LibreTextsw

16.15: Introduction to Continuous-Time Markov Chains

This section begins our study of Markov processes in continuous time and with discrete state spaces. Recall that a Markov process with a discrete
state space is called a Markov chain, so we are studying continuous-time Markov chains. It will be helpful if you review the section on general
Markov processes, at least briefly, to become familiar with the basic notation and concepts. Also, discrete-time chains plays a fundamental role,
so you will need review this topic also.

We will study continuous-time Markov chains from different points of view. Our point of view in this section, involving holding times and the
embedded discrete-time chain, is the most intuitive from a probabilistic point of view, and so is the best place to start. In the next section, we
study the transition probability matrices in continuous time. This point of view is somewhat less intuitive, but is closest to how other types of
Markov processes are treated. Finally, in the third introductory section we study the Markov chain from the view point of potential matrices. This
is the least intuitive approach, but analytically one of the best. Naturally, the interconnections between the various approaches are particularly
important.

Preliminaries

As usual, we start with a probability space (2, Z, P), so that Q2 is the set of outcomes, Z the o-algebra of events, and P’ the probability measure
on the sample space (92, &). The time space is ([0, o), ) where as usual,  is the Borel o-algebra on [0, c0) corresponding to the standard
Euclidean topology. The state space is (.S, ") where S is countable and . is the power set of S. So every subset of S is measurable, as is every
function from S to another measurable space. Recall that .# is also the Borel ¢ algebra corresponding to the discrete topology on S. With this
topology, every function from S to another topological space is continuous. Counting measure # is the natural measure on (.S, .%), so in the
context of the general introduction, integrals over S are simply sums. Also, kernels on S can be thought of as matrices, with rows and sums
indexed by S. The left and right kernel operations are generalizations of matrix multiplication.

Suppose now that X = {X; : t € [0,00)} is stochastic process with state space (S,.%). For t € [0,00), let Z =o{X,:s€ [0,t]}, so that
Z, is the g-algebra of events defined by the process up to time ¢. The collection of o-algebras §° = {.Z. : t € [0, 00)} is the natural filtration
associated with X. For technical reasons, it's often necessary to have a filtration § = {%; : t € [0, 00)} that is slightly finer than the natural one,
so that ﬁto C 4 fort € [0, 00) (or in equivlaent jargon, X is adapted to ). See the general introduction for more details on the common ways
that the natural filtration is refined. We will also let % = o{ X, : s € [t,0)}, the o-algebra of events defined by the process from time ¢ onward.
If ¢ is thought of as the present time, then .%; is the collection of events in the past and %; is the collection of events in the future.

It's often necessary to impose assumptions on the continuity of the process X in time. Recall that X is right continuous if t — X;(w) is right
continuous on [0, co) for every w € 2, and similarly X has left limits if ¢ — X;(w) has left limits on (0, co) for every w € Q. Since S has the
discrete topology, note that if X is right continuous, then for every ¢ € [0, 00) and w € 2, there exists € (depending on ¢ and w) such that
Xiis (w) = X (w) for s € [0, €). Similarly, if X has left limits, then for every ¢ € (0, 00) and w € § there exists & (depending on ¢ and w) such
that X;_, (w) is constant for s € (0, d).

The Markov Property

There are a number of equivalent ways to state the Markov property. At the most basic level, the property states that the past and future are
conditionally independent, given the present.

The process X = {X; : t € [0,00)} is a Markov chain on S if for every ¢ € [0,00), A € %;,and B€ %,
P(ANB| X;) =P(A| X,)P(B| X;) (16.15.1)

Another version is that the conditional distribution of a state in the future, given the past, is the same as the conditional distribution just given the
present state.

