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11.7: The Beta-Bernoulli Process
       

An interesting thing to do in almost any parametric probability model is to “randomize” one or more of the parameters. Done in a
clever way, this often leads to interesting new models and unexpected connections between models. In this section we will
randomize the success parameter in the Bernoulli trials process. This leads to interesting and surprising connections with Pólya's
urn process.

Basic Theory

Definitions

First, recall that the beta distribution with left parameter  and right parameter  is a continuous distribution on
the interval  with probability density function  given by

where  is the beta function. So  is simply the normalizing constant for the function  on the interval 
. Here is our main definition:

Suppose that  has the beta distribution with left parameter  and right parameter . Next suppose that 
 is a sequence of indicator random variables with the property that given ,  is a

conditionally independent sequence with

Then  is the beta-Bernoulli process with parameters  and .

In short, given , the sequence  is a Bernoulli trials sequence with success parameter . In the usual language of reliability, 
 is the outcome of trial , where 1 denotes success and 0 denotes failure. For a specific application, suppose that we select a

random probability of heads according to the beta distribution with with parameters  and , and then toss a coin with this
probability of heads repeatedly.

Outcome Variables

What's our first step? Well, of course we need to compute the finite dimensional distributions of . Recall that for  and 
,  denotes the ascending power . By convention, a product over an empty index set is 1, so 

.

Suppose that  and . Let . Then

Proof

First, note that  by the conditional independence. Thus,
conditioning on  gives

The last step uses a property of the beta function.

From this result, it follows that Pólya's urn process with parameters  is equivalent to the beta-Bernoulli process with
parameters  and , quite an interesting result. Note that since the joint distribution above depends only on 
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, the sequence  is exchangeable. Finally, it's interesting to note that the beta-Bernoulli process with
parameters  and  could simply be defined as the sequence with the finite-dimensional distributions above, without reference to
the beta distribution! It turns out that every exchangeable sequence of indicator random variables can be obtained by randomizing
the success parameter in a sequence of Bernoulli trials. This is de Finetti's theorem, named for Bruno de Finetti, which is studied in
the section on backwards martingales.

For each 

1. 
2. 

Proof

Since the sequence is exchangeable,  has the same distribution as , so . The mean and variance now
follow from standard results for indicator variables.

Thus  is a sequence of identically distributed variables, quite surprising at first but of course inevitable for any exchangeable
sequence. Compare the joint distribution with the marginal distributions. Clearly the variables are dependent, so let's compute the
covariance and correlation of a pair of outcome variables.

Suppose that  are distinct. Then

1. 

2. 

Proof

Since the variables are exchangeable, . The results now follow from
standard formulas for covariance and correlation.

Thus, the variables are positively correlated. It turns out that in any infinite sequence of exchangeable variables, the the variables
must be nonnegatively correlated. Here is another result that explores how the variables are related.

Suppose that  and . Let . Then

Proof

Using the joint distribution,

The beta-Bernoulli model starts with the conditional distribution of  given . Let's find the conditional distribution in the other
direction.

Suppose that  and . Let . Then the conditional distribution of  given 
 is beta with left parameter  and right parameter . Hence

Proof

This follows from Bayes' theorem. The conditional PDF  is given by

+ +⋯ +x1 x2 xn X

a b

i ∈ N+

E( ) =Xi
a

a+b

var( ) =Xi
a

a+b

b

a+b

Xi X1 P( = 1) =Xi
a

a+b

X

i, j∈ N+

cov( , ) =Xi Xj
a b

(a+b (a+b+1))2

cor( , ) =Xi Xj
1

a+b+1

P( = 1, = 1) = P( = 1, = 1) =Xi Xj X1 X2
a

a+b

a+1

a+b+1

n ∈ N+ ( , , … , ) ∈ {0, 1x1 x2 xn }n k = ∑n
i=1 xi

P( = 1 ∣ = , = , … = ) =Xn+1 X1 x1 X2 x2 Xn xn
a+k

a+b+n
(11.7.7)

P( = 1 ∣ = , = , … = )Xn+1 X1 x1 X2 x2 Xn xn =
P( = , = , … = , = 1)X1 x1 X2 x2 Xn xn Xn+1

P( = , = , … = )X1 x1 X2 x2 Xn xn

= =
a[k+1]b[n−k]

(a+b)[n+1]

(a+b)[n]

a[k]b[n−k]

a+k

a+b+n

X P

n ∈ N+ ( , , … , ) ∈ {0, 1x1 x2 xn }n k = ∑n
i=1 xi P

( = , , = , … , = )X1 x1 X2 x2 Xn xn a+k b+(n−k)

E(P ∣ = , = , … , = ) =X1 x1 X2 x2 Xn xn
a+k

a+b+k
(11.7.8)

g(⋅ ∣ , , … , )x1 x2 xn

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10239?pdf


11.7.3 https://stats.libretexts.org/@go/page/10239

The numerator is

The denominator is simply the normalizing constant for the expression, as a function of  and is 
. Hence

The last result follows since the mean of the beta distribution is the left parameter divided by the sum of the parameters.

