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7.6: Sufficient, Complete and Ancillary Statistics

Basic Theory

The Basic Statistical Model

Consider again the basic statistical model, in which we have a random experiment with an observable random variable X taking values in a set .S. Once
again, the experiment is typically to sample n objects from a population and record one or more measurements for each item. In this case, the outcome
variable has the form

X =(X1,Xs,...,X,) (7.6.1)

where X; is the vector of measurements for the ith item. In general, we suppose that the distribution of X depends on a parameter 6 taking values in a
parameter space T'. The parameter § may also be vector-valued. We will sometimes use subscripts in probability density functions, expected values, etc. to
denote the dependence on 6.

As usual, the most important special case is when X is a sequence of independent, identically distributed random variables. In this case X is a random
sample from the common distribution.

Sufficient Statistics

Let U = u(X) be a statistic taking values in a set R. Intuitively, U is sufficient for 6 if U contains all of the information about 6 that is available in the

entire data variable X. Here is the formal definition:

I A statistic U is sufficient for 6 if the conditional distribution of X given U does not depend on 8 € T'.

Sufficiency is related to the concept of data reduction. Suppose that X takes values in R™. If we can find a sufficient statistic U that takes values in R,
then we can reduce the original data vector X (whose dimension n is usually large) to the vector of statistics U (whose dimension j is usually much
smaller) with no loss of information about the parameter 6.

The following result gives a condition for sufficiency that is equivalent to this definition.

Let U = u(X) be a statistic taking values in R, and let fy and hy denote the probability density functions of X and U respectively. Then U is
suffcient for 6 if and only if the function on .S given below does not depend on § € T':

fo(z)
* holu(x)] (7.6.2)
Proof

The joint distribution of (X, U) is concentrated on the set {(,y) : ® € S,y =u(e)} C S x R . The conditional PDF of X given U =u(x) is
fo(z)/hg[u()] on this set, and is 0 otherwise.

The definition precisely captures the intuitive notion of sufficiency given above, but can be difficult to apply. We must know in advance a candidate
statistic U, and then we must be able to compute the conditional distribution of X given U. The Fisher-Neyman factorization theorem given next often
allows the identification of a sufficient statistic from the form of the probability density function of X. It is named for Ronald Fisher and Jerzy Neyman.

Fisher-Neyman Factorization Theorem. Let fy denote the probability density function of X and suppose that U = u(X) is a statistic taking values
in R. Then U is sufficient for 6 if and only if there exists G : R x T'— [0,00) and 7 : .S — [0, 00) such that

fo(x) =Glu(z),fr(x); xS, 0T (7.6.3)
Proof

Let by denote the PDF of U for § € T'. If U is sufficient for §, then from the previous theorem, the function r(x) = fs(z)/hg[u(z)] for x € S does
not depend on 6 € T'. Hence fy(x) = hg[u(x)]r(x) for (,0) € SxT and so (x,6) — fo(x) has the form given in the theorem. Conversely,
suppose that (2, 6) — fs(2) has the form given in the theorem. Then there exists a positive constant C' such that hg(y) = CG(y, ) for § € T and
y € R. Hence fo()/hg[u(z)] =r(z)/C forx € S, independent of § € T

Note that r depends only on the data @ but not on the parameter 6. Less technically, u(X) is sufficient for 8 if the probability density function fy(x)
depends on the data vector & and the parameter  only through ().

l If U and V are equivalent statistics and U is sufficient for € then V' is sufficient for 6.

Minimal Sufficient Statistics

The entire data variable X is trivially sufficient for 8. However, as noted above, there usually exists a statistic U that is sufficient for # and has smaller
dimension, so that we can achieve real data reduction. Naturally, we would like to find the statistic U that has the smallest dimension possible. In many
cases, this smallest dimension j will be the same as the dimension k of the parameter vector . However, as we will see, this is not necessarily the case; j
can be smaller or larger than k. An example based on the uniform distribution is given in (38).
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l Suppose that a statistic U is sufficient for . Then U is minimally sufficient if U is a function of any other statistic V' that is sufficient for 6.

Once again, the definition precisely captures the notion of minimal sufficiency, but is hard to apply. The following result gives an equivalent condition.

