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4.10: Conditional Expected Value Revisited
         

Conditional expected value is much more important than one might at first think. In fact, conditional expected value is at the core of modern probability theory because it
provides the basic way of incorporating known information into a probability measure.

Basic Theory

Definition

As usual, our starting point is a random experiment modeled by a probability space , so that  is the set of outcomes,,  is the -algebra of events, and  is the
probability measure on the sample space . In our first elementary discussion, we studied the conditional expected value of a real-value random variable  given a
general random variable . The more general approach is to condition on a sub -algebra  of . The sections on -algebras and measure theory are essential
prerequisites for this section.

Before we get to the definition, we need some preliminaries. First, all random variables mentioned are assumed to be real valued. next the notion of equivalence plays a
fundamental role in this section. Next recall that random variables  and  are equivalent if . Equivalence really does define an equivalence relation on
the collection of random variables defined on the sample space. Moreover, we often regard equivalent random variables as being essentially the same object. More precisely
from this point of view, the objects of our study are not individual random variables but rather equivalence classes of random variables under this equivalence relation.
Finally, for , recall the notation for the expected value of  on the event 

assuming of course that the expected value exists. For the remainder of this subsection, suppose that  is a sub -algebra of .

Suppose that  is a random variable with . The conditional expected value of  given  is the random variable  defined by the following
properties:

1.  is measurable with repsect to .
2. If  then 

The basic idea is that  is the expected value of  given the information in the -algebra . Hopefully this idea will become clearer during our study. The
conditions above uniquely define  up to equivalence. The proof of this fact is a simple application of the Radon-Nikodym theorem, named for Johann Radon and
Otto Nikodym

Suppose again that  is a random variable with .

1. There exists a random variable  satisfying the definition.
2. If  and  satisfy the definition, then  so that  and  are equivalent.

Proof
1. Note that  for  defines a (signed) measure on . Moreover, if  and  then . Hence  is absolutely continuous with

respect to the restriction of  to . By the Radon-Nikodym theorem, there exists a random variable  that is measurable with respect to  such that 
 for . That is,  is the density or derivative of  with respect to  on .

2. This follows from the uniqueness of the Radon-Nikodym derivative, up to equivalence.

The following characterization might seem stronger but in fact in equivalent to the definition.

Suppose again that  is a random variable with . Then  is characterized by the following properties:

1.  is measurable with respect to 
2. If  is measurable with respect to  and  then .

Proof

We have to show that part (b) in the definition is equivalent to part (b) here. First (b) here implies (b) in the definition since  is -measurable if . Conversely
suppose that (b) in the definition holds. We will show that (b) here holds by a classical bootstrapping argument.. First  if  for some 

. Next suppose that  is a simple random variable that is -measurable. That is,  where  is a finite index set,  for , and 
for . then

Next suppose that  is nonnegative and -measurable. Then there exists a sequence of simple -measurable random variables  with  as .
Then by the previous step,  for each . Letting  and using the monotone convergence theorem we have .
Finally, suppose that  is a general -measurable random variable. Then  where  and  are the usual positive and negative parts of . These
parts are nonnegative and -measurable, so by the previous step,  and . hence

Properties

Our next discussion concerns some fundamental properties of conditional expected value. All equalities and inequalities are understood to hold modulo equivalence, that is,
with probability 1. Note also that many of the proofs work by showing that the right hand side satisfies the properties in the definition for the conditional expected value on
the left side. Once again we assume that  is a sub -algebra of .

Our first property is a simple consequence of the definition:  and  have the same mean.

Suppose that  is a random variable with . Then .

