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16.17: Potential Matrices
      

Prelimnaries

This is the third of the introductory sections on continuous-time Markov chains. So our starting point is a time-homogeneous Markov chain 
 defined on an underlying probability space  and with discrete state space . Thus  is countable and  is

the power set of , so every subset of  is measurable, as is every function from  into another measurable space. In addition,  is given the discret
topology so that  can also be thought of as the Borel -algebra. Every function from  to another topological space is continuous. Counting
measure  is the natural measure on , so in the context of the general introduction, integrals over  are simply sums. Also, kernels on  can
be thought of as matrices, with rows and sums indexed by , so the left and right kernel operations are generalizations of matrix multiplication. As
before, let  denote the collection of bounded functions . With the usual pointwise definitions of addition and scalar multiplication,  is
a vector space. The supremum norm on  is given by

Of course, if  is finite,  is the set of all real-valued functions on , and  for . The time space is 
where as usual,  is the Borel -algebra on  corresponding to the standard Euclidean topology. Lebesgue measure is the natural measure on 

.

In our first point of view, we studied  in terms of when and how the state changes. To review briefly, let .
Assuming that  is right continuous, the Markov property of  implies the memoryless property of , and hence the distribution of  given 
is exponential with parameter  for each . The assumption of right continuity rules out the pathological possibility that 

, which would mean that  is an instantaneous state so that . On the other hand, if  then  is a
stable state, so that  has a proper exponential distribution given  with . Finally, if  then  is an
absorbing state, so that . Next we define a sequence of stopping times: First  and . Recursively, if 
then , while if  then . With  we define  if  with 

 and  if  with . The sequence  is a discrete-time Markov chain on  with one-step transition matrix 
 given by  if  with  stable, and  if  is absorbing. Assuming that  is regular, which

means that  as  with probability 1 (ruling out the explosion event of infinitely many transitions in finite time), the structure of  is
completely determined by the sequence of stopping times  and the embedded discrete-time jump chain .
Analytically, the distribution  is determined by the exponential parameter function  and the one-step transition matrix  of the jump chain.

In our second point of view, we studied  in terms of the collection of transition matrices , where for ,

The Markov and time-homogeneous properties imply the Chapman-Kolmogorov equations  for , so that  is a semigroup
of transition matrices. The semigroup , along with the initial distribution of , completely determines the distribution of . For a regular Markov
chain , the fundamental integral equation connecting the two points of view is

which is obtained by conditioning on  and . It then follows that the matrix function  is differentiable, with the derivative satisfying the
Kolmogorov backward equation  where the generator matrix  is given by

If the exponential parameter function  is bounded, then the transition semigroup  is uniform, which leads to stronger results. The generator  is a
bounded operator on , the backward equation holds as well as a companion forward equation , as operators on  (so with respect to the
supremum norm rather than just pointwise). Finally, we can represent the transition matrix as an exponential:  for .

In this section, we study the Markov chain  in terms of a family of matrices known as potential matrices. This is the least intuitive of the three
points of view, but analytically one of the best approaches. Essentially, the potential matrices are transforms of the transition matrices.

Basic Theory
We assume again that  is a regular Markov chain on  with transition semigroup . Our first
discussion closely parallels the general theory, except for simplifications caused by the discrete state space.

Definitions and Properties

For , the -potential matrix  of  is defined as follows:

X = { : t ∈ [0, ∞)}Xt (Ω,F ,P) (S,S ) S S

S S S S

S σ S

# (S,S ) S S

S

B f : S →R B

B

∥f∥ = sup{|f(x)| : x ∈ S}, f ∈B (16.17.1)

S B S ∥f∥ = max{|f(x)| : x ∈ S} f ∈B ([0, ∞),T )
T σ [0, ∞)

([0, ∞),T )