The process X = {X; : t € [0,00)} is a Markov chain on S if for every s, ¢t € [0,00), and z € S,
P(Xsit =2 | Z5) =P(Xot =2 | X;) (16.15.2)

Technically, in the last two definitions, we should say that X is a Markov process relative to the filtration §. But recall that if X satisfies the
Markov property relative to a filtration, then it satisfies the Markov property relative to any coarser filtration, and in particular, relative to the
natural filtration. For the natural filtration, the Markov property can also be stated without explicit reference to o-algebras, although at the cost of
additional clutter:

The process X = {X; : t € [0,00)} is a Markov chain on S if and only if for every n € N, time sequence (¢1,t2, .. .,t,) € [0, 00)™ with
t; <ty <---<t, ,and state sequence (z1, 2, ...,T,) € S™,

]P)(th =Ty | th =2, th =T2,... th—l = Cl'n,l) = P(th =Ty | th—l = fl?n,l) (16153)
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As usual, we also assume that our Markov chain X is time homogeneous, so that P(X, s =y | X;=z)=P(X; =y | Xo=2z) for
s, t € [0,00) and z, y € S. So, for a homogeneous Markov chain on S, the process { X, : ¢ € [0,00)} given X, =z, is independent of .Z
and equivalent to the process {X; : t € [0,00)} given Xy =z, for every s € [0,00) and € S. That is, if the chain is in state z € S at a
particular time s € [0, o), it does not matter how the chain got to ; the chain essentially starts over in state .

The Strong Markov Property

Random times play an important role in the study of continuous-time Markov chains. It's often necessary to allow random times to take the value
00, so formally, a random time 7 is a random variable on the underlying sample space (2, %) taking values in [0, co]. Recall also that a random
time 7 is a stopping time (also called a Markov time or an optional time) if {T <t} € % for every t € [0, 00). If T is a stopping time, the o-
algebra associated with 7 is

F,={Ac ZF : An{r <t} e Fforallt € [0,00)} (16.15.4)

So Z; is the collection of events up to the random time 7 in the same way that % is the collection of events up to the deterministic time
t € [0, 00). We usually want the Markov property to extend from deterministic times to stopping times.

The process X = {X; : t € [0, 00)} is a strong Markov chain on S if for every stopping time 7, ¢t € [0, 00), and z € S,
P(X, =z |F)=P(Xt=z|X,) (16.15.5)

So, for a homogeneous strong Markov chain on S, the process { X, : t € [0,00)} given X, =z, is independent of %, and equivalent to the
process {X; : t € [0,00)} given Xy = z, for every stopping time 7 and = € S. That is, if the chain is in state z € S at a stopping time T, then
the chain essentially starts over at x, independently of the past.

Holding Times and the Jump Chain
For our first point of view, we sill study when and how our Markov chain X changes state. The discussion depends heavily on properties of the
exponential distribution, so we need a quick review.
The Exponential Distribution
A random variable 7 has the exponential distribution with rate parameter r € (0, co) if 7 has a continuous distribution on [0, co) with probability
density function f given by f(t) =re™™ fort € [0, o). Equivalently, the right distribution function F'¢ is given by

Fe(t)=P(r>t)=e™, tc[0,00) (16.15.6)

The mean of the distribution is 1 /7 and the variance is 1/r2. The exponential distribution has an amazing number of characterizations. One of the
most important is the memoryless property which states that a random variable 7 with values in [0, c0) has an exponential distribution if and only
if the conditional distribution of 7—s given 7 > s is the same as the distribution of 7 itself, for every s € [0, 00). It's easy to see that the
memoryless property is equivalent to the law of exponents for right distribution function F'¢, namely F'¢(s+t) = F°(s)F°(t) fors, t € [0,00).
Since F'¢ is right continuous, the only solutions are exponential functions.

For our study of continuous-time Markov chains, it's helpful to extend the exponential distribution to two degenerate cases, 7 =0 with

probability 1, and 7 = oo with probability 1. In terms of the parameter, the first case corresponds to r = oo so that F'(t) =P(r >t) =0 for

every t € [0, 00), and the second case corresponds to 7 =0 so that F'(¢) =P(r >t) =1 for every ¢ € [0,00). Note that in both cases, the

function F' satisfies the law of exponents, and so corresponds to a memoryless distribution in a general sense. In all cases, the mean of the

exponential distribution with parameter r € [0, co] is 1/, where we interpret 1/0 = co and 1/00 = 0.

Holding Times

The Markov property implies the memoryless property for the random time when a Markov process first leaves its initial state. It follows that this

random time must have an exponential distribution.