Let fp denote the probability density function of X corresponding to the parameter value § € T' and suppose that U = u(X) is a statistic taking
values in R. Then U is minimally sufficient for 6 if the following condition holds: for € S and y € S

?E ; is independent of 6 if and only if u(x) = u(y) (7.6.4)
o\y
Proof
Suppose that the condition in the theorem is satisfied. Then the PDF fy of X must have the form given in the factorization theorem (3) so U is
sufficient for 6. Next, suppose that V' =v(X) is another sufficient statistic for 6, taking values in R. From the factorization theorem, there exists
G:RxT —[0,00) andr:S — [0,00) such that fo(x) = Gv(e),0]r(z) for (z,0) € SxT .Henceif x,y € S and v(z) = v(y) then
fol@) _ Glu@),fr(z) _ r(z)
foly)  Glv(y),0r(y)  r(y)

does not depend on 6 € © . Hence from the condition in the theorem, u(2) = u(y) and it follows that U is a function of V.

(7.6.5)

l If U and V are equivalent statistics and U is minimally sufficient for # then V' is minimally sufficient for 6.

Properties of Sufficient Statistics

Sufficiency is related to several of the methods of constructing estimators that we have studied.

Suppose that U is sufficient for 6 and that there exists a maximum likelihood estimator of €. Then there exists a maximum likelihood estimator V' that
is a function of U .

Proof
From the factorization theorem (3), the log likelihood function for @ € S is

0+ InGlu(e), ) +1nr(x) (7.6.6)

Hence a value of 6 that maximizes this function, if it exists, must be a function of u ().

In particular, suppose that V' is the unique maximum likelihood estimator of 8 and that V' is sufficient for 8. If U is sufficient for 6 then V' is a function of
U by the previous theorem. Hence it follows that V' is minimally sufficient for 6. Our next result applies to Bayesian analysis.

Suppose that the statistic U = u(X) is sufficient for the parameter 6 and that 6 is modeled by a random variable ® with values in T'. Then the
posterior distribution of © given X =@ € S is a function of u(x).
Proof

Let h denote the prior PDF of © and f(- | #) the conditional PDF of X given © =6 € T . By the factorization theorem (3), this conditional PDF has
the form f(e | ) = Glu(e), ]r(x) fora € S and 6 € T'. The posterior PDF of © given X =« € S is

h(0)f(xz |6
h(0| z) = M)i(16) ), 0eT (7.6.7)
f=@)
where the function in the denominator is the marginal PDF of X, or simply the normalizing constant for the function of € in the numerator. Let's
suppose that © has a continuous distribution on T', so that f(z) = [ h(t)Glu(z), t]r(x)dt for @ € S. Then the posterior PDF simplifies to
h u(xz), 0
hO12) = T (6.8

S h()Glu(z),t]dt

which depends on @ € S only through u ().

Continuing with the setting of Bayesian analysis, suppose that 8 is a real-valued parameter. If we use the usual mean-square loss function, then the
Bayesian estimator is V =E(© | X)) . By the previous result, V' is a function of the sufficient statistics U. That is, E(© | X) =E(© | U) .

The next result is the Rao-Blackwell theorem, named for CR Rao and David Blackwell. The theorem shows how a sufficient statistic can be used to
improve an unbiased estimator.

Rao-Blackwell Theorem. Suppose that U is sufficient for 6 and that V' is an unbiased estimator of a real parameter A = A(f) . Then Eo(V | U) is
also an unbiased estimator of A and is uniformly better than V.

Proof

This follows from basic properties of conditional expected value and conditional variance. First, since V' is a function of X and U is sufficient for 6,
Eo(V | U) is a valid statistic; that is, it does not depend on 6, in spite of the formal dependence on € in the expected value. Next, Eo(V | U) is a
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function of U and Eg[Eg(V |U)]=Eg(V)=A for 6€©. Thus E¢(V|U) is an unbiased estimator of A.  Finally
varg[Eg(V | U)] = varg(V) —Eg[varg(V | U)] < varg(V) foranyfcT.

Complete Statistics

Suppose that U = u(X) is a statistic taking values in a set R. Then U is a complete statistic for 6 if for any function 7 : R — R

Eg[r(U)] =0forall@eT = Py[r(U)=0]=1foralldecT (7.6.9)

To understand this rather strange looking condition, suppose that 7(U) is a statistic constructed from U that is being used as an estimator of 0 (thought of
as a function of ). The completeness condition means that the only such unbiased estimator is the statistic that is 0 with probability 1.

I If U and V are equivalent statistics and U is complete for € then V' is complete for 6.

The next result shows the importance of statistics that are both complete and sufficient; it is known as the Lehmann-Scheffé theorem, named for Erich
Lehmann and Henry Scheffé.

