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4.3: Variance
      

Recall the expected value of a real-valued random variable is the mean of the variable, and is a measure of the center of the distribution. Recall also
that by taking the expected value of various transformations of the variable, we can measure other interesting characteristics of the distribution. In
this section, we will study expected values that measure the spread of the distribution about the mean.

Basic Theory

Definitions and Interpretations

As usual, we start with a random experiment modeled by a probability space . So to review,  is the set of outcomes,  the collection of
events, and  the probability measure on the sample space . Suppose that  is a random variable for the experiment, taking values in .
Recall that , the expected value (or mean) of  gives the center of the distribution of .

The variance and standard deviation of  are defined by

1. 

2. 

Implicit in the definition is the assumption that the mean  exists, as a real number. If this is not the case, then  (and hence also )
are undefined. Even if  does exist as a real number, it's possible that . For the remainder of our discussion of the basic theory, we
will assume that expected values that are mentioned exist as real numbers.

The variance and standard deviation of  are both measures of the spread of the distribution about the mean. Variance (as we will see) has nicer
mathematical properties, but its physical unit is the square of that of . Standard deviation, on the other hand, is not as nice mathematically, but has
the advantage that its physical unit is the same as that of . When the random variable  is understood, the standard deviation is often denoted by 

, so that the variance is .

Recall that the second moment of  about  is . Thus, the variance is the second moment of  about the mean , or
equivalently, the second central moment of . In general, the second moment of  about  can also be thought of as the mean square error if
the constant  is used as an estimate of . In addition, second moments have a nice interpretation in physics. If we think of the distribution of  as
a mass distribution in , then the second moment of  about  is the moment of inertia of the mass distribution about . This is a measure of
the resistance of the mass distribution to any change in its rotational motion about . In particular, the variance of  is the moment of inertia of the
mass distribution about the center of mass .

Figure : The moment of inertia about .

The mean square error (or equivalently the moment of inertia) about  is minimized when :

Let  for . Then  is minimized when , and the minimum value is .

Proof

Figure :  is minimized when .

The relationship between measures of center and measures of spread is studied in more detail in the advanced section on vector spaces of random
variables.

Properties

The following exercises give some basic properties of variance, which in turn rely on basic properties of expected value. As usual, be sure to try the
proofs yourself before reading the ones in the text. Our first results are computational formulas based on the change of variables formula for
expected value

Let .
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1. If  has a discrete distribution with probability density function , then .
2. If  has a continuous distribution with probability density function , then 

Proof
1. This follows from the discrete version of the change of variables formula.
2. Similarly, this follows from the continuous version of the change of variables formula.

Our next result is a variance formula that is usually better than the definition for computational purposes.

.

Proof

Let . Using the linearity of expected value we have

Of course, by the change of variables formula,  if  has a discrete distribution, and  if  has a
continuous distribution. In both cases,  is the probability density function of .

Variance is always nonnegative, since it's the expected value of a nonnegative random variable. Moreover, any random variable that really is random
(not a constant) will have strictly positive variance.

The nonnegative property.

1. 
2.  if and only if  for some constant  (and then of course, ).

Proof

These results follow from the basic positive property of expected value. Let . First  with probability 1 so 
. In addition,  if and only if .

Our next result shows how the variance and standard deviation are changed by a linear transformation of the random variable. In particular, note that
variance, unlike general expected value, is not a linear operation. This is not really surprising since the variance is the expected value of a nonlinear
function of the variable: .

If  then

1. 
2. 

Proof
1. Let . By linearity, . Hence .
2. This result follows from (a) by taking square roots.

Recall that when , the linear transformation  is called a location-scale transformation and often corresponds to a change of
location and change of scale in the physical units. For example, the change from inches to centimeters in a measurement of length is a scale
transformation, and the change from Fahrenheit to Celsius in a measurement of temperature is both a location and scale transformation. The previous
result shows that when a location-scale transformation is applied to a random variable, the standard deviation does not depend on the location
parameter, but is multiplied by the scale factor. There is a particularly important location-scale transformation.

Suppose that  is a random variable with mean  and variance . The random variable  defined as follows is the standard score of .

1. 
2. 

Proof

1. From the linearity of expected value, 
2. From the scaling property, .

Since  and its mean and standard deviation all have the same physical units, the standard score  is dimensionless. It measures the directed
distance from  to  in terms of standard deviations.

