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1.4: Partial Orders
   

Partial orders are a special class of relations that play an important role in probability theory.

Basic Theory

A partial order on a set  is a relation  on  that is reflexive, anti-symmetric, and transitive. The pair  is called a partially
ordered set. So for all :

1. , the reflexive property
2. If  and  then , the antisymmetric property
3. If  and  then , the transitive property

As the name and notation suggest, a partial order is a type of ordering of the elements of . Partial orders occur naturally in many areas
of mathematics, including probability. A partial order on a set naturally gives rise to several other relations on the set.

Suppose that  is a partial order on a set . The relations , , , , and  are defined as follows:

1.  if and only if .
2.  if and only if  and .
3.  if and only if .
4.  if and only if  or .
5.  if and only if neither  nor .

Note that  is the inverse of , and  is the inverse of . Note also that  if and only if either  or , so the relation 
completely determines the relation . The relation  is sometimes called a strict or strong partial order to distingush it from the
ordinary (weak) partial order . Finally, note that  means that  and  are related in the partial order, while  means that  and

 are unrelated in the partial order. Thus, the relations  and  are complements of each other, as sets of ordered pairs. A total or linear
order is a partial order in which there are no unrelated elements.

A partial order  on  is a total order or linear order if for every , either  or .

Suppose that  and  are partial orders on a set . Then  is an sub-order of , or equivalently  is an extension of  if
and only if  implies  for .

Thus if  is a suborder of , then as sets of ordered pairs,  is a subset of . We need one more relation that arises naturally from a
partial order.

Suppose that  is a partial order on a set . For ,  is said to cover  if  but no element  satisfies .

If  is finite, the covering relation completely determines the partial order, by virtue of the transitive property.

Suppose that  is a partial order on a finite set . The covering graph or Hasse graph of  is the directed graph with vertex set
 and directed edge set , where  if and only if  covers .

Thus,  if and only if there is a directed path in the graph from  to . Hasse graphs are named for the German mathematician
Helmut Hasse. The graphs are often drawn with the edges directed upward. In this way, the directions can be inferred without having to
actually draw arrows.

Basic Examples
Of course, the ordinary order  is a total order on the set of real numbers . The subset partial order is one of the most important in
probability theory:

Suppose that  is a set. The subset relation  is a partial order on , the power set of .

Proof

 Definitions

S ⪯ S (S,⪯)
x,  y,  z ∈ S

x ⪯ x

x ⪯ y y ⪯ x x = y

x ⪯ y y ⪯ z x ⪯ z

S

⪯ S ⪰ ≺ ≻ ⊥ ∥

x ⪰ y y ⪯ x

x ≺ y x ⪯ y x ≠ y

x ≻ y y ≺ x

x ⊥ y x ⪯ y y ⪯ x

x ∥ y x ⪯ y y ⪯ x

⪰ ⪯ ≻ ≺ x ⪯ y x ≺ y x = y ≺
⪯ ≺

⪯ x ⊥ y x y x ∥ y x

y ⊥ ∥

⪯ S x,  y ∈ S x ⪯ y y ⪯ x

⪯1 ⪯2 S ⪯1 ⪯2 ⪯2 ⪯1

x y⪯1 x y⪯2 x,  y ∈ S

⪯1 ⪯2 ⪯1 ⪯2

⪯ S x,  y ∈ S y x x ≺ y z ∈ S x ≺ z ≺ y

S

⪯ S (S,⪯)
S E (x, y) ∈ E y x

x ≺ y x y

≤ R

S ⊆ P(S) S
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We proved this result in the section on sets. To review, recall that for ,  means that  implies .
Also  means that  if and only if . Thus

1. 
2.  and  if and only if 
3.  and  imply 

Here is a partial order that arises naturally from arithmetic.

Let  denote the division relation on the set of positive integers . That is,  if and only if there exists  such that 
. Then

1.  is a partial order on .
2.  is a sub-order of the ordinary order .

