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6.5: The Sample Variance
            

Descriptive Theory

Recall the basic model of statistics: we have a population of objects of interest, and we have various measurements (variables) that
we make on these objects. We select objects from the population and record the variables for the objects in the sample; these
become our data. Once again, our first discussion is from a descriptive point of view. That is, we do not assume that the data are
generated by an underlying probability distribution. Remember however, that the data themselves form a probability distribution.

Variance and Standard Deviation

Suppose that  is a sample of size  from a real-valued variable . Recall that the sample mean is

and is the most important measure of the center of the data set. The sample variance is defined to be

If we need to indicate the dependence on the data vector , we write . The difference  is the deviation of  from the
mean  of the data set. Thus, the variance is the mean square deviation and is a measure of the spread of the data set with respet to
the mean. The reason for dividing by  rather than  is best understood in terms of the inferential point of view that we discuss
in the next section; this definition makes the sample variance an unbiased estimator of the distribution variance. However, the
reason for the averaging can also be understood in terms of a related concept.

.

Proof

.

Thus, if we know  of the deviations, we can compute the last one. This means that there are only  freely varying
deviations, that is to say,  degrees of freedom in the set of deviations. In the definition of sample variance, we average the
squared deviations, not by dividing by the number of terms, but rather by dividing by the number of degrees of freedom in those
terms. However, this argument notwithstanding, it would be reasonable, from a purely descriptive point of view, to divide by  in
the definition of the sample variance. Moreover, when  is sufficiently large, it hardly matters whether we divide by  or by .

In any event, the square root  of the sample variance  is the sample standard deviation. It is the root mean square deviation and
is also a measure of the spread of the data with respect to the mean. Both measures of spread are important. Variance has nicer
mathematical properties, but its physical unit is the square of the unit of . For example, if the underlying variable  is the height
of a person in inches, the variance is in square inches. On the other hand, the standard deviation has the same physical unit as the
original variable, but its mathematical properties are not as nice.

Recall that the data set  naturally gives rise to a probability distribution, namely the empirical distribution that places probability 
 at  for each . Thus, if the data are distinct, this is the uniform distribution on . The sample mean  is simply

the expected value of the empirical distribution. Similarly, if we were to divide by  rather than , the sample variance would
be the variance of the empirical distribution. Most of the properties and results this section follow from much more general
properties and results for the variance of a probability distribution (although for the most part, we give independent proofs).

Measures of Center and Spread

Measures of center and measures of spread are best thought of together, in the context of an error function. The error function
measures how well a single number  represents the entire data set . The values of  (if they exist) that minimize the error
functions are our measures of center; the minimum value of the error function is the corresponding measure of spread. Of course,
we hope for a single value of  that minimizes the error function, so that we have a unique measure of center.

Let's apply this procedure to the mean square error function defined by
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Minimizing  is a standard problem in calculus.

The graph of  is a parabola opening upward.

1.  is minimized when , the sample mean.
2. The minimum value of  is , the sample variance.

Proof

We can tell from the form of  that the graph is a parabola opening upward. Taking the derivative gives

Hence  is the unique value that minimizes . Of course, .

Trivially, if we defined the mean square error function by dividing by  rather than , then the minimum value would still
occur at , the sample mean, but the minimum value would be the alternate version of the sample variance in which we divide by 

. On the other hand, if we were to use the root mean square deviation function , then because the square
root function is strictly increasing on , the minimum value would again occur at , the sample mean, but the minimum value
would be , the sample standard deviation. The important point is that with all of these error functions, the unique measure of
center is the sample mean, and the corresponding measures of spread are the various ones that we are studying.

Next, let's apply our procedure to the mean absolute error function defined by

The mean absolute error function satisfies the following properties:

1.  is a continuous function.
2. The graph of  consists of lines.
3. The slope of the line at  depends on where  is in the data set .

Proof

For parts (a) and (b), note that for each ,  is a continuous function of  with the graph consisting of two lines (of
slopes ) meeting at .

Mathematically,  has some problems as an error function. First, the function will not be smooth (differentiable) at points where
two lines of different slopes meet. More importantly, the values that minimize mae may occupy an entire interval, thus leaving us
without a unique measure of center. The error function exercises below will show you that these pathologies can really happen. It
turns out that  is minimized at any point in the median interval of the data set . The proof of this result follows from a much
more general result for probability distributions. Thus, the medians are the natural measures of center associated with  as a
measure of error, in the same way that the sample mean is the measure of center associated with the  as a measure of error.

