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18.3: The Brownian Bridge

Basic Theory

Definition and Constructions

In the most common formulation, the Brownian bridge process is obtained by taking a standard Brownian motion process X, restricted to the interval
[0, 1], and conditioning on the event that X; = 0. Since X, =0 also, the process is “tied down” at both ends, and so the process in between forms a
“bridge” (albeit a very jagged one). The Brownian bridge turns out to be an interesting stochastic process with surprising applications, including a very
important application to statistics. In terms of a definition, however, we will give a list of characterizing properties as we did for standard Brownian motion

and for Brownian motion with drift and scaling.
A Brownian bridge is a stochastic process X = {X; : ¢ € [0, 1]} with state space R that satisfies the following properties:

1. X¢p =0 and X; =0 (each with probability 1).

2. X is a Gaussian process.
3.E(X;)=0forte€[0,1].

4. cov(Xs, X;) = min{s,t} — st fors, t € [0,1].
5. With probability 1, t — X; is continuous on [0, 1].

So, in short, a Brownian bridge X is a continuous Gaussian process with Xy = X; =0, and with mean and covariance functions given in (c) and (d),
respectively. Naturally, the first question is whether there exists such a process. The answer is yes, of course, otherwise why would we be here? But in fact,
we will see several ways of constructing a Brownian bridge from a standard Brownian motion. To help with the proofs, recall that a standard Brownian
motion process Z ={Z; :t € [0,00)} is a continuous Gaussian process with Zy =0, E(Z;) =0 for ¢ € [0, 00) and cov(Zs, Z;) = min{s, ¢} for
s, t € [0, 00). Here is our first construction:

Suppose that Z ={Z; :t €[0,00)} is a standard Brownian motion, and let X; = Z; —tZ; for t € [0,1]. Then X ={X;:t<[0,1]} is a
Brownian bridge.

Proof

1. Note that Xo = Zy =0 and X7 =271 — Z; =0 .

2. Linear combinations of the variables in X reduce to linear combinations of the variables in Z and hence have normal distributions. Thus X is a
Gaussian process.

3. E(X:) =E(Z;)—tE(Z1) =0 forte[0,1]

4. cov(Xs, Xt) =cov(Zs — 821, Z: —tZ1) = cov(Zs, Zy) —t cov(Zs, Z1) — scov(Zy, Zy) + st cov(Zy, Z1) = min{s,t} —st —st+st  for
s, t€[0,1].

5.t +— X, is continuous on [0, 1]since ¢ — Z; is continuous on [0, 1]

Let's see the Brownian bridge in action.

l Run the simulation of the Brownian bridge process in single step mode a few times.

For the Brownian bridge X, note in particular that X; is normally distributed with mean 0 and variance ¢(1 —¢) for ¢ € [0,1]. Thus, the variance
increases and then decreases on [0, 1] reaching a maximum of 1/4 at ¢ =1/2. Of course, the variance is 0 at t =0 and t =1, since Xo =X; =0

deterministically.

Open the simulation of the Brownian bridge process. Vary ¢ and note the change in the probability density function and moments. For various values
of ¢, run the simulation 1000 times and compare the empirical density function and moments to the true density function and moments.

Conversely to the construction above, we can build a standard Brownian motion on the time interval [0, 1] from a Brownian bridge.

Suppose that X = {X; : t € [0, 1]} is a Brownian bridge, and suppose that Z is a random variable with a standard normal distribution, independent
of X.Let Z; = X; +tZ fort € [0,1]. Then Z={Z;:t € [0,1]} is a standard Brownian motion on [0, 1].

Proof

1. Note that Zp = X, =0 .

2. Linear combinations of the variables in Z reduce to linear combinations of the variables in X and hence have normal distributions. Thus Z is a
Gaussian process.

3.E(Z;) =E(X;)+tE(Z) =0 forte[0,1]

4.
cov(Zs, Zy) = cov(X, +sZ, Xy +tZ) = cov(X,, Xy) +t cov(Xs, Z) + scov(Xy, Z) + st var(Z) = min{s, t} — st +0 +0 + st = min{s, ¢}
fors, t € [0,1].

5.t Z; is continuous on [0, 1]since ¢ — X; is continuous on [0, 1]

Here's another way to construct a Brownian bridge from a standard Brownian motion.
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Suppose that Z = {Z; : t € [0,00)} is a standard Brownian motion. Define X; =0 and
t

Then X = {X; : ¢ € [0,1]} is a Brownian bridge.

