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2.8: Existence and Uniqueness
     

Suppose that  is a set and  a -algebra of subsets of , so that  is a measurable space. In many cases, it is impossible to
define a positive measure  on  explicitly, by giving a “formula” for computing  for each . Rather, we often know
how the measure  should work on some class of sets  that generates . We would then like to know that  can be extended to a
positive measure on , and that this extension is unique. The purpose of this section is to discuss the basic results on this topic. To
understand this section you will need to review the sections on Measure Theory and Special Set Structures in the chapter on
Foundations, and the section on Measure Spaces in this chapter. If you are not interested in questions of existence and uniqueness
of positive measures, you can safely skip this section.

Basic Theory

Positive Measures on Algebras

Suppose first that  is an algebra of subsets of . Recall that this means that  is a collection of subsets that contains  and is
closed under complements and finite unions (and hence also finite intersections). Here is our first definition:

A positive measure on  is a function  that satisfies the following properties:

1. 
2. If  is a countable, disjoint collection of sets in  and if  then

Clearly the definition of a positive measure on an algebra is very similar to the definition for a -algebra. If the collection of sets in
(b) is finite, then  must be in the algebra . Thus,  is finitely additive. If the collection is countably infinite, then there is
no guarantee that the union is in . If it is however, then  must be additive over this collection. Given the similarity, it is not
surprising that  shares many of the basic properties of a positive measure on a -algebra, with proofs that are almost identical.

If , then .

Proof

Note that , and the sets in the union are in the algebra  and are disjoint.

If  and  then

1. 
2. 

Proof

Part (a) follows from the previous theorem, since . Part (b) follows from part (a).

Thus  is increasing, relative to the subset partial order  on  and the ordinary order  on . Note also that if 
and  then . In the special case that , this becomes . If 

 then . These are the familiar difference and complement rules.

The following result is the subadditive property for a positive measure  on an algebra .

Suppose that  is a countable collection of sets in  and that . Then

Proof

S S σ S (S,S )
μ S μ(A) A ∈S

μ B S μ

S

A S A S

A μ : A → [0, ∞]

μ(∅) = 0
{ : i ∈ I}Ai A ∈A⋃i∈I Ai

μ( ) = μ( )⋃
i∈I

Ai ∑
i∈I

Ai (2.8.1)

σ

⋃i∈I Ai A μ

A μ

μ σ

A, B ∈A μ(B) = μ(A ∩ B) +μ(B ∖ A)

B = (A ∩ B) ∪ (B ∖ A) A

A, B ∈A A ⊆ B

μ(B) = μ(A) +μ(B ∖ A)
μ(A) ≤ μ(B)

A ∩ B = A

μ ⊆ A ≤ [0, ∞] A, B ∈A
μ(B) < ∞ μ(B ∖ A) = μ(B) −μ(A ∩ B) A ⊆ B μ(B ∖ A) = μ(B) −μ(A)

μ(S) < ∞ μ( ) = μ(S) −μ(A)Ac

μ A

{ : i ∈ I}Ai A ∈A⋃i∈I Ai

μ( ) ≤ μ( )⋃
i∈I

Ai ∑
i∈I

Ai (2.8.2)
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The proof is just like before. Assume that . Let  and  for . Then 
 is a disjoint collection of sets in  with the same union as . Also  for each  so 

. Hence if the union is in  then

For a finite union of sets with finite measure, the inclusion-exclusion formula holds, and the proof is just like the one for a
probability measure.

Suppose that  is a finite collection of sets in  where , and that  for . Then

The continuity theorems hold for a positive measure  on an algebra , just as for a positive measure on a -algebra, assuming
that the appropriate union and intersection are in the algebra. The proofs are just as before.

Suppose that  is a sequence of sets in .

