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15.1: Introduction
       

A renewal process is an idealized stochastic model for “events” that occur randomly in time. These temporal events are generically
referred to as renewals or arrivals. Here are some typical interpretations and applications.

The arrivals are “customers” arriving at a “service station”. Again, the terms are generic. A customer might be a person and the
service station a store, but also a customer might be a file request and the service station a web server.
A device is placed in service and eventually fails. It is replaced by a device of the same type and the process is repeated. We do
not count the replacement time in our analysis; equivalently we can assume that the replacement is immediate. The times of the
replacements are the renewals
The arrivals are times of some natural event, such as a lightening strike, a tornado or an earthquake, at a particular geographical
point.
The arrivals are emissions of elementary particles from a radioactive source.

Basic Processes
The basic model actually gives rise to several interrelated random processes: the sequence of interarrival times, the sequence of
arrival times, and the counting process. The term renewal process can refer to any (or all) of these. There are also several natural
“age” processes that arise. In this section we will define and study the basic properties of each of these processes in turn.

Interarrival Times

Let  denote the time of the first arrival, and  the time between the st and th arrivals for . Our basic
assumption is that the sequence of interarrival times  is an independent, identically distributed sequence of
random variables. In statistical terms,  corresponds to sampling from the distribution of a generic interarrival time . We assume
that  takes values in  and , so that the interarrival times are nonnegative, but not identically 0. Let 

 denote the common mean of the interarrival times. We allow that possibility that . On the other hand,

.

Proof

This is a basic fact from properties of expected value. For a simple proof, note that if  then  for every 
 by Markov's inequality. But then .

If , we will let  denote the common variance of the interarrival times. Let  denote the common distribution
function of the interarrival times, so that

The distribution function  turns out to be of fundamental importance in the study of renewal processes. We will let  denote the
probability density function of the interarrival times if the distribution is discrete or if the distribution is continuous and has a
probability density function (that is, if the distribution is absolutely continuous with respect to Lebesgue measure on ). In the
discrete case, the following definition turns out to be important:

If  takes values in the set  for some , then  (or its distribution) is said to be arithmetic (the terms
lattice and periodic are also used). The largest such  is the span of .

The reason the definition is important is because the limiting behavior of renewal processes turns out to be more complicated when
the interarrival distribution is arithmetic.

The Arrival Times

Let
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We follow our usual convention that the sum over an empty index set is 0; thus . On the other hand,  is the time of the 
th arrival for . The sequence  is called the arrival time process, although note that  is not considered

an arrival. A renewal process is so named because the process starts over, independently of the past, at each arrival time.

Figure : The interarrival times and arrival times

The sequence  is the partial sum process associated with the independent, identically distributed sequence of interarrival times 
. Partial sum processes associated with independent, identically distributed sequences have been studied in several places in this

project. In the remainder of this subsection, we will collect some of the more important facts about such processes. First, we can
recover the interarrival times from the arrival times:

Next, let  denote the distribution function of , so that

Recall that if  has probability density function  (in either the discrete or continuous case), then  has probability density
function , the -fold convolution power of .

The sequence of arrival times  has stationary, independent increments:

1. If  then  has the same distribution as  and thus has distribution function 
2. If  then  is a sequence of independent random variables.

Proof

Recall that these are properties that hold generally for the partial sum sequence associated with a sequence of IID variables.

If  then

1. 
2. 
3. 

Proof

Part (a) follows, of course, from the additive property of expected value, and part (b) from the additive property of variance for
sums of independent variables. For part (c), assume that . Then . But  and  are
independent, so

Recall the law of large numbers:  as 

1. With probability 1 (the strong law).
2. In probability (the weak law).

Note that  for  since the interarrival times are nonnegative. Also . This can
be positive, so with positive probability, more than one arrival can occur at the same time. On the other hand, the arrival times are
unbounded:

 as  with probability 1.

