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16.18: Stationary and Limting Distributions of Continuous-Time Chains

In this section, we study the limiting behavior of continuous-time Markov chains by focusing on two interrelated ideas: invariant
(or stationary) distributions and limiting distributions. In some ways, the limiting behavior of continuous-time chains is simpler
than the limiting behavior of discrete-time chains, in part because the complications caused by periodicity in the discrete-time case
do not occur in the continuous-time case. Nonetheless as we will see, the limiting behavior of a continuous-time chain is closely
related to the limiting behavior of the embedded, discrete-time jump chain.

Review

Once again, our starting point is a time-homogeneous, continuous-time Markov chain X = {X;:¢ € [0,00)} defined on an
underlying probability space (2, %, P) and with discrete state space (S, .7 ). By definition, this means that S is countable with the
discrete topology, so that . is the o-algebra of all subsets of S.

Let's review what we have so far. We assume that the Markov chain X is regular. Among other things, this means that the basic
structure of X is determined by the transition times T = (19, 71, T2, - . .) and the jump chain Y = (Yy,Y,Ya,...). First, 7o =0
and 7, =7 =inf{t > 0: X; # X} . The time-homogeneous and Markov properties imply that the distribution of 7 given
Xy ==z is exponential with parameter A(z) € [0, 00). Part of regularity is that X is right continuous so that there are no
instantaneous states where A(z) = oo, which would mean P(7 =0 | X =«) =1 . On the other hand, A(z) € (0, c0) means that
x is a stable state so that 7 has a proper exponential distribution given Xy =z, with P(0 <7 <oo| X9 =2)=1 . Finally,
A(z) =0 means that z is an absorbing state so that P(r =00 | Xg =2)=1 . The remaining transition times are defined
recursively: 7,41 =inf{t > 7, : X; # XTn} if 7, < 0o and 7,41 = o0 if 7, = 00. Another component of regularity is that with
probability 1, 7,, — oo as n — 0o, ruling out the explosion event of infinitely many jumps in finite time. The jump chain Y is
formed by sampling X at the transition times (until the chain is sucked into an absorbing state, if that happens). That is, with
M =sup{n: 7, <oo} and for n € N, we define Y, = X, ifn<M and Y, =X, if n>M. Then Y is a discrete-time
Markov chain with one-step transition matrix @ given Q(z,y) =P(X, =y | Xo==z) if (z,y) € S? with = stable and
Q(z,z) =1if x € S is absorbing.

The transition matrix P; at time ¢ € [0, 00) is given by P;(z,y) =P(X; =y | Xo =z) for (z,y) € S*. The time-homogenous
and Markov properties imply that the collection of transition matrices P = {P; : ¢ € [0,00)} satisfies the Chapman-Kolmogorov
equations P; P, = P, for s, t € [0,00), and hence is a semigroup. of transition matrices The transition semigroup P and the
initial distribution of X, determine all of the finite-dimensional distributions of X. Since there are no instantaneous states, P is
standard which means that P, — I as t ] 0 (as matrices, and so pointwise). The fundamental relationship between P on the one
hand, and A and @ on the other, is

t
Py(z,y) = I(z,y)e "'+ / Az)e QP (z,y)ds, (z,y)€ S’ (16.18.1)
0

From this, it follows that the matrix function ¢ — P, is differentiable (again, pointwise) and satisfies the Kolmogorov backward
equation %Pt = GP,;, where the infinitesimal generator matrix G is given by G(z,y) = —\(z)I(z,y)+A(z)Q(z,y) for
(z,y) € §2. If we impose the stronger assumption that P is uniform, which means that P, — I as t | 0 as operators on % (so
with respect to the supremum norm), then the backward equation as well as the companion Kolmogorov forward equation

%Pt == P,G hold as operators on 4. In addition, we have the matrix exponential representation P; = e‘¢ for ¢ € [0, c0). The
uniform assumption is equivalent to the exponential parameter function being bounded.