Proof

1. Note that X9 = Zy =0 and by definition, X; =0.
2. Linear combinations of variables in X reduce to linear combinations of variables in Z and hence have normal distributions. Thus X is a Gaussian

3 Fort e [0,1)
E(X,) = (1—-)E [z (ﬁ)} —0 (18.3.2)
4.1f s, t €[0,1) with s <t thens/(1—s) <t/(1—t) so
cov(X,, X;) = cov [(1 —8)Z (%3) [(1-1)Z (%)] =(1-s)@1 4)%3 =s(1—t) (18.3.3)

5. Finally, ¢t — X is continuous with probability 1 on [0, 1), and with probability 1, X; = (1 —¢)Z [t / (1- t)] —0 astT1l

Conversely, we can construct a standard Brownian motion from a Brownian bridge.

Suppose that X = {X; : ¢t € [0,1]} is a Brownian bridge. Define
t
Zy=(1+)X | — te|0 18.3.4
—a+0x (157) telboo) (18.3.4)

Then Z ={Z; : t € [0,00)} is a standard Brownian motion process.

Proof
1. Note that Zy = Xy =0
2. Linear combinations of the variables in Z reduce to linear combinations of the variables in X, and hence have normal distributions. Thus Z is a
Gaussian process.
3.Fort € [0, 00),

E(Z) = (1+t)E [X (ﬁ)] —0 (18.3.5)
4.1f s, t € [0,1] with s <t Thens/(1+s) <t/(1+t) so

cov(Zs, Z)) = cov [(1 +9)X (%ﬂ) (1+DX (%H)] = (148)(1+¢) [13? _ 13?%“ —5 (18.3.6)

5. Since t — X; is continuous, ¢t —> Z; is continuous

We return to the comments at the beginning of this section, on conditioning a standard Brownian motion to be 0 at time 1. Unlike the previous two
constructions, note that we are not transforming the random variables, rather we are changing the underlying probability measure.

Suppose that X ={X;:t € [0,00)} is a standard Brownian motion. Then conditioned on X; =0, the process {X; : ¢ € [0,1]} is a Brownian
bridge process.

Proof

Part of the argument is based on properties of the multivariate normal distribution. The conditioned process is still continuous and is still a Gaussian
process. In particular, suppose that s, ¢t € [0, 1] with s < ¢. Then (X;, X1) has a joint normal distribution with parameters specified by the mean and
covariance functions of X. By standard computations, the conditional distribution of X; given X; =0 is normal with mean 0 and variance ¢(1 —t).
Similarly, the joint distribution of (X, X;, X;) is normal with parameters specified by the mean and covariance functions of X. Again, by standard
computations, the conditional distribution of (X, X;) given X7 = 0 is bivariate normal with 0 means and with cov(X,, X; | X1 =0) =s(1 —¢) .

Finally, the Brownian bridge can be defined in terms a stochastic integral

Suppose that Z = {Z; : t € [0,00)} is standard Brownian motions. Define X; =1 and
|
Xt :(1*t)/ 1—dZs, tc [0,1) (1837)
0 —S

Then X = {X; : ¢t € [0,1]} is a Brownian bridge process.

Proof
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1. Note that Xy = 0 and by definition, X; = 0.

2. Since the integrand in the stochastic integral is deterministic, X is a Gaussian process.

3. X is continuous on [0, 1) with probability 1, as a basic property of stochastic integrals. Moreover, X; — 0 as ¢ 1 1 as a consequence of the
martingale inequality.

4.E(X;) =0 since the stochastic integral has mean 0.

5. Suppose that s, ¢ € [0, 1] with s <¢. Then

cov(X,, X;) = cov [(1—5)/ T 4%, (1~ </ —dZ +/ —dZ )} (18.3.8)

But [y - dZ, and [, & dZ, are independent,

1
cov(Xs, X;) =(1—s)(1—t)var </ T dZu> (18.3.9)
0o 1—u
But then by the Ito isometry,
1
cov(Xs, Xi) = t)/ (1 du =(1-s)(1-1¢) (E — 1) =(1-1t)s (18.3.10)
In differential form, the process above can be written as
dX; = Xo=0 (18.3.11)

The General Brownian Bridge

The processes constructed above (in several ways!) is the standard Brownian bridge. it's a simple matter to generalize the process so that it starts at @ and
ends at b, for arbitrary a, b € R.

