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16.19: Time Reversal in Continuous-Time Chains
      

Earlier, we studied time reversal of discrete-time Markov chains. In continous time, the issues are basically the same. First, the
Markov property stated in the form that the past and future are independent given the present, essentially treats the past and future
symmetrically. However, there is a lack of symmetry in the fact that in the usual formulation, we have an initial time 0, but not a
terminal time. If we introduce a terminal time, then we can run the process backwards in time. In this section, we are interested in the
following questions:

Is the new process still Markov?
If so, how are the various parameters of the reversed Markov chain related to those of the original chain?
Under what conditions are the forward and backward Markov chains stochastically the same?

Consideration of these questions leads to reversed chains, an important and interesting part of the theory of continuous-time Markov
chains. As always, we are also interested in the relationship between properties of a continuous-time chain and the corresponding
properties of its discrete-time jump chain. In this section we will see that there are simple and elegant connections between the time
reversal of a continuous-time chain and the time-reversal of the jump chain.

Basic Theory

Reversed Chains

Our starting point is a (homogeneous) continuous-time Markov chain  with (countable ) state space . We
will assume that  is irreducible, so that every state in  leads to every other state, and to avoid trivialities, we will assume that there
are at least two states. The irreducibility assumption involves no serious loss of generality since otherwise we could simply restrict
our attention to an irreducible equivalence class of states. With our usual notation, we will let  denote the
semigroup of transition matrices of  and  the infinitesimal generator. Let  denote the exponential parameter for the holding
time in state  and  the transition matrix for the discrete-time jump chain . Finally, let 

 denote the collection of potential matrices of . We will assume that the chain  is regular, which gives us
the following properties:

 as  for .
There are no instantaneous states, so  for .
The transition times  satisfy  as .
We may assume that the chain  is right continuous and has left limits.

The assumption of regularity rules out various types of weird behavior that, while mathematically possible, are usually not
appropriate in applications. If  is uniform, a stronger assumption than regularity, we have the following additional properties:

 as  uniformly in .
 is bounded.

 for .
 for .

Now let . We will think of  as the terminal time or time horizon so the chains in our first discussion will be defined on
the time interval . Notationally, we won't bother to indicate the dependence on , since ultimately the time horizon won't matter.
Define  for . Thus, the process forward in time is  while the process backwards in time is

Similarly let

So  is the -algebra of events of the process  up to time , which of course, is also the -algebra of events of  from time 
forward. Our first result is that the chain reversed in time is still Markov

The process  is a Markov chain, but is not time homogeneous in general. For  with , the
transition matrix from  to  is

X = { : t ∈ [0, ∞)}Xt S

X S

P = { : t ∈ [0, ∞)}Pt

X G λ(x)

x ∈ S Q Y = ( , , …)Y0 Y1

U = { : α ∈ [0, ∞)}Uα X X

(x, x) → 1Pt t ↓ 0 x ∈ S

λ(x) < ∞ x ∈ S

( , , …)τ1 τ2 → ∞τn n → ∞

X

X

(x, x) → 1Pt t ↓ 0 x ∈ S

λ

=Pt etG t ∈ [0, ∞)

= (αI −GUα )−1 α ∈ (0, ∞)

h ∈ (0, ∞) h

[0,h] h

=X̂t Xh−t t ∈ [0,h] X = { : t ∈ [0,h]}Xt

= { : t ∈ [0,h]} = { : t ∈ [0,h]}X̂ X̂t Xh−t (16.19.1)

= σ{ : s ∈ [0, t]} = σ{ : s ∈ [0, t]} = σ{ : r ∈ [h− t,h]}, t ∈ [0,h]F̂ t X̂s Xh−s Xr (16.19.2)

F̂ t σ X̂ t σ X h− t

= { : t ∈ [0,h]}X̂ X̂t s, t ∈ [0,h] s < t

s t
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Proof

Let  and . Then

But  and , so by the Markov property for ,

By the time homogeneity of , . Substituting and simplifying gives

However, the backwards chain will be time homogeneous if  has an invariant distribution.

Suppose that  is positive recurrent, with (unique) invariant probability density function . If  has the invariant distribution,
then  is a time-homogeneous Markov chain. The transition matrix at time  (for every terminal time ), is given
by

Proof

This follows from the result above. Recall that if  has PDF , then  and  also have PDF .

The previous result holds in the limit of the terminal time, regardless of the initial distribution.