X τ = inf{t ∈ (0, ∞) : ≠ }Xt X0

X X τ τ = xX0

λ(x) ∈ [0, ∞) x ∈ S

λ(x) = ∞ x P(τ = 0 ∣ = x) = 1X0 λ(x) ∈ (0, ∞) x

τ = xX0 P(0 < τ < ∞ ∣ = x) = 1X0 λ(x) = 0 x

P(τ = ∞ ∣ = x) = 1X0 = 0τ0 = ττ1 < ∞τn
= inf {t > : ≠ }τn τn Xt Xτn = ∞τn = ∞τn+1 M = sup{n ∈ N : < ∞}τn =Yn Xτn n ∈ N

n ≤ M =Yn YM n ∈ N n > M Y = ( , , …)Y0 Y1 S

Q Q(x, y) = P( = y ∣ = x)Xτ X0 x, y ∈ S x Q(x, x) = 1 x ∈ S X

→ ∞τn n → ∞ X

τ = ( , , …)τ0 τ1 Y = ( , , …)Y0 Y1

X λ Q

X P = { : t ∈ [0, ∞)}Pt t ∈ [0, ∞)

(x, y) = P( = y ∣ = x), (x, y) ∈Pt Xt X0 S2 (16.17.2)

=PsPt Ps+t s, t ∈ [0, ∞) P

P X0 X

X

(x, y) = I(x, y) + λ(x) Q (x, y)ds, (x, y) ∈Pt e−λ(x)t ∫
t

0
e−λ(x)s Pt−s S2 (16.17.3)

τ Xτ t ↦ Pt

= GP ′
t Pt G

G(x, y) = −λ(x)I(x, y) +λ(x)Q(x, y), (x, y) ∈ S2 (16.17.4)

λ P G

B = GP ′
t Pt B

=Pt etG t ∈ [0, ∞)

X

X = { : t ∈ [0, ∞)}Xt S P = { : t ∈ [0, ∞)}Pt

α ∈ [0, ∞) α Uα X

(x, y) = (x, y)dt, (x, y) ∈Uα ∫
∞

0
e−αtPt S2 (16.17.5)
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1. The special case  is simply the potential matrix of .
2. For ,  is the expected amount of time that  spends in , starting at .
3. The family of matrices  is known as the reolvent of .

Proof

Since  is continuous,  makes sense for . The interpretation of  involves an interchange of integrals:

The inside integral is the Lebesgue measure of .

It's quite possible that  for some , and knowing when this is the case is of considerable interest. If  and ,
then giving the right operation in its many forms,

assuming, as always, that the sums and integrals make sense. This will be the case in particular if  is nonnegative (although  is a possible value),
or as we will now see, if  and .

If , then  for all .

Proof

For ,

It follows that for , the right potential operator  is a bounded, linear operator on  with . It also follows that  is a
probability matrix. This matrix has a nice interpretation.

If  then  is the conditional probability density function of  given , where  is independent of  and has the
exponential distribution on  with parameter .

Proof

Suppose that . The random time  has PDF  for . Hence, conditioning on  gives

But by the substitution rule and the assumption of independence,

Substituting gives

So  is a transition probability matrix, just as  is a transition probability matrix, but corresponding to the random time  (with  as a
parameter), rather than the deterministic time . The potential matrix can also be interpreted in economic terms. Suppose that we receive
money at a rate of one unit per unit time whenever the process  is in a particular state . Then  is the expected total amount of money
that we receive, starting in state . But money that we receive later is of less value to us now than money that we will receive sooner.
Specifically, suppose that one monetary unit at time  has a present value of  where  is the inflation factor or discount
factor. Then  is the total, expected, discounted amount that we receive, starting in . A bit more generally, suppose that  and that 

 is the reward (or cost, depending on the sign) per unit time that we receive when the process is in state . Then  is the expected,
total, discounted reward, starting in state .

 as .

