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4.5: Covariance and Correlation
         

Recall that by taking the expected value of various transformations of a random variable, we can measure many interesting characteristics of the
distribution of the variable. In this section, we will study an expected value that measures a special type of relationship between two real-valued
variables. This relationship is very important both in probability and statistics.

Basic Theory

Definitions

As usual, our starting point is a random experiment modeled by a probability space . Unless otherwise noted, we assume that all expected
values mentioned in this section exist. Suppose now that  and  are real-valued random variables for the experiment (that is, defined on the
probability space) with means ,  and variances , , respectively.

The covariance of  is defined by

and, assuming the variances are positive, the correlation of  is defined by

1. If  then  and  are positively correlated.
2. If  then  and  are negatively correlated.
3. If  then  and  are uncorrelated.

Correlation is a scaled version of covariance; note that the two parameters always have the same sign (positive, negative, or 0). Note also that
correlation is dimensionless, since the numerator and denominator have the same physical units, namely the product of the units of  and .

As these terms suggest, covariance and correlation measure a certain kind of dependence between the variables. One of our goals is a deeper
understanding of this dependence. As a start, note that  is the center of the joint distribution of , and the vertical and horizontal
lines through this point separate  into four quadrants. The function  is positive on the first and third quadrants and
negative on the second and fourth.

Figure : A joint distribution with  as the center of mass

Properties of Covariance

The following theorems give some basic properties of covariance. The main tool that we will need is the fact that expected value is a linear operation.
Other important properties will be derived below, in the subsection on the best linear predictor. As usual, be sure to try the proofs yourself before
reading the ones in the text. Once again, we assume that the random variables are defined on the common sample space, are real-valued, and that the
indicated expected values exist (as real numbers).

Our first result is a formula that is better than the definition for computational purposes, but gives less insight.

.

Proof

Let  and . Then

From (2), we see that  and  are uncorrelated if and only if , so here is a simple but important corollary:

If  and  are independent, then they are uncorrelated.

(Ω,F ,P)
X Y

E(X) E(Y ) var(X) var(Y )

(X,Y )

cov(X,Y ) =E ([X−E(X)] [Y −E(Y )]) (4.5.1)

(X,Y )

cor(X,Y ) =
cov(X,Y )

sd(X)sd(Y )
(4.5.2)

cov(X,Y ) > 0 X Y

cov(X,Y ) < 0 X Y

cov(X,Y ) = 0 X Y

X Y

(E(X),E(Y )) (X,Y )

R
2 (x, y) ↦ [x−E(X)] [y−E(Y )]

4.5.1 (E(X),E(Y ))

cov(X,Y ) =E(XY ) −E(X)E(Y )

μ =E(X) ν =E(Y )

cov(X,Y ) =E [(X−μ)(Y −ν)] =E(XY −μY −νX+μν) =E(XY ) −μE(Y ) −νE(X) +μν =E(XY ) −μν (4.5.3)

X Y E(XY ) =E(X)E(Y )

X Y
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Proof

We showed in Section 1 that if  and  are indepedent then .

However, the converse fails with a passion: Exercise (31) gives an example of two variables that are functionally related (the strongest form of
dependence), yet uncorrelated. The computational exercises give other examples of dependent yet uncorrelated variables also. Note also that if one of
the variables has mean 0, then the covariance is simply the expected product.

Trivially, covariance is a symmetric operation.

.

As the name suggests, covariance generalizes variance.

.

Proof

Let . Then .

Covariance is a linear operation in the first argument, if the second argument is fixed.

If , ,  are random variables, and  is a constant, then

1. 
2. 

Proof

We use the computational formula in (2)

1. 

2. 

By symmetry, covariance is also a linear operation in the second argument, with the first argument fixed. Thus, the covariance operator is bi-linear.
The general version of this property is given in the following theorem.

Suppose that  and  are sequences of random variables, and that  and  are
constants. Then

The following result shows how covariance is changed under a linear transformation of one of the variables. This is simply a special case of the basic
properties, but is worth stating.

If  then .

Proof

A constant is independent of any random variable. Hence .

Of course, by symmetry, the same property holds in the second argument. Putting the two together we have that if  then 
.

Properties of Correlation

Next we will establish some basic properties of correlation. Most of these follow easily from corresponding properties of covariance above. We assume
that  and , so that the random variable really are random and hence the correlation is well defined.

The correlation between  and  is the covariance of the corresponding standard scores:

Proof

From the definitions and the linearity of expected value,

X Y E(XY ) =E(X)E(Y )

cov(X,Y ) = cov(Y ,X)

cov(X,X) = var(X)

μ =E(X) cov(X,X) =E [(X−μ ] = var(X))2

X Y Z c

cov(X+Y ,Z) = cov(X,Z) +cov(Y ,Z)
cov(cX,Y ) = c cov(X,Y )

cov(X+Y ,Z) =E [(X+Y )Z] −E(X+Y )E(Z) =E(XZ+Y Z) −[E(X) +E(Y )]E(Z)

= [E(XZ) −E(X)E(Z)] +[E(Y Z) −E(Y )E(Z)] = cov(X,Z) +cov(Y ,Z)

(4.5.4)

(4.5.5)

cov(cX,Y ) =E(cXY ) −E(cX)E(Y ) = cE(XY ) −cE(X)E(Y ) = c[E(XY ) −E(X)E(Y ) = c cov(X,Y ) (4.5.6)

