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17.4: Inequalities
        

Basic Theory

In this section, we will study a number of interesting inequalities associated with martingales and their sub-martingale and super-
martingale cousins. These turn out to be very important for both theoretical reasons and for applications. You many need to review
infimums and supremums.

Basic Assumptions

As in the Introduction, we start with a stochastic process  on an underlying probability space , having
state space , and where the index set  (representing time) is either  (discrete time) or  (continuous time). Next, we have
a filtration , and we assume that  is adapted to . So  is an increasing family of sub -algebras of  and 
is measurable with respect to  for . We think of  as the collection of events up to time . We assume that 

, so that the mean of  exists as a real number, for each . Finally, in continuous time where , we
make the standard assumptions that  is right continuous and has left limits, and that the filtration  is right continuous and
complete.

Maximal Inequalites

For motivation, let's review a modified version of Markov's inequality, named for Andrei Markov.

If  is a real-valued random variable then

Proof

The modified version has essentially the same elegant proof as the original. Clearly

Taking expected values through the inequality gives . Dividing both sides by  gives the result
(and it is at this point that we need ).

So Markov's inequality gives an upper bound on the probability that  exceeds a given positive value , in terms of a monent of 
. Now let's return to our stochastic process . To simplify the notation, let  for .

Here is the main definition:

For the process , define the corresponding maximal process  by

Clearly, the maximal process is increasing, so that if  with  then . A trivial application of Markov's
inequality above would give

But when  is a sub-martingale, the following theorem gives a much stronger result by replacing the first occurrent of  on the
right with . The theorem is known as Doob's sub-martingale maximal inequality (or more simply as Doob's inequaltiy), named
once again for Joseph Doob who did much of the pioneering work on martingales. A sub-martingale has an increasing property of
sorts in the sense that if  with  then , so it's perhaps not entirely surprising that such a bound is
possible.

Suppose that  is a sub-martingale. For , let . Then

X = { : t ∈ T}Xt (Ω,F ,P)
R T N [0, ∞)
F = { : t ∈ T}Ft X F F σ F Xt

Ft t ∈ T Ft t ∈ T

E (| |) < ∞Xt Xt t ∈ T T = [0, ∞)
t ↦ Xt F

X

P(X ≥ x) ≤ E(X;X ≥ x), x ∈ (0, ∞)
1

x
(17.4.1)

x1(X ≥ x) ≤ X1(X ≥ x), x ∈ (0, ∞) (17.4.2)

xP(X ≥ x) ≤E(X;X ≥ x) x

x > 0.

X x

X X = { : t ∈ T}Xt = {s ∈ T : s ≤ t}Tt t ∈ T

X U = { : t ∈ T}Ut

= sup{ : s ∈ }, t ∈ TUt Xs Tt (17.4.3)

s, t ∈ T s ≤ t ≤Us Ut

P( ≥ x) ≤ E( ; ≥ x), x > 0Ut

1

x
Ut Ut (17.4.4)

X Ut

Xt

s, t ∈ T s ≤ t E( ∣ ) ≥Xt Fs Xs

X t ∈ T = sup{ : s ∈ }Ut Xs Tt

P( ≥ x) ≤ E( ; ≥ x), x ∈ (0, ∞)Ut

1

x
Xt Ut (17.4.5)
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Proof in the discrete time

So  and the maximal process is given by  for . Let , and define 
 where as usual, . The random time  is a stopping time relative to . Moreover,

the processes  and  are inverses in the sense that for  and ,

We have seen this type of duality before—in the Poisson process and more generally in renewal processes. Let . First
note that

If  then . On the other hand if  then . So we have

Similarly,

But by the optional stopping theorem, . Hence we have

Subtracting the common term and then dividing both sides by  gives the result

Proof in continuous time

For , let  denote the set of nonnegative dyadic rationals (or binary rationals) of rank  or less. For 
 let , so that  is the finite set of such dyadic rationals that are less than , with  added to

the set. Note that  has an ordered enumeration, so  is a discrete-time sub-martingale for each .
Let  for . Note that  for  and for  with  and
therefore . It follows that for ,

The set  of all nonnegative dyadic rationals is dense in  and so since  is right continuous and has left limits, it
follows that if  then  for some . That is, we have

The maximal inequality applies to the discrete-time sub-martingale  and so

for each . By the monotone convergence theorem, the left side converges to  as  and the right side
converges to  as .

