
17.1.1 https://stats.libretexts.org/@go/page/10299

17.1: Introduction to Martingalges
      

Basic Theory

Basic Assumptions

For our basic ingredients, we start with a stochastic process  on an underlying probability space , having state
space , and where the index set  (representing time) is either  (discrete time) or  (continuous time). So to review what all this
means,  is the sample space,  the -algebra of events,  the probability measure on , and  is a random variable with values in

 for each . Next, we have a filtration , and we assume that  is adapted to . To review again,  is an increasing
family of sub -algebras of , so that  for  with , and  is measurable with respect to  for . We
think of  as the collection of events up to time , thus encoding the information available at time . Finally, we assume that 

, so that the mean of  exists as a real number, for each .

There are two important special cases of the basic setup. The simplest case, of course, is when  for , so
that  is the natural filtration associated with . Another case that arises frequently is when we have a second stochastic process 

 on  with values in a general measure space , and  is the natural filtration associated with . So in
this case, our main assumption is that  is measurable with respect to  for .

The theory of martingales is beautiful, elegant, and mostly accessible in discrete time, when . But as with the theory of Markov
processes, martingale theory is technically much more complicated in continuous time, when . In this case, additional
assumptions about the continuity of the sample paths  and the filtration  are often necessary in order to have a nice theory.
Specifically, we will assume that the process  is right continuous and has left limits, and that the filtration  is right continuous and
complete. These are the standard assumptions in continuous time.

Definitions

For the basic definitions that follow, you may need to review conditional expected value with respect to a -algebra.

The process  is a martingale with respect to  if  for all  with .

In the special case that  is the natural filtration associated with , we simply say that  is a martingale, without reference to the
filtration. In the special case that we have a second stochastic process  and  is the natural filtration associated with ,
we say that  is a martingale with respect to .

The term martingale originally referred to a portion of the harness of a horse, and was later used to describe gambling strategies, such as
the one used in the Petersburg paradox, in which bets are doubled when a game is lost. To interpret the definitions above in terms of
gambling, suppose that a gambler is at a casino, and that  represents her fortune at time  and  the information available to her at
time . Suppose now that  with  and that we think of  as the current time, so that  is a future time. If  is a martingale with
respect to  then the games are fair in the sense that the gambler's expected fortune at the future time  is the same as her current fortune at
time . To venture a bit from the casino, suppose that  is the price of a stock, or the value of a stock index, at time . If  is a
martingale, then the expected value at a future time, given all of our information, is the present value.

Figure : An English-style breastplate with a running martingale attachement. By Danielle M., CC BY 3.0, from Wikipedia

But as we will see, martingales are useful in probability far beyond the application to gambling and even far beyond financial applications
generally. Indeed, martingales are of fundamental importance in modern probability theory. Here are two related definitions, with equality
in the martingale condition replaced by inequalities.

Suppose again that the process  and the filtration  satisfy the basic assumptions above.

1.  is a sub-martingale with respect to  if  for all  with .
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2.  is a super-martingale with respect to  if  for all  with .

In the gambling setting, a sub-martingale models games that are favorable to the gambler on average, while a super-martingale models
games that are unfavorable to the gambler on average. To venture again from the casino, suppose that  is the price of a stock, or the
value of a stock index, at time . If  is a sub-martingale, the expected value at a future time, given all of our information, is greater
than the present value, and if  is a super-martingale then the expected value at the future time is less than the present value. One hopes
that a stock index is a sub-martingale.

Clearly  is a martingale with respect to  if and only if it is both a sub-martingale and a super-martingale. Finally, recall that the
conditional expected value of a random variable with respect to a -algebra is itself a random variable, and so the equations and
inequalities in the definitions should be interpreted as holding with probability 1. In this section generally, statements involving random
variables are assumed to hold with probability 1.

The conditions that define martingale, sub-martingale, and super-martingale make sense if the index set  is any totally ordered set. In
some applications that we will consider later,  for fixed . In the section on backwards martingales, 

 or . In the case of discrete time when , we can simplify the definitions slightly.

Suppose that  satisfies the basic assumptions above.

1.  is a martingale with respect to  if and only if  for all .
2.  is a sub-martingale with respect to  if and only if  for all .
3.  is a super-martingale with respect to  if and only if  for all .

