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5.3: Stable Distributions
           

This section discusses a theoretical topic that you may want to skip if you are a new student of probability.

Basic Theory
Stable distributions are an important general class of probability distributions on  that are defined in terms of location-scale
transformations. Stable distributions occur as limits (in distribution) of scaled and centered sums of independent, identically
distributed variables. Such limits generalize the central limit theorem, and so stable distributions generalize the normal distribution
in a sense. The pioneering work on stable distributions was done by Paul Lévy.

Definition

In this section, we consider real-valued random variables whose distributions are not degenerate (that is, not concentrated at a
single value). After all, a random variable with a degenerate distribution is not really random, and so is not of much interest.

Random variable  has a stable distribution if the following condition holds: If  and  is a sequence
of independent variables, each with the same distribution as , then  has the same distribution as 

 for some  and . If  for  then the distribution of  is strictly stable.

1. The parameters  for  are the centering parameters.
2. The parameters  for  are the norming parameters.

Details

Since the distribution of  is not point mass at 0, note that if the distribution of  is the same as the distribution of 
 for some  and , then  and . Thus, the centering parameters  and the norming

parameters  are uniquely defined for .

Recall that two distributions on  that are related by a location-scale transformation are said to be of the same type, and that being
of the same type defines an equivalence relation on the class of distributions on . With this terminology, the definition of stability
has a more elegant expression:  has a stable distribution if the sum of a finite number of independent copies of  is of the same
type as . As we will see, the norming parameters are more important than the centering parameters, and in fact, only certain
norming parameters can occur.

Basic Properties

We start with some very simple results that follow easily from the definition, before moving on to the deeper results.

Suppose that  has a stable distribution with mean  and finite variance. Then the norming parameters are  and the
centering parameters are  for .

Proof

As usual, let  and  denote the centering and norming parameters of  for , and let  denote the (finite) variance
of . Suppose that  and that  is a sequence of independent variables, each with the distribution of 

. Then  has the same distribution as . Taking variances gives  and hence 
. Taking expected values now gives .

It will turn out that the only stable distribution with finite variance is the normal distribution, but the result above is useful as an
intermediate step. Next, it seems fairly clear from the definition that the family of stable distributions is itself a location-scale
family.

Suppose that the distribution of  is stable, with centering parameters  and norming parameters for 
. If  and , then the distribution of  is also stable, with centering parameters 

 and norming parameters  for .

Proof
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Suppose that  and that  is a sequence of independent variables, each with the same distribution as .
Then  has the same distribution  where  is a sequence of
independent variables, each with the same distribution as . By stability,  has the same distribution as 

. Hence  has the same distribution as , which in turn has the same
distribution as .

An important point is the the norming parameters are unchanged under a location-scale transformation.

Suppose that the distribution of  is stable, with centering parameters  and norming parameters  for 
. Then the distribution of  is stable, with centering parameters  and norming parameters  for .

Proof

If  and  is a sequence of independent variables, each with the same distribution as  then 
 is a sequence of independent variables each with the same distribution as . By stability, 

 has the same distribution as .

From the last two results, if  has a stable distribution, then so does , with the same norming parameters, for every 
 with . Stable distributions are also closed under convolution (corresponding to sums of independent variables) if the

norming parameters are the same.

Suppose that  and  are independent variables. Assume also that  has a stable distribution with centering parameters 
 and norming parameters  for , and that  has a stable distribution with centering parameters 
 and the same norming parameters  for . Then  has a stable distribution with centering

paraemters  and norming parameters  for .

Proof

Suppose that  and that  is a sequence of independent variables, each with the same distribution as .
Then  has the same distribution as  where  is a sequence of independent
variables, each with the same distribution as , and  is a sequence of independent variables, each with
the same distribution as , and where  and  are independent. By stability, this is the same as the distribution of 

.

We can now give another characterization of stability that just involves two independent copies of .

Random variable  has a stable distribution if and only if the following condition holds: If  are independent variables,
each with the same distribution as  and  then  has the same distribution as  for some 

 and .

Proof

Suppose that the condition in the theorem holds. We will show by induction that the condition in the definition holds. For 
, the stability condition is a special case of the condition in the theorem, with . Suppose that the stability

condition holds for a given . Suppose that  is a sequence of independent random variables,
each with the distribution of . By the induction hypothesis,  has the same distribution as 

 for some  and . By independence,  has the same
distribution as . By another application of the condition above,  has the same distribution as

 for some  and . But then  has the same distribution as .

