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16.1: Introduction to Markov Processes
      

A Markov process is a random process indexed by time, and with the property that the future is independent of the past, given the present. Markov
processes, named for Andrei Markov, are among the most important of all random processes. In a sense, they are the stochastic analogs of differential
equations and recurrence relations, which are of course, among the most important deterministic processes.

The complexity of the theory of Markov processes depends greatly on whether the time space  is  (discrete time) or  (continuous time) and
whether the state space is discrete (countable, with all subsets measurable) or a more general topological space. When  or when the state
space is a general space, continuity assumptions usually need to be imposed in order to rule out various types of weird behavior that would otherwise
complicate the theory.

When the state space is discrete, Markov processes are known as Markov chains. The general theory of Markov chains is mathematically rich and
relatively simple.

When  and the state space is discrete, Markov processes are known as discrete-time Markov chains. The theory of such processes is
mathematically elegant and complete, and is understandable with minimal reliance on measure theory. Indeed, the main tools are basic probability
and linear algebra. Discrete-time Markov chains are studied in this chapter, along with a number of special models.
When  and the state space is discrete, Markov processes are known as continuous-time Markov chains. If we avoid a few technical
difficulties (created, as always, by the continuous time space), the theory of these processes is also reasonably simple and mathematically very nice.
The Markov property implies that the process, sampled at the random times when the state changes, forms an embedded discrete-time Markov chain,
so we can apply the theory that we will have already learned. The Markov property also implies that the holding time in a state has the memoryless
property and thus must have an exponential distribution, a distribution that we know well. In terms of what you may have already studied, the
Poisson process is a simple example of a continuous-time Markov chain.

For a general state space, the theory is more complicated and technical, as noted above. However, we can distinguish a couple of classes of Markov
processes, depending again on whether the time space is discrete or continuous.

When  and , a simple example of a Markov process is the partial sum process associated with a sequence of independent, identically
distributed real-valued random variables. Such sequences are studied in the chapter on random samples (but not as Markov processes), and revisited
below.
In the case that  and  or more generally , the most important Markov processes are the diffusion processes. Generally,
such processes can be constructed via stochastic differential equations from Brownian motion, which thus serves as the quintessential example of a
Markov process in continuous time and space.

The goal of this section is to give a broad sketch of the general theory of Markov processes. Some of the statements are not completely rigorous and
some of the proofs are omitted or are sketches, because we want to emphasize the main ideas without getting bogged down in technicalities. If you are a
new student of probability you may want to just browse this section, to get the basic ideas and notation, but skipping over the proofs and technical
details. Then jump ahead to the study of discrete-time Markov chains. On the other hand, to understand this section in more depth, you will need to
review topcis in the chapter on foundations and in the chapter on stochastic processes.

Basic Theory

Preliminaries

As usual, our starting point is a probability space , so that  is the set of outcomes,  the -algebra of events, and  the probability measure
on . The time set  is either  (discrete time) or  (continuous time). In the first case,  is given the discrete topology and in the second
case  is given the usual Euclidean topology. In both cases,  is given the Borel -algebra , the -algebra generated by the open sets. In the discrete
case when , this is simply the power set of  so that every subset of  is measurable; every function from  to another measurable space is
measurable; and every function from  to another topological space is continuous. The time space  has a natural measure; counting measure 
in the discrete case, and Lebesgue in the continuous case.

The set of states  also has a -algebra  of admissible subsets, so that  is the state space. Usually  has a topology and  is the Borel -
algebra generated by the open sets. A typical set of assumptions is that the topology on  is LCCB: locally compact, Hausdorff, and with a countable
base. These particular assumptions are general enough to capture all of the most important processes that occur in applications and yet are restrictive
enough for a nice mathematical theory. Usually, there is a natural positive measure  on the state space . When  has an LCCB topology and 
is the Borel -algebra, the measure  wil usually be a Borel measure satisfying  if  is compact. The term discrete state space means
that  is countable with , the collection of all subsets of . Thus every subset of  is measurable, as is every function from  to another
measurable space. This is the Borel -algebra for the discrete topology on , so that every function from  to another topological space is continuous.
The compact sets are simply the finite sets, and the reference measure is , counting measure. If  for some  (another common case), then
we usually give  the Euclidean topology (which is LCCB) so that  is the usual Borel -algebra. The compact sets are the closed, bounded sets, and
the reference measure  is -dimensional Lebesgue measure.

Clearly, the topological and measure structures on  are not really necessary when , and similarly these structures on  are not necessary when 
is countable. But the main point is that the assumptions unify the discrete and the common continuous cases. Also, it should be noted that much more
general state spaces (and more general time spaces) are possible, but most of the important Markov processes that occur in applications fit the setting we
have described here.
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Various spaces of real-valued functions on  play an important role. Let  denote the collection of bounded, measurable functions . With the
usual (pointwise) addition and scalar multiplication,  is a vector space. We give  the supremum norm, defined by .

Suppose now that  is a stochastic process on  with state space  and time space . Thus,  is a random variable taking
values in  for each , and we think of  as the state of a system at time . We also assume that we have a collection 
of -algebras with the properties that  is measurable with respect to  for , and the  for  with . Intuitively,  is
the collection of event up to time . Technically, the assumptions mean that  is a filtration and that the process  is adapted to . The most basic

(and coarsest) filtration is the natural filtration  where , the -algebra generated by the process up to

time . In continuous time, however, it is often necessary to use slightly finer -algebras in order to have a nice mathematical theory. In particular,
we often need to assume that the filtration  is right continuous in the sense that  for  where . We can
accomplish this by taking  so that for , and in this case,  is referred to as the right continuous refinement of the natural
filtration. We also sometimes need to assume that  is complete with respect to  in the sense that if  with  and  then .
That is,  contains all of the null events (and hence also all of the almost certain events), and therefore so does  for all .

