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16.15: Introduction to Continuous-Time Markov Chains
      

This section begins our study of Markov processes in continuous time and with discrete state spaces. Recall that a Markov process with a discrete
state space is called a Markov chain, so we are studying continuous-time Markov chains. It will be helpful if you review the section on general
Markov processes, at least briefly, to become familiar with the basic notation and concepts. Also, discrete-time chains plays a fundamental role,
so you will need review this topic also.

We will study continuous-time Markov chains from different points of view. Our point of view in this section, involving holding times and the
embedded discrete-time chain, is the most intuitive from a probabilistic point of view, and so is the best place to start. In the next section, we
study the transition probability matrices in continuous time. This point of view is somewhat less intuitive, but is closest to how other types of
Markov processes are treated. Finally, in the third introductory section we study the Markov chain from the view point of potential matrices. This
is the least intuitive approach, but analytically one of the best. Naturally, the interconnections between the various approaches are particularly
important.

Preliminaries
As usual, we start with a probability space , so that  is the set of outcomes,  the -algebra of events, and  the probability measure
on the sample space . The time space is  where as usual,  is the Borel -algebra on  corresponding to the standard
Euclidean topology. The state space is  where  is countable and  is the power set of . So every subset of  is measurable, as is every
function from  to another measurable space. Recall that  is also the Borel  algebra corresponding to the discrete topology on . With this
topology, every function from  to another topological space is continuous. Counting measure  is the natural measure on , so in the
context of the general introduction, integrals over  are simply sums. Also, kernels on  can be thought of as matrices, with rows and sums
indexed by . The left and right kernel operations are generalizations of matrix multiplication.

Suppose now that  is stochastic process with state space . For , let , so that 
 is the -algebra of events defined by the process up to time . The collection of -algebras  is the natural filtration

associated with . For technical reasons, it's often necessary to have a filtration  that is slightly finer than the natural one,
so that  for  (or in equivlaent jargon,  is adapted to ). See the general introduction for more details on the common ways
that the natural filtration is refined. We will also let , the -algebra of events defined by the process from time  onward.
If  is thought of as the present time, then  is the collection of events in the past and  is the collection of events in the future.

It's often necessary to impose assumptions on the continuity of the process  in time. Recall that  is right continuous if  is right
continuous on  for every , and similarly  has left limits if  has left limits on  for every . Since  has the
discrete topology, note that if  is right continuous, then for every  and , there exists  (depending on  and ) such that 

 for . Similarly, if  has left limits, then for every  and  there exists  (depending on  and ) such
that  is constant for .

The Markov Property

There are a number of equivalent ways to state the Markov property. At the most basic level, the property states that the past and future are
conditionally independent, given the present.

The process  is a Markov chain on  if for every , , and ,

Another version is that the conditional distribution of a state in the future, given the past, is the same as the conditional distribution just given the
present state.

The process  is a Markov chain on  if for every , and ,

Technically, in the last two definitions, we should say that  is a Markov process relative to the filtration . But recall that if  satisfies the
Markov property relative to a filtration, then it satisfies the Markov property relative to any coarser filtration, and in particular, relative to the
natural filtration. For the natural filtration, the Markov property can also be stated without explicit reference to -algebras, although at the cost of
additional clutter:

The process  is a Markov chain on  if and only if for every , time sequence  with 
, and state sequence ,
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As usual, we also assume that our Markov chain  is time homogeneous, so that  for 
 and . So, for a homogeneous Markov chain on , the process  given , is independent of 

and equivalent to the process  given , for every  and . That is, if the chain is in state  at a
particular time , it does not matter how the chain got to ; the chain essentially starts over in state .

The Strong Markov Property

Random times play an important role in the study of continuous-time Markov chains. It's often necessary to allow random times to take the value 
, so formally, a random time  is a random variable on the underlying sample space  taking values in . Recall also that a random

time  is a stopping time (also called a Markov time or an optional time) if  for every . If  is a stopping time, the -
algebra associated with  is

So  is the collection of events up to the random time  in the same way that  is the collection of events up to the deterministic time 
. We usually want the Markov property to extend from deterministic times to stopping times.

