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13.10: Bold Play
      

Basic Theory

Preliminaries

Recall that with the strategy of bold play in red and black, the gambler on each game bets either her entire fortune or the amount
needed to reach the target fortune, whichever is smaller. As usual, we are interested in the probability that the player reaches the
target and the expected number of trials. The first interesting fact is that only the ratio of the initial fortune to the target fortune
matters, quite in contrast to timid play.

Suppose that the gambler plays boldly with initial fortune  and target fortune . As usual, let  denote the
fortune process for the gambler. For any , the random process  is the fortune process for bold play
with initial fortune  and target fortune .

Because of this result, it is convenient to use the target fortune as the monetary unit and to allow irrational, as well as rational,
initial fortunes. Thus, the fortune space is . Sometimes in our analysis we will ignore the states 0 or 1; clearly there is no harm
in this because in these states, the game is over.

Recall that the betting function  is the function that gives the amount bet as a function of the current fortune. For bold play,
the betting function is

Figure : The betting function for bold play

The Probability of Winning

We will denote the probability that the bold gambler reaches the target  starting from the initial fortune  by .
By the scaling property, the probability that the bold gambler reaches some other target value , starting from  is 

.

The function  satisfies the following functional equation and boundary conditions:

1. 

2. , 

From the previous result, and a little thought, it should be clear that an important role is played by the following function:

Let  be the function defined on  by
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The function  is called the doubling function, mod 1, since  gives the fractional part of .

Note that until the last bet that ends the game (with the player ruined or victorious), the successive fortunes of the player follow
iterates of the map . Thus, bold play is intimately connected with the dynamical system associated with .

Figure : The doubling map, modulo 1

Binary Expansions

One of the keys to our analysis is to represent the initial fortune in binary form.

The binary expansion of  is

where  for each . This representation is unique except when  is a binary rational (sometimes also called a
dyadic rational), that is, a number of the form  where  and ; the positive integer  is
called the rank of . Binary rationals are discussed in more detail in the chapter on Foundations.

For a binary rational  of rank , we will use the standard terminating representation where  and  for . Rank
can be extended to all numbers in [0, 1) by defining the rank of 0 to be 0 (0 is also considered a binary rational) and by defining the
rank of a binary irrational to be . We will denote the rank of  by .

Applied to the binary sequences, the doubling function  is the shift operator:

For , .

Bold play in red and black can be elegantly described by comparing the bits of the initial fortune with the game bits.

Suppose that gambler starts with initial fortune . The gambler eventually reaches the target 1 if and only if there
exists a positive integer  such that  for  and . That is, the gambler wins if and only
if when the game bit agrees with the corresponding fortune bit for the first time, that bit is 1.

The random variable whose bits are the complements of the fortune bits will play an important role in our analysis. Thus, let

Note that  is a well defined random variable taking values in .

Suppose that the gambler starts with initial fortune . Then the gambler reaches the target 1 if and only if .
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Proof

This follows from the previous result.

 has a continuous distribution. That is,  for any .

From the previous two results, it follows that  is simply the distribution function of . In particular,  is an increasing function,
and since  has a continuous distribution,  is a continuous function.

The success function  is the unique continuous solution of the functional equation above.

Proof

Induction on the rank shows that any two solutions must agree at the binary rationals. But then any two continuous solutions
must agree for all .

If we introduce a bit more notation, we can give nice expression for , and later for the expected number of games . Let 
 and .

The win probability function  can be expressed as follows:

Note that  in the last expression is correct; it's not a misprint of . Thus, only terms with  are included in the sum.

 is strictly increasing on . This means that the distribution of  has support ; that is, there are no subintervals of 
 that have positive length, but 0 probability.

In particular,
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If  then  for 

Proof

There are two proofs. The simplest proof is to note that  is continuous and satisfies the functional equation in functional
equation. Another proof can be constructed by using the representation of  as a sum.

Thus, for  (fair trials), the probability that the bold gambler reaches the target fortune  starting from the initial fortune  is 
, just as it is for the timid gambler. Note also that the random variable  has the uniform distribution on . When ,

the distribution of  is quite strange. To state the result succinctly, we will indicate the dependence of the of the probability
measure  on the parameter . First we define

Thus,  is the set of  for which the relative frequency of 0's in the binary expansion is .
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1. 
2. 

Proof

Part (a) follows from the strong law of large numbers. Part (b) follows from part (a) since .

When ,  does not have a probability density function (with respect to Lebesgue measure on [0, 1]), even though 
has a continuous distribution.

Proof

The proof is by contradiction. Suppose that  has probability density function . Then . But

if , . That is,  has Lebesgue measure 0. But then , a contradiction.

When ,  has derivative 0 at almost every point in , even though it is strictly increasing.

Figure : The graphs of  when , , and 

In the red and black experiment, select Bold Play. Vary the initial fortune, target fortune, and game win probability with the
scroll bars and note how the probability of winning the game changes. In particular, note that this probability depends only on 

. Now for various values of the parameters, run the experiment 1000 times and compare the relative frequency function to
the probability density function.

The Expected Number of Trials

Let  for , the expected number of trials starting at . For any other target fortune , the
expected number of trials starting at  is just .

 satisfies the following functional equation and boundary conditions:

1. 

2. , 

Proof

The functional equation follows from conditioning on the result of the first game.

Note, interestingly, that the functional equation is not satisfied at  or . As before, we can give an alternate analysis
using the binary representation of an initial fortune .

Suppose that the initial fortune of the gambler is . Then .

Proof

If  is a binary rational then  takes values in the set . Play continues until the game number agrees with the
rank of the fortune or a game bit agrees with the corresponding fortune bit, whichever is smaller. In the first case, the
penultimate fortune is , the only fortune for which the next game is always final. If  is a binary irrational then  takes
values in . Play continues until a game bit agrees with a corresponding fortune bit.
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We can give an explicit formula for the expected number of trials  in terms of the binary representation of . Recall our
special notation: , 

Suppose that . Then

Note that the  term is 1, since the product is empty. The sum has a finite number of terms if  is a binary rational, and the
sum has an infinite number of terms if  is a binary irrational.

In particular,

1. 
2. 
3. 
4. 
5. 
6. 
7. 

If  then

Figure : The expected number of games in bold play with fair games

In the red and black experiment, select Bold Play. Vary , , and  with the scroll bars and note how the expected number of
trials changes. In particular, note that the mean depends only on the ratio . For selected values of the parameters, run the
experiment 1000 times and compare the sample mean to the distribution mean.

For fixed ,  is continuous as a function of .

However, as a function of the initial fortune , for fixed , the function  is very irregular.

 is discontinuous at the binary rationals in  and continuous at the binary irrationals.

This page titled 13.10: Bold Play is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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