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16.6: Stationary and Limiting Distributions of Discrete-Time Chains

In this section, we study some of the deepest and most interesting parts of the theory of discrete-time Markov chains, involving two
different but complementary ideas: stationary distributions and limiting distributions. The theory of renewal processes plays a
critical role.

Basic Theory

As usual, our starting point is a (time homogeneous) discrete-time Markov chain X = (Xj, X1, X, ...) with (countable) state
space .S and transition probability matrix P. In the background, of course, is a probability space (Q2, %, P) so that 2 is the sample
space, # the o-algebra of events, and [P the probability measure on (2, #). For n € N, let %, =o{Xo, X1,...,Xn}, the o-
algebra of events determined by the chain up to time n, so that § = { %y, Z1, . . . } is the natural filtration associated with X.

The Embedded Renewal Process

Lety € S and n € N . We will denote the number of visits to y during the first n positive time units by

n

Nyn=> 1(X; =y) (16.6.1)
i=1
Note that N, , — Ny asn — oo, where
o0
N,=) 1(Xi =y) (16.6.2)
i=1

is the total number of visits to y at positive times, one of the important random variables that we studied in the section on
transience and recurrence. For n € N, , we denote the time of the nth visit to y by

Tyn =min{k € Ny : Ny, =n} (16.6.3)

where as usual, we define min(@)) = co. Note that 7,1 is the time of the first visit to y, which we denoted simply by 7, in the
section on transience and recurrence. The times of the visits to y are stopping times for X. That is, {7, = k} € %, forn € N,
and k € N. Recall also the definition of the hitting probability to state y starting in state x:

H(z,y) =P(ry <oo| Xo=12), (z,y)€ 5" (16.6.4)
Suppose that z, y € S, and that y is recurrent and Xy = x.

1. If x =y, then the successive visits to y form a renewal process.
2.1f © # y but x — y, then the successive visits to y form a delayed renewal process.

Proof
Let 7,0 = 0 for convenience.

1. Given X =y, the sequence (7,1, 7y,2, - - .) is the sequence of arrival times of a renewal process. Every time the chain
reaches state y, the process starts over, independently of the past, by the Markov property. Thus the interarrival times
Tyn+1— Ty forn € N are conditionally independent, and are identically distributed, given Xy =y.

2.If £ #y but x — y, then given X = x, the sequence (7.1, 7y 2, . . .) is the sequence of arrival times of a delayed renewal
process. By the same argument as in (a), the interarrival times 7, 11 — T, » forn € N are conditionally independent, given
Xo =z, and all but 7, ; have the same distribution.

As noted in the proof, (7,1, 7y,2,. . .) is the sequence of arrival times and (N1, Ny.2, .. .) is the associated sequence of counting
variables for the embedded renewal process associated with the recurrent state y. The corresponding renewal function, given
Xo = z, is the function n — G, (z, y) where

Gn(z,y) =E (Ny, | Xo :w):ZPk(x,y), neN (16.6.5)
k=1
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Thus Gp(z,y) is the expected number of visits to y in the first n positive time units, starting in state z. Note that
Gn(z,y) = G(z,y) as n — oo where G is the potential matrix that we studied previously. This matrix gives the expected total
number visits to state y € .S, at positive times, starting in state € .S:

o0
Glz,y)=E(Ny | Xo=2) = ZPk(m,y) (16.6.6)
k=1
Limiting Behavior
The limit theorems of renewal theory can now be used to explore the limiting behavior of the Markov chain. Let
wu(y) =E(7, | Xo =y) denote the mean return time to state y, starting in y. In the following results, it may be the case that
u(y) = oo, in which case we interpret 1/pu(y) as 0.

If z, y € S and y is recurrent then

]P)(an7y_> - asn—>oo’X0:x> = H(z,y) (16.6.7)
n p(y)

Proof

This result follows from the strong law of large numbers for renewal processes.

Note that %Ny,n = % > p1 L(Xk =y) is the average number of visits to y in the first n positive time units.

If z, y € S and y is recurrent then

%Gn(x,y):;ZPk(m,y)—) ,U(y,)y) asn — 0o (16.6.8)

Proof

This result follows from the elementary renewal theorem for renewal processes.