( , , … , )X1 X2 Xn ( , , … , )Y1 Y2 Ym ( , , … , )a1 a2 an ( , , … , )b1 b2 bm

cov( , ) = cov( , )∑
i=1

n

ai Xi ∑
j=1

m

bj Yj ∑
i=1

n

∑
j=1

m

ai bj Xi Yj (4.5.7)

a, b ∈ R cov(a+bX,Y ) = b cov(X,Y )

cov(a+bX,Y ) = cov(a,Y ) +b cov(X,Y ) = b cov(X,Y )

a, b, c, d ∈ R

cov(a+bX, c+dY ) = bd cov(X,Y )

var(X) > 0 var(Y ) > 0

X Y

cor(X,Y ) = cov( , ) =E( )
X−E(X)

sd(X)

Y −E(Y )

sd(Y )

X−E(X)

sd(X)

Y −E(Y )

sd(Y )
(4.5.8)
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Since the standard scores have mean 0, this is also the covariance of the standard scores.

This shows again that correlation is dimensionless, since of course, the standard scores are dimensionless. Also, correlation is symmetric:

.

Under a linear transformation of one of the variables, the correlation is unchanged if the slope is positve and changes sign if the slope is negative:

If  and  then

1.  if 
2.  if 

Proof

Let  denote the standard score of . If , the standard score of  is also . If , the standard score of  is . Hence the
result follows from the result above for standard scores.

This result reinforces the fact that correlation is a standardized measure of association, since multiplying the variable by a positive constant is
equivalent to a change of scale, and adding a contant to a variable is equivalent to a change of location. For example, in the Challenger data, the
underlying variables are temperature at the time of launch (in degrees Fahrenheit) and O-ring erosion (in millimeters). The correlation between these
two variables is of fundamental importance. If we decide to measure temperature in degrees Celsius and O-ring erosion in inches, the correlation is
unchanged. Of course, the same property holds in the second argument, so if  with  and , then 

 if  and  if .

The most important properties of covariance and correlation will emerge from our study of the best linear predictor below.

The Variance of a Sum

We will now show that the variance of a sum of variables is the sum of the pairwise covariances. This result is very useful since many random
variables with special distributions can be written as sums of simpler random variables (see in particular the binomial distribution and hypergeometric
distribution below).

If  is a sequence of real-valued random variables then

Proof

From the variance property on (5), and the linear property (7),

The second expression follows since  for each  and  for  by the symmetry property (4)

Note that the variance of a sum can be larger, smaller, or equal to the sum of the variances, depending on the pure covariance terms. As a special case
of (12), when , we have

The following corollary is very important.

If  is a sequence of pairwise uncorrelated, real-valued random variables then

Proof

This follows immediately from (12), since  for .

Note that the last result holds, in particular, if the random variables are independent. We close this discussion with a couple of minor corollaries.

If  and  are real-valued random variables then .

Proof

cor(X,Y ) = = =E( )
cov(X,Y )

sd(X)sd(Y )

E ([X−E(X)] [Y −E(Y )])

sd(X)sd(Y )

X−E(X)

sd(X)

Y −E(Y )

sd(Y )
(4.5.9)

cor(X,Y ) = cor(Y ,X)

a, b ∈ R b ≠ 0

cor(a+bX,Y ) = cor(X,Y ) b > 0
cor(a+bX,Y ) = −cor(X,Y ) b < 0

Z X b > 0 a+bX Z b < 0 a+bX −Z

a, b, c, d ∈ R b ≠ 0 d ≠ 0
cor(a+bX, c+dY ) = cor(X,Y ) bd > 0 cor(a+bX, c+dY ) = −cor(X,Y ) bd < 0

( , , … , )X1 X2 Xn

var( ) = cov( , ) = var( ) +2 cov( , )∑
i=1

n

Xi ∑
i=1

n

∑
j=1

n

Xi Xj ∑
i=1

n

Xi ∑
{(i,j):i<j}

Xi Xj (4.5.10)

var( ) = cov( , ) = cov( , )∑
i=1

n

Xi ∑
i=1

n

Xi ∑
j=1

n

Xj ∑
i=1

j

∑
j=1

n

Xi Xj (4.5.11)

cov( , ) = var( )Xi Xi Xi i cov( , ) = cov( , )Xi Xj Xj Xi i ≠ j

n = 2

var(X+Y ) = var(X) +var(Y ) +2 cov(X,Y ) (4.5.12)

( , , … , )X1 X2 Xn

var( ) = var( )∑
i=1

n

Xi ∑
i=1

n

Xi (4.5.13)

cov( , ) = 0Xi Xj i ≠ j

X Y var(X+Y ) +var(X−Y ) = 2 [var(X) +var(Y )]
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From (12),

Similarly,

Adding gives the result.

If  and  are real-valued random variables with  then  and  are uncorrelated.

Proof

From the linear property (7) and the symmetry property (4), 

Random Samples

In the following exercises, suppose that  is a sequence of independent, real-valued random variables with a common distribution that has
mean  and standard deviation . In statistical terms, the variables form a random sample from the common distribution.

For , let .

1. 
2. 

Proof
1. This follows from the additive property of expected value.
2. This follows from the additive property of variance (`(13) for independent variables

For , let , so that  is the sample mean of .

1. 
2. 
3.  as 
4.  as  for every .

