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1.1: Sets
      

Set theory is the foundation of probability and statistics, as it is for almost every branch of mathematics.

Sets and subsets
In this text, sets and their elements are primitive, self-evident concepts, an approach that is sometimes referred to as naive set theory.

A set is simply a collection of objects; the objects are referred to as elements of the set. The statement that  is an element of set  is written ,
and the negation that  is not an element of  is written as . By definition, a set is completely determined by its elements; thus sets  and 
are equal if they have the same elements:

Our next definition is the subset relation, another very basic concept.

If  and  are sets then  is a subset of  if every element of  is also an element of :

Concepts in set theory are often illustrated with small, schematic sketches known as Venn diagrams, named for John Venn. The Venn diagram in the
picture below illustrates the subset relation.

Figure : 

As noted earlier, membership is a primitive, undefined concept in naive set theory. However, the following construction, known as Russell's paradox,
after the mathematician and philosopher Bertrand Russell, shows that we cannot be too cavalier in the construction of sets.

Let  be the set of all sets  such that . Then  if and only if .

Proof

The contradiction follows from the definition of : If , then by definition, . If , then by definition, . The net result, of
course, is that  is not a well-defined set.

Usually, the sets under discussion in a particular context are all subsets of a well-defined, specified set , often called a universal set. The use of a
universal set prevents the type of problem that arises in Russell's paradox. That is, if  is a given set and  is a predicate on  (that is, a valid
mathematical statement that is either true or false for each ), then  is a valid subset of . Defining a set in this way is known as
predicate form. The other basic way to define a set is simply be listing its elements; this method is known as list form.

In contrast to a universal set, the empty set, denoted , is the set with no elements.

 for every set .

Proof

 means that . Since the premise is false, the implication is true.

One step up from the empty set is a set with just one element. Such a set is called a singleton set. The subset relation is a partial order on the collection
of subsets of .

Suppose that ,  and  are subsets of a set . Then

1.  (the reflexive property).
2. If  and  then  (the anti-symmetric property).
3. If  and  then  (the transitive property).

Here are a couple of variations on the subset relation.

Suppose that  and  are sets.

1. If  and , then  is a strict subset of  and we sometimes write .
2. If , then  is called a proper subset of .

x S x ∈ S

x S x ∉ S A B

A = B if and only if x ∈ A ⟺ x ∈ B (1.1.1)

A B A B A B

A ⊆ B if and only if x ∈ A ⟹ x ∈ B (1.1.2)

1.1.1 A ⊆ B

R A A ∉ A R ∈ R R ∉ R

R R ∈ R R ∉ R R ∉ R R ∈ R

R

S

S p(x) S

x ∈ S {x ∈ S : p(x)} S

∅

∅ ⊆ A A

∅ ⊆ A x ∈ ∅ ⟹ x ∈ A

S

A B C S

A ⊆ A

A ⊆ B B ⊆ A A = B

A ⊆ B B ⊆ C A ⊆ C

A B

A ⊆ B A ≠ B A B A ⊂ B

∅ ⊂ A ⊂ B A B
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The collection of all subsets of a given set frequently plays an important role, particularly when the given set is the universal set.

If  is a set, then the set of all subsets of  is known as the power set of  and is denoted .

Special Sets

The following special sets are used throughout this text. Defining them will also give us practice using list and predicate form.

Special Sets

1.  denotes the set of real numbers and is the universal set for the other subsets in this list.
2.  is the set of natural numbers
3.  is the set of positive integers
4.  is the set of integers
5.  is the set of rational numbers
6.  is the set of algebraic numbers.

Note that . We will also occasionally need the set of complex numbers  where  is the imaginary
unit. The following special rational numbers turn out to be useful for various constructions.

For , a rational number of the form  where  is odd is a dyadic rational (or binary rational) of rank .

1. For , the set of dyadic rationals of rank  or less is .
2. The set of all dyadic rationals is .

Note that  and  for , and of course, . We use the usual notation for intervals of real numbers, but again the definitions
provide practice with predicate notation.

Suppose that  with .

1. . This interval is closed.
2. . This interval is open.
3. . This interval is closed-open.
4. . This interval is open-closed.

The terms open and closed are actually topological concepts.

You may recall that  is rational if and only if the decimal expansion of  either terminates or forms a repeating block. The binary rationals have
simple binary expansions (that is, expansions in the base 2 number system).

A number  is a binary rational of rank  if and only if the binary expansion of  is finite, with  in position  (after the separator).

Proof

It suffices to consider . The result is very simple so we just give the first few cases.

1. The number with rank 1 is  with binary expansion 0.1
2. The numbers with rank 2 are  with expansion 0.01 and  with expansion 0.11
3. The numbers with rank 3 are  with expansion 0.001,  with expansion 0.011,  with expansion 0.101, and  with expansion 0.111.

Set Operations

We are now ready to review the basic operations of set theory. For the following definitions, suppose that  and  are subsets of a universal set, which
we will denote by .

The union of  and  is the set obtained by combining the elements of  and .

The intersection of  and  is the set of elements common to both  and :

If  then  and  are disjoint.

So  and  are disjoint if the two sets have no elements in common.

