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1.7: Counting Measure

Basic Theory

For our first discussion, we assume that the universal set  is finite. Recall the following definition from the section on cardinality.

For , the cardinality of  is the number of elements in , and is denoted . The function  on  is called
counting measure.

Counting measure plays a fundamental role in discrete probability structures, and particularly those that involve sampling from a
finite set. The set  is typically very large, hence efficient counting methods are essential. The first combinatorial problem is
attributed to the Greek mathematician Xenocrates.

In many cases, a set of objects can be counted by establishing a one-to-one correspondence between the given set and some other
set. Naturally, the two sets have the same number of elements, but for various reasons, the second set may be easier to count.

The Addition Rule

The addition rule of combinatorics is simply the additivity axiom of counting measure.

If  is a collection of disjoint subsets of  then

Figure : The addition rule

The following counting rules are simple consequences of the addition rule. Be sure to try the proofs yourself before reading the
ones in the text.

. This is the complement rule.

Proof

Figure : The complement rule

. This is the difference rule.

Proof

Note that  and  are disjoint and their union is . Hence .

If  then . This is the proper difference rule.

Proof

This follows from the difference rule, since .

If  then .
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#( ) = #(S) −#(A)Ac

1.7.2

#(B ∖ A) = #(B) −#(A ∩ B)

A ∩ B B ∖ A B #(A ∩ B) +#(B ∖ A) = #(B)

A ⊆ B #(B ∖ A) = #(B) −#(A)

A ∩ B = A

A ⊆ B #(A) ≤ #(B)
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Proof

This follows from the proper difference rule: .

Thus,  is an increasing function, relative to the subset partial order  on , and the ordinary order  on .

Inequalities

Our next disucssion concerns two inequalities that are useful for obtaining bounds on the number of elements in a set. The first is
Boole's inequality (named after George Boole) which gives an upper bound on the cardinality of a union.

If  is a finite collection of subsets of  then

Proof

Let  and  for . Note that  is a pairwise disjoint
collection and has the same union as . From the increasing property,  for each 

. Hence by the addition rule,

Intuitively, Boole's inequality holds because parts of the union have been counted more than once in the expression on the right.
The second inequality is Bonferroni's inequality (named after Carlo Bonferroni), which gives a lower bound on the cardinality of
an intersection.

If  is a finite collection of subsets of  then

Proof

Using the complement rule, Boole's inequality, and DeMorgan's law,

The Inclusion-Exclusion Formula

The inclusion-exclusion formula gives the cardinality of a union of sets in terms of the cardinality of the various intersections of the
sets. The formula is useful because intersections are often easier to count. We start with the special cases of two sets and three sets.
As usual, we assume that the sets are subsets of a finite universal set .

If  and  are subsets of  then .

Proof

Figure : The inclusion-exclusion theorem for two sets

If , ,  are subsets of  then 
.
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S

A B S #(A ∪ B) = #(A) +#(B) −#(A ∩ B)

1.7.3

A B C S

#(A ∪ B ∪ C) = #(A) +#(B) +#(C) −#(A ∩ B) −#(A ∩ C) −#(B ∩ C) +#(A ∩ B ∩ C)
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Proof

Figure : The inclusion-exclusion theorem for three sets

The inclusion-exclusion rule for two and three sets can be generalized to a union of  sets; the generalization is known as the
(general) inclusion-exclusion formula.

Suppose that  is a collection of subsets of  where  is an index set with . Then

Proof

The proof is by induction on . The formula holds for  sets by the result for two sets. Suppose the formula holds for 
, and suppose that  is a collection of  subsets of . Then

and the two sets connected by the central union are disjoint. Using the addition rule and the difference rule,

By the induction hypothesis, the formula holds for the two unions of  sets in the last expression. The result then follows by
simplification.

The general Bonferroni inequalities, named again for Carlo Bonferroni, state that if sum on the right is truncated after  terms (
), then the truncated sum is an upper bound for the cardinality of the union if  is odd (so that the last term has a positive

sign) and is a lower bound for the cardinality of the union if  is even (so that the last terms has a negative sign).

The Multiplication Rule

The multiplication rule of combinatorics is based on the formulation of a procedure (or algorithm) that generates the objects to be
counted.

Suppose that a procedure consists of  steps, performed sequentially, and that for each , step  can be
performed in  ways, regardless of the choices made on the previous steps. Then the number of ways to perform the entire
procedure is .

The key to a successful application of the multiplication rule to a counting problem is the clear formulation of an algorithm that
generates the objects being counted, so that each object is generated once and only once. That is, we must neither over count nor
under count. It's also important to notice that the set of choices available at step  may well depend on the previous steps; the
assumption is only that the number of choices available does not depend on the previous steps.

The first two results below give equivalent formulations of the multiplication principle.

Suppose that  is a set of sequences of length , and that we denote a generic element of  by . Suppose that
for each ,  has  different values, regardless of the values of the previous coordinates. Then 

.

