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11.4: The Negative Binomial Distribution
        

Basic Theory

Suppose again that our random experiment is to perform a sequence of Bernoulli trials  with success parameter . Recall
that the number of successes in the first  trials

has the binomial distribution with parameters  and . In this section we will study the random variable that gives the trial number of the th
success:

Note that  is the number of trials needed to get the first success, which we now know has the geometric distribution on  with parameter .

The Probability Density Function

The probability distribution of  is given by

Proof

Note that  if and only if  and . Hence, from independence and the binomial distribution,

The distribution defined by the density function in (1) is known as the negative binomial distribution; it has two parameters, the stopping parameter 
 and the success probability .

In the negative binomial experiment, vary  and  with the scroll bars and note the shape of the density function. For selected values of  and ,
run the experiment 1000 times and compare the relative frequency function to the probability density function.

The binomial and negative binomial sequences are inverse to each other in a certain sense.

For  and ,

1.  and hence 
2. 

Proof
1. The events  and  both mean that there are at least  successes in the first  Bernoulli trials.
2. From the formulas for the binomial and negative binomial PDFs,  and  both simplify to .

In particular, it follows from part (a) that any event that can be expressed in terms of the negative binomial variables can also be expressed in terms
of the binomial variables.

The negative binomial distribution is unimodal. Let . Then

1.  if and only if .
2. The probability density function at first increases and then decreases, reaching its maximum value at .
3. There is a single mode at  if  is not an integers, and two consecutive modes at  and  if  is an integer.

Times Between Successes

Next we will define the random variables that give the number of trials between successive successes. Let  and  for 

 is a sequence of independent random variables, each having the geometric distribution on  with parameter . Moreover,
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In statistical terms,  corresponds to sampling from the geometric distribution with parameter , so that for each ,  is a random
sample of size  from this distribution. The sample mean corresponding to this sample is ; this random variable gives the average number of
trials between the first  successes. In probability terms, the sequence of negative binomial variables  is the partial sum process corresponding to
the sequence . Partial sum processes are studied in more generality in the chapter on Random Samples.

The random process  has stationary, independent increments:

1. If  then  has the same distribution as , namely negative binomial with parameters  and .
2. If  then  is a sequence of independent random variables.

Actually, any partial sum process corresponding to an independent, identically distributed sequence will have stationary, independent increments.

Basic Properties

The mean, variance and probability generating function of  can be computed in several ways. The method using the representation as a sum of
independent, identically distributed geometrically distributed variables is the easiest.

 has probability generating function  given by

Proof

Recall that the probability generating function of a sum of independent variables is the product of the probability generating functions of the
variables. Recall also, the probability generating function of the geometric distribution with parameter  is . Thus, the
result follows immediately from the sum representation above. A derivation can also be given directly from the probability density function.

The mean and variance of  are

1. .

2. 

Proof

The geometric distribution with parameter  has mean  and variance , so the results follows immediately from the sum
representation above. Recall that the mean of a sum is the sum of the means, and the variance of the sum of independent variables is the sum of
the variances. These results can also be proven directly from the probability density function or from the probability generating function.

In the negative binomial experiment, vary  and  with the scroll bars and note the location and size of the mean/standard deviation bar. For
selected values of the parameters, run the experiment 1000 times and compare the sample mean and standard deviation to the distribution mean
and standard deviation.

Suppose that  and  are independent random variables for an experiment, and that  has the negative binomial distribution with parameters 
and , and  has the negative binomial distribution with parameters  and . Then  has the negative binomial distribution with
parameters  and .

Proof

Once again, the simplest proof is based on the representation as a sum of independent geometric variables. In the context of the sum
representation above, we can take  and , so that . Another simple proof uses probability generating
functions. Recall again that the PGF of the sum of independent variables is the product of the PGFs. Finally, a difficult proof can be constructed
using probability density functions. Recall that the PDF of a sum of independent variables is the convolution of the PDFs.

Normal Approximation

In the negative binomial experiment, start with various values of  and . Successively increase  by 1, noting the shape of the probability
density function each time.

