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3.7: Transformations of Random Variables
     

This section studies how the distribution of a random variable changes when the variable is transfomred in a deterministic way. If
you are a new student of probability, you should skip the technical details.

Basic Theory

The Problem

As usual, we start with a random experiment modeled by a probability space . So to review,  is the set of outcomes,  is
the collection of events, and  is the probability measure on the sample space . Suppose now that we have a random variable

 for the experiment, taking values in a set , and a function  from  into another set . Then  is a new random
variable taking values in . If the distribution of  is known, how do we find the distribution of ? This is a very basic and
important question, and in a superficial sense, the solution is easy. But first recall that for ,  is
the inverse image of  under .

 for .

Proof

Figure : A function . How is a probability distribution on  transformed by  to a distribution on ?

However, frequently the distribution of  is known either through its distribution function  or its probability density function ,
and we would similarly like to find the distribution function or probability density function of . This is a difficult problem in
general, because as we will see, even simple transformations of variables with simple distributions can lead to variables with
complex distributions. We will solve the problem in various special cases.

Transformed Variables with Discrete Distributions

When the transformed variable  has a discrete distribution, the probability density function of  can be computed using basic
rules of probability.

Suppose that  has a discrete distribution on a countable set , with probability density function . Then  has a discrete
distribution with probability density function  given by

Proof

Figure : A transformation of a discrete probability distribution.

Suppose that  has a continuous distribution on a subset  with probability density function , and that  is countable.
Then  has a discrete distribution with probability density function  given by

Proof

(Ω,F ,P) Ω F

P (Ω,F)
X S r S T Y = r(X)

T X Y

B ⊆ T (B) = {x ∈ S : r(x) ∈ B}r−1

B r

P(Y ∈ B) = P [X ∈ (B)]r−1 B ⊆ T

3.7.1 r : S → T S r T

X F f

Y

Y Y

X S f Y

g

g(y) = f(x), y ∈ T∑
x∈ {y}r−1

(3.7.1)

3.7.2

X S ⊆R
n f T

Y g

g(y) = f(x)dx, y ∈ T∫
{y}r−1

(3.7.2)
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Figure : A continuous distribution on  transformed by a discrete function 

So the main problem is often computing the inverse images  for . The formulas above in the discrete and continuous
cases are not worth memorizing explicitly; it's usually better to just work each problem from scratch. The main step is to write the
event  in terms of , and then find the probability of this event using the probability density function of .

Transformed Variables with Continuous Distributions

Suppose that  has a continuous distribution on a subset  and that  has a continuous distributions on a subset 
. Suppose also that  has a known probability density function . In many cases, the probability density function of  can

be found by first finding the distribution function of  (using basic rules of probability) and then computing the appropriate
derivatives of the distribution function. This general method is referred to, appropriately enough, as the distribution function
method.

Suppose that  is real valued. The distribution function  of  is given by

Proof

Again, this follows from the definition of  as a PDF of . For ,

As in the discrete case, the formula in (4) not much help, and it's usually better to work each problem from scratch. The main step is
to write the event  in terms of , and then find the probability of this event using the probability density function of .

The Change of Variables Formula

When the transformation  is one-to-one and smooth, there is a formula for the probability density function of  directly in terms of
the probability density function of . This is known as the change of variables formula. Note that since  is one-to-one, it has an
inverse function .

We will explore the one-dimensional case first, where the concepts and formulas are simplest. Thus, suppose that random variable 
 has a continuous distribution on an interval , with distribution function  and probability density function . Suppose that 

 where  is a differentiable function from  onto an interval . As usual, we will let  denote the distribution function of
 and  the probability density function of .

Suppose that  is strictly increasing on . For ,

1. 
2. 

Proof
1.  for . Note that the inquality is preserved since 

 is increasing.
2. This follows from part (a) by taking derivatives with respect to  and using the chain rule. Recall that .

Suppose that  is strictly decreasing on . For ,

1. 
2. 

Proof

3.7.3 S r : S → T

{y}r−1 y ∈ T

{Y = y} X X

X S ⊆R
n Y = r(X)

T ⊆R
m X f Y

Y

Y G Y

G(y) = f(x)dx, y ∈ R∫
(−∞,y]r−1

(3.7.3)

f X y ∈ R

G(y) = P(Y ≤ y) = P [r(X) ∈ (−∞, y]] = P [X ∈ (−∞, y]] = f(x)dxr−1 ∫
(−∞,y]r−1

(3.7.4)

{Y ≤ y} X X

r Y

X r

r−1

X S ⊆R F f

Y = r(X) r S T G

Y g Y

r S y ∈ T

G(y) = F [ (y)]r−1

g(y) = f [ (y)] (y)r−1 d

dy
r−1

G(y) = P(Y ≤ y) = P[r(X) ≤ y] = P [X ≤ (y)] = F [ (y)]r−1 r−1 y ∈ T

r

y = fF ′

r S y ∈ T

G(y) = 1 −F [ (y)]r−1

g(y) = −f [ (y)] (y)r−1 d

dy
r−1
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1.  for . Note that the inquality is reversed
since  is decreasing.

2. This follows from part (a) by taking derivatives with respect to  and using the chain rule. Recall again that .

The formulas for the probability density functions in the increasing case and the decreasing case can be combined:

If  is strictly increasing or strictly decreasing on  then the probability density function  of  is given by

Letting , the change of variables formula can be written more compactly as

Although succinct and easy to remember, the formula is a bit less clear. It must be understood that  on the right should be written in
terms of  via the inverse function. The images below give a graphical interpretation of the formula in the two cases where  is
increasing and where  is decreasing.

Figure : The change of variables theorems in the increasing and decreasing cases

The generalization of this result from  to  is basically a theorem in multivariate calculus. First we need some notation. Suppose
that  is a one-to-one differentiable function from  onto . The first derivative of the inverse function  is
the  matrix of first partial derivatives:

The Jacobian (named in honor of Karl Gustav Jacobi) of the inverse function is the determinant of the first derivative matrix

With this compact notation, the multivariate change of variables formula is easy to state.

Suppose that  is a random variable taking values in , and that  has a continuous distribution with probability
density function . Suppose also  where  is a differentiable function from  onto . Then the probability
density function  of  is given by

Proof

The result follows from the multivariate change of variables formula in calculus. If  then

G(y) = P(Y ≤ y) = P[r(X) ≤ y] = P [X ≥ (y)] = 1 −F [ (y)]r−1 r−1 y ∈ T

r

y = fF ′

r S g Y

g(y) = f [ (y)] (y)r−1 ∣
∣
∣
d

dy
r−1 ∣

∣
∣ (3.7.5)

x = (y)r−1

g(y) = f(x)
∣
∣
∣
dx

dy

∣
∣
∣ (3.7.6)

x

y r

r

3.7.4

R R
n

r S ⊆R
n T ⊆R

n
x = (y)r−1

n×n

=( )
dx

dy ij

∂xi
∂yj

(3.7.7)

det( )
dx

dy
(3.7.8)

X S ⊆R
n

X

f Y = r(X) r S T ⊆R
n

g Y

g(y) = f(x) det( ) , y ∈ T
∣

∣
∣

dx

dy

∣

∣
∣ (3.7.9)

B ⊆ T
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Using the change of variables ,  we have

So it follows that  defined in the theorem is a PDF for .

The Jacobian is the infinitesimal scale factor that describes how -dimensional volume changes under the transformation.

