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1.12: Special Set Structures

There are several other types of algebraic set structures that are weaker than o-algebras. These are not particularly important in
themselves, but are important for constructing o-algebras and the measures on these o-algebras. You may want to skip this section
if you are not intersted in questions of existence and uniqueness of positive measures.

Basic Theory

Definitions
Throughout this section, we assume that S is a set and . is a nonempty collection of subsets of S. Here are the main definitions

we will need.

l & is a w-system if . is closed under finite intersections: if A, B € . then ANB € .% .

Closure under intersection is clearly a very simple property, but 7 systems turn out to be useful enough to deserve a name.

& is a A-system if it is closed under complements and countable disjoint unions.

1.If A€ ¥ then A° € ..

2.1f A; € & for i in a countable index set I and A; N A; =0 fori # j then {J,.; 4; € &

iel
& is a semi-algebra if it is closed under intersection and if complements can be written as finite, disjoint unions:

1.IfA, Be Sthen ANBe Y.
2.1f A € & then there exists a finite, disjoint collection {B; : i € I} C . such that A° =|J,.; B;.

For our final structure, recall that a sequence (A;, As,...) of subsets of S is increasing if A, C A,41 for all n € N, . The
sequence is decreasing if A, 1 C A, for all n € N, . Of course, these are the standard meanings of increasing and decreasing
relative to the ordinary order < on N and the subset partial order C on &(S).

& is a monotone class if it is closed under increasing unions and decreasing intersections:

1.If (A, Ag, .. .) is an increasing sequence of sets in . then | J,;~ ; A, € 7.
2.1f (A, A, .. .) is a decreasing sequence of sets in . then ())”; A, € 7.

If (A1, Ay, ...) is an increasing sequence of sets then we sometimes write UZOZI A, =lim,_, A, . Similarly, if (4, 42...)isa
decreasing sequence of sets we sometimes write ﬂff:l A,, =lim,,_.o A, . The reason for this notation will become clear in the
section on Convergence in the chapter on Probability Spaces. With this notation, a monotone class . is defined by the condition
that if (Ay, Aa, .. .) is an increasing or decreasing sequence of sets in . then lim,, o, 4, € &.

Basic Theorems

Our most important set structure, the o-algebra, has all of the properties in the definitions above.

l If . is a o-algebra then .# is a w-system, a A-system, a semi-algebra, and a monotone class.

If & isaA-systemthen S € . and ) € ..
Proof

The proof is just like the one for an algebra. There exists A € . since . is non-empty. Hence A° €. and so
S=AUA°c ¥ .Finally) = S°c 7.

Any type of algebraic structure on subsets of S that is defined purely in terms of closure properties will be preserved under
intersection. That is, we will have results that are analogous to how o-algebras are generated from more basic sets, with completely
straightforward and analgous proofs. In the following two theorems, the term system could mean 7-system, A-system, or monotone
class of subsets of S.
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l If .#; is a system for each 7 in an index set I and (),.; </ is nonempty, then (),_; % is a system of the same type.

icl

The condition that ();c; < be nonempty is unnecessary for a A-system, by the result above. Now suppose that & is a nonempty
collection of subsets of S, thought of as basic sets of some sort. Then the system generated by £ is the intersection of all systems
that contain A.

The system . generated by & is the smallest system containing 98, and is characterized by the following properties:

1. BCSL.
2.1f T isasystemand Z C 7 then ¥ C J.

Note however, that the previous two results do not apply to semi-algebras, because the semi-algebra is not defined purely in terms
of closure properties (the condition on A° is not a closure property).

If . is a monotone class and an algebra, then . is a o-algebra.
Proof

All that is needed is to prove closure under countable unions. Thus, suppose that A; € % for ¢ € N.. Then
B, =, A; € & since .7 is an algebra. The sequence (Bj,Bs,...) is increasing, so |J;-, B, € 7, since . is a
monotone class. But | J;7; B, =;2; 4; .

By definition, a semi-algebra is a 7-system. More importantly, a semi-algebra can be used to construct an algebra.

Suppose that . is a semi-algebra of subsets of .S. Then the collection . of finite, disjoint unions of sets in . is an algebra.

Proof

Suppose that A, B € .#*. Then there exist finite, disjoint collections {A4;:i € I} C.% and {B;:j€ J} C.% such that
A =Ujer Ai and B=J;c; B; . Hence

AnB= []J (4inBy) (1.12.1)
(i,5)€IxJ
But {A;NB;: (i,5) € I x J} is a finite, disjoint collection of sets in ., so ANB € " . Suppose A € ¥, so that there
exists a finite, disjoint collection {4; : % € I'} such that A =J,.; A;. Then A°=,.; AS. But A € " by definition of
semi-algebra, and we just showed that .#* is closed under finite intersections, so A° € ..

