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18.3: The Brownian Bridge
         

Basic Theory

Definition and Constructions

In the most common formulation, the Brownian bridge process is obtained by taking a standard Brownian motion process , restricted to the interval 
, and conditioning on the event that . Since  also, the process is “tied down” at both ends, and so the process in between forms a

“bridge” (albeit a very jagged one). The Brownian bridge turns out to be an interesting stochastic process with surprising applications, including a very
important application to statistics. In terms of a definition, however, we will give a list of characterizing properties as we did for standard Brownian motion
and for Brownian motion with drift and scaling.

A Brownian bridge is a stochastic process  with state space  that satisfies the following properties:

1.  and  (each with probability 1).
2.  is a Gaussian process.
3.  for .
4.  for .
5. With probability 1,  is continuous on .

So, in short, a Brownian bridge  is a continuous Gaussian process with , and with mean and covariance functions given in (c) and (d),
respectively. Naturally, the first question is whether there exists such a process. The answer is yes, of course, otherwise why would we be here? But in fact,
we will see several ways of constructing a Brownian bridge from a standard Brownian motion. To help with the proofs, recall that a standard Brownian
motion process  is a continuous Gaussian process with ,  for  and  for 

. Here is our first construction:

Suppose that  is a standard Brownian motion, and let  for . Then  is a
Brownian bridge.

Proof
1. Note that  and .
2. Linear combinations of the variables in  reduce to linear combinations of the variables in  and hence have normal distributions. Thus  is a

Gaussian process.
3.  for 
4.  for 

.
5.  is continuous on  since  is continuous on .

Let's see the Brownian bridge in action.

Run the simulation of the Brownian bridge process in single step mode a few times.

For the Brownian bridge , note in particular that  is normally distributed with mean 0 and variance  for . Thus, the variance
increases and then decreases on  reaching a maximum of  at . Of course, the variance is 0 at  and , since 
deterministically.

Open the simulation of the Brownian bridge process. Vary  and note the change in the probability density function and moments. For various values
of , run the simulation 1000 times and compare the empirical density function and moments to the true density function and moments.

Conversely to the construction above, we can build a standard Brownian motion on the time interval  from a Brownian bridge.

Suppose that  is a Brownian bridge, and suppose that  is a random variable with a standard normal distribution, independent
of . Let  for . Then  is a standard Brownian motion on .

Proof
1. Note that .
2. Linear combinations of the variables in  reduce to linear combinations of the variables in  and hence have normal distributions. Thus  is a

Gaussian process.
3.  for .
4. 

for .
5.  is continuous on  since  is continuous on .

Here's another way to construct a Brownian bridge from a standard Brownian motion.

X

[0, 1] = 0X1 = 0X0

X = { : t ∈ [0, 1]}Xt R

= 0X0 = 0X1

X

E( ) = 0Xt t ∈ [0, 1]
cov( , ) = min{s, t} −stXs Xt s, t ∈ [0, 1]

t ↦ Xt [0, 1]

X = = 0X0 X1

Z = { : t ∈ [0, ∞)}Zt = 0Z0 E( ) = 0Zt t ∈ [0, ∞) cov( , ) = min{s, t}Zs Zt

s, t ∈ [0, ∞)

Z = { : t ∈ [0, ∞)}Zt = − tXt Zt Z1 t ∈ [0, 1] X = { : t ∈ [0, 1]}Xt

= = 0X0 Z0 = − = 0X1 Z1 Z1

X Z X

E( ) =E( ) − tE( ) = 0Xt Zt Z1 t ∈ [0, 1]
cov( , ) = cov( −s , − t ) = cov( , ) − t cov( , ) −s cov( , ) +st cov( , ) = min{s, t} −st−st+stXs Xt Zs Z1 Zt Z1 Zs Zt Zs Z1 Z1 Zt Z1 Z1

s, t ∈ [0, 1]
t ↦ Xt [0, 1] t ↦ Zt [0, 1]

