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3.6: Distribution and Quantile Functions
   

As usual, our starting point is a random experiment modeled by a with probability space . So to review,  is the set of
outcomes,  is the collection of events, and  is the probability measure on the sample space . In this section, we will
study two types of functions that can be used to specify the distribution of a real-valued random variable.

Distribution Functions

Definition

Suppose that  is a random variable with values in . The (cumulative) distribution function of  is the function 
 defined by

The distribution function is important because it makes sense for any type of random variable, regardless of whether the
distribution is discrete, continuous, or even mixed, and because it completely determines the distribution of . In the picture below,
the light shading is intended to represent a continuous distribution of probability, while the darker dots represents points of positive
probability;  is the total probability mass to the left of (and including) .

Figure :  is the total probability to the left of (and including) 

Basic Properties

A few basic properties completely characterize distribution functions. Notationally, it will be helpful to abbreviate the limits of 
from the left and right at , and at  and  as follows:

Suppose that  is the distribution function of a real-valued random variable .

1.  is increasing: if  then .
2.  for . Thus,  is continuous from the right.
3.  for . Thus,  has limits from the left.
4. .
5. .

Proof

Figure : The graph of a distribution function

The following result shows how the distribution function can be used to compute the probability that  is in an interval. Recall that
a probability distribution on  is completely determined by the probabilities of intervals; thus, the distribution function determines
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F : R → [0, 1]

F (x) = P(X ≤ x), x ∈ R (3.6.1)

X

F (x) x

3.6.1 F (x) x

F

x ∈ R ∞ −∞
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the distribution of .

Suppose again that  is the distribution function of a real-valued random variable . If  with  then

1. 
2. 
3. 
4. 
5. 

Proof

These results follow from the definition, the basic properties, and the difference rule:  if  are
events and .

1. , so .
2. , so .
3. , so .
4. , so .
5. , so .

Conversely, if a Function  satisfies the basic properties, then the formulas above define a probability distribution on 
, with  as the distribution function. For more on this point, read the section on Existence and Uniqueness.

If  has a continuous distribution, then the distribution function  is continuous.

Proof

If  has a continuous distribution, then by definition,  so  for . Hence from part
(a) of the previous theorem, .

Thus, the two meanings of continuous come together: continuous distribution and continuous function in the calculus sense. Next
recall that the distribution of a real-valued random variable  is symmetric about a point  if the distribution of  is the
same as the distribution of .

Suppose that  has a continuous distribution on  that is symmetric about a point . Then the distribution function  satisfies 
 for .

Proof

Since  and  have the same distribution,

Relation to Density Functions

There are simple relationships between the distribution function and the probability density function. Recall that if  takes value in
 and has probability density function , we can extend  to all of  by the convention that  for . As in

Definition (1), it's customary to define the distribution function  on all of , even if the random variable takes values in a subset.

Suppose that  has discrete distribution on a countable subset . Let  denote the probability density function and  the
distribution function.

1.  for 
2.  for 

Proof
1. This follows from the definition of the PDF of ,  for , and the additivity of probability.
2. This is a restatement of part (a) of the theorem above.

Thus,  is a step function with jumps at the points in ; the size of the jump at  is .

X

F X a, b ∈ R a < b

P(X = a) = F (a) −F ( )a−

P(a < X ≤ b) = F (b) −F (a)
P(a < X < b) = F ( ) −F (a)b−

P(a ≤ X ≤ b) = F (b) −F ( )a−

P(a ≤ X < b) = F ( ) −F ( )b− a−

P(B∖A) = P(B) −P(A) A, B
A ⊆ B

{X = a} = {X ≤ a} ∖ {X < a} P(X = a) = P(X ≤ a) −P(X < a) = F (a) −F ( )a−

{a < X ≤ b} = {X ≤ b} ∖ {X ≤ a} P(a < X ≤ b) = P(X ≤ b) −P(X ≤ a) = F (b) −F (a)
{a < X < b} = {X < b} ∖ {X ≤ a} P(a < X < b) = P(X < b) −P(X ≤ a) = F ( ) −F (a)b−

{a ≤ X ≤ b} = {X ≤ b} ∖ {X < a} P(a ≤ X ≤ b) = P(X ≤ b) −P(X < a) = F (b) −F ( )a−

{a ≤ X < b} = {X < b} ∖ {X < a} P(a ≤ X < b) = P(X < b) −P(X < a) = F ( ) −F ( )b− a−

F : R → [0, 1]
R F

X F

X P(X = x) = 0 P(X < x) = P(X ≤ x) x ∈ R

F ( ) = F ( ) = F (x)x− x+

X a ∈ R X−a

a−X

X R a F

F (a− t) = 1 −F (a+ t) t ∈ R

X−a a−X

F (a− t) = P(X ≤ a− t) = P(X−a ≤ −t) = P(a−X ≤ −t) = P(X ≥ a+ t) = 1 −F (a+ t) (3.6.3)

X

S ⊆ R f f R f(x) = 0 x ∈ Sc

F R

X S ⊆ R f F

F (x) = f(t)∑t∈S, t≤x x ∈ R

f(x) = F (x) −F ( )x− x ∈ S

X f(t) = P(X = t) t ∈ S

F S x f(x)
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Figure : The distribution function of a a discrete distribution

There is an analogous result for a continuous distribution with a probability density function.

