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4.6: Generating Functions
     

As usual, our starting point is a random experiment modeled by a probability sace . A generating function of a real-valued
random variable is an expected value of a certain transformation of the random variable involving another (deterministic) variable.
Most generating functions share four important properties:

1. Under mild conditions, the generating function completely determines the distribution of the random variable.
2. The generating function of a sum of independent variables is the product of the generating functions
3. The moments of the random variable can be obtained from the derivatives of the generating function.
4. Ordinary (pointwise) convergence of a sequence of generating functions corresponds to the special convergence of the

corresponding distributions.

Property 1 is perhaps the most important. Often a random variable is shown to have a certain distribution by showing that the
generating function has a certain form. The process of recovering the distribution from the generating function is known as inversion.
Property 2 is frequently used to determine the distribution of a sum of independent variables. By contrast, recall that the probability
density function of a sum of independent variables is the convolution of the individual density functions, a much more complicated
operation. Property 3 is useful because often computing moments from the generating function is easier than computing the moments
directly from the probability density function. The last property is known as the continuity theorem. Often it is easer to show the
convergence of the generating functions than to prove convergence of the distributions directly.

The numerical value of the generating function at a particular value of the free variable is of no interest, and so generating functions
can seem rather unintuitive at first. But the important point is that the generating function as a whole encodes all of the information in
the probability distribution in a very useful way. Generating functions are important and valuable tools in probability, as they are in
other areas of mathematics, from combinatorics to differential equations.

We will study the three generating functions in the list below, which correspond to increasing levels of generality. The fist is the most
restrictive, but also by far the simplest, since the theory reduces to basic facts about power series that you will remember from calculus.
The third is the most general and the one for which the theory is most complete and elegant, but it also requires basic knowledge of
complex analysis. The one in the middle is perhaps the one most commonly used, and suffices for most distributions in applied
probability.

1. the probability generating function
2. the moment generating function
3. the characteristic function

We will also study the characteristic function for multivariate distributions, although analogous results hold for the other two types. In
the basic theory below, be sure to try the proofs yourself before reading the ones in the text.

Basic Theory

The Probability Generating Function

For our first generating function, assume that  is a random variable taking values in .

The probability generating function  of  is defined by

for all  for which the expected value exists in .

That is,  is defined when . The probability generating function can be written nicely in terms of the probability

density function.

Suppose that  has probability density function  and probability generating function . Then

where  is the radius of convergence of the series.

(Ω,F ,P)

N N

P N

P (t) =E ( )tN (4.6.1)
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P (t) E(|t ) < ∞|
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P (t) = f(n) , t ∈ (−r, r)∑
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tn (4.6.2)
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Proof

The expansion follows from the discrete change of variables theorem for expected value. Note that the series is a power series in ,
and hence by basic calculus, converges absolutely for  where  is the radius of convergence. But since 

 we must have , and the series converges absolutely at least for .

In the language of combinatorics,  is the ordinary generating function of . Of course, if  just takes a finite set of values in  then 
. Recall from calculus that a power series can be differentiated term by term, just like a polynomial. Each derivative series has

the same radius of convergence as the original series (but may behave differently at the endpoints of the interval of convergence). We
denote the derivative of order  by . Recall also that if  and  with , then the number of permutations of size 
chosen from a population of  objects is

The following theorem is the inversion result for probability generating functions: the generating function completely determines the
distribution.

Suppose again that  has probability density function  and probability generating function . Then

Proof

This is a standard result from the theory of power series. Differentiating  times gives  for 
. Hence 

Our next result is not particularly important, but has a certain curiosity.

.

Proof

Note that

We can combine the two sum since we know that the series converge absolutely at 1 and .

Recall that the factorial moment of  of order  is . The factorial moments can be computed from the derivatives of the
probability generating function. The factorial moments, in turn, determine the ordinary moments about 0 (sometimes referred to as raw
moments).

Suppose that the radius of convergence . Then  for . In particular,  has finite moments of all
orders.

Proof

As before,  for . Hence if  then 

Suppose again that . Then

1. 
2. 

Proof
1. .
2. . Hence from (a), 

.

t

t ∈ (−r, r) r ∈ [0, ∞]
f(n) = 1∑∞

n=0 r ≥ 1 t ∈ [−1, 1]

P f N N

r = ∞

n P (n) n ∈ N k ∈ N k ≤ n k

n

= n(n−1) ⋯ (n−k+1)n(k) (4.6.3)

N f P

f(k) = , k ∈ N
(0)P (k)

k!
(4.6.4)

k (t) = f(n)P (k) ∑∞
n=k n

(k) tn−k

t ∈ (−r, r) (0) = f(k) = k!f(k)P (k) k(k)

P(N  is even) = [1 +P (−1)]1
2

P (1) +P (−1) = f(n) + (−1 f(n) = 2 f(2k) = 2P(N  is even )∑
n=0

∞

∑
n=0

∞

)n ∑
k=0

∞

(4.6.5)

−1

N k ∈ N E [ ]N (k)

r > 1 (1) =E [ ]P (k) N (k) k ∈ N N

(t) = f(n)P (k) ∑∞
n=k n

(k) tn−k t ∈ (−r, r) r > 1 (1) = f(n) =E [ ]P (k) ∑∞
n=k n

(k) N (k)

r > 1

E(N) = (1)P ′

var(N) = (1) + (1) [1 − (1)]P ′′ P ′ P ′

E(N) =E [ ] = (1)N (1) P ′

E ( ) =E[N(N −1)] +E(N) =E [ ]+E(N) = (1) + (1)N 2 N (2) P ′′ P ′

var(N) = (1) + (1) −P ′′ P ′ [ (1)]P ′ 2
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Suppose that  and  are independent random variables taking values in , with probability generating functions  and 
having radii of convergence  and , respectively. Then the probability generating function  of  is given by 

 for .

