
17.3.1 https://stats.libretexts.org/@go/page/10301

17.3: Stopping Times
     

Basic Theory

As in the Introduction, we start with a stochastic process  on an underlying probability space , having
state space , and where the index set  (representing time) is either  (discrete time) or  (continuous time). Next, we have
a filtration , and we assume that  is adapted to . So  is an increasing family of sub -algebras of  and 
is measurable with respect to  for . We think of  as the collection of events up to time . We assume that 

, so that the mean of  exists as a real number, for each . Finally, in continuous time where , we
make the standard assumption that  is right continuous and has left limits, and that the filtration  is right continuous and
complete.

Our general goal in this section is to see if some of the important martingale properties are preserved if the deterministic time 
 is replaced by a (random) stopping time. Recall that a random time  with values in  is a stopping time relative to 

if  for . So a stopping time is a random time that does not require that we see into the future. That is, we can
tell if  from the information available at time . Next recall that the -algebra associated with the stopping time  is

So  is the collection of events up to the random time  just as  is the collection of events up to the deterministic time .
In terms of a gambler playing a sequence of games, the time that the gambler decides to stop playing must be a stopping time, and
in fact this interpretation is the origin of the name. That is, the time when the gambler decides to stop playing can only depend on
the information that the gambler has up to that point in time.

Optional Stopping

The basic martingale equation  for  with  can be generalized by replacing both  and  by
bounded stopping times. The result is known as the Doob's optional stopping theorem and is named again for Joseph Doob.
Suppose that  satisfies the basic assumptions above with respect to the filtration 

Suppose that are bounded stopping times relative to  with .

1. If  is a martingale relative to  then .
2. If  is a sub-martingale relative to  then .
3. If  is a super-martingale relative to  then .

Proof in discrete time
1. Suppose that  where  and let . For  with , . Hence by the martingale

property,

Since  is an upper bound on , the events  for  partition , so summing the displayed
equation over  gives . By definition of conditional expectation, . But since  is
also an upper bound for  we also have . Finally using the tower property we have

2. If  is a sub-martingale, then by the Doob decomposition theorem,  for  where 
is a martingale relative to  and  is increasing and is predictable relative to . So

But  by part (a) and since  is increasing, . Hence .
3. The proof when  is a super-martingale is just like (b), except that the process  is decreasing.

Proof in continuous time

Suppose that  is a martingale. We need to show that  for every . Let  and 
 for . The stopping times  and  take values in a countable set  for each , and  and 

X = { : t ∈ T}Xt (Ω,F ,P)
R T N [0, ∞)
F = { : t ∈ T}Ft X F F σ F Xt

Ft t ∈ T Ft t ∈ T

E (| |) < ∞Xt Xt t ∈ T T = [0, ∞)
X F

t ∈ T τ T ∪ {∞} F

{τ ≤ t} ∈ Ft t ∈ T

τ ≤ t t σ τ

= {A ∈ F : A∩ {τ ≤ t} ∈  for all t ∈ T}Fτ Ft (17.3.1)

Fτ τ Ft t ∈ T

E( ∣ ) =Xt Fs Xs s, t ∈ T s ≤ t s t

X = { : t ∈ T}Xt F = { : t ∈ T}Ft

F ρ ≤ τ

X F E( ∣ ) =Xτ Fρ Xρ

X F E( ∣ ) ≥Xτ Fρ Xρ

X F E( ∣ ) ≤Xτ Fρ Xρ

τ ≤ k k ∈ N+ A ∈ Fτ j∈ N j≤ k A∩ {τ = j} ∈ Fj

E( ;A∩ {τ = j}) =E( ;A∩ {τ = j}) =E( ;A∩ {τ = j})Xk Xj Xτ (17.3.2)

k τ A∩ {τ = j} j= 0, 1, … , k A

j E( ;A) =E( ;A)Xk Xτ E( ∣ ) =Xk Fτ Xτ k

ρ E( ∣ ) =Xk Fρ Xρ

=E( ∣ ) =E[E( ∣ ) ∣ ] =E[E( ∣ ) ∣ ] =E( ∣ )Xρ Xk Fρ Xk Fρ Fτ Xk Fτ Fρ Xτ Fρ (17.3.3)
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E( ∣ ) =E( ∣ ) +E( ∣ )Xτ Fρ Yτ Fρ Zτ Fρ (17.3.4)
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 as . The process  is a discrete-time martingale for each . By the right continuity of ,

Suppose next that  where  so that  also. Then  and  for  so the discrete
stopping times are uniformly bounded. From the discrete version of the theorem,  and 

 for . It then follows that the sequences  and  are uniformly
integrable and hence  and  as  in mean as well as with probability 1. Now let . Since 

,  and so  for each . By the theorem in discrete time,

Letting  gives . The proofs in parts (b) and (c) are as in the discrete time.