Proof

The conditions in the definitions clearly imply the conditions here, so we just need to show the opposite implications. Thus, assume
that the condition in (a) holds and suppose that  with . Then  so  and hence

Repeating the argument, we get to

The proof for sub and super-martingales is analogous, with inequalities replacing the last equality.

The relations that define martingales, sub-martingales, and super-martingales hold for the ordinary (unconditional) expected values.

Suppose that  with .

1. If  is a martingale with respect to  then .
2. If  is a sub-martingale with respect to  then .
3. If  is a super-martingale with respect to  then .

Proof

The results follow directly from the definitions, and the critical fact that  for .

So if  is a martingale then  has constant expected value, and this value is referred to as the mean of .

Examples

The goal for the remainder of this section is to give some classical examples of martingales, and by doing so, to show the wide variety of
applications in which martingales occur. We will return to many of these examples in subsequent sections. Without further ado, we assume
that all random variables are real-valued, unless otherwise specified, and that all expected values mentioned below exist in . Be sure to
try the proofs yourself before expanding the ones in the text.

Constant Sequence

Our first example is rather trivial, but still worth noting.

Suppose that  is a filtration on the probability space  and that  is a random variable that is measurable
with respect to  and satisfies . Let  for . Them  is a martingale with respect to .
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Since  is measurable with respect to , it is measurable with respect to  for all . Hence  is adapted to . If  with
, then .

Partial Sums

For our next discussion, we start with one of the most basic martingales in discrete time, and the one with the simplest interpretation in
terms of gambling. Suppose that  is a sequence of independent random variables with  for . Let

so that  is simply the partial sum process associated with .

For the partial sum process ,

1. If  for  then  is a sub-martingale.
2. If  for  then  is a super-martingale.
3. If  for  then  is a martingale.

Proof

Let  for . Note first that

Next,

The last equality holds since  is measurable with respect to  and  is independent of . The results now follow from the
definitions.

In terms of gambling, if  is the gambler's initial fortune and  is the gambler's net winnings on the th game, then  is the
gamblers net fortune after  games for . But partial sum processes associated with independent sequences are important far beyond
gambling. In fact, much of classical probability deals with partial sums of independent and identically distributed variables. The entire
chapter on Random Samples explores this setting.

Note that . Hence condition (a) is equivalent to  increasing, condition (b) is equivalent to 
decreasing, and condition (c) is equivalent to  constant. Here is another martingale associated with the partial sum process,
known as the second moment martingale.

Suppose that  for  and  for . Let

Then  is a martingale with respect to .

Proof

Again, let  for . Since the sequence  is independent, note that

Also,  since  for . In particular,  for . Next for ,

since  is measurable with respect to  and  is independent of . But  and 
. Hence we have  for .

So under the assumptions in this theorem, both  and  are martingales. We will generalize the results for partial sum processes below in
the discussion on processes with independent increments.
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Martingale Difference Sequences

In the last discussion, we saw that the partial sum process associated with a sequence of independent, mean 0 variables is a martingale.
Conversely, every martingale in discrete time can be written as a partial sum process of uncorrelated mean 0 variables. This representation
gives some significant insight into the theory of martingales generally. Suppose that  is a martingale with respect to the
filtration .

Let  and  for . The process  is the martingale difference sequence associated
with  and

As promised, the martingale difference variables have mean 0, and in fact satisfy a stronger property.

Suppose that  is the martingale difference sequence associated with . Then

1.  is adapted to .
2.  for  with .
3.  for 

Proof
1. Of course  is measurable with respect to . For ,  and , and hence  are measurable with respect to 

2. Let . By the martingale and adapted properties,

Next by the tower property,

Continuing (or using induction) gives the general result.
3. Since  is a martingale, it has constant mean, as noted above. Hence  for . We could

also use part (b).

Also as promised, if the martingale variables have finite variance, then the martingale difference variables are uncorrelated.

Suppose again that  is the martingale difference sequence associated with the martingale . Assume that 
 for . Then  is an uncorrelated sequence. Moreover,

Proof

Let  with . To show that  and  are uncorrelated, we just need to show that  (since ). But
by the previous result,

Finally, the variance of a sum of uncorrelated variables is the sum of the variances. Since  has mean 0,  for 
. Hence the formula for  holds.