Definitions

The random process  is a Markov process if

for all  and .

The defining condition, known appropriately enough as the the Markov property, states that the conditional distribution of  given  is the same as
the conditional distribution of  just given . Think of  as the present time, so that  is a time in the future. If we know the present state ,
then any additional knowledge of events in the past is irrelevant in terms of predicting the future state . Technically, the conditional probabilities in
the definition are random variables, and the equality must be interpreted as holding with probability 1. As you may recall, conditional expected value is
a more general and useful concept than conditional probability, so the following theorem may come as no surprise.

The random process  is a Markov process if and only if

for every  and every .

Proof sketch

The condition in this theorem clearly implies the Markov property, by letting , the indicator function of . The converse is a classical
bootstrapping argument: the Markov property implies the expected value condition

1. First when  for  (by definition).
2. Next when  is a simple function, by linearity.
3. Next when  is nonnegative, by the monotone convergence theorem.
4. Finally for general  by considering positive and negative parts.

Technically, we should say that  is a Markov process relative to the filtration . If  satisfies the Markov property relative to a filtration, then it
satisfies the Markov property relative to any coarser filtration.

Suppose that the stochastic process  is adapted to the filtration  and that  is a filtration that
is finer than . If  is a Markov process relative to  then  is a Markov process relative to .

Proof

First recall that  is adapted to  since  is adapted to . If  and  then

The first equality is a basic property of conditional expected value. The second uses the fact that  is Markov relative to , and the third follows
since  is measurable with respect to .

In particular, if  is a Markov process, then  satisfies the Markov property relative to the natural filtration . The theory of Markov processes is
simplified considerably if we add an additional assumption.

A Markov process  is time homogeneous if

for every ,  and .

So if  is homogeneous (we usually don't bother with the time adjective), then the process  given  is equivalent (in distribution)
to the process  given . For this reason, the initial distribution is often unspecified in the study of Markov processes—if the process
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is in state  at a particular time , then it doesn't really matter how the process got to state ; the process essentially “starts over”,
independently of the past. The term stationary is sometimes used instead of homogeneous.

From now on, we will usually assume that our Markov processes are homogeneous. This is not as big of a loss of generality as you might think. A non-
homogenous process can be turned into a homogeneous process by enlarging the state space, as shown below. For a homogeneous Markov process, if 

, , and , then

Feller Processes

In continuous time, or with general state spaces, Markov processes can be very strange without additional continuity assumptions. Suppose (as is
usually the case) that  has an LCCB topology and that  is the Borel -algebra. Let  denote the collection of bounded, continuous functions 

. Let  denote the collection of continuous functions  that vanish at . The last phrase means that for every , there exists a
compact set  such that  if . With the usual (pointwise) operations of addition and scalar multiplication,  is a vector subspace
of , which in turn is a vector subspace of . Just as with , the supremum norm is used for  and .

A Markov process  is a Feller process if the following conditions are satisfied.

1. Continuity in space: For  and , the distribution of  given  converges to the distribution of  given  as .
2. Continuity in time: Given  for ,  converges in probability to  as .

Additional details
1. This means that  as  for every .
2. This means that  as  for every neighborhood  of .

Feller processes are named for William Feller. Note that if  is discrete, (a) is automatically satisfied and if  is discrete, (b) is automatically satisfied.
In particular, every discrete-time Markov chain is a Feller Markov process. There are certainly more general Markov processes, but most of the
important processes that occur in applications are Feller processes, and a number of nice properties flow from the assumptions. Here is the first:

If  is a Feller process, then there is a version of  such that  is continuous from the right and has left limits for every
.

Again, this result is only interesting in continuous time . Recall that for , the function  is a sample path of the process. So
we will often assume that a Feller Markov process has sample paths that are right continuous have left limits, since we know there is a version with
these properties.

Stopping Times and the Strong Markov Property

For our next discussion, you may need to review again the section on filtrations and stopping times.To give a quick review, suppose again that we start
with our probability space  and the filtration  (so that we have a filtered probability space).

Since time (past, present, future) plays such a fundamental role in Markov processes, it should come as no surprise that random times are important. We
often need to allow random times to take the value , so we need to enlarge the set of times to . The topology on  is extended to 
by the rule that for , the set  is an open neighborhood of . This is the one-point compactification of  and is used so that the
notion of time converging to infinity is preserved. The Borel -algebra  is used on , which again is just the power set in the discrete case.

If  is a stochastic process on the sample space , and if  is a random time, then naturally we want to consider the state  at
the random time. There are two problems. First if  takes the value ,  is not defined. The usual solution is to add a new “death state”  to the set of
states , and then to give  the  algebra . A function  is extended to  by the rule . The
second problem is that  may not be a valid random variable (that is, measurable) unless we assume that the stochastic process  is measurable.
Recall that this means that  is measurable relative to  and . (This is always true in discrete time.)

Recall next that a random time  is a stopping time (also called a Markov time or an optional time) relative to  if  for each .
Intuitively, we can tell whether or not  from the information available to us at time . In a sense, a stopping time is a random time that does not
require that we see into the future. Of course, the concept depends critically on the filtration. Recall that if a random time  is a stopping time for a
filtration  then it is also a stopping time for a finer filtration , so that  for . Thus, the finer the
filtration, the larger the collection of stopping times. In fact if the filtration is the trivial one where  for all  (so that all information is
available to us from the beginning of time), then any random time is a stopping time. But of course, this trivial filtration is usually not sensible.