(Ω,F ,P) Ω F σ P

(Ω,F) X

Y σ G F σ

X1 X2 P( = ) = 1X1 X2

A ∈F X A

E(X;A) =E(X )1A (4.10.1)

G σ F

X E(|X|) < ∞ X G E(X ∣ G )

E(X ∣ G ) G

A ∈ G E[E(X ∣ G );A] =E(X;A)

E(X ∣ G ) X σ G

E(X ∣ G )

X E(|X|) < ∞

V

V1 V2 P( = ) = 1V1 V2 V1 V2

ν(A) =E(X;A) A ∈ G G A ∈ G P(A) = 0 ν(A) = 0 ν

P G V G

ν(A) =E(V ;A) A ∈ G V ν P G

X E(|X|) < ∞ E(X ∣ G )

E(X ∣ G ) G

U G E(|UX|) < ∞ E[UE(X ∣ G )] =E(UX)

1A G A ∈ G
E[UE(X ∣ G )] =E(UX) U = 1A

A ∈ G U G U = ∑i∈I ai1Ai I ≥ 0ai i ∈ I ∈ GAi

i ∈ I

E[UE(X ∣ G )] =E[ E(X ∣ G )] = E[ E(X ∣ G )] = E( X) =E( X) =E(UX)∑
i∈I

ai1Ai
∑
i∈I

ai 1Ai
∑
i∈I

ai 1Ai
∑
i∈I

ai1Ai
(4.10.2)

U G G ( , , …)U1 U2 ↑ UUn n → ∞
E[ E(X ∣ G )] =E( X)Un Un n n → ∞ E[UE(X ∣ G )] =E(UX)

U G U = −U+ U− U+ U− U

G E[ E(X ∣ G )] =E( X)U+ U+
E[ E(X ∣ G )] =E( X)U− U−

E[UE(X ∣ G )] =E[( − )E(X ∣ G )] =E[ E(X ∣ G )] −E[ E(X ∣ G )] =E( X) −E( X) =E(UX)U+ U− U+ U− U+ U− (4.10.3)

G sigma F

X E(X ∣ G )

X E(|X|) < ∞ E[E(X ∣ G )] =E(X)
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Proof

This follows immediately by letting  in the definition.

The result above can often be used to compute , by choosing the -algebra  in a clever way. We say that we are computing  by conditioning on . Our next
properties are fundamental: every version of expected value must satisfy the linearity properties. The first part is the additive property and the second part is the scaling
property.

Suppose that  and  are random variables with  and , and that . Then

1. 
2. 

Proof
1. Note that  so  is defined. We show that  satisfies the conditions in the definition for 

. Note first that  is -measurable since both terms are. If  then

2. Note that  so  is defined. We show that  satisfy the conditions in the definition for . Note first that 
 is -measurable since the second factor is. If  then

The next set of properties are also fundamental to every notion of expected value. The first part is the positive property and the second part is the increasing property.

Suppose again that  and  are random variables with  and .

1. If  then 
2. If  then 

Proof
1. Let . Note that  and hence . Since  with probability 1 we have . On the other hand, if 

 then  which is a contradiction. Hence we must have .
2. Note that if  then . Hence by (a) and the additive property,  so .

The next few properties relate to the central idea that  is the expected value of  given the information in the -algebra .

Suppose that  and  are random variables with  and  and that  is measurable with respect to . Then .

Proof

We show that  satisfy the in properties that characterize . First,  is -measurable since both factors are. If  is -measurable with 
 then  is also -measurable and hence

Compare this result with the scaling property. If  is measurable with respect to  then  is like a constant in terms of the conditional expected value given . On the other
hand, note that this result implies the scaling property, since a constant can be viewed as a random variable, and as such, is measurable with respect to any -algebra. As a
corollary to this result, note that if  itself is measurable with respect to  then . The following result gives the other extreme.

Suppose that  is a random variable with . If  and  are independent then .

Proof

We show that  satisfy the properties in the definiton for . First of course,  is -measurable as a constant random variable. If  then  and 
 are independent and hence

Every random variable  is independent of the trivial -algebra  so it follows that .

The next properties are consistency conditions, also known as the tower properties. When conditioning twice, with respect to nested -algebras, the smaller one
(representing the least amount of information) always prevails.

Suppose that  is a random variable with  and that  is a sub -algebra of . Then

1. 
2. 

Proof
1. Note first that  is -measurable and hence also -measurable. Thus by (7), .
2. We show that  satisfies the coonditions in the definition for . Note again that  is -measurable. If  then 

and hence

The next result gives Jensen's inequality for conditional expected value, named for Johan Jensen.

