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15.2: Renewal Equations
       

Many quantities of interest in the study of renewal processes can be described by a special type of integral equation known as a renewal
equation. Renewal equations almost always arise by conditioning on the time of the first arrival and by using the defining property of a
renewal process—the fact that the process restarts at each arrival time, independently of the past. However, before we can study renewal
equations, we need to develop some additional concepts and tools involving measures, convolutions, and transforms. Some of the results in
the advanced sections on measure theory, general distribution functions, the integral with respect to a measure, properties of the integral,
and density functions are needed for this section. You may need to review some of these topics as necessary. As usual, we assume that all
functions and sets that are mentioned are measurable with respect to the appropriate -algebras. In particular,  which is our basic
temporal space, is given the usual Borel -algebra generated by the intervals.

Measures, Integrals, and Transforms

Distribution Functions and Positive Measures

Recall that a distribution function on  is a function  that is increasing and continuous from the right. The
distribution function  defines a positive measure on , which we will also denote by , by means of the formula  for 

.

Figure :  is the cumulative measure at 

Hopefully, our notation will not cause confusion and it will be clear from context whether  refers to the positive measure (a set function)
or the distribution function (a point function). More generally, if  and  then . Note that the
positive measure associated with a distribution function is locally finite in the sense that  is  is bounded. Of course,
if  is unbounded,  may well be infinite. The basic structure of a distribution function and its associated positive measure occurred
several times in our preliminary discussion of renewal processes:

Distributions associated with a renewal process.

1. The distribution function  of the interarrival times defines a probability measure on 
2. The counting process  defines a (random) counting measure on 
3. the renewal function  defines a (deterministic) positive measure on 

Suppose again that  is a distribution function on . Recall that the integral associated with the positive measure  is also called the
Lebesgue-Stieltjes integral associated with the distribution function  (named for Henri Lebesgue and Thomas Stieltjes). If 
and  (measurable of course), the integral of  over  (if it exists) is denoted

We use the more conventional  for the integral over  and  for the integral over . On the other
hand,  means the integral over  for , and  means the integral over . Thus, the additivity of
the integral over disjoint domains holds, as it must. For example, for ,

This notation would be ambiguous without the clarification, but is consistent with how the measure works:  for , 
 for , etc. Of course, if  is continuous as a function, so that  is also continuous as a measure, then none

of this matters—the integral over an interval is the same whether or not endpoints are included. . The following definition is a natural
complement to the locally finite property of the positive measures that we are considering.

A function  is locally bounded if it is measurable and is bounded on  for each .

The locally bounded functions form a natural class for which our integrals of interest exist.

Suppose that  is a distribution function on  and  is locally bounded. Then  defined by 
 is also locally bounded.
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Proof

Suppose that  for  and . Then

Hence  is integrable on  and the integral is bounded by  for .

Note that if  and  are locally bounded, then so are  and . If  is increasing on  then  is locally bounded, so in particular, a
distribution function on  is locally bounded. If  is continuous on  then  is locally bounded. Similarly, if  and  are
distribution functions on  and if , then  and  are also distribution functions on . Convolution, which we
consider next, is another way to construct new distributions on  from ones that we already have.

Convolution

The term convolution means different things in different settings. Let's start with the definition we know, the convolution of probability
density functions, on our space of interest .

Suppose that  and  are independent random variables with values in  and with probability density functions  and ,
respectively. Then  has probability density function  given as follows, in the discrete and continuous cases, respectively

In the discrete case, it's understood that  is a possible value of , and the sum is over the countable collection of  with  a
value of  and  a value of . Often in this case, the random variables take values in , in which case the sum is simply over the set 

 for . The discrete and continuous cases could be unified by defining convolution with respect to a general positive
measure on . Moreover, the definition clearly makes sense for functions that are not necessarily probability density functions.

