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13.11: Optimal Strategies
      

Basic Theory

Definitions

Recall that the stopping rule for red and black is to continue playing until the gambler is ruined or her fortune reaches the target
fortune . Thus, the gambler's strategy is to decide how much to bet on each game before she must stop. Suppose that we have a
class of strategies that correspond to certain valid fortunes and bets;  will denote the set of fortunes and  will denote the set of
valid bets for . For example, sometimes (as with timid play) we might want to restrict the fortunes to set of integers 

; other times (as with bold play) we might want to use the interval  as the fortune space. As for the bets, recall
that the gambler cannot bet what she does not have and will not bet more than she needs in order to reach the target. Thus, a betting
function  must satisfy

Moreover, we always restrict our strategies to those for which the stopping time  is finite.

The success function of a strategy is the probability that the gambler reaches the target  with that strategy, as a function of the
initial fortune . A strategy with success function  is optimal if for any other strategy with success function , we have 

 for .

If there exists an optimal strategy, then the optimal success function is unique.

However, there may not exist an optimal strategy or there may be several optimal strategies. Moreover, the optimality question
depends on the value of the game win probability , in addition to the structure of fortunes and bets.

A Condition for Optimality

Our main theorem gives a condition for optimality:

A strategy  with success function  is optimal if

Proof

Consider the following strategy: if the initial fortune is , we pick  and then bet  on the first game; thereafter we
follow strategy . Conditioning on the outcome of the first game, the success function for this new strategy is

Thus, the theorem can be restated as follows: If  is optimal with respect to the class of strategies just described, then  is
optimal over all strategies. Let  be an arbitrary strategy with success function . The random variable  can be
interpreted as the probability of winning if the gambler's strategy is replaced by strategy  after time . Conditioning on the
outcome of game  gives

Using the the optimality condition gives

If follows that  for  and . Now let  denote the stopping time for strategy .
Letting  we have  for . But  for . Thus 

 for .
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Favorable Trials with a Minimum Bet

Suppose now that  so that the trials are favorable (or at least not unfair) to the gambler. Next, suppose that all bets must be
multiples of a basic unit, which we might as well assume is $1. Of course, real gambling houses have this restriction. Thus the set
of valid fortunes is  and the set of valid bets for  is . Our main result for
this case is

Timid play is an optimal strategy.

Proof

Recall the success function  for timid play and recall the optimality condition. This condition holds if . If , the
condition for optimality is equivalent to

But this condition is equivalent to  which clearly holds if .

In the red and black game set the target fortune to 16, the initial fortune to 8, and the game win probability to 0.45. Define the
strategy of your choice and play 100 games. Compare your relative frequency of wins with the probability of winning with
timid play.

Favorable Trials without a Minimum Bet

We will now assume that the house allows arbitrarily small bets and that , so that the trials are strictly favorable. In this case
it is natural to take the target as the monetary unit so that the set of fortunes is , and the set of bets for  is 

. Our main result for this case is given below. The results for timid play will play an important role in the
analysis, so we will let  denote the probability of reaching an integer target , starting at the integer , with unit
bets.

The optimal success function is  for .

Proof

Fix a rational initial fortune . Let  be a positive integer and suppose that, starting at , the gambler bets 
on each game. This strategy is equivalent to timid play with target fortune , and initial fortune . Hence the probability of
reaching the target 1 under this strategy is . But  as . It follows that  if 

 is rational. But  is increasing so  for all 

Unfair Trials

We will now assume that  so that the trials are unfair, or at least not favorable. As before, we will take the target fortune as
the basic monetary unit and allow any valid fraction of this unit as a bet. Thus, the set of fortunes is , and the set of bets
for  is . Our main result for this case is

Bold play is optimal.

Proof

Let  denote the success function for bold play, and let

The optimality condition equivalent to  for . From the continuity of , it suffices to prove this
inequality when  and  are binary rationals. It's simple to see that  when  and  have rank 0: ,  or 

,  or , . Suppose now that  when  and  have rank  or less. We have the following
cases:

1. If  then .
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2. If  then .
3. If  and  then .

4. If  and  then .
5. If  and  then .
6. If  and  then .

The induction hypothesis can now be applied to each case to finish the proof.

In the red and black game, set the target fortune to 16, the initial fortune to 8, and the game win probability to 0.45. Define the
strategy of your choice and play 100 games. Compare your relative frequency of wins with the probability of winning with
bold play.

Other Optimal Strategies in the Sub-Fair Case

Consider again the sub-fair case where  so that the trials are not favorable to the gambler. We will show that bold play is not
the only optimal strategy; amazingly, there are infinitely many optimal strategies. Recall first that the bold strategy has betting
function

Figure : The betting function for bold play

Consider the following strategy, which we will refer to as the second order bold strategy:

1. With fortune , play boldly with the object of reaching  before falling to 0.
2. With fortune , play boldly with the object of reaching 1 without falling below .
3. With fortune , play boldly and bet 

The second order bold strategy has betting function  given by
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Figure : The betting function for the second order bold strategy

The second order bold strategy is optimal.

Proof

Let  denote the success function associated with strategy . Suppose first that the player starts with fortune 
under strategy . Note that the player reaches the target 1 if and only if she reaches  and then wins the final game. Consider
the sequence of fortunes until the player reaches 0 or . If we double the fortunes, then we have the fortune sequence under the
ordinary bold strategy, starting at  and terminating at either 0 or 1. Thus it follows that

Suppose next that the player starts with fortune  under strategy . Note that the player reaches the target 1 if and
only if she reaches 1 without falling back to  or falls back to  and then wins the final game. Consider the sequence of
fortunes until the player reaches  or 1. If we double the fortunes and subtract 1, then we have the fortune sequence under the
ordinary bold strategy, starting at  and terminating at either 0 or 1. Thus it follows that

But now, using the functional equation for ordinary bold play, we have  for all , and hence  is
optimal.

Once we understand how this construction is done, it's straightforward to define the third order bold strategy and show that it's
optimal as well.

Figure : The betting function for the third order bold strategy

Explicitly give the third order betting function and show that the strategy is optimal.

More generally, we can define the th order bold strategy and show that it is optimal as well.

The sequence of bold strategies can be defined recursively from the basic bold strategy  as follows:
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 is optimal for each .

Even more generally, we can define an optimal strategy  in the following way: for each  select  and let 
. The graph below shows a few of the graphs of the bold strategies. For an optimal strategy , we just need to

select, for each  a bet on one of the graphs.

Figure : The family of bold strategies

Martingales

Let's return to the unscaled formulation of red and black, where the target fortune is  and the initial fortune is 
. In the subfair case, when , no strategy can do better than the optimal strategies, so that the win probability is

bounded by  (with equality when ). Another elegant proof of this is given in the section on inequalities in the chapter on
martingales.
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