Figure : The multivariate change of variables theorem

Special Transformations

Linear Transformations

Linear transformations (or more technically affine transformations) are among the most common and important transformations.
Moreover, this type of transformation leads to simple applications of the change of variable theorems. Suppose first that  is a
random variable taking values in an interval  and that  has a continuous distribution on  with probability density function 

. Let  where  and . Note that  takes values in , which is also an
interval.

 has probability density function  given by

Proof

The transformation is . Hence the inverse transformation is  and . The result now
follows from the change of variables theorem.

When  (which is often the case in applications), this transformation is known as a location-scale transformation;  is the
location parameter and  is the scale parameter. Scale transformations arise naturally when physical units are changed (from feet to
meters, for example). Location transformations arise naturally when the physical reference point is changed (measuring time relative
to 9:00 AM as opposed to 8:00 AM, for example). The change of temperature measurement from Fahrenheit to Celsius is a location
and scale transformation. Location-scale transformations are studied in more detail in the chapter on Special Distributions.

The multivariate version of this result has a simple and elegant form when the linear transformation is expressed in matrix-vector
form. Thus suppose that  is a random variable taking values in  and that  has a continuous distribution on  with
probability density function . Let  where  and  is an invertible  matrix. Note that  takes values in 

.

 has probability density function  given by

Proof

The transformation  maps  one-to-one and onto . The inverse transformation is . The
Jacobian of the inverse transformation is the constant function . The result now follows from the
multivariate change of variables theorem.

P(Y ∈ B) = P[r(X) ∈ B] = P[X ∈ (B)] = f(x)dxr−1 ∫
(B)r−1

(3.7.10)

x = (y)r−1 dx = det( ) dy∣
∣

dx

dy

∣
∣

P(Y ∈ B) = f [ (y)] det( ) dy∫
B

r−1 ∣

∣
∣

dx

dy

∣

∣
∣ (3.7.11)

g Y

n

3.7.5

X

S ⊆R X S

f Y = a+bX a ∈ R b ∈ R ∖ {0} Y T = {y = a+bx : x ∈ S}

Y g

g(y) = f ( ) , y ∈ T
1

|b|

y−a

b
(3.7.12)

y = a+b x x = (y−a)/b dx/dy = 1/b

b > 0 a

b

X S ⊆R
n X S

f Y = a+BX a ∈ R
n B n×n Y

T = {a+Bx : x ∈ S} ⊆R
n

Y g

g(y) = f [ (y −a)] , y ∈ T
1

|det(B)|
B−1 (3.7.13)

y = a+Bx R
n

R
n

x = (y −a)B−1

det( ) = 1/ det(B)B−1
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Sums and Convolution

Simple addition of random variables is perhaps the most important of all transformations. Suppose that  and  are random
variables on a probability space, taking values in  and , respectively, so that  takes values in a subset of .
Our goal is to find the distribution of . Note that  takes values in .
For , let .

Suppose that  probability density function .

1. If  has a discrete distribution then  has a discrete distribution with probability density function  given
by

2. If  has a continuous distribution then  has a continuous distribution with probability density function 
given by

Proof
1. 
2. For , let . Then

Now use the change of variables . Then the inverse transformation is  and the
Jacobian is 1. Using the change of variables theorem (8) we have

It follows that  has probability density function .

In the discrete case,  and  are countable, so  is also countable as is  for each . In the continuous case,  and  are
typically intervals, so  is also an interval as is  for . In both cases, determining  is often the most difficult step. By far
the most important special case occurs when  and  are independent.

Suppose that  and  are independent and have probability density functions  and  respectively.

1. If  and  have discrete distributions then  has a discrete distribution with probability density function 
given by

2. If  and  have continuous distributions then  has a continuous distribution with probability density function 
 given by

In both cases, the probability density function  is called the convolution of  and .

Proof

Both results follows from the previous result above since  is the probability density function of .

As before, determining this set  is often the most challenging step in finding the probability density function of . However,
there is one case where the computations simplify significantly.

X Y

R ⊆R S ⊆R (X,Y ) R×S

Z = X+Y Z T = {z ∈ R : z = x+y for some x ∈ R, y ∈ S}
z ∈ T = {x ∈ R : z−x ∈ S}Dz

(X,Y ) f

(X,Y ) Z = X+Y u

u(z) = f(x, z−x), z ∈ T∑
x∈Dz

(3.7.14)

(X,Y ) Z = X+Y u

u(z) = f(x, z−x)dx, z ∈ T∫
Dz

(3.7.15)

P(Z = z) = P (X = x,Y = z−x for some x ∈ ) = f(x, z−x)Dz ∑x∈Dz

A ⊆ T C = {(u, v) ∈ R×S : u+v∈ A}

P(Z ∈ A) = P(X+Y ∈ A) = f(u, v)d(u, v)∫
C

(3.7.16)

x = u, z = u+v u = x, v= z−x

P(Z ∈ A) = f(x, z−x)d(x, z) = f(x, z−x)dx dz∫
×ADz

∫
A

∫
Dz

(3.7.17)

Z z ↦ f(x, z−x)dx∫Dz

R S T Dz z ∈ T R S

T Dz z ∈ T Dz

X Y

X Y g h

X Y Z = X+Y g∗ h

(g∗ h)(z) = g(x)h(z−x), z ∈ T∑
x∈Dz

(3.7.18)

X Y Z = X+Y

g∗ h

(g∗ h)(z) = g(x)h(z−x)dx, z ∈ T∫
Dz

(3.7.19)

g∗ h g h

f(x, y) = g(x)h(y) (X,Y )

Dz Z
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Suppose again that  and  are independent random variables with probability density functions  and , respectively.

1. In the discrete case, suppose  and  take values in . Then  has probability density function

2. In the continuous case, suppose that  and  take values in . Then  and has probability density function

Proof
1. In this case,  for .
2. In this case,  for .

Convolution is a very important mathematical operation that occurs in areas of mathematics outside of probability, and so involving
functions that are not necessarily probability density functions. The following result gives some simple properties of convolution.

Convolution (either discrete or continuous) satisfies the following properties, where , , and  are probability density
functions of the same type.

1.  (the commutative property)
2.  (the associative property)

Proof

An analytic proof is possible, based on the definition of convolution, but a probabilistic proof, based on sums of independent
random variables is much better. Thus, suppose that , , and  are independent random variables with PDFs , , and ,
respectively.

1. The commutative property of convolution follows from the commutative property of addition: .
2. The associative property of convolution follows from the associate property of addition: .

Thus, in part (b) we can write  without ambiguity. Of course, the constant 0 is the additive identity so 
for every random variable . Also, a constant is independent of every other random variable. It follows that the probability density
function  of 0 (given by ) is the identity with respect to convolution (at least for discrete PDFs). That is, 

. The next result is a simple corollary of the convolution theorem, but is important enough to be highligted.

Suppose that  is a sequence of independent and identically distributed real-valued random variables, with
common probability density function . Then  has probability density function 

, the -fold convolution power of , for .

In statistical terms,  corresponds to sampling from the common distribution.By convention, , so naturally we take .
When appropriately scaled and centered, the distribution of  converges to the standard normal distribution as . The
precise statement of this result is the central limit theorem, one of the fundamental theorems of probability. The central limit
theorem is studied in detail in the chapter on Random Samples. Clearly convolution power satisfies the law of exponents: 

 for .

Convolution can be generalized to sums of independent variables that are not of the same type, but this generalization is usually
done in terms of distribution functions rather than probability density functions.

Products and Quotients

While not as important as sums, products and quotients of real-valued random variables also occur frequently. We will limit our
discussion to continuous distributions.