Finally, for o € [0, 00), the o potential matrix U, of X is U, = [, e * P, dt. The resolvent U = {U, : a € (0,00)} is the
Laplace transform of P and hence gives the same information as P. From this point of view, the time-homogeneous and Markov
properties lead to the resolvent equation U, =Ug+ (8 —a)UsUg for o, f € (0,00) with a <f. For a € (0,00), the «
potential matrix is related to the generator by the fundamental equation aU, = I + GU, . If P is uniform, then this equation, as
well as the companion aU,, = I +U,G hold as operators on 4, which leads to U, = (ol — G)’1 .

Basic Theory
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Relations and Classification

We start our discussion with relations among states and classifications of states. These are the same ones that we studied for
discrete-time chains in our study of recurrence and transience, applied here to the jump chain Y. But as we will see, the relations
and classifications make sense for the continuous-time chain X as well. The discussion is complicated slightly when there are
absorbing states. Only when X is in an absorbing state can we not interpret the values of Y as the values of X at the transition
times (because of course, there are no transitions when X is in an absorbing state). But € .S is absorbing for the continuous-time
chain X if and only if z is absorbing for the jump chain Y, so this trivial exception is easily handled.

Fory € S let p, =inf{n € N, : Y;, =y} , the (discrete) hitting time to y for the jump chain Y", where as usual, inf(()) = co. That
is, py is the first positive (discrete) time that Y in in state y. The analogous random time for the continuous-time chain X is Tp,»
where naturally we take 7o, =oo. This is the first time that X is in state y, not counting the possible initial period in y.
Specifically, suppose Xo =z.If z #y then 7, = inf{t >0: X; =y} .Ifz =y then Tp, = inf{t >7: X; =y} .

Define the hitting matrix H by
H(z,y) =P(py <o| Yo =z), (z,y)€5” (16.18.2)

Then H(z,y) =P (pr <oo| Xo= a:) except when « is absorbing and y = .

So for the continuous-time chain, if z € S is stable then H(z, ) is the probability that, starting in z, the chain X returns to z after
its initial period in z. If z, y € S are distinct, then H(x,y) is simply the probability that X, starting in z, eventually reaches y. It
follows that the basic relation among states makes sense for either the continuous-time chain X as well as its jump chain Y.

l Define the relation — on S by z — y if z =y or H(z,y) > 0.

The leads to relation — is reflexive by definition: £ — x for every & € S. From our previous study of discrete-time chains, we
know it's also transitive: if x — y and y — z then * — z for z, y, z € S. We also know that x — y if and only if there is a
directed path in the state graph from z to y, if and only if Q"(z,y) > 0 for some n € N. For the continuous-time transition
matrices, we have a stronger result that in turn makes a stronger case that the leads to relation is fundamental for X.
Suppose (z,y) € S2.

1.1f  — y then P;(z,y) >0 forall ¢t € (0, 00).

2.If ¢ -» y then P,(z,y) =0 forall t € (0, 00).
Proof

This result is proved in the section on transition matrices and generators.

This result is known as the Lévy dichotomy, and is named for Paul Lévy. Let's recall a couple of other definitions:

Suppose that A is a nonempty subset of .S.

1. Aisclosedif x € A and x — y imply y € A.
2. A is irreducible if A is closed and has no proper closed subset.

If S is irreducible, we also say that the chain X itself is irreducible.

If A is a nonempty subset of S, then cl(4) ={y € S:z — yforsome z € A} is the smallest closed set containing A, and
is called the closure of A.

Suppose that A C S is closed. Then

1. PA, the restriction of P, to A x A, is a transition probability matrix on A for every ¢ € [0, co).
2. X restricted to A is a continuous-time Markov chain with transition semigroup P4 = {PtA :t €0, oo)} .