Lehmann-Scheffé Theorem. Suppose that U is sufficient and complete for 6 and that V =r(U) is an unbiased estimator of a real parameter
A =X(0) . Then V is a uniformly minimum variance unbiased estimator (UMVUE) of \.
Proof

Suppose that W is an unbiased estimator of A. By the Rao-Blackwell theorem (10), E(W | U) is also an unbiased estimator of A and is uniformly
better than W. Since E(W | U) is a function of U, it follows from completeness that V. =TE(W | U) with probability 1.
Ancillary Statistics

Suppose that V' = v(X) is a statistic taking values in a set R. If the distribution of V' does not depend on 0, then V is called an ancillary statistic for
0.

Thus, the notion of an ancillary statistic is complementary to the notion of a sufficient statistic. A sufficient statistic contains all available information
about the parameter; an ancillary statistic contains no information about the parameter. The following result, known as Basu's Theorem and named for
Debabrata Basu, makes this point more precisely.

Basu's Theorem. Suppose that U is complete and sufficient for a parameter # and that V' is an ancillary statistic for §. Then U and V are
independent.
Proof

Let g denote the probability density function of V' and let v g(v | U) denote the conditional probability density function of V' given U. From
properties of conditional expected value, E[g(v | U)] = g(v) forv € R. But then from completeness, g(v | U) = g(v) with probability 1.

l If U and V are equivalent statistics and U is ancillary for 6 then V' is ancillary for 6.

Applications and Special Distributions

In this subsection, we will explore sufficient, complete, and ancillary statistics for a number of special distributions. As always, be sure to try the problems
yourself before looking at the solutions.

The Bernoulli Distribution

Recall that the Bernoulli distribuiton with parameter p € (0, 1) is a discrete distribution on {0, 1} with probability density function g defined by
g(z)=p*(1-p)'™*, z€{0,1} (7.6.10)

Suppose that X = (X3, X, ..., X)) is a random sample of size n from the Bernoulli distribution with parameter p. Equivalently, X is a sequence of
Bernoulli trials, so that in the usual langauage of reliability, X; =1 if trial ¢ is a success, and X; = 0 if trial ¢ is a failure. The Bernoulli distribution is
named for Jacob Bernoulli and is studied in more detail in the chapter on Bernoulli Trials

LetY = Z;‘Zl X; denote the number of successes. Recall that Y has the binomial distribution with parameters n and p, and has probability density
function h defined by

m) = (1)Pa-pr e ye (0L (7.611)
Y
Y is sufficient for p. Specifically, fory € {0,1,...,n}, the conditional distribution of X given Y =y is uniform on the set of points
D, ={(z1,22,...,2,) €{0,1}" sz + 22+ -+ 2 =y} (7.6.12)

Proof

The joint PDF f of X is defined by
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f(@®)=g(x1)g(z2) - g9(zn) =p"1—p)"Y, @=(21,22,...,2,)€{0,1}" (7.6.13)
wherey =Y, ;. Now lety € {0,1,...,n} Given Y =y, X is concentrated on D, and
P(X == Y(1—p)nY 1
P(X=z|Y=y)= P(Y_ ) _ np(y ?) ———, =zeD, (7.6.14)
¥=y) ()p(l-p) ()
Of course, (Z) is the cardinality of D,.

This result is intuitively appealing: in a sequence of Bernoulli trials, all of the information about the probability of success p is contained in the number of
successes Y. The particular order of the successes and failures provides no additional information. Of course, the sufficiency of Y follows more easily
from the factorization theorem (3), but the conditional distribution provides additional insight.

Y is complete for p on the parameter space (0, 1).

Proof
Ifr:{0,1,...,n} - R, then
- n _ 3 n p \Y
B =) () ra-or v =a-nr 3 or6) (1) (1) (7.6.15)
y=0 y=0
The last sum is a polynomial in the variable ¢ = — & (0, 00) . If this polynomial is 0 for all ¢ € (0, 00), then all of the coefficients must be 0. Hence

1-p
we must have r(y) =0 fory € {0,1,...,n}

The proof of the last result actually shows that if the parameter space is any subset of (0, 1) containing an interval of positive length, then Y is complete
for p. But the notion of completeness depends very much on the parameter space. The following result considers the case where p has a finite set of values.
Suppose that the parameter space T' C (0, 1) is a finite set with £ € N, elements. If the sample size n is at least k, then Y is not complete for p.

Proof

Suppose that 7 : {0,1,...,n} — R and that E[r(Y))] =0 for p € T'. Then we have

> (”)py(l ~p)"r(y) =0, peT (7.6.16)
y=0 \Y
This is a set of k linear, homogenous equations in the variables (7(0),7(1),...,7(n)). Since n > k, we have at least k+ 1 variables, so there are

infinitely many nontrivial solutions.