Suppose that  has a continuous distribution on  with probability density function .

1. Random variable  has probability density function

X Y g h

X Y N Z

(g∗ h)(z) = g(x)h(z−x), z ∈ N∑
x=0

z

(3.7.20)

X Y [0, ∞) Z

(g∗ h)(z) = g(x)h(z−x)dx, z ∈ [0, ∞)∫
z

0
(3.7.21)

= {0, 1, … , z}Dz z ∈ N

= [0, z]Dz z ∈ [0, ∞)

f g h

f ∗ g = g∗ f
(f ∗ g) ∗ h = f ∗ (g∗ h)

X Y Z f g h

X+Y = Y +X

(X+Y ) +Z = X+(Y +Z)

f ∗ g∗ h X+0 = 0 +X = 0
X

δ δ(0) = 1
f ∗ δ = δ ∗ f = f

X = ( , , …)X1 X2

f = + +⋯ +Yn X1 X2 Xn

= f ∗ f ∗ ⋯ ∗ ff ∗n n f n ∈ N

X = 0Y0 = δf ∗0

Yn n → ∞

∗ =f ∗n f ∗m f ∗(n+m) m, n ∈ N

(X,Y ) R
2 f

V = XY
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2. Random variable  has probability density function

Proof

We introduce the auxiliary variable  so that we have bivariate transformations and can use our change of variables
formula.

1. We have the transformation ,  and so the inverse transformation is , . Hence

and so the Jacobian is . Using the change of variables theorem, the joint PDF of  is .
Hence the PDF of  is

2. We have the transformation ,  and so the inverse transformation is , . Hence

and so the Jacobian is . Using the change of variables formula, the joint PDF of  is . Hence
the PDF of W is

If  takes values in a subset , then for a given , the integral in (a) is over , and for a
given , the integral in (b) is over . As usual, the most important special case of this result is when 
and  are independent.

Suppose that  and  are independent random variables with continuous distributions on  having probability density
functions  and , respectively.

1. Random variable  has probability density function

2. Random variable  has probability density function

Proof

These results follow immediately from the previous theorem, since  for .

If  takes values in  and  takes values in , then for a given , the integral in (a) is over , and
for a given , the integral in (b) is over . As with convolution, determining the domain of integration is
often the most challenging step.

Minimum and Maximum

Suppose that  is a sequence of independent real-valued random variables. The minimum and maximum
transformations

v↦ f(x, v/x) dx∫
∞

−∞

1

|x|
(3.7.22)

W = Y /X

w ↦ f(x,wx)|x|dx∫
∞

−∞
(3.7.23)

U = X

u = x v= xy x = u y = v/u

= [ ]
∂(x, y)

∂(u, v)

1

−v/u2

0

1/u
(3.7.24)

1/u (U,V ) (u, v) ↦ f(u, v/u)|1/|u|
V

v↦ f(u, v/u) du∫
∞

−∞

1

|u|
(3.7.25)

u = x w = y/x x = u y = uw

= [ ]
∂(x, y)

∂(u,w)

1

w

0

u
(3.7.26)

u (U,W ) (u,w) ↦ f(u, uw)|u|

w ↦ f(u, uw)|u|du∫
∞

−∞
(3.7.27)

(X,Y ) D ⊆R
2 v∈ R {x ∈ R : (x, v/x) ∈ D}

w ∈ R {x ∈ R : (x,wx) ∈ D} X

Y

X Y R

g h

V = XY

v↦ g(x)h(v/x) dx∫
∞

−∞

1

|x|
(3.7.28)

W = Y /X

w ↦ g(x)h(wx)|x|dx∫
∞

−∞
(3.7.29)

f(x, y) = g(x)h(y) (x, y) ∈ R
2

X S ⊆R Y T ⊆R v∈ R {x ∈ S : v/x ∈ T}
w ∈ R {x ∈ S : wx ∈ T}

( , , … , )X1 X2 Xn

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10147?pdf


3.7.8 https://stats.libretexts.org/@go/page/10147

are very important in a number of applications. For example, recall that in the standard model of structural reliability, a system
consists of  components that operate independently. Suppose that  represents the lifetime of component . Then 

 is the lifetime of the series system which operates if and only if each component is operating. Similarly,  is the lifetime of the
parallel system which operates if and only if at least one component is operating.

A particularly important special case occurs when the random variables are identically distributed, in addition to being independent.
In this case, the sequence of variables is a random sample of size  from the common distribution. The minimum and maximum
variables are the extreme examples of order statistics. Order statistics are studied in detail in the chapter on Random Samples.

Suppose that  is a sequence of indendent real-valued random variables and that  has distribution function 
 for .

1.  has distribution function  given by  for .
2.  has distribution function  given by  for 

.

Proof
1. Note that since  is the maximum of the variables, . Hence by

independence,

2. Note that since  as the minimum of the variables, . Hence by independence,

From part (a), note that the product of  distribution functions is another distribution function. From part (b), the product of  right-
tail distribution functions is a right-tail distribution function. In the reliability setting, where the random variables are nonnegative,
the last statement means that the product of  reliability functions is another reliability function. If  has a continuous distribution
with probability density function  for each , then  and  also have continuous distributions, and their
probability density functions can be obtained by differentiating the distribution functions in parts (a) and (b) of last theorem. The
computations are straightforward using the product rule for derivatives, but the results are a bit of a mess.

The formulas in last theorem are particularly nice when the random variables are identically distributed, in addition to being
independent

Suppose that  is a sequence of independent real-valued random variables, with common distribution function 
.

1.  has distribution function  given by  for .
2.  has distribution function  given by  for .

In particular, it follows that a positive integer power of a distribution function is a distribution function. More generally, it's easy to
see that every positive power of a distribution function is a distribution function. How could we construct a non-integer power of a
distribution function in a probabilistic way?

Suppose that  is a sequence of independent real-valued random variables, with a common continuous
distribution that has probability density function .

1.  has probability density function  given by  for .
2.  has probability density function  given by  for .

Coordinate Systems

For our next discussion, we will consider transformations that correspond to common distance-angle based coordinate systems—
polar coordinates in the plane, and cylindrical and spherical coordinates in 3-dimensional space. First, for , let 

U = min{ , , … , }, V = max{ , , … , }X1 X2 Xn X1 X2 Xn (3.7.30)

n Xi i ∈ {1, 2, … ,n}
U V

n

( , , … , )X1 X2 Xn Xi

Fi i ∈ {1, 2, … ,n}

V = max{ , , … , }X1 X2 Xn H H(x) = (x) (x) ⋯ (x)F1 F2 Fn x ∈ R

U = min{ , , … , }X1 X2 Xn G G(x) = 1 −[1 − (x)] [1 − (x)] ⋯ [1 − (x)]F1 F2 Fn

x ∈ R

V {V ≤ x} = { ≤ x, ≤ x, … , ≤ x}X1 X2 Xn

H(x) = P(V ≤ x) = P( ≤ x)P( ≤ x) ⋯P( ≤ x) = (x) (x) ⋯ (x), x ∈ RX1 X2 Xn F1 F2 Fn (3.7.31)

U {U > x} = { > x, > x, … , > x}X1 X2 Xn

G(x) = P(U ≤ x) = 1 −P(U > x) = 1 −P( > x)P( > x) ⋯P ( > x)X1 X2 Xn

= 1 −[1 − (x)][1 − (x)] ⋯ [1 − (x)], x ∈ RF1 F2 Fn

n n

n Xi

fi i ∈ {1, 2, … ,n} U V

( , , … , )X1 X2 Xn

F

V = max{ , , … , }X1 X2 Xn H H(x) = (x)F n x ∈ R

U = min{ , , … , }X1 X2 Xn G G(x) = 1 −[1 −F (x)]n x ∈ R

( , , … , )X1 X2 Xn

f

V = max{ , , … , }X1 X2 Xn h h(x) = n (x)f(x)F n−1 x ∈ R

U = min{ , , … , }X1 X2 Xn g g(x) = n f(x)[1 −F (x)]
n−1

x ∈ R

(x, y) ∈ R
2 (r, θ)
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denote the standard polar coordinates corresponding to the Cartesian coordinates , so that  is the radial distance
and  is the polar angle.