Next, recall that if  is a stopping time for the filtration , then the -algebra  associated with  is given by

Intuitively,  is the collection of events up to the random time , analogous to the  which is the collection of events up to the deterministic time 
. If  is a stochastic process adapted to  and if  is a stopping time relative to , then we would hope that  is measurable

with respect to  just as  is measurable with respect to  for deterministic . However, this will generally not be the case unless  is
progressively measurable relative to , which means that  is measurable with respect to  and  where 

x ∈ S s ∈ T x

s, t ∈ T x ∈ S f ∈B

E[f( ) ∣ = x] =E[f( ) ∣ = x]Xs+t Xs Xt X0 (16.1.5)

S S σ C

f : S →R C0 f : S →R ∞ ϵ > 0
C ⊆ S |f(x)| < ϵ x ∉ C C0

C B B C C0

X = { : t ∈ T}Xt

t ∈ T y ∈ S Xt = xX0 Xt = yX0 x → y

= xX0 x ∈ S Xt x t ↓ 0

E[f( ) ∣ = x] → E[f( ) ∣ = y]Xt X0 Xt X0 x → y f ∈ C
P[ ∈ U ∣ = x] → 1Xt X0 t ↓ 0 U x

S T

X = { : t ∈ T}Xt X t ↦ (ω)Xt

ω ∈ Ω

T = [0, ∞) ω ∈ Ω t ↦ (ω)Xt

(Ω,F ,P) F = { : t ∈ T}Ft

∞ = T ∪ {∞}T∞ T T∞

s ∈ T {t ∈ : t > s}T∞ ∞ T

σ T∞ T∞

X = { : t ∈ T}Xt (Ω,F) τ Xτ

τ ∞ Xτ δ

S = S∪ {δ}Sδ σ =S ∪ {A∪ {δ} : A ∈S }Sδ f ∈B Sδ f(δ) = 0
Xτ X

X : Ω ×T → S F ⊗T S

τ F {τ ≤ t} ∈Ft t ∈ T

τ ≤ t t

τ

F = { : t ∈ T}Ft G = { : t ∈ T}Gt ⊆Ft Gt t ∈ T

=FFt t ∈ T

τ F σ Fτ τ

= {A ∈F : A∩ {τ ≤ t} ∈  for all t ∈ T}Fτ Ft (16.1.6)

Fτ τ Ft

t ∈ T X = { : t ∈ T}Xt F τ F Xτ

Fτ Xt Ft t ∈ T X

F X : Ω × → STt ⊗Ft Tt S = {s ∈ T : s ≤ t}Tt

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10288?pdf


16.1.4 https://stats.libretexts.org/@go/page/10288

and  the corresponding Borel -algebra. This is always true in discrete time, of course, and more generally if  has an LCCB topology with  the
Borel -algebra, and  is right continuous. If  is progressively measurable with respect to  then  is measurable and  is adapted to .

The strong Markov property for our stochastic process  states that the future is independent of the past, given the present, when the
present time is a stopping time.

The random process  is a strong Markov process if

for every , stopping time , and .

As with the regular Markov property, the strong Markov property depends on the underlying filtration . If the property holds with respect to a given
filtration, then it holds with respect to a coarser filtration.

Suppose that the stochastic process  is progressively measurable relative to the filtration  and that the
filtration  is finer than . If  is a strong Markov process relative to  then  is a strong Markov process relative to .

Proof

Recall again that since  is adapted to , it is also adapted to . Suppose that  is a finite stopping time for  and that  and . Then 
is also a stopping time for , and . Hence

The first equality is a basic property of conditional expected value. The second uses the fact that  has the strong Markov property relative to ,
and the third follows since  measurable with respect to . In continuous time, it's last step that requires progressive measurability.

So if  is a strong Markov process, then  satisfies the strong Markov property relative to its natural filtration. Again there is a tradeoff: finer
filtrations allow more stopping times (generally a good thing), but make the strong Markov property harder to satisfy and may not be reasonable (not so
good). So we usually don't want filtrations that are too much finer than the natural one.

With the strong Markov and homogeneous properties, the process  given  is equivalent in distribution to the process 
 given . Clearly, the strong Markov property implies the ordinary Markov property, since a fixed time  is trivially also a

stopping time. The converse is true in discrete time.

Suppose that  is a (homogeneous) Markov process in discrete time. Then  is a strong Markov process.

As always in continuous time, the situation is more complicated and depends on the continuity of the process  and the filtration . Here is the
standard result for Feller processes.

If  is a Feller Markov process, then  is a strong Markov process relative to filtration , the right-continuous refinement of
the natural filtration..

Transition Kernels of Markov Processes

For our next discussion, you may need to review the section on kernels and operators in the chapter on expected value. Suppose again that 
 is a (homogeneous) Markov process with state space  and time space , as described above. The kernels in the following

definition are of fundamental importance in the study of 

For , let

Then  is a probability kernel on , known as the transition kernel of  for time .

Proof

Fix . The measurability of  for  is built into the definition of conditional probability. Also, of course, 
 is a probability measure on  for . In general, the conditional distribution of one random variable, conditioned

on a value of another random variable defines a probability kernel.

That is,  is the conditional distribution of  given  for  and . By the time homogenous property,  is also the
conditional distribution of  given  for :

Note that , the identity kernel on  defined by  for  and , so that  if  and 
if . Recall also that usually there is a natural reference measure  on . In this case, the transition kernel  will often have a transition
density  with respect to  for . That is,
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The next theorem gives the Chapman-Kolmogorov equation, named for Sydney Chapman and Andrei Kolmogorov, the fundamental relationship
between the probability kernels, and the reason for the name transition kernel.

Suppose again that  is a Markov process on  with transition kernels . If , then . That
is,

Proof

The Markov property and a conditioning argument are the fundamental tools. Recall again that  is the conditional distribution of  given 
 for . Let . Conditioning on  gives

But by the Markov and time-homogeneous properties,

Substituting we have

In the language of functional analysis,  is a semigroup. Recall that the commutative property generally does not hold for the product operation on
kernels. However the property does hold for the transition kernels of a homogeneous Markov process. That is,  for . As a
simple corollary, if  has a reference measure, the same basic relationship holds for the transition densities.