The sample mean M =Y /n (the sample proportion of successes) is clearly equivalent to ¥ (the number of successes), and hence is also sufficient for p
and is complete for p € (0, 1). Recall that the sample mean M is the method of moments estimator of p, and is the maximum likelihood estimator of p on
the parameter space (0, 1).

In Bayesian analysis, the usual approach is to model p with a random variable P that has a prior beta distribution with left parameter a € (0, c0) and right
parameter b € (0, 00). Then the posterior distribution of P given X is beta with left parameter a +Y and right parameter b+ (n —Y") . The posterior
distribution depends on the data only through the sufficient statistic Y, as guaranteed by theorem (9).

The sample variance S is an UMVUE of the distribution variance p(1 —p) for p € (0, 1), and can be written as

Y Y
= 1-=— 7.6.17
n—1 ( n > ( )
Proof
Recall that the sample variance can be written as
1 & n
2= X2 —M? 7.6.1
J n—1 ; ton—1 ()

But X? = X; since X; is an indicator variable, and M =Y /n. Substituting gives the representation above. In general, S? is an unbiased estimator
of the distribution variance 2. But in this case, S? is a function of the complete, sufficient statistic Y, and hence by the Lehmann Scheffé theorem
(13), 2 isan UMVUE of 02 =p(1 —p) .

The Poisson Distribution
Recall that the Poisson distribution with parameter 6 € (0, o) is a discrete distribution on N with probability density function g defined by

b

—» @eN (7.6.19)

glz)=e
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The Poisson distribution is named for Simeon Poisson and is used to model the number of “random points” in region of time or space, under certain ideal
conditions. The parameter @ is proportional to the size of the region, and is both the mean and the variance of the distribution. The Poisson distribution is
studied in more detail in the chapter on Poisson process.

Suppose now that X = (X1, Xs, ..., X},) is a random sample of size n from the Poisson distribution with parameter 6. Recall that the sum of the scores
Y = E;‘Zl X; also has the Poisson distribution, but with parameter nf.

The statistic Y is sufficient for 6. Specifically, for y € N, the conditional distribution of X given Y =y is the multinomial distribution with y trials,
n trial values, and uniform trial probabilities.

Proof

The joint PDF f of X is defined by

—n00y
f(@) = g(z1)g(x2) - g(zn) = m, T = (z1,22,...,2,) EN" (7.6.20)
where y =37, x;. Given Y =y € N, random vector X takes values in the set Dy = {& = (21, 22,...,2,) €N": > ", @; =y} . Moreover,
P(X=x) e™"/(zilzs! ! ! 1
PX x|V —y) = 2 ) _ [@lealzl) v —, zeD, (7.6.21)
PY =vy) e (nh)v/y! zlzo! -z, nY

The last expression is the PDF of the multinomial distribution stated in the theorem. Of course, the important point is that the conditional distribution
does not depend on 6.

As before, it's easier to use the factorization theorem to prove the sufficiency of Y, but the conditional distribution gives some additional insight.

Y is complete for 6 € (0, c0).
Proof

Ifr:N—R then

%} na Y 00 ,ny
E[r(Y)] = Ze*na%r(y) =™ Z; Er(y)ey (7.6.22)

y=0

The last sum is a power series in  with coefficients n¥r(y)/y! for y € N. If this series is 0 for all € in an open interval, then the coefficients must be 0
and hence r(y) =0 fory € N.

As with our discussion of Bernoulli trials, the sample mean M =Y /n is clearly equivalent to Y and hence is also sufficient for § and complete for
60 € (0, 00). Recall that M is the method of moments estimator of 6 and is the maximum likelihood estimator on the parameter space (0, co).

An UMVUE of the parameter P(X = 0) = e’ for 6 € (0, 00) is
Y
—1
U= (" ) (7.6.23)
n
Proof
The probability generating function of Y is
P(t)=E@#) =1, tcR (7.6.24)
Hence
n—1 ¥ n—1 )
E =exp|nf| —— —1)| =€’ 0€(0,00) (7.6.25)
n n
So U =[(n—1)/n]¥ is an unbiased estimator of e~?. Since U is a function of the complete, sufficient statistic Y, it follows from the Lehmann
Scheffé theorem (13) that U is an UMVUE of e ~?.