Figure : Polar coordinates. Stover, Christopher and Weisstein, Eric W. "Polar Coordinates." From MathWorld—A Wolfram
Web Resource. http://mathworld.wolfram.com/PolarCoordinates.html

It's best to give the inverse transformation: , . As we all know from calculus, the Jacobian of the
transformation is . Hence the following result is an immediate consequence of our change of variables theorem:

Suppose that  has a continuous distribution on  with probability density function , and that  are the polar
coordinates of . Then  has probability density function  given by

Next, for , let  denote the standard cylindrical coordinates, so that  are the standard polar coordinates of 
 as above, and coordinate  is left unchanged. Given our previous result, the one for cylindrical coordinates should come as no

surprise.

Suppose that  has a continuous distribution on  with probability density function , and that  are the
cylindrical coordinates of . Then  has probability density function  given by

Finally, for , let  denote the standard spherical coordinates corresponding to the Cartesian coordinates 
, so that  is the radial distance,  is the azimuth angle, and  is the polar angle. (In spite of our

use of the word standard, different notations and conventions are used in different subjects.)

Figure : Spherical coordinates, By Dmcq—Own work, CC BY-SA 3.0, Wikipedia

Once again, it's best to give the inverse transformation: , , . As we remember from
calculus, the absolute value of the Jacobian is . Hence the following result is an immediate consequence of the change of
variables theorem (8):

Suppose that  has a continuous distribution on  with probability density function , and that  are the
spherical coordinates of . Then  has probability density function  given by

Sign and Absolute Value

Our next discussion concerns the sign and absolute value of a real-valued random variable.

Suppose that  has a continuous distribution on  with distribution function  and probability density function .

1.  has distribution function  given by  for .
2.  has probability density function  given by  for .

Proof

(x, y) r ∈ [0, ∞)
θ ∈ [0, 2π)

3.7.6

x = r cosθ y = r sinθ
r

(X,Y ) R
2 f (R, Θ)

(X,Y ) (R, Θ) g

g(r, θ) = f(r cosθ, r sinθ)r, (r, θ) ∈ [0, ∞) ×[0, 2π) (3.7.32)

(x, y, z) ∈ R
3 (r, θ, z) (r, θ)

(x, y) z

(X,Y ,Z) R
3 f (R, Θ,Z)

(X,Y ,Z) (R, Θ,Z) g

g(r, θ, z) = f(r cosθ, r sinθ, z)r, (r, θ, z) ∈ [0, ∞) ×[0, 2π) ×R (3.7.33)

(x, y, z) ∈ R
3 (r, θ,ϕ)

(x, y, z) r ∈ [0, ∞) θ ∈ [0, 2π) ϕ ∈ [0, π]

3.7.7

x = r sinϕ cosθ y = r sinϕ sinθ z = r cosϕ
sinϕr2

(X,Y ,Z) R
3 f (R, Θ, Φ)

(X,Y ,Z) (R, Θ, Φ) g

g(r, θ,ϕ) = f(r sinϕ cosθ, r sinϕ sinθ, r cosϕ) sinϕ, (r, θ,ϕ) ∈ [0, ∞) ×[0, 2π) ×[0, π]r2 (3.7.34)

X R F f

|X| G G(y) = F (y) −F (−y) y ∈ [0, ∞)
|X| g g(y) = f(y) +f(−y) y ∈ [0, ∞)
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1.  for .
2. This follows from part (a) by taking derivatives with respect to .

Recall that the sign function on  (not to be confused, of course, with the sine function) is defined as follows:

Suppose again that  has a continuous distribution on  with distribution function  and probability density function , and
suppose in addition that the distribution of  is symmetric about 0. Then

1.  has distribution function  given by  for .
2.  has probability density function  given by  for .
3.  is uniformly distributed on .
4.  and  are independent.

Proof
1. This follows from the previous theorem, since  for  by symmetry.
2. This follows from part (a) by taking derivatives.
3. Note that  and so  also.
4. If  then

Examples and Applications
This subsection contains computational exercises, many of which involve special parametric families of distributions. It is always
interesting when a random variable from one parametric family can be transformed into a variable from another family. It is also
interesting when a parametric family is closed or invariant under some transformation on the variables in the family. Often, such
properties are what make the parametric families special in the first place. Please note these properties when they occur.

Dice

Recall that a standard die is an ordinary 6-sided die, with faces labeled from 1 to 6 (usually in the form of dots). A fair die is one in
which the faces are equally likely. An ace-six flat die is a standard die in which faces 1 and 6 occur with probability  each and the
other faces with probability  each.

Suppose that two six-sided dice are rolled and the sequence of scores  is recorded. Find the probability density
function of , the sum of the scores, in each of the following cases:

1. Both dice are standard and fair.
2. Both dice are ace-six flat.
3. The first die is standard and fair, and the second is ace-six flat
4. The dice are both fair, but the first die has faces labeled 1, 2, 2, 3, 3, 4 and the second die has faces labeled 1, 3, 4, 5, 6, 8.

Answer

Let  denote the sum of the scores.

1. 2 3 4 5 6 7 8 9 10 11 12

2. 2 3 4 5 6 7 8 9 10 11 12

P (|X| ≤ y) = P(−y ≤ X ≤ y) = F (y) −F (−y) y ∈ [0, ∞)
y

R

sgn(x) =
⎧

⎩
⎨

−1,
0,
1,

x < 0
x = 0
x > 0

(3.7.35)

X R F f

X

|X| G G(y) = 2F (y) −1 y ∈ [0, ∞)
|X| g g(y) = 2f(y) y ∈ [0, ∞)
sgn(X) {−1, 1}
|X| sgn(X)

F (−y) = 1 −F (y) y > 0

P [sgn(X) = 1] = P(X > 0) = 1
2

P [sgn(X) = −1] = 1
2

A ⊆ (0, ∞)

P [|X| ∈ A, sgn(X) = 1] = P(X ∈ A) = f(x)dx = 2 f(x)dx = P[sgn(X) = 1]P (|X| ∈ A)∫
A

1

2
∫
A

(3.7.36)

1
4

1
8

( , )X1 X2

Y = +X1 X2

Y = +X1 X2

y

P(Y = y) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

y

P(Y = y) 1
16

1
16

5
64

3
32

7
64

3
16

7
64

3
32

3
32

1
16

1
16
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3. 2 3 4 5 6 7 8 9 10 11 12

4. The distribution is the same as for two standard, fair dice in (a).

In the dice experiment, select two dice and select the sum random variable. Run the simulation 1000 times and compare the
empirical density function to the probability density function for each of the following cases:

1. fair dice
2. ace-six flat dice

Suppose that  standard, fair dice are rolled. Find the probability density function of the following variables:

1. the minimum score
2. the maximum score.

