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3.13: Absolute Continuity and Density Functions

Basic Theory

Our starting point is a measurable space (S, ). That is S is a set and . is a o-algebra of subsets of S. In the last section, we discussed general
measures on (9, .%) that can take positive and negative values. Special cases are positive measures, finite measures, and our favorite kind,
probability measures. In particular, we studied properties of general measures, ways to construct them, special sets (positive, negative, and null),
and the Hahn and Jordan decompositions.

In this section, we see how to construct a new measure from a given positive measure using a density function, and we answer the fundamental
question of when a measure has a density function relative to the given positive measure.

Relations on Measures

The answer to the question involves two important relations on the collection of measures on (S, ) that are defined in terms of null sets. Recall
that A € . is null for a measure  on (S, .#) if u(B) =0 for every B € . with B C A. At the other extreme, A € . is a support set for p
if A is a null set. Here are the basic definitions:

Suppose that p and v are measures on (S, .%).

1. v is absolutely continuous with respect to p if every null set of y is also a null set of v. We write v < .
2. v and v are mutually singular if there exists A € . such that A is null for x and A¢ is null for v. We write 4 L v.
Thus v < p if every support support set of y is a support set of v. At the opposite end, p L v if y and v have disjoint support sets.

Suppose that p, v, and p are measures on (S, .#). Then

1. p < p, the reflexive property.
2.If p < v and v < p then p K p, the transitive property.

Recall that every relation that is reflexive and transitive leads to an equivalence relation, and then in turn, the original relation can be extended to
a partial order on the collection of equivalence classes. This general theorem on relations leads to the following two results.

Measures p and v on (S, %) are equivalent if p < v and v < u, and we write 4 = v. The relation = is an equivalence relation on the
collection of measures on (S, .¥). That is, if p, v, and p are measures on (S, %) then

1. u = p, the reflexive property
2. If p = v then v = u, the symmetric property
3.If p =v and v = p then p = p, the transitive property

Thus, 1 and v are equivalent if they have the same null sets and thus the same support sets. This equivalence relation is rather weak: equivalent
measures have the same support sets, but the values assigned to these sets can be very different. As usual, we will write [g] for the equivalence
class of a measure £ on (S, ), under the equivalence relation =.

If 1 and v are measures on (S, %), we write [] < [v] if 4 < v. The definition is consistent, and defines a partial order on the collection of
equivalence classes. That is, if i, v, and p are measures on (S, .#) then

1. [p] = [p], the reflexive property.
2.1f [p] < [v] and [v] < [p] then [pu] = [v], the antisymmetric property.
3.If [u] < [v] and [v] < [p] then [u] < [p], the transitive property

The singularity relation is trivially symmetric and is almost anti-reflexive.

Suppose that p and v are measures on (S, ). Then

1.1f p L v then v L p, the symmetric property.
2. 1 L p if and only if p = 0, the zero measure.

Proof

Part (a) is trivial from the symmetry of the definition. For part (b), note that .S is null for 0 and @ is null for 0, so 0 L 0. Conversely, suppose
that p is a measure and g L g . Then there exists A € . such that A is null for x and A° is null for w. But then S = AU A° is null for y,
so u(B) =0 forevery Be &.

Absolute continuity and singularity are preserved under multiplication by nonzero constants.
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Suppose that p and v are measures on (S, %) and that a, b € R\ {0}. Then

1. v < p if and only if av < bps.
2.v 1 yifandonly ifav L bu.

Proof

Recall that if ¢ # 0, then A € . is null for y if and only if A is null for cp.

There is a corresponding result for sums of measures.
Suppose that u is a measure on (5,.%) and that v; is a measure on (S,.%) for each ¢ in a countable index set I. Suppose also that
v =3,V is a well-defined measure on (S, ).

1.Ify; < p forevery i € I thenv < p.
2.Ify; L p foreveryi € I'thenv L p.

Proof
Recall that if A € . is null for »; for each i € I, then A is null forv =3

se1 Vi » assuming that this is a well-defined measure.