Proof

Note first that with a change of variables ,

U = U0 X

(x. y) ∈ S2 U(x, y) X y x

U = { : α ∈ (0, ∞)}Uα X

t ↦ (x, y)Pt (x, y)Uα (x, y) ∈ S2 U(x, y)

U(x, y) = (x, y)dt = E[1( = y) ∣ = x] dt =E( 1( = y)dt = x)∫
∞

0
Pt ∫

∞

0
Xt X0 ∫

∞

0
Xt

∣
∣∣ X0 (16.17.6)

{t ∈ [0, ∞) : = y}Xt

U(x, y) = ∞ (x, y) ∈ S2 f : S →R α ≥ 0

f(x)Uα = (x, y)f(y) = f(x)dt∑
y∈S

Uα ∫
∞

0
e−αtPt

= (x, y)f(y) = E[f( ) ∣ = x] dt, x ∈ S∫
∞

0
e−αt∑

y∈S

Pt ∫
∞

0
e−αt Xt X0

f ∞
f ∈B α > 0

α > 0 (x,S) =Uα
1
α x ∈ S

x ∈ S

(x,S) = (x,S)dt = dt =Uα ∫
∞

0
e−αtPt ∫

∞

0
e−αt 1

α
(16.17.7)

α ∈ (0, ∞) Uα B ∥ ∥ =Uα
1
α αUα

α > 0 α (x, ⋅)Uα XT = xX0 T X

[0, ∞) α

(x, y) ∈ S2 T f(t) = αe−αt t ∈ [0, ∞) T

P( = y ∣ = x) = α P( = y ∣ T = t, = x)dtXT X0 ∫
∞

0
e−αt XT X0 (16.17.8)

P( = y ∣ T = t, = x) = P( = y ∣ T = t, = x) = P( = y ∣ = x) = (x, y)XT X0 Xt X0 Xt X0 Pt (16.17.9)

P( = y ∣ = x) = α (x, y)dt = α (x, y)XT X0 ∫
∞

0
e−αtPt Uα (16.17.10)

αUα Pt T α ∈ (0, ∞)
t ∈ [0, ∞)

X y ∈ S U(x, y)
x ∈ S

t ∈ [0, ∞) e−αt α ∈ (0, ∞)
(x, y)Uα x ∈ S f ∈B

f(y) y ∈ S f(x)Uα

x ∈ S

α → IUα α → ∞

s = αt
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But for ,  and hence  as . The result then follows from the dominated convergence theorem.

If , then giving the left potential operation in its various forms,

In particular, suppose that  and that  is the probability density function of . Then  is the probability density function of  for 
, and hence from the last result,  is the probability density function of , where again,  is independent of  and has the

exponential distribution on  with parameter . The family of potential kernels gives the same information as the family of transition kernels.

The resolvent  completely determines the family of transition kernels .

Proof

Note that for , the function  on  is the Laplace transform of the function  on . The Laplace
transform of a continuous function determines the function uniquely.

Although not as intuitive from a probability view point, the potential matrices are in some ways nicer than the transition matrices because of
additional smoothness. In particular, the resolvent , along with the initial distribution, completely determine the finite dimensional
distributions of the Markov chain . The potential matrices commute with the transition matrices and with each other.

Suppose that . Then

1. 
2. 

Proof

The interchanges of matrix multiplication and integrals below are interchanges of sums and integrals, and are justified since the underlying
integrands are nonnegative. The other tool used is the semigroup property of . You may want to write out the proofs
explicitly to convince yourself

1. First,

Similarly

2. First

The other direction is similar.

The equations above are matrix equations, and so hold pointwise. The same identities hold for the right operators on the space  under the additional
restriction that  and . The fundamental equation that relates the potential kernels, known as the resolvent equation, is given in the next
theorem:

If  with  then .