Suppose that  takes values in an interval  and that  is convex. If  and  then

A = Ω

E(X) σ G E(X) G

X Y E(|X|) < ∞ E(|Y |) < ∞ c ∈ R

E(X+Y ∣ G ) =E(X ∣ G ) +E(Y ∣ G )
E(cX ∣ G ) = cE(X ∣ G )

E(|X+Y |) ≤E(|X|) +E(|Y |) < ∞ E(X+Y ∣ G ) E(X ∣ G ) +E(Y ∣ G )
E(X+Y ∣ G ) E(X ∣ G ) +E(Y ∣ G ) G A ∈ G

E{[E(X ∣ G ) +E(Y ∣ G )];A} =E[E(X ∣ G );A] +E[E(Y ∣ G );A] =E(X;A) +E(Y ;A) =E[X+Y ;A] (4.10.4)

E(|cX|) = |c|E(|X|) < ∞ E(cX ∣ G ) cE(X ∣ G ) E(cX ∣ G )
cE(X ∣ G ) G A ∈ G

E[cE(X ∣ G );A] = cE[E(X ∣ G );A] = cE(X;A) =E(cX;A) (4.10.5)

X Y E(|X|) < ∞ E(|Y |) < ∞

X ≥ 0 E(X ∣ G ) ≥ 0
X ≤ Y E(X ∣ G ) ≤E(Y ∣ G )

A = {E(X ∣ G ) < 0} A ∈ G E(X;A) =E[E(X ∣ G );A] X ≥ 0 E(X;A) ≥ 0
P(A) > 0 E[E(X ∣ G );A] < 0 P(A) = 0

X ≤ Y Y −X ≥ 0 E(Y −X ∣ G ) =E(Y ∣ G ) −E(X ∣ G ) ≥ 0 E(Y ∣ G ) ≥E(X ∣ G )

E(X ∣ G ) X σ G

X V E(|X|) < ∞ E(|XV |) < ∞ V G E(VX ∣ G ) = V E(X ∣ G )

V E(X ∣ G ) E(VX ∣ G ) V E(X ∣ G ) G U G

E(|UVX|) < ∞ UV G

E[UV E(X ∣ G )] =E(UVX) =E[U(VX)] (4.10.6)

V G V G

σ

X G E(X ∣ G ) = X

X E(|X|) < ∞ X G E(X ∣ G ) =E(X)

E(X) E(X ∣ G ) E(X) G A ∈ G X

1A

E(X;A) =E(X)P(A) =E[E(X);A] (4.10.7)

X σ {∅, Ω} E(X ∣ {∅, Ω}) =E(X)

σ

X E(|X|) < ∞ H σ G

E[E(X ∣ H ) ∣ G ] =E(X ∣ H )
E[E(X ∣ G ) ∣ H ] =E(X ∣ H )

E(X ∣ H ) H G E[E(X ∣ H ) ∣ G ] =E(X ∣ H )
E(X ∣ H ) E[E(X ∣ G ) ∣ H ] E(X ∣ H ) H A ∈H A ∈ G

E[E(X ∣ G );A] =E(X;A) =E[E(X ∣ H );A] (4.10.8)

X S ⊆R g : S →R E(|X|) < ∞ E(|g(X)| < ∞
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Proof

As with Jensen's inequality for ordinary expected value, the best proof uses the characterization of convex functions in terms of supporting lines: For each  there
exist numbers  and  (depending on ) such that

 for 

A convex function and several supporting lines
Convex function

Random variables  and  takes values in . We can construct a random supporting line at . That is, there exist random variables  and ,
measurable with respect to , such that

1. 
2. 

We take conditional expected value through the inequality in (b) and then use properties of conditional expected value and property (a):

Note that the second step uses the fact that  and  are measurable with respect to .

Conditional Probability

For our next discussion, suppose as usual that  is a sub -algebra of . The conditional probability of an event  given  can be defined as a special case of conditional
expected value. As usual, let  denote the indicator random variable of .