Suppose again that  is positive recurrent, with (unique) invariant probability density function . Regardless of the distribution
of ,

Proof

This follows from the conditional probability above and our study of the limiting behavior of continuous-time Markov chains.
Since  is irreducible and positive recurrent,  and  as  for every .

These three results are motivation for the definition that follows. We can generalize by defining the reversal of an irreducible Markov
chain, as long as there is a positive, invariant function. Recall that a positive invariant function defines a positive measure on , but
of course not in general a probability measure.

Suppose that  is invariant for . The reversal of  with respect to  is the Markov chain 
 with transition semigroup  defined by

Justification

We need to show that the definition makes sense, namely that  defines a transition semigroup for a Markov chain  satisfying
the same assumptions that we have imposed on . First let . Since  is invariant for ,

(x, y) = (y, x), (x, y) ∈P̂ s,t
P( = y)Xh−t

P( = x)Xh−s

Pt−s S2 (16.19.3)

A ∈ F̂ s x, y ∈ S

P( = y ∣ = x,A)X̂t X̂s = =
P( = y, = x,A)X̂t X̂s

P( = x,A)X̂s

P( = y, = x,A)Xh−t Xh−s

P( = x,A)Xh−s

=
P(A ∣ = y, = x)P( = x ∣ = y)P( = y)Xh−t Xh−s Xh−s Xh−t Xh−t

P(A ∣ = x)P( = x)Xh−s Xh−s

A ∈ σ{ : r ∈ [h−s,h]}Xr h− t < h−s X

P(A ∣ = y, = x) = P(A ∣ = x)Xh−t Xh−s Xh−s (16.19.4)

X P( = x ∣ = y) = (y, x)Xh−s Xh−t Pt−s

P( = y ∣ = x,A) = (y, x)X̂t X̂s

P( = y)Xh−t

P( = x)Xh−s

Pt−s (16.19.5)

X0

X f X0

X̂ t ∈ [0, ∞) h ≥ t

(x, y) = (y, x), (x, y) ∈P̂ t

f(y)

f(x)
Pt S2 (16.19.6)

X0 f Xh−t Xh−s f

X f

X0

P( = y ∣ = x) → (y, x) as h → ∞X̂s+t X̂s

f(y)

f(x)
Pt (16.19.7)

X P( = x) → f(x)Xh−s P( = y) → f(y)Xh−t h → ∞ x, y ∈ S

S

g : S → (0, ∞) X X g

= { : t ∈ [0, ∞)}X̂ X̂t P̂

(x, y) = (y, x), (x, y) ∈ , t ∈ [0, ∞)P̂ t

g(y)

g(x)
Pt S2 (16.19.8)

P̂ X̂

X t ∈ [0, ∞) g X
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Hence  is a valid transition matrix. Next we show that the Chapman-Kolmogorov equations (the semigroup property) holds.
Let  and . Then

Next note that  for every . Hence  as  for , so  is also a standard transition
semigroup. Note also that if  is uniform, then so is . Finally, since  is irreducible,  for every  and 

. Since  is positive, it follows that  for every  and , and hence  is also
irreducible.

Recall that if  is a positive invariant function for  then so is  for every constant . Note that  and  generate the
same reversed chain. So let's consider the cases:

Suppose again that  is a Markov chain satisfying the assumptions above.

1. If  is recurrent, then  always has a positive invariant function , unique up to multiplication by positive constants. Hence
the reversal of a recurrent chain  always exists and is unique, and so we can refer to the reversal of  without reference to
the invariant function.

2. Even better, if  is positive recurrent, then there exists a unique invariant probability density function, and the reversal of 
can be interpreted as the time reversal (relative to a time horizon) when  has the invariant distribution, as in the motivating

result  above.
3. If  is transient, then there may or may not exist a positive invariant function, and if one does exist, it may not be unique (up

to multiplication by positive constants). So a transient chain may have no reversals or more than one.

Nonetheless, the general definition is natural, because most of the important properties of the reversed chain follow from the basic
balance equation relating the transition semigroups  and , and the invariant function :

We will see the balance equation repeated for other objects associated with the Markov chains.

Suppose again that  is invariant for , and that  is the time reversal of  with respect to . Then

1.  is also invariant for .
2.  is the time reversal of  with respect to .

Proof
1. For ,

2. This follows from the symmetry of the fundamental equation:  for  and .

In the balance equation for the transition semigroups, it's not really necessary to know a-priori that the function  is invariant, if we
know the two transition semigroups.