1.7.4
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Proof

A procedure that generates the sequences in  consists of  steps. Step  is to select the th coordinate.

Suppose that  is an ordered tree with depth  and that each vertex at level  has  children for . Then
the number of endpoints of the tree is .

Proof

Each endpoint of the tree is uniquely associated with the path from the root vertex to the endpoint. Each such path is a
sequence of length , in which there are  values for coordinate  for each . Hence the result follows from
the result above on sequences.

Product Sets

If  is a set with  elements for  then

Proof

This is a corollary of the result above on sequences.

If  is a set with  elements, then  has  elements.

Proof

This is a corollary of the previous result.

In (16), note that the elements of  can be thought of as ordered samples of size  that can be chosen with replacement from a
population of  objects. Elements of  are sometimes called bit strings of length . Thus, there are  bit strings of length .

Functions

The number of functions from a set  of  elements into a set  of  elements is .

Proof

An algorithm for constructing a function  is to choose the value of  for each . There are  choices
for each of the  elements in the domain.

Recall that the set of functions from a set  into a set  (regardless of whether the sets are finite or infinite) is denoted . This
theorem is motivation for the notation. Note also that if  is a set with  elements, then the elements in the Cartesian power set 
can be thought of as functions from  into . So the counting formula for sequences can be thought of as a corollary of
counting formula for functions.

Subsets

Suppose that  is a set with  elements, where . There are  subsets of .

Proof from the multiplication principle

An algorithm for constructing , is to decide whether  or  for each . There are 2 choices for each of
the  elements of .

Proof using indicator functions

Recall that there is a one-to-one correspondence between subsets of  and indicator functions on . An indicator function is
simply a function from  into , and the number of such functions is  by the previous result.

Suppose that  is a collection of  subsets of a set , where . There are  different (in general) sets
that can be constructed from the  given sets, using the operations of union, intersection, and complement. These sets form the
algebra generated by the given sets.
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Proof

First note that there are  pairwise disjoint sets of the form  where  or  for each . Next,
note that every set that can be constructed from  is a union of some (perhaps all, perhaps none) of these
intersection sets.

Open the Venn diagram app.

1. Select each of the 4 disjoint sets , , , .
2. Select each of the 12 other subsets of . Note how each is a union of some of the sets in (a).

Suppose that  is a set with  elements and that  is a subset of  with  elements, where  and . The number
of subsets of  that contain  is .

Proof

Note that subset  of  that contains  can be written uniquely in the form  where .  has 
elements and hence there are  subsets of  by the general subset result.

Our last result in this discussion generalizes the basic subset result above.

Suppose that  and that  is a set with  elements. The number of sequences of subsets  with 
 is .

Proof

To construct a sequence of the type in the theorem, we can use the following algorithm: For each , either  is not in the
sets, or  occurs for the first time in set  where . (That is,  for  and  for 

.) So there are  choices for each of the  elements of .

When  we get  as the number of subsets of , as before.

Computational Exercises

Identification Numbers

A license number consists of two letters (uppercase) followed by five digits. How many different license numbers are there?

Answer

Suppose that a Personal Identification Number (PIN) is a four-symbol code word in which each entry is either a letter
(uppercase) or a digit. How many PINs are there?

Answer

Cards, Dice, and Coins

In the board game Clue, Mr. Boddy has been murdered. There are 6 suspects, 6 possible weapons, and 9 possible rooms for the
murder.

1. The game includes a card for each suspect, each weapon, and each room. How many cards are there?
2. The outcome of the game is a sequence consisting of a suspect, a weapon, and a room (for example, Colonel Mustard with

the knife in the billiard room). How many outcomes are there?
3. Once the three cards that constitute the outcome have been randomly chosen, the remaining cards are dealt to the players.

Suppose that you are dealt 5 cards. In trying to guess the outcome, what hand of cards would be best?

Answer
1.  cards
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2.  outcomes
3. The best hand would be the  remaining weapons or the  remaining suspects.

An experiment consists of rolling a standard die, drawing a card from a standard deck, and tossing a standard coin. How many
outcomes are there?

Answer

A standard die is rolled 5 times and the sequence of scores recorded. How many outcomes are there?

Answer

In the card game Set, each card has 4 properties: number (one, two, or three), shape (diamond, oval, or squiggle), color (red,
blue, or green), and shading (solid, open, or stripped). The deck has one card of each (number, shape, color, shading)
configuration. A set in the game is defined as a set of three cards which, for each property, the cards are either all the same or
all different.

1. How many cards are in a deck?
2. How many sets are there?

Answer
1. 
2. 

A coin is tossed 10 times and the sequence of scores recorded. How many sequences are there?

Answer

The die-coin experiment consists of rolling a die and then tossing a coin the number of times shown on the die. The sequence
of coin results is recorded.

1. How many outcomes are there?
2. How many outcomes are there with all heads?
3. How many outcomes are there with exactly one head?