Suppose that  has a continuous distribution on  with probability density function  and distribution function .

1.  for .
2.  if  is continuous at .

Proof

Figure : The distribution function of a continuous distribution

The last result is the basic probabilistic version of the fundamental theorem of calculus. For mixed distributions, we have a
combination of the results in the last two theorems.

Suppose that  has a mixed distribution, with discrete part on a countable subset , and continuous part on . Let 
denote the partial probability density function of the discrete part and assume that the continuous part has partial probability
density function . Let  denote the distribution function.

1.  for 
2.  for 
3.  if  and  is continuous at 

Go back to the graph of a general distribution function. At a point of positive probability, the probability is the size of the jump. At
a smooth point of the graph, the continuous probability density is the slope.

Recall that the existence of a probability density function is not guaranteed for a continuous distribution, but of course the
distribution function always makes perfect sense. The advanced section on absolute continuity and density functioons has an
example of a continuous distribution on the interval  that has no probability density function. The distribution function is
continuous and strictly increases from 0 to 1 on the interval, but has derivative 0 at almost every point!

Naturally, the distribution function can be defined relative to any of the conditional distributions we have discussed. No new
concepts are involved, and all of the results above hold.

3.6.3

X R f F

F (x) = f(t)dt∫ x

−∞
x ∈ R

f(x) = (x)F ′ f x

3.6.4

X D ⊆ R R ∖D g

h F

F (x) = g(t) + h(t)dt∑t∈D, t≤x ∫ x

−∞ x ∈ R

g(x) = F (x) −F ( )x− x ∈ D

h(x) = (x)F ′ x ∉ D h x

(0, 1)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10146?pdf


3.6.4 https://stats.libretexts.org/@go/page/10146

Reliability

Suppose again that  is a real-valued random variable with distribution function . The function in the following definition clearly
gives the same information as .

The function  defined by

is the right-tail distribution function of . Give the mathematical properties of  analogous to the properties of  in (2).

Answer
1.  is decreasing.
2.  as  for , so  is continuous from the right.
3.  as  for , so  has left limits.
4.  as .
5.  as .

So  might be called the left-tail distribution function. But why have two distribution functions that give essentially the same
information? The right-tail distribution function, and related functions, arise naturally in the context of reliability theory. For the
remainder of this subsection, suppose that  is a random variable with values in  and that  has a continuous distribution
with probability density function . Here are the important defintions:

Suppose that  represents the lifetime of a device.

1. The right tail distribution function  is the reliability function of .
2. The function  defined by  for  is the failure rate function of .

To interpret the reliability function, note that  is the probability that the device lasts at least  time units. To
interpret the failure rate function, note that if  is “small” then

So  is the approximate probability that the device will fail in the interval , given survival up to time . Moreover,
like the distribution function and the reliability function, the failure rate function also completely determines the distribution of .

The reliability function can be expressed in terms of the failure rate function by

Proof

At the points of continuity of  we have . Hence

The failure rate function  satisfies the following properties:

1.  for 
2. 

Proof
1. This follows from the definition.
2. This follows from the previous result and the fact that  as .

Conversely, a function that satisfies these properties is the failure rate function for a continuous distribution on :

X F

F

F c

(x) = 1 −F (x) = P(X > x), x ∈ RF c (3.6.4)

X F c F

F c

(t) → (x)F c F c t ↓ x x ∈ R F c

(t) → P(X ≥ x)F c t ↑ x x ∈ R F c

(x) → 0F c x → ∞
(x) → 1F c x → −∞

F

T [0, ∞) T

f

T

F c T

h h(t) = f(t)/ (t)F c t ≥ 0 T

(t) = P(T > t)F c t

dt

P(t < T < t+dt ∣ T > t) = ≈ = h(t)dt
P(t < T < t+dt)

P(T > t)

f(t)dt

(t)F c
(3.6.5)

h(t)dt (t, t+dt) t

T

(t) = exp(− h(s)ds), t ≥ 0F c ∫
t

0
(3.6.6)

f (t) = −f(t)d

dt
F c

h(s)ds = ds = − ds = −ln[ (t)]∫
t

0
∫

t

0

f(s)

(s)F c
∫

t

0

(s)d

ds
F c

(s)F c
F c (3.6.7)

h

h(t) ≥ 0 t ≥ 0
h(t)dt = ∞∫ ∞

0

(t) → 0F c t → ∞

[0, ∞)
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Suppose that  is piecewise continuous and . Then the function  defined by

is a reliability function for a continuous distribution on 

Proof

The function  is continuous, decreasing, and satisfies  and  as . Hence  is the
distribution function for a continuous distribution on .

