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9.2: Tests in the Normal Model

Basic Theory

The Normal Model

The normal distribution is perhaps the most important distribution in the study of mathematical statistics, in part because of the
central limit theorem. As a consequence of this theorem, a measured quantity that is subject to numerous small, random errors will
have, at least approximately, a normal distribution. Such variables are ubiquitous in statistical experiments, in subjects varying
from the physical and biological sciences to the social sciences.

So in this section, we assume that X = (X1, Xa,...,X,) is a random sample from the normal distribution with mean g and
standard deviation o. Our goal in this section is to to construct hypothesis tests for x4 and o; these are among of the most important
special cases of hypothesis testing. This section parallels the section on Estimation in the Normal Model in the chapter on Set
Estimation, and in particular, the duality between interval estimation and hypothesis testing will play an important role. But first we
need to review some basic facts that will be critical for our analysis.

Recall that the sample mean M and sample variance S? are

(X; —M)? (9.2.1)

1 n
M==)"X;, §*=
= n—1 i=1

From our study of point estimation, recall that M is an unbiased and consistent estimator of y while S? is an unbiased and
consistent estimator of ¢2. From these basic statistics we can construct the test statistics that will be used to construct our
hypothesis tests. The following results were established in the section on Special Properties of the Normal Distribution.
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, T'=
1. Z has the standard normal distribution.

2. T has the student ¢ distribution with n — 1 degrees of freedom.
3. V has the chi-square distribution with n — 1 degrees of freedom.
4. Z and V are independent.

It follows that each of these random variables is a pivot variable for (u, o) since the distributions do not depend on the parameters,
but the variables themselves functionally depend on one or both parameters. The pivot variables will lead to natural test statistics
that can then be used to perform the hypothesis tests of the parameters. To construct our tests, we will need quantiles of these
standard distributions. The quantiles can be computed using the special distribution calculator or from most mathematical and
statistical software packages. Here is the notation we will use:

Letpe (0,1)and k € N, .

1. 2(p) denotes the quantile of order p for the standard normal distribution.
2. t;(p) denotes the quantile of order p for the student ¢ distribution with k degrees of freedom.
3. x2(p) denotes the quantile of order p for the chi-square distribution with k degrees of freedom

Since the standard normal and student ¢ distributions are symmetric about 0, it follows that z(1 —p)=—z(p) and
t(1 —p) = —tr(p) forp € (0,1) and k € N, . On the other hand, the chi-square distribution is not symmetric.

Tests for the Mean with Known Standard Deviation

For our first discussion, we assume that the distribution mean g is unknown but the standard deviation o is known. This is not
always an artificial assumption. There are often situations where ¢ is stable over time, and hence is at least approximately known,
while p changes because of different “treatments”. Examples are given in the computational exercises below.
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For a conjectured py € R, define the test statistic
M — po

9.2.3
o]V 2

7 =

1. If ;4 = po then Z has the standard normal distribution.
M=y
o/\/n

can be viewed as a non-centrality parameter. The graph of the probability density function of Z is like that of

So in case (b) /\/_
the standard normal probability density function, but shifted to the right or left by the non-centrality parameter, depending on

whether p > po or p < .

For a € (0, 1), each of the following tests has significance level a:
1. Reject Hy : = po versus Hy : p # o if and only if Z < —z(1 —«/2) or Z > 2(1 — «/2) if and only if
M < pp—2(1 —a/2)ﬁ or M > pg+2(1 —a/2)ﬁ
2. Reject Hy : p < pg versus Hy : p > pyg if and only if Z > 2(1 — ) if and only if M > py + 2(1 —a)ﬁ .
3. Reject Hy : > pg versus Hy : p < pyp if and only if Z < —z(1 — ) if and only if M < pg — 2(1 — ) N

Proof

In part (a), Hy is a simple hypothesis, and under Hy, Z has the standard normal distribution. So « is probability of falsely
rejecting Hy by definition of the quantiles. In parts (b) and (c), Z has a non-central normal distribution under Hy as discussed
above. So if Hj is true, the the maximum type 1 error probability o occurs when p = gy . The decision rules in terms of M
are equivalent to the corresponding ones in terms of Z by simple algebra.