Let  denote the standard score of , and suppose that  where  and .

X f var(X) = (x−μ f(x)∑x∈S )2

X f var(X) = (x−μ f(x)dx∫
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1. If , the standard score of  is .
2. If , the standard score of  is .

Proof

 and . Hence

As just noted, when , the variable  is a location-scale transformation and often corresponds to a change of physical units. Since
the standard score is dimensionless, it's reasonable that the standard scores of  and  are the same. Here is another standardized measure of
dispersion:

Suppose that  is a random variable with . The coefficient of variation is the ratio of the standard deviation to the mean:

The coefficient of variation is also dimensionless, and is sometimes used to compare variability for random variables with different means. We will
learn how to compute the variance of the sum of two random variables in the section on covariance.

Chebyshev's Inequality

Chebyshev's inequality (named after Pafnuty Chebyshev) gives an upper bound on the probability that a random variable will be more than a
specified distance from its mean. This is often useful in applied problems where the distribution is unknown, but the mean and variance are known
(at least approximately). In the following two results, suppose that  is a real-valued random variable with mean  and standard
deviation .

Chebyshev's inequality 1.

Proof

Figure : Chebyshev's inequality

Here's an alternate version, with the distance in terms of standard deviation.

Chebyshev's inequality 2.

Proof

Let  in the first version of Chebyshev's inequality.

The usefulness of the Chebyshev inequality comes from the fact that it holds for any distribution (assuming only that the mean and variance exist).
The tradeoff is that for many specific distributions, the Chebyshev bound is rather crude. Note in particular that the first inequality is useless when 

, and the second inequality is useless when , since 1 is an upper bound for the probability of any event. On the other hand, it's easy to
construct a distribution for which Chebyshev's inequality is sharp for a specified value of . Such a distribution is given in an exercise
below.

Examples and Applications

As always, be sure to try the problems yourself before looking at the solutions and answers.

b > 0 Y Z

b < 0 Y −Z

E(Y ) = a+bE(X) sd(Y ) = |b| sd(X)

=
Y −E(Y )

sd(Y )

b

|b|

X−E(X)

sd(X)
(4.3.3)

b > 0 Y = a+bX

X Y

X E(X) ≠ 0

cv(X) =
sd(X)

E(X)
(4.3.4)

X μ =E(X) ∈ R

σ = sd(X) ∈ (0, ∞)

P (|X−μ| ≥ t) ≤ , t > 0
σ2

t2
(4.3.5)

4.3.3

P (|X−μ| ≥ kσ) ≤ , k > 0
1

k2
(4.3.6)

t = kσ

t ≤ σ k ≤ 1
t ∈ (0, ∞)
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Indicator Variables

Suppose that  is an indicator variable with , where . Then

1. 
2. 

Proof
1. We proved this in the section on basic properties, although the result is so simple that we can do it again: .
2. Note that  since  only takes values 0 and 1. Hence  and therefore .

The graph of  as a function of  is a parabola, opening downward, with roots at 0 and 1. Thus the minimum value of  is 0, and occurs
when  and  (when  is deterministic, of course). The maximum value is  and occurs when .

Figure : The variance of an indicator variable as a function of .

Uniform Distributions

Discrete uniform distributions are widely used in combinatorial probability, and model a point chosen at random from a finite set. The mean and
variance have simple forms for the discrete uniform distribution on a set of evenly spaced points (sometimes referred to as a discrete interval):

Suppose that  has the discrete uniform distribution on  where , , and . Let 
, the right endpoint. Then

1. .
2. .

Proof
1. We proved this in the section on basic properties. Here it is again, using the formula for the sum of the first  positive integers:

2. Note that

Using the formulas for the sum of the frist  positive integers, and the sum of the squares of the first  positive integers, we have

Using computational formula and simplifying gives the result.

Note that mean is simply the average of the endpoints, while the variance depends only on difference between the endpoints and the step size.

Open the special distribution simulator, and select the discrete uniform distribution. Vary the parameters and note the location and size of the
mean  standard deviation bar in relation to the probability density function. For selected values of the parameters, run the simulation 1000
times and compare the empirical mean and standard deviation to the distribution mean and standard deviation.

Next, recall that the continuous uniform distribution on a bounded interval corresponds to selecting a point at random from the interval. Continuous
uniform distributions arise in geometric probability and a variety of other applied problems.

Suppose that  has the continuous uniform distribution on the interval  where  with . Then

1. 
2. 

