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5.23: The Semicircle Distribution
          

The Semicircle Distribution
The semicircle distribution plays a very important role in the study of random matrices. It is also known as the Wigner distribution
in honor of the physicist Eugene Wigner, who did pioneering work on random matrices.

The Standard Semicircle Distribution

Distribution Functions

The standard semicircle distribution is a continuous distribution on the interval  with probability density function 
given by

Proof

The graph of  for  is the upper half of the circle of radius 1 centered at the origin. Hence the area
under this graph is  and therefore  is a valid PDF—the constant  in  is the normalizing constant

As noted in the proof,  for  is the upper half of the circle of radius 1 centered at the origin, hence the
name.

The standard semicircle probability density function  satisfies the following properties:

1.  is symmetric about .
2.  increases and then decreases with mode at .
3.  is concave downward.

Proof

As noted earlier, except for the normalizing constant, the graph of  is the upper half of the circle of radius 1 centered at the
origin, and so these properties are obvious.

Open special distribution simulator and select the semicircle distribution. With the default parameter value, note the shape of
the probability density function. Run the simulation 1000 times and compare the empirical density function to the probability
density function.

The standard semicircle distribution function  is given by

Proof

Of course  for . The integral is evaluated by using the trigonometric substitution .

We cannot give the quantile function  in closed form, but values of this function can be approximated. Clearly by symmetry, 
 for . In particular, the median is 0.

Open the special distribution simulator and select the semicircle distribution. With the default parameter value, note the shape
of the distribution function. Compute the first and third quartiles.

Moments

Suppose that  has the standard semicircle distribution. The moments of  about 0 can be computed explicitly. In particular, the
odd order moments are 0 by symmetry.
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For , the moment of order  is  and the moment of order  is

Proof

Clearly  has moments of all orders since the PDF  is bounded and the support interval is bounded. So by symmetry, the odd
order moments are 0, and we just need to prove the result for the even order moments. Note that

We use the substitution  to get

This integral can be evaluated by standard calculus methods to give the result above.

The numbers  for  are known as the Catalan numbers, and are named for the Belgian mathematician Eugene
Catalan. In particular, we can compute the mean, variance, skewness, and kurtosis.

The mean and variance of  are

1. 
2. 

Open the special distribution simulator and select the semicircle distribution. With the default parameter value, note the size
and location of the mean  standard deviation bar. Run the simulation 1000 times and compare the empirical mean and
standard deviation to the true mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

The standard score of  is . Hence . Of course, this is also clear from the symmetry of the
distribution of . Similarly, by the moment formula,

It follows that the excess kurtosis is .

Related Distributions

The semicircle distribution has simple connections to the continuous uniform distribution.

If  is uniformly distributed on the circular region in  centered at the orgin with radius 1, then  and  each have the
standard semicircular distribution.

Proof

 has joint PDF  on . Hence  has PDF
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It's easy to simulate a random point that is uniformly distributed on circular region in the previous theorem, and this provides a way
of simulating a standard semicircle distribution. This is important since we can't use the random quantile method of simulation.

Suppose that , , and  are independent random variables, each with the standard uniform distribution (random numbers).
Let  and , and then let , . Then  is uniformly distributed on the
circular region of radius 1 centered at the origin, and hence  and  each have the standard semicircle distribution.

Proof

 and  have CDF  for  and therefore  has CDF  for . Hence  has PDF  for 
. On the other hand,  is uniformly distributed on  and hence has density  on . By

independence, the Joint PDF of  is  on . For the polar
coordinate transformation , the Jacobian is . Hence by the change of variables theorem,  has
PDF

Of course, note that  and  in the previous theorem are not independent. Another method of simulation is to use the rejection
method. This method works well since the semicircle distribution has a bounded support interval and a bounded probability density
function.

Open the rejection method app and select the semicircle distribution. Keep the default parameters to get the standard semicirle
distribution. Run the simulation 1000 times and note the points in the scatterplot. Compare the empirical density function,
mean, and standard deviation to their distributional counterparts.

The General Semicircle Distribution
Like so many standard distributions, the standard semicircle distribution is usually generalized by adding location and scale
parameters.

Definition

Suppose that  has the standard semicircle distribution. For  and ,  has the semicircle
distribution with center (location parameter)  and radius (scale parameter) .

Distribution Functions

Suppose that  has the semicircle distribution with center  and radius .

 has probability density function  given by

Proof

This follows from a standard result for location-scale families. Recall that

where  is the standard semicircle PDF.

The graph of  for  is the upper half of the circle of radius  centered at . The area under
this semicircle is  so as a check on our work, we see that  is a valid probability density function.

The probability density function  of  satisfies the following properties:

1.  is symmetric about .
2.  increases and then decreases with mode at .
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3.  is concave downward.

Open special distribution simulator and select the semicircle distribution. Vary the center  and the radius , and note the shape
of the probability density function. For selected values of  and , run the simulation 1000 times and compare the empirical
density function to the probability density function.

The distribution function  of  is

Proof

This follows from a standard result for location-scale families:

where  is the standard semicircle CDF.

As in the standard case, we cannot give the quantile function  in closed form, but values of this function can be approximated.
Recall that  where  is the standard semicircle quantile function. In particular, 

 for . The median is .

Open the special distribution simulator and select the semicircle distribution. Vary the center  and the radius , and note the
shape of the distribution function. For selected values of  and , compute the first and third quartiles.

Moments

Suppose again that  has the semicircle distribution with center  and radius , so by definition we can assume 
 where  has the standard semicircle distribution. The moments of  can be computed from the moments of .

Using the binomial theorem and the linearity of expected value we have

In particular,

The mean and variance of  are

1. 
2. 

When the center is 0, the general moments have a simple form:

Suppose that . For  the moment of order  is  and the moment of order  is

Proof

This follows from the moment results for  since  for .

Open the special distribution simulator and select the semicircle distribution. Vary the center  and the radius , and note the
size and location of the mean  standard deviation bar. For selected values of  and , run the simulation 1000 times and
compare the empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are
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1. 
2. 

Proof

These results follow immediately from the skewness and kurtosis of the standard distribution. Recall that skewness and
kurtosis are defined in terms of the standard score, which is independent of the location and scale parameters..

Once again, the excess kurtosis is .

Related Distributions

Since the semicircle distribution is a location-scale family, it's invariant under location-scale transformations.

Suppose that  has the semicircle distribution with center  and radius . If  and  then 
has the semicircle distribution with center  and radius .

Proof

Again from the definition we can take  where  has the standard semicircle distribution. Then 
.

One member of the beta family of distributions is a semicircle distribution:

The beta distribution with left parameter  and right parameter  is the semicircle distribution with center  and radius 
.

Proof

By definition, the beta distribution with left and right parameters  has PDF

But  and . Completing the square gives

which is the PDF of the semicircle distribution with center  and radius .

Since we can simulate a variable  with the standard semicircle distribution by the method above, we can simulate a variable with
the semicircle distribution with center  and radius  by our very definition: . Once again, the rejection
method also works well since the support and probability density fucntion of  are bounded.

Open the rejection method app and select the semicircle distribution. For selected values of  and , run the simulation 1000
times and note the points in the scatterplot. Compare the empirical density function, mean and standard deviation to their
distributional counterparts.

This page titled 5.23: The Semicircle Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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