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2.1: Random Experiments

Experiments

Probability theory is based on the paradigm of a random experiment; that is, an experiment whose outcome cannot be predicted
with certainty, before the experiment is run. In classical or frequency-based probability theory, we also assume that the experiment
can be repeated indefinitely under essentially the same conditions. The repetitions can be in time (as when we toss a single coin
over and over again) or in space (as when we toss a bunch of similar coins all at once). The repeatability assumption is important
because the classical theory is concerned with the long-term behavior as the experiment is replicated. By contrast, subjective or
belief-based probability theory is concerned with measures of belief about what will happen when we run the experiment. In this
view, repeatability is a less crucial assumption. In any event, a complete description of a random experiment requires a careful
definition of precisely what information about the experiment is being recorded, that is, a careful definition of what constitutes an
outcome.

The term parameter refers to a non-random quantity in a model that, once chosen, remains constant. Many probability models of
random experiments have one or more parameters that can be adjusted to fit the physical experiment being modeled.

The subjects of probability and statistics have an inverse relationship of sorts. In probability, we start with a completely specified
mathematical model of a random experiment. Our goal is perform various computations that help us understand the random
experiment, help us predict what will happen when we run the experiment. In statistics, by contrast, we start with an incompletely
specified mathematical model (one or more parameters may be unknown, for example). We run the experiment to collect data, and
then use the data to draw inferences about the unknown factors in the mathematical model.

Compound Experiments

Suppose that we have  experiments . We can form a new, compound experiment by performing the 
experiments in sequence,  first, and then  and so on, independently of one another. The term independent means, intuitively,
that the outcome of one experiment has no influence over any of the other experiments. We will make the term mathematically
precise later.

In particular, suppose that we have a basic experiment. A fixed number (or even an infinite number) of independent replications of
the basic experiment is a new, compound experiment. Many experiments turn out to be compound experiments and moreover, as
noted above, (classical) probability theory itself is based on the idea of replicating an experiment.

In particular, suppose that we have a simple experiment with two outcomes. Independent replications of this experiment are
referred to as Bernoulli trials, named for Jacob Bernoulli. This is one of the simplest, but most important models in probability.
More generally, suppose that we have a simple experiment with  possible outcomes. Independent replications of this experiment
are referred to as multinomial trials.

Sometimes an experiment occurs in well-defined stages, but in a dependent way, in the sense that the outcome of a given stage is
influenced by the outcomes of the previous stages.

Sampling Experiments

In most statistical studies, we start with a population of objects of interest. The objects may be people, memory chips, or acres of
corn, for example. Usually there are one or more numerical measurements of interest to us—the height and weight of a person, the
lifetime of a memory chip, the amount of rain, amount of fertilizer, and yield of an acre of corn.

Although our interest is in the entire population of objects, this set is usually too large and too amorphous to study. Instead, we
collect a random sample of objects from the population and record the measurements of interest of for each object in the sample.

There are two basic types of sampling. If we sample with replacement, each item is replaced in the population before the next draw;
thus, a single object may occur several times in the sample. If we sample without replacement, objects are not replaced in the
population. The chapter on Finite Sampling Models explores a number of models based on sampling from a finite population.

Sampling with replacement can be thought of as a compound experiment, based on independent replications of the simple
experiment of drawing a single object from the population and recording the measurements of interest. Conversely, a compound
experiment that consists of  independent replications of a simple experiment can usually be thought of as a sampling experiment.
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On the other hand, sampling without replacement is an experiment that consists of dependent stages, because the population
changes with each draw.

Examples and Applications
Probability theory is often illustrated using simple devices from games of chance: coins, dice, card, spinners, urns with balls, and so
forth. Examples based on such devices are pedagogically valuable because of their simplicity and conceptual clarity. On the other
hand, it would be a terrible shame if you were to think that probability is only about gambling and games of chance. Rather, try to
see problems involving coins, dice, etc. as metaphors for more complex and realistic problems.

Coins and Dice

In terms of probability, the important fact about a coin is simply that when tossed it lands on one side or the other. Coins in Western
societies, dating to antiquity, usually have the head of a prominent person engraved on one side and something of lesser importance
on the other. In non-Western societies, coins often did not have a head on either side, but did have distinct engravings on the two
sides, one typically more important than the other. Nonetheless, heads and tails are the ubiquitous terms used in probability theory
to distinguish the front or obverse side of the coin from the back or reverse side of the coin.