Note that %Gn (z,y) = % > iy P¥(z,y) is the expected average number of visits to y during the first n positive time units,

starting at .

If z, y € S and y is recurrent and aperiodic then

H(z,y)
w(y)

P"(z,y) — asn — 0o (16.6.9)

Proof

This result follows from the renewal theorem for renewal processes.

Note that H(y,y) =1 by the very definition of a recurrent state. Thus, when x =y, the law of large numbers above gives
convergence with probability 1, and the first and second renewal theory limits above are simply 1/u(y). By contrast, we already
know the corresponding limiting behavior when ¥ is transient.

If z, y € S and y is transient then
LP(iN,n—0asn—oo| Xg=x)=1
2. LG, (z,y) =LY} PH(z,y) 2 0asn— oo
3. P*(z,y) »0asn— oo
Proof
1. Note that 0 < + N, , < N, . But if y is transient, P(N, < 0o | Xo =2) =1 and hence
P (%Ny —0asn—oo| Xp= m) =1 so the result follows from the squeeze theorem for limits.

2. Similarly, note that
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0§%2Pk(z,y) §%iPk(m‘,y) (16.6.10)

If y is transient, G(z,y) = S5y P¥(x,y) < oo and hence +G(z,y) — 0 as n — co. Again the result follows from the
squeeze theorem for limits.
3. Once more, if y is transient, G(z,y) = Y 4o ; P*(z,y) < oo and therefore P"(z,y) — 0 asn — oo.

On the other hand, if y is transient then P(7, = 0o | Xo =) >0 by the very definition of a transience. Thus y(y) = oo, and so
the results in parts (b) and (c) agree with the corresponding results above for a recurrent state. Here is a summary.

Forz, y € S,
1 il H(z,
—Gulz,y) ==Y Pkz,y)— (,9) asn — oo (16.6.11)
If y is transient or if y is recurrent and aperiodic,
H(z,
P"(z,y) — () asm — 0o (16.6.12)
p(y)

Positive and Null Recurrence
Clearly there is a fundamental dichotomy in terms of the limiting behavior of the chain, depending on whether the mean return time
to a given state is finite or infinite. Thus the following definition is natural.

Letz € S.

1. State z is positive recurrent if p(z) < 0o.
2. If z is recurrent but p(z) = oo then state « is null recurrent.

Implicit in the definition is the following simple result:

If x € S is positive recurrent, then x is recurrent.
Proof

Recall that if E(7, | Xo =2) <oco thenP(r, <oo|Xp=2z)=1 .

On the other hand, it is possible to have P(7, < oo | Xy =) =1, so that z is recurrent, and also E(7, | Xo =) = 00, so that «
is null recurrent. Simply put, a random variable can be finite with probability 1, but can have infinite expected value. A classic
example is the Pareto distribution with shape parameter a € (0, 1).

Like recurrence/transience, and period, the null/positive recurrence property is a class property.

If x is positive recurrent and ¢ — y then y is positive recurrent.

Proof

Suppose that x is positive recurrent and x — y. Recall that y is recurrent and y — = . Hence there exist ¢, j € N, such that
Pi(z,y) >0 and Pi(y,z) > 0. Thus for every k € N, P*itk(y, y) > Pi(y, z)P*(x,z)Pi(x,y). Averaging over k from
1to n gives

G"(yay) . Gi+j(yay) ; Gn(ZL',ZL')

> Pi(y, z) Pi(z,v) (16.6.13)

n n

Letting n — oo and using renwal theory limit above gives
1 3 1
—— > P(y,z)

w(y) p(z)

Therefore p(y) < co and so y is also positive recurrent.

Pi(z,y) >0 (16.6.14)
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Thus, the terms positive recurrent and null recurrent can be applied to equivalence classes (under the to and from equivalence
relation), as well as individual states. When the chain is irreducible, the terms can be applied to the chain as a whole.

Recall that a nonempty set of states A is closed if x € A and x — y implies y € A. Here are some simple results for a finite,
closed set of states.

If A C S is finite and closed, then A contains a positive recurrent state.

