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16.16: Transition Matrices and Generators of Continuous-Time Chains
      

16. Transition Matrices and Generators of Continuous-Time Chains

Preliminaries

This is the second of the three introductory sections on continuous-time Markov chains. Thus, suppose that  is a
continuous-time Markov chain defined on an underlying probability space  and with state space . By the very meaning
of Markov chain, the set of states  is countable and the -algebra  is the collection of all subsets of . So every subset of  is
measurable, as is every function from  to another measurable space. Recall that  is also the Borel  algebra corresponding to the
discrete topology on . With this topology, every function from  to another topological space is continuous. Counting measure  is the
natural measure on , so in the context of the general introduction, integrals over  are simply sums. Also, kernels on  can be
thought of as matrices, with rows and sums indexed by . The left and right kernel operations are generalizations of matrix
multiplication.

A space of functions on  plays an important role. Let  denote the collection of bounded functions . With the usual
pointwise definitions of addition and scalar multiplication,  is a vector space. The supremum norm on  is given by

Of course, if  is finite,  is the set of all real-valued functions on , and  for .

In the last section, we studied  in terms of when and how the state changes. To review briefly, let .
Assuming that  is right continuous, the Markov property of  implies the memoryless property of , and hence the distribution of 
given  is exponential with parameter  for each . The assumption of right continuity rules out the
pathological possibility that , which would mean that  is an instantaneous state so that . On the other
hand, if  then  is a stable state, so that  has a proper exponential distribution given  with 

. Finally, if  then  is an absorbing state, so that . Next we define a
sequence of stopping times: First  and . Recursively, if  then , while if  then

. With  we define  if  with  and  if  with . The
sequence  is a discrete-time Markov chain on  with one-step transition matrix  given by 

 if  with  stable, and  if  is absorbing. Assuming that  is regular, which
means that  as  with probability 1 (ruling out the explosion event of infinitely many transitions in finite time), the
structure of  is completely determined by the sequence of stopping times  and the discrete-time jump chain 

. Analytically, the distribution  is determined by the exponential parameter function  and the one-step transition
matrix  of the jump chain.

In this section, we sill study the Markov chain  in terms of the transition matrices in continuous time and a fundamentally important
matrix known as the generator. Naturally, the connections between the two points of view are particularly interesting.

The Transition Semigroup

Definition and basic Properties

The first part of our discussion is very similar to the treatment for a general Markov processes, except for simplifications caused by the
discrete state space. We assume that  is a Markov chain on .

The transition probability matrix  of  corresponding to  is

In particular, , the identity matrix on 

Proof

The mapping  is the PDF of  given . Hence  is a probability matrix. That is,  for 
and  for . Trivially,  by definition.

Note that since we are assuming that the Markov chain is homogeneous,

X = { : t ∈ [0, ∞)}Xt

(Ω,F ,P) (S,S )
S σ S S S

S S σ

S S #
(S,S ) S S

S

S B f : S →R

B B

∥f∥ = sup{|f(x)| : x ∈ S}, f ∈B (16.16.1)

S B S ∥f∥ = max{|f(x)| : x ∈ S} f ∈B

X τ = inf{t ∈ (0, ∞) : ≠ }Xt X0

X X τ τ

= xX0 λ(x) ∈ [0, ∞) x ∈ S

λ(x) = ∞ x P(τ = 0 ∣ = x) = 1X0

λ(x) ∈ (0, ∞) x τ = xX0

P(0 < τ < ∞ ∣ = x) = 1X0 λ(x) = 0 x P(τ = ∞ ∣ = x) = 1X0

= 0τ0 = ττ1 < ∞τn = inf {t > : ≠ }τn τn Xt Xτn = ∞τn
= ∞τn+1 M = sup{n ∈ N : < ∞}τn =Yn Xτn n ∈ N n ≤ M =Yn YM n ∈ N n > M

Y = ( , , …)Y0 Y1 S Q

Q(x, y) = P( = y ∣ = x)Xτ X0 x, y ∈ S x Q(x, x) = 1 x ∈ S X

→ ∞τn n → ∞
X τ = ( , , …)τ0 τ1

Y = ( , , …)Y0 Y1 X λ

Q

X

X = { : t ∈ [0, ∞)}Xt S

Pt X t ∈ [0, ∞)