For  we define

Thus, we have the following characterizations of conditional probability, which are special cases of the definition and the alternate version:

If  then  is characterized (up to equivalence) by the following properties

1.  is measurable with respect to .
2. If  then 

Proof

For part (b), note that

If  then  is characterized (up to equivalence) by the following properties

1.  is measurable with respect to .
2. If  is measurable with respect to  and  then 

The properties above for conditional expected value, of course, have special cases for conditional probability. In particular, we can compute the probability of an event by
conditioning on a -algebra:

If  then .

Proof

This is a direct result of the mean property since .

Again, the last theorem is often a good way to compute  when we know the conditional probability of  given . This is a very compact and elegant version of the
law of total probability given first in the section on Conditional Probability in the chapter on Probability Spaces and later in the section on Discrete Distributions in the
Chapter on Distributions. The following theorem gives the conditional version of the axioms of probability.

The following properties hold (as usual, modulo equivalence):

1.  for every 
2. 
3. If  is a countable disjoint subset of  then 

Proof
1. This is a direct consequence of (6).
2. This is trivial since .
3. We show that the right side satisfies the conditions in (11) that define the left side. Note that  is -measurable since each term in the sum has this

property. Let . then

From the last result, it follows that other standard probability rules hold for conditional probability given  (as always, modulo equivalence). These results include

the complement rule

E[g(X) ∣ G ] ≥ g[E(X ∣ G )] (4.10.9)

t ∈ S

a b t

a+bt = g(t)
a+bx ≤ g(x) x ∈ S

X E(X ∣ G ) S E(X ∣ G ) A B

G

A+BE(X ∣ G ) = g[E(X ∣ G )]
A+BX ≤ g(X)

E[g(X) ∣ G ] ≥E(A+BX ∣ G ) = A+BE(X ∣ G ) = g[E(X ∣ G ] (4.10.10)

A B G

G σ F A G

1A A

A ∈F

P(A ∣ G ) =E( ∣ G )1A (4.10.11)

A ∈F P(A ∣ G )

P(A ∣ G ) G

B ∈ G E[P(A ∣ G );B] = P(A∩B)

E[ P(A ∣ G )] =E[ E( ∣ G )] =E( ) =E( ) = P(A∩B)1B 1B 1A 1A1B 1A∩B (4.10.12)

A ∈F P(A ∣ G )

P(A ∣ G ) G

U G E(|U|) < ∞ E[UP(A ∣ G )] =E(U;A)

σ

A ∈F P(A) =E[P(A ∣ G )]

E( ) = P(A)1A

P(A) A G

P(A ∣ G ) ≥ 0 A ∈F
P(Ω ∣ G ) = 1

{ : i ∈ I}Ai F P( G ) = P( ∣ G )⋃i∈I Ai ∣∣ ∑i∈I Ai

= 11Ω

P( ∣ G )∑i∈I Ai G

B ∈ G

E[ P( ∣ G );B] = E[P( ∣ G );B] = P( ∩B) = P(B∩ )∑
i∈I

Ai ∑
i∈I

Ai ∑
i∈I

Ai ⋃
i∈I

Ai (4.10.13)

G
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the increasing property
Boole's inequality
Bonferroni's inequality
the inclusion-exclusion laws

However, it is not correct to state that  is a probability measure, because the conditional probabilities are only defined up to equivalence, and so the mapping
does not make sense. We would have to specify a particular version of  for each  for the mapping to make sense. Even if we do this, the mapping may not
define a probability measure. In part (c), the left and right sides are random variables and the equation is an event that has probability 1. However this event depends on the
collection . In general, there will be uncountably many such collections in , and the intersection of all of the corresponding events may well have probability
less than 1 (if it's measurable at all). It turns out that if the underlying probability space  is sufficiently “nice” (and most probability spaces that arise in
applications are nice), then there does in fact exist a regular conditional probability. That is, for each , there exists a random variable  satisfying the
conditions in (12) and such that with probability 1,  is a probability measure.

The following theorem gives a version of Bayes' theorem, named for the inimitable Thomas Bayes.

