
4.2.1 https://stats.libretexts.org/@go/page/10157

4.2: Additional Properties
    

In this section, we study some properties of expected value that are a bit more specialized than the basic properties considered in the previous
section. Nonetheless, the new results are also very important. They include two fundamental inequalities as well as special formulas for the
expected value of a nonnegative variable. As usual, unless otherwise noted, we assume that the referenced expected values exist.

Basic Theory

Markov's Inequality

Our first result is known as Markov's inequality (named after Andrei Markov). It gives an upper bound for the tail probability of a nonnegative
random variable in terms of the expected value of the variable.

If  is a nonnegative random variable, then

Proof

For , note that . Taking expected values through this inequality gives .

The upper bound in Markov's inequality may be rather crude. In fact, it's quite possible that , in which case the bound is worthless.
However, the real value of Markov's inequality lies in the fact that it holds with no assumptions whatsoever on the distribution of  (other than that

 be nonnegative). Also, as an example below shows, the inequality is tight in the sense that equality can hold for a given . Here is a simple
corollary of Markov's inequality.

If  is a real-valued random variable and  then

Proof

Since , the function  is strictly increasing on . Hence using Markov's inequality,

In this corollary of Markov's inequality, we could try to find  so that  is minimized, thus giving the tightest bound on 

.

Right Distribution Function

Our next few results give alternative ways to compute the expected value of a nonnegative random variable by means of the right-tail distribution
function. This function also known as the reliability function if the variable represents the lifetime of a device.

If  is a nonnegative random variable then

Proof

A proof can be constructed by expressing  in terms of the probability density function of , as a sum in the discrete case or an
integral in the continuous case. Then in the expression  interchange the integral and the sum (in the discrete case) or the two
integrals (in the continuous case). There is a much more elegant proof if we use the fact that we can interchange expected values and integrals
when the integrand is nonnegative:

This interchange is a special case of Fubini's theorem, named for the Italian mathematician Guido Fubini. See the advanced section on expected
value as an integral for more details.

Here is a slightly more general result:

X

P(X ≥ x) ≤ , x > 0
E(X)

x
(4.2.1)

x > 0 x ⋅ 1(X ≥ x) ≤ X xP(X ≥ x) ≤E(X)

E(X)/x ≥ 1

X

X x

X k ∈ (0, ∞)

P(|X| ≥ x) ≤ x > 0
E( )|X|k

xk
(4.2.2)

k ≥ 0 x ↦ xk [0, ∞)

P(|X| ≥ x) = P( ≥ )≤|X|k xk
E( )|X|k

xk
(4.2.3)

k > 0 E( )/|X|k xk

P (|X|) ≥ x)

X

E(X) = P(X > x)dx∫
∞

0

(4.2.4)

P(X > x) X

P(X > x)dx∫ ∞
0

P(X > x)dx = E [1(X > x)] dx =E( 1(X > x)dx) =E( 1 dx) =E(X)∫
∞

0

∫
∞

0

∫
∞

0

∫
X

0

(4.2.5)
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If  is a nonnegative random variable and  then

Proof

The same basic proof works:

The following result is similar to the theorem above, but is specialized to nonnegative integer valued variables:

Suppose that  has a discrete distribution, taking values in . Then

Proof

First, the two sums on the right are equivalent by a simple change of variables. A proof can be constructed by expressing  as a sum
in terms of the probability density function of . Then in the expression  interchange the two sums. Here is a more elegant
proof:

This interchange is a special case of a general rule that allows the interchange of expected value and an infinite series, when the terms are
nonnegative. See the advanced section on expected value as an integral for more details.

A General Definition

The special expected value formula for nonnegative variables can be used as the basis of a general formulation of expected value that would work
for discrete, continuous, or even mixed distributions, and would not require the assumption of the existence of probability density functions. First,
the special formula is taken as the definition of  if  is nonnegative.

If  is a nonnegative random variable, define

Next, for , recall that the positive and negative parts of  are  and .

For ,

1. , 
2. 
3. 

Now, if  is a real-valued random variable, then  and , the positive and negative parts of , are nonnegative random variables, so their
expected values are defined as above. The definition of  is then natural, anticipating of course the linearity property.

If  is a real-valued random variable, define , assuming that at least one of the expected values on the right is
finite.

The usual formulas for expected value in terms of the probability density function, for discrete, continuous, or mixed distributions, would now be
proven as theorems. We will not go further in this direction, however, since the most complete and general definition of expected value is given in
the advanced section on expected value as an integral.

