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2.5: Independence
 

In this section, we will discuss independence, one of the fundamental concepts in probability theory. Independence is frequently invoked
as a modeling assumption, and moreover, (classical) probability itself is based on the idea of independent replications of the experiment.
As usual, if you are a new student of probability, you may want to skip the technical details.

Basic Theory
As usual, our starting point is a random experiment modeled by a probability space  so that  is the set of outcomes,  the
collection of events, and  the probability measure on the sample space . We will define independence for two events, then for
collections of events, and then for collections of random variables. In each case, the basic idea is the same.

Independence of Two Events

Two events  and  are independent if

If both of the events have positive probability, then independence is equivalent to the statement that the conditional probability of one
event given the other is the same as the unconditional probability of the event:

This is how you should think of independence: knowledge that one event has occurred does not change the probability assigned to the
other event. Independence of two events was discussed in the last section in the context of correlation. In particular, for two events,
independent and uncorrelated mean the same thing.

The terms independent and disjoint sound vaguely similar but they are actually very different. First, note that disjointness is purely a set-
theory concept while independence is a probability (measure-theoretic) concept. Indeed, two events can be independent relative to one
probability measure and dependent relative to another. But most importantly, two disjoint events can never be independent, except in the
trivial case that one of the events is null.

Suppose that  and  are disjoint events, each with positive probability. Then  and  are dependent, and in fact are negatively
correlated.

Proof

Note that  but .

If  and  are independent events then intuitively it seems clear that any event that can be constructed from  should be independent of
any event that can be constructed from . This is the case, as the next result shows. Moreover, this basic idea is essential for the
generalization of independence that we will consider shortly.

If  and  are independent events, then each of the following pairs of events is independent:

1. , 
2. , 
3. , 

Proof

Suppose that  and  are independent. Then by the difference rule and the complement rule,

Hence  and  are equivalent. Parts (b) and (c) follow from (a).

An event that is “essentially deterministic”, that is, has probability 0 or 1, is independent of any other event, even itself.

Suppose that  and  are events.

1. If  or , then  and  are independent.
2.  is independent of itself if and only if  or .

Proof

(S,S , P) S S

P (S,S )

A B

P(A∩B) = P(A)P(B) (2.5.1)

P(A ∣ B) = P(A) ⟺ P(B ∣ A) = P(B) ⟺ P(A∩B) = P(A)P(B) (2.5.2)

A B A B

P(A∩B) = P(∅) = 0 P(A)P(B) > 0

A B A

B

A B

Ac B

B Ac

Ac Bc

A B

P( ∩B) = P(B) −P(A∩B) = P(B) −P(A)P(B) = P(B) [1 −P(A)] = P(B)P( )Ac Ac (2.5.3)

Ac B

A B

P(A) = 0 P(A) = 1 A B

A P(A) = 0 P(A) = 1
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1. Recall that if  then , and if  then . In either case we have 
.

2. The independence of  with itself gives  and hence either  or .

General Independence of Events

To extend the definition of independence to more than two events, we might think that we could just require pairwise independence, the
independence of each pair of events. However, this is not sufficient for the strong type of independence that we have in mind. For
example, suppose that we have three events , , and . Mutual independence of these events should not only mean that each pair is
independent, but also that an event that can be constructed from  and  (for example ) should be independent of . Pairwise
independence does not achieve this; an exercise below gives three events that are pairwise independent, but the intersection of two of the
events is related to the third event in the strongest possible sense.

Another possible generalization would be to simply require the probability of the intersection of the events to be the product of the
probabilities of the events. However, this condition does not even guarantee pairwise independence. An exercise below gives an example.
However, the definition of independence for two events does generalize in a natural way to an arbitrary collection of events.

Suppose that  is an event for each  in an index set . Then the collection  is independent if for every finite 
,

Independence of a collection of events is much stronger than mere pairwise independence of the events in the collection. The basic
inheritance property in the following result follows immediately from the definition.

Suppose that  is a collection of events.

1. If  is independent, then  is independent for every .
2. If  is independent for every finite  then  is independent.

For a finite collection of events, the number of conditions required for mutual independence grows exponentially with the number of
events.

There are  non-trivial conditions in the definition of the independence of  events.

1. Explicitly give the 4 conditions that must be satisfied for events , , and  to be independent.
2. Explicitly give the 11 conditions that must be satisfied for events , , , and  to be independent.

Answer

There are  subcollections of the  events. One is empty and  involve a single event. The remaining  subcollections
involve two or more events and correspond to non-trivial conditions.

1. , ,  are independent if and only if

2. , , ,  are independent if and only if

P(A) = 0 P(A∩B) = 0 P(A) = 1 P(A∩B) = P(B)
P(A∩B) = P(A)P(B)

A P(A) = [P(A)]2 P(A) = 0 P(A) = 1

A B C

A B A∪Bc C

Ai i I A = { : i ∈ I}Ai

J ⊆ I

P( ) = P( )⋂
j∈J

Aj ∏
j∈J

Aj (2.5.4)

A

A B B ⊆A
B B ⊆A A

−n−12n n

A B C

A B C D

2n n n −n−12n

A B C

P(A∩B) = P(A)P(B)

P(A∩C) = P(A)P(C)

P(B∩C) = P(B)P(C)

P(A∩B∩C) = P(A)P(B)P(C)

A B C D

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10133?pdf


2.5.3 https://stats.libretexts.org/@go/page/10133

If the events  are independent, then it follows immediately from the definition that

This is known as the multiplication rule for independent events. Compare this with the general multiplication rule for conditional
probability.

The collection of essentially deterministic events  is independent.

Proof

Suppose that . If  for some  then . If  for
every  then . In either case, .

The next result generalizes the theorem above on the complements of two independent events.

Suppose that  and  are two collections of events with the property that for each , either 
 or . Then  is independent if and only if  is an independent.

Proof

The proof is actually very similar to the proof for two events, except for more complicated notation. First, by the symmetry of the
relation between  and , it suffices to show  indpendent implies  independent. Next, by the inheritance property, it suffices to
consider the case where the index set  is finite.

1. Fix  and define  and  for . Suppose now that . If  then trivially, 

. If , then using the difference rule,

Hence  is a collection of independent events.
2. Suppose now that  is a general collection of events where  or  for each . Then  can be

obtained from  by a finite sequence of complement changes of the type in (a), each of which preserves independence.

