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16.19: Time Reversal in Continuous-Time Chains

Earlier, we studied time reversal of discrete-time Markov chains. In continous time, the issues are basically the same. First, the
Markov property stated in the form that the past and future are independent given the present, essentially treats the past and future
symmetrically. However, there is a lack of symmetry in the fact that in the usual formulation, we have an initial time 0, but not a
terminal time. If we introduce a terminal time, then we can run the process backwards in time. In this section, we are interested in the
following questions:

o Is the new process still Markov?
o If so, how are the various parameters of the reversed Markov chain related to those of the original chain?
e Under what conditions are the forward and backward Markov chains stochastically the same?

Consideration of these questions leads to reversed chains, an important and interesting part of the theory of continuous-time Markov
chains. As always, we are also interested in the relationship between properties of a continuous-time chain and the corresponding
properties of its discrete-time jump chain. In this section we will see that there are simple and elegant connections between the time
reversal of a continuous-time chain and the time-reversal of the jump chain.

Basic Theory

Reversed Chains

Our starting point is a (homogeneous) continuous-time Markov chain X = {X; : ¢ € [0,00)} with (countable ) state space S. We
will assume that X is irreducible, so that every state in S leads to every other state, and to avoid trivialities, we will assume that there
are at least two states. The irreducibility assumption involves no serious loss of generality since otherwise we could simply restrict
our attention to an irreducible equivalence class of states. With our usual notation, we will let P ={P;:t € [0,00)} denote the
semigroup of transition matrices of X and G the infinitesimal generator. Let A(z) denote the exponential parameter for the holding
time in state z €S and @ the transition matrix for the discrete-time jump chain Y = (Yy,Y7,...). Finally, let
U={U,:a¢c]0,00)} denote the collection of potential matrices of X. We will assume that the chain X is regular, which gives us
the following properties:

e P(x,z)>last]O0forzes.

« There are no instantaneous states, so A(z) < oo forz € S.

o The transition times (71, 72, . . .) satisfy 7, — 00 as n — 00.

e We may assume that the chain X is right continuous and has left limits.

The assumption of regularity rules out various types of weird behavior that, while mathematically possible, are usually not
appropriate in applications. If X is uniform, a stronger assumption than regularity, we have the following additional properties:

e Pi(z,z)—1last] 0 uniformlyinz € S.

o ) is bounded.

e P, =¢!C forte|0,00).

e Uy=(al-G)™! fora e (0,00).

Now let & € (0, 00). We will think of h as the terminal time or time horizon so the chains in our first discussion will be defined on
the time interval [0, h]. Notationally, we won't bother to indicate the dependence on h, since ultimately the time horizon won't matter.
Define X; = X;_; fort € [0, h]. Thus, the process forward in time is X = {X; : t € [0, h]} while the process backwards in time is

X={X,;:te[0,h]} ={Xp:tc[0,h]} (16.19.1)
Similarly let
Fr=0c{X,:s€(0,t]} =0{Xns:s€[0,t]} =c{X,:re[h—t,h]}, tel0,h] (16.19.2)

So % ¢ is the o-algebra of events of the process X up to time ¢, which of course, is also the o-algebra of events of X from time h —¢
forward. Our first result is that the chain reversed in time is still Markov

The process X = {X; : t € [0, ]} is a Markov chain, but is not time homogeneous in general. For s, t € [0, h] with s < ¢, the
transition matrix from s to ¢ is
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Ps,t(way) = —2?st (y7 fE), (.’L‘, y) € Sz (16193)

Proof
Let A € js and z, y € S. Then

2 3 ]P)(X :yv)zs = QJ‘,A) ]P(th =y, Xps = .’E,A)
PX;=y|X,=z,4) = —— = ]PfX —
P(X, =z, A) (Xh-s =z, 4)

IP>(A | Xnt =9, Xns = m)P(ths =T | Xpt = y)P(tht = y)
IP’(A | Xps = a:)IP’(Xh_s = w)

But Aco{X,:r€[h—s,h]} andh—t <h—s ,so by the Markov property for X,

PA| Xpt =y, Xpns =2) =P(A| X}_s =x) (16.19.4)
By the time homogeneity of X, P(X;_s = | X+ =y) = P,_s(y, ) . Substituting and simplifying gives
8 8 P(Xpt =y)
PX,=y| X, =2,4) = ——""2 P (y, 16.19.5
(Ke=y| X =2, 4) = G2 "2P L 0) (16.19.5)

However, the backwards chain will be time homogeneous if X has an invariant distribution.