The assumption that the stopping times are bounded is critical. A counterexample when this assumption does not hold is given
below. Here are a couple of simple corollaries:

Suppose again that  and  are bounded stopping times relative to  with .

1. If  is a martingale relative to  then .
2. If  is a sub-martingale relative to  then .
3. If  is a super-martingale relative to  then .

Proof

Recall that , so the results are immediate from the optional stopping theorem.

Suppose that  is a bounded stopping time relative to .

1. If  is a martingale relative to  then .
2. If  is a sub-martingale relative to  then .
3. If  is a super-martingale relative to  then .

The Stopped Martingale

For our next discussion, we first need to recall how to stop a stochastic process at a stopping time.

Suppose that  satisfies the assumptions above and that  is a stopping time relative to the filtration . The stopped proccess 
 is defined by

Details

In continuous time, our standard assumptions ensure that  is a valid stochastic process and is adapted to . That is,  is
measurable with respect to  for each . Moreover,  is also right continuous and has left limits.

So  if  and  if . In particular, note that . If  is the fortune of a gambler at time ,
then  is the revised fortune at time  when  is the stopping time of the gamber. Our next result, known as the elementary
stopping theorem, is that a martingale stopped at a stopping time is still a martingale.

Suppose again that  satisfies the assumptions above, and that  is a stopping time relative to .

1. If  is a martingale relative to  then so is .
2. If  is a sub-martingale relative to  then so is .
3. If  is a super-martingale relative to  then so is .

General proof

If  with  then  and  are bounded stopping times with . So the results follows
immediately from the optional stopping theorem above.

Special proof in discrete time

↓ ττn n → ∞ { : t ∈ }Xt Tn n ∈ N X

→ , →  as n → ∞Xρn
Xρ Xτn Xτ (17.3.5)
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In discrete time, there is a simple direct proof using the martingale transform. So suppose that  and define the process 
 by

By definition of a stopping time,  for , so the process  is predictable. Of course,  is a
bounded, nonnegative process also. The transform of  by  is

But note that  if  and  if . That is, 
. Hence

But if  is a martingale (sub-martingale) (super-martingale), then so is the transform .

The elementary stopping theorem is bad news for the gambler playing a sequence of games. If the games are fair or unfavorable,
then no stopping time, regardless of how cleverly designed, can help the gambler. Since a stopped martingale is still a martingale,
the the mean property holds.

Suppose again that  satisfies the assumptions above, and that  is a stopping time relative to . Let .

1. If  is a martingale relative to  then 
2. If  is a sub-martingale relative to  then 
3. If  is a super-martingale relative to  then 

Optional Stopping in Discrete Time

A simple corollary of the optional stopping theorem is that if  is a martingale and  a bounded stopping time, then 
 (with the appropriate inequalities if  is a sub-martingale or a super-martingale). Our next discussion centers on

other conditions which give these results in discrete time. Suppose that  satisfies the basic assumptions above
with respect to the filtration , and that  is a stopping time relative to .

Suppose that  is bounded uniformly in  and that  is finite.

4. If  is a martingale then .
5. If  is a sub-martingale then .
6. If  is a super-martingale then .

Proof

Assume that  is a super-martingale. The proof for a sub-martingale are similar, and then the results follow immediately for a
martingale. The main tool is the mean property above for the stopped super-martingale:

Since  with probability 1,  as , also with probability 1. Since  is bounded in , it follows
from the bounded convergence theorem that  as . Letting  in the displayed equation gives 

.

Suppose that  is bounded uniformly in  and that .

4. If  is a martingale then .
5. If  is a sub-martingale then .
6. If  is a super-martingale then .

Proof

T =N

Y = { : n ∈ }Yn N+

= 1(τ ≥ n) = 1 −1(τ ≤ n−1), n ∈Yn N+ (17.3.8)
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X E( ) =E( )Xτ X0
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X
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τ < ∞ τ ∧n → τ n → ∞ | |Xn n ∈ T
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Assume that  is a super-martingale. The proofs for a sub-martingale are similar, and then the results follow immediately for a
martingale. The main tool once again is the mean property above for the stopped super-martingale:

Suppose that  where . Then

Hence . Since  we know that  with probability 1, so as before,  as .
Also  so by the dominated convergence theorem,  as . So again letting 

 in the displayed equation gives .