Suppose that  ae locally bounded and that  is a distribution function on . The convolution of  and  with
respect to  is the function on  defined by

If  and  are probability density functions for discrete distributions on a countable set  and if  is counting measure on , we
get discrete convolution, as above. If  and  are probability density functions for continuous distributions on  and if  is Lebesgue
measure, we get continuous convolution, as above. Note however, that if  is nonnegative then  for 
defines another distribution function on , and the convolution integral above is simply . This motivates our next
version of convolution, the one that we will use in the remainder of this section.

Suppose that  is locally bounded and that  is a distribution function on . The convolution of the function  with
the distribution  is the function  defined by

Note that if  and  are distribution functions on , the convolution  makes sense, with  simply as a function and  as a
distribution function. The result is another distribution function. Moreover in this case, the operation is commutative.

If  and  are distribution functions on  then  is also a distribution function on , and 

Proof

Let  and  denote the usual product measures on . For , let 
, the triangular region with vertices , , and . Then

|f(s)| ≤ Ct s ∈ [0, t] t ∈ [0, ∞)

|f(x)| dG(x) ≤ G(s) ≤ G(t), t ∈ [0, ∞)∫
s

0

Ct Ct (15.2.3)
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This clearly defines a distribution function. Specifically, if  then  so 
. Hence  is decreasing. If  and  for 

with  as  then  (in the subset sense) as  so by the continuity property of  we have 
 as . Hence  is continuous from the right.

For the commutative property, we have  and . By the symmetry of the triangle
 with respect to the diagonal , these are the same.

If  and  are probability distribution functions corresponding to independent random variables  and  with values in , then 
 is the probabiltiy distribution function of . Suppose now that  is locally bounded and that  and  are

distribution functions on . From the previous result, both  and  make sense. Fortunately, they are the same so
that convolution is associative.

Suppose that  is locally bounded and that  and  are distribution functions on . Then

Proof

For ,

Finally, convolution is a linear operation. That is, convolution preserves sums and scalar multiples, whenever these make sense.

Suppose that  are locally bounded,  is a distribution function on , and . Then

1. 
2. 

Proof

These properties follow easily from linearity properties of the integral.

1. 
2. 

Suppose that  is locally bounded,  and  are distribution functions on , and that . Then

1. 
2. 

Proof

These properties also follow from linearity properties of the integral.

1. 
2. 

Laplace Transforms

Like convolution, the term Laplace transform (named for Pierre Simon Laplace of course) can mean slightly different things in different
settings. We start with the usual definition that you may have seen in your study of differential equations or other subjects:

The Laplace transform of a function  is the function  defined as follows, for all  for which the integral
exists in :

Suppose that  is nonnegative, so that the integral defining the transform exists in  for every . If  for some 
 then  for . The transform of a general function  exists (in ) if and only if the transform of  is finite at .

It follows that if  has a Laplace transform, then the transform  is defined on an interval of the form  for some . The
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0
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t

0 ∫
t
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t

0

[f ∗ (cG)](t) = f(t−s)d(cG)(s) = c f(t−s)dG(s) = c(f ∗G)(t)∫ t

0
∫ t

0

f : [0, ∞) →R ϕ s ∈ (0, ∞)

R

ϕ(s) = f(t)dt∫
∞

0

e−st (15.2.11)

f [0, ∞] s ∈ (0, ∞) ϕ( ) < ∞s0

∈ (0, ∞)s0 ϕ(s) < ∞ s ≥ s0 f R |f | s

f ϕ (a, ∞) a ∈ (0, ∞)
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actual domain is of very little importance; the main point is that the Laplace transform, if it exists, will be defined for all sufficiently large .
Basically, a nonnegative function will fail to have a Laplace transform if it grows at a “hyper-exponential rate” as .

We could generalize the Laplace transform by replacing the Riemann or Lebesgue integral with the integral over a positive measure on 
.

Suppose that that  is a distribution on . The Laplace transform of  with respect to  is the function given
below, defined for all  for which the integral exists in :

However, as before, if  is nonnegative, then  for  defines another distribution function, and the previous
integral is simply . This motivates the definiton for the Laplace transform of a distribution.

