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14.2: The Exponential Distribution
        

Basic Theory

The Memoryless Property

Recall that in the basic model of the Poisson process, we have “points” that occur randomly in time. The sequence of inter-arrival times is . The strong
renewal assumption states that at each arrival time and at each fixed time, the process must probabilistically restart, independent of the past. The first part of that
assumption implies that  is a sequence of independent, identically distributed variables. The second part of the assumption implies that if the first arrival has not
occurred by time , then the time remaining until the arrival occurs must have the same distribution as the first arrival time itself. This is known as the memoryless
property and can be stated in terms of a general random variable as follows:

Suppose that  takes values in . Then  has the memoryless property if the conditional distribution of  given  is the same as the distribution of 
for every . Equivalently,

The memoryless property determines the distribution of  up to a positive parameter, as we will see now.

Distribution functions

Suppose that  takes values in  and satisfies the memoryless property.

 has a continuous distribution and there exists  such that the distribution function  of  is

Proof

Let  denote the denote the right-tail distribution function of  (also known as the reliability function), so that  for . From the
definition of conditional probability, the memoryless property is equivalent to the law of exponents:

Let . Implicit in the memoryless property is  for , so . If  then

Next, if  then

so . Now suppose that  and . Then

Thus we have  for rational . For , there exists a sequence of rational numbers  with  as . We have 
 for each . But  is continuous from the right, so taking limits gives . Now let . Then  for .

The probability density function of  is

1.  is decreasing on .
2.  is concave upward on .
3.  as .

Proof

This follows since . The properties in parts (a)–(c) are simple.

A random variable with the distribution function above or equivalently the probability density function in the last theorem is said to have the exponential distribution with
rate parameter . The reciprocal  is known as the scale parameter (as will be justified below). Note that the mode of the distribution is 0, regardless of the parameter ,
not very helpful as a measure of center.

In the gamma experiment, set  so that the simulated random variable has an exponential distribution. Vary  with the scroll bar and watch how the shape of the
probability density function changes. For selected values of , run the experiment 1000 times and compare the empirical density function to the probability density
function.

The quantile function of  is
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1. The median of  is 
2. The first quartile of  is 
3. The third quartile  is 
4. The interquartile range is 

Proof

The formula for  follows easily from solving  for  in terms of .

In the special distribution calculator, select the exponential distribution. Vary the scale parameter (which is ) and note the shape of the distribution/quantile
function. For selected values of the parameter, compute a few values of the distribution function and the quantile function.

Returning to the Poisson model, we have our first formal definition:

A process of random points in time is a Poisson process with rate  if and only the interarrvial times are independent, and each has the exponential
distribution with rate .

Constant Failure Rate

Suppose now that  has a continuous distribution on  and is interpreted as the lifetime of a device. If  denotes the distribution function of , then  is
the reliability function of . If  denotes the probability density function of  then the failure rate function  is given by

If  has the exponential distribution with rate , then from the results above, the reliability function is  and the probability density function is 
, so trivially  has constant rate . The converse is also true.

If  has constant failure rate  then  has the exponential distribution with parameter .

Proof

Recall that in general, the distribution of a lifetime variable  is determined by the failure rate function . Specifically, if  denotes the reliability
function, then , so . Integrating and then taking exponentials gives

In particular, if  for , then  for .

The memoryless and constant failure rate properties are the most famous characterizations of the exponential distribution, but are by no means the only ones. Indeed,
entire books have been written on characterizations of this distribution.

Moments

Suppose again that  has the exponential distribution with rate parameter . Naturaly, we want to know the the mean, variance, and various other moments of .

If  then .

Proof

By the change of variables theorem for expected value,

Integrating by parts gives  for . Of course  so the result now follows by induction.

More generally,  for every , where  is the gamma function.

In particular.

1. 
2. 
3. 
4. 

In the context of the Poisson process, the parameter  is known as the rate of the process. On average, there are  time units between arrivals, so the arrivals come at an
average rate of  per unit time. The Poisson process is completely determined by the sequence of inter-arrival times, and hence is completely determined by the rate .