There are a number of simple corollaries of the maximal inequality. For the first, recall that the positive part of  is 
, so that  if  and  if .

Suppose that  is a sub-martingale. For , let . Then

Proof

Recall that since  is a sub-martingale and  is increasing and convex,  is also a sub-martingale.
Hence the result follows from the general maximal inequality for sub-martingales.

T =N = max { : k ∈ }Un Xk Nn n ∈ N x ∈ (0, ∞)
= min{k ∈ N : ≥ x}τx Xk min(∅) = ∞ τx F

{ : n ∈ N}Un { : x ∈ (0, ∞)}τx n ∈ N x ∈ (0, ∞)

≥ x if and only if  ≤ nUn τx (17.4.6)

n ∈ N

E ( ) =E ( ; ≤ n) +E ( ; > n)X ∧nτx X ∧nτx τx X ∧nτx τx (17.4.7)

≤ nτx = ≥ xX ∧nτx Xτx > nτx =X ∧nτx Xn

E ( ) ≥ xP( ≤ n) +E( ; > n) = xP( ≥ x) +E( ; > n)X ∧nτx τx Xn τx Ut Xn τx (17.4.8)

E( ) =E( ; ≤ n) +E( ; > n) =E( ; ≥ x) +E( ; > n)Xn Xn τx Xn τx Xn Ut Xn τx (17.4.9)

E ( ) ≤E( )X ∧nτx Xn

xP( ≥ x) +E( ; > n) ≤E( ; ≥ x) +E( ; > n)Ut Xn τx Xn Ut Xn τx (17.4.10)

x

k ∈ N = {j/ : j∈ N}D+
k

2k k

t ∈ [0, ∞) = ( ∩ [0, t]) ∪ {t}T k
t D

+
k T k

t t t

T k
t = { : s ∈ }X

k Xs T k
t k ∈ N

= sup{ : s ∈ }U k
t Xs T k

t k ∈ N ⊂ ⊂ [0, t]T
j

t T k
t t ∈ [0, ∞) j, k ∈ N j< k

≤ ≤U
j
t U k

t Ut x ∈ (0, ∞)

{ ≥ x} ⊆ { ≥ x} ⊂ { ≥ x}U
j
t U k

t Ut (17.4.11)

D+ [0, ∞) X

≥ xUt ≥ xU k
t k ∈ N

{ ≥ x} = { ≥ x}Ut ⋃
k=0

∞

U k
t (17.4.12)

X
k

P ( ≥ x) ≤ E( ; ≥ x)U k
t

1

x
Xt U k

t (17.4.13)

k ∈ N P( ≥ x)Ut k → ∞
E(X; ≥ x)Ut k → ∞

x ∈ R

= x∨ 0x+ = xx+ x > 0 = 0x+ x ≤ 0

X t ∈ T = sup{ : s ∈ }Vt X+
s Tt

P( ≥ x) ≤ E( ; ≥ x), x ∈ (0, ∞)Vt
1

x
X+

t Vt (17.4.14)
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+ X

+
t

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10302?pdf


17.4.3 https://stats.libretexts.org/@go/page/10302

As a further simple corollary, note that

This is sometimes how the maximal inequality is given in the literature.

Suppose that  is a martingale. For , let . Then

Proof

Recall that since  is a martingale, and  is convex,  is a sub-martingale. Hence the result
follows from the general maximal inequality for sub-martingales.

Once again, a further simple corollary is

Next recall that for , the -norm of a real-valued random variable  is , and the vector space 

consists of all real-valued random variables for which this norm is finite. The following theorem is the norm version of the Doob's
maximal inequality.