Suppose that . Then  is invariant and the Markov chains  and  are time reversals with respect to  if and
only if

(x, y) = g(y) (y, x) = = 1, x ∈ S∑
y∈S

P̂ t

1

g(x)
∑
y∈S

Pt

g(x)

g(x)
(16.19.9)

P̂ t

s, t ∈ [0, ∞) x, z ∈ S

(x, z)P̂ sP̂ t = (x, y) (y, z) = (y, x) (z, y)∑
y∈S

P̂ s P̂ t ∑
y∈S

g(y)

g(x)
Ps

g(z)

g(y)
Pt

= (z, y) (y, x) = (z, x) = (x, z)
g(z)

g(x)
∑
y∈S

Pt Ps

g(z)

g(x)
Ps+t P̂ s+t

(x, x) = (x, x)P̂ t Pt x ∈ S (x, x) → 1P̂ t t ↓ 0 x P̂

P P̂ X (x, y) > 0Pt (x, y) ∈ S2

t ∈ (0, ∞) g (y, x) > 0P̂ t (x, y) ∈ S2 t ∈ (0, ∞) X̂

g X cg c ∈ (0, ∞) g cg

X

X X g

X X

X X

X

X

P P̂ g

g(x) (x, y) = g(y) (y, x), (x, y) ∈ , t ∈ [0, ∞)P̂ t Pt S2 (16.19.10)

g : S → (0, ∞) X X̂ X g

g X̂

X X̂ g

y ∈ S

g (y) = g(x) (x, y) = g(y) (y, x) = g(y) (y, x) = g(y)P̂ t ∑
x∈S

P̂ t ∑
x∈S

Pt ∑
x∈S

Pt (16.19.11)

g(x) (x, y) = g(y) (y, x)P̂ t Pt (x, y) ∈ S2 t ∈ [0, ∞)

g

g : S → (0, ∞) g X X̂ g

g(x) (x, y) = g(y) (y, x), (x, y) ∈ , t ∈ [0, ∞)P̂ t Pt S2 (16.19.12)
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Proof

All that is left to show is that the balance equation implies that  is invariant. The computation is exactly the same as in the last
result:

Here is a slightly more complicated (but equivalent) version of the balance equation for the transition probabilities.

Suppose again that . Then  is invariant and the chains  and  are time reversals with respect to  if and only
if

for all , , and .

Proof

All that is necessary is to show that the basic balance equation implies the balance equation in the theorem. When , we
have the basic balance equation itself:

For ,

Continuing in this manner (or using induction) gives the general result.

The balance equation holds for the potenetial matrices.

Suppose again that . Then  is invariant and the chains  and  are time reversals with respect to  if and only
if the potential matrices satisfy

Proof

We just need to show that the balance equation for the transition semigroups is equivalent to the balance equation above for the
potential matrices. Suppose first  for  and . Then

Conversely, suppose that  for  and . As above,

So for fixed , the function  is the Laplace transform of the time function .
Similarly,  is the Laplace transform of the . The Laplace transform of a continuous function
uniquely determines the function so it follows that  for  and .

As a corollary, continuous-time chains that are time reversals are of the same type.

If  and  are time reversals, then  and  are of the same type: transient, null recurrent, or positive recurrent.

Proof

g

g (x) = g(y) (y, x) = g(x) (x, y) = g(x) (x, y) = g(x), x ∈ SPt ∑
y∈S

Pt ∑
y∈S

P̂ t ∑
y∈S

P̂ t (16.19.13)

g : S → (0, ∞) g X X̂ g

g( ) ( , ) ( , ) ⋯ ( , ) = g( ) ( , ) ( , ) ⋯ ( , )x1 P̂ t1
x1 x2 P̂ t2

x2 x3 P̂ tn xn xn+1 xn+1 Ptn xn+1 xn Ptn−1
xn xn−1 Pt1

x2 x1 (16.19.14)

n ∈ N+ ( , , … , ) ∈ [0, ∞t1 t2 tn )n ( , , … , ) ∈x1 x2 xn+1 Sn+1

n = 1

g( ) ( , ) = g( ) ( , )x1 P̂ t1 x1 x2 x2 Pt1 x2 x1 (16.19.15)

n = 2

g( ) ( , ) ( , ) = g( ) ( , ) ( , ) = g( ) ( , ) ( , )x1 P̂ t1 x1 x2 P̂ t2 x2 x3 x2 Pt1 x2 x1 P̂ t2 x2 x3 x3 Pt2 x3 x2 Pt1 x2 x1 (16.19.16)

