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2.2: Events and Random Variables
  

The purpose of this section is to study two basic types of objects that form part of the model of a random experiment. If you are a
new student of probability, just ignore the measure-theoretic terminology and skip the technical details.

Sample Spaces

The Set of Outcomes

Recall that in a random experiment, the outcome cannot be predicted with certainty, before the experiment is run. On the other
hand:

We assume that we can identify a fixed set  that includes all possible outcomes of a random experiment. This set plays the
role of the universal set when modeling the experiment.

For simple experiments,  may be precisely the set of possible outcomes. More often, for complex experiments,  is a
mathematically convenient set that includes the possible outcomes and perhaps other elements as well. For example, if the
experiment is to throw a standard die and record the score that occurs, we would let , the set of possible
outcomes. On the other hand, if the experiment is to capture a cicada and measure its body weight (in milligrams), we might
conveniently take , even though most elements of this set are impossible (we hope!). The problem is that we may not
know exactly the outcomes that are possible. Can a light bulb burn without failure for one thousand hours? For one thousand days?
for one thousand years?

Often the outcome of a random experiment consists of one or more real measurements, and thus, the  consists of all possible
measurement sequences, a subset of  for some . More generally, suppose that we have  experiments and that  is the
set of outcomes for experiment . Then the Cartesian product  is the natural set of outcomes
for the compound experiment that consists of performing the  experiments in sequence. In particular, if we have a basic
experiment with  as the set of outcomes, then  is the natural set of outcomes for the compound experiment that consists of 
replications of the basic experiment. Similarly, if we have an infinite sequence of experiments and  is the set of outcomes for
experiment , then then  is the natural set of outcomes for the compound experiment that consists of
performing the given experiments in sequence. In particular, the set of outcomes for the compound experiment that consists of
indefinite replications of a basic experiment is . This is an essential special case, because (classical) probability
theory is based on the idea of replicating a given experiment.

Events

Consider again a random experiment with  as the set of outcomes. Certain subsets of  are referred to as events. Suppose that
 is a given event, and that the experiment is run, resulting in outcome .

1. If  then we say that  occurs.
2. If  then we say that  does not occur.

Intuitively, you should think of an event as a meaningful statement about the experiment: every such statement translates into an
event, namely the set of outcomes for which the statement is true. In particular,  itself is an event; by definition it always occurs.
At the other extreme, the empty set  is also an event; by definition it never occurs.

For a note on terminology, recall that a mathematical space consists of a set together with other mathematical structures defined on
the set. An example you may be familiar with is a vector space, which consists of a set (the vectors) together with the operations of
addition and scalar multiplication. In probability theory, many authors use the term sample space for the set of outcomes of a
random experiment, but here is the more careful definition:

The sample space of an experiment is  where  is the set of outcomes and  is the collection of events.

Details

Sometimes not every subset of  can be allowed as an event, but the collection of events  is required to be a -algebra, so
that the sample space  is a measurable space. The axioms of a -algebra ensure that new sets that are constructed in a
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reasonable way from given events, using the set operations, are themselves valid events. Most of the sample spaces that occur
in elementary probability fall into two general categories.

1. Discrete:  is countable and  is the collection of all subsets of . In this case, the sample space  is
discrete.

2. Euclidean:  is a measurable subset of  for some  and  is the collection of measurable subsets of .

In (b), the mearuable subsets of  include all of the sets encountered in calculus and in standard applications of probability
theory, and many more besides. Nonetheless, for technical reasons, certain very weird subsets must be excluded. Typically  is
a set defined by a finite number of inequalities involving elementary functions.

The Algebra of Events

The standard algebra of sets leads to a grammar for discussing random experiments and allows us to construct new events from
given events. In the following results, suppose that  is the set of outcomes of a random experiment, and that  and  are events.

 if and only if the occurrence of  implies the occurrence of .

Proof

Recall that  is the subset relation. So by definition,  means that  implies .

 is the event that occurs if and only if  occurs or  occurs.

Proof

Recall that  is the union of  and . So by defintion,  if and only if  or .

 is the event that occurs if and only if  occurs and  occurs.

Proof

Recall that  is the intersection of  and . So by definiton,  if and only if  and .

 and  are disjoint if and only if they are mutually exclusive; they cannot both occur on the same run of the experiment.

Proof

By definition,  and  disjoint means that .

 is the event that occurs if and only if  does not occur.

Proof

Recall that  is the complement of , so  if and only if .

 is the event that occurs if and only if  occurs and  does not occur.

Proof

Recall that . Hence  if and only if  and .

 is the event that occurs if and only if one but not both of the given events occurs.

Proof

The events in the union are disjoint. So for  is in the given event if and only if either  and , or  and .

Recall that the event in (10) is the symmetric difference of  and , and is sometimes denoted . This event corresponds to
exclusive or, as opposed to the ordinary union  which corresponds to inclusive or.

 is the event that occurs if and only if both or neither of the given events occurs.

Proof

The events in the union are disjoint. Thus  is in the given event if and only if either  and , or  and .
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In the Venn diagram app, observe the diagram of each of the 16 events that can be constructed from  and .