Note also that the mean and standard deviation are equal for an exponential distribution, and that the median is always smaller than the mean. Recall also that skewness
and kurtosis are standardized measures, and so do not depend on the parameter  (which is the reciprocal of the scale parameter).

The moment generating function of  is

Proof

By the change of variables theorem
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The integral evaluates to  if  and to  if .

In the gamma experiment, set  so that the simulated random variable has an exponential distribution. Vary  with the scroll bar and watch how the mean
standard deviation bar changes. For various values of , run the experiment 1000 times and compare the empirical mean and standard deviation to the distribution

mean and standard deviation, respectively.

Additional Properties

The exponential distribution has a number of interesting and important mathematical properties. First, and not surprisingly, it's a member of the general exponential
family.

Suppose that  has the exponential distribution with rate parameter . Then  has a one parameter general exponential distribution, with natural parameter 
 and natural statistic .

Proof

This follows directly from the form of the PDF,  for , and the definition of the general exponential family.

The Scaling Property

As suggested earlier, the exponential distribution is a scale family, and  is the scale parameter.

Suppose that  has the exponential distribution with rate parameter  and that . Then  has the exponential distribution with rate parameter .

Proof

For , .

Recall that multiplying a random variable by a positive constant frequently corresponds to a change of units (minutes into hours for a lifetime variable, for example).
Thus, the exponential distribution is preserved under such changes of units. In the context of the Poisson process, this has to be the case, since the memoryless property,
which led to the exponential distribution in the first place, clearly does not depend on the time units.

In fact, the exponential distribution with rate parameter 1 is referred to as the standard exponential distribution. From the previous result, if  has the standard
exponential distribution and , then  has the exponential distribution with rate parameter . Conversely, if  has the exponential distribution with rate 
then  has the standard exponential distribution.

Similarly, the Poisson process with rate parameter 1 is referred to as the standard Poisson process. If  is the th inter-arrival time for the standard Poisson process for 
, then letting  for  gives the inter-arrival times for the Poisson process with rate . Conversely if  is the th inter-arrival time of the Poisson

process with rate  for , then  for  gives the inter-arrival times for the standard Poisson process.

Relation to the Geometric Distribution

In many respects, the geometric distribution is a discrete version of the exponential distribution. In particular, recall that the geometric distribution on  is the only
distribution on  with the memoryless and constant rate properties. So it is not surprising that the two distributions are also connected through various transformations
and limits.

Suppose that  has the exponential distribution with rate parameter . Then

1.  has the geometric distributions on  with success parameter .
2.  has the geometric distributions on  with success parameter .

Proof
1. For  note that . Substituting into the distribution function and simplifying gives 

.
2. For  note that . Substituting into the distribution function and simplifying gives 

.

The following connection between the two distributions is interesting by itself, but will also be very important in the section on splitting Poisson processes. In words, a
random, geometrically distributed sum of independent, identically distributed exponential variables is itself exponential.

Suppose that  is a sequence of independent variables, each with the exponential distribution with rate . Suppose that  has the geometric
distribution on  with success parameter  and is independent of . Then  has the exponential distribution with rate .

Proof

Recall that the moment generating function of  is  where  is the common moment generating function of the terms in the sum, and  is the probability
generating function of the number of terms . But  for  and  for . Thus,

It follows that  has the exponential distribution with parameter 

The next result explores the connection between the Bernoulli trials process and the Poisson process that was begun in the Introduction.
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For , suppose that  has the geometric distribution on  with success parameter , where  as . Then the distribution of 
converges to the exponential distribution with parameter  as .

Proof

Let  denote the CDF of . Then for 

But by a famous limit from calculus,  as , and hence  as . But by definition, 
 or equivalently,  so it follows that  as . Hence  as , which is

the CDF of the exponential distribution.