Proof
1. Clearly  for , since , so  is reflexive. Suppose  and , where . Then there exist 

 such that  and . Substituting gives , and hence . Thus  so  is
antisymmetric. Finally, suppose  and , where . Then there exists  such that  and 

. Substituting gives , so . Thus  is transitive.
2. If  and , then there exists  such that . Since , .

The set of functions from a set into a partial ordered set can itself be partially ordered in a natural way.

Suppose that  is a set and that  is a partially ordered set, and let  denote the set of functions . The relation 
on  defined by  if and only  for all  is a partial order on .

Proof

Suppose that .

1.  for all , so .
2. If  and  then  and  for all . Hence  for all  so .
3. If  and  then  and  for all . Hence  for all  so .

Note that we don't need a partial order on the domain .

Basic Properties
The proofs of the following basic properties are straightforward. Be sure to try them yourself before reading the ones in the text.

The inverse of a partial order is also a partial order.

Proof

Clearly the reflexive, antisymmetric and transitive properties hold for .

If  is a partial order on  and  is a subset of , then the restriction of  to  is a partial order on .

Proof

The reflexive, antisymmetric, and transitive properties given above hold for all  and hence hold for all .

The following theorem characterizes relations that correspond to strict order.

Let  be a set. A relation  is a partial order on  if and only if  is transitive and irreflexive.

Proof

Suppose that  is a partial order on . Recall that  is defined by  if and only if  and . If  and  then 
 and , and so . On the other hand, if  then  and  so , a contradiction. Hence  and so 
. Therefore  is transitive. If  then  by definition, so  is irreflexive.

Conversely, suppose that  is a transitive and irreflexive relation on . Recall that  is defined by  if and only if  or 
. By definition then,  is reflexive:  for every . Next, suppose that  and . If  and  then 

A,  B ∈P(S) A ⊆ B x ∈ A x ∈ B

A = B x ∈ A x ∈ B

A ⊆ A

A ⊆ B B ⊆ A A = B

A ⊆ B B ⊆ C A ⊆ C

∣ N+ m ∣ n k ∈ N+

n = km

∣ N+

∣ ≤

n ∣ n n ∈ N+ n = 1 ⋅n ∣ m ∣ n n ∣ m m,  n ∈ N+

j,  k ∈ N+ n = km m = jn n = jkn j= k = 1 m = n ∣
m ∣ n n ∣ p m,  n,  p ∈ N+ j,  k ∈ N+ n = jm

p = kn p = jkm m ∣ p ∣
m,  n ∈ N+ m ∣ n k ∈ N+ n = km k ≥ 1 m ≤ n

S (T , )⪯T S f : S → T ⪯

S f ⪯ g f(x) g(x)⪯T x ∈ S S

f , g, h ∈S

f(x) f(x)⪯T x ∈ S f ⪯ f

f ⪯ g g⪯ f f(x) g(x)⪯T g(x) f(x)⪯T x ∈ S f(x) = g(x) x ∈ S f = g

f ⪯ g g⪯ h f(x) g(x)⪯T g(x) h(x)⪯T x ∈ S f(x) h(x)⪯T x ∈ S f ⪯ h

S

⪰

⪯ S A S ⪯ A A

x,  y,  z ∈ S x,  y,  z ∈ A

S ⪯ S ≺

⪯ S ≺ x ≺ y x ⪯ y x ≠ y x ≺ y y ≺ z

x ⪯ y y ⪯ z x ⪯ z x = z x ⪯ y y ⪯ x x = y x ≠ z

x ≺ z ≺ x ≺ y x ≠ y ≺

≺ S ⪯ x ⪯ y x ≺ y

x = y ⪯ x ⪯ x x ∈ S x ⪯ y y ⪯ x x ≺ y y ≺ x

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10119?pdf


1.4.3 https://stats.libretexts.org/@go/page/10119

 by the transitive property of . But this is a contradiction by the irreflexive property, so we must have . Thus  is
antisymmetric. Suppose  and . There are four cases:

1. If  and  then  by the transitive property of .
2. If  and  then  by substitution.
3. If  and  then  by substitution.
4. If  and  then  by the transitive property of .

In all cases we have  so  is transitive. Hence  is a partial order on .

