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4.1: Definitions and Basic Properties
    

Expected value is one of the most important concepts in probability. The expected value of a real-valued random variable gives the center
of the distribution of the variable, in a special sense. Additionally, by computing expected values of various real transformations of a
general random variable, we con extract a number of interesting characteristics of the distribution of the variable, including measures of
spread, symmetry, and correlation. In a sense, expected value is a more general concept than probability itself.

Basic Concepts

Definitions

As usual, we start with a random experiment modeled by a probability space . So to review,  is the set of outcomes,  the
collection of events and  the probability measure on the sample space . In the following definitions, we assume that  is a random
variable for the experiment, taking values in .

If  has a discrete distribution with probability density function  (so that  is countable), then the expected value of  is defined as
follows (assuming that the sum is well defined):

The sum defining the expected value makes sense if either the sum over the positive  is finite or the sum over the negative  is
finite (or both). This ensures the that the entire sum exists (as an extended real number) and does not depend on the order of the terms. So as
we will see, it's possible for  to be a real number or  or  or to simply not exist. Of course, if  is finite the expected value
always exists as a real number.

If  has a continuous distribution with probability density function  (and so  is typically an interval or a union of disjoint intervals),
then the expected value of  is defined as follows (assuming that the integral is well defined):

The probability density functions in basic applied probability that describe continuous distributions are piecewise continuous. So the
integral above makes sense if the integral over positive  is finite or the integral over negative  is finite (or both). This ensures
that the entire integral exists (as an extended real number). So as in the discrete case, it's possible for  to exist as a real number or as 

 or as  or to not exist at all. As you might guess, the definition for a mixed distribution is a combination of the definitions for the
discrete and continuous cases.

If  has a mixed distribution, with partial discrete density  on  and partial continuous density  on , where  and  are disjoint, 
 is countable,  is typically an interval, and . The expected value of  is defined as follows (assuming that the

expression on the right is well defined):

For the expected value above to make sense, the sum must be well defined, as in the discrete case, the integral must be well defined, as in
the continuous case, and we must avoid the dreaded indeterminate form . In the next section on additional properties, we will see
that the various definitions given here can be unified into a single definition that works regardless of the type of distribution of . An even
more general definition is given in the advanced section on expected value as an integral.

Interpretation

The expected value of  is also called the mean of the distribution of  and is frequently denoted . The mean is the center of the
probability distribution of  in a special sense. Indeed, if we think of the distribution as a mass distribution (with total mass 1), then the
mean is the center of mass as defined in physics. The two pictures below show discrete and continuous probability density functions; in
each case the mean  is the center of mass, the balance point.
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Figure : The mean  as the center of mass of a discrete distribution.

Figure : The mean  as the center of mass of a continuous distribution.

Recall the other measures of the center of a distribution that we have studied:

A mode is any  that maximizes .
A median is any  that satisfies  and .

To understand expected value in a probabilistic way, suppose that we create a new, compound experiment by repeating the basic experiment
over and over again. This gives a sequence of independent random variables , each with the same distribution as . In
statistical terms, we are sampling from the distribution of . The average value, or sample mean, after  runs is

Note that  is a random variable in the compound experiment. The important fact is that the average value  converges to the expected
value  as . The precise statement of this is the law of large numbers, one of the fundamental theorems of probability. You will
see the law of large numbers at work in many of the simulation exercises given below.

Extensions

If  and , the moment of  about  of order  is defined to be

(assuming of course that this expected value exists).

The moments about 0 are simply referred to as moments (or sometimes raw moments). The moments about  are the central moments. The
second central moment is particularly important, and is studied in detail in the section on variance. In some cases, if we know all of the
moments of , we can determine the entire distribution of . This idea is explored in the section on generating functions.

The expected value of a random variable  is based, of course, on the probability measure  for the experiment. This probability measure
could be a conditional probability measure, conditioned on a given event  for the experiment (with ). The usual notation is

, and this expected value is computed by the definitions given above, except that the conditional probability density function 
 replaces the ordinary probability density function . It is very important to realize that, except for notation, no new concepts

are involved. All results that we obtain for expected value in general have analogues for these conditional expected values. On the other
hand, we will study a more general notion of conditional expected value in a later section.

Basic Properties
The purpose of this subsection is to study some of the essential properties of expected value. Unless otherwise noted, we will assume that
the indicated expected values exist, and that the various sets and functions that we use are measurable. We start with two simple but still
essential results.
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Simple Variables

First, recall that a constant  can be thought of as a random variable (on any probability space) that takes only the value  with
probability 1. The corresponding distribution is sometimes called point mass at .

If  is a constant random variable, then .

Proof

As a random variable,  has a discrete distribution, so .