Suppose that X is positive recurrent, with (unique) invariant probability density function f. If X has the invariant distribution,
then X is a time-homogeneous Markov chain. The transition matrix at time ¢ € [0, co) (for every terminal time h > t), is given
by

ﬁt(w’y) = ;((Z;

P(y,z), (z,y)€S? (16.19.6)

Proof
This follows from the result above. Recall that if X has PDF f, then X} ; and X}, , also have PDF f.

The previous result holds in the limit of the terminal time, regardless of the initial distribution.

Suppose again that X is positive recurrent, with (unique) invariant probability density function f. Regardless of the distribution
of X, 0>

f(y)

P(Xert:les:m)_)m

P(y,z)ash — oo (16.19.7)

Proof

This follows from the conditional probability above and our study of the limiting behavior of continuous-time Markov chains.
Since X is irreducible and positive recurrent, P(X;_s =) — f(z) and P(X}_; =y) — f(y) as h — oo forevery z, y € S.

These three results are motivation for the definition that follows. We can generalize by defining the reversal of an irreducible Markov
chain, as long as there is a positive, invariant function. Recall that a positive invariant function defines a positive measure on S, but
of course not in general a probability measure.

Suppose that g:S — (0,00) is invariant for X. The reversal of X with respect to g is the Markov chain
X ={X,:t€[0,00)} with transition semigroup P defined by

ﬁt(xay) = zéz;

P(y,z), (z,y)€8% t€0,00) (16.19.8)

Justification

We need to show that the definition makes sense, namely that P defines a transition semigroup for a Markov chain X satisfying
the same assumptions that we have imposed on X. First let ¢ € [0, 00). Since g is invariant for X,
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Zﬁt(x,y) — (%)Zg(y)l’t(y,:c) = ? =1, z€S (16.19.9)

yes yes (SI:

~—

Hence 15t is a valid transition matrix. Next we show that the Chapman-Kolmogorov equations (the semigroup property) holds.
Lets, t € [0,00) and z, z € S. Then

Y S I
PSPt(iL',Z) —;Ps( ay)Pt(ya ) yezs g(w) Ps(ya )g(y)-Pt( 7y)
) S )P ) = 2D P (0) = Buni (2,2)

g@) & g(x)

Next note that Py(z, ) = P;(z,z) for every z € S. Hence Py(z,z) — 1 as t | 0 for z, so P is also a standard transition
semigroup. Note also that if P is uniform, then so is P. Finally, since X is irreducible, P;(x,y) > 0 for every (z,y) € S? and

t € (0,00). Since g is positive, it follows that P(y,z) >0 for every (z,y) € $2 and t € (0,00), and hence X is also
irreducible.

Recall that if g is a positive invariant function for X then so is cg for every constant ¢ € (0, 00). Note that g and cg generate the
same reversed chain. So let's consider the cases:

Suppose again that X is a Markov chain satisfying the assumptions above.

1. If X is recurrent, then X always has a positive invariant function g, unique up to multiplication by positive constants. Hence
the reversal of a recurrent chain X always exists and is unique, and so we can refer to the reversal of X without reference to
the invariant function.

2. Even better, if X is positive recurrent, then there exists a unique invariant probability density function, and the reversal of X
can be interpreted as the time reversal (relative to a time horizon) when X has the invariant distribution, as in the motivating
above.

3. If X is transient, then there may or may not exist a positive invariant function, and if one does exist, it may not be unique (up
to multiplication by positive constants). So a transient chain may have no reversals or more than one.