Properties

In this section, we establish some essential properties of the sample variance and standard deviation. First, the following alternate
formula for the sample variance is better for computational purposes, and for certain theoretical purposes as well.

The sample variance can be computed as

Proof

Note that
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Dividing by  gives the result.

If we let  denote the sample from the variable , then the computational formula in the last exercise can be
written succinctly as

The following theorem gives another computational formula for the sample variance, directly in terms of the variables and thus
without the computation of an intermediate statistic.

The sample variance can be computed as

Proof

Note that

Dividing by  gives the result.

The sample variance is nonnegative:

1. 
2.  if and only if  for each .

Proof

Part (a) is obvious. For part (b) note that if  then  for each . Conversely, if  is a constant vector, then  is that
same constant.

Thus,  if and only if the data set is constant (and then, of course, the mean is the common value).

If  is a constant then

1. 
2. 

Proof

For part (a), recall that . Hence
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If  is a sample of size  from a constant  then

1. .
2. 

Proof

Recall that . Hence

As a special case of these results, suppose that  is a sample of size  corresponding to a real variable , and
that  and  are constants. The sample corresponding to the variable , in our vector notation, is . Then 

 and . Linear transformations of this type, when , arise frequently when
physical units are changed. In this case, the transformation is often called a location-scale transformation;  is the location
parameter and  is the scale parameter. For example, if  is the length of an object in inches, then  is the length of the
object in centimeters. If  is the temperature of an object in degrees Fahrenheit, then  is the temperature of the
object in degree Celsius.

Now, for , let . The number  is the standard score associated with . Note that since , ,
and  have the same physical units, the standard score  is dimensionless (that is, has no physical units); it measures the directed
distance from the mean  to the data value  in standard deviations.

The sample of standard scores  has mean 0 and variance 1. That is,

1. 
2. 

Proof

These results follow from Theroems 7 and 8. In vector notation, note that . Hence 
and .

Approximating the Variance

Suppose that instead of the actual data , we have a frequency distribution corresponding to a partition with classes (intervals) 
, class marks (midpoints of the intervals) , and frequencies . Recall that the

relative frequency of class  is . In this case, approximate values of the sample mean and variance are, respectively,

These approximations are based on the hope that the data values in each class are well represented by the class mark. In fact, these
are the standard definitions of sample mean and variance for the data set in which  occurs  times for each .

Inferential Statistics

We continue our discussion of the sample variance, but now we assume that the variables are random. Thus, suppose that we have a
basic random experiment, and that  is a real-valued random variable for the experiment with mean  and standard deviation .
We will need some higher order moments as well. Let  and  denote the 3rd and 4th
moments about the mean. Recall that , the skewness of , and , the kurtosis of . We
assume that .
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We repeat the basic experiment  times to form a new, compound experiment, with a sequence of independent random variables 
, each with the same distribution as . In statistical terms,  is a random sample of size  from the

distribution of . All of the statistics above make sense for , of course, but now these statistics are random variables. We will use
the same notationt, except for the usual convention of denoting random variables by capital letters. Finally, note that the
deterministic properties and relations established above still hold.

In addition to being a measure of the center of the data , the sample mean

is a natural estimator of the distribution mean . In this section, we will derive statistics that are natural estimators of the
distribution variance . The statistics that we will derive are different, depending on whether  is known or unknown; for this
reason,  is referred to as a nuisance parameter for the problem of estimating .

A Special Sample Variance

First we will assume that  is known. Although this is almost always an artificial assumption, it is a nice place to start because the
analysis is relatively easy and will give us insight for the standard case. A natural estimator of  is the following statistic, which
we will refer to as the special sample variance.

 is the sample mean for a random sample of size  from the distribution of , and satisfies the following
properties:

1. 
2. 
3.  as  with probability 1
4. The distribution of  converges to the standard normal distribution as .

Proof

These result follow immediately from standard results in the section on the Law of Large Numbers and the section on the
Central Limit Theorem. For part (b), note that

In particular part (a) means that  is an unbiased estimator of . From part (b), note that  as ; this means
that  is a consistent estimator of . The square root of the special sample variance is a special version of the sample standard
deviation, denoted .

. Thus,  is a negativley biased estimator that tends to underestimate .

Proof

This follows from the unbiased property and Jensen's inequality. Since  is concave downward on , we have 
.

Next we compute the covariance and correlation between the sample mean and the special sample variance.

The covariance and correlation of  and  are

1. .
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1. From the bilinearity of the covariance operator and by independence,
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But . Substituting
gives the result.