(x, y) = P( = y ∣ = x), (x, y) ∈Pt Xt X0 S2 (16.16.2)

= IP0 S

y ↦ (x, y)Pt Xt = xX0 Pt (x, y) ≥ 0Pt (x, y) ∈ S2

(x, y) = 1∑y∈S Pt x ∈ S = IP0

(x, y) = P( = y ∣ = x), (x, y) ∈Pt Xs+t Xs S2 (16.16.3)
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for every . The Chapman-Kolmogorov equation given next is essentially yet another restatement of the Markov property.
The equation is named for Andrei Kolmogorov and Sydney Chapman,

Suppose that  is the collection of transition matrices for the chain . Then  for .
Explicitly,

Proof

We condition on .

But by the Markov and time homogeneous properties,

Of course by definition, . So the first displayed equation above becomes

Restated in another form of jargon, the collection  is a semigroup of probability matrices. The semigroup of
transition matrices , along with the initial distribution, determine the finite-dimensional distributions of .

Suppose that  has probability density function . If  is a time sequence with  and 
 is a state sequence, then

Proof

To simplify the notation, we will just give the cases  and , which capture the essence of the proof. First suppose 
 and . Then

Next suppose that  and  with . Then

But by the Markov and time homogeneous properties, . By the  case, 
. Hence

As with any matrix on , the transition matrices define left and right operations on functions which are generalizations of matrix
multiplication. For a transition matrix, both have natural interpretations.

Suppose that , and that either  is nonnegative or . Then for ,

The mapping  is a bounded, linear operator on  and .

Proof

Since  is the conditional probability density function of  given , it follows that .
The statement about  follows from general results on probability kernels.

If  is nonnegative and  is infinte, then it's possible that . In general, the left operation of a positive kernel acts on positive
measures on the state space. In the setting here, if  is a positive (Borel) measure on , then the function  given by 

s, t ∈ [0, ∞)

P = { : t ∈ [0, ∞)}Pt X =PsPt Ps+t s, t ∈ [0, ∞)

(x, z) = (x, y) (y, z), x, z ∈ SPs+t ∑
y∈S

Ps Pt (16.16.4)

Xs

(x, z) = P( = z ∣ = x) = P( = z ∣ = y, = x)P( = y ∣ = x)Ps+t Xs+t X0 ∑
y∈S

Xs+t Xs X0 Xs X0 (16.16.5)

P( = z ∣ = y, = x) = P( = z ∣ = y) = (y, z)Xs+t Xs X0 Xs+t Xs Pt (16.16.6)

P( = y ∣ = x) = (x, y)Xs X0 Ps

(x, y) = (x, y) (y, z) = (x, z)Ps+t ∑
y∈S

Ps Pt PsPt (16.16.7)

P = { : t ∈ [0, ∞)}Pt

P X

X0 f ( , , … , ) ∈ [0, ∞t1 t2 tn )n 0 < < ⋯ <t1 tn
( , , … , ) ∈x0 x1 xn Sn+1

P ( = , = , … = ) = f( ) ( , ) ( , ) ⋯ ( , )X0 x0 Xt1 x1 Xtn xn x0 Pt1 x0 x1 P −t2 t1 x1 x2 P −tn tn−1 xn−1 xn (16.16.8)

n = 1 n = 2
x, y ∈ S t ∈ [0, ∞)

P( = x, = y) = P( = x)P( = y ∣ = x) = f(x) (x, y)X0 Xt X0 Xt X0 Pt (16.16.9)

x, y, z ∈ S s, t ∈ [0, ∞) s < t

P( = x, = y, = z) = P( = z ∣ = x, = y)P( = x, = y)X0 Xs Xt Xt X0 Xs X0 Xs (16.16.10)

P( = z ∣ = x, = y) = (y, z)Xt X0 Xs Pt−s n = 1
P( = x, = y) = f(x) (x, y)X0 Xs Ps

P( = x, = y, = z) = f(x) (x, y) (y, z)X0 Xs Xt Ps Pt−s (16.16.11)

S

f : S →R f f ∈B t ∈ [0, ∞)

f(x) = (x, y)f(y) =E[f( ) ∣ = x], x ∈ SPt ∑
y∈S

Pt Xt X0 (16.16.12)

f ↦ fPt B ∥ ∥ = 1Pt

(x, ⋅)Pt Xt = xX0 f(x) =E[f( ) ∣ = x]Pt Xt X0

f ↦ fPt

f S f(x) = ∞Pt

μ (S,S ) f : S → [0, ∞)
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 for  is the density function of  with respect to counting measure  on . This simply means that 
 for . Conversely, given , the set function  for  defines a positive

measure on  with  as its density function. So for the left operation of , it's natural to consider only nonnegative functions.