Monotone Sets and Functions

Partial orders form a natural setting for increasing and decreasing sets and functions. Here are the definitions:

Suppose that  is a partial order on a set  and that . In the following definitions,  are arbitrary elements of .

1.  is increasing if  and  imply .
2.  is decreasing if  and  imply .

Suppose that  is a set with partial order ,  is a set with partial order , and that . In the following definitions, 
are arbitrary elements of .

1.  is increasing if and only if  implies .
2.  is decreasing if and only if  implies .
3.  is strictly increasing if and only if  implies .
4.  is strictly decreasing if and only if  implies .

Recall the definition of the indicator function  associated with a subset  of a universal set : For ,  if  and 
 if .

Suppose that  is a partial order on a set  and that . Then

1.  is increasing if and only if  is increasing.
2.  is decreasing if and only if  is decreasing.

Proof
1.  is increasing if and only if  and  implies  if and only if  and  implies  if and

only if  is increasing.
2.  is decreasing if and only if  and  implies  if and only if  and  implies  if and

only if  is decreasing.

Isomorphism

Two partially ordered sets  and  are said to be isomorphic if there exists a one-to-one function  from  onto 
such that  if and only if , for all . The function  is an isomorphism.

Generally, a mathematical space often consists of a set and various structures defined in terms of the set, such as relations, operators, or a
collection of subsets. Loosely speaking, two mathematical spaces of the same type are isomorphic if there exists a one-to-one function
from one of the sets onto the other that preserves the structures, and again, the function is called an isomorphism. The basic idea is that
isomorphic spaces are mathematically identical, except for superficial matters of appearance. The word isomorphism is from the Greek
and means equal shape.

Suppose that the partially ordered sets  and  are isomorphic, and that  is an isomorphism. Then  and 
 are strictly increasing.

Proof

We need to show that for ,  if and only if . If  then by definition, . But if 
 then  since  is one-to-one. This is a contradiction, so . Similarly, if  then by

definition, . But if  then , a contradiction. Hence .

x ≺ x ≺ x = y ⪯

x ⪯ y y ⪯ z

x ≺ y y ≺ z x ≺ z ≺
x = y y ≺ z x ≺ z

x ≺ y y = z x ≺ z

x = y y = z x = z =

x ⪯ z ⪯ ⪯ S

⪯ S A ⊆ S x, y S

A x ∈ A x ⪯ y y ∈ A

A y ∈ A x ⪯ y x ∈ A

S ⪯S T ⪯T f : S → T x, y
S

f x y⪯S f(x) f(y)⪯T

f x y⪯S f(x) f(y)⪰T

f x y≺S f(x) f(y)≺T

f x y≺S f(x) f(y)≻T

1A A S x ∈ S (x) = 11A x ∈ A

(x) = 01A x ∉ A

⪯ S A ⊆ S

A 1A

A 1A

A x ∈ A x ⪯ y y ∈ A (x) = 11A x ≤ y (y) = 11A

1A

A y ∈ A x ⪯ y x ∈ A (y) = 11A x ≤ y (x) = 11A

1A

(S, )⪯S (T , )⪯T f S T

x y⪯S f(x) f(y)⪯T x,  y ∈ S f

(S, )⪯S (T , )⪯T f : S → T f

f−1

x,  y ∈ S x y≺S f(x) f(y)≺T x y≺S f(x) f(y)⪯T

f(x) = f(y) x = y f f(x) f(y)≺T f(x) f(y)≺T

x y⪯S x = y f(x) = f(y) x y≺S
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In a sense, the subset partial order is universal—every partially ordered set is isomorphic to  for some collection of sets .

Suppose that  is a partial order on a set . Then there exists  such that  is isomorphic to .

Proof

For each , let , and then let , so that . We will show that the function 
 from  onto  is one-to-one, and satisfies

First, suppose that  and . Then  so  and hence . Similarly,  so  and hence 
. Thus , so the mapping is one-to-one. Next, suppose that . If  then  so  by the transitive

property, and hence . Thus . Conversely, suppose . As before, , so  and hence .