Proof
1. This follows from part (a) of the (16) and the scaling property of expected value.
2. This follows from part (b) of the (16) and the scaling property of variance.
3. This is an immediate consequence of (b).
4. This follows from (c) and Chebyshev's inequality:  as 

Part (c) of (17) means that  as  in mean square. Part (d) means that  as  in probability. These are both versions of the
weak law of large numbers, one of the fundamental theorems of probability.

The standard score of the sum  and the standard score of the sample mean  are the same:

1. 
2. 

Proof

The equality of the standard score of  and of  is a result of simple algebra. But recall more generally that the standard score of a variable is
unchanged by a linear transformation of the variable with positive slope (a location-scale transformation of the distribution). Of course, parts (a)
and (b) are true for any standard score.

The central limit theorem, the other fundamental theorem of probability, states that the distribution of  converges to the standard normal distribution
as .

Events

If  and  are events in our random experiment then the covariance and correlation of  and  are defined to be the covariance and correlation,
respectively, of their indicator random variables.

If  and  are events, define  and . Equivalently,

var(X+Y ) = var(X) +var(Y ) +2cov(X,Y ) (4.5.14)

var(X−Y ) = var(X) +var(−Y ) +2cov(X, −Y ) = var(X) +var(Y ) −2cov(X,Y ) (4.5.15)

X Y var(X) = var(Y ) X+Y X−Y

cov(X+Y ,X−Y ) = cov(X,X) −cov(X,Y ) +cov(Y ,X) −cov(Y ,Y ) = var(X) −var(Y )

( , , …)X1 X2

μ σ > 0

n ∈ N+ =Yn ∑n
i=1 Xi

E ( ) = nμYn
var ( ) = nYn σ2

n ∈ N+ = /n =Mn Yn
1
n
∑n

i=1 Xi Mn ( , , … , )X1 X2 Xn

E ( ) = μMn

var ( ) = /nMn σ2

var ( ) → 0Mn n → ∞
P (| −μ| > ϵ) → 0Mn n → ∞ ϵ > 0

P (| −μ| > ϵ) ≤ var( )/ → 0Mn Mn ϵ2 n → ∞

→ μMn n → ∞ → μMn n → ∞

Yn Mn

= =Zn

−nμYn

σn−−√

−μMn

σ/ n−−√
(4.5.16)

E( ) = 0Zn

var( ) = 1Zn

Yn Zn

Zn

n → ∞

A B A B

A B cov(A,B) = cov( , )1A 1B cor(A,B) = cor( , )1A 1B
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1. 
2. 

Proof

Recall that if  is an indicator variable with , then  and . Also, if  and  are indicator variables
then  is an indicator variable and . The results then follow from the definitions.

In particular, note that  and  are positively correlated, negatively correlated, or independent, respectively (as defined in the section on conditional
probability) if and only if the indicator variables of  and  are positively correlated, negatively correlated, or uncorrelated, as defined in this section.

If  and  are events then

1. 
2. 

Proof

These results follow from linear property (7) and the fact that that .

If  and  are events with  then

1. 

2. 

Proof

These results follow from (19), since .

In the language of the experiment,  means that  implies . In such a case, the events are positively correlated, not surprising.

The Best Linear Predictor

What linear function of  (that is, a function of the form  where ) is closest to  in the sense of minimizing mean square error? The
question is fundamentally important in the case where random variable  (the predictor variable) is observable and random variable  (the response
variable) is not. The linear function can be used to estimate  from an observed value of . Moreover, the solution will have the added benefit of
showing that covariance and correlation measure the linear relationship between  and . To avoid trivial cases, let us assume that  and 

, so that the random variables really are random. The solution to our problem turns out to be the linear function of  with the same
expected value as , and whose covariance with  is the same as that of .

The random variable  defined as follows is the only linear function of  satisfying properties (a) and (b).

1. 
2. 

Proof

By the linearity of expected value,

Next, by the linearity of covariance and the fact that a constant is independent (and hence uncorrelated) with any random variable,

Conversely, suppose that  satisfies  and . Again using linearity of covariance and the
uncorrelated property of constants, the second equation gives  so . Then the first equation
gives , so .

Note that in the presence of part (a), part (b) is equivalent to . Here is another minor variation, but one that will be very
useful:  is the only linear function of  with the same mean as  and with the property that  is uncorrelated with every linear
function of .

 is the only linear function of  that satisfies

1. 
2.  for every linear function  of .

cov(A,B) = P(A∩B) −P(A)P(B)
cor(A,B) = [P(A∩B) −P(A)P(B)]/ P(A) [1 −P(A)]P(B) [1 −P(B)]

− −−−−−−−−−−−−−−−−−−−−−−−−
√

X P(X = 1) = p E(X) = p var(X) = p(1 −p) X Y

XY P(XY = 1) = P(X = 1,Y = 1)

A B

A B

A B

cov(A, ) = −cov(A,B)Bc

cov( , ) = cov(A,B)Ac Bc

= 1 −1Ac 1A

A B A ⊆ B

cov(A,B) = P(A)[1 −P(B)]

cor(A,B) = P(A) [1 −P(B)]/P(B) [1 −P(A)]
− −−−−−−−−−−−−−−−−−−−−−−−−−

√

A∩B = A

A ⊆ B A B

X a+bX a, b ∈ R Y

X Y

Y X

X Y var(X) > 0
var(Y ) > 0 X

Y X Y

L(Y ∣ X) X

L(Y ∣ X) =E(Y ) + [X−E(X)]
cov(X,Y )

var(X)
(4.5.17)

E [L(Y ∣ X)] =E(Y )
cov [X,L(Y ∣ X)] = cov(X,Y )