The set difference of  and  is the set of elements that are in  but not in :

S S S P(S)

R

N = {0, 1, 2, …}
= {1, 2, 3, …}N+

Z = {… , −2, −1, 0, 1, 2, …}
Q= {m/n : m ∈ Z and n ∈ }N+

A = {x ∈ R : p(x) = 0 for some polynomial p with integer coefficients}

⊂N ⊂Z ⊂Q⊂A ⊂RN+ C = {x+ iy : x, y ∈ R} i

n ∈ N j/2n j∈ Z n

n ∈ N n = {j/ : j∈ Z}Dn 2n

D = {j/ : j∈ Z and n ∈ N}2n

=ZD0 ⊂Dn Dn+1 n ∈ N D ⊂Q

a, b ∈ R a < b

[a, b] = {x ∈ R : a ≤ x ≤ b}
(a, b) = {x ∈ R : a < x < b}
[a, b) = {x ∈ R : a ≤ x < b}
(a, b] = {x ∈ R : a < x ≤ b}

x ∈ R x

x ∈ R n ∈ N+ x 1 n

x ∈ (0, 1)

1/2
1/4 3/4
1/8 3/8 5/8 7/8

A B

S

A B A B

A∪B = {x ∈ S : x ∈ A or x ∈ B} (1.1.3)

A B A B

A∩B = {x ∈ S : x ∈ A and x ∈ B} (1.1.4)

A∩B = ∅ A B

A B

B A B A

B∖A = {x ∈ S : x ∈ B and x ∉ A} (1.1.5)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10116?pdf


1.1.3 https://stats.libretexts.org/@go/page/10116

Sometimes (particularly in older works and particularly when ), the notation  is used instead of . When ,  is known as
proper set difference.

The complement of  is the set of elements that are not in :

Note that union, intersection, and difference are binary set operations, while complement is a unary set operation.

In the Venn diagram app, select each of the following and note the shaded area in the diagram.

1. 
2. 
3. 
4. 
5. 
6. 

Basic Rules

In the following theorems, , , and  are subsets of a universal set . The proofs are straightforward, and just use the definitions and basic logic. Try
the proofs yourself before reading the ones in the text.

.

The identity laws:

1. 
2. 

So the empty set acts as an identity relative to the union operation, and the universal set acts as an identiy relative to the intersection operation.

The idempotent laws:

1. 
2. 

The complement laws:

1. 
2. 

The double complement law: 

The commutative laws:

1. 
2. 

Proof

These results follows from the commutativity of the or and and logical operators.

The associative laws:

1. 
2. 

Proof

These results follow from the associativity of the or and and logical operators.

Thus, we can write  without ambiguity. Note that  is an element of this set if and only if  is an element of at least one of the three given
sets. Similarly, we can write  without ambiguity. Note that  is an element of this set if and only if  is an element of all three of the given
sets.

The distributive laws:

1. 
2. 

A ⊆ B B−A B∖A A ⊆ B B−A

A A

= {x ∈ S : x ∉ A}Ac (1.1.6)

A

B

Ac

Bc

A∪B

A∩B

A B C S

A∩B ⊆ A ⊆ A∪B

A∪ ∅ = A

A∩S = A

A∪A = A

A∩A = A

A∪ = SAc

A∩ = ∅Ac

( = AAc)c

A∪B = B∪A

A∩B = B∩A

A∪ (B∪C) = (A∪B) ∪C

A∩ (B∩C) = (A∩B) ∩C

A∪B∪C x x

A∩B∩C x x

A∩ (B∪C) = (A∩B) ∪ (A∩C)
A∪ (B∩C) = (A∪B) ∩ (A∪C)
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Proof
1.  if and only if  and  if and only if  and either  or  if and only if  and , or, 

 and  if and only if  or  if and only if .
2. The proof is exactly the same as (a), but with or and and interchanged.

So intersection distributes over union, and union distributes over intersection. It's interesting to compare the distributive properties of set theory with
those of the real number system. If , then , so multiplication distributes over addition, but it is not true that 

, so addition does not distribute over multiplication. The following results are particularly important in probability theory.

DeMorgan's laws (named after Agustus DeMorgan):

1. 
2. .

Proof
1.  if and only if  if and only if  and  if and only  and  if and only if 
2.  if and only if  if and only if  or  if and only  or  if and only if 

The following result explores the connections between the subset relation and the set operations.

The following statements are equivalent:

1. 
2. 
3. 
4. 
5. 

Proof
1. Recall that  means that .
2.  means that . This is the contrapositive of (a) and hence is equivalent to (a).
3. If  then clearly . Conversely suppose . If  then  so . Hence .
4. If  then clearly . Conversely suppose . If  then  and so . Hence .
5. Suppose . If  then  and so by definition, . If  then again by definition, . Thus .

Conversely suppose that . If  then  so . Thus .

In addition to the special sets defined earlier, we also have the following:

More special sets

1.  is the set of irrational numbers
2.  is the set of transcendental numbers

Since  it follows that , that is, every transcendental number is also irrational.

Set difference can be expressed in terms of complement and intersection. All of the other set operations (complement, union, and intersection) can be
expressed in terms of difference.

Results for set difference:

1. 
2. 
3. 
4. 