Extremal Elements

Various types of extremal elements play important roles in partially ordered sets. Here are the definitions:

Suppose that  is a partial order on a set  and that .

1. An element  is the minimum element of  if and only if  for every .
2. An element  is a minimal element of  if and only if no  satisfies .
3. An element  is the maximum element of  if and only if  for every .
4. An element  is a maximal element of  if and only if no  satisfies .

In general, a set can have several maximal and minimal elements (or none). On the other hand,

The minimum and maximum elements of , if they exist, are unique. They are denoted  and , respectively.

Proof

Suppose that  are minimum elements of . Since  we have  and , so  by the antisymmetric property.
The proof for the maximum element is analogous.

Minimal, maximal, minimum, and maximum elements of a set must belong to that set. The following definitions relate to upper and
lower bounds of a set, which do not have to belong to the set.

Suppose again that  is a partial order on a set  and that . Then

1. An element  is a lower bound for  if and only if  for every .
2. An element  is an upper bound for  if and only if  for every .
3. The greatest lower bound or infimum of , if it exists, is the maximum of the set of lower bounds of .
4. The least upper bound or supremum of , if it exists, is the minimum of the set of upper bounds of .

By (20), the greatest lower bound of  is unique, if it exists. It is denoted  or . Similarly, the least upper bound of  is
unique, if it exists, and is denoted  or . Note that every element of  is a lower bound and an upper bound for , since the
conditions in the definition hold vacuously.

The symbols  and  are also used for infimum and supremum, respectively, so  and  if they exist.. In
particular, for , operator notation is more commonly used, so  and . Partially ordered sets
for which these elements always exist are important, and have a special name.

Suppose that  is a partial order on a set . Then  is a lattice if  and  exist for every .

For the subset partial order, the inf and sup operators correspond to intersection and union, respectively:

Let  be a set and consider the subset partial order  on , the power set of . Let  be a nonempty subset of , that is, a
nonempty collection of subsets of . Then

1. 
2. 

Proof

(S , ⊆) S

⪯ S S ⊆P(S) (S,⪯) (S , ⊆)

x ∈ S = {u ∈ S : u ⪯ x}Ax S = { : x ∈ S}Ax S ⊆P(S)
x ↦ Ax S S

x ⪯ y ⟺ ⊆Ax Ay (1.4.1)

x,  y ∈ S =Ax Ay x ∈ Ax x ∈ Ay x ⪯ y y ∈ Ay y ∈ Ax

y ⪯ x x = y x ⪯ y u ∈ Ax u ⪯ x u ⪯ y

u ∈ Ay ⊆Ax Ay ⊆Ax Ay x ∈ Ax x ∈ Ay x ⪯ y

⪯ S A ⊆ S

a ∈ A A a⪯ x x ∈ A

a ∈ A A x ∈ A x ≺ a

b ∈ A A b ⪰ x x ∈ A

b ∈ A A x ∈ A x ≻ b

A min(A) max(A)

a,  b A a,  b ∈ A a⪯ b b ⪯ a a = b

⪯ S A ⊆ S

u ∈ S A u ⪯ x x ∈ A

v∈ S A v⪰ x x ∈ A

A A

A A

A glb(A) inf(A) A

lub(A) sup(A) S ∅

∧ ∨ ⋀A = inf(A) ⋁A = sup(A)
x,  y ∈ S x∧ y = inf{x, y} x∨ y = sup{x, y}

⪯ S (S,⪯) x∧ y x∨ y x,  y ∈ S

S ⊆ P(S) S A P(S)
S

inf(A ) =⋂A
sup(A ) =⋃A
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1. First,  for every  and hence  is a lower bound of . If  is a lower bound of  then  for every 
 and hence . Therefore  is the greatest lower bound.

2. First,  for every  and hence  is an upper bound of . If  is an upper bound of  then  for every 
 and hence . Therefore  is the least upper bound.

In particular,  and , so  is a lattice.

Consider the division partial order  on the set of positive integers  and let  be a nonempty subset of .