Next recall that an indicator variable is a random variable that takes only the values 0 and 1.

If  is an indicator variable then .

Proof

 is discrete so by definition, .

In particular, if  is the indicator variable of an event , then , so in a sense, expected value subsumes probability. For a
book that takes expected value, rather than probability, as the fundamental starting concept, see the book Probability via Expectation, by
Peter Whittle.

Change of Variables Theorem

The expected value of a real-valued random variable gives the center of the distribution of the variable. This idea is much more powerful
than might first appear. By finding expected values of various functions of a general random variable, we can measure many interesting
features of its distribution.

Thus, suppose that  is a random variable taking values in a general set , and suppose that  is a function from  into . Then  is a
real-valued random variable, and so it makes sense to compute  (assuming as usual that this expected value exists). However, to
compute this expected value from the definition would require that we know the probability density function of the transformed variable 

 (a difficult problem, in general). Fortunately, there is a much better way, given by the change of variables theorem for expected value.
This theorem is sometimes referred to as the law of the unconscious statistician, presumably because it is so basic and natural that it is often
used without the realization that it is a theorem, and not a definition.

If  has a discrete distribution on a countable set  with probability density function . then

Proof

Figure : The change of variables theorem when  has a discrete distribution.

The next result is the change of variables theorem when  has a continuous distribution. We will prove the continuous version in stages,
first when  has discrete range below and then in the next section in full generality. Even though the complete proof is delayed, however,
we will use the change of variables theorem in the proofs of many of the other properties of expected value.

Suppose that  has a continuous distribution on  with probability density function , and that . Then

Proof when  has discrete range

Figure : The change of variables theorem when  has a continuous distribution and  has countable range.
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The results below gives basic properties of expected value. These properties are true in general, but we will restrict the proofs primarily to
the continuous case. The proofs for the discrete case are analogous, with sums replacing integrals. The change of variables theorem is the
main tool we will need. In these theorems  and  are real-valued random variables for an experiment (that is, defined on an underlying
probability space) and  is a constant. As usual, we assume that the indicated expected values exist. Be sure to try the proofs yourself before
reading the ones in the text.

Linearity

Our first property is the additive property.

Proof

We apply the change of variables theorem with the function . Suppose that  has a continuous distribution with
PDF , and that  takes values in  and  takes values in . Recall that  has PDF  given by  for 

 and  has PDF  given by  for . Thus

Writing the double integrals as iterated integrals is a special case of Fubini's theorem. The proof in the discrete case is the same, with
sums replacing integrals.

Our next property is the scaling property.

Proof

We apply the change of variables formula with the function . Suppose that  has a continuous distribution on  with
PDF . Then

Again, the proof in the discrete case is the same, with sums replacing integrals.

Here is the linearity of expected value in full generality. It's a simple corollary of the previous two results.

Suppose that  is a sequence of real-valued random variables defined on the underlying probability space and that 
 is a sequence of constants. Then

Thus, expected value is a linear operation on the collection of real-valued random variables for the experiment. The linearity of expected
value is so basic that it is important to understand this property on an intuitive level. Indeed, it is implied by the interpretation of expected
value given in the law of large numbers.

Suppose that  is a sequence of real-valued random variables with common mean .

1. Let , the sum of the variables. Then .
2. Let , the average of the variables. Then .

Proof
1. By the additive property,

2. Note that . Hence from the scaling property and part (a), .
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If the random variables in the previous result are also independent and identically distributed, then in statistical terms, the sequence is a
random sample of size  from the common distribution, and  is the sample mean.

In several important cases, a random variable from a special distribution can be decomposed into a sum of simpler random variables, and
then part (a) of the last theorem can be used to compute the expected value.

Inequalities

The following exercises give some basic inequalities for expected value. The first, known as the positive property is the most obvious, but
is also the main tool for proving the others.

Suppose that . Then

1. 
2. If  then .

Proof
1. This result follows from the definition, since we can take the set of values  of  to be a subset of .
2. Suppose that  (in addition to ). By the continuity theorem for increasing events, there exists 

such that . Therefore  (with probability 1). By part (a), linearity, and Theorem 2, 
 so .

Next is the increasing property, perhaps the most important property of expected value, after linearity.

Suppose that . Then

1. 
2. If  then .

Proof
1. The assumption is equivalent to . Thus  by part (a) of the positive property. But then 

 by the linearity of expected value.
2. Similarly, this result follows from part (b) of the positive property.

Absolute value inequalities:

1. 
2. If  and  then .

Proof
1. Note that  (with probability 1) so by part (a) of the increasing property, . By

linearity,  which implies .
2. If  then , and if  then . Hence by part (b) of the increasing

property,  and therefore .