Suppose that  and . then

Proof

The proof is absolutely trivial. By definition of conditional probability given , the numerator is  and the denominator is . Nonetheless, Bayes' theorem
is useful in settings where the expected values in the numerator and denominator can be computed directly

Basic Examples

The purpose of this discussion is to tie the general notions of conditional expected value that we are studying here to the more elementary concepts that you have seen
before. Suppose that  is an event (that is, a member of ) with . If  is another event, then of course, the conditional probability of  given  is

If  is a random variable then the conditional distribution of  given  is the probability measure on  given by

If  then the conditional expected value of  given , denoted , is simply the mean of this conditional distribution.

Suppose now that  is a countable partition of the sample space  into events with positive probability. To review the jargon, ; the index set  is
countable;  for distinct ; ; and  for . Let , the -algebra generated by . The elements of  are of the form 

 for . Moreover, the random variables that are measurable with respect to  are precisely the variables that are constant on  for each . The -algebra 
 is said to be countably generated.

If  then  is the random variable whose value on  is  for each .

Proof

Let  denote the random variable that takes the value  on  for each . First,  is measurable with respect to  since  is constant on  for each 
. So we just need to show that  for each . Thus, let  where . Then

In this setting, the version of Bayes' theorem in (15) reduces to the usual elementary formulation: For ,  and 
. Hence

If  is a random variable with , then  is the random variable whose value on  is  for each .

Proof

Let  denote the random variable that takes the value  on  for each . First,  is measurable with respect to  since  is constant on  for each 
. So we just need to show that  for each . Thus, let  where . Then

The previous examples would apply to  if  is a discrete random variable taking values in a countable set . In this case, the partition is simply 
. On the other hand, suppose that  is a random variable taking values in a general set  with -algebra . The real-valued random variables

that are measurable with respect to  are (up to equivalence) the measurable, real-valued functions of .

Specializing further, Suppose that  takes values in ,  takes values in  (where  and  are Lebesgue measurable) and that  has a joint continuous
distribution with probability density function . Then  has probability density function  given by

A ↦ P(A ∣ G )
E(A ∣ G ) A ∈F

{ : i ∈ I}Ai F

(Ω,F ,P)
A ∈F P(A ∣ G )

A ↦ P(A ∣ G )

A ∈ G B ∈F

P(A ∣ B) =
E[P(B ∣ G );A]

E[P(B ∣ G )]
(4.10.14)

G P(A∩B) P (B)

A F P(A) > 0 B B A

P(B ∣ A) =
P(A∩B)

P(A)
(4.10.15)

X X A R

R ↦ P(X ∈ R ∣ A) =  for measurable R ⊆R
P({X ∈ R} ∩A)

P(A)
(4.10.16)

E(|X|) < ∞ X A E(X ∣ A)

A = { : i ∈ I}Ai Ω A ⊆F I

∩ = ∅Ai Aj i, j∈ I = Ω⋃i∈I Ai P( ) > 0Ai i ∈ I G = σ(A ) σ A G

⋃j∈J Aj J ⊆ I G Ai i ∈ I σ

G

B ∈F P(B ∣ G ) Ai P(B ∣ )Ai i ∈ I

U P(B ∣ )Ai Ai i ∈ I U G U Ai

i ∈ I E(U;A) = P(A∩B) A ∈ G A = ⋃j∈J Aj J ⊆ I

E(U;A) = E(U; ) = P(B ∣ )P( ) = P(A∩B)∑
j∈J

Aj ∑
j∈J

Aj Aj (4.10.17)

i ∈ I E[P(B ∣ G ); ] = P( )P(B ∣ )Ai Ai Ai

E[P(B ∣ G )] = P( )P(B ∣ )∑j∈I Aj Aj

P( ∣ B) =Ai

P( )P(B ∣ )Ai Ai

P( )P(B ∣ )∑j∈I Aj Aj

(4.10.18)

X E(|X|) < ∞ E(X ∣ G ) Ai E(X ∣ )Ai i ∈ I

U E(X ∣ )Ai Ai i ∈ I U G U Ai

i ∈ I E(U;A) =E(X;A) A ∈ G A = ⋃j∈J Aj J ⊆ I

E(U;A) = E(U; ) = E(X ∣ )P( ) = E(X;A)∑
j∈J

Aj ∑
j∈J

Aj Aj (4.10.19)

G = σ(Y ) Y T

A = {{Y = y} : y ∈ T} Y T σ T

G = σ(Y ) Y

X S ⊆R Y T ⊆R
n S T (X,Y )

f Y h

h(y) = f(x, y)dx, y ∈ T∫
S

(4.10.20)
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Assume that  for . Then for , a conditional probability density function of  given  is defined by

This is precisely the setting of our elementary discussion of conditional expected value. If  then we usually write  instead of the clunkier 
.