As a corollary of a couple of the results above, we have the following:

Suppose that  and  are independent with the same stable distribution. Then the distribution of  is strictly stable, with
the same norming parameters.

Note that the distribution of  is symmetric (about 0). The last result is useful because it allows us to get rid of the centering
parameters when proving facts about the norming parameters. Here is the most important of those facts:
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Suppose that  has a stable distribution. Then the norming parameters have the form  for , for some 
. The parameter  is known as the index or characteristic exponent of the distribution.

Proof

The proof is in several steps, and is based on the proof in An Introduction to Probability Theory and Its Applications, Volume
II, by William Feller. The proof uses the basic trick of writing a sum of independent copies of  in different ways in order to
obtain relationships between the norming constants .

First we can assume from our last result that the distribution of  is symmetric and strictly stable. Let  be a
sequence of independent variables, each with the distribution of . Let  for . Now let  and
consider . Directly from stability,  has the same distribution as . On the other hand,  can be thought of as a
sum of  “blocks”, where each block is a sum of  independent copies of . Each block has the same distribution as ,
and since the blocks are independent, it follows that  has the same distribution as

But by another application of stability, the random variable on the right has the same distribution as . It then follows
that  for all  which in turn leads to  for all .

We use the same trick again, this time with a sum. Let  and consider . Directly from stability,  has the
same distribution as . On the other hand,  can be thought of as the sum of two blocks. The first is the sum of 
independent copies of  and hence has the same distribution as , while the second is the sum of  independent copies of 

 and hence has the same distribution as . Since the blocks are independent, it follows that  has the same
distribution as , or equivalently,  has the same distribution as

Next note that for ,

and so by independence,

But by symmetry, . Also  and  have the same distribution as , so we conclude that

It follows that the ratios  are bounded for . If that were not the case, we could find a sequence of integers 
 with , in which case the displayed equation above would give the contradiction  for all 
. Restating, the ratios  are bounded for  with .

Fix . There exists a unique  with . It then follows from step 1 above that  for every 
 with . Similarly, if , there exists  with  and then  for every 

with . For our next step, we show that  and it then follows that  for every . Towards that end,
note that if  with  there exists  with  with . Hence

Therefore

Since the coefficients  are unbounded in , but the ratios  are bounded for  with , the last
inequality implies that . Reversing the roles of  and  then gives  and hence .
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All that remains to show is that . We will do this by showing that if , then  must have finite variance, in which
case the finite variance property above leads to the contradiction . Since  is nonnegative,

So the idea is to find bounds on the integrals on the right so that the sum converges. Towards that end, note that for  and 

Hence we can choose  so that . On the other hand, using a special inequality for symmetric distributions,

This implies that  is bounded in  or otherwise the two inequalities together would lead to . Substituting
 leads to  for some . It then follows that

If , the series with the terms on the right converges and we have .

Every stable distribution is continuous.

Proof

As in the proof of the previous theorem, suppose that  has a symmetric stable distribution with norming parameters  for 
. As a special case of the last proof, for ,  has the same distribution as

where  and  are independent and also have this distribution. Suppose now that  for some  where 
. Then

If the index , the points

are distinct, which gives us infinitely many atoms, each with probability at least —clearly a contradiction.

Next, suppose that the only atom is  and that  where . Then  has the same distribution
as . But  while , another contradiction.

The next result is a precise statement of the limit theorem alluded to in the introductory paragraph.

Suppose that  is a sequence of independent, identically distributed random variables, and let  for 
. If there exist constants  and  for  such that  has a (non-degenerate) limiting

distribution as , then the limiting distribution is stable.

The following theorem completely characterizes stable distributions in terms of the characteristic function.

Suppose that  has a stable distribution. The characteristic function of  has the following form, for some , 
, , and 
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where  is the usual sign function, and where

1. The parameter  is the index, as before.
2. The parameter  is the skewness parameter.
3. The parameter  is the location parameter.
4. The parameter  is the scale parameter.

Thus, the family of stable distributions is a 4 parameter family. The index parameter  and and the skewness parameter  can be
considered shape parameters. When the location parameter  and the scale parameter , we get the standard form of the
stable distributions, with characteristic function

The characteristic function gives another proof that stable distributions are closed under convolution (corresponding to sums of
independent variables), if the index is fixed.