Proof
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LIfz € Aandy ¢ A, then z does not lead to y so in particular P;(z,y) = 0. It follows that > 4 P;(z,y) =1 forz € A
so PtA is a transition probability matrix.

2. This follows from (a). If the chain starts in A, then the chain remains in A for all time, and of course, the Markov property
still holds.

I Define the relation <> on S by z <> y if z — y and y — z for (z,y) € S2.

The to and from relation <> defines an equivalence relation on S and hence partitions S into mutually disjoint equivalence classes.
Recall from our study of discrete-time chains that a closed set is not necessarily an equivalence class, nor is an equivalence class
necessarily closed. However, an irreducible set is an equivalence class, but an equivalence class may not be irreducible. The
importance of the relation <+ stems from the fact that many important properties of Markov chains (in discrete or continuous time)
turn out to be class properties, shared by all states in an equivalence class. The following definition is fundamental, and once again,
makes sense for either the continuous-time chain X or its jump chain Y.

Letz € S.

1. State z is transient if H(z,z) < 1
2. State z is recurrent if H(z,z) = 1.

Recall from our study of discrete-time chains that if z is recurrent and z — y then y is recurrent and y — z. Thus, recurrence and
transience are class properties, shared by all states in an equivalence class.

Time Spent in a State

For z € S, let N, denote the number of visits to state by the jump chain Y, and let T, denote the total time spent in state z by
the continuous-time chain X. Thus

o0 oo

N, =Y 1(Y,=2z), T, :/ 1(X, =z)dt (16.18.3)
n=0 0

The expected values R(z,y) =E(N, | Yo =z) and U(z,y) =E(T, | Xo =z) for (z,y) € S? define the potential matrices of

Y and X, respectively. From our previous study of discrete-time chains, we know the distribution and mean of IV, given Yy =z

in terms of the hitting matrix H. The next two results give a review:

Suppose that z, y € S are distinct. Then

LP(N,=n|Yy=y)=H""'(y,y)[l - H(y,y)] forneN,
2.P(N,=0|Yy=z)=1-H(z,y) andP(N,=n|Yy=2)=H(z,y)H" (y,y)[1 — H(y,y)] forne N,

Let's take cases. First suppose that y is recurrent. In part (a), P(N, =n|Yy=y) =0 for all n €N, , and consequently
P(Ny=o00|Yy=y)=1. In pat (b), PWNy=n|Yy=2)=0 for mneN,, and consequently
P(N,=0|Yy=2)=1—H(z,y) while P(N, =00|Yy=2)=H(z,y) . Suppose next that y is transient. Part (a) specifies a
proper geometric distribution on N, while in part (b), probability 1 — H(z,y) is assigned to 0 and the remaining probability
H(z,y) is geometrically distributed over N as in (a). In both cases, NV, is finite with probability 1. Next we consider the expected
value, that is, the (discrete) potential. To state the results succinctly we will use the convention that a/0 = oo if a >0 and
0/0=0.

Suppose again that z, y € S are distinct. Then

1. R(y,y) =1/[1— H(y,y)]
2. R(z,y) =H(z,y)/[1 - H(y,y)]

Let's take cases again. If y € S is recurrent then R(y,y) = oo, and for € S with = # y, either R(z,y) =00 if z =y or
R(z,y) =0 if z »y. If y € S is transient, R(y,y) is finite, as is R(z,y) for every z € S with x # y. Moreover, there is an
inverse relationship of sorts between the potential and the hitting probabilities.

Naturally, our next goal is to find analogous results for the continuous-time chain X. For the distribution of T}, it's best to use the
right distribution function.
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Suppose that z, y € S are distinct. Then for ¢ € [0, 00)

LP(T, >t | Xo =y) =exp{-A(y)[1 - H(y, y)]t}

2.P(Ty >t | Xo=2) = H(z,y) exp{-A(y)[1 — H(y, y)]t}
Proof

The proof is by conditioning on N,,.