1. If the sequence is increasing, so that  for each , and , then 
.

2. If the sequence is decreasing, so that  for each , and  and , then 
.

Proof
1. Note that if  for some  then  for  and  if this union is in . Thus,

suppose that  for each . Let  and  for . Then  is a disjoint
sequence in  with the same union as . Also,  and  for 

. Hence if the union is in ,

But .
2. Note that  and this sequence is increasing. Moreover, . Hence if 

 then . Thus using the continuity result for increasing sets,

Recall that if the sequence  is increasing, then we define , and if the sequence is decreasing
then we define . Thus the conclusion of both parts of the continuity theorem is

Finite additivity and continuity for increasing events imply countable additivity:

If  satisfies the properties below then  is a positive measure on .

1. 
2.  if  is a finite disjoint collection of sets in 
3.  if  is an increasing sequence of events in  and .

Proof

I =N+ =B1 A1 = ∖ ( ∪ … ∪ )Bi Ai A1 Ai−1 i ∈ {2, 3, …}
{ : i ∈ I}Bi A { : i ∈ I}Ai ⊆Bi Ai i

μ( ) ≤ μ( )Bi Ai A

μ( ) = μ( ) = μ( ) ≤ μ( )⋃
i∈I

Ai ⋃
i∈I

Bi ∑
i∈I

Bi ∑
i∈I

Ai (2.8.3)

{ : i ∈ I}Ai A #(I) = n ∈ N+ μ( ) < ∞Ai i ∈ I

μ( ) = (−1 μ( )⋃
i∈I

Ai ∑
k=1

n

)k−1 ∑
J⊆I, #(J)=k

⋂
j∈J

Aj (2.8.4)

μ A σ

( , , …)A1 A2 A

⊆An An+1 n ∈ N+ ∈A⋃∞
i=1 Ai

μ ( ) = μ( )⋃∞
i=1 Ai limn→∞ An

⊆An+1 An n ∈ N+ μ( ) < ∞A1 ∈A⋂∞
i=1 Ai

μ ( ) = μ( )⋂∞
i=1 Ai limn→∞ An

μ( ) = ∞Ak k μ( ) = ∞An n ≥ k μ ( ) = ∞⋃∞
i=1 Ai A

μ( ) < ∞Ai i =B1 A1 = ∖Bi Ai Ai−1 i ∈ {2, 3, …} ( , , …)B1 B2

A ( , , …)A1 A2 μ( ) = μ( )B1 A1 μ( ) = μ( ) −μ( )Bi Ai Ai−1

i ∈ {2, 3, …} A

μ( ) = μ( ) = μ( ) = μ( )⋃
i=1

∞

Ai ⋃
i=1

∞

Bi ∑
i=1

∞

Bi lim
n→∞

∑
i=1

n

Bi (2.8.5)

μ( ) = μ( ) + [μ( ) −μ( )] = μ( )∑n
i=1 Bi A1 ∑n

i=2 Ai Ai−1 An

∖ ∈AA1 An ( ∖ ) = ∩⋃∞
n=1 A1 An ( )⋂∞

n=1 An
c

A1

∈A⋂∞
n=1 An ( ∖ ) ∈A⋃∞

n=1 A1 An

μ( )⋂
i=1

∞

Ai = μ[ ∖ ( ∖ )] = μ( ) −μ[ ( ∖ )]A1 ⋃
i=1

∞

A1 Ai A1 ⋃
i=1

∞

A1 An

= μ( ) − μ( ∖ ) = μ( ) − [μ( ) −μ( )] = μ( )A1 lim
n→∞

A1 An A1 lim
n→∞

A1 An lim
n→∞

An

(2.8.6)

(2.8.7)

( , , …)A1 A2 =limn→∞ An ⋃∞
n=1 An

=limn→∞ An ⋂∞
n=1 An

P( )= P( )lim
n→∞

An lim
n→∞

An (2.8.8)

μ : A → [0, ∞] μ A

μ(∅) = 0
μ ( )= μ( )⋃i∈I Ai ∑i∈I Ai { : i ∈ I}Ai A
μ ( ) = μ( )⋃∞

i=1 Ai limn→∞ An ( , , …)A1 A2 A ∈A⋃∞
i=1 Ai
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All that is left to prove is additivitiy over a countably infinite collection of sets in  when the union is also in . Thus
suppose that  is a disjoint collection of sets in  with . Let  for . Then 

 and . Hence using the finite additivity and the continuity property we have

Many of the basic theorems in measure theory require that the measure not be too far removed from being finite. This leads to the
following definition, which is just like the one for a positive measure on a -algebra.

