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3.13: Absolute Continuity and Density Functions
       

Basic Theory

Our starting point is a measurable space . That is  is a set and  is a -algebra of subsets of . In the last section, we discussed general
measures on  that can take positive and negative values. Special cases are positive measures, finite measures, and our favorite kind,
probability measures. In particular, we studied properties of general measures, ways to construct them, special sets (positive, negative, and null),
and the Hahn and Jordan decompositions.

In this section, we see how to construct a new measure from a given positive measure using a density function, and we answer the fundamental
question of when a measure has a density function relative to the given positive measure.

Relations on Measures

The answer to the question involves two important relations on the collection of measures on  that are defined in terms of null sets. Recall
that  is null for a measure  on  if  for every  with . At the other extreme,  is a support set for 
if  is a null set. Here are the basic definitions:

Suppose that  and  are measures on .

1.  is absolutely continuous with respect to  if every null set of  is also a null set of . We write .
2.  and  are mutually singular if there exists  such that  is null for  and  is null for . We write .

Thus  if every support support set of  is a support set of . At the opposite end,  if  and  have disjoint support sets.

Suppose that , , and  are measures on . Then

1. , the reflexive property.
2. If  and  then , the transitive property.

Recall that every relation that is reflexive and transitive leads to an equivalence relation, and then in turn, the original relation can be extended to
a partial order on the collection of equivalence classes. This general theorem on relations leads to the following two results.

Measures  and  on  are equivalent if  and , and we write . The relation  is an equivalence relation on the
collection of measures on . That is, if , , and  are measures on  then

1. , the reflexive property
2. If  then , the symmetric property
3. If  and  then , the transitive property

Thus,  and  are equivalent if they have the same null sets and thus the same support sets. This equivalence relation is rather weak: equivalent
measures have the same support sets, but the values assigned to these sets can be very different. As usual, we will write  for the equivalence
class of a measure  on , under the equivalence relation .

If  and  are measures on , we write  if . The definition is consistent, and defines a partial order on the collection of
equivalence classes. That is, if , , and  are measures on  then

1. , the reflexive property.
2. If  and  then , the antisymmetric property.
3. If  and  then , the transitive property

The singularity relation is trivially symmetric and is almost anti-reflexive.

Suppose that  and  are measures on . Then

1. If  then , the symmetric property.
2.  if and only if , the zero measure.

Proof

Part (a) is trivial from the symmetry of the definition. For part (b), note that  is null for  and  is null for , so . Conversely, suppose
that  is a measure and . Then there exists  such that  is null for  and  is null for . But then  is null for ,
so  for every .

Absolute continuity and singularity are preserved under multiplication by nonzero constants.
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Suppose that  and  are measures on  and that . Then

1.  if and only if .
2.  if and only if .

Proof

Recall that if , then  is null for  if and only if  is null for .

There is a corresponding result for sums of measures.

Suppose that  is a measure on  and that  is a measure on  for each  in a countable index set . Suppose also that 
 is a well-defined measure on .

1. If  for every  then .
2. If  for every  then .

Proof

Recall that if  is null for  for each , then  is null for , assuming that this is a well-defined measure.

As before, note that  is well-defined if  is a positive measure for each  or if  is finite and  is a finite measure for each 
. We close this subsection with a couple of results that involve both the absolute continuity relation and the singularity relation

Suppose that , , and  are measures on . If  and  then .

Proof

Since , there exists  such that  is null for  and  is null for . But  so  is null for . Hence .

Suppose that  and  are measures on . If  and  then .

Proof

From the previous theorem (with ) we have  and hence by (5), .

Density Functions

We are now ready for our study of density functions. Throughout this subsection, we assume that  is a positive, -finite measure on our
measurable space . Recall that if  is measurable, then the integral of  with respect to  may exist as a number in 

 or may fail to exist.

Suppose that  is a measurable function whose integral with respect to  exists. Then function  defined by

is a -finite measure on  that is absolutely continuous with respect to . The function  is a density function of  relative to .

Proof

To say that the integral exists means that either  or , where as usual,  and  are the positive and negative
parts of . So  for  where  and . Both  and  are
positive measures by basic properties of the integral: Generically, suppose  is measurable. The integral over the empty set is
always 0, so . Next, if  is a countable, disjoint collection of sets in  and , then by the additivity
property of the integral over disjoint domains,

By the assumption that the integral exists, either  or  is a finite positive measure, and hence  is a measure. As you might guess, 
and  form the Jordan decomposition of , a point that we will revisit below.