In this setting above suppose that . Then

Proof

Once again, we show that the integral on the right satisfies the properties in the definition for . First,  is measurable as a
function from  into  and hence the random variable  is a measurable function of  and so is measurable with respect to . Next suppose that 

. Then  for some . Then

Best Predictor

In our elementary treatment of conditional expected value, we showed that the conditional expected value of a real-valued random variable  given a general random
variable  is the best predictor of , in the least squares sense, among all real-valued functions of . A more careful statement is that  is the best predictor of 
among all real-valued random variables that are measurable with respect to . Thus, it should come as not surprise that if  is a sub -algebra of , then  is
the best predictor of , in the least squares sense, among all real-valued random variables that are measurable with respect to . We will show that this is indeed the case
in this subsection. The proofs are very similar to the ones given in the elementary section. For the rest of this discussion, we assume that  is a sub -algebra of  and that
all random variables mentioned are real valued.

Suppose that  and  are random variables with  and  and that  is measurable with respect to . Then  and  are
uncorrelated.

Proof

Note that  has mean 0 by the mean property. Using the properties that characterize  we have

The next result is the main one:  is closer to  in the mean square sense than any other random variable that is measurable with respect to . Thus, if  represents
the information that we have, then  is the best we can do in estimating .

Suppose that  and  are random variables with  and  and that  is measurable with respect to . Then

1. .
2. Equality holds if and only if , so  and  are equivalent.

Proof
1. Note that

By mean property,  has mean 0, so the middle term in the displayed equation is . But  is -
measurable and hence this covariance is 0 by uncorrelated proerty. Therefore

2. Equality holds if and only if  if and only if 

Conditional Variance

Once again, we assume that  is a sub -algebra of  and that all random variables mentioned are real valued, unless otherwise noted. It's natural to define the conditional
variance of a random variable given  in the same way as ordinary variance, but witl all expected values conditioned on .

Suppose that  is a random variable with . The conditional variance of  given  is

Like all conditional expected values relative to ,  is a random variable that is measurable with respect to  and is unique up to equivalence. The first property
is analogous to the computational formula for ordinary variance.

Suppose again that  is a random variable with . Then

h(y) > 0 y ∈ T y ∈ T X Y = y

g(x ∣ y) = , x ∈ S
f(x, y)

h(y)
(4.10.21)

E(|X|) < ∞ E(X ∣ Y )
E[X ∣ σ(Y )]

E(|X|) < ∞

E(X ∣ Y ) = xg(x ∣ Y )dx∫
S

(4.10.22)

E(X ∣ Y ) =E[X ∣ σ(Y )] y ↦ xg(x ∣ y)dx∫
S

T R g(x ∣ Y )dx∫
x

Y σ(Y )

B ∈ σ(Y ) B = {Y ∈ A} A ∈F

E [ xg(x ∣ Y )dx;B]∫
S

=E [ xg(x ∣ Y )dx;Y ∈ A]∫
S

=E [ x dx;Y ∈ A] = x h(y)dx dy∫
S

f(x, y)

h(y)
∫
A

∫
S

f(x, y)

h(y)

= xf(x, y)d(x, y) =E(X;Y ∈ A) =E(X;B)∫
S×A

X

Y X Y E(X ∣ Y ) X

σ(Y ) G σ F E(X ∣ G )
X G )

G σ F

X U E(|X|) < ∞ E(|XU|) < ∞ U G X−E(X ∣ G ) U

X−E(X ∣ G ) E(X ∣ G )

cov[X−E(X ∣ G ),U] =E(U[X−E(X ∣ G )]) =E(UX) −E[UE(X ∣ G ] =E(UX) −E(UX) = 0 (4.10.23)