Suppose that X ={X;:t €[0,00)} is a Markov chain on S, and let 7 =inf{¢ € [0,00): X; # X} . For z € S, the conditional

distribution of 7 given X = z is exponential with parameter A(z) € [0, co].

Proof

Letz € S and s € [0,00). The events Xo =z and 7 > s imply X, =z . By the Markov property, given X, =z, the chain starts over at

time s in state z, independent of { X, =z} and {7 > s}, since both events are in .Z;. Hence for ¢ € [0, ),
Pir>t+s|Xo=z,7>8)=P(r>t+s|Xo=2,X;=2,7>s)=P(r>t| Xo=2) (16.15.7)

It follows that 7 has the memoryless property, and hence has an exponential distribution with parameter A(z) € [0, co].

So, associated with the Markov chain X on S is a function A : S — [0, 00| that gives the exponential parameters for the holding times in the
states. Considering the ordinary exponential distribution, and the two degenerate versions, we are led to the following classification of states:
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Suppose again that X = {X; : t € [0,00)} is a Markov chain on S with exponential parameter function A. Let z € S.

1.If A(z) =0 then P(t =00 | Xg =) =1 , and z is said to be an absorbing state.
2.If A(z) € (0,00) then P(0 < 7 < oo | Xg =z) =1 and z is said to be an stable state.
3.IfA(z) =oco thenP(r=0| Xo =2) =1, and z is said to be an instantaneous state.

As you can imagine, an instantaneous state corresponds to weird behavior, since the chain starting in the state leaves the state at times arbitrarily
close to 0. While mathematically possible, instantaneous states make no sense in most applications, and so are to be avoided. Also, the proof of
the last result has some technical holes. We did not really show that 7 is a valid random time, let alone a stopping time. Fortunately, one of our
standard assumptions resolves these problems.

Suppose again that X = {X; : ¢ € [0,00)} is a Markov chain on S. If the process X and the filtration {§ are right continuous, then

1. T is a stopping time.

2. X has no instantaneous states.
JAP(X,#z|Xyg==z)=1 ifz € Sis stable.
4. X is a strong Markov process.

Proof
1. Let t € [0, 00). By right continuity,

{7 <t} ={X, # X, for some s € (0,t)} = {X, # X, for some rational s € (0,¢)} (16.15.8)

But for s € (0,t), { X, # Xo} € #s C % . The last event in the displayed equation is a countable union, so {7 <t} € &% . Since § is
right continuous, 7 is a stopping time.

2. Suppose that w € £ and X((w) = z . Since X is right continuous, there exists € > 0 such that X;(w) =z for 0 <¢ < e and hence
T(w)>e>0.SoP(r>0| Xp=2)=1 .

3. Similarly, suppose that w € Q and that X(w) =« and X;(,)(w) =y . Since X is right continuous, there exists € >0 such that
Xi(w) =y for 7(w) <t < 7(w)+e€ .But by definition of 7(w), there exists ¢ € (7(w), T(w) +€) with X;(w) # z . Hence
P(X, £z | Xo=2)=1 .

There is actually a converse to part (b) that states that if X has no instantaneous states, then there is a version of X that is right continuous. From
now on, we will assume that our Markov chains are right continuous with probability 1, and hence have no instantaneous states. On the other
hand, absorbing states are perfectly reasonable and often do occur in applications. Finally, if the chain enters a stable state, it will stay there for a
(proper) exponentially distributed time, and then leave.

The Jump Chain

Without instantaneous states, we can now construct a sequence of stopping times. Basically, we let 75, denote the nth time that the chain changes
state for n € N, unless the chain has previously been caught in an absorbing state. Here is the formal construction:

Suppose again that X = {X; : ¢t € [0, 00)} is a Markov chain on S. Let 70 = 0 and 7; = inf{¢ € [0, 00) : X; # X} . Recursively, suppose
that 7,, is defined for n € N . If 7,, = 0o let 73,11 = 00. Otherwise, let

Tpy1 =1inf{t € [1p,00) : X¢ # X } (16.15.9)

Let M =sup{n e N: 7, < oo} .