Multivariate Distribution Functions

Suppose now that  and  are real-valued random variables for an experiment (that is, defined on the same probability space), so
that  is random vector taking values in a subset of .

The distribution function of  is the function  defined by

Figure :  is the total probability below and to the left of .

In the graph above, the light shading is intended to suggest a continuous distribution of probability, while the darker dots represent
points of positive probability. Thus,  is the total probability mass below and to the left (that is, southwest) of the point 

. As in the single variable case, the distribution function of  completely determines the distribution of .

Suppose that  with  and . Then

Proof

Note that . The intersection of the first
two events is  while the first and third events and the second and third events are disjoint. Thus, from the
inclusion-exclusion rule we have

A probability distribution on  is completely determined by its values on rectangles of the form , so just as in the
single variable case, it follows that the distribution function of  completely determines the distribution of . See the
advanced section on existence and uniqueness of positive measures in the chapter on Probability Measures for more details.

In the setting of the previous result, give the appropriate formula on the right for all possible combinations of weak and strong
inequalities on the left.

The joint distribution function determines the individual (marginal) distribution functions.

Let  denote the distribution function of , and let  and  denote the distribution functions of  and , respectively.
Then

1.  for 

h : [0, ∞) → [0, ∞) h(t)dt = ∞∫ ∞
0

G

(t) = exp(− h(s)ds), t ≥ 0F c ∫
t

0
(3.6.8)

[0, ∞)

F c (0) = 1F c (t) → 0F c t → ∞ F = 1 −F c

[0, ∞)

X Y

(X,Y ) R
2

(X,Y ) F

F (x, y) = P(X ≤ x,Y ≤ y), (x, y) ∈ R
2 (3.6.9)

3.6.5 F (x,y) (x,y)

F (x, y)
(x, y) (X,Y ) (X,Y )

a, b, c, d ∈ R a < b c < d

P(a < X ≤ b, c < Y ≤ d) = F (b, d) −F (a, d) −F (b, c) +F (a, c) (3.6.10)

{X ≤ a,Y ≤ d} ∪ {X ≤ b,Y ≤ c} ∪ {a < X ≤ b, c < Y ≤ d} = {X ≤ b,Y ≤ d}
{X ≤ a,Y ≤ c}

F (a, d) +F (b, c) +P(a < X ≤ b, c < Y ≤ d) −F (a, c) = F (b, d) (3.6.11)

R
2 (a, b] ×(c, d]

(X,Y ) (X,Y )

F (X,Y ) G H X Y

G(x) = F (x, ∞) x ∈ R
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2.  for 

Proof

These results follow from the continuity theorem for increasing events. For example, in (a)

On the other hand, we cannot recover the distribution function of  from the individual distribution functions, except when
the variables are independent.

Random variables  and  are independent if and only if

Proof

If  and  are independent then  for .
Conversely, suppose  for . If  with  and  then from (15),

so it follows that  and  are independent. (Recall again that a probability distribution on  is completely determined by its
values on rectangles.)

All of the results of this subsection generalize in a straightforward way to -dimensional random vectors. Only the notation is more
complicated.

The Empirical Distribution Function

Suppose now that  is a real-valued random variable for a basic random experiment and that we repeat the experiment  times
independently. This generates (for the new compound experiment) a sequence of independent variables  each
with the same distribution as . In statistical terms, this sequence is a random sample of size  from the distribution of . In
statistical inference, the observed values  of the random sample form our data.

The empirical distribution function, based on the data , is defined by

Thus,  gives the proportion of values in the data set that are less than or equal to . The function  is a statistical estimator
of , based on the given data set. This concept is explored in more detail in the section on the sample mean in the chapter on
Random Samples. In addition, the empirical distribution function is related to the Brownian bridge stochastic process which is
studied in the chapter on Brownian motion.

Quantile Functions

Definitions

Suppose again that  is a real-valued random variable with distribution function .

For , a value of  such that  and  is called a quantile of order  for
the distribution.

Roughly speaking, a quantile of order  is a value where the graph of the distribution function crosses (or jumps over) . For
example, in the picture below,  is the unique quantile of order  and  is the unique quantile of order . On the other hand, the
quantiles of order  form the interval , and moreover,  is a quantile for all orders in the interval . Note also that if  has
a continuous distribution (so that  is continuous) and  is a quantile of order , then .

