dt → f(x)dt = f(x) as n → ∞Uα xn ∫
∞

0
e−αtPt xn ∫

∞

0
e−αtPt Uα (16.2.34)

fUα → ∞xn n → ∞ C ⊆ S m ∈ N+ ∉ Cxn
n > m f( ) → 0e−αtPt xn n → ∞ t ∈ [0, ∞)

f( ) = f( )dt → 0 as n → ∞Uα xn ∫
∞

0
e−αtPt xn (16.2.35)

f ∈Uα C0

f ∈ C0 α f → fUα α → ∞

C0 f ∈ C0 s = αt

α f = α f dt = f dsUα ∫
∞

0
e−αtPt ∫

∞

0
e−sPs/α (16.2.36)

|α f −f | = ( f −f)ds ≤ f −f ds ≤ f −f dsUα

∣
∣
∣∫

∞

0
e−s Ps/α

∣
∣
∣ ∫

∞

0
e−s ∣∣Ps/α ∣∣ ∫

∞

0
e−s ∥∥Ps/α ∥∥ (16.2.37)

∥α f −f∥ ≤ f −f dsUα ∫
∞

0
e−s ∥∥Ps/α ∥∥ (16.2.38)

f −f → 0∥∥Ps/α ∥∥ α → ∞ f −f ds → 0∫ ∞
0

e−s ∥∥Ps/α ∥∥ α → ∞
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Infinitesimal Generator

In continuous time, it's not at all clear how we could construct a Markov process with desired properties, say to model a real system of some sort. Stated
mathematically, the existential problem is how to construct the family of transition kernels  so that the semigroup property  is
satisfied for all . The answer, as for similar problems in the deterministic world, comes essentially from calculus, from a type of derivative.

The infinitesimal generator of the Markov process  is the operator  defined by

on the domain  for which the limit exists.

As usual, the limit is with respect to the supremum norm on , so  and  means that  and

So in particular,

The domain  is a subspace of  and the generator  is a linear operator on 

1. If  and  then  and .
2. If  then  and .

Proof

These are simple results that depend on the linearity of  for  and basic results on convergence.

1. If  then

2. If  then

Note  is the (right) derivative at 0 of the function . Because of the semigroup property, this differentiability property at  implies differentiability
at arbitrary . Moreover, the infinitesimal operator and the transition operators commute:

If  and , then  and the following derivative rules hold with respect to the supremum norm.

1. , the Kolmogorov forward equation
2. , the Kolmogorov backward equation

Proof

Let . All limits and statements about derivatives and continuity are with respect to the supremum norm.

1. By assumption,

Since  is a bounded, linear operator on the space , it preserves limits, so

This proves the result for the derivative from the right. But since  is continuous, the the result is also true for the two-sided derivative.
2. From part (a), we now know that

By definition, this means that  and .

The last result gives a possible solution to the dilema that motivated this discussion in the first place. If we want to construct a Markov process with desired
properties, to model a a real system for example, we can start by constructing an appropriate generator  and then solve the initial value problem

{ : t ∈ [0, ∞)}Pt =PsPt Ps+t

s, t ∈ [0, ∞)

X G : D → C0

Gf = lim
t↓0

f −fPt

t
(16.2.39)

D ⊆C0

C0 f ∈ D Gf = g f , g ∈ C0

−g = sup{ −g(x) : x ∈ S} → 0 as t ↓ 0
∥
∥
∥

f −fPt

t

∥
∥
∥

∣

∣
∣

f(x) −f(x)Pt

t

∣

∣
∣ (16.2.40)

Gf(x) = = , x ∈ Slim
t↓0

f(x) −f(x)Pt

t
lim
t↓0

E[f( ) ∣ = x] −f(x)Xt X0

t
(16.2.41)

D C0 G D

f ∈ D c ∈ R cf ∈ D G(cf) = cGf

f , g ∈ D f +g ∈ D G(f +g) = Gf +Gg

Pt t ∈ [0, ∞)

f ∈ D

= c → cGf  as t ↓ 0
(cf) −(cf)Pt

t

f −fPt

t
(16.2.42)

f , g ∈ D

= + → Gf +Gg as t ↓ 0
(f +g) −(f +g)Pt

t

f −fPt

t

g−gPt

t
(16.2.43)

G t ↦ fPt 0
t ∈ [0, ∞)

f ∈ D t ∈ [0, ∞) f ∈ DPt

f = GfP ′
t Pt

f = G fP ′
t Pt

f ∈ D

( f −f) → Gf  as h ↓ 0
1

h
Ph (16.2.44)

Pt C0

( f − f) = ( f − f) → Gf  as h ↓ 0
1

h
PtPh Pt

1

h
Pt+h Pt Pt (16.2.45)

t ↦ fPt

( f − f) = ( f − f) → Gf  as h → 0
1

h
PhPt Pt

1

h
Pt+h Pt Pt (16.2.46)

f ∈ DPt G f = Gf = fPt Pt P ′
t

G

= G , = IP ′
t Pt P0 (16.2.47)
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to obtain the transition operators . The next theorem gives the relationship between the potential operators and the infinitesimal
operator, which in some ways is better. This relationship is analogous to the relationship between the potential operators and the one-step operator given
above in discrete time

Suppose .

1. If  the  and 
2. If  then  and .

Proof
1. By definition, if  then . Hence using the previous result,

Integrating by parts (with  and ) gives

But  as  while . The last term is .
2. Suppose that . From the result above and the substitution ,

Hence

Adding and subtracting  and combining integrals gives

Since  is continuous, the first term converges to  as . The second term converges to  as .

For , the operators  and  have an inverse relationship.

Suppose again that .

1. 
2. 