E [L(Y ∣ X)] =E(Y ) + [E(X) −E(X)] =E(Y )
cov(X,Y )

var(X)
(4.5.18)

cov [X,L(Y ∣ X)] = cov(X,X) = var(X) = cov(X,Y )
cov(X,Y )

var(X)

cov(X,Y )

var(X)
(4.5.19)

U = a+bX E(U) =E(Y ) cov(X,U) = cov(Y ,U)
b cov(X,X) = cov(X,Y ) b = cov(X,Y )/var(X)

a =E(Y ) −bE(X) U = L(Y ∣ X)

E [XL(Y ∣ X)] =E(XY )
L(Y ∣ X) X Y Y −L(Y ∣ X)

X

L(Y ∣ X) X

E [L(Y ∣ X)] =E(Y )
cov [Y −L(Y ∣ X),U] = 0 U X
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Proof

Of course part (a) is the same as part (a) of (22). Suppose that  where . From basic properties of covariance and the previous
result,

Conversely, suppose that  is a linear function of  and that  and  for every linear function  of . Letting 
 we have  so . Hence  by (22).

The variance of  and its covariance with  turn out to be the same.

Additional properties of :

1. 
2. 

Proof
1. From basic properties of variance,

2. From basic properties of covariance,

We can now prove the fundamental result that  is the linear function of  that is closest to  in the mean square sense. We give two proofs;
the first is more straightforward, but the second is more interesting and elegant.

Suppose that  is a linear function of . Then

1. 

2. Equality occurs in (a) if and only if  with probability 1.

Proof from calculus

Let  denote the mean square error when  is used as an estimator of , as a function of the parameters :

Expanding the square and using the linearity of expected value gives

In terms of the variables  and , the first three terms are the second-order terms, the next two are the first-order terms, and the last is the zero-
order term. The second-order terms define a quadratic form whose standard symmetric matrix is

The determinant of this matrix is  and the diagonal terms are positive. All of this means that the graph of  is a
paraboloid opening upward, so the minimum of  will occur at the unique critical point. Setting the first derivatives of  to 0 we have

Solving the first equation for  gives . Substituting this into the second equation and solving gives .

Proof using properties
1. We abbreviate  by  for simplicity. Suppose that  is a linear function of . Then

Since  has mean 0, the middle term is . But  and  are linear functions of  and hence so is . Thus 
 by (23). Hence

2. Equality occurs in (a) if and only if , if and only if .

U = a+bX a, b ∈ R

cov [Y −L(Y ∣ X),U] = b cov [Y −L(Y ∣ X),X] = b (cov(Y ,X) −cov [L(Y ∣ X),X]) = 0 (4.5.20)

V X E(V ) =E(Y ) cov(Y −V ,U) = 0 U X

U = X cov(Y −V ,X) = 0 cov(V ,X) = cov(Y ,X) V = L(Y ∣ X)

L(Y ∣ X) Y

L(Y ∣ X)

var [L(Y ∣ X)] = (X,Y )/var(X)cov2

cov [L(Y ∣ X),Y ] = (X,Y )/var(X)cov2

var [L(Y ∣ X)] = var(X) =[ ]
cov(X,Y )

var(X)

2 (X,Y )cov2

var(X)
(4.5.21)

cov [L(Y ∣ X),Y ] = cov(X,Y ) =
cov(X,Y )

var(X)

(X,Y )cov2

var(X)
(4.5.22)

L(Y ∣ X) X Y

U X

E( )≤E [(Y −U ][Y −L(Y ∣ X)] 2 )2

U = L(Y ∣ X)

mse(a, b) U = a+bX Y a, b ∈ R

mse(a, b) =E( )[Y −(a+bX)]
2

(4.5.23)

mse(a, b) = + E( ) +2abE(X) −2aE(Y ) −2bE(XY ) +E( )a2 b2 X2 Y 2 (4.5.24)

a b

[ ]
1

E(X)

E(X)

E( )X2
(4.5.25)

E( ) −[E(X) = var(X)X2 ]2 mse
mse mse

−2E(Y ) +2bE(X) +2a

−2E(XY ) +2bE ( )+2aE(X)X2

= 0

= 0

(4.5.26)

(4.5.27)

a a =E(Y ) −bE(X) b = cov(X,Y )/var(X)

L(Y ∣ X) L U X

E [(Y −U ] =E( )=E [(Y −L ]+2E [(Y −L)(L−U)] +E [(L−U ])2 [(Y −L) +(L−U)] 2 )2 )2 (4.5.28)

Y −L cov(Y −L,L−U) L U X L−U

cov(Y −L,L−U) = 0

E [(Y −U ] =E [(Y −L ]+E [(L−U ] ≥E [(Y −L ])2 )2 )2 )2 (4.5.29)

E [(L−U ] = 0)2
P(L = U) = 1
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The mean square error when  is used as a predictor of  is

Proof

Again, let  for convenience. Since  has mean 0,

But  by (24). Hence

Our solution to the best linear perdictor problems yields important properties of covariance and correlation.

Additional properties of covariance and correlation:

1. 
2. 
3.  if and only if, with probability 1,  is a linear function of  with positive slope.
4.  if and only if, with probability 1,  is a linear function of  with negative slope.

Proof

Since mean square error is nonnegative, it follows from (26) that . This gives parts (a) and (b). For parts (c) and (d), note that if 
 then  with probability 1, and that the slope in  has the same sign as .