Suppose that  and  are independent random variables, and that  and  have the stable distribution with common
index , skewness parameter , location parameter , and scale parameter . Then 

 has the stable distribution with index , location parameter , scale parameter , and
skewness parameter

Proof

Let  denote the characteristic function of  for . Then  has characteristic function . The
result follows from using the form of the characteristic function above and some algebra.

Special Cases

Three special parametric families of distributions studied in this chapter are stable. In the proofs in this subsection, we use the
definition of stability and various important properties of the distributions. These properties, in turn, are verified in the sections
devoted to the distributions. We also give proofs based on the characteristic function, which allows us to identify the skewness
parameter.

The normal distribution is stable with index . There is no skewness parameter.

Proof

If  and  is a sequence of independent variables, each with the standard normal distribution, then 
 has the normal distribution with mean 0 and variance . But this is also the distribution of  where 

 has the standard normal distribution. Hence the standard normal distribution is strictly stable, with index . The normal
distribution with mean  and standard deviation  is the distribution of . From our basic properties
above, this distribution is stable with index  and centering parameters  for .

In terms of the characteristic function, note that if  then  so the skewness parameter  drops out
completely. The characteristic function in standard form  for , which is the characteristic function of the
normal distribution with mean 0 and variance 2.

Of course, the normal distribution has finite variance, so once we know that it is stable, it follows from the finite variance property
above that the index must be 2. Moreover, the characteristic function shows that the normal distribution is the only stable
distribution with index 2, and hence the only stable distribution with finite variance.
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Open the special distribution simulator and select the normal distribution. Vary the parameters and note the shape and location
of the probability density function. For various values of the parameters, run the simulation 1000 times and compare the
empirical density function to the probability density function.

The Cauchy distribution is stable with index  and skewness parameter .

Proof

If  and  is a sequence of independent variables, each with the standard Cauchy distribution, then 
 has the Cauchy distribution scale parameter . By definition this is the same as the distribution of 

where  has the standard Cauchy distribution. Hence the standard Cauchy distribution is strictly stable, with index . The
Cauchy distribution with location parameter  and scale parameter  is the distribution of . From our
basic properties above, this distribution is strictly stable with index .

When  and  the characteristic function in standard form is  for , which is the characteristic
function of the standard Cauchy distribution.

Open the special distribution simulator and select the Cauchy distribution. Vary the parameters and note the shape and location
of the probability density function. For various values of the parameters, run the simulation 1000 times and compare the
empirical density function to the probability density function.

The Lévy distribution is stable with index  and skewness parameter .

Proof

If  and  is a sequence of independent variables, each with the standard Lévy distribution, then 
 has the Lévy distribution scale parameter . By definition this is the same as the distribution of 

where  has the standard Lévy distribution. Hence the standard Lévy distribution is strictly stable, with index . The
Lévy distribution with location parameter  and scale parameter  is the distribution of . From our basic
properties above, this distribution is stable with index  and centering parameters  for .

When  note that . So the characteristic function in standard form with  and  is

which is the characteristic function of the standard Lévy distribution.

Open the special distribution simulator and select the Lévy distribution. Vary the parameters and note the shape and location of
the probability density function. For various values of the parameters, run the simulation 1000 times and compare the empirical
density function to the probability density function.

The normal, Cauchy, and Lévy distributions are the only stable distributions for which the probability density function is known in
closed form.

This page titled 5.3: Stable Distributions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

α = 1 β = 0

n ∈ N+ ( , , … , )Z1 Z2 Zn

+ +⋯ +Z1 Z2 Zn n nZ

Z α = 1
a ∈ R b ∈ (0, ∞) a+bZ

α = 1

α = 1 β = 0 χ(t) = exp(−|t|) t ∈ R

α = 1
2

β = 1

n ∈ N+ ( , , … , )Z1 Z2 Zn

+ +⋯ +Z1 Z2 Zn n2 Zn2

Z α = 1
2

a ∈ R b ∈ (0, ∞) a+bZ

α = 1
2

(n− )an2 n ∈ N+

α = 1
2

(t) = tan( ) = 1uα
π

4
α = 1

2
β = 1

χ(t) = exp(− [1 + i sgn(t)])|t|
1/2

(5.3.19)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10169?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/05%3A_Special_Distributions/5.03%3A_Stable_Distributions
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random