Suppose again that  is a martingale. For , let . Then for ,

Proof

Fix . If , the inequality trivial holds, so assume that , and thus that . The proof
relies fundamentally on Hölder's inequality, and for that inequality to work, we need to truncate the variable  and consider
instead the the bounded random variable  where . First we need to show that

If , both sides are 0. If ,  and so from the maximal inequality above,

Next recall that

Applying the inequality gives

By Fubini's theorem we can interchange the expected value and the integral which gives

But  and  where  is the exponent conjugate to . So an application of Hölder's
inequality gives

P( ≥ x) ≤ E( ), x ∈ (0, ∞)Vt
1

x
X

+
t (17.4.15)

X t ∈ T = sup{| | : s ∈ }Wt Xs Tt

P( ≥ x) ≤ E(| |; ≥ x), x ∈ (0, ∞)Wt

1

x
Xt Wt (17.4.16)

X x ↦ |x| |X| = {| | : t ∈ T}Xt

P( ≥ x) ≤ E(| |), x ∈ (0, ∞)Wt

1

x
Xt (17.4.17)

k ∈ (1, ∞) k X ∥X =∥k [E(|X )]|k
1/k

Lk

X t ∈ T = sup{| | : s ∈ }Wt Xs Tt k > 1

∥ ≤ ∥Wt∥k
k

k−1
Xt∥k (17.4.18)

t ∈ T E(| ) = ∞Xt|
k

E(| ) < ∞Xt|
k ∈Xt Lk

Wt

∧ cWt c ∈ (0, ∞)

P( ∧ c ≥ x) ≤ E(| |; ∧ c ≥ x), x ∈ (0, ∞)Wt

1

x
Xt Wt (17.4.19)

c < x c ≥ x { ∧ c ≥ x} = { ≥ x}Wt Wt

P( ∧ c ≥ x) = P( ≥ x) ≤ E(| |; ≥ x) =E(| |; ∧ c ≥ x)Wt Wt

1

x
Xt Wt Xt Wt (17.4.20)

∥ ∧ c =E[( ∧ c ] = k P( ∧ c ≥ x)dxWt ∥k
k

Wt )k ∫
∞

0
xk−1 Wt (17.4.21)

E[( ∧ c ] ≤ k E[| |; ∧ c ≥ x]dxWt )k ∫
∞

0
xk−2 Xt Wt (17.4.22)

E[( ∧ c ] ≤E [ k | |dx] = E[| |( ∧ c ]Wt )k ∫
∧cWt

0
xk−2 Xt

k

k−1
Xt Wt )k−1 (17.4.23)

∈Xt Lk ( ∧ c ∈Wt )k−1 Lj j= k/(k−1) k

∥ ∧ c ≤ ∥ ∥( ∧ c = ∥ ∥ ∧ cWt ∥kk
k

k−1
Xt∥k Wt )k−1∥j

k

k−1
Xt∥k Wt ∥k−1
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where we have used the simple fact that . Dividing by this factor gives

Finally,  as  by the monotone convergence theorem. So letting  in the last displayed
equation gives

Once again,  is the maximal process associated with . As noted in the proof, 
 is the exponent conjugate to , satisfying . So this version of the maximal inequality states that the 

 norm of the maximum of the martingale  on  is bounded by  times the  norm of , where  and  are conjugate
exponents. Stated just in terms of expected value, rather than norms, the  maximal inequality is

Our final result in this discussion is a variation of the maximal inequality for super-martingales.

Suppose that  is a nonnegative super-martingale, and let . Then

Proof

Let  for . Since  is a super-martingale,  is a sub-martinagle. And since  is nonnegative,  for 
. Let  for . By the maximal inequality for sub-martingales, and since

 is a super-martingale we have for ,

Next note that  as . Let  and . If  then  for sufficiently large .
Hence

Using the continuity theorem for increasing events, and our result above we have

Since this holds for all , it follows that .