Part (a) is the standard two-sided test, while (b) is the right-tailed test and (c) is the left-tailed test. Note that in each case, the
hypothesis test is the dual of the corresponding interval estimate constructed in the section on Estimation in the Normal Model.

For each of the tests above, we fail to reject Hy at significance level « if and only if pg is in the corresponding 1 —«
confidence interval, that is
1L.M—2(1— a/2) <po <M+2(1- a/2)%—l
2.p0 < M+2(1— )
3. >M—2(1— )

Slq §||q

Proof
This follows from the previous result. In each case, we start with the inequality that corresponds to not rejecting Ho and solve

for po.

The two-sided test in (a) corresponds to a/2 in each tail of the distribution of the test statistic Z, under Hy. This set is said to be
unbiased. But of course we can construct other biased tests by partitioning the confidence level a between the left and right tails in

a non-symmetric way.

For every a, p € (0,1), the following test has significance level a:: Reject Hy : pn = po versus Hy : p # po if and only if
Z < zla—pa) or Z > z(1—pa) .

l.p= % gives the symmetric, unbiased test.

2. p | 0 gives the left-tailed test.

3. p 1 1 gives the right-tailed test.
Proof

As before Hj is a simple hypothesis, and if Hy is true, Z has the standard normal distribution. So the probability of falsely
rejecting Hj is a by definition of the quantiles. Parts (a)—(c) follow from properties of the standard normal quantile function.

The P-value of these test can be computed in terms of the standard normal distribution function &.
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The P-values of the standard tests above are respectively
1.2[1-%(|2))]
21-9(2)
3.8(2)

Recall that the power function of a test of a parameter is the probability of rejecting the null hypothesis, as a function of the true
value of the parameter. Our next series of results will explore the power functions of the tests above.

The power function of the general two-sided test above is given by

Q) =2 (sta—pe) = L2 () ) +2 (L) ~s1-p0)) . wER (9.2.4)
1. Q is decreasing on (—oo, mg) and increasing on (mg, 00) where mg = pg + [2(a — pa) + 2(1 — pa)] \z/—f
2.Q(m) =a.

3.Q(u) »lasptooand Q(pn) —1aspl —oo.
4.1f p =  then Q is symmetric about o (and mg = po).

5. As p increases, Q () increases if g > po and decreases if p < g .

So by varying p, we can make the test more powerful for some values of p, but only at the expense of making the test less powerful
for other values of u.

The power function of the left-tailed test above is given by

Q) =@ (z(a)+%(u—uo)) . WeR 9.2.5)

1. @ is increasing on R.

2.Q(m) =a.
3.Q(u) > lasptooand Q) —0aspl —oo.

The power function of the right-tailed test above, is given by

Q) =@ <Z(a)—4(u—uo)) . WeR (9.2.6)

1. @ is decreasing on R.

2.Q(m) =a.
3.Q(u) > 0asptooand Q) = 1aspl —oo.

For any of the three tests in above , increasing the sample size n or decreasing the standard deviation o results in a uniformly
more powerful test.

In the mean test experiment, select the normal test statistic and select the normal sampling distribution with standard deviation
o = 2, significance level & = 0.1, sample size n = 20, and py = 0. Run the experiment 1000 times for several values of the
true distribution mean p. For each value of p, note the relative frequency of the event that the null hypothesis is rejected.
Sketch the empirical power function.

In the mean estimate experiment, select the normal pivot variable and select the normal distribution with ¢ = 0 and standard
deviation o = 2, confidence level 1 —a = 0.90, and sample size n = 10. For each of the three types of confidence intervals,
run the experiment 20 times. State the corresponding hypotheses and significance level, and for each run, give the set of uq for
which the null hypothesis would be rejected.

