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16.14: Random Walks on Graphs
     

Basic Theory

Introduction

Suppose that  is a graph with vertex set  and edge set . We assume that the graph is undirected (perhaps a
better term would be bi-directed) in the sense that  if and only if . The vertex set  is countable, but may be
infinite. Let  denote the set of neighbors of a vertex , and let  denote the
degree of . We assume that  for , so  has no isolated points.

Suppose now that there is a conductance  associated with each edge . The conductance is symmetric in the
sense that  for . We extend  to a function on all of  by defining  for . Let

so that  is the total conductance of the edges coming from . Our main assumption is that  for . As the
terminology suggests, we imagine a fluid of some sort flowing through the edges of the graph, so that the conductance of an edge
measures the capacity of the edge in some sense. One of the best interpretation is that the graph is an electrical network and the
edges are resistors. In this interpretation, the conductance of a resistor is the reciprocal of the resistance.

In some applications, specifically the resistor network just mentioned, it's appropriate to impose the additional assumption that 
has no loops, so that  for each . However, that assumption is not mathematically necessary for the Markov chains
that we will consider in this section.

The discrete-time Markov chain  with state space  and transition probability matrix  given by

is called a random walk on the graph .

Justification

First,  for . Next, by definition of ,

sp  is a valid transition matrix on . Also,  if and only if  if and only if , so the state graph
of  is , the graph we started with.

This chain governs a particle moving along the vertices of . If the particle is at vertex  at a given time, then the particle will
be at a neighbor of  at the next time; the neighbor is chosen randomly, in proportion to the conductance. In the setting of an
electrical network, it is natural to interpret the particle as an electron. Note that multiplying the conductance function  by a
positive constant has no effect on the associated random walk.

Suppose that  for each  and that  is constant on the edges. Then

1.  for every .
2. The transition matrix  is given by  for  and , and  otherwise.

The discrete-time Markov chain  is the symmetric random walk on .

Proof
1.  for .
2.  for  and 

G= (S,E) S E ⊆ S2

(x, y) ∈ E (y, x) ∈ E S

N(x) = {y ∈ S : (x, y) ∈ E} x ∈ S d(x) = #[N(x)]
x N(x) ≠ ∅ x ∈ S G

c(x, y) > 0 (x, y) ∈ E

c(x, y) = c(y, x) (x, y) ∈ E c S×S c(x, y) = 0 (x, y) ∉ E

C(x) = c(x, y), x ∈ S∑
y∈S

(16.14.1)

C(x) x C(x) < ∞ x ∈ S

G

(x, x) ∉ E x ∈ S

X = ( , , , …)X0 X1 X2 S P

P (x, y) = , (x, y) ∈
c(x, y)

C(x)
S2 (16.14.2)

G

P (x, y) ≥ 0 x, y ∈ S C

P (x, y) = = = 1, x ∈ S∑
y∈S

∑
y∈S

c(x, y)

C(x)

C(x)

C(x)
(16.14.3)

P S P (x, y) > 0 c(x, y) > 0 (x, y) ∈ E

X G

G x ∈ S

x

c

d(x) < ∞ x ∈ S c

C(x) = cd(x) x ∈ S

P P (x, y) = 1
d(x)

x ∈ S y ∈ N(x) P (x, y) = 0

X G

C(x) = c(x, y) = c#[N(x)] = cd(x)∑y∈N(x) x ∈ S

P (x, y) = c(x, y)/C(x) = c/cd(x) = 1/d(x) x ∈ S y ∈ N(x)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10387?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/16%3A_Markov_Processes/16.14%3A_Random_Walks_on_Graphs


16.14.2 https://stats.libretexts.org/@go/page/10387

Thus, for the symmetric random walk, if the state is  at a given time, then the next state is equally likely to be any of the
neighbors of . The assumption that each vertex has finite degree means that the graph  is locally finite.

Let  be a random walk on a graph .

1. If  is connected then  is irreducible.
2. If  is not connected then the equivalence classes of  are the components of  (the maximal connected subsets of ).

Proof
1. Recall that there is a path of length  between distinct states  in the state graph of  if and only if 

. If  is connected, there is a path between each pair of distinct vertices and hence the chain  is irreducible.
2. This follows from (a).

So as usual, we will usually assume that  is connected, for otherwise we could simply restrict our attention to a component of .
In the case that  has no loops (again, an important special case because of applications), it's easy to characterize the periodicity of
the chain. For the theorem that follows, recall that  is bipartite if the vertex set  can be partitioned into nonempty, disjoint sets 

 and  (the parts) such that every edge in  has one endpoint in  and one endpoint in .