Proof

If  the equation is trivial, so assume . From the previous result,

The transformation  maps  one-to-one onto . The inverse transformation is 
 with Jacobian . Hence we have

α = α dt = dsUα ∫
∞

0
e−αtPt ∫

∞

0
e−sPs/α (16.17.11)

s ∈ [0, ∞) s/α → 0 → IPs/α α → ∞

f : S → [0, ∞)

f (y)Uα = f(x) (x, y) = f (y)dt∑
x∈S

Uα ∫
∞

0
e−αt Pt

= [ f(x) (x, y)] dt = [ f(x)P( = y)] dt, y ∈ S∫
∞

0
e−αt ∑

x∈S

Pt ∫
∞

0
e−αt ∑

x∈S

Xt

α > 0 f X0 fPt Xt

t ∈ [0, ∞) αfUα XT T X

[0, ∞) α

U = { : α ∈ (0, ∞)}Uα P = { : t ∈ (0, ∞)}Pt

(x, y) ∈ S2 α ↦ (x, y)Uα (0, ∞) t ↦ (x, y)Pt [0, ∞)

{ : α ∈ [0, ∞)}Uα

X

α, β, t ∈ [0, ∞)

= = dsPtUα UαPt ∫ ∞
0

e−αsPs+t

= = dsdtUαUβ UβUα ∫ ∞
0 ∫ ∞

0 e−αse−βtPs+t

P = { : t ∈ [0, ∞)}Pt

=( ds) = ds = dsUαPt ∫
∞

0
e−αsPs Pt ∫

∞

0
e−αsPsPt ∫

∞

0
e−αsPs+t (16.17.12)

= ds = ds = dsPtUα Pt ∫
∞

0
e−αsPs ∫

∞

0
e−αsPtPs ∫

∞

0
e−αsPs+t (16.17.13)

=( ds)( dt) = dsdt = dsdtUαUβ ∫
∞

0
e−αsPs ∫

∞

0
e−βtPt ∫

∞

0
∫

∞

0
e−αse−βtPsPt ∫

∞

0
∫

∞

0
e−αse−βtPs+t (16.17.14)

B

α > 0 β > 0

α, β ∈ [0, ∞) α ≤ β = +(β−α)Uα Uβ UαUβ

α = β α < β

= dt dsUαUβ ∫
∞

0
∫

∞

0
e−αse−βtPs+t (16.17.15)

u = s+ t, v= s [0, ∞)2 {(u, v) ∈ [0, ∞ : u ≥ v})2

s = v, t = u−v −1
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Simplifying gives the result. Note that  is finite since , so we don't have to worry about the dreaded indeterminate form .

The equation above is a matrix equation, and so holds pointwise. The same identity holds for the right potential operators on the space , under the
additional restriction that .

Connections with the Generator

Once again, assume that  is a regular Markov chain on  with transition semigroup , infinitesimal
generator , resolvent , exponential parameter function , and one-step transition matrix  for the jump chain. There are
fundamental connections between the potential  and the generator matrix , and hence between  and the function  and the matrix .

If  then . In terms of  and ,

Proof 1

First,

Passing  through the integrand is justified since  is a sum with just one negative term for . The second identity in the
displayed equation follows from the backward equation. Integrating by parts then gives

Proof 2

This proof use the fundamental integral equation relating , , and  as well as the definition of  and interchanges of integrals. The
interchange is justified since the integrand is nonnegative. So for  and ,

Proof 3

Recall that  where  is independent of  and has the exponential distribution with parameter . This proof
works by conditioning on whether  or :

But  and  imply  so . And by a basic property of independent exponential
variables that we have seen many times before,

Next, for the first factor in the second term of the displayed equation, we condition on :

UαUβ = dvdu = ( dv) du∫
∞

0
∫

u

0
e−αve−β(u−v)Pu ∫

∞

0
∫

u

0
e(β−α)v e−βuPu

= [ −1] du
1

β−α
∫

∞

0
e(β−α)u e−βuPu

= ( du− du) = ( − )
1

β−α
∫

∞

0
e−αuPu ∫

∞

0
e−βuPu

1

β−α
Uα Uβ

Uβ β > 0 ∞ −∞

B

α > 0

X = { : t ∈ [0, ∞)}Xt S P = { : t ∈ [0, ∞)}Pt

G U = { : α ∈ (0, ∞)}Uα λ Q

Uα G Uα λ Q

α ∈ (0, ∞) I +G = αUα Uα λ Q

(x, y) = I(x, y) + Q (x, y), (x, y) ∈Uα

1

α+λ(x)