E(X ∣ G ) X G G

E(X ∣ G ) X

X U E( ) < ∞X2
E( ) < ∞U 2 U G

E([X−E(X ∣ G ) ) ≤E[(X−U ]]2 )2

P[U =E(X ∣ G )] = 1 U E(X ∣ G )

E[(X−U ])2 =E([X−E(X ∣ G ) +E(X ∣ G ) −U )]2

=E([X−E(X ∣ G ) ) +2E([X−E(X ∣ G )][E(X ∣ G ) −U]) +E([E(X ∣ G ) −U )]2 ]2
(4.10.24)

(4.10.25)

X−E(X ∣ G ) 2cov[X−E(X ∣ G ),E(X ∣ G ) −U] E(X ∣ G ) −U G

E[(X−U ] =E([X−E(X ∣ G ) ) +E([E(X ∣ G ) −U ) ≥E([X−E(X ∣ G ) ))2 ]2 ]2 ]2 (4.10.26)

E([E(X ∣ G ) −U ) = 0]2 P[U =E(X ∣ G )] = 1

G σ F

G G

X E( ) < ∞X2 X G

var(X ∣ G ) =E([X−E(X ∣ G ) G)]2
∣
∣
∣ (4.10.27)

G var(X ∣ G ) G

X E( ) < ∞X2
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Proof

Expanding the square in the definition and using basic properties of conditional expectation, we have

Next is a formula for the ordinary variance in terms of conditional variance and expected value.

Suppose again that  is a random variable with . Then

Proof

From the previous theorem and properties of conditional expected value we have . But  and
similarly, . But also,  so subsituting we get .

So the variance of  is the expected conditional variance plus the variance of the conditional expected value. This result is often a good way to compute  when we
know the conditional distribution of  given . In turn, this property leads to a formula for the mean square error when  is thought of as a predictor of .

Suppose again that  is a random variable with .

Proof

From the definition and from the mean property and variance formula,

Let us return to the study of predictors of the real-valued random variable , and compare them in terms of mean square error.

Suppose again that  is a random variable with .

1. The best constant predictor of  is  with mean square error .
2. If  is another random variable with , then the best predictor of  among linear functions of  is

with mean square error .
3. If  is a (general) random variable, then the best predictor of  among all real-valued functions of  with finite variance is  with mean square error 

.
4. If  is a sub -algebra of , then the best predictor of  among random variables with finite variance that are measurable with respect to  is  with mean

square error .

Of course, (a) is a special case of (d) with  and (c) is a special case of (d) with . Only (b), the linear case, cannot be interpreted in terms of
conditioning with respect to a -algebra.

Conditional Covariance

Suppose again that  is a sub -algebra of . The conditional covariance of two random variables is defined like the ordinary covariance, but with all expected values
conditioned on .

Suppose that  and  are random variables with  and . The conditional covariance of  and  given  is defined as

So  is a random variable that is measurable with respect to  and is unique up to equivalence. As should be the case, conditional covariance generalizes
conditional variance.

Suppose that  is a random variable with . Then .

Proof

This follows immediately from the two definitions.

Our next result is a computational formula that is analogous to the one for standard covariance—the covariance is the mean of the product minus the product of the means,
but now with all expected values conditioned on :

Suppose again that  and  are random variables with  and . Then

Proof

Expanding the product in the definition and using basic properties of conditional expectation, we have

var(X ∣ G ) =E( ∣ G ) −[E(X ∣ G )X2 ]2 (4.10.28)

var(X ∣ G ) =E( −2XE(X ∣ G ) +[E(X ∣ G ) G ) =E( ∣ G ) −2E[XE(X ∣ G ) ∣ G ] +E([E(X ∣ G ) ∣ G )X2 ]2
∣
∣
∣ X2 ]2

=E( ∣ G ) −2E(X ∣ G )E(X ∣ G ) +[E(X ∣ G ) =E( ∣ G ) −[E(X ∣ G )X2 ]2 X2 ]2

(4.10.29)

(4.10.30)