Figure : Obverse and reverse sides of a Roman coin, about 241 CE, from Wikipedia

Consider the coin experiment of tossing a coin  times and recording the score (1 for heads or 0 for tails) for each toss.

1. Identify a parameter of the experiment.
2. Interpret the experiment as a compound experiment.
3. Interpret the experiment as a sampling experiment.
4. Interpret the experiment as  Bernoulli trials.

Answer
1. The number of coins  is the parameter.
2. The experiment consists of  independent replications of the simple experiment of tossing the coin one time.
3. The experiment can be thought of as selecting a sample of size  with replacement from he population .
4. There are two outcomes on each toss and the tosses are independent.

In the simulation of the coin experiment, set . Run the simulation 100 times and observe the outcomes.

Dice are randomizing devices that, like coins, date to antiquity and come in a variety of sizes and shapes. Typically, the faces of a
die have numbers or other symbols engraved on them. Again, the important fact is that when a die is thrown, a unique face is
chosen (usually the upward face, but sometimes the downward one). For more on dice, see the introductory section in the chapter
on Games of Chance.

Consider the dice experiment of throwing a -sided die (with faces numbered 1 to ),  times and recording the scores for each
throw.

1. Identify the parameters of the experiment.
2. Interpret the experiment as a compound experiment.
3. Interpret the experiment as a sampling experiment.
4. Identify the experiment as  multinomial trials.

Answer
1. The parameters are the number of dice  and the number of faces .
2. The experiment consists of  independent replications of the simple experiment of throwing one die.
3. The experiment can be thought of as selecting a sample of size  with replacement form the population .
4. The same  outcomes occur for each die the throws are independent.
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In reality, most dice are Platonic solids (named for Plato of course) with 4, 6, 8, 12, or 20 sides. The six-sided die is the standard
die.

Figure : Blue Platonic dice

In the simulation of the dice experiment, set . Run the simulation 100 times and observe the outcomes.

In the die-coin experiment, a standard die is thrown and then a coin is tossed the number of times shown on the die. The
sequence of coin scores is recorded (1 for heads and 0 for tails). Interpret the experiment as a compound experiment.

Answer

The first stage consists rolling the die and the second stage consists of tossing the coin. The stages are dependent because the
number of tosses depends on the outcome of the die throw.

Note that this experiment can be obtained by randomizing the parameter  in the basic coin experiment in (1).

Run the simulation of the die-coin experiment 100 times and observe the outcomes.

In the coin-die experiment, a coin is tossed. If the coin lands heads, a red die is thrown and if the coin lands tails, a green die is
thrown. The coin score (1 for heads and 0 for tails) and the die score are recorded. Interpret the experiment as a compound
experiment.

Answer

The first stage consists of tossing the coin and the second stage consists of rolling the die. The stages are dependent because
different dice (that may behave differently) are thrown, depending on the outcome of the coin toss.

Run the simulation of the coin-die experiment 100 times and observe the outcomes.

Cards

Playing cards, like coins and dice, date to antiquity. From the point of view of probability, the important fact is that a playing card
encodes a number of properties or attributes on the front of the card that are hidden on the back of the card. (Later in this chapter,
these properties will become random variables.) In particular, a standard card deck can be modeled by the Cartesian product set

where the first coordinate encodes the denomination or kind (ace, 2–10, jack, queen, king) and where the second coordinate
encodes the suit (clubs, diamonds, hearts, spades). Sometimes we represent a card as a string rather than an ordered pair (for
example  rather than  for the queen of hearts). Some other properties, derived from the two main ones, are color
(diamonds and hearts are red, clubs and spades are black), face (jacks, queens, and kings have faces, the other cards do not), and
suit order (from least to highest rank: ).

Consider the card experiment that consists of dealing  cards from a standard deck (without replacement).

1. Identify a parameter of the experiment.
2. Interpret the experiment as a compound experiment.
3. Interpret the experiment as a sampling experiment.

