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5.37: The Wald Distribution
      

The Wald distribution, named for Abraham Wald, is important in the study of Brownian motion. Specifically, the distribution
governs the first time that a Brownian motion with positive drift hits a fixed, positive value. In Brownian motion, the distribution of
the random position at a fixed time has a normal (Gaussian) distribution, and thus the Wald distribution, which governs the random
time at a fixed position, is sometimes called the inverse Gaussian distribution.

The Basic Wald Distribution

Distribution Functions

As usual, let  denote the standard normal distribution function.

The basic Wald distribution with shape parameter  is a continuous distribution on  with distribution function
 given by

The special case  gives the standard Wald distribution.

Proof

Note that as ,  and , and hence . As , 

and , and hence . Of course,  is clearly continuous on , so it remains to show that 

is increasing on this interval. Differentiating gives

where  is the standard normal PDF. Simple algebra shows that

so simplifying further gives

The probability density function  is given by

1.  increases and then decreases with mode 
2.  is concave upward then downward then upward again.

Proof

The formula for the PDF follows immediately from the proof of the CDF above, since . The first order properties come
from

and the second order properties from
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So  has the classic unimodal shape, but the inflection points are very complicated functions of . For the mode, note that  as
 and  as . The probability density function of the standard Wald distribution is

Open the special distribution simulator and select the Wald distribution. Vary the shape parameter and note the shape of the
probability density function. For various values of the parameter, run the simulation 1000 times and compare the empirical
density function to the probability density function.

The quantile function of the standard Wald distribution does not have a simple closed form, so the median and other quantiles must
be approximated.

Open the special distribution calculator and select the Wald distribution. Vary the shape parameter and note the shape of the
distribution and probability density functions. For selected values of the parameter, compute approximate values of the first
quartile, the median, and the third quartile.

Moments

Suppose that random variable  has the standard Wald distribution with shape parameter .

 has moment generating function  given by

Proof

The proof requires some facts about the modified Bessel function of the second kind, denoted  where the parameter .
This function is one of the two linearly independent solutions of the differential equation

The other solution, appropriately enough, is the modified Bessel function of the first kind. The function of the second kind, the
one that we care about here, is the solution that decays exponentially as . The first fact we need is that

which you can verify be direct substitution into the differential equation. The second fact that we need is the identity

Now, for the moment generating function of  we have

Combining the exponentials and doing some algebra, we can rewrite this as

The integral now has the form of the identity given above with , , and . Hence we have
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Using the explicit form of  given above and doing more algebra we get

Since the moment generating function is finite in an interval containing 0, the basic Wald distribution has moments of all orders.

The mean and variance of  are

1. 
2. 

Proof

Differentiating gives

and hence  and .

So interestingly, the mean is 1 for all values of the shape parameter, while  as  and  as .

Open the special distribution simulator and select the Wald distribution. Vary the shape parameter and note the size and
location of the mean  standard deviation bar. For various values of the parameters, run the simulation 1000 times and
compare the empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

The main tool is the differential equation for the moment generating function that we used in computing the mean and
variance:

Using this recursively, we can find the first four moments of . We already know the first two: , 
. The third and fourth are

The results then follow from the standard computational formulas for the skewness and kurtosis in terms of the moments.

It follows that the excess kurtosis is . Note that  as  and  as .
Similarly,  as  and  as .

The General Wald Distribution
The basic Wald distribution is generalized into a scale family. Scale parameters often correspond to a change of units, and so are of
basic importance.
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Suppose that  and that  has the basic Wald distribution with shape parameter . Then  has the
Wald distribution with shape parameter  and mean .

Justification for the name of the parameter  as the mean is given below. Note that the generalization is consistent—when 
we have the basic Wald distribution with shape parameter .

Distribution Functions

Suppose that  has the Wald distribution with shape parameter  and mean . Again, we let  denote the
standard normal distribution function.

 has distribution function  given by

Proof

Recall that the CDF  of  is related to the CDF  of  by

so the result follows from the CDF above, with  replaced by , and  with .

 has probability density function  given by

1.  increases and then decreases with mode 

2.  is concave upward then downward then upward again.

Proof

Recall that the PDF  of  is related to the PDF  of  by

Hence the result follows from the PDF above with  replaced by  and  with .

Once again, the graph of  has the classic unimodal shape, but the inflection points are complicated functions of the parameters.