Suppose that  is a random walk on a connected graph  with no loops. Then  is either aperiodic or has period 2.
Moreover,  has period 2 if and only if  is bipartite, in which case the parts are the cyclic classes of .

Proof

First note that since  is connected, the chain  is irreducible, and so all states have the same period. If  then 
 also, so returns to , starting at  can always occur at even positive integers. If  is bipartite, then returns to 

 starting at  can clearly only occur at even postive integers, so the period is 2. Conversely, if  is not bipartite then  has a
cycle of odd length . If  is a vertex on the cycle, then returns to , starting at , can occur in 2 steps or in  steps, so the
period of  is 1.

Positive Recurrence and Invariant Distributions

Suppose again that  is a random walk on a graph , and assume that  is connected so that  is irreducible.

The function  is invariant for . The random walk  is positive recurrent if and only if

in which case the invariant probability density function  is given by  for .

Proof

For ,

so  is invariant for . The other results follow from the general theory.

Note that  is the total conductance over all edges in . In particular, of course, if  is finite then  is positive recurrent, with 
as the invariant probability density function. For the symmetric random walk, this is the only way that positive recurrence can
occur:

The symmetric random walk on  is positive recurrent if and only if the set of vertices  is finite, in which case the invariant
probability density function  is given by

where  is the degree function and where  is the number of undirected edges.

Proof

x ∈ S

x G

X G

G X

G X G S

n ∈ N+ x, y ∈ S X

(x, y) > 0P n G X

G G

G

G S

A B E A B

X G X

X G X

G X (x, y) ∈ E

(y, x) ∈ E x ∈ S x G

x x G G

k x x x k

x

X G G X

C P X

K = C(x) = c(x, y) < ∞∑
x∈S

∑
(x,y)∈S 2

(16.14.4)

f f(x) = C(x)/K x ∈ S

y ∈ S

(CP )(y) = C(x)P (x, y) = C(x) = c(x, y) = C(y)∑
x∈S

∑
x∈N(y)

c(x, y)

C(x)
∑

x∈N(y)

(16.14.5)

C P

K G S X f

G S

f

f(x) = , x ∈ S
d(x)

2m
(16.14.6)
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If we take the conductance function to be the constant 1 on the edges, then  and .

On the other hand, when  is infinite, the classification of  as recurrent or transient is complicated. We will consider an
interesting special case below, the symmetric random walk on .

Reversibility

Essentially, all reversible Markov chains can be interpreted as random walks on graphs. This fact is one of the reasons for studying
such walks.

If  is a random walk on a connected graph , then  is reversible with respect to .

Proof

Since the graph is connected,  is irreducible. The crucial observation is that

If  the left side is  and the right side is . If , both sides are 0. It then follows from the
general theory that  is invariant for  and that  is reversible with respect to .

Of course, if  is recurrent, then  is the only positive invariant function, up to multiplication by positive constants, and so  is
simply reversible.

Conversely, suppose that  is an irreducible Markov chain on  with transition matrix  and positive invariant function . If 
 is reversible with respect to  then  is the random walk on the state graph with conductance function  given by 

 for .

Proof

Since  is reversible with respect to ,  and  satisfy  for every . Note that the state
graph  of  is bi-directed since  if and only if , and that the function  given in the theorem is
symmetric, so that  for all . Finally, note that

so that  for , as required.

Again, in the important special case that  is recurrent, there exists a positive invariant function  that is unique up to
multiplication by positive constants. In this case the theorem states that an irreducible, recurrent, reversible chain is a random walk
on the state graph.

Examples and Applications

The Wheatstone Bridge Graph

The graph below is called the Wheatstone bridge in honor of Charles Wheatstone.

Figure : The Wheatstone bridge network, with conductance values in red

In this subsection, let  be the random walk on the Wheatstone bridge above, with the given conductance values.

For the random walk ,

1. Explicitly give the transition probability matrix .
2. Given , find the probability density function of .

Answer

C(x) = d(x) K = 2m

S X

Z
k

X G X C

X

C(x)P (x, y) = C(y)P (y, x), (x, y) ∈ S2 (16.14.7)

(x, y) ∈ E c(x, y) c(y, x) (x, y) ∉ E

C X X C

X C X

X S P g

X g X c

c(x, y) = g(x)P (x, y) (x, y) ∈ S2

X g g P g(x)P (x, y) = g(y)P (y, x) (x, y) ∈ S2

G X P (x, y) > 0 P (y, x) > 0 c

c(x, y) = c(y, x) (x, y) ∈ S2

C(x) = c(x, y) = g(x)P (x, y) = g(x), x ∈ S∑
y∈S

∑
y∈S

(16.14.8)

P (x, y) = c(x, y)/C(x) (x, y) ∈ S2

X g

16.14.1

X

X

P
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For the matrix and vector below, we use the ordered state space .