Proof
1. This is clear from the definition: .
2. This follows from (a) with .
3. Using (a), DeMorgan's law, and the distributive law, the right side is

4. Using (a), (b), DeMorgan's law, and the distributive law, the right side is

So in principle, we could do all of set theory using the one operation of set difference. But as (c) and (d) suggest, the results would be hideous.

x ∈ A∩ (B∪C) x ∈ A x ∈ B∪C x ∈ A x ∈ B x ∈ C x ∈ A x ∈ B

x ∈ A x ∈ C x ∈ A∩B x ∈ A∩C x ∈ (A∩B) ∪ (A∩C

x, y, z ∈ R x(y+z) = (xy) +(xz)
x+(yz) = (x+y)(x+z)

(A∪B = ∩)c Ac Bc

(A∩B = ∪)c Ac Bc

x ∈ (A∪B)c x ∉ A∪B x ∉ A x ∉ B x ∈ Ac x ∈ Bc x ∈ ∩Ac Bc

x ∈ (A∩B)c x ∉ A∩B x ∉ A x ∉ B x ∈ Ac x ∈ Bc x ∈ ∪Ac Bc

A ⊆ B

⊆Bc Ac

A∪B = B

A∩B = A

A ∖B = ∅

A ⊆ B x ∈ A ⟹ x ∈ B

⊆Bc Ac x ∉ B ⟹ x ∉ A

A ⊆ B A∪B = B A∪B = B x ∈ A x ∈ A∪B x ∈ B A ⊆ B

A ⊆ B A∩B = A A∩B = A x ∈ A x ∈ A∩B x ∈ B A ⊆ B

A ⊆ B x ∈ A x ∈ B x ∉ A ∖B x ∉ A x ∉ A ∖B A ∖B = ∅
A ∖B = ∅ x ∈ A x ∉ A ∖B x ∈ B A ⊆ B

R ∖Q
R ∖A

Q⊂A ⊂R R ∖A ⊂R ∖Q

B∖A = B∩Ac

= S ∖AAc

A∩B = A ∖ (A ∖B)
A∪B = S ∖ {(S ∖A) ∖ [(S ∖A) ∖ (S ∖B)]}

B∖A = B∩ = {x ∈ S : x ∈ B and x ∉ A}Ac

B = S

A∩ (A∩ = A∩ ( ∪B) = (A∩ ) ∪ (A∩B) = ∅ ∪ (A∩B) = A∩BBc)c Ac Ac (1.1.7)

= A∪ ( ∩B) = (A∪ ) ∩ (A∪B) = S∩ (A∪B) = A∪B[ ∩ ( ∩B ]Ac Ac )c c Ac Ac (1.1.8)
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.

Proof

A direct proof is simple, but for practice let's give a proof using set algebra, in particular, DeMorgan's law, and the distributive law:

The set in the previous result is called the symmetric difference of  and , and is sometimes denoted . The elements of this set belong to one
but not both of the given sets. Thus, the symmetric difference corresponds to exclusive or in the same way that union corresponds to inclusive or. That
is,  if and only if  or  (or both);  if and only if  or , but not both. On the other hand, the complement of
the symmetric difference consists of the elements that belong to both or neither of the given sets:

Proof

Again, a direct proof is simple, but let's give an algebraic proof for practice:

There are 16 different (in general) sets that can be constructed from two given events  and .

Proof

 is the union of 4 pairwise disjoint sets: , , , and . If  and  are in “general position”, these 4 sets are distinct.
Every set that can be constructed from  and  is a union of some (perhaps none, perhaps all) of these 4 sets. There are  sub-collections of
the 4 sets.

Open the Venn diagram app. This app lists the 16 sets that can be constructed from given sets  and  using the set operations.

1. Select each of the four subsets in the proof of the last exercise: , , , and . Note that these are disjoint and their
union is .

2. Select each of the other 12 sets and show how each is a union of some of the sets in (a).

General Operations
The operations of union and intersection can easily be extended to a finite or even an infinite collection of sets.

Definitions

Suppose that  is a nonempty collection of subsets of a universal set . In some cases, the subsets in  may be naturally indexed by a nonempty index
set , so that . (In a technical sense, any collection of subsets can be indexed.)

The union of the collection of sets  is the set obtained by combining the elements of the sets in :

If , so that the collection of sets is indexed, then we use the more natural notation:

The intersection of the collection of sets  is the set of elements common to all of the sets in :

If , so that the collection of sets is indexed, then we use the more natural notation:

Often the index set is an “integer interval” of . In such cases, an even more natural notation is to use the upper and lower limits of the index set. For
example, if the collection is  then we would write  for the union and  for the intersection. Similarly, if the collection is 

 for some , we would write  for the union and  for the intersection.