The process  is a strong Markov chain on  if for every stopping time , , and ,

So, for a homogeneous strong Markov chain on , the process  given , is independent of  and equivalent to the
process  given , for every stopping time  and . That is, if the chain is in state  at a stopping time , then
the chain essentially starts over at , independently of the past.

Holding Times and the Jump Chain
For our first point of view, we sill study when and how our Markov chain  changes state. The discussion depends heavily on properties of the
exponential distribution, so we need a quick review.

The Exponential Distribution

A random variable  has the exponential distribution with rate parameter  if  has a continuous distribution on  with probability
density function  given by  for . Equivalently, the right distribution function  is given by

The mean of the distribution is  and the variance is . The exponential distribution has an amazing number of characterizations. One of the
most important is the memoryless property which states that a random variable  with values in  has an exponential distribution if and only
if the conditional distribution of  given  is the same as the distribution of  itself, for every . It's easy to see that the
memoryless property is equivalent to the law of exponents for right distribution function , namely  for .
Since  is right continuous, the only solutions are exponential functions.

For our study of continuous-time Markov chains, it's helpful to extend the exponential distribution to two degenerate cases,  with
probability 1, and  with probability 1. In terms of the parameter, the first case corresponds to  so that  for
every , and the second case corresponds to  so that  for every . Note that in both cases, the
function  satisfies the law of exponents, and so corresponds to a memoryless distribution in a general sense. In all cases, the mean of the
exponential distribution with parameter  is , where we interpret  and .

Holding Times

The Markov property implies the memoryless property for the random time when a Markov process first leaves its initial state. It follows that this
random time must have an exponential distribution.

Suppose that  is a Markov chain on , and let . For , the conditional
distribution of  given  is exponential with parameter .

Proof

Let  and . The events  and  imply . By the Markov property, given , the chain starts over at
time  in state , independent of  and , since both events are in . Hence for ,

It follows that  has the memoryless property, and hence has an exponential distribution with parameter .

So, associated with the Markov chain  on  is a function  that gives the exponential parameters for the holding times in the
states. Considering the ordinary exponential distribution, and the two degenerate versions, we are led to the following classification of states:
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Suppose again that  is a Markov chain on  with exponential parameter function . Let .

1. If  then , and  is said to be an absorbing state.
2. If  then  and  is said to be an stable state.
3. If  then , and  is said to be an instantaneous state.

As you can imagine, an instantaneous state corresponds to weird behavior, since the chain starting in the state leaves the state at times arbitrarily
close to 0. While mathematically possible, instantaneous states make no sense in most applications, and so are to be avoided. Also, the proof of
the last result has some technical holes. We did not really show that  is a valid random time, let alone a stopping time. Fortunately, one of our
standard assumptions resolves these problems.

Suppose again that  is a Markov chain on . If the process  and the filtration  are right continuous, then

1.  is a stopping time.
2.  has no instantaneous states.
3.  if  is stable.
4.  is a strong Markov process.

Proof
1. Let . By right continuity,

But for , . The last event in the displayed equation is a countable union, so . Since  is
right continuous,  is a stopping time.

2. Suppose that  and . Since  is right continuous, there exists  such that  for  and hence 
. So .

3. Similarly, suppose that  and that  and . Since  is right continuous, there exists  such that 
 for . But by definition of , there exists  with . Hence 

.

There is actually a converse to part (b) that states that if  has no instantaneous states, then there is a version of  that is right continuous. From
now on, we will assume that our Markov chains are right continuous with probability 1, and hence have no instantaneous states. On the other
hand, absorbing states are perfectly reasonable and often do occur in applications. Finally, if the chain enters a stable state, it will stay there for a
(proper) exponentially distributed time, and then leave.