Suppose now that  is a collection of events for the random experiment, where  is a countable index set.

 is the event that occurs if and only if at least one event in the collection occurs.

Proof

Note that  if and only if  for some .

 is the event that occurs if and only if every event in the collection occurs:

Proof

Note that  if and only if  for every .

 is a pairwise disjoint collection if and only if the events are mutually exclusive; at most one of the events could occur on a
given run of the experiment.

Proof

By definition,  for distinct .

Suppose now that ) is an infinite sequence of events.

 is the event that occurs if and only if infinitely many of the given events occur. This event is sometimes called
the limit superior of .

Proof

Note that  is in the given event if and only if for every  there exists  with  such that . In turn this
means that  for infinitely many .

 is the event that occurs if and only if all but finitely many of the given events occur. This event is sometimes
called the limit inferior of .

Proof

Note that  is in the given event if and only if there exists  such that  for every  with . In turn, this
means that  for all but finitely many .

Limit superiors and inferiors are discussed in more detail in the section on convergence.

Random Variables
Intuitively, a random variable is a measurement of interest in the context of the experiment. Simple examples include the number
of heads when a coin is tossed several times, the sum of the scores when a pair of dice are thrown, the lifetime of a device subject
to random stress, the weight of a person chosen from a population. Many more examples are given below in the exercises below.
Mathematically, a random variable is a function defined on the set of outcomes.

A function  from  into a set  is a random variable for the experiment with values in .

Details

The set  will also come with a -algebra  of admissible subsets, so that  is a measurable space, just like .
The function  is required to be measurable, an assumption which ensures that meaningful statements involving  define
events. In the discussion below, all subsets of  are assumed to be in .

Probability has its own notation, very different from other branches of mathematics. As a case in point, random variables, even
though they are functions, are usually denoted by capital letters near the end of the alphabet. The use of a letter near the end of the
alphabet is intended to emphasize the idea that the object is a variable in the context of the experiment. The use of a capital letter is
intended to emphasize the fact that it is not an ordinary algebraic variable to which we can assign a specific value, but rather a

A B

A = { : i ∈ I}Ai I

⋃A =⋃i∈I Ai

s ∈⋃i∈I Ai s ∈ Ai i ∈ I

⋂A =⋂i∈I Ai

s ∈⋂i∈I Ai s ∈ Ai i ∈ I

A

∩ = ∅Ai Aj i, j∈ I

( , , …A1 A2

⋂∞
n=1⋃

∞
i=n Ai

( , , …)A1 A2

s n ∈ N+ i ∈ N+ i ≥ n s ∈ Ai

s ∈ Ai i ∈ I

⋃∞
n=1⋂

∞
i=n Ai

( , , …)A1 A2

s n ∈ N+ s ∈ Ai i ∈ N+ i ≥ n

s ∈ Ai i ∈ I

X S T T

T σ T (T ,T ) (S,S )
X X

T T

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10130?pdf


2.2.4 https://stats.libretexts.org/@go/page/10130

random variable whose value is indeterminate until we run the experiment. Specifically, when we run the experiment an outcome 
 occurs, and random variable  takes the value .

Figure : A random variable as a function defined on the set of outcomes.

If , we use the notation  for the inverse image , rather than . Again, the notation is
more natural since we think of  as a variable in the experiment. Think of  as a statement about , which then translates
into the event 

Figure : The event  corresponding to 

Again, every statement about a random variable  with values in  translates into an inverse image of the form  for
some . So, for example, if  then . If  is a real-valued random
variable and  with  then .

Suppose that  is a random variable taking values in , and that . Then

1. 
2. 
3. 
4. 
5. If  and  are disjoint, then so are  and .

Proof

This is a restatement of the fact that inverse images of a function preserve the set operations; only the notation changes (and is
simpler).

1.  if and only if  if and only if  or  if and only if  or 
 if and only if .

2. The proof is exactly the same as (a), with and replacing or.
3. The proof is also exactly the same as (a), with but not replacing or.
4. If  then  so  and hence .
5. This follows from part (b).

As with a general function, the result in part (a) holds for the union of a countable collection of subsets, and the result in part (b)
holds for the intersection of a countable collection of subsets. No new ideas are involved; only the notation is more complicated.

Often, a random variable takes values in a subset  of  for some . We might express such a random variable as 
 where  is a real-valued random variable for each . In this case, we usually refer to 

as a random vector, to emphasize its higher-dimensional character. A random variable can have an even more complicated
structure. For example, if the experiment is to select  objects from a population and record various real measurements for each
object, then the outcome of the experiment is a vector of vectors:  where  is the vector of measurements
for the th object. There are other possibilities; a random variable could be an infinite sequence, or could be set-valued. Specific
examples are given in the computational exercises below. However, the important point is simply that a random variable is a
function defined on the set of outcomes .

The outcome of the experiment itself can be thought of as a random variable. Specifically, let  and let  denote the identify
function on  so that  for . Then trivially  is a random variable, and the events that can be defined in terms of 
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are simply the original events of the experiment. That is, if  is an event then . Conversely, every random variable
effectively defines a new random experiment.

In the general setting above, a random variable  defines a new random experiment with  as the new set of outcomes and
subsets of  as the new collection of events.

