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17.2: Properties and Constructions
      

Basic Theory

Preliminaries

As in the Introduction, we start with a stochastic process  on an underlying probability space , having
state space , and where the index set  (representing time) is either  (discrete time) or  (continuous time). Next, we have
a filtration , and we assume that  is adapted to . So  is an increasing family of sub -algebras of  and 
is measurable with respect to  for . We think of  as the collection of events up to time . We assume that 

, so that the mean of  exists as a real number, for each . Finally, in continuous time where , we
make the standard assumptions that  is right continuous and has left limits, and that the filtration  is right continuous and
complete. Please recall the following from the Introduction:

Definitions

1.  is a martingale with respect to  if  for all  with .
2.  is a sub-martingale with respect to  if  for all  with .
3.  is a super-martingale with respect to  if  for all  with .

Our goal in this section is to give a number of basic properties of martingales and to give ways of constructing martingales from
other types of processes. The deeper, fundamental theorems will be studied in the following sections.

Basic Properties

Our first result is that the martingale property is preserved under a coarser filtration.

Suppose that the process  and the filtration  satisfy the basic assumptions above and that  is a filtration coarser than  so
that  for . If  is a martingale (sub-martingale, super-martingale) with respect to  and  is adapted to  then 

 is a martingale (sub-martingale, super-martingale) with respect to .

Proof

Suppose that  with . The proof uses the tower and increasing properties of conditional expected value, and the
fact that  is adapted to 

1. If  is a martingale with respect to  then

2. If  is a sub-martinagle with respect to  then

3. If  is a super-martinagle with respect to  then

In particular, if  is a martingale (sub-martingale, super-martingale) with respect to some filtration, then it is a martingale (sub-
martingale, super-martingale) with respect to its own natural filtration.

The relations that define martingales, sub-martingales, and super-martingales hold for the ordinary (unconditional) expected values.
We had this result in the last section, but it's worth repeating.

Suppose that  with .

1. If  is a martingale with respect to  then .
2. If  is a sub-martingale with respect to  then .
3. If  is a super-martingale with respect to  then .

Proof

X = { : t ∈ T}Xt (Ω,F ,P)

R T N [0, ∞)

F = { : t ∈ T}Ft X F F σ F Xt

Ft t ∈ T Ft t ∈ T

E (| |) < ∞Xt Xt t ∈ T T = [0, ∞)

X F

X F E( ∣ ) =Xt Fs Xs s, t ∈ T s ≤ t

X F E( ∣ ) ≥Xt Fs Xs s, t ∈ T s ≤ t

X F E( ∣ ) ≤Xt Fs Xs s, t ∈ T s ≤ t

X F G F

⊆Gt Ft t ∈ T X F X G

X G

s, t ∈ T s ≤ t

X G

X F

E( ∣ ) =E [E( ∣ ) ∣ ] =E( ∣ ) =Xt Gs Xt Fs Gs Xs Gs Xs (17.2.1)

X F

E( ∣ ) =E [E( ∣ ) ∣ ] ≥E( ∣ ) =Xt Gs Xt Fs Gs Xs Gs Xs (17.2.2)

X F

E( ∣ ) =E [E( ∣ ) ∣ ] ≤E( ∣ ) =Xt Gs Xt Fs Gs Xs Gs Xs (17.2.3)

X

s, t ∈ T s ≤ t

X F E( ) =E( )Xs Xt

X F E( ) ≤E( )Xs Xt

X F E( ) ≥E( )Xs Xt
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The results follow directly from the definitions, and the critical fact that  for .

So if  is a martingale then  has constant expected value, and this value is referred to as the mean of . The martingale
properties are preserved under sums of the stochastic processes.

For the processes  and , let . If  and  are martingales
(sub-martingales, super-martinagles) with respect to  then  is a martingale (sub-martingale, super-martinagle) with
respect to .

Proof

The results follow easily from basic properties of expected value and conditional expected value. First note that 
 for . Next  for  with

.

The sub-martingale and super-martingale properties are preserved under multiplication by a positive constant and are reversed
under multiplication by a negative constant.

For the process  and the constant , let .