Answer
1. The parameter is , the number of cards dealt.
2. At each stage, we draw a card from a deck, but the deck changes from one draw to the next, so the stages are dependent.
3. The experiment is to select a sample of size  from the population , without replacement.

In the simulation of the card experiment, set . Run the simulation 100 times and observe the outcomes.
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The special case  is the poker experiment and the special case  is the bridge experiment.

Open each of the following to see depictions of card playing in some famous paintings.

1. Cheat with the Ace of Clubs by Georges de La Tour
2. The Cardsharps by Michelangelo Carravagio
3. The Card Players by Paul Cézanne
4. His Station and Four Aces by CM Coolidge
5. Waterloo by CM Coolidge

Urn Models

Urn models are often used in probability as simple metaphors for sampling from a finite population.

An urn contains  distinct balls, labeled from 1 to . The experiment consists of selecting  balls from the urn, without
replacement, and recording the sequence of ball numbers.

1. Identify the parameters of the experiment.
2. Interpret the experiment as a compound experiment.
3. Interpret the experiment as a sampling experiment.

Answer
1. The parameters are the number of balls  and the sample size .
2. At each stage, we draw a ball from the urn, but the contents of the urn change from one draw to the next, so the stages are

dependent
3. The experiment is to select a sample of size  from the balls in the urn (the population), without replacement.

Consider the basic urn model of the previous exercise. Suppose that  of the  balls are red and the remaining  balls are
green. Identify an additional parameter of the model. This experiment is a metaphor for sampling from a general dichotomous
population

Answer

The parameters are the population size , the sample size , and the number of red balls .

In the simulation of the urn experiment, set , , and . Run the experiment 100 times and observe the
results.

An urn initially contains  balls;  are red and  are green. A ball is selected from the urn and removed, and then
replaced with  balls of the same color. The process is repeated. This is known as Pólya's urn model, named after George
Pólya.

1. Identify the parameters of the experiment.
2. Interpret the case  as a sampling experiment.
3. Interpret the case  as a sampling experiment.

Answer
1. The parameters are the population size , the initial number of red balls , and the number new balls added .
2. When , each ball drawn is removed and no new balls are added, so the experiment is to select a sample of size  from

the urn, without replacement.
3. When , each ball drawn is replaced with another ball of the same color. So at least in terms of the colors of the balls,

the experiment is equivalent to selecting a sample of size  from the urn, with replacement.

Open the image of the painting Allegory of Fortune by Dosso Dossi. Presumably the young man has chosen lottery tickets
from an urn.
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Buffon's Coin Experiment

Buffon's coin experiment consists of tossing a coin with radius  on a floor covered with square tiles of side length 1. The
coordinates of the center of the coin are recorded, relative to axes through the center of the square, parallel to the sides. The
experiment is named for comte de Buffon.

1. Identify a parameter of the experiment
2. Interpret the experiment as a compound experiment.
3. Interpret the experiment as sampling experiment.

Answer
1. The parameter is the coin radius .
2. The experiment can be thought of as selecting the coordinates of the coin center independently of one another.
3. The experiment is equivalent to selecting a sample of size 2 from the population , with replacement.

In the simulation of Buffon's coin experiment, set . Run the experiment 100 times and observe the outcomes.

Reliability

In the usual model of structural reliability, a system consists of  components, each of which is either working or failed. The states
of the components are uncertain, and hence define a random experiment. The system as a whole is also either working or failed,
depending on the states of the components and how the components are connected. For example, a series system works if and only
if each component works, while a parallel system works if and only if at least one component works. More generally, a  out of 
system works if at least  components work.

Consider the  out of  reliability model.

1. Identify two parameters.
2. What value of  gives a series system?
3. What value of  gives a parallel system?

Answer
1. The parameters are  and 
2.  gives a series system.
3.  gives a parallel system.

The reliability model above is a static model. It can be extended to a dynamic model by assuming that each component is initially
working, but has a random time until failure. The system as a whole would also have a random time until failure that would depend
on the component failure times and the structure of the system.

Genetics

In ordinary sexual reproduction, the genetic material of a child is a random combination of the genetic material of the parents.
Thus, the birth of a child is a random experiment with respect to outcomes such as eye color, hair type, and many other physical
traits. We are often particularly interested in the random transmission of traits and the random transmission of genetic disorders.