A measure  on an algebra  of subsets of  is -finite if there exists a sequence of sets  in  such that 
 and  for each . The sequence is called a -finite sequence for .

Suppose that  is a -finite measure on an algebra  of subsets of .

1. There exists an increasing -finite sequence.
2. There exists a disjoint -finite sequence.

Proof

We use the same tricks that we have used before. Suppose that  is a -finite sequence for .

1. Let . Then  for  and this sequence is increasing. Moreover, 
for  and .

2. Let  and let  for . Then  for each  and this sequence is
disjoint. Moreover,  so  and .

Extension and Uniqueness Theorems

The fundamental theorem on measures states that a positive, -finite measure  on an algebra  can be uniquely extended to 
. The extension part is sometimes referred to as the Carathéodory extension theorem, and is named for the Greek

mathematician Constantin Carathéodory.

If  is a positive, -finte measure on an algebra , then  can be extended to a positive measure on .

Proof

The proof is complicated, but here is a broad outline. First, for , we define a cover of  to be a countable collection 
 of sets in  such that . Next, we define a new set function , the outer measure, on all subsets of 

:

Outer measure satifies the following properties.

1.  for , so  is nonnegative.
2.  for , so  extends .
3. If  then , so  is increasing
4. If  for each  in a countable index set  then , so  is countably subadditive.

Next,  is said to be measurable if

Thus,  is measurable if  is additive with respect to the partition of  induced by , for every . We let 
denote the collection of measurable subsets of . The proof is finished by showing that ,  is a -algebra of subsets
of , and  is a positive measure on . It follows that  and hence  is a measure on  that extends 

A A
{ : n ∈ N}An A ∈A⋃∞

n=1 An =Bn ⋃n
i=1 Ai n ∈ N+

∈ABn =⋃∞
n=1 Bn ⋃∞

n=1 An

P( ) = P( ) = P( ) = P( ) = P( )⋃
n=1

∞

An ⋃
n=1

∞

Bn lim
n→∞

Bn lim
n→∞

∑
i=1

n

Ai ∑
i=1

∞

Ai (2.8.9)

σ
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σ

σ

( , , …)A1 A2 σ μ

=Bn ⋃n
i=1 Ai ∈ABn n ∈ N+ μ( ) ≤ μ( ) < ∞Bn ∑n
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n ∈ N+ = = S⋃∞
n=1 Bn ⋃∞

n=1 An

=C1 A1 = ∖Cn An ⋃n−1
i=1 Ai n ∈ {2, 3, …} ∈ACn n ∈ N+

⊆Cn An μ( ) ≤ μ( ) < ∞Cn An = = S⋃∞
n=1 Cn ⋃∞

n=1 An

σ μ A
σ(A )

μ σ A μ S = σ(A )

A ⊆ S A

{ : i ∈ I}Ai A A ⊆⋃i∈I Ai μ∗

S

(A) = inf{ μ( ) : { : i ∈ I} is a cover of A} , A ⊆ Sμ∗ ∑
i∈I

Ai Ai (2.8.10)

(A) ≥ 0μ∗ A ⊆ S μ∗

(A) = μ(A)μ∗ A ∈A μ∗ μ

A ⊆ B (A) ≤ (B)μ∗ μ∗ μ∗

⊆ SAi i I ( )≤ ( )μ∗ ⋃i∈I Ai ∑i∈I μ∗ Ai μ∗

A ⊆ S

(B) = (B ∩ A) + (B ∖ A), B ⊆ Sμ∗ μ∗ μ∗ (2.8.11)

A μ∗ B {A, }Ac B ⊆ S M
S A ⊆M M σ

S μ∗ M σ(A ) =S ⊆M μ∗ S μ
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Our next goal is the basic uniqueness result, which serves as the complement to the basic extension result. But first we need another
variation of the term -finite.

