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1.2: Functions
     

Functions play a central role in probability and statistics, as they do in every other branch of mathematics. For the most part, the
proofs in this section are straightforward, so be sure to try them yourself before reading the ones in the text.

Definitions and Properties

Basic Definitions

We start with the formal, technical definition of a function. It's not very intuitive, but has the advantage that it only requires set
theory.

A function  from a set  into a set  is a subset of the product set  with the property that for each element , there
exists a unique element  such that . If  is a function from  to  we write . If  we write 

.

Less formally, a function  from  into  is a “rule” (or “procedure” or “algorithm”) that assigns to each  a unique element 
. The definition of a function as a set of ordered pairs, is due to Kazimierz Kuratowski. The term map or mapping is also

used in place of function, so we could say that  maps  into .

Figure : A function  from  into 

The sets  and  in the definition are clearly important.

Suppose that .

1. The set  is the domain of .
2. The set  is the range space or co-domain of .
3. The range of  is the set of function values. That is, .

The domain and range are completely specified by a function. That's not true of the co-domain: if  is a function from  into ,
and  is another set with , then we can also think of  as a function from  into . The following definitions are natural
and important.

Suppose again that .

1.  maps  onto  if . That is, for each  there exists  such that .
2.  is one-to-one if distinct elements in the domain are mapped to distinct elements in the range. That is, if  and 

 then .

Clearly a function always maps its domain onto its range. Note also that  is one-to-one if  implies  for 
.

Inverse functions

A funtion that is one-to-one and onto can be “reversed” in a sense.

If  maps  one-to-one onto , the inverse of  is the function  from  onto  given by

f S T S×T x ∈ S

y ∈ T (x, y) ∈ f f S T f : S → T (x, y) ∈ f

y = f(x)

f S T x ∈ S

f(x) ∈ T

f S T

1.2.1 f S T

S T

f : S → T

S f

T f

f range (f) = {y ∈ T : y = f(x) for some x ∈ S}

f S T

U T ⊆ U f S U

f : S → T

f S T range (f) = T y ∈ T x ∈ S f(x) = y

f u, v∈ S

u ≠ v f(u) ≠ f(v)

f f(u) = f(v) u = v

u, v∈ S

f S T f f−1 T S

(y) = x ⟺ f(x) = y; x ∈ S, y ∈ Tf−1 (1.2.1)
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If you like to think of a function as a set of ordered pairs, then . The fact that  is one-to-one
and onto ensures that  is a valid function from  onto . Sets  and  are in one-to-one correspondence if there exists a one-
to-one function from  onto . One-to-one correspondence plays an essential role in the study of cardinality.

Restrictions

The domain of a function can be restricted to create a new funtion.

Suppose that  and that . The function  defined by  for  is the restriction of 
to .

As a set of ordered pairs, note that .

Composition

Composition is perhaps the most important way to combine two functions to create another function.

Suppose that  and . The composition of  with  is the function  defined by

Composition is associative:

Suppose that , , and . Then

Proof

Note that both functions map  into . Using the definition of composition, the value of both functions at  is 
.

Thus we can write  without ambiguity. On the other hand, composition is not commutative. Indeed depending on the
domains and co-domains,  might be defined when  is not. Even when both are defined, they may have different domains
and co-domains, and so of course cannot be the same function. Even when both are defined and have the same domains and co-
domains, the two compositions will not be the same in general. Examples of all of these cases are given in the computational
exercises below.

Suppose that  and .

1. If  and  are one-to-one then  is one-to-one.
2. If  and  are onto then  is onto.

Proof
1. Suppose that  and . Then . Since  is one-to-one, . Since

 is one-to-one, .
2. Suppose that . Since  is onto, there exist  with . Since  is onto, there exists  with .

Then .

The identity function on a set  is the function  from  onto  defined by  for 

The identity function acts like an identity with respect to the operation of composition.

If  then

1. 
2. 

Proof
1. Note that . For , .
2. Note that . For , .

= {(y, x) ∈ T ×S : (x, y) ∈ f}f−1 f

f−1 T S S T

S T

f : S → T A ⊆ S : A → TfA (x) = f(x)fA x ∈ A f

A

= {(x, y) ∈ f : x ∈ A}fA

g : R → S f : S → T f g f ∘ g : R → T

(f ∘ g) (x) = f (g(x)) , x ∈ R (1.2.2)

h : R → S g : S → T f : T → U

f ∘ (g∘ h) = (f ∘ g) ∘ h (1.2.3)

R U x ∈ R

f (g (h(x)))

f ∘ g∘ h
f ∘ g g∘ f

g : R → S f : S → T

f g f ∘ g
f g f ∘ g

u, v∈ R (f ∘ g)(u) = (f ∘ g)(v) f (g(u)) = f (g(v)) f g(u) = g(v)
g u = v

z ∈ T f y ∈ S f(y) = z g x ∈ R g(x) = y

(f ∘ g)(x) = f (g(x)) = f(y) = z

S IS S S (x) = xIS x ∈ S

f : S → T

f ∘ = fIS
∘ f = fIT

f ∘ : S → TIS x ∈ S (f ∘ )(x) = f ( (x)) = f(x)IS IS
∘ f : S → TIT x ∈ S ( ∘ f)(x) = (f(x)) = f(x)IT IT
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The inverse of a function is really the inverse with respect to composition.