The Jump Chain

Without instantaneous states, we can now construct a sequence of stopping times. Basically, we let  denote the th time that the chain changes
state for , unless the chain has previously been caught in an absorbing state. Here is the formal construction:

Suppose again that  is a Markov chain on . Let  and . Recursively, suppose
that  is defined for . If  let . Otherwise, let

Let .

In the definition of , of course, , so  is the number of changes of state. If , the chain was sucked into an absorbing state
at time . Since we have ruled out instantaneous states, the sequence of random times in strictly increasing up until the (random) term . That
is, with probability 1, if  and  then . Of course by construction, if  then . The increments 
for  with  are the times spent in the states visited by . The process at the random times when the state changes forms an embedded
discrete-time Markov chain.

Suppose again that  is a Markov chain on . Let  denote the stopping times and  the random index,
as defined above. For , let  if  and  if . Then  is a (homogenous) discrete-time
Markov chain on , known as the jump chain of .

Proof

For  let , the -algebra of events for the process , up to the discrete time . Let . If  is stable, then
given , the random times  and  are finite with probability 1. (Note that we cannot get to  from an absorbing state.) So

But by the strong Markov property, given , the chain starts over at time  in state , independent of . Hence

X = { : t ∈ [0, ∞)}Xt S λ x ∈ S

λ(x) = 0 P(τ = ∞ ∣ = x) = 1X0 x

λ(x) ∈ (0, ∞) P(0 < τ < ∞ ∣ = x) = 1X0 x

λ(x) = ∞ P(τ = 0 ∣ = x) = 1X0 x

τ

X = { : t ∈ [0, ∞)}Xt S X F

τ

X

P( ≠ x ∣ = x) = 1Xτ X0 x ∈ S

X

t ∈ [0, ∞)

{τ < t} = { ≠  for some s ∈ (0, t)} = { ≠  for some rational s ∈ (0, t)}Xs X0 Xs X0 (16.15.8)
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On the other hand, if  is an absorbing state, then by construction,

where  is the identity matrix on .

As noted in the proof, the one-step transition probability matrix  for the jump chain  is given for  by

where  is the identity matrix on . Of course  satisfies the usual properties of a probability matrix on , namely  for 
and  for . But  satisfies another interesting property as well. Since the the state actually changes at time  starting in a
stable state, we must have  if  is stable and  if  is absorbing.

Given the initial state, the holding time and the next state are independent.

If  and  then 

Proof

Suppose that  is a stable state, so that given , the stopping time  has a proper exponential distribution with parameter 
. Note that

Note that if  and  then  also. By the Markov property, given , the chain starts over at time  in state ,
independent of  and , both events in . Hence

Of course .

If  is an absorbing state then , , and . Hence

The following theorem is a generalization. The changes in state and the holding times are independent, given the initial state.

Suppose that  and that  is a sequence of stable states and  is a sequence in . Then

Proof

The proof is by induction, and the essence is captured in the case . So suppose that  are stable states and .
Then

But  by the previous theorem. Next, by definition,

But by the strong Markov property, given , the chain starts over at time  in state , independent of the events  and 
 (both events in ). Hence using the previous theorem again,

Regularity

We now know quite a bit about the structure of a continuous-time Markov chain  (without instantaneous states). Once the
chain enters a given state , the holding time in state  has an exponential distribution with parameter , after which the next
state  is chosen, independently of the holding time, with probability . However, we don't know everything about the chain. For the
sequence  defined above, let , which exists in  of course, since the sequence is increasing. Even though the
holding time in a state is positive with probability 1, it's possible that  with positive probability, in which case we know nothing about 

P( = y ∣ = x, ) = P( = y ∣ = x), y ∈ SYn+1 Yn Gn Xτ X0 (16.15.11)
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x2 τ2 τ1 t2 X0 x0 Xτ1

x1 τ1 t1 (16.15.17)
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{ > }τ1 t1 Fτ1
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for . The event  is known as explosion, since it means that the  makes infinitely many transitions before the finite time .
While not as pathological as the existence of instantaneous states, explosion is still to be avoided in most applications.

