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8.1: Introduction to Set Estimation
       

Basic Theory

The Basic Statistical Model

As usual, our starting point is a random experiment with an underlying sample space and a probability measure . In the basic
statistical model, we have an observable random variable  taking values in a set . In general,  can have quite a complicated
structure. For example, if the experiment is to sample  objects from a population and record various measurements of interest,
then

where  is the vector of measurements for the th object. The most important special case occurs when  are
independent and identically distributed. In this case, we have a random sample of size  from the common distribution.

Suppose also that the distribution of  depends on a parameter  taking values in a parameter space . The parameter may also be
vector-valued, in which case  for some  and the parameter vector has the form .

Confidence Sets

A confidence set is a subset  of the parameter space  that depends only on the data variable , and no unknown
parameters. the confidence level is the smallest probability that :

Thus, in a sense, a confidence set is a set-valued statistic. A confidence set is an estimator of  in the sense that we hope that 
 with high probability, so that the confidence level is high. Note that since the distribution of  depends on , there is a

dependence on  in the probability measure  in the definition of confidence level. However, we usually suppress this, just to keep
the notation simple. Usually, we try to construct a confidence set for  with a prescribed confidence level  where .
Typical confidence levels are 0.9, 0.95, and 0.99. Sometimes the best we can do is to construct a confidence set whose confidence
level is at least ; this is called a conservative  confidence set for .

Figure : A set estimate that successfully captured the parameter

Suppose that  is  level confidence set for a parameter . Note that when we run the experiment and observe the data ,
the computed confidence set is . The true value of  is either in this set, or is not, and we will usually never know. However,
by the law of large numbers, if we were to repeat the confidence experiment over and over, the proportion of sets that contain 
would converge to . This is the precise meaning of the term confidence. In the usual terminology of
statistics, the random set  is the estimator; the deterministic set  based on an observed value  is the estimate.

Next, note that the quality of a confidence set, as an estimator of , is based on two factors: the confidence level and the precision
as measured by the “size” of the set. A good estimator has small size (and hence gives a precise estimate of ) and large
confidence. However, for a given , there is usually a tradeoff between confidence level and precision—increasing the confidence
level comes only at the expense of increasing the size of the set, and decreasing the size of the set comes only at the expense of
decreasing the confidence level. How we measure the “size” of the confidence set depends on the dimension of the parameter space
and the nature of the confidence set. Moreover, the size of the set is usually random, although in some special cases it may be
deterministic.

Considering the extreme cases may give us some insight. First, suppose that . This set estimator has maximum
confidence 1, but no precision and hence it is worthless (we already knew that ). At the other extreme, suppose that  is
a singleton set. This set estimator has the best possible precision, but typically for continuous distributions, would have confidence
0. In between these extremes, hopefully, are set estimators that have high confidence and high precision.
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Suppose that  is a  level confidence set for  for . If  then 
 is a conservative  level confidence set for .

Proof

This follows from Bonferroni's inequality.

Real-Valued Parameters

In many cases, we are interested in estimating a real-valued parameter  taking values in an interval parameter space 
, where  with . Of course, it's possible that  or . In this context our confidence set frequently

has the form

where  and  are real-valued statistics. In this case  is called a confidence interval for . If  and 
 are both random, then the confidence interval is often said to be two-sided. In the special case that ,  is

called a confidence lower bound for . In the special case that ,  is called a confidence upper bound for .

Suppose that  is a  level confidence lower bound for  and that  is a  level confidence upper bound for 
. If  then  is a conservative  level confidence interval for .

Proof

This follows immediately from (2).

Pivot Variables

You might think that it should be very difficult to construct confidence sets for a parameter . However, in many important special
cases, confidence sets can be constructed easily from certain random variables known as pivot variables.

Suppose that  is a function from  into a set . The random variable  is a pivot variable for  if its distribution
does not depend on . Specifically,  is constant in  for each .

The basic idea is that we try to combine  and  algebraically in such a way that we factor out the dependence on  in the
distribution of the resulting random variable . If we know the distribution of the pivot variable, then for a given , we can
try to find  (that does not depend on ) such that . It then follows that a  confidence set for
the parameter is given by .

Figure : A confidence set constructed from a pivot variable

Suppose now that our pivot variable  is real-valued, which for simplicity, we will assume has a continuous distribution.
For , let  denote the quantile of order  for the pivot variable . By the very meaning of pivot variable, 
does not depend on .

For any , a  level confidence set for  is

Proof

By definition, the probability of the event is .
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The confidence set above corresponds to  in the left tail and  in the right tail, in terms of the distribution of the pivot
variable . The special case  is the equal-tailed case, the most common case.

Figure : Distribution of the pivot variable showing  is the left tail and  is the right tail.

The confidence set (5) is decreasing in  and hence increasing in  (in the sense of the subset relation) for fixed .