Only in Lake Woebegone are all of the children above average:

If  then

1. 
2. 

Proof
1. We prove the contrapositive. Thus suppose that  so that . If  then by the

increasing property we have , a contradiction. Thus .
2. Similarly, if  then .

Thus, if  is not a constant (with probability 1), then  must take values greater than its mean with positive probability and values less
than its mean with positive probability.

Symmetry

Again, suppose that  is a random variable taking values in . The distribution of  is symmetric about  if the distribution of 
is the same as the distribution of .

n M
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Suppose that the distribution of  is symmetric about . If  exists, then .

Proof

By assumption, the distribution of  is the same as the distribution of . Since  exists we have 
 so by linearity . Equivalently .

The previous result applies if  has a continuous distribution on  with a probability density  that is symmetric about ; that is, 
 for .

Independence

If  and  are independent real-valued random variables then .

Proof

Suppose that  has a continuous distribution on  with PDF  and that  has a continuous distribution on  with PDF .
Then  has PDF  on . We apply the change of variables theorem with the function .

The proof in the discrete case is similar with sums replacing integrals.

It follows from the last result that independent random variables are uncorrelated (a concept that we will study in a later section). Moreover,
this result is more powerful than might first appear. Suppose that  and  are independent random variables taking values in general
spaces  and  respectively, and that  and . Then  and  are independent, real-valued random variables and
hence

Examples and Applications

As always, be sure to try the proofs and computations yourself before reading the proof and answers in the text.

Uniform Distributions

Discrete uniform distributions are widely used in combinatorial probability, and model a point chosen at random from a finite set.

Suppose that  has the discrete uniform distribution on a finite set .

1.  is the arithmetic average of the numbers in .
2. If the points in  are evenly spaced with endpoints , then , the average of the endpoints.

Proof
1. Let , the number of points in . Then  has PDF  for  so

2. Suppose that  and let , the right endpoint. As in (a),  has  points so
using (a) and the formula for the sum of the first  positive integers, we have

The previous results are easy to see if we think of  as the center of mass, since the discrete uniform distribution corresponds to a finite
set of points with equal mass.

Open the special distribution simulator, and select the discrete uniform distribution. This is the uniform distribution on  points,
starting at , evenly spaced at distance . Vary the parameters and note the location of the mean in relation to the probability density
function. For selected values of the parameters, run the simulation 1000 times and compare the empirical mean to the distribution
mean.

X a ∈ R E(X) E(X) = a

X−a a−X E(X)
E(a−X) =E(X−a) a−E(X) =E(X) −a 2E(X) = 2a

X R f a

f(a+x) = f(a−x) x ∈ R

X Y E(XY ) =E(X)E(Y )

X S ⊆R g Y T ⊆R h

(X,Y ) f(x, y) = g(x)h(y) S×T r(x, y) = xy

E(XY ) = xyf(x, y)d(x, y) = xyg(x)h(y)d(x, y) = xg(x)dx yh(y)dy =E(X)E(Y )∫
S×T

∫
S×T

∫
S

∫
T

(4.1.13)
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E [u(X)v(Y )] =E [u(X)]E [v(Y )] (4.1.14)
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Next, recall that the continuous uniform distribution on a bounded interval corresponds to selecting a point at random from the interval.
Continuous uniform distributions arise in geometric probability and a variety of other applied problems.

Suppose that  has the continuous uniform distribution on an interval , where  and .

1. , the midpoint of the interval.
2.  for .

Proof

1. Recall that  has PDF . Hence

2. By the change of variables formula,

Part (a) is easy to see if we think of the mean as the center of mass, since the uniform distribution corresponds to a uniform distribution of
mass on the interval.

Open the special distribution simulator, and select the continuous uniform distribution. This is the uniform distribution the interval 
. Vary the parameters and note the location of the mean in relation to the probability density function. For selected values of

the parameters, run the simulation 1000 times and compare the empirical mean to the distribution mean.

Next, the average value of a function on an interval, as defined in calculus, has a nice interpretation in terms of the uniform distribution.

Suppose that  is uniformly distributed on the interval , and that  is an integrable function from  into . Then  is
the average value of  on :

Proof

This result follows immediately from the change of variables theorem, since  has PDF  for .

Find the average value of the following functions on the given intervals:

1.  on 
2.  on 
3.  on .

Answer
1. 
2. 
3. 

The next exercise illustrates the value of the change of variables theorem in computing expected values.

Suppose that  is uniformly distributed on .

1. Give the probability density function of .
2. Find the probability density function of .
3. Find  using the probability density function in (b).
4. Find  using the change of variables theorem.

Answer
1.  for 

2. 