1. 

2. 

For the random walk ,

1. Show that  is aperiodic.
2. Find the invariant probability density function.
3. Find the mean return time to each state.
4. Find .

Answer

For the matrix and vectors below, we use the ordered state space .

1. The chain is aperiodic since the graph is not bipartite. (Note that the graph has triangles.)

2. 

3. 

4.  as 

The Cube Graph

The graph below is the 3-dimensional cube graph. The vertices are bit strings of length 3, and two vertices are connected by an
edge if and only if the bit strings differ by a single bit.

Figure : The cube graph with conductance values in red

In this subsection, let  denote the random walk on the cube graph above, with the given conductance values.

For the random walk ,

1. Explicitly give the transition probability matrix .
2. Suppose that the initial distribution is the uniform distribution on . Find the probability density

function of .

Answer

For the matrix and vector below, we use the ordered state space .

S = (a, b, c, d)

P =

⎡

⎣

⎢⎢⎢⎢⎢⎢

0
1
4

0
1
5

1
2

0
1
3
2
5

0
1
4

0
2
5

1
2
1
2
2
3

0

⎤

⎦

⎥⎥⎥⎥⎥⎥

= ( , , , )f2
9

40
1
5

13
40

1
4

X

X

limn→∞ P n

(a, b, c, d)

f = ( , , , )1
7

2
7

3
14

5
14

μ = (7, , , )7
2

14
3

14
5

→P n

⎡

⎣

⎢⎢⎢⎢⎢⎢

1
7
1
7
1
7
1
7

2
7
2
7
2
7
2
7

3
14
3

14
3

14
3

14

5
14
5

14
5

14
5

14

⎤

⎦

⎥⎥⎥⎥⎥⎥
n → ∞

16.14.2

X

X

P

{000, 001, 101, 100}
X2

S = (000, 001, 101, 110, 010, 011, 111, 101)
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1. 

2. 

For the random walk ,

1. Show that the chain has period 2 and find the cyclic classes.
2. Find the invariant probability density function.
3. Find the mean return time to each state.
4. Find .
5. Find .

Answer

For the matrix and vector below, we use the ordered state space .

1. The chain has period 2 since the graph is bipartite. The cyclic classes are  (bit strings with an even
number of 1's) and  (bit strings with an odd number of 1's).

2. 

3. 

4.  as 

5. 

6.  as 

P =

⎡

⎣

⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
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0
1
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0
1
4
1
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1
4

0
1
4

0

0
1
4

0

0

0
1
4

0
1
4

0

0
1
4

0

1
4

0
1
4

0

0

0

0
1
4

1
2

0

0

0

0
3
8

0
3
8

0
1
2

0

0
3
9

0
3
8

0

0

0
1
2

0

0
3
8

0
3
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0

0

0
1
2
3
8

0
3
8

0

⎤
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⎥⎥
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⎥⎥⎥
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⎥

= ( , , , , , , , )f2
3
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5

32
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X
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1
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1
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1
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1
6
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0
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0
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0
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⎥⎥⎥
⎥⎥⎥⎥
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Special Models

Recall that the basic Ehrenfest chain with  balls is reversible. Interpreting the chain as a random walk on a graph,
sketch the graph and find a conductance function.

Answer

The state graph  of the basic Ehrenfest chain with  balls is the path from 0 to  with no loops. A conductance function  is
 for .

Recall that the modified Ehrenfest chain with  balls is reversible. Interpreting the chain as a random walk on a graph,
sketch the graph and find a conductance function.

Answer

The state graph  of the modified Ehrenfest chain with  balls is the path from 0 to  with loops. A conductance function 
is  for  and  for .

Recall that the Bernoulli-Laplace chain with  balls in urn 0,  balls in urn 1, and with  of the
balls red, is reversible. Interpreting the chain as a random walk on a graph, sketch the graph and find a conductance function.
Simplify the conductance function in the special case that .