1. If  is a martingale with respect to  then  is also a martingale with respect to 
2. If  is a sub-martingale with respect to , then  is a sub-martingale if , a super-martingale if , and a

martingale if .
3. If  is a super-martingale with respect to , then  is a super-martingale if , a sub-martingale if , and a

martingale if .

Proof

The results follow easily from basic properties of expected value and conditional expected value. First note that 
 for . Next  for  with .

Property (a), together with the previous additive property, means that the collection of martingales with respect to a fixed filtration 
 forms a vector space. Here is a class of transformations that turns martingales into sub-martingales.

Suppose that  takes values in an interval  and that  is convex with  for . If either of
the following conditions holds then  is a sub-martingale with respect to :

1.  is a martingale.
2.  is a sub-martingale and  is also increasing.

Proof

Figure : A convex function and several supporting lines

Here is the most important special case of the previous result:

Suppose again that  is a martingale with respect to . Let  and suppose that  for . Then the

process  is a sub-martingale with respect to 

Proof

E [E ( ∣ )] =E( )Xt Fs Xt s, t ∈ T

X X X

X = { : t ∈ T}Xt Y = { : t ∈ T}Yt X+Y = { + : t ∈ T}Xt Yt X Y

F X+Y

F

E (| + |) ≤E (| |) +E (| |) < ∞Xt Yt Xt Yt t ∈ T E( + ∣ ) =E( ∣ ) +E( ∣ )Xt Yt Fs Xt Fs Yt Fs s, t ∈ T

s ≤ t

X = { : t ∈ T}Xt c ∈ R cX = {c : t ∈ T}Xt

X F cX F

X F cX c > 0 c < 0

c = 0

X F cX c > 0 c < 0

c = 0

E (|c |) = |c|E (| |) < ∞Xt Xt t ∈ T E(c ∣ ) = cE( ∣ )Xt Fs Xt Fs s, t ∈ T s ≤ t

F

X S ⊆R g : S →R E [|g( )|] < ∞Xt t ∈ T

g(X) = {g( ) : t ∈ T}Xt F

X

X g

17.2.1
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k

t ∈ T
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Figure : The graphs of ,  and  on the interval 

In particular, if  is a martingale relative to  then  is a sub-martingale relative to . Here is a related result
that we will need later. First recall that the positive and negative parts of  are  and , so
that , , , and .

Figure : The graph of  on the interval 

If  is a sub-martingale relative to  then  is also a sub-martingale
relative to .

Proof

As shown in the graph above, the function  is increasing and convex on .

Our last result of this discussion is that if we sample a continuous-time martingale at an increasing sequence of time points, we get
a discrete-time martingale.

Suppose again that the process  and the filtration  satisfy the basic assumptions
above. Suppose also that  is a strictly increasing sequence of time points with , and define 

 and  for . If  is a martingale (sub-martingale, super-martingale) with respect to  then 
 is a martingale (sub-martingale, super-martingale) with respect to .

Proof

Since the time points are increasing, it's clear that  is a discrete-time filtration. Next, . Finally,
suppose that  is a martingale and  with . Then  so

Hence  is also a martingale. The proofs for sub and super-martingales are similar, but with inequalities replacing the second
equality.

This result is often useful for extending proofs of theorems in discrete time to continuous time.

The Martingale Transform

Our next discussion, in discrete time, shows how to build a new martingale from an existing martingale and an predictable process.
This construction turns out to be very useful, and has an interesting gambling interpretation. To review the definition, recall that 

 is predictable relative to the filtration  if  is measurable with respect to  for .
Think of  as the bet that a gambler makes on game . The gambler can base the bet on all of the information she has at
that point, including the outcomes of the previous  games. That is, she can base the bet on the information encoded in .