(A∪B) ∖ (A∩B) = (A ∖B) ∪ (B∖A)

(A∪B) ∖ (A∩B) = (A∪B) ∩ (A∩B = (A∪B) ∩ ( ∪ ))c Ac Bc

= (A∩ ) ∪ (B∩ ) ∪ (A∩ ) ∪ (B∩ )Ac Ac Bc Bc

= ∅ ∪ (B∖A) ∪ (A ∖B) ∪ ∅ = (A ∖B) ∪ (B∖A)

(1.1.9)

(1.1.10)

(1.1.11)

A B A△ B

x ∈ A∪B x ∈ A x ∈ B x ∈ A△ B x ∈ A x ∈ B

(A△ B = (A∩B) ∪ ( ∩ ) = ( ∪B) ∩ ( ∪A))c Ac Bc Ac Bc

(A△ B)c = [(A∪B) ∩ (A∩B ])c c

= (A∪B ∪ (A∩B) = ( ∩ ) ∪ (A∩B))c Ac Bc

= ( ∪A) ∩ ( ∪B) ∩ ( ∪A) ∩ ( ∪B)Ac Ac Bc Bc

= S∩ ( ∪B) ∩ ( ∪A) ∩S = ( ∪B) ∩ ( ∪A)Ac Bc Ac Bc

(1.1.12)

(1.1.13)

(1.1.14)

(1.1.15)

A B

S A∩B A∩Bc ∩BAc ∩Ac Bc A B

A B = 1624

A B

A∩B A∩Bc ∩BAc ∩Ac Bc

S

A S A

I A = { : i ∈ I}Ai

A A

⋃A = {x ∈ S : x ∈ A for some A ∈A } (1.1.16)

A = { : i ∈ I}Ai

= {x ∈ S : x ∈  for some i ∈ I}⋃
i∈I

Ai Ai (1.1.17)

A A

⋂A = {x ∈ S : x ∈ A for all A ∈A } (1.1.18)

A = { : i ∈ I}Ai

= {x ∈ S : x ∈  for all i ∈ I}⋂
i∈I

Ai Ai (1.1.19)

N

{ : i ∈ }Ai N+ ⋃∞
i=1 Ai ⋂∞

i=1 Ai

{ : i ∈ {1, 2, … ,n}}Ai n ∈ N+ ⋃n
i=1 Ai ⋂n

i=1 Ai
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A collection of sets  is pairwise disjoint if the intersection of any two sets in the collection is empty:  for every  with 
.

A collection of sets  is said to partition a set  if the collection  is pairwise disjoint and .

Partitions are intimately related to equivalence relations. As an example, for , the set

is a partition of  into intervals of equal length . Note that the endpoints are the dyadic rationals of rank  or less, and that  can be obtained
from  by dividing each interval into two equal parts. This sequence of partitions is one of the reasons that the dyadic rationals are important.

Basic Rules

In the following problems,  is a collection of subsets of a universal set , indexed by a nonempty set , and  is a subset of .

The general distributive laws:

1. 
2. 

Restate the laws in the notation where the collection  is not indexed.

Proof
1.  is an element of the set on the left or the right of the equation if and only if  and  for some .
2.  is an element of the set on the left or the right of the equation if and only if  or  for every .

, 

The general De Morgan's laws:

1. 
2. 

Restate the laws in the notation where the collection  is not indexed.

Proof

1.  if and only if  if and only if  for every  if and only if  for every  if and only if 
.

2.  if and only if  if and only if  for some  if and only if  for some  if and only if 
.

, 

Suppose that the collection  partitions . For any subset , the collection  partitions .

Proof

Suppose  where  is an index set. If  with  then , so the
collection  is disjoint. Moreover, by the distributive law,

Figure : A partition of  induces a partition of 

Suppose that  is a collection of subsets of a universal set 

1. 
2. 

Proof

A A∩B = ∅ A, B ∈A
A ≠ B

A B A ⋃A = B

n ∈ N

={[ , ) : j∈ Z}Dn

j

2n
j+1

2n
(1.1.20)

R 1/2n n Dn+1

Dn

A = { : i ∈ I}Ai S I B S

( )∩B = ( ∩B)⋃i∈I Ai ⋃i∈I Ai

( )∪B = ( ∪B)⋂i∈I Ai ⋂i∈I Ai

A

x x ∈ B x ∈ Ai i ∈ I

x x ∈ B x ∈ Ai i ∈ I

(⋃A ) ∩B =⋃{A∩B : A ∈A } (⋂A ) ∪B =⋂{A∪B : A ∈A }

=( )⋃i∈I Ai
c
⋂i∈I A

c
i

=( )⋂i∈I Ai
c
⋃i∈I A

c
i

A

x ∈ ( )⋃i∈I Ai
c

x ∉⋃i∈I Ai x ∉ Ai i ∈ I x ∈ Ac
i i ∈ I

x ∈⋂i∈I A
c
i

x ∈ ( )⋂i∈I Ai
c

x ∉⋂i∈I Ai x ∉ Ai i ∈ I x ∈ Ac
i i ∈ I

x ∈⋃i∈I A
c
i

=⋂{ : A ∈A }(⋃A )c Ac =⋃{ : A ∈A }(⋂A )c Ac

A S B {A∩B : A ∈A } B

A = { : i ∈ I}Ai I i, j∈ I i ≠ j ( ∩B) ∩ ( ∩B) = ( ∩ ) ∩B = ∅ ∩B = ∅Ai Aj Ai Aj

{ ∩B : i ∈ I}Ai

( ∩B) =( )∩B = S∩B = B⋃
i∈I

Ai ⋃
i∈I

Ai (1.1.21)

1.1.2 S B

{ : i ∈ }Ai N+ S

= {x ∈ S : x ∈  for infinitely many k ∈ }⋂∞
n=1⋃

∞
k=n Ak Ak N+

= {x ∈ S : x ∈  for all but finitely many k ∈ }⋃∞
n=1⋂

∞
k=n Ak Ak N+
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1. Note that  if and only if for every  there exists  such that . In turn, this occurs if and only if 
for infinitely many .