H(y) = F (∞, y) y ∈ R

P(X ≤ x) = P(X ≤ x,Y < ∞) = P(X ≤ x,Y ≤ y) = F (x, y)lim
y→∞

lim
y→∞

(3.6.12)

(X,Y )

X Y

F (x, y) = G(x)H(y), (x, y) ∈ R
2 (3.6.13)

X Y F (x, y) = P(X ≤ x,Y ≤ y) = P(X ≤ x)P(Y ≤ y) = G(x)H(y) (x, y) ∈ R
2

F (x, y) = G(x)H(y) (x, y) ∈ R
2 a, b, c, d ∈ R a < b c < d

P(a < X ≤ b, c < Y ≤ d) = G(b)H(d) −G(a)H(d) −G(b)H(c) +G(a)H(c)

= [G(b) −G(a)][H(d) −H(c)] = P(a < X ≤ b)P(c < Y ≤ d)

(3.6.14)

(3.6.15)

X Y R
2

n

X n

( , , … , )X1 X2 Xn

X n X

( , , … , )x1 x2 xn

( , , … , )x1 x2 xn

(x) = # {i ∈ {1, 2, … ,n} : ≤ x} = 1( ≤ x), x ∈ RFn

1

n
xi

1

n
∑
i=1

n

xi (3.6.16)

(x)Fn x Fn

F

X F

p ∈ (0, 1) x F ( ) = P(X < x) ≤ px− F (x) = P(X ≤ x) ≥ p p

p p

a p b q

r [c, d] d [r, s] X

F x p ∈ (0, 1) F (x) = p
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Figure : Quantiles of various orders

Note that there is an inverse relation of sorts between the quantiles and the cumulative distribution values, but the relation is more
complicated than that of a function and its ordinary inverse function, because the distribution function is not one-to-one in general.
For many purposes, it is helpful to select a specific quantile for each order; to do this requires defining a generalized inverse of the
distribution function .

The quantile function  of  is defined by

 is well defined

Since  is right continuous and increasing,  is an interval of the form . Thus, the minimum of the
set is .

Note that if  strictly increases from 0 to 1 on an interval  (so that the underlying distribution is continuous and is supported on 
), then  is the ordinary inverse of . We do not usually define the quantile function at the endpoints 0 and 1. If we did, note

that  would always be .

Properties

The following exercise justifies the name:  is the minimum of the quantiles of order .

Let .

1.  is a quantile of order .
2. If  is a quantile of order  then .

Proof

Let .

1. Note that  by definition, and if  then . Hence . Therefore  is a quantile of order .
2. Suppose that  is a quantile of order . Then  so by definition, .

Other basic properties of the quantile function are given in the following theorem.

 satisfies the following properties:

1.  is increasing on .
2.  for any  with .
3.  for any .
4.  for . Thus  is continuous from the left.
5.  for . Thus  has limits from the right.

Proof
1. Note that if  with , then .
2. This follows from the definition:  is the smallest  with .

3.6.6

F

F −1 X

(p) = min{x ∈ R : F (x) ≥ p}, p ∈ (0, 1)F −1 (3.6.17)

F −1

F {x ∈ R : F (x) ≥ p} [a, ∞)
a

F S

S F −1 F

(0)F −1 −∞

(p)F −1 p

p ∈ (0, 1)

(p)F −1 p

x p (p) ≤ xF −1

y = (p)F −1

F (y) ≥ p x < y F (x) < p F ( ) ≤ py− y p

x p F (x) ≥ p y ≤ x

F −1

F −1 (0, 1)
[F (x)] ≤ xF −1 x ∈ R F (x) < 1

F [ (p)] ≥ pF −1 p ∈ (0, 1)
( ) = (p)F −1 p− F −1 p ∈ (0, 1) F −1

( ) = inf{x ∈ R : F (x) > p}F −1 p+ p ∈ (0, 1) F −1

p, q ∈ (0, 1) p ≤ q {x ∈ R : F (x) ≥ q} ⊆ {x ∈ R : F (x) ≥ p}
[F (x)]F −1 y ∈ R F (y) ≥ F (x)
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3. This also follows from the definition:  is a value  satisfying .
4. This follows from the fact that  is continuous from the right
5. This follows from the fact that  has limits from the left.

As always, the inverse of a function is obtained essentially by reversing the roles of independent and dependent variables. In the
graphs below, note that jumps of  become flat portions of  while flat portions of  become jumps of . For ,
the set of quantiles of order  is the closed, bounded interval . Thus,  is the smallest quantile of order 

, as we noted earlier, while  is the largest quantile of order .

Figure : Graph of the distribution function

Figure : Graph of the quantile function

The following basic property will be useful in simulating random variables, a topic explored in the section on transformations of
random variables.

For  and ,  if and only if .

Proof

Suppose that . Then, since  is increasing, . But  by part (c) of the
previous result, so . Conversely, suppose that . Then, since  is increasing, .
But  by part (b) of the previous result, so .

Special Quantiles

Certain quantiles are important enough to deserve special names.

Suppose that  is a real-valued random variable.

1. A quantile of order  is a first quartile of the distribution.
2. A quantile of order  is a median or second quartile of the distribution.
3. A quantile of order  is a third quartile of the distribution.

(p)F −1 y ∈ R F (y) ≥ p

F

F

F F −1 F F −1 p ∈ (0, 1)
p [ (p), ( )]F −1 F −1 p+ (p)F −1

p ( )F −1 p+ p

3.6.7

3.6.8

x ∈ R p ∈ (0, 1) (p) ≤ xF −1 p ≤ F (x)

(p) ≤ xF −1 F F [ (p)] ≤ F (x)F −1 p ≤ F [ (p)]F −1

p ≤ F (x) p ≤ F (x) F −1 (p) ≤ [F (x)]F −1 F −1

[F (x)] ≤ xF −1 (p) ≤ xF −1

X

1
4
1
2
3
4
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When there is only one median, it is frequently used as a measure of the center of the distribution, since it divides the set of values
of  in half, by probability. More generally, the quartiles can be used to divide the set of values into fourths, by probability.

