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1.11: Measurable Spaces
     

In this section we discuss some topics from measure theory that are a bit more advanced than the topics in the early sections of this
chapter. However, measure-theoretic ideas are essential for a deep understanding of probability, since probability is itself a
measure. The most important of the definitions is the -algebra, a collection of subsets of a set with certain closure properties. Such
collections play a fundamental role, even for applied probability, in encoding the state of information about a random experiment.

On the other hand, we won't be overly pedantic about measure-theoretic details in this text. Unless we say otherwise, we assume
that all sets that appear are measurable (that is, members of the appropriate -algebras), and that all functions are measurable
(relative to the appropriate -algebras).

Although this section is somewhat abstract, many of the proofs are straightforward. Be sure to try the proofs yourself before
reading the ones in the text.

Algebras and -Algebras

Suppose that  is a set, playing the role of a universal set for a particular mathematical model. It is sometimes impossible to
include all subsets of  in our model, particularly when  is uncountable. In a sense, the more sets that we include, the harder it is
to have consistent theories. However, we almost always want the collection of admissible subsets to be closed under the basic set
operations. This leads to some important definitions.

Algebras of Sets

Suppose that  is a nonempty collection of subsets of . Then  is an algebra (or field) if it is closed under complement and
union:

1. If  then .
2. If  and  then .

If  is an algebra of subsets of  then

1. 
2. 

Proof
1. Since  is nonempty, there exists . Hence  so .
2. 

Suppose that  is an algebra of subsets of  and that  for each  in a finite index set .

1. 
2. 

Proof
1. This follows by induction on the number of elements in .
2. Thie follows from (a) and DeMorgan's law. If  for  then  for . Therefore  and

hence .

Thus it follows that an algebra of sets is closed under a finite number of set operations. That is, if we start with a finite number of
sets in the algebra , and build a new set with a finite number of set operations (union, intersection, complement), then the new
set is also in . However in many mathematical theories, probability in particular, this is not sufficient; we often need the
collection of admissible subsets to be closed under a countable number of set operations.

-Algebras of Sets

Suppose that  is a nonempty collection of subsets of . Then  is a -algebra (or -field) if the following axioms are
satisfied:
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1. If  then .
2. If  for each  in a countable index set , then .

Clearly a -algebra of subsets is also an algebra of subsets, so the basic results for algebras above still hold. In particular, 
and .

If  for each  in a countable index set , then .

Proof

The proof is just like the one above for algebras. If  for  then  for . Therefore  and
hence .

Thus a -algebra of subsets of  is closed under countable unions and intersections. This is the reason for the symbol  in the
name. As mentioned in the introductory paragraph, -algebras are of fundamental importance in mathematics generally and
probability theory specifically, and thus deserve a special definition:

If  is a set and  a -algebra of subsets of , then the pair  is called a measurable space.

The term measurable space will make more sense in the next chapter, when we discuss positive measures (and in particular,
probability measures) on such spaces.

Suppose that  is a set and that  is a finite algebra of subsets of . Then  is also a -algebra.

Proof

Any countable union of sets in  reduces to a finite union.

However, there are algebras that are not -algebras. Here is the classic example:

Suppose that  is an infinite set. The collection of finite and co-finite subsets of  defined below is an algebra of subsets of ,
but not a -algebra:

Proof

 since  is finite. If  then  by the symmetry of the definition. Suppose that . If  and 
are both finite then  is finite. If  or  is finite, then  is finite. In either case, . Thus 

 is an algebra of subsets of .

Since  is infinite, it contains a countably infinite subset . Let  for . Then  is finite, so 
 for each . Let . Then  is infinite by construction. Also 

, so  is infinite as well. Hence  and so  is not a -algebra.

General Constructions

Recall that  denotes the collection of all subsets of , called the power set of . Trivially,  is the largest -algebra of 
. The power set is often the appropriate -algebra if  is countable, but as noted above, is sometimes too large to be useful if  is

uncountable. At the other extreme, the smallest -algebra of  is given in the following result:

The collection  is a -algebra.

Proof

Clearly  is a finite algebra:  and  are complements of each other, and . Hence  is a -algebra by the
result above.

In many cases, we want to construct a -algebra that contains certain basic sets. The next two results show how to do this.

Suppose that  is a -algebra of subsets of  for each  in a nonempty index set . Then  is also a -algebra of
subsets of .
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Proof

The proof is completely straightforward. First,  for each  so . If  then  for each  and
hence  for each . Therefore . Finally suppose that  for each  in a countable index set . Then 

 for each  and  and therefore  for each . It follows that .

Note that no restrictions are placed on the index set , other than it be nonempty, so in particular it may well be uncountable.