The Laplace transform of a distribution  on  is the function  defined as follows, for all  for which the integral is
finite:

Once again if  has a Laplace transform, then the transform will be defined for all sufficiently large . We will try to be explicit
in explaining which of the Laplace transform definitions is being used. For a generic function, the first definition applies, and we will use a
lower case Greek letter. If the function is a distribution function, either definition makes sense, but it is usually the the latter that is
appropriate, in which case we use an upper case Greek letter. Fortunately, there is a simple relationship between the two.

Suppose that  is a distribution function on . Let  denote the Laplace transform of the distribution  and  the Laplace
transform of the function . Then .

Proof

The main tool is Fubini's theorem (named for Guido Fubini), which allow us to interchange the order of integration for a nonnegative
function.

For a probability distribution, there is also a simple relationship between the Laplace transform and the moment generating function.

Suppose that  is a random variable with values in  and with probability distribution function . The Laplace transform  and
the moment generating function  of the distribution  are given as follows, and so for all .

In particular, a probability distribution  on  always has a Laplace transform , defined on . Note also that if  (so
that  is not deterministically 0), then  for .

Laplace transforms are important for general distributions on  for the same reasons that moment generating functions are important
for probability distributions: the transform of a distribution uniquely determines the distribution, and the transform of a convolution is the
product of the corresponding transforms (and products are much nicer mathematically than convolutions). The following theorems give the
essential properties of Laplace transforms. We assume that the transforms exist, of course, and it should be understood that equations
involving transforms hold for sufficiently large .

Suppose that  and  are distributions on  with Laplace transforms  and , respectively. If  for  sufficiently
large, then 

s

t → ∞
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G [0, ∞) f : [0, ∞) →R G
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s ↦ f(t)dG(t)∫
∞

0
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f H(t) = f(x)dG(x)∫ t

0
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0 e−st
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Φ(s) = dF (t)∫
∞
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∞

0

e−st ∫
∞

0

e−st ∫
t

0

= ( dt) dF (x) = dF (x) = Φ(s)∫
∞

0

∫
∞

x

e−st ∫
∞

0

1

s
e−sx 1

s

(15.2.14)

(15.2.15)

X [0, ∞) F Φ

Γ F Φ(s) = Γ(−s) s ∈ (0, ∞)

Φ(s)

Γ(s)

=E ( ) = dF (t)e−sX ∫
∞

0
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∞

0
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(15.2.16)

(15.2.17)

F [0, ∞) Φ (0, ∞) F (0) < 1

X Φ(s) < 1 s ∈ (0, ∞)

[0, ∞)
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In the case of general functions on , the conclusion is that  except perhaps on a subset of  of measure 0. The Laplace
transform is a linear operation.

Suppose that  have Laplace transforms  and , respectively, and  then

1.  has Laplace transform 
2.  has Laplace transform 

Proof

These properties follow from the linearity of the integral. For  sufficiently large,

1. 
2. 

The same properties holds for distributions on  with . Integral transforms have a smoothing effect. Laplace transforms are
differentiable, and we can interchange the derivative and integral operators.

Suppose that  has Lapalce transform . Then  has derivatives of all orders and

Restated,  is the Laplace transform of the function . Again, one of the most important properties is that the Laplace
transform turns convolution into products.

Suppose that  is locally bounded with Laplace transform , and that  is a distribution function on  with Laplace
transform . Then  has Laplace transform .

Proof
By definition, the Laplace transform of  is

Writing  and reversing the order of integration, the last iterated integral can be written as

The interchange is justified, once again, by Fubini's theorem, since our functions are integrable (for sufficiently large ).
Finally with the substitution  the last iterated integral can be written as a product

If  and  are distributions on , then so is . The result above applies, of course, with  and  thought of as functions and 
 as a distribution, but multiplying through by  and using the theorem above, it's clear that the result is also true with all three as

distributions.

Renewal Equations and Their Solutions
Armed with our new analytic machinery, we can return to the study of renewal processes. Thus, suppose that we have a renewal process
with interarrival sequence , arrival time sequence , and counting process . As
usual, let  denote the common distribution function of the interarrival times, and let  denote the renewal function, so that 

 for . Of course, the probability distribution function  defines a probability measure on , but as noted
earlier,  is also a distribution functions and so defines a positive measure on . Recall that  is the right distribution
function (or reliability function) of an interarrival time.