Details

Technically, the -algebra  would be the new collection of events.

In fact, often a random experiment is modeled by specifying the random variables of interest, in the language of the experiment.
Then, a mathematical definition of the random variables specifies the sample space. A function (or transformation) of a random
variable defines a new random variable.

Suppose that  is a random variable for the experiment with values in  and that  is a function from  into another set .
Then  is a random variable with values in .

Details

Technically,  and  both come with -algebras of admissible subsets  and , respectively. The function , just like the
function , is required to be measurable. This assumption ensures that  is a measurable function from  into , and
hence is a valid random variable.

Note that, as functions, , the composition of  with . But again, thinking of  and  as variables in the context of
the experiment, the notation  is much more natural.

Indicator Variables

For an event , the indicator function of  is called the indicator variable of .

The value of this random variables tells us whether or not  has occurred:

That is, as a function on ,

If  is a random variable that takes values 0 and 1, then  is the indicator variable of the event .

Proof

Note that for ,  if  and  otherwise.

Recall also that the set algebra of events translates into the arithmetic algebra of indicator variables.

Suppose that  and  are events.

1. 
2. 
3. 
4. 
5.  if and only if 

The results in part (a) extends to arbitrary intersections and the results in part (b) extends to arbitrary unions. If the event  has a
complicated description, sometimes we use  for the indicator variable rather that .
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Examples and Applications
Recall that probability theory is often illustrated using simple devices from games of chance: coins, dice, cards, spinners, urns with
balls, and so forth. Examples based on such devices are pedagogically valuable because of their simplicity and conceptual clarity.
On the other hand, remember that probability is not only about gambling and games of chance. Rather, try to see problems
involving coins, dice, etc. as metaphors for more complex and realistic problems.

Coins and Dice

The basic coin experiment consists of tossing a coin  times and recording the sequence of scores  (where 1
denotes heads and 0 denotes tails). This experiment is a generic example of  Bernoulli trials, named for Jacob Bernoulli.

Consider the coin experiment with , and Let  denote the number of heads.

1. Give the set of outcomes  in list form.
2. Give the event  in list form for each .

Answer

To simplify the notation, we represent outcomes a bit strings rather than ordered sequences.

1. 

2. 

In the simulation of the coin experiment, set . Run the experiment 100 times and count the number of times that the
event  occurs.

Now consider the general coin experiment with the coin tossed  times, and let  denote the number of heads.

1. Give the set of outcomes  in Cartesian product form, and give the cardinality of .
2. Express  as a function on .
3. Find  (as a subset of ) for 

Answer
1.  and .
2. . The set of possible values is 
3. 

The basic dice experiment consists of throwing  distinct -sided dice (with faces numbered from 1 to ) and recording the
sequence of scores . This experiment is a generic example of  multinomial trials. The special case 
corresponds to standard dice.

Consider the dice experiment with  standard dice. Let  denote the set of outcomes,  the event that the first die score is
1, and  the event that the sum of the scores is 7. Give each of the following events in the form indicated:

1.  in Cartesian product form
2.  in list form
3.  in list form
4.  in list form
5.  in list form
6.  in predicate form

Answer
1. 
2. 

n ( , , … , )X1 X2 Xn
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3. 
4. 
5. 
6. 

In the simulation of the dice experiment, set . Run the experiment 100 times and count the number of times each event in
the previous exercise occurs.

Consider the dice experiment with  standard dice, and let  denote the set of outcomes,  the sum of the scores,  the
minimum score, and  the maximum score.

1. Express  as a function on  and give the set of possible values in list form.
2. Express  as a function on  and give the set of possible values in list form.
3. Express  as a function on the  and give the set of possible values in list form.
4. Give the set of possible values of  in predicate from

Answer

Note that . The following functions are defined on .

1. . The set of values is 
2. . The set of values is 
3. . The set of values is 
4. 

Consider again the dice experiment with  standard dice, and let  denote the set of outcomes,  the sum of the scores, 
the minimum score, and  the maximum score. Give each of the following as subsets of , in list form.

1. 
2. 
3. 
4. 
5. 

Answer
1. 
2. 
3. 
4. 
5. 

In the dice experiment, set . Run the experiment 100 times. Count the number of times each event in the previous
exercise occurred.

In the general dice experiment with  distinct -sided dice, let  denote the sum of the scores,  the minimum score, and 
the maximum score.

1. Give the set of outcomes  and find .
2. Express  as a function on , and give the set of possible values in list form.
3. Express  as a function on , and give the set of possible values in list form.
4. Express  as a function on , and give the set of possible values in list form.
5. Give the set of possible values of  in predicate from.

Answer
1.  and 
2. . The set of possible values is 
3. . The set of possible values is .

B = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
A∪B = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
A∩B = {(1, 6)}
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4. . The set of possible values is 
5. 

The set of outcomes of a random experiment depends of course on what information is recorded. The following exercise is an
illustration.

An experiment consists of throwing a pair of standard dice repeatedly until the sum of the two scores is either 5 or 7. Let 
denote the event that the sum is 5 rather than 7 on the final throw. Experiments of this type arise in the casino game craps.