Answer

Let  denote the minimum score and  the maximum score.

1. 

2. 

In the dice experiment, select fair dice and select each of the following random variables. Vary  with the scroll bar and note the
shape of the density function. With , run the simulation 1000 times and note the agreement between the empirical density
function and the probability density function.

1. minimum score
2. maximum score.

Uniform Distributions

Recall that for , the standard measure of the size of a set  is

In particular,  is the length of  for ,  is the area of  for , and  is the volume of  for .
See the technical details in (1) for more advanced information.

Now if  with , recall that the uniform distribution on  is the continuous distribution with constant
probability density function  defined by  for . Uniform distributions are studied in more detail in the
chapter on Special Distributions.

Let . Find the probability density function of  and sketch the graph in each of the following cases:

1.  is uniformly distributed on the interval .
2.  is uniformly distributed on the interval .
3.  is uniformly distributed on the interval .

Answer

1. 

2. 

3. 

y

P(Y = y) 2
48

3
48

4
48

5
48

6
48

8
48

6
48

5
48

4
48

3
48

2
48

n

U V

f(u) = − , u ∈ {1, 2, 3, 4, 5, 6}(1 − )u−1
6

n

(1 − )u
6

n

g(v) = − , v∈ {1, 2, 3, 4, 5, 6}( )v
6

n

( )v−1
6

n

n

n = 4

n ∈ N+ A ⊆R
n

(A) = 1 dxλn ∫
A

(3.7.37)

(A)λ1 A A ⊆R (A)λ2 A A ⊆R
2 (A)λ3 A A ⊆R

3

S ⊆R
n 0 < (S) < ∞λn S

f f(x) = 1/ (S)λn x ∈ S

Y = X2 Y

X [0, 4]
X [−2, 2]
X [−1, 3]

g(y) = , 0 < y < 161
8 y√

g(y) = , 0 < y < 41
4 y√

g(y) =
⎧

⎩
⎨

,1
4 y√

,1
8 y√

0 < y < 1

1 < y < 9
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Compare the distributions in the last exercise. In part (c), note that even a simple transformation of a simple distribution can produce
a complicated distribution. In this particular case, the complexity is caused by the fact that  is one-to-one on part of the
domain  and two-to-one on the other part .

On the other hand, the uniform distribution is preserved under a linear transformation of the random variable.

Suppose that  has the continuous uniform distribution on . Let , where  and  is an invertible 
 matrix. Then  is uniformly distributed on .

Proof

This follows directly from the general result on linear transformations in (10). Note that the PDF  of  is constant on .

For the following three exercises, recall that the standard uniform distribution is the uniform distribution on the interval .

Suppose that  and  are independent and that each has the standard uniform distribution. Let , , 
, . Find the probability density function of each of the follow:

1. 
2. 
3. 
4. 
5. 

Answer

1.  for  in the square region  with vertices . So  is uniformly
distributed on .

2. 

3. 

4.  for 

5. 

Suppose that , , and  are independent, and that each has the standard uniform distribution. Find the probability density
function of .

Answer

 for  in the rectangular region  with vertices 
. So  is uniformly distributed on .

Suppose that  is a sequence of independent random variables, each with the standard uniform distribution.
Find the distribution function and probability density function of the following variables.

1. 
2. 

Answer
1.  and , both for 
2.  and , both for 

Both distributions in the last exercise are beta distributions. More generally, all of the order statistics from a random sample of
standard uniform variables have beta distributions, one of the reasons for the importance of this family of distributions. Beta
distributions are studied in more detail in the chapter on Special Distributions.

In the order statistic experiment, select the uniform distribution.

x ↦ x2

{0} ∪ (1, 3] [−1, 1] ∖ {0}

X S ⊆R
n

Y = a+BX a ∈ R
n

B

n×n Y T = {a+Bx : x ∈ S}

g Y T

[0, 1]

X Y U = X+Y V = X−Y

W = XY Z = Y /X

(U,V )
U

V

W

Z

g(u, v) = 1
2

(u, v) T ⊂R
2 {(0, 0), (1, 1), (2, 0), (1, −1)} (U,V )

T

(u) ={g1
u,
2 −u,

0 < u < 1
1 < u < 2

(v) ={g2
1 −v,
1 +v,

0 < v< 1
−1 < v< 0

(w) = −lnwh1 0 < w ≤ 1

(z) ={h2

1
2

,1

2z2

0 ≤ z ≤ 1

1 ≤ z < ∞

X Y Z

(U,V ,W ) = (X+Y ,Y +Z,X+Z)

g(u, v,w) = 1
2

(u, v,w) T ⊂R
3

{(0, 0, 0), (1, 0, 1), (1, 1, 0), (0, 1, 1), (2, 1, 1), (1, 1, 2), (1, 2, 1), (2, 2, 2)} (U,V ,W ) T

( , , … , )X1 X2 Xn

U = min{ , … , }X1 X2 Xn

V = max{ , , … , }X1 X2 Xn

G(t) = 1 −(1 − t)n g(t) = n(1 − t)n−1 t ∈ [0, 1]
H(t) = tn h(t) = ntn−1 t ∈ [0, 1]
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1. Set  (this gives the minimum ). Vary  with the scroll bar and note the shape of the probability density function.
With , run the simulation 1000 times and note the agreement between the empirical density function and the true
probability density function.

2. Vary  with the scroll bar, set  each time (this gives the maximum ), and note the shape of the probability density
function. With  run the simulation 1000 times and compare the empirical density function and the probability density
function.

Let  denote the probability density function of the standard uniform distribution.

1. Compute 
2. Compute 
3. Graph , , and on the same set of axes.

Answer

1. 

2. 

In the last exercise, you can see the behavior predicted by the central limit theorem beginning to emerge. Recall that if 
 is a sequence of independent random variables, each with the standard uniform distribution, then , , and  are

the probability density functions of , , and , respectively. More generally, if  is a
sequence of independent random variables, each with the standard uniform distribution, then the distribution of  (which has
probability density function ) is known as the Irwin-Hall distribution with parameter . The Irwin-Hall distributions are studied
in more detail in the chapter on Special Distributions.

Open the Special Distribution Simulator and select the Irwin-Hall distribution. Vary the parameter  from 1 to 3 and note the
shape of the probability density function. (These are the density functions in the previous exercise). For each value of , run the
simulation 1000 times and compare the empricial density function and the probability density function.

Simulations

A remarkable fact is that the standard uniform distribution can be transformed into almost any other distribution on . This is
particularly important for simulations, since many computer languages have an algorithm for generating random numbers, which are
simulations of independent variables, each with the standard uniform distribution. Conversely, any continuous distribution supported
on an interval of  can be transformed into the standard uniform distribution.

Suppose first that  is a distribution function for a distribution on  (which may be discrete, continuous, or mixed), and let 
denote the quantile function.

Suppose that  has the standard uniform distribution. Then  has distribution function .

Proof

The critical property satisfied by the quantile function (regardless of the type of distribution) is  if and only if 
 for  and . Hence for , .