λ(x)

α+λ(x)
Uα S2 (16.17.16)

G = G dt = G dt = dtUα ∫
∞

0
e−αtPt ∫

∞

0
e−αt Pt ∫

∞

0
e−αtP ′

t (16.17.17)

G G (x, y)Pt (x, y) ∈ S2

G = + α dt = −I +αUα e−αtPt
∣
∣∣
∞

0
∫

∞

0
e−αtPt Uα (16.17.18)

P λ Q Uα

α ∈ [0, ∞) (x, y) ∈ S2

(x, y)Uα = (x, y)dt∫
∞

0
e−αtPt

= [ I(x, y) +λ(x) Q (x, y)dr]dt∫
∞

0
e−αt e−λ(x)t e−λ(x)t ∫

t

0
eλ(x)r Pr

= I(x, y) dt+λ(x) Q (x, y)dr dt∫
∞

0
e−[α+λ(x)]t ∫

∞

0
∫

t

0
e−[α+λ(x)]teλ(x)r Pr

= I(x, y) +λ(x) Q (x, y)dt dr
1

α+λ(x)
∫

∞

0
∫

∞

r

e−[α+λ(x)]teλ(x)r Pr

= I(x, y) + Q (x, y)dr
1

α+λ(x)

λ(x)

α+λ(x)
∫

∞

0
e−[α+λ(x)]reλ(x)r Pr

= I(x, y) + Q (x, y)dr = I(x, y) + Q (x, y)
1

α+λ(x)

λ(x)

α+λ(x)
∫

∞

0
e−αr Pr

1

α+λ(x)

λ(x)

α+λ(x)
Uα

α (x, y) = P( = y ∣ = x)Uα XT X0 T X α

T < τ1 T ≥ τ1

α (x, y) = P( = y ∣ = x,T < )P(T < ∣ = x) +P( = y ∣ = x,T ≥ )P(T ≥ ∣ = x)Uα XT X0 τ1 τ1 X0 XT X0 τ1 τ1 X0 (16.17.19)

= xX0 T < τ1 = xXT P( = y ∣ = x,T < ) = I(x, y)XT X0 τ1

P(T < ∣ = x) =τ1 X0
α

α+λ(x)
(16.17.20)

Xτ1
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But by the strong Markov property, given , we can restart the clock at time  in state . Moreover, by the memoryless property and
independence, the distribution of  given  is the same as the distribution of , mainly exponential with parameter . It follows that

Also,  is independent of  and  so

Finally using the basic property of exponential distributions again,

Putting all the pieces together we have

As before, we can get stronger results if we assume that  is bounded, or equivalently, the transition semigroup  is uniform.

Suppose that  is bounded and . Then as operators on  (and hence also as matrices),

1. 
2. 

Proof

Since  is bounded,  is a bounded operator on . The proof of (a) then proceeds as before. For (b) we know from the forward and backward
equations that  for  and hence  for .

As matrices, the equation in (a) holds with more generality than the equation in (b), much as the Kolmogorov backward equation holds with more
generality than the forward equation. Note that

If  is unbounded, it's not clear that the second sum is finite.

Suppose that  is bounded and . Then as operators on  (and hence also as matrices),

1. 
2. 

Proof
1. This follows immediately from the previous result, since  and 
2. This follows from (a):  so 

So the potential operator  and the generator  have a simple, elegant inverse relationship. Of course, these results hold in particular if  is finite,
so that all of the various matrices really are matrices in the elementary sense.

Examples and Exercises

The Two-State Chain

Let  be the Markov chain on the set of states , with transition rate  from 0 to 1 and transition rate 
 from 1 to 0. To avoid the trivial case with both states absorbing, we will assume that . The first two results below are a review

from the previous two sections.