Again, either  or  is a finite measure. By symmetry, let's suppose that  is finite. Then to show that  is -finite, we just need to show
that  is -finite. Since  has this property, there exists a collection  with , , and . Let 

 for . Then  for  and . Hence  is a
countable collection of measurable sets whose union is also . Moreover,

μ ν (S,S ) a, b ∈ R ∖ {0}

ν ≪ μ aν ≪ bμ

ν ⊥ μ aν ⊥ bμ

c ≠ 0 A ∈S μ A cμ

μ (S,S ) νi (S,S ) i I

ν =∑i∈I νi (S,S )

≪ μνi i ∈ I ν ≪ μ

⊥ μνi i ∈ I ν ⊥ μ

A ∈S νi i ∈ I A ν =∑i∈I νi

ν =∑i∈I νi νi i ∈ I I νi
i ∈ I

μ ν ρ (S,S ) ν ≪ μ μ ⊥ ρ ν ⊥ ρ

μ ⊥ ρ A ∈S A μ Ac ρ ν ≪ μ A ν ν ⊥ ρ

μ ν (S,S ) ν ≪ μ ν ⊥ μ ν = 0

ρ = ν ν ⊥ ν ν = 0

μ σ

(S,S ) f : S →R f μ

=R∪ {−∞, ∞}R
∗

f : S →R μ ν

ν(A) = f dμ, A ∈S∫
A

(3.13.1)

σ (S,S ) μ f ν μ

dμ < ∞∫
S
f+ dμ < ∞∫

S
f− f+ f−

f ν(A) = (A) − (A)ν+ ν− A ∈S (A) = (A)dμν+ ∫
A
f+ (A) = (A)dμν− ∫

A
f− ν+ ν−

g : S → [0, ∞)
gdμ = 0∫

∅
{ : i ∈ I}Ai S A =⋃i∈I Ai

gdμ = gdμ∫
A

∑
i∈I

∫
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(3.13.2)

ν+ ν− ν ν+

ν− ν

ν+ ν− ν− ν σ

ν+ σ μ { : n ∈ }An N+ ∈SAn μ( ) < ∞An = S⋃∞
n=1 An

= {x ∈ S : (x) ≤ n}Bn f+ n ∈ N+ ∈SBn n ∈ N+ = S⋃∞
n=1 Bn { ∩ : (m,n) ∈ }Am An N

2
+

S
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Finally, suppose  is a null set of . If  and  then  so . Hence .

The following three special cases are the most important:

1. If  is nonnegative (so that the integral exists in ) then  is a positive measure since  for .
2. If  is integrable (so that the integral exists in ), then  is a finite measure since  for .
3. If  is nonnegative and  then  is a probability measure since  for  and .

In case 3,  is the probability density function of  relative to , our favorite kind of density function. When they exist, density functions are
essentially unique.

Suppose that  is a -finite measure on  and that  has density function  with respect to . Then  is a density function of 
 with respect to  if and only if  almost everywhere on  with respect to .

Proof

These results also follow from basic properties of the integral. Suppose that  are measurable functions whose integrals with
respect to  exist. If  almost everywhere on  with respect to  then  for every . Hence if  is a density
function for  with respect to  then so is . For the converse, if  for every , then since  is -finite, it follows
that  almost everywhere on  with respect to .

The essential uniqueness of density functions can fail if the positive measure space  is not -finite. A simple example is given below.
Our next result answers the question of when a measure has a density function with respect to , and is the fundamental theorem of this section.
The theorem is in two parts: Part (a) is the Lebesgue decomposition theorem, named for our old friend Henri Lebesgue. Part (b) is the Radon-
Nikodym theorem, named for Johann Radon and Otto Nikodym. We combine the theorems because our proofs of the two results are inextricably
linked.

Suppose that  is a -finite measure on .

1. Lebesgue Decomposition Theorem.  can be uniquely decomposed as  where  and .
2. Radon-Nikodym Theorem.  has a density function with respect to .

Proof

The proof proceeds in stages. we first prove the result for finite, positive measures, then for -finite, positive measures, and finally for
general -finite measures. The first stage is the most complicated.

Part 1, suppose that  and  are positive, finite measures. Let  denote the collection of measurable functions  with 
 for all . Note that  since the constant function  is in . The proof works by finding a maximal element of 

 and using this function as the density function of the absolutely continuous part of .

Our first step is to show that  is closed under the max operator. Let . For , let  and 
. Then  partition  so

Hence .

Our next step is to show that  is closed with respect to increasing limits. Thus suppose that  for  and that  is increasing
in  on . Let . Then  is measurable, and by the monotone convergence theorem, 

 for every . But  for every  so . In particular, 
 so  almost everywhere on  with respect to . Thus, by redefining  on a -null set if necessary, we can

assume  on . Hence .

Now let . Note that . By definition of the supremum, for each  there exist  such
that . Now let  for . Then  and  is increasing in  on . Hence 

 and . But  for each  and hence .