Assuming that we can compute , the previous exercise shows how we can simulate a distribution with distribution function .
To rephrase the result, we can simulate a variable with distribution function  by simply computing a random quantile. Most of the
apps in this project use this method of simulation. The first image below shows the graph of the distribution function of a rather
complicated mixed distribution, represented in blue on the horizontal axis. In the second image, note how the uniform distribution
on , represented by the thick red line, is transformed, via the quantile function, into the given distribution.

k = 1 U n

n = 5

n k = n V

n = 5

f

f ∗2

f ∗3

f f ∗2 f ∗3

(z) ={f ∗2 z,
2 −z,

0 < z < 1
1 < z < 2

(z) =f ∗3

⎧

⎩
⎨
⎪⎪

⎪⎪

,1
2
z2

1 − (z−1 − (2 −z ,1
2

)2 1
2

)2

(3 −z ,1
2

)2

0 < z < 1

1 < z < 2

2 < z < 3

( , , )X1 X2 X3 f f ∗2 f ∗3

X1 +X1 X2 + +X1 X2 X3 ( , , … , )X1 X2 Xn

∑n
i=1 Xi

f ∗n n

n

n

R

R

F R F −1

U X = (U)F −1 F

(p) ≤ xF −1

p ≤ F (x) p ∈ (0, 1) x ∈ R x ∈ R P(X ≤ x) = P [ (U) ≤ x] = P[U ≤ F (x)] = F (x)F −1

F −1 F

F

[0, 1]
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Figure : The random quantile method of simulation

There is a partial converse to the previous result, for continuous distributions.

Suppose that  has a continuous distribution on an interval  Then  has the standard uniform distribution.

Proof

For  recall that  is a quantile of order . Since  has a continuous distribution,

Hence  is uniformly distributed on .

Show how to simulate the uniform distribution on the interval  with a random number. Using your calculator, simulate 5
values from the uniform distribution on the interval .

Answer

 where  is a random number.

Beta Distributions

Suppose that  has the probability density function  given by  for . Find the probability density
function of each of the following:

1. 
2. 
3. 

Proof

1. , for 
2.  for 
3.  for 

Random variables , , and  in the previous exercise have beta distributions, the same family of distributions that we saw in the
exercise above for the minimum and maximum of independent standard uniform variables. In general, beta distributions are widely
used to model random proportions and probabilities, as well as physical quantities that take values in closed bounded intervals
(which after a change of units can be taken to be ). On the other hand,  has a Pareto distribution, named for Vilfredo Pareto.
The family of beta distributions and the family of Pareto distributions are studied in more detail in the chapter on Special
Distributions.

Suppose that the radius  of a sphere has a beta distribution probability density function  given by  for 
. Find the probability density function of each of the following:

1. The circumference 
2. The surface area 
3. The volume 

3.7.8

X S ⊆R U = F (X)

u ∈ (0, 1) (u)F −1 u X

P(U ≥ u) = P[F (X) ≥ u] = P[X ≥ (u)] = 1 −F [ (u)] = 1 −uF −1 F −1 (3.7.38)

U (0, 1)

[a, b]
[2, 10]

X = a+U(b−a) U

X f f(x) = 3x2 0 ≤ x ≤ 1

U = X2

V = X
−−

√

W = 1
X

g(u) = 3
2
u1/2 0 < u ≤ 1

h(v) = 6v5 0 ≤ v≤ 1

k(w) = 3

w4
1 ≤ w < ∞

X U V

[0, 1] W

R f f(r) = 12 (1 −r)r2

0 ≤ r ≤ 1

C = 2πR
A = 4πR2

V = π4
3

R3
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Answer

1.  for 

2.  for 

3.  for 

Suppose that the grades on a test are described by the random variable  where  has the beta distribution with
probability density function  given by  for . The grades are generally low, so the teacher
decides to “curve” the grades using the transformation . Find the probability density function of

1. 
2. 

Answer

1.  for .

2.  for 

Bernoulli Trials

Recall that a Bernoulli trials sequence is a sequence  of independent, identically distributed indicator random
variables. In the usual terminology of reliability theory,  means failure on trial , while  means success on trial . The
basic parameter of the process is the probability of success , so . The random process is named for Jacob
Bernoulli and is studied in detail in the chapter on Bernoulli trials.

For , the probability density function  of the trial variable  is  for .

Proof

By definition,  and . These can be combined succinctly with the formula  for 
.

Now let  denote the number of successes in the first  trials, so that  for .

 has the probability density function  given by

Proof

We have seen this derivation before. The number of bit strings of length  with 1 occurring exactly  times is  for 
. By the Bernoulli trials assumptions, the probability of each such bit string is .

The distribution of  is the binomial distribution with parameters  and . The binomial distribution is stuided in more detail in
the chapter on Bernoulli trials

For 

1. .
2. .

Proof

Part (a) can be proved directly from the definition of convolution, but the result also follows simply from the fact that 
.

From part (b) it follows that if  and  are independent variables, and that  has the binomial distribution with parameters 
and  while  has the binomial distribution with parameter  and , then  has the binomial distribution with
parameter  and .

g(c) = (2π−c)3

4π4
c2 0 ≤ c ≤ 2π

h(a) = (2 − )3
8π2

a−−√ π−−√ a−−√ 0 ≤ a ≤ 4π

k(v) = [1 − ]3
π ( )3

4π

1/3
v1/3 0 ≤ v≤ π4

3

Y = 100X X

f f(x) = 12x(1 −x)2 0 ≤ x ≤ 1
Z = 10 = 100Y

−−
√ X

−−
√

Y

Z

g(y) = ( )3
25

y

100
(1 − )y

100

2
0 ≤ y ≤ 100

h(z) = z( )3
1250

z2

10 000
(1 − )z2

10 000

2
0 ≤ z ≤ 100

( , , …)X1 X2

= 0Xi i = 1Xi i

p = P( = 1)Xi p ∈ [0, 1]

i ∈ N+ f Xi f(x) = (1 −ppx )1−x x ∈ {0, 1}

f(0) = 1 −p f(1) = p f(x) = (1 −ppx )1−x

x ∈ {0, 1}

Yn n =Yn ∑n
i=1 Xi n ∈ N

Yn fn

(y) =( ) (1 −p , y ∈ {0, 1, … ,n}fn
n

y
py )n−y (3.7.39)

n y ( )ny
y ∈ {0, 1, … ,n} (1 −ppn )n−y

Yn n p

m, n ∈ N

=fn f ∗n

∗ =fm fn fm+n

= + +⋯ +Yn X1 X2 Xn

Y Z Y n ∈ N

p ∈ [0, 1] Z m ∈ N p Y +Z

m+n p
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Find the probability density function of the difference between the number of successes and the number of failures in 
Bernoulli trials with success parameter 

Answer

 for 

The Poisson Distribution

Recall that the Poisson distribution with parameter  has probability density function  given by

This distribution is named for Simeon Poisson and is widely used to model the number of random points in a region of time or
space; the parameter  is proportional to the size of the regtion. The Poisson distribution is studied in detail in the chapter on The
Poisson Process.

If  then .

Proof

Let . Using the definition of convolution and the binomial theorem we have

The last result means that if  and  are independent variables, and  has the Poisson distribution with parameter  while 
has the Poisson distribution with parameter , then  has the Poisson distribution with parameter . In terms of the
Poisson model,  could represent the number of points in a region  and  the number of points in a region  (of the appropriate
sizes so that the parameters are  and  respectively). The independence of  and  corresponds to the regions  and  being
disjoint. Then  is the number of points in .

The Exponential Distribution

Recall that the exponential distribution with rate parameter  has probability density function  given by  for
. This distribution is often used to model random times such as failure times and lifetimes. In particular, the times

between arrivals in the Poisson model of random points in time have independent, identically distributed exponential distributions.
The Exponential distribution is studied in more detail in the chapter on Poisson Processes.

Show how to simulate, with a random number, the exponential distribution with rate parameter . Using your calculator,
simulate 5 values from the exponential distribution with parameter .