Nonetheless, the general definition is natural, because most of the important properties of the reversed chain follow from the basic
balance equation relating the transition semigroups P and P, and the invariant function g:

9(x)Pi(z,y) = 9(y)Pi(y,z), (z,y) € S t€[0,00) (16.19.10)

We will see the balance equation repeated for other objects associated with the Markov chains.

Suppose again that g: S — (0, 00) is invariant for X, and that X is the time reversal of X with respect to g. Then
1. g is also invariant for X.
2. X is the time reversal of X with respect to g.

Proof
1.Fory €S,

9Pi(y) = 9@)Pi(z,y) = gw)P(y,7) = 9(y) > Pi(y, ) = g(y) (16.19.11)

zeS zeS zeS

2. This follows from the symmetry of the fundamental equation: g(z)P;(z, y) = g(y)P;(y, =) for (z,y) € S? and t € [0, ).

In the balance equation for the transition semigroups, it's not really necessary to know a-priori that the function g is invariant, if we
know the two transition semigroups.

Suppose that g: S — (0, 00) . Then g is invariant and the Markov chains X and X are time reversals with respect to g if and
only if

9(@)Pi(z,y) = g(y)Pi(y,z), (z,y) €S t€[0,00) (16.19.12)
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Proof

All that is left to show is that the balance equation implies that g is invariant. The computation is exactly the same as in the last
result:

gP(z) = gW)Pi(y,z) = Y gx)Pi(z,y) =g(z) > Pi(z,y) =g(z), z€S (16.19.13)

yes yes yes

Here is a slightly more complicated (but equivalent) version of the balance equation for the transition probabilities.

Suppose again that g: .S — (0, co) . Then g is invariant and the chains X and X are time reversals with respect to g if and only

if

9(@1) Py, (21, 22) Py, (22, 3) - - Py, (Tn, Tns1) = 9(@n11) Py, (X1, Tn) P, (Tny Tn1) -+ Py (22, 1) (16.19.14)
forallm € N, (t1,t2,...,t,) €[0,00)", and (z1, 2, . - ., Tps1) € S™TL.
Proof

All that is necessary is to show that the basic balance equation implies the balance equation in the theorem. When n =1, we
have the basic balance equation itself:

9(z1) Py, (21, 2) = g(22) Py (22, 1) (16.19.15)
Forn =2,

9(@1) Py (€1, 22) Pty (w2, @3) = g(22) Py (w2, @1) Py (w2, 3) = 9(3) Py (w3, @) Py (w2,21)  (16.19.16)

Continuing in this manner (or using induction) gives the general result.

The balance equation holds for the potenetial matrices.

Suppose again that g: S — (0, 00) . Then g is invariant and the chains X and X are time reversals with respect to g if and only
if the potential matrices satisfy

9(@)Ua(z,9) = 99)Va(y,2), (z,9) € 5%, a€0,00) (16.19.17)
Proof

We just need to show that the balance equation for the transition semigroups is equivalent to the balance equation above for the

potential matrices. Suppose first g(a:)I:’t(m, y) = g(y)Pi(y, z) fort € [0,00) and (z,y) € S?. Then
oe)0a(e,y) =9(o) [ e Pulo,p)it= [ e tgle) P,y
0 0

= [ e *g(y)Pi(y,)dt = g(y) / oo«‘:’“tPt(y,w)dtZQ(ZJ)Ua(y"””)
0 0

Conversely, suppose that g(z)Uq (2, y) = g(y)Ua(y, ) for (z,y) € 52 and a € [0, 0). As above,
~ 0 ~
o) alery) = [ € 'ole)Prla,v)at (16.19.18)
0

So for fixed (z,y) € S?, the function a — g(z)U,(z,y) is the Laplace transform of the time function ¢ — g(z)P(z,y).
Similarly, o — g(y)U.(,y) is the Laplace transform of the ¢ — g(y)P;(x, y). The Laplace transform of a continuous function

uniquely determines the function so it follows that g() Py (z, y) = g(y) P:(y, ) fort € [0, 00) and (z,y) € 52.