The Up-Crossing Inequality

The up-crossing inequality gives a bound on how much a sub-martingale (or super-martingale) can oscillate, and is the main tool in
the martingale convergence theorems that will be studied in the next section. It should come as no surprise by now that the
inequality is due to Joseph Doob. We start with the discrete-time case.

Suppose that  is a sequence of real numbers, and that  with . Define  and then
recursively define

1. The number of up-crossings of the interval  by the sequence  up to time  is

∥( ∧ c = ∥ ∧ cWt )k−1∥j Wt ∥k−1
k

∥ ∧ c ≤ ∥Wt ∥k
k

k−1
Xt∥k (17.4.25)

∥ ∧ c ↑ ∥Wt ∥k Wt∥k c → ∞ c → ∞

∥ ≤ ∥Wt∥k
k

k−1
Xt∥k (17.4.26)

W = { : t ∈ T}Wt |X| = {| | : t ∈ T}Xt

j= k/(k−1) k 1/j+1/k = 1
k X Tt j k Xt j k

Lk

E( )≤ E( )| |Wt
k ( )

k

k−1

k

| |Xt
k (17.4.27)

X = { : t ∈ T}Xt = sup{ : t ∈ T}U∞ Xt

P( ≥ x) ≤ E( ), x ∈ (0, ∞)U∞
1

x
X0 (17.4.28)

= −Yt Xt t ∈ T X Y X =Y
+
t Xt

t ∈ T = sup{ : s ∈ } = sup{ : s ∈ }Ut Xs Tt Y
+
s Tt t ∈ T

X t ∈ T

P( ≥ x) ≤ E( ) = E( ) ≤ E( ), x ∈ (0, ∞)Ut

1

x
Y +
t

1

x
Xt

1

x
X0 (17.4.29)

↑Ut U∞ t → ∞ x ∈ (0, ∞) ϵ ∈ (0, x) ≥ xU∞ ≥ x− ϵUt t ∈ T

{ ≥ x} ⊆ { ≥ x− ϵ}U∞ ⋃
k=1

∞

Uk (17.4.30)

P( ≥ x) ≤ P( ≥ x− ϵ) ≤ E( )U∞ lim
k→∞

Uk

1

x− ϵ
X0 (17.4.31)

ϵ ∈ (0, x) P( ≥ x) ≤ E( )U∞
1
x

X0

x = ( : n ∈ N)xn a, b ∈ R a < b (x) = 0t0

(x)sk+1

(x)tk+1

= inf{n ∈ N : n ≥ (x), ≤ a}, k ∈ Ntk xn

= inf{n ∈ N : n ≥ (x), ≥ b}, k ∈ Nsk+1 xn

[a, b] x n ∈ N

(a, b, x) = sup{k ∈ N : (x) ≤ n}un tk (17.4.32)
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2. The total number of up-crossings of the interval  by the sequence  is

Details

As usual, we define . Note that if  for , then  is the th up-crossing
of the interval  by the sequence .

So informally, as the name suggests,  is the number of times that the sequence  goes from a value below
 to one above , and  is the number of times the entire sequence  goes from a value below  to one above . Here are a

few of simple properties:

Suppose again that  is a sequence of real numbers and that  with .

1.  is increasing in .
2.  as .
3. If  with  then  for , and .

Proof
1. Note that .
2. Note that .
3. Every up-crossing of  is also an up-crossing of .

The importance of the definitions is found in the following theorem. Recall that  is the set of extended real
numbers, and  is the set of rational real numbers.

Suppose again that  is a sequence of real numbers. Then  exists in  is and only if 
 for every  with .

Proof

We prove the contrapositive. Note that the following statements are equivalent:

1.  does not exist in in .
2. .
3. There exists  with  and with  for infinitely many  and  for infinitely many .
4. There exists  with  and .

Clearly the theorem is true with  replaced with , but the countability of  will be important in the martingale convergence
theorem. As a simple corollary, if  is bounded and  for every  with , then  converges in . The
up-crossing inequality for a discrete-time martingale  gives an upper bound on the expected number of up-crossings of  up to
time  in terms of a moment of .