Suppose that  is a measure on a -algebra  of subsets of  and . Then  is -finite on  if there exists a countable
collection  such that  for  and .

The next result is the uniqueness theorem. The proof, like others that we have seen, uses Dynkin's -  theorem, named for Eugene
Dynkin.

Suppose that  is a -system and that . If  and  are positive measures on  and are -finite on , and if 
 for all , then  for all .

Proof

Suppose that  and that . Let . Then  since 
. If  then  so 

 and hence . Finally, suppose that 
 is a countable, disjoint collection of events in . Then  for each  and hence

Therefore , and so  is a -system. By assumption,  and therefore by the -  theorem, 
.

Next, by assumption there exists  with  for each  and . If  then
the inclusion-exclusion rule can be applied to

where  and . But the inclusion-exclusion formula only has terms of the form 

 where . But  since  is a -system, so by the

previous paragraph, . It then follows that for each 

Finally, letting  and using the continuity theorem for increasing sets gives .

An algebra  of subsets of  is trivially a -system. Hence, if  and  are positive measures on  and are -finite on
, and if  for , then  for . This completes the second part of the fundamental

theorem.

Of course, the results of this subsection hold for probability measures. Formally, a probability measure  on an algebra  of
subsets of  is a positive measure on  with the additional requirement that . Probability measures are trivially -finite,
so a probability measure  on an algebra  can be uniquely extended to .

However, usually we start with a collection that is more primitive than an algebra. The next result combines the definition with the
main theorem associated with the definition. For a proof see the section on Special Set Structures in the chapter on Foundations.

Suppose that  is a nonempty collection of subsets of  and let

σ

μ σ S S B ⊆S μ σ B
{ : i ∈ I} ⊆BBi μ( ) < ∞Bi i ∈ I = S⋃i∈I Bi

π λ

B π S = σ(B) μ1 μ2 S σ B
(A) = (A)μ1 μ2 A ∈B (A) = (A)μ1 μ2 A ∈S

B ∈B (B) = (B) < ∞μ1 μ2 = {A ∈S : (A ∩ B) = (A ∩ B)}LB μ1 μ2 S ∈LB

(B) = (B)μ1 μ2 A ∈LB (A ∩ B) = (A ∩ B)μ1 μ2

( ∩ B) = (B) − (A ∩ B) = (B) − (A ∩ B) = ( ∩ B)μ1 Ac μ1 μ1 μ2 μ2 μ2 Ac ∈Ac LB

{ : j ∈ J}Aj LB ( ∩ B) = ( ∩ B)μ1 Aj μ2 Aj j ∈ J

[( )∩ B]μ1 ⋃
j∈J

Aj = ( ( ∩ B)) = ( ∩ B)μ1 ⋃
j∈J

Aj ∑
j∈J

μ1 Aj

= ( ∩ B) = ( ( ∩ B)) = [( )∩ B]∑
j∈J

μ2 Aj μ2 ⋃
j∈J

Aj μ2 ⋃
j∈J

Aj

(2.8.12)

(2.8.13)

