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10.1: Buffon's Problems
     

Buffon's experiments are very old and famous random experiments, named after comte de Buffon. These experiments are
considered to be among the first problems in geometric probability.

Buffon's Coin Experiment
Buffon's coin experiment consists of dropping a coin randomly on a floor covered with identically shaped tiles. The event of
interest is that the coin crosses a crack between tiles. We will model Buffon's coin problem with square tiles of side length 1—
assuming the side length is 1 is equivalent to taking the side length as the unit of measurement.

Assumptions

First, let us define the experiment mathematically. As usual, we will idealize the physical objects by assuming that the coin is a
perfect circle with radius  and that the cracks between tiles are line segments. A natural way to describe the outcome of the
experiment is to record the center of the coin relative to the center of the tile where the coin happens to fall. More precisely, we will
construct coordinate axes so that the tile where the coin falls occupies the square .

Now when the coin is tossed, we will denote the center of the coin by  so that  is our sample space and  and  are
our basic random variables. Finally, we will assume that  so that it is at least possible for the coin to fall inside the square
without touching a crack.

Figure : Buffon's floor

Next, we need to define an appropriate probability measure that describes our basic random vector . If the coin falls
“randomly” on the floor, then it is natural to assume that  is uniformly distributed on . By definition, this means that

Run Buffon's coin experiment with the default settings. Watch how the points seem to fill the sample space  in a uniform
manner.

The Probability of a Crack Crossing

Our interest is in the probability of the event  that the coin crosses a crack.

The probability of a crack crossing is .

Proof

Figure :  as a function of 
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In Buffon's coin experiment, change the radius with the scroll bar and watch how the events  and  and change. Run the
experiment with various values of  and compare the physical experiment with the points in the scatterplot. Compare the
relative frequency of  to the probability of .

The convergence of the relative frequency of an event (as the experiment is repeated) to the probability of the event is a special
case of the law of large numbers.

Solve Buffon's coin problem with rectangular tiles that have height  and width .

Answer

Solve Buffon's coin problem with equilateral triangular tiles that have side length 1.

Recall that random numbers are simulation of independent random variables, each with the standard uniform distribution, that is,
the continuous uniform distribution on the interval .

Show how to simulate the center of the coin  in Buffon's coin experiment using random numbers.

Answer

, , where  and  are random numbers.

Buffon's Needle Problem
Buffon's needle experiment consists of dropping a needle on a hardwood floor. The main event of interest is that the needle crosses
a crack between floorboards. Strangely enough, the probability of this event leads to a statistical estimate of the number !

Assumptions

Our first step is to define the experiment mathematically. Again we idealize the physical objects by assuming that the floorboards
are uniform and that each has width 1. We will also assume that the needle has length  so that the needle cannot cross more
than one crack. Finally, we assume that the cracks between the floorboards and the needle are line segments.

When the needle is dropped, we want to record its orientation relative to the floorboard cracks. One way to do this is to record the
angle  that the top half of the needle makes with the line through the center of the needle, parallel to the floorboards, and the
distance  from the center of the needle to the bottom crack. These will be the basic random variables of our experiment, and thus
the sample space of the experiment is

Figure : Buffon's needle problem

Again, our main modeling assumption is that the needle is tossed “randomly” on the floor. Thus, a reasonable mathematical
assumption might be that the basic random vector  is uniformly distributed over the sample space. By definition, this means
that

Run Buffon's needle experiment with the default settings and watch the outcomes being plotted in the sample space. Note how
the points in the scatterplot seem to fill the sample space  in a uniform way.
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The Probability of a Crack Crossing

Our main interest is in the event  that the needle crosses a crack between the floorboards.

The event  can be written in terms of the basic angle and distance variables as follows:

The curves  and  on the interval  are shown in blue in the scatterplot of Buffon's needle
experiment, and hence event  is the union of the regions below the lower curve and above the upper curve. Thus, the needle
crosses a crack precisely when a point falls in this region.