Suppose that  satisfies the basic assumptions with respect to the filtration , and let 
 with . Let , the random number of up-crossings of  by  up to time .

1. If  is a super-martingale relative to  then

2. If  is a sub-martingale relative to  then

Proof

In the context of the up-crossing definition above, let  and . These are the random times that define
the up-crossings of . Let  and then define . To understand the sum, let's take cases for
the th term :

[a, b] x

(a, b, x) = sup{k ∈ N : (x) < ∞}u∞ tk (17.4.33)

inf(∅) = ∞ (x) < ∞tk k ∈ N+ ( : n = (x), … (x))xn sk tk k

[a, b] x

(a, b, x)un ( , , … , )x0 x1 xn

a b u(a, b, x) x a b

x = ( : n ∈ N)xn a, b ∈ R a < b

(a, b, x)un n ∈ N

(a, b, x) → u(a, b, x)un n → ∞
c, d ∈ R a < c < d < b (c, d, x) ≥ (a, b, x)un un n ∈ N u(c, d, x) ≥ u(a, b, x)

{k ∈ N : (x) ≤ n} ⊆ {k ∈ N : (x) ≤ n+1}tk tk

{k ∈ N : (x) ≤ n} = {k ∈ N : (x) ≤ ∞}⋃∞
n=0 tk tk

[a, b] [c, d]

=R∪ {−∞, ∞}R∗

Q

x = ( : n ∈ N)xn limn→∞ xn R
∗

(a, b, x) < ∞u∞ a, b ∈ Q a < b

limn→∞ xn R
∗

<lim infn→∞ xn lim supn→∞ xn

a, b ∈ Q a < b ≤ axn n ∈ N ≥ bxn n ∈ N

a, b ∈ Q a < b (a, b, x) = ∞u∞

Q R Q

x (a, b, x) < ∞u∞ a, b ∈ Q a < b x R

X X

n ∈ N Xn

X = { : n ∈ N}Xn F = { : n ∈ N}Fn

a, b ∈ R a < b = (a, b, X)Un un [a, b] X n ∈ N

X F

E( ) ≤ E[( −a ] ≤ [E( ) +|a|] ≤ [E(| |) +|a|] , n ∈ NUn

1

b−a
Xn )− 1

b−a
X

−
n

1

b−a
Xn (17.4.34)

X F

E( ) ≤ E[( −a ] ≤ [E( ) +|a|] ≤ [E(| |) +|a|] , n ∈ NUn

1

b−a
Xn )+ 1

b−a
X

+
n

1

b−a
Xn (17.4.35)

= (X)σk sk = (X)τk tk

X = −Yk X ∧nτk X ∧nσk =Zn ∑n
k=1 Yk

k Yk
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If  then . By definition, the first  terms are of this form.
If  then . There is at most one such term, with index .
If  then .

Hence  and so  Next note that 
 and  are bounded stopping times and of course .

1. If  is a super-martingale, it follows from the optional stopping theorem that

and therefore . Finally, . Taking expected values gives

The remaining parts of the inequality follow since  for .

Additional details

The process  in the proof can be viewed as a transform of  by a predictable process.
Specifically, for , let  if  for some , and let  otherwise. Since  and  are stopping
times, note that  for . Hence the process  is predictable with respect to .
Moreover, the transform of  by  is

Since  is a nonnegative process, if  is a martingale (sub-martingale, super-martingale), then  is also a martingale (sub-
martingale, super-martingale).

Of course if  is a martingale with respect to  then both inequalities apply. In continuous time, as usual, the concepts are more
complicated and technical.

Suppose that  and that that  with .

