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6.4: The Central Limit Theorem
         

The central limit theorem and the law of large numbers are the two fundamental theorems of probability. Roughly, the central limit
theorem states that the distribution of the sum (or average) of a large number of independent, identically distributed variables will
be approximately normal, regardless of the underlying distribution. The importance of the central limit theorem is hard to overstate;
indeed it is the reason that many statistical procedures work.

Partial Sum Processes

Definitions

Suppose that  is a sequence of independent, identically distributed, real-valued random variables with common
probability density function , mean , and variance . We assume that , so that in particular, the random variables
really are random and not constants. Let

Note that by convention, , since the sum is over an empty index set. The random process  is called the
partial sum process associated with . Special types of partial sum processes have been studied in many places in this text; in
particular see

the binomial distribution in the setting of Bernoulli trials
the negative binomial distribution in the setting of Bernoulli trials
the gamma distribution in the Poisson process
the the arrival times in a general renewal process

Recall that in statistical terms, the sequence  corresponds to sampling from the underlying distribution. In particular, 
 is a random sample of size  from the distribution, and the corresponding sample mean is

By the law of large numbers,  as  with probability 1.

Stationary, Independent Increments

The partial sum process corresponding to a sequence of independent, identically distributed variables has two important properties,
and these properties essentially characterize such processes.

If  then  has the same distribution as . Thus the process  has stationary increments.

Proof

Note that  and is the sum of  independent variables, each with the common distribution. Of
course,  is also the sum of  independent variables, each with the common distribution.

Note however that  and  are very different random variables; the theorem simply states that they have the same
distribution.

If  then  is a sequence of independent random variables. Thus the process
 has independent increments.

Proof

The terms in the sequence of increments  are sums over disjoint collections of terms in the
sequence . Since the sequence  is independent, so is the sequence of increments.

Conversely, suppose that  is a random process with stationary, independent increments. Define 
 for . Then  is a sequence of independent, identically distributed variables and  is
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the partial sum process associated with .

Thus, partial sum processes are the only discrete-time random processes that have stationary, independent increments. An
interesting, and much harder problem, is to characterize the continuous-time processes that have stationary independent increments.
The Poisson counting process has stationary independent increments, as does the Brownian motion process.

Moments

If  then

1. 
2. 

Proof

The results follow from basic properties of expected value and variance. Expected value is a linear operation so 
. By independence, .

If  and  with  then

1. 

2. 

3. 

Proof
1. Note that . This follows from basic properties of covariance, and Theorem 1 and Theorem 2:

2. This result follows from part (a) and Theorem 4

3. This result also follows from part (a) and Theorem 4: 

If  has moment generating function  then  has moment generating function .

Proof

This follows from a basic property of generating functions: the generating function of a sum of independent variables is the
product of the generating functions of the terms.

Distributions

Suppose that  has either a discrete distribution or a continuous distribution with probability density function . Then the
probability density function of  is , the convolution power of  of order .

Proof

This follows from a basic property of PDFs: the pdf of a sum of independent variables is the convolution of the PDFs of the
terms.

More generally, we can use the stationary and independence properties to find the joint distributions of the partial sum process:

If  then  has joint probability density function

Proof

This follows from the multivariate change of variables theorem.

U
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The Central Limit Theorem
First, let's make the central limit theorem more precise. From Theorem 4, we cannot expect  itself to have a limiting distribution.
Note that  as  since , and  as  if  while  as  if .
Similarly, we know that  as  with probability 1, so the limiting distribution of the sample mean is degenerate.
Thus, to obtain a limiting distribution of  or  that is not degenerate, we need to consider, not these variables themeselves, but
rather the common standard score. Thus, let

 has mean 0 and variance 1.

1. 
2. 

Proof

These results follow from basic properties of expected value and variance, and are true for the standard score associated with
any random variable. Recall also that the standard score of a variable is invariant under linear transformations with positive
slope. The fact that the standard score of  and the standard score of  are the same is a special case of this.

The precise statement of the central limit theorem is that the distribution of the standard score  converges to the standard normal
distribution as . Recall that the standard normal distribution has probability density function

and is studied in more detail in the chapter on special distributions. A special case of the central limit theorem (to Bernoulli trials),
dates to Abraham De Moivre. The term central limit theorem was coined by George Pólya in 1920. By definition of convergence in
distribution, the central limit theorem states that  as  for each , where  is the distribution function
of  and  is the standard normal distribution function:

An equivalent statment of the central limit theorm involves convergence of the corresponding characteristic functions. This is the
version that we will give and prove, but first we need a generalization of a famous limit from calculus.