The Change of Variables Theorem

Suppose that  takes values in  and has probability density function . Suppose also that , so that  is a real-valued random
variable. The change of variables theorem gives a formula for computing  without having to first find the probability density function of 

. If  is countable, so that  has a discrete distribution, then

X k ∈ (0, ∞)

E( ) = k P(X > x)dxXk ∫
∞

0

xk−1 (4.2.6)

k P(X > x)dx = k E [1(X > x)] dx =E( k 1(X > x)dx) =E( k dx) =E( )∫
∞

0

xk−1 ∫
∞

0

xk−1 ∫
∞

0

xk−1 ∫
X

0

xk−1 Xk (4.2.7)

N N

E(N) = P(N > n) = P(N ≥ n)∑
n=0

∞

∑
n=1

∞

(4.2.8)

P(N > n)

N P(N > n)∑∞
n=0

P(N ≥ n) = E [1(N ≥ n)] =E( 1(N ≥ n)) =E( 1) =E(N)∑
n=1

∞

∑
n=1

∞

∑
n=1

∞

∑
n=1

N

(4.2.9)

E(X) X

X

E(X) = P(X > x)dx∫
∞

0

(4.2.10)

x ∈ R x = max{x, 0}x+ = max{0, −x}x−

x ∈ R

≥ 0x+ ≥ 0x−

x = −x+ x−

|x| = +x+ x−

X X+ X− X

E(X)

X E(X) =E ( ) −E ( )X+ X−

X S f r : S →R r(X)

E [r(X)]

r(X) S X

E [r(X)] = r(x)f(x)∑
x∈S

(4.2.11)
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If  and  has a continuous distribution on  then

In both cases, of course, we assume that the expected values exist. In the previous section on basic properties, we proved the change of variables
theorem when  has a discrete distribution and when  has a continuous distribution but  has countable range. Now we can finally finish our
proof in the continuous case.

Suppose that  has a continuous distribution on  with probability density function , and . Then

Proof

Suppose first that  is nonnegative. From the theorem above,

For general , we decompose into positive and negative parts, and use the result just established.

Jensens's Inequality

Our next sequence of exercises will establish an important inequality known as Jensen's inequality, named for Johan Jensen. First we need a
definition.

A real-valued function  defined on an interval  is said to be convex (or concave upward) on  if for each , there exist numbers 
and  (that may depend on ), such that

1. 
2.  for all 

The graph of  is called a supporting line for  at .

Thus, a convex function has at least one supporting line at each point in the domain

Figure : A convex function and several supporting lines

You may be more familiar with convexity in terms of the following theorem from calculus: If  has a continuous, non-negative second derivative on
, then  is convex on  (since the tangent line at  is a supporting line at  for each ). The next result is the single variable version of

Jensen's inequality

If  takes values in an interval  and  is convex on , then

Proof

Note that  so let  be a supporting line for  at . Thus  and . Taking
expected values through the inequality gives

S ⊆R
n X S

E [r(X)] = r(x)f(x)dx∫
S

(4.2.12)

X X r

X S f r : S →R

E [r(X)] = r(x)f(x)dx∫
S

(4.2.13)

r

E [r(X)] = P [r(X) > t] dt = f(x)dx dt = f(x)dt dx = r(x)f(x)dx∫
∞

0

∫
∞

0

∫
(t,∞)r−1

∫
S

∫
r(x)

0

∫
S

(4.2.14)

r

E [r(X)] =E [ (X) − (X)] =E [ (X)]−E [ (X)]r+ r− r+ r−

= (x)f(x)dx− (x)f(x)dx = [ (x) − (x)] f(x)dx = r(x)f(x)dx∫
S

r+ ∫
S

r− ∫
S

r+ r− ∫
S

(4.2.15)

(4.2.16)

g S ⊆R S t ∈ S a

b t

a+bt = g(t)

a+bx ≤ g(x) x ∈ S

x ↦ a+bx g t

4.2.1

g

S g S t t t ∈ S

X S g : S →R S

E [g(X)] ≥ g [E(X)] (4.2.17)

E(X) ∈ S y = a+bx g E(X) a+bE(X) = g[E(X)] a+bX ≤ g(X)

a+bE(X) = g [E(X)] ≤E [g(X)] (4.2.18)
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Jensens's inequality extends easily to higher dimensions. The 2-dimensional version is particularly important, because it will be used to derive
several special inequalities in the section on vector spaces of random variables. We need two definitions.

