
5.14.1 https://stats.libretexts.org/@go/page/10354

5.14: The Rayleigh Distribution
         

The Rayleigh distribution, named for William Strutt, Lord Rayleigh, is the distribution of the magnitude of a two-dimensional
random vector whose coordinates are independent, identically distributed, mean 0 normal variables. The distribution has a number
of applications in settings where magnitudes of normal variables are important.

The Standard Rayleigh Distribution

Definition

Suppose that  and  are independent random variables with standard normal distributions. The magnitude 

 of the vector  has the standard Rayleigh distribution.

So in this definition,  has the standard bivariate normal distribution

Distribution Functions

We give five functions that completely characterize the standard Rayleigh distribution: the distribution function, the probability
density function, the quantile function, the reliability function, and the failure rate function. For the remainder of this discussion,
we assume that  has the standard Rayleigh distribution.

 has distribution function  given by  for .

Proof

 has joint PDF  on . Hence

where . Convert to polar coordinates with ,  to get

The result now follows by simple integration.

 has probability density function  given by  for .

1.  increases and then decreases with mode at .
2.  is concave downward and then upward with inflection point at .

Proof

The formula for the PDF follows immediately from the distribution function since .

1. 
2. .

Open the Special Distribution Simulator and select the Rayleigh distribution. Keep the default parameter value and note the
shape of the probability density function. Run the simulation 1000 times and compare the emprical density function to the
probability density function.

 has quantile function  given by  for . In particular, the quartiles of  are

1. , the first quartile
2. , the median
3. , the third quartile

Proof
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The formula for the quantile function follows immediately from the distribution function by solving  for  in terms
of .

Open the Special Distribution Calculator and select the Rayleigh distribution. Keep the default parameter value. Note the shape
and location of the distribution function. Compute selected values of the distribution function and the quantile function.

 has reliability function  given by  for .

Proof

Recall that the reliability function is simply the right-tail distribution function, so .

 has failure rate function  given by  for . In particular,  has increasing failure rate.

Proof

Recall that the failure rate function is .

Moments

Once again we assume that  has the standard Rayleigh distribution. We can express the moment generating function of  in
terms of the standard normal distribution function . Recall that  is so commonly used that it is a special function of
mathematics.

 has moment generating function  given by

Proof

By definition . Combining the exponential and completing the square in  gives

But  is the PDF of the normal distribution with mean  and variance 1. The rest of the derivation follows

from basic calculus.

The mean, variance of  are

1. 
2. 

Proof
1. Note that

But  is the PDF of the standard normal distribution. Hence the second integral is  (since the variance of

the standard normal distribution is 1).
2. An integration by parts gives

Numerically,  and .

Open the Special Distribution Simulator and select the Rayleigh distribution. Keep the default parameter value. Note the size
and location of the mean standard deviation bar. Run the simulation 1000 times and compare the empirical mean and stadard
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E(R) ≈ 1.2533 sd(R) ≈ 0.6551
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deviation to the true mean and standard deviation.

The general moments of  can be expressed in terms of the gamma function .

 for .

Proof

The substitution  gives

The last integral is  by definition.

Of course, the formula for the general moments gives an alternate derivation of the mean and variance above, since 
 and . On the other hand, the moment generating function can be also be used to derive the formula for

the general moments.

The skewness and kurtosis of  are

1. 
2. 

Proof

These results follow from the standard formulas for the skewness and kurtosis in terms of the moments, since , 
, , and .

Related Distributions

The fundamental connection between the standard Rayleigh distribution and the standard normal distribution is given in the very
definition of the standard Rayleigh, as the distribution of the magnitude of a point with independent, standard normal coordinates.

Connections to the chi-square distribution.

1. If  has the standard Rayleigh distribution then  has the chi-square distribution with 2 degrees of freedom.
2. If  has the chi-square distribution with 2 degrees of freedom then  has the standard Rayleigh distribution.

Proof

This follows directly from the definition of the standard Rayleigh variable , where  and  are

independent standard normal variables.

Recall also that the chi-square distribution with 2 degrees of freedom is the same as the exponential distribution with scale
parameter 2.

Since the quantile function is in closed form, the standard Rayleigh distribution can be simulated by the random quantile method.

Connections between the standard Rayleigh distribution and the standard uniform distribution.

1. If  has the standard uniform distribution (a random number) then  has the standard
Rayleigh distribution.

2. If  has the standard Rayleigh distribution then  has the standard uniform distribution

In part (a), note that  has the same distribution as  (the standard uniform). Hence  also has the standard
Rayleigh distribution.

Open the random quantile simulator and select the Rayleigh distribution with the default parameter value (standard). Run the
simulation 1000 times and compare the empirical density function to the true density function.
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There is another connection with the uniform distribution that leads to the most common method of simulating a pair of
independent standard normal variables. We have seen this before, but it's worth repeating. The result is closely related to the
definition of the standard Rayleigh variable as the magnitude of a standard bivariate normal pair, but with the addition of the polar
coordinate angle.