X [a, b] a, b ∈ R a < b

E(X) = a+b

2

E ( ) = ( + b+⋯ +a + )Xn 1
n+1

an an−1 bn−1 bn n ∈ N

X f(x) = 1
b−a

E(X) = x dx = =∫
b

a

1

b−a

1

b−a

−b2 a2

2

a+b

2
(4.1.17)

E ( ) = dx = = ( + b+⋯ a + )Xn ∫
b

a

1

b−a
xn

−bn+1 an+1

(n+1)‘(b−a)

1

n+1
an an−1 bn−1 bn (4.1.18)

[a, a+w]

X [a, b] g [a, b] R E [g(X)]
g [a, b]

E [g(X)] = g(x)dx
1

b−a
∫

b

a

(4.1.19)

X f(x) = 1/(b−a) a ≤ x ≤ b

f(x) = x [2, 4]
g(x) = x2 [0, 1]
h(x) = sin(x) [0, π]

3
1
3
2
π

X [−1, 3]

X

X2

E ( )X2

E ( )X2

f(x) = 1
4

−1 ≤ x ≤ 3

g(y) ={
,1

4
y−1/2

,1
8
y−1/2

0 < y < 1

1 < y < 9
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3. 

4. 

The discrete uniform distribution and the continuous uniform distribution are studied in more detail in the chapter on Special Distributions.

Dice

Recall that a standard die is a six-sided die. A fair die is one in which the faces are equally likely. An ace-six flat die is a standard die in
which faces 1 and 6 have probability  each, and faces 2, 3, 4, and 5 have probability  each.

Two standard, fair dice are thrown, and the scores  recorded. Find the expected value of each of the following variables.

1. , the sum of the scores.
2. , the average of the scores.
3. , the product of the scores.
4. , the minimum score
5. , the maximum score.

Answer
1. 
2. 
3. 
4. 
5. 

In the dice experiment, select two fair die. Note the shape of the probability density function and the location of the mean for the sum,
minimum, and maximum variables. Run the experiment 1000 times and compare the sample mean and the distribution mean for each
of these variables.

Two standard, ace-six flat dice are thrown, and the scores  recorded. Find the expected value of each of the following
variables.

1. , the sum of the scores.
2. , the average of the scores.
3. , the product of the scores.
4. , the minimum score
5. , the maximum score.

Answer
1. 
2. 
3. 
4. 
5. 

In the dice experiment, select two ace-six flat die. Note the shape of the probability density function and the location of the mean for
the sum, minimum, and maximum variables. Run the experiment 1000 times and compare the sample mean and the distribution mean
for each of these variables.

Bernoulli Trials

Recall that a Bernoulli trials process is a sequence  of independent, identically distributed indicator random variables. In
the usual language of reliability,  denotes the outcome of trial , where 1 denotes success and 0 denotes failure. The probability of
success  is the basic parameter of the process. The process is named for Jacob Bernoulli. A separate chapter on the
Bernoulli Trials explores this process in detail.

For , the number of successes in the first  trials is . Recall that this random variable has the binomial distribution
with parameters  and , and has probability density function  given by

yg(y)dy =∫ 9
0

7
3

f(x)dx =∫ 3
−1

x2 7
3

1
4

1
8

( , )X1 X2

Y = +X1 X2

M = ( + )1
2
X1 X2

Z = X1X2

U = min{ , }X1 X2

V = max{ , }X1 X2

7
7
2
49
4
101
36

19
4

( , )X1 X2

Y = +X1 X2

M = ( + )1
2
X1 X2

Z = X1X2

U = min{ , }X1 X2

V = max{ , }X1 X2

7
7
2
49
4

77
32
147
32

X = ( , , …)X1 X2

Xi i

p = P( = 1) ∈ [0, 1]Xi

n ∈ N+ n Y =∑n
i=1 Xi

n p f
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If  has the binomial distribution with parameters  and  then 

Proof from the definition

The critical tools that we need involve binomial coefficients: the identity  for , and the binomial theorem:

Proof using the additive property

Since , the result follows immediately from the expected value of an indicator variable and the additive property, since 
 for each .

Note the superiority of the second proof to the first. The result also makes intuitive sense: in  trials with success probability , we expect 
 successes.

In the binomial coin experiment, vary  and  and note the shape of the probability density function and the location of the mean. For
selected values of  and , run the experiment 1000 times and compare the sample mean to the distribution mean.

Suppose that , and let  denote the trial number of the first success. This random variable has the geometric distribution on 
with parameter , and has probability density function  given by

If  has the geometric distribution on  with parameter  then .