Proof
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n−1 n−1
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6
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1. 

2. . The variance result then follows from (a), the computational formula and simple algebra.

Note that the mean is the midpoint of the interval and the variance depends only on the length of the interval. Compare this with the results in the
discrete case.

Open the special distribution simulator, and select the continuous uniform distribution. This is the uniform distribution the interval .
Vary the parameters and note the location and size of the mean  standard deviation bar in relation to the probability density function. For
selected values of the parameters, run the simulation 1000 times and compare the empirical mean and standard deviation to the distribution
mean and standard deviation.

Dice

Recall that a fair die is one in which the faces are equally likely. In addition to fair dice, there are various types of crooked dice. Here are three:

An ace-six flat die is a six-sided die in which faces 1 and 6 have probability  each while faces 2, 3, 4, and 5 have probability  each.
A two-five flat die is a six-sided die in which faces 2 and 5 have probability  each while faces 1, 3, 4, and 6 have probability  each.
A three-four flat die is a six-sided die in which faces 3 and 4 have probability  each while faces 1, 2, 5, and 6 have probability  each.

A flat die, as the name suggests, is a die that is not a cube, but rather is shorter in one of the three directions. The particular probabilities that we use
(  and ) are fictitious, but the essential property of a flat die is that the opposite faces on the shorter axis have slightly larger probabilities that the
other four faces. Flat dice are sometimes used by gamblers to cheat. In the following problems, you will compute the mean and variance for each of
the various types of dice. Be sure to compare the results.

A standard, fair die is thrown and the score  is recorded. Sketch the graph of the probability density function and compute each of the
following:

1. 
2. 

Answer

1. 
2. 

An ace-six flat die is thrown and the score  is recorded. Sketch the graph of the probability density function and compute each of the
following:

1. 
2. 

Answer

1. 
2. 

A two-five flat die is thrown and the score  is recorded. Sketch the graph of the probability density function and compute each of the
following:

1. 
2. 

Answer

1. 
2. 

A three-four flat die is thrown and the score  is recorded. Sketch the graph of the probability density function and compute each of the
following:

1. 
2. 

Answer

1. 
2. 

E(X) = x dx = =∫ b
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In the dice experiment, select one die. For each of the following cases, note the location and size of the mean  standard deviation bar in
relation to the probability density function. Run the experiment 1000 times and compare the empirical mean and standard deviation to the
distribution mean and standard deviation.

1. Fair die
2. Ace-six flat die
3. Two-five flat die
4. Three-four flat die

The Poisson Distribution

Recall that the Poisson distribution is a discrete distribution on  with probability density function  given by

where  is a parameter. The Poisson distribution is named after Simeon Poisson and is widely used to model the number of “random
points” in a region of time or space; the parameter  is proportional to the size of the region. The Poisson distribution is studied in detail in the
chapter on the Poisson Process.

Suppose that  has the Poisson distribution with parameter . Then

1. 
2. 

Proof
1. We did this computation in the previous section. Here it is again:

2. First we compute the second factorial moment:

Hence,  and so .

Thus, the parameter of the Poisson distribution is both the mean and the variance of the distribution.

In the Poisson experiment, the parameter is . Vary the parameter and note the size and location of the mean  standard deviation bar in
relation to the probability density function. For selected values of the parameter, run the experiment 1000 times and compare the empirical mean
and standard deviation to the distribution mean and standard deviation.

The Geometric Distribution

Recall that Bernoulli trials are independent trials each with two outcomes, which in the language of reliability, are called success and failure. The
probability of success on each trial is . A separate chapter on Bernoulli Trials explores this random process in more detail. It is named for
Jacob Bernoulli. If , the trial number  of the first success has the geometric distribution on  with success parameter . The probability
density function  of  is given by

Suppose that  has the geometric distribution on  with success parameter . Then

1. 

2. 