In many cases, the first step is to design the experiment so that the significance level is a and so that the test has a given power 3
for a given alternative p;.
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For either of the one-sided tests in above, the sample size n needed for a test with significance level o and power g for the
alternative p; is

n= (M) 9.2.7)

M1 — Mo
Proof

This follows from setting the power function equal to 8 and solving for n

For the unbiased, two-sided test, the sample size n needed for a test with significance level « and power 3 for the alternative
1 is approximately

(s

Proof

In the power function for the two-sided test given above, we can neglect the first term if p; < o and neglect the second term
if > po -

Tests of the Mean with Unknown Standard Deviation
For our next discussion, we construct tests of y without requiring the assumption that o is known. And in applications of course, o

is usually unknown.

For a conjectured 19 € R, define the test statistic
_ M — po
S/vn

1. If p = po, the statistic 7" has the student ¢ distribution with n — 1 degrees of freedom.

T (9.2.9)

H—Ho

a/yn’

2.If p # po then T has a non-central ¢ distribution with n — 1 degrees of freedom and non-centrality parameter

In case (b), the graph of the probability density function of 7' is much (but not exactly) the same as that of the ordinary ¢
distribution with m» — 1 degrees of freedom, but shifted to the right or left by the non-centrality parameter, depending on whether

> pro Or 1 < fro .
For a € (0,1), each of the following tests has significance level a:
1. Reject Hy : pp = po versus Hy : p# po ifand only if T < —t,,_1(1 —/2) or T >t,-1(1 —/2) if and only if

M<,u0—tn,1(1—a/2)% or T > py +tn,1(1—a/2)% .

2. Reject Hy : pu < pg versus Hy : p > po if and only if T > ¢, 1 (1 — ) if and only if M > pg +t,-1(1 —a)% .
3. Reject Hy : > po versus Hy : p < pyo if and only if T < —t,_1(1 — ) if and only if M < pg —t,—1(1 —a)% .

Proof

In part (a), T' has the chi-square distribution with n —1 degrees of freedom under Hj. So if Hj is true, the probability of
falsely rejecting Hy is o by definition of the quantiles. In parts (b) and (c), 7" has a non-central ¢ distribution with n —1
degrees of freedom under Hy, as discussed above. Hence if Hj is true, the maximum type 1 error probability a occurs when
1 = po - The decision rules in terms of M are equivalent to the corresponding ones in terms of 7" by simple algebra.

Part (a) is the standard two-sided test, while (b) is the right-tailed test and (c) is the left-tailed test. Note that in each case, the
hypothesis test is the dual of the corresponding interval estimate constructed in the section on Estimation in the Normal Model.

For each of the tests above, we fail to reject Hy at significance level « if and only if pg is in the corresponding 1 —«
confidence interval.

1L.M—t, (1 —a/2)% <po <MA+t, 1(1—a/2)

S
7/

https://stats.libretexts.org/@go/page/10212


https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10212?pdf

@giLkwékmﬁw

2.0 <M+t 1(1—a)
3. o ZM—tn_l(l—a)

gll‘”%ll"’

Proof

This follows from the previous result. In each case, we start with the inequality that corresponds to not rejecting Hy and then
solve for pyg.

The two-sided test in (a) corresponds to /2 in each tail of the distribution of the test statistic T', under Hy. This set is said to be
unbiased. But of course we can construct other biased tests by partitioning the confidence level o between the left and right tails in
a non-symmetric way.

For every a, p € (0, 1), the following test has significance level a: Reject Hy : p = pg versus Hy : p # po if and only if
S S

T <tp1(a—pa) orT >t,1(1 —pa) if and only if M < pg +t,-1(c —pa)% or M > pg+t,-1(1 —pa)% .
l.p= % gives the symmetric, unbiased test.
2. p | 0 gives the left-tailed test.
3. p T 1 gives the right-tailed test.

Proof

Once again, Hj is a simple hypothesis, and under Hj the test statistic 7" has the student ¢ distribution with n —1 degrees of
freedom. So if Hj is true, the probability of falsely rejecting Hy is a by definition of the quantiles. Parts (a)—(c) follow from
properties of the quantile function.

The P-value of these test can be computed in terms of the distribution function ®,,_; of the ¢-distribution with n —1 degrees of
freedom.