To understand this result more clearly, suppose that we have a sequence of Bernoulli trials processes. In process , we run the trials at a rate of  per unit time, with
probability of success . Thus, the actual time of the first success in process  is . The last result shows that if  as , then the sequence of
Bernoulli trials processes converges to the Poisson process with rate parameter  as . We will return to this point in subsequent sections.

Orderings and Order Statistics

Suppose that  and  have exponential distributions with parameters  and , respectively, and are independent. Then

Proof

This result can be proved in a straightforward way by integrating the joint PDF of  over . A more elegant proof uses conditioning
and the moment generating function above:

The following theorem gives an important random version of the memoryless property.

Suppose that  and  are independent variables taking values in  and that  has the exponential distribution with rate parameter . Then  and 
are conditionally independent given , and the conditional distribution of  is also exponential with parameter .

Proof

Suppose that  (measurable of course) and . Then

But conditioning on  we can write the numerator as

Similarly, conditioning on  gives . Thus

Letting  we have  so given , the variable  has the exponential distribution with parameter . Letting , we see that
given , variable  has the distribution

Finally, because of the factoring,  and  are conditionally independent given .

For our next discussion, suppose that  is a sequence of independent random variables, and that  has the exponential distribution with rate
parameter  for each .

Let . Then  has the exponential distribution with parameter .

Proof

Recall that in general,  and therefore by independence,  for , where  is the
reliability function of  and  is the reliability function of  for each . When  has the exponential distribution with rate  for each , we have 

 for .

In the context of reliability, if a series system has independent components, each with an exponentially distributed lifetime, then the lifetime of the system is also
exponentially distributed, and the failure rate of the system is the sum of the component failure rates. In the context of random processes, if we have  independent
Poisson process, then the new process obtained by combining the random points in time is also Poisson, and the rate of the new process is the sum of the rates of the
individual processes (we will return to this point latter).

Let . Then  has distribution function  given by
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Proof

Recall that in general,  and therefore by independence,  for , where  is the
distribution function of  and  is the distribution function of  for each .

Consider the special case where  for each . In statistical terms,  is a random sample of size  from the exponential distribution with parameter .
From the last couple of theorems, the minimum  has the exponential distribution with rate  while the maximum  has distribution function  for 

. Recall that  and  are the first and last order statistics, respectively.

In the order statistic experiment, select the exponential distribution.

1. Set  (this gives the minimum ). Vary  with the scroll bar and note the shape of the probability density function. For selected values of , run the
simulation 1000 times and compare the empirical density function to the true probability density function.

2. Vary  with the scroll bar, set  each time (this gives the maximum ), and note the shape of the probability density function. For selected values of , run
the simulation 1000 times and compare the empirical density function to the true probability density function.

Curiously, the distribution of the maximum of independent, identically distributed exponential variables is also the distribution of the sum of independent exponential
variables, with rates that grow linearly with the index.

Suppose that  for each  where . Then  has distribution function  given by

Proof

By assumption,  has PDF  given by  for . We want to show that  has PDF  given by

The PDF of a sum of independent variables is the convolution of the individual PDFs, so we want to show that

The proof is by induction on . Trivially , so suppose the result holds for a given . Then

Now substitute  so that  or equivalently . After some algebra,

This result has an application to the Yule process, named for George Yule. The Yule process, which has some parallels with the Poisson process, is studied in the chapter
on Markov processes. We can now generalize the order probability above:

For ,

Proof

First, note that  for all  if and only if . But the minimum on the right is independent of  and, by result on minimums above,
has the exponential distribution with parameter . The result now follows from order probability for two events above.

Suppose that for each ,  is the time until an event of interest occurs (the arrival of a customer, the failure of a device, etc.) and that these times are independent and
exponentially distributed. Then the first time  that one of the events occurs is also exponentially distributed, and the probability that the first event to occur is event  is
proportional to the rate .

The probability of a total ordering is

Proof

Let . then

But  from the previous result, and  is independent of . Thus we have
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so the result follows by induction.