Proof
1. We proved this in the section on basic properties. Here it is again:

2. First we compute the second factorial moment:

±

N f

f(n) = , n ∈ Ne−a an

n!
(4.3.10)

a ∈ (0, ∞)
a

N a

E(N) = a

var(N) = a
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∞
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n
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(n−1)!
e−a ∑

n=1

∞ an−1

(n−1)!
e−a ea (4.3.11)

E[N(N −1)] = n(n−1) = = = =∑
n=1

∞

e−a a
n

n!
∑
n=2

∞

e−a an

(n−2)!
e−aa2∑

n=2

∞ an−2

(n−2)!
a2e−aea a2 (4.3.12)

E ( ) =E[N(N −1)] +E(N) = +aN 2 a2 var(N) = ( +a) − = aa2 a2

a = rt ±

p ∈ [0, 1]
p ∈ (0, 1] N N+ p

f N

f(n) = p(1 −p , n ∈)n−1
N+ (4.3.13)

N N+ p ∈ (0, 1]

E(N) = 1
p

var(N) =
1−p

p2

E(N) = np(1 −p = −p (1 −p = −p = p =∑
n=1

∞

)n−1 d
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∑
n=0

∞

)n
d

dp

1

p

1

p2

1

p
(4.3.14)

E[N(N −1)] = n(n−1)(1 −p p = p(1 −p) (1 −p = p(1 −p) = p(1 −p) =∑
n=2

∞

)n−1 d2

dp2
∑
n=0

∞

)n
d2

dp2

1

p

2

p3

2(1 −p)
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(4.3.15)
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Hence  and hence .

Note that the variance is 0 when , not surprising since  is deterministic in this case.

In the negative binomial experiment, set  to get the geometric distribution . Vary  with the scroll bar and note the size and location of the
mean  standard deviation bar in relation to the probability density function. For selected values of , run the experiment 1000 times and
compare the empirical mean and standard deviation to the distribution mean and standard deviation.

Suppose that  has the geometric distribution with parameter . Compute the true value and the Chebyshev bound for the probability that 
 is at least 2 standard deviations away from the mean.

Answer

1. 
2. 

The Exponential Distribution

Recall that the exponential distribution is a continuous distribution on  with probability density function  given by

where  is the with rate parameter. This distribution is widely used to model failure times and other “arrival times”. The exponential
distribution is studied in detail in the chapter on the Poisson Process.

Suppose that  has the exponential distribution with rate parameter . Then

1. .
2. .

Proof
1. We proved this in the section on basic properties. Here it is again, using integration by parts:

2. Integrating by parts again and using (a), we have

Hence 

Thus, for the exponential distribution, the mean and standard deviation are the same.

In the gamma experiment, set  to get the exponential distribution. Vary  with the scroll bar and note the size and location of the mean 
standard deviation bar in relation to the probability density function. For selected values of , run the experiment 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation.

Suppose that  has the exponential distribution with rate parameter . Compute the true value and the Chebyshev bound for the probability
that  is at least  standard deviations away from the mean.

Answer

1. 
2. 

The Pareto Distribution

Recall that the Pareto distribution is a continuous distribution on  with probability density function  given by

where  is a parameter. The Pareto distribution is named for Vilfredo Pareto. It is a heavy-tailed distribution that is widely used to model
financial variables such as income. The Pareto distribution is studied in detail in the chapter on Special Distributions.

Suppose that  has the Pareto distribution with shape parameter . Then

1.  if  and  if 

E( ) =E[N(N −1)] +E(N) = 2/ −1/pN 2 p2 var(X) = 2/ −1/p−1/ = 1/ −1/pp2 p2 p2

p = 1 X

k = 1 p

± p

N p = 3
4

N

1
16
1
4

[0, ∞) f

f(t) = r , t ∈ [0, ∞)e−rt (4.3.16)

r ∈ (0, ∞)

T r

E(T ) = 1
r

var(T ) = 1
r2

E(T ) = tr dt = −t + dt = 0 − =∫
∞

0
e−rt e−rt ∣

∣
∣
∞

0
∫

∞

0
e−rt 1

r
e−rt ∣

∣
∣
∞

0

1

r
(4.3.17)

E ( ) = r dt = − + 2t dt = 0 +T 2 ∫
∞

0
t2 e−rt t2e−rt ∣

∣
∣
∞

0
∫

∞

0
e−rt 2

r2
(4.3.18)

var(T ) = − =2

r2

1

r2

1

r2

k = 1 r ±
r

X r > 0
X k

e−(k+1)

1

k2

[1, ∞) f

f(x) = , x ∈ [1, ∞)
a

xa+1
(4.3.19)

a ∈ (0, ∞)

X a

E(X) = ∞ 0 < a ≤ 1 E(X) = a
a−1

1 < a < ∞
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2.  is undefined if ,  if , and  if 

Proof
1. We proved this in the section on basic properties. Here it is again:

When , 

2. If  then  and so  is undefined. On the other hand,

When , . Hence  if  and  if .