Proof

Since , there exits  such that . From the second Borel-Cantelli lemma it follows that with
probability 1,  for infinitely many . Therefore  with probability 1.
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The Counting Process

For , let  denote the number of arrivals in the interval :

We will refer to the random process  as the counting process. Recall again that  is not considered an
arrival, but it's possible to have  for , so there may be one or more arrivals at time 0.

 for .

If  and  then  is the number of arrivals in .

Note that as a function of ,  is a (random) step function with jumps at the distinct values of ; the size of the jump at
an arrival time is the number of arrivals at that time. In particular,  is an increasing function of .

Figure : The counting process

More generally, we can define the (random) counting measure corresponding to the sequence of random points  in 
. Thus, if  is a (measurable) subset of , we will let  denote the number of the random points in :

In particular, note that with our new notation,  for  and  for . Thus, the random
counting measure is completely determined by the counting process. The counting process is the “cumulative measure function” for
the counting measure, analogous the cumulative distribution function of a probability measure.

For  and ,

1.  if and only if 
2.  if and only if 

Proof

Note that the event in part (a) means that at there are at least  arrivals in . The event in part (b) means that there are
exactly  arrivals in .

Of course, the complements of the events in (a) are also equivalent, so  if and only if . On the other hand, neither of
the events  and  implies the other. For example, we couse easily have  and . Taking
complements, neither of the events  and  implies the other. The last result also shows that the arrival time process 
and the counting process  are inverses of each other in a sense.

The following events have probability 1:

1.  for all 
2.  as 

Proof
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The event in part (a) occurs if and only if  as , which occurs with probability 1 by the result above. The event
in part (b) occurs if and only if  for all  which also occurs with probability 1.

All of the results so far in this subsection show that the arrival time process  and the counting process  are inverses of one
another in a sense. The important equivalences above can be used to obtain the probability distribution of the counting variables in
terms of the interarrival distribution function .

For  and ,

1. 
2. 

The next result is little more than a restatement of the result above relating the counting process and the arrival time process.
However, you may need to review the section on filtrations and stopping times to understand the result

For ,  is a stopping time for the sequence of interarrival times 

Proof

Note that  takes values in , so we need to show that the event  is measurable with respect to 
 for . But from the result above,  if and only if  if and only if 

. The last event is clearly measurable with respect to .

The Renewal Function

The function  that gives the expected number of arrivals up to time  is known as the renewal function:

The renewal function turns out to be of fundamental importance in the study of renewal processes. Indeed, the renewal function
essentially characterizes the renewal process. It will take awhile to fully understand this, but the following theorem is a first step:

The renewal function is given in terms of the interarrival distribution function by

Proof

Recall that . Taking expected values gives the result. Note that the interchange of sum and expected
value is valid because the terms are nonnegative.

Note that we have not yet shown that  for , and note also that this does not follow from the previous theorem.
However, we will establish this finiteness condition in the subsection on moment generating functions below. If  is
differentiable, the derivative  is known as the renewal density, so that  gives the expected rate of arrivals per unit
time at .

More generally, if  is a (measurable) subset of , let , the expected number of arrivals in .

 is a positive measure on . This measure is known as the renewal measure.

Proof

 is a measure on  (albeit a random one). So if  is a sequence of disjoint, measurable subsets of 
then

Taking expected values gives
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Again, the interchange of sum and expected value is justified since the terms are nonnegative.

The renewal measure is also given by

Proof

Recall that . Taking expected values gives the result. Again, the interchange of expected value and
infinite series is justified since the terms are nonnegative.

If  with  then , the expected number of arrivals in .

The last theorem implies that the renewal function actually determines the entire renewal measure. The renewal function is the
“cumulative measure function”, analogous to the cumulative distribution function of a probability measure. Thus, every renewal
process naturally leads to two measures on , the random counting measure corresponding to the arrival times, and the
measure associated with the expected number of arrivals.

The Age Processes

For , . That is,  is in the random renewal interval .

Consider the reliability setting in which whenever a device fails, it is immediately replaced by a new device of the same type. Then
the sequence of interarrival times  is the sequence of lifetimes, while  is the time that the th device is placed in service. There
are several other natural random processes that can be defined.