Proof

Recall that the expected product of independent variables is the product of the expected values. Hence

The Moment Generating Function

Our next generating function is defined more generally, so in this discussion we assume that the random variables are real-valued.

The moment generating function of  is the function  defined by

Note that since  with probability 1,  exists, as a real number or , for any . But as we will see, our interest will be
in the domain where .

Suppose that  has a continuous distribution on  with probability density function . Then

Proof

This follows from the change of variables theorem for expected value.

Thus, the moment generating function of  is closely related to the Laplace transform of the probability density function . The
Laplace transform is named for Pierre Simon Laplace, and is widely used in many areas of applied mathematics, particularly
differential equations. The basic inversion theorem for moment generating functions (similar to the inversion theorem for Laplace
transforms) states that if  for  in an open interval about 0, then  completely determines the distribution of . Thus, if
two distributions on  have moment generating functions that are equal (and finite) in an open interval about 0, then the distributions
are the same.

Suppose that  has moment generating function  that is finite in an open interval  about 0. Then  has moments of all orders
and

Proof

Under the hypotheses, the expected value operator can be interchanged with the infinite series for the exponential function:

The interchange is a special case of Fubini's theorem, named for Guido Fubini. For more details see the advanced section on
properties of the integral in the chapter on Distributions.

So under the finite assumption in the last theorem, the moment generating function, like the probability generating function, is a power
series in .

Suppose again that  has moment generating function  that is finite in an open interval about 0. Then  for 

Proof

This follows by the same argument as above for the PGF:  is the coefficient of order  in the power series above,
namely . Hence .

N1 N2 N P1 P2

r1 r2 P +N1 N2

P (t) = (t) (t)P1 P2 |t| < ∧r1 r2

P (t) =E ( ) =E ( ) =E ( )E ( ) = (t) (t), |t| < ∧t +N1 N2 tN1 tN2 tN1 tN2 P1 P2 r1 r2 (4.6.6)

X M

M(t) =E ( ) , t ∈ RetX (4.6.7)

≥ 0etX M(t) ∞ t ∈ R

M(t) < ∞

X R f

M(t) = f(x)dx∫
∞

−∞
etx (4.6.8)

X f

M(t) < ∞ t M X

R

X M I X

M(t) = , t ∈ I∑
n=0

∞
E ( )Xn

n!
tn (4.6.9)

M(t) =E ( ) =E( ) = , t ∈ IetX ∑
n=0

∞
Xn

n!
tn ∑

n=0

∞
E( )Xn

n!
tn (4.6.10)

t

X M (0) =E ( )M (n) Xn

n ∈ N

(0)/n!M (n) n

E ( ) /n!Xn (0) =E ( )M (n) Xn
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Thus, the derivatives of the moment generating function at 0 determine the moments of the variable (hence the name). In the language
of combinatorics, the moment generating function is the exponential generating function of the sequence of moments. Thus, a random
variable that does not have finite moments of all orders cannot have a finite moment generating function. Even when a random variable
does have moments of all orders, the moment generating function may not exist. A counterexample is constructed below.

For nonnegative random variables (which are very common in applications), the domain where the moment generating function is
finite is easy to understand.

Suppose that  takes values in  and has moment generating function . If  for  then  for 
.

Proof

Since , if  then  and hence . Hence .

So for a nonnegative random variable, either  for all  or there exists  such that  for . Of
course, there are complementary results for non-positive random variables, but such variables are much less common. Next we
consider what happens to the moment generating function under some simple transformations of the random variables.

Suppose that  has moment generating function  and that . The moment generating function  of  is
given by  for .

Proof

 for \(t \in \R).

Recall that if  and  then the transformation  is a location-scale transformation on the distribution of , with
location parameter  and scale parameter . Location-scale transformations frequently arise when units are changed, such as length
changed from inches to centimeters or temperature from degrees Fahrenheit to degrees Celsius.

Suppose that  and  are independent random variables with moment generating functions  and  respectively. The
moment generating function  of  is given by  for .

Proof

As with the PGF, the proof for the MGF relies on the law of exponents and the fact that the expected value of a product of
independent variables is the product of the expected values:

The probability generating function of a variable can easily be converted into the moment generating function of the variable.

Suppose that  is a random variable taking values in  with probability generating function  having radius of convergence .
The moment generating function  of  is given by  for .

Proof

 for .

The following theorem gives the Chernoff bounds, named for the mathematician Herman Chernoff. These are upper bounds on the tail
events of a random variable.

If  has moment generating function  then

1.  for 
2.  for 

Proof
1. From Markov's inequality,  if .
2. Similarly,  if .