In the special distribution simuator, select the Pareto distribution. Vary  with the scroll bar and note the size and location of the mean 
standard deviation bar. For each of the following values of , run the experiment 1000 times and note the behavior of the empirical mean and
standard deviation.

1. 
2. 
3. 

The Normal Distribution

Recall that the standard normal distribution is a continuous distribution on  with probability density function  given by

Normal distributions are widely used to model physical measurements subject to small, random errors and are studied in detail in the chapter on
Special Distributions.

Suppose that  has the standard normal distribution. Then

1. 
2. 

Proof
1. We proved this in the section on basic properties. Here it is again:

2. From (a), . Integrate by parts with  and . Thus,  and . Hence

More generally, for  and , recall that the normal distribution with location parameter  and scale parameter  is a continuous
distribution on  with probability density function  given by

Moreover, if  has the standard normal distribution, then  has the normal distribution with location parameter  and scale parameter .
As the notation suggests, the location parameter is the mean of the distribution and the scale parameter is the standard deviation.

Suppose that  has the normal distribution with location parameter  and scale parameter . Then

1. 
2. 

Proof

We could use the probability density function, of course, but it's much better to use the representation of  in terms of the standard normal
variable , and use properties of expected value and variance.

var(X) 0 < a ≤ 1 var(X) = ∞ 1 < a ≤ 2 var(X) = a

(a−1 (a−2))
2 2 < a < ∞

E(X) = x dx = dx = ={∫
∞

1

a

xa+1
∫

∞

1

a

xa
a

−a+1
x−a+1 ∣

∣
∣
∞

1

∞,
,a

a−1

0 < a < 1
a > 1

(4.3.20)

a = 1 E(X) = = lnx = ∞∫ ∞
1

1
x

∣
∣
∣
∞

1

0 < a ≤ 1 E(X) = ∞ var(X)

E ( ) = dx = dx = a ={X2 ∫
∞

1
x2 a

xa+1
∫

∞

1

a

xa−1
x−a+2 ∣

∣
∣
∞

1

∞,
,a

a−2

0 < a < 2
a > 2 (4.3.21)

a = 2 E ( ) = dx = ∞X2 ∫ ∞
1

2
x var(X) = ∞ 1 < a ≤ 2 var(X) = −a

a−2
( )a

a−1

2
a > 2

a ±
a

a = 1
a = 2
a = 3

R ϕ

ϕ(z) = , z ∈ R
1

2π
−−

√
e− 1

2
z2

(4.3.22)

Z

E(Z) = 0
var(Z) = 1

E(Z) = z dz = − = 0 −0∫
∞

−∞

1

2π
−−

√
e

− 1
2
z2 1

2π
−−

√
e

− 1
2
z2 ∣

∣
∣
∞

−∞
(4.3.23)

var(Z) =E( ) = ϕ(z)dzZ2 ∫ ∞
−∞

z2 u = z dv= zϕ(z)dz du = dz v= −ϕ(z)

var(Z) = −zϕ(z) + ϕ(z)dz = 0 +1
∣
∣
∣
∞

−∞
∫

∞

−∞
(4.3.24)

μ ∈ R σ ∈ (0, ∞) μ σ

R f

f(x) = exp[− ], x ∈ R
1

σ2π
−−

√

1

2
( )
x−μ

σ

2

(4.3.25)

Z X = μ+σZ μ σ

X μ σ

E(X) = μ

var(X) = σ2

X

Z
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1. 
2. .

So to summarize, if  has a normal distribution, then its standard score  has the standard normal distribution.

In the special distribution simulator, select the normal distribution. Vary the parameters and note the shape and location of the mean  standard
deviation bar in relation to the probability density function. For selected parameter values, run the experiment 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation.

Beta Distributions

The distributions in this subsection belong to the family of beta distributions, which are widely used to model random proportions and probabilities.
The beta distribution is studied in detail in the chapter on Special Distributions.

Suppose that  has a beta distribution with probability density function . In each case below, graph  below and compute the mean and
variance.

1.  for 
2.  for 
3.  for 

Answer

1. , 
2. , 
3. , 

In the special distribution simulator, select the beta distribution. The parameter values below give the distributions in the previous exercise. In
each case, note the location and size of the mean  standard deviation bar. Run the experiment 1000 times and compare the empirical mean and
standard deviation to the distribution mean and standard deviation.