Suppose that  is a sequence of real numbers and that  as . Then

Now let  denote the characteristic function of the standard score of the sample variable , and let  denote the characteristic
function of the standard score :

Recall that  is the characteristic function of the standard normal distribution. We can now give a proof.

The central limit theorem. The distribution of  converges to the standard normal distribution as . That is, 
 as  for each .

Proof

Note that , , . Next
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From properties of characteristic functions,  for . By Taylor's theorem (named after Brook Taylor),

But  and hence  as . Finally,

Normal Approximations
The central limit theorem implies that if the sample size  is “large” then the distribution of the partial sum  is approximately
normal with mean  and variance . Equivalently the sample mean  is approximately normal with mean  and variance 

. The central limit theorem is of fundamental importance, because it means that we can approximate the distribution of certain
statistics, even if we know very little about the underlying sampling distribution.

Of course, the term “large” is relative. Roughly, the more “abnormal” the basic distribution, the larger  must be for normal
approximations to work well. The rule of thumb is that a sample size  of at least 30 will usually suffice if the basic distribution is
not too weird; although for many distributions smaller  will do.

Let  denote the sum of the variables in a random sample of size 30 from the uniform distribution on . Find normal
approximations to each of the following:

1. 
2. The 90th percentile of 

Answer
1. 0.8682
2. 17.03

Random variable  in the previous exercise has the Irwin-Hall distribution of order 30. The Irwin-Hall distributions are studied in
more detail in the chapter on Special Distributions and are named for Joseph Irwin and Phillip Hall.

In the special distribution simulator, select the Irwin-Hall distribution. Vary and  from 1 to 10 and note the shape of the
probability density function. With  run the experiment 1000 times and compare the empirical density function to the
true probability density function.

Let  denote the sample mean of a random sample of size 50 from the distribution with probability density function 
 for . This is a Pareto distribution, named for Vilfredo Pareto. Find normal approximations to each of

the following:

1. 
2. The 60th percentile of 

Answer
1. 0.2071
2. 1.531

The Continuity Correction

A slight technical problem arises when the sampling distribution is discrete. In this case, the partial sum also has a discrete
distribution, and hence we are approximating a discrete distribution with a continuous one. Suppose that  takes integer values
(the most common case) and hence so does the partial sum . For any  and , note that the event 

 is equivalent to the event . Different values of  lead to different normal approximations, even
though the events are equivalent. The smallest approximation would be 0 when , and the approximations increase as 
increases. It is customary to split the difference by using  for the normal approximation. This is sometimes called the half-
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unit continuity correction or the histogram correction. The continuity correction is extended to other events in the natural way,
using the additivity of probability.

Suppose that  with .

1. For the event , use  in the normal approximation.
2. For the event , use  in the normal approximation.
3. For the event , use  in the normal approximation.

Let  denote the sum of the scores of 20 fair dice. Compute the normal approximation to .

Answer

0.6741

In the dice experiment, set the die distribution to fair, select the sum random variable , and set . Run the simulation
1000 times and find each of the following. Compare with the result in the previous exercise:

1. 
2. The relative frequency of the event  (from the simulation)

Normal Approximation to the Gamma Distribution

Recall that the gamma distribution with shape parameter  and scale parameter  is a continuous distribution
on  with probability density function  given by

The mean is  and the variance is . The gamma distribution is widely used to model random times (particularly in the context
of the Poisson model) and other positive random variables. The general gamma distribution is studied in more detail in the chapter
on Special Distributions. In the context of the Poisson model (where ), the gamma distribution is also known as the Erlang
distribution, named for Agner Erlang; it is studied in more detail in the chapter on the Poisson Process. Suppose now that  has
the gamma (Erlang) distribution with shape parameter  and scale parameter  then

where  is a sequence of independent variables, each having the exponential distribution with scale parameter . (The
exponential distribution is a special case of the gamma distribution with shape parameter 1.) It follows that if  is large, the gamma
distribution can be approximated by the normal distribution with mean  and variance . The same statement actually holds
when  is not an integer. Here is the precise statement:

Suppose that  has the gamma distribution with scale parameter  and shape parameter . Then the
distribution of the standardized variable  below converges to the standard normal distribution as :

In the special distribution simulator, select the gamma distribution. Vary and  and note the shape of the probability density
function. With  and various values of , run the experiment 1000 times and compare the empirical density function to
the true probability density function.