Proof

Fix a state = € A and note that P*(z, A) =>4 P*(z,y) =1 for every k € N.. since A is closed. Averaging over k from
1 ton gives

ZW =1 (16.6.15)

yeA

for every n € N . Note that the change in the order of summation is justified since both sums are finite. Assume now that all
states in A are transient or null recurrent. Letting n — oo in the displayed equation gives the contradiction 0 = 1. Again, the
interchange of sum and limit is justified by the fact that A is finite.

If A C S is finite and closed, then A contains no null recurrent states.
Proof

Letz € A. Note that [z] C A since A is closed. Suppose that z is recurrent. Note that [z] is also closed and finite and hence
must have a positive recurrent state by the previous result. Hence the equivalence class [z] is positive recurrent and thus so is
x.

If A C S is finite and irreducible, then A is a positive recurrent equivalence class.
Proof

We already know that A is a recurrent equivalence class, from our study of transience and recurrence. From the previous
theorem, A is positive recurrent.

In particular, a Markov chain with a finite state space cannot have null recurrent states; every state must be transient or positive
recurrent.
Limiting Behavior, Revisited

Returning to the limiting behavior, suppose that the chain X is irreducible, so that either all states are transient, all states are null
recurrent, or all states are positive recurrent. From the basic limit theorem above, if the chain is transient or if the chain is recurrent
and aperiodic, then

P"(z,y) —

asn — oo foreveryz € S (16.6.16)
(y)

Note in particular that the limit is independent of the initial state z. Of course in the transient case and in the null recurrent and

aperiodic case, the limit is 0. Only in the positive recurrent, aperiodic case is the limit positive, which motivates our next definition.

l A Markov chain X that is irreducible, positive recurrent, and aperiodic, is said to be ergodic.

In the ergodic case, as we will see, X, has a limiting distribution as n — co that is independent of the initial distribution.

The behavior when the chain is periodic with period d € {2, 3, ...} is a bit more complicated, but we can understand this behavior
by considering the d-step chain Xy = (Xg, X4, X24,...) that has transition matrix P¢. Essentially, this allows us to trade
periodicity (one form of complexity) for reducibility (another form of complexity). Specifically, recall that the d-step chain is
aperiodic but has d equivalence classes (Ay, A1, . .., A4_1); and these are the cyclic classes of original chain X.
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Figure 16.6.1: The cyclic classes of a chain with period d
The mean return time to state z for the d-step chain X is uq(z) = p(z)/d.
Proof

Note that every single step for the d-step chain corresponds to d steps for the original chain.

Leti, j, ke {0,1,...,d—1},

L P (g y) —d/p(y)asn — oo if z € A; andy € Aj and j= (i +k) mod d .
2. Ptk (2, y) — 0 as n — oo in all other cases.
Proof

These results follow from the previous theorem and the cyclic behavior of the chain.

l If y € S is null recurrent or transient then regardless of the period of y, P"(x,y) — 0 as n — oo for every z € S.

Invariant Distributions

Our next goal is to see how the limiting behavior is related to invariant distributions. Suppose that f is a probability density
function on the state space S. Recall that f is invariant for P (and for the chain X) if fP = f. It follows immediately that
fP"™ = f for every n € N. Thus, if X, has probability density function f then so does X,, for each n € N, and hence X is a
sequence of identically distributed random variables. A bit more generally, suppose that g: .S — [0, 00) is invariant for P, and let
C=3,59(x).1f0<C < oo then f defined by f(x) = g(x)/C for x € S is an invariant probability density function.

Suppose that g : S — [0, 00) is invariant for P and satisfies ) __¢ g(z) < co. Then

oy) = ﬁzy(w)H(w,y), yes (16.6.17)

zes

Proof

Recall again that gP* = g for every k € N since g is invariant for P. Averaging over k from 1 to n gives gG, /n =g for
each n € N . Explicitly,

Zy(w)w =9(), yeS (16.6.18)

zeSs

Letting n — oo and using the limit theorem above gives the result. The dominated convergence theorem justifies
interchanging the limit with the sum, since the terms are positive, =G, (z,y) <1,and 3, ¢ g(z) < oo .

Note that if y is transient or null recurrent, then g(y) = 0. Thus, a invariant function with finite sum, and in particular an invariant
probability density function must be concentrated on the positive recurrent states.