For example, let's consider an overly simplified model of an inherited trait that has two possible states (phenotypes), say a pea
plant whose pods are either green or yellow. The term allele refers to alternate forms of a particular gene, so we are assuming that
there is a gene that determines pod color, with two alleles:  for green and  for yellow. A pea plant has two alleles for the trait
(one from each parent), so the possible genotypes are

, alleles for green pods from each parent.
, an allele for green pods from one parent and an allele for yellow pods from the other (we usually cannot observe which

parent contributed which allele).
, alleles for yellow pods from each parent.

The genotypes  and  are called homozygous because the two alleles are the same, while the genotype  is called heterozygous
because the two alleles are different. Typically, one of the alleles of the inherited trait is dominant and the other recessive. Thus, for
example, if  is the dominant allele for pod color, then a plant with genotype  or  has green pods, while a plant with genotype 
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 has yellow pods. Genes are passed from parent to child in a random manner, so each new plant is a random experiment with
respect to pod color.

Pod color in peas was actually one of the first examples of an inherited trait studied by Gregor Mendel, who is considered the father
of modern genetics. Mendel also studied the color of the flowers (yellow or purple), the length of the stems (short or long), and the
texture of the seeds (round or wrinkled).

For another example, the  blood type in humans is controlled by three alleles: , , and . Thus, the possible genotypes are 
, , , ,  and . The alleles  and  are co-dominant and  is recessive. Thus there are four possible blood types

(phenotypes):

Type : genotype  or 
Type : genotype  or 
Type : genotype 
type : genotype 

Of course, blood may be typed in much more extensive ways than the simple  typing. The RH factor (positive or negative) is
the most well-known example.

For our third example, consider a sex-linked hereditary disorder in humans. This is a disorder due to a defect on the X chromosome
(one of the two chromosomes that determine gender). Suppose that  denotes the healthy allele and  the defective allele for the
gene linked to the disorder. Women have two X chromosomes, and typically  is recessive. Thus, a woman with genotype  is
completely normal with respect to the condition; a woman with genotype  does not have the disorder, but is a carrier, since she
can pass the defective allele to her children; and a woman with genotype  has the disorder. A man has only one X chromosome
(his other sex chromosome, the Y chromosome, typically plays no role in the disorder). A man with genotype  is normal and a
man with genotype  has the disorder. Examples of sex-linked hereditary disorders are dichromatism, the most common form of
color-blindness, and hemophilia, a bleeding disorder. Again, genes are passed from parent to child in a random manner, so the birth
of a child is a random experiment in terms of the disorder.

Point Processes

There are a number of important processes that generate “random points in time”. Often the random points are referred to as
arrivals. Here are some specific examples:

times that a piece of radioactive material emits elementary particles
times that customers arrive at a store
times that requests arrive at a web server
failure times of a device

To formalize an experiment, we might record the number of arrivals during a specified interval of time or we might record the
times of successive arrivals.

There are other processes that produce “random points in space”. For example,

flaws in a piece of sheet metal
errors in a string of symbols (in a computer program, for example)
raisins in a cake
misprints on a page
stars in a region of space

Again, to formalize an experiment, we might record the number of points in a given region of space.

Statistical Experiments

In 1879, Albert Michelson constructed an experiment for measuring the speed of light with an interferometer. The velocity of
light data set contains the results of 100 repetitions of Michelson's experiment. Explore the data set and explain, in a general
way, the variability of the data.

Answer

The variablility is due to measurement and other experimental errors beyond the control of Michelson.
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In 1998, two students at the University of Alabama in Huntsville designed the following experiment: purchase a bag of M&Ms
(of a specified advertised size) and record the counts for red, green, blue, orange, and yellow candies, and the net weight (in
grams). Explore the M&M data. set and explain, in a general way, the variability of the data.

Answer

The variability in weight is due to measurement error on the part of the students and to manufacturing errors on the part of the
company. The variability in color counts is less clear and may be due to purposeful randomness on the part of the company.