Suppose that  is a set and that  is a collection of subsets of . The -algebra generated by  is

If  is countable then  is said to be countably generated.

So the -algebra generated by  is the intersection of all -algebras that contain , which by the previous result really is a -
algebra. Note that the collection of -algebras in the intersection is not empty, since  is in the collection. Think of the sets in 

 as basic sets that we want to be measurable, but do not form a -algebra.

The -algebra  is the smallest  algebra containing .

1. 
2. If  is a -algebra of subsets of  and  then .

Proof

Both of these properties follows from the definition of  as the intersection of all -algebras that contain .

Note that the conditions in the last theorem completely characterize . If  and  satisfy the conditions, then by (a), 
 and . But then by (b),  and .

If  is a subset of  then 

Proof

Let . Clearly  is an algebra:  and  are complements of each other, as are  and . Also,

Since  is finite, it is a -algebra by (7). Next, . Conversely, if  is a -algebra and  then of course 
 so . Hence 

We can generalize the previous result. Recall that a collection of subsets  is a partition of  if  for 
 with , and .

Suppose that  is a countable partition of  into nonempty subsets. Then  is the collection of all unions
of sets in . That is,

Proof

Let . Note that  since . Next, suppose that . Then  for

some . But then , so . Next, suppose that  for  where  is a countable index set.
Then for each  there exists  such that . But then  where

. Hcnce . Therefore  is a -algebra of subsets of . Trivially, . If  is a -algebra of
subsets of  and , then clearly  for every . Hence .
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σ(B) =⋂{S :S  is a σ-algebra of subsets of S and B ⊆S } (1.11.2)
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A -algebra of this form is said to be generated by a countable partition. Note that since  for , the representation of a
set in  as a union of sets in  is unique. That is, if  and  then . In particular, if there
are  nonempty sets in , so that , then there are  subsets of  and hence  sets in .

Suppose now that  is a collection of  subsets of  (not necessarily disjoint). To describe the -algebra
generated by  we need a bit more notation. For  (a bit string of length ), let 
where  and .

In the setting above,

1.  partitions .
2.  for .
3. .

Proof
1. Suppose that  and that . Without loss of generality we can suppose that for some , 

 while . Then  and  so  and  are disjoint. Suppose that . Construct 
by  if  and  if , for each . Then by definition, . Hence  partitions .

2. Fix . Again if  and  then . Hence .
Conversely, suppose . Define  by  if  and  if  for each .
Then  and . Hence .

3. Clearly, every -algebra of subsets of  that contains  must also contain , and every -algebra of subsets of  that
contains  must also contain . It follows that . The characterization in terms of unions now follows from
the previous result.

Recall that there are  bit strings of length . The sets in  are said to be in general position if the sets in  are distinct (and
hence there are  of them) and are nonempty. In this case, there are  sets in .

Open the Venn diagram app. This app shows two subsets  and  of  in general position, and lists the 16 sets in .

1. Select each of the 4 sets that partition : , , , .
2. Select each of the other 12 sets in  and note how each is a union of some of the sets in (a).

Sketch a Venn diagram with sets  in general position. Identify the set  for each .

If a -algebra is generated by a collection of basic sets, then each set in the -algebra is generated by a countable number of the
basic sets.

Suppose that  is a set and  a nonempty collection of subsets of . Then

Proof

Let  denote the collection on the right. We first show that  is a -algebra. First, pick , which we can do since  is
nonempty. Then  so . Let  so that  for some countable . Then  so 

. Finally, suppose that  for  in a countable index set . Then for each , there exists a countable 
such that . But then  is also countable and . Hence .

Next if  then  so . Hence . Conversely, if  for some countable  then
trivially .

A -algebra on a set naturally leads to a -algebra on a subset.

Suppose that  is a measurable space, and that . Let . Then

1.  is a -algebra of subsets of .
2. If  then .
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Proof
1. First,  and  so . Next suppose that . Then there exists  such that . But

then  and , so . Finally, suppose that  for  in a countable index set 
. For each  there exists  such that . But then  and , so

.
2. Suppose that . Then  for every , and of course, . Conversely, if  and 

then  so 

The -algebra  is the -algebra on  induced by . The following construction is useful for counterexamples. Compare this
example with the one for finite and co-finite sets.

Let  be a nonempty set. The collection of countable and co-countable subsets of  is

1.  is a -algebra
2. , the -algebra generated by the singleton sets.

Proof
1. First,  since  is countable. If  then  by the symmetry of the definition. Suppose that 

for each  in a countable index set . If  is countable for each  then  is countable. If  is countable for
some  then  is countable. In either case, .

