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12.8: Pólya's Urn Process
       

Basic Theory

The Model

Pólya's urn scheme is a dichotomous sampling model that generalizes the hypergeometric model (sampling without replacement) and the Bernoulli
model (sampling with replacement). Pólya's urn proccess leads to a famous example of a sequence of random variables that is exchangeable, but not
independent, and has deep conections with the beta-Bernoulli process.

Suppose that we have an urn (what else!) that initially contains  red and  green balls, where  and  are positive integers. At each discrete time
(trial), we select a ball from the urn and then return the ball to the urn along with  new balls of the same color. Ordinarily, the parameter  is a
nonnegative integer. However, the model actually makes sense if  is a negative integer, if we interpret this to mean that we remove the balls rather
than add them, and assuming that there are enough balls of the proper color in the urn to perform this action. In any case, the random process is
known as Pólya's urn process, named for George Pólya.

In terms of the colors of the selected balls, Pólya's urn scheme generalizes the standard models of sampling with and without replacement.

1.  corresponds to sampling with replacement.
2.  corresponds to sampling without replacement.

For the most part, we will assume that  is nonnegative so that the process can be continued indefinitely. Occasionally we consider the case  so
that we can interpret the results in terms of sampling without replacement.

The Outcome Variables

Let  denote the color of the ball selected at time , where 0 denotes green and 1 denotes red. Mathematically, our basic random process is the
sequence of indicator variables , known as the Pólya process. As with any random process, our first goal is to compute the finite
dimensional distributions of . That is, we want to compute the joint distribution of  for each . Some additional notation
will really help. Recall the generalized permutation formula in our study of combinatorial structures: for  and , we defined

Note that the expression has  factors, starting with , and with each factor obtained by adding  to the previous factor. As usual, we adopt the
convention that a product over an empty index set is 1. Hence  for every  and .

Recall that

1. , an ordinary power
2. , a descending power
3. , an ascending power
4. 
5. 

The following simple result will turn out to be quite useful.

Suppose that  and . Then

Proof

It's just a matter of grouping the factors:

The finite dimensional distributions are easy to compute using the multiplication rule of conditional probability. If we know the contents of the urn at
any given time, then the probability of an outcome at the next time is all but trivial.

Let ,  and let . Then
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Proof

By the multiplication rule for conditional probability,

Of course, if we know that the urn has, say,  red and  green balls at a particular time, then the probability of a red ball on the next draw is 
 while the probability of a green ball is . The right side of the displayed equation above has  factors. The denominators are

the total number of balls at the  times, and form the product . In the numerators,  of
the factors correspond to probabilities of selecting red balls; these factors form the product . The remaining 

 factors in the numerators correspond to selecting green balls; these factors form the product .

The joint probability in the previous exercise depends on  only through the number of red balls  in the sample. Thus, the
joint distribution is invariant under a permutation of , and hence  is an exchangeable sequence of random variables. This means
that for each , all permutations of  have the same distribution. Of course the joint distribution reduces to the formulas we have
obtained earlier in the special cases of sampling with replacement ( ) or sampling without replacement ( ), although in the latter case we
must have . When , the Pólya process is a special case of the beta-Bernoulli process, studied in the chapter on Bernoulli trials.

The Pólya process  with parameters  is the beta-Bernoulli process with parameters  and . That is, for 
, , and with ,

Proof

From the previous two results,

and this is the corresponding finite dimensional distribution of the beta-Bernoulli distribution with parameters  and .

Recall that the beta-Bernoulli process is obtained, in the usual formulation, by randomizing the success parameter in a Bernoulli trials sequence,
giving the success parameter a beta distribution. So specifically, suppose  and that random variable  has the beta distribution with
parameters  and . Suppose also that given , the random process  is a sequence of Bernoulli trials with
success parameter . Then  is the Pólya process with parameters . This is a fascinating connection between two processes that at first, seem
to have little in common. In fact however, every exchangeable sequence of indicator random variables can be obtained by randomizing the success
parameter in a sequence of Bernoulli trials. This is de Finetti's theorem, named for Bruno de Finetti, which is studied in the section on backwards
martingales. When , all of the results in this section are special cases of the corresponding results for the beta-Bernoulli process, but it's still
interesting to interpret the results in terms of the urn model.

For each 

1. 
2. 

Proof

Since the sequence is exchangeable,  has the same distribution as , so . The mean and variance now follow from
standard results for indicator variables.

Thus  is a sequence of identically distributed variables, quite surprising at first but of course inevitable for any exchangeable sequence. Compare
the joint and marginal distributions. Note that  is an independent sequence if and only if , when we have simple sampling with replacement.
Pólya's urn is one of the most famous examples of a random process in which the outcome variables are exchangeable, but dependent (in general).