A Markov chain  on  is regular if each of the following events has probability 1:

1.  is right continuous.
2.  as .

There is a simple condition on the exponential parameters and the embedded chain that is equivalent to condition (b).

Suppose that  is a right-continuous Markov chain on  with exponential parameter function  and embedded chain 
. Then  as  with probability 1 if and only if  with probability 1.

Proof

Given , the distribution of  is the distribution of  where  are independent,
and  has the exponential distribution with parameter . Note that . In the section on the exponential
distribution, it's shown that  if and only if .

If  is bounded, then  is regular.

Suppose that  is a Markov chain on  with exponential parameter function . If  is bounded, then  is regular.

Proof

Suppose that  for , where . Then in particular,  has no instantaneous states and so is right continuous. Moreover,
 for  so  with probability 1, where as ususal,  is the jump chain of .

Here is another sufficient condition that is useful when the state space is infinite.

Suppose that  is a Markov chain on  with exponential parameter function . Let 
. Then  is regular if

Proof

By assumption,  for , so there are no instantaneous states and so we can take  to be right continuous. Next,

where  is the number of times that the jump chain  is in state . Suppose that . Note that it
must be the case that , and hence , is infinite. With probability 1, either  enters an absorbing state (a state  with ), or 

 for some , or  for infinitely many . In any case,

As a corollary, note that if  is finite then  is bounded, so a continuous-time Markov chain on a finite state space is regular. So to review, if the
exponential parameter function  is finite, the chain  has no instantaneous states. Even better, if  is bounded or if the conditions in the last
theorem are satisfied, then  is regular. A continuous-time Markov chain with bounded exponential parameter function  is called uniform, for
reasons that will become clear in the next section on transition matrices. As we will see in later section, a uniform continuous-time Markov chain
can be constructed from a discrete-time chain and an independent Poisson process. For the next result, recall that to say that  has left limits with
probability 1 means that the random function  has limits from the left on  with probability 1.

If  is regular then  has left limits with probability 1.

Proof

Suppose first that there are no absorbing states. Under the assumptions, with probability 1,  for each  and  as 
. Moreover,  for  and . So  has left limits on  with probability 1. The same basic

argument works with absorbing states, except that possibly .

Thus, our standard assumption will be that  is a regular Markov chain on . For such a chain, the behavior of  is
completely determined by the exponential parameter function  that governs the holding times, and the transition probability matrix  of the

t ≥ τ∞ { < ∞}τ∞ X τ∞

X = { : t ∈ [0, ∞)}Xt S

X

→ ∞τn n → ∞

X = { : t ∈ [0, ∞)}Xt S λ

Y = ( , , …)Y0 Y1 → ∞τn n → ∞ 1/λ( ) = ∞∑∞
n=0 Yn

Y = ( , , …)y0 y1 =τ∞ limn→∞ τn =T∞ ∑∞
n=0 Tn ( , , …)T0 T1

Tn λ( )yn E( ) = 1/λ( )T∞ ∑∞
n=0 yn

P( = ∞) = 1T∞ E( ) = ∞T∞

λ X

X = { : t ∈ [0, ∞)}Xt S λ λ X

λ(x) ≤ r x ∈ S r ∈ (0, ∞) X

1/λ(x) ≥ 1/r x ∈ S 1/λ( ) = ∞∑∞
n=0 Yn Y = ( , , …)Y0 Y1 X

X = { : t ∈ [0, ∞)}Xt S λ : S → [0, ∞)

= {x ∈ S : λ(x) > 0}S+ X

= ∞∑
x∈S+

1

λ(x)
(16.15.19)

λ(x) < ∞ x ∈ S X

= 1( = x) = 1( = x) =∑
n=0

∞
1

λ( )Yn
∑
n=0

∞

∑
x∈S

1

λ(x)
Yn ∑

x∈S

1

λ(x)
∑
n=0

∞

Yn ∑
x∈S

Nx

λ(x)
(16.15.20)