2. Note that  if and only if there exists  such that  for every . In turn, this occurs if and only if 
for all but finitely many .

The sets in the previous result turn out to be important in the study of probability.

Product sets

Definitions

Product sets are sets of sequences. The defining property of a sequence, of course, is that order as well as membership is important.

Let us start with ordered pairs. In this case, the defining property is that  if and only if  and . Interestingly, the structure of an
ordered pair can be defined just using set theory. The construction in the result below is due to Kazimierz Kuratowski

Define . This definition captures the defining property of an ordered pair.

Proof

Suppose that  so that . In the case that  note that . Thus we must have 
 and hence , and in particular,  and . In the case that , we must have  and hence .

But we cannot have  because then  and hence , which would force , a contradiction. Thus we must
have . Since  and  we must have . The converse is trivial: if  and  then  and 
so .

Of course, it's important not to confuse the ordered pair  with the open interval , since the same notation is used for both. Usually it's clear
form context which type of object is referred to. For ordered triples, the defining property is  if and only if , , and .
Ordered triples can be defined in terms of ordered pairs, which via the last result, uses only set theory.

Define . This definition captures the defining property of an ordered triple.

Proof

Suppose . Then . Hence by the definition of an ordered pair, we must have  and .
Using the definition again we have  and . Conversely, if , , and , then  and hence 

. Thus .

All of this is just to show how complicated structures can be built from simpler ones, and ultimately from set theory. But enough of that! More
generally, two ordered sequences of the same size (finite or infinite) are the same if and only if their corresponding coordinates agree. Thus for ,
the definition for -tuples is  if and only if  for all . For infinite sequences, 

 if and only if  for all .

Suppose now that we have a sequence of  sets, , where . The Cartesian product of the sets is defined as follows:

Cartesian products are named for René Descartes. If  for each , then the Cartesian product set can be written compactly as , a Cartesian
power. In particular, recall that  denotes the set of real numbers so that  is -dimensional Euclidean space, named after Euclid, of course. The
elements of  are called bit strings of length . As the name suggests, we sometimes represent elements of this product set as strings rather than
sequences (that is, we omit the parentheses and commas). Since the coordinates just take two values, there is no risk of confusion.

Suppose that we have an infinite sequence of sets . The Cartesian product of the sets is defined by

When  for , the Cartesian product set is sometimes written as a Cartesian power as  or as . An explanation for the last notation, as
well as a much more general construction for products of sets, is given in the next section on functions. Also, notation similar to that of general union
and intersection is often used for Cartesian product, with  as the operator. So

Rules for Product Sets

We will now see how the set operations relate to the Cartesian product operation. Suppose that  and  are sets and that ,  and , 
. The sets in the theorems below are subsets of .

The most important rules that relate Cartesian product with union, intersection, and difference are the distributive rules:

x ∈⋂∞
n=1⋃

∞
k=n Ak n ∈ N+ k ≥ n x ∈ Ak x ∈ Ak

k ∈ N+

x ∈⋃∞
n=1⋂

∞
k=n Ak n ∈ N+ x ∈ Ak k ≥ n x ∈ Ak

k ∈ N+

(a, b) = (c, d) a = c b = d

(a, b) = {{a}, {a, b}}

(a, b) = (c, d) {{a}, {a, b}} = {{c}, {c, d}} a = b (a, b) = {{a}}
{c} = {c, d} = {a} c = d = a a = c b = d a ≠ b {c} = {a} c = a

{c, d} = {a} (c, d) = {{a}} {a, b} = {a} a = b

{c, d} = {a, b} c = a a ≠ b d = b a = c b = d {a} = {c} {a, b} = {c, d}
(a, b) = (c, d)

(a, b) (a, b)
(a, b, c) = (d, e, f) a = d b = e c = f

(a, b, c) = (a, (b, c))

(a, b, c) = (d, e, f) (a, (b, c)) = (d, (e, f)) a = d (b, c) = (e, f)
b = e c = f a = d b = e c = f (b, c) = (e, f)

(a, (b, c)) = (d, (e, f)) (a, b, c) = (d, e, f)

n ∈ N+

n ( , , … , ) = ( , , … , )x1 x2 xn y1 y2 yn =xi yi i ∈ {1, 2, … ,n}
( , , …) = ( , , …)x1 x2 y1 y2 =xi yi i ∈ N+

n ( , , … , )S1 S2 Sn n ∈ N+

× ×⋯ × = {( , , … , ) : ∈  for i ∈ {1, 2, … ,n}}S1 S2 Sn x1 x2 xn xi Si (1.1.22)

= SSi i Sn

R Rn n

{0, 1}n n

( , , …)S1 S2

× ×⋯ = {( , , …) : ∈  for each i ∈ {1, 2, …}}S1 S2 x1 x2 xi Si (1.1.23)

= SSi i ∈ N+ S∞ SN+

∏

= × ×⋯ × , = × ×⋯∏
i=1

n

Si S1 S2 Sn ∏
i=1

∞

Si S1 S2 (1.1.24)

S T A ⊆ S B ⊆ S C ⊆ T

D ⊆ T S×T
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Distributive rules for product sets

1. 
2. 
3. 
4. 
5. 
6. 