Suppose now that the chain X is irreducible. If X is transient or null recurrent, then from the previous result, the only nonnegative
functions that are invariant for P are functions that satisfy > __s g(z) = oo and the function that is identically 0: g=0. In
particular, the chain does not have an invariant distribution. On the other hand, if the chain is positive recurrent, then H(z,y) =1
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forall z, y € S. Thus, from the previous result, the only possible invariant probability density function is the function f given by
f(z) =1/pu(z) for z € S. Any other nonnegative function g that is invariant for P and has finite sum, is a multiple of f (and
indeed the multiple is sum of the values). Our next goal is to show that f really is an invariant probability density function.

If X is an irreducible, positive recurrent chain then the function f given by f(z)=1/u(z) for z € S is an invariant
probability density function for X.

Proof

Let f(z) =1/p(z) for z € S, and let A be a finite subset of S. Then }° _, %Gn(m,y) <1 for every z € S. Letting
n — oo using the basic limit above gives 4 f(y) < 1. The interchange of limit and sum is justified since A is finite. Since
this is true for every finite A C S, it follows that C' <1 where C'=}_ s f(y). Note also that C'>0 since the chain is
positive recurrent. Next note that

1 1
Y =Gu(z,y)P(y,2) < —Gn+i(z,2) (16.6.19)
n n
yeA
for every z,z€S. Letting n—oo gives Y .4 f(y)P(y,2) < f(2) for every z€ §. It then follows that
Zye s f(y)P(y, z) < f(z) for every z € S. Suppose that strict inequality holds for some for some z € S. Then

S WP 2) <> f(2) (16.6.20)

z€8S yeSs ze8

Interchanging the order of summation on the left in the displayed inequality yields the contradiction C' < C'. Thus f is
invariant for P. Hence f/C is an invariant probability density function. By the uniqueness result noted earlier, it follows that
f/C = fsothatinfact C =1.

In summary, an irreducible, positive recurrent Markov chain X has a unique invariant probability density function f given by
f(z) =1/p(z) for x € S. We also now have a test for positive recurrence. An irreducible Markov chain X is positive recurrent if
and only if there exists a positive function g on S that is invariant for P and satisfies ) ¢ g(z) < oo (and then, of course,
normalizing g would give f).

Consider now a general Markov chain X on S. If X has no positive recurrent states, then as noted earlier, there are no invariant
distributions. Thus, suppose that X has a collection of positive recurrent equivalence classes (A4; : ¢ € I) where I is a nonempty,
countable index set. The chain restricted to A; is irreducible and positive recurrent for each ¢ € I, and hence has a unique invariant
probability density function f; on A4; given by
1
fl(li) =——, zT€EA (16.6.21)
()

We extend f; to S by defining f;(z) =0 for = € A;, so that f; is a probability density function on S. All invariant probability
density functions for X are mixtures of these functions:

f is an invariant probability density function for X if and only if f has the form
f@)=> pifilz), z€8 (16.6.22)
iel
where (p; : ¢ € I) is a probability density function on the index set I. That is, f(z) =p;fi(z) fori € I and z € 4;, and
f(z) =0 otherwise.

Proof

Let A = J;cr Ai, the set of positive recurrent states. Suppose that f has the form given in the theorem. Since f(z) =0 for
x ¢ A we have

(fP)y) = f(@)P(z,y) =) > pifi(z)P(z,y) (16.6.23)

zeS i€l zeA;

Suppose that y € A; for some j € I'. Since P(z,y) =0 if € A; and i # j, the last sum becomes
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(fP)w) =p; Y fi(@)P(z,y) =p; fi(y) = f(v) (16.6.24)

TEA;

because f; is invariant for the P restricted to A;. If y ¢ A then P(z,y) =0 for € A so the sum above becomes
(fP)(y) =0 = f(y) . Hence f is invariant. Moreover,

YNof@)= > f@)=>_m > filz)=) pi=1 (16.6.25)
zeS i€l zcA; el z€A; el

so f is a PDF on S. Conversely, suppose that f is an invariant PDF for X. We know that f is concentrated on the positive
recurrent states, so f(z) =0 forx ¢ A.Fori € I andy € A;

> f@)P(,y) =) f(x)P(z,y) = f(y) (16.6.26)

TEA; zes

since f is invariant for P and since, as noted before, f(z)P(z,y) =0 if z ¢ A;. It follows that f restricted to A; is invariant
for the chain restricted to A; for each i € I. Let p; =) _, f(x), the normalizing constant for f restricted to A;. By

uniqueness, the restriction of f/p;to A; must be f;, so f has the form given in the theorem.