Of course, the probabilities of other orderings can be computed by permuting the parameters appropriately in the formula on the right.

The result on minimums and the order probability result above are very important in the theory of continuous-time Markov chains. But for that application and others, it's
convenient to extend the exponential distribution to two degenerate cases: point mass at 0 and point mass at  (so the first is the distribution of a random variable that
takes the value 0 with probability 1, and the second the distribution of a random variable that takes the value  with probability 1). In terms of the rate parameter  and
the distribution function , point mass at 0 corresponds to  so that  for . Point mass at  corresponds to  so that  for 

. The memoryless property, as expressed in terms of the reliability function , still holds for these degenerate cases on :

We also need to extend some of results above for a finite number of variables to a countably infinite number of variables. So for the remainder of this discussion, suppose
that  is a countable collection of independent random variables, and that  has the exponential distribution with parameter  for each .

Let . Then  has the exponential distribution with parameter 

Proof

The proof is almost the same as the one above for a finite collection. Note that  and so

If  then  has a proper exponential distribution with the sum as the parameter. If  then  for all  so 
.

For ,

Proof

First note that since the variables have continuous distributions and  is countable,

Next note that  for all  if and only if  where . But  is independent of  and, by previous result, has the
exponential distribution with parameter . If , then  is 0 with probability 1, and so . If , then  and 
have proper exponential distributions, and so the result now follows from order probability for two variables above.

We need one last result in this setting: a condition that ensures that the sum of an infinite collection of exponential variables is finite with probability one.

Let  and . Then  and  if and only if .

Proof

The result is trivial if  is finite, so assume that . Recall that  and hence . Trivially if  then . Conversely,
suppose that . Then  and hence . Using independence and the moment generating function above,

Next recall that if  for  then

Hence it follows that

In particular, this means that  as  and hence  as . But then

By the comparison test for infinite series, it follows that
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X2 X3 Xn (14.2.29)

∞

∞ r

F r = ∞ F (t) = 1 0 < t < ∞ ∞ r = 0 F (t) = 0

0 < t < ∞ F c (0, ∞)

(s) (t) = (s+ t), s, t ∈ (0, ∞)F c F c F c (14.2.30)

{ : i ∈ I}Xi Xi ∈ (0, ∞)ri i ∈ I

U = inf{ : i ∈ I}Xi U ∑i∈I ri

{U ≥ t} = { ≥ t for all i ∈ I}Xi

P(U ≥ t) = P( ≥ t) = = exp[−( ) t]∏
i∈I

Xi ∏
i∈I

e− tri ∑
i∈I

ri (14.2.31)

< ∞∑i∈I ri U = ∞∑i∈I ri P (U ≥ t) = 0 t ∈ (0, ∞)

P (U = 0) = 1

i ∈ N+

P ( <  for all j∈ I −{i}) =Xi Xj

ri

∑j∈I rj
(14.2.32)

I

P ( <  for all j∈ I −{i}) = P ( ≤  for all j∈ I −{i})Xi Xj Xi Xj (14.2.33)

≤Xi Xj j∈ I −{i} ≤Xi Ui = inf { : j∈ I −{i}}Ui Xj Ui Xi

=si ∑j∈I−{i} rj = ∞si Ui P ( ≤ ) = 0 = /Xi Ui ri si < ∞si Xi Ui

Y =∑i∈I Xi μ = 1/∑i∈I ri μ =E(Y ) P(Y < ∞) = 1 μ < ∞

I I =N+ E( ) = 1/Xi ri μ =E(Y ) μ < ∞ P(Y < ∞) = 1

P(Y < ∞) = 1 P( > 0) = 1e−Y
E( ) > 0e−Y

E( ) =E( ) = E( ) = > 0e−Y ∏
i=1

∞

e−Xi ∏
i=1

∞

e−Xi ∏
i=1

∞
ri

+1ri
(14.2.34)

∈ (0, 1)pi i ∈ N+

> 0 if and only if  (1 − ) < ∞∏
i=1

∞

pi ∑
i=1

∞

pi (14.2.35)

(1 − ) = < ∞∑
i=1

∞ ri

+1ri
∑
i=1

∞ 1

+1ri
(14.2.36)

1/( +1) → 0ri i → ∞ → ∞ri i → ∞

= → 1 as i → ∞
1/( +1)ri

1/ri

ri

+1ri
(14.2.37)

μ = < ∞∑
i=1

∞ 1

ri
(14.2.38)
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Computational Exercises

Show directly that the exponential probability density function is a valid probability density function.