In 1999, two researchers at Belmont University designed the following experiment: capture a cicada in the Middle Tennessee
area, and record the body weight (in grams), the wing length, wing width, and body length (in millimeters), the gender, and the
species type. The cicada data set contains the results of 104 repetitions of this experiment. Explore the cicada data and explain,
in a general way, the variability of the data.

Answer

The variability in body measurements is due to differences in the three species, to all sorts of envirnomental factors, and to
measurement errors by the researchers.

On June 6, 1761, James Short made 53 measurements of the parallax of the sun, based on the transit of Venus. Explore the
Short data set and explain, in a general way, the variability of the data.

Answer

The variability is due to measurement and other experimental errors beyond the control of Short.

In 1954, two massive field trials were conducted in an attempt to determine the effectiveness of the new vaccine developed by
Jonas Salk for the prevention of polio. In both trials, a treatment group of children were given the vaccine while a control
group of children were not. The incidence of polio in each group was measured. Explore the polio field trial data set and
explain, in a general way, the underlying random experiment.

Answer

The basic random experiment is to observe whether a given child, in the treatment group or control group, comes down with
polio in a specified period of time. Presumabley, a lower incidence of polio in the treatment group compared with the control
group would be evidence that the vaccine was effective.

Each year from 1969 to 1972 a lottery was held in the US to determine who would be drafted for military service. Essentially,
the lottery was a ball and urn model and became famous because many believed that the process was not sufficiently random.
Explore the Vietnam draft lottery data set and speculate on how one might judge the degree of randomness.

Answer

This is a difficult problem, but presumably in a sufficiently random lottery, one would not expect to see dates in the same
month clustered too closely together. Observing such clustering, then, would be evidence that the lottery was not random.

Deterministic Versus Probabilistic Models

One could argue that some of the examples discussed above are inherently deterministic. In tossing a coin, for example, if we know
the initial conditions (involving position, velocity, rotation, etc.), the forces acting on the coin (gravity, air resistance, etc.), and the
makeup of the coin (shape, mass density, center of mass, etc.), then the laws of physics should allow us to predict precisely how the
coin will land. This is true in a technical, theoretical sense, but false in a very real sense. Coins, dice, and many more complicated
and important systems are chaotic in the sense that the outcomes of interest depend in a very sensitive way on the initial conditions
and other parameters. In such situations, it might well be impossible to ever know the initial conditions and forces accurately
enough to use deterministic methods.

In the coin experiment, for example, even if we strip away most of the real world complexity, we are still left with an essentially
random experiment. Joseph Keller in his article “The Probability of Heads” deterministically analyzed the toss of a coin under a
number of ideal assumptions:

1. The coin is a perfect circle and has negligible thickness
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2. The center of gravity of the coin is the geometric center.
3. The coin is initially heads up and is given an initial upward velocity  and angular velocity .
4. In flight, the coin rotates about a horizontal axis along a diameter of the coin.
5. In flight, the coin is governed only by the force of gravity. All other possible forces (air resistance or wind, for example) are

neglected.
6. The coin does not bounce or roll after landing (as might be the case if it lands in sand or mud).

Of course, few of these ideal assumptions are valid for real coins tossed by humans. Let  where  is the acceleration of
gravity (in appropriate units). Note that the  just has units of time (in seconds) and hence is independent of how distance is
measured. The scaled parameter  actually represents the time required for the coin to reach its maximum height.

Keller showed that the regions of the parameter space  where the coin lands either heads up or tails up are separated by the
curves

The parameter  is the total number of revolutions in the toss. A plot of some of these curves is given below. The largest region, in
the lower left corner, corresponds to the event that the coin does not complete even one rotation, and so of course lands heads up,
just as it started. The next region corresponds to one rotation, with the coin landing tails up. In general, the regions alternate
between heads and tails.

Figure : Regions of heads and tails

The important point, of course, is that for even moderate values of  and , the curves are very close together, so that a small
change in the initial conditions can easily shift the outcome from heads up to tails up or conversely. As noted in Keller's article, the
probabilist and statistician Persi Diaconis determined experimentally that typical values of the initial conditions for a real coin toss
are  seconds and  radians per second. These values correspond to  revolutions in the toss. Of course,
this parameter point is far beyond the region shown in our graph, in a region where the curves are exquisitely close together.

This page titled 2.1: Random Experiments is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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