Invariant Measures
Suppose that X is irreducible. In this section we are interested in general functions g: S — [0, 00) that are invariant for X, so that
gP =g. A function g: S — [0, 00) defines a positive measure v on S by the simple rule

v(A)=) g(z), ACS (16.6.27)

€A

so in this sense, we are interested in invariant positive measures for X that may not be probability measures. Technically, g is the
density function of v with respect to counting measure # on S.

From our work above, We know the situation if X is positive recurrent. In this case, there exists a unique invariant probability
density function f that is positive on S, and every other nonnegative invariant function g is a nonnegative multiples of f. In
particular, either g = 0, the zero function on S, or g is positive on S and satisfies ) 5 ¢ g(z) < 0o.

We can generalize to chains that are simply recurrent, either null or positive. We will show that there exists a positive invariant
function that is unique, up to multiplication by positive constants. To set up the notation, recall that 7, = min{k € N, : X; =z}

is the first positive time that the chain is in state € S. In particular, if the chain starts in « then 7, is the time of the first return to

z. For € S we define the function 7y, by

Te—1
Ye(y) =E (Z l(Xny)‘Xox), yes (16.6.28)

n=0

so that v, (y) is the expected number of visits to y before the first return to z, starting in . Here is the existence result.

Suppose that X is recurrent. For z € S,

Ly(z) =1
2. 7y, is invariant for X
3.7 (y) € (0,00) fory € S.
Proof
1. By definition, given Xy = =, we have Xg =z but X,, #z forn € {1,...,7, —1}. Hence v, (z) =1.
2. Since the chain is recurrent, with probability 1 we have 7, < oo and X, =z .Hence fory € S,

Ye(y) =E (72 1(X, =y) ‘ Xo = :c) =E (i 1(X, =y) ’ Xo = w) (16.6.29)

(Note that if z = y then with probability 1, the n = 0 term in the first sum and the n = 7, term in the second sum are 1
and the remaining terms are 0. If  # y, the n =0 term in the first sum and the n = 7, term in the second sum are 0 with
probability 1, so again the the two sums are the same.) Hence
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Yz(y) =E (i 1(X, =y,7, >n) ' X :x) :iP(Xn =y, 7 >n| Xo=2) (16.6.30)

n=1 n=1

Next we partition on the values of X,,_; in the sum to obtain

o0
Y= (y) :ZZIP’(Xn =y, Xp1=2"1,>n|X)=2)

n=1 zeS

o0
:ZZIP(Xn:an,l:z,TzZn,X():m)]P’(Xn,lzz,Tz >n|Xo=1)

n=1 ze$

But{Xyp =z,7, >n} € %,_1 (thatis, the events depend only on (X, ..., X,_1)). Hence by the Markov property, the
first factor in the last displayed equation is simply P(X,, =y | X,,—1 = 2) = P(z,y) . Substituting and re-indexing the

sum gives
X() = 1‘)

3. By the invariance in part (b), v, = v, P" forevery n € N. Let y € S. Since the chain is irreducible, there exists j € N
such that P’(z,y) > 0. Hence

v (y) = izp(z, YP(Xy1=212>2n| Xg=2z)= ZP(z, y)E ( N 1(X,1=2)

n=1 zeS ze8 n=1

Te—1
= P(zy)E (Z 1(Xp =2) | Xo = m) = P(%,9)7(2) =1P(y)
2e8 m=0 zeS

Ve (y) =P (y) > 72 (2) P’ (z,y) = P'(z,y) >0 (16.6.31)
Similarly, there exists k € N such that P*(y, z) > 0. Hence
1 =7,(z) =7P*z) > 7.(y)P*(y,z) (16.6.32)

and therefore 7, (y) < 1/P*(y,z) < co.

Next is the uniqueness result.

