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14.6: Non-homogeneous Poisson Processes
        

Basic Theory

A non-homogeneous Poisson process is similar to an ordinary Poisson process, except that the average rate of arrivals is allowed to
vary with time. Many applications that generate random points in time are modeled more faithfully with such non-homogeneous
processes. The mathematical cost of this generalization, however, is that we lose the property of stationary increments.

Non-homogeneous Poisson processes are best described in measure-theoretic terms. Thus, you may need to review the sections on
measure theory in the chapters on Foundations, Probability Measures, and Distributions. Our basic measure space in this section is 

 with the -algebra of Borel measurable subsets (named for Émile Borel). As usual,  denotes Lebesgue measure on this
space, named for Henri Lebesgue. Recall that the Borel -algebra is the one generated by the intervals, and  is the generalization
of length on intervals.

Definition and Basic Properties

Of all of our various characterizations of the ordinary Poisson process, in terms of the inter-arrival times, the arrival times, and the
counting process, the characterizations involving the counting process leads to the most natural generalization to non-homogeneous
processes. Thus, consider a process that generates random points in time, and as usual, let  denote the number of random points
in the interval  for , so that  is the counting process. More generally,  denotes the number of
random points in a measurable , so  is our random counting measure. As before,  is a (random) distribution
function and  is the (random) measure associated with this distribution function.

Suppose now that  is measurable, and define  by

From properties of the integral,  is increasing and right-continuous on  and hence is distribution function. The positive
measure on  associated with  (which we will also denote by ) is defined on a measurable  by

Thus, , and for  with , . Finally, note that the measure  is absolutely
continuous with respect to , and  is the density function. Note the parallels between the random distribution function and
measure  and the deterministic distribution function and measure . With the setup involving  and  complete, we are ready
for our first definition.

A process that produces random points in time is a non-homogeneous Poisson process with rate function  if the counting
process  satisfies the following properties:

1. If  is a countable, disjoint collection of measurable subsets of  then  is a collection of
independent random variables.

2. If  is measurable then  has the Poisson distribution with parameter .

Property (a) is our usual property of independent increments, while property (b) is a natural generalization of the property of
Poisson distributed increments. Clearly, if  is a positive constant, then  for  and as a measure,  is
proportional to Lebesgue measure . In this case, the non-homogeneous process reduces to an ordinary, homogeneous Poisson
process with rate . However, if  is not constant, then  is not linear, and as a measure, is not proportional to Lebesgue measure.
In this case, the process does not have stationary increments with respect to , but does of course, have stationary increments with
respect to . That is, if  are measurable subsets of  and  then  and  will not in general have
the same distribution, but of course they will have the same distribution if .

In particular, recall that the parameter of the Poisson distribution is both the mean and the variance, so 
 for measurable , and in particular,  for . The
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function  is usually called the mean function. Since  (if  is continuous at ), it makes sense to refer to  as the rate
function. Locally, at , the arrivals are occurring at an average rate of  per unit time.

As before, from a modeling point of view, the property of independent increments can reasonably be evaluated. But we need
something more primitive to replace the property of Poisson increments. Here is the main theorem.

A process that produces random points in time is a non-homogeneous Poisson process with rate function  if and only if the
counting process  satisfies the following properties:

1. If  is a countable, disjoint collection of measurable subsets of  then  is a set of
independent variables.

2. For ,

So if  is “small” the probability of a single arrival in  is approximately , while the probability of more than 1
arrival in this interval is negligible.

Arrival Times and Time Change

Suppose that we have a non-homogeneous Poisson process with rate function , as defined above. As usual, let  denote the time
of the th arrival for . As with the ordinary Poisson process, we have an inverse relation between the counting process 

 and the arrival time sequence , namely , 
, and , since both events mean at least  random points in . The last

relationship allows us to get the distribution of .

For ,  has probability density function  given by

Proof

Using the inverse relationship above and the Poisson distribution of , the distribution function of  is

Differentiating with respect to  gives

The last sum collapses to .

In particular,  has probability density function  given by

Recall that in reliability terms,  is the failure rate function, and that the reliability function is the right distribution function:

In general, the functional form of  is clearly similar to the probability density function of the gamma distribution, and indeed, 
can be transformed into a random variable with a gamma distribution. This amounts to a time change which will give us additional
insight into the non-homogeneous Poisson process.

Let  for . Then  has the gamma distribution with shape parameter  and rate parameter 
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Proof

Let  denote the PDF of . Since  is strictly increasing and differentiable, we can use the standard change of variables
formula. So letting , the relationship is

Simplifying gives  for .

Thus, the time change  transforms the non-homogeneous Poisson process into a standard (rate 1) Poisson process. Here is
an equivalent way to look at the time change result.

For , let  where . Then  is the counting process for a standard, rate 1
Poisson process.

Proof
1. Suppose that  os a sequence of points in  with . Since  is strictly increasing, we

have , where of course . By assumption, the sequence of random variables 
 is independent, but this is also the sequence .

2. Suppose that  with , and let  and . Then  and so 
has the Poisson distribution with parameter .

Equivalently, we can transform a standard (rate 1) Poisson process into a a non-homogeneous Poisson process with a time change.

Suppose that  is the counting process for a standard Poisson process, and let  for 
. Then  is the counting process for a non-homogeneous Poisson process with mean function 

(and rate function ).

Proof
1. Let  be a sequence of points in  with . Since  is strictly increasing, we have 

. Hence  is a sequence of independent variables. But this
sequence is simply .

2. If  with . Then  has the Poisson distribution with parameter .
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