2. This follows from part (a), the unbiased property, and our previous result that .

Note that the correlation does not depend on the sample size, and that the sample mean and the special sample variance are
uncorrelated if  (equivalently ).

The Standard Sample Variance

Consider now the more realistic case in which  is unknown. In this case, a natural approach is to average, in some sense, the
squared deviations  over . It might seem that we should average by dividing by . However, another
approach is to divide by whatever constant would give us an unbiased estimator of . This constant turns out to be , leading
to the standard sample variance:

.

Proof

By expanding (as was shown in the last section),

Recall that  and . Taking expected values in the displayed equation gives

Of course, the square root of the sample variance is the sample standard deviation, denoted .

. Thus,  is a negativley biased estimator than tends to underestimate .

Proof

The proof is exactly the same as for the special standard variance.

 as  with probability 1.

Proof

This follows from the strong law of large numbers. Recall again that

But with probability 1,  as  and  as .

Since  is an unbiased estimator of , the variance of  is the mean square error, a measure of the quality of the estimator.

.
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Hence, using the bilinear property of covariance we have

We compute the covariances in this sum by considering disjoint cases:

 if  or , and there are  such terms.
 if  are distinct, and there are  such terms.

 if  and , and there are  such terms.
 if ,  and , and there are 

such terms.

Substituting gives the result.

Note that  as , and hence  is a consistent estimator of . On the other hand, it's not surprising that the
variance of the standard sample variance (where we assume that  is unknown) is greater than the variance of the special standard
variance (in which we assume  is known).

.

Proof

From the formula above for the variance of , the previous result for the variance of , and simple algebra,

Note however that the difference goes to 0 as .

Next we compute the covariance between the sample mean and the sample variance.

The covariance and correlation between the sample mean and sample variance are

1. 
2. 

Proof
1. Recall again that

Hence, using the bilinear property of covariance we have

We compute the covariances in this sum by considering disjoint cases:
 if , and there are  such terms.
 if  are distinct, and there are  such terms.

 if  and , and there are  such terms.
Substituting gives the result.

2. This follows follows from part(a), the result above on the variance of , and .
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In particular, note that . Again, the sample mean and variance are uncorrelated if  so that 
. Our last result gives the covariance and correlation between the special sample variance and the standard one.

Curiously, the covariance the same as the variance of the special sample variance.

The covariance and correlation between  and  are

1. 

2. 

Proof
1. Recall again that

so by the bilinear property of covariance we have

Once again, we compute the covariances in this sum by considering disjoint cases:
 if , and there are  such terms.
 if  are distinct, and there are  such terms.

 if  and , and there are  such terms.
Substituting gives the results.

2. This follows from part (a) and the formulas above for the variance of  and the variance of 

Note that  as , not surprising since with probability 1,  and  as .

A particularly important special case occurs when the sampling distribution is normal. This case is explored in the section on
Special Properties of Normal Samples.

Exercises

Basic Properties

Suppose that  is the temperature (in degrees Fahrenheit) for a certain type of electronic component after 10 hours of
operation. A sample of 30 components has mean 113° and standard deviation .

1. Classify  by type and level of measurement.
2. Find the sample mean and standard deviation if the temperature is converted to degrees Celsius. The transformation is 

.

Answer
1. continuous, interval
2. , 

Suppose that  is the length (in inches) of a machined part in a manufacturing process. A sample of 50 parts has mean 10.0 and
standard deviation 2.0.

1. Classify  by type and level of measurement.
2. Find the sample mean if length is measured in centimeters. The transformation is .

Answer
1. continuous, ratio
2. , 

cov(M , ) = cov(M , )S2 W 2 = 0σ3

skew(X) = 0

W 2 S2

cov ( , ) = ( − )/nW 2 S2 σ4 σ4

cor( , ) =W 2 S2 −σ4 σ4

− (n−3)/(n−1)σ4 σ4

− −−−−−−−−−−−
√

= ( −μ , = ( −W 2 1

n
∑
i=1

n

Xi )2 S2 1

2n(n−1)
∑
j=1

n

∑
k=1

n

Xj Xk)2 (6.5.33)

cov( , ) = cov[( −μ , ( − ]W 2 S2 1

2 (n−1)n2
∑
i=1

n

∑
j=1

n

∑
k=1

n

Xi )2 Xj Xk)2 (6.5.34)

cov[( −μ , ( − ] = 0Xi )2 Xj Xk)2 j= k n2

cov[( −μ , ( − ] = 0Xi )2 Xj Xk)2 i, j, k n(n−1)(n−2)
cov[( −μ , ( − ] = −Xi )2 Xj Xk)2 σ4 σ4 j≠ k i ∈ {j, k} 2n(n−1)