Suppose again that X is recurrent and that g : S — [0, o) is invariant for X. For fixed z € S,
9(y) =9(x)1=(y), yeS (16.6.33)
Proof
Let S, =S —{z} andlety € S. Since g is invariant,
9(y) =9P(y) = > 9(x)P(z,y) = Y _ 9(z)P(2,y) +9(z)P(z,y) (16.6.34)
2€8 268z
Note that the last term is g(z)P(X; =y, 7, > 1| Xy =z) . Repeating the argument for g(z) in the sum above gives
9y) =Y > gw)P(w,2)P(zy)+g(z) Y  P(z,2)P(zy)+g()P(z,y) (16.6.35)
268; weSy 2€8¢

The last two terms are

9(z)[P( Xy =y, 7. > 2| Xo=2)+P(X1 =y, 7 > 1| Xy =2)] (16.6.36)

Continuing in this way shows that for each n € N,

9(y) > g(z) Y P(Xy =y, 7 > k| Xo =1) (16.6.37)
k=1
Letting n — oo then shows that g(y) > g(x )7z (y) - Next, note that the function h = g—g(x)y, is invariant, since it is a
difference of two invariant functions, and as just shown, is nonnegative. Also, h(z) = g(z) — g(x)y.(z) =0 . Lety € S.
Since the chain is irreducible, there exists j € N such that P’(y, z) > 0. Hence
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0 =h(z) = hPi(z) > h(y)P’(y,z) >0 (16.6.38)

Since P/ (y, ) > 0 it follows that h(y) = 0.

Thus, suppose that X is null recurrent. Then there exists an invariant function g that is positive on S and satisfies
> zes g(x) = co. Every other nonnegative invariant function is a nonnegative multiple of g. In particular, either g =0, the zero
function on S, or g is positive on .S and satisfies > g g(z) = co. The section on reliability chains gives an example of the
invariant function for a null recurrent chain.

The situation is complicated when X is transient. In this case, there may or may not exist nonnegative invariant functions that are
not identically 0. When they do exist, they may not be unique (up to multiplication by nonnegative constants). But we still know
that there are no invariant probability density functions, so if g is a nonnegative function that is invariant for X then either g =0
or ) ..q 9(x) = 0o. The section on random walks on graphs provides lots of examples of transient chains with nontrivial invariant
functions. In particular, the non-symmetric random walk on Z has a two-dimensional space of invariant functions.

Examples and Applications
Finite Chains

Consider again the general two-state chain on .S = {0, 1} with transition probability matrix given below, where p € (0, 1) and
g € (0, 1) are parameters.

P:[l_p p] (16.6.39)

1. Find the invariant distribution.

2. Find the mean return time to each state.

3. Find lim,, ,,, P™ without having to go to the trouble of diagonalizing P, as we did in the introduction to discrete-time
chains.

Answer
q D
Lf= (M7 m)

ptq ptg
2p=(555)

3.P"—>%[q p] asn — oo.
g p

Consider a Markov chain with state space S = {a, b, ¢, d} and transition matrix P given below:

1 2
T 200
10 0
P= (16.6.40)
00 10
111 1
4 4 4 4

1. Draw the state diagram.

2. Determine the equivalent classes and classify each as transient or positive recurrent.
3. Find all invariant probability density functions.