Suppose that  is the reference measure on  and that  is a Markov process on  and with transition densities 
. If  then . That is,

Proof

The transition kernels satisfy . But  has density ,  has density , and  has density . From a basic result on kernel
functions,  has density  as defined in the theorem.

If  (discrete time), then the transition kernels of  are just the powers of the one-step transition kernel. That is, if we let  then 
for .

Recall that a kernel defines two operations: operating on the left with positive measures on  and operating on the right with measurable, real-
valued functions. For the transition kernels of a Markov process, both of the these operators have natural interpretations.

Suppose that . If  is the distribution of  then  has distribution . That is,

Proof

Let . Conditioning on  gives

So if  denotes the collection of probability measures on , then the left operator  maps  back into . In particular, if  has distribution 
 (the initial distribution) then  has distribution  for every .

A positive measure  on  is invariant for  if  for every .

Hence if  is a probability measure that is invariant for , and  has distribution , then  has distribution  for every  so that the process 
is identically distributed. In discrete time, note that if  is a positive measure and  then  for every , so  is invariant for . The
operator on the right is given next.

Suppose that . If  then (assuming that the expected value exists),
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μ X X0 μ Xt μ t ∈ T X

μ μP = μ μ = μP n n ∈ N μ X

f : S →R t ∈ T

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10288?pdf


16.1.6 https://stats.libretexts.org/@go/page/10288

Proof

This follows directly from the definitions:

and  is the conditional distribution of  given .

In particular, the right operator  is defined on , the vector space of bounded, linear functions , and in fact is a linear operator on . That
is, if  and , then  and . Moreover,  is a contraction operator on , since  for 

. It then follows that  is a continuous operator on  for .

For the right operator, there is a concept that is complementary to the invariance of of a positive measure for the left operator.

A measurable function  is harmonic for  if  for all .

Again, in discrete time, if  then  for all , so  is harmonic for .

Combining two results above, if  has distribution  and  is measurable, then (again assuming that the expected value exists), 
 for . That is,

The result above shows how to obtain the distribution of  from the distribution of  and the transition kernel  for . But we can do more.
Recall that one basic way to describe a stochastic process is to give its finite dimensional distributions, that is, the distribution of 
for every  and every . For a Markov process, the initial distribution and the transition kernels determine the finite
dimensional distributions. It's easiest to state the distributions in differential form.

Suppose  is a Markov process with transition operators , and that  with .
If  has distribution , then in differential form, the distribution of  is

Proof

This follows from induction and repeated use of the Markov property. For example, if  with , then conditioning on  gives

for . So in differential form, the distribution of  is . If  with , then conditioning on 
and using our previous result gives

for . But by the Markov property,

Hence in differential form, the distribution of  is . Continuing in this manner gives the general result.

This result is very important for constructing Markov processes. If we know how to define the transition kernels  for  (based on modeling
considerations, for example), and if we know the initial distribution , then the last result gives a consistent set of finite dimensional distributions.
From the Kolmogorov construction theorem, we know that there exists a stochastic process that has these finite dimensional distributions. In continuous
time, however, two serious problems remain. First, it's not clear how we would construct the transition kernels so that the crucial Chapman-Kolmogorov
equations above are satisfied. Second, we usually want our Markov process to have certain properties (such as continuity properties of the sample paths)
that go beyond the finite dimensional distributions. The first problem will be addressed in the next section, and fortunately, the second problem can be
resolved for a Feller process.

Suppose that  is a Markov process on an LCCB state space  with transition operators . Then  is
a Feller process if and only if the following conditions hold:

1. Continuity in space: If  and  then 
2. Continuity in time: If  and  then  as .

f(x) = (x, dy)f(y) =E [f( ) ∣ = x] , x ∈ SPt ∫
S

Pt Xt X0 (16.1.19)

f(x) = (x, dy)f(y), x ∈ SPt ∫
S

Pt (16.1.20)

(x, ⋅)Pt Xt = xX0

Pt B f : S →R B

f , g ∈B c ∈ R (f +g) = f + gPt Pt Pt (cf) = c fPt Pt Pt B ∥ f∥ ≤ ∥f∥Pt

f ∈B Pt B t ∈ T

f : S →R X f = fPt t ∈ T

Pf = f f = fP n n ∈ N f X

X0 μ0 f : S →R

f =E[f( )]μ0Pt Xt t ∈ T

E[f( )] = (dx) (x, dy)f(y)Xt ∫
S

μ0 ∫
S

Pt (16.1.21)

Xt X0 Pt t ∈ T

( , , … , )Xt1
Xt2

Xtn

n ∈ N+ ( , , … , ) ∈t1 t2 tn T n

X = { : t ∈ T}Xt P = { : t ∈ T}Pt ( , … , ) ∈t1 tn T n 0 < < ⋯ <t1 tn
X0 μ0 ( , , … , )X0 Xt1 Xtn

(d ) ( , d ) ( , d ) ⋯ ( , d )μ0 x0 Pt1 x0 x1 P −t2 t1 x1 x2 P −tn tn−1 xn−1 xn (16.1.22)

t ∈ T t > 0 X0

P( ∈ A, ∈ B) = P( ∈ B ∣ = x) (dx) = (x,B)μ(dx) = (x, dy) (dx)X0 Xt ∫
A

Xt X0 μ0 ∫
A

Pt ∫
A

∫
B

Pt μ0 (16.1.23)