Even though you are limited to  in the app, you can still see the characteristic bell shape. This is a consequence of the central limit theorem
because the negative binomial variable can be written as a sum of  independent, identically distributed (geometric) random variables.

The standard score of  is
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The distribution of  converges to the standard normal distribution as .

From a practical point of view, this result means that if  is “large”, the distribution of  is approximately normal with mean  and variance 

. Just how large  needs to be for the approximation to work well depends on . Also, when using the normal approximation, we should
remember to use the continuity correction, since the negative binomial is a discrete distribution.

Relation to Order Statistics

Suppose that  and , and let . Then

Proof

Note that the event in the numerator of the first fraction means that in the first  trials, successes occurred at trials  and failures
occurred at all other trials.

Thus, given exactly  successes in the first  trials, the vector of success trial numbers is uniformly distributed on the set of possibilities ,
regardless of the value of the success parameter . Equivalently, the vector of success trial numbers is distributed as the vector of order statistics
corresponding to a sample of size  chosen at random and without replacement from .

Suppose that , , and . Then

Proof

This follows immediately from the previous result and a theorem in the section on order statistics. However, a direct proof is also easy. Note that
the event  means that there were  successes in the first  trials, a success on trial  and  success in trials 

 to . Hence using the binomial distribution and independence,

Thus, given exactly  successes in the first  trials, the trial number of the th success has the same distribution as the th order statistic when a
sample of size  is selected at random and without replacement from the population . Again, this result does not depend on the value of
the success parameter . The following theorem gives the mean and variance of the conditional distribution.

Suppose again that , , and . Then

1. 

2. 

Proof

These moment results follow immediately from the previous theorem and a theorem in the section on order statistics. However, there is also a
nice heuristic argument for (a) using indicator variables. Given , the  successes divide the set of indices where the failures occur into 

 disjoint sets (some may be empty, of course, if there are adjacent successes).

The red dots are successes and the green dots failures. The 8 successes in the 50 trials divide the set of failures into 9 disjoint sets.
Timeline.png

Let  take the value 1 if the th failure occurs before the th success, and 0 otherwise, for . Then given ,

Given , we know that the  successes and  failures are randomly placed in , with each possible configuration having
the same probability. Thus,
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Hence

Examples and Applications

Coins, Dice and Other Gadgets

A standard, fair die is thrown until 3 aces occur. Let  denote the number of throws. Find each of the following:

1. The probability density function of .
2. The mean of .
3. The variance of .
4. The probability that at least 20 throws will needed.

Answer

1. 

2. 
3. 
4. 

A coin is tossed repeatedly. The 10th head occurs on the 25th toss. Find each of the following:

1. The probability density function of the trial number of the 5th head.
2. The mean of the distribution in (a).
3. The variance of the distribution in (a).

Answer

1. 

2. 
3. 

A certain type of missile has failure probability 0.02. Let  denote the launch number of the fourth failure. Find each of the following:

1. The probability density function of .
2. The mean of .
3. The variance of .
4. The probability that there will be at least 4 failures in the first 200 launches.

Answer

1. 

2. 
3. 
4. 

In the negative binomial experiment, set  and . Run the experiment 1000 times. Compute and compare each of the following:

1. 
2. The relative frequency of the event  in the simulation
3. The normal approximation to 

Answer
1. 
3. 

A coin is tossed until the 50th head occurs.

1. Assuming that the coin is fair, find the normal approximation of the probability that the coin is tossed at least 125 times.
2. Suppose that you perform this experiment, and 125 tosses are required. Do you believe that the coin is fair?
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Answer
1. 0.0072
2. No.

The Banach Match Problem

Suppose that an absent-minded professor (is there any other kind?) has  matches in his right pocket and  matches in his left pocket. When he
needs a match to light his pipe, he is equally likely to choose a match from either pocket. We want to compute the probability density function of the
random variable  that gives the number of matches remaining when the professor first discovers that one of the pockets is empty. This is known as
the Banach match problem, named for the mathematician Stefan Banach, who evidently behaved in the manner described.