X Xt t(1 − t) t ∈ [0, 1]
[0, 1] 1/4 t = 1/2 t = 0 t = 1 = = 0X0 X1

t

t

[0, 1]

X = { : t ∈ [0, 1]}Xt Z

X = + tZZt Xt t ∈ [0, 1] Z = { : t ∈ [0, 1]}Zt [0, 1]

= = 0Z0 X0

Z X Z

E( ) =E( ) + tE(Z) = 0Zt Xt t ∈ [0, 1]

cov( , ) = cov( +sZ, + tZ) = cov( , ) + t cov( ,Z) +s cov( ,Z) +st var(Z) = min{s, t} −st+0 +0 +st = min{s, t}Zs Zt Xs Xt Xs Xt Xs Xt

s, t ∈ [0, 1]
t ↦ Zt [0, 1] t ↦ Xt [0, 1]
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Suppose that  is a standard Brownian motion. Define  and

Then  is a Brownian bridge.

Proof
1. Note that  and by definition, .
2. Linear combinations of variables in  reduce to linear combinations of variables in  and hence have normal distributions. Thus  is a Gaussian

process.
3. For ,

4. If  with  then  so

5. Finally,  is continuous with probability 1 on , and with probability 1,  as .

Conversely, we can construct a standard Brownian motion from a Brownian bridge.

Suppose that  is a Brownian bridge. Define

Then  is a standard Brownian motion process.

Proof
1. Note that 
2. Linear combinations of the variables in  reduce to linear combinations of the variables in , and hence have normal distributions. Thus  is a

Gaussian process.
3. For ,

4. If  with  Then  so

5. Since  is continuous,  is continuous

We return to the comments at the beginning of this section, on conditioning a standard Brownian motion to be 0 at time 1. Unlike the previous two
constructions, note that we are not transforming the random variables, rather we are changing the underlying probability measure.

Suppose that  is a standard Brownian motion. Then conditioned on , the process  is a Brownian
bridge process.

Proof

Part of the argument is based on properties of the multivariate normal distribution. The conditioned process is still continuous and is still a Gaussian
process. In particular, suppose that  with . Then  has a joint normal distribution with parameters specified by the mean and
covariance functions of . By standard computations, the conditional distribution of  given  is normal with mean 0 and variance .
Similarly, the joint distribution of  is normal with parameters specified by the mean and covariance functions of . Again, by standard
computations, the conditional distribution of  given  is bivariate normal with 0 means and with .

Finally, the Brownian bridge can be defined in terms a stochastic integral

Suppose that  is standard Brownian motions. Define  and

Then  is a Brownian bridge process.

Proof

Z = { : t ∈ [0, ∞)}Zt = 0X1

= (1 − t)Z( ) , t ∈ [0, 1)Xt

t

1 − t
(18.3.1)

X = { : t ∈ [0, 1]}Xt

= = 0X0 Z0 = 0X1

X Z X

t ∈ [0, 1]

E( ) = (1 − t)E [Z( )] = 0Xt

t

1 − t
(18.3.2)

s, t ∈ [0, 1) s < t s/(1 −s) < t/(1 − t)

cov( , ) = cov[(1 −s)Z( ) , (1 − t)Z( )] = (1 −s)(1 − t) = s(1 − t)Xs Xt

s

1 −s

t

1 − t

s

1 −s
(18.3.3)

t ↦ Xt [0, 1) = (1 − t)Z [t/(1 − t)] → 0Xt t ↑ 1

X = { : t ∈ [0, 1]}Xt

= (1 + t)X( ) , t ∈ [0, ∞)Zt

t

1 + t
(18.3.4)

Z = { : t ∈ [0, ∞)}Zt

= = 0Z0 X0

Z X Z

t ∈ [0, ∞)