The last theorem in turn leads to the type of strong independence that we want. The following exercise gives examples.

If , , , and  are independent events, then

1. , ,  are independent.
2. ,  are independent.

Proof

P(A∩B) = P(A)P(B)

P(A∩C) = P(A)P(C)
P(A∩D) = P(A)P(D)

P(B∩C) = P(B)P(C)

P(B∩D) = P(B)P(D)

P(C ∩D) = P(C)P(D)

P(A∩B∩C) = P(A)P(B)P(C)

P(A∩B∩D) = P(A)P(B)P(D)

P(A∩C ∩D) = P(A)P(C)P(D)

P(B∩C ∩D) = P(B)P(C)P(D)

P(A∩B∩C ∩D) = P(A)P(B)P(C)P(D)

, , … ,A1 A2 An

P( ) = P( )⋂
i=1

n

Ai ∏
i=1

n

Ai (2.5.5)

D = {A ∈S : P(A) = 0 or P(A) = 1}

{ , , … , } ⊆DA1 A2 An P( ) = 0Ai i ∈ {1, 2, … ,n} P( ∩ ∩ ⋯ ∩ ) = 0A1 A2 An P( ) = 1Ai

i ∈ {1, 2, … ,n} P( ∩ ∩ ⋯ ∩ ) = 1A1 A2 An P( ∩ ⋯ ∩ ) = P( )P( ) ⋯ P( )A1 A2 An A1 A2 An

A = { : i ∈ I}Ai B = { : i ∈ I}Bi i ∈ I

=Bi Ai =Bi Ac
i A B

A B A B

I

k ∈ I =Bk Ac
k =Bi Ai i ∈ I ∖ {k} J ⊆ I k ∉ J

P( )= P( )⋂j∈J Bj ∏j∈J Bj k ∈ J

P( )⋂
j∈J

Bj = P −P( )
⎛

⎝
⋂

j∈J∖{k}

Aj

⎞

⎠
⋂
j∈J

Aj

= P( ) − P( ) = P( ) [1 −P( )] = P( )∏
j∈J∖{k}

Aj ∏
j∈J

Aj

⎡

⎣
∏

j∈J∖{k}

Aj

⎤

⎦
Ak ∏

j∈J

Bj

{ : i ∈ I}Bi

B = { : i ∈ I}Bi =Bi Ai =Bi Ac
i i ∈ I B

A

A B C D

A∪B C c D

A∪Bc ∪C c Dc
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We will give proofs that use the complement theorem, but to do so, some additional notation is helpful. If  is an event, let 
and .

1. Note that  where  and note that the events in the union are disjoint. By the
distributive property,  and again the events in the union are disjoint. By additivity and
complement theorem,

By exactly the same type of argument,  and .
Directly from the result above on complements, .

2. Note that  where  and note that the events in the union are disjoint. Similarly
 where , and again the events in the union are disjoint. By the distributive

rule for set operations,

and once again, the events in the union are disjoint. By additivity and the complement theorem,

But also by additivity, the complement theorem, and the distributive property of arithmetic,

The complete generalization of these results is a bit complicated, but roughly means that if we start with a collection of indpendent events,
and form new events from disjoint subcollections (using the set operations of union, intersection, and complment), then the new events are
independent. For a precise statement, see the section on measure spaces. The importance of the complement theorem lies in the fact that
any event that can be defined in terms of a finite collection of events  can be written as a disjoint union of events of the form 

 where  or  for each .

Another consequence of the general complement theorem is a formula for the probability of the union of a collection of independent events
that is much nicer than the inclusion-exclusion formula.

If  are independent events, then

Proof

From DeMorgan's law and the independence of  we have

Independence of Random Variables

Suppose now that  is a random variable for the experiment with values in a set  for each  in a nonempty index set . Mathematically, 
 is a function from  into , and recall that  denotes the event  for . Intuitively,  is a

variable of interest in the experiment, and every meaningful statement about  defines an event. Intuitively, the random variables are
independent if information about some of the variables tells us nothing about the other variables. Mathematically, independence of a
collection of random variables can be reduced to the independence of collections of events.

The collection of random variables  is independent if the collection of events  is independent
for every choice of  for . Equivalently then,  is independent if for every finite , and for every choice of 

E = EE1

=E0 Ec

A∪B = ∩⋃(i,j)∈IA
i Bj I = {(1, 0), (0, 1), (1, 1)}

(A∪B) ∩ = ∩ ∩C c ⋃(i,j)∈IA
i Bj C 0

P[(A∪B) ∩ ] = P( )P( )P( ) = P( )P( ) P( ) = P(A∪B)P( )C c ∑
(i,j)∈I

Ai Bj C 0 ⎛

⎝
∑

(i,j)∈I

Ai Bj ⎞

⎠
C 0 C c (2.5.6)

P[(A∪B) ∩D] = P(A∪B)P(D) P[(A∪B) ∩ ∩D] = P(A∪B)P( )P(D)C c C c

P( ∩D) = P( )P(D)C c C c

A∪ = ∩Bc ⋃(i,j)∈IA
i Bj I = {(0, 0), (1, 0), (1, 1)}

∪ = ∩C c Dc ⋃(k,l)∈JC
i Dj J = {(0, 0), (1, 0), (0, 1)}

(A∪ ) ∩ ( ∪ ) = ∩ ∩ ∩Bc C c Dc ⋃
(i,j,k,l)∈I×J

Ai Bj Ck Dl (2.5.7)

P[(A∪ ) ∩ ( ∪ )] = P( )P( )P( )P( )Bc C c Dc ∑
(i,j,k,l)∈I×J

Ai Bj Ck Dl (2.5.8)

P(A∪ )P( ∪ ) = P( )P( ) P( )P( ) = P( )P( )P( )P( )Bc C c Dc
⎛

⎝
∑

(i,j)∈I

Ai Bj
⎞

⎠

⎛

⎝
∑

(k,l)∈J

Ck Dl
⎞

⎠
∑

(i,j,k,l)∈I×J

Ai Bj Ck Dl (2.5.9)

{ : i ∈ I}Ai

⋂i∈I Bi =Bi Ai =Bi Ac
i i ∈ I

, , … ,A1 A2 An

P( ) = 1 − [1 −P( )]⋃
i=1

n

Ai ∏
i=1

n

Ai (2.5.10)

, , … ,Ac
1 Ac

2 Ac
n

P( ) = 1 −P( ) = 1 − P( ) = 1 − [1 −P( )]⋃
i=1

n

Ai ⋂
i=1

n

Ac
i ∏

i=1

n

Ac
i ∏

i=1

n

Ai (2.5.11)

Xi Ti i I

Xi S Ti { ∈ B}Xi {s ∈ S : (s) ∈ B}Xi B ⊆ Ti Xi

Xi

X = { : i ∈ I}Xi {{ ∈ } : i ∈ I}Xi Bi

⊆Bi Ti i ∈ I X J ⊆ I ⊆Bj Tj
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for  we have

Details

Recall that  will have a -algebra  of admissible subsets so that  is a measurable space just like the sample space 
for each . Also  is measurable as a function from  into  for each . These technical assumptions ensure that the
definition makes sense.