In the definition of M, of course, sup(N) = 0o, so M is the number of changes of state. If M < oo, the chain was sucked into an absorbing state
at time 77. Since we have ruled out instantaneous states, the sequence of random times in strictly increasing up until the (random) term M. That
is, with probability 1, if n € N and 73, < oo then 7, < 7,41 . Of course by construction, if 7,, = oo then 7,41 = oo. The increments 7,1 — Ty,
for n € N with n < M are the times spent in the states visited by X. The process at the random times when the state changes forms an embedded
discrete-time Markov chain.

Suppose again that X = {X; : t € [0, 00)} is a Markov chain on S. Let {7,, : n € N} denote the stopping times and M the random index,
as defined above. Forn € N, let Y, =X, ifn<M and Y, = X,,, if n>M.Then Y ={Y,, : n € N} is a (homogenous) discrete-time
Markov chain on S, known as the jump chain of X.

Proof
Forn €N let ¥, =d{Yy, Y1,...,Y,}, the o-algebra of events for the process Y, up to the discrete time n. Let z € S. If z is stable, then
given Y,, = z, the random times 7,, and 7,1 are finite with probability 1. (Note that we cannot get to  from an absorbing state.) So

PY,r1=y|Y,=2,%)=P(X

Tnt1

=y|X;, =2,%), yeSs (16.15.10)

But by the strong Markov property, given X, =, the chain starts over at time 7, in state z, independent of &¥,, C %, . Hence
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On the other hand, if z is an absorbing state, then by construction,

PYopi=y|Y,=2,9)=PX,=y|Xo=2), yeS (16.15.11)

PYor=y|Y,=2,%)=I(z,y), yeS (16.15.12)

where [ is the identity matrix on S.

As noted in the proof, the one-step transition probability matrix @Q for the jump chain Y is given for (z,y) € S 2 by

P(X,=y| Xo==), zstable

16.15.1
I(z,y), x absorbing (16.15.13)

Qe - {

where T is the identity matrix on S. Of course @ satisfies the usual properties of a probability matrix on S, namely Q(z,y) > 0 for (z,y) € S*
and Zye sQ(z,y) =1forz € S. But Q satisfies another interesting property as well. Since the the state actually changes at time 7 starting in a
stable state, we must have Q(z, ) = 0if z is stable and Q (z, z) = 1 if x is absorbing.

Given the initial state, the holding time and the next state are independent.
Ifz,yc Sandt € [0,00) then P(Y; =y, >t | Yy =) = Q(z,y)e !
Proof

Suppose that z is a stable state, so that given Yy = Xy =« , the stopping time 7; = 7 has a proper exponential distribution with parameter
A(z) € (0, 00) . Note that

PYi=y,n>t|Yo=2)=P(X,=y,7>t| Xo=2)=P(X, =y |7>t,Xg=z)P(r >t | Xy =2) (16.15.14)

Note that if Xg =2 and 7>t then X; =z also. By the Markov property, given X; =, the chain starts over at time ¢ in state x,
independent of { Xy =z} and {7 > ¢}, both events in .%;. Hence

PX,=y|7>t,Xo=2)=P(X,=y| X;=z,7>t,Xo=2) =P(X, =y | Xo=2) = Q(z,y) (16.15.15)
Of course P(7 >t | Xp =z) = e Nt
If z is an absorbing state then P(r = o0 | Xo =z) =1 ,P(Yi =« | Yy =z) =1 ,and A(z) = 0. Hence

P(lfl =y, 11>t ‘ Yo = .’E) = I((E,y) = Q(m’y)ei)\(z)t (161516)

The following theorem is a generalization. The changes in state and the holding times are independent, given the initial state.
Suppose that n € N and that (zg, 1, . . ., Z,) is a sequence of stable states and (¢1, ta, . . . , ¢, ) is @ sequence in [0, c0). Then
P(Yi=z1,11 >t1, Yo =0, 7o —T1 >to,..., Y =Tp, Tn —Tn-1 > tn | Yo =x0)
= Q(zo, z1)e MWAQ (21, z2)e N - Q (21, Ty )e 1)
Proof

The proof is by induction, and the essence is captured in the case n = 2. So suppose that zg, &1, =2 are stable states and ¢1, t2 € [0, 00).
Then