Answer

1. 
2. 
3. 

Run the die-coin experiment 100 times and observe the outcomes.

Consider a deck of cards as a set  with 52 elements.

1. How many subsets of  are there?
2. How many functions are there from  into the set ?

Answer
1. 
2. 

6 ⋅ 6 ⋅ 9 = 324

5 5

6 ⋅ 52 ⋅ 2 = 624

= 777665

= 8134

1080

= 1024210

= 126∑6
k=1 2k

6

k = 21∑6
k=1

D

D

D {1, 2, 3, 4}

= 4 503 599 627 370 496252

= 20 282 409 603 651 670 423 947 251 286 016452
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Birthdays

Consider a group of 10 persons.

1. If we record the birth month of each person, how many outcomes are there?
2. If we record the birthday of each person (ignoring leap day), how many outcomes are there?

Answer
1. 
2. 

Reliability

In the usual model of structural reliability, a system consists of components, each of which is either working or defective. The
system as a whole is also either working or defective, depending on the states of the components and how the components are
connected.

A string of lights has 20 bulbs, each of which may be good or defective. How many configurations are there?

Answer

If the components are connected in series, then the system as a whole is working if and only if each component is working. If the
components are connected parallel, then the system as a whole is working if and only if at least one component is working.

A system consists of three subsystems with 6, 5, and 4 components, respectively. Find the number of component states for
which the system is working in each of the following cases:

1. The components in each subsystem are in parallel and the subsystems are in series.
2. The components in each subsystem are in series and the subsystems are in parallel.

Answer
1. 
2. 

Menus

Suppose that a sandwich at a restaurant consists of bread, meat, cheese, and various toppings. There are 4 choices for the bread,
3 choices for the meat, 5 choices for the cheese, and 10 different toppings (each of which may be chosen). How many
sandwiches are there?

Answer

At a wedding dinner, there are three choices for the entrée, four choices for the beverage, and two choices for the dessert.

1. How many different meals are there?
2. If there are 50 guests at the wedding and we record the meal requested for each guest, how many possible outcomes are

there?

Answer
1. 
2. 

Braille

Braille is a tactile writing system used by people who are visually impaired. The system is named for the French educator
Louis Braille and uses raised dots in a  grid to encode characters. How many meaningful Braille configurations are there?

Answer

= 61 917 364 2241210

= 41 969 002 243 198 805 166 015 62536510

= 1 048 576220

( −1)( −1)( −1) = 29 29526 25 24

−1 = 723

4 ⋅ 3 ⋅ 5 ⋅ = 61 440210

3 ⋅ 4 ⋅ 2 = 24

≈ 1.02462 ×2450 1069

3 ×2
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Figure : The Braille encoding of the number 2 and the letter b

Personality Typing

The Meyers-Briggs personality typing is based on four dichotomies: A person is typed as either extroversion (E) or
introversion (I), either sensing (S) or intuition (I), either thinking (T) or feeling (F), and either judgement (J) or perception (P).

1. How many Meyers-Briggs personality types are there? List them.
2. Suppose that we list the personality types of 10 persons. How many possible outcomes are there?

Answer
1. 16
2. 

The Galton Board

The Galton Board, named after Francis Galton, is a triangular array of pegs. Galton, apparently too modest to name the device after
himself, called it a quincunx from the Latin word for five twelfths (go figure). The rows are numbered, from the top down, by 

. Row  has  pegs that are labeled, from left to right by . Thus, a peg can be uniquely identified by an
ordered pair  where  is the row number and  is the peg number in that row.

A ball is dropped onto the top peg  of the Galton board. In general, when the ball hits peg , it either bounces to the left
to peg  or to the right to peg . The sequence of pegs that the ball hits is a path in the Galton board.

There is a one-to-one correspondence between each pair of the following three collections:

1. Bit strings of length 
2. Paths in the Galton board from  to any peg in row .
3. Subsets of a set with  elements.

Thus, each of these collections has  elements.

Open the Galton board app.

1. Move the ball from  to  along a path of your choice. Note the corresponding bit string and subset.
2. Generate the bit string . Note the corresponding subset and path.
3. Generate the subset . Note the corresponding bit string and path.
4. Generate all paths from  to . How many paths are there?

Answer

4. 6

This page titled 1.7: Counting Measure is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.

1.7.5

= 1 099 511 627 7761610

(0, 1, …) n n +1 (0, 1, … , n)

(n, k) n k

(0, 0) (n, k)

(n +1, k) (n +1, k +1)

n

(0, 0) n

n

2n

(0, 0) (10, 6)

0111001010

{2, 4, 5, 9, 10}

(0, 0) (4, 2)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10122?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/01%3A_Foundations/1.07%3A_Counting_Measure
https://creativecommons.org/licenses/by/2.0
https://www.uah.edu/science/departments/math/faculty-staff/kyle-siegrist
http://www.randomservices.org/random/
http://www.randomservices.org/random