1. , 
2. , 
3. , 

Suppose that a sphere has a random radius  with probability density function  given by  for . Find the mean and
standard deviation of each of the following:

1. The circumference 
2. The surface area 
3. The volume 

Answer

1. , 

2. , 

3. , 

Suppose that  has probability density function  given by  for . Find

1. 
2. 

Answer
1. 
2. 

The particular beta distribution in the last exercise is also known as the (standard) arcsine distribution. It governs the last time that the Brownian
motion process hits 0 during the time interval . The arcsine distribution is studied in more generality in the chapter on Special Distributions.

Open the Brownian motion experiment and select the last zero. Note the location and size of the mean  standard deviation bar in relation to the
probability density function. Run the simulation 1000 times and compare the empirical mean and standard deviation to the distribution mean and
standard deviation.

E(X) = μ+σE(Z) = μ+0 = μ

var(X) = var(Z) = ⋅ 1 =σ2 σ2 σ2

X Z

±

X f f

f(x) = 6x(1 −x) x ∈ [0, 1]
f(x) = 12 (1 −x)x2 x ∈ [0, 1]
f(x) = 12x(1 −x)2 x ∈ [0, 1]

E(X) = 1
2

var(X) = 1
20

E(X) = 3
5

var(X) = 1
25

E(X) = 2
6

var(X) = 1
25

±

a = 2 b = 2
a = 3 b = 2
a = 2 b = 3

R f f(r) = 12 (1 −r)r2 r ∈ [0, 1]

C = 2πR
A = 4πR2

V = π4
3

R3

π6
5

π2
5

π8
5

π2
5

38
7

−−
√

π8
21

π8
3

19
1470

− −−−
√

X f f(x) = 1

π x(1−x)√
x ∈ (0, 1)

E(X)
var(X)

1
2
1
8

[0, 1]

±
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Suppose that the grades on a test are described by the random variable  where  has the beta distribution with probability density
function  given by  for . The grades are generally low, so the teacher decides to “curve” the grades using the
transformation . Find the mean and standard deviation of each of the following variables:

1. 
2. 
3. 

Answer

1. , 
2. , 
3. , 

Exercises on Basic Properties

Suppose that  is a real-valued random variable with  and . Find each of the following:

1. 
2. 

Answer
1. 
2. 

Suppose that  is a real-valued random variable with  and . Find each of the following:

1. 
2. 

Answer
1. 
2. 

The expected value  is an example of a factorial moment.

Suppose that  and  are independent, real-valued random variables with  and  for . Then

1. 
2. 

Proof
1. This is an important, basic result that was proved in the section on basic properties.
2. Since  and  are also independent, we have . The result then follows from the

computational formula and algebra.

Marilyn Vos Savant has an IQ of 228. Assuming that the distribution of IQ scores has mean 100 and standard deviation 15, find Marilyn's
standard score.

Answer

Fix . Suppose that  is the discrete random variable with probability density function defined by , 
, where . Then equality holds in Chebyshev's inequality at .

Proof

Note that  and . So  and .
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Y = 100X X

f f(x) = 12x(1 −x)2 x ∈ [0, 1]
Z = 10 = 100Y

−−
√ X

−−
√

X

Y

Z

E(X) = 2
5

sd(X) = 1
5

E(Y ) = 40 sd(Y ) = 20
E(Z) = 60.95 sd(Z) = 16.88

X E(X) = 5 var(X) = 4

var(3X−2)
E( )X2

36
29

X E(X) = 2 E [X(X−1)] = 8

E( )X2

var(X)

10
6

E [X(X−1)]

X1 X2 E( ) =Xi μi var( ) =Xi σ2
i i ∈ {1, 2}

E ( ) =X1X2 μ1μ2

var ( ) = + +X1X2 σ2
1σ

2
2 σ2

1μ
2
2 σ2

2μ
2
1

X2
1 X2

2 E ( ) =E ( )E ( ) = ( + )( + )X2
1X

2
2 X2

1 X2
2 σ2

1 μ2
1 σ2

2 μ2
2

z = 8.53

t ∈ (0, ∞) X P(X = t) = P(X = −t) = p

P(X = 0) = 1 −2p p ∈ (0, )1
2

t

E(X) = 0 var(X) =E( ) = 2pX2 t2 P(|X| ≥ t) = 2p / = 2pσ2 t2
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