Solution

Clearly  for . Simple integration that

Suppose that the length of a telephone call (in minutes) is exponentially distributed with rate parameter . Find each of the following:

1. The probability that the call lasts between 2 and 7 minutes.
2. The median, the first and third quartiles, and the interquartile range of the call length.

Answer

Let  denote the call length.

1. 
2. , , , 

Suppose that the lifetime of a certain electronic component (in hours) is exponentially distributed with rate parameter . Find each of the following:

1. The probability that the component lasts at least 2000 hours.
2. The median, the first and third quartiles, and the interquartile range of the lifetime.

Answer

Let  denote the lifetime

1. 
2. , , , 

Suppose that the time between requests to a web server (in seconds) is exponentially distributed with rate parameter . Find each of the following:

1. The mean and standard deviation of the time between requests.
2. The probability that the time between requests is less that 0.5 seconds.
3. The median, the first and third quartiles, and the interquartile range of the time between requests.

Answer

Let  denote the time between requests.

1. , 
2. 
3. , , , 

Suppose that the lifetime  of a fuse (in 100 hour units) is exponentially distributed with . Find each of the following:

1. The rate parameter.
2. The mean and standard deviation.
3. The median, the first and third quartiles, and the interquartile range of the lifetime.

Answer

Let  denote the lifetime.

1. 
2. , 
3. , , , 

The position  of the first defect on a digital tape (in cm) has the exponential distribution with mean 100. Find each of the following:

1. The rate parameter.
2. The probability that  given .
3. The standard deviation.
4. The median, the first and third quartiles, and the interquartile range of the position.

Answer

Let  denote the position of the first defect.

1. 
2. 
3. 
4. , , , 

Suppose that  are independent, exponentially distributed random variables with respective parameters . Find the probability of each of the 6
orderings of the variables.

Proof

f(t) = r > 0e−rt t ∈ [0, ∞)

r dt = 1∫
∞

0

e−rt (14.2.39)

r = 0.2

X

P(2 < X < 7) = 0.4237

= 1.4384q1 = 3.4657q2 = 6.9315q3 − = 5.4931q3 q1

r = 0.001

T

P(T ≥ 2000) = 0.1353

= 287.682q1 = 693.147q2 = 1386.294q3 − = 1098.612q3 q1

r = 2

T

E(T ) = 0.5 sd(T ) = 0.5

P(T < 0.5) = 0.6321

= 0.1438q1 = 0.3466q2 = 0.6931q3 − = 0.5493q3 q1

X P(X > 10) = 0.8

X

r = 0.02231

E(X) = 44.814 sd(X) = 44.814

= 12.8922q1 = 31.0628q2 = 62.1257q3 − = 49.2334q3 q1

X

X < 200 X > 150

X

r = 0.01

P(X < 200 ∣ X > 150) = 0.3935

sd(X) = 100

= 28.7682q1 = 69.3147q2 = 138.6294q3 − = 109.6812q3 q1

X, Y , Z a, b, c ∈ (0, ∞)
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1. 
2. 
3. 

4. 
5. 

6. 
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P(X < Y < Z) = a

a+b+c

b

b+c

P(X < Z < Y ) = a

a+b+c

c

b+c

P(Y < X < Z) = b

a+b+c

a

a+c

P(Y < Z < X) = b

a+b+c

c

a+c

P(Z < X < Y ) = c

a+b+c

a

a+b

P(Z < Y < X) = c

a+b+c

b

a+b
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