2. Let . Clearly  for . Hence . Conversely, suppose that . If  is
countable, then . If  is countable, then by an identical argument,  and hence .

Of course, if  is itself countable then . On the other hand, if  is uncountable, then there exists  such that 
and  are uncountable. Thus, , but , and of course . Thus, we have an example of a -algebra that
is not closed under general unions.

Topology and Measure

One of the most important ways to generate a -algebra is by means of topology. Recall that a topological space consists of a set 
and a topology , the collection of open subsets of . Most spaces that occur in probability and stochastic processes are
topological spaces, so it's crucial that the topological and measure-theoretic structures are compatible.

Suppose that  is a topological space. Then  is the Borel -algebra on , and  is a Borel measurable
space.

So the Borel -algebra on , named for Émile Borel is generated by the open subsets of . Thus, a topological space 
naturally leads to a measurable space . Since a closed set is simply the complement of an open set, the Borel -algebra
contains the closed sets as well (and in fact is generated by the closed sets). Here are some other sets that are in the Borel -
algebra:

Suppose again that  is a topological space and that  is a countable index set.

1. If  is open for each  then . Such sets are called  sets.
2. If  is closed for each  then . Such sets are called  sets.
3. If  is Hausdorff then  for every .

Proof
1. This follows direction from the closure property for intersections.
2. This follows from the definition.
3. This follows since  is closed for each  if the topology is Hausdorff.

In terms of part (c), recall that a topological space is Hausdorff, named for Felix Hausdorff, if the topology can distinguish
individual points. Specifically, if  are distinct then there exist disjoint open sets  with  and . This is a
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very basic property possessed by almost all topological spaces that occur in applications. A simple corollary of (c) is that if the
topological space  is Hausdorff then  for every countable .

Let's note the extreme cases. If  has the discrete topology , so that every set is open (and closed), then of course the Borel 
-algebra is also . As noted above, this is often the appropriate -algebra if  is countable, but is often too large if  is

uncountable. If  has the trivial topology , then the Borel -algebra is also , and so is also trivial.

Recall that a base for a topological space  is a collection  with the property that every set in  is a union of a
collection of sets in . In short, every open set is a union of some of the basic open sets.

Suppose that  is a topological space with a countable base . Then .

Proof

Since  it follows trivially that . Conversely, if , there exists a collection of sets in  whose
union is . Since  is countable, .

The topological spaces that occur in probability and stochastic processes are usually assumed to have a countable base (along with
other nice properties such as the Hausdorff property and locally compactness). The -algebra used for such a space is usually the
Borel -algebra, which by the previous result, is countably generated.

Measurable Functions

Recall that a set usually comes with a -algebra of admissible subsets. A natural requirement on a function is that the inverse image
of an admissible set in the range space be admissible in the domain space. Here is the formal definition.

Suppose that  and  are measurable spaces. A function  is measurable if  for every 
.

If the -algebra in the range space is generated by a collection of basic sets, then to check the measurability of a function, we need
only consider inverse images of basic sets:

Suppose again that  and  are measurable spaces, and that  for a collection of subsets  of . Then 
 is measurable if and only if  for every .

Proof

First , so if  is measurable then the condition in the theorem trivially holds. Conversely, suppose that the
condition in the theorem holds, and let . Then  since . If 
then , so . If  for  in a countable index set , then 

, and hence . Thus  is a -algebra of subsets of . But  by
assumption, so . Of course  by definition, so  and hence  is measurable.

If you have reviewed the section on topology then you may have noticed a striking parallel between the definition of continuity for
functions on topological spaces and the defintion of measurability for functions on measurable spaces: A function from one
topological space to another is continuous if the inverse image of an open set in the range space is open in the domain space. A
function from one measurable space to another is measurable if the inverse image of a measurable set in the range space is
measurable in the domain space. If we start with topological spaces, which we often do, and use the Borel -algebras to get
measurable spaces, then we get the following (hardly surprising) connection.

Suppose that  and  are topological spaces, and that we give  and  the Borel -algebras  and 
respectively. If  is continuous, then  is measurable.

Proof

If  then . Hence  is measurable by the previous theorem.

Measurability is preserved under composition, the most important method for combining functions.
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σ

σ

σ
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A ∈ T

σ
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−1 Ai ∈U⋃i∈I Ai U σ T B ⊆U
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σ
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Suppose that , , and  are measurable spaces. If  is measurable and  is measurable,
then  is measurable.

Proof

If  then  since  is measurable, and hence  since  is measurable.

If  is given the smallest possible -algebra or if  is given the largest one, then any function from  into  is measurable.