As before, note that v =, v; is well-defined if »; is a positive measure for each 4 € I or if I is finite and v; is a finite measure for each
1 € 1. We close this subsection with a couple of results that involve both the absolute continuity relation and the singularity relation

Suppose that y, v, and p are measures on (S, ). If v < p and p L p thenv L p.

Proof

Since p L p, there exists A € . such that A is null for x and A° is null for p. But v < p so A is null for . Hence v L p.

Suppose that p and v are measures on (S, .%). If v < pand v L p thenv =0.
Proof

From the previous theorem (with p =v) we have v L v and hence by (5),v =0.

Density Functions

We are now ready for our study of density functions. Throughout this subsection, we assume that p is a positive, o-finite measure on our
measurable space (9,.%). Recall that if f:S— R is measurable, then the integral of f with respect to p may exist as a number in
R* =RU{—o00, 00} ormay fail to exist.

Suppose that f : § — R is a measurable function whose integral with respect to x exists. Then function v defined by
V(A):/ fdu, Acs (3.13.1)
A

is a o-finite measure on (.S, ) that is absolutely continuous with respect to x. The function f is a density function of v relative to p.

Proof

To say that the integral exists means that either || g fdp<oo or /. g f~dp < oo, where as usual, f+ and f~ are the positive and negative
parts of f. So v(A) =v; (4) —v_(A) for Ae.” where v, (4)= [, fT(A)du and v (A)= [, f~(A)du . Both vy and v_ are
positive measures by basic properties of the integral: Generically, suppose g: .S — [0, 00) is measurable. The integral over the empty set is
always 0, so f@ gdp=0. Next, if {A; :4 € I} is a countable, disjoint collection of sets in & and A = J,.; 4;, then by the additivity
property of the integral over disjoint domains,

/ gdu = Z/ gdu (3.13.2)
A iel J 4

By the assumption that the integral exists, either v, or v_ is a finite positive measure, and hence v is a measure. As you might guess, v
and v_ form the Jordan decomposition of v, a point that we will revisit below.

Again, either v} or v_ is a finite measure. By symmetry, let's suppose that v_ is finite. Then to show that v is o-finite, we just need to show
that v, is o-finite. Since g has this property, there exists a collection {4, : n € N, } with A, € ., u(A4,) < oo, and |J;°; A, = 5. Let
Bn={zecS:f"(x)<n} for n€N;. Then By €. for n€N; and |Jo°; Bn=S. Hence {AmNAn:(m,n)cN2} is a
countable collection of measurable sets whose union is also .S. Moreover,

V+(AmﬂBn)=/A ., frdu <nup(4,NB,) < oo (3.13.3)
mM By
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l Finally, suppose A € & is a null set of yu. If B € .# and B C A then y(B) =0 so v(B) = [, f du=0.Hence v < p.

The following three special cases are the most important:

1. If f is nonnegative (so that the integral exists in R U {oco}) then v is a positive measure since v(A) >0 for A € .
2.If f is integrable (so that the integral exists in R), then v is a finite measure since v(A4) € R for A € ..
3.1f f is nonnegative and [ f du = 1 then v is a probability measure since v/(A) > 0 for A € & and v(S) =1.

In case 3, f is the probability density function of v relative to u, our favorite kind of density function. When they exist, density functions are
essentially unique.

Suppose that v is a o-finite measure on (S, %) and that v has density function f with respect to . Then g: S — R is a density function of
v with respect to y if and only if f = g almost everywhere on S with respect to .

Proof

These results also follow from basic properties of the integral. Suppose that f, g: S — R are measurable functions whose integrals with
respect to p exist. If g= f almost everywhere on S with respect to p then [ g fdu= f 4 gdp for every A € . Hence if f is a density
function for v with respect to  then so is g. For the converse, if [, fdp = [, gdp for every A € &, then since y is o-finite, it follows
that f = g almost everywhere on S with respect to p.

The essential uniqueness of density functions can fail if the positive measure space (S, ., u) is not o-finite. A simple example is given below.
Our next result answers the question of when a measure has a density function with respect to y, and is the fundamental theorem of this section.
The theorem is in two parts: Part (a) is the Lebesgue decomposition theorem, named for our old friend Henri Lebesgue. Part (b) is the Radon-
Nikodym theorem, named for Johann Radon and Otto Nikodym. We combine the theorems because our proofs of the two results are inextricably
linked.

