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5.30: The Extreme Value Distribution
       

Extreme value distributions arise as limiting distributions for maximums or minimums (extreme values) of a sample of
independent, identically distributed random variables, as the sample size increases. Thus, these distributions are important in
probability and mathematical statistics.

The Standard Distribution for Maximums

Distribution Functions

The standard extreme value distribution (for maximums) is a continuous distribution on  with distribution function  given
by

Proof

Note that  is continuous, increasing, and satisfies  as  and  as .

The distribution is also known as the standard Gumbel distribution in honor of Emil Gumbel. As we will show below, it arises as
the limit of the maximum of  independent random variables, each with the standard exponential distribution (when this maximum
is appropriately centered). This fact is the main reason that the distribution is special, and is the reason for the name. For the
remainder of this discussion, suppose that random variable  has the standard Gumbel distribution.

The probability density function  of  is given by

1.  increases and then decreases with mode 
2.  is concave upward, then downward, then upward again, with inflection points at .

Proof

These results follow from standard calculus. The PDF is .

1. The first derivative of  satisfies  for .
2. The second derivative of  satisfies  for .

In the special distribution simulator, select the extreme value distribution. Keep the default parameter values and note the shape
and location of the probability density function. In particular, note the lack of symmetry. Run the simulation 1000 times and
compare the empirical density function to the probability density function.

The quantile function  of  is given by

1. The first quartile is .
2. The median is 
3. The third quartile is 

Proof

The formula for  follows from solving  for  in terms of .

In the special distribution calculator, select the extreme value distribution. Keep the default parameter values and note the
shape and location of the probability density and distribution functions. Compute the quantiles of order 0.1, 0.3, 0.6, and 0.9
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Moments

Suppose again that  has the standard Gumbel distribution. The moment generating function of  has a simple expression in terms
of the gamma function .

The moment generating function  of  is given by

Proof

Note that

The substitution ,  gives  for .

Next we give the mean and variance. First, recall that the Euler constant, named for Leonhard Euler is defined by

The mean and variance of  are

1. 
2. 

Proof

These results follow from the moment generating function.

1.  and so .
2.  and

Hence 

In the special distribution simulator, select the extreme value distribution and keep the default parameter values. Note the shape
and location of the mean  standard deviation bar. Run the simulation 1000 times and compare the empirical mean and
standard deviation to the distribution mean and standard deviation.

Next we give the skewness and kurtosis of . The skewness involves a value of the Riemann zeta function , named of course for
Georg Riemann. Recall that  is defined by

The skewness and kurtosis of  are

1. 
2. 

The particular value of the zeta function, , is known as Apéry's constant. From (b), it follows that the excess kurtosis is 
.

Related Distributions

The standard Gumbel distribution has the usual connections to the standard uniform distribution by means of the distribution
function and quantile function given above. Recall that the standard uniform distribution is the continuous uniform distribution on
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the interval .

The standard Gumbel and standard uniform distributions are related as follows:

1. If  has the standard uniform distribution then  has the standard Gumbel distribution.
2. If  has the standard Gumbel distribution then  has the standard uniform distribution.

So we can simulate the standard Gumbel distribution using the usual random quantile method.

Open the random quantile experiment and select the extreme value distribution. Keep the default parameter values and note
again the shape and location of the probability density and distribution functions. Run the simulation 1000 times and compare
the empirical density function, mean, and standard deviation to their distributional counteparts.

The standard Gumbel distribution also has simple connections with the standard exponential distribution (the exponential
distribution with rate parameter 1).

The standard Gumbel and standard exponential distributions are related as follows:

1. If  has the standard exponential distribution then  has the standard Gumbel distribution.
2. If  has the standard Gumbel distribution then  has the standard exponential distribution.

Proof

These results follow from the usual change of variables theorem. The transformations are  and  for 
 and , and these are inverses of each other. Let  and  denote PDFs of  and  respectively.

1. We start with  for  and then

so  has the standard Gumbel distribution.
2. We start with  for  and then

so  has the standard exponential distribution.

As noted in the introduction, the following theorem provides the motivation for the name extreme value distribution.

Suppose that  is a sequence of independent random variables, each with the standard exponential distribution.
The distribution of  converges to the standard Gumbel distribution as .

Proof

Let , so that  is the th order statistics of the random sample . Let 
denote the standard exponential CDF, so that  for . Note that  has CDF . Let  denote the
CDF of . For 

By a famous limit from calculus,  as .

The General Extreme Value Distribution
As with many other distributions we have studied, the standard extreme value distribution can be generalized by applying a linear
transformation to the standard variable. First, if  has the standard Gumbel distribution (the standard extreme value distribution for
maximums), then  has the standard extreme value distribution for minimums. Here is the general definition.
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V

g(v) = exp(− )e−v e−v v∈ R

f(x) = g(v) = exp[−exp(lnx)] exp(lnx) = , x ∈ (0, ∞)
∣
∣
∣
dv

dx

∣
∣
∣

1

x
e−x (5.30.10)

X

( , , …)X1 X2

= max{ , , … , } −lnnYn X1 X2 Xn n → ∞

= max{ , , … , }X(n) X1 X2 Xn X(n) n ( , , … , )X1 X2 Xn G

G(x) = 1 −e−x x ∈ [0, ∞) X(n) Gn Fn

Yn x ∈ R

(x) = P( ≤ x) = P [ ≤ x+lnn] = (x+lnn) = =Fn Yn X(n) Gn [1 − ]e−(x+ln n)
n

(1 − )
e−x

n

n

(5.30.11)

(x) →Fn e−e−x
n → ∞

V

−V

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10370?pdf


5.30.4 https://stats.libretexts.org/@go/page/10370

Suppose that  has the standard Gumbel distribution, and that  with . Then  has the extreme value
distribution with location parameter  and scale parameter .