X [0, ∞) M M(t) < ∞ t ∈ R M(s) < ∞
s ≤ t

X ≥ 0 s ≤ t sX ≤ tX ≤esX etX E ( ) ≤E ( )esX etX

M(t) < ∞ t ∈ R r ∈ (0, ∞) M(t) < ∞ t < r

X M a, b ∈ R N Y = a+bX

N(t) = M(bt)eat t ∈ R

E [ ] =E ( ) = E [ ] = M(bt)et(a+bX) etaetbX eta e(tb)X eat

a ∈ R b ∈ (0, ∞) a+bX X

a b

X1 X2 M1 M2

M Y = +X1 X2 M(t) = (t) (t)M1 M2 t ∈ R

E [ ]=E ( ) =E ( )E ( ) = (t) (t), t ∈ Ret( + )X1 X2 etX1 etX2 etX1 etX2 M1 M2 (4.6.11)

X N G r

M X M(t) = G( )et t < ln(r)

M(t) =E ( ) =E [ ]= G( )etX ( )et
X

et < ret

X M

P(X ≥ x) ≤ M(t)e−tx t > 0
P(X ≤ x) ≤ M(t)e−tx t < 0

P(X ≥ x) = P ( ≥ ) ≤E ( )/ = M(t)etX etx etX etx e−tx t > 0

P(X ≤ x) = P ( ≥ ) ≤ M(t)etX etx e−tx t < 0
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Naturally, the best Chernoff bound (in either (a) or (b)) is obtained by finding  that minimizes .

The Characteristic Function

Our last generating function is the nicest from a mathematical point of view. Once again, we assume that our random variables are real-
valued.

The characteristic function of  is the function  defined by by

Note that  is a complex valued function, and so this subsection requires some basic knowledge of complex analysis. The function  is
defined for all  because the random variable in the expected value is bounded in magnitude. Indeed,  for all .
Many of the properties of the characteristic function are more elegant than the corresponding properties of the probability or moment
generating functions, because the characteristic function always exists.

If  has a continuous distribution on  with probability density function  and characteristic function  then

Proof

This follows from the change of variables theorem for expected value, albeit a complex version.

Thus, the characteristic function of  is closely related to the Fourier transform of the probability density function . The Fourier
transform is named for Joseph Fourier, and is widely used in many areas of applied mathematics.

As with other generating functions, the characteristic function completely determines the distribution. That is, random variables  and 
 have the same distribution if and only if they have the same characteristic function. Indeed, the general inversion formula given next

is a formula for computing certain combinations of probabilities from the characteristic function.

Suppose again that  has characteristic function . If  and  then

The probability combinations on the right side completely determine the distribution of . A special inversion formula holds for
continuous distributions:

Suppose that  has a continuous distribution with probability density function  and characteristic function . At every point 
 where  is differentiable,

This formula is essentially the inverse Fourrier transform. As with the other generating functions, the characteristic function can be
used to find the moments of . Moreover, this can be done even when only some of the moments exist.

Suppose again that  has characteristic function . If  and . Then

and therefore .

Details

Recall that the last term is a generic function that satisfies  as .

Next we consider how the characteristic function is changed under some simple transformations of the variables.

t M(t)e−tx

X χ

χ(t) =E ( ) =E [cos(tX)] + iE [sin(tX)] , t ∈ ReitX (4.6.12)

χ χ

t ∈ R = 1∣∣eitX ∣∣ t ∈ R

X R f χ

χ(t) = f(x)dx, t ∈ R∫
∞

−∞
eitx (4.6.13)

X f

X

Y

X χ a, b ∈ R a < b

χ(t)dt → P(a < X < b) + [P(X = b) −P(X = a)]  as n → ∞∫
n

−n

−e−iat e−ibt

2πit

1

2
(4.6.14)

X

X f χ

x ∈ R f

f(x) = χ(t)dt
1

2π
∫

∞

−∞
e−itx (4.6.15)

X

X χ n ∈ N+ E (| |) < ∞Xn

χ(t) = (it +o( )∑
k=0

n E ( )Xk

k!
)k tn (4.6.16)

(0) = E ( )χ(n) in Xn

o( )/ → 0tn tn t → ∞
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Suppose that  has characteristic function  and that . The characteristic function  of  is given by 
 for .

Proof

The proof is just like the one for the MGF:  for .

Suppose that  and  are independent random variables with characteristic functions  and  respectively. The characteristic
function  of  is given by  for .

Proof

Again, the proof is just like the one for the MGF:

The characteristic function of a random variable can be obtained from the moment generating function, under the basic existence
condition that we saw earlier.

Suppose that  has moment generating function  that satisfies  for  in an open interval  about 0. Then the
characteristic function  of  satisfies  for .

The final important property of characteristic functions that we will discuss relates to convergence in distribution. Suppose that 
 is a sequence of real-valued random with characteristic functions  respectively. Since we are only concerned

with distributions, the random variables need not be defined on the same probability space.

The Continuity Theorem

1. If the distribution of  converges to the distribution of a random variable  as  and  has characteristic function ,
then  as  for all .

2. Conversely, if  converges to a function  as  for  in an open interval about 0, and if  is continuous at 0, then 
 is the characteristic function of a random variable , and the distribution of  converges to the distribution of  as 

.

There are analogous versions of the continuity theorem for probability generating functions and moment generating functions. The
continuity theorem can be used to prove the central limit theorem, one of the fundamental theorems of probability. Also, the continuity
theorem has a straightforward generalization to distributions on .

The Joint Characteristic Function

All of the generating functions that we have discussed have multivariate extensions. However, we will discuss the extension only for
the characteristic function, the most important and versatile of the generating functions. There are analogous results for the other
generating functions. So in this discussion, we assume that  is a random vector for our experiment, taking values in .