Proof

The key is the formula for the deriviative of a geometric series:

Again, the result makes intuitive sense. Since  is the probability of success, we expect a success to occur after  trials.

In the negative binomial experiment, select  to get the geometric distribution. Vary  and note the shape of the probability density
function and the location of the mean. For selected values of , run the experiment 1000 times and compare the sample mean to the
distribution mean.

The Hypergeometric Distribution

Suppose that a population consists of  objects;  of the objects are type 1 and  are type 0. A sample of  objects is chosen at
random, without replacement. The parameters  with  and . Let  denote the type of the th object selected.
Recall that  is a sequence of identically distributed (but not independent) indicator random variable with 

 for each .

Let  denote the number of type 1 objects in the sample, so that . Recall that  has the hypergeometric distribution, which
has probability density function  given by

If  has the hypergeometric distribution with parameters , , and  then .

Proof from the definition

Using the hypergeometric PDF,

f(y) =( ) (1 −p , y ∈ {0, 1, … ,n}
n

y
py )n−y (4.1.20)

Y n p E(Y ) = np

y( ) = n( )n

y

n−1
y−1

y, n ∈ N+

E(Y ) = y( ) (1 −p = n( ) (1 −p∑
y=0

n n

y
py )n−y ∑

y=1

n n−1

y−1
pn )n−y

= np ( ) (1 −p = np[p+(1 −p) = np∑
y=1

n−1
n−1

y−1
py−1 )(n−1)−(y−1) ]n−1

(4.1.21)

(4.1.22)

Y =∑n

i=1 Xi

E( ) = pXi i ∈ N+

n p

np

n p

n p

p ∈ (0, 1] N N+

p g

g(n) = p(1 −p , n ∈)n−1
N+ (4.1.23)

N N+ p ∈ (0, 1] E(N) = 1/p

E(N) = np(1 −p = −p (1 −p = −p = p =∑
n=1

∞

)n−1 d

dp
∑
n=0

∞

)n
d

dp

1

p

1

p2

1

p
(4.1.24)

p 1/p

k = 1 p

p

m r m−r n

m, r, n ∈ N r ≤ m n ≤ m Xi i

X = ( , , … , )X1 X2 Xn

P( = 1) = r/mXi i ∈ {1, 2, … ,n}

Y Y =∑n
i=1 Xi Y

f

f(y) = , y ∈ {0, 1, … ,n}
( )( )r

y

m−r

n−y

( )m

n

(4.1.25)

Y m n r E(Y ) = n r
m
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Note that the  term is 0. For the other terms, we can use the identity  to get

But substituting  and using another fundamental identity,

So substituting and doing a bit of algebra gives .

Proof using the additive property

A much better proof uses the additive property and the representation of  as a sum of indicator variables. The result follows
immediately since  for each .

In the ball and urn experiment, vary , , and  and note the shape of the probability density function and the location of the mean.
For selected values of the parameters, run the experiment 1000 times and compare the sample mean to the distribution mean.

Note that if we select the objects with replacement, then  would be a sequence of Bernoulli trials, and hence  would have the binomial
distribution with parameters  and . Thus, the mean would still be .

The Poisson Distribution

Recall that the Poisson distribution has probability density function  given by

where  is a parameter. The Poisson distribution is named after Simeon Poisson and is widely used to model the number of
“random points” in a region of time or space; the parameter  is proportional to the size of the region. The Poisson distribution is studied in
detail in the chapter on the Poisson Process.

If  has the Poisson distribution with parameter  then . Thus, the parameter of the Poisson distribution is the mean of the
distribution.

Proof

The proof depends on the standard series for the exponential function

In the Poisson experiment, the parameter is . Vary the parameter and note the shape of the probability density function and the
location of the mean. For various values of the parameter, run the experiment 1000 times and compare the sample mean to the
distribution mean.

The Exponential Distribution

Recall that the exponential distribution is a continuous distribution with probability density function  given by

where  is the rate parameter. This distribution is widely used to model failure times and other “arrival times”; in particular, the
distribution governs the time between arrivals in the Poisson model. The exponential distribution is studied in detail in the chapter on the
Poisson Process.

Suppose that  has the exponential distribution with rate parameter . Then .