The distributions of the arrival times are the convolution powers of . That is, .

Proof

This follows from the definitions:  is the distribution function of , and . Since  is an independent, identically
distributed sequence, 

[0, ∞) f = g [0, ∞)

f , g : [0, ∞) →R ϕ γ c ∈ R

f +g ϕ+γ

cf cϕ

s

[f(t) +g(t)] dt = f(t)dt+ g(t)dt = ϕ(s) +γ(s)∫ ∞
0 e−st ∫ ∞

0 e−st ∫ ∞
0 e−st

cf(t)dt = c f(t)dt = cϕ(s)∫ ∞
0 e−st ∫ ∞

0 e−st

[0, ∞) c ∈ (0, ∞)

f : [0, ∞) →R ϕ ϕ

(s) = (−1 f(t)dtϕ(n) ∫
∞

0
)ntne−st (15.2.18)

(−1)nϕ(n) t ↦ f(t)tn

f : [0, ∞) →R ϕ G [0, ∞)

Γ f ∗G ϕ ⋅ Γ

f ∗G

(f ∗G)(t)dt = ( f(t−x)dG(x)) dt∫
∞

0

e−st ∫
∞

0

e−st ∫
t

0

(15.2.19)

=e−st e−s(t−x) e−sx

( f(t−x)dt) dG(x)∫
∞

0

e−sx ∫
∞

x

e−s(t−x) (15.2.20)

s ∈ (0, ∞)
y = t−x

( f(y)dy)( sxdG(x)) = ϕ(s)Γ(s)∫
∞

0
e−sy ∫

∞

0
e− (15.2.21)

F G [0, ∞) F ∗G F F ∗G

G s

X = ( , , …)X1 X2 T = ( , , …)T0 T1 N = { : t ∈ [0, ∞)}Nt

F M

M(t) =E( )Nt t ∈ [0, ∞) F [0, ∞)

M [0, ∞) = 1 −FF c

F = = F ∗F ∗ ⋯ ∗FFn F ∗n

Fn Tn =Tn ∑n
i=1 Xi X

=Fn F ∗n
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The next definition is the central one for this section.

Suppose that  is locally bounded. An integral equation of the form

for an unknown function  is called a renewal equation for .

Often  where  is a random process of interest associated with the renewal process. The renewal equation
comes from conditioning on the first arrival time , and then using the defining property of the renewal process—the fact that the
process starts over, interdependently of the past, at the arrival time. Our next important result illustrates this.

Renewal equations for  and :

1. 
2. 

Proof
1. We condition on the time of the first arrival  and break the domain of integration  into the two parts  and :

If  then . If , then by the renewal property, . Hence we have

2. From (a) and the commutative property of convolution given above (recall that  is also a distribution function), we have 

Thus, the renewal function itself satisfies a renewal equation. Of course, we already have a “formula” for , namely .
However, sometimes  can be computed more easily from the renewal equation directly. The next result is the transform version of the
previous result:

The distributions  and  have Laplace transfroms  and , respectively, that are related as follows:

Proof from the renewal equation

Taking Laplace transforms through the renewal equation  (and treating all terms as distributions), we have 
. Solving for  gives the result. Recall that since  is a probability distribution on  with , we know that 
 for . The second equation follows from the first by simple algebra.

Proof from convolution

Recall that . Taking Laplace trasforms (again treating all terms as distributions), and using geometric series we have

Recall again that  for . Once again, the second equation follows from the first by simple algebra.

In particular, the renewal distribution  always has a Laplace transform. The following theorem gives the fundamental results on the
solution of the renewal equation.

Suppose that  is locally bounded. Then the unique locally bounded solution to the renewal equation  is 
.

