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5.32: The Cauchy Distribution
          

The Cauchy distribution, named of course for the ubiquitous Augustin Cauchy, is interesting for a couple of reasons. First, it is a
simple family of distributions for which the expected value (and other moments) do not exist. Second, the family is closed under
the formation of sums of independent variables, and hence is an infinitely divisible family of distributions.

The Standard Cauchy Distribution

Distribution Functions

The standard Cauchy distribution is a continuous distribution on  with probability density function  given by

1.  is symmetric about 
2.  increases and then decreases, with mode .
3.  is concave upward, then downward, and then upward again, with inflection points at .

4.  as  and as 

Proof

Note that

and hence  is a PDF. Parts (a)–(d) follow from basic calculus.

Thus, the graph of  has a simple, symmetric, unimodal shape that is qualitatively (but certainly not quantitatively) like the
standard normal probability density function. The probability density function  is obtained by normalizing the function

The graph of this function is known as the witch of Agnesi, named for the Italian mathematician Maria Agnesi.

Open the special distribution simulator and select the Cauchy distribution. Keep the default parameter values to get the
standard Cauchy distribution and note the shape and location of the probability density function. Run the simulation 1000
times and compare the empirical density function to the probability density function.

The standard Cauchy distribution function  given by  for 

Proof

For ,

The standard Cauchy quantile function  is given by  for . In particular,

1. The first quartile is 
2. The median is 
3. The third quartile is 

Proof

As usual,  is computed from the CDF  by solving  for  in terms of .
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Of course, the fact that the median is 0 also follows from the symmetry of the distribution, as does the fact that 
 for .

Open the special distribution calculator and select the Cauchy distribution. Keep the default parameter values and note the
shape of the distribution and probability density functions. Compute a few quantiles.

Moments

Suppose that random variable  has the standard Cauchy distribution. As we noted in the introduction, part of the fame of this
distribution comes from the fact that the expected value does not exist.

 does not exist.

Proof

By definition, . For the improper integral to exist, even as an extended real number, at least one of the
integrals  and  must be finite, for some (and hence every) . But by a simple substitution,

and similarly, .

By symmetry, if the expected value did exist, it would have to be 0, just like the median and the mode, but alas the mean does not
exist. Moreover, this is not just an artifact of how mathematicians define improper integrals, but has real consequences. Recall that
if we think of the probability distribution as a mass distribution, then the mean is center of mass, the balance point, the point where
the moment (in the sense of physics) to the right is balanced by the moment to the left. But as the proof of the last result shows, the
moments to the right and to the left at any point  are infinite. In this sense, 0 is no more important than any other .
Finally, if you are not convinced by the argument from physics, the next exercise may convince you that the law of large numbers
fails as well.

Open the special distribution simulator and select the Cauchy distribution. Keep the default parameter values, which give the
standard Cauchy distribution. Run the simulation 1000 times and note the behavior of the sample mean.

Earlier we noted some superficial similarities between the standard Cauchy distribution and the standard normal distribution
(unimodal, symmetric about 0). But clearly there are huge quantitative differences. The Cauchy distribution is a heavy tailed
distribution because the probability density function  decreases at a polynomial rate as  and , as opposed to
an exponential rate. This is yet another way to understand why the expected value does not exist.

In terms of the higher moments,  does not exist if  is odd, and is  if  is even. It follows that the moment generating
function  cannot be finite in an interval about 0. In fact,  for every , so this generating function is
of no use to us. But every distribution on  has a characteristic function, and for the Cauchy distribution, this generating function
will be quite useful.

 has characteristic function  given by  for .

Proof

By definition,

We will compute this integral by evaluating a related contour integral in the complex plane using, appropriately enough,
Cauchy's integral formula (named for you know who).

Suppose first that . For , let  denote the curve in the complex plane consisting of the line segment  on the -
axis from  to  and the upper half circle  of radius  centered at the origin. We give  the usual counter-clockwise
orientation. On the one hand we have
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On ,  and  so

On , let . Then . Since  on  and , we have .
Also,  on . It follows that

On the other hand,  has one singularity inside , at . The residue is

Hence by Cauchy's integral formula,

. Putting the pieces together we have

Letting  gives

For , we can use the substitution  and our previous result to get

Related Distributions

The standard Cauchy distribution a member of the Student  family of distributions.