17.2.2 x ↦ |x| x ↦ |x|2 x ↦ |x|3 [−2, 2]

X F |X| = {| | : t ∈ T}Xt F

x ∈ R = max{x, 0}x+ = max{−x, 0}x−

≥ 0x+ ≥ 0x− x = −x+ x− |x| = +x+ x−

17.2.3 x ↦ x+ [−5, 5]

X = { : t ∈ T}Xt F = { : t ∈ T}Ft = { : t ∈ T}X
+ X+

t

F

x ↦ x+
R

X = { : t ∈ [0, ∞)}Xt F = { : t ∈ [0, ∞)}Ft

{ : n ∈ N} ⊂ [0, ∞)tn = 0t0

=Yn Xtn =Gn Ftn n ∈ N X F

Y = { : n ∈ N}Yn G

G E(| |) =E (| |) < ∞Yn Xtn

X n, k ∈ N k < n <tk tn

E( ∣ ) =E ( ∣ ) = =Yn Gk Xtn Ftk Xtk Yk (17.2.4)

Y

{ : n ∈ }Yn N+ F = { : n ∈ N}Fn Yn Fn−1 n ∈ N+

Yn n ∈ N+

n−1 Fn−1
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Suppose that  is adapted to the filtration  and that  is predictable
relative to . The transform of  by  is the process  defined by

The motivating example behind the transfrom, in terms of a gambler making a sequence of bets, is given in an example below.
Note that  is also adapted to . Note also that the transform depends on  only through  and . If 

 is a martingale, this sequence is the martingale difference sequence studied Introduction.

Suppose  is adapted to the filtration  and that  is a bounded
process, predictable relative to .

1. If  is a martingale relative to  then  is also a martingale relative to .
2. If  is a sub-martingle relative to  and  is nonnegative, then  is also a sub-martingale relative to .
3. If  is a super-martingle relative to  and  is nonnegative, then  is also a super-martingale relative to .

Proof

Suppose that  for  where . Then

Next, for ,

since ,  and  are -measurable. The results now follow from the definitions of martingle, sub-martingale,
and super-martingale.

This construction is known as a martingale transform, and is a discrete version of the stochastic integral that we will study in the
chapter on Brownian motion. The result also holds if instead of  being bounded, we have  bounded and  for 

The Doob Decomposition

The next result, in discrete time, shows how to decompose a basic stochastic process into a martingale and a predictable process.
The result is known as the Doob decomposition theorem and is named for Joseph Doob who developed much of the modern theory
of martingales.

Suppose that  satisfies the basic assumptions above relative to the filtration . Then 
 for  where  is a martingale relative to  and  is predictable

relative to . The decomposition is unique.

1. If  is a sub-martingale relative to  then  is increasing.
2. If  is a super-martingale relative to  then  is decreasing.

Proof

Recall that the basic assumptions mean that  is adapted to  and  for . Define 
and

Then  is measurable with respect to  for  so  is predictable with respect to . Now define

X = { : n ∈ N}Xn F = { : n ∈ N}Fn Y = { : n ∈ }Yn N+

F X Y Y ⋅X

(Y ⋅X = + ( − ), n ∈ N)n X0 ∑
k=1

n

Yk Xk Xk−1 (17.2.5)

Y ⋅X F X X0 { − : n ∈ }Xn Xn−1 N+

X

X = { : n ∈ N}Xn F = { : n ∈ N}Fn Y = { : n ∈ N}Yn
F

X F Y ⋅X F

X F Y Y ⋅X F

X F Y Y ⋅X F

| | ≤ cYn n ∈ N c ∈ (0, ∞)

E(|(Y ⋅X |) ≤E(| |) +c [E(| |) +E(| |)] < ∞, n ∈ N)n X0 ∑
k=1

n

Xk Xk−1 (17.2.6)

n ∈ N

E [(Y ⋅X ∣ ])n+1 Fn =E [(Y ⋅X + ( − ) ∣ ] = (Y ⋅X + E ( − ∣ ))n Yn+1 Xn+1 Xn Fn )n Yn+1 Xn+1 Xn Fn

= (Y ⋅X + [E( ∣ ) − ])n Yn+1 Xn+1 Fn Xn

(Y ⋅X)n Yn+1 Xn Fn

Y X E(| |) < ∞Yn
n ∈ N+

X = { : n ∈ N}Xn F = { : n ∈ N}Fn

= +Xn Yn Zn n ∈ N Y = { : n ∈ N}Yn F Z = { : n ∈ N}Zn

F

X F Z

X F Z

X = { : n ∈ N}Xn F E(| |) < ∞Xn n ∈ N = 0Z0

= [E( ∣ ) − ] , n ∈Zn ∑
k=1

n

Xk Fk−1 Xk−1 N+ (17.2.7)

Zn Fn−1 n ∈ N+ Z F

= − = − [E( ∣ ) − ] , n ∈ NYn Xn Zn Xn ∑
k=1

n

Xk Fk−1 Xk−1 (17.2.8)
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Then  and trivially  for . Next,

Hence  is a martingale. Conversely, suppose that  has the decomposition in terms of  and  given in the theorem. Since 
 is a martingale and  is predictable,

Also  so  uniquely determines . But  for , so  uniquely determines  also.