W 2 V 2

cor( , ) → 1W 2 S2 n → ∞ →S2 σ2 →W 2 σ2 n → ∞

x

18°

x

y = (x−32)5
9

m = 45° s = 10°

x

x

y = 2.54x

m = 25.4 s = 5.08
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Professor Moriarity has a class of 25 students in her section of Stat 101 at Enormous State University (ESU). The mean grade
on the first midterm exam was 64 (out of a possible 100 points) and the standard deviation was 16. Professor Moriarity thinks
the grades are a bit low and is considering various transformations for increasing the grades. In each case below give the mean
and standard deviation of the transformed grades, or state that there is not enough information.

1. Add 10 points to each grade, so the transformation is .
2. Multiply each grade by 1.2, so the transformation is 
3. Use the transformation . Note that this is a non-linear transformation that curves the grades greatly at the low

end and very little at the high end. For example, a grade of 100 is still 100, but a grade of 36 is transformed to 60.

One of the students did not study at all, and received a 10 on the midterm. Professor Moriarity considers this score to be an
outlier.

4. Find the mean and standard deviation if this score is omitted.

Answer
1. , 
2. , 
3. Not enough information
4. , 

Computational Exercises

All statistical software packages will compute means, variances and standard deviations, draw dotplots and histograms, and in
general perform the numerical and graphical procedures discussed in this section. For real statistical experiments, particularly those
with large data sets, the use of statistical software is essential. On the other hand, there is some value in performing the
computations by hand, with small, artificial data sets, in order to master the concepts and definitions. In this subsection, do the
computations and draw the graphs with minimal technological aids.

Suppose that  is the number of math courses completed by an ESU student. A sample of 10 ESU students gives the data 
.

1. Classify  by type and level of measurement.
2. Sketch the dotplot.
3. Construct a table with rows corresponding to cases and columns corresponding to , , , and . Add rows

at the bottom in the  column for totals and means.

Answer
1. discrete, ratio

3. 

Total 20 0 14

Mean 2 0

y = x+10
z = 1.2x

w = 10 x−−√

m = 74 s = 16
m = 76.8 s = 19.2

m = 66.25 s = 11.62

x

x = (3, 1, 2, 0, 2, 4, 3, 2, 1, 2)

x

i xi −mxi ( −mxi )2

i

i xi −mxi ( −mxi )2

1 3 1 1

2 1 −1 1

3 2 0 0

4 0 −2 4

5 2 0 0

6 4 2 4

7 3 1 1

8 2 0 0

9 1 −1 1

14/9
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Total 20 0 14

Mean 2 0

Suppose that a sample of size 12 from a discrete variable  has empirical density function given by , 
, , , .

1. Sketch the graph of .
2. Compute the sample mean and variance.
3. Give the sample values, ordered from smallest to largest.

Answer
2. , 
3. 

The following table gives a frequency distribution for the commuting distance to the math/stat building (in miles) for a sample
of ESU students.

Class Freq Rel Freq Density Cum Freq Cum Rel Freq Midpoint

6      

16      

18      

10      

Total       

1. Complete the table
2. Sketch the density histogram
3. Sketch the cumulative relative frquency ogive.
4. Compute an approximation to the mean and standard deviation.

Answer

1. Class Freq Rel Freq Density Cum Freq Cum Rel Freq Midpoint

6 0.12 0.06 6 0.12 1

16 0.32 0.08 22 0.44 4

18 0.36 0.09 40 0.80 8

10 0.20 0.02 50 1 15

Total 50 1

4. , 

Error Function Exercises

In the error function app, select root mean square error. As you add points, note the shape of the graph of the error function, the
value that minimizes the function, and the minimum value of the function.

i xi −mxi ( −mxi )2

10 2 0 0

14/9

x f(−2) = 1/12
f(−1) = 1/4 f(0) = 1/3 f(1) = 1/6 f(2) = 1/6

f

m = 1/12 = 203/121s2

(−2, −1, −1, −1, 0, 0, 0, 0, 1, 1, 2, 2)

(0, 2]

(2, 6]

(6, 10]

(10, 20])

(0, 2]

(2, 6]

(6, 10]

(10, 20]

m = 7.28 s = 4.549
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In the error function app, select mean absolute error. As you add points, note the shape of the graph of the error function, the
values that minimizes the function, and the minimum value of the function.