A, B ∈S ( , )X0 Xt μ(dx) (x, dy)Pt s, t ∈ T 0 < s < t ( , )X0 Xs

P( ∈ A, ∈ B, ∈ C) = P( ∈ C ∣ = x, = y) (dx) (x, dy)X0 Xs Xt ∫
A×B

Xt X0 Xs μ0 Ps (16.1.24)

A, B, C ∈S

P( ∈ C ∣ = x, = y) = P( ∈ C ∣ = y) = (y,C) = (y, dz)Xt X0 Xs Xt Xs Pt−s ∫
C

Pt−s (16.1.25)

( , , )X0 Xs Xt (dx) (x, dy) (y, dz)μ0 Ps Pt−s

Pt t ∈ T

μ0

X = { : t ∈ T}Xt (S,S ) P = { : t ∈ [0, ∞)}Pt X

f ∈ C0 t ∈ [0, ∞) f ∈Pt C0

f ∈ C0 x ∈ S f(x) → f(x)Pt t ↓ 0
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A semigroup of probability kernels  that satisfies the properties in this theorem is called a Feller semigroup. So the theorem states
that the Markov process  is Feller if and only if the transition semigroup of transition  is Feller. As before, (a) is automatically satisfied if  is
discrete, and (b) is automatically satisfied if  is discrete. Condition (a) means that  is an operator on the vector space , in addition to being an
operator on the larger space . Condition (b) actually implies a stronger form of continuity in time.

Suppose that  is a Feller semigroup of transition operators. Then  is continuous (with respect to the supremum norm) for
.

Additional details

This means that for  and ,

So combining this with the remark above, note that if  is a Feller semigroup of transition operators, then  is continuous on  for fixed 
, and  is continuous on  for fixed . Again, the importance of this is that we often start with the collection of probability kernels 

 and want to know that there exists a nice Markov process  that has these transition operators.

Sampling in Time

If we sample a Markov process at an increasing sequence of points in time, we get another Markov process in discrete time. But the discrete time
process may not be homogeneous even if the original process is homogeneous.

Suppose that  is a Markov process with state space  and that  is a sequence in  with 
. Let  for . Then  is a Markov process in discrete time.

Proof

For , let , so that  is the natural filtration associated with . Note that  and  is
measurable with respect to  for . Let  and let . Then

If we sample a homogeneous Markov process at multiples of a fixed, positive time, we get a homogenous Markov process in discrete time.

Suppose that  is a homogeneous Markov process with state space  and transition kernels . Fix 
with  and define  for . Then  is a homogeneous Markov process in discrete time, with one-step transition
kernel  given by

In some cases, sampling a strong Markov process at an increasing sequence of stopping times yields another Markov process in discrete time. The point
of this is that discrete-time Markov processes are often found naturally embedded in continuous-time Markov processes.

Enlarging the State Space

Our first result in this discussion is that a non-homogeneous Markov process can be turned into a homogenous Markov process, but only at the expense
of enlarging the state space.

Suppose that  is a non-homogeneous Markov process with state space . Suppose also that  is a random variable taking
values in , independent of . Let  and let  for . Then  is a homogeneous Markov process with
state space . For , the transition kernel  is given by

Proof

By definition and the substitution rule,

But  is independent of , so the last term is

The important point is that the last expression does not depend on , so  is homogeneous.

The trick of enlarging the state space is a common one in the study of stochastic processes. Sometimes a process that has a weaker form of “forgetting
the past” can be made into a Markov process by enlarging the state space appropriately. Here is an example in discrete time.

P = { : t ∈ T}Pt

X P S

T Pt C0

B

P = { : t ∈ T}Pt t ↦ fPt

f ∈ C0

f ∈ C0 t ∈ [0, ∞)

∥ f − f∥ = sup{| f(x) − f(x)| : x ∈ S} → 0 as s → 0Pt+s Pt Pt+s Pt (16.1.26)

P f ↦ fPt C0

t ∈ T t ↦ fPt T f ∈ C0

P X

X = { : t ∈ T}Xt (S,S ) ( , , , …)t0 t1 t2 T

0 = < < < ⋯t0 t1 t2 =Yn Xtn n ∈ N Y = { : n ∈ N}Yn

n ∈ N = σ{ : k ∈ N, k ≤ n}Gn Yk { : n ∈ N}Gn Y ⊆Gn Ftn =Yn Xtn

Gn n ∈ N k, n ∈ N A ∈S

P ( ∈ A ∣ ) = P ( ∈ A ∣ )= P ( ∈ A ∣ )= P ( ∈ A ∣ )Yk+n Gk Xtn+k
Gk Xtn+k

Xtk Yn+k Yk (16.1.27)

X = { : t ∈ T}Xt (S,S ) P = { : t ∈ T}Pt r ∈ T

r > 0 =Yn Xnr n ∈ N Y = { : n ∈ N}Yn
Q

Q(x,A) = (x,A); x ∈ S, A ∈SPr (16.1.28)

X = { : t ∈ T}Xt (S,S ) τ

T X = τ + tτt = ( , )Yt Xτt τt t ∈ T Y = { : t ∈ T}Yt
(S×T ,S ⊗T ) t ∈ T Pt

[(x, r),A×B] = P( ∈ A ∣ = x)1(r+ t ∈ B), (x, r) ∈ S×T , A×B ∈S ⊗TPt Xr+t Xr (16.1.29)

P[ ∈ A×B ∣ = (x, r)]Ys+t Ys = P ( ∈ A, ∈ B ∣ = x, = r)Xτs+t
τs+t Xτs τs

= P ( ∈ A, τ +s+ t ∈ B ∣ = x, τ +s = r)Xτ+s+t Xτ+s

= P( ∈ A, r+ t ∈ B ∣ = x, τ +s = r)Xr+t Xr

τ X

P( ∈ A, r+ t ∈ B ∣ = x) = P( ∈ A ∣ = x)1(r+ t ∈ B)Xr+t Xr Xr+t Xr (16.1.30)

s Y
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Suppose that  is a random process with state space  in which the future depends stochastically on the last two states.
That is, for 

where  is the natural filtration associated with the process . Suppose also that the process is time homogeneous in the sense that

independently of . Let  for . Then  is a homogeneous Markov process with state space 
. The one step transition kernel  is given by

Proof

Note first that for ,  so the natural filtration associated with the process  is 
. If  then

by the given assumption on . Hence  is a Markov process. Next,

The last result generalizes in a completely straightforward way to the case where the future of a random process in discrete time depends stochastically
on the last  states, for some fixed .