Answer

 where  is a random number. Since  is also a random number, a simpler solution is .

For the next exercise, recall that the floor and ceiling functions on  are defined by

Suppose that  has the exponential distribution with rate parameter . Find the probability density function of each of
the following random variables:

1. 
2. 

Answer
1.  for 
2.  for 

n ∈ N

p ∈ [0, 1]

f(k) = ( ) (1 −pn
(n+k)/2 p(n+k)/2 )(n−k)/2 k ∈ {−n, 2 −n, … ,n−2,n}

t ∈ (0, ∞) f

(n) = , n ∈ Nft e−t t
n

n!
(3.7.40)

t

a, b ∈ (0, ∞) ∗ =fa fb fa+b

z ∈ N

( ∗ )(z)fa fb = (x) (z−x) = =∑
x=0

z

fa fb ∑
x=0

z

e−a a
x

x!
e−b bz−x

(z−x)!
e−(a+b) 1

z!
∑
x=0

z z!

x!(z−x)!
axbz−x

= ( ) = = (z)e−(a+b) 1

z!
∑
x=0

z z

x
axbn−x e−(a+b) (a+b)z

z!
fa+b

(3.7.41)

(3.7.42)

X Y X a > 0 Y

b > 0 X+Y a+b

X A Y B

a b X Y A B

X+Y A∪B

r ∈ (0, ∞) f f(t) = re−rt

t ∈ [0, ∞)

r

r = 3

X = − ln(1 −U)1
r

U 1 −U X = − lnU1
r

R

⌊x⌋ = max{n ∈ Z : n ≤ x}, ⌈x⌉ = min{n ∈ Z : n ≥ x}, x ∈ R (3.7.43)

T r ∈ (0, ∞)

Y = ⌊T ⌋

Z = ⌈T ⌉

P(Y = n) = (1 − )e−rn e−r n ∈ N

P(Z = n) = (1 − )e−r(n−1) e−r n ∈ N
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Note that the distributions in the previous exercise are geometric distributions on  and on , respectively. In many respects, the
geometric distribution is a discrete version of the exponential distribution.

Suppose that  has the exponential distribution with rate parameter . Find the probability density function of each of
the following random variables:

1. 
2. 
3. 

Answer
1.  for 
2.  for 
3.  for 

In the previous exercise,  has a Pareto distribution while  has an extreme value distribution. Both of these are studied in more
detail in the chapter on Special Distributions.

Suppose that  and  are independent random variables, each having the exponential distribution with parameter 1. Let 
.

1. Find the distribution function of .
2. Find the probability density function of .

Answer
1. 
2. 

Suppose that  has the exponential distribution with rate parameter ,  has the exponential distribution with rate
parameter , and that  and  are independent. Find the probability density function of  in each of the
following cases.

1. 
2. 

Answer
1.  for 
2.  for 

Suppose that  is a sequence of independent random variables, and that  has the exponential distribution with
rate parameter  for each .

1. Find the probability density function of .
2. Find the distribution function of .
3. Find the probability density function of  in the special case that  for each .

Answer
1.  for  where 
2.  for 
3.  for 

Note that the minimum  in part (a) has the exponential distribution with parameter . In particular, suppose that
a series system has independent components, each with an exponentially distributed lifetime. Then the lifetime of the system is also
exponentially distributed, and the failure rate of the system is the sum of the component failure rates.

In the order statistic experiment, select the exponential distribution.

N N+

T r ∈ (0, ∞)

X = T 2

Y = eT

Z = lnT

g(x) = r /2e−r x√ x−−√ 0 < x < ∞

h(y) = ry−(r+1) 1 < y < ∞
k(z) = r exp(−r )ez ez z ∈ R

Y Z

X Y

Z = Y

X

Z

Z

G(z) = 1 − , 0 < z < ∞1
1+z

g(z) = , 0 < z < ∞1

(1+z)
2

X a > 0 Y

b > 0 X Y Z = X+Y

a = b

a ≠ b

h(z) = za2 e−az 0 < z < ∞

h(z) = ( − )ab

b−a
e−az e−bz 0 < z < ∞

( , , … , )T1 T2 Tn Ti
> 0ri i ∈ {1, 2, … ,n}

U = min{ , , … , }T1 T2 Tn
V = max{ , , … , }T1 T2 Tn

V = rri i ∈ {1, 2, … ,n}

g(t) = ae−at 0 ≤ t < ∞ a = + +⋯ +r1 r2 rn
H(t) = (1 − ) (1 − ) ⋯ (1 − )e− tr1 e− tr2 e− trn 0 ≤ t < ∞

h(t) = nre−rt (1 − )e−rt n−1
0 ≤ t < ∞

U + +⋯ +r1 r2 rn
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1. Set  (this gives the minimum ). Vary  with the scroll bar and note the shape of the probability density function.
With , run the simulation 1000 times and compare the empirical density function and the probability density function.

2. Vary  with the scroll bar and set  each time (this gives the maximum ). Note the shape of the density function. With
, run the simulation 1000 times and compare the empirical density function and the probability density function.

Suppose again that  is a sequence of independent random variables, and that  has the exponential distribution
with rate parameter  for each . Then

Proof

When , the result was shown in the section on joint distributions. Returning to the case of general , note that  for
all  if and only if . Note that he minimum on the right is independent of  and by the result above,
has an exponential distribution with parameter .

The result in the previous exercise is very important in the theory of continuous-time Markov chains. If we have a bunch of
independent alarm clocks, with exponentially distributed alarm times, then the probability that clock  is the first one to sound is 

.

The Gamma Distribution

Recall that the (standard) gamma distribution with shape parameter  has probability density function

With a positive integer shape parameter, as we have here, it is also referred to as the Erlang distribution, named for Agner Erlang.
This distribution is widely used to model random times under certain basic assumptions. In particular, the th arrival times in the
Poisson model of random points in time has the gamma distribution with parameter . The Erlang distribution is studied in more
detail in the chapter on the Poisson Process, and in greater generality, the gamma distribution is studied in the chapter on Special
Distributions.

Let , and note that this is the probability density function of the exponential distribution with parameter 1, which was the
topic of our last discussion.

If  then

1. 
2. 

Proof

Part (a) hold trivially when . Also, for ,

Part (b) follows from (a).

Part (b) means that if  has the gamma distribution with shape parameter  and  has the gamma distribution with shape
parameter , and if  and  are independent, then  has the gamma distribution with shape parameter . In the context
of the Poisson model, part (a) means that the th arrival time is the sum of the  independent interarrival times, which have a
common exponential distribution.

Suppose that  has the gamma distribution with shape parameter . Find the probability density function of .

Answer

 for 

k = 1 U n

n = 5
n k = n V

n = 5

( , , … , )T1 T2 Tn Ti
> 0ri i ∈ {1, 2, … ,n}

P ( <  for all j≠ i) =Ti Tj
ri

∑n
j=1 rj

(3.7.44)

n = 2 n <Ti Tj
j≠ i < min{ : j≠ i}Ti Tj Ti

∑j≠i rj

i

/ri ∑n
j=1 rj

n ∈ N+

(t) = , 0 ≤ t < ∞gn e−t tn−1

(n−1)!
(3.7.45)

n

n

g = g1

m, n ∈ N+

=gn g∗n

∗ =gm gn gm+n

n = 1 t ∈ [0, ∞)

∗ g(t) = (s)g(t−s)ds = ds = ds = = (t)gn ∫
t

0
gn ∫

t

0
e−s sn−1

(n−1)!
et−s e−t ∫

t

0

sn−1

(n−1)!
e−t t

n

n!
gn+1 (3.7.46)

X m Y

n X Y X+Y m+n

n n

T n ∈ N+ X = lnT

h(x) = exp(− )1
(n−1)!

ex enx x ∈ R
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The Pareto Distribution

Recall that the Pareto distribution with shape parameter  has probability density function  given by

Members of this family have already come up in several of the previous exercises. The Pareto distribution, named for Vilfredo
Pareto, is a heavy-tailed distribution often used for modeling income and other financial variables. The Pareto distribution is studied
in more detail in the chapter on Special Distributions.