Define  and  for . Then  and  are finite, positive measures and by our previous
theorem,  is absolutely continuous with respect to  and has density function . Our next step is to show that  is singular with respect to

. For , let  denote a Hahn decomposition of the measure . Then

A ∈S μ B ∈S B ⊆ A μ(B) = 0 ν(B) = f dμ = 0∫
B

ν ≪ μ

f R∪ {∞} ν ν(A) ≥ 0 A ∈S
f R ν ν(A) ∈ R A ∈S
f f dμ = 1∫

S
ν ν(A) ≥ 0 A ∈S ν(S) = 1

f ν μ

ν σ (S,S ) ν f μ g : S →R

ν μ f = g S μ
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μ g = f S μ f dμ = gdμ∫
A

∫
A

A ∈S f

ν μ g f dμ = gdμ∫A ∫A A ∈S μ σ

f = g S μ

(S,S ,μ) σ

μ

ν σ (S,S )

ν ν = +νc νs ≪ μνc ⊥ μνs
νc μ

σ

σ

μ ν F g : S → [0, ∞)
gdμ ≤ ν(A)∫A A ∈S F ≠ ∅ 0 F

F ν

F , ∈Fg1 g2 A ∈S = {x ∈ A : (x) ≥ (x)}A1 g1 g2

= {x ∈ A : (x) < (x)}A2 g1 g2 , ∈SA1 A2 A

max{ , } dμ = max{ , } dμ+ max{ , }dμ = dμ+ dμ ≤ ν( ) +ν( ) = ν(A)∫
A

g1 g2 ∫
A1

g1 g2 ∫
A2

g1 g2 ∫
A1

g1 ∫
A2

g2 A1 A2 (3.13.4)

max{ , } ∈Fg1 g2

F ∈Fgn n ∈ N+ gn
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gdμ = dμ∫A limn→∞ ∫A gn A ∈S dμ ≤ ν(A)∫A gn n ∈ N+ gdμ ≤ ν(A)∫A
gdμ ≤ ν(S) < ∞∫

S
g < ∞ S μ g μ

g < ∞ S g ∈F

α = sup{ gdμ : g ∈F}∫
S

α ≤ ν(S) < ∞ n ∈ N+ ∈Fgn

dμ > α−∫S gn
1
n = max{ , , … , }fn g1 g2 gn n ∈ N+ ∈Ffn fn n ∈ N+ S

f = ∈Flimn→∞ fn f dμ = dμ∫
S

limn→∞ ∫S fn dμ ≥ dμ > α−∫
S
fn ∫

S
gn

1
n

n ∈ N+ f dμ ≥ α∫
S

(A) = f dμνc ∫
A

(A) = ν(A) − (A)νs νc A ∈S νc νs

νc μ f νs

μ n ∈ N ( , )Pn P c
n − μνs

1
n

(f + ) dμ = (A) + μ( ∩A) = ν(A) −[ (A) − μ( ∩A)]∫
A

1

n
1Pn νc

1

n
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n
Pn (3.13.5)
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But  since  is a positive measure and  is positive for . Thus we
have  for every , so  for every . If  then 

, which contradicts the definition of . Hence we must have  for every . Now
let . Then . If  then  for  sufficiently large. But this is a contradiction since 

 which is negative for  for every . Thus we must have , so  and  are singular.

Part 2. Suppose that  and  are -finite, positive measures. Then there exists a countable partition  of  where  for 
, and  and  for . Let  and  for . Then  and  are finite,

positive measures for , and  and . By part 1, for each , there exists a measurable function 
 such that  where  for  and . Let . Then 

is measurable. Define  and  for . Note that  and . Then 
 and has density function  and .

Part 3. Suppose that  is a -finite measure (not necessarily positive). By the Jordan decomposition theorem,  where  and 
 are -finite, positive measures, and at least one is finite. By part 2, there exist measurable functions  and 

 such that  and  where ,  for , and 
, . Let , ,  for . Then  and 

.

Uniqueness. Suppose that  where  and  for . Then . But 
 and  so  by the theorem above

In particular, a measure  on  has a density function with respect to  if and only if . The density function in this case is also
referred to as the Radon-Nikodym derivative of  with respect to  and is sometimes written in derivative notation as . This notation,
however, can be a bit misleading because we need to remember that a density function is unique only up to a -null set. Also, the Radon-
Nikodym theorem can fail if the positive measure space  is not -finite. A couple of examples are given below. Next we characterize
the Hahn decomposition and the Jordan decomposition of  in terms of the density function.

Suppose that  is a measure on  with , and that  has density function  with respect to . Let , and
let  and  denote the positive and negative parts of .

1. A Hahn decomposition of  is .
2. The Jordan decomposition is  where  and , for .

Proof

Of course . The proofs are simple.

1. Suppose that . If  then  for  and hence . If  then .
2. This follows immediately from (a) and the Jordan decomposition theorem, since  and  for 

. Note that  and .

The following result is a basic change of variables theorem for integrals.

