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11.5: The Multinomial Distribution
       

Basic Theory

Multinomial trials

A multinomial trials process is a sequence of independent, identically distributed random variables  each taking
 possible values. Thus, the multinomial trials process is a simple generalization of the Bernoulli trials process (which corresponds

to ). For simplicity, we will denote the set of outcomes by , and we will denote the common probability density
function of the trial variables by

Of course  for each  and . In statistical terms, the sequence  is formed by sampling from the distribution.

As with our discussion of the binomial distribution, we are interested in the random variables that count the number of times each
outcome occurred. Thus, let

Of course, these random variables also depend on the parameter  (the number of trials), but this parameter is fixed in our
discussion so we suppress it to keep the notation simple. Note that  so if we know the values of  of the counting
variables, we can find the value of the remaining variable.

Basic arguments using independence and combinatorics can be used to derive the joint, marginal, and conditional densities of the
counting variables. In particular, recall the definition of the multinomial coefficient: for nonnegative integers  with 

,

Joint Distribution

For nonnegative integers  with ,

Proof

By independence, any sequence of trials in which outcome  occurs exactly  times for  has probability 
. The number of such sequences is the multinomial coefficient . Thus, the result follows from the

additive property of probability.

The distribution of  is called the multinomial distribution with parameters  and . We
also say that  has this distribution (recall that the values of  of the counting variables determine the value
of the remaining variable). Usually, it is clear from context which meaning of the term multinomial distribution is intended. Again,
the ordinary binomial distribution corresponds to .

Marginal Distributions

For each ,  has the binomial distribution with parameters  and :

Proof
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There is a simple probabilistic proof. If we think of each trial as resulting in outcome  or not, then clearly we have a sequence
of  Bernoulli trials with success parameter . Random variable  is the number of successes in the  trials. The result could
also be obtained by summing the joint probability density function in Exercise 1 over all of the other variables, but this would
be much harder.

Grouping

The multinomial distribution is preserved when the counting variables are combined. Specifically, suppose that 
is a partition of the index set  into nonempty subsets. For  let

 has the multinomial distribution with parameters  and .

Proof

Again, there is a simple probabilistic proof. Each trial, independently of the others, results in an outome in  with probability 
. For each ,  counts the number of trails which result in an outcome in . This result could also be derived from the joint

probability density function in Exercise 1, but again, this would be a much harder proof.

Conditional Distribution

The multinomial distribution is also preserved when some of the counting variables are observed. Specifically, suppose that 
is a partition of the index set  into nonempty subsets. Suppose that  is a sequence of nonnegative integers,
indexed by  such that . Let .

The conditional distribution of  given  is multinomial with parameters  and .

Proof

Again, there is a simple probabilistic argument and a harder analytic argument. If we know  for , then there are 
 trials remaining, each of which, independently of the others, must result in an outcome in . The conditional probability

of a trial resulting in  is .

Combinations of the basic results involving grouping and conditioning can be used to compute any marginal or conditional
distributions.

Moments

We will compute the mean and variance of each counting variable, and the covariance and correlation of each pair of variables.

For , the mean and variance of  are

1. 
2. 

Proof

Recall that  has the binomial distribution with parameters  and .

For distinct ,

1. 

2. 

Proof

From the bi-linearity of the covariance operator, we have
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If , the covariance of the indicator variables is . If  the covariance is 0 by independence. Part (b) can be
obtained from part (a) using the definition of correlation and the variances of  and  given above.

From the last result, note that the number of times outcome  occurs and the number of times outcome  occurs are negatively
correlated, but the correlation does not depend on .

If , then the number of times outcome 1 occurs and the number of times outcome 2 occurs are perfectly correlated.

Proof

This follows immediately from the result above on covariance since we must have  and , and . Of
course we can also argue this directly since .

Examples and Applications

In the dice experiment, select the number of aces. For each die distribution, start with a single die and add dice one at a time,
noting the shape of the probability density function and the size and location of the mean/standard deviation bar. When you get
to 10 dice, run the simulation 1000 times and compare the relative frequency function to the probability density function, and
the empirical moments to the distribution moments.

Suppose that we throw 10 standard, fair dice. Find the probability of each of the following events:

1. Scores 1 and 6 occur once each and the other scores occur twice each.
2. Scores 2 and 4 occur 3 times each.
3. There are 4 even scores and 6 odd scores.
4. Scores 1 and 3 occur twice each given that score 2 occurs once and score 5 three times.

Answer
1. 0.00375
2. 0.0178
3. 0.205
4. 0.0879

Suppose that we roll 4 ace-six flat dice (faces 1 and 6 have probability  each; faces 2, 3, 4, and 5 have probability  each).
Find the joint probability density function of the number of times each score occurs.

Answer

 for nonnegative integers  that sum to 4

In the dice experiment, select 4 ace-six flats. Run the experiment 500 times and compute the joint relative frequency function
of the number times each score occurs. Compare the relative frequency function to the true probability density function.

Suppose that we roll 20 ace-six flat dice. Find the covariance and correlation of the number of 1's and the number of 2's.

Answer

covariance: ; correlation: 

In the dice experiment, select 20 ace-six flat dice. Run the experiment 500 times, updating after each run. Compute the
empirical covariance and correlation of the number of 1's and the number of 2's. Compare the results with the theoretical
results computed previously.
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