= 1( = x)Nx ∑∞
n=0 Yn Y x 1/λ(x) = ∞∑x∈S+

S+ S Y x ∈ S λ(x) = 0

= ∞Nx x ∈ S+ ≥ 1Nx x ∈ S+

= = ∞∑
n=0

∞ 1

λ( )Yn
∑
x∈S

Nx

λ(x)
(16.15.21)

S λ

λ X λ

X λ

X

t ↦ Xt (0, ∞)

X = { : t ∈ [0, ∞)}Xt X

0 < < ∞τn n ∈ N → ∞τn
n → ∞ =Xt Yn t ∈ [ , )τn τn+1 n ∈ N t ↦ Xt (0, ∞)

= ∞τn+1

X = { : t ∈ [0, ∞)}Xt S X
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jump chain . Conversely, when modeling real stochastic systems, we often start with  and . It's then relatively straightforward to construct
the continuous-time Markov chain that has these parameters. For simplicity, we will assume that there are no absorbing states. The inclusion of
absorbing states is not difficult, but mucks up the otherwise elegant exposition.

Suppose that  is bounded and that  is a probability matrix on  with the property that  for every . The
regular, continuous-time Markov chain  with exponential parameter function  and jump transition matrix  can be
constructed as follows:

1. First construct the jump chain  having transition matrix .
2. Next, given , the transition times  are constructed so that the holding times  are

independent and exponentially distributed with parameters 
3. Again given , define  for  and for , define  for .

Additional details

Using product sets and product measures, it's straightforward to construct a probability space  with the following objects and
properties:

1.  is a Markov chain on  with transition matrix .
2.  is a collection of independent random variables with values in  such that  has the exponential distribution

with parameter  for each .
3.  and  are independent.

Define  as follows: First,  and  for . Recursively, if  is defined on , let 
 and then let  for for . Since  is bounded,  as , so  is well defined for 

. By construction,  is right continuous and has left limits. The Markov property holds by the memoryless property of the
exponential distribution and the fact that  is a Markov chain. Finally, by construction,  has exponential parameter function  and jump
chain .

Often, particularly when  is finite, the essential structure of a standard, continuous-time Markov chain can be succinctly summarized with a
graph.

Suppose again that  is a regular Markov chain on , with exponential parameter function  and embedded transition
matrix . The state graph of  is the graph with vertex set  and directed edge set . The graph is labeled
as follows:

1. Each vertex  is labeled with the exponential parameter .
2. Each edge  is labeled with the transition probability .

So except for the labels on the vertices, the state graph of  is the same as the state graph of the discrete-time jump chain . That is, there is a
directed edge from state  to state  if and only if the chain, when in , can move to  after the random holding time in . Note that the only
loops in the state graph correspond to absorbing states, and for such a state there are no outward edges.

Let's return again to the construction above of a continuous-time Markov chain from the jump transition matrix  and the exponential parameter
function . Again for simplicity, assume there are no absorbing states. We assume that  for all , so that the state really does
change at the transition times. However, if we drop this assumption, the construction still produces a continuous-time Markov chain, but with an
altered jump transition matrix and exponential parameter function.

Suppose that  is a transition matrix on  with  for , and that  is bounded. The stochastic process 
 constructed above from  and  is a regular, continuous-time Markov chain with exponential parameter function 

and jump transition matrix  given by

Proof 1

As before, the fact that  is a continuous-time Markov chain follows from the memoryless property of the exponential distribution and the
Markov property of the jump chain . By construction,  is right continuous and has left limits. The main point, however, is that 

 is not necessarily the sequence of transition times, when the state actually changes. So we just need to determine the parameters.
Suppose  and let  have the exponential distribution with parameter , as in the construction. Let  denote the time
when the state actually does change. For , the event  can happen in two ways: either  or  for some , the
chain jumps back into state  at time , and the process then stays in  for a period of at least . Thus let .
Taking the two cases, conditioning on , and using the Markov property gives