The Normal Distribution

Recall that the normal distribution with mean y € R and variance o2 € (0, 00) is a continuous distribution on R with probability density function g
defined by

SR S [ 70 o P
g(w)fma p{ 2( > >] €eR (7.6.26)

The normal distribution is often used to model physical quantities subject to small, random errors, and is studied in more detail in the chapter on Special
Distributions. Because of the central limit theorem, the normal distribution is perhaps the most important distribution in statistics.
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Suppose that X = (X1, X5, ..., X)) is a random sample from the normal distribution with mean p and variance o%. Then each of the following
pairs of statistics is minimally sufficient for (u, o2)

1L(Y,V)whereY =7, X, andV=>7", X2.

2. (M, S2) where M = % 3%, X; is the sample mean and S% = anl " (X; —M)? is the sample variance.

3. (M, T?) where T? = % " (X; — M)? is the biased sample variance.
Proof

1. The joint PDF f of X is given by

1 1 & N
f(@) = gle1)glw) - glan) = mexp[—g 2 (@ —m?] , @w=(on2...,2,) €R (7.6.27)
=
After some algebra, this can be written as
fz)= i exp fiix?ﬂ—“ix = (z1,23...,2,) €R" (7.6.28)
(271_)”/20_" 202 Z_l i 02 ’L=1 1 b b b n

It follows from the factorization theorem (3) that (Y7, V) is sufficient for (u, 02). Minimal sufficiency follows from the condition in theorem (6).
2. Note that M = %Y, S2 = ﬁV —L-M? .Hence (M, S?) is equivalent to (Y, V) and so (M, 5?) is also minimally sufficient for (, 0?).
3. Similarly, M = %Y and T2 = %V — M? . Hence (M, T?) is equivalent to (Y, V) and so (M, T'?) is also minimally sufficient for (u, 02).

Recall that M and T'? are the method of moments estimators of x and o, respectively, and are also the maximum likelihood estimators on the parameter
space R x (0, 00).

Run the normal estimation experiment 1000 times with various values of the parameters. Compare the estimates of the parameters in terms of bias and
mean square error.

Sometimes the variance o of the normal distribution is known, but not the mean . It's rarely the case that y is known but not 0. Nonetheless we can
give sufficient statistics in both cases.
Suppose again that X = (X3, X3, ..., X,,) is a random sample from the normal distribution with mean p € R and variance o2 € (0, 00). If
1. 1f 2 is known then Y = Z?:l X; is minimally sufficient for p.
2.1f pisknown then U = 37 | (X; —p)? is sufficient for o2
Proof

1. This results follow from the second displayed equation for the PDF f(z) of X in the proof of the previous theorem.
2. This result follows from the first displayed equation for the PDF f(«) of bsX in the proof of the previous theorem.

Of course by equivalence, in part (a) the sample mean M =Y /n is minimally sufficient for u, and in part (b) the special sample variance W =U/n is
minimally sufficient for 2. Moreover, in part (a), M is complete for y on the parameter space R and the sample variance S? is ancillary for u (Recall
that (n —1)8% /o2 has the chi-square distribution with n — 1 degrees of freedom.) It follows from Basu's theorem (15) that the sample mean M and the
sample variance S are independent. We proved this by more direct means in the section on special properties of normal samples, but the formulation in
terms of sufficient and ancillary statistics gives additional insight.

The Gamma Distribution

Recall that the gamma distribution with shape parameter k € (0,00) and scale parameter b € (0,00) is a continuous distribution on (0, 00) with
probability density function g given by

1 —1 -z
9(=) = T o ez €(0,00) (7.6.29)

The gamma distribution is often used to model random times and certain other types of positive random variables, and is studied in more detail in the
chapter on Special Distributions.

Suppose that X = (X3, Xo,...,X,) is a random sample from the gamma distribution with shape parameter k and scale parameter b. Each of the
following pairs of statistics is minimally sufficient for (k, b)

1.(Y,V) whereY =37, X; is the sum of the scores and V' =[]} ; X; is the product of the scores.

2. (M,U) where M =Y /n is the sample (arithmetic) mean of X and U = V'1/™ is the sample geometric mean of X.
Proof

1. The joint PDF f of X is given by

1
f(@) = g(z1)g(x2) - - - g(n) = W(mwz oo leEde b te/b g — (2,3, 2,) € (0,00)" (7.6.30)

From the factorization theorem (3), (Y, V) is sufficient for (k, b). Minimal sufficiency follows from condition (6).
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l 2. Clearly M =Y /n is equivalent to Y and U = V'*/™ is equivalent to V. Hence (M, U) is also minimally sufficient for (k, b).