We can recast the problem in terms of the negative binomial distribution. Clearly the match choices form a sequence of Bernoulli trials with
parameter . Specifically, we can consider a match from the right pocket as a win for player , and a match from the left pocket as a win for
player . In a hypothetical infinite sequence of trials, let  denote the number of trials necessary for  to win  trials, and  the number of
trials necessary for  to win  trials. Note that  and  each have the negative binomial distribution with parameters  and .

For ,

1.  has  wins at the moment when  wins  games if and only if .
2.  is equivalent to the event that the professor first discovers that the right pocket is empty and that the left pocket has 

matches

3. 

For ,

1.  has  wins at the moment when  wins  games if and only if .
2.  is equivalent to the event that the professor first discovers that the right pocket is empty and that the left pocket has 

matches
3. .

 has probability density function

Proof

This result follows from the previous two exercises, since .

We can also solve the non-symmetric Banach match problem, using the same methods as above. Thus, suppose that the professor reaches for a match
in his right pocket with probability  and in his left pocket with probability , where . The essential change in the analysis is that 
has the negative binomial distribution with parameters  and , while  has the negative binomial distribution with parameters  and 

.

For the Banach match problem with parameter ,  has probability density function

The Problem of Points

Suppose that two teams (or individuals)  and  play a sequence of Bernoulli trials (which we will also call points), where  is the
probability that player  wins a point. For nonnegative integers  and , let  denote the probability that  wins  points before  wins 
points. Computing  is an historically famous problem, known as the problem of points, that was solved by Pierre de Fermat and by Blaise
Pascal.

Comment on the validity of the Bernoulli trial assumptions (independence of trials and constant probability of success) for games of sport that
have a skill component as well as a random component.

There is an easy solution to the problem of points using the binomial distribution; this was essentially Pascal's solution. There is also an easy
solution to the problem of points using the negative binomial distribution In a sense, this has to be the case, given the equivalence between the
binomial and negative binomial processes in (3). First, let us pretend that the trials go on forever, regardless of the outcomes. Let  denote the
number of wins by player  in the first  points, and let  denote the number of trials needed for  to win  points. By definition, 

 has the binomial distribution with parameters  and , and  has the negative binomial distribution with parameters  and .
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Player  wins  points before  wins  points if and only if  if and only if . Hence

 satisfies the following properties:

1.  increases from 0 to 1 as  increases from 0 to 1 for fixed  and .
2.  decreases as  increases for fixed  and .
3.  increases as  increases for fixed  and .

 for any  and .

Proof

A simple probabilistic proof is to note that both sides can be interpreted as the probability that a player with point probability  wins 
points before the opponent wins  points. An analytic proof can also be constructed using the formulas above for 

In the problem of points experiments, vary the parameters , , and , and note how the probability changes. For selected values of the
parameters, run the simulation 1000 times and note the apparent convergence of the relative frequency to the probability.

The win probability function for player  satisfies the following recurrence relation and boundary conditions (this was essentially Fermat's
solution):

1. 
2. , 

Proof

Condition on the outcome of the first trial.

Next let  denote the number of trials needed until either  wins  points or  wins  points, whichever occurs first—the length of the
problem of points experiment. The following result gives the distribution of 

For 

Proof

Again, imagine that we continue the trials indefinitely. Let  denote the number of trials needed for  to win  points, and let  denote the
number of trials needed for  to win  points. Then  for  in the indicated range.

Series of Games

The special case of the problem of points experiment with  is important, because it corresponds to  and  playing a best of  game
series. That is, the first player to win  games wins the series. Such series, especially when , are frequently used in championship
tournaments.

Let  denote the probability that player  wins the series. Then

Proof

This follows directly from the problem of points probability above, since .

Suppose that . Explicitly find the probability that team  wins in each of the following cases:

1. A best of 5 game series.
2. A best of 7 game series.

Answer
1. 0.6825.
2. 0.7102
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In the problem of points experiments, vary the parameters , , and  (keeping ), and note how the probability changes. Now simulate a
best of 5 series by selecting , . Run the experiment 1000 times and compare the relative frequency to the true probability.

 for any  and . Therefore

1. The graph of  is symmetric with respect to .
2. .

Proof

Again, there is a simple probabilistic argument for the equation: both sides represent the probabiltiy that a player with game probability 
will win the series.