Suppose that  is a one-to-one function from  onto . Then

1. 
2. 

Proof
1. Note that . For , .
2. Note that . For , 

An element  can be thought of as a function from  into . Similarly, an element  can be thought of as
a function from  into . For such a sequence , of course, we usually write  instead of . More generally, if  and  are
sets, then the set of all functions from  into  is denoted by . In particular, as we noted in the last section,  is also (and
more accurately) written as .

Suppose that  is a one-to-one function from  onto  and that  is a one-to-one function from  onto . Then 
.

Proof

Note that  and . For , let . Then  so that 
 and hence  and finally .

Inverse Images

Inverse images of a function play a fundamental role in probability, particularly in the context of random variables.

Suppose that . If , the inverse image of  under  is the subset of  given by

So  is the subset of  consisting of those elements that map into .

Figure : The inverse image of  under 

Technically, the inverse images define a new function from  into . We use the same notation as for the inverse
function, which is defined when  is one-to-one and onto. These are very different functions, but usually no confusion results. The
following important theorem shows that inverse images preserve all set operations.

Suppose that , and that . Then

1. 
2. 
3. 
4. If  then 
5. If  and  are disjoint, so are  and 

Proof
1.  if and only if  if and only if  or  if and only if  or 

 if and only if 
2. The proof is the same as (a), with intersection replacing union and with and replacing or throughout.
3. The proof is the same as (a), with set difference replacing union and with and not replacing or throughout.

f S T

∘ f =f−1 IS
f ∘ =f−1 IT

∘ f : S → Sf−1 x ∈ S ( ∘ f) (x) = (f(x)) = xf−1 f−1

f ∘ : T → Tf−1 y ∈ T (f ∘ ) (y) = f ( (y))= yf−1 f−1

x ∈ Sn {1, 2, … ,n} S x ∈ S∞

N+ S x xi x(i) S T

S T T S S∞

SN+

g R S f S T

= ∘(f ∘ g) −1 g−1 f−1

(f ∘ g : T → R)−1 ∘ : T → Rg−1 f−1 y ∈ T x = (y)(f ∘ g)
−1

(f ∘ g) (x) = y

f (g(x)) = y g(x) = (y)f−1 x = ( (y))g−1 f−1

f : S → T A ⊆ T A f S

(A) = {x ∈ S : f(x) ∈ A}f−1 (1.2.4)

(A)f−1 S A

1.2.2 A f

P(T ) P(S)
f

f : S → T A, B ⊆ T

(A∪B) = (A) ∪ (B)f−1 f−1 f−1

(A∩B) = (A) ∩ (B)f−1 f−1 f−1

(A ∖B) = (A) ∖ (B)f−1 f−1 f−1

A ⊆ B (A) ⊆ (B)f−1 f−1

A B (A)f−1 (B)f−1

x ∈ (A∪B)f−1 f(x) ∈ A∪B f(x) ∈ A f(x) ∈ B x ∈ (A)f−1

x ∈ (B)f−1 x ∈ (A) ∪ (B)f−1 f−1
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4. Suppose . If  then  and hence , so .
5. If  and  are disjoint, then from (b), .

The result in part (a) holds for arbitrary unions, and the result in part (b) holds for arbitrary intersections. No new ideas are
involved; only the notation is more complicated.

Suppose that  is a collection of subsets of , where  is a nonempty index set. Then

1. 
2. 

Proof
1.  if and only if  if and only if  for some  if and only if  for

some  if and only if 
2. The proof is the same as (a), with intersection replacing union and with for every replacing for some.

Forward Images

Forward images of a function are a naturally complement to inverse images.

Suppose again that . If , the forward image of  under  is the subset of  given by

So  is the range of  restricted to .

Figure : The forward image of  under 

Technically, the forward images define a new function from  into , but we use the same symbol  for this new function
as for the underlying function from  into  that we started with. Again, the two functions are very different, but usually no
confusion results.

It might seem that forward images are more natural than inverse images, but in fact, the inverse images are much more important
than the forward ones (at least in probability and measure theory). Fortunately, the inverse images are nicer as well—unlike the
inverse images, the forward images do not preserve all of the set operations.