Recall that the method of moments estimators of k and b are M2 / T2 and T /M, respectively, where M = %E?Zl X; is the sample mean and
T2 = % Z?:l (Xi—M )2 is the biased sample variance. If the shape parameter k is known, %M is both the method of moments estimator of b and the
maximum likelihood estimator on the parameter space (0, o). Note that 7'2 is not a function of the sufficient statistics (Y, V'), and hence estimators based
on T2 suffer from a loss of information.

Run the gamma estimation experiment 1000 times with various values of the parameters and the sample size n. Compare the estimates of the
parameters in terms of bias and mean square error.

The proof of the last theorem actually shows that Y is sufficient for b if k is known, and that V is sufficient for k if b is known.

Suppose again that X = (X7, Xs,...,X,) is a random sample of size n from the gamma distribution with shape parameter k € (0, c0) and scale
parameter b € (0,00). Then Y =>_" | X; is complete for b.

Proof
Y has the gamma distribution with shape parameter nk and scale parameter b. Hence, if 7 : [0, 0c0) — R, then

E[r(Y)) = ———— eV (y) d :—/ mhlp(y)e ¥/ d 7.6.31
o= | o Wy =gy [ ey (7.6.31)

nk—1

The last integral can be interpreted as the Laplace transform of the function y — y r(y) evaluated at 1 /b If this transform is O for all b in an open

interval, then 7(y) = 0 almost everywhere in (0, c0).

Suppose again that X = (X3, X», ..., X,) is a random sample from the gamma distribution on (0, co) with shape parameter k € (0, co) and scale
parameter b € (0, 00). Let M = % > iy X; denote the sample mean and U = (X1 X5 . .. X,,)Y/™ the sample geometric mean, as before. Then

1. M /U is ancillary for b.
2. M and M /U are independent.

Proof
1. We can take X; =bZ; fori € {1,2,...,n}where Z = (Z;, X», ..., Z,) is arandom sample of size n from the gamma distribution with shape
parameter k and scale parameter 1 (the standard gamma distribution with shape parameter k). Then
M 1 b i X7 ye g @ x\"
= =) = ulllE (r.6.32)
U nm (XX X))V nim g 0 A AT \Ga

But X;/X; = Z;/ Z; for i # j, and the distribution of {Z;/Z; : 4,j € {1,2,...,n}, i # j} does not depend on b. Hence the distribution of
M /U does not depend on b.
2. This follows from Basu's theorem (15), since M is complete and sufficient for b and M /U is ancillary for b.

The Beta Distribution

Recall that the beta distribution with left parameter a € (0, 00) and right parameter b € (0, 00) is a continuous distribution on (0, 1) with probability
density function g given by

1 a-1 b-1
T)=—""2 1-—2 z € (0,1 7.6.33
o) = g 9 =) (7.6.33)
where B is the beta function. The beta distribution is often used to model random proportions and other random variables that take values in bounded
intervals. It is studied in more detail in the chapter on Special Distribution

Suppose that X = (X1, X3, ..., X)) is a random sample from the beta distribution with left parameter a and right parameter b. Then (P, Q) is
minimally sufficient for (a,b) where P =[[;; X; and Q@ = [[1-1 (1 — X;) .
Proof

The joint PDF f of X is given by

f(w):g(wl)g(mg)-ng(xn)=ﬁ(zlm~--wn)“*l[(l—zl)(l—wg)u-(l—xn)]bfl, x=(z1,22,...,%,) €(0,1)" (7.6.34)

a,b)

From the factorization theorem (3), it follows that (U, V') is sufficient for (a, b). Minimal sufficiency follows from condition (6).

The proof also shows that P is sufficient for a if b is known, and that @ is sufficient for b if a is known. Recall that the method of moments estimators of
a and b are

M (M - M®) (1—M) (M- M®)
U=—o———21 V= (7.6.35)
M?2) — M2

M@ — M2
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respectively, where M = % %4 X; is the sample mean and M(?) = % >-iey X7 is the second order sample mean. If b is known, the method of
moments estimator of a is Uy =bM /(1 — M), while if a is known, the method of moments estimator of b is V, =a(1 —M)/M . None of these
estimators is a function of the sufficient statistics (P, @) and so all suffer from a loss of information. On the other hand, if b = 1, the maximum likelihood
estimator of a on the interval (0, 00) is W = —n/ Y. | In X, which is a function of P (as it must be).

l Run the beta estimation experiment 1000 times with various values of the parameters. Compare the estimates of the parameters.

