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3.14: Function Spaces
      

Basic Theory

Our starting point is a positive measure space . That is  is a set,  is a -algebra of subsets of , and  is a positive
measure on . As usual, the most important special cases are

Euclidean space:  is a Lebesgue measurable subset of  for some ,  is the -algebra of Lebesgue measurable
subsets of , and  is -dimensional Lebesgue measure.
Discrete space:  is a countable set,  is the collection of all subsets of , and  is counting measure.
Probability space:  is the set of outcomes of a random experiment,  is the -algebra of events, and  is a probability
measure.

In previous sections, we defined the integral of certain measurable functions  with respect to , and we studied
properties of the integral. In this section, we will study vector spaces of functions that are defined in terms of certain integrability
conditions. These function spaces are of fundamental importance in all areas of analysis, including probability. In particular, the
results of this section will reappear in the form of spaces of random variables in our study of expected value.

Definitions and Basic Properties

Consider a statement on the elements of , for example an equation or an inequality with  as a free variable. (Technically
such a statement is a predicate on .) For , we say that the statement holds on  if it is true for every . We say that
the statement holds almost everywhere on  (with respect to ) if there exists  with  such that the statement holds
on  and .

Measurable functions  are equivalent if  almost everywhere on , in which case we write . The
relation  is an equivalence relation on the collection of measurable functions from  to . That is, if  are
measurable then

1. , the reflexive property.
2. If  then , the symmetric property.
3. If  and  then , the transitive property.

Thus, equivalent functions are indistinguishable from the point of view of the measure . As with any equivalence relation, 
partitions the underlying set (in this case the collection of real-valued measurable functions on ) into equivalence classes of
mutually equivalent elements. As we will see, we often view these equivalence classes as the basic objects of study. Our next task
is to define measures of the “size” of a function; these will become norms in our spaces.

Suppose that  is measurable. For  we define

We also define .

Since  is a nonnegative, measurable function for ,  exists in , and hence so does . Clearly 
 also exists in  and is known as the essential supremum of . A number  such that  almost

everywhere on  is an essential bound of  and so, appropriately enough, the essential supremum of  is the infimum of the
essential bounds of . Thus, we have defined  for all . The definition for  is special, but we will see that it's
the appropriate one.

For , let  denote the collection of measurable functions  such 

So for ,  if and only if  is integrable. The symbol  is in honor of Henri Lebesgue, who first developed the
theory. If we want to indicate the dependence on the underlying measure space, we write . Of course,  is simply the
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collection of functions that are integrable with respect to . Our goal is to study the spaces  for . We start with some
simple properties.

Suppose that  is measurable. Then for ,

1. 
2.  if and only if  almost everywhere on , so that .

Proof
1. This is obvious from the definitions.
2. For , this follows from properties of the integral that we already have. First of course, 

so . Conversely if  then  and hence  almost everywhere on  and so 
almost everywhere on . Suppose . Clearly . Conversely suppose that . Then for each 
there exists  with  as  and  almost everywhere on . Hence  almost everywhere
on .

Suppose that  is measurable and . Then  for .

Proof

Again, when , this result follow easily from properties of the integral that we already have:

Taking the th root of both sides gives the result. For , the result is trivially true if . For , note that 
 is an essential bound of  if and only if  is an essential bound if .

In particular, if  and  then .

Conjugate Indices and Hölder's inequality

Certain pairs of our function spaces turn out to be dual or complimentary to one another in a sense. To understand this, we need the
following definition.

Indices  are said to be conjugate if . In addition,  and  are conjugate indices.

For justification of the last case, note that if , then the index conjugate to  is

and  as . Note that  are conjugate indices, and this is the only case where the indices are the same. Ultimately,
the importance of conjugate indices stems from the following inequality:

If  and if  are conjugate indices, then

Moreover, equality occurs if and only if .

Proof 1

From properties of the natural logarithm function,

But the natural logarithm function is concave and  so
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Taking exponentials we have

Proof 2

Fix  and define  by

Then  and  for . Hence  has a single critical point at 
 and  for . It follows that the minimum value of  on  occurs at  and 

. Hence  for  with equality only at  (that is, ).

our next major result is Hölder's inequality, named for Otto Hölder, which clearly indicates the importance of conjugate indices.

Suppose that  are measurable and that  and  are conjugate indices. Then

Proof

The result is obvious if  or , so suppose that  and . For our first case, suppose that 
and . Note that  almost everywhere on . Hence

For the second case, suppose . By part (b) of the positive property, the result holds if  or , so
assume that  and . By the additivity of the integral over disjoint domains, we can restrict the integrals to the
set , or simply assume that  and  on . From the basic inequality,

Suppose first that . From the increasing and linearity properties of the integral,

For the general case where  and , let  and . Then  so 
. So by the scaling property,

In particular, if  and  then . The most important special case of Hölder's inequality is when , in
which case we have the Cauchy-Schwartz inequality, named for Augustin Louis Cauchy and Karl Hermann Schwarz:

Minkowski's Inequality

Our next major result is Minkowski's inequality, named for Hermann Minkowski. This inequality will help show that  is a vector
space and that  is a norm (up to equivalence) when .

Suppose that  are measurable and that . Then

Proof
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Again, the result is trivial if  or , so assume that . When , the result is the simple triangle
inequality for the integral:

For the case , note that if  is an essential bound for  and  is an essential bound for  then  is
an essential bound for . Hence . For the last case, suppose that  and let  be the
index conjugate to . Then

Integrating over  and using the additive and increasing properties of the integral gives

But by Höder's inequality,

Combining this with the previous inequality we have

But  and  so

Hence we have

and therefore .

