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16.9: The Bernoulli-Laplace Chain
     

Basic Theory

Introduction

The Bernoulli-Laplace chain, named for Jacob Bernoulli and Pierre Simon Laplace, is a simple discrete model for the diffusion of two
incompressible gases between two containers. Like the Ehrenfest chain, it can also be formulated as a simple ball and urn model. Thus, suppose
that we have two urns, labeled 0 and 1. Urn 0 contains  balls and urn 1 contains  balls, where . Of the  balls,  are red and the
remaining  are green. Thus  and . At each discrete time, independently of the past, a ball is selected at random
from each urn and then the two balls are switched. The balls of different colors correspond to molecules of different types, and the urns are the
containers. The incompressible property is reflected in the fact that the number of balls in each urn remains constant over time.

Figure : The Bernoulli-Laplace model

Let  denote the number of red balls in urn 1 at time . Then

1.  is the number of green balls in urn 1 at time .
2.  is the number of red balls in urn 0 at time .
3.  is the number of green balls in urn 0 at time .

 is a discrete-time Markov chain with state space  and with transition matrix 
 given by

Proof

For the state space, note from the previous result that the number of red balls  in urn 1 must satisfy the inequalities , , ,
and . The Markov property is clear from the model. For the transition probabilities, note that to go from state  to state  we
must select a green ball from urn 0 and a red ball from urn 1. The probabilities of these events are  and  for  and 
in , and the events are independent. Similarly, to go from state  to state  we must select a red ball from urn 0 and a green ball from
urn 1. The probabilities of these events are  and  for  and  in , and the events are independent. Finally, to go
from state  back to state , we must select a red ball from both urns or a green ball from both urns. Of course also, 

.

This is a fairly complicated model, simply because of the number of parameters. Interesting special cases occur when some of the parameters are
the same.

Consider the special case , so that each urn has the same number of balls. The state space is 
and the transition probability matrix is

Consider the special case , so that the number of red balls is the same as the number of balls in urn 0. The state space is 
 and the transition probability matrix is

Consider the special case , so that the number of red balls is the same as the number of balls in urn 1. The state space is 
 and the transition probability matrix is
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Consider the special case , so that each urn has the same number of balls, and this is also the number of red balls. The state space
is  and the transition probability matrix is

Run the simulation of the Bernoulli-Laplace experiment for 10000 steps and for various values of the parameters. Note the limiting behavior
of the proportion of time spent in each state.

Invariant and Limiting Distributions

The Bernoulli-Laplace chain is irreducible.

Proof

Note that  whenever , and  whenever . Hence every state leads to every other
state so the chain is irreducible.

Except in the trivial case , the Bernoulli-Laplace chain aperiodic.

Proof

Consideration of the state probabilities shows that except when , the chain has a state  with , so state  is
aperiodic. Since the chain is irreducible by the previous result, all states are aperiodic.

The invariant distribution is the hypergeometric distribution with population parameter , sample parameter , and type parameter .
The probability density function is

Proof

A direct proof that  for all  is straightforward but tedious. A better proof follows from the reversibility condition
below.

Thus, the invariant distribution corresponds to selecting a sample of  balls at random and without replacement from the  balls and placing
them in urn 1. The mean and variance of the invariant distribution are

The mean return time to each state  is

Proof

This follows from the general theory and the invariant distribution above.

 as  for .

Proof

This follows from the general theory and the invariant distribution above.

In the simulation of the Bernoulli-Laplace experiment, vary the parameters and note the shape and location of the limiting hypergeometric
distribution. For selected values of the parameters, run the simulation for 10000 steps and and note the limiting behavior of the proportion of
time spent in each state.

Reversibility

The Bernoulli-Laplace chain is reversible.

Proof
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Let

It suffices to show the reversibility condition  for all . It then follows that  is reversible and that  is
invariant for . For  and , the left and right sides of the reversibility condition reduce to

For  and , the left and right sides of the reversibility condition reduce to

For all other values of , the reversibility condition is trivially satisfied. The hypergeometric PDF  above is simply  normalized,
so this proves that  is also invariant.

Run the simulation of the Bernoulli-Laplace experiment 10,000 time steps for selected values of the parameters, and with initial state 0.
Note that at first, you can see the “arrow of time”. After a long period, however, the direction of time is no longer evident.

Computational Exercises

Consider the Bernoulli-Laplace chain with , , and . Suppose that  has the uniform distribution on . Explicitly give
each of the following:

1. The state space 
2. The transition matrix .
3. The probability density function, mean and variance of .
4. The probability density function, mean and variance of .
5. The probability density function, mean and variance of .

Answer
1. 

2. 

3. 
4. 
5. 

Consider the Bernoulli-Laplace chain with  and . Give each of the following explicitly:

1. The state space 
2. The transition matrix 
3. The invariant probability density function.

Answer
1. 

2. 

3. 
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