As a corollary, continuous-time chains that are time reversals are of the same type.

If X and X are time reversals, then X and X are of the same type: transient, null recurrent, or positive recurrent.

Proof
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Suppose that X and X are time reversals with respect to the invariant function g: S — (0, o) . Then from the previous result,

U’(m, z) =U(z,z) for z € S. The chains are transient if the common potential is finte for each € S and recurrent if the
potential is infinite for each = € S. Suppose that the chains are recurrent. Then g is unique up to multiplication by positive
constants and the chains are both positive recurrent if ¢ g(«) < oo and both null recurrent if ) _¢ g(z) = o0 .

The balance equation extends to the infinitesimal generator matrices.

Suppose again that g: S — (0, 00) . Then g is invariant and the Markov chains X and X are time reversals if and only if the
infinitesimal generators satisfy

9(@)C(z,9) = 9W)Gw.2), (.9) €S (16.19.19)
Proof
We need to show that the balance equation for the transition semigroups is equivalent to the balance equation for the generators.
Suppose first that g(z)Py(z,y) = g(y)P.(y, ) for t € [0,00) and (,y) € 52. Taking derivatives with respect to ¢ and using
Kolmogorov's backward equation gives g(m)éﬁt(m, y) = g9(y)GP:(y,x) fort € [0,00) and (z,y) € S?. Evaluating at ¢ =0
gives g(z)é(w, y) =9g(y)G(y,z) . Conversely, suppose that g(w)é(m, y) = 9g(y)G(y,z) for (x,y) € S%. Then repeated

application (or induction) shows that g(m)Gn (z,y) = g(y)G"(y,z) forevery n € N and (z,y) € S2. If the transition matrices
are uniform, we can express them as exponentials of the generators. Hence for ¢ € [0, 00) and (z,y) € S 2,

~ ~ [ee) n An 0 n
9(@)Py(z,y) = g(x)eC(@) =9@)d 56 (@)= > —9@)G (2,y)
=0 n=0 ek
= tn ) tn
=2 G w:2) =) 3 516" 0, ) = aly)e' ) = a(y) Pulr )
n=0 ek o= n.

This leads to further results and connections:

Suppose again that g: S — (0, 00) . Then g is invariant and X and X are time reversals with respect to g if and only if

1. X and X have the same exponential parmeter function A.
2. The jump chains Y and Y are (discrete) time reversals with respect to Ag.

Proof
The exponential parameter functions are related to the generator matrices by A(z) = —G(z, ) and A(z) = fCAv*(x, z) for
z € S. The transition matrices for the jump chains are related to the generator matrices by Q(z,y) = G(z,y)/A(xz) and
Q(z,y) = G(z,y)/\(z) for (z,y) € S? with z # y. Hence conditions (a) and (b) are equivalent to

9(@)G(z,y) = 9(y)G(y, ), (x,y) € §* (16.19.20)

Recall also from the general theory, that if g is invariant for X then Ag is invariant for the jump chain Y.

In our original discussion of time reversal in the positive recurrent case, we could have argued that the previous results must be true.
If we run the positive recurrent chain X ={X;:t€[0,h]} backwards in time to obtain the time reversed chain
X= {X’t :t € [0, h]}, then the exponential parameters for X must the be same as those for X, and the jump chain Y for X must
be the time reversal of the jump chain Y for X.