g : S → (0, ∞) g X X̂ g

g(x) (x, y) = g(y) (y, x), (x, y) ∈ , α ∈ [0, ∞)Ûα Uα S2 (16.19.17)

g(x) (x, y) = g(y) (y, x)P̂ t Pt t ∈ [0, ∞) (x, y) ∈ S2

g(x) (x, y)Ûα = g(x) (x, y)dt = g(x) (x, y)dt∫
∞

0

e−αt P̂ t ∫
∞

0

e−αt P̂ t

= g(y) (y, x)dt = g(y) (y, x)dt = g(y) (y, x)∫
∞

0

e−αt Pt ∫
∞

0

e−αtPt Uα

g(x) (x, y) = g(y) (y, x)Ûα Uα (x, y) ∈ S2 α ∈ [0, ∞)

g(x) (x, y) = g(x) (x, y)dtÛα ∫
∞

0

e−αt P̂ t (16.19.18)

(x, y) ∈ S2 α ↦ g(x) (x, y)Ûα t ↦ g(x) (x, y)P̂ t

α ↦ g(y) (x, y)Uα t ↦ g(y) (x, y)Pt

g(x) (x, y) = g(y) (y, x)P̂ t Pt t ∈ [0, ∞) (x, y) ∈ S2

X X̂ X X̂
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Suppose that  and  are time reversals with respect to the invariant function . Then from the previous result, 
 for . The chains are transient if the common potential is finte for each  and recurrent if the

potential is infinite for each . Suppose that the chains are recurrent. Then  is unique up to multiplication by positive
constants and the chains are both positive recurrent if  and both null recurrent if .

The balance equation extends to the infinitesimal generator matrices.

Suppose again that . Then  is invariant and the Markov chains  and  are time reversals if and only if the
infinitesimal generators satisfy

Proof

We need to show that the balance equation for the transition semigroups is equivalent to the balance equation for the generators.
Suppose first that  for  and . Taking derivatives with respect to  and using
Kolmogorov's backward equation gives  for  and . Evaluating at 
gives . Conversely, suppose that  for . Then repeated
application (or induction) shows that  for every  and . If the transition matrices
are uniform, we can express them as exponentials of the generators. Hence for  and ,

This leads to further results and connections:

Suppose again that . Then  is invariant and  and  are time reversals with respect to  if and only if

1.  and  have the same exponential parmeter function .
2. The jump chains  and  are (discrete) time reversals with respect to .

Proof

The exponential parameter functions are related to the generator matrices by  and  for 
. The transition matrices for the jump chains are related to the generator matrices by  and 

 for  with . Hence conditions (a) and (b) are equivalent to

Recall also from the general theory, that if  is invariant for  then  is invariant for the jump chain .

In our original discussion of time reversal in the positive recurrent case, we could have argued that the previous results must be true.
If we run the positive recurrent chain  backwards in time to obtain the time reversed chain 

, then the exponential parameters for  must the be same as those for , and the jump chain  for  must
be the time reversal of the jump chain  for .

Reversible Chains

Clearly an interesting special case is when the time reversal of a continuous-time Markov chain is stochastically the same as the
original chain. Once again, we assume that we have a regular Markov chain  that is irreducible on the state
space , with transition semigroup . As before,  denotes the collection of potential
matrices, and  the infinitesimal generator. Finally,  denotes the exponential parameter function,  the jump
chain, and  the transition matrix of . Here is the definition of reversibility:

Suppose that  is invariant for . Then  is reversible with respect to  if the time reversed chain 
 also has transition semigroup . That is,

X X̂ g : S → (0, ∞)

(x, x) = U(x, x)Û x ∈ S x ∈ S

x ∈ S g

g(x) < ∞∑x∈S g(x) = ∞∑x∈S

g : S → (0, ∞) g X X̂

g(x) (x, y) = g(y)G(y, x), (x, y) ∈Ĝ S2 (16.19.19)

g(x) (x, y) = g(y) (y, x)P̂ t Pt t ∈ [0, ∞) (x, y) ∈ S2 t

g(x) (x, y) = g(y)G (y, x)ĜP̂ t Pt t ∈ [0, ∞) (x, y) ∈ S2 t = 0

g(x) (x, y) = g(y)G(y, x)Ĝ g(x) (x, y) = g(y)G(y, x)Ĝ (x, y) ∈ S2

g(x) (x, y) = g(y) (y, x)Ĝ
n

Gn n ∈ N (x, y) ∈ S2

t ∈ [0, ∞) (x, y) ∈ S2

g(x) (x, y)P̂ t = g(x) = g(x) (x, y) = g(x) (x, y)et (x,y)Ĝ ∑
n=0

∞ tn

n!
Ĝ

n
∑
n=0

∞ tn

n!
Ĝ

n

= g(y) (y, x) = g(y) (y, x) = g(y) = g(y) (y, x)∑
n=0

∞ tn

n!
Gn ∑

n=0

∞ tn

n!
Gn etG(y,x) Pt

g : S → (0, ∞) g X X̂ g

X̂ X λ

Y Ŷ λg

λ(x) = −G(x, x) (x) = − (x, x)λ̂ Ĝ

x ∈ S Q(x, y) = G(x, y)/λ(x)

