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5.21: The Uniform Distribution on an Interval
          

The continuous uniform distribution on an interval of  is one of the simplest of all probability distributions, but nonetheless very
important. In particular, continuous uniform distributions are the basic tools for simulating other probability distributions. The
uniform distribution corresponds to picking a point at random from the interval. The uniform distribution on an interval is a special
case of the general uniform distribution with respect to a measure, in this case Lebesgue measure (length measure) on .

The Standard Uniform Distribution

Definition

The continuous uniform distribution on the interval  is known as the standard uniform distribution. Thus if  has the
standard uniform distribution then

for every (Borel measurable) subset  of , where  is Lebesgue (length) measure.

A simulation of a random variable with the standard uniform distribution is known in computer science as a random number. All
programming languages have functions for computing random numbers, as do calculators, spreadsheets, and mathematical and
statistical software packages.

Distribution Functions

Suppose that  has the standard uniform distribution. By definition, the probability density function is constant on .

 has probability density function  given by  for .

Since the density function is constant, the mode is not meaningful.

Open the Special Distribution Simulator and select the continuous uniform distribution. Keep the default parameter values.
Run the simulation 1000 times and compare the empirical density function and to the probability density function.

The distribution function is simply the identity function on .

 has distribution function  given by  for .

Proof

Note that  for . Recall again that  is length measure.

The quantile function is the same as the distribution function.

 has quantile function  given by  for . The quartiles are

1. , the first quartile
2. , the median
3. , the third quartile

Proof

 is the ordinary inverse of  on the interval , which is  itself since  is the identity function.

Open the Special Distribution Calculator and select the continuous uniform distribution. Keep the default parameter values.
Compute a few values of the distribution function and the quantile function.

Moments

Suppose again that  has the standard uniform distribution. The moments (about 0) are simple.
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For ,

Proof

Since the PDF is 1 on ,

The mean and variance follow easily from the general moment formula.

The mean and variance of  are

1. 
2. 

Open the Special Distribution Simulator and select the continuous uniform distribution. Keep the default parameter values.
Run the simulation 1000 times and compare the empirical mean and standard deviation to the true mean and standard
deviation.

Next are the skewness and kurtosis.

The skewness and kurtosis of  are

1. 
2. 

Proof
1. This follows from the symmetry of the distribution about the mean .
2. This follows from the usual formula for kurtosis in terms of the moments, or directly, since  and

Thus, the excess kurtosis is 

Finally, we give the moment generating function.

The moment generating function  of  is given by  and

Proof

Again, since the PDF is 1 on 

Trivially .

Related Distributions

The standard uniform distribution is connected to every other probability distribution on  by means of the quantile function of the
other distribution. When the quantile function has a simple closed form expression, this result forms the primary method of
simulating the other distribution with a random number.
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Suppose that  is the distribution function for a probability distribution on , and that  is the corresponding quantile
function. If  has the standard uniform distribution, then  has distribution function .

Proof

A basic property of quantile functions is that  if and only if  for  and . Hence from the
distribution function of ,

Open the Random Quantile Experiment. For each distribution, run the simulation 1000 times and compare the empirical
density function to the probability density function of the selected distribution. Note how the random quantiles simulate the
distribution.

For a continuous distribution on an interval of , the connection goes the other way.

Suppose that  has a continuous distribution on an interval , with distribution function . Then  has the
standard uniform distribution.

Proof

For  recall that  is a quantile of order . Since  has a continuous distribution,

Hence  is uniformly distributed on .

The standard uniform distribution is a special case of the beta distribution.

The beta distribution with left parameter  and right parameter  is the standard uniform distribution.

Proof

The beta distribution with parameters  and  has PDF

where  is the beta function. With , the PDF is the standard uniform PDF.

The standard uniform distribution is also the building block of the Irwin-Hall distributions.

The Uniform Distribution on a General Interval

Definition

The standard uniform distribution is generalized by adding location-scale parameters.