1. If  is a sub-martingale then  for  so  is increasing.
2. If  is a super-martingale then  for  so  is decreasing.

A decomposition of this form is more complicated in continuous time, in part because the definition of a predictable process is
more subtle and complex. The decomposition theorem holds in continuous time, with our basic assumptions and the additional
assumption that the collection of random variables  is uniformly integrable. The result
is known as the Doob-Meyer decomposition theorem, named additionally for Paul Meyer.

Markov Processes

As you might guess, there are important connections between Markov processes and martingales. Suppose that 
is a (homogeneous) Markov process with state space , relative to the filtration . Let 
denote the collection of transition kernesl of , so that

Recall that (like all probability kernels),  operates (on the right) on (measurable) functions  by the rule

assuming as usual that the expected value exists. Here is the critical definition that we will need.

Suppose that  and that  for .

1.  is harmonic for  if  for .
2.  is sub-harmonic for  if  for .
3.  is super-harmonic for  if  for .

The following theorem gives the fundamental connection between the two types of stochastic processes. Given the similarity in the
terminology, the result may not be a surprise.

Suppose that  and  for . Define .

1.  is harmonic for  if and only if  is a martingale with respect to .
2.  is sub-harmonic for  if and only if  is a sub-martingale with respect to .
3.  is super-harmonic for  if and only if  is a super-martingale with respect to .

Proof

Suppose that  with . Then by the Markov property,

So if  is harmonic,  so  is a martingale. Conversely, if  is a
martingale, then . Letting  and  gives  so  is harmonic. The proofs for sub
and super-martingales are similar, with inequalities replacing the equalities.

E(| |) < ∞Yn = +Xn Yn Zn n ∈ N

E( ∣ )Yn+1 Fn =E( ∣ ) − =E( ∣ ) − [E( ∣ ) − ]Xn+1 Fn Zn+1 Xn+1 Fn ∑
k=1

n+1

Xk Fk−1 Xk−1

= − [E( ∣ ) − ] = , n ∈ NXn ∑
k=1

n

Xk Fk−1 Xk−1 Yn

Y X Y Z

Y Z

E( − ∣ )Xn Xn−1 Fn−1 =E( ∣ ) −E( ∣ ) +E( ∣ ) −E( ∣ )Yn Fn−1 Yn−1 Fn−1 Zn Fn−1 Zn−1 Fn−1

= − + − = − , n ∈Yn−1 Yn−1 Zn Zn−1 Zn Zn−1 N+

= 0Z0 X Z = −Yn Xn Zn n ∈ N X Y

X E( ∣ ) − ≥ 0Xn Fn−1 Xn−1 n ∈ N+ Z

X E( ∣ ) − ≤ 0Xn Fn−1 Xn−1 n ∈ N+ Z

{ : τ  is a finite-valued stopping time}Xτ

X = { : t ∈ T}Xt

(S,S ) F = { : t ∈ T}Ft P = { : t ∈ T}Pt

X

(x,A) = P( ∈ A ∣ = x), x ∈ S,A ∈SPt Xt X0 (17.2.9)

Pt h : S →R

h(x) = (x, dy)h(y) =E[h( ) ∣ = x], x ∈ SPt ∫
S

Pt Xt X0 (17.2.10)

h : S →R E[|h( )|] < ∞Xt t ∈ T

h X h = hPt t ∈ T

h X h ≥ hPt t ∈ T

h X h ≤ hPt t ∈ T

h : S →R E[|h( )|] < ∞Xt t ∈ T h(X) = {h( ) : t ∈ T}Xt

h X h(X) F

h X h(X) F

h X h(X) F

s, t ∈ T s ≤ t

E[h( ) ∣ ] =E[h( ) ∣ ] = h( )Xt Fs Xt Xs Pt−s Xs (17.2.11)

h E[h( ) ∣ ] = h( )Xt Fs Xs {h( ) : t ∈ T}Xt {h( ) : t ∈ T}Xt

h( ) = h( )Pt−s Xs Xs s = 0 = xX0 h(x) = h(x)Pt h
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Several of the examples given in the Introduction can be re-interpreted in the context of harmonic functions of Markov chains. We
explore some of these below.