Every function  is measurable in each of the following cases:

1.  and  is an arbitrary -algebra of subsets of 
2.  and  is an arbitrary -algebra of subsets of .

Proof
1. Suppose that  and that  is an arbitrary -algebra on . If , then  and 

 so  is measurable.
2. Suppose that  and that  is an arbitrary -algebra on . If , then trivially  for every 

 so  is measurable.

When there are several -algebras for the same set, then we use the phrase with respect to so that we can be precise. If a function is
measurable with respect to a given -algebra on its domain, then it's measurable with respect to any larger -algebra on this space.
If the function is measurable with respect to a -algebra on the range space then its measurable with respect to any smaller -
algebra on this space.

Suppose that  has -algebras  and  with , and that  has -algebras  and  with . If  is
measurable with respect to  and , then  is measureable with respect to  and .

Proof

If  then . Hence  so .

The following construction is particularly important in probability theory:

Suppose that  is a set and  is a measurable space. Suppose also that  and define 
. Then

1.  is a -algebra on .
2.  is the smallest -algebra on  that makes  measurable.

Proof
1. The key to the proof is that the inverse image preserves all set operations. First,  since  and .

If  then  for some . But then  and hence . Finally, suppose
that  for  in a countable index set . Then for each  there exists  such that . But
then  and . Hence .

2. If  is a -algebra on  and  is measurable with respect to  and , then by definition  for every ,
so .

Appropriately enough,  is called the -algebra generated by . Often,  will have a given -algebra  and  will be
measurable with respect to  and . In this case, . We can generalize to an arbitrary collection of functions on .

Suppose  is a set and that  is a measurable space for each  in a nonempty index set . Suppose also that 
for each . The -algebra generated by this collection of functions is

Again, this is the smallest -algebra on  that makes  measurable for each .

(R,R) (S,S ) (T ,T ) f : R → S g : S → T

g∘ f : R → T

A ∈ T (A) ∈Sg−1 g (g∘ f (A) = [ (A)] ∈R)−1 f−1 g−1 f

T σ S S T

f : S → T

T = {∅,T} S σ S

S =P(S) T σ T

T = {∅,T} S σ S f : S → T (T ) = S ∈Sf−1

(∅) = ∅ ∈Sf−1 f

S =P(S) T σ T f : S → T (A) ∈Sf−1

A ∈ T f

σ

σ σ

σ σ

S σ R S R ⊆S T σ T U T ⊆U f : S → T

R U f S T

A ∈ T A ∈U (A) ∈Rf−1 (A) ∈Sf−1

S (T ,T ) f : S → T

σ(f) = { (A) : A ∈ T }f−1

σ(f) σ S

σ(f) σ S f

S ∈ σ(f) T ∈ T (T ) = Sf−1

B ∈ σ(f) B = (A)f−1 A ∈ T ∈ TAc = ( ) ∈ σ(f)Bc f−1 Ac

∈ σ(f)Bi i I i ∈ I ∈ TAi = ( )Bi f−1 Ai

∈ T⋃i∈I Ai = ( )⋃i∈I Bi f−1 ⋃i∈I Ai ∈ σ(f)⋃i∈I Bi

S σ S f S T (A) ∈Sf−1 A ∈ T
σ(f) ⊆S

σ(f) σ f S σ S f

S T σ(f) ⊆S S

S ( , )Ti Ti i I : S →fi Ti
i ∈ I σ

σ { : i ∈ I} = σ {σ( ) : i ∈ I} = σ { (A) : i ∈ I, A ∈ }fi fi f−1
i Ti (1.11.6)

σ S fi i ∈ I
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Product Sets
Product sets arise naturally in the form of the higher-dimensional Euclidean spaces  for . In addition, product
spaces are particularly important in probability, where they are used to describe the spaces associated with sequences of random
variables. More general product spaces arise in the study of stochastic processes. We start with the product of two sets; the
generalization to products of  sets and to general products is straightforward, although the notation gets more complicated.

Suppose that  and  are measurable spaces. The product -algebra on  is

So the definition is natural: the product -algebra is generated by products of measurable sets. Our next goal is to consider the
measurability of functions defined on, or mapping into, product spaces. Of basic importance are the projection functions. If  and 

 are sets, let  and  be defined by  and  for . Recall that 
 is the projection onto the first coordinate and  is the projection onto the second coordinate. The product  algebra is the

smallest -algebra that makes the projections measurable:

Suppose again that  and  are measurable spaces. Then .

Proof

If  then . Similarly, if  then . Hence  and  are
measurable, so . Conversely, if  and  then .
Since sets of this form generate the product -algebra, we have .

Projection functions make it easy to study functions mapping into a product space.