The P-values of the standard tests above are respectively

L2[1—®, 1 (|T)]
2.1— &, (T)
3.8,_1(T)

In the mean test experiment, select the student test statistic and select the normal sampling distribution with standard deviation
o = 2, significance level o = 0.1, sample size n = 20, and py = 1. Run the experiment 1000 times for several values of the
true distribution mean p. For each value of u, note the relative frequency of the event that the null hypothesis is rejected.
Sketch the empirical power function.

In the mean estimate experiment, select the student pivot variable and select the normal sampling distribution with mean 0 and
standard deviation 2. Select confidence level 0.90 and sample size 10. For each of the three types of intervals, run the
experiment 20 times. State the corresponding hypotheses and significance level, and for each run, give the set of 1y for which
the null hypothesis would be rejected.

The power function for the ¢ tests above can be computed explicitly in terms of the non-central ¢ distribution function.
Qualitatively, the graphs of the power functions are similar to the case when o is known, given above two-sided, left-tailed, and
right-tailed cases.

If an upper bound o on the standard deviation ¢ is known, then conservative estimates on the sample size needed for a given
confidence level and a given margin of error can be obtained using the methods for the normal pivot variable, in the two-sided and
one-sided cases.

Tests of the Standard Deviation

For our next discussion, we will construct hypothesis tests for the distribution standard deviation o. So our assumption is that o is
unknown, and of course almost always, & would be unknown as well.

I For a conjectured value o € (0, 00), define the test statistic
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—1
V= n—252 (9.2.10)
0
1. If o = g9, then V has the chi-square distribution with » — 1 degrees of freedom.
2.1f o # o then V has the gamma distribution with shape parameter (n — 1)/2 and scale parameter 25> / ag.

Recall that the ordinary chi-square distribution with n —1 degrees of freedom is the gamma distribution with shape parameter
(n—1)/2 and scale parameter % So in case (b), the ordinary chi-square distribution is scaled by o2 / 03 . In particular, the scale
factor is greater than 1 if ¢ > o and less than 1 if 0 < 7.

For every a € (0, 1), the following test has significance level a:

1. Reject Hy : 0 = g versus Hy : 0 # oy if and only if V' < xi_l (a/2) or V > Xi_l(l —a/2) if and only if
S <32 1 (0/2)2 or §2 > 2 (1 —a)2)-2

n

o2
2.Reject Hy : 0 > 0 versus Hy : 0 <o ifandonly if V < x2_, (a) if and only if % < x? (o) —=

n—1
o2
3. Reject Hy : 0 < og versus Hy : 0 >0y ifandonly if V> x2_ (1 —«) ifandonlyif §? >x2 (1 —a)—5
Proof

The logic is largely the same as with our other hypothesis test. In part (a), Hy is a simple hypothesis, and under Hj, the test
statistic V' has the chi-square distribution with n —1 degrees of freedom. So if Hj is true, the probability of falsely rejecting
Hj is a by definition of the quantiles. In parts (b) and (c), V" has the more general gamma distribution under Hy, as discussed
above. If Hy is true, the maximum type 1 error probability is & and occurs when o = oy .

Part (a) is the unbiased, two-sided test that corresponds to «/2 in each tail of the chi-square distribution of the test statistic V,
under Hy. Part (b) is the left-tailed test and part (c) is the right-tailed test. Once again, we have a duality between the hypothesis
tests and the interval estimates constructed in the section on Estimation in the Normal Model.

For each of the tests in above, we fail to reject Hy at significance level « if and only if ag is in the corresponding 1 — o
confidence interval. That is
Ll _g2<p2<_nl _g2
Xa(l-a/2)” =70 = 52 (a/2)

2 < n—1 2
2.05 < Z.@ S

2 n—1 2
39 2 7 0w
Proof

This follows from the previous result. In each case, we start with the inequality that corresponds to not rejecting Hy and then
solve for Ug.

As before, we can construct more general two-sided tests by partitioning the significance level o between the left and right tails of
the chi-square distribution in an arbitrary way.