Suppose that  has the standard Rayleigh distribution,  is uniformly distributed on , and that  and  are
independent. Let , . Then  have the standard bivariate normal distribution.

Proof

By independence, the joint PDF  of  is given by

As we recall from calculus, the Jacobian of the transformation ,  is , and hence the Jacobian of the
inverse transformation that takes  into  is . Moreover, . From the change of variables theorem,
the PDF  of  is given by . This leads to

Hence  has the standard bivariate normal distribution.

The General Rayleigh Distribution

Definition

The standard Rayleigh distribution is generalized by adding a scale parameter.

If  has the standard Rayleigh distribution and  then  has the Rayleigh distribution with scale parameter .

Equivalently, the Rayleigh distribution is the distribution of the magnitude of a two-dimensional vector whose components have
independent, identically distributed mean 0 normal variables.

If  and  are independent normal variables with mean 0 and standard deviation  then  has the

Rayleigh distribution with scale parameter .

Proof

We can take  and  where  and  are independent standard normal variables. Then 

 where  has the standard Rayleigh distribution.

Distribution Functions

In this section, we assume that  has the Rayleigh distribution with scale parameter .

 has cumulative distribution function  given by  for .

Proof

Recall that  where  is the standard Rayleigh CDF.

 has probability density function  given by  for .

1.  increases and then decreases with mode at .
2.  is concave downward and then upward with inflection point at .

Proof

Recall that  where  is the standard Rayleigh PDF.
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Open the Special Distribution Simulator and select the Rayleigh distribution. Vary the scale parameter and note the shape and
location of the probability density function. For various values of the scale parameter, run the simulation 1000 times and
compare the emprical density function to the probability density function.

 has quantile function  given by  for . In particular, the quartiles of  are

1. , the first quartile
2. , the median
3. , the third quartile

Proof

Recall that  where  is the standard Rayleigh quantile function.

Open the Special Distribution Calculator and select the Rayleigh distribution. Vary the scale parameter and note the location
and shape of the distribution function. For various values of the scale parameter, compute selected values of the distribution
function and the quantile function.

 has reliability function  given by  for .

Proof

Recall that .

 has failure rate function  given by  for . In particular,  has increasing failure rate.

Proof

Recall that .

Moments

Again, we assume that  has the Rayleigh distribution with scale parameter , and recall that  denotes the standard normal
distribution function.

 has moment generating function  given by

Proof

Recall that  where  is the standard Rayleigh MGF.

The mean and variance of  are

1. 
2. 

Proof

These result follow from standard mean and variance and basic properties of expected value and variance.

Open the Special Distribution Simulator and select the Rayleigh distribution. Vary the scale parameter and note the size and
location of the mean standard deviation bar. For various values of the scale parameter, run the simulation 1000 times and
compare the empirical mean and stadard deviation to the true mean and standard deviation.

Again, the general moments can be expressed in terms of the gamma function .

 for .

Proof
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This follows from the standard moments and basic properties of expected value.

The skewness and kurtosis of  are

1. 
2. 

Proof

Recall that skewness and kurtosis are defined in terms of the standard score, and hence are unchanged by a scale
transformation. Thus the results follow from the standard skewness and kurtosis.

Related Distributions

The fundamental connection between the Rayleigh distribution and the normal distribution is the defintion, and of course, is the
primary reason that the Rayleigh distribution is special in the first place. By construction, the Rayleigh distribution is a scale
family, and so is closed under scale transformations.

If  has the Rayleigh distribution with scale parameter  and if  then  has the Rayleigh distribution
with scale parameter .

The Rayleigh distribution is a special case of the Weibull distribution.

The Rayleigh distribution with scale parameter  is the Weibull distribution with shape parameter  and scale
parameter .

The following result generalizes the connection between the standard Rayleigh and chi-square distributions.

If  has the Rayleigh distribution with scale parameter  then  has the exponential distribution with scale
parameter .

Proof

We can take  where  has the standard Rayleigh distribution. Then , and  has the exponential
distribution with scale parameter 2. Hence  has the exponential distribution with scale parameter .

Since the quantile function is in closed form, the Rayleigh distribution can be simulated by the random quantile method.

Suppose that .

1. If  has the standard uniform distribution (a random number) then  has the Rayleigh
distribution with scale parameter .

2. If  has the Rayleigh distribution with scale parameter  then  has the standard uniform
distribution

In part (a), note that  has the same distribution as  (the standard uniform). Hence  also has the Rayleigh
distribution with scale parameter .

Open the random quantile simulator and select the Rayleigh distribution. For selected values of the scale parameter, run the
simulation 1000 times and compare the empirical density function to the true density function.

Finally, the Rayleigh distribution is a member of the general exponential family.

If  has the Rayleigh distribution with scale parameter  then  has a one-parameter exponential distribution with
natural parameter  and natural statistic .

Proof

This follows directly from the definition of the general exponential distribution.
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