1. Suppose that the pair of scores on each throw is recorded. Define the set of outcomes of the experiment and describe  as a
subset of this set.

2. Suppose that the pair of scores on the final throw is recorded. Define the set of outcomes of the experiment and describe 
as a subset of this set.

Answer

Let , , , and 

1. , 
2. , 

Suppose that 3 standard dice are rolled and the sequence of scores  is recorded. A person pays $1 to play. If some
of the dice come up 6, then the player receives her $1 back, plus $1 for each 6. Otherwise she loses her $1. Let  denote the
person's net winnings. This is the game of chuck-a-luck and is treated in more detail in the chapter on Games of Chance.

1. Give the set of outcomes  in Cartesian product form.
2. Express  as a function on  and give the set of possible values in list form.

Answer
1. 
2. . The set of possible values is 

Play the chuck-a-luck experiment a few times and see how you do.

In the die-coin experiment, a standard die is rolled and then a coin is tossed the number of times shown on the die. The
sequence of coin scores  is recorded (0 for tails, 1 for heads). Let  denote the die score and  the number of heads.

1. Give the set of outcomes  in terms of Cartesian powers and find .
2. Express  as a function on  and give the set of possible values in list form.
3. Express  as a function on  and give the set of possible values in list form.
4. Give the event  that all tosses result in heads in list form.

Answer

1. , 
2.  for . The set of values is .
3.  for . The set of possible values is .
4. 

Run the simulation of the die-coin experiment 10 times. For each run, give the values of the random variables , , and  of
the previous exercise. Count the number of times the event  occurs.

In the coin-die experiment, we have a coin and two distinct dice, say one red and one green. First the coin is tossed, and then if
the result is heads the red die is thrown, while if the result is tails the green die is thrown. The coin score  and the score of the
chosen die  are recorded. Suppose now that the red die is a standard 6-sided die, and the green die a 4-sided die.

1. Give the set of outcomes  in list form.
2. Express  as a function on .

V ( , , … , ) = max{ , … , }x1 x2 xn x1 x2 xn {1, 2, … , k}
{(u, v) ∈ {1, 2, … , k : u ≤ v}}2

A

A

A

= {(1, 4), (2, 3), (3, 2), (4, 1)}D5 = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}D7 D = ∪D5 D7 C = Dc

S = D∪ (C ×D) ∪ ( ×D) ∪ ⋯C 2 A = ∪ (C × ) ∪ ( × ) ∪ ⋯D5 D5 C 2 D5

S = D A = D5

( , , )X1 X2 X3

W

S

W S

S = {1, 2, 3, 4, 5, 6}3

W ( , , ) = 1 ( = 6) +1 ( = 6) +1 ( = 6) −1 ( ≠ 6, ≠ 6, ≠ 6)x1 x2 x3 x1 x2 x3 x1 x2 x3

{−1, 1, 2, 3}

X N Y

S #(S)
N S

Y S

A

S = {0, 1⋃6
n=1 }n #(S) = 126

N( , , … , ) = nx1 x2 xn ( , , … , ) ∈ Sx1 x2 xn {1, 2, 3, 4, 5, 6}
Y ( , , … , ) =x1 x2 xn ∑n

i=1 xi ( , , … , ) ∈ Sx1 x2 xn {0, 1, 2, 3, 4, 5, 6}
A = {1, 11, 111, 1111, 11111, 111111}

X N Y

A

X

Y

S

X S
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3. Express  as a function on .
4. Give the event  as a subset of  in list form.

Answer
1. 
2.  for 
3.  for 
4. 

Run the coin-die experiment 100 times, with various types of dice.

Sampling Models

Recall that many random experiments can be thought of as sampling experiments. For the general finite sampling model, we start
with a population  with  (distinct) objects. We select a sample of  objects from the population. If the sampling is done in a
random way, then we have a random experiment with the sample as the basic outcome. Thus, the set of outcomes of the experiment
is literally the set of samples; this is the historical origin of the term sample space. There are four common types of sampling from
a finite population, based on the criteria of order and replacement. Recall the following facts from the section on combinatorial
structures:

Samples of size  chosen from a population with  elements.

1. If the sampling is with replacement and with regard to order, then the set of samples is the Cartesian power . The
number of samples is .

2. If the sampling is without replacement and with regard to order, then the set of samples is the set of all permutations of size 
 from . The number of samples is .

3. If the sampling is without replacement and without regard to order, then the set of samples is the set of all combinations (or
subsets) of size  from . The number of samples is .

4. If the sampling is with replacement and without regard to order, then the set of samples is the set of all multisets of size 
from . The number of samples is .

If we sample with replacement, the sample size  can be any positive integer. If we sample without replacement, the sample size
cannot exceed the population size, so we must have .

The basic coin and dice experiments are examples of sampling with replacement. If we toss a coin  times and record the sequence
of scores (where as usual, 0 denotes tails and 1 denotes heads), then we generate an ordered sample of size  with replacement
from the population . If we throw  (distinct) standard dice and record the sequence of scores, then we generate an ordered
sample of size  with replacement from the population .