Suppose that  is a collection of random variables.

1. If  is independent, then  is independent for every 
2. If  is independent for every finite  then  is independent.

It would seem almost obvious that if a collection of random variables is independent, and we transform each variable in deterministic way,
then the new collection of random variables should still be independent.

Suppose now that  is a function from  into a set  for each . If  is independent, then  is also
independent.

Proof

Except for the abstract setting, the proof of independence is easy. Suppose that  for each . Then 
 for . By the independence of , the collection of events 

 is independent.

Technically, the set  will have a -algebra  of admissible subsets so that  is a measurable space just like  and just
like the sample space . The function  is required to be measurable as a function from  into  just as  is measurable as a
function form  into . In the proof above,  so that  and hence .

As with events, the (mutual) independence of random variables is a very strong property. If a collection of random variables is
independent, then any subcollection is also independent. New random variables formed from disjoint subcollections are independent. For a
simple example, suppose that , , and  are independent real-valued random variables. Then

1. , , and  are independent.
2.  and  are independent.
3.  and  are independent.
4.  and  are independent.
5.  and  are independent.

In particular, note that statement 2 in the list above is much stronger than the conjunction of statements 4 and 5. Contrapositively, if  and 
 are dependent, then  and  are also dependent. Independence of random variables subsumes independence of events.

A collection of events  is independent if and only if the corresponding collection of indicator variables  is
independent.

Proof

Let  where  is a nonempty index set. For , the only non-trivial events that can be defined in terms of  are 
 and . So  is independent if and only if every collection of the form  is

independent, where for each , either  or . But by the complement theorem, this is equivalent to the
independence of .

Many of the concepts that we have been using informally can now be made precise. A compound experiment that consists of “independent
stages” is essentially just an experiment whose outcome is a sequence of independent random variables  where  is
the outcome of the th stage.

In particular, suppose that we have a basic experiment with outcome variable . By definition, the outcome of the experiment that consists
of “independent replications” of the basic experiment is a sequence of independent random variables  each with the
same probability distribution as . This is fundamental to the very concept of probability, as expressed in the law of large numbers. From
a statistical point of view, suppose that we have a population of objects and a vector of measurements  of interest for the objects in the

j∈ J

P( { ∈ }) = P( ∈ )⋂
j∈J

Xj Bj ∏
j∈J

Xj Bj (2.5.12)

Ti σ Ti ( , )Ti Ti (S,S )
i ∈ I Xi S Ti i ∈ I

X

X Y Y ⊆X
Y Y ⊆X X

gi Ti Ui i ∈ I { : i ∈ I}Xi { ( ) : i ∈ I}gi Xi

⊆Ci Ui i ∈ I

{ ( ) ∈ } = { ∈ ( )}gi Xi Ci Xi g−1
i

Ci i ∈ I { : i ∈ I}Xi

{{ ∈ ( )} : i ∈ I}Xi g−1
i Ci

Ui σ Ui ( , )Ui Ui ( , )Ti Ti

(S,S ) gi Ti Ui Xi

S Ti ∈Ci Ui ( ) ∈g−1 Ci Ti { ∈ ( )} ∈SXi g−1 Ci

X Y Z

sin(X) cos(Y ) eZ

(X,Y ) Z

+X2 Y 2 arctan(Z)
X Z

Y Z

X

Z (X,Y ) Z

A { : A ∈A }1A

A = { : i ∈ I}Ai I i ∈ I 1Ai

{ = 1} =1Ai Ai { = 0} =1Ai Ac
i { : i ∈ I}1Ai { : i ∈ I}Bi

i ∈ I =Bi Ai =Bi Ac
i

{ : i ∈ I}Ai

X = ( , , …)X1 X2 Xi

i

X

X = ( , , …)X1 X2

X

X
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sample. The sequence  above corresponds to sampling from the distribution of ; that is,  is the vector of measurements for the th
object drawn from the sample. When we sample from a finite population, sampling with replacement generates independent random
variables while sampling without replacement generates dependent random variables.

Conditional Independence and Conditional Probability

As noted at the beginning of our discussion, independence of events or random variables depends on the underlying probability measure.
Thus, suppose that  is an event with positive probability. A collection of events or a collection of random variables is conditionally
independent given  if the collection is independent relative to the conditional probability measure . For example, a
collection of events  is conditionally independent given  if for every finite ,

Note that the definitions and theorems of this section would still be true, but with all probabilities conditioned on .

Conversely, conditional probability has a nice interpretation in terms of independent replications of the experiment. Thus, suppose that we
start with a basic experiment with  as the set of outcomes. We let  denote the outcome random variable, so that mathematically  is
simply the identity function on . In particular, if  is an event then trivially, . Suppose now that we replicate the
experiment independently. This results in a new, compound experiment with a sequence of independent random variables ,
each with the same distribution as . That is,  is the outcome of the th repetition of the experiment.

Suppose now that  and  are events in the basic experiment with . In the compound experiment, the event that “when 
occurs for the first time,  also occurs” has probability

Proof

In the compound experiment, if we record  then the new set of outcomes is . The event that “when 
 occurs for the first time,  also occurs” is

The events in the union are disjoint. Also, since  is a sequence of independent variables, each with the distribution of 
we have

Hence, using geometric series, the probability of the union is

Heuristic Argument

Suppose that we create a new experiment by repeating the basic experiment until  occurs for the first time, and then record the
outcome of just the last repetition of the basic experiment. Now the set of outcomes is simply  and the appropriate probability
measure on the new experiment is .