The standard Cauchy distribution is the Student  distribution with one degree of freedom.

Proof

The Student  distribution with one degree of freedom has PDF  given by

which is the standard Cauchy PDF.

The standard Cauchy distribution also arises naturally as the ratio of independent standard normal variables.

Suppose that  and  are independent random variables, each with the standard normal distribution. Then  has the
standard Cauchy distribution. Equivalently, the standard Cauchy distribution is the Student  distribution with 1 degree of
freedom.

Proof
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By definition,  has the chi-square distribution with 1 degree of freedom, and is independent of . Hence, also by definition,
 has the Student  distribution with 1 degree of freedom, so the theorem follows from the previous

result.

If  has the standard Cauchy distribution, then so does 

Proof

This is a corollary of the previous result. Suppose that  and  are independent variables, each with the standard normal
distribution. Then  has the standard Cauchy distribution. But then  also has the standard Cauchy
distribution.

The standard Cauchy distribution has the usual connections to the standard uniform distribution via the distribution function and
the quantile function computed above.

The standard Cauchy distribution and the standard uniform distribution are related as follows:

1. If  has the standard uniform distribution then  has the standard Cauchy distribution.
2. If  has the standard Cauchy distribution then  has the standard uniform distribution.

Proof

Recall that if  has the standard uniform distribution, then  has distribution function . Conversely, if  has
distribution function , then since  is strictly increasing,  has the standard uniform distribution.

Since the quantile function has a simple, closed form, it's easy to simulate the standard Cauchy distribution using the random
quantile method.

Open the random quantile experiment and select the Cauchy distribution. Keep the default parameter values and note again the
shape and location of the distribution and probability density functions. For selected values of the parameters, run the
simulation 1000 times and compare the empirical density function to the probability density function. Note the behavior of the
empirical mean and standard deviation.

For the Cauchy distribution, the random quantile method has a nice physical interpretation. Suppose that a light source is 1 unit
away from position 0 of an infinite, straight wall. We shine the light at the wall at an angle  (to the perpendicular) that is
uniformly distributed on the interval . Then the position  of the light beam on the wall has the standard
Cauchy distribution. Note that this follows since  has the same distribution as  where  has the standard uniform
distribution.

Open the Cauchy experiment and keep the default parameter values.

1. Run the experiment in single-step mode a few times, to make sure that you understand the experiment.
2. For selected values of the parameters, run the simulation 1000 times and compare the empirical density function to the

probability density function. Note the behavior of the empirical mean and standard deviation.

The General Cauchy Distribution

Like so many other “standard” distributions, the Cauchy distribution is generalized by adding location and scale parameters. Most
of the results in this subsection follow immediately from results for the standard Cauchy distribution above and general results for
location scale families.

Suppose that  has the standard Cauchy distribution and that  and . Then  has the Cauchy
distribution with location parameter  and scale parameter .

Distribution Functions

Suppose that  has the Cauchy distribution with location parameter  and scale parameter .

 has probability density function  given by
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1.  is symmetric about .
2.  increases and then decreases, with mode .
3.  is concave upward, then downward, then upward again, with inflection points at .

4.  as  and as .

Proof

Recall that

where  is the standard Cauchy PDF.

Open the special distribution simulator and select the Cauchy distribution. Vary the parameters and note the location and shape
of the probability density function. For selected values of the parameters, run the simulation 1000 times and compare the
empirical density function to the probability density function.

 has distribution function  given by

Proof

Recall that

where  is the standard Cauchy CDF.

 has quantile function  given by

In particular,

1. The first quartile is .
2. The median is .
3. The third quartile is .

Proof

Recall that  where  is the standard Cauchy quantile function.

Open the special distribution calculator and select the Cauchy distribution. Vary the parameters and note the shape and location
of the distribution and probability density functions. Compute a few values of the distribution and quantile functions.