Suppose that , and that . Then

1. .
2. . Equality holds if  is one-to-one.
3. . Equality holds if  is one-to-one.
4. If  then .

Proof
1. Suppose . Then  for some . If  then  and if  then . In

both cases . Conversely suppose . If  then  for some . But
then  so . Similarly, if  then  for some . But then  so 

.
2. If  then  for some . But then  so  and  so  and hence 

. Conversely, suppose that . Then  and , so there exists  with 
 and there exists  with . At this point, we can go no further. But if  is one-to-one, then 

and hence  and . Thus  so .

A ⊆ B x ∈ (A)f−1 f(x) ∈ A f(x) ∈ B x ∈ (B)f−1

A B (A) ∩ (B) = (A∩B) = (∅) = ∅f−1 f−1 f−1 f−1

{ : i ∈ I}Ai T I

( )= ( )f−1 ⋃i∈I Ai ⋃i∈I f
−1 Ai

( )= ( )f−1 ⋂i∈I Ai ⋂i∈I f
−1 Ai

x ∈ ( )f−1 ⋃i∈I Ai f(x) ∈⋃i∈I Ai f(x) ∈ Ai i ∈ I x ∈ ( )f−1 Ai

i ∈ I x ∈ ( )⋃i∈I f
−1 Ai

f : S → T A ⊆ S A f T

f(A) = {f(x) : x ∈ A} (1.2.5)

f(A) f A

1.2.3 A f

P(S) P(T ) f

S T

f : S → T A, B ⊆ S

f(A∪B) = f(A) ∪ f(B)
f(A∩B) ⊆ f(A) ∩ f(B) f

f(A) ∖ f(B) ⊆ f(A ∖B) f

A ⊆ B f(A) ⊆ f(B)

y ∈ f(A∪B) y = f(x) x ∈ A∪B x ∈ A y ∈ f(A) x ∈ B y ∈ f(B)
y ∈ f(A) ∪ f(B) y ∈ f(A) ∪ f(B) y ∈ f(A) y = f(x) x ∈ A

x ∈ A∪B y ∈ f(A∪B) y ∈ f(B) y = f(x) x ∈ B x ∈ A∪B

y ∈ f(A∪B)
y ∈ f(A∩B) y = f(x) x ∈ A∩B x ∈ A y ∈ f(A) x ∈ B y ∈ f(B)

y ∈ f(A) ∩ f(B) y ∈ f(A) ∩ f(B) y ∈ f(A) y ∈ f(B) x ∈ A

f(x) = y u ∈ B f(u) = y f u = x

x ∈ A x ∈ B x ∈ A∩B y ∈ f(A∩B)
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3. Suppose . Then  and . Hence  for some  and  for every 
. Thus,  so  and hence . Conversely, suppose . Then  for some

. Hence  so . Again, the proof breaks down at this point. However, if  is one-to-one and 
 for some , then  so , a contradiction. Hence  for every  so . Thus 

.
4. Suppose . If  then  for some . But then  so .

The result in part (a) hold for arbitrary unions, and the results in part (b) hold for arbitrary intersections. No new ideas are involved;
only the notation is more complicated.

Suppose that  is a collection of subsets of , where  is a nonempty index set. Then

1. .
2. . Equality holds if  is one-to-one.

Proof
1.  if and only if  for some  if and only if  for some  and some 

if and only if  for some  if and only if .
2. If  then  for some . Hence  for every  so  for every  and

thus . Conversely, suppose that . Then  for every . Hence for every 
there exists  with . If  is one-to-one,  for all . Call the common value . Then 
for every  so  and therefore .

Suppose again that . As noted earlier, the forward images of  define a function from  into  and the inverse
images define a function from  into . One might hope that these functions are inverses of one another, but alas no.

Suppose that .

1.  for . Equality holds if  is one-to-one.
2.  for . Equality holds if  is onto.

Proof
1. If  then  and hence . Conversely suppose that . Then  so 

 for some . At this point we can go no further. But if  is one-to-one, then  and hence .
2. Suppose . Then  for some . But then . Conversely suppose that  is

onto and . There exist  with . Hence  and so .

Spaces of Real Functions

Real-valued function on a given set  are of particular importance. The usual arithmetic operations on such functions are defined
pointwise.

Suppose that  and , then  are defined as follows for all .

1. 
2. 
3. 
4. 
5.  assuming that  for .