Suppose that the sampling is without replacement (the most common case). If we record the ordered sample 
, then the unordered sample  is a random variable (that is, a function of ). On

the other hand, if we just record the unordered sample  in the first place, then we cannot recover the ordered sample. Note also
that the number of ordered samples of size  is simply  times the number of unordered samples of size . No such simple
relationship exists when the sampling is with replacement. This will turn out to be an important point when we study probability
models based on random samples, in the next section.

Consider a sample of size  chosen without replacement from the population .

1. Give , the set of unordered samples in list form.
2. Give in list form the set of all ordered samples that correspond to the unordered sample .
3. Note that for every unordered sample, there are 6 ordered samples.
4. Give the cardinality of , the set of ordered samples.

Answer
1. 
2. 
4. 60

Y S

{Y ≥ 3} S

{(0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}
X(i, j) = i (i, j) ∈ S

Y (i, j) = j (i, j) ∈ S

{(0, 3), (0, 4), (1, 3), (1, 4), (1, 5), (1, 6)}

D m n

n m

Dn

mn

n D = m(m−1) ⋯ [m−(n−1)]m(n)

n D ( )m
n

n

D ( )m+n−1
n

n

n ∈ {1, 2, … ,m}

n

n

{0, 1} n

n {1, 2, 3, 4, 5, 6}

X = ( , , … , )X1 X2 Xn W = { , , … , }X1 X2 Xn X

W

n n! n

n = 3 {a, b, c, d, e}

T

{b, c, e}

S

T = {{a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}}
{(b, c, e), (b, e, c), (c, b, e), (c, e, b), (e, b, c), (e, c, b)}
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Traditionally in probability theory, an urn containing balls is often used as a metaphor for a finite population.

Suppose that an urn contains 50 (distinct) balls. A sample of 10 balls is selected from the urn. Find the number of samples in
each of the following cases:

1. Ordered samples with replacement
2. Ordered samples without replacement
3. Unordered samples without replacement
4. Unordered samples with replacement

Answer
1. 
2. 
3. 
4. 

Suppose again that we have a population  with  (distinct) objects, but suppose now that each object is one of two types—either
type 1 or type 0. Such populations are said to be dichotomous. Here are some specific examples:

The population consists of persons, each either male or female.
The population consists of voters, each either democrat or republican.
The population consists of devices, each either good or defective.
The population consists of balls, each either red or green.

Suppose that the population  has  type 1 objects and hence  type 0 objects. Of course, we must have .
Now suppose that we select a sample of size  without replacement from the population. Note that this model has three parameters:
the population size , the number of type 1 objects in the population , and the sample size .

Let  denote the number of type 1 objects in the sample. Then

1.  for each , if the event is considered as a subset of , the set of
ordered samples.

2.  for each , if the event is considered as a subset of , the set of unordered
samples.

3. The expression in (a) is  times the expression in (b).

Proof
1.  is the number of ways to pick the coordinates (in the ordered sample) where the type 1 objects will go,  is the

number of ways to select a permutation of  type 1 objects, and  is the number of ways to select a
permutation of  type 0 objects. The result follows from the multiplication principle.

2.  is the number of ways to select a combatination of  type 1 objects and  is the number of ways to select a
combination of  type 0 objects. The result again follows from the multiplication principle.

3. This result can be shown algebraically, but a combinatorial argument is better. For every combination of size  there are 
permutations of those objects.

A batch of 50 components consists of 40 good components and 10 defective components. A sample of 5 components is
selected, without replacement. Let  denote the number of defectives in the sample.

1. Let  denote the set of ordered samples. Find .
2. Let  denote the set of unordered samples. Find .
3. As a subset of , find  for each .

Answer
1. 
2. 
3. , , , , , 

97 656 250 000 000 000
37 276 043 023 296 000
10 272 278 170
62 828 356 305

D m

D r m−r r ∈ {0, 1, … ,m}
n

m r n

Y

#{Y = k} = ( ) (m−rn
k
r(k) )(n−k) k ∈ {0, 1, … ,n} S

#{Y = k} = ( )( )r

k

m−r

n−k
k ∈ {0, 1, … ,n} T

n!

( )n
k

r(k)

k (m−r)(n−k)

n−k

( )rk k ( )m−r
n−k

n−k

n n!

Y

S #(S)
T #(T )

T #{Y = k} k ∈ {0, 1, 2, 3, 4, 5}

254 251 200
2 118 760
#{Y = 0} = 658 008 #{Y = 1} = 913 900 #{Y = 2} = 444 600 #{Y = 3} = 93 600 #{Y = 4} = 8 400
#{Y = 5} = 252
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Run the simulation of the ball and urn experiment 100 times for the parameter values in the last exercise: , , 
. Note the values of the random variable .

Cards

Recall that a standard card deck can be modeled by the Cartesian product set

where the first coordinate encodes the denomination or kind (ace, 2–10, jack, queen, king) and where the second coordinate
encodes the suit (clubs, diamonds, hearts, spades). Sometimes we represent a card as a string rather than an ordered pair (for
example  rather than  for the queen of hearts).