Suppose that our data vector is . Explicitly give  as a piecewise function and sketch its graph. Note that

1. All values of  minimize .
2.  is not differentiable at .

Suppose that our data vector is . Explicitly give  as a piecewise function and sketch its graph. Note that

1.  is minimized at .
2.  is not differentiable at .

Simulation Exercises

Many of the apps in this project are simulations of experiments with a basic random variable of interest. When you run the
simulation, you are performing independent replications of the experiment. In most cases, the app displays the standard deviation
of the distribution, both numerically in a table and graphically as the radius of the blue, horizontal bar in the graph box. When you
run the simulation, the sample standard deviation is also displayed numerically in the table and graphically as the radius of the red
horizontal bar in the graph box.

In the binomial coin experiment, the random variable is the number of heads. For various values of the parameters  (the
number of coins) and  (the probability of heads), run the simulation 1000 times and compare the sample standard deviation to
the distribution standard deviation.

In the simulation of the matching experiment, the random variable is the number of matches. For selected values of  (the
number of balls), run the simulation 1000 times and compare the sample standard deviation to the distribution standard
deviation.

Run the simulation of the gamma experiment 1000 times for various values of the rate parameter  and the shape parameter .
Compare the sample standard deviation to the distribution standard deviation.

Probability Exercises

Suppose that  has probability density function  for . The distribution of  is a member of
the beta family. Compute each of the following

1. 
2. 
3. 
4. 

Answer
1. 
2. 
3. \)
4. 

Suppose now that  is a random sample of size 10 from the beta distribution in the previous problem. Find
each of the following:

1. 
2. 
3. 
4. 
5. 
6. 

(2, 1, 5, 7) mae

a ∈ [2, 5] mae
mae a ∈ {1, 2, 5, 7}

(3, 5, 1) mae

mae a = 3
mae a ∈ {1, 3, 5}

n

p

n

r k

X f(x) = 12 (1 −x)x2 0 ≤ x ≤ 1 X

μ =E(X)
= var(X)σ2

=E [(X−μ ]d3 )3

=E [(X−μ ]d4 )4

3/5
1/25
−2/875
33/8750

( , , … , )X1 X2 X10

E(M)
var(M)
E ( )W 2

var( )W 2

E ( )S2

var( )S2

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10182?pdf


6.5.12 https://stats.libretexts.org/@go/page/10182

7. 
8. 
9. 

Answer
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Suppose that  has probability density function  for , where  is a parameter. Thus  has the
exponential distribution with rate parameter . Compute each of the following

1. 
2. 
3. 
4. 

Answer
1. 
2. 
3. 
4. 

Suppose now that  is a random sample of size 5 from the exponential distribution in the previous problem.
Find each of the following:

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Answer
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Recall that for an ace-six flat die, faces 1 and 6 have probability  each, while faces 2, 3, 4, and 5 have probability  each. Let
 denote the score when an ace-six flat die is thrown. Compute each of the following:

cov (M , )W 2

cov (M , )S2

cov ( , )W 2 S2

3/5
1/250
1/25
19/87 500
1/25
199/787 500
−2/8750
−2/8750
19/87 500

X f(x) = λe−λx 0 ≤ x < ∞ λ > 0 X

λ

μ =E(X)
= var(X)σ2

=E [(X−μ ]d3 )3

=E [(X−μ ]d4 )4

1/λ
1/λ2

2/λ3

9/λ4

( , , … , )X1 X2 X5

E(M)
var(M)
E ( )W 2

var( )W 2

E ( )S2

var( )S2

cov (M , )W 2

cov (M , )S2

cov ( , )W 2 S2

1/λ
1/5λ2

1/λ2

8/5λ4

1/λ2

17/10λ4

2/5λ3

2/5λ3

8/5λ4

1
4

1
8

X
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1. 
2. 
3. 
4. 

Answer
1. 
2. 
3. 
4. 

Suppose now that an ace-six flat die is tossed 8 times. Find each of the following:

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Answer
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Data Analysis Exercises

Statistical software should be used for the problems in this subsection.

Consider the petal length and species variables in Fisher's iris data.

1. Classify the variables by type and level of measurement.
2. Compute the sample mean and standard deviation, and plot a density histogram for petal length.
3. Compute the sample mean and standard deviation, and plot a density histogram for petal length by species.

Answers
1. petal length: continuous, ratio. species: discrete, nominal
2. , 
3. , ; , ; , 

Consider the erosion variable in the Challenger data set.