∈⋃j∈J Aj LB LB λ B ⊆LB π λ

S = σ(B) ⊆LB

∈BBi ( ) = ( ) < ∞μ1 Bi μ2 Bi i ∈ N+ S =⋃∞
i=1 Bi A ∈S

[( )∩ A] = [ (A ∩ )]μk ⋃
i=1

n

Bi μk ⋃
i=1

n

Bi (2.8.14)

k ∈ {1, 2} n ∈ N+

[ (A ∩ )]= [A ∩( )]μk ⋂j∈J Bj μk ⋂j∈J Bj J ⊆ {1, 2, … , n} ∈B⋂j∈J Bj B π

[ (A ∩ )]= [ (A ∩ )]μ1 ⋂j∈J Bj μ2 ⋂j∈J Bj n ∈ N+

[( )∩ A] = [( )∩ A]μ1 ⋃
i=1

n

Bi μ2 ⋃
i=1

n

Bi (2.8.15)

n → ∞ (A) = (A)μ1 μ2

A S π μ1 μ2 S = σ(A ) σ

A (A) = (A)μ1 μ2 A ∈A (A) = (A)μ1 μ2 A ∈S

P A
S A P(S) = 1 σ

P A S = σ(A )

B S
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If the following conditions are satisfied, then  is a semi-algebra of subsets of , and then  is the algebra generated by .

1. If  then .
2. If  then .

Suppose now that we know how a measure  should work on a semi-algebra  that generates an algebra  and then a -algebra 
. That is, we know  for each . Because of the additivity property, there is no question as

to how we should extend  to . We must have

if  for some finite, disjoint collection  of sets in  (so that ). However, we cannot assign the
values  for  arbitrarily. The following extension theorem states that, subject just to some essential consistency
conditions, the extension of  from the semi-algebra  to the algebra  does in fact produce a measure on . The consistency
conditions are that  be finitely additive and countably subadditive on .

Suppose that  is a semi-algebra of subsets of  and that  is the algebra of subsets of  generated by . A function 
 can be uniquely extended to a measure on  if and only if  satisfies the following properties:

1. If  then .
2. If  is a finite, disjoint collection of sets in  and  then .
3. If  and  where  is a countable collection of sets in  then 

If the measure  on the algebra  is -finite, then the extension theorem and the uniqueness theorem apply, so  can be extended
uniquely to a measure on the -algebra . This chain of extensions, starting with a semi-algebra , is often
how measures are constructed.

Examples and Applications

Product Spaces

Suppose that  and  are measurable spaces. For the Cartesian product set , recall that the product -algebra is

the -algebra generated by the Cartesian products of measurable sets, sometimes referred to as measurable rectangles.

Suppose that  and  are -finite measure spaces. Then there exists a unique -finite measure  on 
 such that

The measure space  is the product measure space associated with  and .

Proof

Recall that the collection  is a semi-algebra: the intersection of two product sets is another
product set, and the complement of a product set is the union of two disjoint product sets. We define  by 

. The consistency conditions hold, so  can be extended to a measure on the algebra  generated by 
. The algebra  is the collection of all finite, disjoint unions of products of measurable sets. We will now show that the

extended measure  is -finite on . Since  is -finite, there exists, an increasing sequence  of sets in  with 
 and . Similarly, there exists an increasing sequence  of sets in  with  and

. Then , and since the sets are increasing, .
The standard extension theorem and uniqueness theorem uniqueness theorem now apply, so  can be extended uniquely to a
measure on .

A ={ : { : i ∈ I} is a finite, disjoint collection of sets in B}⋃
i∈I

Bi Bi (2.8.16)

B S A B

, ∈BB1 B2 ∩ ∈BB1 B2

B ∈B ∈ABc

μ B A σ

S = σ(A ) = σ(B) μ(B) ∈ [0, ∞] B ∈B
μ A

μ(A) = μ( )∑
i∈I

Bi (2.8.17)

A =⋃i∈I Bi { : i ∈ I}Bi B A ∈A
μ(B) B ∈B

μ B A A
μ B

B S A S B
μ :B→ [0, ∞] A μ

∅ ∈B μ(∅) = 0
{ : i ∈ I}Bi B B = ∈B⋃i∈I Bi μ(B) = μ( )∑i∈I Bi

B ∈B B ⊆⋃i∈I Bi { : i ∈ I}Bi B μ(B) ≤ μ( )∑i∈I Bi

μ A σ μ

σ S = σ(A ) = σ(B) B

(S,S ) (T ,T ) S ×T σ

S ⊗T = σ{A ×B : A ∈S , B ∈ T } (2.8.18)