Direct proof

Suppose that . Then . But from the renewal equation for  above, .
Hence we have . But  by definition of , so 

 and hence  is a solution to the renewal equation. Next since  is locally bounded, so is . Suppose now
that  is another locally bounded solution of the integral equation, and let . Then  is locally bounded and 

a : [0, ∞) →R

u = a+u ∗F (15.2.22)

u : [0, ∞) →R u

u(t) =E( )Ut { : t ∈ [0, ∞)}Ut

=T1 X1

M F

M = F +M ∗F

F = M −F ∗M

X1 [0, ∞) [0, t] (t, ∞)

M(t) =E( ) = E( ∣ = s)dF (s) = E( ∣ = s)dF (s) + E( ∣ = s)dF (s)Nt ∫
∞

0

Nt X1 ∫
t

0

Nt X1 ∫
∞

t

Nt X1 (15.2.23)

s > t E( ∣ = s) = 0Nt X1 0 ≤ s ≤ t E( ∣ = s) = 1 +M(t−s)Nt X1

M(t) = [1 +M(t−s)] dF (s) = F (t) +(M ∗F )(t)∫
t

0

(15.2.24)

M

F = M −M ∗F = M −F ∗M

M M =∑∞
n=1 Fn

M

F M Φ Γ

Γ = , Φ =
Φ

1 −Φ

Γ

Γ +1
(15.2.25)

M = F +M ∗F

Γ = Φ +ΓΦ Γ F [0, ∞) F (0) < 1

0 < Φ(s) < 1 s ∈ (0, ∞)

M =∑∞
n=1 F

∗n

Γ = =∑
n=1

∞

Φn Φ

1 −Φ
(15.2.26)

0 < Φ(s) < 1 s ∈ (0, ∞)

M

a : [0, ∞) →R u = a+u ∗F

u = a+a∗M

u = a+a∗M u ∗F = a∗F +a∗M ∗F M M ∗F = M −F

u ∗F = a∗F +a∗ (M −F ) = a∗ [F +(M −F )] = a∗M a∗M = u−a u

u = a+u ∗F u a u = a+a∗M

v w = u−v w

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10278?pdf


15.2.7 https://stats.libretexts.org/@go/page/10278

. Hence  for . Suppose that  for 
. Then  for . Since  it follows that  as . Hence 

 for  and so .

Proof from Laplace transforms

Let  and  denote the Laplace transforms of the functions  and , respectively, and  the Laplace transform of the distribution .
Taking Laplace transforms through the renewal equations gives the simple algebraic equation . Solving give

where  is the Laplace transform of the distribution . Thus  is the transform of .

Returning to the renewal equations for  and  above, we now see that the renewal function  completely determines the renewal
process: from  we can obtain , and everything is ultimately constructed from the interarrival times. Of course, this is also clear from the
Laplace transform result above which gives simple algebraic equations for each transform in terms of the other.

The Distribution of the Age Variables

Let's recall the definition of the age variables. A deterministic time  falls in the random renewal interval . The
current life (or age) at time  is , the remaining life at time  is , and the total life at time  is 

. In the usual reliability setting,  is the age of the device that is in service at time , while  is the time until that
device fails, and  is the total lifetime of the device.

For , let

and let . Note that  is the right distribution function of . We will derive and then solve a renewal equation
for  by conditioning on the time of the first arrival. We can then find integral equations that describe the distribution of the current age
and the joint distribution of the current and remaining ages.

For ,  satisfies the renewal equation  and hence for ,

Proof

As usual, we condition on the time of the first renewal:

We are naturally led to break the domain  of the integral into three parts , , and , which we take one at a
time.