In the problem of points experiments, vary the parameters , , and  (keeping ), and note how the probability changes. Now simulate a
best 7 series by selecting , . Run the experiment 1000 times and compare the relative frequency to the true probability.

If  then

1.  if 
2.  if 

Proof

The greater the number of games in the series, the more the series favors the stronger player (the one with the larger game probability).

Let  denote the number of trials in the series. Then  has probability density function

Proof

This result follows directly from the corresponding problem of points result above with .

Explicitly compute the probability density function, expected value, and standard deviation for the number of games in a best of 7 series with
the following values of :

1. 0.5
2. 0.7
3. 0.9

Answer

1. , , 
2. , , 
3. , , 

Division of Stakes

The problem of points originated from a question posed by Chevalier de Mere, who was interested in the fair division of stakes when a game is
interrupted. Specifically, suppose that players  and  each put up  monetary units, and then play Bernoulli trials until one of them wins a
specified number of trials. The winner then takes the entire  fortune.

If the game is interrupted when  needs to win  more trials and  needs to win  more trials, then the fortune should be divided between 
and , respectively, as follows:

1.  for 
2.  for .

Suppose that players  and  bet $50 each. The players toss a fair coin until one of them has 10 wins; the winner takes the entire fortune.
Suppose that the game is interrupted by the gambling police when  has 5 wins and  has 3 wins. How should the stakes be divided?

Answer

 gets $72.56,  gets $27.44
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f(k) = ( ) [(0.9 (0.1 +(0.1 (0.9 ] , k ∈ {4, 5, 6, 7}k−1
3

)4 )k−4 )4 )k−4
E(N) = 4.4394 sd(N) = 0.6831

A B c

2c

A n B m A

B

2c (p)An,m A

2c [1 − (p)] = 2c (1 −p)An,m Am,n B

A B

A B

A B
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Alternate and General Versions
Let's return to the formulation at the beginning of this section. Thus, suppose that we have a sequence of Bernoulli trials  with success parameter 

, and for , we let  denote the trial number of the th success. Thus,  has the negative binomial distribution with parameters 
and  as we studied above. The random variable  is the number of failures before the th success. Let , the number of
failures before the first success, and let , the number of failures between the st success and the th success, for 

.

 is a sequence of independent random variables, each having the geometric distribution on  with parameter . Moreover,

Thus,  is the partial sum process associated with . In particular,  has stationary, independent increments.

Probability Density Functions

The probability density function of  is given by

Proof

This result follows directly from the PDF of , since  for .

The distribution of  is also referred to as the negative binomial distribution with parameters  and . Thus, the term negative binomial
distribution can refer either to the distribution of the trial number of the th success or the distribution of the number of failures before the th
success, depending on the author and the context. The two random variables differ by a constant, so it's not a particularly important issue as long as
we know which version is intended. In this text, we will refer to the alternate version as the negative binomial distribution on , to distinguish it
from the original version, which has support set 

More interestingly, however, the probability density function in the last result makes sense for any , not just integers. To see this, first
recall the definition of the general binomial coefficient: if  and , we define

The function  given below defines a probability density function for every  and :

Proof

Recall from the section on Combinatorial Structures that . From the general binomial theorem,

Once again, the distribution defined by the probability density function in the last theorem is the negative binomial distribution on , with
parameters  and . The special case when  is a positive integer is sometimes referred to as the Pascal distribution, in honor of Blaise Pascal.

The distribution is unimodal. Let .

1.  if and only if .
2. The distribution has a single mode at  if  is not an integer.
3. The distribution has two consecutive modes at  and  if  is a positive integer.