Let's return to our original interpretation of a martingale  representing the fortune of a gambler playing fair games. The gambler
could choose to quit at a random time , but  would have to be a stopping time, based on the gambler's information encoded in the
filtration . Under the conditions of the theorem, no such scheme can help the gambler in terms of expected value.

Examples and Applications

The Simple Random Walk

Suppose that  is a sequence if independent, identically distributed random variables with  and 
 for , where . Let  be the partial sum process associated with  so

that

Then  is the simple random walk with parameter . In terms of gambling, our gambler plays a sequence of independent and
identical games, and on each game, wins €1 with probability  and loses €1 with probability . So  is the the gambler's total
net winnings after  games. We showed in the Introduction that  is a martingale if  (the fair case), a sub-martingale if 

 (the favorable case), and a super-martingale if  (the unfair case). Now, for , let

where as usual, . So  is the first time that the gambler's fortune reaches . What if the gambler simply continues
playing until her net winnings is some specified positive number (say €  )? Is that a workable strategy?

Suppose that  and that .

1. 
2. 
3. 

Proof

Parts (a) and (c) hold since  is a null recurrent Markov chain. Part (b) follows from (a) since trivially  if .

Note that part (b) does not contradict the optional stopping theorem because of part (c). The strategy of waiting until the net
winnings reaches a specified goal  is unsustainable. Suppose now that the gambler plays until the net winnings either falls to a
specified negative number (a loss that she can tolerate) or reaches a specified positive number (a goal she hopes to reach).

Suppose again that . For , let . Then

1. 
2. 
3. 

Proof

X

E( ) ≤E( ), n ∈ NXτ∧n X0 (17.3.12)
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1. We will let  have an arbitrary value in the set , so that we can use Markov chain techniques.
Let  for  in this set. Conditioning on the first state and using the Markov property we have

with boundary conditions . The linear recurrence relation can be solved explicitly, but all that we care
about is the fact that the solution is finite.

2. The optional sampling theorem applies, so .
3. Let  so that . By definition,  if  and  if . So

from (b),  and therefore .

So gambling until the net winnings either falls to  or reaches  is a workable strategy, but alas has expected value 0. Here's
another example that shows that the first version of the optional sampling theorem can fail if the stopping times are not bounded.

Suppose again that . Let  with . Then  but

Proof

Since , the process  must reach  before reaching . As before,  but  since  is a null recurrent
Markov chain.

This result does not contradict the optional stopping theorem since the stopping times are not bounded.

Wald's Equation

Wald's equation, named for Abraham Wald is a formula for the expected value of the sum of a random number of independent,
identically distributed random variables. We have considered this before, in our discussion of conditional expected value and our
discussion of random samples, but martingale theory leads to a particularly simple and elegant proof.

Suppose that  is a sequence of independent, identically distributed variables with common mean .
If  is a stopping time for  with  then

Proof

Let  denote the natural filtration associated with . Let , so that by assumption, . Finally, let

Then  is a martingale relative to , with mean 0. Note that

Hence a discrete version of the optional stopping theorem applies and we have . Therefore

Patterns in Multinomial Trials

Patterns in multinomial trials were studied in the chapter on Renewal Processes. As is often the case, martingales provide a more
elegant solution. Suppose that  is a sequence of independent, identically distributed random variables taking
values in a finite set , so that  is a sequence of multinomial trials. Let  denote the common probability density function so that
for a generic trial variable , we have  for . We assume that all outcomes in  are actually possible, so 

 for .

X0 {−a, −a+1, … , b−1, b}
m(x) =E(τ ∣ = x)X0 x

m(x) = 1 + m(x−1) + m(x+1), x ∈ {−a+1, … , b−1}
1

2

1

2
(17.3.16)

m(−a) = m(b) = 0

E( ) =E( ) = 0Xτ X0

q = P( < )τ−a τb 1 −q = P( < )τb τ−a = −aXτ <τ−a τb = bXτ <τb τ−a

q(−a) +(1 −q)b = 0 q = b/(a+b)

−a b

p = 1
2

a, b ∈ N+ a < b < < ∞τa τb

b =E ( ∣ ) ≠ = aXτb Fτa Xτa (17.3.17)

= 0X0 X a b < ∞τb E( ) = ∞τb X

X = ( : n ∈ )Xn N+ μ ∈ R

N X E(N) < ∞

E( ) =E(N)μ∑
k=1

N

Xk (17.3.18)

F X c =E(| |)Xn c < ∞

= ( −μ) n ∈Yn ∑
k=1

n

Xk N+ (17.3.19)