For the confidence set (5), we would naturally like to choose  that minimizes the size of the set in some sense. However this is
often a difficult problem. The equal-tailed interval, corresponding to , is the most commonly used case, and is sometimes
(but not always) an optimal choice. Pivot variables are far from unique; the challenge is to find a pivot variable whose distribution
is known and which gives tight bounds on the parameter (high precision).

Suppose that  is a pivot variable for . If  is a function defined on the range of  and  involves no unknown
parameters, then  is also a pivot variable for .

Examples and Special Cases

Location-Scale Families

In the case of location-scale families of distributions, we can easily find pivot variables. Suppose that  is a real-valued random
variable with a continuous distribution that has probability density function , and no unknown parameters. Let 
where  and  are parameters. Recall that the probability density function of  is given by

and the corresponding family of distributions is called the location-scale family associated with the distribution of ;  is the
location parameter and  is the scale parameter. Generally, we are assuming that these parameters are unknown.

Now suppose that  is a random sample of size  from the distribution of ; this is our observable outcome
vector. For each , let

The random vector  is a random sample of size  from the distribution of .

In particular, note that  is a pivot variable for , since  is a function of , , and , but the distribution of  does not
depend on  or . Hence, any function of  will also be a pivot variable for , (if the function does not involve the
parameters). Of course, some of these pivot variables will be much more useful than others in estimating  and . In the following
exercises, we will explore two common and important pivot variables.

Let  and  denote the sample means of  and , respectively. Then  is a pivot variable for  since

Let  denote the quantile function of the pivot variable . For any , a  confidence set for  is
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The confidence set constructed above is a “cone” in the  parameter space, with vertex at  and boundary lines
of slopes  and , as shown in the graph below. (Note, however, that both slopes might be
negative or both positive.)

Figure : The confidence set for  constructed from 

The fact that the confidence set is unbounded is clearly not good, but is perhaps not surprising; we are estimating two real
parameters with a single real-valued pivot variable. However, if  is known, the confidence set defines a confidence interval for .
Geometrically, the confidence interval simply corresponds to the horizontal cross section at .

 confidence sets for  are

1. 
2. 

Proof

In the confidence set constructed above, let  and , respectively.

If  is known, then (a) gives a  confidence lower bound for  and (b) gives a  confidence upper bound for .

Let  and  denote the sample standard deviations of  and , respectively. Then  is a pivot variable for 
and a pivot variable for  since

Let  denote the quantile function of . For any  and , a  confidence set for  is

Note that the confidence set gives no information about  since the random variable above is a pivot variable for  alone. The
confidence set can also be viewed as a bounded confidence interval for .

Figure : The confidence set for  constructed from 
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Proof

In the confidence set constructed above, let  and , respectively.
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The set in part (a) gives a  confidence lower bound for  and the set in part (b) gives a  confidence upper bound for .

We can intersect the confidence sets corresponding to the two pivot variables to produce conservative, bounded confidence sets.

If  with  then  is a conservative  confidence set for .

Proof

Figure : The bounded confidence set for  constructed from 

The most important location-scale family is the family of normal distributions. The problem of estimation in the normal model is
considered in the next section. In the remainder of this section, we will explore another important scale family.

The Exponential Distribution

Recall that the exponential distribution with scale parameter  has probability density function 
. It is the scale family associated with the standard exponential distribution, which has probability

density function . The exponential distribution is widely used to model random times (such as lifetimes
and “arrival” times), particularly in the context of the Poisson model. Now suppose that  is a random
sample of size  from the exponential distribution with unknown scale parameter . Let

The random variable  has the chi-square distribution with  degrees of freedom, and hence is a pivot variable for .

Note that this pivot variable is a multiple of the variable  constructed above for general location-scale families (with ). For 
 and , let  denote the quantile of order  for the chi-square distribution with  degrees of freedom. For

selected values of  and ,  can be obtained from the special distribution calculator or from most statistical software
packages.

Recall that

1.  as 
2.  as 

For any  and any , a  confidence interval for  is

Note that

1.  is a  confidence lower bound for .
2.  is a  confidence lower bound for .

Of the two-sided confidence intervals constructed above, we would naturally prefer the one with the smallest length, because this
interval gives the most information about the parameter . However, minimizing the length as a function of  is computationally
difficult. The two-sided confidence interval that is typically used is the equal tailed interval obtained by letting :
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The lifetime of a certain type of component (in hours) has an exponential distribution with unknown scale parameter . Ten
devices are operated until failure; the lifetimes are 592, 861, 1470, 2412, 335, 3485, 736, 758, 530, 1961.

1. Construct the 95% two-sided confidence interval for .
2. Construct the 95% confidence lower bound for .
3. Construct the 95% confidence upper bound for .

Answer
1. 
2. 836.7
3. 2421.9
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( , )
2 Y

(1 −α/2)χ2
2n

2 Y

(α/2)χ2
2n

(8.1.13)

σ

σ

σ

σ

(769.1, 2740.1)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10200?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/08%3A_Set_Estimation/8.01%3A_Introduction_to_Set_Estimation
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random