Examples and Applications

Recurrence Relations and Differential Equations

As noted in the introduction, Markov processes can be viewed as stochastic counterparts of deterministic recurrence relations (discrete time) and
differential equations (continuous time). Our goal in this discussion is to explore these connections.

Suppose that  is a stochastic process with state space  and that  satisfies the recurrence relation

where  is measurable. Then  is a homogeneous Markov process with one-step transition operator  given by  for a
measurable function .

Proof

Clearly  is uniquely determined by the initial state, and in fact  for  where  is the -fold composition power of . So the
only possible source of randomness is in the initial state. The Markov and time homogeneous properties simply follow from the trivial fact that 

, so that . That is, the state at time  is completely determined by the state at time  (regardless
of the previous states) and the time increment . In particular,  for measurable  and .
Note that for , the -step transition operator is given by .

In the deterministic world, as in the stochastic world, the situation is more complicated in continuous time. Nonetheless, the same basic analogy applies.

Suppose that  with state space satisfies the first-order differential equation

where  is Lipschitz continuous. Then  is a Feller Markov process

Proof

Recall that Lipschitz continuous means that there exists a constant  such that  for . This is a standard
condition on  that guarantees the existence and uniqueness of a solution to the differential equation on . So as before, the only source of
randomness in the process comes from the initial value . Let  denote the unique solution with  for . The Markov
and homogenous properties follow from the fact that  for  and . That is, the state at time  depends
only on the state at time  and the time increment . The Feller properties follow from the continuity of  and the continuity of 

. The latter is the continuous dependence on the initial value, again guaranteed by the assumptions on . Note that the transition
operator is given by  for a measurable function  and .

X = { : n ∈ N}Xn (S,S )
n ∈ N

P( ∈ A ∣ ) = P( ∈ A ∣ , ), A ∈SXn+2 Fn+1 Xn+2 Xn Xn+1 (16.1.31)

{ : n ∈ N}Fn X

P( ∈ A ∣ = x, = y) = Q(x, y,A)Xn+2 Xn Xn+1 (16.1.32)

n ∈ N = ( , )Yn Xn Xn+1 n ∈ N Y = { : n ∈ N}Yn
(S×S,S ⊗S P

P [(x, y),A×B] = I(y,A)Q(x, y,B); x, y ∈ S, A, B ∈S (16.1.33)

n ∈ N σ{ : k ≤ n} = σ{( , ) : k ≤ n} =Yk Xk Xk+1 Fn+1 Y

{ : n ∈ N}Fn+1 C ∈S ⊗S )

P( ∈ C ∣ )Yn+1 Fn+1 = P[( , ) ∈ C ∣ ]Xn+1 Xn+2 Fn+1

= P[( , ) ∈ C ∣ , ] = P( ∈ C ∣ )Xn+1 Xn+2 Xn Xn+1 Yn+1 Yn

X Y

P[ ∈ A×B ∣ = (x, y)]Yn+1 Yn = P[( , ) ∈ A×B ∣ ( , ) = (x, y)]Xn+1 Xn+2 Xn Xn+1

= P( ∈ A, ∈ B ∣ = x, = y) = P(y ∈ A, ∈ B ∣ = x, = y)Xn+1 Xn+2 Xn Xn+1 Xn+2 Xn Xn+1

= I(y,A)Q(x, y,B)

k k ∈ N

X = { : n ∈ N}Xn (S,S ) X

= g( ), n ∈ NXn+1 Xn (16.1.34)

g : S → S X P Pf = f ∘ g
f : S →R

X = ( )Xn gn X0 n ∈ N gn n g

( ) = [ ( )]gm+n X0 gn gm X0 = ( )Xm+n gn Xm m+n m

n Pf(x) =E[g( ) ∣ = x] = f [g(x)]X1 X0 f : S →R x ∈ S

n ∈ N n f = f ∘P n gn

X = { : t ∈ [0, ∞)}Xt (R,R)

= g( )
d

dt
Xt Xt (16.1.35)

g : R →R X

k ∈ (0, ∞) |g(y) −g(x)| ≤ k |x−y| x, y ∈ R

g [0, ∞)
X0 t ↦ (x)Xt (x) = xX0 x ∈ R

(x) = ( (x))Xt+s Xt Xs s, t ∈ [0, ∞) x ∈ S t+s

s t t ↦ (x)Xt

x ↦ (x)Xt g

f(x) = f [ (x)]Pt Xt f : S →R x ∈ S
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In differential form, the process can be described by . This essentially deterministic process can be extended to a very important class
of Markov processes by the addition of a stochastic term related to Brownian motion. Such stochastic differential equations are the main tools for
constructing Markov processes known as diffusion processes.

Processes with Stationary, Independent Increments

For our next discussion, we consider a general class of stochastic processes that are Markov processes. Suppose that  is a random
process with  as the set of states. The state space can be discrete (countable) or “continuous”. Typically,  is either  or  in the discrete case,
and is either  or  in the continuous case. In any case,  is given the usual -algebra  of Borel subsets of  (which is the power set in the
discrete case). Also, the state space  has a natural reference measure measure , namely counting measure in the discrete case and Lebesgue
measure in the continuous case. Let  denote the natural filtration, so that  for .

