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17.6: Backwards Martingales
      

Basic Theory

A backwards martingale is a stochastic process that satisfies the martingale property reversed in time, in a certain sense. In some ways,
backward martingales are simpler than their forward counterparts, and in particular, satisfy a convergence theorem similar to the convergence
theorem for ordinary martingales. The importance of backward martingales stems from their numerous applications. In particular, some of the
fundamental theorems of classical probability can be formulated in terms of backward martingales.

Definitions

As usual, we start with a stochastic process  on an underlying probability space , having state space , and where
the index set  (representing time) is either  (discrete time) or  (continuous time). So to review what all this means,  is the sample
space,  the -algebra of events,  the probability measure on , and  is a random variable with values in  for each . But at
this point our formulation diverges. Suppose that  is a sub -algebra of  for each , and that  is decreasing so that if 

 with  then . Let . We assume that  is measurable with respect to  and that  for each 
.

The process  is a backwards martingale (or reversed martingale) with respect to  if 
for all  with .

A backwards martingale can be formulated as an ordinary martingale by using negative times as the indices. Let , so that if
 (the discrete case) then  is the set of non-positive integers, and if  (the continuous case) then . Recall also

that the standard martingale definitions make sense for any totally ordered index set.

Suppose again that  is a backwards martingale with respect to . Let  and  for 
. Then  is a martingale with respect to .

Proof

Since  is a decreasing family of sub -algebras of , the collection  is an increasing family of sub -algebras of , and hence is a
filtration. Next,  is measurable with respect to  for , so  is adapted to . Finally, if  with 
then  so

Most authors define backwards martingales with negative indices, as above, in the first place. There are good reasons for doing so, since some
of the fundamental theorems of martingales apply immediately to backwards martingales. However, for the applications of backwards
martingales, this notation is artificial and clunky, so for the most part, we will use our original definition. The next result is another way to view
a backwards martingale as an ordinary martingale. This one preserves nonnegative time, but introduces a finite time horizon. For , let 

, a notation we have used often before.

Suppose again that  is a backwards martingale with respect to . Fix  and define  and 
 for . Then  is a martingale relative to .

Proof

The proof is essentially the same as for the previous result. Since  is a decreasing family of sub -algebras of , the collection  is an
increasing family of sub -algebras of , and hence is a filtration. Next,  is measurable with respect to  for ,
so  is adapted to . Finally, if  with  then  so

Properties

Backwards martingales satisfy a simple and important property.

Suppose that  is a backwards martingale with repsect to . Then  for  and hence 
 is uniformly integrable.

Proof

The fact that  for  follows directly from the definition of a backwards martingale. Since we have assumed that 
, it follows from a basic property that  is uniformly integrable.
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Here is the Doob backwards martingale, analogous to the ordinary Doob martingale, and of course named for Joseph Doob. In a sense, this is
the converse to the previous result.

Suppose that  is a random variable on our probability space  with , and that  is a decreasing
family of sub -algebras of , as above. Let  for . Then  is a backwards martingale with respect
to .

Proof

By definition,  is measurable with respect to . Also,

Next, suppose that  with . Then  so by the tower property of conditional expected value,

The convergence theorems are the most important results for the applications of backwards martingales. Recall once again that for ,
the k-norm of a real-valued random variable  is

and the normed vector space  consists of all  with . Convergence in the space  is also referred to as convergence in mean,
and convergence in the space  is referred to as convergence in mean square. Here is the primary backwards martingale convergence
theorem:

Suppose again that  is a backwards martingale with respect to . Then there exists a random variable 
 such that

1.  as  with probability 1.
2.  as  in mean.
3. .

Proof

The proof is essentially the same as the ordinary martingale convergence theorem if we use the martingale constructed from  above. So,
fix  and let . Let  and  for , so that  is a martingale relative
to . Now, for  with , let  denote the number of up-crossings of  by  on . Note that 

 is also the number of down-crossings of  by  on . By the up-crossing inequality applied to the martingale ,

Now let  denote the number of down-crossings of  by  on all of . Since  as  it follows from the
monotone convergence theorem that

Hence with probability 1,  for every  with . By the characterization of convergence in terms of down-
crossings (completely analogous to the one for up-crossings), there exists a random variable  with values in  such
that  as . By Fatou's lemma,

In particular, . Since  is uniformly integrable, and , it follows that  as  in  also.

It remains to show that . Let . Then  for every . Since  it follows by definition
that  for every . Letting  and using the dominated convergence theorem, gives .
Hence .

As a simple extension of the last result, if  for some  then the convergence is in  also.

Suppose again that  is a backwards martingale relative to . If  for some  then 
 as  in .

Proof
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The previous result applies, of course, so we know that there exists a random variable  such that  as  with
probability 1 and in . The function  is convex on  so by Jensen's inequality for conditional expected value,

so  for every . By Fatou's lemma,

so  also. Next, since  and  is measurable with respect to , we can use Jensen's inequality again to get

It follows that the family of random variables  is uniformly integrable, and hence  as .

Applications

The Strong Law of Large Numbers

The strong law of large numbers is one of the fundamental theorems of classical probability. Our previous proof required that the underlying
distribution have finite variance. Here we present an elegant proof using backwards martingales that does not require this extra assumption. So,
suppose that  is a sequence of independent, identically distributed random variables with common mean . In
statistical terms,  corresponds to sampling from the underlying distribution. Next let

so that  is the partial sum process associated with . Recall that the sequence  is also a discrete-time random walk.
Finally, let  for  so that  is the sequence of sample means.

The law of large numbers

1.  as  with probability 1.
2.  as  in mean.