The (joint) characteristic function  of  is defined by

Once again, the most important fact is that  completely determines the distribution: two random vectors taking values in  have the
same characteristic function if and only if they have the same distribution.

The joint moments can be obtained from the derivatives of the characteristic function.

Suppose that  has characteristic function . If  and  then

The marginal characteristic functions and the characteristic function of the sum can be easily obtained from the joint characteristic
function:

X χ a, b ∈ R ψ Y = a+bX

ψ(t) = χ(bt)eiat t ∈ R

ψ(t) =E [ ] =E ( ) = E [ ] = χ(bt)eit(a+bX) eitaeitbX eita ei(tb)X eiat t ∈ R

X1 X2 χ1 χ2

χ Y = +X1 X2 χ(t) = (t) (t)χ1 χ2 t ∈ R

χ(t) =E [ ]=E ( ) =E ( )E ( ) = (t) (t), t ∈ Reit( + )X1 X2 eitX1 eitX2 eitX1 eitX2 χ1 χ2 (4.6.17)

X M M(t) < ∞ t I

χ X χ(t) = M(it) t ∈ I

( , , …)X1 X2 ( , , …)χ1 χ2

Xn X n → ∞ X χ

(t) → χ(t)χn n → ∞ t ∈ R

(t)χn χ(t) n → ∞ t χ

χ X Xn X

n → ∞

R
n

(X,Y ) R
2

χ (X,Y )

χ(s, t) =E [exp(isX+ itY )] , (s, t) ∈ R
2 (4.6.18)

χ R
2

(X,Y ) χ m, n ∈ N E (| |) < ∞XmY n

(0, 0) = E ( )χ(m,n) ei (m+n) XmY n (4.6.19)
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Suppose again that  has characteristic function , and let , , and  denote the characteristic functions of , , and 
, respectively. For 

1. 
2. 
3. 

Proof

All three results follow immediately from the definitions.

Suppose again that , , and  are the characteristic functions of , , and  respectively. Then  and  are independent
if and only if  for all .

Naturally, the results for bivariate characteristic functions have analogies in the general multivariate case. Only the notation is more
complicated.

Examples and Applications
As always, be sure to try the computational problems yourself before expanding the solutions and answers in the text.

Dice

Recall that an ace-six flat die is a six-sided die for which faces numbered 1 and 6 have probability  each, while faces numbered 2, 3,
4, and 5 have probability  each. Similarly, a 3-4 flat die is a six-sided die for which faces numbered 3 and 4 have probability  each,
while faces numbered 1, 2, 5, and 6 have probability  each.

Suppose that an ace-six flat die and a 3-4 flat die are rolled. Use probability generating functions to find the probability density
function of the sum of the scores.

Solution

Let  and  denote the score on the ace-six die and 3-4 flat die, respectively. Then  and  have PGFs  and  given by

Hence  has PGF . Expanding (a computer algebra program helps) gives

Thus the PDF  of  is given by , , , 
 and .

Two fair, 6-sided dice are rolled. One has faces numbered  and the other has faces numbered .
Use probability generating functions to find the probability density function of the sum of the scores, and identify the distribution.

Solution

Let  and  denote the score on the first die and the second die described, respectively. Then  and  have PGFs  and  given
by

Hence  has PGF . Simplifying gives

(X,Y ) χ χ1 χ2 χ+ X Y

X+Y t ∈ R

χ(t, 0) = (t)χ1

χ(0, t) = (t)χ2

χ(t, t) = (t)χ+

χ1 χ2 χ X Y (X,Y ) X Y

χ(s, t) = (s) (t)χ1 χ2 (s, t) ∈ R
2

1
4

1
8

1
4

1
8

X Y X Y P Q

P (t)

Q(t)

= t+ + + + + , t ∈ R
1

4

1

8
t2 1

8
t3 1

8
t4 1

8
t5 1

4
t6

= t+ + + + + , t ∈ R
1

8

1

8
t2 1

4
t3 1

4
t4 1

8
t5 1

8
t6

X+Y PQ

P (t)Q(t) = + + + + + + + + + + , t ∈ R
1

32
t2 3

64
t3 3

32
t4 1

8
t5 1

8
t6 5

32
t7 1

8
t8 1

8
t9 3

32
t10 3

64
t11 1

32
t12 (4.6.20)

f X+Y f(2) = f(12) = 1
32

f(3) = f(11) = 3
64

f(4) = f(10) = 3
32

f(5) = f(6) = f(8) = f(9) = 1
8

f(7) = 5
32

(0, 1, 2, 3, 4, 5) (0, 6, 12, 18, 24, 30)

X Y X Y P Q

P (t)

Q(t)

= t ∈ R
1

6
∑
k=0

5

tk

= t ∈ R
1

6
∑
j=0

5

t6j

X+Y PQ
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Hence  is uniformly distributed on .

Suppose that random variable  has probability generating function  given by

1. Interpret  in terms of rolling dice.
2. Use the probability generating function to find the first two factorial moments of .
3. Use (b) to find the variance of .

Answer

1. A four-sided die has faces numbered  with respective probabilities .  is the sum of the scores when

the die is rolled 5 times.
2. , 
3. 

Bernoulli Trials

Suppose  is an indicator random variable with , where  is a parameter. Then  has probability
generating function  for .