We now know that a discrete-time martingale is the partial sum process associated with a sequence of uncorrelated variables. Hence we
might hope that there are martingale versions of the fundamental theorems that hold for a partial sum process associated with an
independent sequence. This turns out to be true, and is a basic reason for the importance of martingales.

Discrete-Time Random Walks

Suppose that  is a sequence of independent random variables with  identically distributed. We assume
that  for  and we let  denote the common mean of . Let  be the partial sum
process associated with  so that
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This setting is a special case of the more general partial sum process considered above. The process  is sometimes called a (discrete-
time) random walk. The initial position  of the walker can have an arbitrary distribution, but then the steps that the walker takes
are independent and identically distributed. In terms of gambling,  is the initial fortune of the gambler playing a sequence of
independent and identical games. If  is the amount won (or lost) on game , then  is the gambler's net fortune after  games.

For the random walk ,

1.  is a martingale if .
2.  is a sub-martingale if .
3.  is a super-martingale if 

For the second moment martingale, suppose that  has common mean  and common variance  for , and that 
.

Let  for . Then  is a martingale with respect to .

Proof

This follows from the corresponding result for a general partial sum process, above, since

We will generalize the results for discrete-time random walks below, in the discussion on processes with stationary, independent
increments.

Partial Products

Our next discussion is similar to the one on partial sum processes above, but with products instead of sums. So suppose that 
 is an independent sequence of nonnegative random variables with  for . Let

so that  is the partial product process associated with .

For the partial product process ,

1. If  for  then  is a martingale with respect to 
2. If  for  then  is a sub-martingale with respect to 
3. If  for  then  is a super-martingale with respect to 

Proof

Let  for . Since the variables are independent,

Next,

since  is measurable with respect to  and  is independent of . The results now follow from the definitions.

As with random walks, a special case of interest is when  is an identically distributed sequence.

The Simple Random Walk

Suppose now that that  is a sequence of independent random variables with  and 
for , where . Let  be the partial sum process associated with  so that
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Then  is the simple random walk with parameter , and of course, is a special case of the more general random walk studied above. In
terms of gambling, our gambler plays a sequence of independent and identical games, and on each game, wins €1 with probability  and
loses €1 with probability . So if  is the gambler's initial fortune, then  is her net fortune after  games.

For the simple random walk,

1. If  then  is a sub-martingale.
2. If  then  is a super-martingale.
3. If  then  is a martingale.

Proof

Note that  for , so the results follow from the theorem above.

So case (a) corresponds to favorable games, case (b) to unfavorable games, and case (c) to fair games.

Open the simulation of the simple symmetric random. For various values of the number of trials , run the simulation 1000 times and
note the general behavior of the sample paths.

Here is the second moment martingale for the simple, symmetric random walk.

Consider the simple random walk with parameter , and let  for . Then  is a
martingale with respect to 

Proof

Note that  and  for each , so the result follows from the general result above.

But there is another martingale that can be associated with the simple random walk, known as De Moivre's martingale and named for one
of the early pioneers of probability theory, Abraham De Moivre.

For  define

Then  is a martingale with respect to .

Proof

Note that

and

So the result follows from the theorem above on partial products.

The Beta-Bernoulli Process

Recall that the beta-Bernoulli process is constructed by randomizing the success parameter in a Bernoulli trials process with a beta
distribution. Specifically we have a random variable  that has the beta distribution with parameters , and a sequence of
indicator variables  such that given ,  is a sequence of independent variables with  for 

. As usual, we couch this in reliability terms, so that  means success on trial  and  means failure. In our study of this
process, we showed that the finite-dimensional distributions are given by
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where we use the ascending power notation  for  and . Next, let  denote the
partial sum process associated with , so that once again,

Of course  is the number of success in the first  trials and has the beta-binomial distribution defined by

Now let

This variable also arises naturally. Let  for . Then as shown in the section on the beta-Bernoulli process, 
. In statistical terms, the second equation means that  is the Bayesian estimator of the unknown

success probability  in a sequence of Bernoulli trials, when  is modeled by the random variable .

 is a martingale with respect to .