The Pareto Distribution

Recall that the Pareto distribution with shape parameter a € (0,00) and scale parameter b € (0,00) is a continuous distribution on [b, c0) with
probability density function g given by
ab®
glz)=———, b<z<o (7.6.36)
potl

The Pareto distribution, named for Vilfredo Pareto, is a heavy-tailed distribution often used to model income and certain other types of random variables.
It is studied in more detail in the chapter on Special Distribution.

Suppose that X = (X7, X5, ..., X,,) is a random sample from the Pareto distribution with shape parameter a and scale parameter b. Then (P, X(l))
is minimally sufficient for (a,b) where P = [[i; X; is the product of the sample variables and where X ;) =min{X1, X, ..., Xy} is the first
order statistic.

Proof

The joint PDF f of X at € = (z1, Z2, ..., ®,) is given by

anb‘na
f(®) =g(@1)g(z2) - g9(xn) =, x1>bxa>b,...,z, >b (7.6.37)
(w1x2 coo xn)d+1
which can be rewritten as
anbna
f@) =g(@1)g(x2) - - g(an) = ——————1(z(,y 2b), (@1,22,...,2n) € (0,00)" (7.6.38)

($1172 . xﬂ)a#—l

So the result follows from the factorization theorem (3). Minimal sufficiency follows from condition (6).

The proof also shows that P is sufficient for a if b is known (which is often the case), and that X1y is sufficient for b if a is known (much less likely).
Recall that the method of moments estimators of a and b are

U=1+4/|——, V= e (7.6.39)

M@ M® M@ — M2
M@ —p2’ M

respectively, where as before M = %EL X, is the sample mean and M @) = > Xf the second order sample mean. These estimators are not
functions of the sufficient statistics and hence suffers from loss of information. On the other hand, the maximum likelihood estimators of a and b on the
interval (0, co) are
n
b
:L:l lnXl — nlnX(l)

W= X (7.6.40)

respectively. These are functions of the sufficient statistics, as they must be.

Run the Pareto estimation experiment 1000 times with various values of the parameters a and b and the sample size n. Compare the method of
moments estimates of the parameters with the maximum likelihood estimates in terms of the empirical bias and mean square error.

The Uniform Distribution

Recall that the continuous uniform distribution on the interval [a, a+ h], where a € R is the location parameter and h € (0, o) is the scale parameter,
has probability density function g given by

g(z) = % z € [a,a+h] (7.6.41)

Continuous uniform distributions are widely used in applications to model a number chosen “at random” from an interval. Continuous uniform
distributions are studied in more detail in the chapter on Special Distributions. Let's first consider the case where both parameters are unknown.

Suppose that X = (X1, Xz, ..., X,) is a random sample from the uniform distribution on the interval [a, @+ h]. Then (X(1), X()) is minimally
sufficient for (a, h), where X ;) = min{ Xy, Xa, ..., X, } is the first order statistic and X ,,) = max{ X1, Xa, ..., X, } is the last order statistic.
Proof

The PDF f of X is given by
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1
f(@) = glen)g(wa) -~ glen) = 5o @ = (21,22, 2n) € [a,a )" (7.6.42)
We can rewrite the PDF as
1
flz)= h—nl[x(l) >all[zyy <a+h], x=(z1,23,...,2,) ER" (7.6.43)

It then follows from the factorization theorem (3) that (X(l), X(n)) is sufficient for (a, h). Next, suppose that @, y € R" and that ;) # Y1) or
T(n) 7 Y(n) - For a given h € (0, 00), we can easily find values of a € R such that f() =0 and f(y) = 1/h", and other values of a € R such that
f(=) = f(y) =1/h" . By condition (6), (X(1), X)) is minimally sufficient.

If the location parameter a is known, then the largest order statistic is sufficient for the scale parameter k. But if the scale parameter h is known, we still
need both order statistics for the location parameter a. So in this case, we have a single real-valued parameter, but the minimally sufficient statistic is a pair
of real-valued random variables.

Suppose again that X = (X1, X3, ..., X},) is a random sample from the uniform distribution on the interval [a, a + h] .
1.If a € R is known, then X is sufficient for h.
2.If h € (0, 00) is known, then (X (1), X(n)) is minimally sufficient for a.

Proof

Both parts follow easily from the analysis given in the proof of the last theorem.
l Run the uniform estimation experiment 1000 times with various values of the parameter. Compare the estimates of the parameter.