Thus, the left parameter increases by the number of successes while the right parameter increases by the number of failures. In the
language of Bayesian statistics, the original distribution of  is the prior distribution, and the conditional distribution of  given
the data  is the posterior distribution. The fact that the posterior distribution is beta whenever the prior distribution
is beta means that the beta distributions is conjugate to the Bernoulli distribution. The conditional expected value in the last
theorem is the Bayesian estimate of  when  is modeled by the random variable . These concepts are studied in more generality
in the section on Bayes Estimators in the chapter on Point Estimation. It's also interesting to note that the expected values in the last
two theorems are the same: If ,  and  then

Run the simulation of the beta coin experiment for various values of the parameter. Note how the posterior probability density
function changes from the prior probability density function, given the number of heads.

The Number of Successes

It's already clear that the number of successes in a given number of trials plays an important role, so let's study these variables. For 
, let

denote the number of successes in the first  trials. Of course,  is the partial sum process associated with 
.

 has probability density function given by

Proof

Every bit string of length  with 1 occurring exactly  times has the probability given in the joint distribution above. There are 
 such bit strings.

The distribution of  is known as the beta-binomial distribution with parameters , , and .

In the simulation of the beta-binomial experiment, vary the parameters and note how the shape of the probability density
function of  (discrete) parallels the shape of the probability density function of  (continuous). For various values of the
parameters, run the simulation 1000 times and compare the empirical density function to the probability density function.

The case where the parameters are both 1 is interesting.

If , so that  is uniformly distributed on , then  is uniformly distributed on .
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Proof

Note that  and  for . Hence, from the general PDF  above

Next, let's compute the mean and variance of .

The mean and variance of  are

1. 

2. 

Proof

These results follow from the mean and covariance results given above:

In the simulation of the beta-binomial experiment, vary the parameters and note the location and size of the mean-standard
deviation bar. For various values of the parameters, run the simulation 1000 times and compare the empirical moments to the
true moments.

We can restate the conditional distributions in the last subsection more elegantly in terms of .

Let .

1. The conditional distribution of  given  is

2. The conditional distribution of  given  is beta with left parameter  and right parameter . In
particular

Proof

The proof is easy using the nesting property of conditional expected value and the fact that the conditional distributions given 
 depend only on .

1. Note that

2. Similarly, if  is measurable then  depends only on  and so

Once again, the conditional expected value  is the Bayesian estimator of . In particular, if , so that  has the
uniform distribution on , then . This is Laplace's rule of succession, another interesting
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connection. The rule is named for Pierre Simon Laplace, and is studied from a different point of view in the section on
Independence.

The Proportion of Successes

For , let

so that  is the sample mean of , or equivalently the proportion of successes in the first  trials. Properties of 
 follow easily from the corresponding properties of . In particular,  for  as

given above, so let's move on to the mean and variance.

For , the mean and variance of  are

1. 
2. 

Proof

These results follow from the mean and variance of  above and properties of expected value and variance:

1. 
2. 

So  is constant in  while  as . These results suggest that perhaps 
has a limit, in some sense, as . For an ordinary sequence of Bernoulli trials with success parameter , we know
from the law of large numbers that  as  with probability 1 and in mean (and hence also in distribution). What
happens here when the success probability  has been randomized with the beta distribution? The answer is what we might hope.

 as  with probability 1 and in mean square, and hence also in in distribution.

Proof

Let  denote the PDF of . For convergence with probability 1, we condition on 

For convergence in mean square, once again we condition on . Note that

Hence by the dominated convergence theorem,

Proof of convergence in distribution

Convergence with probability 1 implies convergence in distribution, but it's interesting to gove a direct proof. For ,
note that
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Substituting and doing some algebra we get

The sum in the square brackets is  where  has the ordinary binomial distribution with
parameters  and . But  converges (in every sense) to  as  so  as . So by
the dominated convergence theorem,

Recall again that the Bayesian estimator of  based on  is

It follows from the last theorem that  with probability 1, in mean square, and in distribution. The stochastic process
 that we have seen several times now is of fundamental importance, and turns out to

be a martingale. The theory of martingales provides powerful tools for studying convergence in the beta-Bernoulli process.

The Trial Number of a Success

For , let  denote the trial number of the th success. As we have seen before in similar circumstances, the process 
 can be defined in terms of the process :

Note that  takes values in . The random processes  and  are inverses of each
other in a sense.

For  and  with ,

1.  if and only if 
2.  if and only if  and 

The probability denisty function of  is given by

Proof 1

As usual, we can condition on  and use known results for ordinary Bernoulli trials. Given , random variable  has the
negative binomial distribution with parameters  and . Hence

Proof 2

In this proof, we condition on . Using the PDF of  and the result above,
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The distribution of  is known as the beta-negative binomial distribution with parameters , , and .

If  so that  is uniformly distributed on , then

Proof

Recall again that  and  for . Hence from the previous result,

In the simulation of the beta-negative binomial experiment, vary the parameters and note the shape of the probability density
function. For various values of the parameters, run the simulation 1000 times and compare the empirical density function to the
probability density function.

The mean and variance of  are

1.  if .

2. 

Proof

From our work with the negative binomial distribution we know that  and .

Thus, conditioning on  we have

which gives part (a). Similarly

Simplifying and using part (a) gives part (b).

In the simulation of the beta-negative binomial experiment, vary the parameters and note the location and size of the mean
standard deviation bar. For various values of the parameters, run the simulation 1000 times and compare the empirical

moments to the true moments.
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