Now let  denote the collection of all functions from the given set  into . A fact that is very important in probability as well as
other branches of analysis is that , with addition and scalar multiplication as defined above, is a vector space. The zero function 
is defined, of course, by  for all .

 is a vector space over . That is, for all  and 

1. , the commutative property of vector addition.
2. , the associative property of vector addition.

y ∈ f(A) ∖ f(B) y ∈ f(A) y ∉ f(B) y = f(x) x ∈ A y ≠ f(u)
u ∈ B x ∉ B x ∈ A ∖B y ∈ f(A ∖B) y ∈ f(A ∖B) y = f(x)
x ∈ A ∖B x ∈ A y ∈ f(A) f

f(u) = y u ∈ B u = x x ∈ B f(u) ≠ y u ∈ B y ∉ f(B)
y ∈ f(A ∖B)

A ⊆ B y ∈ f(A) y = f(x) x ∈ A x ∈ B y ∈ f(B)

{ : i ∈ I}Ai S I

f ( )= f( )⋃i∈I Ai ⋃i∈I Ai

f ( )⊆ f( )⋂i∈I Ai ⋂i∈I Ai f

y ∈ f ( )⋃i∈I Ai y = f(x) x ∈⋃i∈I Ai y = f(x) x ∈ Ai i ∈ I

y ∈ f( )Ai i ∈ I y ∈ f( )⋃i∈I Ai

y ∈ f ( )⋂i∈I Ai y = f(x) x ∈⋂i∈I Ai x ∈ Ai i ∈ I y ∈ f( )Ai i ∈ I

y ∈ f( )⋂i∈I Ai y ∈ f( )⋂i∈I Ai y ∈ f( )Ai i ∈ I i ∈ I

∈xi Ai y = f( )xi f =xi xj i, j∈ I x x ∈ Ai

i ∈ I x ∈⋂i∈I Ai y ∈ f ( )⋂i∈I Ai

f : S → T f P(S) P(T )
P(T ) P(S)

f : S → T

A ⊆ [f(A)]f−1 A ⊆ S f

f [ (B)] ⊆ Bf−1 B ⊆ T f

x ∈ A f(x) ∈ f(A) x ∈ [f(A)]f−1 x ∈ [f(A)]f−1 f(x) ∈ f(A)
f(x) = f(u) u ∈ A f u = x x ∈ A

y ∈ f [ (B)]f−1 y = f(x) x ∈ (B)f−1 y = f(x) ∈ B f

y ∈ B x ∈ S f(x) = y x ∈ (B)f−1 y ∈ f [ (B)]f−1

S

f , g : S →R c ∈ R f +g, f −g, fg, cf , f/g : S →R x ∈ S

(f +g)(x) = f(x) +g(x)
(f −g)(x) = f(x) −g(x)
(fg)(x) = f(x)g(x)
(cf)(x) = cf(x)
(f/g)(x) = f(x)/g(x) g(x) ≠ 0 x ∈ S

V S R

V 0

0(x) = 0 x ∈ S

(V , +, ⋅) R f , g, h ∈ V a, b ∈ R

f +g = g+f

f +(g+h) = (f +g) +h
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3. , scalar multiplication distributes over vector addition.
4. , scalar multiplication distributive over scalar addition.
5. , the existence of an zero vector.
6. , the existence of additive inverses.
7. , the unity property.

Proof

Each of these properties follows from the corresponding property in .

Various subspaces of  are important in probability as well. We will return to the discussion of vector spaces of functions in the
sections on partial orders and in the advanced sections on metric spaces and measure theory.

Indicator Functions

For our next discussion, suppose that  is the universal set, so that all other sets mentioned are subsets of .

Suppose that . The indicator function of  is the function  defined as follows:

Thus, the indicator function of  simply indicates whether or not  for each . Conversely, any function on  that just
takes the values 0 and 1 is an indicator function.

If  then  is the indicator function of the set .

Thus, there is a one-to-one correspondence between , the power set of , and the collection of indicator functions .
The next result shows how the set algebra of subsets corresponds to the arithmetic algebra of the indicator functions.

Suppose that . Then

1. 
2. 
3. 
4. 
5.  if and only if 

Proof
1. Note that both functions on the right just take the values 0 and 1. Moreover,  if

and only if  and .
2. Note that both function on the right just take the values 0 and 1. Moreover, 

 if and only if  or .
3. Note that  just takes the values 0 and 1. Moreover,  if and only if .
4. Note that  by parts (a) and (c).
5. Since both functions just take the values 0 and 1, note that  if and only if  implies . But in

turn, this is equivalent to .

The results in part (a) extends to arbitrary intersections and the results in part (b) extends to arbitrary unions.

Suppose that  is a collection of subsets of , where  is a nonempty index set. Then

1. 
2. 