Suppose that ,  and  are measurable spaces, and that  is given the product -algebra .
Suppose also that , so that  for , where  and  are the
coordinate functions. Then  is measurable if and only if  and  are measurable.

Proof

Note that  and . So if  is measurable then  and  are compositions of measurable functions, and
hence are measurable. Conversely, suppose that  and  are measurable. If  and  then 

. Since products of measurable sets generate , it follows that  is measurable.

Our next goal is to consider cross sections of sets in a product space and cross sections of functions defined on a product space. It
will help to introduce some new functions, which in a sense are complementary to the projection functions.

Suppose again that  and  are measurable spaces, and that  is given the product -algebra .

1. For  the function , defined by  for , is measurable.
2. For  the function , defined by  for , is measurable.

Proof

To show that the functions are measurable, if suffices to consider inverse images of products of measurable sets, since such sets
generate . Thus, let  and .

1. For  note that  is  if  and is  if . In either case, .
2. Similarly, for  note that  is  if  and is  if . In either case, .

Now our work is easy.

Suppose again that  and  are measurable spaces, and that . Then

1. For , .
2. For , .

Proof

Rn n ∈ {2, 3, …}

n

(S,S ) (T ,T ) σ S×T

S ⊗T = σ{A×B : A ∈S , B ∈ T } (1.11.7)

σ

S

T : S×T → Sp1 : S×T → Tp2 (x, y) = xp1 (x, y) = yp2 (x, y) ∈ S×T

p1 p2 σ

σ

(S,S ) (T ,T ) S ⊗T = σ{ , }p1 p2

A ∈S (A) = A×T ∈S ⊗Tp−1
1 B ∈ T (B) = S×B ∈S ⊗Tp−1

2 p1 p2

σ{ , } ⊆S ⊗Tp1 p2 A ∈S B ∈ T A×B = (A) ∩ (B) ∈ σ{ , }p−1
1 p−1

2 p1 p2

σ S ⊗T ⊆ σ{ , }p1 p2

(R,R) (S,S ) (T ,T ) S×T σ S ⊗T
f : R → S×T f(x) = ( (x), (x))f1 f2 x ∈ R : R → Sf1 : R → Tf2

f f1 f2

= ∘ ff1 p1 = ∘ ff2 p2 f f1 f2

f1 f2 A ∈S B ∈ T

(A×B) = (A) ∩ (B) ∈Rf−1 f−1
1 f−1

2 S ⊗T f

(S,S ) (T ,T ) S×T σ S ⊗T

x ∈ S : T → S×T1x (y) = (x, y)1x y ∈ T

y ∈ T : S → S×T2y (x) = (x, y)2y x ∈ S

S ⊗T A ∈S B ∈ T

x ∈ S (A×B)1−1
x B x ∈ A ∅ x ∉ A (A×B) ∈ T1−1

x

y ∈ T (A×B)2−1
y A y ∈ B ∅ y ∉ B (A×B) ∈S2−1

y

(S,S ) (T ,T ) C ∈S ⊗T

x ∈ S {y ∈ T : (x, y) ∈ C} ∈ T
y ∈ T {x ∈ S : (x, y) ∈ C} ∈S
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These result follow immediately from the measurability of the functions  and :

1. For , .
2. For , .

The set in (a) is the cross section of  in the first coordinate at , and the set in (b) is the cross section of  in the second
coordinate at . As a simple corollary to the theorem, note that if ,  and  then  and .
That is, the only measurable product sets are products of measurable sets. Here is the measurability result for cross-sectional
functions:

Suppose again that  and  are measurable spaces, and that  is given the product -algebra .
Suppose also that  is another measurable space, and that  is measurable. Then

1. The function  from  to  is measurable for each .
2. The function  from  to  is measurable for each .

Proof

Note that the function in (a) is just , and the function in (b) is just , both are compositions of measurable functions

The results for products of two spaces generalize in a completely straightforward way to a product of  spaces.

Suppose  and that  is a measurable space for each . The product -algebra on the Cartesian
product set  is

So again, the product -algebra is generated by products of measurable sets. Results analogous to the theorems above hold. In the
special case that  for , the Cartesian product becomes  and the corresponding product -
algebra is denoted . The notation is natural, but potentially confusing. Note that  is not the Cartesian product of   times,
but rather the -algebra generated by sets of the form  where  for .

We can also extend these ideas to a general product. To recall the definition, suppose that  is a set for each  in a nonempty index
set . The product set  consists of all functions  such that  for each . To make the notation
look more like a simple Cartesian product, we often write  instead of  for the value of a function in the product set at .
The next definition gives the appropriate -algebra for the product set.