The generator matrix  is

The transition matrix at time  is

P( = y ∣ = x,T ≥ ) = P( = y ∣ = x, = z,T ≥ )P( = z ∣ = x,T ≥ )XT X0 τ1 ∑
z∈S

XT X0 Xτ1 τ1 Xτ1 X0 τ1 (16.17.21)

= zXτ1 τ1 z

T −τ1 T ≥ τ1 T α

P( = y ∣ = x, = z,T ≥ ) = P( = y ∣ = z) = α (z, y)XT X0 Xτ1
τ1 XT X0 Uα (16.17.22)

Xτ1
τ1 T

P( = z ∣ = x,T ≥ ) = Q(x, z)Xτ1 X0 τ1 (16.17.23)

P(T ≥ ∣ = x) =τ1 X0
λ(x)

α+λ(x)
(16.17.24)

α (x, y) = I(x, y) = Q(x, z)α (z, y) = I(x, y) + Qα (x, y)Uα

α

α+λ(x)

λ(x)

α+λ(x)
∑
z∈S

Uα

α

α+λ(x)

λ(x)

α+λ(x)
Uα (16.17.25)

λ P

λ α ∈ (0, ∞) B

I +G = αUα Uα

I + G= αUα Uα

λ G B

G = GPt Pt t ∈ [0, ∞) G = GUα Uα α ∈ (0, ∞)

G(x, y) = (x, z)G(z, y) = −λ(y) (x, y) + (x, z)λ(z)Q(z, y), (x, y) ∈Uα ∑
z∈S

Uα Uα ∑
z∈S

Uα S2 (16.17.26)

λ

λ α ∈ (0, ∞) B

= (αI −GUα )−1

G= αI −U−1
α

(αI −G) = IUα (αI −G) = IUα

αI −G= U−1
α G= αI −U−1

α

Uα G S

X = { : t ∈ [0, ∞)}Xt S = {0, 1} a ∈ [0, ∞)
b ∈ [0, ∞) a+b > 0

G

G= [ ]
−a

b

a

−b
(16.17.27)

t ∈ [0, ∞)
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Now we can find the potential matrix in two ways.

For , show that the potential matrix  is

1. From the definition.
2. From the relation .

Computational Exercises

Consider the Markov chain  on  with exponential parameter function  and jump transition
matrix

1. Draw the state graph and classify the states.
2. Find the generator matrix .
3. Find the potential matrix  for .

Answer
1. The edge set is . All states are stable.
2. The generator matrix is

3. For ,

Special Models

Read the discussion of potential matrices for chains subordinate to the Poisson process.

This page titled 16.17: Potential Matrices is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via
source content that was edited to the style and standards of the LibreTexts platform.

= [ ]− [ ] , t ∈ [0, ∞)Pt

1

a+b

b

b

a

a

1

a+b
e−(a+b)t −a

b

a

−b
(16.17.28)

α ∈ (0, ∞) Uα

= [ ]− [ ]Uα

1

α(a+b)

b

b

a

a

1

(α+a+b)(a+b)

−a

b

a

−b
(16.17.29)

= (αI −GUα )−1

X = { : t ∈ [0, ∞)}Xt S = {0, 1, 2} λ = (4, 1, 3)

Q =
⎡

⎣

⎢⎢

0

1
1
3

1
2

0
2
3

1
2

0

0

⎤

⎦

⎥⎥ (16.17.30)

G

Uα α ∈ (0, ∞)

E = {(0, 1), (0, 2), (1, 0), (2, 0), (2, 1)}

G=
⎡

⎣
⎢

−4

1

1

2

−1

2

2

0

−3

⎤

⎦
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α ∈ (0, ∞)

= (αI −G =Uα )−1 1

15α+8 +α2 α3

⎡

⎣
⎢

3 +4α+α2

3 +α

3 +α

10 +2α

10 +7α+α2

10 +2α

2 +2α

2

2 +5α+α2

⎤

⎦
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