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7.3: Maximum Likelihood
           

Basic Theory

The Method

Suppose again that we have an observable random variable  for an experiment, that takes values in a set . Suppose also that
distribution of  depends on an unknown parameter , taking values in a parameter space . Of course, our data variable  will
almost always be vector valued. The parameter  may also be vector valued. We will denote the probability density function of 
on  by  for . The distribution of  could be discrete or continuous.

The likelihood function is the function obtained by reversing the roles of  and  in the probability density function; that is, we
view  as the variable and  as the given information (which is precisely the point of view in estimation).

The likelihood function at  is the function  given by

In the method of maximum likelihood, we try to find the value of the parameter that maximizes the likelihood function for each
value of the data vector.

Suppose that the maximum value of  occurs at  for each . Then the statistic  is a maximum likelihood
estimator of .

The method of maximum likelihood is intuitively appealing—we try to find the value of the parameter that would have most likely
produced the data we in fact observed.

Since the natural logarithm function is strictly increasing on , the maximum value of the likelihood function, if it exists, will
occur at the same points as the maximum value of the logarithm of the likelihood function.

The log-likelihood function at  is the function :

If the maximum value of  occurs at  for each . Then the statistic  is a maximum likelihood
estimator of 

The log-likelihood function is often easier to work with than the likelihood function (typically because the probability density
function  has a product structure).

Vector of Parameters

An important special case is when  is a vector of  real parameters, so that . In this case, the maximum
likelihood problem is to maximize a function of several variables. If  is a continuous set, the methods of calculus can be used. If
the maximum value of  occurs at a point  in the interior of , then  has a local maximum at . Therefore, assuming that the
likelihood function is differentiable, we can find this point by solving

or equivalently

On the other hand, the maximum value may occur at a boundary point of , or may not exist at all.
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Random Samples

The most important special case is when the data variables form a random sample from a distribution.

Suppose that  is a random sample of size  from the distribution of a random variable  taking values
in , with probability density function  for . Then  takes values in , and the likelihood and log-likelihood
functions for  are

Extending the Method and the Invariance Property

Returning to the general setting, suppose now that  is a one-to-one function from the parameter space  onto a set . We can
view  as a new parameter taking values in the space , and it is easy to re-parameterize the probability density function
with the new parameter. Thus, let  for  and . The corresponding likelihood function for  is

Clearly if  maximizes  for . Then  maximizes  for . It follows that if  is a maximum
likelihood estimator for , then  is a maximum likelihood estimator for .

If the function  is not one-to-one, the maximum likelihood function for the new parameter  is not well defined, because
we cannot parameterize the probability density function in terms of . However, there is a natural generalization of the method.

Suppose that , and let  denote the new parameter. Define the likelihood function for  at  by

If  maximizes  for each , then  is a maximum likelihood estimator of .

This definition extends the maximum likelihood method to cases where the probability density function is not completely
parameterized by the parameter of interest. The following theorem is known as the invariance property: if we can solve the
maximum likelihood problem for  then we can solve the maximum likelihood problem for .

In the setting of the previous theorem, if  is a maximum likelihood estimator of , then  is a maximum likelihood
estimator of .

Proof

As before, if  maximizes  for . Then  maximizes  for .

Examples and Special Cases
In the following subsections, we will study maximum likelihood estimation for a number of special parametric families of
distributions. Recall that if  is a random sample from a distribution with mean  and variance , then the
method of moments estimators of  and  are, respectively,

Of course,  is the sample mean, and  is the biased version of the sample variance. These statistics will also sometimes occur
as maximum likelihood estimators. Another statistic that will occur in some of the examples below is
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the second-order sample mean. As always, be sure to try the derivations yourself before looking at the solutions.

The Bernoulli Distribution

Suppose that  is a random sample of size  from the Bernoulli distribution with success parameter 
. Recall that the Bernoulli probability density function is

Thus,  is a sequence of independent indicator variables with  for each . In the usual language of reliability,  is
the outcome of trial , where 1 means success and 0 means failure. Let  denote the number of successes, so that the
proportion of successes (the sample mean) is . Recall that  has the binomial distribution with parameters  and .