Y λ Q

λ : S → (0, ∞) Q S Q(x, x) = 0 x ∈ S

X = { : t ∈ [0, ∞)}Xt λ Q

Y = ( , , …)Y0 Y1 Q

Y = ( , , …)x0 x1 ( , , …)τ1 τ2 ( , − , …)τ1 τ2 τ1

(λ( ),λ( ), …)x0 x1

Y = ( , , …)x0 x1 =Xt x0 0 ≤ t < τ1 n ∈ N+ =Xt xn ≤ t < )τn τn+1

(Ω,F ,P)

Y = ( , , …)Y0 Y1 S Q

T = { : x ∈ S}Tx [0, ∞) Tx
λ(x) x ∈ S

Y T

X = { : t ∈ [0, ∞)}Xt =τ1 TY0
=Xt Y0 0 ≤ t < τ1 Xt [0, )τn

= +τn+1 τn TYn =Xt Yn ≤ t <τn τn+1 λ → ∞τn n → ∞ Xt

t ∈ [0, ∞) t ↦ Xt

Y X λ

Y

S

X = { : t ∈ [0, ∞)}Xt S λ

Q X S E = {(x, y) ∈ : Q(x, y) > 0}S2

x ∈ S λ(x)

(x, y) ∈ E Q(x, y)

X Y

x y x y x

Q

λ Q(x, x) = 0 x ∈ S

Q S×S Q(x, x) < 1 x ∈ S λ : S → (0, ∞)

X = { : t ∈ [0, ∞)}Xt Q λ λ
~

Q
~

(x) = λ(x)[1 −Q(x, x)], x ∈ Sλ
~

(x, y) = , (x, y) ∈ , x ≠ yQ
~ Q(x, y)

1 −Q(x, x)
S2

X

Y t ↦ Xt

( , , …)τ1 τ2

= x ∈ SX0 τ = τ1 λ(x) T

t ∈ [0, ∞) T > t τ > t τ = s s ∈ [0, t]

x s x t−s (t) = P(T > t ∣ = x)Fx X0

τ
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Using the change of variables  and simplifying gives

Differentiating with respect to  then gives

with the initial condition . The solution of course is  for . When the state does
change, the new state  is chosen with probability

Proof 2

As in the first proof, we just need to determine the parameters. Given , the discrete time  when  first changes state has the
geometric distribution on  with success parameter . Hence the time until  actually changes state has the distribution of 

 where  is a sequence of independent variables, each exponentially distributed with parameter  and
with  independent of . In the section on the exponential distribution, it is shown that  also has the exponential distribution, but with
parameter . (The proof is simple using generating functions.) As in the first proof, when the state does change, the new
state  is chosen with probability

This construction will be important in our study of chains subordinate to the Poisson process.

Transition Times

The structure of a regular Markov chain on , as described above, can be explained purely in terms of a family of independent, exponentially
distributed random variables. The main tools are some additional special properties of the exponential distribution, that we need to restate in the
setting of our Markov chain. Our interest is in how the process evolves among the stable states until it enters an absorbing state (if it does). Once
in an absorbing state, the chain stays there forever, so the behavior from that point on is trivial.

Suppose that  is a regular Markov chain on , with exponential parameter function  and transition probability
matrix . Define  for . Then

1.  for .
2.  if  and  is stable.

The main point is that the new parameters  for  determine the exponential parameters  for , and the transition
probabilities  when  is stable and . Of course we know that if , so that  is absorbing, then . So in fact,
the new parameters, as specified by the function , completely determine the old parmeters, as specified by the functions  and . But so what?

Consider the functions , , and  as given in the previous result. Suppose that  has the exponential distribution with parameter 
for each  and that  is a set of independent random variables. Then

1.  has the exponential distribution with parameter  for .
2.  for .

Proof

These are basic results proved in the section on the exponential distribution.