Proof
1.  if and only if  and  if and only if  and either  or  if and only if  and ,

or,  and  if and only if  or  if and only if .
2. Similar to (a), but with the roles of the coordinates reversed.
3.  if and only if  and  if and only if  and  and  if and only if  and 

 if and only if .
4. Similar to (c) but with the roles of the coordinates reversed.
5.  if and only if  and  if and only if  and  and  if and only if  and 

 if and only if .
6. Similar to (e) but with the roles of the coordinates reversed.

In general, the product of unions is larger than the corresponding union of products.

Proof

 if and only if  and  if and only if at least one of the following is true:  and , 
 and ,  and ,  and  if and only if 

So in particular it follows that . On the other hand, the product of intersections is the same as the
corresponding intersection of products.

Proof

 if and only if  and  if and only if  and  and  and  if and
only if  and  if and only if .

In general, the product of differences is smaller than the corresponding difference of products.

Proof

 if and only if  and  if and only if  and  and  and . On the other hand, 
 if and only if  and . The first

statement means that  and  and . The second statement is the negation of  and  and . The two statements both
hold if and only if  and  and  and .

So in particular it follows that ,

Projections and Cross Sections

In this discussion, suppose again that  and  are nonempty sets, and that .

Cross Sections

1. The cross section of  in the first coordinate at  is 
2. The cross section of  at in the second coordinate at  is

Note that  for  and  for .

Projections

1. The projection of  onto  is .
2. The projection of  onto  is .

A×(C ∪D) = (A×C) ∪ (A×D)
(A∪B) ×C = (A×C) ∪ (B×C)
A×(C ∩D) = (A×C) ∩ (A×D)
(A∩B) ×C = (A×C) ∩ (B×C)
A×(C ∖D) = (A×C) ∖ (A×D)
(A ∖B) ×C = (A×C) ∖ (B×C)

(x, y) ∈ A×(C ∪D) x ∈ A y ∈ C ∪D x ∈ A y ∈ C y ∈ D x ∈ A y ∈ C

x ∈ A y ∈ D (x, y) ∈ A×C (x, y) ∈ A×D (x, y) ∈ (A×C) ∪ (A×D)

(x, y) ∈ A×(C ∩D) x ∈ A y ∈ C ∩D x ∈ A y ∈ C y ∈ D (x, y) ∈ A×C

(x, y) ∈ A×D (x, y) ∈ (A×C) ∩ (A×D)

(x, y) ∈ A×(C ∖D) x ∈ A y ∈ C ∖D x ∈ A y ∈ C y ∉ D (x, y) ∈ A×C

(x, y) ∉ A×D (x, y) ∈ (A×C) ∖ (A×D)

(A∪B) ×(C ∪D) = (A×C) ∪ (A×D) ∪ (B×C) ∪ (B×D)

(x, y) ∈ (A∪B) ×(C ∪D) x ∈ A∪B y ∈ C ∪D x ∈ A y ∈ C

x ∈ A y ∈ D x ∈ B y ∈ C x ∈ B y ∈ D (x, y) ∈ (A×C) ∪ (A×D) ∪ (B×C) ∪ (B×D)

(A×C) ∪ (B×D) ⊆ (A∪B) ×(C ∪D)

(A×C) ∩ (B×D) = (A∩B) ×(C ∩D)

(x, y) ∈ (A×C) ∩ (B×D) (x, y) ∈ A×C (x, y) ∈ B×D x ∈ A y ∈ C x ∈ B y ∈ D

x ∈ A∩B y ∈ C ∩D (x, y) ∈ (A∩B) ×(C ∩D)

(A ∖B) ×(C ∖D) = [(A×C) ∖ (A×D)] ∖ [(B×C) ∖ (B×D)]

(x, y) ∈ (A ∖B) ×(C ∖D) x ∈ A ∖B y ∈ C ∖D x ∈ A x ∉ B y ∈ C y ∉ D

(x, y) ∈ [(A×C) ∖ (A×D)] ∖ [(B×C) ∖ (B×D)] (x, y) ∈ (A×C) ∖ (A×D) (x, y) ∉ (B×C) ∖ (B×D)
x ∈ A y ∈ C y ∉ D x ∈ B y ∈ C y ∉ D

x ∈ A x ∉ B y ∈ C y ∉ D

(A ∖B) ×(C ∖D) ⊆ (A×C) ∖ (B×D)

S T C ⊆ S×T

C x ∈ S = {y ∈ T : (x, y) ∈ C}Cx

C y ∈ T

= {x ∈ S : (x, y) ∈ C}C y (1.1.25)

⊆ TCx x ∈ S ⊆ SC y y ∈ T

C T = {y ∈ T : (x, y) ∈ C  for some x ∈ S}CT

C S = {x ∈ S : (x, y) ∈ C  for some y ∈ T}CS
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The projections are the unions of the appropriate cross sections.

Unions

1. 
2. 

Cross sections are preserved under the set operations. We state the result for cross sections at . By symmetry, of course, analgous results hold for
cross sections at .

Suppose that . Then for ,

1. 
2. 
3. 