Moments

Suppose again that  has the Cauchy distribution with location parameter  and scale parameter . Since the mean
and other moments of the standard Cauchy distribution do not exist, they don't exist for the general Cauchy distribution either.

Open the special distribution simulator and select the Cauchy distribution. For selected values of the parameters, run the
simulation 1000 times and note the behavior of the sample mean.
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But of course the characteristic function of the Cauchy distribution exists and is easy to obtain from the characteristic function of
the standard distribution.

 has characteristic function  given by  for .

Proof

Recall that  where  is the standard Cauchy characteristic function.

Related Distributions

Like all location-scale families, the general Cauchy distribution is closed under location-scale transformations.

Suppose that  has the Cauchy distribution with location parameter  and scale parameter , and that 
and . Then  has the Cauchy distribution with location parameter  and scale parameter .

Proof

Once again, we give the standard proof. By definition we can take  where  has the standard Cauchy distribution.
But then .

Much more interesting is the fact that the Cauchy family is closed under sums of independent variables. In fact, this is the main
reason that the generalization to a location-scale family is justified.

Suppose that  has the Cauchy distribution with location parameter  and scale parameter  for ,
and that  and  are independent. Then  has the Cauchy distribution with location parameter  and
scale parameter .

Proof

This follows easily from the characteristic function. Let  denote the characteristic function of  for  and  the
charactersitic function of . Then

As a corollary, the Cauchy distribution is stable, with index :

If  is a sequence of independent variables, each with the Cauchy distribution with location parameter 
 and scale parameter , then  has the Cauchy distribution with location parameter 

and scale parameter .

Another corollary is the strange property that the sample mean of a random sample from a Cauchy distribution has that same
Cauchy distribution. No wonder the expected value does not exist!

Suppose that  is a sequence of independent random variables, each with the Cauchy distribution with
location parameter  and scale parameter . (That is,  is a random sample of size  from the Cauchy
distribution.) Then the sample mean  also has the Cauchy distribution with location parameter  and scale
parameter .

Proof

From the previous stability result,  has the Cauchy distribution with location parameter  and scale parameter 
. But then by the scaling result,  has the Cauchy distribution with location parameter  and scale parameter .

The next result shows explicitly that the Cauchy distribution is infinitely divisible. But of course, infinite divisibility is also a
consequence of stability.

Suppose that  and . For every  the Cauchy distribution with location parameter  and scale parameter 
 is the distribution of the sum of  independent variables, each of which has the Cauchy distribution with location parameters 

 and scale parameter .
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Our next result is a very slight generalization of the reciprocal result above for the standard Cauchy distribution.

Suppose that  has the Cauchy distribution with location parameter  and scale parameter . Then  has the
Cauchy distribution with location parameter  and scale parameter .

Proof

 has the same distribution as  where  has the standard Cauchy distribution. Hence  has the same distribution as .
But by the result above,  also has the standard Cauchy distribution, so  has the Cauchy distribution with location
parameter  and scale parameter .

As with its standard cousin, the general Cauchy distribution has simple connections with the standard uniform distribution via the
distribution function and quantile function computed above, and in particular, can be simulated via the random quantile method.

Suppose that  and .

1. If  has the standard uniform distribution, then  has the Cauchy distribution with
location parameter  and scale parameter 

2. If  has the Cauchy distribution with location parameter  and scale parameter , then 

 has the standard uniform distribution.

Open the random quantile experiment and select the Cauchy distribution. Vary the parameters and note again the shape and
location of the distribution and probability density functions. For selected values of the parameters, run the simulation 1000
times and compare the empirical density function to the probability density function. Note the behavior of the empirical mean
and standard deviation.

As before, the random quantile method has a nice physical interpretation. Suppose that a light source is  units away from position 
 of an infinite, straight wall. We shine the light at the wall at an angle  (to the perpendicular) that is uniformly distributed on the

interval . Then the position  of the light beam on the wall has the Cauchy distribution with location
parameter  and scale parameter .

Open the Cauchy experiment. For selected values of the parameters, run the simulation 1000 times and compare the empirical
density function to the probability density function. Note the behavior of the empirical mean and standard deviation.
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