If  then

If  has probability density function  then  has probability density function .

Proof

If  has PDF , then conditioning gives

More generally, if  is the density function of a positive measure  on  then  is the density function of the measure ,
defined by

A function  is invariant for the Markov chain  (or for the transition semigroup ) if  for every 
.

It follows that if  has an invariant probability density function , then  has probability density function  for every , so 
 is identically distributed. Invariant and limiting distributions are fundamentally important for continuous-time Markov chains.

Standard Semigroups

Suppose again that  is a Markov chain on  with transition semigroup . Once again,
continuity assumptions need to be imposed on  in order to rule out strange behavior that would otherwise greatly complicate the
theory. In terms of the transition semigroup , here is the basic assumption:

The transition semigroup  is standard if  as  for each .

Since  for , the standard assumption is clearly a continuity assumption. It actually implies much stronger smoothness
properties that we will build up by stages.

If the transition semigroup  is standard, then the function  is right continuous for each 
.

Proof

First note that if  with  then  as . Hence  as  for all 
. Suppose next that  and . By the semigroup property,

But  as  so by the bounded convergence theorem,  as .

Our next result connects one of the basic assumptions in the section on transition times and the embedded chain with the standard
assumption here.

If the Markov chain  has no instantaneous states then the transition semigroup  is standard.

Proof

Given  note that  implies . Hence

Since  has no instantaneous states,  so  as .

f(x) = μ{x} x ∈ S μ # (S,S )
μ(A) = f(x)∑x∈A A ⊆ S f : S → [0, ∞) μ(A) = f(x)∑x∈A A ⊆ S

(S,S ) f Pt

f : S → [0, ∞)

f (y) = f(x) (x, y), y ∈ SPt ∑
x∈S

Pt (16.16.13)

X0 f Xt fPt

X0 f

P( = y) = P( = y ∣ = x)P( = x) = (x, y)f(x) = f (x), y ∈ SXt ∑
x∈S

Xt X0 X0 ∑
x∈S

Pt Pt (16.16.14)

f μ (S,S ) fPt μPt

μ (A) = μ{x} (x,A) = f(x) (x,A), A ⊆ SPt ∑
x∈S

Pt ∑
x∈S

Pt (16.16.15)

f : S → [0, ∞) X P f = fPt

t ∈ [0, ∞)

X0 f Xt f t ∈ [0, ∞)
X

X = { : t ∈ [0, ∞)}Xt S P = { : t ∈ [0, ∞)}Pt

X

P

P (x, x) → 1Pt t ↓ 0 x ∈ S

(x, x) = 1P0 x ∈ S

P = { : t ∈ [0, ∞)}Pt t ↦ (x, y)Pt

(x, y) ∈ S2

(x, y) ∈ S2 x ≠ y (x, y) ≤ 1 − (x, x) → 0Ph Ph h ↓ 0 (x, y) → I(x, y)Ph h ↓ 0
(x, y) ∈ S2 t ∈ (0, ∞) (x, y) ∈ S2

(x, y) = (x, y) = (x, z) (z, y)Pt+h PtPh ∑
z∈S

Pt Ph (16.16.16)

(z, y) → I(z, y)Ph h ↓ 0 (x, y) → (x, y)Pt+h Pt h ↓ 0

X P

= x ∈ SX0 τ > t = xXt

(x, x) = P( = x ∣ = x) ≥ P(τ > t ∣ = x) =Pt Xt X0 X0 e−λ(x)t (16.16.17)

X 0 ≤ λ(x) < ∞ → 1e−λ(x)t t ↓ 0
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Recall that the non-existence of instantaneous states is essentially equivalent to the right continuity of . So we have the nice result that
if  is right continuous, then so is . For the remainder of our discussion, we assume that  is a regular Markov
chain on  with transition semigroup , exponential function  and one-step transition matrix  for the jump
chain. Our next result is the fundamental integral equations relating , , and .