Suppose that v is a o-finite measure on (S, .%).

1. Lebesgue Decomposition Theorem. v can be uniquely decomposed as v = v, + v, where v, < p and v; L p.
2. Radon-Nikodym Theorem. v, has a density function with respect to (.

Proof

The proof proceeds in stages. we first prove the result for finite, positive measures, then for o-finite, positive measures, and finally for
general o-finite measures. The first stage is the most complicated.

Part 1, suppose that p and v are positive, finite measures. Let % denote the collection of measurable functions g: .S — [0, 00) with
J19du <v(A) forall A € .. Note that # # 0 since the constant function 0 is in #. The proof works by finding a maximal element of
Z and using this function as the density function of the absolutely continuous part of v.

Our first step is to show that % is closed under the max operator. Let g1, go € #.For A€ &, let Ay ={z € A: g1(z) > g2(x)} and
Ay ={xz € A:gi(z) <go(z)} . Then A;, A, € ¥ partition A so

/max{gl,gz}du:/ max{gl,gz}du+/ max{gl,gQ}dp:/ g1 du+/ g2 du <v(A;)+v(4:)=v(4) (3.13.4)
A A, A, Ay Ap

Hence max{g1, g2} € Z.

Our next step is to show that % is closed with respect to increasing limits. Thus suppose that g, € % for n € N and that g, is increasing
in n on S. Let g=lim, 0o g,. Then g:S—[0,00] is measurable, and by the monotone convergence theorem,
Jagdp=lim, ,» [, gndp for every Ae.. But [,gndp<v(A) for every neN, so [,gdu<v(4). In particular,
I} g9dp < v(S) < oo so g<oo almost everywhere on S with respect to p. Thus, by redefining g on a p-null set if necessary, we can
assume g < oo on S. Hence g € Z.

Now let & = sup { f sgdp: g€ F } . Note that & < v(S) < oo . By definition of the supremum, for each n € N there exist g, € # such

that [ g, dp > a — L Now let f,, =max{gi,gs,...,9n} for n € N, . Then f, € & and f, is increasing in n € N, on S. Hence

n
f=lim, o fn € & and fsfdp:lim,Hoo fS fndp . But fS fadp > fsg" dp>a f% for each m € N and hence fsfd,u > o
Define v,(A) = [, fdp and v,(A) =v(A)—v.(A) for A€ .. Then v, and v, are finite, positive measures and by our previous
theorem, v, is absolutely continuous with respect to p and has density function f. Our next step is to show that v, is singular with respect to
w.Forn € N, let (P,, Pf) denote a Hahn decomposition of the measure v; — % 4. Then

/A (f—l— %1]3") du=v.(A)+ %M(PnﬂA) =v(A)— [VS(A) = %M(PnﬂA) (3.13.5)

https://stats.libretexts.org/@go/page/10153



https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10153?pdf

LibreTextsw

But v,(A4) — %,u(Pn NA)>v,(ANP,)— %,u(AﬂPn) >0 since v is a positive measure and P, is positive for v — %,u. Thus we
have [, (f+%1pn) du<v(A) for every AeS, so [+ %11:” €& for every meN_. If pu(P,)>0 then
fs (f + %lpn) du=a+ %/J‘(Pn) > a , which contradicts the definition of . Hence we must have u(P,) =0 for every n € N, . Now
let P =;"; P, . Then u(P) =0. If v (P°) > 0 then v, (P°) — 2u(P¢) >0 for n sufficiently large. But this is a contradiction since
P¢ C P¢ which is negative for v, — % u for every n € N . Thus we must have v;(P¢) =0, so u and v; are singular.