Suppose that  has the gamma distribution with shape parameter  and scale parameter . Find normal
approximations to each of the following:

1. 
2. The 80th percentile of 
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Answer
1. 0.3063
2. 25.32

Normal Approximation to the Chi-Square Distribution

Recall that the chi-square distribution with  degrees of freedom is a special case of the gamma distribution, with shape
parameter  and scale parameter . Thus, the chi-square distribution with  degrees of freedom has probability density
function

When  is a positive, integer, the chi-square distribution governs the sum of  independent, standard normal variables. For this
reason, it is one of the most important distributions in statistics. The chi-square distribution is studied in more detail in the chapter
on Special Distributions. From the previous discussion, it follows that if  is large, the chi-square distribution can be approximated
by the normal distribution with mean  and variance . Here is the precise statement:

Suppose that  has the chi-square distribution with  degrees of freedom. Then the distribution of the standardized
variable  below converges to the standard normal distribution as :

In the special distribution simulator, select the chi-square distribution. Vary  and note the shape of the probability density
function. With , run the experiment 1000 times andcompare the empirical density function to the probability density
function.

Suppose that  has the chi-square distribution with  degrees of freedom. Find normal approximations to each of the
following:

1. 
2. The 75th percentile of 

Answer
1. 0.4107
2. 24.3

Normal Approximation to the Binomial Distribution

Recall that a Bernoulli trials sequence, named for Jacob Bernoulli, is a sequence  of independent, identically
distributed indicator variables with  for each , where  is the parameter. In the usual language of
reliability,  is the outcome of trial , where 1 means success and 0 means failure. The common mean is  and the common
variance is .

Let , so that  is the number of successes in the first  trials. Recall that  has the binomial distribution with
parameters  and , and has probability density function

The binomial distribution is studied in more detail in the chapter on Bernoulli trials.

It follows from the central limit theorem that if  is large, the binomial distribution with parameters  and  can be approximated
by the normal distribution with mean  and variance . The rule of thumb is that  should be large enough for 
and . (The first condition is the important one when  and the second condition is the important one when 

.) Here is the precise statement:

n ∈ (0, ∞)
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Suppose that  has the binomial distribution with trial parameter  and success parameter . Then the
distribution of the standardized variable  given below converges to the standard normal distribution as :

In the binomial timeline experiment, vary  and  and note the shape of the probability density function. With  and 
, run the simulation 1000 times and compute the following:

1. 
2. The relative frequency of the event  (from the simulation)

Answer
1. 0.5448

Suppose that  has the binomial distribution with parameters  and . Compute the normal approximation to 
 (don't forget the continuity correction) and compare with the results of the previous exercise.

Answer

0.5383

Normal Approximation to the Poisson Distribution

Recall that the Poisson distribution, named for Simeon Poisson, is a discrete distribution on  with probability density function 
given by

where  is a parameter. The parameter is both the mean and the variance of the distribution. The Poisson distribution is widely
used to model the number of “random points” in a region of time or space, and is studied in more detail in the chapter on the
Poisson Process. In this context, the parameter is proportional to the size of the region.

Suppose now that  has the Poisson distribution with parameter . Then

where  is a sequence of independent variables, each with the Poisson distribution with parameter 1. It follows
from the central limit theorem that if  is large, the Poisson distribution with parameter  can be approximated by the normal
distribution with mean  and variance . The same statement holds when the parameter  is not an integer. Here is the precise
statement:

. Suppose that  has the Poisson distribution with parameter . Then the distribution of the standardized variable 
below converges to the standard normal distribution as :

Suppose that  has the Poisson distribution with mean 20.

1. Compute the true value of .
2. Compute the normal approximation to .

Answer
1. 0.6310
2. 0.6259
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In the Poisson experiment, vary the time and rate parameters  and  (the parameter of the Poisson distribution in the
experiment is the product ). Note the shape of the probability density function. With  and , run the experiment
1000 times and compare the empirical density function to the true probability density function.