Suppose that  is a positive measure on  with  and that  has density function  with respect to . If  is a
measurable function whose integral with respect to  exists, then

Proof

The proof is a classical bootstrapping argument. Suppose first that  is a nonnegative simple function. That is,  is a finite
index set,  for , and  is a disjoint collection of sets in . Then . But 

 for each  so

Suppose next that  is measurable. There exists a sequence of nonnegative simple functions  such that  is
increasing in  on  and  as  on . Since  is nonnegative,  is increasing in  on  and  as 

 on . By the first step,  for each . But by the monotone convergence theorem, 
and  as . Hence .

(A) − μ( ∩A) ≥ (A∩ ) − μ(A∩ ) ≥ 0νs
1
n

Pn νs Pn
1
n

Pn νs Pn − μνs
1
n

(f + ) dμ ≤ ν(A)∫
A

1
n
1Pn

A ∈S f + ∈F1
n
1Pn

n ∈ N+ μ( ) > 0Pn

(f + ) dμ = α+ μ( ) > α∫
S

1
n
1Pn

1
n

Pn α μ( ) = 0Pn n ∈ N+

P =⋃∞
n=1 Pn μ(P ) = 0 ( ) > 0νs P c ( ) − μ( ) > 0νs P c 1

n P c n

⊆P c P c
n − μνs

1
n

n ∈ N+ ( ) = 0νs P c μ νs

μ ν σ { : i ∈ I}Si S ∈SSi

i ∈ I μ( ) < ∞Si ν( ) < ∞Si i ∈ I (A) = μ(A∩ )μi Si (A) = ν(A∩ )νi Si i ∈ I μi νi
i ∈ I μ =∑i∈I μi ν =∑i∈I νi i ∈ I

: S → [0, ∞)fi = +νi νi,c νi,s (A) = dμνi,c ∫
A
fi A ∈S ⊥ μνi,s f =∑i∈I 1Ai

fi f : S → [0, ∞)

(A) = f dμνc ∫A (A) = ν(A) − (A)νs νc A ∈S =νc ∑i∈I νi,c =νs ∑i∈I νi,s
≪ μνc f ⊥ μνs

ν σ ν = −ν+ ν− ν+

ν− σ : S → [0, ∞)f+

: S → [0, ∞)f− = +ν+ ν+,c ν+,s = +ν− ν−,c ν−,s (A) = dμν+,c ∫
A
f+ = dμν−,c ∫

A
f− A ∈S

⊥ μν+,s ⊥ μν−,s f = −f+ f− (A) = f dμνc ∫A (A) = ν(A) − (A)νs νc A ∈S ν = +νc νs
= − ⊥ μνs ν+,s ν−,s

ν = + = +νc,1 νs,1 νc,2 νs,2 ≪ μνc,i ⊥ μνs,i i ∈ {1, 2} − = −νc,1 νc,2 νs,2 νs,1
− ≪ μνc,1 νc,2 − ⊥ μνs,2 νs,1 − = − = 0νc,1 νc,2 νs,2 νs,1

ν (S,S ) μ ν ≪ μ

ν μ dν/dμ
μ

(S,S ,μ) σ

ν

ν (S,S ) ν ≪ μ ν f μ P = {x ∈ S : f(x) ≥ 0}
f+ f− f

ν (P , )P c

ν = −ν+ ν− (A) = dμν+ ∫A f+ (A) = dμν− ∫A f− A ∈S

= {x ∈ S : f(x) < 0}P c

A ∈S A ⊆ P f(x) ≥ 0 x ∈ A ν(A) = f dμ ≥ 0∫
A

A ⊆ P c ν(A) = f dμ ≤ 0∫
A

(A) = ν(A∩P )ν+ (A) = −ν(A∩ )ν− P c

A ∈S = ff+
1P = − ff−

1P c

ν (S,S ) ν ≪ μ ν f μ g : S →R

ν

gdν = gf dμ∫
S

∫
S

(3.13.6)

g =∑i∈I ai1Ai I

∈ [0, ∞)ai i ∈ I { : i ∈ I}Ai S gdν = ν( )∫S ∑i∈I ai Ai

ν( ) = f dμ = f dμAi ∫Ai
∫S 1Ai i ∈ I

gdμ = f dμ = ( ) f dμ = gf dμ∫
S

∑
i∈I

ai ∫
S

1Ai ∫
S

∑
i∈I

ai1Ai ∫
S

(3.13.7)

g : S → [0, ∞) ( , , …)g1 g2 gn
n ∈ N+ S → ggn n → ∞ S f fgn n ∈ N+ S f → gfgn

n → ∞ S dν = f dμ∫
S
gn ∫

S
gn n ∈ N+ dν → gdν∫

S
gn ∫

S

f dμ → gf dμ∫
S
gn ∫

S
n → ∞ gdν = gf dμ∫

S
∫
S
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Finally, suppose that  is a measurable function whose integral with respect to  exists. By the previous step, 
 and , and at least one of these integrals is finite. Hence by the additive property

In differential notation, the change of variables theorem has the familiar form , and this is really the justification for the derivative
notation  in the first place. The following result gives the scalar multiple rule for density functions.