The process  has

1. Independent increments if  is independent of  for all .
2. Stationary increments if the distribution of  is the same as the distribution of  for all .

A difference of the form  for  is an increment of the process, hence the names. Sometimes the definition of stationary increments is
that  have the same distribution as . But this forces  with probability 1, and as usual with Markov processes, it's best to keep the
initial distribution unspecified. If  has stationary increments in the sense of our definition, then the process  has
stationary increments in the more restricted sense. For the remainder of this discussion, assume that  has stationary, independent
increments, and let  denote the distribution of  for .

 for .

Proof

For ,  is the distribution of , and by the stationary property,  is the distribution of . By the independence
property,  and  are independent. Hence  is the distribution of . But by
definition, this variable has distribution 

So the collection of distributions  forms a semigroup, with convolution as the operator. Note that  is simply point mass at 0.

The process  is a homogeneous Markov process. For , the transition operator  is given by

Proof

Suppose that  and ,

since  is independent of . Moreover, by the stationary property,

Clearly the semigroup property of  (with the usual operator product) is equivalent to the semigroup property of 
(with convolution as the product).

Suppose that for positive , the distribution  has probability density function  with respect to the reference measure . Then the transition
density is

Of course, from the result above, it follows that  for , where here  refers to the convolution operation on probability density
functions.

If  as  then  is a Feller Markov process.

Thus, by the general theory sketched above,  is a strong Markov process, and there exists a version of  that is right continuous and has left limits.
Such a process is known as a Lévy process, in honor of Paul Lévy.

For a real-valued stochastic process , let  and  denote the mean and variance functions, so that

assuming of course that the these exist. The mean and variance functions for a Lévy process are particularly simple.

d = g( )dtXt Xt

X = { : t ∈ T}Xt

S ⊆R S N Z

[0, ∞) R S σ S S

(S,S ) λ

F = { : t ∈ T}Ft = σ{ : s ∈ T , s ≤ t}Ft Xs t ∈ T

X

−Xs+t Xs Fs s, t ∈ T

−Xs+t Xs −Xt X0 s, t ∈ T

−Xs+t Xs s, t ∈ T

−Xs+t Xs Xt = 0X0

X Y = { = − : t ∈ T}Yt Xt X0

X = { : t ∈ T}Xt

Qt −Xt X0 t ∈ T

∗ =Qs Qt Qs+t s, t ∈ T

s, t ∈ T Qs −Xs X0 Qt −Xs+t Xs

−Xs X0 −Xs+t Xs ∗Qs Qt [ − ] +[ − ] = −Xs X0 Xs+t Xs Xs+t X0

Qs+t

Q = { : t ∈ T}Qt Q0

X t ∈ T Pt

f(x) = f(x+y) (dy), f ∈BPt ∫
S

Qt (16.1.36)

s, t ∈ T f ∈B

E[f( ) ∣ ] =E[f( − + ) ∣ ] =E[f( ) ∣ ]Xs+t Fs Xs+t Xs Xs Fs Xs+t Xs (16.1.37)

−Xs+t Xs Fs

E[f( ) ∣ = x] = f(x+y) (dy), x ∈ SXs+t Xs ∫
S

Qt (16.1.38)

P = { : t ∈ T}Pt Q = { : t ∈ T}Qt

t ∈ T Qt gt λ

(x, y) = (y−x), x, y ∈ Spt gt (16.1.39)

∗ =gs gt gs+t s, t ∈ T ∗

→Qt Q0 t ↓ 0 X

X X

X = { : t ∈ T}Xt m v

m(t) =E( ), v(t) = var( ); t ∈ TXt Xt (16.1.40)
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Suppose again that  has stationary, independent increments.

1. If  and  then  for .
2. If in addition,  and  then  for .

Proof

The proofs are simple using the independent and stationary increments properties. For , let  and 
. denote the mean and variance functions for the centered process . Now let .

1. From the additive property of expected value and the stationary property,

2. From the additive property of variance for independent variables and the stationary property,

So  and  satisfy the Cauchy equation. In discrete time, it's simple to see that there exists  and  such that  and 
. The same is true in continuous time, given the continuity assumptions that we have on the process . Substituting  we have 

 and , so the results follow,

It's easy to describe processes with stationary independent increments in discrete time.

A process  has independent increments if and only if there exists a sequence of independent, real-valued random variables 
 such that

In addition,  has stationary increments if and only if  are identically distributed.

Proof

Suppose first that  is a sequence of independent, real-valued random variables, and define  for . Note that 
 for . If  with , then  which is independent of  by the

independence assumption on . Hence  has independent increments. Suppose in addition that  are identically distributed. Then the
increment  above has the same distribution as . Hence  has stationary increments.

Conversely, suppose that  has independent increments. Let  and  for . Then 
 for . As before  for . Since  has independent increments,  is

independent of  for , so  are mutually independent. If in addition,  has stationary increments,  has
the same distribution as  for . Hence  are identically distributed.