The random variable

is called the current life at time . This variable takes values in the interval  and is the age of the device that is in service at
time . The random process  is the current life process.

The random variable

is called the remaining life at time . This variable takes values in the interval  and is the time remaining until the device
that is in service at time  fails. The random process  is the remaining life process.

Figure : The current and remaining life at time 

The random variable

is called the total life at time . This variable takes values in  and gives the total life of the device that is in service at
time . The random process  is the total life process.

Tail events of the current and remaining life can be written in terms of each other and in terms of the counting variables.

Suppose that , , and . Then
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1. 
2. 
3. 

Proof

Figure : The events of interest for the current and remaining life

Of course, the various equivalent events in the last result must have the same probability. In particular, it follows that if we know
the distribution of  for all  then we also know the distribution of  for all , and in fact we know the joint distribution of 

 for all  and hence also the distribution of  for all .

For fixed  the total life at  (the lifetime of the device in service at time ) is stochastically larger than a generic lifetime.
This result, a bit surprising at first, is known as the inspection paradox. Let  denote fixed interarrival time.

 for .

Proof

Recall that . The proof is by conditioning on . An important tool is the fact that if  and  are nested events in
a probability space (one a subset of the other), then the events are positively correlated, so that . Recall that 

 is the common CDF of the interarrival times. First

Next, for ,

We condition this additionally on , the time of the th arrival. For , and since  is independent of , we have

It follows that  for every , and hence

Basic Comparison

The basic comparison in the following result is often useful, particularly for obtaining various bounds. The idea is very simple: if
the interarrival times are shortened, the arrivals occur more frequently.

Suppose now that we have two interarrival sequences,  and  defined on the same
probability space, with  (with probability 1) for each . Then for  and ,

1. 
2. 
3. 

Examples and Special Cases

Bernoulli Trials

Suppose that  is a sequence of Bernoulli trials with success parameter . Recall that  is a sequence of
independent, identically distributed indicator variables with .

Recall the random processes derived from :

1.  where  the number of success in the first  trials. The sequence  is the partial sum process
associated with . The variable  has the binomial distribution with parameters  and .

{ > y} = { − = 0}Rt Nt+y Nt

{ ≥ x} = { > x} = { − = 0}Ct Rt−x Nt Nt−x

{ ≥ x, > y} = { > x+y} = { − = 0}Ct Rt Rt−x Nt+y Nt−x

15.1.4
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2.  where  the number of trials needed to go from success number  to success number . These are
independent variables, each having the geometric distribution on  with parameter .

3.  where  is the trial number of success . The sequence  is the partial sum process associated with .
The variable  has the negative binomial distribution with parameters  and .

It is natural to view the successes as arrivals in a discrete-time renewal process.

Consider the renewal process with interarrival sequence . Then

1. The basic assumptions are satisfied and that the mean interarrival time is .
2.  is the sequence of arrival times.
3.  is the counting process (restricted to ).
4. The renewal function is  for .

It follows that the renewal measure is proportional to counting measure on .

Run the binomial timeline experiment 1000 times for various values of the parameters  and . Compare the empirical
distribution of the counting variable to the true distribution.

Run the negative binomial experiment 1000 times for various values of the parameters  and . Comare the empirical
distribution of the arrival time to the true distribution.

Consider again the renewal process with interarrival sequence . For ,

1. The current life and remaining life at time  are independent.
2. The remaining life at time  has the same distribution as an interarrival time , namely the geometric distribution on 

with parameter .
3. The current life at time  has a truncated geometric distribution with parameters  and :

Proof

These results follow from age process events above.

This renewal process starts over, independently of the past, not only at the arrival times, but at fixed times  as well. The
Bernoulli trials process (with the successes as arrivals) is the only discrete-time renewal process with this property, which is a
consequence of the memoryless property of the geometric interarrival distribution.

We can also use the indicator variables as the interarrival times. This may seem strange at first, but actually turns out to be useful.

Consider the renewal process with interarrival sequence .