Suppose that  is a measure on  with  and that  has density function  with respect to . If , then  has density
function  with respect to .

Proof

If  then .

Of course, we already knew that  implies  for , so the new information is the relation between the density functions. In
derivative notation, the scalar multiple rule has the familiar form

The following result gives the sum rule for density functions. Recall that two measures are of the same type if neither takes the value  or if
neither takes the value .

Suppose that  and  are measures on  of the same type with  and , and that  and  have density functions  and 
with respect to , respectively. Then  has density function  with respect to .

Proof

If  then

The additive property holds because we know that the integrals in the middle of the displayed equation are not of the form .

Of course, we already knew that  and  imply , so the new information is the relation between the density functions. In
derivative notation, the sum rule has the familiar form

The following result is the chain rule for density functions.

Suppose that  is a positive measure on  with  and that  has density function  with respect to . Suppose  is a measure on 
 with  and that  has density function  with respect to . Then  has density function  with respect to .

Proof

This is a simple consequence of the change of variables theorem above. If  then .

Of course, we already knew that  and  imply , so once again the new information is the relation between the density
functions. In derivative notation, the chan rule has the familiar form

The following related result is the inverse rule for density functions.

Suppose that  is a positive measure on  with  and  (so that ). If  has density function  with respect to  then 
has density function  with respect to .

Proof

Let  be a density function of  with respect to  and let . Then  so  is a null set of  and
hence is also a null set of . Thus, we can assume that  on . Let  be a density of  with respect to . Since , it follows
from the chain rule that  is a density of  with respect to . But of course the constant function  is also a density of  with respect to
itself so we have  almost everywhere on . Thus  is a density of  with respect to .

g : S →R ν

dν = f dμ∫
S
g+ ∫

S
g+ dν = f dμ∫

S
g− ∫

S
g−

gdν = dν − dν = f dμ− f dμ = ( − )f dμ = gf dμ∫
S

∫
S

g+ ∫
S

g− ∫
S

g+ ∫
S

g− ∫
S

g+ g− ∫
S

(3.13.8)

dν = f dμ

f = dν/dμ

ν (S,S ) ν ≪ μ ν f μ c ∈ R cν

cf μ

A ∈S cf dμ = c f dμ = cν(A)∫A ∫A

ν ≪ μ cν ≪ μ c ∈ R

= c
d(cν)

dμ

dν

dμ
(3.13.9)

∞
−∞

ν ρ (S,S ) ν ≪ μ ρ ≪ μ ν ρ f g

μ ν +ρ f +g μ

A ∈S

(f +g)dμ = f dμ+ gdμ = ν(A) +ρ(A)∫
A

∫
A

∫
A

(3.13.10)

∞ −∞

ν ≪ μ ρ ≪ μ ν +ρ ≪ μ

= +
d(ν +ρ)

dμ

dν

dμ

dρ

dμ
(3.13.11)

ν (S,S ) ν ≪ μ ν f μ ρ

(S,S ) ρ ≪ ν ρ g ν ρ gf μ

A ∈S ρ(A) = gdν = gf dμ∫
A

∫
A

ν ≪ μ ρ ≪ ν ρ ≪ μ

=
dρ

dμ

dρ

dν

dν

dμ
(3.13.12)

ν (S,S ) ν ≪ μ μ ≪ ν ν ≡ μ ν f μ μ

1/f ν

f ν μ Z = {x ∈ S : f(x) = 0} ν(Z) = f dμ = 0∫
Z

Z ν

μ f ≠ 0 S g μ ν μ ≪ ν ≪ μ

fg μ μ 1 μ

fg = 1 S 1/f μ ν
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In derivative notation, the inverse rule has the familiar form

Examples and Special Cases

Discrete Spaces

Recall that a discrete measure space  consists of a countable set  with the -algebra  of all subsets of , and with
counting measure . Of course  is a positive measure and is trivially -finite since  is countable. Note also that  is the only set that is null
for . If  is a measure on , then by definition, , so  is absolutely continuous relative to . Thus, by the Radon-Nikodym theorem, 
can be written in the form

for a unique . Of course, this is obvious by a direct argument. If we define  for  then the displayed equation
follows by the countable additivity of .

Spaces Generated by Countable Partitions

We can generalize the last discussion to spaces generated by countable partitions. Suppose that  is a set and that  is a
countable partition of  into nonempty sets. Let  and recall that every  has a unique representation of the form 
where . Suppse now that  is a positive measure on  with  for every . Then once again, the measure space 

 is -finite and  is the only null set. Hence if  is a measure on  then  is absolutely continuous with respect to  and hence
has unique density function  with respect to :

Once again, we can construct the density function explicitly.