(x, y) = (x, y)/ (x)Q̂ Ĝ λ̂ (x, y) ∈ S2 x ≠ y

g(x) (x, y) = g(y)G(y, x), (x, y) ∈Ĝ S2 (16.19.20)

g X λg Y

X = { : t ∈ [0,h]}Xt

= { : t ∈ [0,h]}X̂ X̂t X̂ X Ŷ X̂

Y X

X = { : t ∈ [0, ∞)}Xt

S P = { : t ∈ [0, ∞)}Pt U = { : α ∈ [0, ∞)}Uα

G λ Y = { : n ∈ N}Yn
Q Y

g : S → (0, ∞) X X g

= { : t ∈ [0, ∞)}X̂ X̂t P
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Clearly if  is reversible with respect to  then  is reversible with respect to  for every . So here is another review of
the cases:

Suppose that  is a Markov chain satisfying the assumptions above.

1. If  is recurrent, then there exists an invariant function  that is unique up to multiplication by positive
constants. So  is either reversible or not, and we do not have to reference the invariant function.

2. Even better, if  is positive recurrent, then there exists a unique invariant probability density function . Again,  is either
reversible or not, but if it is, then with the invariant distribution, the chain  is stochastically the same, forward in time or
backward in time.

3. If  is transient, then a positive invariant function may or may not exist. If such a function does exist, it may not be unique,
up to multiplication by positive constants. So in the transient case,  may be reversible with respect to one invariant function
but not with respect to others.

The following results are corollaries of the results above for time reversals. First, we don't need to know a priori that the function  is
invariant.

Suppose that . Then  is invariant and  is reversible with respect to  if and only if

Suppose again that . Then  is invariant and  is reversible with respect to  if and only if

for all , , and .

Suppose again that . Then  is invariant and  is reversible with respect to  if and only if

Suppose again that . Then  is invariant and  is reversible with respect to  if and only if

Suppose again that . Then  is invariant and  is reversible if and only if the jump chain  is reversible with
respect to .

Recall that  is recurrent if and only if the jump chain  is recurrent. In this case, the invariant functions for  and  exist and are
unique up to positive constants. So in this case, the previous theorem states that  is reversible if and only if  is reversible. In the
positive recurrent case (the most important case), the following theorem gives a condition for reversibility that does not directly
reference the invariant distribution. The condition is known as the Kolmogorov cycle condition, and is named for Andrei Kolmogorov

Suppose that  is positive recurrent. Then  is reversible if and only if for every sequence of distinct states ,

Proof

Suppose that  is reversible, and let  denote the invariant PDF of . Then  for .

Substituting gives the Kolmogorov cycle condition. Conversely, suppose that the Kolmogorov cycle condition holds for .
Recall that  for . Substituting into the cycle condition for  gives the cycle condition for .
Hence  is reversible and therefore so is .

Note that the Kolmogorov cycle condition states that the transition rate of visiting states  in sequence, starting in
state  is the same as the transition rate of visiting states  in sequence, starting in state . The cycle

g(x) (x, y) = g(y) (y, x), (x, y) ∈ , t ∈ [0, ∞)Pt Pt S2 (16.19.21)

X g X cg c ∈ (0, ∞)

X

X g : S → (0, ∞)