X E( ) < ∞X2

var(X) =E[var(X ∣ G )] +var[E(X ∣ G )] (4.10.31)

E[var(X ∣ G )] =E( ) −E([E(X ∣ G ) )X2 ]2 E( ) = var(X) +[E(X)X2 ]2

E([E(X ∣ G ) ) = var[E(X ∣ G )] +(E[E(X ∣ G )]]2 )2
E[E(X ∣ G )] =E(X) E[var(X ∣ G )] = var(X) −var[E(X ∣ G )]

X var(X)
X G E(X ∣ G ) X

X E( ) < ∞X2

E([X−E(X ∣ G ) ) = var(X) −var[E(X ∣ G )]]2 (4.10.32)

E([X−E(X ∣ G ) ) =E[var(X ∣ G )] = var(X) −var[E(X ∣ G )]]2 (4.10.33)

X

X E( ) < ∞X2

X E(X) var(X)
Y E( ) < ∞Y 2 X Y

L(X ∣ Y ) =E(X) + [Y −E(Y )]
cov(X,Y )

var(Y )
(4.10.34)

var(X)[1 − (X,Y )]cor2

Y X Y E(X ∣ Y )
var(X) −var[E(X ∣ Y )]
G σ F X G E(X ∣ G )

var(X) −var[E(X ∣ G )]

G = {∅, Ω} G = σ(Y )
σ

G σ F

G

X Y E( ) < ∞X2
E( ) < ∞Y 2 X Y G

cov(X,Y ∣ G ) =E([X−E(X ∣ G )][Y −E(Y ∣ G )] G)∣
∣
∣ (4.10.35)

cov(X,Y ∣ G ) G

X E( ) < ∞X2 cov(X,X ∣ G ) = var(X ∣ G )

G

X Y E( ) < ∞X2
E( ) < ∞Y 2

cov(X,Y ∣ G ) =E(XY ∣ G ) −E(X ∣ G )E(Y ∣ G ) (4.10.36)
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Our next result shows how to compute the ordinary covariance of  and  by conditioning on .

Suppose again that  and  are random variables with  and . Then

Proof

From (29) and properties of conditional expected value we have

But  and similarly,

But also,  and  so subsituting we get

Thus, the covariance of  and  is the expected conditional covariance plus the covariance of the conditional expected values. This result is often a good way to compute 
 when we know the conditional distribution of  given .

This page titled 4.10: Conditional Expected Value Revisited is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via source
content that was edited to the style and standards of the LibreTexts platform.

cov(X,Y ∣ G ) =E(XY −XE(Y ∣ G ) −Y E(X ∣ G ) +E(X ∣ G )E(Y ∣ G ) G) =E(XY ∣ G ) −E [XE(Y ∣ G ) ∣ G ] −E [Y E(X ∣ G ) ∣ G ]
∣
∣
∣

+E [E(X ∣ G )E(Y ∣ G ) ∣ G ]
=E (XY ∣ G ) −E(X ∣ G )E(Y ∣ G ) −E(X ∣ G )E(Y ∣ G ) +E(X ∣ G )E(Y ∣ G ) =E (XY ∣ G ) −E(X ∣ G )E(Y ∣ G )

(4.10.37)

(4.10.38)

X Y X

X Y E( ) < ∞)X2 E( < ∞)Y 2

cov(X,Y ) =E [cov(X,Y ∣ G )] +cov [E(X ∣ G ),E(Y ∣ G )] (4.10.39)

E [cov(X,Y ∣ G )] =E(XY ) −E [E(X ∣ G )E(Y ∣ G )] (4.10.40)

E(XY ) = cov(X,Y ) +E(X)E(Y )

E [E(X ∣ G )E(Y ∣ G )] = cov[E(X ∣ G ),E(Y ∣ G ) +E[E(X ∣ G )]E[E(Y ∣ G )] (4.10.41)

E [E(X ∣ G )] =E(X) E[E(Y ∣ G )] =E(Y )

E [cov(X,Y ∣ G )] = cov(X,Y ) −cov [E(X ∣ G ),E(Y ∣ G )] (4.10.42)

X Y

cov(X,Y ) (X,Y ) G
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