Proof

In general, a product over an infinite index set may not make sense. But if all of the factors are either 0 or 1, as they are here,
then we can simply define the product to be 1 if all of the factors are 1, and 0 otherwise.

a(f +g) = af +ag

(a+b)f = af +bf

f +0 = f

f +(−f) = 0

1 ⋅ f = f

R

V

S S

A ⊆ S A : S → {0, 1}1A

(x) = {1A
1,
0,

x ∈ A

x ∉ A
(1.2.6)

A x ∈ A x ∈ S S

f : S → {0, 1} f A = {1} = {x ∈ S : f(x) = 1}f−1

P(S) S {0, 1}S

A, B ⊆ S

= = min{ , }1A∩B 1A 1B 1A 1B

= 1 −(1 − ) (1 − ) = max { , }1A∪B 1A 1B 1A 1B

= 1 −1Ac 1A

= (1 − )1A∖B 1A 1B

A ⊆ B ≤1A 1B

(x) (x) = min{ (x), (x)} = 11A 1B 1A 1B

x ∈ A x ∈ B

1 −(1 − (x)) (1 − (x)) = max { (x), (x)} = 11A 1B 1A 1B x ∈ A x ∈ B

1 −1A 1 − (x) = 11A x ∉ A

= = = (1 − )1A∖B 1A∩Bc 1A1Bc 1A 1B

≤1A 1B (x) = 11A (x) = 11B

A ⊆ B

{ : i ∈ I}Ai S I

= = min{ : i ∈ I}1⋂i∈I Ai
∏i∈I 1Ai

1Ai

= 1 − (1 − ) = max { : i ∈ I}1⋃i∈I Ai
∏i∈I 1Ai

1Ai
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1. The functions in the middle and on the right just take the values 0 and 1. Moreover, both take the value 1 at  if and
only if  for every .

2. The functions in the middle and on the right just take the values 0 and 1. Moreover, both take the value 1 at  if and
only if  for some .

Multisets

A multiset is like an ordinary set, except that elements may be repeated. A multiset  (with elements from a universal set ) can be
uniquely associated with its multiplicity function , where  is the number of times that element  is in  for
each . So the multiplicity function of a multiset plays the same role that an indicator function does for an ordinary set.
Multisets arise naturally when objects are sampled with replacement (but without regard to order) from a population. Various
sampling models are explored in the section on Combinatorial Structures. We will not go into detail about the operations on
multisets, but the definitions are straightforward generalizations of those for ordinary sets.

Suppose that  and  are multisets with elements from the universal set . Then

1.  if and only if 
2. 
3. 
4. 

Product Spaces

Using functions, we can generalize the Cartesian products studied earlier. In this discussion, we suppose that  is a set for each 
in a nonempty index set .

Define the product set

Note that except for being nonempty, there are no assumptions on the cardinality of the index set . Of course, if 
for some , or if  then this construction reduces to  and to , respectively. Since
we want to make the notation more closely resemble that of simple Cartesian products, we will write  instead of  for the
value of the function  at , and we sometimes refer to this value as the th coordinate of . Finally, note that if  for
each , then  is simply the set of all functions from  into , which we denoted by  above.

For  define the projection  by  for .

So  is just the th coordinate of . The projections are of basic importance for product spaces. In particular, we have a better
way of looking at projections of a subset of a product set.

For  and , the forward image  is the projection of  onto .

Proof

Note that , the set of all th coordinates of the points in .

So the properties of projection that we studied in the last section are just special cases of the properties of forward images.
Projections also allow us to get coordinate functions in a simple way.

Suppose that  is a set, and that . If  then  is the th coordinate function of .

Proof

Note that for , , the th coordinate of .

This will look more familiar for a simple cartesian product. If , then  where 
 is the th coordinate function for .

x ∈ S

x ∈ Ai i ∈ I

x ∈ S

x ∈ Ai i ∈ I

A S

: S →NmA (x)mA x A

x ∈ S

A B S

A ⊆ B ≤mA mB

= max{ , }mA∪B mA mB

= min{ , }mA∩B mA mB

= +mA+B mA mB

Si i

I

={x : x is a function from I into   such that x(i) ∈  for each i ∈ I}∏
i∈I

Si ⋃
i∈I

Si Si (1.2.7)

I I = {1, 2 … ,n}
n ∈ N+ I =N+ × ×⋯ ×S1 S2 Sn × ×⋯S1 S2

xi x(i)
x i ∈ I i x = SSi

i ∈ I ∏i∈I Si I S SI

j∈ I : →pj ∏i∈I Si Sj (x) =pj xj x ∈∏i∈I Si

(x)pj j x

A ⊆∏i∈I Si j∈ I (A)pj A Sj

(A) = { (x) : x ∈ A} = { : x ∈ A}pj pj xj j A

R f : R →∏i∈I Si j∈ I ∘ f : R →pj Sj j f

x ∈ R ( ∘ f)(x) = [f(x)] = (x)pj pj fj j f(x) ∈∏i∈I Si

f : R → × ×⋯ ×S1 S2 Sn f = ( , , … , )f1 f2 fn
: R →fj Si j j∈ {1, 2, … ,n}
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Cross sections of a subset of a product set can be expressed in terms of inverse images of a function. First we need some additional
notation. Suppose that our index set  has at least two elements. For  and , define  by 

 where  for  and . In words,  takes a point  and assigns  to coordinate  to
produce the point .

