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12.4: Order Statistics
       

Basic Theory

Definitions

Suppose that the objects in our population are numbered from 1 to , so that . For example, the population
might consist of manufactured items, and the labels might correspond to serial numbers. As in the basic sampling model we select 

 objects at random, without replacement from . Thus the outcome is  where  is the th object
chosen. Recall that  is uniformly distributed over the set of permutations of size  chosen from . Recall also that 

 is the unordered sample, which is uniformly distributed on the set of combinations of size  chosen from
.

For  let th smallest element of . The random variable  is known as the order
statistic of order  for the sample . In particular, the extreme order statistics are

Random variable  takes values in  for .

We will denote the vector of order statistics by . Note that  takes values in

Run the order statistic experiment. Note that you can vary the population size  and the sample size . The order statistics are
recorded on each update.

Distributions

 has  elements and  is uniformly distributed on .

Proof

For ,  if and only if  is one of the  permutations of . Hence 
.

The probability density function of  is

Proof

The event that the th order statistic is  means that  sample values are less than  and  are greater than , and of
course, one of the sample values is . By the multiplication principle of combinatorics, the number of unordered samples
corresponding to this event is . The total number of unordered samples is .

In the order statistic experiment, vary the parameters and note the shape and location of the probability density function. For
selected values of the parameters, run the experiment 1000 times and compare the relative frequency function to the probability
density function.

Moments

The probability density function of  above can be used to obtain an interesting identity involving the binomial coefficients.
This identity, in turn, can be used to find the mean and variance of .

For  with ,
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Proof

This result follows immediately from the probability density function of  above

The expected value of  is

Proof

We start with the definition of expected value. Recall that . Next we use the identity above with  replaced
with ,  replaced with , and  replaced with . Simplifying gives the result.

The variance of  is

Proof

The result follows from another application of the identity above.

In the order statistic experiment, vary the parameters and note the size and location of the mean  standard deviation bar. For
selected values of the parameters, run the experiment 1000 times and compare the sample mean and standard deviation to the
distribution mean and standard deviation.

Estimators of  Based on Order Statistics

Suppose that the population size  is unknown. In this subsection we consider estimators of  constructed from the various order
statistics.

For , the following statistic is an unbiased estimator of :

Proof

From the expected value of  above and the linear property of expected value, note that .

Since  is unbiased, its variance is the mean square error, a measure of the quality of the estimator.

The variance of  is

Proof

This result follows from variance of  given above and standard properties of variance.

For fixed  and ,  decreases as  increases. Thus, the estimators improve as  increases; in particular,  is the best
and  the worst.

The relative efficiency of  with respect to  is
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Note that the relative efficiency depends only on the orders  and  and the sample size , but not on the population size  (the
unknown parameter). In particular, the relative efficiency of  with respect to  is . For fixed  and , the asymptotic relative
efficiency of  to  is . Usually, we hope that an estimator improves (in the sense of mean square error) as the sample size 
increases (the more information we have, the better our estimate should be). This general idea is known as consistency.

 decreases to 0 as  increases from 1 to , and so  is consistent:

For fixed ,  at first increases and then decreases to 0 as  increases from  to . Thus,  is inconsistent.

Figure :  as a function of  for 

An Estimator of  Based on the Sample Mean

In this subsection, we will derive another estimator of the parameter  based on the average of the sample variables 
, (the sample mean) and compare this estimator with the estimator based on the maximum of the variables (the

largest order statistic).

.

Proof

Recall that  is uniformly distributed on  for each  and hence .

It follows that  is an unbiased estimator of . Moreover, it seems that superficially at least,  uses more information
from the sample (since it involves all of the sample variables) than . Could it be better? To find out, we need to compute the
variance of the estimator (which, since it is unbiased, is the mean square error). This computation is a bit complicated since the
sample variables are dependent. We will compute the variance of the sum as the sum of all of the pairwise covariances.

For distinct , .

Proof

First recall that given ,  is uniformly distributed on . Hence . Thus

conditioning on  gives . The result now follows from the standard formula 
.

For , .

Proof

This follows since  is uniformly distributed on .
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.

Proof

The variance of  is  times the sum of  over all . There are  covariance terms with the
value given in the variance result above (corresponding to ) and  terms with the value given in the pure covariance
result above (corresponding to ). Simplifying gives the result.

.

Proof

This follows from the variance of  above and standard properties of variance.

The variance of  is decreasing with , so  is also consistent. Let's compute the relative efficiency of the estimator based on the
maximum to the estimator based on the mean.

.

Thus, once again, the estimator based on the maximum is better. In addition to the mathematical analysis, all of the estimators
except  can sometimes be manifestly worthless by giving estimates that are smaller than some of the smaple values.

Sampling with Replacement

If the sampling is with replacement, then the sample  is a sequence of independent and identically
distributed random variables. The order statistics from such samples are studied in the chapter on Random Samples.

Examples and Applications

Suppose that in a lottery, tickets numbered from 1 to 25 are placed in a bowl. Five tickets are chosen at random and without
replacement.

1. Find the probability density function of .
2. Find .
3. Find .

Answer

1.  for 

2. 
3. 

The German Tank Problem

The estimator  was used by the Allies during World War II to estimate the number of German tanks  that had been produced.
German tanks had serial numbers, and captured German tanks and records formed the sample data. The statistical estimates turned
out to be much more accurate than intelligence estimates. Some of the data are given in the table below.

German Tank Data. Source: Wikipedia

Date Statistical Estimate Intelligence Estimate German Records

June 1940 169 1000 122

June 1941 244 1550 271

August 1942 327 1550 342

One of the morals, evidently, is not to put serial numbers on your weapons!
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Suppose that in a certain war, 5 enemy tanks have been captured. The serial numbers are 51, 3, 27, 82, 65. Compute the
estimate of , the total number of tanks, using all of the estimators discussed above.

Answer
1. 
2. 
3. 
4. 
5. 
6. 

In the order statistic experiment, and set  and . Run the experiment 50 times. For each run, compute the
estimate of  based on each order statistic. For each estimator, compute the square root of the average of the squares of the
errors over the 50 runs. Based on these empirical error estimates, rank the estimators of  in terms of quality.

Suppose that in a certain war, 10 enemy tanks have been captured. The serial numbers are 304, 125, 417, 226, 192, 340, 468,
499, 87, 352. Compute the estimate of , the total number of tanks, using the estimator based on the maximum and the
estimator based on the mean.

Answer
1. 
2. 
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