The last two results clearly show that  and  measure the linear association between  and . The equivalent inequalities (a) and
(b) above are referred to as the correlation inequality. They are also versions of the Cauchy-Schwarz inequality, named for Augustin Cauchy and Karl
Schwarz

Recall from our previous discussion of variance that the best constant predictor of , in the sense of minimizing mean square error, is  and the
minimum value of the mean square error for this predictor is . Thus, the difference between the variance of  and the mean square error above
for  is the reduction in the variance of  when the linear term in  is added to the predictor:

Thus  is the proportion of reduction in  when  is included as a predictor variable. This quantity is called the (distribution)
coefficient of determination. Now let

The function  is known as the distribution regression function for  given , and its graph is known as the distribution regression
line. Note that the regression line passes through , the center of the joint distribution.

Figure : The distribution regression line

However, the choice of predictor variable and response variable is crucial.

The regression line for  given  and the regression line for  given  are not the same line, except in the trivial case where the variables are
perfectly correlated. However, the coefficient of determination is the same, regardless of which variable is the predictor and which is the response.

Proof

The two regression lines are

L(Y ∣ X) Y

E( )= var(Y ) [1 − (X,Y )][Y −L(Y ∣ X)]2 cor2 (4.5.30)

L = L(Y ∣ X) Y −L

E [(Y −L ] = var(Y −L) = var(Y ) −2cov(L,Y ) +var(L))2 (4.5.31)

cov(L,Y ) = var(L) = (X,Y )/var(X)cov2

E [(Y −L ] = var(Y ) − = var(Y )[1 − ] = var(Y ) [1 − (X,Y )])2
(X,Y )cov2

var(X)

(X,Y )cov2

var(X)var(Y )
cor2 (4.5.32)

−1 ≤ cor(X,Y ) ≤ 1
−sd(X)sd(Y ) ≤ cov(X,Y ) ≤ sd(X)sd(Y )
cor(X,Y ) = 1 Y X

cor(X,Y ) = −1 Y X

(X,Y ) ≤ 1cor2

(X,Y ) = 1cor2 Y = L(Y ∣ X) L(Y ∣ X) cor(X,Y )

cov(X,Y ) cor(X,Y ) X Y

Y E(Y )
var(Y ) Y

L(Y ∣ X) Y X

var(Y ) −E( )= var(Y ) (X,Y )[Y −L(Y ∣ X)]
2

cor2 (4.5.33)

(X,Y )cor2 var(Y ) X

L(Y ∣ X = x) =E(Y ) + [x−E(X)] , x ∈ R
cov(X,Y )

var(X)
(4.5.34)

x ↦ L(Y ∣ X = x) Y X

(E(X),E(Y ))

4.5.2

Y X X Y
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The two lines are the same if and only if . But this is equivalent to .

Suppose that  and  are events with  and . Then

1.  if and only . (That is,  and  are equivalent events.)
2.  if and only . (That is,  and  are equivalent events.)

Proof

Recall from (19) that , so if  then from (27),  with probability 1. But  and  each
takes values 0 and 1 only. Hence the only possible regression lines are , ,  and . The first two correspond to 
and , respectively, which are excluded by the hypotheses.

1. In this case, the slope is positive, so the regression line is . That is,  with probability 1.
2. In this case, the slope is negative, so the regression line is . That is,  with probability 1.

The concept of best linear predictor is more powerful than might first appear, because it can be applied to transformations of the variables. Specifically,
suppose that  and  are random variables for our experiment, taking values in general spaces  and , respectively. Suppose also that  and  are
real-valued functions defined on  and , respectively. We can find , the linear function of  that is closest to  in the mean
square sense. The results of this subsection apply, of course, with  replacing  and  replacing . Of course, we must be able to compute the
appropriate means, variances, and covariances.

We close this subsection with two additional properties of the best linear predictor, the linearity properties.

Suppose that , , and  are random variables and that  is a constant. Then

1. 
2. 

Proof from the definitions

These results follow easily from the linearity of expected value and covariance.

1. 

2. 

Proof by characterizing properties
1. We show that  satisfy the properties that characterize .

2. Similarly, we show that  satisfies the properties that characterize 

There are several extensions and generalizations of the ideas in the subsection:

The corresponding statistical problem of estimating  and , when these distribution parameters are unknown, is considered in the section on
Sample Covariance and Correlation.
The problem finding the function of  that is closest to  in the mean square error sense (using all reasonable functions, not just linear functions)
is considered in the section on Conditional Expected Value.
The best linear prediction problem when the predictor and response variables are random vectors is considered in the section on Expected Value
and Covariance Matrices.

The use of characterizing properties will play a crucial role in these extensions.

y−E(Y )

x−E(X)

= [x−E(X)]
cov(X,Y )

var(X)

= [y−E(Y )]
cov(X,Y )

var(Y )

(4.5.35)

(4.5.36)

(X,Y ) = var(X)var(Y )cov2 (X,Y ) = 1cor2

A B 0 < P(A) < 1 0 < P(B) < 1

cor(A,B) = 1 P(A ∖B) +P(B∖A) = 0 A B

cor(A,B) = −1 P(A ∖ ) +P( ∖A) = 0Bc Bc A Bc

cor(A,B) = cor( , )1A 1B (A,B) = 1cor2 = L( ∣ )1B 1B 1A 1A 1B

y = 0 y = 1 y = x y = 1 −x P(B) = 0
P(B) = 1

y = x =1B 1A

y = 1 −x = 1 − =1B 1A 1Ac

X Y S T g h

S T L [h(Y ) ∣ g(X)] g(X) h(Y )
g(X) X h(Y ) Y

X Y Z c

L(Y +Z ∣ X) = L(Y ∣ X) +L(Z ∣ X)
L(cY ∣ X) = cL(Y ∣ X)