The sample mean  is the maximum likelihood estimator of  on the parameter space .

Proof

Note that  for  Hence the log-likelihood function at 
 is

Differentiating with respect to  and simplifying gives

where . Thus, there is a single critical point at . The second deriviative is

Hence the log-likelihood function is concave downward and so the maximum occurs at the unique critical point .

Recall that  is also the method of moments estimator of . It's always nice when two different estimation procedures yield the
same result. Next let's look at the same problem, but with a much restricted parameter space.

Suppose now that  takes values in . Then the maximum likelihood estimator of  is the statistic

1. 

2.  is positively biased, but is asymptotically unbiased.

3. 

4.  is consistent.

Proof

Note that the likelihood function at  is  for  where as
usual, . Thus . On the other hand,  if  while  if . Thus, if 

 the maximum occurs when  while if  the maximum occurs when .

1. If  then , so trivially . If ,

=M2
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2. Note that  and  as  both in the case that  and .
3. If  then  with probability 1, so trivially . If ,

4. From (c),  as .

Note that the Bernoulli distribution in the last exercise would model a coin that is either fair or two-headed. The last two exercises
show that the maximum likelihood estimator of a parameter, like the solution to any maximization problem, depends critically on
the domain.

 is uniformly better than  on the parameter space .

Proof

Recall that . If  then  so that both estimators give the

correct answer. If , .

Suppose that  is a random sample of size  from the Bernoulli distribution with unknown success
parameter . Find the maximum likelihood estimator of , which is the variance of the sampling distribution.

Answer

By the invariance principle, the estimator is  where  is the sample mean.

The Geometric Distribution

Recall that the geometric distribution on  with success parameter  has probability density function

The geometric distribution governs the trial number of the first success in a sequence of Bernoulli trials.

Suppose that  is a random sample from the geometric distribution with unknown parameter .
The maximum likelihood estimator of  is .

Proof

Note that  for . Hence the log-likelihood function corresponding to the data 
 is

where . So

The derivative is 0 when . Finally,  so the maximum occurs

at the critical point.

Recall that  is also the method of moments estimator of . It's always reassuring when two different estimation procedures
produce the same estimator.

The Negative Binomial Distribution

More generally, the negative binomial distribution on  with shape parameter  and success parameter  has
probability density function

E(U) = 1P(Y = n) + P(Y < n) = 1 + [1 − ] = +
1

2
( )

1

2

n
1

2
( )

1

2

n
1

2
( )

1

2

n+1

(7.3.15)
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mse(U) → 0 n → ∞
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n
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y = ∑n
i=1 xi
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If  is a positive integer, then this distribution governs the number of failures before the th success in a sequence of Bernoulli
trials with success parameter . However, the distribution makes sense for general . The negative binomial distribution
is studied in more detail in the chapter on Bernoulli Trials.

Suppose that  is a random sample of size  from the negative binomial distribution on  with known
shape parameter  and unknown success parameter . The maximum likelihood estimator of  is

Proof

Note that  for . Hence the log-likelihood function corresponding to 
 is

where  and . Hence

The derivative is 0 when  where as usual, . Finally, 

, so the maximum occurs at the critical point.

Once again, this is the same as the method of moments estimator of  with  known.

The Poisson Distribution

Recall that the Poisson distribution with parameter  has probability density function

The Poisson distribution is named for Simeon Poisson and is widely used to model the number of random “points” in a region of
time or space. The parameter  is proportional to the size of the region. The Poisson distribution is studied in more detail in the
chapter on the Poisson process.

Suppose that  is a random sample from the Poisson distribution with unknown parameter .
The maximum likelihood estimator of  is the sample mean .

Proof

Note that  for . Hence the log-likelihood function corresponding to 
 is

where  and . Hence . The derivative is 0 when .

Finally, , so the maximum occurs at the critical point.

Recall that for the Poisson distribution, the parameter  is both the mean and the variance. Thus  is also the method of moments
estimator of . We showed in the introductory section that  has smaller mean square error than , although both are unbiased.