4. Find the mean return time to each state.

5. Find lim,, .o, P™.

Answer

1. State graph
l':Stalel.png

2. {a, b} recurrent; {c}recurrent; {d} transient.
3.f= (%p,%p,l—p,o) ,0<p<1

4p=(331,0)
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3 2
: 5 00
32 o o
5P"— |5 5 asm — 00
0 0 1 0
2 4 1
: 5 3 0
Consider a Markov chain with state space S = {1, 2, 3,4, 5, 6 }and transition matrix P given below:
_ " . -
0 0 3 0 5 O
0 0 0 0 0 1
1 1 1
< 0 = 0 = 0
pP=|* 2 4 (16.6.41)
0 0 01 0 O
1 2
0 0 5 0 5 0
101 1 1
07 7 7 0 7]
1. Sketch the state graph.
2. Find the equivalence classes and classify each as transient or positive recurrent.
3. Find all invariant probability density functions.
4. Find the mean return time to each state.
5. Find lim,, o, P".
Answer
1. State graph
|+ State2.png
2. {1, 3, 5}recurrent; {2, 6} transient; {4} recurrent.
3.f=(12—9p,0,1%p,1—p,1%p,0), 0<p<1
— (1 19 4 19
4/1'_ ( 2 » 00, 8 71, 8 700)
2 8 9 7
w0 050
1 4 1 9
w0 % o2 om0
2 8 9
= 0 5 0 5 0
5 P%— | 19 1 L9 asm — 00.
0 0 0 1 0 O
2 8 9
w 00 050
1 4 1 9
[0 0 35 3 35 O]
Consider a Markov chain with state space S = {1, 2, 3,4, 5, 6 }and transition matrix P given below:
-0 -
5 3 0 0 0 O
103
3y 7 00 00
1 11
0 5 £ 0 O
P=|1 2 ) (16.6.42)
1031 70 ¢
101
0 0 0 0 5 5
101
L0 0 0 O 5 34
1. Sketch the state graph.
2. Find the equivalence classes and classify each as transient or positive recurrent.
3. Find all invariant probability density functions.
4. Find the mean return time to each state.
5. Find lim,, o, P".
Answer
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1. State graph
|+ State3.png

2. {1, 2} recurrent; {3, 4} transient; {5, 6} recurrent.

3.f=(3p,2p,0,0,5(1-p),3(1-p)), 0<p<l

4. p= (3, %,oo, 00,2,2)

[

2
s 3 00 0 O
1 2
3 3 00 0 O
4 8
= — 0 0 0 O
5. pr— |18 15 asn — oo
1 2 oo 1 1
5 5 5 5
1 1
0 0 0 O 5 o
1 1
_0 0 0 O 5 3

Consider the Markov chain with state space S = {1,2, 3,4, 5, 6, 7 }and transition matrix P given below:

(0 0 2 2 2 0 0]
00 3 0 2 00
00000 3 2
P=|0 0 0 0 0 5 % (16.6.43)
00000 3 =
$ 2000 00
| 2 00 0 0 0]

1. Sketch the state digraph, and show that the chain is irreducible with period 3.
2. Identify the cyclic classes.

3. Find the invariant probability density function.

4. Find the mean return time to each state.

5. Find lim,, o, P".

6. Find lim,,_,, P31,

7. Find lim,, o, P32

Answer

1. State graph
|+ State4.png

2. Cyclic classes: {1,2}, {3,4,5} {6, 7}
3. f = 71-(232, 363,237, 58, 300, 333, 262)

- 4 i i i 1 1 1
=S (232’ 363 2377 58 300 333’ 262)

(232 363 0 0 0 0 0
232 363 0 0 0 0 0
0 0 237 58 300 0 O
I 237 58 300 0 0 | asn—oo0
237 58 300 0 0

0 0 0 333 262
0 0 0 333 262]

o O © O
o O © O
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0 0 237 58 300 0 0
0 0 237 58 300 0 0
0 0 0 0 0 333 262
6.P3"+1—>% 0 0 0 0 0 333 262 asnmn— o0
0 0 0 0 0 333 262
232 363 0 0 0 0 0
232 363 0 0 0 0 0 |
0 0 0 0 0 333 262
0 0 0 0 0 333 262
232 363 0 0 0O 0 0
7P —=1232 363 0 0 0 0 0 |asn—oo
232 363 0 0 0 0 0
0 0 237 58 300 0 O
| 0 0 237 58 300 0 O |

Special Models

Read the discussion of invariant distributions and limiting distributions in the Ehrenfest chains.

Read the discussion of invariant distributions and limiting distributions in the Bernoulli-Laplace chain.

Read the discussion of positive recurrence and limiting distributions for the birth-death chain.
Read the discussion of positive recurrence and for the queuing chains.

l Read the discussion of positive recurrence and invariant distributions for the reliability chains.
l Read the discussion of positive recurrence and limiting distributions for the random walks on graphs.

This page titled 16.6: Stationary and Limiting Distributions of Discrete-Time Chains is shared under a CC BY 2.0 license and was authored,
remixed, and/or curated by Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts
platform.
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