In the setting above, define  by  for  and . Then  is the density of  with respect to .

Proof

Suppose that  so that  for some . Then

Often positive measure spaces that occur in applications can be decomposed into spaces generated by countable partitions. In the section on
Convergence in the chapter on Martingales, we show that more general density functions can be obtained as limits of density functions of the
type in the last theorem.

Probability Spaces

Suppose that  is a probability space and that  is a random variable taking values in a measurable space . Recall that the
distribution of  is the probability measure  on  given by

If  is a positive measure, -finite measure on , then the theory of this section applies, of course. The Radon-Nikodym theorem tells us
precisely when (the distribution of)  has a probability density function with respect to : we need the distribution to be absolutely continuous
with respect to : if  then  for .

Suppose that  is measurable, so that  is a real-valued random variable. The integral of  (assuming that it exists) is of
fundamental importance, and is knowns as the expected value of . We will study expected values in detail in the next chapter, but here we
just note different ways to write the integral. By the change of variables theorem in the last section we have

Assuming that , the distribution of , is absolutely continuous with respect to , with density function , we can add to our chain of
integrals using Theorem (14):

=
dμ

dν

1

dν/dμ
(3.13.13)

(S,S , #) S σ S =P(S) S

# # σ S ∅
# ν S ν(∅) = 0 ν μ ν

ν(A) = f(x), A ⊆ S∑
x∈A

(3.13.14)

f : S →R f(x) = ν{x} x ∈ S

ν

S A = { : i ∈ I}Ai

S S = σ(A ) A ∈S A =⋃j∈J Aj

J ⊆ I μ S 0 < μ( ) < ∞Ai i ∈ I

(S,S ,μ) σ ∅ ν (S,S ) ν μ

f μ

ν(A) = f dμ, A ∈S∫
A

(3.13.15)

f : S →R f(x) = ν( )/μ( )Ai Ai x ∈ Ai i ∈ I f ν μ

A ∈S A =⋃j∈J Aj J ⊆ I

f dμ = f dμ = μ( ) = ν( ) = ν(A)∫
A

∑
j∈J

∫
Aj

∑
j∈J

ν( )Aj

μ( )Aj

Aj ∑
j∈J

Aj (3.13.16)

(Ω,F ,P) X (S,S )
X PX (S,S )

(A) = P(X ∈ A), A ∈SPX (3.13.17)

μ σ (S,S )
X μ

μ μ(A) = 0 (A) = P(X ∈ A) = 0PX A ∈S

r : S →R r(X) r(X)
r(X)

r[X(ω)]dP(ω) = r(x)d (x)∫
Ω

∫
S

PX (3.13.18)

PX X μ f
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Specializing, suppose that  is a discrete measure space. Thus  has a discrete distribution and (as noted in the previous subsection),
the distribution of  is absolutely continuous with respect to , with probability density function  given by  for . In
this case the integral simplifies:

Recall next that for , the -dimensional Euclidean measure space is  where  is the -algebra of Lebesgue measurable
sets and  is Lebesgue measure. Suppose now that  and that  is the -algebra of Lebesgue measurable subsets of , and that once
again,  is a random variable with values in . By definition,  has a continuous distribution if  for . But we now know
that this is not enough to ensure that the distribution of  has a density function with respect to . We need the distribution to be absolutely
continuous, so that if  then  for . Of course  for , so absolute continuity implies continuity,
but not conversely. Continuity of the distribution is a (much) weaker condition than absolute continuity of the distribution. If the distribution of 

 is continuous but not absolutely so, then the distribution will not have a density function with respect to .

For example, suppose that . Then the distribution of  and  are mutually singular since  and so  will not have a
density function with respect to . This will always be the case if  is countable, so that the distribution of  is discrete. But it is also possible
for  to have a continuous distribution on an uncountable set  with . In such a case, the continuous distribution of  is said
to be degenerate. There are a couple of natural ways in which this can happen that are illustrated in the following exercises.

Suppose that  is uniformly distributed on the interval . Let , .

1.  has a continuous distribution on the circle .
2. The distribution of  and  are mutually singular.
3. Find .

Solution
1. If  then there exist a unique  with  and . Hence .
2.  but .
3. 

The last example is artificial since  has a one-dimensional distribution in a sense, in spite of taking values in . And of course  has a
probability density function  with repsect  given by  for .

Suppose that  is uniformly distributed on the set ,  is uniformly distributed on the interval , and that  and  are
independent.

1.  has a continuous distribution on the product set .
2. The distribution of  and  are mutually singular.
3. Find .

Solution
1. The variables are independent and  has a continuous distribution so  for .
2. \P[(X, Y) \in S] = 1\) but 
3. 

The last exercise is artificial since  has a discrete distribution on  (with all subsets measureable and with ), and  a continuous
distribution on the Euclidean space  (with Lebesgue mearuable subsets and with ). Both are absolutely continuous;  has density function

 given by  for  and  has density function  given by  for . So really, the proper measure space
on  is the product measure space formed from these two spaces. Relative to this product space  has a density  given by 
for .