Answer

The state graph  of the Bernoulli-Lapace chain with  balls in urn 0,  balls in urn 1, and with  of the balls red, is the path
from  to  with loops. A conductance function  is given by

In the special case that , a conductance function is

Random Walks on 

Random walks on integer lattices are particularly interesting because of their classification as transient or recurrent. We consider
the one-dimensional case in this subsection, and the higher dimensional case in the next subsection.

Let  be the discrete-time Markov chain with state space  and transition probability matrix  given by

where . The chain  is called the simple random walk on  with parameter .

The term simple is used because the transition probabilities starting in state  do not depend on . Thus the chain is spatially
as well as temporally homogeneous. In the special case , the chain  is the simple symmetric random walk on . Basic
properties of the simple random walk on , and in particular, the simple symmetric random walk were studied in the chapter on
Bernoulli Trials. Of course, the state graph  of  has vertex set , and the neighbors of  are  and . It's not
immediately clear that  is a random walk on  associated with a conductance function, which after all, is the topic of this
section. But that fact and more follow from the next result.

Let  be the function on  defined by

m ∈ N+

G m m c

c(x, x+1) = ( )m−1
x

x ∈ {0, 1, … ,m−1}

m ∈ N+

G m m c

c(x, x+1) = ( )1
2

m−1
x

x ∈ {0, 1, … ,m−1} c(x, x) = ( )1
2

m

x
x ∈ {0, 1, … ,m}

j∈ N+ k ∈ N+ r ∈ {0, … , j+k}

j= k = r

G j k r

max{0, r−j} min{k, r} c

c(x, x+1)

c(x, x)

=( )( )(r−x)(k−x), x ∈ {max{0, r−j}, … , min{k, r} −1}
r

x

j+k−r

k−x

=( )( )[(r−x)x+(j−r+x)(k−x)], x ∈ {max{0, r−j}, … , min{k, r}}
r

x

j+k−r

k−x

j= k = r

c(x, x+1)

c(x, x)

=( )( )(k−x , x ∈ {0, … , k−1}
k

x

k

k−x
)2

=( )( )2x(k−x), x ∈ {0, … , k}
k

x

k

k−x

Z

X = ( , , , …)X0 X1 X2 Z P

P (x, x+1) = p, P (x, x−1) = 1 −p, x ∈ Z (16.14.9)

p ∈ (0, 1) X Z p

x ∈ Z x

p = 1
2

X Z

Z

G X Z x ∈ Z x+1 x−1
X G

g Z

g(x) = , x ∈ Z( )
p

1 −p

x

(16.14.10)
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Then

1.  for all 
2.  is invariant for 
3.  is reversible with respect to 
4.  is the random walk on  with conductance function  given by  for .

Proof
1. For , we only need to consider .

2. This follows from (a) and the general theory.
3. This follows from (a) and (b) and the general theory.
4. From the result above,  is the random walk on  associated with the conductance function  given by 

. By symmetry, it suffices to consider the edge , and in this case,  is given in the second
displayed equation above.

In particular, the simple symmetric random walk is the symmetric random walk on .

The chain  is irreducible and periodic with period 2. Moreover

Proof

The chain is irreducible since  is connected. The chain is periodic since  has no loops and is bipartite, with the parts being
the odd and even integers. Finally, note that starting in state 0, the chain returns to 0 at time  if and only if there are  steps
to the right and  steps to the left.

Classification of the simple random walk on .

1. If  then  is transient.
2. If  then  is null recurrent.

Proof

From the previous result and Stirling's approximation,

Let  for , so that  is the potential matrix. Recall that  is the expected number
of visits to  starting in  for . If  then  and hence  is transient. If  then 
and hence  is recurrent. In this case  must be null recurrent from our general results above, since the vertex set is infinite.

So for the one-dimensional lattice , the random walk  is transient in the non-symmetric case, and null recurrent in the
symmetric case. Let's return to the invariant functions of 

Consider again the random walk  on  with parameter . The constant function  on  and the function  given by

are invariant for . All other invariant functions are linear combinations of these two functions.