Vector Spaces

We can now discuss various vector spaces of functions. First, we know from our previous work with measure spaces, that the set 
of all measurable functions  is a vector space under our standard (pointwise) definitions of sum and scalar multiple. The
spaces we are studying in this section are subspaces:

 is a subspace of  for every .

Proof

We just need to show that  is closed under addition and scalar multiplication. From the positive property, if  and 
 then . From Minkowski's inequality, if  then .

However, we usually want to identify functions that are equal almost everywhere on  (with respect to ). Recalling the
equivalence relation  defined above, here are the definitions:
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we know from our previous work that these definitions are consistent in the sense that they do not depend on the particular
representatives of the equivalence classes. That is if  and  then  and . That  is a
vector space then follows from the fact that  is a vector space.

Now we can define the Lebesgue vector spaces precisely.

For , let . For  define . Then  is a subspace of  and  is a
norm on . That is, for  and 

1.  and  if and only if , the positive property
2. , the scaling property
3. , the triangle inequality

Proof

That  is a subspace of  follows immediately from the fact that  is a subspace of . The fact that  is a norm on 
also follows from our previous work.

We have stated these results precisely, but on the other hand, we don't want to be overly pedantic. It's more natural and intuitive to
simply work with the space  and the subspaces  for , and just remember that functions that are equal almost
everywhere on  are regarded as the same vector. This will be our point of view for the rest of this section.

Every norm on a vector space naturally leads to a metric. That is, we measure the distance between vectors as the norm of their
difference. Stated in terms of the norm , here are the properties of the metric on .

For ,

1.  and  if and only if , the positive property
2. , the symmetric property
3. , the triangle inequality

Once we have a metric, we naturally have a criterion for convergence.

Suppose that  for  and . Then by definition,  as  in  if and only if  as
.

Limits are unique, up to equivalence. (That is, limits are unique in .)

Suppose again that  for . Recall that this sequence is said to be a Cauchy sequence if for every  there exists 
 such that if  and  then . Needless to say, the Cauchy criterion is named for our ubiquitous

friend Augustin Cauchy. A metric space in which every Cauchy sequence converges (to an element of the space) is said to be
complete. Intuitively, one expects a Cauchy sequence to converge, so a complete space is literally one that is not missing any
elements that should be there. A complete, normed vector space is called a Banach space, after the Polish mathematician Stefan
Banach. Banach spaces are of fundamental importance in analysis, in large part because of the following result:

 is a Banach space for every .

The Space 

The norm  is special because it corresponds to an inner product.

For , define

Note that the integral is well-defined by the Cauchy-Schwarz inequality. As with all of our other definitions, this one is consistent
with the equivalence relation. That is, if  and  then  so  and hence 

. Note also that  for , so this definition generates the 2-norm.
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 is an inner product space. That is, if  and  then

1.  and  if and only if , the positive property
2. , the symmetric property
3. , the scaling property
4. , the additive property

Proof

Part (a) is a restatement of the positive property of the norm . Part (b) is obvious and parts (c) and (d) follow from the
linearity of the integral.

From parts (c) and (d), the inner product is linear in the first argument, with the second argument fixed. By the symmetric property
(b), it follows that the inner product is also linear in the second argument with the first argument fixed. That is, the inner product is
bi-linear. A complete. inner product space is known as a Hilbert space, named for the German mathematician David Hilbert. Thus,
the following result follows immediately from the previous two.

 is a Hilbert space.

All inner product spaces lead naturally to the concept of orthogonality;  is no exception.

Functions  are orthogonal if , in which case we write . Equivalently  if

Of course, all of the basic theorems of general inner product spaces hold in . For example, the following result is the
Pythagorean theorem, named of course for Phythagoras.

If  and  then .

Proof

The proof just uses basic properties of inner product in (17). No special properties of  are used. If  and  then

Examples and Special Cases

Discrete Spaces

Recall again that the measure space  is discrete if  is countable,  is the -algebra of all subsets of , and of
course,  is counting measure. In this case, recall that integrals are sums. The exposition will look more familiar if we use the
notation of sequences rather than functions. Thus, let , and denote the value of  at  by  rather than . For 

, the -norm is

On the other hand, . The only null set for  is , so the equivalence relation  is simply equality, and so
the spaces  and  are the same. For ,  if and only if

When  (as is often the case), this condition means that  is absolutely convergent. On the other hand,  if
and only if  is bounded. When , the space  is often denoted . The inner produce on  is
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⟨f , f⟩ ≥ 0 ⟨f , f⟩ = 0 f ≡ 0
⟨f , g⟩ = ⟨g, f⟩
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∥ ⋅ ∥2

L2

L2

f , g ∈ L2 ⟨f , g⟩ = 0 f ⊥ g f ⊥ g
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S
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When ,  is simply the vector space  with the usual addition, scalar multiplication, inner product, and norm
that we study in elementary linear algebra. Orthogonal vector are perpendicular in the usual sense.

Probability Spaces

Suppose that  is a probability space, so that  is the set of outcomes of a random experiment,  is the -algebra of
events, and  is a probability measure on the sample space . Of course, a measurable function  is simply a real-
valued random variable. For , the integral  is the expected value of , and is denoted . Thus in this
case,  is the collection of real-valued random variables  with . We will study these spaces in more detail in the
chapter on expected value.
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