It is also possible to have a continuous distribution on  with , yet still with no probability density function, a much more
interesting situation. We will give a classical construction. Let  be a sequence of Bernoulli trials with success parameter .
We will indicate the dependence of the probability measure  on the parameter  with a subscript. Thus, we have a sequence of independent
indicator variables with

We interpret  as the th binary digit (bit) of a random variable  taking values in . That is, . Conversely, recall that
every number  can be written in binary form as  where  for each . This representation is unique

r[X(ω)]dP(ω) = r(x)d (x) = r(x)f(x)dμ(x)∫
Ω

∫
S

PX ∫
S

(3.13.19)

(S,S , #) X

X # f f(x) = P(X = x) x ∈ S

r[X(ω)]dP(ω) = r(x)f(x)∫
Ω

∑
x∈S

(3.13.20)

n ∈ N+ n ( , , )R
n
Rn λn Rn σ

λn S ∈Rn S σ S

X S X P(X = x) = 0 x ∈ S

X λn
(A) = 0λn P(X ∈ A) = 0 A ∈S {x} = 0λn x ∈ S

X λn

(S) = 0λn X λn P(X ∈ S) = 1 X

λn S X

X S ∈Rn (S) = 0λn X

Θ [0, 2π) X = cos Θ Y = sinΘ

(X,Y ) C = {(x, y) : + = 1}x2 y2

(X,Y ) λ2

P(Y > X)

(x, y) ∈ C θ ∈ [0, 2π) x = cosθ y = sinθ P[(X,Y ) = (x, y)] = P(Θ = θ) = 0
P[(X,Y ) ∈ C] = 1 (C) = 0λ2
1
2

(X,Y ) R
2 Θ

f λ1 f(θ) = 1/2π θ ∈ [0, 2π)

X {0, 1, 2} Y [0, 2] X Y

(X,Y ) S = {0, 1, 2} ×[0, 2]
(X,Y ) λ2

P(Y > X)

Y P[(X,Y ) = (x, y)] = P(X = 2)P(Y = y) = 0 (x, y) ∈ S

(S) = 0λ2
1
2

X {0, 1, 2} # Y

[0, 2] λ X

g g(x) = 1/3 x ∈ {0, 1, 2} Y h h(y) = 1/2 y ∈ [0, 2]
S (X,Y ) f f(x, y) = 1/6
(x, y) ∈ S

S ⊆R
n (S) > 0λn

( , , …)X1 X2 p ∈ (0, 1)
P p

( = 1) = p, ( = 0) = 1 −pPp Xi Pp Xi (3.13.21)

Xi i X (0, 1) X = /∑∞
i=1 Xi 2i

x ∈ (0, 1) x = /∑∞
i=1 xi 2i ∈ {0, 1}xi i ∈ N+
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except when  is a binary rational of the form  for  and . In this case, there are two representations, one
in which the bits are eventually 0 and one in which the bits are eventually 1. Note, however, that the set of binary rationals is countable. Finally,
note that the uniform distribution on  is the same as Lebesgue measure on .

 has a continuous distribution on  for every value of the parameter . Moreover,

1. If  and  then the distribution of  with parameter  and the distribution of  with parameter  are mutually singular.
2. If ,  has the uniform distribution on .
3. If , then the distribution of  is singular with respect to Lebesgue measure on , and hence has no probability density

function in the usual sense.

Proof

If  is not a binary rational, then

where . Let . Then  as . Hence, . If  is a binary
rational, then there are two bit strings that represent , say  (with bits eventually 0) and  (with bits eventually 1).
Hence . But both of these probabilities are 0 by the same
argument as before.

Next, we define the set of numbers for which the limiting relative frequency of 1's is . Let 
. Note that since limits are unique,  for . Next, by the strong law of

large numbers, . Although we have not yet studied the law of large numbers, The basic idea is simple: in a sequence of
Bernoulli trials with success probability , the long-term relative frequency of successes is . Thus the distributions of , as  varies from 0
to 1, are mutually singular; that is, as  varies,  takes values with probability 1 in mutually disjoint sets.

Let  denote the distribution function of , so that  for . If  is not a binary
rational, then  if and only if there exists  such that  for  and  while . Hence 

. Since the distribution function of a continuous distribution is continuous, it follows that  for all 
. This means that  has the uniform distribution on . If , the distribution of  and the uniform distribution are

mutually singular, so in particular,  does not have a probability density function with respect to Lebesgue measure.

For an application of some of the ideas in this example, see Bold Play in the game of Red and Black.

Counterexamples

The essential uniqueness of density functions can fail if the underlying positive measure  is not -finite. Here is a trivial counterexample:

Suppose that  is a nonempty set and that  is the trivial -algebra. Define the positive measure  on  by , 
. Let  denote the measure on  with constant density function  with respect to .