P(}/l:xlle >t1,Y§:$2,T2—T1 >t2‘Yb:$0)
=PYo=z2,a—71 >to | Xo=2,Y1 =21, 71 >1)P(Y1 =21, 71 >t | Yo =20)

ButP(Yy =z1, 71 > t1 | Yo = z0) = Q(o, :/7:1).'3‘)‘(“”0”1 by the previous theorem. Next, by definition,
P(l/Q =z, -1 >t | Xo=2z,Y1 =21,71 >t1) =P(XT2 =29, Ty —T1 > 12 ‘ Xo ::IIO,X-,-l =T, T >t1) (16.15.17)

But by the strong Markov property, given X, = z; , the chain starts over at time 7y in state z, independent of the events {X, =z¢} and
{71 >t1} (both events in &, ). Hence using the previous theorem again,

PYa=zo,m—T1 >t | Xo=2,Y1=21,71 >t1) =P(X; =29, 7 > t2 | Xg =21) :Q(xl,xz)e_)‘(“)t2 (16.15.18)

Regularity

We now know quite a bit about the structure of a continuous-time Markov chain X = {X; : ¢ € [0, 00)} (without instantaneous states). Once the
chain enters a given state € S, the holding time in state  has an exponential distribution with parameter A(z) € [0, 00), after which the next
state y € S is chosen, independently of the holding time, with probability @ (z, y) However, we don't know everything about the chain. For the
sequence {7, : n € N} defined above, let 7o, = lim,,_,, 75, , which exists in (0, co] of course, since the sequence is increasing. Even though the
holding time in a state is positive with probability 1, it's possible that 7, < co with positive probability, in which case we know nothing about X;

@ 0 16.15.4 https://stats.libretexts.org/@go/page/10388



https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10388?pdf

LibreTextsw

for t > 7o . The event {7, < 0o} is known as explosion, since it means that the X makes infinitely many transitions before the finite time 7.
While not as pathological as the existence of instantaneous states, explosion is still to be avoided in most applications.

A Markov chain X = {X; : ¢t € [0,00)} on S is regular if each of the following events has probability 1:

1. X is right continuous.
2. T, 00 asn — 0.

There is a simple condition on the exponential parameters and the embedded chain that is equivalent to condition (b).

Suppose that X = {X; : t € [0,00)} is a right-continuous Markov chain on S with exponential parameter function A and embedded chain
Y = (Yp,Y1,...). Then 7,, = 0o as n — oo with probability 1 if and only if °,° 1 /A(Y;) = co with probability 1.

Proof

Given Y = (0,91, ), the distribution of 7o, = lim, ,o 7, is the distribution of Ty, = > oo T;, where (Ty,Tt,...) are independent,
and T, has the exponential distribution with parameter A(y,). Note that E(Tw) =" 11/A(ys). In the section on the exponential
distribution, it's shown that P(To, = 00) =1 if and only if E(T) = 0o .

If X is bounded, then X is regular.

Suppose that X = {X; : ¢ € [0, 00)} is a Markov chain on S with exponential parameter function A. If A is bounded, then X is regular.
Proof

Suppose that A(z) <r forz € S, where r € (0, 00) . Then in particular, X has no instantaneous states and so is right continuous. Moreover,
1/X(z) >1/rforz € S s0> 2" 1/A(Y,) = oo with probability 1, where as ususal, ¥ = (Y5, Y7,...) is the jump chain of X.

Here is another sufficient condition that is useful when the state space is infinite.

Suppose that X ={X;:t€[0,00)} is a Markov chain on S with exponential parameter function A:S —[0,00). Let
Sy ={z € S:A(z)>0}.Then X is regular if

1

Z — = (16.15.19)
€St /\(ili)

Proof

By assumption, A(z) < oo forz € S, so there are no instantaneous states and so we can take X to be right continuous. Next,

2 M)~ 22 Ay =) => ) D iYa=2)=) e (16.15.20)

n=0 zesS n=0 zes

8

1l
o

n z

where N, =>°° /1(Y;, =z) is the number of times that the jump chain Y is in state z. Suppose that > ses. 1/A(z) = oco. Note that it
must be the case that .S, and hence S, is infinite. With probability 1, either Y™ enters an absorbing state (a state z € .S with A(z) =0), or
N, = oo forsome z € S, or N, > 1 for infinitely many € S, . In any case,