Suppose that  is a random sample from the Poisson distribution with parameter , and let 
. Find the maximum likelihood estimator of  in two ways:

1. Directly, by finding the likelihood function corresponding to the parameter .
2. By using the result of the last exercise and the invariance property.
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y = ∑n
i=1 xi C = ln( )∑n

i=1
+k−1xi
k−1

ln (p) = −
d

dp
Lx

nk

p

y

1 −p
(7.3.23)
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Answer

 where  is the sample mean.

The Normal Distribution

Recall that the normal distribution with mean  and variance  has probability density function

The normal distribution is often used to model physical quantities subject to small, random errors, and is studied in more detail in
the chapter on Special Distributions

Suppose that  is a random sample from the normal distribution with unknown mean  and
variance . The maximum likelihood estimators of  and  are  and , respectively.

Proof

Note that

Hence the log-likelihood function corresponding to the data  is

Taking partial derivatives gives

The partial derivatives are 0 when  and . Hence the unique critical point is .
Finally, with a bit more calculus, the second partial derivatives evaluated at the critical point are

Hence the second derivative matrix at the critical point is negative definite and so the maximum occurs at the critical point.

Of course,  and  are also the method of moments estimators of  and , respectively.

Run the Normal estimation experiment 1000 times for several values of the sample size , the mean , and the variance .
For the parameter , compare the maximum likelihood estimator  with the standard sample variance . Which estimator
seems to work better in terms of mean square error?

Suppose again that  is a random sample from the normal distribution with unknown mean  and
unknown variance . Find the maximum likelihood estimator of , which is the second moment about 0 for
the sampling distribution.

Answer

By the invariance principle, the estimator is  where  is the sample mean and  is the (biased version of the)
sample variance.

e−M M
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1
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1

2

1

2
σ2 1

2σ2
)2 (7.3.27)
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∑
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n ∑
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n ∑
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The Gamma Distribution

Recall that the gamma distribution with shape parameter  and scale parameter  has probability density function

The gamma distribution is often used to model random times and certain other types of positive random variables, and is studied in
more detail in the chapter on Special Distributions

Suppose that  is a random sample from the gamma distribution with known shape parameter  and
unknown scale parameter . The maximum likelihood estimator of  is .

Proof

Note that for ,

and hence the log-likelihood function corresponding to the data  is

where  and . It follows that

The derivative is 0 when . Finally, . At the critical point , the

second derivative is  so the maximum occurs at the critical point.

Recall that  is also the method of moments estimator of  when  is known. But when  is unknown, the method of moments
estimator of  is .

Run the gamma estimation experiment 1000 times for several values of the sample size , shape parameter , and scale
parameter . In each case, compare the method of moments estimator  of  when  is unknown with the method of moments
and maximum likelihood estimator  of  when  is known. Which estimator seems to work better in terms of mean square
error?

The Beta Distribution

Recall that the beta distribution with left parameter  and right parameter  has probability density function

The beta distribution is often used to model random proportions and other random variables that take values in bounded intervals. It
is studied in more detail in the chapter on Special Distribution

Suppose that  is a random sample from the beta distribution with unknown left parameter 
and right parameter . The maximum likelihood estimator of  is

Proof

Note that  for  Hence the log-likelihood function corresponding to the data 
 is

k > 0 b > 0

g(x) = , 0 < x < ∞
1

Γ(k) bk
xk−1e−x/b (7.3.30)

X = ( , , … , )X1 X2 Xn k

b ∈ (0, ∞) b = MVk
1
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x ∈ (0, ∞)

lng(x) = −lnΓ(k) −k lnb+(k−1) lnx−
x

b
(7.3.31)

x = ( , , … , ) ∈ (0, ∞x1 x2 xn )n

ln (b) = −nk lnb− +C, b ∈ (0, ∞)Lx

y

b
(7.3.32)

y = ∑n

i=1 xi C = −n lnΓ(k) +(k−1) ln∑n

i=1 xi

ln (b) = − +
d

db
Lx

nk

b

y

b2
(7.3.33)

b = y/nk = 1/km ln (b) = nk/ −2y/d2

db2
Lx b2 b3 b = y/nk

−(nk / < 0)3 y2

Vk b k k

b V = T 2

M

n k

b V b k

Vk b k

a ∈ (0, ∞) b = 1

g(x) = a , x ∈ (0, 1)xa−1 (7.3.34)