Open the special distribution simulator and select the Wald distribution. Vary the parameters and note the shape of the
probability density function. For various values of the parameters, run the simulation 1000 times and compare the empirical
density function to the probability density function.

Again, the quantile function cannot be expressed in a simple closed form, so the median and other quantiles must be approximated.

Open the special distribution calculator and select the Wald distribution. Vary the parameters and note the shape of the
distribution and density functions. For selected values of the parameters, compute approximate values of the first quartile, the
median, and the third quartile.

Moments

Suppose again that  has the Wald distribution with shape parameter  and mean . By definition, we can
take  where  has the basic Wald distribution with shape parameter .

 has moment generating function  given by
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Proof

Recall that the MGF  of  is related to the MGF  of  by . Hence the result follows from the result MFG
above with  replaced by  and  with .

As promised, the parameter  is the mean of Wald distribution.

The mean and variance of  are

1. 
2. 

Proof

From the results for the mean and variance above and basic properties of expected value and variance, we have 
 and .

Open the special distribution simulator and select the Wald distribution. Vary the parameters and note the size and location of
the mean  standard deviation bar. For various values of the parameters, run the simulation 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

Skewness and kurtosis are invariant under scale transformations, so  and . The
results then follow from the skewness and kurtosis above, with  replaced by .

Related Distribution

As noted earlier, the Wald distribution is a scale family, although neither of the parameters is a scale parameter.

Suppose that  has the Wald distribution with shape parameters  and mean  and that . Then 
 has the Wald distribution with shape parameter  and mean .

Proof

By definition, we can take  where  has the basic Wald distribution with shape parameter . Then 
. Since  has shape parameter , the result follows from the definition.

For the next result, it's helpful to re-parameterize the Wald distribution with the mean  and the ratio . This
parametrization is clearly equivalent, since we can recover the shape parameter from the mean and ratio as . Note also that 

, the ratio of the mean to the variance. Finally, note that the moment generating function above becomes

and of course, this function characterizes the Wald distribution with this parametrization. Our next result is that the Wald
distribution is closed under convolution (corresponding to sums of independent variables) when the ratio is fixed.

Suppose that  has the Wald distribution with mean  and ratio ;  has the Wald distribution with
mean  and ratio ; and that  and  are independent. Then  has the Wald distribution with mean

 and ratio .

Proof

For , the MGF of  is
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Hence the MGF of  is

Hence  has the Wald distribution with mean  and ratio .

In the previous result, note that the shape parameter of  is , the shape parameter of  is , and the shape parameter of 
is . Also, of course, the result generalizes to a sum of any finite number of independent Wald variables, as long as
the ratio is fixed. The next couple of results are simple corollaries.

Suppose that  is a sequence of independent variables, each with the Wald distribution with shape parameter 
 and mean . Then

1.  has the Wald distribution with shape parameter  and mean .
2.  has the Wald distribution with shape parameter  and mean .

Proof
1. This follows from the previous result and induction. The mean of  of course is . The common ratio is , and

hence the shape parameter of  is .
2. This follows from (a) and the scaling result above. The mean of  of course is  and the shape parameter is 

.

In the context of the previous theorem,  is a random sample of size  from the Wald distribution, and 
 is the sample mean. The Wald distribution is infinitely divisible:

Suppose that  has the Wald distribution with shape parameter  and mean . For every ,  has
the same distribution as  where  are independent, and each has the Wald distribution with shape
parameter  and mean .

The Lévy distribution is related to the Wald distribution, not surprising since the Lévy distribution governs the first time that a
standard Brownian motion hits a fixed positive value.

For fixed , the Wald distribution with shape parameter  and mean  converges to the Lévy distribution
with location parameter 0 and scale parameter  as .

Proof

From the formula for the CDF above, note that

But the last expression is the distribution function of the Lévy distribution with location parameter 0 and shape parameter .

The other limiting distribution, this time with the mean fixed, is less interesting.

For fixed , the Wald distribution with shape parameter  and mean  converges to point mass at  and
variance 1 as .

Proof

This time, it's better to use , the moment generating function above. By rationalizing we see that for fixed  and 
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Hence  as  and the limit is the MGF of the constant random variable .

Finally, the Wald distribution is a member of the general exponential family of distributions.

The Wald distribution is a general exponential distribution with natural parameters  and , and natural statistics 
 and .

Proof

This follows from the PDF  above. If we expand the square and simplify, we can write  in the form
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