Part 2. Suppose that p and v are o-finite, positive measures. Then there exists a countable partition {S; : ¢ € I'} of S where S; € .7 for
i1 €1, and pu(S;) < oo and v(S;) < oo fori e I. Let p;(A) =pn(ANS;) and v;(A) =v(ANS;) fori € I. Then p; and v; are finite,
positive measures for i € I, and p=>, ., p; and v=73 . ;v;. By part 1, for each ¢ € I, there exists a measurable function
fi: 8§ —[0,00) such that v; =v; . +v;, wherev; (A)= fA fidp forAe S andvy;s L. Let f=3, ;14 f;. Then f: S — [0, 00)
is measurable. Define v.(A) = [, fdp and vs(A) =v(A4) —v.(A) for A€ .. Note that v, = ;s Vi and vy =Y ;c; Vis. Then
V., < p and has density function f and v, L .

Part 3. Suppose that v is a o-finite measure (not necessarily positive). By the Jordan decomposition theorem, v = v, —v_ where v, and
v_ are o-finite, positive measures, and at least one is finite. By part 2, there exist measurable functions f; :S —[0,00) and
f-:8—[0,00) such that v, =vy +v,, and v_=v_.+v_, where v, (A)=[,fidu, v .= [, f du for Ac.”, and
vislp, vogLlp. Let f=fi—f, v(A)=[,fdp, vs(A)=v(4)—v.(A) for Ae. Then v=v.+v, and
Vg =Vys—V_s Ll .

Uniqueness. Suppose that v = v, 1 +v,1 =2 +Vs2 Wwhere v,; < p and vy; L p for i € {1,2}. Then Vel —Ve2 =Vsa —Vs1 . But
Vel —Vea < and vsp —ve1 L sove 1 —vea =vso —vs1 =0 by the theorem above

In particular, a measure v on (S,.%) has a density function with respect to  if and only if v < p. The density function in this case is also
referred to as the Radon-Nikodym derivative of v with respect to p and is sometimes written in derivative notation as dv/du. This notation,
however, can be a bit misleading because we need to remember that a density function is unique only up to a p-null set. Also, the Radon-
Nikodym theorem can fail if the positive measure space (.S, ., u) is not o-finite. A couple of examples are given below. Next we characterize
the Hahn decomposition and the Jordan decomposition of v in terms of the density function.

Suppose that v is a measure on (.9, ) with ¥ < , and that v has density function f with respect to u. Let P ={z € S: f(z) >0}, and
let f+ and f~ denote the positive and negative parts of f.

1. A Hahn decomposition of v is (P, P¢).
2. The Jordan decomposition is v = v, —v_ where v, (4) = [, f* dp andv_(A) = [, f dp,for A€ 7.

Proof
Of course P° ={z € S: f(z) <0} . The proofs are simple.

1. Suppose that A € 7. If A C P then f(z) >0 forz € A and hence v(4) = [, fdu>0.1f AC P° thenv(A) = [, fdu <0.
2. This follows immediately from (a) and the Jordan decomposition theorem, since v (4) =v(ANP) and v_(A) = —v(AN P°¢) for
Aec ¥ Notethat ff =1pf and f~ = —1pcf.

The following result is a basic change of variables theorem for integrals.

Suppose that v is a positive measure on (S,.#) with v < p and that v has density function f with respect to p. If g: S—R is a
measurable function whose integral with respect to v exists, then

/Sng=/ngdu (3.13.6)

The proof is a classical bootstrapping argument. Suppose first that g=3",_; a;14, is a nonnegative simple function. That is, I is a finite
index set, a; € [0,00) for i €I, and {A;:i €I} is a disjoint collection of sets in .. Then [qgdv=>. ;a;v(4;). But
v(4i)= [y, fdp= [s1afdp foreachi €I so

/Sgdu=2ai/51mfdu=/s (Zailm) fdu:/sgfdu (3.13.7)

iel iel

Proof

Suppose next that g: S — [0, 00) is measurable. There exists a sequence of nonnegative simple functions (g1, g2, - ..) such that g, is
increasing in m € N, on S and g, — ¢ as n — oo on S. Since f is nonnegative, g, f is increasing in n € N, on S and g, f — gf as
n — 0o on S. By the first step, f gGndv = f 5 9nf dp for each n € N, . But by the monotone convergence theorem, f sGndv — f sgav

and [ gnf dp — [49f dp asn — oo. Hence [, gdv = [¢ gf dp.