X = ( , , … , )X1 X2 Xn a ∈ (0, ∞)
b = 1 a

W = − = −
n

ln∑n
i=1 Xi

n

ln( ⋯ )X1X2 Xn

(7.3.35)

lng(x) = lna+(a−1) lnx x ∈ (0, ∞)
x = ( , , … , ) ∈ (0, ∞x1 x2 xn )n

ln (a) = n lna+(a−1) ln , a ∈ (0, ∞)Lx ∑
i=1

n

xi (7.3.36)
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Therefore . The derivative is 0 when . Finally, 

, so the maximum occurs at the critical point.

Recall that when , the method of moments estimator of  is , but when  is also unknown, the
method of moments estimator of  is . When , which estimator is better, the method of
moments estimator or the maximum likelihood estimator?

In the beta estimation experiment, set . Run the experiment 1000 times for several values of the sample size  and the
parameter . In each case, compare the estimators ,  and . Which estimator seems to work better in terms of mean
square error?

Finally, note that  is the sample mean for a random sample of size  from the distribution of . This distribution is the
exponential distribution with rate .

The Pareto Distribution

Recall that the Pareto distribution with shape parameter  and scale parameter  has probability density function

The Pareto distribution, named for Vilfredo Pareto, is a heavy-tailed distribution often used to model income and certain other
types of random variables. It is studied in more detail in the chapter on Special Distribution.

Suppose that  is a random sample from the Pareto distribution with unknown shape parameter 
 and scale parameter . The maximum likelihood estimator of  is , the

first order statistic. The maximum likelihood estimator of  is

Proof

Note that  for . Hence the log-likelihood function corresponding to the data 
 is

Equivalently, the domain is  and . Note that  is increasing in  for each , and hence is
maximized when  for each . Next,

The derivative is 0 when . Finally, , so the maximum
occurs at the critical point.

Recall that if , the method of moments estimators of  and  are

Open the the Pareto estimation experiment. Run the experiment 1000 times for several values of the sample size  and the
parameters  and . Compare the method of moments and maximum likelihood estimators. Which estimators seem to work
better in terms of bias and mean square error?

Often the scale parameter in the Pareto distribution is known.

ln (a) = n/a+ lnd

da
Lx ∑n

i=1 xi a = −n/ ln∑n
i=1 xi

ln (a) = −n/ < 0d2

da2
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b = 1 a = M/(1 −M)U1 b ∈ (0, ∞)

a U = M(M − )/( − )M2 M2 M 2 b = 1

b = 1 n

a U U1 W

1/W n −lnX
a

a > 0 b > 0

g(x) = , b ≤ x < ∞
aba

xa+1
(7.3.37)

X = ( , , … , )X1 X2 Xn

a ∈ (0, ∞) b ∈ (0, ∞) b = min{ , , … , }X(1) X1 X2 Xn

a

U = =
n

ln −n ln∑n
i=1 Xi X(1)

n

(ln −ln )∑n
i=1 Xi X(1)

(7.3.38)

lng(x) = lna+a lnb−(a+1) lnx x ∈ [b, ∞)
x = ( , , … , )x1 x2 xn

ln (a, b) = n lna+na lnb−(a+1) ln ; 0 < a < ∞, 0 < b ≤  for each i ∈ {1, 2, … ,n}Lx ∑
i=1

n

xi xi (7.3.39)

0 < a < ∞ 0 < b ≤ x(1) ln (a, b)Lx b a

b = x(1) a

ln (a, ) = +n ln − ln
d

da
Lx x(1)

n

a
x(1) ∑

i=1

n

xi (7.3.40)

a = n/ ( ln −n ln )∑n
i=1 xi x(1) ln (a, ) = −n/ < 0d2

da2
Lx x(1) a2

a > 2 a b

1 + , (1 − )
M2

−M2 M 2

− −−−−−−−−

√
M2

M

−M2 M 2

M2

− −−−−−−−−

√ (7.3.41)

n

a b
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Suppose that  is a random sample from the Pareto distribution with unknown shape parameter 
 and known scale parameter . The maximum likelihood estimator of  is

Proof

Modifying the previous proof, the log-likelihood function corresponding to the data  is

The derivative is

The derivative is 0 when . Finally, , so the maximum occurs at the
critical point.