Proof

 for .

Recall that a Bernoulli trials process is a sequence  of independent, identically distributed indicator random variables. In
the usual language of reliability,  denotes the outcome of trial , where 1 denotes success and 0 denotes failure. The probability of
success  is the basic parameter of the process. The process is named for Jacob Bernoulli. A separate chapter on the
Bernoulli Trials explores this process in more detail.

For , the number of successes in the first  trials is . Recall that this random variable has the binomial
distribution with parameters  and , which has probability density function  given by

Random variable  has probability generating function  given by  for .

Proof

This follows immediately from the PGF of an indicator variable and the result for sums of independent variables.

Rando variable  has the following parameters:

1. 

2. 
3. 
4. 

Proof

1. Repeated differentiation gives . Hence , which is  by the moment
result above.

2. This follows from the formula for mean.
3. This follows from the formula for variance.
4. This follows from the even value formula.

P (t)Q(t) = = , t ∈ R
1

36
∑
j=0

5

∑
k=0

5

t6j+k 1

36
∑
n=0

35

tn (4.6.21)

X+Y {0, 1, 2, … , 35}

Y P

P (t) = , t ∈ R( t+ + + )
2

5

3

10
t2 1

5
t3 1

10
t4

5

(4.6.22)

Y

Y

Y

(1, 2, 3, 4) ( , , , )2
5

3
10

1
5

1
10

Y

E(Y ) = (1) = 10P ′ E[Y (Y −1)] = (1) = 95P ′′

var(Y ) = 5

X p = P(X = 1) p ∈ [0, 1] X

P (t) = 1 −p+pt t ∈ R

P (t) =E ( ) = (1 −p) + p = 1 −p+pttX t0 t1 t ∈ R

( , , …)X1 X2

Xi i

p = P( = 1)Xi

n ∈ N+ n =Yn ∑n
i=1 Xi

n p fn

(y) =( ) (1 −p , y ∈ {0, 1, … ,n}fn
n

y
py )n−y (4.6.23)

Yn Pn (t) = (1 −p+ptPn )n t ∈ R

Yn

E [ ]=Y
(k)
n n(k)pk

E ( ) = npYn
var ( ) = np(1 −p)Yn

P(  is even) = [1 −(1 −2p ]Yn
1
2

)n

(t) = (1 −p+ptP (k) n(k)pk )n−k (1) =P (k) n(k)pk E [ ]X(k)
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Suppose that  has the binomial distribution with parameters  and ,  has the binomial distribution with
parameters  and , and that  and  are independent.

1. If  then  has the binomial distribution with parameters  and .
2. If  then  does not have a binomial distribution.

Proof

From the result for sums of independent variables and the PGF of the binomial distribution, note that the probability generating
function of  is  for .

1. If  then  has PGF , which is the PGF of the binomial distribution with parameters 
 and .

2. On the other hand, if , the PGF  does not have the functional form of a binomial PGF.

Suppose now that . The trial number  of the first success in the sequence of Bernoulli trials has the geometric distribution
on  with success parameter . The probability density function  is given by

The geometric distribution is studied in more detail in the chapter on Bernoulli trials.

Let  denote the probability generating function of . Then

1.  for 

2.  for 

3. 

4. 

5. 

Proof
1. Using the formula for the sum of a geometric series,

2. Repeated differentiation gives  and then the result follows from the inversion
formula.

3. This follows from (b) and the formula for mean.
4. This follows from (b) and the formula for variance.
5. This follows from even value formula.

The probability that  is even comes up in the alternating coin tossing game with two players.

The Poisson Distribution

Recall that the Poisson distribution has probability density function  given by

where  is a parameter. The Poisson distribution is named after Simeon Poisson and is widely used to model the number of
“random points” in a region of time or space; the parameter is proportional to the size of the region of time or space. The Poisson
distribution is studied in more detail in the chapter on the Poisson Process.

Suppose that  has Poisson distribution with parameter . Let  denote the probability generating function of . Then

1.  for 
2. 
3. 
4. 

U m ∈ N+ p ∈ [0, 1] V

n ∈ N+ q ∈ [0, 1] U V

p = q U +V m+n p

p ≠ q U +V

U +V P (t) = (1 −p+pt (1 −q+qt)m )n t ∈ R

p = q U +V P (t) = (1 −p+pt)m+n

m+n p

p ≠ q P

p ∈ (0, 1] N

N+ p h

h(n) = p(1 −p , n ∈)n−1
N+ (4.6.24)

Q N

Q(t) =
pt

1−(1−p)t
− < t <1

1−p

1
1−p

E [ ] = k!N (k) (1−p)k−1

pk
k ∈ N

E(N) = 1
p

var(N) =
1−p

p2

P(N  is even) =
1−p

2−p

Q(t) = (1 −p p = pt [(1 −p)t = , |(1 −p)t| < 1∑
n=1

∞

)n−1 tn ∑
n=1

∞

]n−1 pt

1 −(1 −p)t
(4.6.25)

(t) = k!p(1 −pH (k) )k−1 [1 −(1 −p)t] −(k+1)

N

f

f(n) = , n ∈ Ne−a a
n

n!
(4.6.26)

a ∈ (0, ∞)

N a ∈ (0, ∞) Pa N

(t) =Pa ea(t−1) t ∈ R

E [ ] =N (k) ak

E(N) = a

var(N) = a
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5. 