Assuming uniqueness, let , , and  denote the first, second, and third quartiles of , respectively, and let 
and .

1. The interquartile range is defined to be .
2. The five parameters  are referred to as the five number summary of the distribution.

Note that the interval  roughly gives the middle half of the distribution, so the interquartile range, the length of the interval,
is a natural measure of the dispersion of the distribution about the median. Note also that  and  are essentially the minimum and
maximum values of , respectively, although of course, it's possible that  or  (or both). Collectively, the five
parameters give a great deal of information about the distribution in terms of the center, spread, and skewness. Graphically, the five
numbers are often displayed as a boxplot or box and whisker plot, which consists of a line extending from the minimum value  to
the maximum value , with a rectangular box from  to , and “whiskers” at , the median , and . Roughly speaking, the five
numbers separate the set of values of  into 4 intervals of approximate probability  each.

Figure : The probability density function and boxplot for a continuous distribution

Suppose that  has a continuous distribution that is symmetric about a point . If  is a quantile of order 
then  is a quantile of order .

Proof

Note that this is the quantile function version of symmetry result for the distribution function. If  is a qantile of order 
then (since  has a continuous distribution) . But then  so  is a
quantile of order .

Examples and Applications

Distributions of Different Types

Let  be the function defined by

1. Sketch the graph of  and show that  is the distribution function for a discrete distribution.
2. Find the corresponding probability density function  and sketch the graph.
3. Find  where  has this distribution.
4. Find the quantile function and sketch the graph.
5. Find the five number summary and sketch the boxplot.

Answer
1. Note that  increases from 0 to 1, is a step function, and is right continuous.

X

q1 q2 q3 X a = ( )F −1 0+

b = (1)F −1

−q3 q1

(a, , , , b)q1 q2 q3

[ , ]q1 q3

a b

X a = −∞ b = ∞

a

b q1 q3 a q2 b

X 1
4

3.6.9

X a ∈ R a+ t p ∈ (0, 1)
a− t 1 −p

a+ t p

X F (a+ t) = p F (a− t) = 1 −F (a+ t) = 1 −p a− t

1 −p

F

F (x) =

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪

0,
,1

10

,3
10

,6
10

,9
10

1,

x < 1
1 ≤ x < 3

2

≤ x < 23
2

2 ≤ x < 5
2

≤ x < 35
2

x ≥ 3;

(3.6.18)
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2. 

3. 

4. 

5. 

Let  be the function defined by

1. Sketch the graph of  and show that  is the distribution function for a continuous distribution.
2. Find the corresponding probability density function  and sketch the graph.
3. Find  where  has this distribution.
4. Find the quantile function and sketch the graph.
5. Find the five number summary and sketch the boxplot.

Answer
1. Note that  is continuous and increases from 0 to 1.
2. 

3. 
4. 

5. 

The expression  that occurs in the quantile function in the last exercise is known as the odds ratio associated with ,
particularly in the context of gambling.

Let  be the function defined by

1. Sketch the graph of  and show that  is the distribution function of a mixed distribution.
2. Find the partial probability density function of the discrete part and sketch the graph.
3. Find the partial probability density function of the continuous part and sketch the graph.
4. Find  where  has this distribution.
5. Find the quantile function and sketch the graph.
6. Find the five number summary and sketch the boxplot.

Answer
1. Note that  is piece-wise continuous, increases from 0 to 1, and is right continuous.

f(x) =

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪

,1
10

,1
5

,3
10

,3
10

,1
10

x = 1

x = 3
2

x = 2

x = 5
2

x = 3

P(2 ≤ X < 3) = 3
5

(p) =F −1

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪

1,

,3
2

2,

,5
2

3,

0 < p ≤ 1
10

< p ≤1
10

3
10

< p ≤3
10

6
10

< p ≤6
10

9
10

< p ≤ 19
10

(1, , 2, , 3)3
2

5
2

F

F (x) ={
0,

,x

x+1

x < 0
x ≥ 0 (3.6.19)

F F

f

P(2 ≤ X < 3) X

F

f(x) = , x > 01

(x+1)2

P(2 ≤ X < 3) = 1
12

(p) = , 0 < p < 1F −1 p

1−p

(0, , 1, 3, ∞)1
3

p

1−p
p

F

F (x) =

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪

0,

x,1
4

+ (x−1 ,1
3

1
4

)2

+ (x−2 ,2
3

1
4

)3

1,

x < 0

0 ≤ x < 1

1 ≤ x < 2

2 ≤ x < 3

x ≥ 3

(3.6.20)
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2. 

3. 