Proof

As usual, let  denote the underlying probability space. Also, equalities involving random variables (and particularly conditional
expected values) are assumed to hold with probability 1. Now, for , let

so that  is a decreasing family of sub -algebras of . The core of the proof is to show that  is a backwards
martingale relative to . Let . Clearly  is measurable with respect to . By independence,  for 

. By symmetry (the sequence  is exchangeable),  for . Hence for 

so that  for each . Next,

Dividing by  gives  and hence  is a backwards martingale with respect to . From the backwards martingale
convergence theorem, there exists  such that  as  with probability 1 and in mean. Next, for  simple
algebra gives

Letting  then shows that
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for every . Hence  is a tail random variable for the IID sequence . From the Kolmogorov 0-1 law,  must be a constant.
Finally, convergence in mean implies that the means converge, and since  for each , it follows that .

Exchangeable Variables

We start with a probability space  and another measurable space . Suppose that  is a sequence of random
variables each taking values in . Recall that  is exchangeable if for every , every permutation of  has the same
distribution on  (where  is the -fold product -algebra). Clearly if  is a sequence of independent, identically distributed
variables, then  is exchangeable. Conversely, if  is exchangeable then the variables are identically distributed (by definition), but are not
necessarily independent. The most famous example of a sequence that is exchangeable but not independent is Pólya's urn process, named for
George Pólya. On the other hand, conditionally independent and identically distributed sequences are exchangeable. Thus suppose that 
is another measurable space and that  is a random variable taking values in .

If  is conditionally independent and identically distributed given , then  is exchangeable.

Proof

Implicit in the statement is that the variables in the sequence have a regular conditional distribution  given . Then for every ,
the conditional distribution of every permutation of , given , is  on , where  is the -fold product
measure. Unconditionally, the distribution of any permutation is  for .

Often the setting of this theorem arises when we start with a sequence of independent, identically distributed random variables that are
governed by a parametric distribution, and then randomize one of the parameters. In a sense, we can always think of the setting in this way:
Imagine that  is a parameter for a distribution on . A special case is the beta-Bernoulli process, in which the success parameter  in
sequence of Bernoulli trials is randomized with the beta distribution. On the other hand, Pólya's urn process is an example of an exchangeable
sequence that does not at first seem to have anything to do with randomizing parameters. But in fact, we know that Pólya's urn process is a
special case of the beta-Bernoulli process. This connection gives a hint of de Finetti's theorem, named for Bruno de Finetti, which we consider
next. This theorem states any exchangeable sequence of indicator random variables corresponds to randomizing the success parameter in a
sequence of Bernoulli trials.

de Finetti's Theorem. Suppose that  is an exchangeable sequence of random variables, each taking values in .
Then there exists a random variable  with values in , such that given ,  is a sequence of Bernoulli trials with
success parameter .

Proof

As usual, we need some notation. First recall the falling power notation  for  and . Next for 
 and , let

That is,  is the set of bit strings of length  with 1 occurring exactly  times. Of course, .

Suppose now that  is an exchangeable sequence of variables with values in . For  let  and 
. So  is the partial sum process associated with  and  the sequence of sample

means. Let  and . The family of -algebras  is decreasing. The key to the
proof is to find two backwards martingales and use the backwards martingale convergence theorem.

Let  and  The crucial insight is that by exchangeability, given , the random vector  is
uniformly distributed on . So if  and , the random vector , again given , fits the
hypergeometric model: a sample of size  chosen at random and without replacement from a population of  objects of which  are type 1
and  are type 0. Thus, if  and  then

Equivalently,
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For fixed , , and , the conditional expected value in the middle of the displayed equation, as a function of , is a
Doob backward martingale with respect to  and hence converges to  as .

Next we show that  is a backwards martingale with respect to . Trivially  is measurable with respect to  and  for
each . Thus we need to show that  for  with . From our previous work with 

 we know that the conditional distribution of  given  is hypergeometric with parameters , , and :

Recall that the mean of the hypergeometric distribution is the sample size times the proportion of type 1 objects in the population. Thus,

Or equivalently, . Once again, given , the variables  give no additional information and so 
. Hence  is a backwards martingale with respect to . From the backwards martingale convergence theorem, there

exists a random variable  such that  as  with probability 1.

It just remains to connect the dots. Suppose now that  and  and that  and . From
simple calculus, if  and  are fixed and  as  then

(You may recall that this computation is used in the proof of the convergence of the hypergeometric distribution to the binomial.) Returning
to the joint distribution, recall that if  then

Let . Since  as  we get

Random variable  is measurable with respect to  so

Given ,  is a sequence of Bernoulli trials with success parameter .

De Finetti's theorem has been extended to much more general sequences of exchangeable variables. Basically, if  is an
exchangeable sequence of random variables, each taking values in a significantly nice measurable space  then there exists a random
variable  such that  is independent and identically distributed given . In the proof, the result that  as  with probability 1,
where , is known as de Finetti's strong law of large numbers. De Finetti's theorem, and it's generalizations are important in
Bayesian statistical inference. For an exchangeable sequence of random variables (our observations in a statistical experiment), there is a
hidden, random parameter . Given , the variables are independent and identically distributed. We gain information about  by
imposing a prior distribution on  and then updating this, based on our observations and using Baye's theorem, to a posterior distribution.

Stated more in terms of distributions, de Finetti's theorem states that the distribution of  distinct variables in the exchangeable sequence is a
mixture of product measures. That is, if  is the distribution of a generic  on  given , and  is the distribution of  on ,
then the distribution of  of the variables on  is
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