For every a, p € (0, 1), the following test has significance level a: Reject Hy : o = o versus Hy : o # oq if and only if

2 2
V<x? (a—pa) orV>x% (1-pa) ifandonlyif S? <x?  (a—pa) % or 52 >X72171(1—pa)%.

n—1
l.p= % gives the equal-tail test.
2. p | 0 gives the left-tail test.
3. p T 1 gives the right-tail test.

Proof

As before, Hj is a simple hypothesis, and under Hj the test statistic V' has the chi-square distribution with n —1 degrees of
freedom. So if Hj is true, the probability of falsely rejecting Hy is a by definition of the quantiles. Parts (a)—(c) follow from
properties of the quantile function.

https://stats.libretexts.org/@go/page/10212



https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10212?pdf

LibreTextsw

Recall again that the power function of a test of a parameter is the probability of rejecting the null hypothesis, as a function of the
true value of the parameter. The power functions of the tests for o can be expressed in terms of the distribution function G,,_; of
the chi-square distribution with n — 1 degrees of freedom.

The power function of the general two-sided test above is given by the following formula, and satisfies the given properties:

2 2
Qo) =1-Gna <0—gx3_1(1—pa)> +Gn-1 (”—gxg_l(a—pa)) (9.2.11)
(o) o

1. @ is decreasing on (—oo, o) and increasing on (o, 00).

Z.Q(Uo):a.
3.Q(c) »lasotooand Q(o) > 1laso | O0.

The power function of the left-tailed test in above is given by the following formula, and satisfies the given properties:
o2 )
Q@) =1-Gna | S xpa(1-a) (9.2.12)

1. Q is increasing on (0, co).

Z.Q(Uo)Ia.
3.Q(c) »lasotooand Q(c) »0aso 0.

The power function for the right-tailed test above is given by the following formula, and satisfies the given properties:
7
Q(0) =Cn1 | —xia(@) (9.2.13)

1. Q is decreasing on (0, 00).

Z.Q(Uo)Ia.
3.Q(c) »0aso 1 oo)and Q(o0) - 0aso T ooandaso | 0.

In the variance test experiment, select the normal distribution with mean 0, and select significance level 0.1, sample size 10,
and test standard deviation 1.0. For various values of the true standard deviation, run the simulation 1000 times. Record the
relative frequency of rejecting the null hypothesis and plot the empirical power curve.

1. Two-sided test
2. Left-tailed test
3. Right-tailed test

In the variance estimate experiment, select the normal distribution with mean 0 and standard deviation 2, and select confidence
level 0.90 and sample size 10. Run the experiment 20 times. State the corresponding hypotheses and significance level, and for
each run, give the set of test standard deviations for which the null hypothesis would be rejected.

1. Two-sided confidence interval
2. Confidence lower bound
3. Confidence upper bound

Exercises

Robustness

The primary assumption that we made is that the underlying sampling distribution is normal. Of course, in real statistical problems,
we are unlikely to know much about the sampling distribution, let alone whether or not it is normal. Suppose in fact that the
underlying distribution is not normal. When the sample size n is relatively large, the distribution of the sample mean will still be
approximately normal by the central limit theorem, and thus our tests of the mean p should still be approximately valid. On the
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other hand, tests of the variance o2 are less robust to deviations form the assumption of normality. The following exercises explore
these ideas.

In the mean test experiment, select the gamma distribution with shape parameter 1 and scale parameter 1. For the three
different tests and for various significance levels, sample sizes, and values of p, run the experiment 1000 times. For each
configuration, note the relative frequency of rejecting Hy. When Hj is true, compare the relative frequency with the
significance level.

In the mean test experiment, select the uniform distribution on [0, 4]. For the three different tests and for various significance
levels, sample sizes, and values of pg, run the experiment 1000 times. For each configuration, note the relative frequency of
rejecting Hy. When H), is true, compare the relative frequency with the significance level.

How large n needs to be for the testing procedure to work well depends, of course, on the underlying distribution; the more this
distribution deviates from normality, the larger n must be. Fortunately, convergence to normality in the central limit theorem is
rapid and hence, as you observed in the exercises, we can get away with relatively small sample sizes (30 or more) in most cases.