A set  is convex if for every pair of points in , the line segment connecting those points also lies in . That is, if  and 
 then .

Figure : A convex subset of 

Suppose that  is convex. A function  on  is convex (or concave upward) if for each , there exist  and 
(depending on ) such that

1. 
2.  for all 

The graph of  is called a supporting hyperplane for  at .

In  a supporting hyperplane is an ordinary plane. From calculus, if  has continuous second derivatives on  and has a positive non-definite
second derivative matrix, then  is convex on . Suppose now that  takes values in , and let 

. The following result is the general version of Jensen's inequlaity.

If  is convex and  is convex on  then

Proof

First , so let  be a supporting hyperplane for  at . Thus  and .
Taking expected values through the inequality gives

We will study the expected value of random vectors and matrices in more detail in a later section. In both the one and -dimensional cases, a
function  is concave (or concave downward) if the inequality in the definition is reversed. Jensen's inequality also reverses.

Expected Value in Terms of the Quantile Function

If  has a continuous distribution with support on an interval of , then there is a simple (but not well known) formula for the expected value of 
as the integral the quantile function of . Here is the general result:

Suppose that  has a continuous distribution with support on an interval . Let  denote the cumulative distribution function of  so
that  is the quantile function of . If  then (assuming that the expected value exists),

Proof

Suppose that  has probability density function , although the theorem is true without this assumption. Under the assumption that  has a
continuous distribution with support on the interval , the distribution function  is strictly increasing on , and the quantile function 

 is the ordinary inverse of . Substituting ,  we have

So in particular, .

Examples and Applications

Let  and let , so that  is a constant random variable. Show that Markov's inequality is in fact equality at .

Solution

S ⊆R
n S S x, y ∈ S

p ∈ [0, 1] px +(1 −p)y ∈ S

4.2.2 R
2

S ⊆R
n g : S →R S t ∈ S a ∈ R b ∈ R

n

t

a+b ⋅ t = g(t)

a+b ⋅ x ≤ g(x) x ∈ S

x ↦ a+b ⋅ x g t

R
2 g S

g S X = ( , , … , )X1 X2 Xn S ⊆R
n

E(X) = (E( ),E( ), … ,E( ))X1 X2 Xn

S g : S →R S

E [g(X)] ≥ g [E(X)] (4.2.19)

E(X) ∈ S y = a+b ⋅ x g E(X) a+b ⋅E(X) = g[E(X)] a+b ⋅ X ≤ g(X)

a+b ⋅E(X) = g [E(X)] ≤E [g(X)] (4.2.20)

n

g : S →R

X R X

X

X (a, b) ⊆R F X

F −1 X g : (a, b) →R

E[g(X)] = g [ (p)] dp, n ∈ N∫
1

0

F −1 (4.2.21)

X f X

(a, b) F (a, b)

F −1 F p = F (x) dp = (x)dx = f(x)dxF ′

g [ (p)] dp = g( [F (x)])f(x)dx = g(x)f(x)dx =E[g(X)]∫
1

0

F −1 ∫
b

a

F −1 ∫
b

a

(4.2.22)

E(X) = (p)dp∫ 1
0 F −1

a ∈ (0, ∞) P(X = a) = 1 X x = a
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Of course . Hence  and .

The Exponential Distribution

Recall that the exponential distribution is a continuous distribution with probability density function  given by

where  is the rate parameter. This distribution is widely used to model failure times and other “arrival times”; in particular, the
distribution governs the time between arrivals in the Poisson model. The exponential distribution is studied in detail in the chapter on the Poisson
Process.

Suppose that  has exponential distribution with rate parameter .

1. Find  using the right distribution formula.
2. Find  using the quantile function formula.
3. Compute both sides of Markov's inequality.

Answer

1. 
2. 
3.  for 

Open the gamma experiment. Keep the default value of the stopping parameter ( ), which gives the exponential distribution. Vary the rate
parameter  and note the shape of the probability density function and the location of the mean. For various values of the rate parameter, run
the experiment 1000 times and compare the sample mean with the distribution mean.