1. First, if H(y,y) =1 (so that y is recurrent), then either y is absorbing with P(7y = oo | X9 =y) =1 ory is stable and
recurrent, so that P(IV, = oo | Xo =y) =1 . In the second case, starting in state y, T}, is the sum of infinitely many
independent variables, each with the exponential distribution with parameter A(y) € (0, 00) . In both cases,

P(Ty=o00| Xo=y)=1 andsoP(T, >t | Xo=y)=1 foreveryt € [0,00). So suppose that H(y,y) < 1 so that y is
transient. Then

o0
P(T, >t| Xo=y) =Y P(T,>t| Xo =y, N, =n)P(N, =n| Xo =y) (16.18.4)

n=1

Given N, =n, T, is the sum of n independent variables, each having the exponential distribution with parameter A(y). So
T, has the gamma distribution with parameters n and A(y) and hence

P(Ty,>t| Xo=y,Ny=n)=

(16.18.5)

From the previous result, P(Ny, =n | Xg =y) =P(N, =n | Yy =y) = H" }(y,y)[1 — H(y,y)] . We substitute,
change the order of summation, use geometric series and then exponential series:

) n—1 k
B(Ty >t Xo=y) =) (Ze‘“y“%> H" " (y,y)[1 - H(y,y)]

n=1 \ k=0
) koo
— V- Hy,y) Y % Y H'(y,y)
k=0 : n=k+1
o k
=e WY [/\(Zu) i "y, ) = e ¥ exp[A(y)H(y, )t]
k=0 )

Simplifying gives the result.

2. The proof is similar. If H(y,y) =1 so that y is recurrent, then starting in state z, either T, = 0 if NV, = 0, which occurs
with probability 1 — H(z,y) or T,, = oo if N, = oo, which occurs with probability H(z, y). If H(y,y) < 1 so that y is
transient, then the result follows from conditioning on N, as in (a), except that
P(T,=0|Xo=2)=P(N,=0|Yy=2)=1—-H(z,y)

Let's take cases as before. Suppose first that y is recurrent. In part (a), P(T, >t | Xo =y) =1 for every ¢t € [0, c0) and hence
P(Ty=00|Xo=y)=1. In part (b), P(Ty,>t|Xo=x)=H(z,y) for every te[0,00) and consequently
P(Ty=0| Xo=x2)=1—H(z,y) while P(T, =00 | Xy =)= H(z,y) . Suppose next that y is transient. From part (a), the
distribution of T}, given X =y is exponential with parameter A(y)[1 — H(y, y)]. In part (b), the distribution assigns probability
1— H(z,y) to 0 while the remaining probability H(z, y) is exponentially distributed over (0, 00) as in (a). Taking expected value,
we get a very nice relationship between the potential matrix U of the continuous-time chain X and the potential matrix R of the
discrete-time jump chain Y:

For every (z,y) € S2,

R(z,y)

)

(16.18.6)

Proof

If y is recurrent, then U(z,y) = R(z,y) and the common value is either 0 if H(z,y) =0 or oo if H(z,y) = 1. So suppose
that y is transient. We can compute the expected value of T}, by integrating the right distribution function in the previous
theorem. In case x =y, we have
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Y R ~ _ 1 _ R@y,y)
U9)= | exe{-A@)[L~ Hylt} dt = g = 0 (16.18.7)

In the case that z and y are distinct,

H(z,y) _ R(z,y)
Ay)1-H(y,y)]  Ay)

Ulz,y) = /OOO H(z,y) exp{—A(y)[1 — H(y,y)]t} dt = (16.18.8)

In particular, y € S is transient if and only if R(z,y) < oo for every € S, if and only if U(z,y) < oo for every z € S. On the
other hand, y is recurrent if and only if R(z,y) =U(z,y) = oo if z — y and R(z,y) =U(z,y) =0 ifz » y.