Proof

Note that  so  for . Next,

As noted above, . Substituting into the displayed equation above and doing a bit of algebra
we have

Open the beta-Binomial experiment. Run the simulation 1000 times for various values of the parameters, and compare the empirical
probability density function with the true probability density function.

Pólya's Urn Process

Recall that in the simplest version of Pólya's urn process, we start with an urn containing  red and  green balls. At each discrete time
step, we select a ball at random from the urn and then replace the ball and add  new balls of the same color to the urn. For the parameters,
we need  and . For , let  denote the color of the ball selected on the th draw, where 1 means red and 0 means
green. The process  is a classical example of a sequence of exchangeable yet dependent variables. Let 

 denote the partial sum process associated with , so that once again,

Of course  is the total number of red balls selected in the first  draws. Hence at time , the total number of red balls in the urn is 
, while the total number of balls in the urn is  and so the proportion of red balls in the urn is

 is a martingale with respect to .

Indirect proof

If  then  for  so  is a constant martingale. If  then  is equivalent to the beta-Bernoulli process
with parameters  and . Moreover,

P( = , = , … , = ) = , n ∈ , ( , , … , ) ∈ {0, 1X1 x1 X2 x2 Xn xn
a[k]b[n−k]

(a+b)[n]
N+ x1 x2 xn }n (17.1.22)
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X

= , n ∈ NYn ∑
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n
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E ( ∣ ) =E [ ] = =Zn+1 Fn

a+Yn+1

a+b+n+1
∣
∣∣Fn

E [a+( + ) ∣ ]Yn Xn+1 Fn

a+b+n+1

a+ +E ( ∣ )Yn Xn+1 Fn

a+b+n+1
(17.1.26)

E( ∣ ) = (a+ )/(a+b+n)Xn+1 Fn Yn

E( ∣ ) = = =Zn+1 Fn

(a+ ) +(a+ )/(a+b+n)Yn Yn

a+b+n+1

a+Yn

a+b+n
Zn (17.1.27)

a b

c

a, b ∈ N+ c ∈ N i ∈ N+ Xi i

X = { : n ∈ }Xn N+

Y = { : n ∈ N}Yn X

= , n ∈ NYn ∑
i=1

n

Xi (17.1.28)

Yn n n ∈ N

a+cYn a+b+cn

=Zn

a+cYn

a+b+cn
(17.1.29)

Z = { : n ∈ N}Zn X

c = 0 = a/(a+b)Zn n ∈ N Z c ∈ N+ Z

a/c b/c
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So  is a martingale by the previous theorem.

Direct Proof

Trivially,  so  for . Let . For ,

since  is measurable with respect to . But the probability of selecting a red ball on draw , given the history of the process
up to time , is simply the proportion of red balls in the urn at time . That is,

Substituting and simplifying gives .

Open the simulation of Pólya's Urn Experiment. Run the simulation 1000 times for various values of the parameters, and compare the
empirical probability density function of the number of red ball selected to the true probability density function.

Processes with Independent Increments.

Our first example above concerned the partial sum process  associated with a sequence of independent random variables . Such
processes are the only ones in discrete time that have independent increments. That is, for  with ,  is
independent of . The random walk process has the additional property of stationary increments. That is, the distribution
of  is the same as the distribution of  for  with . Let's consider processes in discrete or continuous
time with these properties. Thus, suppose that  satisfying the basic assumptions above relative to the filtration 

. Here are the two definitions.

The process  has

1. Independent increments if  is independent of  for all  with .
2. Stationary increments if  has the same distribution as  for all .

Processes with stationary and independent increments were studied in the Chapter on Markov processes. In continuous time (with the
continuity assumptions we have imposed), such a process is known as a Lévy process, named for Paul Lévy, and also as a continuous-time
random walk. For a process with independent increments (not necessarily stationary), the connection with martingales depends on the
mean function  given by  for .

Suppose that  has independent increments.