L(Y +Z ∣ X) =E(Y +Z) + [X−E(X)]
cov(X,Y +Z)

var(X)

=(E(Y ) + [X−E(X)])+(E(Z) + [X−E(X)])
cov(X,Y )

var(X)

cov(X,Z)

var(X)

=E(Y ∣ X) +E(Z ∣ X)

(4.5.37)

(4.5.38)

(4.5.39)

L(cY ∣ X) =E(cY ) + [X−E(X)] = cE(Y ) +c [X−E(X)] = cL(Y ∣ X)
cov(X, cY )

var(X)

cov(X,Y )

var(X)
(4.5.40)

L(Y ∣ X) +L(Z ∣ X) L(Y +Z ∣ X)

E [L(Y ∣ X) +L(Z ∣ X)]

cov [X,L(Y ∣ X) +L(Z ∣ X)]

=E [L(Y ∣ X)] +E [L(Z ∣ X)] =E(Y ) +E(Z) =E(Y +Z)

= cov [X,L(Y ∣ X)] +cov [X,L(Z ∣ X)] = cov(X,Y ) +cov(X,Z) = cov(X,Y +Z)

(4.5.41)

(4.5.42)

cL(Y ∣ X) L(cY ∣ X)

E [cL(Y ∣ X)]

cov [X, cL(Y ∣ X)]

= cE [L(Y ∣ X)] = cE(Y ) =E(cY )

= c cov [X,L(Y ∣ X)] = c cov(X,Y ) = cov(X, cY )

(4.5.43)

(4.5.44)

a b

X Y
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Examples and Applications

Uniform Distributions

Suppose that  is uniformly distributed on the interval  and . Then  and  are uncorrelated even though  is a function of 
(the strongest form of dependence).

Proof

Note that  and  and . Hence .

Suppose that  is uniformly distributed on the region . Find  and  and determine whether the variables are
independent in each of the following cases:

1.  where  and , so  is a rectangle.
2.  where , so  is a triangle
3.  where , so  is a circle

Answer
1. , .  and  are independent.
2. , .  and  are dependent.
3. , .  and  are dependent.

In the bivariate uniform experiment, select each of the regions below in turn. For each region, run the simulation 2000 times and note the value of
the correlation and the shape of the cloud of points in the scatterplot. Compare with the results in the last exercise.

1. Square
2. Triangle
3. Circle

Suppose that  is uniformly distributed on the interval  and that given ,  is uniformly distributed on the interval .
Find each of the following:

1. 
2. 
3. 
4. 

Answer

1. 

2. 

3. 
4. 

Dice

Recall that a standard die is a six-sided die. A fair die is one in which the faces are equally likely. An ace-six flat die is a standard die in which faces 1
and 6 have probability  each, and faces 2, 3, 4, and 5 have probability  each.

A pair of standard, fair dice are thrown and the scores  recorded. Let  denote the sum of the scores, 
the minimum scores, and  the maximum score. Find the covariance and correlation of each of the following pairs of variables:

1. 
2. 
3. 
4. 
5. 

Answer
1. , 
2. , 

3. , 
4. , 
5. , 

X [−1, 1] Y = X2 X Y Y X

E(X) = 0 E(Y ) =E ( ) = 1/3X2
E(XY ) = E ( ) = 0X3 cov(X,Y ) =E(XY ) −E(X)E(Y ) = 0

(X,Y ) S ⊆R
2 cov(X,Y ) cor(X,Y )

S = [a, b] × [c, d] a < b c < d S

S = {(x, y) ∈ : −a ≤ y ≤ x ≤ a}R
2 a > 0 S

S = {(x, y) ∈ : + ≤ }R
2 x2 y2 r2 r > 0 S

cov(X,Y ) = 0 cor(X,Y ) = 0 X Y

cov(X,Y ) = a2

9
cor(X,Y ) = 1

2
X Y

cov(X,Y ) = 0 cor(X,Y ) = 0 X Y

X (0, 1) X = x ∈ (0, 1) Y (0, x)

cov(X,Y )
cor(X,Y )
L(Y ∣ X)
L(X ∣ Y )

1
24

3
7

−−
√

X1
2

+ Y2
7

6
7

1
4

1
8

( , )X1 X2 Y = +X1 X2 U = min{ , }X1 X2

V = max{ , }X1 X2

( , )X1 X2

( ,Y )X1

( ,U)X1

(U,V )
(U,Y )

0 0
35
12

= 0.70711

2√
35
24

0.6082
1369
1296

= 0.53581369
2555

35
12

0.8601
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Suppose that  fair dice are thrown. Find the mean and variance of each of the following variables:

1. , the sum of the scores.
2. , the average of the scores.

Answer

1. , 
2. , 

In the dice experiment, select fair dice, and select the following random variables. In each case, increase the number of dice and observe the size
and location of the probability density function and the mean  standard deviation bar. With  dice, run the experiment 1000 times and
compare the sample mean and standard deviation to the distribution mean and standard deviation.

1. The sum of the scores.
2. The average of the scores.

Suppose that  ace-six flat dice are thrown. Find the mean and variance of each of the following variables:

1. , the sum of the scores.
2. , the average of the scores.