Y = ( : n ∈ )Yn N+ F

E(| − |) =E(| −μ|) ≤ c+|μ|, n ∈Yn+1 Yn Xn+1 N+ (17.3.20)

E( ) = 0YN

0 =E( ) =E[ ( −μ)] =E( −Nμ) =E( )−E(N)μYN ∑
k=1

N

Xk ∑
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N
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In this discussion, we interpret  as an alphabet, and we write the sequence of variables in concatenation form, 
rather than standard sequence form. Thus the sequence is an infinite string of letters from our alphabet . We are interested in the
first occurrence of a particular finite substring of letters (that is, a “word” or “pattern”) in the infinite sequence. The following
definition will simplify the notation.

If  is a word of length  from the alphabet , define

so  is the probability of  consecutive trials producing word .

So, fix a word  of length  from the alphabet , and consider the number of trials  until  is completed.
Our goal is compute . We do this by casting the problem in terms of a sequence of gamblers playing fair games and
then using the optional stopping theorem above. So suppose that if a gambler bets  on a letter  on a trial, then the
gambler wins  if  occurs on that trial and wins 0 otherwise. The expected value of this bet is

and so the bet is fair. Consider now a gambler with an initial fortune 1. When she starts playing, she bets 1 on . If she wins, she
bet her entire fortune  on the next trial on . She continues in this way: as long as she wins, she bets her entire fortune on
the next trial on the next letter of the word, until either she loses or completes the word . Finally, we consider a sequence of
independent gamblers playing this strategy, with gambler  starting on trial  for each .

For a finite word  from the alphabet ,  is the total winnings by all of the players at time .

Proof

Let  denote the total fortunes of all of the gamblers after trial . Since all of the bets are fair,  is
a martingale with mean 0. We will show that the conditions in the discrete version of the optional sampling theorem hold. First,
consider disjoint blocks of trials of length , that is

Let  denote the index of the first such block that forms the letter . This variable has the geometric distribution on  with
success parameter  and so in particular, . But clearly  so . Next note
that all of the gamblers have stopped playing by time , so clearly  for . So the optional
stopping theorem applies, and hence . But note that  can also be interpreted as the expected amount of
money invested by the gamblers (1 unit at each time until the game ends at time ), and hence this must also be the total
winnings at time  (which is deterministic).

Given , we can compute the total winnings precisely. By definition, trials  form the word  for the first time.
Hence for , gambler  loses at some point. Also by definition, gambler  wins all of her bets, completes word 

 and so collects . The complicating factor is that gamblers  may or may not have won all of their bets
at the point when the game ends. The following exercise illustrates this.

Suppose that  is a sequence of Bernoulli trials (so ) with success probability . For each of the following
strings, find the expected number of trials needed to complete the string.

1. 001
2. 010

Solution

Let .

1. For the word 001, gambler  wins  on her three bets. Gambler  makes two bets, winning the first but losing

the second. Gambler  loses her first (and only) bet. Hence 

S L= ⋯L1L2

S

a= ⋯a1a2 ak k ∈ N+ S

f(a) = f( )∏
i=1

k

ai (17.3.22)

f(a) k a

a= ⋯a1a2 ak k ∈ N+ S Na a

ν(a) =E ( )Na

c ∈ (0, ∞) a ∈ S

c/f(a) a

f(a) −c = 0
c

f(a)
(17.3.23)

a1

1/f( )a1 a2

a

i i i ∈ N+

a S ν(a) Na

Xn n ∈ N+ X = { : n ∈ }Xn N+

k

(( , , … , ), ( , , … , ), …)L1 L2 Lk Lk+1 Lk+2 L2k (17.3.24)

Ma a N+

f(a) E( ) = 1/f(a)Ma ≤ kNa Ma ν(a) < k/f(a) < ∞
N | − | ≤ 1/f(a)Xn+1 Xn n ∈ N+

E ( ) = 0XNa ν(a)
Na

Na

a N −k+1, … ,N a

i ≤ N −k i N −k+1
a 1/f(a) N −k+2, … ,N

L S = {0, 1} p ∈ (0, 1)

q = 1 −p

N −2 1

pq2
N −2

N ν(001) = 1

pq2
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2. For the word 010, gambler  wins  on her three bets as before. Gambler  loses his first bet. Gambler  wins

 on his first (and only) bet. So 

The difference between the two words is that the word in (b) has a prefix (a proper string at the beginning of the word) that is also a
suffix (a proper string at the end of the word). Word  has no such prefix. Thus we are led naturally to the following dichotomy:

Suppose that  is a finite word from the alphabet . If no proper prefix of  is also a suffix, then  is simple. Otherwise,  is
compound.