1. If  is increasing then  is a sub-martingale.
2. If  is decreasing then  is a super-martingale.
3. If  is constant then  is a martingale

Proof

The proof is just like the one above for partial sum processes. Suppose that  with . Then

But  is measurable with respect to  and  is independent of  So

Compare this theorem with the corresponding theorem for the partial sum process above. Suppose now that  is a
stochastic process as above, with mean function , and let  for . The process  is
sometimes called the compensated process associated with  and has mean function 0. If  has independent increments, then clearly so
does . Hence the following result is a trivial corollary to our previous theorem.

Suppose that  has independent increments. The compensated process  is a martingale.

= = , n ∈ NZn

a+cYn

a+b+cn

a/c+Yn

a/c+b/c+n
(17.1.30)

Z

0 ≤ ≤ 1Zn E( ) < ∞Zn n ∈ N = σ{ , , … , }Fn X1 X2 Xn n ∈ N

E ( ∣ ) =E [ ] = =Zn+1 Fn

a+cYn+1

a+b+c(n+1)
∣
∣∣Fn

E [a+c ( + ) ∣ ]Yn Xn+1 Fn

a+b+c(n+1)

a+c +cE ( ∣ )Yn Xn+1 Fn

a+b+cn+c
(17.1.31)

Yn Fn n+1
n n

E ( ∣ ) = P ( = 1 ∣ ) = =Xn+1 Fn Xn+1 Fn Zn

a+cYn

a+b+cn
(17.1.32)

E ( ∣ ) =Zn+1 Fn Zn

X V

m, n ∈ N m ≤ n −Xn Xm

( , , … , )X0 X1 Xm

−Xn Xm −Xn−m X0 m, n ∈ N m ≤ n

X = { : t ∈ T}Xt

F = { : s ∈ T}Fs

X

−Xt Xs Fs s, t ∈ T s ≤ t

−Xt Xs −Xt−s X0 s, t ∈ T

m m(t) =E( )Xt t ∈ T

X = { : t ∈ [0, ∞)}Xt

m X

m X

m X

s, t ∈ [0, ∞) s < t

E ( ∣ ) =E [ +( − ) ∣ ] =E ( ∣ ) +E ( − ∣ )Xt Fs Xs Xt Xs Fs Xs Fs Xt Xs Fs (17.1.33)

Xs Fs −Xt Xs Fs

E ( ∣ ) = +E( − ) = +m(t) −m(s)Xt Fs Xs Xt Xs Xs (17.1.34)

X = { : t ∈ [0, ∞)}Xt

m = −m(t)Yt Xt t ∈ [0, ∞) Y = { : t ∈ [0, ∞)}Yt
X X

Y

X Y

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10299?pdf


17.1.9 https://stats.libretexts.org/@go/page/10299

Next we give the second moment martingale for a process with independent increments, generalizing the second moment martingale for a
partial sum process.

Suppose that  has independent increments with constant mean function and and with  for .
Then  is a martingale where

Proof

The proof is essentially the same as for the partial sum process in discrete time. Suppose that  with . Note that 
. Next,

But  is independent of ,  is measurable with respect to , and  so

But also by independence and since  has mean 0,

Putting the pieces together gives

Of course, since the mean function is constant,  is also a martingale. For processes with independent and stationary increments (that is,
random walks), the last two theorems simplify, because the mean and variance functions simplify.

Suppose that  has stationary, independent increments, and let . Then

1.  is a martingale if 
2.  is a sub-martingale if 
3.  is a super-martingale if 

Proof

Recall that the mean function  is given by  for , so the result follows from the corresponding result for a
process with independent increments.

Compare this result with the corresponding one above for discrete-time random walks. Our next result is the second moment martingale.
Compare this with the second moment martingale for discrete-time random walks.

Suppose that  has stationary, independent increments with  and . Then 
 is a martingale where

Proof

Recall that if  then  has constant mean function. Also, , so the result follows from the
corresponding result for a process with independent increments.