https://stats.libretexts.org/@go/page/10153



https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10153?pdf

LibreTextsw

Finally, suppose that g: S —R is a measurable function whose integral with respect to v exists. By the previous step,
Js9"dv=[49" fduand [g9~ dv= [49™ fdu, and at least one of these integrals is finite. Hence by the additive property

/Sng=/Sg+dv—/Sg’ dv:/sffdn—/sg’fdu:/s(g*—g’)fdu=/sgfdu (3.13.8)

In differential notation, the change of variables theorem has the familiar form dv = f dy, and this is really the justification for the derivative
notation f = dv/dp in the first place. The following result gives the scalar multiple rule for density functions.

Suppose that v is a measure on (S, .%) with ¥ < g and that v has density function f with respect to p. If ¢ € R, then cv has density
function cf with respect to u.
Proof

IfAc . then [yefdu=c [, fdu=crv(A4).

Of course, we already knew that v < p implies cv < p for ¢ € R, so the new information is the relation between the density functions. In
derivative notation, the scalar multiple rule has the familiar form

d(cv d
dev) _ dv (3.13.9)
du du

The following result gives the sum rule for density functions. Recall that two measures are of the same type if neither takes the value oo or if
neither takes the value —oo.
Suppose that v and p are measures on (.5, %) of the same type with v < p and p < 1, and that v and p have density functions f and g
with respect to p, respectively. Then v + p has density function f + g with respect to p.
Proof

If A€ . then

/(f+g)du=/ fdu+/gdu:u(A)+p(A) (3.13.10)
A A A

The additive property holds because we know that the integrals in the middle of the displayed equation are not of the form co — oo .

Of course, we already knew that ¥ < p and p < p imply v+ p < p, so the new information is the relation between the density functions. In
derivative notation, the sum rule has the familiar form
d(v+ d d
dvtp) _dv dp (3.13.11)
dp dp  dup

The following result is the chain rule for density functions.
Suppose that v is a positive measure on (.S, %) with ¥ < p and that v has density function f with respect to u. Suppose p is a measure on
(S, &) with p < v and that p has density function g with respect to v. Then p has density function gf with respect to p.
Proof

This is a simple consequence of the change of variables theorem above. If A € . then p(4) = [ 4 9dv = I 49fdu .

Of course, we already knew that ¥ < p and p < v imply p < p, so once again the new information is the relation between the density

functions. In derivative notation, the chan rule has the familiar form
d, dp d
L _Ptr (3.13.12)
dy  dvdu

The following related result is the inverse rule for density functions.

Suppose that v is a positive measure on (S, %) with v < p and g < v (so that v = p). If v has density function f with respect to p then
has density function 1/ f with respect to v.

Proof

Let f be a density function of v with respect to y and let Z = {x € S: f(z) =0} . Then v(Z) = [, fdu =0 so Z is a null set of v and
hence is also a null set of y. Thus, we can assume that f 7 0 on S. Let g be a density of p with respect to v. Since p K v < u, it follows
from the chain rule that fg is a density of p with respect to p. But of course the constant function 1 is also a density of x with respect to
itself so we have fg =1 almost everywhere on S. Thus 1/ fis a density of x with respect to v.
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In derivative notation, the inverse rule has the familiar form
dp 1
dv  dv/dp

(3.13.13)

Examples and Special Cases

Discrete Spaces

Recall that a discrete measure space (S,.%, #) consists of a countable set S with the o-algebra . = Z(S) of all subsets of S, and with
counting measure #. Of course # is a positive measure and is trivially o-finite since S is countable. Note also that () is the only set that is null
for #. If v is a measure on S, then by definition, »()) = 0, so v is absolutely continuous relative to . Thus, by the Radon-Nikodym theorem, v
can be written in the form

v(4) =) f(x), ACS (3.13.14)
z€A
for a unique f:S — R. Of course, this is obvious by a direct argument. If we define f(z) =v{z} for z € S then the displayed equation
follows by the countable additivity of v.
Spaces Generated by Countable Partitions

We can generalize the last discussion to spaces generated by countable partitions. Suppose that S is a set and that & ={A4;:i €I} isa
countable partition of .S into nonempty sets. Let . = o'(2/) and recall that every A € . has a unique representation of the form A = J;c; 4;
where J C I. Suppse now that p is a positive measure on . with 0 < u(4;) < oo for every ¢ € I. Then once again, the measure space
(S, &, ) is o-finite and () is the only null set. Hence if v is a measure on (S, ) then v is absolutely continuous with respect to p and hence
has unique density function f with respect to u:

V(A):/Afdu, Aes (3.13.15)

Once again, we can construct the density function explicitly.