Answer

1. , 
2. , 

In the dice experiment, select ace-six flat dice, and select the following random variables. In each case, increase the number of dice and observe
the size and location of the probability density function and the mean  standard deviation bar. With  dice, run the experiment 1000 times
and compare the sample mean and standard deviation to the distribution mean and standard deviation.

1. The sum of the scores.
2. The average of the scores.

A pair of fair dice are thrown and the scores  recorded. Let  denote the sum of the scores,  the
minimum score, and  the maximum score. Find each of the following:

1. 
2. 
3. 

Answer

1. 
2. 
3. 

Bernoulli Trials

Recall that a Bernoulli trials process is a sequence  of independent, identically distributed indicator random variables. In the usual
language of reliability,  denotes the outcome of trial , where 1 denotes success and 0 denotes failure. The probability of success  is
the basic parameter of the process. The process is named for Jacob Bernoulli. A separate chapter on the Bernoulli Trials explores this process in detail.

For , the number of successes in the first  trials is . Recall that this random variable has the binomial distribution with
parameters  and , which has probability density function  given by

The mean and variance of  are

1. 
2. 

Proof

These results could be derived from the PDF of , of course, but a derivation based on the sum of IID variables is much better. Recall that 
 and  so the results follow immediately from theorem (16).

In the binomial coin experiment, select the number of heads. Vary  and  and note the shape of the probability density function and the size and
location of the mean  standard deviation bar. For selected values of the parameters, run the experiment 1000 times and compare the sample mean

n

Yn
Mn

E ( ) = nYn
7
2

var ( ) = nYn
35
12

E ( ) =Mn
7
2

var ( ) =Mn
35

12n

± n = 20

n

Yn
Mn

n 7
2

n 15
4

7
2

15
4n

± n = 20

( , )X1 X2 Y = +X1 X2 U = min{ , }X1 X2

V = max{ , }X1 X2

L(Y ∣ )X1

L(U ∣ )X1

L(V ∣ )X1

+7
2

X1

+7
9

1
2
X1

+49
19

1
2
X1

X = ( , , …)X1 X2

Xi i p = P( = 1)Xi

n ∈ N+ n =Yn ∑n
i=1 Xi

n p f

(y) =( ) (1 −p , y ∈ {0, 1, … ,n}fn
n

y
py )n−y (4.5.45)

Yn

E( ) = npYn
var( ) = np(1 −p)Yn

Yn
E( ) = pXi var( ) = p(1 −p)Xi

n p

±
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and standard deviation to the distribution mean and standard deviation.

For , the proportion of successes in the first  trials is . This random variable is sometimes used as a statistical estimator of the
parameter , when the parameter is unknown.

The mean and variance of  are

1. 
2. 

Proof

Recall that  and  so the results follow immediately from theorem (17).

In the binomial coin experiment, select the proportion of heads. Vary  and  and note the shape of the probability density function and the size
and location of the mean  standard deviation bar. For selected values of the parameters, run the experiment 1000 times and compare the sample
mean and standard deviation to the distribution mean and standard deviation.

As a special case of (17) note that  as  in mean square and in probability.

The Hypergeometric Distribution

Suppose that a population consists of  objects;  of the objects are type 1 and  are type 0. A sample of  objects is chosen at random, without
replacement. The parameters  and  with  and . For , let  denote the type of the th object selected.
Recall that  is a sequence of identically distributed (but not independent) indicator random variables.

Let  denote the number of type 1 objects in the sample, so that . Recall that this random variable has the hypergeometric distribution,
which has probability density function  given by

For distinct ,

1. 
2. 
3. 
4. 

Proof

Recall that  for each  and  for each . Technically, the sequence of
indicator variables is exchangeable. The results now follow from the definitions and simple algebra.

Note that the event of a type 1 object on draw  and the event of a type 1 object on draw  are negatively correlated, but the correlation depends only
on the population size and not on the number of type 1 objects. Note also that the correlation is perfect if . Think about these result intuitively.

The mean and variance of  are

1. 
2. 

Proof

Again, a derivation from the representation of  as a sum of indicator variables is far preferable to a derivation based on the PDF of . These
results follow immediately from (45), the additive property of expected value, and Theorem (12).

Note that if the sampling were with replacement,  would have a binomial distribution, and so in particular  and 
. The additional factor  that occurs in the variance of the hypergeometric distribution is sometimes called the finite

population correction factor. Note that for fixed ,  is decreasing in , and is 0 when . Of course, we know that we must have 
 if , since we would be sampling the entire population, and so deterministically, . On the other hand, for fixed , 

as . More generally, the hypergeometric distribution is well approximated by the binomial when the population size  is large compared to
the sample size . These ideas are discussed more fully in the section on the hypergeometric distribution in the chapter on Finite Sampling Models.

