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2.10: Stochastic Processes
        

Introduction

This section requires measure theory, so you may need to review the advanced sections in the chapter on Foundations and in this chapter. In particular,
recall that a set  almost always comes with a -algebra  of admissible subsets, so that  is a measurable space. Usually in fact,  has a
topology and  is the corresponding Borel -algebra, that is, the -algebra generated by the topology. If  is countable, we almost always take  to be
the collection of all subsets of , and in this case  is a discrete space. The other common case is when  is an uncountable measurable subset of 

 for some , in which case  is the collection of measurable subsets of . If  are measurable spaces for some 
, then the Cartesian product  is given the product -algebra . As a special case, the Cartesian power 

 is given the corresponding power -algebra .

With these preliminary remarks out of the way, suppose that  is a probability space, so that  is the set of outcomes,  the -algebra of
events, and  is the probability measure on the sample space . Suppose also that  and  are measurable spaces. Here is our main
definition:

A random process or stochastic process on  with state space  and index set  is a collection of random variables 
 such that  takes values in  for each .

Sometimes it's notationally convenient to write  instead of  for . Often  or  and the elements of  are interpreted as
points in time (discrete time in the first case and continuous time in the second). So then  is the state of the random process at time , and
the index space  becomes the time space.

Since  is itself a function from  into , it follows that ultimately, a stochastic process is a function from  into . Stated another way, 
is a random function on the probability space . To make this precise, recall that  is the notation sometimes used for the collection of
functions from  into . Recall also that a natural -algebra used for  is the one generated by sets of the form

This -algebra, denoted , generalizes the ordinary power -algebra  mentioned in the opening paragraph and will be important in the discussion
of existence below.

Suppose that  is a stochastic process on the probability space  with state space  and index set . Then the
mapping that takes  into the function  is measurable with respect to  and .

Proof

Recall that a mapping with values in  is measurable if and only if each of its “coordinate functions” is measurable. In the present context that
means that we must show that the function  is measurable with respect to  and  for each . But of course, that follows from
the very meaning of the term random variable.

For , the function  is known as a sample path of the process. So , the set of functions from  into , can be thought of as a set of
outcomes of the stochastic process , a point we will return to in our discussion of existence below.

As noted in the proof of the last theorem,  is a measurable function from  into  for each , by the very meaning of the term random variable.
But it does not follow in general that  is measurable as a function from  into . In fact, the -algebra on  has played no role in
our discussion so far. Informally, a statement about  for a fixed  or even a statement about  for countably many  defines an event. But it
does not follow that a statement about  for uncountably many  defines an event. We often want to make such statements, so the following
definition is inevitable:

A stochastic process  defined on the probability space  and with index space  and state space  is
measurable if  is a measurable function from  into .

Every stochastic process indexed by a countable set  is measurable, so the definition is only important when  is uncountable, and in particular for 
.

Equivalent Processes
Our next goal is to study different ways that two stochastic processes, with the same state and index spaces, can be “equivalent”. We will assume that the
diagonal , an assumption that almost always holds in applications, and in particular for the discrete and Euclidean spaces
that are most important to us. Sufficient conditions are that  have a sub -algebra that is countably generated and contains all of the singleton sets,
properties that hold for the Borel -algebra when the topology on  is locally compact, Hausdorff, and has a countable base.

First, we often feel that we understand a random process  well if we know the finite dimensional distributions, that is, if we know the
distribution of  for every choice of  and . Thus, we can compute  for
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every , , and . Using various rules of probability, we can compute the probabilities of many events involving
infinitely many values of the index parameter  as well. With this idea in mind, we have the following definition:

Random processes  and  with state space  and index set  are equivalent in distribution if they have
the same finite dimensional distributions. This defines an equivalence relation on the collection of stochastic processes with this state space and
index set. That is, if , , and  are such processes then

1.  is equivalent in distribution to  (the reflexive property)
2. If  is equivalent in distribution to  then  is equivalent in distribution to  (the symmetric property)
3. If  is equivalent in distribution to  and  is equivalent in distribution to  then  is equivalent in distribution to  (the transitive property)

Note that since only the finite-dimensional distributions of the processes  and  are involved in the definition, the processes need not be defined on
the same probability space. Thus, equivalence in distribution partitions the collection of all random processes with a given state space and index set into
mutually disjoint equivalence classes. But of course, we already know that two random variables can have the same distribution but be very different as
variables (functions on the sample space). Clearly, the same statement applies to random processes.