=l N,
> %A =3 T (16.15.21)

n=0 ze8

As a corollary, note that if .S is finite then A is bounded, so a continuous-time Markov chain on a finite state space is regular. So to review, if the
exponential parameter function A is finite, the chain X has no instantaneous states. Even better, if A is bounded or if the conditions in the last
theorem are satisfied, then X is regular. A continuous-time Markov chain with bounded exponential parameter function A is called uniform, for
reasons that will become clear in the next section on transition matrices. As we will see in later section, a uniform continuous-time Markov chain
can be constructed from a discrete-time chain and an independent Poisson process. For the next result, recall that to say that X has left limits with
probability 1 means that the random function ¢ — X; has limits from the left on (0, co) with probability 1.

If X ={X,:¢€[0,00)} is regular then X has left limits with probability 1.
Proof

Suppose first that there are no absorbing states. Under the assumptions, with probability 1, 0 < 7,, < oo for each n € N and 7,, — 0o as
n — co. Moreover, X; =Y, for t € [1,,7,11) and n € N. So ¢+ X; has left limits on (0,00) with probability 1. The same basic
argument works with absorbing states, except that possibly 7,11 = co.

Thus, our standard assumption will be that X = {X, : ¢t € [0,00)} is a regular Markov chain on S. For such a chain, the behavior of X is
completely determined by the exponential parameter function A\ that governs the holding times, and the transition probability matrix @ of the
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jump chain Y. Conversely, when modeling real stochastic systems, we often start with A and @. It's then relatively straightforward to construct
the continuous-time Markov chain that has these parameters. For simplicity, we will assume that there are no absorbing states. The inclusion of
absorbing states is not difficult, but mucks up the otherwise elegant exposition.

Suppose that A : S — (0, 00) is bounded and that @ is a probability matrix on S with the property that Q(z,z) = 0 for every = € S. The
regular, continuous-time Markov chain X = {X; : ¢ € [0,00)} with exponential parameter function A and jump transition matrix ¢ can be
constructed as follows:

1. First construct the jump chain Y = (¥y, Y1, . . .) having transition matrix Q.

2. Next, given Y = (zg, 1, . . .), the transition times (71, 72, . . .) are constructed so that the holding times (71,75 — 71, ...) are
independent and exponentially distributed with parameters (A(zg), A(z1), . - .)

3. Again given Y = (zg, 21, . . .), define X; =z for0 <¢ <7 and forn € N, define X; =z, for7, <t <7p41) .

Additional details

Using product sets and product measures, it's straightforward to construct a probability space (2, %, P) with the following objects and
properties:

1.Y = (Yp, Y1,...) isaMarkov chain on S with transition matrix Q.

2.T={T, :z € S} isa collection of independent random variables with values in [0, c0) such that T}, has the exponential distribution
with parameter A\(z) foreachz € S.

3.Y and T are independent.

Define X = {X; :t € [0,00)} as follows: First, ; =Ty, and X; =Y, for 0 <t <7 . Recursively, if X; is defined on [0,7,), let
Tnt1 = Tn +Ty, and then let X; =Y, for for 7, <t <7, . Since X is bounded, 7, — 00 as n — 00, so X; is well defined for
t € [0, 00). By construction, ¢ — X; is right continuous and has left limits. The Markov property holds by the memoryless property of the
exponential distribution and the fact that Y is a Markov chain. Finally, by construction, X has exponential parameter function A and jump
chain Y.

Often, particularly when S is finite, the essential structure of a standard, continuous-time Markov chain can be succinctly summarized with a
graph.

Suppose again that X = {X; : t € [0,00)} is a regular Markov chain on S, with exponential parameter function A and embedded transition
matrix Q. The state graph of X is the graph with vertex set S and directed edge set E = {(z,y) € S?: Q(z,y) > 0}. The graph is labeled
as follows:

1. Each vertex = € S is labeled with the exponential parameter A(z).
2. Each edge (z, y) € E is labeled with the transition probability Q(z, y).