1.  is the greatest common divisor of , usually denoted  in this context.
2. If  is infinite then  does not exist. If  is finite then  is the least common multiple of , usually denoted 

 in this context.

Suppose that  is a set and that . An element  is said to be a fixed point of  if .

The following result explores a basic fixed point theorem for a partially ordered set. The theorem is important in the study of cardinality.

Suppose that  is a partial order on a set  with the property that  exists for every . If  is increasing, then 
has a fixed point.

Proof.

Let  and let . If  then  so . Hence  is an upper bound of 
so . But then  so . Hence . Therefore .

Note that the hypotheses of the theorem require that  exists. The set  is nonempty since 
.

If  is a total order on a set  with the property that every nonempty subset of  has a minimum element, then  is said to be well
ordered by . One of the most important examples is , which is well ordered by the ordinary order . On the other hand, the well
ordering principle, which is equivalent to the axiom of choice, states that every nonempty set can be well ordered.

Orders on Product Spaces

Suppose that  and  are sets with partial orders  and  respectively. Define the relation  on  by  if and
only if  and .

1. The relation  is a partial order on , called, appropriately enough, the product order.
2. Suppose that . If  has at least 2 elements, then  is not a total order on .

Proof

Figure : The product order on . The region shaded red is the set of points . The region shaded blue is the set of points 
. The region shaded white is the set of points that are not comparable with .

Product order extends in a straightforward way to the Cartesian product of a finite or an infinite sequence of partially ordered spaces. For
example, suppose that  is a set with partial order  for each , where . The product order  on the product
set  is defined as follows: for  and  in the product set,  if and only
if  for each . We can generalize this further to arbitrary product sets. Suppose that  is a set for each  in a
nonempty (both otherwise arbitrary) index set . Recall that

⋂A ⊆ A A ∈A ⋂A A B A B ⊆ A

A ∈A B ⊆⋂A ⋂A

A ⊆⋃A A ∈A ⋃A A B A A ⊆ B

A ∈A ⋃A ⊆ B ⋃A

A∧B = A∩B A∨B = A∪B (P(S), ⊆)

∣ N+ A N+

inf(A) A gcd(A)
A sup(A) A sup(A) A

lcm(A)

S f : S → S z ∈ S f f(z) = z

⪯ S sup(A) A ⊆ S f : S → S f

A = {x ∈ S : x ⪯ f(x)} z = sup(A) x ∈ A x ⪯ z x ⪯ f(x)⪯ f(z) f(z) A

z⪯ f(z) f(z)⪯ f (f(z)) f(z) ∈ A f(z)⪯ z f(z) = z

sup(∅) = min(S) A = {x ∈ S : x ⪯ f(x)}
min(S) ∈ A

⪯ S S S

⪯ N+ ≤

S T ⪯S ⪯T ⪯ S×T (x, y)⪯ (z,w)
x z⪯S y w⪯T

⪯ S×T

(S, ) = (T , )⪯S ⪯T S ⪯ S2

1.4.1 R
2 ⪰ (x,y)

⪯ (x,y) (x,y)

Si ⪯i i ∈ {1, 2, … ,n} n ∈ N+ ⪯

× ×⋯ ×S1 S2 Sn x = ( , , … , )x1 x2 xn y = ( , , … , )y1 y2 yn x ⪯ y

xi ⪯i yi i ∈ {1, 2, … ,n} Si i

I

={x : x is a function from I into   such that x(i) ∈  for each i ∈ I}∏
i∈I

Si ⋃
i∈I

Si Si (1.4.2)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10119?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/01%3A_Foundations/1.06%3A_Cardinality
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/01%3A_Foundations/1.02%3A_Functions#The_Axiom_of_Choice
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/01%3A_Foundations/1.02%3A_Functions#Product_Spaces


1.4.6 https://stats.libretexts.org/@go/page/10119

To make the notation look more like a simple Cartesian product, we will write  instead of  for the value of a function  in the
product set at .

Suppose that  is a set with partial order  for each  in a nonempty index set . Define the relation  on  by  if and
only if  for each . Then  is a partial order on the product set, known again as the product order.