Most card games involve sampling without replacement from the deck , which plays the role of the population. Thus, the basic
card experiment consists of dealing  cards from a standard deck without replacement; in this special context, the sample of cards
is often referred to as a hand. Just as in the general sampling model, if we record the ordered hand , then
the unordered hand  is a random variable (that is, a function of ). On the other hand, if we just record
the unordered hand  in the first place, then we cannot recover the ordered hand. Finally, recall that  is the poker
experiment and  is the bridge experiment. The game of poker is treated in more detail in the chapter on Games of Chance.

Suppose that a single card is dealt from a standard deck. Let  denote the event that the card is a queen and  the event that
the card is a heart. Give each of the following events in list form:

1. 
2. 
3. 
4. 
5. 

Answer
1. 
2. 
3. 
4. 
5. 

In the card experiment, set . Run the experiment 100 times and count the number of times each event in the previous
exercise occurs.

Suppose that two cards are dealt from a standard deck and the sequence of cards recorded. Let  denote the set of outcomes,
and let  denote the event that the th card is a queen and  the event that the th card is a heart for . Find the
number of outcomes in each of the following events:

1. 
2. 
3. 
4. 
5. 
6. 
7. 

Answer
1. 2652
2. 663
3. 663
4. 156
5. 51

m = 50 r = 10
n = 5 Y

D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, k} ×{♣,♢,♡,♠} (2.2.8)

q♡ (q,♡)

D

n

X = ( , , … , )X1 X2 Xn

W = { , , … , }X1 X2 Xn X

W n = 5
n = 13

Q H

Q

H

Q∪H

Q∩H

Q ∖H

Q = {q♣, q♢, q♡, q♠}
H = {1♡, 2♡, … , 10♡, j♡, q♡, k♡}
Q∪H = {1♡, 2♡, … , 10♡, j♡, q♡, k♡, q♣, q♢, q♠}
Q∩H = {q♡}
Q ∖H = {q♣, q♢, q♠}

n = 1

S

Qi i Hi i i ∈ {1, 2}

S

H1

H2

∩H1 H2

∩Q1 H1

∩Q1 H2

∪H1 H2
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6. 51
7. 1170

Consider the general card experiment in which  cards are dealt from a standard deck, and the ordered hand  is recorded.

1. Give cardinality of , the set of values of the ordered hand .
2. Give the cardinality of , the set of values of the unordered hand .
3. How many ordered hands correspond to a given unordered hand?
4. Explicitly compute the numbers in (a) and (b) when  (poker).
5. Explicitly compute the numbers in (a) and (b) when  (bridge).

Answer

3. 
4. 
5. 
6. , 
7. , 

Consider the bridge experiment of dealing 13 cards from a deck and recording the unordered hand. In the most common point
counting system, an ace is worth 4 points, a king 3 points, a queen 2 points, and a jack 1 point. The other cards are worth 0
points. Let  denote the set of outcomes of the experiment and  the point value of the hand.

1. Find the set of possible values of .
2. Find the cardinality of the event  as a subset of .

Answer
1. 
2. 

In the card experiment, set  and run the experiment 100 times. For each run, compute the value of each of the random
variable  in the previous exercise.

Consider the poker experiment of dealing 5 cards from a deck. Find the cardinality of each of the events below, as a subset of
the set of unordered hands.

1. : the event that the hand is a full house (3 cards of one kind and 2 of another kind).
2. : the event that the hand has 4 of a kind (4 cards of one kind and 1 of another kind).
3. : the event that all cards in the hand are in the same suit (the hand is a flush or a straight flush).

Answer
1. 
2. 
3. 

Run the poker experiment 1000 times. Note the number of times that the events , , and  in the previous exercise occurred.

Consider the bridge experiment of dealing 13 cards from a standard deck. Let  denote the set of unordered hands,  the
number of hearts in the hand, and  the number of queens in the hand.

1. Find the cardinality of the event  as a subset of  for each .
2. Find the cardinality of the event  as a subset of  for each .

Answer

1.  for 
2.  for 

n X

S X

T W

n = 5
n = 13

#(S) = 52(n)

#(T ) = ( )52
n

n!
311 875 2002 598 960
3 954 242 643 911 239 680 000635 013 559 600

S V

V

{V = 0} S

{0, 1, … , 37}
#{V = 0} = 2 310 789 600

n = 13
V

A

B

C

#(A) = 3744
#(B) = 624
#(C) = 5148

A B C

S Y

Z

{Y = y} S y ∈ {0, 1, … , 13}
{Z = z} S z ∈ {0, 1, 2, 3, 4}

#(Y = y) = ( )( )13
y

39
13−y y ∈ {0, 1, … , 13}

#(Z = z) = ( )( )4
z

48
4−z

z ∈ {0, 1, 2, 3, 4}
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Geometric Models

In the experiments that we have considered so far, the sample spaces have all been discrete (so that the set of outcomes is finite or
countably infinite). In this subsection, we consider Euclidean sample spaces where the set of outcomes  is continuous in a sense
that we will make clear later. The experiments we consider are sometimes referred to as geometric models because they involve
selecting a point at random from a Euclidean set.