Examples
Let  denote the usual set of Borel measurable subsets of , and for  and  let . Let 
denote the identity function on , so that  for . We will need this notation in a couple of our applications below.

Random Walks

Suppose that  is a sequence of independent, real-valued random variables, with  identically
distributed and having common probability measure  on  and mean . Recall from the Introduction that the partial
sum process  associated with  is given by

and that  is a (discrete-time) random walk. But  is also a discrete-time Markov process with one-step transition kernel  given
by  for  and .

The identity function  is

1. Harmonic for  if .
2. Sub-harmonic for  if .
3. Super-harmonic for  if .

Proof

Note that

Since  and  are independent. The results now follow from the definitions.

It now follows from our theorem above that  is a martingale if , a sub-martingale if , and a super-martingale if .
We showed these results directly from the definitions in the Introduction.

The Simple Random Walk

Suppose now that that  is a sequence of independent random variables with  and 
 for , where . Let  be the partial sum process associated with  so that

Then  is the simple random walk with parameter . In terms of gambling, our gambler plays a sequence of independent and
identical games, and on each game, wins €1 with probability  and loses €1 with probability . So if  is the gambler's initial
fortune, then  is her net fortune after  games. In the Introduction we showed that  is a martingale if , a super-
martingale if , and a sub-martingale if . But suppose now that instead of making constant unit bets, the gambler makes
bets that depend on the outcomes of previous games. This leads to a martingale transform as studied above.

Suppose that the gambler bets  on game  (at even stakes), where  depends on 
and satisfies . So the process  is predictable with respect to , and the gambler's net
winnings after  games is

1.  is a sub-martingale if .
2.  is a super-martingale if .

R R A ∈R x ∈ R A−x = {y−x : y ∈ A} I

R I(x) = x x ∈ R

V = { : n ∈ N}Vn { : n ∈ }Vn N+

Q (R,R) a ∈ R

X = { : n ∈ N}Xn V

= , n ∈ NXn ∑
i=0

n

Vi (17.2.12)

X X P

P (x,A) = Q(A−x) x ∈ R A ∈R

I

X a = 0

X a ≥ 0

X a ≤ 0

PI(x) =E( ∣ = x) = x+E( − ∣ = x) = x+E( ∣ = x) = I(x) +a X1 X0 X1 X0 X0 V1 X0 (17.2.13)

V1 =X0 V0

X a = 0 a > 0 a < 0

V = { : n ∈ N}Vn P( = 1) = pVi
P( = −1) = 1 −pVi i ∈ N+ p ∈ (0, 1) X = { : n ∈ N}Xn V

= , n ∈ NXn ∑
i=0

n

Vi (17.2.14)

X p

p 1 −p X0

Xn n X p = 1
2

p < 1
2

p > 1
2

Yn n ∈ N+ ∈ [0, ∞)Yn ( , , , … , )V0 V1 V2 Vn−1

E( ) < ∞Yn Y = { : n ∈ }Yn N+ X

n

(Y ⋅X = + = + ( − ))n V0 ∑
k=1

n

YkVk X0 ∑
k=1

n

Yk Xk Xk−1 (17.2.15)

Y ⋅X p > 1
2

Y ⋅X p < 1
2
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3.  is a martingale if .

Proof

These result follow immediately the theorem for martingale transforms above.

The simple random walk  is also a discrete-time Markov chain on  with one-step transition matrix  given by 
, .

The function  given by  for  is harmonic for .

Proof

For ,

It now follows from our theorem above that the process  given by  for  is a martingale.

We showed this directly from the definition in the Introduction. As you may recall, this is De Moivre's martingale and named for
Abraham De Moivre.