Suppose that  and  are disjoint events in a basic experiment with  and . In the compound experiment obtained
by replicating the basic experiment, the event that “  occurs before ” has probability

Proof

Note that the event “  occurs before ” is the same as the event “when  occurs for the first time,  occurs”.

X X Xi i

B

B A ↦ P(A ∣ B)
{ : i ∈ I}Ai B J ⊆ I

P( B) = P( ∣ B)⋂
j∈J

Aj
∣
∣
∣ ∏

j∈J

Aj (2.5.13)

B

S X X

S A P(X ∈ A) = P(A)
( , , …)X1 X2

X Xi i

A B P(B) > 0 B

A

= P(A ∣ B)
P(A∩B)

P(B)
(2.5.14)

( , , …)X1 X2 = S×S×⋯S∞

B A

{ ∉ B, ∉ B, … , ∉ B, ∈ A∩B}⋃
n=1

∞

X1 X2 Xn−1 Xn (2.5.15)

( , , …)X1 X2 X

P ( ∉ B, ∉ B, … , ∉ B, ∈ A∩B) = P(A∩B) = P(A∩B)X1 X2 Xn−1 Xn [P ( )]Bc n−1 [1 −P(B)]n−1 (2.5.16)

P(A∩B) = =∑
n=1

∞

[1 −P(B)]n−1 P(A∩B)

1 −[1 −P(B)]

P(A∩B)

P(B)
(2.5.17)

B

B

A ↦ P(A ∣ B)

A B P(A) > 0 P(B) > 0
A B

P(A)

P(A) +P(B)
(2.5.18)

A B A∪B A
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l Total2000

l Total2000

l Total2000

l Total2000

Examples and Applications

Basic Rules

Suppose that , , and  are independent events in an experiment with , , and . Express each of
the following events in set notation and find its probability:

1. All three events occur.
2. None of the three events occurs.
3. At least one of the three events occurs.
4. At least one of the three events does not occur.
5. Exactly one of the three events occurs.
6. Exactly two of the three events occurs.

Answer
1. 
2. 
3. 
4. 
5. 
6. 

Suppose that , , and  are independent events for an experiment with , , and . Find the probability
of each of the following events:

1. 
2. 
3. 

Answer

1. 
2. 
3. 

Simple Populations

A small company has 100 employees; 40 are men and 60 are women. There are 6 male executives. How many female executives
should there be if gender and rank are independent? The underlying experiment is to choose an employee at random.

Answer

9

Suppose that a farm has four orchards that produce peaches, and that peaches are classified by size as small, medium, and large. The
table below gives total number of peaches in a recent harvest by orchard and by size. Fill in the body of the table with counts for the
various intersections, so that orchard and size are independent variables. The underlying experiment is to select a peach at random
from the farm.

Frequency Size Small Medium Large Total

Orchard 1    400

2    600

3    300

4    700

Total 400 1000 600 2000

Answer
Frequency Size Small Medium Large Total

A B C P(A) = 0.3 P(B) = 0.4 P(C) = 0.8

P(A∩B∩C) = 0.096
P( ∩ ∩ ) = 0.084Ac Bc C c

P(A∪B∪C) = 0.916
P( ∪ ∪ ) = 0.904Ac Bc C c

P[(A∩ ∩ ) ∪ ( ∩B∩ ) ∪ ( ∩ ∩C)] = 0.428Bc C c Ac C c Ac Bc

P[(A∩B∩ ) ∪ (A∩ ∩C) ∪ ( ∩B∩C)] = 0.392C c Bc Ac

A B C P(A) = 1
3

P(B) = 1
4

P(C) = 1
5

(A∩B) ∪C

A∪ ∪CBc

( ∩ ) ∪Ac Bc C c

4
15
13
15
9

10
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Orchard 1 80 200 120 400

2 120 300 180 600

3 60 150 90 300

4 140 350 210 700

total 400 1000 600 2000

Note from the last two exercises that you cannot “see” independence in a Venn diagram. Again, independence is a measure-theoretic
concept, not a set-theoretic concept.

Bernoulli Trials

A Bernoulli trials sequence is a sequence  of independent, identically distributed indicator variables. Random variable 
 is the outcome of trial , where in the usual terminology of reliability theory, 1 denotes success and 0 denotes failure. The canonical

example is the sequence of scores when a coin (not necessarily fair) is tossed repeatedly. Another basic example arises whenever we start
with an basic experiment and an event  of interest, and then repeat the experiment. In this setting,  is the indicator variable for event 
on the th run of the experiment. The Bernoulli trials process is named for Jacob Bernoulli, and has a single basic parameter 

. This random process is studied in detail in the chapter on Bernoulli trials.

For ,

Proof

If  is a generic Bernoulli trial, then by definition,  and . Equivalently, 
 for . Thus the result follows by independence.

Note that the sequence of indicator random variables  is exchangeable. That is, if the sequence  in the previous result is
permuted, the probability does not change. On the other hand, there are exchangeable sequences of indicator random variables that are
dependent, as Pólya's urn model so dramatically illustrates.

Let  denote the number of successes in the first  trials. Then

Proof

Note that , where  is the outcome of trial , as in the previous result. For , the event 
occurs if and only if exactly  of the  trials result in success (1). The number of ways to choose the  trials that result in success is 

, and by the previous result, the probability of any particular sequence of  successes and  failures is . Thus the
result follows by the additivity of probability.

The distribution of  is called the binomial distribution with parameters  and . The binomial distribution is studied in more detail in the
chapter on Bernoulli Trials.

More generally, a multinomial trials sequence is a sequence  of independent, identically distributed random variables,
each taking values in a finite set . The canonical example is the sequence of scores when a -sided die (not necessarily fair) is thrown
repeatedly. Multinomial trials are also studied in detail in the chapter on Bernoulli trials.

Cards

Consider the experiment that consists of dealing 2 cards at random from a standard deck and recording the sequence of cards dealt. For
, let  be the event that card  is a queen and  the event that card  is a heart. Compute the appropriate probabilities to

verify the following results. Reflect on these results.

1.  and  are independent.
2.  and  are independent.
3.  and  are negatively correlated.