Uniform Distributions

In this section we will study estimation problems related to the uniform distribution that are a good source of insight and
counterexamples. In a sense, our first estimation problem is the continuous analogue of an estimation problem studied in the
section on Order Statistics in the chapter Finite Sampling Models. Suppose that  is a random sample from
the uniform distribution on the interval , where  is an unknown parameter. Thus, the sampling distribution has
probability density function

First let's review results from the last section.

The method of moments estimator of  is . The estimator  satisfies the following properties:

1.  is unbiased.
2.  so  is consistent.

Now let's find the maximum likelihood estimator

The maximum likelihood estimator of  is , the th order statistic. The estimator 
satisfies the following properties:

1. 
2.  so that  is negatively biased but asymptotically unbiased.
3. 

4.  so that  is consistent.

Proof

The likelihood function corresponding to the data  is  for  for each 
. The domain is equivalent to . The function  is decreasing, and so the maximum occurs at

the smallest value, namely . Parts (a) and (c) are restatements of results from the section on order statistics. Parts (b) and
(d) follow from (a) and (c).

Since the expected value of  is a known multiple of the parameter , we can easily construct an unbiased estimator.

Let . The estimator  satisfies the following properties:

X = ( , , … , )X1 X2 Xn

a ∈ (0, ∞) b ∈ (0, ∞) a

U = =
n

ln −n lnb∑n

i=1 Xi

n

(ln −lnb)∑n

i=1 Xi

(7.3.42)

x = ( , , … , )x1 x2 xn

ln (a) = n lna+na lnb−(a+1) ln , 0 < a < ∞Lx ∑
i=1

n

xi (7.3.43)

ln (a) = +n lnb− ln
d

da
Lx

n

a
∑
i=1

n

xi (7.3.44)

a = n/ ( ln −n lnb)∑n
i=1 xi ln (a) = −n/ < 0d2

da2
Lx a2

X = ( , , … , )X1 X2 Xn

[0,h] h ∈ (0, ∞)

g(x) = , x ∈ [0,h]
1

h
(7.3.45)

h U = 2M U

U

var(U) = h2

3n
U

h = max{ , , … , }X(n) X1 X2 Xn n X(n)

E ( ) = hX(n)
n

n+1

bias( ) = −X(n)
h

n+1
X(n)

var( ) =X(n)
n

(n+2)(n+1)2
h2

mse ( ) =X(n)
2

(n+1)(n+2)
h2 X(n)

x = ( , , … , )x1 x2 xn (h) = 1/Lx hn h ≥ xi
i ∈ {1, 2, … n} h ≥ x(n) h ↦ 1/hn

x(n)

X(n) h

V = n+1
n

X(n) V
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1.  is unbiased.
2.  so that  is consistent.

3. The asymptotic relative efficiency of  to  is infinite.

Proof

Parts (a) and (b) follow from the previous result and basic properties of the expected value and variance. For part (c),

The last part shows that the unbiased version  of the maximum likelihood estimator is a much better estimator than the method of
moments estimator . In fact, an estimator such as , whose mean square error decreases on the order of , is called super
efficient. Now, having found a really good estimator, let's see if we can find a really bad one. A natural candidate is an estimator
based on , the first order statistic. The next result will make the computations very easy.

The sample  satisfies the following properties:

1.  is uniformly distributed on  for each .
2.  is also a random sample from the uniform distribution on .
3.  has the same distribution as .

Proof
1. This is a simple consequence of the fact that uniform distributions are preserved under linear transformations on the

random variable.
2. This follows from (a) and that the fact that if  is a sequence of independent variables, then so is 

.
3. From part (b),  has the same distribution as 

.

Now we can construct our really bad estimator.

Let . Then

1.  is an unbiased estimator of .
2. , so  is not even consistent.

Proof

These results follow from the ones above:

1.  and hence .
2. .