Proof

g(x)P (x, y) = g(y)P (y, x) (x, y) ∈ Z
2

g X

X g

X Z c c(x, x+1) = /(1 −ppx+1 )x x ∈ Z

x ∈ Z y = x±1

g(x)P (x, x−1)

g(x)P (x, x+1)

= = g(x−1)P (x−1, x)
px

(1 −p)x−1

= = g(x+1)P (x+1, x)
px+1

(1 −p)x

X G c

c(x, y) = g(x)P (x, y) (x, x+1) c

G

X

(0, 0) =( ) (1 −p , n ∈ NP 2n 2n

n
pn )n (16.14.11)

G G

2n n

n

Z

p ≠ 1
2

X

p = 1
2

X

(0, 0) ≈  as n → ∞P 2n
[4p(1 −p)]n

π n−−−
√

(16.14.12)

R(x, y) = (x, y)∑∞
n=0 P

n (x, y) ∈ Z
2 R R(x, y)

y x (x, y) ∈ Z
2 p ≠ 1

2
R(0, 0) < ∞ X p = 1

2
R(0, 0) = ∞

X X

Z X

X

X Z p ∈ (0, 1) 1 Z g

g(x) = , x ∈ Z( )
p

1 −p

x

(16.14.13)
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The condition for  to be invariant, , leads to the following linear, second order difference equation:

The characteristic equation is  which has roots  and . The solutions
corresponding to the roots are  and , respectively. Hence the result follows from the general theory of linear difference
equations.

Note that when , the constant function  is the only positive invariant function, up to multiplication by positive constants.
But we know this has to be the case since the chain is recurrent when . Moreover, the chain is reversible. In the non-
symmetric case, when , we have an example of a transient chain which nonetheless has non-trivial invariant functions—in
fact a two dimensional space of such functions. Also,  is reversible with respect to , as shown above, but the reversal of  with
respect to  is the chain with transition matrix  given by  for . This chain is just the simple random
walk on  with parameter . So the non-symmetric simple random walk is an example of a transient chain that is reversible
with respect to one invariant measure but not with respect to another invariant measure.

Random walks on 

More generally, we now consider , where . For , let  denote the unit vector with 1 in position 
and 0 elsewhere. The -dimensional integer lattice  has vertex set , and the neighbors of  are  for 

. So in particular, each vertex has  neighbors.

Let  be the Markov chain on  with transition probability matrix  given by

where ,  for  and . The chain  is the simple random walk on  with
parameters  and .

Again, the term simple means that the transition probabilities starting at  do not depend on , so that the chain is spatially
homogeneous as well as temporally homogeneous. In the special case that  for ,  is the simple
symmetric random walk on . The following theorem is the natural generalization of the result abpve for the one-dimensional
case.

Define the function  by

Then

1.  for all 
2.  is invariant for .
3.  is reversible with respect to .
4.  is the random walk on  with conductance function  given by  for .

Proof
1. For , the only cases of interest are  for , since in all other cases,

the left and right sides are 0. But

2. This follows from (a).
3. This follows from (a) and (b).

h hP = h

(1 −p)h(y+1) −h(y) +(1 +p)h(y−1), y ∈ Z (16.14.14)
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4. This also follows from the general result above.

It terms of recurrence and transience, it would certainly seem that the larger the dimension , the less likely the chain is to be
recurrent. That's generally true:

Classification of the simple random walk on .

1. For ,  is null recurrent in the symmetric case and transient for all other values of the parameters.
2. For ,  is transient for all values of the parameters.

Proof sketch

For certain of the non-symmetric cases, we can use the result for dimension 1. Suppose  with . If we
consider the times when coordinate  of the random walk  changes, we have an embedded one-dimensional random walk
with parameter  (the probability of a step in the positive direction). Since , this embedded random
walk is transient and so will fail to return to 0, starting at 0, with positive probability. But if this embedded random walk fails
to return to 0, starting at 0, then the parent random walk  fails to return to  starting at . Hence  is transient.

For the symmetric case, the general proof is similar in to the proof for dimension 1, but the details are considerably more
complex. A return to  can occur only at even times and

Thus for the potential matrix  we have  and the chain is recurrent if  while  and the
chain is transient if .

So for the simple, symmetric random walk on the integer lattice , we have the following interesting dimensional phase shift: the
chain is null recurrent in dimensions 1 and 2 and transient in dimensions 3 or more.

Let's return to the positive invariant functions for . Again, the results generalize those for the one-dimensional case.

For , define  on  by

Let  denote the simple random walk on  with transition matrix , corresponding to the parameter vectors  and ,
wherre ,  for , and ,  for . Then

1.  for all 
2.  is invariant for .
3.  is reversal of  with respect to .

Proof

Part (a) follows from simple substitution. Parts (b) and (c) follow from (a) and the general theory.

Note that when ,  and when , , the invariant function introduced above. So in the completely
non-symmetric case where  for every , the random walk  has  positive invariant functions that are
linearly independent, and  is reversible with respect to one of them.
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