X = ( , , …)X1 X2

Xi i

A Xi A

i

p = P( = 1)Xi

( , , … , ) ∈ {0, 1x1 x2 xn }n

P( = , = , … , = ) = (1 −pX1 x1 X2 x2 Xn xn p + +⋯+x1 x2 xn )n−( + +⋯+ )x1 x2 xn (2.5.19)

X P(X = 1) = p P(X = 0) = 1 −p

P(X = x) = (1 −ppx )1−x x ∈ {0, 1}

X ( , , … , )x1 x2 xn

Y n

P(Y = y) =( ) (1 −p , y ∈ {0, 1, … ,n}
n

y
py )n−y (2.5.20)

Y =∑n
i=1 Xi Xi i y ∈ {0, 1, … ,n} {Y = y}

y n y

( )ny y n−y (1 −ppy )n−y

Y n p

X = ( , , …)X1 X2

S k

i ∈ {1, 2} Qi i Hi i

Q1 H1

Q2 H2

Q1 Q2
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4.  and  are negatively correlated.
5.  and  are independent.
6.  and  are independent.

Answer

1. 
2. 
3. , 
4. , 
5. 
6. 

In the card experiment, set . Run the simulation 500 times. For each pair of events in the previous exercise, compute the product
of the empirical probabilities and the empirical probability of the intersection. Compare the results.

Dice

The following exercise gives three events that are pairwise independent, but not (mutually) independent.

Consider the dice experiment that consists of rolling 2 standard, fair dice and recording the sequence of scores. Let  denote the event
that first score is 3,  the event that the second score is 4, and  the event that the sum of the scores is 7. Then

1. , ,  are pairwise independent.
2.  implies (is a subset of)  and hence these events are dependent in the strongest possible sense.

Answer

Note that , and the probability of the common intersection is . On the other hand, 
.

In the dice experiment, set . Run the experiment 500 times. For each pair of events in the previous exercise, compute the product
of the empirical probabilities and the empirical probability of the intersection. Compare the results.

The following exercise gives an example of three events with the property that the probability of the intersection is the product of the
probabilities, but the events are not pairwise independent.

Suppose that we throw a standard, fair die one time. Let , . Then

1. .
2.  and  are the same event, and hence are dependent in the strongest possbile sense.

Answer

Note that , so . On the other hand,  and .

Suppose that a standard, fair die is thrown 4 times. Find the probability of the following events.

1. Six does not occur.
2. Six occurs at least once.
3. The sum of the first two scores is 5 and the sum of the last two scores is 7.

Answer

1. 

2. 

3. 

Suppose that a pair of standard, fair dice are thrown 8 times. Find the probability of each of the following events.

1. Double six does not occur.
2. Double six occurs at least once.

H1 H2

Q1 H2

H1 Q2

P( ) = P( ∣ ) =Q1 Q1 H1
1

13

P( ) = P( ∣ ) =Q2 Q2 H2
1

13

P( ) =Q1
1

13
P( ∣ ) =Q1 Q2

1
17

P( ) =H1
1
4

P( ∣ ) =H1 H2
4

17

P( ) = P( ∣ ) =Q1 Q1 H2
1

13

P( ) = P( ∣ ) =Q2 Q2 H1
1

13

n = 2

A

B C

A B C

A∩B C

A∩B = A∩C = B∩C = {(3, 4)} 1
36

P(A) = P(B) = P(C) = =6
36

1
6

n = 2

A = {1, 2, 3, 4} B = C = {4, 5, 6}

P(A∩B∩C) = P(A)P(B)P(C)
B C

A∩B∩C = {4} P(A∩B∩C) = 1
6

P(A) = 4
6

P(B) = P(C) = 3
6

≈ 0.4823( )5
6

4

1 − ≈ 0.5177( )5
6

4

1
54
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3. Double six does not occur on the first 4 throws but occurs at least once in the last 4 throws.

Answer

1. 

2. 

3. 

Consider the dice experiment that consists of rolling , -sided dice and recording the sequence of scores 
.The following conditions are equivalent (and correspond to the assumption that the dice are fair):

1.  is uniformly distributed on .
2.  is a sequence of independent variables, and  is uniformly distributed on  for each .

Proof

Let  and note that  has  points. Suppose that  is uniformly distributed on . Then  for
each  so  for each . Hence  is uniformly distributed on . Moreover,

so  is an independent sequence. Conversely, if  is an independent sequence and  is uniformly distributed on  for each  then 
 for each  and hence  for each . Thus  is uniformly distributed on .

A pair of standard, fair dice are thrown repeatedly. Find the probability of each of the following events.

1. A sum of 4 occurs before a sum of 7.
2. A sum of 5 occurs before a sum of 7.
3. A sum of 6 occurs before a sum of 7.
4. When a sum of 8 occurs the first time, it occurs “the hard way” as .

Answer

1. 
2. 
3. 
4. 

Problems of the type in the last exercise are important in the game of craps. Craps is studied in more detail in the chapter on Games of
Chance.

Coins

A biased coin with probability of heads  is tossed 5 times. Let  denote the outcome of the tosses (encoded as a bit string) and let 
denote the number of heads. Find each of the following:

1.  for each .
2.  for each .
3. 

Answer

1.  if ,  if  has exactly one 1 (there are 5 of these),  if  has exactly two 1s (there are 10 of these),  if  has
exactly three 1s (there are 10 of these),  if  has exactly four 1s (there are 5 of these),  if 

2.  if ,  if ,  if ,  if ,  if ,  if 
3. 

A box contains a fair coin and a two-headed coin. A coin is chosen at random from the box and tossed repeatedly. Let  denote the
event that the fair coin is chosen, and let  denote the event that the th toss results in heads. Then

1.  are conditionally independent given , with  for each .
2.  are conditionally independent given , with  for each .

≈ 0.7982( )35
36

8

1 − ≈ 0.2018( )35
36

8

[1 − ] ≈ 0.0952( )35
36

4
( )35

36

4

n k

X = ( , , … , )X1 X2 Xn

X {1, 2, … , k}n

X Xi {1, 2, … , k} i

S = {1, 2, … , k} Sn kn X Sn P(X = x) = 1/kn

x ∈ Sn P( = x) = / = 1/kXi kn−1 kn x ∈ S Xi S

P(X = x) = P( = )P( = ) ⋯ P( = ), x = ( , , … , ) ∈X1 x1 X2 x2 Xn xn x1 x2 xn Sn (2.5.21)

X X Xi S i

P( = x) = 1/kXi x ∈ S P(X = x) = 1/kn x ∈ Sn X Sn

(4, 4)

3
9
4

10
5

11
1
5

1
3

X Y

P(X = x) x ∈ {0, 1}5

P(Y = y) y ∈ {0, 1, 2, 3, 4, 5}
P(1 ≤ Y ≤ 3)

32
243

x = 00000 16
243

x
8

243
x

4
243

x
2

243
x

1
243

x = 11111
32
243

y = 0 80
243

y = 1 80
243

y = 2 40
243

y = 3 10
243

y = 4 1
243

y = 5
200
243

F

Hi i

( , , …)H1 H2 F P( ∣ F ) =Hi
1
2

i

( , , …)H1 H2 F c
P( ∣ ) = 1Hi F c i
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3.  for each .
4. .
5.  are dependent.
6. .
7.  as .