Run the uniform estimation experiment 1000 times for several values of the sample size  and the parameter . In each case,
compare the empirical bias and mean square error of the estimators with their theoretical values. Rank the estimators in terms
of empirical mean square error.

Our next series of exercises will show that the maximum likelihood estimator is not necessarily unique. Suppose that 
 is a random sample from the uniform distribution on the interval , where  is an unknown

parameter. Thus, the sampling distribution has probability density function

As usual, let's first review the method of moments estimator.

The method of moments estimator of  is . The estimator  satisfies the following properties:

1.  is unbiased.

V

var(V ) = h2

n(n+2)
V

V U

= = → ∞ as n → ∞
var(U)

var(V )

/3nh2

/n(n+2)h2

n+2

3
(7.3.46)

V

U V 1
n2

= min{ , , … , }X(1) X1 X2 Xn

X = ( , , … , )X1 X2 Xn

h−Xi [0,h] i

(h− ,h− , … ,h− )X1 X2 Xn [0,h]
X(1) h−X(n)

X

(h− ,h− , … ,h− )X1 X2 Xn

= min{ , , … , }X(1) X1 X2 Xn

min{h− ,h− , … ,h− } = h−max{ , , … , } = h−X1 X2 Xn X1 X2 Xn X(n)

W = (n+1)X(1)

W h

var(W ) = n

n+2
h2 W

E( ) = h−E( ) = h− h = hX(1) X(n)
n

n+1
1

n+1
E(W ) = h

var(W ) = (n+1 var( ) = (n+1 var(h− ) = (n+1 =)2 X(1) )2 X(n) )2 n

(n+1 (n+2))2
h2 n

n+2
h2

n a

X = ( , , … , )X1 X2 Xn [a, a+1] a ∈ R

g(x) = 1, a ≤ x ≤ a+1 (7.3.47)

a U = M − 1
2

U

U
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2.  so  is consistent.

However, as promised, there is not a unique maximum likelihood estimatr.

Any statistic  is a maximum likelihood estimator of .

Proof

The likelihood function corresponding to the data  is  for  and 
. The domain is equivalent to  and . Since the likelihood function is constant on this

domain, the result follows.

For completeness, let's consider the full estimation problem. Suppose that  is a random sample of size 
from the uniform distribution on  where  and  are both unknown. Here's the result from the last section:

Let  and  denote the method of moments estimators of  and , respectively. Then

where  is the sample mean, and  is the biased version of the sample variance.

It should come as no surprise at this point that the maximum likelihood estimators are functions of the largest and smallest order
statistics.

The maximum likelihood estimators or  and  are  and , respectively.

1.  so  is positively biased and asymptotically unbiased.
2.  so  is negatively biased and asymptotically unbiased.
3.  so  is consistent.

4.  so  is consistent.

Proof

The likelihood function corresponding to the data  is  for  and 
. The domain is equivalent to  and . Since the likelihood function depends only on  in

this domain and is decreasing, the maximum occurs when  and . Parts (a)–(d) follow from standard
results for the order statistics from the uniform distribution.

The Hypergeometric Model

In all of our previous examples, the sequence of observed random variables  is a random sample from a
distribution. However, maximum likelihood is a very general method that does not require the observation variables to be
independent or identically distributed. In the hypergeometric model, we have a population of  objects with  of the objects type 1
and the remaining  objects type 0. The population size , is a positive integer. The type 1 size , is a nonnegative integer
with . These are the basic parameters, and typically one or both is unknown. Here are some typical examples:

1. The objects are devices, classified as good or defective.
2. The objects are persons, classified as female or male.
3. The objects are voters, classified as for or against a particular candidate.
4. The objects are wildlife or a particular type, either tagged or untagged.