In discrete time, as we have mentioned several times, all of these results reduce to the earlier results for partial sum processes and random
walks. In continuous time, the Poisson processes, named of course for Simeon Poisson, provides examples. The standard (homogeneous)
Poisson counting process  with constant rate  has stationary, independent increments and mean function
given by  for . More generally, suppose that  is piecewise continuous (and non-constant). The
non-homogeneous Poisson counting process  with rate function  has independent increments and mean function
given by

The increment  has the Poisson distribution with parameter  for  with , so the process does not
have stationary increments. In all cases,  is increasing, so the following results are corollaries of our general results:

X = { : t ∈ T}Xt var( ) < ∞Xt t ∈ T

Y = { : t ∈ T}Yt

= −var( ), t ∈ TYt X2
t Xt (17.1.35)

s, t ∈ T s < t

E( ∣ ) =E( ∣ ) −var( )Yt Fs X2
t Fs Xt

= [( − ) + = ( − +2( − ) +X2
t Xt Xs Xs]2 Xt Xs)2 Xt Xs Xs X2

s (17.1.36)

−Xt Xs Fs Xs Fs E( − ) = 0Xt Xs

E( ∣ ) =E[( − ] +2 E( − ) + =E[( − ] +X2
t Fs Xt Xs)2 Xs Xt Xs X2

s Xt Xs)2 X2
s (17.1.37)

−Xt Xs

var( ) = var[( − ) + ] = var( ) +var( − = var( ) +E[( −Xt Xt Xs Xs Xs Xt Xs)2 Xs Xt Xs)2 (17.1.38)

E( ∣ ) = −var( ) =Yt Fs X2
s Xs Ys (17.1.39)

X

X = { : t ∈ T}Xt a =E( − )X1 X0

X a = 0
X a ≥ 0
X a ≤ 0

m m(t) =E( ) +atX0 t ∈ T

X = { : t ∈ T}Xt E( ) =E( )X0 X1 =E( ) < ∞b2 X2
1

Y = { : t ∈ T}Yt

= −var( ) − t, t ∈ TYt X2
t X0 b2 (17.1.40)

E( ) =E( )X0 X1 X var( ) = var( ) + tXt X0 b2

N = { : t ∈ [0, ∞)}Nt r ∈ (0, ∞)
m(t) = rt t ∈ [0, ∞) r : [0, ∞) → (0, ∞)

N = { : t ∈ [0, ∞)}Nt r

m(t) = r(s)ds, t ∈ [0, ∞)∫
t

0
(17.1.41)

−Nt Ns m(t) −m(s) s, t ∈ [0, ∞) s < t

m
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Let  be the Poisson counting process with rate function . Then

1.  is a sub-martingale
2. The compensated process  is a martinagle.

Open the simulation of the Poisson counting experiment. For various values of  and , run the experiment 1000 times and compare
the empirical probability density function of the number of arrivals with the true probability density function.

We will see further examples of processes with stationary, independent increments in continuous time (and so also examples of continuous-
time martingales) in our study of Brownian motion.

Likelihood Ratio Tests

Suppose that  is a general measure space, and that  is a sequence of independent, identically distributed
random variables, taking values in . In statistical terms,  corresponds to sampling from the common distribution, which is usually not
completely known. Indeed, the central problem in statistics is to draw inferences about the distribution from observations of . Suppose
now that the underlying distribution either has probability density function  or probability density function , with respect to . We
assume that  and  are positive on . Of course the common special cases of this setup are

 is a measurable subset of  for some  and  is -dimensional Lebesgue measure on .
 is a countable set and  is counting measure on .

The likelihood ratio test is a hypothesis test, where the null and alternative hypotheses are

: the probability density function is .
: the probability density function is .

The test is based on the test statistic

known as the likelihood ratio test statistic. Small values of the test statistic are evidence in favor of the alternative hypothesis . Here is
our result.

Under the alternative hypothesis , the process  is a martingale with respect to , known as the likelihood ratio
martingale.

Proof

Let . For ,

Since  is measurable with respect to  and  is independent of . But under , and using the change of
variables formula for expected value, we have

This result also follows essentially from the theorem above on partial products. The sequence  given by 
 for  is independent and identically distributed, and as just shown, has mean 1 under .

Branching Processes

In the simplest model of a branching process, we have a system of particles each of which can die out or split into new particles of the
same type. The fundamental assumption is that the particles act independently, each with the same offspring distribution on . We will let 

 denote the (discrete) probability density function of the number of offspring of a particle,  the mean of the distribution, and  the
probability generating function of the distribution. Thus, if  is the number of children of a particle, then  for , 

, and  defined at least for .