Suppose that Z={Z; : t € [0,1]} is a standard Brownian bridge process. Let a, b € R and define X; = (1 —t)a+tb+Z; fort e [0,1]. Then
X ={X;:te(0,1]} is a Brownian bridge process from a to b.

Of course, any of the constructions above for standard Brownian bridge can be modified to produce a general Brownian bridge. Here are the characterizing
properties.

The Brownian bridge process X = {X; : ¢ € [0,1]} from a to b is characterized by the following properties:

1. Xo = a and X; = b (each with probability 1).

2. X is a Gaussian process.
3.E(Xy)=(1—t)a+tb forte[0,1]

4. cov(X,, X;) =min{s,t} — st fors, t € [0,1].
5. With probability 1, ¢ — X; is continuous on [0, 1].

Applications

The Empirical Distribution Function

We start with a problem that is one of the most basic in statistics. Suppose that T" is a real-valued random variable with an unknown distribution. Let F'
denote the distribution function of T', so that F(t) =P(T <t) for ¢t € R. Our goal is to construct an estimator of F', so naturally our first step is to
sample from the distribution of T'. This generates a sequence T'= (T}, T3, ...) of independent variables, each with the distribution of 7' (and so with
distribution function F). Think of T" as a sequence of independent copies of T'. For n € N and ¢ € R, the natural estimator of F'(¢) based on the first n
sample values is

= % i: 1(T; <t) (18.3.12)

which is simply the proportion of the first n sample values that fall in the interval (—oo,t]. Appropriately enough, F), is known as the empirical
distribution function corresponding to the sample of size n. Note that (1(7} <t),1(T2 <t),...) is a sequence of independent, identically distributed
indicator variables (and hence is a sequence of Bernoulli trials), and corresponds to sampling from the distribution of 1(7" < t). The estimator F,(t) is
simply the sample mean of the first n of these variables. The numerator, the number of the original sample variables with values in (—oo, t], has the
binomial distribution with parameters n and F'(¢). Like all sample means from independent, identically distributed samples, F,, (t) satisfies some basic
and important properties. A summary is given below, but to make sense of some of these facts, you need to recall the mean and variance of the indicator
variable that we are sampling from: E [1(T <t)] = F(t), var [1(T <t)] = F(t) [1 — F(t)]

For fixed t € R,

1.E[F,(t)] = F(t) so F,(t) is an unbiased estimator of F'(t)
2.var [F,(t)] = F(t) [1 — F(t)] /n so F,(t) is a consistent estimator of F'(t)
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3. F,(t) — F(t) as m — oo with probability 1, the strong law of large numbers.
4. \/n[F,(t) — F(t)] has mean 0 and variance F'(¢) [1 — F'(¢)] and converges to the normal distribution with these parameters as n — oo, the
central limit theorem.

The theorem above gives us a great deal of information about F}, (t) for fixed ¢, but now we want to let ¢ vary and consider the expression in (d), namely
t — /n[E,(t) — F(t)] , as a random process for each n € N . The key is to consider a very special distribution first.

Suppose that T" has the standard uniform distribution, that is, the continuous uniform distribution on the interval [0, 1]. In this case the distribution function
is simply F'(t) =t for ¢ € [0, 1], so we have the sequence of stochastic processes X, = {X,,(t) : t € [0,1]} forn € N, where

X, (£) = /7 [Fa(t) — 1] (18.3.13)

Of course, the previous results apply, so the process X, has mean function 0, variance function ¢ — ¢(1 —¢), and for fixed ¢ € [0, 1], the distribution
X, (t) converges to the corresponding normal distribution as 7 — oo. Here is the new bit of information, the covariance function of X, is the same as
that of the Brownian bridge!

cov [X,(s), Xp(t)] = min{s, t} — st fors, t €0,1].
Proof

Suppose that s < ¢. From basic properties of covariance,

% iicov [1(T: <s)1(T; <t)] (18.3.14)

i=1 j=1

cov [X,,(8), Xn(t)] =ncov [F,(s), Fn(t)] = %cov (Zn: 1(T; <), 2": 1(T; < t))
-1 =1

But if ¢ # j, the variables 1(T; < s) and 1(Tj <t) are independent, and hence have covariance 0. On the other hand,

cov[1(T; <), L(T; <t)] =P(T; <s,T; <t) —P(T; < s)P(T; <t) =P(T; < s)—P(T; <s)P(T; <t)=s—st (18.3.15)
hence
cov [ X, (s), Xn(t)] = % Xn:cov [1(T; <), 1(T; <t)| =s—st (18.3.16)
i=1
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