σ

(S,S , μ) (T ,T , ν) σ σ μ ⊗ν

(S ×T ,S ⊗T )

(μ ⊗ν)(A ×B) = μ(A)ν(B); A ∈S , B ∈ T (2.8.19)

(S ×T ,S ⊗T , μ ⊗ν) (S,S , μ) (T ,T , ν)

B = {A ×B : A ∈S , B ∈ T }
ρ :B→ [0, ∞]

ρ(A ×B) = μ(A)ν(B) ρ A
B A

ρ σ A μ σ ( , , …)A1 A2 S
μ( ) < ∞Ai = S⋃∞

i=1 Ai ( , , …)B1 B2 T ν( ) < ∞Bj

= T⋃∞
j=1 Bj ρ( × ) = μ( )ν( ) < ∞Ai Bj Ai Bj × = S ×T⋃(i,j)∈ ×N+ N+

Ai Bj

ρ

σ(A ) =S ⊗T
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Recall that for , the cross section of  in the first coordinate at  is . Similarly, the
cross section of  in the second coordinate at  is . We know that the cross sections of a
measurable set are measurable. The following result shows that the measures of the cross sections of a measurable set form
measurable functions.

Suppose again that  and  are -finite measure spaces. If  then

1.  is a measurable function from  to .
2.  is a measurable function from  to .

Proof

We prove part (a), since of course the proof for part (b) is symmetric. Suppose first that the measure spaces are finite. Let 
 denote the set of measurable rectangles. Let 

. If , then , since .
Next, suppose . Then , so  and this is a measurable function of .
Hence . Next, suppose that  is a countable, disjoint collection of sets in  and let . Then 

 is a countable, disjoint collection of sets in , and . Hence , and
this is a measurable function of . Hence . It follows that  is a -system that contains , which in turn is a -
system. It follows from Dynkins -  theorem, that . Thus .

Consider now the general case where the measure spaces are -finite. There exists a countable, increasing sequence of sets 
 for  with  for . If , then  is increasing in , and 

. Hence, for ,  is increasing in  and . Therefore 
. But  is a measurable function of  for each  by the previous

argument, so  is a measurable function of .

In the next chapter, where we study integration with respect to a measure, we will see that for , the product measure 
 can be computed by integrating  over  with respect to  or by integrating  over  with respect

to . These results, generalizing the definition of the product measure, are special cases of Fubini's theorem, named for the Italian
mathematician Guido Fubini.

Except for more complicated notation, these results extend in a perfectly straightforward way to the product of a finite number of 
-finite measure spaces.

Suppose that  and that  is a -finite measure space for . Let  and let 
denote the corresponding product -algebra. There exists a unique -finite measure  on  satisfying

The measure space  is the product measure space associated with the given measure spaces.

Lebesgue Measure

The next discussion concerns our most important and essential application. Recall that the Borel -algebra on , named for Émile
Borel, is the -algebra  generated by the standard Euclidean topology on . Equivalently,  where  is the collection
of intervals of  (of all types—bounded and unbounded, with any type of closure, and including single points and the empty set).
Next recall how the length of an interval is defined. For  with , each of the intervals , , , and 
has length . For , each of the intervals , , ,  has length , as does  itself. The standard
measure on  generalizes the length measurement for intervals.

There exists a unique measure  on  such that  for . The measure  is Lebesgue measure on 
.