So here's how we can think of a regular, continuous-time Markov chain on : There is a timer associated with each , set to the random
time . All of the timers function independently. When the chain enters state , the timers on  for  are started simultaneously.
As soon as the first alarm goes off for a particular , the chain immediately moves to state , and the process repeats. Of course, if 

 then  with probability 1, so only the timers with  and  matter (these correspond to the non-loop edges
in the state graph). In particular, if  is absorbing, then the timers on  are set to infinity for each , and no alarm ever sounds.

The new collection of exponential parameters can be used to give an alternate version of the state graph. Again, the vertex set is  and the edge
set is . But now each edge  is labeled with the exponential rate parameter . The exponential rate

(t) = + λ(x) Q(x, x) (t−s)dsFx e−λ(x)t ∫
t

0

e−λ(x)s Fx (16.15.22)

u = t−s

(t) = [1 +λ(x)Q(x, x) (u)du]Fx e−λ(x)t ∫
t

0

eλ(x)uFx (16.15.23)

t

(t) = −λ(x)[1 −Q(x, x)] (t)F ′
x Fx (16.15.24)

(0) = 1Fx (t) = exp{−λ(x)[1 −Q(x, x)]}Fx t ∈ [0, ∞)

y ≠ x

P( = y ∣ = x, ≠ x) =Y1 Y0 Y1

Q(x, y)

1 −Q(x, x)
(16.15.25)

= = xX0 Y0 N  Y

N+ 1 −Q(x, x) X

T =∑N

i=1 Ui U = ( , , …)U1 U2 λ(x)

U N T

λ(x)[1 −Q(x, x)]

y ≠ x

P( = y ∣ = x, ≠ x) =Y1 Y0 Y1

Q(x, y)

1 −Q(x, x)
(16.15.26)
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Q(x, y) = μ(x, y)/λ(x) (x, y) ∈ S2 x

μ(x, y) (x, y) ∈ S2 λ(x) x ∈ S

Q(x, y) x ∈ S y ∈ S λ(x) = 0 x Q(x, x) = 1

μ λ Q

μ λ Q Tx,y μ(x, y)

(x, y) ∈ S2 { : (x, y) ∈ }Tx,y S2

= inf { : y ∈ S}Tx Tx,y λ(x) x ∈ S

P ( = ) = Q(x, y)Tx Tx,y (x, y) ∈ S2

S (x, y) ∈ S2

Tx,y x ∈ S (x, y) y ∈ S

(x, y) y

μ(x, y) = 0 = ∞Tx,y λ(x) > 0 Q(x, y) > 0

x (x, y) y
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parameters are closely related to the generator matrix, a matrix of fundamental importance that we will study in the next section.

Examples and Exercises

The Two-State Chain

The two-state chain is the simplest non-trivial, continuous-time Markov chain, but yet this chain illustrates many of the important properties of
general continuous-time chains. So consider the Markov chain  on the set of states , with transition rate 

 from 0 to 1 and transition rate  from 1 to 0.

The transition matrix  for the embedded chain is given below. Draw the state graph in each case.

1.  if  and , so that both states are stable.

2.  if  and , so that  is absorbing and  is stable.

3.  if  and , so that  is stable and  is absorbing.

4.  if  and , so that both states are absorbing.

We will return to the two-state chain in subsequent sections.

Computational Exercises

Consider the Markov chain  on  with exponential parameter function  and embedded
transition matrix

1. Draw the state graph and classify the states.
2. Find the matrix of transition rates.
3. Classify the jump chain in terms of recurrence and period.
4. Find the invariant distribution of the jump chain.

Answer
1. The edge set is . All states are stable.
2. The matrix of transition rates is

3. The jump chain is irreducible, positive recurrent, and aperiodic.
4. The invariant distribution for the jump chain has PDF

Special Models

Read the introduction to chains subordinate to the Poisson process.

Read the introduction to birth-death chains.

Read the introduction to continuous-time queuing chains.

Read the introduction to continuous-time branching chains.

This page titled 16.15: Introduction to Continuous-Time Markov Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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