Reversible Chains

Clearly an interesting special case is when the time reversal of a continuous-time Markov chain is stochastically the same as the
original chain. Once again, we assume that we have a regular Markov chain X = {X; : ¢ € [0,00)} that is irreducible on the state
space S, with transition semigroup P ={P; :t € [0,00)}. As before, U = {U, : o € [0,00)} denotes the collection of potential
matrices, and G the infinitesimal generator. Finally, A denotes the exponential parameter function, ¥ = {Y,, : n € N} the jump
chain, and @ the transition matrix of Y. Here is the definition of reversibility:

Suppose that g:.S — (0,00) is invariant for X. Then X is reversible with respect to g if the time reversed chain
X ={X;:t€[0,00)} also has transition semigroup P. That is,
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l 9(x)P;(z,y) = 9(y)Pi(y, z), (z,y) €S>, t€[0,00) (16.19.21)

Clearly if X is reversible with respect to g then X is reversible with respect to cg for every ¢ € (0, 00). So here is another review of
the cases:

Suppose that X is a Markov chain satisfying the assumptions above.

1. If X is recurrent, then there exists an invariant function g : S — (0, 00) that is unique up to multiplication by positive
constants. So X is either reversible or not, and we do not have to reference the invariant function.

2. Even better, if X is positive recurrent, then there exists a unique invariant probability density function f. Again, X is either
reversible or not, but if it is, then with the invariant distribution, the chain X is stochastically the same, forward in time or
backward in time.

3. If X is transient, then a positive invariant function may or may not exist. If such a function does exist, it may not be unique,
up to multiplication by positive constants. So in the transient case, X may be reversible with respect to one invariant function
but not with respect to others.

The following results are corollaries of the results above for time reversals. First, we don't need to know a priori that the function g is
invariant.

Suppose that g : S — (0, co) . Then g is invariant and X is reversible with respect to g if and only if

9(x)Pi(z,y) = 9(y)Pi(y, ), (z,y)€S? te[0,00) (16.19.22)

Suppose again that g: S — (0, c0) . Then g is invariant and X is reversible with respect to g if and only if
9(z1) Py, (21, 22) Py, (T2, 23) - - - Py, (T, Tnt1) = 9(@ns1) P, (Tnt1, Tn) P, (T, To1) -+ - Py (22, 21)  (16.19.23)

foralln € N, (t1,t2,...,t,) € [0,00)", and (z1, T2, ..., Tps1) € S*TT.

Suppose again that g: S — (0, 00) . Then g is invariant and X is reversible with respect to g if and only if

9(@)Ua(z,y) = 9(v)Valy, @), (z,9) € §?, a € [0,00) (16.19.24)

Suppose again that g: S — (0, 00) . Then g is invariant and X is reversible with respect to g if and only if

9(z)G(z,y) = 9(v)G(y, z), (x,y) €S (16.19.25)

Suppose again that g: .S — (0, 00) . Then g is invariant and X is reversible if and only if the jump chain Y is reversible with
respect to Ag.

Recall that X is recurrent if and only if the jump chain Y is recurrent. In this case, the invariant functions for X and Y exist and are
unique up to positive constants. So in this case, the previous theorem states that X is reversible if and only if Y is reversible. In the
positive recurrent case (the most important case), the following theorem gives a condition for reversibility that does not directly
reference the invariant distribution. The condition is known as the Kolmogorov cycle condition, and is named for Andrei Kolmogorov

Suppose that X is positive recurrent. Then X is reversible if and only if for every sequence of distinct states (z1, Za, . . . , Z),
G(z1,22)G(z2, 23) - - G(Tn—1, Zn)G(Tn, 1) = G(z1, ) G(2n, Tn—1) - - - G(x3, 22)G(z2,21)  (16.19.26)

Proof

Suppose that X is reversible, and let f denote the invariant PDF of X. Then G(z,y)= %G(m,y) for (z,y) € S2.

Substituting gives the Kolmogorov cycle condition. Conversely, suppose that the Kolmogorov cycle condition holds for X.
Recall that G(z,y) = A(z)Q(z,y) for (z,y) € S%. Substituting into the cycle condition for X gives the cycle condition for Y.

Hence Y is reversible and therefore so is X.

Note that the Kolmogorov cycle condition states that the transition rate of visiting states (zs, 3, . . . , &, 1) in sequence, starting in
state z; is the same as the transition rate of visiting states (@, ®p_1,.-.,Z2,®1) in sequence, starting in state z;. The cycle

https://stats.libretexts.org/@go/page/10392



https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10392?pdf

LibreTextsw

condition is also known as the balance equation for cycles.