Null and Positive Recurrence

Unlike transience and recurrence, the definitions of null and positive recurrence of a state € S are different for the continuous-
time chain X and its jump chain Y. This is because these definitions depend on the expected hitting time to z, starting in z, and
not just the finiteness of this hitting time. For z € S, let v(z) = E(p,, | Yy = ), the expected (discrete) return time to z starting in
x. Recall that z is positive recurrent for Y if v(z) < oo and  is null recurrent if x is recurrent but not positive recurrent, so that
H(z,z)=1butv(z) = co. The definitions are similar for X, but using the continuous hitting time 7, .

Forz € S, let u(z) = 0 if « is absorbing and pu(z) =E (7, | Xo =) if z is stable. So if « is stable, p(z) is the expected
return time to x starting in « (after the initial period in x).

1. State z is positive recurrent for X if u(z) < oo.
2. State « is null recurrent for X if z recurrent but not positive recurrent, so that H(z,z) =1 but u(z) = co.

A state z € S can be positive recurrent for X but null recurrent for its jump chain Y or can be null recurrent for X but positive
recurrent for Y. But like transience and recurrence, positive and null recurrence are class properties, shared by all states in an
equivalence class under the to and from equivalence relation <.

Invariant Functions

Our next discussion concerns functions that are invariant for the transition matrix ) of the jump chain Y and functions that are
invariant for the transition semigroup P ={P;:t¢ € [0,00)} of the continuous-time chain X. For both discrete-time and
continuous-time chains, there is a close relationship between invariant functions and the limiting behavior in time.

First let's recall the definitions. A function f : .S — [0, 0o) is invariant for @ (or for the chain Y) if fQ = f. It then follows that
fQ™ = f for every n € N. In continuous time we must assume invariance at each time. That is, a function f: S — [0, c0) is
invariant for P (or for the chain X) if fP; = f for all t € [0, o). Our interest is in nonnegative functions, because we can think of
such a function as the density function, with respect to counting measure, of a positive measure on S. We are particularly interested
in the special case that f is a probability density function, so that ) ¢ f(x) = 1. If ¥; has a probability density function f that is
invariant for @), then Y,, has probability density function f for all n € N and hence Y is stationary. Similarly, if X, has a
probability density function f that is invariant for P then X; has probability density function f for every ¢ € [0, 00) and once
again, the chain X is stationary.

Our first result shows that there is a one-to-one correspondence between invariant functions for ¢ and zero functions for the
generator G.

Suppose f : S — [0,00). Then fG =0 if and only if (Af)Q = Af, so that Af is invariant for Q.
Proof

This is a simple consequence of the definition of the generator:

fGy) =) f(@)G(z,y) = -A®)f W)+ D_ f@)A2)Q(x,y), y€S (16.18.9)

zeS zeS

or in functional form, fG = —Af + (Af)Q

If our chain X has no absorbing states, then f : S — [0, co0) is invariant for @ if and only if (f/A)G = 0.

I Suppose that f : S — [0, 00). Then f is invariant for P if and only if fG =0.
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Proof 1
Assume that )\ is bounded, so that the transition semigroup P is uniform. Then P; = e!“ for t € [0, 00). So if f : S — [0, c0)
then
0 4n 00 4n
— tG — —_— n — - n
fP = f(e )—fzon!G f+Zln!fG (16.18.10)

Since f is nonnegative, f P, = f if and only if fG = 0 (in which case fG™ =0 for every n € N ).
Proof 2

Suppose that fP, = f for ¢t € [0,00). Then %( fP:)=0 for t € [0,00). But using the Kolmogorov backward equation,
%(fPt) = f%Pt =fGP,=0. Letting t=0 we conclude that fG=0. Conversely, if fG=0 then
%(f]—"t) = f%Pt =fGP, =0 fort e [0,00). It follows that fP; is constant in ¢ € [0, 00). Since fPy = f it follows that
fP,=fforallt € [0, 0).