Suppose that  has the standard uniform distribution. For  and  random variable  has the
uniform distribution with location parameter  and scale parameter .

Distribution Functions

Suppose that  has the uniform distribution with location parameter  and scale parameter .

 has probability density function  given by  for .

Proof

Recall that  for , where  is the standard uniform PDF. But  for , so the
result follows.
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The last result shows that  really does have a uniform distribution, since the probability density function is constant on the
support interval. Moreover, we can clearly parameterize the distribution by the endpoints of this interval, namely  and ,
rather than by the location, scale parameters  and . In fact, the distribution is more commonly known as the uniform distribution
on the interval . Nonetheless, it is useful to know that the distribution is the location-scale family associated with the standard
uniform distribution. In terms of the endpoint parameterization,

Open the Special Distribution Simulator and select the uniform distribution. Vary the location and scale parameters and note
the graph of the probability density function. For selected values of the parameters, run the simulation 1000 times and compare
the empirical density function to the probability density function.

 has distribution function  given by

Proof

Recall that  for , where  is the standard uniform CDF. But  for  so the
result follows. Of course, a direct proof using the PDF is also easy.

In terms of the endpoint parameterization,

 has quantile function  given by  for . The quartiles are

1. , the first quartile
2. , the median
3. , the third quartile

Proof

Recall that  where  is the standard uniform quantile function. But  for  so
the result follows. Of course a direct proof from the CDF is also easy.

Open the Special Distribution Calculator and select the uniform distribution. Vary the parameters and note the graph of the
distribution function. For selected values of the parameters, compute a few values of the distribution function and the quantile
function.

Moments

Again we assume that  has the uniform distribution on the interval  where  and . Thus the location parameter
is  and the scale parameter .

The moments of  are

Proof

For ,

The mean and variance of  are
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1. 
2. 

Open the Special Distribution Simulator and select the uniform distribution. Vary the parameters and note the location and size
of the mean standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

Recall that skewness and kurtosis are defined in terms of the standard score and hence are invariant under location-scale
transformations.

Once again, the excess kurtosis is .

The moment generating function  of  is given by  and

Proof

Recall that  where  is the standard uniform MGF. Substituting gives the result.

If  is a real-valued function on , then  is the average value of  on , as defined in calculus:

If  is integrable, then

Proof

This follows from the change of variables formula for expected value: .

The entropy of the uniform distribution on an interval depends only on the length of the interval.

The entropy of  is .

Proof

Related Distributions

Since the uniform distribution is a location-scale family, it is trivially closed under location-scale transformations.

If  has the uniform distribution with location parameter  and scale parameter , and if  and , then 
 has the uniform distribution with location parameter  and scale parameter .

Proof

From the definition, we can take  where  has the standard uniform distribution. Hence 
.

As we saw above, the standard uniform distribution is a basic tool in the random quantile method of simulation. Uniform
distributions on intervals are also basic in the rejection method of simulation. We sketch the method in the next paragraph; see the
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section on general uniform distributions for more theory.

Suppose that  is a probability density function for a continuous distribution with values in a bounded interval . Suppose
also that  is bounded, so that there exits  such that  for all . Let  be a sequence of
independent variables, each uniformly distributed on , and let  be a sequence of independent variables, each
uniformly distributed on . Finally, assume that  and  are independent. Then  is a sequence of
independent variables, each uniformly distributed on . Let . Then 
is uniformly distributed on  (the region under the graph of ), and therefore  has
probability density function . In words, we generate uniform points in the rectangular region  until we get a point
under the graph of . The -coordinate of that point is our simulated value. The rejection method can be used to approximately
simulate random variables when the region under the density function is unbounded.

Open the rejection method simulator. For each distribution, select a set of parameter values. Run the experiment 2000 times
and observe how the rejection method works. Compare the empirical density function, mean, and standard deviation to their
distributional counterparts.

This page titled 5.21: The Uniform Distribution on an Interval is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by
Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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