1. The basic assumptions are satisfied and that the mean interarrival time is .
2.  is the sequence of arrival times.
3. The number of arrivals at time 0 is  and the number of arrivals at time  is .
4. The number of arrivals in the interval  is  for . This gives the counting process.
5. The renewal function is  for .

The age processes are not very interesting for this renewal process.

For  (with probability 1),

1. 
2. 
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p(1 −p ,)k
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The Moment Generating Function of the Counting Variables

As an application of the last renewal process, we can show that the moment generating function of the counting variable  in an
arbitrary renewal process is finite in an interval about 0 for every . This implies that  has finite moments of all orders
and in particular that  for every .

Suppose that  is the interarrival sequence for a renewal process. By the basic assumptions, there exists 
such that . We now consider the renewal process with interarrival sequence , where 

 for . The renewal process with interarrival sequence  is just like the renewal process with
Bernoulli interarrivals, except that the arrival times occur at the points in the sequence , instead of .

For each ,  has finite moment generating function in an interval about 0, and hence  has moments of all orders
at 0.

Proof

Note first that  for each . Recall the moment generating function  of the geometric distribution with
parameter  is

But as with the process with Bernoulli interarrival times,  can be written as  where  and where 
 is a sum of  IID geometric variables, each with parameter . We don't really care about the explicit form of the

MGF of , but it is clearly finite in an interval of the from  where . But , so its MGF is also finite
on this interval.

The Poisson Process

The Poisson process, named after Simeon Poisson, is the most important of all renewal processes. The Poisson process is so
important that it is treated in a separate chapter in this project. Please review the essential properties of this process:

Properties of the Poisson process with rate .

1. The interarrival times have an exponential distribution with rate parameter . Thus, the basic assumptions above are
satisfied and the mean interarrival time is .

2. The exponential distribution is the only distribution with the memoryless property on .
3. The time of the th arrival  has the gamma distribution with shape parameter  and rate parameter .
4. The counting process  has stationary, independent increments and  has the Poisson distribution with

parameter  for .
5. In particular, the renewal function is  for . Hence, the renewal measure is a multiple of the standard

length measure (Lebesgue measure) on .

Consider again the Poisson process with rate parameter . For ,

1. The current life and remaining life at time  are independent.
2. The remaining life at time  has the same distribution as an interarrival time , namely the exponential distribution with

rate parameter .
3. The current life at time  has a truncated exponential distribution with parameters  and :

Proof

These results follow from age process events given above.

The Poisson process starts over, independently of the past, not only at the arrival times, but at fixed times  as well. The
Poisson process is the only renewal process with this property, which is a consequence of the memoryless property of the
exponential interarrival distribution.

Nt

t ∈ [0, ∞) Nt

m(t) < ∞ t ∈ [0, ∞)

X = ( , , …)X1 X2 a > 0

p = P(X ≥ a) > 0 = ( , , …)Xa Xa,1 Xa,2
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Γ(s) = , s < −ln(1 −p)
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(15.1.21)
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n Tn n r

N = ( : t ≥ 0)Nt Nt
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Run the Poisson experiment 1000 times for various values of the parameters  and . Compare the empirical distribution of the
counting variable to the true distribution.

Run the gamma experiment 1000 times for various values of the parameters  and . Compare the empirical distribution of the
arrival time to the true distribution.

Simulation Exercises

Open the renewal experiment and set . For each of the following interarrival distributions, run the simulation 1000 times
and note the shape and location of the empirical distribution of the counting variable. Note also the mean of the interarrival
distribution in each case.

1. The continuous uniform distribution on the interval  (the standard uniform distribution).
2. the discrete uniform distribution starting at , with step size , and with  points.
3. The gamma distribution with shape parameter  and scale parameter .
4. The beta distribution with left shape parameter  and right shape parameter .
5. The exponential-logarithmic distribution with shape parameter  and scale parameter .
6. The Gompertz distribution with shape paraemter  and scale parameter .
7. The Wald distribution with mean  and shape parameter .
8. The Weibull distribution with shape parameter  and scale parameter .
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