Thus suppose that  is a sequence of independent, real-valued random variables, with  identically distributed with
common distribution . Then from our main result above, the partial sum process  associated with  is a homogeneous Markov
process with one step transition kernel  given by

More generally, for , the -step transition kernel is  for  and . This Markov process is known as a random
walk (although unfortunately, the term random walk is used in a number of other contexts as well). The idea is that at time , the walker moves a
(directed) distance  on the real line, and these steps are independent and identically distributed. If  has probability density function  with respect to
the reference measure , then the one-step transition density is

Consider the random walk on  with steps that have the standard normal distribution. Give each of the following explicitly:

1. The one-step transition density.
2. The -step transition density for .

Proof
1. For ,  is the normal PDF with mean  and variance 1:

2. For ,  is the normal PDF with mean  and variance :

X

=E( ) ∈ Rμ0 X0 =E( ) ∈ Rμ1 X1 m(t) = +( − )tμ0 μ1 μ0 t ∈ T

= var( ) ∈ (0, ∞)σ2
0 X0 = var( ) ∈ (0, ∞)σ2

1 X1 v(t) = +( − )tσ2
0 σ2

1 σ2
0 t ∈ T

t ∈ T (t) =E( − ) = m(t) −m0 Xt X0 μ0

(t) = var( − ) = v(t) −v0 Xt X0 σ2
0 { − : t ∈ T}Xt X0 s, t ∈ T

(t+s) =E( − ) =E[( − ) +( − )] =E( − ) +E( − ) = (t) + (s)m0 Xt+s X0 Xt+s Xs Xs X0 Xt+s Xs Xs X0 m0 m0 (16.1.41)

(t+s) = var( − ) = var[( − ) +( − )] = var( − ) +var( − ) = (t) + (s)v0 Xt+s X0 Xt+s Xs Xs X0 Xt+s Xs Xs X0 v0 v0 (16.1.42)

m0 v0 a ∈ R ∈ (0, ∞)b2 (t) = atm0

(t) = tv0 b2 X t = 1
a = −μ1 μ0 = −b2 σ2

1 σ2
0

X = { : n ∈ N}Xn

( , , …)U0 U1

=Xn ∑
i=0

n

Ui (16.1.43)

X ( , , …)U1 U2

U = ( , , …)U0 U1 =Xn ∑n
i=0 Ui n ∈ N

= σ{ , … , } = σ{ , … , }Fn X0 Xn U0 Un n ∈ N k, n ∈ N k ≤ n − =Xn Xk ∑n
i=k+1 Ui Fk

U X ( , , …)U1 U2

−Xn Xk = −∑n−k
i=1 Ui Xn−k X0 X

X = { : n ∈ N}Xn =U0 X0 = −Un Xn Xn−1 n ∈ N+

=Xn ∑n
i=0 Ui n ∈ N = σ{ , … , } = σ{ , … , }Fn X0 Xn U0 Un n ∈ N X Un

Fn−1 n ∈ N+ ( , , …)U0 U1 X = −Un Xn Xn−1

− =X1 X0 U1 n ∈ N+ ( , , …)U1 U2

U = ( , , …)U0 U1 ( , , …)U1 U2

Q X = { : n ∈ N}Xn U

P

P (x,A) = Q(A−x), x ∈ S, A ∈S (16.1.44)

n ∈ N n (x,A) = (A−x)P n Q∗n x ∈ S A ∈S
n

Un Q g

λ

p(x, y) = g(y−x), x, y ∈ S (16.1.45)

R

n n ∈ N+

x ∈ R p(x, ⋅) x

p(x, y) = exp[− (y−x ]; x, y ∈ R
1

2π−−√

1

2
)2 (16.1.46)

x ∈ R (x, ⋅)pn x n

(x, y) = exp[− (y−x ], x, y ∈ Rpn
1

2πn− −−√

1

2n
)2 (16.1.47)
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In continuous time, there are two processes that are particularly important, one with the discrete state space  and one with the continuous state space 
.

For , let  denote the probability density function of the Poisson distribution with parameter , and let  for 
. Then  is the collection of transition densities for a Feller semigroup on 

Proof

Recall that

We just need to show that  satisfies the semigroup property, and that the continuity result holds. But we already know that if 
are independent variables having Poisson distributions with parameters , respectively, then  has the Poisson distribution with
parameter . That is, . Moreover,  as .

So a Lévy process  with these transition densities would be a Markov process with stationary, independent increments and with
sample paths are right continuous and have left limits. We do know of such a process, namely the Poisson process with rate 1.

Open the Poisson experiment and set the rate parameter to 1 and the time parameter to 10. Run the experiment several times in single-step mode
and note the behavior of the process.

For , let  denote the probability density function of the normal distribution with mean 0 and variance , and let 
for . Then  is the collection of transition densities of a Feller semigroup on .

Proof

Recall that for ,

We just need to show that  satisfies the semigroup property, and that the continuity result holds. But we already know that if 
are independent variables having normal distributions with mean 0 and variances , respectively, then  has the normal
distribution with mean 0 and variance . That is, . Moreover, we also know that the normal distribution with variance  converges
to point mass at 0 as .

So a Lévy process  on  with these transition densities would be a Markov process with stationary, independent increments,
and whose sample paths are continuous from the right and have left limits. In fact, there exists such a process with continuous sample paths. This
process is Brownian motion, a process important enough to have its own chapter.

Run the simulation of standard Brownian motion and note the behavior of the process.

This page titled 16.1: Introduction to Markov Processes is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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t ∈ [0, ∞) gt t (x, y) = (y−x)pt gt
x, y ∈ N { : t ∈ [0, ∞)}pt N

(n) = , n ∈ Ngt e−t t
n

n!
(16.1.48)

{ : t ∈ [0, ∞)}gt U, V
s, t ∈ [0, ∞) U +V

s+ t ∗ =gs gt gs+t →gt g0 t ↓ 0

N = { : t ∈ [0, ∞)}Nt

t ∈ (0, ∞) gt t (x, y) = (y−x)pt gt
x, y ∈ R { : t ∈ [0, ∞)}pt R

t ∈ (0, ∞)

(z) = exp(− ), z ∈ Rgt
1

2πt−−−√

z2

2t
(16.1.49)

{ : t ∈ [0, ∞)}gt U, V
s, t ∈ (0, ∞) U +V

s+ t ∗ =gs gt gs+t t

t ↓ 0

X = { : t ∈ [0, ∞)}Xt R
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