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5.35: The Log-Logistic Distribution
      

As the name suggests, the log-logistic distribution is the distribution of a variable whose logarithm has the logistic distribution. The
log-logistic distribution is often used to model random lifetimes, and hence has applications in reliability.

The Basic Log-Logistic Distribution

Distribution Functions

The basic log-logistic distribution with shape parameter  is a continuous distribution on  with distribution
function  given by

In the special case that , the distribution is the standard log-logistic distribution.

Proof

Note that  is continuous on  with  and  as . Moreover,

so  is strictly increasing on .

The probability density function function  is given by

1. If ,  is decreasing with  as .
2. If ,  is deceasing with mode .

3. If ,  increases and then decreases with mode 

4. If ,  is concave upward.
5. If ,  is concave downward and then upward, with inflection point at

6. If ,  is concave upward then downward then upward again, with inflection points at

Proof

The PDF  was computed in the proof of the CDF result. The rest follows from

So  has a rich variety of shapes, and is unimodal if . When ,  is defined at 0 as well.
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Open the special distribution simulator and select the log-logistic distribution. Vary the shape parameter and note the shape of
the probability density function. For selected values of the shape parameter, run the simulation 1000 times and compare the
empirical density function to the probability density function.

The quantile function  is given by

1. The first quartile is .
2. The median is .
3. The third quartile is .

Proof

The formula for  follows from the distribution function by solving  for  in terms of .

Recall that  is the odds ratio associated with probability . Thus, the quantile function of the basic log-logistic
distribution with shape parameter  is the th root of the odds ratio function. In particular, the quantile function of the standard log-
logistic distribution is the odds ratio function itself. Also of interest is that the median is 1 for every value of the shape parameter.

Open the special distribution calculator and select the log-logistic distribution. Vary the shape parameter and note the shape of
the distribution and probability density functions. For selected values of the shape parameter, computer a few values of the
distribution function and the quantile function.

The reliability function  is given by

Proof

This follows trivially from the distribution function since .

The basic log-logistic distribution has either decreasing failure rate, or mixed decreasing-increasing failure rate, depending on the
shape parameter.

The failure rate function  is given by

1. If ,  is decreasing.
2. If ,  decreases and then increases with minimum at .

Proof

Recall that the is  for  so the formula follows from the PDF and the reliability function above.
Parts (a) and (b) follow from

If ,  is defined at 0 also.

Moments

Suppose that  has the basic log-logistic distribution with shape parameter . The moments (about 0) of the  have an
interesting expression in terms of the beta function  and in terms of the sine function. The simplest representation is in terms of a
new special function constructed from the sine function.
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The (normalized) cardinal sine function sinc is defined by

where it is understood that  (the limiting value).

Figure : The graph of the sinc function on the interval 

If  then . If  then

Proof

Using the PDF,

The substitution ,  gives

The result now follows from the definition of the beta function.

In particular, we can give the mean and variance.

If  then

If  then

Open the special distribution simulator and select the log-logistic distribution. Vary the shape parameter and note the size and
location of the mean  standard deviation bar. For selected values of the shape parameter, run the simulation 1000 times and
compare the empirical mean and standard deviation to the distribution mean and standard deviation.

Related Distributions

The basic log-logistic distribution is preserved under power transformations.

If  has the basic log-logistic distribution with shape parameter  and if , then  has the basic
log-logistic distribution with shape parameter .

Proof

sinc(x) = , x ∈ R
sin(πx)

πx
(5.35.12)

sinc(0) = 1
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For ,

As a function of , this is the CDF of the basic log-logistic distribution with shape parameter .

In particular, it follows that if  has the standard log-logistic distribution and , then  has the basic log-logistic
distribution with shape parameter .

The log-logistic distribution has the usual connections with the standard uniform distribution by means of the distribution function
and the quantile function given above.

Suppose that .

1. If  has the standard uniform distribution then  has the basic log-logistic distribution
with shape parameter .

2. If  has the basic log-logistic distribution with shape parameter  then  has the standard
uniform distribution.

Since the quantile function of the basic log-logistic distribution has a simple closed form, the distribution can be simulated using
the random quantile method.

Open the random quantile experiment and select the log-logistic distribution. Vary the shape parameter and note the shape of
the distribution and probability density functions. For selected values of the parameter, run the simulation 1000 times and
compare the empirical density function, mean, and standard deviation to their distributional counterparts..