Proof

Recall that  is a semi-algebra: The intersection of two intervals is another interval, and the complement of an interval is
either another interval or the union of two disjoint intervals. Define  on  by  for . Then  satisfies

C ⊆ S ×T C x ∈ S = {y ∈ T : (x, y) ∈ C}Cx

C y ∈ T = {x ∈ S : (x, y) ∈ C}C y

(S,S , μ) (T ,T , ν) σ C ∈S ⊗T

x ↦ ν( )Cx S [0, ∞]
y ↦ μ( )C y T [0, ∞]

R = {A ×B : A ∈S , B ∈ T }
C = {C ∈S ⊗T : x ↦ ν( ) is measurable}Cx A ×B ∈R A ×B ∈ C ν[(A ×B ] = ν(B) (x))x 1A

C ∈ C ( = (C c)x Cx)c ν[( ] = ν(T ) −ν( )C c)x Cx x ∈ S

∈ CC c { : i ∈ I}Ci C C =⋃i∈I Ci

{( : i ∈ I}Ci)x T = (Cx ⋃i∈I Ci)x ν( ) = ν[( ]Cx ∑i∈I Ci)x

x ∈ S C ∈ C C λ R π

π λ S ⊗T = σ(R) ⊆C C =S ⊗T

σ

∈S ⊗TCn n ∈ N+ (μ ⊗ν)( ) < ∞Cn n ∈ N+ C ∈S ⊗T C ∩ Cn n ∈ N+

C = (C ∩ )⋃∞
n=1 Cn x ∈ S (C ∩ Cn)x n ∈ N+ = (C ∩Cx ⋃∞

n=1 Cn)x

ν( ) = ν[(C ∩ ]Cx limn→∞ Cn)x x ↦ ν[(C ∩ ]Cn)x x ∈ S n ∈ N+

x ↦ ν( )Cx x ∈ S

C ∈S ⊗T
(μ ⊗ν)(C) ν( )Cx x ∈ S μ μ( )C y y ∈ T

ν

σ

n ∈ N+ ( , , )Si Si μi σ i ∈ {1, 2, … , n} S =∏n
i=1 Si S

σ σ μ (S,S )

μ( ) = ( ), ∈  for i ∈ {1, 2, … , n}∏
i=1

n

Ai ∏
i=1

n

μi Ai Ai Si (2.8.20)

(S,S , μ)

σ R

σ R R R = σ(I ) I
R

a, b ∈ R a ≤ b (a, b) [a, b) (a, b] [a, b]
b −a a ∈ R (a, ∞) [a, ∞) (−∞, a) (−∞, a] ∞ R

R

λ R λ(I) = length(I) I ∈I λ

(R,R)

I
λ I λ(I) = length(I) I ∈I λ
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the consistency condition and hence  can be extended to a measure on the algebra  generated by , namely the collection
of finite, disjoint unions of intervals. The measure  on  is clearly -finite, since  can be written as a countably infinite
union of bounded intervals. Hence the standard extension theorem and uniqueness theorem apply, so  can be extended to a
measure on .

The is name in honor of Henri Lebesgue, of course. Since  is -finite, the -algebra of Borel sets  can be completed with
respect to .

The completion of the Borel -algebra  with respect to  is the Lebesgue -algebra .

Recall that completed means that if ,  and , then  (and then ). The Lebesgue measure 
on , with either the Borel -algebra , or its completion  is the standard measure that is used for the real numbers. Other
properties of the measure space  are given below, in the discussion of Lebesgue measure on .

For , let  denote the Borel -algebra corresponding to the the standard Euclidean topology on , so that  is
the -dimensional Euclidean measurable space. The -algebra,  is also the -fold power of , the Borel -algebra of . That
is,  (  times). It is also the -algebra generated by the products of intervals:

As above, let  denote Lebesgue measure on .

For  the -fold power of , denoted  is Lebesgue measure on . In particular,

Specializing further, if  is an interval for  then

In particular,  extends the area measure on  and  extends the volume measure on . In general,  is sometimes
referred to as -dimensional volume of . As in the one-dimensional case,  can be completed with respect to ,
essentially adding all subsets of sets of measure 0 to . The completed -algebra is the -algebra of Lebesgue measurable sets.
Since  if  is open, the support of  is all of . In addition, Lebesgue measure has the regularity properties
that are concerned with approximating the measure of a set, from below with the measure of a compact set, and from above with
the measure of an open set.