We first consider Buffon's coin experiment, which consists of tossing a coin with radius  randomly on a floor covered with
square tiles of side length 1. The coordinates  of the center of the coin are recorded relative to axes through the center of the
square in which the coin lands. Buffon's experiments are studied in more detail in the chapter on Geometric Models and are named
for Compte de Buffon

Figure : Buffon's coin experiment

In Buffon's coin experiment, let  denote the set of outcomes,  the event that the coin does not touch the sides of the square,
and let  denote the distance form the center of the coin to the center of the square.

1. Describe  as a Cartesian product.
2. Describe  as a subset of .
3. Describe  as a subset of .
4. Express  as a function on .
5. Express the event  as a subset of .
6. Express the event  as a subset of .

Answer

1. 

2. 
3. 
4.  for 
5. 
6. 

Run Buffon's coin experiment 100 times with . For each run, note whether event  occurs and compute the value of
random variable .

A point  is chosen at random in the circular region of radius 1 in  centered at the origin. Let  denote the set of
outcomes. Let  denote the event that the point is in the inscribed square region centered at the origin, with sides parallel to
the coordinate axes. Let  denote the event that the point is in the inscribed square with vertices , .

1. Describe  mathematically and sketch the set.
2. Describe  mathematically and sketch the set.
3. Describe  mathematically and sketch the set.
4. Sketch 
5. Sketch 
6. Sketch 

Answer
1. 

S

r ≤ 1
2

(X,Y )

2.2.3

S A

Z

S

A S

Ac S

Z S

{X < Y } S

{Z ≤ }1
2

S

S = [− , ]1
2

1
2

2

A = [r− , −r]1
2

1
2

2

= {(x, y) ∈ S : x < r−  or x > −r or y < r−  or y > −r}Ac 1
2

1
2

1
2

1
2

Z(x, y) = +x2 y2− −−−−−√ (x, y) ∈ S

{X < Y } = {(x, y) ∈ S : x < y}

{Z < } = {(x, y) ∈ S : + < }1
2

x2 y2 1
4

r = 0.2 A

Z

(X,Y ) R
2 S

A

B (±1, 0) (0, ±1)

S

A

B

A∪B

A∩B

A∩Bc

S = {(x, y) : + ≤ 1}x2 y2
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2. 

3. 

Reliability

In the simple model of structural reliability, a system is composed of  components, each of which is either working or failed. The
state of component  is an indicator random variable , where 1 means working and 0 means failure. Thus, 

 is a vector of indicator random variables that specifies the states of all of the components, and therefore
the set of outcomes of the experiment is . The system as a whole is also either working or failed, depending only on
the states of the components and how the components are connected together. Thus, the state of the system is also an indicator
random variable and is a function of . The state of the system (working or failed) as a function of the states of the components is
the structure function.

A series system is working if and only if each component is working. The state of the system is

A parallel system is working if and only if at least one component is working. The state of the system is

More generally, a  out of  system is working if and only if at least  of the  components are working. Note that a parallel
system is a 1 out of  system and a series system is an  out of  system. A  out of  system is a majority rules system.

The state of the  out of  system is . The structure function can also be expressed as a polynomial
in the variables.

Explicitly give the state of the  out of 3 system, as a polynomial function of the component states , for each 
.

Answer
1. 
2. 
3. 

In some cases, the system can be represented as a graph or network. The edges represent the components and the vertices the
connections between the components. The system functions if and only if there is a working path between two designated vertices,
which we will denote by  and .

Find the state of the Wheatstone bridge network shown below, as a function of the component states. The network is named for
Charles Wheatstone.

Answer

Figure : The Wheatstone bridge network

Not every function  makes sense as a structure function. Explain why the following properties might be
desirable:

1.  and 
2.  is an increasing function, where  is given the ordinary order and  the corresponding product order.
3. For each , there exist  and  in  all of whose coordinates agree, except  and , and 

 while .

Answer

A = {(x, y) : − ≤ x ≤ , − ≤ y ≤ }1

2√

1

2√

1

2√

1

2√

B = {(x, y) ∈ S : −1 ≤ |x+y| ≤ 1, −1 ≤ |y−x| ≤ 1}

n

i Xi

X = ( , , … , )X1 X2 Xn

S = {0, 1}n

X

U = ⋯ = min{ , , … , }X1X2 Xn X1 X2 Xn (2.2.9)

V = 1 −(1 − ) (1 − ) ⋯ (1 − ) = max { , , … , }X1 X2 Xn X1 X2 Xn (2.2.10)

k n k n

n n n k 2k

k n = 1 ( ≥ k)Un,k ∑n
i=1 Xi

k ( , , )X1 X2 X3

k ∈ {1, 2, 3}

= + + − − − +U3,1 X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3

= + + −2U3,2 X1X2 X1X3 X2X3 X1X2X3

=U3,3 X1X2X3

a b

2.2.4

u : {0, 1 → {0, 1}}n

u(0, 0, … , 0) = 0 s(1, 1, … , 1) = 1
u {0, 1} {0, 1}n

i ∈ {1, 2, … ,n} x y {0, 1}n = 0xi = 1yi
u(x) = 0 u(y) = 1
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1. This means that if all components have failed then the system has failed, and if all components are working then the system
is working.

2. This means that if a particular component is changed from failed to working, then the system may also go from failed to
working, but not from working to failed. That is, the system can only improve.