4. 

5. 

6. 

The Uniform Distribution

Suppose that  has probability density function  for , where  and .

1. Find the distribution function and sketch the graph.
2. Find the quantile function and sketch the graph.
3. Compute the five-number summary.
4. Sketch the graph of the probability density function with the boxplot on the horizontal axis.

Answer
1. 
2. 

3. 

The distribution in the last exercise is the uniform distribution on the interval . The left endpoint  is the location parameter
and the length of the interval  is the scale parameter. The uniform distribution models a point chose “at random” from
the interval, and is studied in more detail in the chapter on Special Distributions.

In the special distribution calculator, select the continuous uniform distribution. Vary the location and scale parameters and
note the shape of the probability density function and the distribution function.

The Exponential Distribution

Suppose that  has probability density function  for , where  is a parameter.

1. Find the distribution function and sketch the graph.
2. Find the reliability function and sketch the graph.
3. Find the failure rate function and sketch the graph.
4. Find the quantile function and sketch the graph.
5. Compute the five-number summary.
6. Sketch the graph of the probability density function with the boxplot on the horizontal axis.

Answer
1. 
2. 
3. 
4. 
5. 

g(1) = g(2) = g(3) = 1
12

h(x) =

⎧

⎩
⎨
⎪⎪

⎪⎪

,1
4

(x−1),1
2

(x−2 ,3
4

)2

0 < x < 1

1 < x < 2

2 < x < 3

P(2 ≤ X < 3) = 1
3

(p) =F −1

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

4p,

1,

1 + ,4(p− )1
3

− −−−−−−
√

2,

2 + ,4(p− )2
3

− −−−−−−
√3

3,

0 < p ≤ 1
4

< p ≤1
4

1
3

< p ≤1
3

7
12

< p ≤7
12

2
3

< p ≤2
3

11
12

< p ≤ 111
12

(0, 1, 1 + , 2 + , 3)2
3

−−
√ 1

3

−−
√3

X f(x) = 1
b−a

x ∈ [a, b] a, b ∈ R a < b

F (x) = , a ≤ x < bx−a

b−a

(p) = a+(b−a)p, 0 ≤ p ≤ 1F −1

(a, , , , b)3a+b

4
a+b

2
a+3b

4

[a, b] a

w = b−a

T f(t) = re−rt 0 ≤ t < ∞ r > 0

F (t) = 1 − , 0 ≤ t < ∞e−rt

(t) = , 0 ≤ t < ∞F c e−rt

h(t) = r, 0 ≤ t < ∞

(p) = − ln(1 −p), 0 ≤ p < 1F −1 1
r

(0, [ln4 −ln3], ln2, ln4, ∞)1
r

1
r

1
r
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The distribution in the last exercise is the exponential distribution with rate parameter . Note that this distribution is characterized
by the fact that it has constant failure rate (and this is the reason for referring to  as the rate parameter). The reciprocal of the rate
parameter is the scale parameter. The exponential distribution is used to model failure times and other random times under certain
conditions, and is studied in detail in the chapter on The Poisson Process.

In the special distribution calculator, select the exponential distribution. Vary the scale parameter  and note the shape of the
probability density function and the distribution function.

The Pareto Distribution

Suppose that  has probability density function  for  where  is a parameter.

1. Find the distribution function.
2. Find the reliability function.
3. Find the failure rate function.
4. Find the quantile function.
5. Compute the five-number summary.
6. In the case , sketch the graph of the probability density function with the boxplot on the horizontal axis.

Answer

1. 
2. 
3. 
4. 

5. 

The distribution in the last exercise is the Pareto distribution with shape parameter , named after Vilfredo Pareto. The Pareto
distribution is a heavy-tailed distribution that is sometimes used to model income and certain other economic variables. It is studied
in detail in the chapter on Special Distributions.

In the special distribution calculator, select the Pareto distribution. Keep the default value for the scale parameter, but vary the
shape parameter and note the shape of the density function and the distribution function.

The Cauchy Distribution

Suppose that  has probability density function  for .

1. Find the distribution function and sketch the graph.
2. Find the quantile function and sketch the graph.
3. Compute the five-number summary and the interquartile range.
4. Sketch the graph of the probability density function with the boxplot on the horizontal axis.

Answer

1. 
2. 
3. , 

The distribution in the last exercise is the Cauchy distribution, named after Augustin Cauchy. The Cauchy distribution is studied in
more generality in the chapter on Special Distributions.

In the special distribution calculator, select the Cauchy distribution and keep the default parameter values. Note the shape of
the density function and the distribution function.

r

r

b

X f(x) = a

xa+1
1 ≤ x < ∞ a > 0

a = 2

F (x) = 1 − , 1 ≤ x < ∞1
xa

(x) = , 1 ≤ x < ∞F c 1
xa

h(x) = , 1 ≤ x < ∞a
x

(p) = (1 −p , 0 ≤ p < 1F −1 )−1/a

(1, , , , ∞)( )3
4

−1/a
( )1

2

−1/a
( )1

4

−1/a

a

X f(x) = 1
π(1+ )x2

x ∈ R

F (x) = + arctanx, x ∈ R
1
2

1
π

(p) = tan[π (p− )], 0 < p < 1F −1 1
2

(−∞, −1, 0, 1, ∞) IQR = 2
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The Weibull Distribution

Let  for  where  is a parameter.