For ,

Proof

If  is an absorbing state, then the equation trivially holds, since  and . So suppose that  is a stable
state, and as above, let . Given ,  has a proper exponential distribution with parameter 

. Taking cases,

The first term on the right is 0 if  and is  if . In short,

For the second term on the right in the displayed equation, we condition on  and . By a result in the last section on
transition times and the embedded chain, the joint PDF of  at  and , given , is 
(continuous in time, discrete in space). Also, given  and , we can use the strong Markov property to
“restart the clock” at  giving

Putting the pieces together we have

We can now improve on the continuity result that we got earlier. First recall the leads to relation for the jump chain : For , 
 leads to  if  for some . So by definition,  leads to  for each , and for  with ,  leads to 

if and only if the discrete-time chain starting in  eventually reaches  with positive probability.

For ,

1.  is continuous.
2. If  leads to  then  for every .
3. If  does not lead to  then  for every .

Proof

For , we can use the change of variables  in the fundamental integral equation to get

1. In the displayed equation,  is right continuous for every , and hence by the bounded convergence
theorem again, so is . Since the integrand in the displayed equation is bounded and right continuous, the integral
is a continuous function of . Hence  is continuous for .

2. For , note that  for . If  leads to  and  then there exists  and 
 such that . Then

3. This is clear from the definition of the embedded chain .

Parts (b) and (c) are known as the Lévy dichotomy, named for Paul Lévy. It's possible to prove the Lévy dichotomy just from the
semigroup property of , but this proof is considerably more complicated. In light of the dichotomy, the leads to relation clearly makes

X

X P X = { : t ∈ [0, ∞)}Xt

S P = { : t ∈ [0, ∞)}Pt λ Q

P λ Q

t ∈ [0, ∞)

(x, y) = I(x, y) + λ(x) Q (x, y)ds, (x, y) ∈Pt e−λ(x)t ∫
t

0
e−λ(x)s Pt−s S2 (16.16.18)

x λ(x) = 0 (x, y) = I(x, y)Pt x

τ = inf{t ∈ [0, ∞) : ≠ }Xt X0 = xX0 τ

λ(x) ∈ (0, ∞)

(x, y) = P( = y ∣ = x) = P( = y, τ > t ∣ = x) +P( = y, τ ≤ t ∣ = x)Pt Xt X0 Xt X0 Xt X0 (16.16.19)

y ≠ x P(τ > t ∣ = x) =X0 e−λ(x)t y = x

P( = y, τ > t ∣ = x) = I(x, y)Xt X0 e−λ(x)s (16.16.20)

τ =Y1 Xτ

(τ , )Y1 s ∈ [0, ∞) z ∈ S = xX0 λ(x) Q(x, z)e−λ(x)s

τ = s ∈ [0, t] = z ∈ SY1

s

P( = y ∣ = x, τ = s, = z) = P( = y ∣ = z) = (z, y)Xt X0 Y1 Xt−s X0 Pt−s (16.16.21)

P( = y, τ ≤ t ∣ = x) = λ(x) Q(x, z) (z, y)ds = λ(x) Q (x, y)dsXt X0 ∫
t

0
e−λ(x)s∑

z∈S

Pt−s ∫
t

0
e−λ(x)s Pt−s (16.16.22)

Y (x, y) ∈ S2

x y (x, y) > 0Qn n ∈ N x x x ∈ S (x, y) ∈ S2 x ≠ y x y

x y

(x, y) ∈ S2

t ↦ (x, y)Pt

x y (x, y) > 0Pt t ∈ (0, ∞)
x y (x, y) = 0Pt t ∈ (0, ∞)

t ∈ [0, ∞) r = t−s

(x, y) = I(x, y) +λ(x) Q (x, y)dr, (x, y) ∈Pt e−λ(x)t e−λ(x)t ∫
t

0
eλ(x)r Pr S2 (16.16.23)

r ↦ (x, y)Pr (x, y) ∈ S2

r ↦ Q (x, y)Pr

t t ↦ (x, y)Pt (x, y) ∈ S2

x ∈ S (x, x) ≥ > 0Pt e−λ(x)t t ∈ [0, ∞) x y x ≠ y n ∈ N+

( , , … , ) ∈x1 x2 xn−1 Sn−1 Q(x, ) > 0, …Q( , y) > 0x1 xn−1

(x, y) = P( = y ∣ = x) ≥ P( = , … , = , = y, ≤ t < ) > 0Pt Xt X0 Y1 x1 Yn−1 xn−1 Yn τn τn+1 (16.16.24)

Y
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sense for the continuous-time chain  as well as the discrete-time embedded chain .