So putting the two main results together we see that f is invariant for the continuous-time chain X if and only if A f is invariant for
the jump chain Y. Our next result shows how functions that are invariant for X are related to the resolvent
U={U,:ac (0,00)}. To appreciate the result, recall that for a € (0, c0) the matrix aU, is a probability matrix, and in fact
aU,(z,-) is the conditional probability density function of Xr, given Xy =z, where T is independent of X and has the
exponential distribution with parameter a. So aU,, is a transition matrix just as P; is a transition matrix, but corresponding to the
exponentially distributed random time 7" with parameter « € (0, o) rather than the deterministic time ¢ € [0, 00).

Suppose that f : S — [0,00). If fG =0 then f(aU,) = f for a € (0, 00). Conversely if f(aU,) = f for a € (0,00) then

fG=0.
Proof
Recall that I + GU, = aU, fora € (0,00). Hence if fG =0 then
f(@Us) =f+fGUs=f (16.18.11)
Conversely, suppose that f(aU,) = f. Then
fGU, = /Oooe*athPtdt =0 (16.18.12)

As a function of a € (0, 00), the integral on the right side is the Laplace transform of the time function ¢ — fGP; . Hence we
must have fGP;, =0 fort € (0, 00), and letting ¢ |, 0 gives fG =0.

So extending our summary, f : S — [0,00) is invariant for the transition semigroup P = {P; :t € [0,00)} if and only if Af is
invariant for jump transition matrices {Q™ : n € N} if and only if fG =0 if and only if f is invariant for the collection of
probability matrices {aU, : a € (0, 00)}. From our knowledge of the theory for discrete-time chains, we now have the following
fundamental result:

Suppose that X is irreducible and recurrent.

1. There exists g: S — (0, 00) that is invariant for X.
2.If f is invariant for X, then f = cg for some constant ¢ € [0, co).

Proof

The result is trivial if .S consists of a single, necessarily absorbing, state. Otherwise, there are no absorbing states, since X is
irreducible and so A(z) > 0 for z € S. From the result above, f is invariant for X if and only if A f is invariant for Y. But Y’
is also irreducible and recurrent, so we know that there exists a strictly positive function that is invariant for Y’, and every other
function that is invariant for Y is a nonnegative multiple of this one. Hence the same is true for X.

Invariant functions have a nice interpretation in terms of occupation times, an interpretation that parallels the discrete case. The
potential gives the expected total time in a state, starting in another state, but here we need to consider the expected time in a state
during a cycle that starts and ends in another state.
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For z € S, define the function -, by

vz(y)zE(/ "X, =y)ds Xo:x), yes (16.18.13)
0

so that 7, (y) is the expected occupation time in state y before the first return to z, starting in .

Suppose again that X is irreducible and recurrent. For z € S,

17, :S—(0,00)
2. 7, is invariant for X
3. % (x) =1/A(x)
4 (@) =3 es 7= (v)
Proof
As is often the case, the proof is based on results that we already have for the embedded jump chain. For € S, define
pe—1

5x(y):IE(Z 1(Yn:y)‘Y0:3:>, yes (16.18.14)

n=0

so that d,(y) is the expected number of visits to y before the first return to , starting in z, for the jump chain
Y = (Y),Y1,...) . Since X is irreducible and recurrent, so is Y. From our results in the discrete case we know that

1.6, :5—(0,00)
2. 0, is invariant for Y
3.0,(z)=1

From our results above, it follows that the function y — 4, (y)/A(y) satisfies properties (a), (b), and (c) in the theorem. But
each visit to y by the jump chain Y has expected length 1/A(y) for the continuous-time chain X. It follows that
Y2 (y) = 0. (y)/A(y) for z, y € S. By definition, v, (y) is the expected occupation time in y before the first return to z,
starting in . Hence, summing over y € S gives the expected return time to z, starting in z, so (d) holds.