Suppose that  is a measurable space for each  in a nonempty index set . The product -algebra on the product set 
 is

If you have reviewed the section on topology, the definition should look familiar. If the spaces were topological spaces instead of
measurable spaces, with  the topology of  for , then the set of products in the displayed expression above is a base for
the product topology on .

The definition can also be understood in terms of projections. Recall that the projection onto coordinate  is the function 
 given by . The product -algebra is the smallest -algebra on the product set that makes all of the

projections measurable.

Suppose again that  is a measurable space for each  in a nonempty index set , and let  denote the product -
algebra on the product set . Then .

Proof

Let  and . Then  where  for  and . This set is in  so  is measurable.
Hence . For the other direction, consider a product set  where  except for , where 

1x 2y

x ∈ S (C) = {y ∈ T : (x, y) ∈ C}1−1
x

y ∈ T (C) = {x ∈ S : (x, y) ∈ C}2−1
y

C x C

y A ⊆ S B ⊆ T A×B ∈S ⊗T A ∈S B ∈ T

(S,S ) (T ,T ) S×T σ S ⊗T
(U,U ) f : S×T → U

y ↦ f(x, y) T U x ∈ S

x ↦ f(x, y) S U y ∈ T

f ∘ 1x f ∘ 2y

n

n ∈ N+ ( , )Si Si i ∈ {1, 2, … ,n} σ

× ×⋯ ×S1 S2 Sn

⊗ ⊗⋯ ⊗ = σ { × ×⋯ × : ∈  for all i ∈ {1, 2, … ,n}}S1 S2 Sn A1 A2 An Ai Si (1.11.8)

σ

( , ) = (S,S )Si Si i ∈ {1, 2, … ,n} Sn σ

S n S n S n

σ × ×⋯ ×A1 A2 An ∈SAi i ∈ {1, 2, … ,n}

Si i

I ∏i∈I Si x : I →⋃i∈I Si x(i) ∈ Si i ∈ I

xi x(i) i ∈ I

σ

( , )Si Si i I σ

∏i∈I Si

σ{ : ∈  for each i ∈ I and  =  for all but finitely many i ∈ I}∏
i∈I

Ai Ai Si Ai Si (1.11.9)

Si Si i ∈ I

∏i∈I Si

j∈ I

: →pj ∏i∈I Si Sj (x) =pj xj σ σ

( , )Si Si i I S σ

=SI ∏i∈I Si S = σ{ : i ∈ I}pi

j∈ I A ∈Sj (A) =p−1
j ∏i∈I Ai =Ai Si i ≠ j = AAj S pj

σ{ : i ∈ I} ⊆ Spi ∏i∈I Ai =Ai Si i ∈ J

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10126?pdf


1.11.10 https://stats.libretexts.org/@go/page/10126

 is finite. Then . This set is in . Product sets of this form generate  so it follows
that .

In the special case that  is a fixed measurable space and  for all , the product set  is just the
collection of functions from  into , often denoted . The product -algebra is then denoted , a notation that is natural, but
again potentially confusing. Here is the main measurability result for a function mapping into a product space.

Suppose that  is a measurable space, and that  is a measurable space for each  in a nonempty index set . As
before, let  have the product -algebra. Suppose now that . For  let  denote the th
coordinate function of , so that  for . Then  is measurable if and only if  is measurable for each 

.

Proof

Suppose that  is measurable. For  note that  is a composition of measurable functions, and hence is
measurable. Conversely, suppose that  is measurable for each . To show that measurability of  we need only consider
inverse images of sets that generate the product -algebra. Thus, suppose that  for  in a finite subset , and let 

 for . Then . This set is in  since the intersection is over a finite index
set.

Just as with the product of two sets, cross-sectional sets and functions are measurable with respect to the product measure. Again,
it's best to work with some special functions.

Suppose that  is a measurable space for each  in an index set  with at least two elements. For  and ,
define the function  by  where  for  and . Then  is measurable with
respect to the product -algebras.

Proof

Once again, it suffices to consider the inverse image of the sets that generate the product -algebra. So suppose  for 
 with  for all but finitely many . Then  if , and the inverse image is 

otherwise. In either case,  is in the product -algebra on .

In words, for  and , the function  takes a point in the product set  and assigns  to coordinate  to give a
point in . If , then  is the cross section of  in coordinate  at . So it follows immediately from the
previous result that the cross sections of a measurable set are measurable. Cross sections of measurable functions are also
measurable. Suppose that  is another measurable space, and that  is measurable. The cross section of  in
coordinate  at  is simply , a composition of measurable functions.

However, a non-measurable set can have measurable cross sections, even in a product of two spaces.