Here is the main result, which of course is the same as when the problem was solved using renewal theory.

Suppose that  is a finite word in the alphabet .

1. If  is simple then .
2. If  is compound, then  where  is the longest word that is both a prefix and a suffix of .

Proof

The ingredients are in place from our previous discussion. Suppose that  has length .

1. If  is simple, only player  wins, and she wins .
2. Suppose  is compound and  is the largest proper prefix-suffix. player  wins  as always. The winnings

of players  are the same as the winnings of a new sequence of gamblers playing a new sequence of trials
with the goal of reaching word .

For a compound word, we can use (b) to reduce the computation to simple words.

Consider Bernoulli trials with success probability . Find the expected number of trials until each of the following
strings is completed.

1. 
2.  (  times)

Solutions

Again, let .

1. 

2. Let  denote a string of  1s for . If  then . Hence

Recall that an ace-six flat die is a six-sided die for which faces 1 and 6 have probability  each while faces 2, 3, 4, and 5 have
probability  each. Ace-six flat dice are sometimes used by gamblers to cheat.

Suppose that an ace-six flat die is thrown repeatedly. Find the expected number of throws until the pattern  occurs.

Solution

From our main theorem,

Suppose that a monkey types randomly on a keyboard that has the 26 lower-case letter keys and the space key (so 27 keys).
Find the expected number of keystrokes until the monkey produces each of the following phrases:
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1. it was the best of times
2. to be or not to be

Solution

1. 
2. 

The Secretary Problem

The secretary problem was considered in the chapter on Finite Sampling Models. In this discussion we will solve a variation of the
problem using martingales. Suppose that there are  candidates for a job, or perhaps potential marriage partners. The
candidates arrive sequentially in random order and are interviewed. We measure the quality of each candidate by a number in the
interval . Our goal is to select the very best candidate, but once a candidate is rejected, she cannot be recalled. Mathematically,
our assumptions are that the sequence of candidate variables  is independent and that each is uniformly
distributed on the interval  (and so has the standard uniform distribution). Our goal is to select a stopping time  with respect
to  that maximizes , the expected value of the chosen candidate. The following sequence will play a critical role as a
sequence of thresholds.

Define the sequence  by  and  for . Then

1.  for .
2.  for .
3.  as .
4. If  is uniformly distributed on  then  for .

Proof

1. Note that . Suppose that  for some . Then 
2. Note that . Suppose that  for some . Then .
3. Since the sequence is increasing and bounded above,  exists. Taking limits in the recursion relation gives 

 or equivalently .
4. For ,

Since , all of the terms of the sequence are in  by (a). Approximations of the first 10 terms are

Property (d) gives some indication of why the sequence is important for the secretary probelm. At any rate, the next theorem gives
the solution. To simplify the notation, let  and .

The stopping time  is optimal for the secretary problem with  candidates. The optimal value
is .

Proof

Let  be the natural filtration of , and suppose that  is a stopping time for . Define 
 by  and  for . We will show that  is a super-martingale with respect

to . First, on the event ,

where we have used the fact that  is measurable with respect to  and the fact that the sequence  is
increasing. On the event ,

where we have used the fact that  and  are independent, and part (d) of the previous result. Since  is a super-
martingale and  is bounded, the optional stopping theorem applies and we have
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(0, 0.5, 0.625, 0.695, 0.742, 0.775, 0.800, 0.820, 0.836, 0.850, 0.861, …) (17.3.27)
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so  is an upper bound on the expected value of the candidate chosen by the stopping time .

Next, we will show that in the special case that , the process  is a martingale. On the event  we have 
 as before. But by definition,  so on this event,

On the event  we have  as before. But on this event, . Now since  is a
martingale and  is bounded, the optional stopping theorem applies and we have

Here is a specific example:

For , the decision rule is as follows:

1. Select candidate 1 if ; otherwise,
2. select candidate 2 if ; otherwise,
3. select candidate 3 if ; otherwise,
4. select candidate 4 if ; otherwise,
5. select candidate 5.

The expected value of our chosen candidate is 0.775.

In our original version of the secretary problem, we could only observe the relative ranks of the candidates, and our goal was to
maximize the probability of picking the best candidate. With , the optimal strategy is to let the first two candidates go by and
then pick the first candidate after that is better than all previous candidates, if she exists. If she does not exist, of course, we must
select candidate 5. The probability of picking the best candidate is 0.433

This page titled 17.3: Stopping Times is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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