In the setting above, if ,  and  then  is the cross section of  in the th coordinate at .

Proof

This follows from the definition of cross section:  is the set of all  such that  defined above is in 
and has th coordinate .

Let's look at this for the product of two sets  and . For , the function  is given by .
Similarly, for , the function  is given by . Suppose now that . If , then 

, the very definition of the cross section of  in the first coordinate at . Similarly, if , then 
, the very definition of the cross section of  in the second coordinate at . This construction is

not particularly important except to show that cross sections are inverse images. Thus the fact that cross sections preserve all of the
set operations is a simple consequence of the fact that inverse images generally preserve set operations.

Operators

Sometimes functions have special interpretations in certain settings.

Suppose that  is a set.

1. A function  is sometimes called a unary operator on .
2. A function  is sometimes called a binary operator on .

As the names suggests, a unary operator  operates on an element  to produce a new element . Similarly, a binary
operator  operates on a pair of elements  to produce a new element . The arithmetic operators are
quintessential examples:

The following are operators on :

1.  is a unary operator.
2.  is a binary operator.
3.  is a binary operator.
4.  is a binary operator.

For a fixed universal set , the set operators studied in the section on Sets provide other examples.

For a given set , the following are operators on :

1.  is a unary operator.
2.  is a binary operator.
3.  is a binary operator.
4.  is a binary operator.

As these examples illustrate, a binary operator is often written as  rather than . Still, it is useful to know that operators
are simply functions of a special type.

Suppose that  is a unary operator on a set ,  is a binary operator on , and that .

1.  is closed under  if  implies .
2.  is closed under  if  implies .

Thus if  is closed under the unary operator , then  restricted to  is unary operator on . Similary if  is closed under the
binary operator , then  restricted to  is a binary operator on . Let's return to our most basic example.

I j∈ I u ∈ Sj : →ju ∏i∈I−{j} Si ∏i∈I Si

(x) = yju =yi xi i ∈ I −{j} = uyj ju x ∈∏i∈I−{j} Si u j

y ∈∏i∈I Si

j∈ I u ∈ Sj A ⊆∏i∈I Si (A)j−1
u A j u

(A)j−1
u x ∈∏i∈I−{j} Si y A

j u

S T x ∈ S : T → S×T1x (y) = (x, y)1x
y ∈ T : S → S×T2y (x) = (x, y)2y A ⊆ S×T x ∈ S

(A) = {y ∈ T : (x, y) ∈ A}1−1
x A x y ∈ T

(A) = {x ∈ S : (x, y) ∈ A}2−1
y A y

S

f : S → S S

g : S×S → S S

f x ∈ S f(x) ∈ S

g (x, y) ∈ S×S g(x, y) ∈ S

R

minus(x) = −x

sum(x, y) = x+y

product(x, y) = x y

difference(x, y) = x−y

S

S P(S)

complement(A) = Ac

union(A,B) = A∪B

intersect(A,B) = A∩B

difference(A,B) = A ∖B

x f y f(x, y)

f S g S A ⊆ S

A f x ∈ A f(x) ∈ A

A g (x, y) ∈ A×A g(x, y) ∈ A

A f f A A A

g g A×A A
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For the arithmetic operatoes on ,

1.  is closed under plus and times, but not under minus and difference.
2.  is closed under plus, times, minus, and difference.
3.  is closed under plus, times, minus, and difference.

Many properties that you are familiar with for special operators (such as the arithmetic and set operators) can now be formulated
generally.

Suppose that  and  are binary operators on a set . In the following definitions, , , and  are arbitrary elements of .

1.  is commutative if , that is, 
2.  is associative if , that is, .
3.  distributes over  (on the left) if , that is, 

The Axiom of Choice

Suppose that  is a collection of nonempty subsets of a set . The axiom of choice states that there exists a function 
 with the property that  for each . The function  is known as a choice function.

Stripped of most of the mathematical jargon, the idea is very simple. Since each set  is nonempty, we can select an element
of ; we will call the element we select  and thus our selections define a function. In fact, you may wonder why we need an
axiom at all. The problem is that we have not given a rule (or procedure or algorithm) for selecting the elements of the sets in the
collection. Indeed, we may not know enough about the sets in the collection to define a specific rule, so in such a case, the axiom of
choice simply guarantees the existence of a choice function. Some mathematicians, known as constructionists do not accept the
axiom of choice, and insist on well defined rules for constructing functions.

A nice consequence of the axiom of choice is a type of duality between one-to-one functions and onto functions.