Proof

In spite of the abstraction, the proof is perfectly straightforward. Suppose that .

1.  for every , and hence . Thus  is reflexive.
2. Suppose that  and . Then  and  for each . Hence  for each  and so . Thus 

is antisymmetric
3. Suppose that  and . Then  and  for each . Hence  for each , so . Thus  is

transitive.

Note again that no assumptions are made on the index set , other than it be nonempty. In particular, no order is necessary on . The next
result gives a very different type of order on a product space.

Suppose again that  and  are sets with partial orders  and  respectively. Define the relation  on  by 
if and only if either , or  and .

1. The relation  is a partial order on , called the lexicographic order or dictionary order.
2. If  and  are total orders on  and , respectively, then  is a total order on .

Proof

Figure : The lexicographic order on . The region shaded red is the set of points . The region shaded blue is the set of
points .

As with the product order, the lexicographic order can be generalized to a collection of partially ordered spaces. However, we need the
index set to be totally ordered.

Suppose that  is a set with partial order  for each  in a nonempty index set . Suppose also that  is a total order on . Define
the relation  on the product set  as follows:  if and only if there exists  such that  if  and .
Then

1.  is a partial order on , known again as the lexicographic order.
2. If  is a total order for each , and  is well ordered by , then  is a total order on .

Proof
1. By the result on strong orders, we need to show that  is irreflexive and transitive. First, no  satisfies  since 

 for all . Hence  is irreflexive. Next, suppose that  and that  and . Then there exists
 such that  if  and . Similarly, there exists  such that  if  and . Again,

since  is totally ordered, either  or  or . If , then  if  and . If , then
 if  and . If , then  if  and . In all cases,  so  is

transitive.
2. Suppose now that  is a total order on  for each  and that  is well ordered by . Let  with . Let 

. Then  by assumption, and hence has a minimum element . If  then  and hence 
. On the other hand,  since  and therefore, since  is totally ordered, we must have either  or 
. In the first case,  and in the second case . Hence  is totally ordered.

xi x(i) x

i ∈ I

Si ⪯i i I ⪯ ∏i∈I Si x ⪯ y

xi ⪯i yi i ∈ I ⪯

x, y, z ∈∏i∈I Si

xi ⪯i xi i ∈ I x ⪯ x ⪯

x ⪯ y y ⪯ x xi ⪯i yi yi ⪯i xi i ∈ I =xi yi i ∈ I x = y ⪯

x ⪯ y y ⪯ z xi ⪯i yi yi ⪯i zi i ∈ I xi ⪯i zi i ∈ I x ⪯ z ⪯

I I

S T ⪯S ⪯T ⪯ S×T (x, y)⪯ (z,w)
x z≺S x = z y w⪯T

⪯ S×T

⪯S ⪯T S T ⪯ S×T

1.4.2 R
2 ⪰ (x,y)

⪯ (x,y)

Si ⪯i i I ≤ I

⪯ ∏i∈I Si x ≺ y j∈ I =xi yi i < j xj ≺j yj

⪯ S

⪯i i ∈ I I ≤ ⪯ S

≺ x ∈∏i∈I Si x ≺ x

=xi xi i ∈ I ≺ x,  y,  z ∈∏i∈I Si x ≺ y y ≺ z

j∈ I =xi yi i < j xj ≺j yj k ∈ I =yi zi i < k yk ≺k zk
I j< k k < j j= k j< k = =xi yi zi i < j =xj ≺j yj zj k < j

= =xi yi zi i < k =xk yk ≺k zk j= k = =xi yi zi i < j xj ≺j yj ≺j zj x ≺ z ≺

⪯i Si i ∈ I I ≤ x,  y ∈∏i∈I Si x ≠ y

J = {i ∈ I : ≠ }xi yi J ≠ ∅ j i < j i ∉ J

=xi yi ≠xj yj j∈ J ⪯j xj ≺j yj
yj ≺j xj x ≺ y y ≺ x ⪯
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The term lexicographic comes from the way that we order words alphabetically: We look at the first letter; if these are different, we
know how to order the words. If the first letters are the same, we look at the second letter; if these are different, we know how to order
the words. We continue in this way until we find letters that are different, and we can order the words. In fact, the lexicographic order is
sometimes referred to as the first difference order. Note also that if  is a set and  a total order on  for , then by the well
ordering principle, there exists a well ordering  of , and hence there exists a lexicographic total order on the product space .
As a mathematical structure, the lexicographic order is not as obscure as you might think.

 is isomorphic to the lexicographic product of  with , where  is the ordinary order for real numbers.