Proof

Parts (a) and (b) are essentially modeling assumptions, based on the design of the experiment. If we know what kind of coin we have,
then the tosses are independent. Parts (c) and (d) follow by conditioning on the type of coin and using parts (a) and (b). Part (e)
follows from (c) and (d). Note that the expression in (d) is not . Part (f) follows from part (d) and Bayes' theorem. Finally part
(g) follows from part (f).

Consider again the box in the previous exercise, but we change the experiment as follows: a coin is chosen at random from the box
and tossed and the result recorded. The coin is returned to the box and the process is repeated. As before, let  denote the event that
toss  results in heads. Then

1.  are independent.
2.  for each .
3. .

Proof

Again, part (a) is essentially a modeling assumption. Since we return the coin and draw a new coin at random each time, the results of
the tosses should be independent. Part (b) follows by conditioning on the type of the th coin. Part (c) follows from parts (a) and (b).

Think carefully about the results in the previous two exercises, and the differences between the two models. Tossing a coin produces
independent random variables if the probability of heads is fixed (that is, non-random even if unknown). Tossing a coin with a random
probability of heads generally does not produce independent random variables; the result of a toss gives information about the probability
of heads which in turn gives information about subsequent tosses.

Uniform Distributions

Recall that Buffon's coin experiment consists of tossing a coin with radius  randomly on a floor covered with square tiles of side
length 1. The coordinates  of the center of the coin are recorded relative to axes through the center of the square in which the
coin lands. The following conditions are equivalent:

1.  is uniformly distributed on .
2.  and  are independent and each is uniformly distributed on .

Figure : Buffon's coin experiment

Proof

Let , and let  denote length measure on  and  area measure on . Note that . Suppose that 
 is uniformly distributed on , so that  for . For ,

Hence  is uniformly distributed on . By a similar argument,  is also uniformly distributed on . Moreover, for  and 
,

P( ) =Hi
3
4

i

P( ∩ ∩ ⋯ ∩ ) = +H1 H2 Hn
1

2n+1
1
2

( , , …)H1 H2

P(F ∣ ∩ ∩ ⋯ ∩ ) =H1 H2 Hn
1
+12n

P(F ∣ ∩ ∩ ⋯ ∩ ) → 0H1 H2 Hn n → ∞

(3/4)n

Hi

i

( , , …)H1 H2

P( ) =Hi
3
4

i

P( ∩ ∩ ⋯ ) =H1 H2 Hn ( )3
4

n

i

r ≤ 1
2

(X,Y )

(X,Y ) [− , ]1
2

1
2

2

X Y [− , ]1
2

1
2

2.5.1

S = [− , ]1
2

1
2

λ1 S λ2 S2 (S) = ( ) = 1λ1 λ2 S2

(X,Y ) S2
P [(X,Y ) ∈ C] = (C)λ2 C ⊆ S2 A ⊆ S

P(X ∈ A) = P [(X,Y ) ∈ A×S] = (A×S) = (A)λ2 λ1 (2.5.22)

X S Y S A ⊆ S

B ⊆ S

P(X ∈ A,Y ∈ B) = P[(X,Y ) ∈ A×B] = (A×B) = (A) (B) = P(X ∈ A)P(Y ∈ B)λ2 λ1 λ1 (2.5.23)
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so  and  are independent. Conversely, if  and  are independent and each is uniformly distributed on , then for  and 
,

It then follows that  for every . For more details about this last step, see the advanced section on
existence and uniqueness of measures.

Compare this result with the result above for fair dice.

In Buffon's coin experiment, set . Run the simulation 500 times. For the events  and , compute the product
of the empirical probabilities and the empirical probability of the intersection. Compare the results.

The arrival time  of the  train is uniformly distributed on the interval , while the arrival time  of the  train is uniformly
distributed on the interval . (The arrival times are in minutes, after 8:00 AM). Moreover, the arrival times are independent.
Find the probability of each of the following events:

1. The  train arrives first.
2. Both trains arrive sometime after 20 minutes.

Answer

1. 
2. 

Reliability

Recall the simple model of structural reliability in which a system is composed of  components. Suppose in addition that the components
operate independently of each other. As before, let  denote the state of component , where 1 means working and 0 means failure. Thus,
our basic assumption is that the state vector  is a sequence of independent indicator random variables. We assume
that the state of the system (either working or failed) depends only on the states of the components. Thus, the state of the system is an
indicator random variable

where  is the structure function. Generally, the probability that a device is working is the reliability of the device.
Thus, we will denote the reliability of component  by  so that the vector of component reliabilities is 

. By independence, the system reliability  is a function of the component reliabilities:

Appropriately enough, this function is known as the reliability function. Our challenge is usually to find the reliability function, given the
structure function. When the components all have the same probability  then of course the system reliability  is just a function of . In
this case, the state vector  forms a sequence of Bernoulli trials.

Comment on the independence assumption for real systems, such as your car or your computer.

Recall that a series system is working if and only if each component is working.

1. The state of the system is .
2. The reliability is .

Recall that a parallel system is working if and only if at least one component is working.

1. The state of the system is .
2. The reliability is .

Recall that a  out of  system is working if and only if at least  of the  components are working. Thus, a parallel system is a 1 out of 
system and a series system is an  out of  system. A  out of  system is a majority rules system. The reliability function of a
general  out of  system is a mess. However, if the component reliabilities are the same, the function has a reasonably simple form.