Suppose that  is a function from a set  onto a set . There exists a one-to-one function  from  into .

Proof.

For each , the set  is non-empty, since  is onto. By the axiom of choice, we can select an element  from 
 for each . The resulting function  is one-to-one.

Suppose that  is a one-to-one function from a set  into a set . There exists a function  from  onto .

Proof.

Fix a special element . If , there exists a unique  with . Define . If ,
define . The function  is onto.

Computational Exercises

Some Elementary Functions

Each of the following rules defines a function from  into .

Find the range of the function and determine if the function is one-to-one in each of the following cases:

1. 
2. 
3. 
4. 

R

N

Z

Q

f g S x y z S

f f(x, y) = f(y, x) x f y = y f x

f f(x, f(y, z)) = f(f(x, y), z) x f (y f z) = (x f y) f z
g f g(x, f(y, z)) = f(g(x, y), g(x, z)) x g (y f z) = (x gy) f (x gz)

S S

f : S → S f(A) ∈ A A ∈ S f

A ∈ S
A f(A)

f S T g T S

y ∈ T {y}f−1 f g(y)
{y}f−1 y ∈ T g

f S T g T S

∈ Sx0 y ∈ range(f) x ∈ S f(x) = y g(y) = x y ∉ range(f)
g(y) = x0 g

R R

f(x) = x2

g(x) = sin(x)
h(x) = ⌊x⌋

u(x) = ex

1+ex

f

g

h

u
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Answer
1. Range . Not one-to-one.
2. Range . Not one-to-one.
3. Range . Not one-to-one.
4. Range . One-to-one.

Find the following inverse images:

1. 
2. 
3. 

Answer
1. 
2. 
3. 

The function  is one-to-one. Find (that is, give the domain and rule for) the inverse function .

Answer

 for 

Give the rule and find the range for each of the following functions:

1. 
2. 
3. 

Answer
1. . Range 
2. . Range 
3. . Range 

Note that  and  are well-defined functions from  into , but .

Dice

Let . This is the set of possible outcomes when a pair of standard dice are thrown. Let , , , and  be the
functions from  into  defined by the following rules:

In addition, let  and  be the functions defined by  and .

Find the range of each of the following functions:

1. 
2. 
3. 
4. 
5. 

Answer
1. 
2. 

[0, ∞)
[−1, 1]
Z

(0, 1)

[4, 9]f−1

{0}g−1

{2, 3, 4}h−1

[−3, −2] ∪ [2, 3]
{nπ : n ∈ Z}
[2, 5)

u u−1

(p) = ln( )u−1 p

1−p
p ∈ (0, 1)

f ∘ g
g∘ f
h ∘ g∘ f

(f ∘ g)(x) = (x)sin2 [0, 1]
(g∘ f)(x) = sin( )x2 [−1, 1]

(h ∘ g∘ f)(x) = ⌊sin( )⌋x2 {−1, 0, 1}

f ∘ g g∘ f R R f ∘ g ≠ g∘ f

S = {1, 2, 3, 4, 5, 6}2 f g u v

S Z

f(x, y) = x+y

g(x, y) = y−x

u(x, y) = min{x, y}
v(x, y) = max{x, y}

F U F = (f , g) U = (u, v)

f

g

u

v

U

{2, 3, 4, … , 12}
{−5, −4, … , 4, 5}
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3. 
4. 
5. 

Give each of the following inverse images in list form:

1. 
2. 
3. 
4. 

Answer
1. 
2. 
3. 
4. 

Find each of the following compositions:

1. 
2. 
3. 
4. 
5. 
6. 

Answer
1. 
2. 
3. 
4. 
5. 
6. 

Note that while  is well-defined,  is not. Note also that  even though  is not the identity function on .

Bit Strings

Let  and let  and . Recall that the elements of  are bit strings of length , and could
represent the possible outcomes of  tosses of a coin (where 1 means heads and 0 means tails). Let  be the function
defined by . Note that  is just the number of 1s in the the bit string . Let  be the
function defined by  where  denotes the bit string with  1s followed by  0s.

Find each of the following

1. 
2. 

Answer
1.  and .
2.  and  where . In words,  is the bit string with the same

number of 1s as , but rearranged so that all the 1s come first.

In the previous exercise, note that  and  are both well-defined, but have different domains, and so of course are not the
same. Note also that  is the identity function on , but  is not the inverse of . Indeed  is not one-to-one, and so does not
have an inverse. However,  restricted to  (the range of ) is one-to-one and is the inverse of .