Note first that  for 

The event  given  when 
Age1

Next note that  for 

The event  given  when 
Age2.png

Finally note that  for 

The event  given  when 
Age3.png

Putting the pieces together we have

In terms of our function notation, the first integral is , the second integral is 0 of course, and the third integral is 
. Thus the renewal equation is satisfied and the formula for  follows the fundamental theorem on

w ∗F = (u ∗F ) −(v∗F ) = [(u−a) −(v−a) = u−v= w w = w ∗Fn n ∈ N+ |w(s)| ≤ Dt

0 ≤ s ≤ t |w(t)| ≤ (t)Dt Fn n ∈ N+ M(t) = (t) < ∞∑∞
n=1 Fn (t) → 0Fn n → ∞

w(t) = 0 t ∈ [0, ∞) u = v

α θ a u Φ F

θ = α+θΦ

θ = = α(1 + ) = α+αΓ
α

1 −Φ

Φ

1 −Φ
(15.2.27)

Γ = Φ
1−Φ

M θ a+a∗M

M F M

M F

t ∈ [0, ∞) [ , )TNt
T +1Nt

t = t−Ct TNt
t = − tRt T +1Nt

t

= −Lt T +1Nt
TNt

Ct t Rt

Lt

t, y ∈ [0, ∞)

(t) = P( > y) = P (N(t, t+y] = 0)ry Rt (15.2.28)

(t) = (t+y)F c
y F c y ↦ (t)ry Rt

ry

y ∈ [0, ∞) ry = + ∗Fry F c
y ry t ∈ [0, ∞)

P( > y) = (t+y) + (t+y−s)dM(s), y ≥ 0Rt F c ∫
t

0

F c (15.2.29)

P( > y) = P( > y ∣ = s)dF (s)Rt ∫
∞

0

Rt X1 (15.2.30)

[0, ∞) [0, t] (t, t+y] (t+y, ∞)

P( > y ∣ = s) = P( > y)Rt X1 Rt−s s ∈ [0, t]

> yRt = sX1 0 ≤ s ≤ t

P( > y ∣ = s) = 0Rt X1 s ∈ (t, t+y]

> yRt = sX1 t < s ≤ t+y

P( > y ∣ = s) = 1Rt X1 s ∈ (t+y, ∞)

> yRt = sX1 s > t+y

P( > y) = P( > y)dF (s) + 0 dF (s) + 1 dF (s)Rt ∫
t

0

Rt−s ∫
t+y

t

∫
∞

t+y

(15.2.31)

( ∗F )(t)ry
1 −F (t+y) = (t)F c

y P( > y)Rt
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renewal equations.

We can now describe the distribution of the current age.

For ,

Proof

This follows from the previous theorem and the fact that  for .

Finally we get the joint distribution of the current and remaining ages.

For ,

Proof

Recall that . The result now follows from the result above for the remaining life.

Examples and Special Cases

Uniformly Distributed Interarrivals

Consider the renewal process with interarrival times uniformly distributed on . Thus the distribution function of an interarrival time is 
 for . The renewal function  can be computed from the general renewal equation for  by successively solving

differential equations. The following exercise give the first two cases.

On the interval , show that  is given as follows:

1.  for 
2.  for 

Solution

Figure : The graph of  on the interval 

Show that the Laplace transform  of the interarrival distribution  and the Laplace transform  of the renewal distribution  are
given by

Solution

First note that

The formula for  follows from .

Open the renewal experiment and select the uniform interarrival distribution on the interval . For each of the following values of
the time parameter, run the experiment 1000 times and note the shape and location of the empirical distribution of the counting variable.

t ∈ [0, ∞)

P( ≥ x) = (t) + (t−s)dM(s), x ∈ [0, t]Ct F c ∫
t−x

0

F c (15.2.32)

P( ≥ x) = P( > x)Ct Rt−x x ∈ [0, t]

t ∈ [0, ∞)

P( ≥ x, > y) = (t+y) + (t+y−s)dM(s), x ∈ [0, t], y ∈ [0, ∞)Ct Rt F c ∫
t−x

0

F c (15.2.33)

P( ≥ x, > y) = P( > x+y)Ct Rt Rt−x

[0, 1]

F (x) = x 0 ≤ x ≤ 1 M M

[0, 2] M

M(t) = −1et 0 ≤ t ≤ 1

M(t) = ( −1) −(t−1)et et−1 1 ≤ t ≤ 2

15.2.2 M [0, 2]

Φ F Γ M

Φ(s) = , Γ(s) = ; s ∈ (0, ∞)
1 −e−s

s

1 −e−s

s−1 +e−s
(15.2.34)

Φ(s) = dF (t) = dt = , s ∈ (0, ∞)∫
∞

0

e−st ∫
1

0

e−st 1 −e−s

s
(15.2.35)

Γ Γ = Φ/(1 −Φ)

[0, 1]
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1. 
2. 
3. 
4. 
5. 
6. 