Basic Properties

Suppose that  has the negative binomial distribution on  with parameters  and . To establish basic properties, we can no
longer use the decomposition of  as a sum of independent geometric variables. Instead, the best approach is to derive the probability generating
function and then use the generating function to obtain other basic properties.

 has probability generating function  given by

X

p ∈ (0, 1] k ∈ N+ Vk k Vk k

p = −kWk Vk k =N1 W1

= −Nk Wk Wk−1 (k −1) k

k ∈ {2, 3, …}

N = ( , , …)N1 N2 N p

=Wk ∑
i=1

k

Ni (11.4.22)

W = ( , , …)W1 W2 N W

Wk

P( = n) =( ) (1 −p =( ) (1 −p , n ∈ NWk

n +k −1

k −1
pk )n n +k −1

n
pk )n (11.4.23)

Vk P( = n) = P( = k +n)Wk Vk n ∈ N

Wk k p

k k

N

{k, k +1, …}

k ∈ (0, ∞)
a ∈ R n ∈ N

( ) = =
a

n

a(n)

n!

a(a −1) ⋯ (a −n +1)

n!
(11.4.24)

f p ∈ (0, 1) k ∈ (0, ∞)

f(n) =( ) (1 −p , n ∈ N
n +k −1

n
pk )n (11.4.25)

( ) = (−1 ( )n+k−1
n )n −k

n

f(n) = ( )(−1 (1 −p = = 1∑
n=0

∞

pk∑
n=0

∞
−k

n
)n )n pk [1 −(1 −p)]

−k
(11.4.26)

N

k p k

t = |k −1|
1−p

p

f(n −1) < f(n) n < t

⌊t⌋ t

t −1 t t

W N k ∈ (0, ∞) p ∈ (0, 1)
W

W P
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Proof

This follows from the general binomial theorem: for ,

The moments of  can be obtained from the derivatives of the probability generating funciton.

 has the following moments:

1. 

2. 

3. 

4. 

Proof

Recall that the factorial moments of  can be obtained from the derivatives of the probability generating function: . Then
the various moments above can be obtained from standard formulas.

The negative binomial distribution on  is preserved under sums of independent variables.

Suppose that  has the negative binomial distribution on  with parameters  and , and that  has the negative binomial
distribution on  with parameters  and , and that  and  are independent. Then  has the negative binomial on 
distribution with parameters  and .

Proof

This result follows from the probability generating functions. Recall that the PGF of  is the product of the PGFs of  and .

In the last result, note that the success parameter  must be the same for both variables.

Normal Approximation

Because of the decomposition of  when the parameter  is a positive integer, it's not surprising that a central limit theorm holds for the general
negative binomial distribution.

Suppose that  has the negative binomial distibtion with parameters  and . The standard score of  is

The distribution of  converges to the standard normal distribution as .

Thus, if  is large (and not necessarily an integer), then the distribution of  is approximately normal with mean  and variance .

Special Families

The negative binomial distribution on  belongs to several special families of distributions. First, It follows from the result above on sums that we
can decompose a negative binomial variable on  into the sum of an arbitrary number of independent, identically distributed variables. This special
property is known as infinite divisibility, and is studied in more detail in the chapter on Special Distributions.

The negative binomial distribution on  is infinitely divisible.

Proof

Suppose that  has the negative binomial distribution on  with parameters  and . It follows from the previous result that
for any ,  can be represented as  where  are independent, and each has the negative binomial
distribution on  with parameters  and .

A Poisson-distributed random sum of independent, identically distributed random variables is said to have a compound Poisson distributions; these
distributions are studied in more detail in the chapter on the Poisson Process. A theorem of William Feller states that an infinite divisible distribution

P (t) =E ( ) = , |t| <tW ( )
p

1 −(1 −p) t

k
1

1 −p
(11.4.27)

|t| < 1/(1 −p)

E ( ) = f(n) = ( )(−1 (1 −p =  tW ∑
n=0

∞

tn pk∑
n=0

∞
−k

n
)n )ntn pk [1 −(1 −p)t]

−k
(11.4.28)

W

W

E(W ) = k
1−p

p

var(W ) = k
1−p

p2

skew(W ) =
2−p

k(1−p)√

kurt(W ) =
3 (k+2)(1−p)+p2

k (1−p)

W E [ ] = (1)W (k) P (k)

N

V N a ∈ (0, ∞) p ∈ (0, 1) W

N b ∈ (0, ∞) p ∈ (0, 1) V W V +W N

a +b p

V +W V W

p

W k

W k ∈ (0, ∞) p ∈ (0, 1) W

Z =
p W −k (1 −p)

k (1 −p)
− −−−−−−

√
(11.4.29)