Of course, as mentioned in the introduction, the log-logistic distribution is related to the logistic distribution.

Suppose that .

1. If  has the basic log-logistic distribution with shape parameter  then  has the logistic distribution with location
parameter 0 and scale parameter .

2. If  has the logistic distribution with location parameter  and scale parameter  then  has the basic log-logistic
distribution with shape parameter .

Proof
1. Suppose first that  has the standard log-logistic distribution. Then

and as a function of , this is the CDF of the standard logistic distribution. Suppose now that  has the basic log-logistic
distribution with shape parameter . From the power result, we can take  where  has the standard log-logistic
distribution. Then . But  has the standard logistic distribution, and hence  has the logistic
distribution with location parameter  and scale parameter 

2. Suppose first that  has the standard logistic distribution. Then

and as a function of , this is the CDF of the standard log-logistic distribution. Suppose now that  has the logistic
distribution with location parameter 0 and scale parameter . We can take  where  has the standard logistic
distribution. Hence . But  has the standard log-logistic distribution, and again by the power

result  has the log-logistic distribution with shape parameter .

As a special case, (and as noted in the proof), if  has the standard log-logistic distribution, then  has the standard
logistic distribution, and if  has the standard logistic distribution, then  has the standard log-logistic distribution.
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The standard log-logistic distribution is the same as the standard beta prime distribution.

Proof

The PDF of the standard log-logistic distribution is  for , which is the same as the PDF of the
standard beta prime distribution.

Of course, limiting distributions with respect to parameters are always interesting.

The basic log-logistic distribution with shape parameter  converges to point mass at 1 as .

Proof from the definition

Note that the distribution function satisfies  as  for ,  for all , and  as 
 for . Except for the point of discontinuity , the limiting values are the distribution function of point mass at

1.

Random variable proof

Suppose that  has the standard log-logistic distribution, and for , let , so that  has the basic log-
logistic distribution with shape parameter . The event  has probability 1, and on this event,  as . But
convergence with probability 1 implies convergence in distribution.

The General Log-Logistic Distribution

The basic log-logistic distribution is generalized, like so many distributions on , by adding a scale parameter. Recall that a
scale transformation often corresponds to a change of units (gallons into liters, for example), and so such transformations are of
basic importance.

If  has the basic log-logistic distribution with shape parameter  and if  then  has the log-
logistic distribution with shape parameter  and scale parameter .

Distribution Functions

Suppose that  has the log-logistic distribution with shape parameter  and scale parameter .

 has distribution function  given by

Proof

Recall that  where  is the distribution function of the basic log-logistic distribution with shape parameter .

 has probability density function  given by

When ,  is defined at 0 also.  satisfies the following properties:

1. If ,  is decreasing with  as .
2. If ,  is deceasing with mode .

3. If ,  increases and then decreases with mode 

4. If ,  is concave upward.
5. If ,  is concave downward and then upward, with inflection point at
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6. If ,  is concave upward then downward then upward again, with inflection points at

Proof

Recall that  where  is the probability density function of the basic log-logistic distribution with shape

parameter . Also of course, .

Open the special distribution simulator and select the log-logistic distribution. Vary the shape and scale parameters and note the
shape of the probability density function. For selected values of the parameters, run the simulation 1000 times and compare the
empirical density function to the probability density function.

 has quantile function  given by

1. The first quartile is .
2. The median is .
3. The third quartile is .

Proof

Recall that  for  where  is the quantlie function of the basic log-logistic distribution with
shape parameter .

Open the special distribution calculator and select the log-logistic distribution. Vary the shape and sclae parameters and note
the shape of the distribution and probability density functions. For selected values of the parameters, computer a few values of
the distribution function and the quantile function.

 has reliability function  given by

Proof

This follows trivially from the distribution function, since .

The log-logistic distribution has either decreasing failure rate, or mixed decreasing-increasing failure rate, depending on the shape
parameter.

 has failure rate function  given by

1. If ,  is decreasing.
2. If ,  decreases and then increases with minimum at .

Proof

Recall that  where  is the failure rate function of the basic log-logistic distribution with shape parameter .