3. This means that every component is relevant to the system, that is, there exists a configuration in which changing
component  from failed to working changes the system from failed to working.

The model just discussed is a static model. We can extend it to a dynamic model by assuming that component  is initially working,
but has a random time to failure , taking values in , for each . Thus, the basic outcome of the experiment
is the random vector of failure times , and so the set of outcomes is .

Consider the dynamic reliability model for a system with structure function  (valid in the sense of the previous exercise).

1. The state of component  at time  is .
2. The state of the system at time  is .
3. The time to failure of the system is .

Suppose that we have two devices and that we record , where  is the failure time of device 1 and  is the failure time
of device 2. Both variables take values in the interval , where the units are in hundreds of hours. Sketch each of the
following events:

1. The set of outcomes 
2. 
3. 

Answer
1. , the first quadrant of the coordinate plane.
2. . This is the region below the diagonal line .
3. . This is the region above (or to the right) of the line .

Genetics

Please refer to the discussion of genetics in the section on random experiments if you need to review some of the definitions in this
section.

Recall first that the ABO blood type in humans is determined by three alleles: , , and . Furthermore,  is recessive and  and 
are co-dominant.

Suppose that a person is chosen at random and his genotype is recorded. Give each of the following in list form.

1. The set of outcomes S
2. The event that the person is type 
3. The event that the person is type 
4. The event that the person is type 
5. The event that the person is type 

Answer
1. 
2. 
3. 
4. 
5. 

Suppose next that pod color in certain type of pea plant is determined by a gene with two alleles:  for green and  for yellow, and
that  is dominant.

Suppose that  (distinct) pea plants are collected and the sequence of pod color genotypes is recorded.

i

i

Ti [0, ∞) i ∈ {1, 2, … ,n}
( , , … , )T1 T2 Tn [0, ∞)n

u

i t ≥ 0 (t) = 1 ( > t)Xi Ti
t X(t) = s [ (t), (t), … , (t)]X1 X2 Xn

T = min{t ≥ 0 : X(t) = 0}

(X,Y ) X Y

[0, ∞)

S

{X < Y }
{X+Y > 2}

S = [0, ∞)2

{X < Y } = {(x, y) ∈ S : x < y} x = y

{X+Y > 2} = {(x, y) ∈ S : x+y > 2 x+y = 2

a b o o a b

A

B

AB

O

S = {aa, ab, ao, bb, bo, oo}
A = {aa, ao}
B = {bb, bo}
AB = {ab}
O = {oo}

g y

g

n
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1. Give the set of outcomes  in Cartesian product form and find .
2. Let  denote the number of plants with green pods. Find  (as a subset of ) for each .

Answer
1. , 
2. 

Next consider a sex-linked hereditary disorder in humans (such as colorblindness or hemophilia). Let  denote the healthy allele
and  the defective allele for the gene linked to the disorder. Recall that  is recessive for women.

Suppose that  women are sampled and the sequence of genotypes is recorded.

1. Give the set of outcomes  in Cartesian product form and find .
2. Let  denote the number of women who are completely healthy (genotype ). Find  (as a subset of ) for

each .

Answer
1. , 
2. 

Radioactive Emissions

The emission of elementary particles from a sample of radioactive material occurs in a random way. Suppose that the time of
emission of the th particle is a random variable  taking values in . If we measure these arrival times, then basic outcome
vector is  and so the set of outcomes is .

Run the simulation of the gamma experiment in single-step mode for different values of the parameters. Observe the arrival
times.

Now let  denote the number of emissions in the interval . Then

1. .
2.  if and only if .

Run the simulation of the Poisson experiment in single-step mode for different parameter values. Observe the arrivals in the
specified time interval.

Statistical Experiments

In the basic cicada experiment, a cicada in the Middle Tennessee area is captured and the following measurements recorded:
body weight (in grams), wing length, wing width, and body length (in millimeters), species type, and gender. The cicada data
set gives the results of 104 repetitions of this experiment.

1. Define the set of outcomes  for the basic experiment.
2. Let  be the event that a cicada is female. Describe  as a subset of . Determine whether  occurs for each cicada in the

data set.
3. Let  denote the ratio of wing length to wing width. Compute  for each cicada.
4. Give the set of outcomes for the compound experiment that consists of 104 repetitions of the basic experiment.

Answer

For gender, let 0 denote female and 1 male, for species, let 1 denote tredecula, 2 tredecim, and 3 tredecassini.

1. 
2. 
5. 

In the basic M&M experiment, a bag of M&Ms (of a specified size) is purchased and the following measurements recorded:
the number of red, green, blue, yellow, orange, and brown candies, and the net weight (in grams). The M&M data set gives the
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results of 30 repetitions of this experiment.

1. Define the set of outcomes  for the basic experiment.
2. Let  be the event that a bag contains at least 57 candies. Describe  as a subset of .
3. Determine whether  occurs for each bag in the data set.
4. Let  denote the total number of candies. Compute  for each bag in the data set.
5. Give the set of outcomes for the compound experiment that consists of 30 repetitions of the basic experiment.

Answer
1. 
2. 
5. 
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