The probability of a crack crossing is .

Proof

Figure :  as a function of 

In the Buffon's needle experiment, vary the needle length  with the scroll bar and watch how the event  changes. Run the
experiment with various values of  and compare the physical experiment with the points in the scatterplot. Compare the
relative frequency of  to the probability of .

The convergence of the relative frequency of an event (as the experiment is repeated) to the probability of the event is a special
case of the law of large numbers.

Find the probabilities of the following events in Buffon's needle experiment. In each case, sketch the event as a subset of the
sample space.

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

The Estimate of 

Suppose that we run Buffon's needle experiment a large number of times. By the law of large numbers, the proportion of crack
crossings should be about the same as the probability of a crack crossing. More precisely, we will denote the number of crack
crossings in the first  runs by . Note that  is a random variable for the compound experiment that consists of  replications
of the basic needle experiment. Thus, if  is large, we should have  and hence
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This is Buffon's famous estimate of . In the simulation of Buffon's needle experiment, this estimate is computed on each run and
shown numerically in the second table and visually in a graph.

Run the Buffon's needle experiment with needle lengths . In each case, watch the estimate of  as the
simulation runs.

Let us analyze the estimation problem more carefully. On each run  we have an indicator variable , where  if the needle
crosses a crack on run  and  if the needle does not cross a crack on run . These indicator variables are independent, and
identically distributed, since we are assuming independent replications of the experiment. Thus, the sequence forms a Bernoulli
trials process.

The number of crack crossings in the first  runs of the experiment is

which has the binomial distribution with parameters  and .

The mean and variance of  are

1. 
2. 

With probability 1,  as  and  as .

Proof
a

These results follow from the strong law of large numbers.

Thus, we have two basic estimators:  as an estimator of  and  as an estimator of . The estimator of  has several
important statistical properties. First, it is unbiased since the expected value of the estimator is the parameter being estimated:

The estimator of  is unbiased:

Proof

This follows from the results above for the binomial distribution and properties of expected value.

Since this estimator is unbiased, the variance gives the mean square error:

The mean square error of the estimator of  is

The variance is a decreasing function of the needle length .

Thus, the estimator of  improves as the needle length increases. On the other hand, the estimator of  is biased; it tends to
overestimate :

The estimator of  is positively biased:
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Proof

Use Jensen's inequality.

The estimator of  also tends to improve as the needle length increases. This is not easy to see mathematically. However, you can
see it empirically.

In the Buffon's needle experiment, run the simulation 5000 times each with , , , and . Note
how well the estimator seems to work in each case.

Finally, we should note that as a practical matter, Buffon's needle experiment is not a very efficient method of approximating .
According to Richard Durrett, to estimate  to four decimal places with  would require about 100 million tosses!

Run the Buffon's needle experiment until the estimates of  seem to be consistently correct to two decimal places. Note the
number of runs required. Try this for needle lengths , , , and  and compare the results.

Show how to simulate the angle  and distance  in Buffon's needle experiment using random numbers.

Answer

, , where  and  are random numbers.

Notes

Buffon's needle problem is essentially solved by Monte-Carlo integration. In general, Monte-Carlo methods use statistical
sampling to approximate the solutions of problems that are difficult to solve analytically. The modern theory of Monte-Carlo
methods began with Stanislaw Ulam, who used the methods on problems associated with the development of the hydrogen bomb.

The original needle problem has been extended in many ways, starting with Simon Laplace who considered a floor with rectangular
tiles. Indeed, variations on the problem are active research problems even today.

Neil Weiss has pointed out that our computer simulation of Buffon's needle experiment is circular, in the sense the program
assumes knowledge of  (you can see this from the simulation result above).

Try to write a computer algorithm for Buffon's needle problem, without assuming the value of  or any other transcendental
numbers.

This page titled 10.1: Buffon's Problems is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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