Suppose that  is a sequence of Bernoulli trials with success parameter . Let  for . Then 
 is equivalent in distribution to  but

Proof

By the meaning of Bernoulli trials,  is a sequence of independent indicator random variables with  for each . It follows
that  is also a Bernoulli trials sequence with success parameter , so  and  are equivalent in distribution. Also, of course, the state set is 

 and  if and only if .

Motivated by this example, let's look at another, stronger way that random processes can be equivalent. First recall that random variables  and  on 
, with values in , are equivalent if .

Suppose that  and  are stochastic processes defined on the same probability space  and both with
state space  and index set . Then  is a versions of  if  is equivalent to  (so that ) for every . This defines an
equivalence relation on the collection of stochastic processes on the same probability space and with the same state space and index set. That is, if 

, , and  are such processes then

1.  is a version of  (the reflexive property)
2. If  is a version of  then  is ia version of  (the symmetric property)
3. If  is a version of  and  is of  then  is a version of  (the transitive property)

Proof

Note that  is a random variable with values in  (and so the function  is measurable). The event  is the
inverse image of the diagonal  under this mapping, and so the definition makes sense.

So the version of relation partitions the collection of stochastic processes on a given probability space and with a given state space and index set into
mutually disjoint equivalence classes.

Suppose again that  and  are random processes on  with state space  and index set . If  is
a version of  then  and  are equivalent in distribution.

Proof

Suppose that  and that . Recall that the intersection of a finite (or even countably infinite) collection of events with
probability 1 still has probability 1. Hence

As noted in the proof, a countable intersection of events with probability 1 still has probability 1. Hence if  is countable and random processes  is a
version of  then

so  and  really are essentially the same random process. But when  is uncountable the result in the displayed equation may not be true, and  and 
 may be very different as random functions on . Here is a simple example:

Suppose that ,  is the -algebra of Borel measurable subsets of , and  is any continuous probability measure on 
. Let  (with all subsets measurable, of course). For  and , define  and . Then 

 is a version of , but .
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Proof

For ,  since  is a continuous measure. But .

Motivated by this example, we have our strongest form of equivalence:

Suppose that  and  are measurable random processes on the probability space  and with state space 
 and index space . Then  is indistinguishable from  if . This defines an equivalence relation on the

collection of measurable stochastic processes defined on the same probability space and with the same state and index spaces. That is, if , , and 
 are such processes then

1.  is indistinguishable from  (the reflexive property)
2. If  is indistinguishable from  then  is indistinguishable from  (the symmetric property)
3. If  is indistinguishable from  and  is indistinguishable from  then  is indistinguishable from  (the transitive property)

Details

The measurability requirement for the stochastic processes is needed to ensure that  is a valid event. To see this, note that 
 is measurable, as a function from  into . As before, let  denote the diagonal. Then 

 and the inverse image of  under our mapping is

The projection of this set onto 

since the projection of a measurable set in the product space is also measurable. Hence the complementary event

So the indistinguishable from relation partitions the collection of measurable stochastic processes on a given probability space and with given state space
and index space into mutually disjoint equivalence classes. Trivially, if  is indistinguishable from , then  is a version of . As noted above, when 

 is countable, the converse is also true, but not, as our previous example shows, when  is uncountable. So to summarize, indistinguishable from
implies version of implies equivalent in distribution, but none of the converse implications hold in general.

The Kolmogorov Construction

In applications, a stochastic process is often modeled by giving various distributional properties that the process should satisfy. So the basic existence
problem is to construct a process that has these properties. More specifically, how can we construct random processes with specified finite dimensional
distributions? Let's start with the simplest case, one that we have seen several times before, and build up from there. Our simplest case is to construct a
single random variable with a specified distribution.

Suppose that  is a probability space. Then there exists a random variable  on probability space  such that  takes values in 
and has distribution .

Proof

The proof is utterly trivial. Let  and define  by , so that  is the identity function. Then 
 and so  for .

In spite of its triviality the last result contains the seeds of everything else we will do in this discussion. Next, let's see how to construct a sequence of
independent random variables with specified distributions.