Normal Approximation to the Negative Binomial Distribution

The general version of the negative binomial distribution is a discrete distribution on , with shape parameter  and
success parameter . The probability density function  is given by

The mean is  and the variance is . The negative binomial distribution is studied in more detail in the
chapter on Bernoulli trials. If , the distribution governs the number of failures  before success number  in a sequence of
Bernoulli trials with success parameter . Thus in this case,

where  is a sequence of independent variables, each having the geometric distribution on  with parameter .
(The geometric distribution is a special case of the negative binomial, with parameters 1 and .) In the context of the Bernoulli
trials,  is the number of failures before the first success, and for ,  is the number of failures between success
number  success number . It follows that if  is large, the negative binomial distribution can be approximated by the normal
distribution. The same statement holds if  is not an integer. Here is the precise statement:

Suppose that  has the negative binomial distribution with shape parameter  and scale parameter . Then
the distribution of the standardized variable  below converges to the standard normal distribution as :

Another version of the negative binomial distribution is the distribution of the trial number  of success number . So 
 and  has mean  and variance . The normal approximation applies to the distribution of  as well,

if  is large, and since the distributions are related by a location transformation, the standard scores are the same. That is

In the negative binomial experiment, vary  and  and note the shape of the probability density function. With  and 
, run the experiment 1000 times and compare the empirical density function to the true probability density function.

Suppose that  has the negative binomial distribution with trial parameter  and success parameter . Find normal
approximations to each of the following:

1. 
2. The 80th percentile of 

Answer
1. 0.6318
2. 30.1

Partial Sums with a Random Number of Terms

Our last topic is a bit more esoteric, but still fits with the general setting of this section. Recall that  is a
sequence of independent, identically distributed real-valued random variables with common mean  and variance . Suppose now
that  is a random variable (on the same probability space) taking values in , also with finite mean and variance. Then
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is a random sum of the independent, identically distributed variables. That is, the terms are random of course, but so also is the
number of terms . We are primarily interested in the moments of .

Independent Number of Terms

Suppose first that , the number of terms, is independent of , the sequence of terms. Computing the moments of  is a good
exercise in conditional expectation.

The conditional expected value of  given , and the expected value of  are

1. 
2. 

The conditional variance of  given  and the variance of  are

1. 
2. 

Let  denote the probability generating function of . Show that the moment generating function of  is .

1. 
2. 

Wald's Equation

The result in Exercise 29 (b) generalizes to the case where the random number of terms  is a stopping time for the sequence .
This means that the event  depends only on (technically, is measurable with respect to)  for each 

. The generalization is knowns as Wald's equation, and is named for Abraham Wald. Stopping times are studied in much
more technical detail in the section on Filtrations and Stopping Times.

If  is a stopping time for  then .

Proof

First note that . But  depends only on  and hence is
independent of . Thus . Suppose that  for each . Taking expected values term by
term gives Wald's equation in this special case. The interchange of sum and expected value is justified by the monotone
convergence theorem. Now Wald's equation can be established in general by using the dominated convergence theorem.

An elgant proof of Wald's equation is given in the chapter on Martingales.

Suppose that the number of customers arriving at a store during a given day has the Poisson distribution with parameter 50.
Each customer, independently of the others (and independently of the number of customers), spends an amount of money that
is uniformly distributed on the interval . Find the mean and standard deviation of the amount of money that the store
takes in during a day.

Answer

500, 81.65

When a certain critical component in a system fails, it is immediately replaced by a new, statistically identical component. The
components are independent, and the lifetime of each (in hours) is exponentially distributed with scale parameter . During the
life of the system, the number of critical components used has a geometric distribution on  with parameter . For the total
life of the critical component,

1. Find the mean.
2. Find the standard deviation.
3. Find the moment generating function.

=YN ∑
i=1

N

Xi (6.4.28)

N YN

N X YN

YN N YN

E( ∣ N) = NμYN
E( ) =E(N)μYN

YN N YN

var( ∣ N) = NYN σ2

var( ) =E(N) +var(N)YN σ2 μ2

H N YN H ∘G

E( ∣ N) = [G(t)etYN ]N

E( ) = H(G(t))etYN

N X

{N = n} ( , , … , )X1 X2 Xn

n ∈ N

N X E( ) =E(N)μYN

= 1(i ≤ N)YN ∑∞
i=1 Xi {i ≤ N} = {N < i}c { , … , }X1 Xi−1

Xi E[ 1(i ≤ N)] = μP(N ≥ i)Xi ≥ 0Xi i

[0, 20]
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N+ p
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4. Identify the distribution by name.

Answer
1. 
2. 
3. 

4. Exponential distribution with scale parameter 

This page titled 6.4: The Central Limit Theorem is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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