Recall that if both parameters are unknown, the method of moments estimators of a and h are U = 2M —+/3T and V = 2+/3T, respectively, where
M= % %, X; is the sample mean and T2 = % " . (X; — M)? is the biased sample variance. If a is known, the method of moments estimator of k
is Vo =2(M —a) , while if h is known, the method of moments estimator of h is U, = M — %h . None of these estimators are functions of the
minimally sufficient statistics, and hence result in loss of information.

The Hypergeometric Model

So far, in all of our examples, the basic variables have formed a random sample from a distribution. In this subsection, our basic variables will be
dependent.

Recall that in the hypergeometric model, we have a population of IV objects, and that r of the objects are type 1 and the remaining N —r are type 0. The
population size IV is a positive integer and the type 1 size 7 is a nonnegative integer with » < N . Typically one or both parameters are unknown. We select
a random sample of n objects, without replacement from the population, and let X; be the type of the ith object chosen. So our basic sequence of random
variables is X = (Xj, X5, ..., X,). The variables are identically distributed indicator variables with P(X; =1) =7/N for i € {1,2,...,n}, but are
dependent. Of course, the sample size n is a positive integer withn < N.

The variable Y = Z?:1 X; is the number of type 1 objects in the sample. This variable has the hypergeometric distribution with parameters N, r, and n,
and has probability density function h given by

h(y) = , y€{max{0,N —n+r},...,min{n,r}} (7.6.44)

(;) (11:’:;) _[n T(y)(N,T)(nfy)
™ (y) T Nm

¥ =g(@—1)--- (x—k+1) ). The hypergeometric distribution is studied in more detail in the chapter on Finite

(Recall the falling power notation z(
Sampling Models.

Y is sufficient for (IV, 7). Specifically, for y € {max{0, N —n+r},...,min{n,r}}, the conditional distribution of X given Y =y is uniform on
the set of points

Dy ={(z1,22,...,2,) €{0,1}" s &1 + 22 +-- -+ 2, =y} (7.6.45)
Proof

By a simple application of the multiplication rule of combinatorics, the PDF f of X is given by

rW(N —7) (=)
fl®) = — N

wherey =" | ;. If y € {max{0, N —n+7},..., min{n, r}}, the conditional distribution of X given ¥ =y is concentrated on D, and

, &= (z1,22,...,2,) € {0,1}" (7.6.46)

_ N P(X ==x) . T(y)(N—r)("_y)/N(") 3 1
e TRy Oro N —r)e9/Ne () z €D, (7.6.47)

n
Y

Of course, (Z) is the cardinality of D,.

https://stats.libretexts.org/@go/page/10194


https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10194?pdf

LibreTextsm

There are clearly strong similarities between the hypergeometric model and the Bernoulli trials model above. Indeed if the sampling were with
replacement, the Bernoulli trials model with p = /N would apply rather than the hypergeometric model. It's also interesting to note that we have a single
real-valued statistic that is sufficient for two real-valued parameters.

Once again, the sample mean M =Y /n is equivalent to Y and hence is also sufficient for (N, 7). Recall that the method of moments estimator of r with
N known is NM and the method of moment estimator of N with » known is 7/ M. The estimator of r is the one that is used in the capture-recapture
experiment.

Exponential Families

Suppose now that our data vector X takes values in a set S, and that the distribution of X depends on a parameter vector @ taking values in a parameter
space ©. The distribution of X is a k-parameter exponential family if S does not depend on @ and if the probability density function of X can be written

as
k
fo(®) = a(@)r(x) exp (Z B,(B)u&z)) ; €S, 0€0 (7.6.48)
i=1
where a and (81, B2, - - -, Bx) are real-valued functions on ©, and where r and (uy, us, . . . , uy) are real-valued functions on S. Moreover, k is assumed to

be the smallest such integer. The parameter vector 8 = (51(6), 82(0), . .., Br(6)) is sometimes called the natural parameter of the distribution, and the
random vector U = (u1(X), u2(X),...,ux(X)) is sometimes called the natural statistic of the distribution. Although the definition may look
intimidating, exponential families are useful because they have many nice mathematical properties, and because many special parametric families are
exponential families. In particular, the sampling distributions from the Bernoulli, Poisson, gamma, normal, beta, and Pareto considered above are
exponential families. Exponential families of distributions are studied in more detail in the chapter on special distributions.

U is minimally sufficient for 6.
Proof

That U is sufficient for 6 follows immediately from the factorization theorem. That U is minimally sufficient follows since k is the smallest integer in
the exponential formulation.

It turns out that U is complete for @ as well, although the proof is more difficult.

This page titled 7.6: Sufficient, Complete and Ancillary Statistics is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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