The Geometric Distribution

Recall that Bernoulli trials are independent trials each with two outcomes, which in the language of reliability, are called success and failure. The
probability of success on each trial is . A separate chapter on Bernoulli Trials explores this random process in more detail. It is named for
Jacob Bernoulli. If , the trial number  of the first success has the geometric distribution on  with success parameter . The
probability density function  of  is given by

Suppose that  has the geometric distribution on  with parameter .

1. Find  using the right distribution function formula.
2. Compute both sides of Markov's inequality.
3. Find .

Answer

1. 
2. 

3. 

Open the negative binomial experiment. Keep the default value of the stopping parameter ( ), which gives the geometric distribution. Vary
the success parameter  and note the shape of the probability density function and the location of the mean. For various values of the success
parameter, run the experiment 1000 times and compare the sample mean with the distribution mean.

The Pareto Distribution

Recall that the Pareto distribution is a continuous distribution with probability density function  given by

where  is a parameter. The Pareto distribution is named for Vilfredo Pareto. It is a heavy-tailed distribution that is widely used to model
certain financial variables. The Pareto distribution is studied in detail in the chapter on Special Distributions.

Suppose that  has the Pareto distribution with parameter .

1. Find  using the right distribution function formula.
2. Find  using the quantile function formula.
3. Find .

E(X) = a P(X ≥ a) = 1 E(X)/a = 1

f

f(t) = r , t ∈ [0, ∞)e−rt (4.2.23)

r ∈ (0, ∞)

X r

E(X)

E(X)

dt =∫ ∞
0 e−rt 1

r

− ln(1 −p)dp =∫ 1
0

1
r

1
r

<e−rt 1
rt

t > 0

n = 1

r

p ∈ [0, 1]

p ∈ (0, 1) N N+ p

f N

f(n) = p(1 −p , n ∈)n−1
N+ (4.2.24)

N N+ p ∈ (0, 1)

E(N)

E(N ∣ N  is even )

(1 −p =∑∞
n=0 )n 1

p

(1 −p < , n ∈)n−1 1
np

N+

2(1−p)2

p(2−p)
2

k = 1

p

f

f(x) = , x ∈ [1, ∞)
a

xa+1
(4.2.25)

a ∈ (0, ∞)

X a > 1

E(X)

E(X)

E(1/X)
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4. Show that  is convex on .
5. Verify Jensen's inequality by comparing  and .

Answer

1. 

2. 
3. 

4. The convexity of  is clear from the graph. Note also that  for .

5. 

Open the special distribution simulator and select the Pareto distribution. Keep the default value of the scale parameter. Vary the shape
parameter and note the shape of the probability density function and the location of the mean. For various values of the shape parameter, run
the experiment 1000 times and compare the sample mean with the distribution mean.

A Bivariate Distribution

Suppose that  has probability density function  given by  for .

1. Show that the domain of  is a convex set.
2. Show that  is convex on the domain of .
3. Compute .
4. Compute .
5. Verify Jensen's inequality by comparing (b) and (c).

Answer
1. Note that the domain is a triangular region.

2. The second derivative matrix is .

3. 
4. 
5. 

The Arithmetic and Geometric Means

Suppose that  is a set of positive numbers. The arithmetic mean is at least as large as the geometric mean:

Proof

Let  be uniformly distributed on . We apply Jensen's inequality with the natural logarithm function, which is concave on 
:

Taking exponentials of each side gives the inequality.
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x ↦ 1/x (0, ∞)

E(1/X) 1/E(X)

1 dx+ dx =∫ 1
0 ∫ ∞

1 x−a a

a−1

(1 −p dp =∫ 1

0
)−1/a a

a−1
a

a+1

1/x = > 0d2

dx2

1
x

2

x3 x > 0

>a

a+1

a−1
a

(X,Y ) f f(x, y) = 2(x+y) 0 ≤ x ≤ y ≤ 1

f

(x, y) ↦ +x2 y2 f

E ( + )X2 Y 2

+[E(X)]
2

[E(Y )]
2

[ ]
2

0

0

2
5
6
53

72

>5

6

53

72

{ , , … , }x1 x2 xn

≤( )∏
i=1

n

xi

1/n
1

n
∑
i=1

n

xi (4.2.26)

X { , , … , }x1 x2 xn
(0, ∞)

E (lnX) = ln = ln ≤ ln[E(X)] = ln( )
1

n
∑
i=1

n

xi
⎡

⎣
( )∏

i=1

n

xi

1/n
⎤

⎦

1

n
∑
i=1

n

xi (4.2.27)
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