In the setting above, define f : S — R by f(z) =v(A4;)/u(4;) forz € A; and i € I. Then f is the density of v with respect to u.

Proof
Suppose that A € . so that A = UJ.EJ A; forsome J C I. Then
v(4;)
fdu=3 [ fdu=3" ——Su(A) =3 v(4) =v(4) (3.13.16)
4 jeg YA jed 1(4;) o7

Often positive measure spaces that occur in applications can be decomposed into spaces generated by countable partitions. In the section on
Convergence in the chapter on Martingales, we show that more general density functions can be obtained as limits of density functions of the
type in the last theorem.

Probability Spaces

Suppose that (Q, .#,P) is a probability space and that X is a random variable taking values in a measurable space (S,.7). Recall that the
distribution of X is the probability measure Px on (.S, %) given by

Px(A)=P(X € A), Acs (3.13.17)

If p is a positive measure, o-finite measure on (.S, %), then the theory of this section applies, of course. The Radon-Nikodym theorem tells us
precisely when (the distribution of) X has a probability density function with respect to p: we need the distribution to be absolutely continuous
with respect to p: if u(A) =0 then Px(A) =P(X € A)=0 forAe .~.

Suppose that 7 : S — R is measurable, so that 7(X) is a real-valued random variable. The integral of 7(X) (assuming that it exists) is of
fundamental importance, and is knowns as the expected value of r(X). We will study expected values in detail in the next chapter, but here we
just note different ways to write the integral. By the change of variables theorem in the last section we have

/ P[X ()] dP(w) = / r(2)dPy (x) (3.13.18)
Q S

Assuming that Py, the distribution of X, is absolutely continuous with respect to p, with density function f, we can add to our chain of
integrals using Theorem (14):
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/ P[X ()] dP(w) = / r(@)dPy (z) = / r(@)f(@)du(z) (3.13.19)
Q S S

Specializing, suppose that (S, .7, #) is a discrete measure space. Thus X has a discrete distribution and (as noted in the previous subsection),
the distribution of X is absolutely continuous with respect to #, with probability density function f given by f(z) =P(X ==z) forz € S. In
this case the integral simplifies:

/ (X (@))dP() = 3 r(z) f(z) (3.13.20)
Q zes

Recall next that for n € N, the n-dimensional Euclidean measure space is (R", %y, A,) where %, is the o-algebra of Lebesgue measurable
sets and A, is Lebesgue measure. Suppose now that S € %,, and that . is the o-algebra of Lebesgue measurable subsets of .S, and that once
again, X is a random variable with values in .S. By definition, X has a continuous distribution if P(X =z) =0 for z € S. But we now know
that this is not enough to ensure that the distribution of X has a density function with respect to A,,. We need the distribution to be absolutely
continuous, so that if A,(A) =0 then P(X € A) =0 for A € . Of course A\, {x} =0 for € S, so absolute continuity implies continuity,
but not conversely. Continuity of the distribution is a (much) weaker condition than absolute continuity of the distribution. If the distribution of
X is continuous but not absolutely so, then the distribution will not have a density function with respect to A;,.

For example, suppose that A, (S) = 0. Then the distribution of X and ), are mutually singular since P(X € §) =1 and so X will not have a
density function with respect to A,,. This will always be the case if S is countable, so that the distribution of X is discrete. But it is also possible
for X to have a continuous distribution on an uncountable set S € %,, with A,,(S) =0. In such a case, the continuous distribution of X is said
to be degenerate. There are a couple of natural ways in which this can happen that are illustrated in the following exercises.

Suppose that © is uniformly distributed on the interval [0, 27). Let X = cos®,Y =sin®.