So except for the labels on the vertices, the state graph of X is the same as the state graph of the discrete-time jump chain Y. That is, there is a
directed edge from state x to state y if and only if the chain, when in &, can move to y after the random holding time in . Note that the only
loops in the state graph correspond to absorbing states, and for such a state there are no outward edges.

Let's return again to the construction above of a continuous-time Markov chain from the jump transition matrix @ and the exponential parameter
function A. Again for simplicity, assume there are no absorbing states. We assume that Q(z,z) =0 for all z € S, so that the state really does
change at the transition times. However, if we drop this assumption, the construction still produces a continuous-time Markov chain, but with an
altered jump transition matrix and exponential parameter function.

Suppose that @ is a transition matrix on S x .S with Q(z,z) <1 for z € S, and that A : S — (0, c0) is bounded. The stochastic process
X ={X;:t€[0,00)} constructed above from @ and A is a regular, continuous-time Markov chain with exponential parameter function A
and jump transition matrix @ given by

5(@) =A@)[1-Q@,2)], =<8
Q) =12, @a)est oty
Proof 1

As before, the fact that X is a continuous-time Markov chain follows from the memoryless property of the exponential distribution and the
Markov property of the jump chain Y. By construction, ¢ — X; is right continuous and has left limits. The main point, however, is that
(71,72, . . .) is not necessarily the sequence of transition times, when the state actually changes. So we just need to determine the parameters.
Suppose Xo =z € S and let 7 =7; have the exponential distribution with parameter A(z), as in the construction. Let 7' denote the time
when the state actually does change. For ¢ € [0, 00), the event T' > ¢ can happen in two ways: either 7 >t or 7 = s for some s € [0, t], the
chain jumps back into state z at time s, and the process then stays in z for a period of at least t — s . Thus let F,,(¢) =P(T >t | Xo =) .
Taking the two cases, conditioning on 7, and using the Markov property gives

16.15.6 https://stats.libretexts.org/@go/page/10388



https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10388?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/16%3A_Markov_Processes/16.17%3A_Potential_Matrices#reg5
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/16%3A_Markov_Processes/16.17%3A_Potential_Matrices#reg5

LibreTextsw

t
Fy(t) = et 4 / A@)e N Q(z, 2)Fy (t — 5)ds (16.15.22)
0
Using the change of variables u =t — s and simplifying gives
¢
F,(t) = e Mo}t {1 +A(2)Q(z, z) / v p, (u)du} (16.15.23)
0
Differentiating with respect to ¢ then gives
El(t) = —Az)[1-Q(z,z)]F.(t) (16.15.24)

with the initial condition F,(0) =1. The solution of course is F(¢) = exp{—A(z)[1 —Q(z,z)]} for ¢ € [0,00). When the state does
change, the new state y # x is chosen with probability

Q(z,y)

P =y|Yo=1,Y1#2)= 1 0(.2)

(16.15.25)

Proof 2

As in the first proof, we just need to determine the parameters. Given X, =Yy = z , the discrete time N when Y first changes state has the
geometric distribution on N with success parameter 1 — Q(z, ). Hence the time until X actually changes state has the distribution of
T= Ziil U; where U = (U, Uy, ...) is a sequence of independent variables, each exponentially distributed with parameter A(z) and
with U independent of N. In the section on the exponential distribution, it is shown that 7" also has the exponential distribution, but with
parameter A(z)[1 —Q(z, )] . (The proof is simple using generating functions.) As in the first proof, when the state does change, the new
state y # x is chosen with probability

Q(z,y)

PVi=y|Yy=2z,11 #w)Zm

(16.15.26)

This construction will be important in our study of chains subordinate to the Poisson process.

Transition Times

The structure of a regular Markov chain on S, as described above, can be explained purely in terms of a family of independent, exponentially
distributed random variables. The main tools are some additional special properties of the exponential distribution, that we need to restate in the
setting of our Markov chain. Our interest is in how the process evolves among the stable states until it enters an absorbing state (if it does). Once
in an absorbing state, the chain stays there forever, so the behavior from that point on is trivial.