For a  out of  system with common component reliability , the system reliability is

X Y X Y S A ⊆ S

B ⊆ S

P [(X,Y ) ∈ A×B] = P(X ∈ A)P(Y ∈ B) = (A) (B) = (A×B)λ1 λ1 λ2 (2.5.24)

P [(X,Y ) ∈ C] = (C)λ2 C ⊆ S2

r = 0.3 {X > 0} {Y < 0}

X A (0, 30) Y B

(15, 30)

A

3
4
2
9

n

Xi i

X = ( , , … , )X1 X2 Xn

Y = y( , , … , )X1 X2 Xn (2.5.25)

y : {0, 1 → {0, 1}}n

i = P( = 1)pi Xi

p = ( , , … , )p1 p2 pn r

r( , , … , ) = P(Y = 1)p1 p2 pn (2.5.26)

p r p

X = ( , , … , )X1 X2 Xn

U = ⋯ = min{ , , … , }X1X2 Xn X1 X2 Xn

P(U = 1) = ⋯p1p2 pn

V = 1 −(1 − )(1 − ) ⋯ (1 − ) = max{ , , … , }X1 X2 Xn X1 X2 Xn

P(V = 1) = 1 −(1 − )(1 − ) ⋯ (1 − )p1 p2 pn

k n k n n

n n k 2k−1
k n

k n p
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Consider a system of 3 independent components with common reliability . Find the reliability of each of the following:

1. The parallel system.
2. The 2 out of 3 system.
3. The series system.

Answer
1. 0.992
2. 0.896
3. 0.512

Consider a system of 3 independent components with reliabilities , , . Find the reliability of each of the
following:

1. The parallel system.
2. The 2 out of 3 system.
3. The series system.

Answer
1. 0.994
2. 0.902
3. 0.504

Consider an airplane with an odd number of engines, each with reliability . Suppose that the airplane is a majority rules system, so
that the airplane needs a majority of working engines in order to fly.

1. Find the reliability of a 3 engine plane as a function of .
2. Find the reliability of a 5 engine plane as a function of .
3. For what values of  is a 5 engine plane preferable to a 3 engine plane?

Answer
1. 
2. 
3. The 5-engine plane would be preferable if  (which one would hope would be the case). The 3-engine plane would be

preferable if . If , the 3-engine and 5-engine planes are equally reliable.

The graph below is known as the Wheatstone bridge network and is named for Charles Wheatstone. The edges represent components,
and the system works if and only if there is a working path from vertex  to vertex .

1. Find the structure function.
2. Find the reliability function.

Figure : The Wheatstone bridge netwok

Answer
1. 
2. 

A system consists of 3 components, connected in parallel. Because of environmental factors, the components do not operate
independently, so our usual assumption does not hold. However, we will assume that under low stress conditions, the components are
independent, each with reliability 0.9; under medium stress conditions, the components are independent with reliability 0.8; and under
high stress conditions, the components are independent, each with reliability 0.7. The probability of low stress is 0.5, of medium stress
is 0.3, and of high stress is 0.2.

r(p) = ( ) (1 −p∑
i=k

n
n

i
pi )n−i (2.5.27)

p = 0.8

= 0.8p1 = 0.8p2 = 0.7p3

p

p

p

p

(p) = 3 −2r3 p2 p3

(p) = 6 −15 +10r5 p5 p4 p3

p > 1
2

p < 1
2

p = 1
2

a b

2.5.2

Y = ( + − )( + − , ) +(1 − )( + − )X3 X1 X2 X1X2 X4 X5 X4 X5 X3 X1X4 X2X5 X1X2X4X5

r( , , , , ) = ( + − )( + − , ) +(1 − )( + − )p1 p2 p3 p4 p5 p3 p1 p2 p1p2 p4 p5 p4 p5 p3 p1p4 p2p5 p1p2p4p5
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1. Find the reliability of the system.
2. Given that the system works, find the conditional probability of each stress level.

Answer
1. 0.9917. Condition on the stress level.
2. 0.5037 for low, 0.3001 for medium, 0.1962 for high. Use Bayes' theorem and part (a).

Suppose that bits are transmitted across a noisy communications channel. Each bit that is sent, independently of the others, is received
correctly with probability 0.9 and changed to the complementary bit with probability 0.1. Using redundancy to improve reliability,
suppose that a given bit will be sent 3 times. We naturally want to compute the probability that we correctly identify the bit that was
sent. Assume we have no prior knowledge of the bit, so we assign probability  each to the event that 000 was sent and the event that
111 was sent. Now find the conditional probability that 111 was sent given each of the 8 possible bit strings received.

Answer

Let  denote the string sent and  the string received.

111

110

101

011

100

010

001

000

Diagnostic Testing

Recall the discussion of diagnostic testing in the section on Conditional Probability. Thus, we have an event  for a random experiment
whose occurrence or non-occurrence we cannot observe directly. Suppose now that we have  tests for the occurrence of , labeled from
1 to . We will let  denote the event that test  is positive for . The tests are independent in the following sense:

If  occurs, then  are (conditionally) independent and test  has sensitivity .
If  does not occur, then  are (conditionally) independent and test  has specificity .

Note that unconditionally, it is not reasonable to assume that the tests are independent. For example, a positive result for a given test
presumably is evidence that the condition  has occurred, which in turn is evidence that a subsequent test will be positive. In short, we
expect that  and  should be positively correlated.

We can form a new, compound test by giving a decision rule in terms of the individual test results. In other words, the event  that the
compound test is positive for  is a function of . The typical decision rules are very similar to the reliability structures
discussed above. A special case of interest is when the  tests are independent applications of a given basic test. In this case,  and 

 for each .

Consider the compound test that is positive for  if and only if each of the  tests is positive for .

1. 
2. The sensitivity is .
3. The specificity is 

Consider the compound test that is positive for  if and only if each at least one of the  tests is positive for .

1. 
2. The sensitivity is .
3. The specificity is .

1
2

X Y

y P(X = 111 ∣ Y = y)

729/730

9/10

9/10

9/10

1/10

1/10

1/10

1/730

A

n A

n Ti i A

A ( , , … , )T1 T2 Tn i = P( ∣ A)ai Ti
A ( , , … , )T1 T2 Tn i = P( ∣ )bi T c

i Ac

A

Ti Tj

T

A ( , , … , )T1 T2 Tn
n = aai

= bbi i

A n A

T = ∩ ∩ ⋯ ∩T1 T2 Tn
P(T ∣ A) = ⋯a1a2 an
P( ∣ ) = 1 −(1 − )(1 − ) ⋯ (1 − )T c Ac b1 b2 bn

A n A

T = ∪ ∪ ⋯ ∪T1 T2 Tn
P(T ∣ A) = 1 −(1 − )(1 − ) ⋯ (1 − )a1 a2 an
P( ∣ ) = ⋯T c Ac b1b2 bn

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10133?pdf


2.5.15 https://stats.libretexts.org/@go/page/10133

More generally, we could define the compound  out of  test that is positive for  if and only if at least  of the individual tests are
positive for . The series test is the  out of  test, while the parallel test is the 1 out of  test. The  out of  test is the majority
rules test.