The Generator Matrix

Definition and Basic Properties

In this discussion, we assume again that  is a regular Markov chain on  with transition semigroup 
, exponential parameter function  and one-step transition matrix  for the embedded jump chain. The

fundamental integral equation above now implies that the transition probability matrix  is differentiable in . The derivative at  is
particularly important.

The matrix function  has a (right) derivative at 0:

where the infinitesimal generator matrix  is given by  for .

Proof

As before the change of variables  in the fundamental integral equation gives

The first term is clearly differentiable in , and the second term is also differentiable in  since we now know that the integrand is a
continuous function of . The result then follows from standard calculus.

Note that  for every , since  is  is absorbing, while  if  is stable. So 
for , and  for  with . Thus, the generator matrix  determines the exponential parameter
function  and the jump transition matrix , and thus determines the distribution of the Markov chain .

Given the generator matrix  of ,

1.  for 
2.  if  is stable and 

The infinitesimal generator has a nice interpretation in terms of our discussion in the last section. Recall that when the chain first enters a
stable state , we set independent, exponentially distributed “timers” on (x, y), for each . Note that  is the
exponential parameter for the timer on . As soon as an alarm sounds for a particular , the chain moves to state  and the
process continues.

The generator matrix  satisfies the following properties for every :

1. 
2. 

The matrix function  is differentiable on , and satisfies the Kolmogorov backward equation: . Explicitly,

Proof

The proof is just like before, and follows from standard calculus and the integral equation

The backward equation is named for Andrei Kolmogorov. In continuous time, the transition semigroup  can be
obtained from the single, generator matrix  in a way that is reminiscent of the fact that in discrete time, the transition semigroup 

 can be obtained from the single, one-step matrix . From a modeling point of view, we often start with the
generator matrix  and then solve the the backward equation, subject to the initial condition , to obtain the semigroup of
transition matrices .

X Y

X = { : t ∈ [0, ∞)}Xt S

P = { : t ∈ [0, ∞)}Pt λ Q

Pt t 0

t ↦ Pt

→ G as t ↓ 0
−IPt

t
(16.16.25)

G G(x, y) = −λ(x)I(x, y) +λ(x)Q(x, y) (x, y) ∈ S2

r = t−s

(x, y) = I(x, y) +λ(x) Q (x, y)drPt e−λ(x)t e−λ(x)t ∫
t

0
eλ(x)r Pr (16.16.26)

t t

r

λ(x)Q(x, x) = 0 x ∈ S λ(x) = 0 x Q(x, x) = 0 x G(x, x) = −λ(x)
x ∈ S G(x, y) = λ(x)Q(x, y) (x, y) ∈ S2 y ≠ x G

λ Q X

G X

λ(x) = −G(x, x) x ∈ S

Q(x, y) = −G(x, y)/G(x, x) x ∈ S y ∈ S−{x}

x y ∈ S−{x} G(x, y)
(x, y) (x, y) y

G x ∈ S

G(x, x) ≤ 0
G(x, y) = 0∑y∈S

t ↦ Pt [0, ∞) = GP ′
t Pt

(x, y) = −λ(x) (x, y) + λ(x)Q(x, z) (z, y), (x, y) ∈P ′
t Pt ∑

z∈S

Pt S2 (16.16.27)

(x, y) = I(x, y) +λ(x) Q (x, y)drPt e−λ(x)t e−λ(x)t ∫
t

0
eλ(x)r Pr (16.16.28)

P = { : t ∈ [0, ∞)}Pt

G

P = { : n ∈ N}P n P

G = IP0

P
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As with any matrix on , the generator matrix  defines left and right operations on functions that are analogous to ordinary matrix
multiplication. The right operation is defined for functions in .