So now we have some additional insight into positive and null recurrence for the continuous-time chain X and the associated jump
chain Y. Suppose again that the chains are irreducible and recurrent. There exist g: S — (0, 00) that is invariant for Y, and then
g/ is invariant for X. The invariant functions are unique up to multiplication by positive constants. The jump chain Y is positive
recurrent if and only if }° _¢g(xz) <oo while the continuous-time chain X is positive recurrent if and only if
> ses 9(z) /A(z) < 0o. Note that if A is bounded (which is equivalent to the transition semigroup P being uniform), then X is
positive recurrent if and only if Y is positive recurrent.

Suppose again that X is irreducible and recurrent.

1. If X is null recurrent then X does not have an invariant probability density function.
2. If X is positive recurrent then X has a unique, positive invariant probability density function.

Proof
From the previous result, there exists g: S — (0,00) that is invariant for X, and every other invariant function is a

nonnegative multiple of this one. The function f given by

9(y)
Zzes g(.’B) ,

is uniquely defined (that is, unchanged if we replace g by cg where ¢ > 0).

fly)= yes (16.18.15)

LIEY cg g(z) = oo then f(y) =0 foreveryy € S.
2.1f Y es 9(z) < oo then f(y) >0 foreveryy € Sand ), s f(y) =1.
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Limiting Behavior
Our next discussion focuses on the limiting behavior of the transition semigroup P ={P;:t € [0,00)}. Our first result is a
simple corollary of the result above for potentials.

If y € S is transient, then P;(z,y) — 0 as t — oo for every z € S.
Proof

This follows from the previous result. If y € S is transient, then for any € S,
[o¢]
U(z,y) =/ Pi(z,y)dt < oo (16.18.16)
0

and so we must have P;(z,y) — 0 as ¢ — oo.

So we should turn our attention to the recurrent states. The set of recurrent states partitions into equivalent classes under <, and
each of these classes is irreducible. Hence we can assume without loss of generality that our continuous-time chain
X ={X,:t€[0,00)} is irreducible and recurrent. To avoid trivialities, we will also assume that S has at least two states. Thus,
there are no absorbing states and so A(z) > 0 for z € S. Here is the main result.

Suppose that X ={X;:t €[0,00)} is irreducible and recurrent. Then f(y)=lim; . P;(z,y) exists for each y € S,
independently of € S. The function f is invariant for X and

Yz (y)
()’

fly) = yes (16.18.17)

1. If X is null recurrent then f(y) =0 forally € S.
2.1f X is positive recurrent then f(y) >0 forally € Sand > ¢ f(y) =1.

Proof sketch
The basic idea is that
t

1
lim — [ Ps(z,y)ds (16.18.18)

_t*)OO t 0

lim Pi(z,y)

The expression on the right is the limiting proportion of time spent in y € S, starting in « € S. This proportion is
Yz (y)/ (), so the results follow from the theorem above .

The limiting function f can be computed in a number of ways. First we find a function g: S — (0, 00) that is invariant for X. We
can do this by solving

e gP, =g forte (0,00)

¢« gG=0

e glaUy,) =g fora € (0, 0)

e h@Q =h andtheng="h/A

The function g is unique up to multiplication by positive constants. If 5 _¢ g(2) < 0o, then we are in the positive recurrent case
and so f is simply g normalized:

9(y)
> pes 9(x)’

The following result is known as the ergodic theorem for continuous-time Markov chains. It can also be thought of as a strong law

Fly) = yes (16.18.19)
of large numbers for continuous-time Markov chains.
Suppose that X = {X; : t € [0,00)} is irreducible and positive recurrent, with (unique) invariant probability density function

f.1fh:S—R then

%Ath(Xs)ds—);f(x)h(x) ast — 0o (16.18.20)
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with probability 1, assuming that the sum on the right converges absolutely.