Figure 16.19.1: The Kolmogorov cycle condition

Applications and Exercises

The Two-State Chain
The continuous-time, two-state chain has been studied in our previous sections on continuous-time chains, so naturally we are
interested in time reversal.

Consider the continuous-time Markov chain X = {X; : ¢ € [0,00)} on S = {0, 1} with transition rate a € (0, 00) from 0 to 1
and transition rate b € (0, co) from 1 to 0. Show that X is reversible

1. Using the transition semigroup P = {P; : t € [0, 00)} .
2. Using the resolvent U = {U, : a € (0,00)}.
3. Using the generator matrix G.

Solutions

First note that X is irreducible since @ > 0 and b > 0. Since S is finite, X is positive recurrent.

1. Recall that

1 b a 1 —a a
P = — —— (ot telo 16.19.27
YT a+b [b a] ath© b b’ 0, 00) ( )
All we have to do is find a positive function g on .S with the property that g(0)P;(0, 1) = g(1)P;(1, 0). The other conditions
are trivially satisfied. Note that g(0) = b, g(1) = a satisfies the property. It follows that g is invariant for X, unique up to
multiplication by positive constants, and that X is reversible.
2. Recall that

Uazm[z Z]— (a+a+1b)(a+b) {_ba _ab] a € (0, 00) (16.19.28)

Again, we just need to find a positive function g on .S with the property that g(0)U, (0, 1) = g(1)U, (1, 0). The other
conditions are trivially satisfied. The function g in part (a) satisfies, the condition, which of course must be the case.

3. Recall that G = [ _ba ab] . Once again, we just need to find a positive function g on S with the property that

9(0)G(0,1) = g(1)G(1,0). The function g given in (a) satisfies the condition. Note that this procedure is the easiest of the
three.

Of course, the invariant PDF f is f(0) =b/(a+b), f(1)=a/(a+b) .

Computational Exercises

The Markov chain in the following exercise has also been studied in previous sections.

Consider the Markov chain X ={X;:¢€[0,00)} on S=1{0,1,2} with exponential parameter function A =(4,1,3) and
jump transition matrix

Q= (16.19.29)

W= = O
who O w|—
o O vl

Give each of the following for the time reversed chain X:

1. The state graph.
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2. The semigroup of transition matrices P = {P, : t € [0, 00)} .
3. The resolvent of potential matrices U = {Uy : a € (0, 00)} .
4. The generator matrixG.
5. The transition matrix of the jump chain Y.

Solutions

Note that the chain is irreducible, and since S is finite, positive recurrent. We found previously that an invariant function (unique
up to multiplication by positive constants) is g = (3, 10, 2).

1. The edge set is E = {(1,0), (2,0), (0, 1), (0, 2), (1, 2)} The exponential parameter function A = (4, 1, 3) is the same as for
X.
2. The transition matrix at ¢ € [0, 00) is

3+12e7% 10 —10e™ 227
3 —3e3 10 +5e 3¢ 2 —2e% (16.19.30)
3—18e % + 1573 10+15e 7t —25e73 2+3e7 % +10e %

L1
P, =—
T

3. The potential matrix at & € (0, 00) is

3+4a+a? 1O+13—0a 2—!—%04
Ty = ——— 3 2 2 .19.
= rat8a 1o 3+za 10+ 7Ta+o 2+2a (16.19.31)
3+3a 10 2+5a+a?
4. The generator matrix is
10 2
N
G= % 1 % (16.19.32)
3 0 -3
5. The transition matrix of the jump chain is
5 1
|0 % %
Q= % 0 % (16.19.33)
1 0 O

Special Models

I Read the discussion of time reversal for chains subordinate to the Poisson process.

l Read the discussion of time reversal for continuous-time birth-death chains.

This page titled 16.19: Time Reversal in Continuous-Time Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by
Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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