Our interest is in generational time rather than absolute time: the original particles are in generation 0, and recursively, the children a
particle in generation  belong to generation . Thus, the stochastic process of interest is  where  is the

N = { : t ∈ [0, ∞)}Nt r : [0, ∞) → (0, ∞)

N

X = { −m(t) : t ∈ [0, ∞)}Nt

r t

(S,S ,μ) X = { : n ∈ N}Xn

S X

X

g0 g1 μ

g0 g1 S

S R
n n ∈ N+ μ = λn n S

S μ = # S

H0 g0

H1 g1

= , n ∈ NLn ∏
i=1

n ( )g0 Xi

( )g1 Xi

(17.1.42)

H1

H1 L= { : n ∈ N}Ln X

= σ{ , , … , }Fn X1 X2 Xn n ∈ N

E ( ∣ ) =E [ ] = E [ ]Ln+1 Fn Ln

( )g0 Xn+1

( )g1 Xn+1

∣
∣∣Fn Ln

( )g0 Xn+1

( )g1 Xn+1
(17.1.43)

Ln Fn ( )/ ( )g0 Xn+1 g1 Xn+1 Fn H1

E [ ] = (x)dμ(x) = (x)dμ(x) = 1
( )g0 Xn+1

( )g1 Xn+1
∫
S

(x)g0

(x)g1
g1 ∫

S

g0 (17.1.44)

Z = ( , , …)Z1 Z2

= ( )/ ( )Zi g0 Xi g1 Xi i ∈ N+ H1

N

f m ϕ

U f(n) = P(U = n) n ∈ N

m =E(U) ϕ(t) =E ( )tU t ∈ (−1, 1]

n n+1 X = { : n ∈ N}Xn Xn
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number of particles in the th generation for . The process  is a Markov chain and was studied in the section on discrete-time
branching chains. In particular, one of the fundamental problems is to compute the probability  of extinction starting with a single particle:

Then, since the particles act independently, the probability of extinction starting with  particles is simply . We will assume that 
 and . This is the interesting case, since it means that a particle has a positive probability of dying without

children and a positive probability of producing more than 1 child. The fundamental result, you may recall, is that  is the smallest fixed
point of  (so that ) in the interval . Here are two martingales associated with the branching process:

Each of the following is a martingale with respect to .

1.  where  for .
2.  where  for .

Proof

Let . For , note that  can be written in the form

where  is a sequence of independent variables, each with PDF  (and hence mean  and PGF ), and with 
independent of . Think of  as the number of children of the th particle in generation .

1. For ,

2. For 

Doob's Martingale

Our next example is one of the simplest, but most important. Indeed, as we will see later in the section on convergence, this type of
martingale is almost universal in the sense that every uniformly integrable martingale is of this type. The process is constructed by
conditioning a fixed random variable on the -algebras in a given filtration, and thus accumulating information about the random variable.

Suppose that  is a filtration on the probability space , and that  is a real-valued random variable with 
. Define  for . Then  is a martingale with respect to .

Proof

For , recall that . Taking expected values gives . Suppose that 
 with . Using the tower property of conditional expected value,

The martingale in the last theorem is known as Doob's martingale and is named for Joseph Doob who did much of the pioneering work on
martingales. It's also known as the Lévy martingale, named for Paul Lévy.

Doob's martingale arises naturally in the statistical context of Bayesian estimation. Suppose that  is a sequence of
independent random variables whose common distribution depends on an unknown real-valued parameter , with values in a parameter
space . For each , let  so that  is the natural filtration associated with . In
Bayesian estimation, we model the unknown parameter  with a random variable  taking values in  and having a specified prior
distribution. The Bayesian estimator of  based on the sample  is

So it follows that the sequence of Bayesian estimators  is a Doob martingale. The estimation referred to in the
discussion of the beta-Bernoulli process above is a special case.

n n ∈ N X

q

q = P( = 0 for some n ∈ N ∣ = 1)Xn X0 (17.1.45)

x ∈ N qx

f(0) > 0 f(0) +f(1) < 1
q

ϕ ϕ(q) = q [0, 1]