Suppose that  is an uncountable set with the -algebra  of countable and co-countable sets as in (21). Consider  with
the product -algebra . Let , the diagonal of . Then  has measurable cross sections, but 

 is not measurable.

Proof

For , the cross section of  in the first coordinate at  is . Similarly, for , the
cross section of  in the second coordinate at  is . But  cannot be generated by a
countable collection of sets of the form  with , so , by the result above.

Special Cases
Most of the sets encountered in applied probability are either countable, or subsets of  for some , or more generally, subsets of
a product of a countable number of sets of these types. In the study of stochastic processes, various spaces of functions play an
important role. In this subsection, we will explore the most important special cases.

J ⊆ I = ( )∏i∈I Ai ⋂j∈J p
−1
j Aj σ{ : i ∈ I}pi S

S ⊆ σ{ : i ∈ I}pi

(S,S ) ( , ) = (S,S )Si Si i ∈ I S∏i∈I

I S SI σ S
I

(R,R) ( , )Si Si i I

∏i∈I Si σ f : R →∏i∈I Si i ∈ I : R →fi Si i

f (x) = [f(x)fi ]i x ∈ R f fi
i ∈ I

f i ∈ I = ∘ ffi pi
fi i ∈ I f

σ ∈Aj Sj j J ⊆ I

=Ai Si i ∈ I −J ( )= ( )f−1 ∏i∈I Ai ⋂j∈J f
−1
j Aj R

( , )Si Si i I j∈ I u ∈ Sj

: →ju ∏i∈I−{j} ∏i∈I Si (x) = yju =yi xi i ≠ j = uyj ju

σ

σ ∈Ai Si

i ∈ I =Ai Si i ∈ I ( )=j−1
u ∏i∈I Ai ∏i∈I−{j} Ai u ∈ Aj ∅

( )j−1
u ∏i∈I Ai σ ∏i∈I−{j} Si

j∈ I u ∈ Sj ju ∏i∈I−{j} Si u j

∏i∈I Si A ⊆∏i∈I Si (A)j−1
u A j u

(T ,T ) f : → T∏i∈I Si f

j∈ I u ∈ Sj f ∘ : → Tju SI−{j}

S σ C S×S

σ C ⊗C D = {(x, x) : x ∈ S} S×S D

D

x ∈ S D x {y ∈ S : (x, y) ∈ D} = {x} ∈ C y ∈ S

D y {x ∈ S : (x, y) ∈ D} = {y} ∈ C D

A×B A, B ∈ C D ∉ C ⊗C

Rn n
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Discrete Spaces

If  is countable and  is the collection of all subsets of , then  is a discrete measurable space.

Thus if  is discrete, all subsets of  are measurable and every function from  to another measurable space is measurable.
The power set is also the discrete topology on , so  is a Borel -algebra as well. As a topological space,  is complete,
locally compact, Hausdorff, and since  is countable, separable. Moreover, the discrete topology corresponds to the discrete metric 

, defined by  for  and  for  with .

Euclidean Spaces

Recall that for , the Euclidean topology on  is generated by the standard Euclidean metric  given by

With this topology,  is complete, connected, locally compact, Hausdorff, and separable.

For , the -dimensional Euclidean measurable space is  where  is the Borel -algebra corresponding to
the standard Euclidean topology on .

The one-dimensional case is particularly important. In this case, the standard Euclidean metric  is given by  for 
. The Borel -algebra  can be generated by various collections of intervals.

Each of the following collections generates .

1. 
2. 
3. 

Proof

The proof involves showing that each set in any one of the collections is in the -algebra of any other collection. Let 
 for .

1. Clearly  and  so  and .
2. If  with  then  and , so . Also 

 so . Thus all bounded intervals are in . Next, , 
, , and , so each of these intervals is in 

. Of course , so we now have that  for every interval . Thus , and so from (a), .
3. If  with  then  so . Hence . But then from (a) and (b) it

follows that .

Since the Euclidean topology has a countable base,  is countably generated. In fact each collection of intervals above, but with
endpoints restricted to , generates . Moreover,  can also be constructed from -algebras that are generated by countable
partitions. First recall that for , the set of dyadic rationals (or binary rationals) of rank  or less is .
Note that  is countable and  for . Moreover, the set  of all dyadic rationals is dense in . The
dyadic rationals are often useful in various applications because  has the natural ordered enumeration  for each .
Now let

Then  is a countable partition of  into nonempty intervals of equal size , so  consists of unions of sets in 
as described above. Every set  is the union of two sets in  so clearly  for . Finally, the Borel -algebra on 

 is . This construction turns out to be useful in a number of settings.