Proof
1.  if and only if  if and only if  or  if and only if  or .
2. The proof is just like (a), with and replacing or.
3. The proof is just like (a), with and not replacing or.

For projections, the results are a bit more complicated. We give the results for projections onto ; naturally the results for projections onto  are
analogous.

Suppose again that . Then

1. 
2. 
3. 

Proof
1. Suppose that . Then there exists  such that . Hence  so , or  so . In

either case, . Conversely, suppose that . Then  or . If  then there exists  such that 
. But then  so . Similarly if  then .

2. Suppose that . Then there exists  such that . Hence  so  and  so .
Therefore .

3. Suppose that . Then , so for every , . Fix . Then  so  and therefore 
.

It's easy to see that equality does not hold in general in parts (b) and (c). In part (b) for example, suppose that  are nonempty and disjoint
and  is nonempty. Let  and . Then  so . But . In part (c) for example,
suppose that  is a nonempty proper subset of  and  is a nonempty proper subset of . Let . Then  so . On the
other hand, , so .

Cross sections and projections will be extended to very general product sets in the next section on Functions.

Computational Exercises

Subsets of 

The universal set is . Let  and . Express each of the following in terms of intervals:

1. 
2. 
3. 
4. 
5. 

Answer
1. 
2. 
3. 
4. 
5. 

The universal set is . Let  and let . Give each of the following:

1.  in list form

=CT ⋃x∈S Cx

=CS ⋃y∈T C
y

x ∈ S

y ∈ T

C, D ⊆ S×T x ∈ S

(C ∪D = ∪)x Cx Dx

(C ∩D = ∩)x Cx Dx

(C ∖D = ∖)x Cx Dx

y ∈ (C ∪D)x (x, y) ∈ C ∪D (x, y) ∈ C (x, y) ∈ D y ∈ Cx y ∈ Dx

T S

C, D ⊆ S×T

(C ∪D = ∪)T CT DT

(C ∩D ⊆ ∩)T CT DT

( ⊆ (CT )c C c)T

y ∈ (C ∪D)T x ∈ S (x, y) ∈ C ∪D (x, y) ∈ C y ∈ CT (x, y) ∈ D y ∈ DT

y ∈ ∪CT DT y ∈ ∪CT DT y ∈ CT y ∈ DT y ∈ CT x ∈ S

(x, y) ∈ C (x, y) ∈ C ∪D y ∈ (C ∪D)T y ∈ DT y ∈ (C ∪D)T
y ∈ (C ∩D)T x ∈ S (x, y) ∈ C ∩D (x, y) ∈ C y ∈ CT (x, y) ∈ D y ∈ DT

y ∈ ∩CT DT

y ∈ (CT )c y ∉ CT x ∈ S (x, y) ∉ C ∈ Sx0 ( , y) ∉ Cx0 ( , y) ∈x0 C c

y ∈ (C c)T

, ⊆ SA1 A2

B ⊆ T C = ×BA1 D = ×BA2 C ∩D = ∅ (C ∩D = ∅)T = = BCT DT

A S B T C = A×B = BCT ( =CT )c Bc

= ( ×B) ∪ (A× ) ∪ ( × )C c Ac Bc Ac Bc ( = TC c)T

R

[0, ∞) A = [0, 5] B = (3, 7)

A∩B

A∪B

A ∖B
B∖A
Ac

(3, 5]
[0, 7)
[0, 3]
(5, 7)
(5, ∞)

N A = {n ∈ N : n is even} B = {n ∈ N : n ≤ 9}

A∩B
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2.  in predicate form
3.  in list form
4.  in list form
5.  in predicate form
6.  in list form

Answer
1. 
2. 
3. 
4. 
5. 
6. 

Coins and Dice

Let . This is the set of outcomes when a 4-sided die and a 6-sided die are tossed. Further let 
 and . Give each of the following sets in list form:

1. 
2. 
3. 
4. 
5. 
6. 

Answer
1. 
2. 
3. 
4. 
5. 
6. 

Let . This is the set of outcomes when a coin is tossed 3 times (0 denotes tails and 1 denotes heads). Further let 
 and . Give each of the following sets in list form, using bit-string

notation:

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Answer
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Let . This is the set of outcomes when a coin is tossed twice (0 denotes tails and 1 denotes heads). Give  in list form.

Answer

A∪B

A ∖B
B∖A
Ac

Bc

{0, 2, 4, 6, 8}
{n ∈ N : n is even or n ≤ 9}
{10, 12, 14, …}
{1, 3, 5, 7, 9}
{n ∈ N : n is odd}
{10, 11, 12, …}

S = {1, 2, 3, 4} ×{1, 2, 3, 4, 5, 6}
A = {(x, y) ∈ S : x = 2} B = {(x, y) ∈ S : x+y = 7}

A

B

A∩B

A∪B

A ∖B
B∖A

{(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)}
{(1, 6), (2, 5), (3, 4), (4, 3)}
{(2, 5)}
{(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (1, 6), (3, 4), (4, 3)}
{(2, 1), (2, 2), (2, 3), (2, 4), (2, 6)}
{(1, 6), (3, 4), (4, 3)}