1. Sketch the graph of  in the cases , , , , and .
2. Show that  is a failure rate function.
3. Find the reliability function and sketch the graph.
4. Find the distribution function and sketch the graph.
5. Find the probability density function and sketch the graph.
6. Find the quantile function and sketch the graph.
7. Compute the five-number summary.

Answer
1.  is decreasing and concave upward if ;  (constant) if ;  is increasing and concave downward if 

;  (linear) if ;  is increasing and concave upward if ;
2.  for  and 
3. 
4. 
5. 
6. 
7. 

The distribution in the previous exercise is the Weibull distributions with shape parameter , named after Walodi Weibull. The
Weibull distribution is studied in detail in the chapter on Special Distributions. Since this family includes increasing, decreasing,
and constant failure rates, it is widely used to model the lifetimes of various types of devices.

In the special distribution calculator, select the Weibull distribution. Keep the default scale parameter, but vary the shape
parameter and note the shape of the density function and the distribution function.

Beta Distributions

Suppose that  has probability density function  for .

1. Find the distribution function of  and sketch the graph.
2. Find .
3. Compute the five number summary and the interquartile range. You will have to approximate the quantiles.
4. Sketch the graph of the density function with the boxplot on the horizontal axis.

Answer
1. 
2. 
3. , 

Suppose that  has probability density function  for .

1. Find the distribution function of  and sketch the graph.
2. Compute .
3. Find the quantile function and sketch the graph.
4. Compute the five number summary and the interquartile range.
5. Sketch the graph of the probability density function with the boxplot on the horizontal axis.

Answer

1. 
2. 
3. 

h(t) = ktk−1 0 < t < ∞ k > 0

h 0 < k < 1 k = 1 1 < k < 2 k = 2 k > 2
h

h 0 < k < 1 h = 1 k = 1 h

1 < k < 2 h(t) = t k = 2 h k > 2
h(t) > 0 0 < t < ∞ h(t)dt = ∞∫ ∞

0

(t) = exp(− ), 0 ≤ t < ∞F c tk

F (t) = 1 −exp(− ), 0 ≤ t < ∞tk

f(t) = k exp(− ), 0 ≤ t < ∞tk−1 tk

(p) = [−ln(1 −p) , 0 ≤ p < 1F −1 ]1/k

(0, [ln4 −ln3 , [ln2 , [ln4 , ∞)]1/k ]1/k ]1/k

k

X f(x) = 12 (1 −x)x2 0 ≤ x ≤ 1

X

P ( ≤ X ≤ )1
4

1
2

F (x) = 4 −3 , 0 ≤ x ≤ 1x3 x4

P ( ≤ X ≤ ) =1
4

1
2

67
256

(0, 0.4563, 0.6413, 0.7570, 1)IQR = 0.3007

X f(x) = 1

π x(1−x)√
0 < x < 1

X

P ( ≤ X ≤ )1
3

2
3

F (x) = arcsin( ), 0 ≤ x ≤ 12
π

x−−√

P ( ≤ X ≤ ) = 0.21631
3

2
3

(p) = ( p), 0 < p < 1F −1 sin2 π

2
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4. , 

The distributions in the last two exercises are examples of beta distributions. The particular beta distribution in the last exercise is
also known as the arcsine distribution; the distribution function explains the name. Beta distributions are used to model random
proportions and probabilities, and certain other types of random variables, and are studied in detail in the chapter on Special
Distributions.

In the special distribution calculator, select the beta distribution. For each of the following parameter values, note the location
and shape of the density function and the distribution function.

1. , . This gives the first beta distribution above.
2. . This gives the arcsine distribution above

Logistic Distribution

Let  for .

1. Show that  is a distribution function for a continuous distribution, and sketch the graph.
2. Compute  where  is a random variable with distribution function .
3. Find the quantile function and sketch the graph.
4. Compute the five-number summary and the interquartile range.
5. Find the probability density function and sketch the graph with the boxplot on the horizontal axis.

Answer
1. Note that  is continuous, and increases from 0 to 1.
2. 

3. 

4. 
5. 

The distribution in the last exercise is an logistic distribution and the quantile function is known as the logit function. The logistic
distribution is studied in detail in the chapter on Special Distributions.

In the special distribution calculator, select the logistic distribution and keep the default parameter values. Note the shape of the
probability density function and the distribution function.

Extreme Value Distribution

Let  for .

1. Show that  is a distribution function for a continuous distribution, and sketch the graph.
2. Compute  where  is a random variable with distribution function .
3. Find the quantile function and sketch the graph.
4. Compute the five-number summary.
5. Find the probability density function and sketch the graph with the boxplot on the horizontal axis.