E( ) = (1 + t)E [X( )] = 0Zt

t

1 + t
(18.3.5)

s, t ∈ [0, 1] s < t s/(1 +s) < t/(1 + t)

cov( , ) = cov[(1 +s)X( ) , (1 + t)X( )] = (1 +s)(1 + t)[ − ] = sZs Zt

s

1 +s

t

1 + t

s

1 +s

s

1 +s

t

1 + t
(18.3.6)

t ↦ Xt t ↦ Zt

X = { : t ∈ [0, ∞)}Xt = 0X1 { : t ∈ [0, 1]}Xt

s, t ∈ [0, 1] s < t ( , )Xt X1

X Xt = 0X1 t(1 − t)
( , , )Xs Xt X1 X

( , )Xs Xt = 0X1 cov( , ∣ = 0) = s(1 − t)Xs Xt X1

Z = { : t ∈ [0, ∞)}Zt = 1X1

= (1 − t) d , t ∈ [0, 1)Xt ∫
t

0

1

1 −s
Zs (18.3.7)

X = { : t ∈ [0, 1]}Xt
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1. Note that  and by definition, .
2. Since the integrand in the stochastic integral is deterministic,  is a Gaussian process.
3.  is continuous on  with probability 1, as a basic property of stochastic integrals. Moreover,  as  as a consequence of the

martingale inequality.
4.  since the stochastic integral has mean 0.
5. Suppose that  with . Then

But  and  are independent,

But then by the Ito isometry,

In differential form, the process above can be written as

The General Brownian Bridge

The processes constructed above (in several ways!) is the standard Brownian bridge. it's a simple matter to generalize the process so that it starts at  and
ends at , for arbitrary .

Suppose that  is a standard Brownian bridge process. Let  and define  for . Then 
 is a Brownian bridge process from  to .

Of course, any of the constructions above for standard Brownian bridge can be modified to produce a general Brownian bridge. Here are the characterizing
properties.

The Brownian bridge process  from  to  is characterized by the following properties:

1.  and  (each with probability 1).
2.  is a Gaussian process.
3.  for .
4.  for .
5. With probability 1,  is continuous on .

Applications

The Empirical Distribution Function

We start with a problem that is one of the most basic in statistics. Suppose that  is a real-valued random variable with an unknown distribution. Let 
denote the distribution function of , so that  for . Our goal is to construct an estimator of , so naturally our first step is to
sample from the distribution of . This generates a sequence  of independent variables, each with the distribution of  (and so with
distribution function ). Think of  as a sequence of independent copies of . For  and , the natural estimator of  based on the first 
sample values is

which is simply the proportion of the first  sample values that fall in the interval . Appropriately enough,  is known as the empirical
distribution function corresponding to the sample of size . Note that  is a sequence of independent, identically distributed
indicator variables (and hence is a sequence of Bernoulli trials), and corresponds to sampling from the distribution of . The estimator  is
simply the sample mean of the first  of these variables. The numerator, the number of the original sample variables with values in , has the
binomial distribution with parameters  and . Like all sample means from independent, identically distributed samples,  satisfies some basic
and important properties. A summary is given below, but to make sense of some of these facts, you need to recall the mean and variance of the indicator
variable that we are sampling from: , 

For fixed ,

1.  so  is an unbiased estimator of 
2.  so  is a consistent estimator of 

= 0X0 = 0X1

X

X [0, 1) → 0Xt t ↑ 1

E( ) = 0Xt

s, t ∈ [0, 1] s ≤ t

cov( , ) = cov[(1 −s) d , (1 − t)( d + d )]Xs Xt ∫
s

0

1

1 −u
Zu ∫

s

0

1

1 −u
Zu ∫

t

s

1

1 −u
Zu (18.3.8)

d∫ s

0
1

1−u
Zu d∫ t

s
1

1−u
Zu

cov( , ) = (1 −s)(1 − t)var( d )Xs Xt ∫
s

0

1

1 −u
Zu (18.3.9)

cov( , ) = (1 −s)(1 − t) du = (1 −s)(1 − t)( −1) = (1 − t)sXs Xt ∫
s

0

1

(1 −u)2

1

1 −s
(18.3.10)

d = dt+d , = 0Xt

Xt

1 − t
Zt X0 (18.3.11)

a

b a, b ∈ R

Z = { : t ∈ [0, 1]}Zt a, b ∈ R = (1 − t)a+ tb+Xt Zt t ∈ [0, 1]
X = { : t ∈ [0, 1]}Xt a b