1. (X,Y) has a continuous distribution on the circle C' = {(z,y) : 2> +y> =1} .
2. The distribution of (X,Y") and A, are mutually singular.
3. Find P(Y > X).

Solution

1. If (z,y) € C then there exist a unique 6 € [0, 27) with z = cosf and y =sin6. Hence P[(X,Y) = (z,y)| =P(©@=6) =0 .
2.P[(X,Y) e C]=1 but A2(C) =0.
3 1

"2

The last example is artificial since (X, Y") has a one-dimensional distribution in a sense, in spite of taking values in R2. And of course © has a
probability density function f with repsect A; given by f(0) =1/2x for 6 € [0, 2m).

Suppose that X is uniformly distributed on the set {0,1,2}, Y is uniformly distributed on the interval [0, 2], and that X and Y are
independent.

1. (X,Y) has a continuous distribution on the product set S = {0, 1,2} x [0, 2].
2. The distribution of (X,Y) and A, are mutually singular.
3. Find P(Y > X).

Solution
1. The variables are independent and Y has a continuous distribution so P[(X,Y) = (z,y)] = P(X =2)P(Y =y) =0 for (z,y) € S.
2.\P[(X, Y)\in S] = 1\) but A2(S) = 0

1
3.1

The last exercise is artificial since X has a discrete distribution on {0, 1,2} (with all subsets measureable and with #), and ¥ a continuous
distribution on the Euclidean space [0, 2] (with Lebesgue mearuable subsets and with A). Both are absolutely continuous; X has density function
g given by g(z) =1/3 for z € {0,1,2}and Y has density function h given by h(y) =1/2 for y € [0, 2]. So really, the proper measure space
on S is the product measure space formed from these two spaces. Relative to this product space (X,Y") has a density f given by f(z,y) =1/6
for (z,y) € S.

It is also possible to have a continuous distribution on S CR™ with A, (S) > 0, yet still with no probability density function, a much more
interesting situation. We will give a classical construction. Let (X7, X2, . ..) be a sequence of Bernoulli trials with success parameter p € (0, 1).
We will indicate the dependence of the probability measure P on the parameter p with a subscript. Thus, we have a sequence of independent
indicator variables with

P,(X;i=1)=p, P,(X;=0)=1-p (3.13.21)

We interpret X; as the ith binary digit (bit) of a random variable X taking values in (0, 1). That is, X = >"3°, X;/2°. Conversely, recall that
every number z € (0, 1) can be written in binary form as z = Y3, @;/2" where x; € {0, 1} for each ¢ € N, . This representation is unique
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except when z is a binary rational of the form = k/2" forn € N, and k € {1, 3,...2" —1}. In this case, there are two representations, one
in which the bits are eventually 0 and one in which the bits are eventually 1. Note, however, that the set of binary rationals is countable. Finally,
note that the uniform distribution on (0, 1) is the same as Lebesgue measure on (0, 1).

X has a continuous distribution on (0, 1) for every value of the parameter p € (0, 1). Moreover,

1.If p, g € (0,1) and p # q then the distribution of X with parameter p and the distribution of X with parameter g are mutually singular.

2.1f p = £, X has the uniform distribution on (0, 1).

3.Ifp# %, then the distribution of X is singular with respect to Lebesgue measure on (0, 1), and hence has no probability density
function in the usual sense.

Proof

If £ € (0, 1) is not a binary rational, then

Py(X =2)=Py(X; =z;foralli e N, ) = ILm P,(X;=gz;fori=1, 2..., n)= lim p’(1 —p)" ¥ (3.13.22)

n—00
where y =37 | z;. Let g =max{p,1 —p}. Then p¥(1 —p)" ¥ <¢" — 0 asn — oo.Hence, P,(X =z) =0 .If z € (0,1) is a binary
rational, then there are two bit strings that represent z, say (1, @3, . ..) (with bits eventually 0) and (y1,¥y2, - ..) (with bits eventually 1).
Hence P,(X =2) =P,(X; =; foralli e N, ) +P,(X; =y; forall¢ € N;) . But both of these probabilities are 0 by the same
argument as before.