X

X f X

X

X

X

g

g : S → (0, ∞) g X g

g(x) (x, y) = g(y) (y, x), (x, y) ∈ , t ∈ [0, ∞)Pt Pt S2 (16.19.22)

g : S → (0, ∞) g X g

g( ) ( , ) ( , ) ⋯ ( , ) = g( ) ( , ) ( , ) ⋯ ( , )x1 Pt1
x1 x2 Pt2

x2 x3 Ptn xn xn+1 xn+1 Ptn xn+1 xn Ptn−1
xn xn−1 Pt1

x2 x1 (16.19.23)

n ∈ N+ ( , , … , ) ∈ [0, ∞t1 t2 tn )n ( , , … , ) ∈x1 x2 xn+1 Sn+1

g : S → (0, ∞) g X g

g(x) (x, y) = g(y) (y, x), (x, y) ∈ , α ∈ [0, ∞)Uα Uα S2 (16.19.24)

g : S → (0, ∞) g X g

g(x)G(x, y) = g(y)G(y, x), (x, y) ∈ S2 (16.19.25)

g : S → (0, ∞) g X Y

λg

X Y X Y

X Y

X X ( , , … , )x1 x2 xn

G( , )G( , ) ⋯G( , )G( , ) = G( , )G( , ) ⋯G( , )G( , )x1 x2 x2 x3 xn−1 xn xn x1 x1 xn xn xn−1 x3 x2 x2 x1 (16.19.26)

X f X G(x, y) = G(x, y)
f(y)

f(x)
(x, y) ∈ S2

X

G(x, y) = λ(x)Q(x, y) (x, y) ∈ S2
X Y

Y X

( , , … , , )x2 x3 xn x1

x1 ( , , … , , )xn xn−1 x2 x1 x1
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condition is also known as the balance equation for cycles.

Figure : The Kolmogorov cycle condition

Applications and Exercises

The Two-State Chain

The continuous-time, two-state chain has been studied in our previous sections on continuous-time chains, so naturally we are
interested in time reversal.

Consider the continuous-time Markov chain  on  with transition rate  from 0 to 1
and transition rate  from 1 to 0. Show that  is reversible

1. Using the transition semigroup .
2. Using the resolvent .
3. Using the generator matrix .

Solutions

First note that  is irreducible since  and . Since  is finite,  is positive recurrent.

1. Recall that

All we have to do is find a positive function  on  with the property that . The other conditions
are trivially satisfied. Note that ,  satisfies the property. It follows that  is invariant for , unique up to
multiplication by positive constants, and that  is reversible.

2. Recall that

Again, we just need to find a positive function  on  with the property that . The other
conditions are trivially satisfied. The function  in part (a) satisfies, the condition, which of course must be the case.

3. Recall that . Once again, we just need to find a positive function  on  with the property that 

. The function  given in (a) satisfies the condition. Note that this procedure is the easiest of the
three.

Of course, the invariant PDF  is , .

Computational Exercises

The Markov chain in the following exercise has also been studied in previous sections.

Consider the Markov chain  on  with exponential parameter function  and
jump transition matrix

Give each of the following for the time reversed chain :

1. The state graph.

16.19.1

X = { : t ∈ [0, ∞)}Xt S = {0, 1} a ∈ (0, ∞)

b ∈ (0, ∞) X

P = { : t ∈ [0, ∞)}Pt

U = { : α ∈ (0, ∞)}Uα

G

X a > 0 b > 0 S X

= [ ]− [ ] , t ∈ [0, ∞)Pt

1

a+b

b

b

a

a

1

a+b
e−(a+b)t −a

b
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−b
(16.19.27)

g S g(0) (0, 1) = g(1) (1, 0)Pt Pt

g(0) = b g(1) = a g X

X

= [ ]− [ ] , α ∈ (0, ∞)Uα

1

α(a+b)

b

b

a

a

1

(α+a+b)(a+b)

−a

b

a

−b
(16.19.28)

g S g(0) (0, 1) = g(1) (1, 0)Uα Uα

g

G= [ ]
−a

b

a

−b
g S

g(0)G(0, 1) = g(1)G(1, 0) g

f f(0) = b/(a+b) f(1) = a/(a+b)

X = { : t ∈ [0, ∞)}Xt S = {0, 1, 2} λ = (4, 1, 3)

Q =

⎡
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1
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0
2
3

1
2

0

0

⎤

⎦
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2. The semigroup of transition matrices .
3. The resolvent of potential matrices .
4. The generator matrix .
5. The transition matrix of the jump chain .

Solutions

Note that the chain is irreducible, and since  is finite, positive recurrent. We found previously that an invariant function (unique
up to multiplication by positive constants) is .

1. The edge set is . The exponential parameter function  is the same as for 
.

2. The transition matrix at  is

3. The potential matrix at  is

4. The generator matrix is

5. The transition matrix of the jump chain is

Special Models

Read the discussion of time reversal for chains subordinate to the Poisson process.

Read the discussion of time reversal for continuous-time birth-death chains.

This page titled 16.19: Time Reversal in Continuous-Time Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by
Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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