In the variance test experiment, select the gamma distribution with shape parameter 1 and scale parameter 1. For the three
different tests and for various significance levels, sample sizes, and values of oy, run the experiment 1000 times. For each
configuration, note the relative frequency of rejecting Hy. When Hj is true, compare the relative frequency with the
significance level.

In the variance test experiment, select the uniform distribution on [0, 4]. For the three different tests and for various
significance levels, sample sizes, and values of pg, run the experiment 1000 times. For each configuration, note the relative
frequency of rejecting Hy. When H), is true, compare the relative frequency with the significance level.

Computational Exercises

The length of a certain machined part is supposed to be 10 centimeters. In fact, due to imperfections in the manufacturing
process, the actual length is a random variable. The standard deviation is due to inherent factors in the process, which remain
fairly stable over time. From historical data, the standard deviation is known with a high degree of accuracy to be 0.3. The
mean, on the other hand, may be set by adjusting various parameters in the process and hence may change to an unknown
value fairly frequently. We are interested in testing Hy : = 10 versus H; : pt # 10.

1. Suppose that a sample of 100 parts has mean 10.1. Perform the test at the 0.1 level of significance.

2. Compute the P-value for the data in (a).

3. Compute the power of the test in (a) at u = 10.05.

4. Compute the approximate sample size needed for significance level 0.1 and power 0.8 when . = 10.05.

Answer
1. Test statistic 3.33, critical values +1.645 Reject Hy.
2. P=0.0010

3. The power of the test at 10.05 is approximately 0.0509.
4. Sample size 223

A bag of potato chips of a certain brand has an advertised weight of 250 grams. Actually, the weight (in grams) is a random
variable. Suppose that a sample of 75 bags has mean 248 and standard deviation 5. At the 0.05 significance level, perform the
following tests:

1. Hy : > 250 versus Hy : p < 250
22 Hy:oc>7versus Hy : 0 <7
Answer

1. Test statistic —3.464 critical value —1.665 Reject Hy.
2. P < 0.0001so reject Hy.
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At a telemarketing firm, the length of a telephone solicitation (in seconds) is a random variable. A sample of 50 calls has mean
310 and standard deviation 25. At the 0.1 level of significance, can we conclude that

1. 4> 300?
2.0 >20?

Answer

1. Test statistic 2.828, critical value 1.2988. Reject H.
2. P =0.0071so reject Hy.

At a certain farm the weight of a peach (in ounces) at harvest time is a random variable. A sample of 100 peaches has mean 8.2
and standard deviation 1.0. At the 0.01 level of significance, can we conclude that

1. pu>8?
2.0 <1.5?
Answer

1. Test statistic 2.0, critical value 2.363. Fail to reject Hy.
2. P < 0.0001so reject Hy.

The hourly wage for a certain type of construction work is a random variable with standard deviation 1.25. For sample of 25
workers, the mean wage was $6.75. At the 0.01 level of significance, can we conclude that 4 < 7.00?

Answer

Test statistic —1, critical value —2.328 Fail to reject Hy.

Data Analysis Exercises
Using Michelson's data, test to see if the velocity of light is greater than 730 (+299000) km/sec, at the 0.005 significance level.

Answer

Test statistic 15.49, critical value 2.6270. Reject Hy.

Using Cavendish's data, test to see if the density of the earth is less than 5.5 times the density of water, at the 0.05 significance
level .

Answer

Test statistic —1.269, critical value —1.7017 Fail to reject Hy.

Using Short's data, test to see if the parallax of the sun differs from 9 seconds of a degree, at the 0.1 significance level.
Answer

Test statistic —3.730 critical value +1.6749 Reject Hy.

Using Fisher's iris data, perform the following tests, at the 0.1 level:

1. The mean petal length of Setosa irises differs from 15 mm.
2. The mean petal length of Verginica irises is greater than 52 mm.
3. The mean petal length of Versicolor irises is less than 44 mm.

Answer

1. Test statistic —1.563 critical values 1.672 Fail to reject Hy.
2. Test statistic 4.556, critical value 1.2988. Reject Hy.
3. Test statistic —1.028§ critical value —1.2988 Fail to Reject Hy.
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