{1, 2, 3, 4, 5, 6}
{1, 2, 3, 4, 5, 6}
{(i, j) ∈ {1, 2, 3, 4, 5, 6 : i ≤ j}}2

{6}f−1

{3}u−1

{4}v−1

{(3, 4)}U−1

{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}
{(3, 3), (3, 4), (4, 3), (3, 5), (5, 3), (3, 6), (6, 3)}
{(1, 4), (4, 1), (2, 4), (4, 2), (3, 4), (4, 3), (4, 4)}
{(3, 4), (4, 3)}

f ∘U
g∘U
u ∘F
v∘F
F ∘U
U ∘F

f ∘U = f

g∘U = |g|
u ∘F = g

v∘F = f

F ∘U = (f , |g|)
U ∘F = (g, f)

f ∘U U ∘ f f ∘U = f U S

n ∈ N+ S = {0, 1}n T = {0, 1, … ,n} S n

n f : S → T

f( , , … , ) =x1 x2 xn ∑n
i=1 xi f(x) x g : T → S

g(k) = xk xk k n−k

f ∘ g
g∘ f

f ∘ g : T → T (f ∘ g) (k) = k

g∘ f : S → S (g∘ f) (x) = xk k = f(x) =∑n
i=1 xi (g∘ f) (x)

x

f ∘ g g∘ f
f ∘ g T f g f

f { : k ∈ T}xk g g

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10117?pdf


1.2.12 https://stats.libretexts.org/@go/page/10117

Let . Give  in list form for each .

Answer
1. 
2. 
3. 
4. 
5. 

Again let . Let  and . Give each of the following in list form:

1. 
2. 
3. 
4. 
5. 

Answer
1. 
2. 
3. 
4. 
5. 

In the previous exercise, note that  and .

Indicator Functions

Suppose that  and  are subsets of a universal set . Express, in terms of  and , the indicator function of each of the 14
non-trivial sets that can be constructed from  and . Use the Venn diagram app to help.

Answer
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 

Suppose that , , and  are subsets of a universal set . Give the indicator function of each of the following, in terms of ,
, and  in sum-product form:

1. 
2. 

Answer
1. 
2. 

n = 4 ({k})f−1 k ∈ T

({0}) = {0000}f−1

({1}) = {1000, 0100, 0010, 0001}f−1

({2}) = {1100, 1010, 1001, 0110, 0101, 0011}f−1

({3}) = {1110, 1101, 1011, 0111}f−1

({4}) = {1111}f−1

n = 4 A = {1000, 1010} B = {1000, 1100}

f(A)
f(B)
f(A∩B)
f(A) ∩ f(B)

(f(A))f−1

{1, 2}
{1, 2}
{1}
{1, 2}
{1000, 0100, 0010, 0001, 1100, 1010, 1001, 0110, 0101, 0011}

f(A∩B) ⊂ f(A) ∩ f(B) A ⊂ (f(A))f−1

A B S 1A 1B

A B

1A

1B

= 1 −1Ac 1A

= 1 −1Bc 1B

=1A∩B 1A1B

= + −1A∪B 1A 1B 1A1B

= −1A∩Bc 1A 1A1B

= −1B∩Ac 1B 1A1B

= 1 − +1A∪Bc 1B 1A1B

= 1 − +1B∪Ac 1A 1A1B

= 1 − − +1 ∩Ac Bc 1A 1B 1A1B

= 1 −1 ∪Ac Bc 1A1B

= + −21(A∩ )∪(B∩ )Bc Ac 1A 1B 1A1B

= 1 − − +21(A∩B)∪( ∩ )Ac Bc 1A 1B 1A1B

A B C S 1A

1B 1C

D = {x ∈ S : x is an element of exactly one of the given sets}
E = {x ∈ S : x is an element of exactly two of the given sets}

= + + −2 ( + + ) +31D 1A 1B 1C 1A1B 1A1C 1B1C 1A1B1C

= + + −31E 1A1B 1A1C 1B1C 1A1B1C

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10117?pdf


1.2.13 https://stats.libretexts.org/@go/page/10117

Operators

Recall the standard arithmetic operators on  discussed above.

We all know that sum is commutative and associative, and that product distributes over sum.

1. Is difference commutative?
2. Is difference associative?
3. Does product distribute over difference?
4. Does sum distributed over product?

Answer
1. No. 
2. No. 
3. Yes. 
4. No. 

Multisets

Express the multiset  in list form that has the multiplicity function  given by , , 
, , .

Answer

Express the prime factors of 360 as a multiset in list form.

Answer

This page titled 1.2: Functions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.

R

x−y ≠ y−x

x−(y−z) ≠ (x−y) −z

x(y−z) = (xy) −(xz)
x+(yz) ≠ (x+y)(x+z)

A m : {a, b, c, d, e} →N m(a) = 2 m(b) = 3
m(c) = 1 m(d) = 0 m(e) = 4

A = {a, a, b, b, b, c, e, e, e, e}

{2, 2, 2, 3, 3, 5}
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