The measure space  is regular. That is, for ,

1. , (inner regularity)
2.  (outer regulairty).

The following theorem describes how the measure of a set is changed under certain basic transformations. These are essential
properties of Lebesgue measure. To setup the notation, suppose that , , ,  and that  is an 
matrix. Define

Suppose that .

1. If  then  (translation invariance)
2. If  then  (dialation property)
3. If  is an  matrix then  (the scaling property)

Lebesgue-Stieltjes Measures on 

The construction of Lebesgue measure on  can be generalized. Here is the definition that we will need.

A function  that satisfis the following properties is a distribution function on 

λ J I
λ J σ R

λ

R = σ(I )

λ σ σ R
λ

σ R λ σ R∗

A ∈R∗ λ(A) = 0 B ⊆ A B ∈R∗ λ(B) = 0 λ

R σ R R∗

(R,R, λ) R
n

n ∈ N+ Rn σ R
n ( , )R

n Rn

n σ Rn n R σ R

=R⊗R⊗⋯ ⊗RRn n σ

= σ { × ×⋯ : ∈I  for j ∈ {1, 2, … n}}Rn I1 I2 In Ij (2.8.21)

λ (R,R)

n ∈ N+ n λ λn ( , )R
n Rn

( × ×⋯ × ) = λ( )λ( ) ⋯ λ( ); , … , ∈Rλn A1 A2 An A1 A2 An A1 An (2.8.22)

∈IIj j ∈ {1, 2, … , n}

( × ×⋯ × ) = length( )length( ) ⋯ length( )λn I1 I2 In I1 I2 In (2.8.23)

λ2 R2 λ3 R3 (A)λn

n A ∈Rn Rn λn

Rn σ σ

(U) > 0λn U ⊆R
n λn R

n

( , , )R
n Rn λn A ∈Rn

(A) = sup{ (C) : C  is compact and C ⊆ A}λn λn

(A) = inf{ (U) : U  is open and A ⊆ U}λn λn

n ∈ N+ A ⊆R
n x ∈ R

n c ∈ (0, ∞) T n ×n

A +x = {a +x : a ∈ A}, cA = {ca : a ∈ A}, T A = {T a : a ∈ A} (2.8.24)

A ∈Rn

x ∈ R
n (A +x) = (A)λn λn

c ∈ (0, ∞) (cA) = (A)λn cnλn

T n ×n (T A) = | det(T )| (A)λn λn

R

R

F : R →R R
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1.  is increasing: if  then .
2.  is continuous from the right:  for all .

Since  is increasing, the limit from the left at  exists in  and is denoted . Similarly 
 exists, as a real number or , and  exists, as a real number or .

If  is a distribution function on , then there exists a unique measure  on  that satisfies

The measure  is called the Lebesgue-Stieltjes measure associated with , named for Henri Lebesgue and Thomas Joannes
Stieltjes. Distribution functions and the measures associated with them are studied in more detail in the chapter on Distributions.
When the function  takes values in , the associated measure  is a probability measure, and the function  is the probability
distribution function of . Probability distribution functions are also studied in much more detail (but with less technicality) in the
chapter on Distributions.

Note that the identity function  for  is a distribution function, and the measure associated with this function is ordinary
Lebesgue measure on  constructed in(15).
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F x ≤ y F (x) ≤ F (y)
F F (t) = F (x)limt↓x x ∈ R

F x ∈ R R F ( ) = F (t)x− limt↑x

F (∞) = F (x)limx→∞ ∞ F (−∞) = F (x)limx→−∞ −∞

F R μ R

μ(a, b] = F (b) −F (a), −∞ ≤ a ≤ b ≤ ∞ (2.8.25)

μ F

F [0, 1] P F

P

x ↦ x x ∈ R

R
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