In the ball and urn experiment, select sampling without replacement. Vary , , and  and note the shape of the probability density function and
the size and location of the mean  standard deviation bar. For selected values of the parameters, run the experiment 1000 times and compare the
sample mean and standard deviation to the distribution mean and standard deviation.

n ∈ N+ n = /nMn Yn
p

Mn

E( ) = pMn

var( ) = p(1 −p)/nMn

E( ) = pXi var( ) = p(1 −p)Xi

n p

±

→ pMn n → ∞

m r m−r n

m, n ∈ N+ r ∈ N n ≤ m r ≤ m i ∈ {1, 2, … ,n} Xi i

( , , … , )X1 X2 Xn

Y Y =∑n
i=1 Xi

fn

f(y) = , y ∈ {0, 1, … ,n}
( )( )r
y

m−r
n−y

( )m
n

(4.5.46)

i, j∈ {1, 2, … ,n}

E( ) =Xi
r

m

var( ) = (1 − )Xi
r
m

r
m

cov( , ) = − (1 − )Xi Xj
r
m

r
m

1
m−1

cor( , ) = −Xi Xj
1

m−1

E( ) = P( = 1) =Xi Xi
r
m i E( ) = P( = 1, = 1) =XiXj Xi Xj

r
m

r−1
m−1

i ≠ j

i j

m = 2

Y

E(Y ) = n r
m

var(Y ) = n (1 − )r
m

r
m

m−n

m−1

Y Y

Y E(Y ) = n r
m

var(Y ) = n (1 − )r
m

r
m

m−n

m−1

m m−n

m−1
n n = m

var(Y ) = 0 n = m Y = r n → 1m−n

m−1

m → ∞ m

n

m r n

±
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Exercises on Basic Properties

Suppose that  and  are real-valued random variables with . Find .

Answer

24

Suppose  and  are real-valued random variables with , , and . Find

1. 
2. 
3. 
4. 

Answer

1. 

2. 65
3. 45
4. 

Suppose that  and  are independent, real-valued random variables with  and . Find .

Answer

182

Suppose that  and  are events in an experiment with , , and . Find each of the following:

1. 
2. 

Answer

1. 
2. 

Suppose that , , and  are real-valued random variables for an experiment, and that  and . Find 
.

Answer

Suppose that  and  are real-valued random variables for an experiment, and that , , and . Find each
of the following:

1. 
2. 

Answer
1. 
2. 

Simple Continuous Distributions

Suppose that  has probability density function  given by  for , . Find each of the following

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

X Y cov(X,Y ) = 3 cov(2X−5, 4Y +2)

X Y var(X) = 5 var(Y ) = 9 cov(X,Y ) = −3

cor(X,Y )
var(2X+3Y −7)
cov(5X+2Y −3, 3X−4Y +2)
cor(5X+2Y −3, 3X−4Y +2)

− ≈ −0.44721

5√

≈ 0.277215

2929√

X Y var(X) = 6 var(Y ) = 8 var(3X−4Y +5)

A B P(A) = 1
2
P(B) = 1

3
P(A∩B) = 1

8

cov(A,B)
cor(A,B)

− 1
24

− /82
–

√

X Y Z L(Y ∣ X) = 2 −3X L(Z ∣ X) = 5 +4X
L(6Y −2Z ∣ X)

2 −26X

X Y E(X) = 3 var(X) = 4 L(Y ∣ X) = 5 −2X

E(Y )
cov(X,Y )

−1
−8

(X,Y ) f f(x, y) = x+y 0 ≤ x ≤ 1 0 ≤ y ≤ 1

cov(X,Y )
cor(X,Y )
L(Y ∣ X)
L(X ∣ Y )

− 1
144

− ≈ −0.09091
11

− X7
11

1
11

= Y7
11

1
11
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Suppose that  has probability density function  given by  for . Find each of the following:

1. 
2. 
3. 
4. 

Answer

1. 
2. 

3. 
4. 

Suppose again that  has probability density function  given by  for .

1. Find .
2. Find .
3. Find .
4. Which predictor of  is better, the one based on  or the one based on ?

Answer

1. 
2. 
3. 
4. The predictor based on  is slightly better.

Suppose that  has probability density function  given by  for , . Find each of the following:

1. 
2. 
3. 
4. 

Answer

Note that  and  are independent.

1. 
2. 
3. 
4. 

Suppose that  has probability density function  given by  for . Find each of the following:

1. 
2. 
3. 
4. 

Answer

1. 
2. 
3. 
4. 

Suppose again that  has probability density function  given by  for .

1. Find .
2. Find .
3. Find .
4. Which of the predictors of  is better, the one based on  of the one based on ?

Answer

1. 
2. 

(X,Y ) f f(x, y) = 2(x+y) 0 ≤ x ≤ y ≤ 1

cov(X,Y )
cor(X,Y )
L(Y ∣ X)
L(X ∣ Y )

1
48

≈ 0.44025

129√

+ X26
43

15
43

Y5
9

(X,Y ) f f(x, y) = 2(x+y) 0 ≤ x ≤ y ≤ 1

cov ( ,Y )X2

cor( ,Y )X2

L (Y ∣ )X2

Y X X2

7
360

0.448

+ X1255
1920

245
634

X2

(X,Y ) f f(x, y) = 6 yx2 0 ≤ x ≤ 1 0 ≤ y ≤ 1

cov(X,Y )
cor(X,Y )
L(Y ∣ X)
L(X ∣ Y )

X Y

0
0
2
3
3
4

(X,Y ) f f(x, y) = 15 yx2 0 ≤ x ≤ y ≤ 1

cov(X,Y )
cor(X,Y )
L(Y ∣ X)
L(X ∣ Y )

5
336

0.05423

+ X
30
51

20
51

Y3
4

(X,Y ) f f(x, y) = 15 yx2 0 ≤ x ≤ y ≤ 1

cov ( ,Y )X
−−

√

cor( ,Y )X
−−

√

L (Y ∣ )X
−−

√

Y X X
−−

√

10
1001
24
169

14
−−

√
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3. 
4. The predictor based on  is slightly better.
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