Notes

First, let z, y € S and let h = 1, the indicator function of y. Then given Xy, =z, 1 fot )ds is the average occupation
time in state y, starting in state z, over the time interval [0, ¢]. In expected value, this is = fo (z,y)ds which we know
converges to f(y) as ¢ — oo, independently of z. So in this special case, the ergodic theorem states that the convergence is
with probability 1 also. A general function h : S — R is a linear combination of the indicator functions of the points in S, so
the ergodic theorem is plausible.

Note that no assumptions are made about Xy, so the limit is independent of the initial state. By now, this should come as no
surprise. After a long period of time, the Markov chain X “forgets” about the initial state. Note also that ¢ f(z)h(z) is the
expected value of h, thought of as a random variable on S with probability measure defined by f. On the other hand,
T fo s)ds is the average of the time function s — h(X;) on the interval [0, ¢]. So the ergodic theorem states that the limiting
time average on the left is the same as the spatial average on the right.

Applications and Exercises

The Two-State Chain

The continuous-time, two-state chain has been studied in the last several sections. The following result puts the pieces together and
completes the picture.

Consider the continuous-time Markov chain X = {X; : t € [0,00)} on S = {0, 1} with transition rate a € (0, co) from 0 to
1 and transition rate b € (0, o) from 1 to 0. Give each of the following

1. The transition matrix Q™ for Y at n € N.

2. The infinitesimal generator G.

3. The transition matrix P; for X at ¢ € [0, 00).

4. The invariant probability density function for Y.
5. The invariant probability density function for X.
6. The limiting behavior of Q™ as n — co.

7. The limiting behavior of P; as t — co.

Answer

Note that since the transition rates a and b are positive, the chain is irreducible.

1. First, Q = [(1) 3] and then forn € N, Q" = @Q if n is odd and Q™ = I if n is even.

z.G:[_a 4
b -b
b a (a —-a a
3. Pt:ai [b a]—ﬁbe (“’)t[ : —b] fort € [0, 00).
4fd—[% —]

a
5. fc - |: a+b a_-‘rb]
6. Asin (a), Q*" = I and Q***! = Q for n € N. So there are two sub-sequential limits. The jump chain Y is periodic with
period 2.

b a )
7. Ptﬁm[b a] ast — 0o. Each row is f.

Computational Exercises

The following continuous-time chain has also been studied in the previous three sections.

Consider the Markov chain X = {X;:t € [0,00)} on S={0,1,2} with exponential parameter function A = (4,1, 3) and
jump transition matrix
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(16.18.21)

Q

Il
W= = O
whoy O o=
S O vi=

1. Recall the generator matrix G.

2. Find the invariant probability density function f; for Y by solving f;Q = f4.
3. Find the invariant probability density function f. for X by solving f.G =0.
4. Verify that A f. is a multiple of f.

5. Describe the limiting behavior of Q™ as n — co.

6. Describe the limiting behavior of P; as t — co.

7. Verify the result in (f) by recalling the transition matrix P; for X at ¢ € [0, 00).

Answer
-4 2 2
1.G=]11 -1 0
1 2 -3
2. fa=7316 5 3]

15

6 5 3
5Q" ;|6 5 3| an—oo

6 5 3

3 10 2
6.P,— |3 10 2| ast—oo

3 10 2

34+12¢® 10—-10e™* 2-12e % +10e
7.P=1|3-3e% 10+5e7%  2+3¢% —5e ¥ | forte(0,00)

3—3e® 10—10e ¥ 2+3e % +10e %

Special Models

l Read the discussion of stationary and limiting distributions for chains subordinate to the Poisson process.
I Read the discussion of stationary and limiting distributions for continuous-time birth-death chains.

l Read the discussion of classification and limiting distributions for continuous-time queuing chains.

This page titled 16.18: Stationary and Limting Distributions of Continuous-Time Chains is shared under a CC BY 2.0 license and was authored,
remixed, and/or curated by Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts
platform.
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