Z k → ∞

k W k
1−p

p
k

1−p

p2

N

N

N

V N k ∈ (0, ∞) p ∈ (0, 1)
n ∈ N+ V V =∑n

i=1 Vi ( , , … , )V1 V2 Vn

N k/n p
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on  must be compound Poisson. Hence it follows from the previous result that the negative binomial distribution on  belongs to this family. Here
is the explicit result:

Let . Suppose that  is a sequence of independent variables, each having the logarithmic series distribution with
shape parameter . Suppose also that  is independent of  and has the Poisson distribution with parameter . Then 

 has the negative binomial distribution on  with parameters  and .

Proof

From the general theory of compound Poisson distributions, the probability generating function of  is  where  is
the parameter of the Poisson variable  and  is the common PGF of the the terms in the sum. Using the PGF of the logarithmic series
distribution, and the particular values of the parameters, we have

Using properties of logarithms and simple algebra, this reduces to

which is the PGF of the negative binomial distribution with parameters  and .

As a special case ( ), it follows that the geometric distribution on  is infinitely divisible and compound Poisson.

Next, the negative binomial distribution on  belongs to the general exponential family. This family is important in inferential statistics and is
studied in more detail in the chapter on Special Distributions.

Suppose that  has the negative binomial distribution on  with parameters  and . For fixed ,  has a one-parameter
exponential distribution with natural statistic  and natural parameter .

Proof

The PDF of  can be written as

so the result follows from the definition of the general exponential family.

Finally, the negative binomial distribution on  is a power series distribution. Many special discrete distribution belong to this family, which is
studied in more detail in the chapter on Special Distributions.

For fixed , the negative binomial distribution on  with parameters  and  is a power series distribution corresponding to
the function  for , where .

Proof

In terms of the new parameter , the negative binomial pdf has the form  for , and .

Computational Exercises

Suppose that  has the negative binomial distribution with parameters  and . Compute each of the following:

1. 
2. 
3. 

Answer
1. 
2. 
3. 

Suppose that  has the negative binomial distribution with parameters  and . Compute each of the following:

1. 
2. 
3. 

Answer

N N

p, k ∈ (0, ∞) X = ( , , …)X1 X2

1 −p N X −k ln(p)

W =∑N

i=1 Xi N k p

W P (t) = exp(λ[Q(t) −1]) λ

N Q(t)

P (t) = exp[−k ln(p)( −1)], |t| <
ln[1 −(1 −p)t]

ln(p)

1

1 −p
(11.4.30)

P (t) = , |t| <( )
p

1 −(1 −p)t

k 1

1 −p
(11.4.31)

k p

k = 1 N

N

W N k ∈ (0, ∞) p ∈ (0, 1) k W

W ln(1 −p)

W

f(n) =( ) exp[n ln(1 −p)], n ∈ N
n +k −1

n
pk (11.4.32)

N

k ∈ (0, ∞) N k p ∈ (0, 1)
g(θ) = 1/(1 −θ)k θ ∈ (0, 1) θ = 1 −p

θ f(n) = ( )1
g(θ)

n+k−1
n θn n ∈ N ( ) = g(θ)∑∞

n=0
n+k−1

n θn

W k = 15
2

p = 3
4

P(W = 3)
E(W )
var(W )

P(W = 3) = 0.1823

E(W ) = 5
2

var(W ) = 10
3

W k = 1
3

p = 1
4

P(W ≤ 2)
E(W )
var(W )
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1. 

2. 
3. 

Suppose that  has the negative binomial distribution with parameters  and . Compute each of the following:

1. 
2. 
3. The normal approximation to 

Answer
1. 
2. 
3. 
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P(W ≤ 2) = 11

8 4√3

E(W ) = 1
var(W ) = 4

W k = 10 π p = 1
3

E(W )
var(W )

P(50 ≤ W ≤ 70)

E(W ) = 20 π

var(W ) = 60 π

P(50 ≤ W ≤ 70) ≈ 0.5461
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