Proof

E(Y ) = y∑
y=0

n ( )( )r

y

m−r

n−y

( )m

n

(4.1.26)

y = 0 y( ) = r( )r
y

r−1
y−1

E(Y ) = ( )( )
r

( )m
n

∑
y=1

n
r−1

y−1

m−r

n−y
(4.1.27)

k = y−1

( )( ) = ( )( ) =( )∑
y=1

n
r−1

y−1

m−r

n−y
∑
k=0

n−1
r−1

k

m−r

n−1 −k

m−1

n−1
(4.1.28)

E(Y ) = n r
m

Y

E( ) = r/mXi i ∈ {1, 2, … n}

n r m

X Y

n p = r
m

E(Y ) = n r
m

f

f(n) = , n ∈ Ne−a a
n

n!
(4.1.29)

a ∈ (0, ∞)
a

N a E(N) = a

E(N) = n = = a = a = a.∑
n=0

∞

e−a a
n

n!
e−a∑

n=1

∞ an

(n−1)!
e−a ∑

n=1

∞ an−1

(n−1)!
e−a ea (4.1.30)

a = rt

f

f(t) = r , t ∈ [0, ∞)e−rt (4.1.31)

r ∈ (0, ∞)

T r E(T ) = 1/r
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This result follows from the definition and an integration by parts:

Recall that the mode of  is 0 and the median of  is . Note how these measures of center are ordered: 

In the gamma experiment, set  to get the exponential distribution. This app simulates the first arrival in a Poisson process. Vary 
with the scroll bar and note the position of the mean relative to the graph of the probability density function. For selected values of ,
run the experiment 1000 times and compare the sample mean to the distribution mean.

Suppose again that  has the exponential distribution with rate parameter  and suppose that . Find .

Answer

The Gamma Distribution

Recall that the gamma distribution is a continuous distribution with probability density function  given by

where  is the shape parameter and  is the rate parameter. This distribution is widely used to model failure times and
other “arrival times”, and in particular, models the th arrival in the Poisson process. Thus it follows that if  is a
sequence of independent random variables, each having the exponential distribution with rate parameter , then  has the
gamma distribution with shape parameter  and rate parameter . The gamma distribution is studied in more generality, with non-integer
shape parameters, in the chapter on the Special Distributions.

Suppose that  has the gamma distribution with shape parameter  and rate parameter . Then .

Proof from the definition

The proof is by induction on , so let  denote the mean when the shape parameter is . When , we have the exponential
distribution with rate parameter , so we know  by our result above. Suppose that  for a given . Then

Integrate by parts with ,  so that  and . Then

But the last integral is , so by the induction hypothesis, .

Proof using the additive property

The result follows immediately from the additive property and the fact that  can be represented in the form  where 
has the exponential distribution with parameter  for each .

Note again how much easier and more intuitive the second proof is than the first.

Open the gamma experiment, which simulates the arrival times in the Poisson process. Vary the parameters and note the position of the
mean relative to the graph of the probability density function. For selected parameter values, run the experiment 1000 times and
compare the sample mean to the distribution mean.

Beta Distributions

The distributions in this subsection belong to the family of beta distributions, which are widely used to model random proportions and
probabilities. The beta distribution is studied in detail in the chapter on Special Distributions.

Suppose that  has probability density function  given by  for .

1. Find the mean of .

E(T ) = tr dt = −t + dt = 0 − =∫
∞

0
e−rt e−rt ∣

∣
∣
∞

0
∫

∞

0
e−rt 1

r
e−rt ∣

∣
∣
∞

0

1

r
(4.1.32)

T T ln2/r 0 < ln2/r < 1/r

n = 1 r

r

T r t > 0 E(T ∣ T > t)

t+ 1
r

f

f(t) = , t ∈ [0, ∞)rn
tn−1

(n−1)!
e−rt (4.1.33)

n ∈ N+ r ∈ (0, ∞)
n ( , , … , )X1 X2 Xn

r T =∑n
i=1 Xi

n r

T n r E(T ) = n/r

n μn n ∈ N+ n = 1
r = 1/rμ1 = r/nμn n ∈ N+

= t dt = dtμn+1 ∫
∞

0
rn+1 t

n

n!
e−rt ∫

∞

0
rn+1 t

n+1

n!
e−rt (4.1.34)

u = tn+1

n!
dv= dtrn+1e−rt du = (n+1) dttn

n!
v= −rne−rt

= (n+1) dt = t dtμn+1 ∫
∞

0
rn

tn

n!
e−rt n+1

n
∫

∞

0
rn

tn−1

(n−1)!
(4.1.35)

μn = =μn+1
n+1
n

n
r

n+1
r

T T =∑n
i=1 Xi Xi

r i ∈ {1, 2, … ,n}

X f f(x) = 3x2 x ∈ [0, 1]

X
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2. Find the mode of .
3. Find the median of .
4. Sketch the graph of  and show the location of the mean, median, and mode on the -axis.

Answer

1. 
2. 

3. 

In the special distribution simulator, select the beta distribution and set  and  to get the distribution in the last exercise. Run
the experiment 1000 times and compare the sample mean to the distribution mean.