Proof
1. Using the exponential series,

2. Repeated differentiation gives , so the result follows from inversion formula.
3. This follows from (b) and the formula for mean.
4. This follows from (b) and the formula for variance.
5. This follows from even value formula.

The Poisson family of distributions is closed with respect to sums of independent variables, a very important property.

Suppose that  have Poisson distributions with parameters , respectively, and that  and  are independent.
Then  has the Poisson distribution with parameter .

Proof

In the notation of the previous result, note that .

The right distribution function of the Poisson distribution does not have a simple, closed-form expression. The following exercise gives
an upper bound.

Suppose that  has the Poisson distribution with parameter . Then

Proof

The PGF of  is  and hence the MGF is . From the Chernov bounds we have

If  the expression on the right is minimized when . Substituting gives the upper bound.

The following theorem gives an important convergence result that is explored in more detail in the chapter on the Poisson process.

Suppose that  for  and that  as . Then the binomial distribution with parameters 
and  converges to the Poisson distribution with parameter  as .

Proof

Let  denote the probability generating function of the binomial distribution with parameters  and . From the PGF of the
binomial distribution we have

Using a famous theorem from calculus,  as . But this is the PGF of the Poisson distribution with parameter
, so the result follows from the continuity theorem for PGFs.

The Exponential Distribution

Recall that the exponential distribution is a continuous distribution on  with probability density function  given by

where  is the rate parameter. This distribution is widely used to model failure times and other random times, and in
particular governs the time between arrivals in the Poisson model. The exponential distribution is studied in more detail in the chapter
on the Poisson Process.

P(N  is even) = (1 + )1
2

e−2a

(t) = = = , t ∈ RPa ∑
n=0

∞

e−a a
n

n!
tn e−a ∑

n=0

∞ (at)n

n!
e−aeat (4.6.27)

(t) =P
(k)
a ea(t−1)ak

X, Y a, b ∈ (0, ∞) X Y

X+Y a+b

=PaPb Pa+b

N a > 0

P(N ≥ n) ≤ , n > aen−a( )
a

n

n

(4.6.28)

N P (t) = ea(t−1) P ( ) = exp(a −a)et et

P(N ≥ n) ≤ exp(a −a) = exp(a −a− tn)e−tn et et (4.6.29)

n > a t = ln(n/a)

∈ (0, 1)pn n ∈ N+ n → a ∈ (0, ∞)pn n → ∞ n

pn a n → ∞

Pn n pn

(t) = = , t ∈ RPn [1 + (t−1)]pn
n [1 + ]

n (t−1)pn

n

n

(4.6.30)

(t) →Pn ea(t−1) n → ∞
a

[0, ∞) f

f(t) = r , t ∈ (0, ∞)e−rt (4.6.31)

r ∈ (0, ∞)
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Suppose that  has the exponential distribution with rate parameter  and let  denote the moment generating function
of . Then

1.  for .
2.  for 

Proof
1.  for .
2.  for 

Suppose that  is a sequence of independent random variables, each having the exponential distribution with rate
parameter . For , the moment generating function  of  is given by

Proof

This follows from the previous result and the result for sums of independent variables.

Random variable  has the Erlang distribution with shape parameter  and rate parameter , named for Agner Erlang. This
distribution governs the th arrival time in the Poisson model. The Erlang distribution is a special case of the gamma distribution and
is studied in more detail in the chapter on the Poisson Process.

Uniform Distributions

Suppose that  and . Recall that the continuous uniform distribution on the interval  has probability density function 
 given by

The distribution corresponds to selecting a point at random from the interval. Continuous uniform distributions arise in geometric
probability and a variety of other applied problems.

Suppose that  is uniformly distributed on the interval  and let  denote the moment generating function of . Then

1.  if  and 

2.  for 

Proof

1.  if . Trivially 

2. This is a case where the MGF is not helpful, and it's much easier to compute the moments directly: 

Suppose that  is uniformly distributed on the triangle . Compute each of the following:

1. The joint moment generating function of .
2. The moment generating function of .
3. The moment generating function of .
4. The moment generating function of .

Answer

1.  if . 

2.  if . 

3.  if . 

4.  if . 

T r ∈ (0, ∞) M

T

M(s) = r
r−s

s ∈ (−∞, r)

E( ) = n!/T n rn n ∈ N

M(s) =E ( ) = r dt = r dt =esT ∫ ∞
0

est e−rt ∫ ∞
0

e(s−r)t r
r−s

s < r

(s) =M (n) rn!

(r−s)n+1
n ∈ N

( , , …)T1 T2

r ∈ (0, ∞) n ∈ N+ Mn =Un ∑n
i=1 Ti

(s) = , s ∈ (−∞, r)Mn ( )
r

r−s

n

(4.6.32)

Un n r

n

a, b ∈ R a < b [a, b]
f

f(x) = , x ∈ [a, b]
1

b−a
(4.6.33)

X [a, b] M X

M(t) =
−ebt eat

(b−a)t
t ≠ 0 M(0) = 1

E ( ) =Xn −bn+1 an+1

(n+1)(b−a)
n ∈ N

M(t) = dx =∫ b

a etx 1
b−a

−ebt eat

(b−a)t
t ≠ 0 M(0) = 1

E ( ) = dx =Xn ∫ b

a
xn 1

b−a

−bn+1 an+1

(n+1)(b−a)