Answer
1. Note that  is continuous, and increases from 0 to 1.
2. 
3. 
4. 
5. 

The distribution in the last exercise is the type 1 extreme value distribution, also known as the Gumbel distribution in honor of Emil
Gumbel. Extreme value distributions are studied in detail in the chapter on Special Distributions.

(0, − , , + , 1)1
2

2√

4
1
2

1
2

2√

4
IQR =

2√

2

a = 3 b = 2
a = b = 1

2

F (x) = ex

1+ex
x ∈ R

F

P(−1 ≤ X ≤ 1) X F

F

P(−1 ≤ X ≤ 1) = 0.4621

(p) = ln( ), 0 < p < 1F −1 p

1−p

(−∞, −ln3, 0, ln3, ∞)

f(x) = , x ∈ R
ex

(1+ex)2

F (x) = e−e−x

x ∈ R

F

P(−1 ≤ X ≤ 1) X F

F

P(−1 ≤ X ≤ 1) = 0.6262
(p) = −ln(−lnp), 0 < p < 1F −1

(−∞, −ln(ln4), −ln(ln2), −ln(ln4 −ln3), ∞)

f(x) = , x ∈ Re−e−x
e−x
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In the special distribution calculator, select the extreme value distribution and keep the default parameter values. Note the
shape and location of the probability density function and the distribution function.

The Standard Normal Distribution

Recall that the standard normal distribution has probability density function  given by

This distribution models physical measurements of all sorts subject to small, random errors, and is one of the most important
distributions in probability. The normal distribution is studied in more detail in the chapter on Special Distributions. The
distribution function , of course, can be expressed as

but  and the quantile function  cannot be expressed, in closed from, in terms of elementary functions. Because of the
importance of the normal distribution  and  are themselves considered special functions, like , , and many others.
Approximate values of these functions can be computed using most mathematical and statistical software packages. Because the
distribution is symmetric about 0,  for , and equivalently, . In particular, the
median is 0.

Open the sepcial distribution calculator and choose the normal distribution. Keep the default parameter values and select CDF
view. Note the shape and location of the distribution/quantile function. Compute each of the following:

1. The first and third quartiles
2. The quantiles of order 0.9 and 0.1
3. The quantiles of order 0.95 and 0.05

Miscellaneous Exercises

Suppose that  has probability density function  for .

1. Sketch the graph of .
2. Find the distribution function  and sketch the graph.
3. Find .

Answer

2. 
3. 

Suppose that a pair of fair dice are rolled and the sequence of scores  is recorded.

1. Find the distribution function of , the sum of the scores.
2. Find the distribution function of , the maximum score.
3. Find the conditional distribution function of  given .

Answer

The random variables are discrete, so the CDFs are step functions, with jumps at the values of the variables. The following
tables give the values of the CDFs at the values of the random variables.

1. 2 3 4 5 6 7 8 9 10 11 12

1

2. 1 2 3 4 5 6

1

ϕ

ϕ(z) = , z ∈ R
1

2π
−−

√
e− 1

2
z2

(3.6.21)

Φ

Φ(z) = ϕ(x)dx, z ∈ R∫
z

−∞
(3.6.22)

Φ Φ−1

Φ Φ−1 sin ln

Φ(−z) = 1 −Φ(z) z ∈ R (1 −p) = − (p)Φ−1 Φ−1

X f(x) = −lnx 0 < x ≤ 1

f

F

P ( ≤ X ≤ )1
3

1
2

F (x) = x−x lnx, 0 < x < 1

P( ≤ X ≤ ) = + ln2 − ln31
3

1
2

1
6

1
2

1
3

( , )X1 X2

Y = +X1 X2

V = max{ , }X1 X2

Y V = 5

y

P(Y ≤ y) 1
36

3
36

6
36

10
36

15
36

21
36

26
36

30
36

33
36

35
36

v

P(V ≤ v) 1
36

4
36

9
36

16
36

25
36
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3. 6 7 8 9 10

1

Suppose that  has probability density function  for , .

1. Find the distribution function of .
2. Compute .
3. Find the distribution function of .
4. Find the distribution function of .
5. Find the conditional distribution function of  given  for .
6. Find the conditional distribution function of  given  for .
7. Are  and  independent?

Answer
1. 
2. 
3. 
4. 

5. 

6. 

Statistical Exercises

For the M&M data, compute the empirical distribution function of the total number of candies.

Answer

Let  denote the total number of candies. The empirical distribution function of  is a step function; the following table gives
the values of the function at the jump points.

50 53 54 55 56 57 58 59 60 61

1

For the cicada data, let  denotes body length and let  denote gender. Compute the empirical distribution function of the
following variables:

1. 
2.  given  (male)
3.  given  (female).
4. Do you believe that  and  are independent?

For statistical versions of some of the topics in this section, see the chapter on Random Samples, and in particular, the sections on
empirical distributions and order statistics.
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3
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G(x) = (x+ ) , 0 < x < 11
2
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