X = { : t ∈ [0, 1]}Xt a b

= aX0 = bX1

X

E( ) = (1 − t)a+ tbXt t ∈ [0, 1]
cov( , ) = min{s, t} −stXs Xt s, t ∈ [0, 1]

t ↦ Xt [0, 1]

T F

T F (t) = P(T ≤ t) t ∈ R F

T T = ( , , …)T1 T2 T

F T T n ∈ N+ t ∈ R F (t) n

(t) = 1( ≤ t)Fn

1

n
∑
i=1

n

Ti (18.3.12)

n (−∞, t] Fn

n (1( ≤ t), 1( ≤ t), …)T1 T2

1(T ≤ t) (t)Fn

n (−∞, t]
n F (t) (t)Fn

E [1(T ≤ t)] = F (t) var [1(T ≤ t)] = F (t) [1 −F (t)]

t ∈ R

E [ (t)] = F (t)Fn (t)Fn F (t)
var [ (t)] = F (t) [1 −F (t)] /nFn (t)Fn F (t)
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3.  as  with probability 1, the strong law of large numbers.
4.  has mean 0 and variance  and converges to the normal distribution with these parameters as , the

central limit theorem.

The theorem above gives us a great deal of information about  for fixed , but now we want to let  vary and consider the expression in (d), namely 
, as a random process for each . The key is to consider a very special distribution first.

Suppose that  has the standard uniform distribution, that is, the continuous uniform distribution on the interval . In this case the distribution function
is simply  for , so we have the sequence of stochastic processes  for , where

Of course, the previous results apply, so the process  has mean function 0, variance function , and for fixed , the distribution 
 converges to the corresponding normal distribution as . Here is the new bit of information, the covariance function of  is the same as

that of the Brownian bridge!

 for .

Proof

Suppose that . From basic properties of covariance,

But if , the variables  and  are independent, and hence have covariance 0. On the other hand,

hence
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(t) → F (t)Fn n → ∞
[ (t) −F (t)]n

−−
√ Fn F (t) [1 −F (t)] n → ∞

(t)Fn t t

t ↦ [ (t) −F (t)]n
−−

√ Fn n ∈ N+

T [0, 1]
F (t) = t t ∈ [0, 1] = { (t) : t ∈ [0, 1]}Xn Xn n ∈ N+

(t) = [ (t) − t]Xn n−−√ Fn (18.3.13)

Xn t ↦ t(1 − t) t ∈ [0, 1]
(t)Xn n → ∞ Xn

cov [ (s), (t)] = min{s, t} −stXn Xn s, t ∈ [0, 1]

s ≤ t

cov [ (s), (t)] = n cov [ (s), (t)] = cov( 1( ≤ s), 1( ≤ t)) = cov [1( ≤ s)1( ≤ t)]Xn Xn Fn Fn

1

n
∑
i=1

n

Ti ∑
j=1

n

Tj
1

n
∑
i=1

n

∑
j=1

n

Ti Tj (18.3.14)

i ≠ j 1( ≤ s)Ti 1( ≤ t)Tj

cov [1( ≤ s), 1( ≤ t)] = P( ≤ s, ≤ t) −P( ≤ s)P( ≤ t) = P( ≤ s) −P( ≤ s)P( ≤ t) = s−stTi Ti Ti Ti Ti Ti Ti Ti Ti (18.3.15)

cov [ (s), (t)] = cov [1( ≤ s), 1( ≤ t)] = s−stXn Xn

1

n
∑
i=1

n

Ti Ti (18.3.16)
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