(X,Y ) T = {(x, y) ∈ : 0 ≤ x ≤ y ≤ 1}R
2

(X,Y )
X

Y

X+Y

M(s, t) = 2 −2
−1es+t

s(s+t)

−1et

st
s ≠ 0, t ≠ 0 M(0, 0) = 1

(s) = 2( − − )M1
e2

s2
1
s2

1
s

s ≠ 0 (0) = 1M1

(t) = 2M2
t − +1et et

t2
t ≠ 0 (0) = 1M2

(t) = −2M+
−1e2t

t2

−1et

t2
t ≠ 0 (0) = 1M+
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A Bivariate Distribution

Suppose that  has probability density function  given by  for . Compute each of the
following:

1. The joint moment generating function .
2. The moment generating function of .
3. The moment generating function of .
4. The moment generating function of .

Answer

1.  if . 

2.  if . 

3.  if . 

4.  if . 

The Normal Distribution

Recall that the standard normal distribution is a continuous distribution on  given by

Normal distributions are widely used to model physical measurements subject to small, random errors and are studied in more detail in
the chapter on Special Distributions.

Suppose that  has the standard normal distribution and let  denote the moment generating function of . Then

1.  for 
2.  if  is even and  if  is odd.

Proof
1. First,

Completing the square in  gives . hence

because the function of  in the last integral is the probability density function for the normal distribution with mean  and
variance 1.

2. Note that . Thus, repeated differentiation gives  for , where  is a polynomial of
degree  satisfying . Since , it's easy to see that  has only even or only odd terms,
depending on whether  is even or odd, respectively. Thus, . This is 0 if  is odd, and is the constant term 

 if  is even. Of course, we can also see that the odd order moments must be 0 by symmetry.

More generally, for  and , recall that the normal distribution with mean  and standard deviation  is a continuous
distribution on  with probability density function  given by

Moreover, if  has the standard normal distribution, then  has the normal distribution with mean  and standard deviation
. Thus, we can easily find the moment generating function of :

Suppose that  has the normal distribution with mean  and standard deviation . The moment generating function of  is

(X,Y ) f f(x, y) = x+y (x, y) ∈ [0, 1]2

(X,Y )
X

Y

X+Y

M(s, t) =
(−2st+s+t)+ (st−s−t)+s+tes+t es

s2t2
s ≠ 0, t ≠ 0 M(0, 0) = 1

(s) =M1
3s −2 −s+2e2 e2

2s2
s ≠ 0 (0) = 1M1

(t) =M2
3t −2 −t+2et et

2t2
t ≠ 0 (0) = 1M2

(t) =M+
[ (1−t)+ (t−2)+1]e2t et

t3
t ≠ 0 (0) = 1M+

R)withprobabilitydensityfunction\(ϕ

ϕ(z) = , z ∈ R
1

2π
−−

√
e− 1

2
z2

(4.6.34)

Z M Z

M(t) = e
1

2
t2

t ∈ R

E ( ) = 1 ⋅ 3 ⋯ (n−1)Zn n E ( ) = 0Zn n

M(t) =E ( ) = dz = exp(− + tz) dzetZ ∫
∞

−∞
etz

1

2π
−−

√
e− /2z2

∫
∞

−∞

1

2π
−−

√

z2

2
(4.6.35)

z exp(− + tz) = exp[ − (z− t ] = exp[− (z− t ]z2

2
1
2
t2 1

2
)2 e

1

2
t2 1

2
)2

M(t) = exp[− (z− t ] dz =e
1

2
t2 ∫

∞

−∞

1

2π
−−

√

1

2
)2 e

1

2
t2 (4.6.36)

z t

(t) = tM(t)M ′ (t) = (t)M(t)M (n) pn n ∈ N pn
n (t) = t (t) + (t)p′

n+1 pn p′
n = 1p0 pn

n E ( ) = (0)Xn pn n

1 ⋅ 3 ⋯ (n−1) n

μ ∈ R σ ∈ (0, ∞) μ σ

R f

f(x) = exp[− ], x ∈ R
1

σ2π
−−

√

1

2
( )
x−μ

σ

2

(4.6.37)

Z X = μ+σZ μ

σ X

X μ σ X
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Proof

This follows easily the previous result and the result for linear transformations:  where  has the standard normal
distribution. Hence

So the normal family of distributions in closed under location-scale transformations. The family is also closed with respect to sums of
independent variables:

If  and  are independent, normally distributed random variables then  has a normal distribution.

Proof

Suppose that  has the normal distribution with mean  and standard deviation , and that  has the normal
distribution with mean  and standard deviation . By (14), the MGF of  is

which we recognize as the MGF of the normal distribution with mean  and variance . Of course, we already knew
that , and since  and  are independent, , so the new
information is that the distribution is also normal.

The Pareto Distribution

Recall that the Pareto distribution is a continuous distribution on  given by

where  is the shape parameter. The Pareto distribution is named for Vilfredo Pareto. It is a heavy-tailed distribution that is
widely used to model financial variables such as income. The Pareto distribution is studied in more detail in the chapter on Special
Distributions.