We will say that our nonempty collection . is closed under proper set difference if A, B € . and A C B implies B\ A € .7 .
The following theorem gives the basic relationship between A-systems and monotone classes.

Suppose that .# is a nonempty collection of subsets of .S

1. If . is a A-system then . is a monotone class and is closed under proper set difference.
2. If .# is a monotone class, is closed under proper set difference, and contains .9, then . is a A-system.

Proof

1. Suppose that . is a A-system. Suppose that A, B € % and A C B. Then B¢ € ., and A and B° are disjoint, so
AUB° € .. Butthen (AUB®)*=BNA°=B\ Ac . .Hence.” is closed under proper set difference. Next
suppose that (A;, As, . . .) is an increasing sequence of sets in .. Let B; = A; and B, = A, \ A, forn€{2,3,...}
Then B; € . for each 7 € N, . But the sequence (Bj, By, .. .) is disjoint and has the same union as (A, A, ...). Hence
U2y Ai = U2y B; € & . Finally, suppose that (A1, Az, . . .) is a decreasing sequence of sets in .. Then AS € .% for
eachi € Ny and (AS, A4S, ...) is increasing. Hence | J{°; A$ € . and therefore (U2, A5)“ =N, A € 7.

2. Suppose that . is a monotone class, is closed under proper set difference, and S € .. If A € . then trivially A C S so
A® =S\ A€ . Next, suppose that A, B € . are disjoint. Then A° € . and B C A¢,s0 A\ B=A°NB‘ € .Y .
Hence AUB = (A°N B°)¢ € . . Finally, suppose that (A1, As, . ..) is a disjoint sequence of sets in .. We just showed
that . is closed under finite, disjoint unions, so B, = U:.L:l A; € & . But the sequence (By, By, . ..) is increasing, and
hence (J;-, B, =U;o; 4i € 7.
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The following theorem is known as the monotone class theorem, and is due to the mathematician Paul Halmos.

Suppose that 27 is an algebra, .# is a monotone class, and & C .# . Then o(%/) C A .

Proof

First let m () denote the monotone class generated by &, as defined above. The outline of the proof is to show that m (&) is
an algebra, so that by (9), m(&) is a o-algebra. It then follows that o(2/) C m(%/) C .# . To show that m(&/) is an
algebra, we first show that it is closed under complements and then under simple union.

Since m(&) is a monotone class, the collection m*(&/) ={A C S: A° € m(&/)} is also a monotone class. Moreover,
& Cm*() so it follows that m(=/) C m* (<) . Hence if A € m(&7) then A € m* (&) so A° € m(&). Thus m(&) is
closed under complements.

Let#y ={ACS: AUBem(«)forall B€ &/} . Then .#; is a monotone class and &/ C .#; so m(«) C .4, . Next
let #o={ACS: AUBem(«)forall Be m(&/)} . Then .#, is also a monotone class. Let A € &7. If B€ m(«)
then B€ .#; and hence AUB € m(&«/). Hence A € .#,. Thus we have & C .#>, so m(«) C M. Finally, let
A, Be m(%/). Then A € A5 so AUB € m(&/) and therefore m (%) is closed under simple union.

As noted in (5), a o-algebra is both a 7-system and a A-system. The converse is also true, and is one of the main reasons for
studying these structures.

If % is a w-system and a A-system then . is a o-algebra.

Proof

Se, and if A€ & then A¢ € . by definition of a A-system. Thus, all that is left is to show closure under countable
unions. Thus, suppose that (A;, Az, ...) is a sequence of sets in . Then A¢ € ¥ for each i € N, . Since . is also a 7-
system, it follows that for each n € N, B, = A4, N A‘lf N---N Afl L E # (by convention B; = A; ). But the sequence
(B1, Ba, . ..) is disjoint and has the same union as (A1, As, ...). Hence | J;°; A; =U;2; Bi€ 7.

The importance of 7-systems and A-systems stems in part from Dynkin's -\ theorem given next. It's named for the mathematician
Eugene Dynkin.

Suppose that & is a 7-system of subsets of S, & is a A-system of subsets of S, and & C . Then (/) C A.
Proof
Let .% denote the A-system generated by 2. Then of course & C ¥ C %A .For A € .Z, let

Zy={BCS:BnAc ¥} (1.12.2)

We will show that .#, is a A-system. Note that SN A=A € £ and therefore S € %4 . Next, suppose that By, By € Z4
and that B; CBs. Then BiNAc¥ and By;NAc¥ and B NACBNA. Hence
(Bo\B1)NA=(B;NA)\ (BiNA)e ¥ . Hence By \ By € %4 . Finally, suppose that {B;:¢ € I} is a countable,
disjoint collection of sets in Z4. Then B;NA €% for each i €I, and {B;NA:i€ I} is also a disjoint collection.
Therefore, | J;.; (Bi NA) = (U;e; Bi) VA€ % .HencelJ;.; B; € %

Nextfix Ac o . If Be o/ then ANB € &/ ,s0 ANB € % and hence B € Z,. But .Z is the smallest A-system containing
&/ so we have shown that & C %, for every A€ &f. Now fix Be . If Ac &/ then B€ %4 so ANBe ¥ and
therefore A € Z5. Again, .Z is the smallest A-system containing 2/ so we have now shown that . C £ for every B € .Z.
Finally, let B, C' € .Z. Then C € £ and hence BNC € £ . It now follows that .% is a w-system, as well as a A-system,
and therefore by the theorem above, Z is a sigma-algebra. But o/ C . and hence o (&) C % .