If  then  is given by

Proof

By definition,

In the second term, we can sum over all  since  if  is absorbing and  if  is stable. Note that  is
well defined since

But note that  is not in  unless . Without this additional assumption,  is a linear operator from the vector space  of
bounded functions from  to  into the vector space of all functions from  to . We will return to this point in our next discussion.

Uniform Transition Semigroups

We can obtain stronger results for the generator matrix if we impose stronger continuity assumptions on .

The transition semigroup  is uniform if  as  uniformly in .

If  is uniform, then the operator function  is continuous on the vector space .

Proof

The statement means that for , the function  is continuous with respect to the supremum norm on .

As usual, we want to look at this new assumption from different points of view.

The following are equivalent:

1. The transition semigroup  is uniform.
2. The exponential parameter function  is bounded.
3. The generator matrix  defiens a bounded linear operator on .

Proof

From our remarks above we know that  if and only if the generator matrix  defines a bounded linear operator on . So we
just need to show the equivalence of (a) and (b). If  then

The last term converges to 1 as  uniformly in .

So when the equivalent conditions are satisfied, the Markov chain  is also said to be uniform. As we will see in a
later section, a uniform, continuous-time Markov chain can be constructed from a discrete-time Markov chain and an independent
Poisson process. For a uniform transition semigroup, we have a companion to the backward equation.

Suppose that  is a uniform transition semigroup. Then  satisfies the Kolmogorov forward equation . Explicitly,

The backward equation holds with more generality than the forward equation, since we only need the transition semigroup  to be
standard rather than uniform. It would seem that we need stronger conditions on  for the forward equation to hold, for otherwise it's not
even obvious that  is finite for . On the other hand, the forward equation is sometimes easier to

S G

B

f ∈B Gf

Gf(x) = −λ(x)f(x) + λ(x)Q(x, y)f(y), x ∈ S∑
y∈S

(16.16.29)

Gf(x) = G(x, y)f(y) = −λ(x)f(x) + λ(x)Q(x, y)f(y)∑
y∈S

∑
y∈S−{x}

(16.16.30)

y ∈ S λ(x) = 0 x Q(x, x) = 0 x Gf

λ(x)Q(x, y) |f(x)| ≤ λ(x)Q(x, y)∥f∥ = λ(x)∥f∥∑
y∈S−{x}

∑
y∈S−{x}

(16.16.31)

Gf B λ ∈B G B

S R S R

P

P = { : t ∈ [0, ∞)}Pt (x, x) → 1Pt t ↓ 0 x ∈ S

P t ↦ Pt B

f ∈B t ↦ fPt B

P

λ

G B

λ ∈B G B

λ ∈B

(x, x) = P( = x ∣ = x) ≥ P(τ > t ∣ = x) = exp[−λ(x)t] ≥ exp(−∥λ∥t)Pt Xt X0 X0 (16.16.32)

t ↓ 0 x

X = { : t ∈ [0, ∞)}Xt

P t ↦ Pt = GP ′
t Pt

(x, y) = −λ(y) (x, y) + (x, z)λ(z)Q(z, y), (x, y) ∈P ′
t Pt ∑

z∈S

Pt S2 (16.16.33)

P

λ

(x, z)λ(z)Q(z, y)∑z∈S Pt (x, y) ∈ S
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solve than the backward equation, and the assumption that  is bounded is met in many applications (and of course holds automatically
if  is finite).

As a simple corollary, the transition matrices and the generator matrix commute for a uniform semigroup:  for .
The forward and backward equations formally look like the differential equations for the exponential function. This actually holds with
the operator exponential.

Suppose again that  is a uniform transition semigroup with generator . Then

Proof

First  is well defined as a bounded linear operator on  for  (and hence also simply as a matrix), since  is a bounded
linear operator on . Trivially , and by basic properties of the matrix exponential,

It follows that  for .

We can characterize the generators of uniform transition semigroups. We just need the minimal conditions that the diagonal entries are
nonpositive and the row sums are 0.

Suppose that  a matrix on  with . Then  is the generator of a uniform transition semigroup  if
and only if for every ,

1. 
2. 

Proof

We know of course that if  is the generator of a transition semigroup, then conditions (a) and (b) hold. For the converse, we can
use the previous result. Let

which makes sense since  is bounded in norm. Then  for . By part (b),  for every 
 and , and hence  for . Finally, the semigroup property is a consequence of

the law of exponents, which holds for the exponential of a matrix.