Suppose that  has the Pareto distribution with shape parameter . Find the probability density function of each of the
following random variables:

1. 
2. 
3. 

Answer

1.  for 
2.  for 
3.  for 

In the previous exercise,  also has a Pareto distribution but with parameter ;  has the beta distribution with parameters  and 
; and  has the exponential distribution with rate parameter .

Show how to simulate, with a random number, the Pareto distribution with shape parameter . Using your calculator, simulate 5
values from the Pareto distribution with shape parameter .

Answer

Using the random quantile method,  where  is a random number. More simply, , since  is also a

random number.

The Normal Distribution

Recall that the standard normal distribution has probability density function  given by

Suppose that  has the standard normal distribution, and that  and .

1. Find the probability density function  of 
2. Sketch the graph of , noting the important qualitative features.

Answer

1.  for 

2.  is symmetric about .  increases and then decreases, with mode .  is concave upward, then downward, then
upward again, with inflection points at .  as  and as 

Random variable  has the normal distribution with location parameter  and scale parameter . The normal distribution is
perhaps the most important distribution in probability and mathematical statistics, primarily because of the central limit theorem,
one of the fundamental theorems. It is widely used to model physical measurements of all types that are subject to small, random
errors. The normal distribution is studied in detail in the chapter on Special Distributions.

Suppose that  has the standard normal distribution. Find the probability density function of  and sketch the graph.

Answer

a ∈ (0, ∞) f

f(x) = , 1 ≤ x < ∞
a

xa+1
(3.7.47)

X a

U = X2

V = 1
X

Y = lnX

g(u) =
a/2

ua/2+1
1 ≤ u < ∞

h(v) = ava−1 0 < v< 1
k(y) = ae−ay 0 ≤ y < ∞

V a

2
Y a

b = 1 Z a

a

a = 2

X = 1

(1−U)1/a
U X = 1

U 1/a
1 −U

ϕ

ϕ(z) = , z ∈ R
1

2π
−−

√
e− 1

2
z2

(3.7.48)

Z μ ∈ (−∞, ∞) σ ∈ (0, ∞)

f X = μ+σZ

f

f(x) = exp[− ]1
σ2π√

1
2
( )

x−μ

σ

2
x ∈ R

f x = μ f x = μ f

x = μ±σ f(x) → 0 x → ∞ x → −∞

X μ σ

Z Z2
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 for 

Random variable  has the chi-square distribution with 1 degree of freedom. Chi-square distributions are studied in detail in the
chapter on Special Distributions.

Suppose that  and  are independent random variables, each with the standard normal distribution, and let  be the
standard polar coordinates . Find the probability density function of

1. 
2. 
3. 

Answer

Note that the joint PDF of  is

From the result above polar coordinates, the PDF of  is

From the factorization theorem for joint PDFs, it follows that  has probability density function  for 
,  is uniformly distributed on , and that  and  are independent.

The distribution of  is the (standard) Rayleigh distribution, and is named for John William Strutt, Lord Rayleigh. The Rayleigh
distribution is studied in more detail in the chapter on Special Distributions.

The standard normal distribution does not have a simple, closed form quantile function, so the random quantile method of
simulation does not work well. However, the last exercise points the way to an alternative method of simulation.

Show how to simulate a pair of independent, standard normal variables with a pair of random numbers. Using your calculator,
simulate 6 values from the standard normal distribution.

Answer

The Rayleigh distribution in the last exercise has CDF  for , and hence quantle function 
 for . Thus we can simulate the polar radius  with a random number  by 

, or a bit more simply by , since  is also a random number. We can simulate the
polar angle  with a random number  by . Then, a pair of independent, standard normal variables can be simulated
by , .

The Cauchy Distribution

Suppose that  and  are independent random variables, each with the standard normal distribution. Find the probability
density function of .

Answer

As usual, let  denote the standard normal PDF, so that  for . Using the theorem on quotient above, the

PDF  of  is given by

Using symmetry and a simple substitution,

g(v) = 1
2πv√

e
− v1

2 0 < v< ∞

V

X Y (R, Θ)
(X,Y )

(R, Θ)
R

Θ

(X,Y )

f(x, y) = ϕ(x)ϕ(y) = , (x, y) ∈
1

2π
e− ( + )1

2
x2 y2

R
2 (3.7.49)

(R, Θ)

g(r, θ) = f(r cosθ, r sinθ)r = r , (r, θ) ∈ [0, ∞) ×[0, 2π)
1

2π
e−

1
2
r2

(3.7.50)

R h(r) = re−
1
2
r2

0 ≤ r < ∞ Θ [0, 2π) R Θ

R

H(r) = 1 −e
−

1

2
r2

0 ≤ r < ∞
(p) =H−1 −2 ln(1 −p)

− −−−−−−−−−
√ 0 ≤ p < 1 R U

R = −2 ln(1 −U)
− −−−−−−−−−

√ R = −2 lnU
− −−−−−

√ 1 −U

Θ V Θ = 2πV
X = R cos Θ Y = R sinΘ

X Y

T = X/Y

ϕ ϕ(z) = 1

2π√
e− /2z2

z ∈ R

f T

f(t) = ϕ(x)ϕ(tx)|x|dx = |x|dx, t ∈ R∫
∞

−∞

1

2π
∫

∞

−∞
e−(1+ ) /2t2 x2

(3.7.51)

f(t) = x dx = , t ∈ R
1

π
∫

∞

0
e−(1+ ) /2t2 x2 1

π(1 + )t2
(3.7.52)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10147?pdf


3.7.21 https://stats.libretexts.org/@go/page/10147

Random variable  has the (standard) Cauchy distribution, named after Augustin Cauchy. The Cauchy distribution is studied in
detail in the chapter on Special Distributions.

Suppose that a light source is 1 unit away from position 0 on an infinite straight wall. We shine the light at the wall an angle 
to the perpendicular, where  is uniformly distributed on . Find the probability density function of the position of the
light beam  on the wall.

Answer

The PDF of  is  for . The transformation is  so the inverse transformation is .
Recall that , so by the change of variables formula,  has PDF  given by

Thus,  also has the standard Cauchy distribution. Clearly we can simulate a value of the Cauchy distribution by 
 where  is a random number. This is the random quantile method.

Open the Cauchy experiment, which is a simulation of the light problem in the previous exercise. Keep the default parameter
values and run the experiment in single step mode a few times. Then run the experiment 1000 times and compare the empirical
density function and the probability density function.

This page titled 3.7: Transformations of Random Variables is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

T

Θ
Θ (− , )π

2
π
2

X = tanΘ

Θ f(θ) = 1
π − ≤ θ ≤π

2
π

2
x = tanθ θ = arctanx

=dθ

dx

1
1+x2 X g

g(x) = , x ∈ R
1

π (1 + )x2
(3.7.53)

X

X = tan(− +πU)π

2
U
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