1. Classify the variable by type and level of measurement.
2. Compute the mean and standard deviation
3. Plot a density histogram with the classes , , , .

Answer
1. continuous, ratio

μ =E(X)
= var(X)σ2

=E [(X−μ ]d3 )3

=E [(X−μ ]d4 )4

7/2
15/4
0
333/16

E(M)
var(M)
E ( )W 2

var( )W 2

E ( )S2

var( )S2

cov (M , )W 2

cov (M , )S2

cov ( , )W 2 S2

7/2
15/32
15/4
27/32
15/4
207/512
0
0
27/32

m = 37.8 s = 17.8
m(0) = 14.6 s(0) = 1.7 m(1) = 55.5 s(1) = 30.5 m(2) = 43.2 s(2) = 28.7

[0, 5) [5, 40) [40, 50) [50, 60)
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2. , 

Consider Michelson's velocity of light data.

1. Classify the variable by type and level of measurement.
2. Plot a density histogram.
3. Compute the sample mean and standard deviation.
4. Find the sample mean and standard deviation if the variable is converted to . The transformation is 

Answer
1. continuous, interval
3. , 
4. , 

Consider Short's paralax of the sun data.

1. Classify the variable by type and level of measurement.
2. Plot a density histogram.
3. Compute the sample mean and standard deviation.
4. Find the sample mean and standard deviation if the variable is converted to degrees. There are 3600 seconds in a degree.
5. Find the sample mean and standard deviation if the variable is converted to radians. There are  radians in a degree.

Answer
1. continuous, ratio
3. , 
4. , 
5. , 

Consider Cavendish's density of the earth data.

1. Classify the variable by type and level of measurement.
2. Compute the sample mean and standard deviation.
3. Plot a density histogram.

Answer
1. continuous, ratio
2. , 

Consider the M&M data.

1. Classify the variables by type and level of measurement.
2. Compute the sample mean and standard deviation for each color count variable.
3. Compute the sample mean and standard deviation for the total number of candies.
4. Plot a relative frequency histogram for the total number of candies.
5. Compute the sample mean and standard deviation, and plot a density histogram for the net weight.

Answer
1. color counts: discrete ratio. net weight: continuous ratio.
2. , ; , ; , ; , ; 

, ; , 
3. , 
5. , 

Consider the body weight, species, and gender variables in the Cicada data.

1. Classify the variables by type and level of measurement.
2. Compute the relative frequency function for species and plot the graph.

m = 7.7 s = 17.2

km/hr y = x+299 000

m = 852.4 s = 79.0
m = 299 852.4 s = 79.0

π/180

m = 8.616 s = 0.749
m = 0.00239 s = 0.000208
m = 0.0000418s = 0.00000363

m = 5.448 s = 0.221

m(r) = 9.60 s(r) = 4.12 m(g) = 7.40 s(g) = 0.57 m(bl) = 7.23 s(bl) = 4.35 m(o) = 6.63 s(0) = 3.69
m(y) = 13.77 s(y) = 6.06 m(br) = 12.47 s(br) = 5.13
m(n) = 57.10 s(n) = 2.4
m(w) = 49.215 s(w) = 1.522
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3. Compute the relative frequeny function for gender and plot the graph.
4. Compute the sample mean and standard deviation, and plot a density histogram for body weight.
5. Compute the sample mean and standard deviation, and plot a density histogrm for body weight by species.
6. Compute the sample mean and standard deviation, and plot a density histogram for body weight by gender.

Answer
1. body weight: continuous, ratio. species: discrete, nominal. gender: discrete, nominal.
2. , , 
3. , 
4. , 
5. , ; , ; , 
6. , ; , 

Consider Pearson's height data.

1. Classify the variables by type and level of measurement.
2. Compute the sample mean and standard deviation, and plot a density histogram for the height of the father.
3. Compute the sample mean and standard deviation, and plot a density histogram for the height of the son.

Answer
1. continuous ratio
2. , 
3. , 
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f(0) = 0.423 f(1) = 0.519 f(2) = 0.058
f(0) = 0.567 f(1) = 0.433
m = 0.180 s = 0.059
m(0) = 0.168 s(0) = 0.054 m(1) = 0.185 s(1) = 0.185 m(2) = 0.225 s(2) = 0.107
m(0) = 0.206 s(0) = 0.052 m(1) = 0.145 s(1) = 0.051

m(x) = 67.69 s(x) = 2.75
m(y) = 68.68 s(y) = 2.82
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