Suppose that a woman initially believes that there is an even chance that she is or is not pregnant. She buys three identical pregnancy
tests with sensitivity 0.95 and specificity 0.90. Tests 1 and 3 are positive and test 2 is negative.

1. Find the updated probability that the woman is pregnant.
2. Can we just say that tests 2 and 3 cancel each other out? Find the probability that the woman is pregnant given just one positive

test, and compare the answer with the answer to part (a).

Answer
1. 0.834
2. No: 0.905.

Suppose that 3 independent, identical tests for an event  are applied, each with sensitivity  and specificity . Find the sensitivity
and specificity of the following tests:

1. 1 out of 3 test
2. 2 out of 3 test
3. 3 out of 3 test

Answer
1. sensitivity , specificity 
2. sensitivity , specificity 
3. sensitivity , specificity 

In a criminal trial, the defendant is convicted if and only if all 6 jurors vote guilty. Assume that if the defendant really is guilty, the
jurors vote guilty, independently, with probability 0.95, while if the defendant is really innocent, the jurors vote not guilty,
independently with probability 0.8. Suppose that 70% of defendants brought to trial are guilty.

1. Find the probability that the defendant is convicted.
2. Given that the defendant is convicted, find the probability that the defendant is guilty.
3. Comment on the assumption that the jurors act independently.

Answer
1. 0.5148
2. 0.99996
3. The independence assumption is not reasonable since jurors collaborate.

Genetics

Please refer to the discussion of genetics in the section on random experiments if you need to review some of the definitions in this
section.

Recall first that the ABO blood type in humans is determined by three alleles: , , and . Furthermore,  and  are co-dominant and  is
recessive. Suppose that in a certain population, the proportion of , , and  alleles are , , and  respectively. Of course we must have 

, ,  and .

Suppose that the blood genotype in a person is the result of independent alleles, chosen with probabilities , , and  as above.

1. The probability distribubtion of the geneotypes is given in the following table:

Genotype oo

Probability

2. The probability distribution of the blood types is given in the following table:

Blood type

Probability

k n A k

A n n n k 2k−1

A a b

1 −(1 −a)3 b3

3 a2 +3 (1 −b)b3 b2

a3 1 −(1 −b)3

a b o a b o

a b o p q r

p > 0 q > 0 r > 0 p+q+r = 1

p q r

aa ab ao bb bo

p2 2pq 2pr q2 2qr r2

A B AB O

+ 2prp2 + 2qrq2 2pq r2
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Proof

Part (a) follows from the independence assumption and basic rules of probability. Even though genotypes are listed as unordered pairs,
note that there are two ways that a heterozygous genotype can occur, since either parent could contribute either of the two distinct
alleles. Part (b) follows from part (a) and basic rules of probability.

The discussion above is related to the Hardy-Weinberg model of genetics. The model is named for the English mathematician Godfrey
Hardy and the German physician Wilhelm Weiberg

Suppose that the probability distribution for the set of blood types in a certain population is given in the following table:

Blood type

Probability 0.360 0.123 0.038 0.479

Find , , and .

Answer

, , 

Suppose next that pod color in certain type of pea plant is determined by a gene with two alleles:  for green and  for yellow, and that  is
dominant and  recessive.

Suppose that 2 green-pod plants are bred together. Suppose further that each plant, independently, has the recessive yellow-pod allele
with probability .

1. Find the probability that 3 offspring plants will have green pods.
2. Given that the 3 offspring plants have green pods, find the updated probability that both parents have the recessive allele.

Answer

1. 
2. 

Next consider a sex-linked hereditary disorder in humans (such as colorblindness or hemophilia). Let  denote the healthy allele and  the
defective allele for the gene linked to the disorder. Recall that  is dominant and  recessive for women.

Suppose that a healthy woman initially has a  chance of being a carrier. (This would be the case, for example, if her mother and
father are healthy but she has a brother with the disorder, so that her mother must be a carrier).

1. Find the probability that the first two sons of the women will be healthy.
2. Given that the first two sons are healthy, compute the updated probability that she is a carrier.
3. Given that the first two sons are healthy, compute the conditional probability that the third son will be healthy.

Answer

1. 
2. 
3. 

Laplace's Rule of Succession

Suppose that we have  coins, labeled . Coin  lands heads with probability  for each . The experiment is to
choose a coin at random (so that each coin is equally likely to be chosen) and then toss the chosen coin repeatedly.

1. The probability that the first  tosses are all heads is 
2.  as 
3. The conditional probability that toss  is heads given that the previous  tosses were all heads is 

4.  as 

Proof

A B AB O

p q r

p = 0.224 q = 0.084 r = 0.692

g y g

o

1
4

987
1024
27
987

h d

h d

1
2

5
8
1
5
9

10

m+1 0, 1, … ,m i i

m
i

n =pm,n
1

m+1
∑m

i=0 ( )i
m

n

→pm,n
1

n+1
m → ∞

n+1 n
pm,n+1

pm,n

→
pm,n+1

pm,n

n+1
n+2

m → ∞
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Part (a) follows by conditioning on the chosen coin. For part (b), note that  is an approximating sum for . Part (c)
follows from the definition of conditional probability, and part (d) is a trivial consequence of (b), (c).

Note that coin 0 is two-tailed, the probability of heads increases with , and coin  is two-headed. The limiting conditional probability in
part (d) is called Laplace's Rule of Succession, named after Simon Laplace. This rule was used by Laplace and others as a general principle
for estimating the conditional probability that an event will occur on time , given that the event has occurred  times in succession.

Suppose that a missile has had 10 successful tests in a row. Compute Laplace's estimate that the 11th test will be successful. Does this
make sense?

Answer

. No, not really.

This page titled 2.5: Independence is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services)
via source content that was edited to the style and standards of the LibreTexts platform.

pm,n dx =∫ 1
0
xn 1

n+1

i m

n+1 n

11
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