1.  is not -finite.
2.  for every .

The Radon-Nikodym theorem can fail if the measure  is not -finite, even if  is finite. Here are a couple of standard counterexample:

Suppose that  is an uncountable set and  is the -algebra of countable and co-countable sets:

As usual, let  denote counting measure on , and define  on  by  if  is countable and  if  is countable. Then

1.  is not -finite.
2.  is a finite, positive measure on .
3.  is absolutely continuous with respect to .
4.  does not have a density function with respect to .

Proof
1. Recall that a countable union of countable sets is countable, and so  cannot be written as such a union.
2. Note that . Suppose that  is a countable, disjoint collection of sets in . If  is countable for every  then 

 is countable. Hence  and  for every . Next suppose that  and  are countable for distinct 
. Since , we have . But then  would be countable, which is a contradiction. Hence it is only

possible for to have  countable for a single . In this case,  and  for . But also 

x x = k/2n n ∈ N+ k ∈ {1, 3, … −1}2n

(0, 1) (0, 1)

X (0, 1) p ∈ (0, 1)

p, q ∈ (0, 1) p ≠ q X p X q

p = 1
2

X (0, 1)

p ≠ 1
2

X (0, 1)

x ∈ (0, 1)

(X = x) = ( =  for all i ∈ ) = ( =  for i = 1, 2 … , n) = (1 −pPp Pp Xi xi N+ lim
n→∞

Pp Xi xi lim
n→∞

py )n−y (3.13.22)

y =∑n
i=1 xi q = max{p, 1 −p} (1 −p ≤ → 0py )n−y qn n → ∞ (X = x) = 0Pp x ∈ (0, 1)

x ( , , …)x1 x2 ( , , …)y1 y2

(X = x) = ( =  for all i ∈ ) + ( =  for all i ∈ )Pp Pp Xi xi N+ Pp Xi yi N+

p

= {x ∈ (0, 1) : → p as n → ∞}Cp
1
n
∑n

i=1 xi ∩ = ∅Cp Cq p ≠ q

(X ∈ ) = 1Pp Cp

p p X p

p X

F X F (x) = (X ≤ x) = (X < x)Pp Pp x ∈ (0, 1) x ∈ (0, 1)
X < x n ∈ N+ =Xi xi i ∈ {1, 2, … ,n−1} = 0Xn = 1xn

(X < x) = = xP1/2 ∑∞
n=1

xn

2n
F (x) = x

x ∈ [0, 1] X (0, 1) p ≠ 1
2

X

X

μ σ

S S = {S, ∅} σ μ (S,S ) μ(∅) = 0
μ(S) = ∞ νc (S,S ) c ∈ R μ

(S,S ,μ) σ

= μνc c ∈ (0, ∞)

μ σ ν

S S σ

S = {A ⊆ S : A is countable or   is countable}Ac (3.13.23)

# S ν S ν(A) = 0 A ν(A) = 1 Ac

(S,S , #) σ

ν (S,S )
ν #
ν #

S

ν(∅) = 0 { : i ∈ I}Ai S Ai i ∈ I

⋃i∈I Ai ν ( )= 0⋃i∈I Ai ν( ) = 0Ai i ∈ I Ac
j Ac

k

j, k ∈ I ∩ = ∅Aj Ak ∪ = SAc
j Ac

k S

Ac
j j∈ I ν( ) = 1Aj ν( ) = 0Ai i ≠ j =( )⋃i∈I Ai

c
⋂i∈I A

c
i
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is countable, so . Hence in all cases,  so  is a measure on . It is clearly positive and
finite.

3. Recall that any measure is absolutely continuous with respect to counting measure, since  if and only if .
4. Suppose that  has density function  with respect to . Then  for every . But then 

, which is a contradiction.

Let  denote the standard Borel -algebra on . Let  and  denote counting measure and Lebesgue measure on , respectively.
Then

1.  is not -finite.
2.  is absolutely continuous with respect to .
3.  does not have a density function with respect to .

Proof
1.  is uncountable and hence cannot be written as a countable union of finite sets.
2. Since  is the only null set of , .
3. Suppose that  has density function  with respect to . Then

But then also , a contradiction.
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ν ( )= 1⋃i∈I Ai ν ( )= ν( )⋃i∈I Ai ∑i∈I Ai ν (S,S )

#(A) = 0 A = ∅
ν f # 0 = ν{x} = f d# = f(x)∫{x} x ∈ S

ν(S) = f d# = 0∫S

R σ R # λ (R,R)

(R,R, #) σ

λ #
λ #

R

∅ # λ ≪ #
λ f #

0 = λ{x} = f d# = f(x), x ∈ R∫
{x}

(3.13.24)

λ(R) = f d# = 0∫
R
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