Suppose that  is a probability measure on the measurable space  for . Then there exists an independent sequence of random
variables  on a probability space  such that  takes values in  and has distribution  for .

Proof

Let . Next let , the corresponding product -algebra. Recall that this is the -algebra generated by sets of the
form

Finally, let , the corresponding product measure on . Recall that this is the unique probability measure that satisfies

where  is a set of the type in the first displayed equation. Now define  on  by , for , so that  is
simply the coordinate function for index . If  is a set of the type in the first displayed equation then
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and so by the definition of the product measure,

It follows that  is a sequence of independent variables and that  has distribution  for .

If you looked at the proof of the last two results you might notice that the last result can be viewed as a special case of the one before, since 
 is simply the identity function on . The important step is the existence of the product measure  on .

The full generalization of these results is known as the Kolmogorov existence theorem (named for Andrei Kolmogorov). We start with the state space 
 and the index set . The theorem states that if we specify the finite dimensional distributions in a consistent way, then there exists a stochastic

process defined on a suitable probability space that has the given finite dimensional distributions. The consistency condition is a bit clunky to state in
full generality, but the basic idea is very easy to understand. Suppose that  and  are distinct elements in  and that we specify the distribution
(probability measure)  of ,  of ,  of , and  of . Then clearly we must specify these so that

For all . Clearly we also must have  for all measurable , where .

To state the consistency conditions in general, we need some notation. For , let  denote the set of -tuples of distinct elements of ,
and let  denote the set of all finite sequences of distinct elements of . If ,  and  is a permutation of

, let  denote the element of  with coordinates . That is, we permute the coordinates of  according to . If , let

finally, if , let  denote the vector 

Now suppose that  is a probability measure on  for each  and . The idea, of course, is that we want the collection 
 to be the finite dimensional distributions of a random process with index set  and state space . Here is the critical

definition:

The collection of probability distributions  relative to  and  is consistent if

1.  for every , , permutation  of , and measurable .
2.  for every , , and measurable 

With the proper definition of consistence, we can state the fundamental theorem.

Kolmogorov Existence Theorem. If  is a consistent collection of probability distributions relative to the index set  and the state space ,
then there exists a probability space  and a stochastic process  on this probability space such that  is the collection
of finite dimensional distribution of .

Proof sketch

Let , the set of functions from  to . Such functions are the outcomes of the stochastic process. Let , the product -algebra,
generated by sets of the form

where  for all  and  for all but finitely many . We know how our desired probability measure  should work on the sets
that generate . Specifically, suppose that  is a set of the type in the displayed equation, and  except for .
Then we want

Basic existence and uniqueness theorems in measure theory that we discussed earlier, and the consistency of , guarantee that  can be extended to
a probability measure on all of . Finally, for  we define  by  for , so that  is simply the coordinate
function of index . Thus, we have a stochastic process  with state space , defined on the probability space ,
with  as the collection of finite dimensional distributions.

Note that except for the more complicated notation, the construction is very similar to the one for a sequence of independent variables. Again,  is
essentially the identity function on . The important and more difficult part is the construction of the probability measure  on .

Applications
Our last discussion is a summary of the stochastic processes that are studied in this text. All are classics and are immensely important in applications.

Random processes are associated with Bernoulli trials include

1. the Bernoulli trials sequence itself
2. the sequence of binomial variables
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3. the sequence of geometric variables
4. the sequence of negative binomial variables
5. the simple random walk

Construction

The Bernoulli trials sequence in (a) is a sequence of independent, identically distributed indicator random variables, and so can be constructed as in
(). The random processes in (b)–(e) are constructed from the Bernoulli trials sequence.

Random process associated with the Poisson model include

1. the sequence of inter-arrival times
2. the sequence of arrival times
3. the counting process on , both in the homogeneous and non-homogeneous cases.
4. A compound Poisson process.
5. the counting process on a general measure space

Constructions

The random process in (a) is a sequence of independent random variable with a common exponential distribution, and so can be constructed as in ().
The processes in (b) and (c) can be constructed from the sequence in (a).

Random processes associated with renewal theory include

1. the sequence of inter-arrival times
2. the sequence of arrival times
3. the counting process on 

Markov chains form a very important family of random processes as do Brownian motion and related processes. We will study these in subsequent
chapters.
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