Branching Processes

Recall the discussion of the simple branching process from the Introduction. The fundamental assumption is that the particles act
independently, each with the same offspring distribution on . As before, we will let  denote the (discrete) probability density
function of the number of offspring of a particle,  the mean of the distribution, and  the probability generating function of the
distribution. We assume that  and  so that a particle has a positive probability of dying without children
and a positive probability of producing more than 1 child. Recall that  denotes the probability of extinction, starting with a single
particle.

The stochastic process of interest is  where  is the number of particles in the th generation for .
Recall that  is a discrete-time Markov chain on  with one-step transition matrix  given by  for 
where  denotes the convolution power of order  of .

The function  given by  for  is harmonic for .

Proof

For ,

The last expression is the probability generating function of  evaluated at . But this PGF is simply  and  is a fixed
point of  so we have

It now follows from our theorem above that the process  is a martingale where  for . We
showed this directly from the definition in the Introduction. We also showed that the process  is a martingale
where  for . But we can't write  for a function  defined on the state space, so we can't interpret
this martingale in terms of a harmonic function.

General Random Walks

Suppose that  is a stochastic process satisfying the basic assumptions above relative to the filtration 
. Recall from the Introduction that the term increment refers to a difference of the form  for .

Y ⋅X p = 1
2

X Z P

P (x, x+1) = p P (x, x−1) = 1 −p

h h(x) = ( )
1−p

p

x

x ∈ Z X

x ∈ Z

Ph(x) = ph(x+1) +(1 −p)h(x−1) = p +(1 −p)( )
1 −p

p

x+1

( )
1 −p

p

x−1

+ = [(1 −p) +p] = h(x)
(1 −p)x+1

px
(1 −p)x

px−1
( )

1 −p

p

x

Z = { : n ∈ N}Zn =Zn ( )1−p

p

Xn

n ∈ N

N f

m ϕ

f(0) > 0 f(0) +f(1) < 1

q

X = { : n ∈ N}Xn Xn n n ∈ N

X N P P (x, y) = (y)f ∗x x, y ∈ N

f ∗x x f

h h(x) = qx x ∈ N X

x ∈ N

Ph(x) = P (x, y)h(y) = (y)∑
y∈N

∑
y∈N

f ∗x qy (17.2.16)

f ∗x q ϕx q

ϕ

Ph(x) = [ϕ(q) = = h(x)]x qx (17.2.17)

Z = { : n ∈ N}Zn =Zn qXn n ∈ N

Y = { : n ∈ N}Yn
= /Yn Xn mn n ∈ N = h( )Yn Xn h

X = { : t ∈ T}Xt

F = { : t ∈ T}Ft −Xs+t Xs s, t ∈ T
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The process  has independent increments if this increment is always independent of , and has stationary increments this
increment always has the same distribution as . In discrete time, a process with stationary, independent increments is
simply a random walk as discussed above. In continuous time, a process with stationary, independent increments (and with the
continuity assumptions we have imposed) is called a continuous-time random walk, and also a Lévy process, named for Paul Lévy.

So suppose that  has stationary, independent increments. For  let  denote the probability distribution of  on 
, so that  is also the probability distribution aof  for every . From our previous study, we know that 

 is a Markov processes with transition kernel  at time  given by

We also know that  for  where  (assuming of course that the last expected value exists in 
).

The identity function  is .

1. Harmonic for  if .
2. Sub-harmonic for  if .
3. Super-harmonic for  if .

Proof

Note that

since  is independent of . The results now follow from the definitions.

It now follows that  is a martingale if , a sub-martingale if , and a super-martingale if . We showed this directly
in the Introduction. Recall that in continuous time, the Poisson counting process has stationary, independent increments, as does
standard Brownian motion
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X Pt t ∈ T

(x,A) = (A−x); x ∈ R,A ∈RPt Qt (17.2.18)

E( − ) = atXt X0 t ∈ T a =E( − )X1 X0

R

I

X a = 0

X a ≥ 0

X a ≤ 0

I(x) =E( ∣ = x) = x+E( − ∣ = x) = I(x) +atPt Xt X0 Xt X0 X0 (17.2.19)

−Xt X0 X0

X a = 0 a ≥ 0 a ≤ 0
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