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14.1: Introduction to the Poisson Process
 

The Poisson Model

We will consider a process in which points occur randomly in time. The phrase points in time is generic and could represent, for
example:

The times when a sample of radioactive material emits particles
The times when customers arrive at a service station
The times when file requests arrive at a server computer
The times when accidents occur at a particular intersection
The times when a device fails and is replaced by a new device

It turns out that under some basic assumptions that deal with independence and uniformity in time, a single, one-parameter
probability model governs all such random processes. This is an amazing result, and because of it, the Poisson process (named after
Simeon Poisson) is one of the most important in probability theory.

Run the Poisson experiment with the default settings in single step mode. Note the random points in time.

Random Variables

There are three collections of random variables that can be used to describe the process. First, let  denote the time of the first
arrival, and  the time between the st and th arrival for . Thus,  is the sequence of inter-
arrival times. Next, let  denote the time of the th arrival for . It will be convenient to define , although we do
not consider this as an arrival. Thus  is the sequence of arrival times. Clearly  is the partial sum process
associated , and so in particular each sequence determines the other:

Next, let  denote the number of arrivals in  for . The random process  is the counting process.
The arrival time process  and the counting process  are inverses of one another in a sense, and in particular each process
determines the other:

Note also that  if and only if  for  and  since each of these events means that there are at least 
arrivals in the interval .

Sometimes it will be helpful to extend the notation of the counting process. For  (measurable of course), let 
denote the number of arrivals in :

Thus,  is the counting measure associated with the random points , so in particular it is a random measure.
For our original counting process, note that  for . Thus,  is a (random) distribution function, and 

 is the (random) measure associated with this distribution function.

The Basic Assumption

The assumption that we will make can be described intuitively (but imprecisely) as follows: If we fix a time , whether constant or
one of the arrival times, then the process after time  is independent of the process before time  and behaves probabilistically just
like the original process. Thus, the random process has a strong renewal property. Making the strong renewal assumption precise
will enable use to completely specify the probabilistic behavior of the process, up to a single, positive parameter.
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Think about the strong renewal assumption for each of the specific applications given above.

Run the Poisson experiment with the default settings in single step mode. See if you can detect the strong renewal assumption.

As a first step, note that part of the renewal assumption, namely that the process “restarts” at each arrival time, independently of the
past, implies the following result:

The sequence of inter-arrival times  is an independent, identically distributed sequence

Proof

Note that  is the first arrival time after , so  must be independent of  and have the same distribution.
Similarly  is the first arrival time after , so  must be independent of  and  and have the same
distribution as . Continuing this argument,  must be an independent, identically distributed sequence.

A model of random points in time in which the inter-arrival times are independent and identically distributed (so that the process
“restarts” at each arrival time) is known as a renewal process. A separate chapter explores Renewal Processes in detail. Thus, the
Poisson process is a renewal process, but a very special one, because we also require that the renewal assumption hold at fixed
times.

Analogy with Bernoulli Trials
In some sense, the Poisson process is a continuous time version of the Bernoulli trials process. To see this, suppose that we have a
Bernoulli trials process with success parameter , and that we think of each success as a random point in discrete time.
Then this process, like the Poisson process (and in fact any renewal process) is completely determined by the sequence of inter-
arrival times  (in this case, the number of trials between successive successes), the sequence of arrival times 

 (in this case, the trial numbers of the successes), and the counting process  (in this case, the number
of successes in the first  trials). Also like the Poisson process, the Bernoulli trials process has the strong renewal property: at each
fixed time and at each arrival time, the process “starts over” independently of the past. But of course, time is discrete in the
Bernoulli trials model and continuous in the Poisson model. The Bernoulli trials process can be characterized in terms of each of
the three sets of random variables.

Each of the following statements characterizes the Bernoulli trials process with success parameter :

1. The inter-arrival time sequence  is a sequence of independent variables, and each has the geometric distributions on 
with success parameter .

2. The arrival time sequence  has stationary, independent increments, and for ,  has the negative binomial
distribution with stopping parameter  and success parameter 

3. The counting process  has stationary, independent increments, and for ,  has the binomial distribution with trial
parameter  and success parameter .

Run the binomial experiment with  and . Note the random points in discrete time.

Run the Poisson experiment with  and . Note the random points in continuous time and compare with the behavior
in the previous exercise.

As we develop the theory of the Poisson process we will frequently refer back to the analogy with Bernoulli trials. In particular, we
will show that if we run the Bernoulli trials at a faster and faster rate but with a smaller and smaller success probability, in just the
right way, the Bernoulli trials process converges to the Poisson process.

This page titled 14.1: Introduction to the Poisson Process is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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