S = {0, 1}3

A = {( , , ) ∈ S : = 1}x1 x2 x3 x2 B = {( , , ) ∈ S : + + = 2}x1 x2 x3 x1 x2 x3

S

A

B

Ac

Bc

A∩B

A∪B

A ∖B
B∖A

{000, 100, 010, 001, 110, 101, 011, 111}
{010, 110, 011, 111}
{110, 011, 101}
{000, 100, 001, 101}
{000, 100, 010, 001, 111}
{110, 011}
{010, 110, 011, 111, 101}
{010, 111}
{101}

S = {0, 1}2 P(S)

{∅, {00}, {01}, {10}, {11}, {00, 01}, {00, 10}, {00, 11}, {01, 10}, {01, 11}, {10, 11}, {00, 01, 10}, {00, 01, 11}, {00, 10, 11}, {01, 10, 11},

{00, 01, 10, 11}}
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Cards

A standard card deck can be modeled by the Cartesian product set

where the first coordinate encodes the denomination or kind (ace, 2–10, jack, queen, king) and where the second coordinate encodes the suit (clubs,
diamonds, hearts, spades). Sometimes we represent a card as a string rather than an ordered pair (for example  for the queen of hearts). For the
problems in this subsection, the card deck  is the universal set.

Let  denote the set of hearts and  the set of face cards. Find each of the following:

1. 
2. 
3. 
4. 

Answer
1. 
2. 
3. 
4. 

A bridge hand is a subset of  with 13 cards. Often bridge hands are described by giving the cross sections by suit.

Suppose that  is a bridge hand, held by a player named North, defined by

Find each of the following:

1. The nonempty cross sections of  by denomination.
2. The projection of  onto the set of suits.
3. The projection of  onto the set of denominations

Answer
1. , , , , , , , 
2. 
3. 

By contrast, it is usually more useful to describe a poker hand by giving the cross sections by denomination. In the usual version of draw poker, a hand
is a subset of  with 5 cards.

Suppose that  is a poker hand, held by a player named Bill, with

Find each of the following:

1. The nonempty cross sections of  by suit.
2. The projection of  onto the set of suits.
3. The projection of  onto the set of denominations

Answer
1. , , 
2. 
3. 

The poker hand in the last exercise is known as a dead man's hand. Legend has it that Wild Bill Hickock held this hand at the time of his murder in
1876.

General unions and intersections

For the problems in this subsection, the universal set is .

Let  for . Find

1. 
2. 
3. 

D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, k} ×{♣,♢,♡,♠} (1.1.26)

q♡

D

H F

H ∩F

H ∖F
F ∖H
H △ F

{j♡, q♡, k♡}
{1♡, 2♡, 3♡, 4♡, 5♡, 6♡, 7♡, 8♡, 9♡, 10♡}
{j♠, q♠, k♠, j♢, q♢, k♢, j♣, q♣, k♣}
{1♡, 2♡, 3♡, 4♡, 5♡, 6♡, 7♡, 8♡, 9♡, 10♡, j♠, q♠, k♠, j♢, q♢, k♢, j♣, q♣, k♣}

D

N

= {2, 5, q}, = {1, 5, 8, q, k}, = {8, 10, j, q}, = {1}N♣ N♢ N♡ N♠ (1.1.27)

N

N

N

= {♢,♠}N1 = {♣}N2 = {♣,♢}N5 = {♢,♡}N8 = {♡}N10 = {♡}Nj = {♣,♢,♡}Nq = {♢}Nk

{♣,♢,♡,♠}
{1, 2, 5, 8, 10, j, q, k}

D

B

= {♣,♠}, = {♣,♠}, = {♡}B1 B8 Bq (1.1.28)

B

B

B

= {1, 8}B♣ = {q}B♡ = {1, 8}B♠

{♣,♡,♠}
{1, 8, q}

R

= [0, 1 − ]An
1
n

n ∈ N+

⋂∞
n=1 An

⋃∞
n=1 An

⋂∞
n=1 A

c
n
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4. 

Answer
1. 
2. 
3. 
4. 

Let  for . Find

1. 
2. 
3. 
4. 

Answer
1. 
2. 
3. 
4. 

Subsets of 

Let  be the closed triangular region in  with vertices , , and . Find each of the following:

1. The cross section  for 
2. The cross section  for 
3. The projection of  onto the horizontal axis
4. The projection of  onto the vertical axis

Answer
1.  for ,  otherwise
2.  for ,  otherwise
3. 
4. 

This page titled 1.1: Sets is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via source content that was
edited to the style and standards of the LibreTexts platform.

⋃∞
n=1 A

c
n

{0}
[0, 1)
(−∞, 0) ∪ [1, ∞)
R−{0}

= (2 − , 5 + )An
1
n

1
n

n ∈ N+

⋂∞
n=1 An

⋃∞
n=1 An

⋂∞
n=1 A

c
n

⋃∞
n=1 A

c
n

[2, 5]
(1, 6)
(−∞, 1] ∪ [6, ∞)
(−∞, 2) ∪ (5, ∞)

R
2

T R2 (0, 0) (1, 0) (1, 1)

Tx x ∈ R

T y y ∈ R

T

T

= [0, x]Tx x ∈ [0, 1] = ∅Tx
= [y, 1]T y y ∈ [0, 1] = ∅T y

[0, 1]
[0, 1]
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