Next, we define the set of numbers for which the limiting relative frequency of 1's is p. Let
Cp,= {:c €(0,1): % i,z —>pasn— oo} . Note that since limits are unique, C, NC, =0 for p # ¢ . Next, by the strong law of
large numbers, P, (X € Cp) = 1. Although we have not yet studied the law of large numbers, The basic idea is simple: in a sequence of
Bernoulli trials with success probability p, the long-term relative frequency of successes is p. Thus the distributions of X, as p varies from 0
to 1, are mutually singular; that is, as p varies, X takes values with probability 1 in mutually disjoint sets.

Let F denote the distribution function of X, so that F(z) =P,(X <z)=P,(X <z) for z € (0,1). If z € (0,1) is not a binary

rational, then X < z if and only if there exists n € Ny such that X; =x; fori € {1,2,...,n—1} and X,, =0 while z,, =1. Hence
Pia(X <z)=3 04 % =z . Since the distribution function of a continuous distribution is continuous, it follows that F'(z) = z for all

z € [0,1]. This means that X has the uniform distribution on (0,1). If p # % , the distribution of X and the uniform distribution are
mutually singular, so in particular, X does not have a probability density function with respect to Lebesgue measure.

For an application of some of the ideas in this example, see Bold Play in the game of Red and Black.

Counterexamples

The essential uniqueness of density functions can fail if the underlying positive measure y is not o-finite. Here is a trivial counterexample:

Suppose that S is a nonempty set and that . = {S, 0} is the trivial o-algebra. Define the positive measure p on (S, %) by u(0) =0,
1(S) = 00. Let v, denote the measure on (S, %) with constant density function ¢ € R with respect to p.

1. (8, ., p) is not o-finite.

2. v, = p for every c € (0, c0).

The Radon-Nikodym theorem can fail if the measure p is not o-finite, even if v is finite. Here are a couple of standard counterexample:
Suppose that .S is an uncountable set and . is the o-algebra of countable and co-countable sets:

& ={ACS: Aiscountable or A is countable} (3.13.23)
As usual, let # denote counting measure on ., and define v on . by ¥(A) =0 if A is countable and v(A) =1 if A® is countable. Then

1. (S, 7, #) is not o-finite.

2. v is a finite, positive measure on (S, .%).

3. v is absolutely continuous with respect to #.

4. v does not have a density function with respect to #.

Proof

1. Recall that a countable union of countable sets is countable, and so S cannot be written as such a union.

2. Note that (@) = 0. Suppose that { A; : 4 € I} is a countable, disjoint collection of sets in .. If A; is countable for every i € I then
Uie 4i is countable. Hence v ({;; Ai) =0 and v(4;) =0 for every i € I. Next suppose that Af and Aj, are countable for distinct
J, ke I.Since A;N A, =0, wehave A; U A{ =S . But then S would be countable, which is a contradiction. Hence it is only
possible for to have Af countable for a single j € I'. In this case, ¥(4;) =1 and v(4;) = 0 for i # j. Butalso (Uier A,-)c =Nier 45
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is countable, so v (U
finite.
3. Recall that any measure is absolutely continuous with respect to counting measure, since #(A) =0 if and only if A =0.
4. Suppose that v has density function f with respect to #. Then 0 = v{z} = [ w fa#=f (z) forevery z € S. But then

v(S) = [ fd# =0, which is a contradiction.

et Ai) = 1. Hence in all cases, v (Uie[ Ai) = i1 Y(4;) sowv isameasure on (S, ). It is clearly positive and

Let Z denote the standard Borel o-algebra on R. Let # and A denote counting measure and Lebesgue measure on (R, %), respectively.
Then

1. (R, %, #) is not o-finite.

2. )\ is absolutely continuous with respect to #.

3. X does not have a density function with respect to #.
Proof

1. R is uncountable and hence cannot be written as a countable union of finite sets.
2. Since 0 is the only null set of #, A\ < #.
3. Suppose that A has density function f with respect to #. Then

O:A{m}:/{}fd#:f(x), zER (3.13.24)

But then also A(R) = [, f d# =0, a contradiction.
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