Suppose that a sphere has a random radius  with probability density function  given by  for . Find the
expected value of each of the following:

1. The circumference 
2. The surface area 
3. The volume 

Answer

1. 
2. 
3. 

Suppose that  has probability density function  given by  for .

1. Find the mean of .
2. Find median of .
3. Note that  is unbounded, so  does not have a mode.
4. Sketch the graph of  and show the location of the mean and median on the -axis.

Answer
1. 
2. 

The particular beta distribution in the last exercise is also known as the (standard) arcsine distribution. It governs the last time that the
Brownian motion process hits 0 during the time interval . The arcsine distribution is studied in more generality in the chapter on
Special Distributions.

Open the Brownian motion experiment and select the last zero. Run the simulation 1000 times and compare the sample mean to the
distribution mean.

Suppose that the grades on a test are described by the random variable  where  has the beta distribution with probability
density function  given by  for . The grades are generally low, so the teacher decides to “curve” the
grades using the transformation . Find the expected value of each of the following variables

1. 
2. 
3. 

Answer

1. 
2. 
3. 

The Pareto Distribution

Recall that the Pareto distribution is a continuous distribution with probability density function  given by

X

X

f x

3
4

1

( )1
2

1/3

a = 3 b = 1

R f f(r) = 12 (1 −r)r2 r ∈ [0, 1]

C = 2πR
A = 4πR2

V = π4
3

R3

π6
5

π8
5

π8
21

X f f(x) = 1

π x(1−x)√
x ∈ (0, 1)

X

X

f X

f x

1
2
1
2

[0, 1]

Y = 100X X

f f(x) = 12x(1 −x)2 x ∈ [0, 1]

Z = 10 = 100Y
−−

√ X
−−

√

X

Y

Z

E(X) = 2
5

E(Y ) = 40

E(Z) = ≈ 60.951280
21

f
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where  is a parameter. The Pareto distribution is named for Vilfredo Pareto. It is a heavy-tailed distribution that is widely used to
model certain financial variables. The Pareto distribution is studied in detail in the chapter on Special Distributions.

Suppose that  has the Pareto distribution with shape parameter . Then

1.  if 
2.  if 

Proof
1. If ,

since the exponent . If , .

2. If  then

The previous exercise gives us our first example of a distribution whose mean is infinite.

In the special distribution simulator, select the Pareto distribution. Note the shape of the probability density function and the location of
the mean. For the following values of the shape parameter , run the experiment 1000 times and note the behavior of the empirical
mean.

1. 
2. 
3. .

The Cauchy Distribution

Recall that the (standard) Cauchy distribution has probability density function  given by

This distribution is named for Augustin Cauchy. The Cauchy distributions is studied in detail in the chapter on Special Distributions.

If  has the Cauchy distribution then  does not exist.

Proof

By definition,

which evaluates to the meaningless expression .

Note that the graph of  is symmetric about 0 and is unimodal. Thus, the mode and median of  are both 0. By the symmetry result, if 
had a mean, the mean would be 0 also, but alas the mean does not exist. Moreover, the non-existence of the mean is not just a pedantic
technicality. If we think of the probability distribution as a mass distribution, then the moment to the right of  is 
and the moment to the left of  is  for every . The center of mass simply does not exist.
Probabilisitically, the law of large numbers fails, as you can see in the following simulation exercise:

In the Cauchy experiment (with the default parameter values), a light sources is 1 unit from position 0 on an infinite straight wall. The
angle that the light makes with the perpendicular is uniformly distributed on the interval , so that the position of the light beam
on the wall has the Cauchy distribution. Run the simulation 1000 times and note the behavior of the empirical mean.

f(x) = , x ∈ [1, ∞)
a

xa+1
(4.1.36)

a ∈ (0, ∞)

X a

E(X) = ∞ 0 < a ≤ 1
E(X) = a

a−1
a > 1

0 < a < 1

E(X) = x dx = dx = = ∞∫
∞

1

a

xa+1
∫

∞

1

a

xa
a

−a+1
x−a+1 ∣

∣
∣
∞

1
(4.1.37)

−a+1 > 0 a = 1 E(X) = x dx = dx = lnx = ∞∫ ∞
1

1
x2

∫ ∞
1

1
x

∣
∣
∣
∞

1
a > 1

E(X) = x dx = dx = =∫
∞

1

a

xa+1
∫

∞

1

a

xa
a

−a+1
x−a+1 ∣

∣
∣
∞

1

a

a−1
(4.1.38)

a

a = 1
a = 2
a = 3

f

f(x) = , x ∈ R
1

π (1 + )x2
(4.1.39)

X E(X)

E(X) = x dx = ln(1 + )∫
∞

−∞

1

π(1 + )x2

1

2π
x2 ∣

∣
∣
∞

−∞
(4.1.40)

∞ −∞

f X X

a (x−a)f(x)dx = ∞∫ ∞
a

a (x−a)f(x)dx = −∞∫ a

−∞
a ∈ R

( , )−π

2
π

2
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The Normal Distribution

Recall that the standard normal distribution is a continuous distribution with density function  given by

Normal distributions are widely used to model physical measurements subject to small, random errors and are studied in detail in the
chapter on Special Distributions.

