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14.7: Compound Poisson Processes
        

In a compound Poisson process, each arrival in an ordinary Poisson process comes with an associated real-valued random variable
that represents the value of the arrival in a sense. These variables are independent and identically distributed, and are independent
of the underlying Poisson process. Our interest centers on the sum of the random variables for all the arrivals up to a fixed time ,
which thus is a Poisson-distributed random sum of random variables. Distributions of this type are said to be compound Poisson
distributions, and are important in their own right, particularly since some surprising parametric distributions turn out to be
compound Poisson.

Basic Theory

Definition

Suppose we have a Poisson process with rate . As usual, we wil denote the sequence of inter-arrival times by 
, the sequence of arrival times by , and the counting process by .

To review some of the most important facts briefly, recall that  is a sequence of independent random variables, each having the
exponential distribution on  with rate . The sequence  is the partial sum sequence associated with , and has stationary
independent increments. For , the th arrival time  has the gamma distribution with parameters  and . The process 
is the inverse of , in a certain sense, and also has stationary independent increments. For , the number of arrivals  in

 has the Poisson distribution with parameter .

Suppose now that each arrival has an associated real-valued random variable that represents the value of the arrival in a certain
sense. Here are some typical examples:

The arrivals are customers at a store. Each customer spends a random amount of money.
The arrivals are visits to a website. Each visitor spends a random amount of time at the site.
The arrivals are failure times of a complex system. Each failure requires a random repair time.
The arrivals are earthquakes at a particular location. Each earthquake has a random severity, a measure of the energy released.

For , let  denote the value of the th arrival. We assume that  is a sequence of independent,
identically distributed, real-valued random variables, and that  is independent of the underlying Poisson process. The common
distribution may be discrete or continuous, but in either case, we let  denote the common probability density function. We will let 

 denote the common mean,  the common variance, and  the common moment generating function, so
that  for  in some interval  about 0. Here is our main definition:

The compound Poisson process associated with the given Poisson process  and the sequence  is the stochastic process 
 where

Thus,  is the total value for all of the arrivals in . For the examples above

 is the total income to the store up to time .
 is the total time spent at the site by the customers who arrived up to time .
 is the total repair time for the failures up to time .
 is the total energy released up to time .

Recall that a sum over an empty index set is 0, so .

Properties

Note that for fixed ,  is a random sum of independent, identically distributed random variables, a topic that we have studied
before. In this sense, we have a special case, since the number of terms  has the Poisson distribution with parameter . But we
also have a new wrinkle, since the process is indexed by the continuous time parameter , and so we can study its properties as a
stochastic process. Our first result is a pair of properties shared by the underlying Poisson process.
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1. If  with , then  has the same distribution as .
2. If  is a sequence of points in  with  then  is a

sequence of independent variables.

Proof
1. For ,

The number of terms in the last sum is , which has the same distribution as . Since the variables in the
sequence  are identically distributed, it follows that  has the same distribution as .

2. Suppose that  and let . Then for , as in (a)

The number of terms in this sum is . Since  has independent increments, and the variables in  are
independent, and since the indices between  and  are disjoint over , it follows that the random
variables  are independent over .

Next we consider various moments of the compound process.

For , the mean and variance of  are

1. 
2. 

Proof

Again, these are special cases of general results for random sums of IID variables, but we give separate proofs for
completeness. The basic tool is conditional expected value and conditional variance. Recall also that .

1. Note that .
2. Similarly, note that  and hence 

.

For , the moment generating function of  is given by

Proof

Again, this is a special case of the more general result for random sums of IID variables, but we give a another proof for
completeness. As with the last theorem, the key is to condition on  and recall that the MGF of a sum of independent
variables is the product of the MGFs. Thus

where  is the probability generating function of . But we know from our study of the Poisson distribution that 
 for .

By exactly the same argument, the same relationship holds for characteristic functions and, in the case that the variables in  take
values in , for probability generating functions.. That is, if the variables in  have generating function , then the generating
function  of  is given by

for  in the domain of , where generating function can be any of the three types we have discussed: probability, moment, or
characteristic.
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Examples and Special Cases

The Discrete Case

First we note that Thinning a Poisson process can be thought of as a special case of a compound Poisson process. Thus, suppose
that  is a Bernoulli trials sequence with success parameter , and as above, that  is independent of the
Poisson process . In the usual language of thinning, the arrivals are of two types (1 and 0), and  is the type of the th arrival.
Thus the compound process  constructed above is the thinned process, so that  is the number of type 1 points up to time . We
know that  is also a Poisson process, with rate .

The results above for thinning generalize to the case where the values of the arrivals have a discrete distribution. Thus, suppose 
takes values in a countable set , and as before, let  denote the common probability density function so that 

 for  and . For , let  denote the number of arrivals up to time  that have the value , and
let  denote the corresponding stochastic process. Armed with this setup, here is the result:

The compound Poisson process  associated with  and  can be written in the form

The processes  are independent Poisson processes, and  has rate  for .

Proof

Note that  and hence

The fact that  are independent Poisson processes, and that  has rate  for  follows from our result
on thinning.

Compound Poisson Distributions

A compound Poisson random variable can be defined outside of the context of a Poisson process. Here is the formal definition:

Suppose that  is a sequence of independent, identically distributed random variables, and that  is
independent of  and has the Poisson distribution with parameter . Then  has a compound Poisson
distribution.

But in fact, compound Poisson variables usually do arise in the context of an underlying Poisson process. In any event, the results
on the mean and variance above and the generating function above hold with  replaced by . Compound Poisson distributions are
infinitely divisible. A famous theorem of William Feller gives a partial converse: an infinitely divisible distribution on  must be
compound Poisson.

The negative binomial distribution on  is infinitely divisible, and hence must be compound Poisson. Here is the construction:

Let . Suppose that  is a sequence of independent variables, each having the logarithmic series
distribution with shape parameter . Suppose also that  is independent of  and has the Poisson distribution with
parameter . Then  has the negative binomial distribution on  with parameters  and .

Proof

As noted above, the probability generating function of  is  where  is the parameter of the
Poisson variable  and  is the common PGF of the the terms in the sum. Using the PGF of the logarithmic series
distribution, and the particular values of the parameters, we have

Using properties of logarithms and simple algebra, this reduces to
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which is the PGF of the negative binomial distribution with parameters  and .

As a special case ( ), it follows that the geometric distribution on  is also compound Poisson.

This page titled 14.7: Compound Poisson Processes is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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