Examples and Exercises

The Two-State Chain

Let  be the Markov chain on the set of states , with transition rate  from 0 to 1 and
transition rate  from 1 to 0. This two-state Markov chain was studied in the previous section. To avoid the trivial case with
both states absorbing, we will assume that .

The generator matrix is

Show that for ,

1. By solving the Kolmogorov backward equation.

λ

S

G= GPt Pt t ∈ [0, ∞)

P = { : t ∈ [0, ∞)}Pt G

= = , t ∈ [0, ∞)Pt etG ∑
n=0

∞ tn

n!
Gn (16.16.34)

etG B t ∈ [0, ∞) G

B = Ie0G

= G , t ∈ (0, ∞)
d

dt
etG etG (16.16.35)

=Pt etG t ∈ [0, ∞)

G S ∥G∥ < ∞ G P = { : t ∈ [0, ∞)}Pt

x ∈ S

G(x, x) ≤ 0
G(x, y) = 0∑y∈S

G

= = , t ∈ [0, ∞)Pt etG ∑
n=0

∞ tn

n!
Gn (16.16.36)

G (x, y) ≥ 0Pt (x, y) ∈ S2 (x, y) = 0∑y∈S G
n

x ∈ S n ∈ N+ (x, y) = I(x, y) = 1∑y∈S Pt ∑y∈S x ∈ S

= = =PsPt esGetG e(s+t)G Ps+t (16.16.37)

X = { : t ∈ [0, ∞)}Xt S = {0, 1} a ∈ [0, ∞)
b ∈ [0, ∞)

a+b > 0

G= [ ]
−a

b

a

−b
(16.16.38)

t ∈ [0, ∞)

= [ ]− [ ]Pt

1

a+b

b

b

a

a

1

a+b
e−(a+b)t −a

b

a

−b
(16.16.39)
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2. By solving the Kolmogorov forward equation.
3. By computing .

You probably noticed that the forward equation is easier to solve because there is less coupling of terms than in the backward equation.

Define the probability density function  on  by , . Show that

1.  as , the matrix with  in both rows.

2.  for all , so that  is invariant for .
3. .

Computational Exercises

Consider the Markov chain  on  with exponential parameter function  and
embedded transition matrix

1. Draw the state graph and classify the states.
2. Find the generator matrix .
3. Find the transition matrix  for .
4. Find .

Answer
1. The edge set is . All states are stable.
2. The generator matrix is

3. For ,

4. 

Special Models

Read the discussion of generator and transition matrices for chains subordinate to the Poisson process.

Read the discussion of the infinitesimal generator for continuous-time birth-death chains.

Read the discussion of the infinitesimal generator for continuous-time queuing chains.

Read the discussion of the infinitesimal generator for continuous-time branching chains.

This page titled 16.16: Transition Matrices and Generators of Continuous-Time Chains is shared under a CC BY 2.0 license and was authored, remixed,
and/or curated by Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

=Pt etG

f S f(0) = b

a+b
f(1) = a

a+b

→ [ ]Pt
1

a+b

b

b

a

a
t → ∞ f

f = fPt t ∈ [0, ∞) f P

fG= 0

X = { : t ∈ [0, ∞)}Xt S = {0, 1, 2} λ = (4, 1, 3)

Q =
⎡

⎣

⎢⎢

0

1
1
3

1
2

0
2
3

1
2

0

0

⎤

⎦

⎥⎥ (16.16.40)

G

Pt t ∈ [0, ∞)
limt→∞ Pt

E = {(0, 1), (0, 2), (1, 0), (2, 0), (2, 1)}

G=
⎡

⎣
⎢

−4

1

1

2

−1

2

2

0

−3

⎤

⎦
⎥ (16.16.41)

t ∈ [0, ∞)

=Pt

1

15

⎡

⎣
⎢

3 +12e−5t

3 −3e−5t

3 −3e−5t

10 −10e−3t

10 +5e−3t

10 −10e−3t

2 −12 +10e−5t e−3t

2 +3 −5e−5t e−3t

2 +3 +10e−5t e−3t

⎤

⎦
⎥ (16.16.42)

→Pt

1

15

⎡

⎣
⎢

3

3

3

10

10

10

2

2

2

⎤

⎦
⎥ (16.16.43)
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