1. If  is finite, define  and then recursively define

The number of up-crossings of the interval  by the function  restricted to  is

2. If  is infinte, the number of up-crossings of the interval  by  restricted to  is

To simplify the notation, we will let , the number of up-crossings of  by  on , and 
, the total number of up-crossings of  by . In continuous time, the definition of up-crossings is

built out of finte subsets of  for measurability concerns, which arise when we replace the deterministic function  with a
stochastic process . Here are the simple properties that are analogous to our previous ones.

Suppose again that  and that  with .

1. If  with , then .
2. If  is an increasing sequence of sets in  and  then  as .
3. If  with  and  then .

Proof
1. The result follows easily from the definitions if  is finite (and  either finite or infinite). If  is infinite (and hence so is 

), note that

≤ nτk = − ≥ b−aYk Xτk Xσk Un

≤ n <σk τk = − ≥ −aYk Xn Xσk Xn k = +1Un

> nσk = − = 0Yk Xn Xn

≥ (b−a) +( −a)1 ( ≤ n)Zn Un Xn σ +1Un
(b−a) ≤ −( −a)1 ( ≤ n)Un Zn Xn σ +1Un

∧nσk ∧nτk ∧n ≤ ∧nσk τk

X

E( ) =E ( ) −E ( ) ≤ 0Yk X ∧nτk X ∧nσk (17.4.36)

E( ) ≤ 0Zn −( −a)1 ( ≤ n) ≤ ( −aXn σ +1Un Xn )−

(b−a)E( ) ≤E( ) +E[( −a ] ≤E[( −a ]Un Zn Xn )− Xn )− (17.4.37)

(x−a ≤ +|a| ≤ |x| + |a|)− x− x ∈ R

Z = { : n ∈ N}Zn X = { : n ∈ N}Xn

n ∈ N+ = 1In < n ≤σk τk k ∈ N = 0In σk τk

{ = 1} ∈In Fn−1 n ∈ N+ I = { : n ∈ }In N+ F

X I

(I ⋅ X = ( − ) = ( − ) = , n ∈ N)n ∑
j=1

n

Ij Xj Xj−1 ∑
k=1

n

X ∧nτk X ∧nσk Zn (17.4.38)

I X I ⋅ X

X F

x : [0, ∞) →R a, b ∈ R a < b

I ⊂ [0, ∞) (x) = 0tI0

(x)sIk+1

(x)tIk+1

= inf {t ∈ I : t ≥ (x), ≤ a} , k ∈ NtIk xt

= inf {t ∈ I : t ≥ (x), ≥ b} , k ∈ NsIk+1 xt

[a, b] x I

(a, b, x) = sup{k ∈ N : (x) < ∞}uI tIk (17.4.39)

I ⊆ [0, ∞) [a, b] x I

(a, b, x) = sup{ (a, b, x) : J is finite and J ⊂ I}uI uJ (17.4.40)

(a, b, x) = (a, b, x)ut u[0,t] [a, b] x [0, t]
(a, b, x) = (a, b, x)u∞ u[0,∞) [a, b] x

[0, ∞) x

X

x : [0, ∞) →R a, b ∈ R a < b

I, J ⊆ [0, ∞) I ⊆ J (a, b, x) ≤ (a, b, x)uI uJ

( : n ∈ N)In [0, ∞) J = ⋃∞
n=0 In (a, b, x) → (a, b, x)uIn uJ n → ∞

c, d ∈ R a < c < d < b I ⊂ [0, ∞) (c, d, x) ≥ (a, b, x)uI uI

I J I

J
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2. Since  is increasing in  (in the subset partial order), note that if  is finite, then  if and only if 
 for some .

3. Every up-crossing of  is an up-crossing of .

The following result is the reason for studying up-crossings in the first place. Note that the definition built from finite set is
sufficient.

Suppose that . Then  exists in  if and only if  for every  with .

Proof

As in the discrete-time case, we prove the contrapositive. The proof is almost the same: The following statements are
equivalent:

1.  does not exist in in .
2. .
3. There exists  with  and there exists  with  for  and  for .
4. There exists  with  and .

Finally, here is the up-crossing inequality for martingales in continuous time. Once again, the inequality gives a bound on the
expected number of up-crossings.