We sample  objects from the population at random, without replacement. Let  be the type of the th object selected, so that our
sequence of observed variables is . The variables are identically distributed indicator variables, with 

 for each , but are dependent since the sampling is without replacement. The number of type 1
objects in the sample is . This statistic has the hypergeometric distribution with parameter , , and , and has
probability density function given by

var(U) = 1
12n

U

V ∈ [ −1, ]X(n) X(1) a

x = ( , , … , }x1 x2 xn (a) = 1Lx a ≤ ≤ a+1xi
i ∈ {1, 2, … ,n} a ≤ x(1) a ≥ −1x(n)

X = ( , , … , )X1 X2 Xn n

[a, a+h] a ∈ R h ∈ (0, ∞)

U V a h

U = 2M − T , V = 2 T3
–

√ 3
–

√ (7.3.48)

M = 1
n ∑

n
i=1 Xi T = ( −M1

n ∑
n
i=1 Xi )2

a h U = X(1) V = −X(n) X(1)

E(U) = a+ h

n+1
U

E(V ) = h
n−1
n+1

V

var(U) = h2 n

(n+1 (n+2))
2 U

var(V ) = h2 2(n−1)

(n+1 (n+2))2 V

x = ( , , … , )x1 x2 xn (a,h) =Lx
1
hn

a ≤ ≤ a+hxi

i ∈ {1, 2, … ,n} a ≤ x(1) a+h ≥ x(n) h

a = x(1) h = −x(n) x(1)

X = ( , , … , )X1 X2 Xn

N r

N −r N r

r ≤ N

n Xi i

X = ( , , … , )X1 X2 Xn

P ( = 1) = r/NXi i ∈ {1, 2, … ,n}
Y = ∑n

i=1 Xi N r n
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Recall the falling power notation:  for  and . The hypergeometric model is studied in
more detail in the chapter on Finite Sampling Models.

As above, let  be the observed variables in the hypergeometric model with parameters  and . Then

1. The maximum likelihood estimator of  with  known is .
2. The maximum likelihood estimator of  with  known is  if .

Proof

By a simple application of the multiplication rule, the PDF  of  is

where .

1. With  known, the likelihood function corresponding to the data  is

After some algebra,  if and only if  if and only if 
. So the maximum of  occurs when .

2. Similarly, with  known, the likelihood function corresponding to the data  is

After some algebra,  if and only if  if and only if 
 (assuming ). So the maximum of  occurs when .

In the reliability example (1), we might typically know  and would be interested in estimating . In the wildlife example (4), we
would typically know  and would be interested in estimating . This example is known as the capture-recapture model.

Clearly there is a close relationship between the hypergeometric model and the Bernoulli trials model above. In fact, if the
sampling is with replacement, the Bernoulli trials model with  would apply rather than the hypergeometric model. In
addition, if the population size  is large compared to the sample size , the hypergeometric model is well approximated by the
Bernoulli trials model, again with .

This page titled 7.3: Maximum Likelihood is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

P (Y = y) = =( ) , y ∈ {max{0,N −n+r}, … , min{n, r}}
( )( )r

y

N−r

n−y

( )N

n

n

y

(N −rr(y) )(n−y)

N (n)
(7.3.49)

= x(x−1) ⋯ (x−k+1)x(k) x ∈ R k ∈ N

X = ( , , … , )X1 X2 Xn N r

r N U = ⌊NM⌋ = ⌊NY /n⌋
N r V = ⌊r/M⌋ = ⌊rn/Y ⌋ Y > 0

f X

f(x) = , x = ( , , … , ) ∈ {0, 1
(N −rr(y) )(n−y)

N (n)
x1 x2 xn }n (7.3.50)

y = ∑n
i=1 xi

N x = ( , , … , ) ∈ {0, 1x1 x2 xn }n

(r) = , r ∈ {y, … , min{n, y+N −n}}Lx

(N −rr(y) )(n−y)

N (n)
(7.3.51)

(r−1) < (r)Lx Lx (r−y)(N −r+1) < r(N −r−n+y+1)
r < Ny/n (r)Lx r = ⌊Ny/n⌋

r x = ( , , … , ) ∈ {0, 1x1 x2 xn }n

(N) = , N ∈ {max{r,n}, …}Lx

(N −rr(y) )(n−y)

N (n)
(7.3.52)

(N −1) < (N)Lx Lx (N −r−n+y)/(N −n) < (N −r)/N
N < rn/y y > 0 (r)Lx N = ⌊rn/y⌋

N r

r N

p = r/N
N n

p = r/N
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