The Poisson Process

Recall that the Poisson process has interarrival times that are exponentially distributed with rate parameter . Thus, the interarrival
distribution function  is given by  for . The following exercises give alternate proofs of fundamental results
obtained in the Introduction.

Show that the renewal function  is given by  for 

1. Using the renewal equation
2. Using Laplace transforms

Solution
1. The renewal equation gives

Substituting  in the integral gives

Multiplying through by , differentiating with respect to , and simplifying gives  for . Since , the
result follows.

2. The Laplace transform  of the distribution  is given by

So the Laplace transform  of the distribution  is given by

But this is the Laplace transform of the distribution .

Show that the current and remaining life at time  satisfy the following properties:

1.  and  are independent.
2.  has the same distribution as an interarrival time, namely the exponential distribution with rate parameter .
3.  has a truncated exponential distribution with parameters  and :

Solution

Recall again that  for . Using the result above on the joint distribution of the current and remaining life, and some
standard calculus, we have

Letting  gives  for . Letting  gives  for . But then also 
 for  and  so the variables are independent.

t = 5

t = 10

t = 15

t = 20

t = 25

t = 30

r > 0

F F (x) = 1 −e−rx x ∈ [0, ∞)

M M(t) = rt t ∈ [0, ∞)

M(t) = 1 − + M(t−s)r dse−rt ∫
t

0

e−rs (15.2.36)

x = t−s

M(t) = 1 − +r M(x) dxe−rt e−rt ∫
t

0

erx (15.2.37)

ert t (t) = rM ′ t ≥ 0 M(0) = 0

Φ F

Φ(s) = r dt = rn dt = , s ∈ (0, ∞)∫
∞

0

e−st e−rt ∫
∞

0

e−(s+r)t r

r+s
(15.2.38)

Γ M

Γ(s) = = , s ∈ (0, ∞)
Φ(s)

1 −Φ(s)

r

s
(15.2.39)

t ↦ rt

t ≥ 0

Ct Rt

Rt r

Ct t r

P( ≥ x) ={Ct
,e−rx

0,
0 ≤ x ≤ t

x > t
(15.2.40)

M(t) = rt t ∈ [0, ∞)

P( ≥ x, ≥ y) = + rds = , x ∈ [0, t], y ∈ [0, ∞)Ct Rt e−r(t+y) ∫
t−x

0

e−r(t+y−s) r−rxe−ry (15.2.41)

y = 0 P( ≥ x) =Ct e−rx x ∈ [0, t] x = 0 P( ≥ y) =Rt e−ry y ∈ [0, ∞)

P( ≥ x, ≥ y) = P( ≥ x)P( ≥ y)Ct Rt Ct Rt x ∈ [0, t] y ∈ [0, ∞)
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Bernoulli Trials

Consider the renewal process for which the interarrival times have the geometric distribution with parameter . Recall that the probability
density function is

The arrivals are the successes in a sequence of Bernoulli trials. The number of successes  in the first  trials is the counting variable for 
. The renewal equations in this section can be used to give alternate proofs of some of the fundamental results in the Introduction.

Show that the renewal function is  for 

1. Using the renewal equation
2. Using Laplace transforms

Proof
1. The renewal equation for  is

So substituting values of  successively we have

and so forth.
2. The Laplace transform  of the distribution  is

Hence the Laplace transform of the distribution  is

But  is the transform of the distribution  on . That is,

Show that the current and remaining life at time  satisfy the following properties:.