Proof

Every  can be uniquely expressed in the form  where  is the integer part and  is
the remainder. Thus  is a one-to-one function from  onto . For example,  maps to , while 
maps to . Suppose that , where of course  are the integer parts of  and ,
respectively, and  are the corresponding remainders. Then  if and only if  or  and . Again, to
illustrate with real real numbers, we can tell that  just by comparing the integer parts: . We can ignore the
remainders. On the other hand, to see that  we need to compare the remainders:  since the integer parts are the
same.

Limits of Sequences of Real Numbers

Suppose that  is a sequence of real numbers.

The sequence  is increasing in .

Since the sequence of infimums in the last result is increasing, the limit exists in , and is called the limit inferior of the original
sequence:

The sequence  is decreasing in .

Since the the sequence of supremums in the last result is decreasing, the limit exists in , and is called the limit superior of the
original sequence:

Note that  and equality holds if and only if  exists (and is the common value).

Vector Spaces of Functions

Suppose that  is a nonempty set, and recall that the set  of functions  is a vector space, under the usual pointwise definition
of addition and scalar multiplication. As noted in (9),  is also a partial ordered set, under the pointwise partial order:  if and only
if  for all . Consistent with the definitions (19),  is bounded if there exists  such that  for
all . Now let  denote the set of bounded functions , and for  define

 is a vector subspace of  and  is a norm on .

Proof

To show that  is a subspace, we just have to note that it is closed under addition and scalar multiplication. That is, if 
are bounded, and if , then  and  are bounded. Next we show that  satisfies the axioms of a norm. Again, let 

 and 

1. Clearly  and  if and only if  for all  if and only if , the zero function on .
2. 
3. By the usual triangle inequality on ,  for . Hence

That is, .

Si ⪯i Si i ∈ I

≤ I ∏i∈I Si

(R, ≤) (Z, ≤) ([0, 1), ≤) ≤

x ∈ R x = n+ t n = ⌊x⌋ ∈ Z t = x−n ∈ [0, 1)
x ↦ (n, t) R Z×[0, 1) 5.3 (5, 0.3) −6.7

(−7, 0.3) x = m+s,  y = n+ t ∈ R m, n ∈ Z x y

s, t ∈ [0, 1) x < y m < n m = n s < t

5.3 < 7.8 5 < 7
6.4 < 6.7 0.4 < 0.7

( , , …)a1 a2

inf{ , …}an an+1 n ∈ N+

R∪ {∞}

= inf{ , , …}lim inf
n→∞

an lim
n→∞

an an+1 (1.4.3)

sup{ , , …}an an+1 n ∈ N+

R∪ {−∞}

= sup{ , , …}lim sup
n→∞

an lim
n→∞

an an+1 (1.4.4)

≤lim infn→∞ an lim supn→∞ an limn→∞ an

S V f : S →R

V f ⪯ g

f(x) ≤ g(x) x ∈ S f ∈ V C ∈ (0, ∞) |f(x)| ≤ C

x ∈ S U f : S →R f ∈U

∥f∥ = sup{|f(x)| : x ∈ S} (1.4.5)

U V ∥ ⋅ ∥ U

U f , g : S →R

c ∈ R f +g cf ∥ ⋅ ∥
f , g ∈U c ∈ R

∥f∥ ≥ 0 ∥f∥ = 0 f(x) = 0 x ∈ S f = 0 S

∥cf∥ = sup{|cf(x)| : x ∈ S} = |c| sup{|f(x)| : x ∈ S} = |c| ∥f∥
R |f(x) +g(x)| ≤ |f(x)| +|g(x)| x ∈ S

sup{|f(x) +g(x)| : x ∈ S} ≤ sup{|f(x)| +|g(x)| : x ∈ S} ≤ sup{|f(x)| : x ∈ S} +sup{|g(x)| : x ∈ S} (1.4.6)

∥f +g∥ ≤ ∥f∥ +∥g∥
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Recall that part (a) is the positive property, part (b) is the scaling property, and part (c) is the triangle inequality.