Suppose that  satisfies the basic assumptions with respect to the filtration , and
let  with . Let , the random number of up-crossings of  by  up to time .

1. If  is a super-martingale relative to  then

2. If  is a sub-martingale relative to  then

Proof

Suppose that  is a sub-martingale; the proof for a super-martingale is analogous. Fix  and  with .
For  let , the number of up-crossings of  by  restricted to . Suppose that  is finite and
that  is the maximum of . Since  restricted to  is also a sub-martingale, the discrete-time up-crossing theorem applies
and so

Since , there exists finite  for  with  as . In particular,  is
measurable. By property (a) in the theorem above, there exists such a sequence with  increasing in  and  for each 

. By the monotone convergence theorem,  as . So by the displayed equation above,

Examples and Applications

Kolmogorov's Inequality

Suppose that  is a sequence of independent variables with  and  for 
. Let  be the partial sum process associated with , so that

{ (a, b, x) : K is finite and K ⊆ I} ⊆ { (a, b, x) : K is finite and K ⊆ J}uK uK (17.4.41)

In n ∈ N K ⊂ [0, ∞) K ⊆ J

K ⊆ In n ∈ N

[a, b] [c, d]

x : [0, ∞) →R limt→∞ xt R
∗ (a, b, x) < ∞u∞ a, b ∈ Q a < b

limt→∞ xt R
∗

<lim inft→∞ xt lim supt→∞ xt

a, b ∈ Q a < b , ∈ [0, ∞)sn tn ≤ axsn n ∈ N ≥ bxtn n ∈ N

a, b ∈ Q a < b (a, b, x) = ∞u∞

X = { : t ∈ [0, ∞)}Xt F = { : t ∈ [0, ∞)}Ft

a, b ∈ R a < b = (a, b, X)Ut ut [a, b] X t ∈ [0, ∞)

X F

E( ) ≤ E[( −a ] ≤ [E( ) +|a|] ≤ [E(| |) +|a|] , t ∈ [0, ∞)Ut

1

b−a
Xt )− 1

b−a
X−

t

1

b−a
Xt (17.4.42)

X F

E( ) ≤ E[( −a ] ≤ [E( ) +|a|] ≤ [E(| |) +|a|] , t ∈ [0, ∞)Ut

1

b−a
Xt )+ 1

b−a
X+

t

1

b−a
Xt (17.4.43)

X t ∈ [0, ∞) a, b ∈ R a < b

I ⊆ [0, ∞) = (a, b, X)UI uI [a, b] X I I

t ∈ I I X I

E( ) ≤ E[( −a ]UI

1

b−a
Xt )+ (17.4.44)

= sup{ : I is finite and I ⊂ [0, t]}Ut UI In n ∈ N ↑UIn Ut n → ∞ Ut

In n t ∈ In

n ∈ N E ( ) → E( )UIn Ut n → ∞

E( ) ≤ E[( −a ]Ut

1

b−a
Xt )+ (17.4.45)

X = { : n ∈ }Xn N+ E( ) = 0Xn var( ) =E( ) < ∞Xn X2
n

n ∈ N+ Y = { : n ∈ N}Yn X
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From the Introduction we know that  is a martingale. A simple application of the maximal inequality gives the following result,
which is known as Kolmogorov's inequality, named for Andrei Kolmogorov.

For , let . Then

Proof

As noted above,  is a martingale. Since the function  on  is convex,  is a sub-martingale. Let 
 for , and let . Applying the maximal inequality for sub-martingales we have

Finally, since  is an independent sequence,

Red and Black

In the game of red and black, a gambler plays a sequence of Bernoulli games with success parameter  at even stakes. The
gambler starts with an initial fortune  and plays until either she is ruined or reaches a specified target fortune , where 

 with . When , so that the games are fair or unfair, an optimal strategy is bold play: on each game, the
gambler bets her entire fortune or just what is needed to reach the target, whichever is smaller. In the section on bold play we
showed that when , so that the games are fair, the probability of winning (that is, reaching the target  starting with ) is 

. We can use the maximal inequality for super-martingales to show that indeed, one cannot do better.