For , the Euclidean topology on  is the -fold product topology formed from the Euclidean topology on . So the
Borel -algebra  is also the -fold power -algebra formed from . Finally,  can be generated by -fold products of sets in
any of the three collections in the previous theorem.

S S =P(S) S (S,S )

(S,S ) S S

S S σ (S,S )
S

d d(x, x) = 0 x ∈ S d(x, y) = 1 x, y ∈ S x ≠ y

n ∈ N+ R
n dn

(x, y) = , x = ( , , … , ), y = ( , , … , ) ∈dn ( −∑
i=1

n

xi yi)
2

− −−−−−−−−−

√ x1 x2 xn y1 y2 yn R
n (1.11.10)

R
n

n ∈ N+ n ( , )R
n
Rn Rn σ

R
n

d d(x, y) = |x−y|
x, y ∈ R σ R

R

= {I ⊆R : I is an interval}B1

= {(a, b] : a, b ∈ R, a < b}B2

= {(−∞, b] : b ∈ R}B3

σ

= σ( )Si Bi i ∈ {1, 2, 3}

⊆B2 B1 ⊆B3 B1 ⊆S2 S1 ⊆S3 S1

a, b ∈ R a ≤ b [a, b] = (a− , b]⋂∞
n=1

1
n

(a, b) = (a, b− ]⋃∞
n=1

1
n

[a, b], (a, b) ∈S2

[a, b) = [a, b− ]⋃∞
n=1

1
n [a, b) ∈R2 S2 [a, ∞) = [a, a+n)⋃∞

n=1

(a, ∞) = (a, a+n)⋃∞
n=1 (−∞, a] = (a−n, a]⋃∞

n=1 (−∞, a) = (a−n, a)⋃∞
n=1

S2 R ∈S2 I ∈S2 I ⊆S1 S2 =S2 S1

a, b ∈ R a < b (a, b] = (−∞, b] −(−∞, a] (a, b] ∈S3 ⊆S2 S3

=S3 S1

R

Q R R σ

n ∈ N n = {j/ : j∈ Z}Dn 2n

Dn ⊆Dn Dn+1 n ∈ N D =⋃n∈N Dn R

Dn j↦ j/2n n ∈ N

= {(j/ , (j+1)/ ] : j∈ Z} , n ∈ NDn 2n 2n (1.11.11)

Dn R 1/2n = σ( )En Dn Dn

Dn Dn+1 ⊆En En+1 n ∈ N σ

R R = σ ( ) = σ ( )⋃∞
n=0 En ⋃∞

n=0Dn

n ∈ {2, 3, …} Rn n R

σ R
n n σ R R

n n

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10126?pdf


1.11.12 https://stats.libretexts.org/@go/page/10126

Space of Real Functions

Suppose that  is a measurable space. From our general discussion of functions, recall that the usual arithmetic operations on
functions from  into  are defined pointwise.

If  and  are measurable and , then each of the following functions from  into  is also
measurable:

1. 
2. 
3. 
4. 

Proof

These results follow from the fact that the arithmetic operators are continuous, and hence measurable. That is, ,
, and  are continuous as functions from  into . Thus, if  are measurable, then 
 is measurable by the result above. Then, , ,  are the compositions, respectively, of , ,  with 

. Of course, (d) is a simple corollary of (c).

Similarly, if  is measurable, then so is . Recall that the set of functions from  into  is a vector space, under
the pointwise definitions of addition and scalar multiplication. But once again, we usually want to restrict our attention to
measurable functions. Thus, it's nice to know that the measurable functions from  into  also form a vector space. This follows
immediately from the closure properties (a) and (d) of the previous theorem. Of particular importance in probability and stochastic
processes is the vector space of bounded, measurable functions , with the supremum norm

The elementary functions that we encounter in calculus and other areas of applied mathematics are functions from subsets of  into
. The elementary functions include algebraic functions (which in turn include the polynomial and rational functions), the usual

transcendental functions (exponential, logarithm, trigonometric), and the usual functions constructed from these by composition,
the arithmetic operations, and by piecing together. As we might hope, all of the elementary functions are measurable.
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(S,S )
S R

f : S →R g : S →R a ∈ R S R

f +g

f −g

fg

af

(x, y) ↦ x+y

(x, y) ↦ x−y (x, y) ↦ xy R2 R f , g : S →R

(f , g) : S →R2 f +g f −g fg + − ⋅
(f , g)

f : S →R ∖ {0} 1/f S R

S R

f : S →R

∥f∥ = sup{|f(x)| : x ∈ S} (1.11.12)

R

R

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10126?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/01%3A_Foundations/1.11%3A_Measurable_Spaces
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random