1. If , then the distribution corresponds to maximums.
2. If , then the distribution corresponds to minimums.

So the family of distributions with  and  is a location-scale family associated with the standard distribution for
maximums, and the family of distributions with  and  is the location-scale family associated with the standard
distribution for minimums.. The distributions are also referred to more simply as Gumbel distributions rather than extreme value
distributions. The web apps in this project use only the extreme value distributions for maximums. As you will see below, the
differences in the distribution for maximums and the distribution for minimums are minor. For the remainder of this discussion,
suppose that  has the form given in the definition.

Distribution Functions

Lef  denote the distribution function of .

1. If  then

2. If  then

Proof

Let  denote the CDF of . Then

1.  for 

2.  for 

Let  denote the probability density function of . Then

Proof

Let  denote the PDF of . By the change of variables formula,

Open the special distribution simulator and select the extreme value distribution. Vary the parameters and note the shape and
location of the probability density function. For selected values of the parameters, run the simulation 1000 times and compare
the empirical density function to the probability density function.

The quantile function  of  is given as follows

1. If  then  for .
2. If  then  for 

Proof

Let  denote the quantile function of . Then

1.  for .
2.  for .
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(5.30.13)

G V
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b
x ∈ R
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b
x ∈ R

f X
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1

|b|
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b
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(5.30.14)

g V

f(x) = g( ) , x ∈ R
1

|b|

x−a

b
(5.30.15)

F −1 X

b > 0 (p) = a−b ln(−lnp)F −1 p ∈ (0, 1)
b < 0 (p) = a−b ln[−ln(1 −p)],F −1 p ∈ (0, 1)

G−1 V

(p) = a+b (p)F −1 G−1 p ∈ (0, 1)
(p) = a−b (1 −p)F −1 G−1 p ∈ (0, 1)
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Open the special distribution calculator and select the extreme value distribution. Vary the parameters and note the shape and
location of the probability density and distribution functions. For selected values of the parameters, compute a few values of
the quantile function and the distribution function.

Moments

Suppose again that  where  has the standard Gumbel distribution, and that  with .

The moment generating function  of  is given by .

1. With domain  if 
2. With domain  if 

Proof

Let  denote the MGF of . Then  for 

The mean and variance of  are

1. 
2. 

Proof

These results follow from the mean and variance of  and basic properties of expected value and variance.

1. 
2. 

Open the special distribution simulator and select the extreme value distribution. Vary the parameters and note the size and
location of the mean  standard deviation bar. For selected values of the parameters, run the simulation 1000 times and
compare the empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness of  is

1.  if .
2.  if 

Proof

Recall that skewness is defined in terms of the standard score, and hence is invariant under linear transformations with positive
slope. A linear transformation with negative slope changes the sign of the skewness. Hence these results follow from the
skewness of .

The kurtosis of  is 

Proof

Recall that kurtosis is defined in terms of the standard score and is invariant under linear transformations with nonzero slope.
Hence this result follows from the kurtosis of .

Once again, the excess kurtosis is .

Related Distributions

Since the general extreme value distributions are location-scale families, they are trivially closed under linear transformations of
the underlying variables (with nonzero slope).

Suppose that  has the extreme value distribution with parameters  with  and that  with . Then 
 has the extreme value distribution with parameters  and .

Proof
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6

V

E(X) = a+bE(V )
var(X) = var(V )b2

±

X

skew(X) = 12 ζ(3)/ ≈ 1.139556
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By definition, we can write  where  has the standard Gumbel distribution. Hence 
.

Note if  then  and  have the same association (max, max) or (min, min). If  then  and  have opposite
associations (max, min) or (min, max).

As with the standard Gumbel distribution, the general Gumbel distribution has the usual connections with the standard uniform
distribution by means of the distribution and quantile functions. Since the quantile function has a simple closed form, the latter
connection leads to the usual random quantile method of simulation. We state the result for maximums.

Suppose that  with . Let  denote distribution function and let  denote the quantile function above

1. If  has the standard uniform distribution then  has the extreme value distribution with parameters  and .
2. If  has the extreme value distribution with parameters  and  then  has the standard uniform distribution.

Open the random quantile experiment and select the extreme value distribution. Vary the parameters and note again the shape
and location of the probability density and distribution functions. For selected values of the parameters, run the simulation
1000 times and compare the empirical density function, mean, and standard deviation to their distributional counteparts.

The extreme value distribution for maximums has a simple connection to the Weibull distribution, and this generalizes the in
connection between the standard Gumbel and exponential distributions above. There is a similar result for the extreme value
distribution for minimums.

The extreme value and Weibull distributions are related as follows:

1. If  has the extreme value distribution with parameters  and , then  has the Weibull distribution
with shape parameter  and scale parameter .

2. If  has the Weibull distribution with shape parameter  and scale parameter  then  has
the extreme value distribution with parameters  and .

Proof

As before, these results can be obtained using the change of variables theorem for probability density functions. We give an
alternate proof using special forms of the random variables.

1. We can write  where  has the standard Gumbel distribution. Hence

As shown in above,  has the standard exponential distribution and therefore  has the Weibull distribution with shape
parameter  and scale parameter .

2. We can write  where  has the standard exponential distribution. Hence

As shown in above,  has the standard Gumbel distribution and hence  has the Gumbel distribution with location
parameter  and scale parameter .
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