To set up the notation and review various concepts, let  denote the gambler's initial fortune and let  denote the outcome of
game , where 1 denotes a win and  a loss. So  is a sequence of independent variables with 

 and  for . (The initial fortune  has an unspecified distribution on .) The
gambler is at a casino after all, so of course . Let

so that  is the partial sum process associated with . Recall that  is also known as the
simple random walk with parameter , and since , is a super-martingale. The process  is the difference
sequence associated with . Next let  denote the amount that the gambler bets on game . The process 

 is predictable with respect to , so that  is measurable with respect to 
 for . So the gambler's fortune after  games is

Recall that  is the transform of  with , denoted . The gambler is not allowed to go into debt
and so we must have  for : the gambler's bet on game  cannot exceed her fortune after game . What's
the probability that the gambler can ever reach or exceed the target  starting with fortune ?

Let . Suppose that  with  and that . Then

Proof

= , n ∈ NYn ∑
i=1

n

Xi (17.4.46)

Y

n ∈ N = max {| | : i ∈ }Un Yi Nn

P( ≥ x) ≤ var( ) = E( ), x ∈ (0, ∞)Un

1

x2
Yn

1

x2
∑
i=1

n

X2
i (17.4.47)

Y x ↦ x2 R = { : n ∈ N}Y
2 Y 2

n

= max{ : i ∈ }Vn Y 2
i Nn n ∈ N x ∈ (0, ∞)

P( ≥ x) = P( ≥ ) ≤ E( ) = var( )Un Vn x
2 1

x2
Y 2
n

1

x2
Yn (17.4.48)

X

var( ) = var( ) = E( )Yn ∑
i=1

n

Xi ∑
i=1

n

X2
i (17.4.49)

p ∈ (0, 1)
x a

x, a ∈ (0, ∞) x < a p ≤ 1
2

p = 1
2

a x

x/a

X0 Xn

n ∈ N+ −1 { : n ∈ N}Xn

P( = 1) = pXn P( = −1) = 1 −pXn n ∈ N+ X0 (0, ∞)
p ≤ 1

2

= , n ∈ NYn ∑
i=0

n

Xi (17.4.50)

Y = { : n ∈ N}Yn X = { : n ∈ N}Xn Y

p p ≤ 1
2

{ : n ∈ }Xn N+

Y Zn n ∈ N+

Z = { : n ∈ }Zn N+ X = { : n ∈ N}Xn Zn

σ{ , , … , }X0 X1 Xn−1 n ∈ N+ n

= + = + ( − )Wn X0 ∑
i=1

n

ZiXi X0 ∑
i=1

n

Zi Yi Yi−1 (17.4.51)

W = { : n ∈ N}Wn Z Y W = Z ⋅ Y

≤Zn Wn−1 n ∈ N+ n n−1
a x < a

= sup{ : n ∈ N}U∞ Wn x, a ∈ (0, ∞) x < a = xX0

P( ≥ a) ≤U∞
x

a
(17.4.52)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10302?pdf


17.4.9 https://stats.libretexts.org/@go/page/10302

Since  is a super-martingale and  is nonnegative, the transform  is also a super-martingale. By the inequality
for nonnegative super-martingales above:

Note that the only assumptions made on the gambler's sequence of bets  is that the sequence is predictable, so that the gambler
cannot see into the future, and that gambler cannot go into debt. Under these basic assumptions, no strategy can do any better than
bold play. However, there are strategies that do as well as bold play; these are variations on bold play.

Open the simulation of the red and black game. Select bold play and . Play the game with various values of initial and
target fortunes.

This page titled 17.4: Inequalities is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.

Y Z W = Z ⋅ Y

P( ≥ a) ≤ E( ) =U∞
1

a
W0

x

a
(17.4.53)

Z

p = 1
2
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