X

Y = { : n ∈ N}Yn = /Yn Xn mn n ∈ N

Z = { : n ∈ N}Zn =Zn qXn n ∈ N

= σ{ , , … , }Fn X0 X1 Xn n ∈ N Xn+1

=Xn+1 ∑
i=1

Xn

Ui (17.1.46)

U = ( , , …)U1 U2 f μ ϕ U

Fn Ui i n

n ∈ N

E( ∣ ) =E( ) = E( ) = m = =Yn+1 Fn

Xn+1

mn+1

∣
∣∣Fn

1

mn+1
∑
i=0

Xn

Ui
∣
∣∣Fn

1

mn+1
Xn

Xn

mn
Yn (17.1.47)

n ∈ N

E ( ∣ ) =E ( ∣ ) =E( ) = = =Zn+1 Fn qXn+1 Fn q∑Xn
i=1 Ui ∣

∣∣Fn [ϕ(q)]Xn qXn Zn (17.1.48)

σ

F = { : t ∈ T}Ft (Ω,F ,P) X

E (|X|) < ∞ =E (X ∣ )Xt Ft t ∈ T X = { : t ∈ T}Xt F

t ∈ T | | = |E(X ∣ )| ≤E(|X| ∣ )Xt Ft Ft E(| |) ≤E(|X|) < ∞Xt

s, t ∈ T s < t

E ( ∣ ) =E [E (X ∣ ) ∣ ] =E (X ∣ ) =Xt Fs Ft Fs Fs Xs (17.1.49)

X = ( , , …)X1 X2

θ

A ⊆R n ∈ N+ = σ{ , , … , }Fn X1 X2 Xn F = { : n ∈ }Fn N+ X

θ Θ A

θ = ( , , … , )Xn X1 X2 Xn

=E(Θ ∣ ), n ∈Un Fn N+ (17.1.50)

U = ( : n ∈ )Un N+
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Density Functions

For this example, you may need to review general measures and density functions in the chapter on Distributions. We start with our
probability space  and filtration  in discrete time. Suppose now that  is a finite measure on the sample space

. For each , the restriction of  to  is a measure on the measurable space , and similarly the restriction of  to 
is a probability measure on . To save notation and terminology, we will refer to these as  and  on , respectively. Suppose
now that  is absolutely continuous with respect to  on  for each . Recall that this means that if  and  then 

 for every  with . By the Radon-Nikodym theorem,  has a density function  with respect to  on 
 for each . The density function of a measure with respect to a positive measure is known as a Radon-Nikodym derivative. The

theorem and the derivative are named for Johann Radon and Otto Nikodym. Here is our main result.

 is a martingale with respect to .

Proof

Let . By definition,  is measurable with respect to . Also,  (the total variation of ) for each . Since
 is a finite measure, . By definition,

On the other hand, if  then  and so . So to summarize,  is -measurable and 
 for all . By definition, this means that , and so  is a martingale with respect

to .

Note that  may not be absolutely continuous with respect to  on  or even on . On the other hand, if  is
absolutely continuous with respect to  on  then  has a density function  with respect to  on . So a natural question in this
case is the relationship between the martingale  and the random variable . You may have already guessed the answer, but at any rate it
will be given in the section on convergence.
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(Ω,F ,P) F = { : n ∈ N}Fn μ

(Ω,F) n ∈ N μ Fn (Ω, )Fn P Fn

(Ω, )Fn μ P Fn

μ P Fn n ∈ N A ∈ Fn P(A) = 0
μ(B) = 0 B ∈ Fn B ⊆ A μ : Ω →RXn P

Fn n ∈ N+

X = { : n ∈ N}Xn F

n ∈ N Xn Fn E(| |) = ∥μ∥Xn μ n ∈ N

μ ∥μ∥ < ∞

μ(A) = dP =E( ;A), A ∈∫
A

Xn Xn Fn (17.1.51)

A ∈ Fn A ∈ Fn+1 μ(A) =E( ;A)Xn+1 Xn Fn

E( ;A) =E( ;A)Xn+1 Xn A ∈ Fn E( ∣ ) =Xn+1 Fn Xn X

F

μ P F = σ ( )F∞ ⋃∞
n=0 Fn μ

P F∞ μ X P F∞

X X
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