Suppose that X = {X; :¢ € [0,00)} is a regular Markov chain on S, with exponential parameter function A and transition probability
matrix Q. Define u(z, y) = A(z)Q(z, y)for (z,y) € §2. Then

LA(z)=2 csmu(z,y) forz €S.
2.Q(x,y) = pu(x,y)/A(@)if (z,y) € S? and z is stable.

The main point is that the new parameters u(z,y) for (z,y) € S® determine the exponential parameters A(x) for 2 € S, and the transition
probabilities Q (z,y)when z € S is stable and y € S. Of course we know that if A(z) =0, so that z is absorbing, then Q(z,z) = 1. So in fact,
the new parameters, as specified by the function u, completely determine the old parmeters, as specified by the functions A and Q. But so what?

Consider the functions p, A, and Q as given in the previous result. Suppose that T, ,, has the exponential distribution with parameter y(z,y)
for each (z,y) € S and that {T;, : (z,y) € §?} is a set of independent random variables. Then

1. T, =inf{T,, : y € S} has the exponential distribution with parameter A(z) for z € S.
2.P(T, =T.,) = Q(z,y) for (z,y) € S%.

Proof

These are basic results proved in the section on the exponential distribution.

So here's how we can think of a regular, continuous-time Markov chain on S: There is a timer associated with each (z,y) € S2, set to the random
time T} ,. All of the timers function independently. When the chain enters state ¢ € .S, the timers on (z, y) for y € S are started simultaneously.
As soon as the first alarm goes off for a particular (z,y), the chain immediately moves to state y, and the process repeats. Of course, if
p(z,y) =0 then T}, = co with probability 1, so only the timers with A(z) > 0 and Q(z,y) > 0 matter (these correspond to the non-loop edges
in the state graph). In particular, if z is absorbing, then the timers on (z, y) are set to infinity for each y, and no alarm ever sounds.

The new collection of exponential parameters can be used to give an alternate version of the state graph. Again, the vertex set is .S and the edge
setis B = {(z,y) € S*: Q(z,y) > 0}. But now each edge (z, y) is labeled with the exponential rate parameter y(x,%y). The exponential rate
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parameters are closely related to the generator matrix, a matrix of fundamental importance that we will study in the next section.

Examples and Exercises

The Two-State Chain

The two-state chain is the simplest non-trivial, continuous-time Markov chain, but yet this chain illustrates many of the important properties of
general continuous-time chains. So consider the Markov chain X ={X;:t¢ € [0,00)} on the set of states S ={0,1}, with transition rate
a € [0, co) from 0 to 1 and transition rate b € [0, co) from 1 to 0.

The transition matrix ) for the embedded chain is given below. Draw the state graph in each case.
1.Q= [1) (1) if a >0 and b > 0, so that both states are stable.
1 0] . : :
2.Q = 10 if a =0 and b > 0, so that a is absorbing and b is stable.
3.Q= g i if a >0 and b =0, so that a is stable and b is absorbing.
1 0] . .
4.Q = 0 1 if a =0 and b = 0, so that both states are absorbing.

We will return to the two-state chain in subsequent sections.

Computational Exercises

Consider the Markov chain X ={X;:t € [0,00)} on S={0,1,2} with exponential parameter function A = (4,1,3) and embedded
transition matrix
101
0 35 3
Q=1 0 0 (16.15.27)
102
3 30
1. Draw the state graph and classify the states.
2. Find the matrix of transition rates.
3. Classify the jump chain in terms of recurrence and period.
4. Find the invariant distribution of the jump chain.
Answer
1. The edge set is F = {(0, 1), (0, 2), (1, 0), (2, 0), (2, 1)} All states are stable.
2. The matrix of transition rates is
0 2 2
1 00 (16.15.28)
1 20
3. The jump chain is irreducible, positive recurrent, and aperiodic.
4. The invariant distribution for the jump chain has PDF
_[6 5 3
f= [ﬁ = ﬁ] (16.15.29)

Special Models

l Read the introduction to chains subordinate to the Poisson process.
l Read the introduction to birth-death chains.
l Read the introduction to continuous-time queuing chains.

l Read the introduction to continuous-time branching chains.

This page titled 16.15: Introduction to Continuous-Time Markov Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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