Suppose that  has the Pareto distribution with shape parameter , and let  denote the moment generating function of . Then

1.  if  and  if 
2.  for 

Proof
1. We have seen this computation before. . The integral evaluates to  if 

and  if .
2. This follows from part (a). Since ,  is increasing in . Thus  if . If  for some , then

 would be finite for  in an open interval about 0, in which case  would have finite moments of all orders. Of course, it's
also easy to see directly from the integral that  for 

On the other hand, like all distributions on , the Pareto distribution has a characteristic function. However, the characteristic function
of the Pareto distribution does not have a simple, closed form.

The Cauchy Distribution

Recall that the (standard) Cauchy distribution is a continuous distribution on  with probability density function  given by

and is named for Augustin Cauchy. The Cauch distribution is studied in more generality in the chapter on Special Distributions. The
graph of  is known as the Witch of Agnesi, named for Maria Agnesi.

Suppose that  has the standard Cauchy distribution, and let  denote the moment generating function of . Then

M(t) = exp(μt+ ), t ∈ R
1

2
σ2t2 (4.6.38)

X = μ+σZ Z

M(t) =E ( ) = E ( ) = , t ∈ RetX eμt eσtZ eμte
1

2
σ2t2 (4.6.39)

X Y X+Y

X μ ∈ R σ ∈ (0, ∞) Y

ν ∈ R τ ∈ (0, ∞) X+Y

(t) = (t) (t) = exp(μt+ ) exp(νt+ ) = exp[(μ+ν)t+ ( + ) ]MX+Y MX MY

1

2
σ2t2 1

2
τ 2t2 1

2
σ2 τ 2 t2 (4.6.40)

μ+ν +σ2 τ 2

E(X+Y ) =E(X) +E(Y ) X Y var(X+Y ) = var(X) +var(Y )

[1, ∞)withprobabilitydensityfunction\(f

f(x) = , x ∈ [1, ∞)
a

xa+1
(4.6.41)

a ∈ (0, ∞)

X a M X

E ( ) =Xn a
a−n

n < a E ( ) = ∞Xn n ≥ a

M(t) = ∞ t > 0

E ( ) = dx = dxXn ∫
∞

1 xn a

xa+1 ∫
∞

1 xn−a−1 a
a−n n < a

∞ n ≥ a

X ≥ 1 M(t) t M(t) ≤ 1 t < 0 M(t) < ∞ t > 0
M(t) t X

M(t) = ∞ t > 0

R

R f

f(x) = , x ∈ R
1

π (1 + )x2
(4.6.42)

f

X M X
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1.  does not exist.
2.  for .

Proof
1. We have seen this computation before.  and  for every , so 

does not exist.
2. Note that  if  and  if .

Once again, all distributions on  have characteristic functions, and the standard Cauchy distribution has a particularly simple one.

Let  denote the characteristic function of . Then  for .

Proof

The proof of this result requires contour integrals in the complex plane, and is given in the section on the Cauchy distribution in the
chapter on special distributions.

Counterexample

For the Pareto distribution, only some of the moments are finite; so course, the moment generating function cannot be finite in an
interval about 0. We will now give an example of a distribution for which all of the moments are finite, yet still the moment generating
function is not finite in any interval about 0. Furthermore, we will see two different distributions that have the same moments of all
orders.

Suppose that Z has the standard normal distribution and let . The distribution of  is known as the (standard) lognormal
distribution. The lognormal distribution is studied in more generality in the chapter on Special Distributions. This distribution has finite
moments of all orders, but infinite moment generating function.

 has probability density function  given by

1.  for .
2.  for .

Proof

We use the change of variables theorem. The transformation is  so the inverse transformation is  for 
and . Letting  denote the PDF of , it follows that the PDF of  is  for .

1. We use the moment generating function of the standard normal distribution given above: .
2. Note that

The interchange of expected value and sum is justified since  is nonnegative. See the advanced section on properties of the
integral in the chapter on Distributions for more details.

Next we construct a different distribution with the same moments as .

Let  be the function defined by  for  and let  be the function defined by  for 
. Then

1.  is a probability density function.
2. If  has probability density function  then  for 

Proof

E(X)
M(t) = ∞ t ≠ 0

dx = ∞∫ ∞
a

x

π(1+ )x2
dx = −∞∫ a

−∞
x

π(1+ )x2
a ∈ R dx∫ ∞

−∞
x

π(1+ )x2

dx = ∞∫ ∞
0

etx

π(1+ )x2
t ≥ 0 dx = ∞∫ 0

−∞
etx

π(1+ )x2
t ≤ 0

R

χ X χ(t) = e−|t| t ∈ R

X = eZ X

X f

f(x) = exp(− (x)), x > 0
1

x2π
−−

√

1

2
ln2 (4.6.43)

E ( ) =Xn e
1

2
n2

n ∈ N

E ( ) = ∞etX t > 0

x = ez z = lnx x ∈ (0, ∞)
z ∈ R ϕ Z X f(x) = ϕ(z)dz/dx = ϕ (lnx)/x x > 0

E ( ) =E ( ) =Xn enZ e /2n2

E ( ) =E[ ] = = = ∞, t > 0etX ∑
n=0

∞ (tX)n

n!
∑
n=0

∞
E( )Xn

n!
tn ∑

n=0

∞ e /2n2

n!
tn (4.6.44)

X

X

h h(x) = sin(2π lnx) x > 0 g g(x) = f(x) [1 +h(x)]
x > 0

g

Y g E ( ) =Y n e
1

2
n2

n ∈ N
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Figure : The graphs of  and , probability density functions for two distributions with the same moments of all orders.
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