Appropriately enough,  is called the supremum norm on . Vector spaces of bounded, real-valued functions, with the supremum
norm are especially important in probability and random processes. We will return to this discussion again in the advanced sections on
metric spaces and measure theory.

Computational Exercises

Let .

1. Sketch the Hasse graph corresponding to the ordinary order  on .
2. Sketch the Hasse graph corresponding to the division partial order  on .

Answer

1. The Hasse graph of 
Hasse graph

2. The Hasse graph of 
Hasse graph

Consider the ordinary order  on the set of real numbers , and let  where . Find each of the following that exist:

1. The set of minimal elements of 
2. The set of maximal elements of 
3. 
4. 
5. The set of lower bounds of 
6. The set of upper bounds of 
7. 
8. 

Answer
1. 
2. 
3. 
4. Does not exist
5. 
6. 
7. 
8. 

Again consider the division partial order  on the set of positive integers  and let . Find each of the following
that exist:

1. The set of minimal elements of 
2. The set of maximal elements of 
3. 
4. 
5. The set of lower bounds of 
6. The set of upper bounds of 
7. 
8. .

Answer
1. 
2. 
3. Does not exist
4. 
5. 
6. 

∥ ⋅ ∥ U

S = {2, 3, 4, 6, 12}

≤ S

∣ S

(S, ≤)

(S, |)

≤ R A = [a, b) a < b

A

A

min(A)
max(A)

A

A

inf(A)
sup(A)

{a}
∅
a

(−∞, a]
[b, ∞)
a

b

∣ N+ A = {2, 3, 4, 6, 12}

A

A

min(A)
max(A)

A

A

inf(A)
sup(A)

{2, 3}
{12}

12
{1}
{12, 24, 36, …}
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7. 
8. 

Let .

1. Give  in list form.
2. Describe the Hasse graph of 

Answer
1. 
2. For  and , there is a directed edge from  to 

Note that the Hasse graph of  looks the same as the graph of , except for the labels on the vertices. This symmetry is because of
the complement relationship.

Let .

1. Give  in list form.
2. Describe the Hasse graph of 

Answer
1. 
2. For  and , there is a directed edge from  to 

Note again that the Hasse graph of  looks the same as the graph of , except for the labels on the vertices. This symmetry is
because the complement relationship.

Suppose that  and  are subsets of a universal set . Let  denote the collection of the 16 subsets of  that can be constructed
from  and  using the set operations. Show that  is isomorphic to the partially ordered set in the previous exercise. Use the
Venn diagram app to help.

Proof

Let , , , . Our basic assumption is that  and  are in “general position”, so that 
 are distinct and nonempty. Note also that  partitions . Now, map each subset  of  to . This

function is an isomorphism from  to . That is, for  and  subsets of ,  if and only if .

This page titled 1.4: Partial Orders is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services)
via source content that was edited to the style and standards of the LibreTexts platform.

1
12

S = {a, b, c}

P(S)
(P(S), ⊆)

P(S) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c},S}
A ∈P(S) x ∈ S ∖A A A∪ {x}

⊇ ⊆

S = {a, b, c, d}

P(S)
(P(S), ⊆)

P(S) = {∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d},S}
A ∈P(S) x ∈ S ∖A A A∪ {x}

⊇ ⊆

A B S A S

A B (A , ⊆)

a = A∩B b = A∩Bc c = ∩BAc d = ∩Ac Bc A B

a, b, c, d {a, b, c, d} S S {a, b, c, d} ⋃S

S A S T {a, b, c, d} S ⊆T ⋃S ⊆⋃T
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