Proof

Recall that  and 

1. By part(a) the previous result we have  so . By part (b) we have  so .
2. This follows from (a).

So, from the generator  we can determine the potential operators , which in turn determine the transition operators 
. In continuous time, transition operators  can be obtained from the single, infinitesimal operator  in a way

that is reminiscent of the fact that in discrete time, the transition operators  can be obtained from the single, one-step operator .

Examples and Applications

Our first example is essentially deterministic.

Consider the Markov process  on  satisfying the ordinary differential equation

where  is Lipschitz continuous. The infinitesimal operator  is given by  for  on the domain  of functions 
 where  and .

Proof

Recall that the only source of randomness in this process is the initial sate . By the continuity assumptions on , there exists a unique solution 
to the differential equation with initial value , defined for all . The transition operator  for  is defined on  by 

 for . By the ordinary chain rule, if  is differentiable,

P = { : t ∈ [0, ∞)}Pt

α ∈ (0, ∞)

f ∈ D Gf ∈ C0 f + Gf = α fUα Uα

f ∈ C0 f ∈ DUα f +G f = α fUα Uα

f ∈ D Gf ∈ C0

f + Gf = f + G f dt = f + f dtUα ∫
∞

0
e−αt Pt ∫

∞

0
e−αtP ′

t (16.2.48)

u = e−αt dv= f dtP ′
t

f +G f = f − f +α f dtUα e−αtPt
∣
∣∣
∞

0
∫

∞

0
e−αtPt (16.2.49)

f → 0e−αtPt t → ∞ f = fP0 α fUα

f ∈ C0 u = s+ t

f = f ds = f du = f duPtUα ∫
∞

0
e−αsPs+t ∫

∞

t

e−α(u−t)Pu eαt ∫
∞

t

e−αuPu (16.2.50)

= [ f du− f]
f − fPtUα Uα

t

1

t
eαt ∫

∞

t

e−αuPu Uα (16.2.51)

feαuUα

f − fPtUα Uα

t
= [ f du− f du]+ f

1

t
eαt ∫

∞

t

e−αuPu eαt ∫
∞

0
e−αuPu

−1eαt

t
Uα

= − f ds+ feαt
1

t
∫

t

0
e−αsPs

−1eαt

t
Uα

s ↦ fPs −f t ↓ 0 α fUα t ↓ 0

α > 0 Uα G

α ∈ (0, ∞)

= (αI −G : →DUα )−1 C0

G= αI − : D →U−1
α C0

: →DUα C0 G : D → C0

α − G= IUα Uα (αI −G) = IUα α −G = IUα Uα (αI −G) = IUα

G U = { : α ∈ (0, ∞)}Uα

P = { : t ∈ (0, ∞)}Pt P = { : t ∈ [0, ∞)}Pt G

P = { : n ∈ N}P n P

X = { : t ∈ [0, ∞)}Xt R

= g( ), t ∈ [0, ∞)
d

dt
Xt Xt (16.2.52)

g : R →R G Gf(x) = (x)g(x)f ′ x ∈ R D

f : R →R f ∈ C0 ∈f ′ C0

X0 g (x)Xt

= xX0 t ∈ [0, ∞) Pt t ∈ [0, ∞) B

f(x) = f [ (x)]Pt Xt x ∈ R f
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Our next example considers the Poisson process as a Markov process. Compare this with the binomial process above.

Let  denote the Poisson process on  with rate . Define the Markov process  by 
 where  takes values in  and is independent of .

1. For , show that the probability transition matrix  of  is given by

2. For , show that the potential matrix  of  is given by

3. For  and , identify the probability distribution defined by .
4. Show that the infinitesimal matrix  of  is given by ,  for .

Solutions
1. Note that for  and ,  is the (discrete) PDF of  since  has the Poisson distribution with parameter .
2. Let  and let  with . Then

The change of variables  gives

But the last integral is . Simplifying gives the result.
3. For ,

As a function of  for fixed , this is the PDF of  where  has the geometric distribution with parameter .

4. Note that for , . By simple calculus, this is  if ,  if , and 0 otherwise.
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= → (x)g(x) as t ↓ 0
f(x) −f(x)Pt

t

f [ (x)] −f(x)Xt

t
f ′ (16.2.53)

N = { : t ∈ [0, ∞)}Nt N β ∈ (0, ∞) X = { : t ∈ [0, ∞)}Xt

= +Xt X0 Nt X0 N N

t ∈ [0, ∞) Pt X

(x, y) = , x, y ∈ N, y ≥ xPt e−βt (βt)y−x

(y−x)!
(16.2.54)

α ∈ [0, ∞) Uα X

(x, y) = , x, y ∈ N, y ≥ xUα

1

α+β
( )

β

α+β

y−x

(16.2.55)

α > 0 x ∈ N α (x, ⋅)Uα

G X G(x, x) = −β G(x, x+1) = β x ∈ N

t ∈ [0, ∞) x ∈ N (x, ⋅)Pt x+Nt Nt βt

α ∈ [0, ∞) x, y ∈ N x ≤ y

(x, y)Uα = (x, y)dt = dt∫
∞

0
e−αtPt ∫

∞

0
e−αte−βt

(βt)y−x

(y−x)!

= dt
βy−x

(y−x)!
∫

∞

0
e−(α+β)tty−x

s = (α+β)t

(x, y) = dsUα

βy−x

(y−x)!(α+β)y−x+1
∫

∞

0
e−ssy−x (16.2.56)

Γ(y−x+1) = (y−x)!
α > 0

α (x, y) = , x, y ∈ N, y ≥ xUα

α

α+β
( )

β

α+β

y−x

(16.2.57)

y x x+Yα Yα
α

α+β

x, y ∈ N G(x, y) = (x, y)d

dt
Pt ∣∣t=0

−β y = x β y = x+1
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