Also,  where  is the PDF and  is the reliability function,.

k > 2 f

x = b[ ]
2( −1) ±2kk2 3( −1)k2− −−−−−−√

(k+1)(k+2)

1/k

(5.35.24)

f(x) = g( )1
b

x

b
g

k f = F ′

X F −1

(p) = b , p ∈ [0, 1)F −1 ( )
p

1 −p

1/k

(5.35.25)

= b(1/3q1 )1/k

= bq2

= bq3 31/k

(p) = b (p)F −1 G−1 p ∈ [0, 1) G−1

k

X F c

(x) = , x ∈ [0, ∞)F c bk

+bk xk
(5.35.26)

= 1 −FF c

X R

R(x) = , x ∈ (0, ∞)
kxk−1

+bk xk
(5.35.27)

0 < k ≤ 1 R

k > 1 R x = b(k−1)1/k

R(x) = r( )1
b

x

b
r k

R = f/F c f F c

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10468?pdf


5.35.7 https://stats.libretexts.org/@go/page/10468

Moments

Suppose again that  has the log-logistic distribution with shape parameter  and scale parameter . The
moments of  can be computed easily from the representation  where  has the basic log-logistic distribution with shape
parameter . Again, the expressions are simplest in terms of the beta function  and in terms of the normalized cardinal sine
function sinc.

If  then . If  then

If  then

If  then

Open the special distribution simulator and select the log-logistic distribution. Vary the shape and scale parameters and note the
size and location of the mean/standard deviation bar. For selected values of the parameters, run the simulation 1000 times
compare the empirical mean and standard deviation to the distribution mean and standard deviation.

Related Distributions

Since the log-logistic distribution is a scale family for each value of the shape parameter, it is trivially closed under scale
transformations.

If  has the log-logistic distribution with shape parameter  and scale parameter , and if , then
 has the log-logistic distribution with shape parameter  and scale parameter .

Proof

By definition we can take  where  has the basic log-logistic distribution with shape parameter . But then 
.

The log-logistic distribution is preserved under power transformations.

If  has the log-logistic distribution with shape parameter  and scale parameter , and if ,
then  has the log-logistic distribution with shape parameter  and scale parameter .

Proof

Again we can take  where  has the basic log-logistic distribution with shape parameter . Then . But by
the power result for the standard distribution,  has the basic log-logistic distribution with shape parameter  and hence 
has the log-logistic distribution with shape parameter  and scale parameter .

In particular, if  has the standard log-logistic distribution, then  has the log-logistic distribution with shape parameter 
 and scale parameter .

As before, the log-logistic distribution has the usual connections with the standard uniform distribution by means of the distribution
function and the quantile function computed above.

Suppose that .

1. If  has the standard uniform distribution then  has the log-logistic distribution with
shape parameter  and scale parameter .
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2. If  has the log-logistic distribution with shape parameter  and scale parameter , then  has
the standard uniform distribution.

Again, since the quantile function of the log-logistic distribution has a simple closed form, the distribution can be simulated using
the random quantile method.

Open the random quantile experiment and select the log-logistic distribution. Vary the shape and scale parameters and note the
shape and location of the distribution and probability density functions. For selected values of the parameters, run the
simulation 1000 times and compare the empirical density function, mean and standard deviation to their distributional
counterparts.

Again, the logarithm of a log-logistic variable has the logistic distribution.

Suppose that  and .

1. If  has the log-logistic distribution with shape parameter  and scale parameter  then  has the logistic
distribution with location parameter  and scale parameter .

2. If  has the logistic distribution with location parameter  and scale parameter  then  has the log-logistic
distribution with shape parameter  and scale parameter .

Proof

1. As noted above, we can take  where  has the standard log-logistic distribution. Then 
. But by the corresponding result for the basic distribution,  has the standard logistic

distribution, so  has the logistic distribution with location parameter  and scale parameter .
2. We can take  where  has the standard logistic distribution. Hence . But by the

result corresponding result for the standard distribution,  has the standard log-logistic distribution so  has the log-
logistic distribution with shape parameter  and scale parameter .

Once again, the limiting distribution is also of interest.

For fixed , the log-logistic distribution with shape parameter  and scale parameter  converges to point
mass at  as .

Proof

If  has the log-logistic distribution with shape parameter  and scale parameter , then as usual, we can write  where 
 has the basic log-logistic distribution with shape parameter . From the limit result for the basic distribution, we know that

the distribution of  converges to point mass at 1 as , so it follows by the continuity theorem that the distribution of 
converges to point mass at  as .
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