Examples and Special Cases
Suppose that S is a set and 7 is a finite partition of S. Then ¥ = {{} U & is a semi-algebra of subsets of S.

Proof
IfA, Be Z/ thenANB=0c ./ .IfAc ¥ then A°=|J{Be & : B+ A}
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Euclidean Spaces
The following example is particulalry important because it will be used to construct positive measures on R. Let
B={(a,b]:a,beR, a<b}U{(—00,b] :beR}U{(a,0):acR} (1.12.3)
2B is a semi-algebra of subsets of R.
Proof

Note that the intersection of two intervals of the type in & is another interval of this type. The complement of an interval of
this type is either another interval of this type or the union of two disjoint intervals of this type.

It follows from the theorem above that the collection & of finite disjoint unions of intervals in £ is an algebra. Recall also that
o(PB) = o (&) is the Borel o-algebra of R, named for Emile Borel. We can generalize all of this to R™ forn € N

l The collection %, = {[[;.; Ai : A; € Bforeachi € {1,2,...,n}} isa semi-algebra of subsets of R™.

Recall also that o(4,,) is the o-algebra of Borel sets of R"™.

Product Spaces

The examples in this discussion are important for constructing positive measures on product spaces.

Suppose that . is a semi-algebra of subsets of a set S and that .7 is a semi-algebra of subsets of a set T'. Then
U={AxB:Ac¥,Be T} (1.12.4)

is a semi-algebra of subsets of S x T'.

Proof

1. Suppose that A x B, C x D € % ,sothat A, C € ¥ and B, D € 7. Recall that
(AxB)N(CxD)=(ANC)x(BND) .BuANCe” andBNDe T so(AxB)N(CxD)e¥« .
2. Suppose that A x B € £ so that A € . and B € 7. Then

(AxB)¢=(A*xB)U(Ax B°)U (A x B°) (1.12.5)

There exists a finite, disjoint collection {A; : ¢ € I'} of sets in . and a finite, disjoint collection {B; : j € J} of setsin J

such that A° = J;.; 4; and B® =J,.; B; . Hence
(AxB) = [[JixB)|u | J@AxB;)|u lU J(4i x B)) (1.12.6)
icl jeT iel jeJ
All of the product sets in this union are in %/ and the product sets are disjoint.
This result extends in a completely straightforward way to a product of a finite number of sets.
Suppose that n € N and that .%; is a semi-algebra of subsets of a set S; fori € {1,2,...,n}. Then
”Z/:{HAi:AiE%forallie{l,Z,...,n}} (1.12.7)
i=1

is a semi-algebra of subsets of [ [ ; S;.

Note that the semi-algebra of products of intervals in R" described above is a special case of this result. For the product of an
infinite sequence of sets, the result is bit more tricky.

Suppose that .%; is a semi-algebra of subsets of a set S; for i € N.. Then

o0
U = {HAi 1 A; € S foralli € Ny and A; = S; for all but finitely many ¢ € N+} (1.12.8)
=1
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is a semi-algebra of subsets of [[* ; S;.
Proof
The proof is very much like the previous ones.
1. Suppose that A =[[°; A; € % and B=][[;°; B; € % ,sothat A;, B; € .%; fori € N, and A; = S; for all but finitely
many ¢ € N, and B; = S; for all but finitely many ¢ € N, . Then AN B =[[2, (4; N B;) . Also, A;N B; € % for
1 € N, and A; N B; = .S; for all but finitely many in € N,..So ANBe€ % .

2. Suppose that A = [[°; A; € % , where A; € 7 fori € N, and A; = S; fori > n, for some n € N, . Then
A®=Uj_, Bj where

BjZAlX---XAJ'_1XA§XSJ'+1XSJ'+2X"', j6{1,2,...,n} (1129)
Note that the product sets in this union are disjoint. But for each j € {1, 2, ..., n}there exists a finite disjoint collection
{Cj: k € K;} such that A7 = ek, Cjyr - Substituting and distributing then gives A° as a finite, disjoint union of sets in

U.

Note that this result would not be true with % = {[[;2; A; : A; € #; foralli € N, } . In general, the complement of a set in %
cannot be written as a finite disjoint union of sets in % .
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