If  has the standard normal distribution then .

Proof

Using a simple change of variables, we have

The standard normal distribution is unimodal and symmetric about . Thus, the median, mean, and mode all agree. More generally, for 
 and , recall that  has the normal distribution with location parameter  and scale parameter . 

has probability density function  given by

The location parameter is the mean of the distribution:

If  has the normal distribution with location parameter  and scale parameter , then 

Proof

Of course we could use the definition, but a proof using linearity and the representation in terms of the standard normal distribution is
trivial: .

In the special distribution simulator, select the normal distribution. Vary the parameters and note the location of the mean. For selected
parameter values, run the simulation 1000 times and compare the sample mean to the distribution mean.

Additional Exercises

Suppose that  has probability density function  given by  for . Find the following
expected values:

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

Suppose that  has a discrete distribution with probability density function  given by  for . Find
each of the following:

1. The median of .
2. The mode of 
3. .
4. 
5. .
6. .

ϕ

ϕ(z) = , z ∈ R
1

2π
−−

√
e− 1

2
z2

(4.1.41)

Z E(X) = 0

E(Z) = z dz = − = 0 −0∫
∞

−∞

1

2π
−−

√
e

− 1
2
z2 1

2π
−−

√
e

− 1
2
z2 ∣

∣
∣
∞

−∞
(4.1.42)

0
μ ∈ (−∞, ∞) σ ∈ (0, ∞) X = μ+σZ μ σ X

f

f(x) = exp[− ], x ∈ R
1

σ2π
−−

√

1

2
( )
x−μ

σ

2

(4.1.43)

X μ ∈ R σ ∈ (0, ∞) E(X) = μ

E(X) = μ+σE(Z) = μ

(X,Y ) f f(x, y) = x+y (x, y) ∈ [0, 1] ×[0, 1]

E(X)
E ( Y )X2

E ( + )X2 Y 2

E(XY ∣ Y > X)

7
12
17
72
5
6
1
3

N f f(n) = (5 −n)1
50
n2 n ∈ {1, 2, 3, 4}

N

N

E(N)
E ( )N 2

E(1/N)
E (1/ )N 2
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Answer
1. 3
2. 3
3. 
4. 
5. 
6. 

Suppose that  and  are real-valued random variables with  and . Find .

Answer

0

Suppose that  and  are real-valued, independent random variables, and that  and . Find 
.

Answer

33

Suppose that there are 5 duck hunters, each a perfect shot. A flock of 10 ducks fly over, and each hunter selects one duck at random and
shoots. Find the expected number of ducks killed.

Solution

Number the ducks from 1 to 10. For , let  be the indicator variable that takes the value 1 if duck  is killed and 0

otherwise. Duck  is killed if at least one of the hunters selects her, so . The number of ducks

killed is  so 

For a more complete analysis of the duck hunter problem, see The Number of Distinct Sample Values in the chapter on Finite Sampling
Models.

Consider the following game: An urn initially contains one red and one green ball. A ball is selected at random, and if the ball is green,
the game is over. If the ball is red, the ball is returned to the urn, another red ball is added, and the game continues. At each stage, a ball
is selected at random, and if the ball is green, the game is over. If the ball is red, the ball is returned to the urn, another red ball is added,
and the game continues. Let  denote the length of the game (that is, the number of selections required to obtain a green ball). Find 

.

Solution

The probability density function  of  was found in the section on discrete distributions:  for . The expected

length of the game is infinite:
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X Y E(X) = 5 E(Y ) = −2 E(3X+4Y −7)

X Y E(X) = 5 E(Y ) = −2
E [(3X−4)(2Y +7)]

k ∈ {1, 2, … , 10} Xk k

k E( ) = P( = 1) = 1 −Xk Xk ( )9
10

5

N =∑10
k=1 Xk E(N) = 10 [1 − ] = 4.095( )9

10

5

X

E(X)

f X f(x) = 1
x(x+1)

x ∈ N+

E(X) = x = = ∞∑
x=1

∞ 1

x(x+1)
∑
x=1

∞ 1

x+1
(4.1.44)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10156?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/04%3A_Expected_Value/4.01%3A_Definitions_and_Basic_Properties
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random