1.  and  are independent.
2.  has the same distribution as an interarrival time, namely the geometric distribution with parameter .
3.  has a truncated geometric distribution with parameters  and :

Solution

Recall again that  for . Using the result above on the joint distribution of the current and remaining life and
geometric series, we have

Letting  gives  for . Letting  gives  for . But then
also  for  and  so the variables are independent.

p

f(n) = (1 −p p, n ∈)n−1
N+ (15.2.42)

Yn n

n ∈ N

M(n) = np n ∈ N

M

M(n) = F (n) +(M ∗F )(n) = 1 −(1 −p + M(n−k)p(1 −p , n ∈ N)n ∑
k=1

n

)k−1 (15.2.43)

n

M(0)

M(1)

M(2)

= 1 −(1 −p = 0)0

= 1 −(1 −p) +M(0)p = p

= 1 −(1 −p +M(1)p+M(0)p(1 −p) = 2p)2

(15.2.44)

(15.2.45)

(15.2.46)

Φ F

Φ(s) = p(1 −p = , s ∈ (0, ∞)∑
n=1

∞

e−sn )n−1 pe−s

1 −(1 −p)e−s
(15.2.47)

M

Γ(s) = = p , s ∈ (0, ∞)
Φ(s)

1 −Φ(s)

e−s

1 −e−s
(15.2.48)

s ↦ /(1 − )e−s e−s n ↦ n N

⋅ 1 = , s ∈ (0, ∞)∑
n=1

∞

e−sn e−s

1 −e−s
(15.2.49)

n ∈ N

Cn Rn

Rn p

Cn n p

P( = j) ={Cn
p(1 −p ,)j

(1 −p ,)n
j∈ {0, 1, … ,n−1}

j= n
(15.2.50)

M(n) = pn n ∈ N

P( ≥ j, > k) = (1 −p + p(1 −p = (1 −p , j∈ {0, 1, … ,n}, k ∈ NCn Rn )n+k ∑
i=1

n−j

)n+k−i )j+k (15.2.51)

k = 0 P( ≥ j) = (1 −pCn )j j∈ {0, 1, … ,n} j= 0 P( > k) = (1 −pRn )k k ∈ N

P( ≥ j, > k) = P( ≥ j)P( > k)Cn Rn Cn Rn j∈ {0, 1, … ,n} k ∈ N
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A Gamma Interarrival Distribution

Consider the renewal process whose interarrival distribution  is gamma with shape parameter  and rate parameter . Thus

Recall also that  is the distribution of the sum of two independent random variables, each having the exponential distribution with rate
parameter .

Show that the renewal distribution function  is given by

Solution

The exponential distribution with rate parameter  has Laplace transform  and hence the Laplace transform  of the
interarrival distribution  is given by

So the Laplace transform  of the distribution  is

Using a partial fraction decomposition,

But the  is the Laplace transform of the distribution  and  is the Laplace transform of the distribution  (the
exponential distribution with parameter ).

Note that  as .

Figure : The graph of  on the interval  when 

Open the renewal experiment and select the gamma interarrival distribution with shape parameter  and scale parameter  (so
the rate parameter  is also 1). For each of the following values of the time parameter, run the experiment 1000 times and note the
shape and location of the empirical distribution of the counting variable.

1. 
2. 
3. 
4. 
5. 
6. 
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F 2 r ∈ (0, ∞)

F (t) = 1 −(1 +rt) , t ∈ [0, ∞)e−rt (15.2.52)

F

r

M

M(t) = − + rt+ , t ∈ [0, ∞)
1

4

1

2

1

4
e−2rt (15.2.53)

r s ↦ r/(r+s) Φ

F

Φ(s) =( )
r

r+s

2

(15.2.54)

Γ M

Γ(s) = =
Φ(s)

1 −Φ(s)

r2

s(s+2r)
(15.2.55)

Γ(s) = − = −
r

2s

r

2(s+2r)

1

2

r

s

1

4

2r

s+2r
(15.2.56)

r/s rt 2r/(s+2r) 1 −e−2rt

2r

M(t) ≈ − + rt1
4

1
2

t → ∞

15.2.3 M [0, 5] r = 1

k = 2 b = 1

r = 1
b

t = 5

t = 10

t = 15

t = 20

t = 25

t = 30
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