Next, let's compute the covariance and correlation of a pair of outcome variables.

Suppose that  are distinct. Then

1. 

2. 

Proof

Since the variables are exchangeable, . The results now follow from standard formulas
for covariance and correlation.

P( = , = , … , = ) = P( = )P( = ∣ = ) ⋯P( = ∣ = , … , = )X1 x1 X2 x2 Xn xn X1 x1 X2 x2 X1 x1 Xn xn X1 x1 Xn−1 xn−1 (12.8.4)
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Thus, the variables are positively correlated if , negatively correlated if , and uncorrelated (in fact, independent), if . These results
certainly make sense when we recall the dynamics of Pólya's urn. It turns out that in any infinite sequence of exchangeable variables, the variables
must be nonnegatively correlated. Here is another result that explores how the variables are related.

Suppose that  and . Let . Then

Proof

Using the joint distribution,

Pólya's urn is described by a sequence of indicator variables. We can study the same derived random processes that we studied with Bernoulli trials:
the number of red balls in the first  trials, the trial number of the th red ball, and so forth.

The Number of Red Balls

For , the number of red balls selected in the first  trials is

so that  is the partial sum process associated with .

Note that

1. The number of green balls selected in the first  trials is .
2. The number of red balls in the urn after the first  trials is .
3. The number of green balls in the urn after the first  trials is .
4. The number of balls in the urn after the first  trials is .

The basic analysis of  follows easily from our work with .

The probability density function of  is given by

Proof

 is the sum of  over all  with . There are  such
sequences, and each has the probability given above.

The distribution defined by this probability density function is known, appropriately enough, as the Pólya distribution with parameters , , , and .
Of course, the distribution reduces to the binomial distribution with parameters  and  in the case of sampling with replacement ( ) and
to the hypergeometric distribution with parameters , , and  in the case of sampling without replacement ( ), although again in this case we
need . When , the Póyla distribution is a special case of the beta-binomial distribution.

If  then the Pólya distribution with parameters  is the beta-binomial distribution with parameters  and . That is,

Proof

This follows immediately from the result above that  is the beta-Bernoulli process with parameters  and . So by
definition,  has the beta-binomial distribution with parameters , , and . A direct proof is also simple using the permutation
formula above:
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The case where all three parameters are equal is particularly interesting.

If  then  is uniformly distributed on .

Proof

This follows from the previous result, since the beta-binomial distribution with parameters , 1, and 1 reduces to the uniform distribution.
Specifically, note that ,  and . So substituting gives

In general, the Pólya family of distributions has a diverse collection of shapes.

Start the simulation of the Pólya Urn Experiment. Vary the parameters and note the shape of the probability density function. In particular, note
when the function is skewed, when the function is symmetric, when the function is unimodal, when the function is monotone, and when the
function is U-shaped. For various values of the parameters, run the simulation 1000 times and compare the empirical density function to the
probability density function.

The Pólya probability density function is

1. unimodal if  and 
2. unimodal if  and 
3. U-shaped if  and 
4. U-shaped if  and 
5. increasing if 
6. decreasing if 

Proof

These results follow from solving the inequality .

Next, let's find the mean and variance. Curiously, the mean does not depend on the parameter .

The mean and variance of the number of red balls selected are

1. 

2. 

Proof

These results follow from the mean and covariance of the indicator variables given above, and basic properties of expected value and variance.

1. 
2. 

Start the simulation of the Pólya Urn Experiment. Vary the parameters and note the shape and location of the mean  standard deviation bar. For
various values of the parameters, run the simulation 1000 times and compare the empirical mean and standard deviation to the distribution mean
and standard deviation.

Explicitly compute the probability density function, mean, and variance of  when , , and for the values of .
Sketch the graph of the density function in each case.

Fix , , and , and let . Then

1. 
2. 
3. 

Proof

Note that . The numerator and denominator each have  factors. If these factors are grouped into a product of  fractions,

then the first is . The rest have the form  where  Each of these converges to 1 as . Part (b) follows by a

similar argument. Part (c) follows from (a) and (b) and the complement rule.
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Thus, the limiting distribution of  as  is concentrated on 0 and . The limiting probabilities are just the initial proportion of green and red
balls, respectively. Interpret this result in terms of the dynamics of Pólya's urn scheme.

Our next result gives the conditional distribution of  given .

Suppose that  and . Then

Proof

Let  and let . Note that the events  over  partition
the event . Conditioning on ,

But from our result above,  for every . Hence

The last sum is 1.

In particular, if  then . This is Laplace's rule of succession, another interesting connection. The rule is
named for Pierre Simon Laplace, and is studied from a different point of view in the section on Independence.

The Proportion of Red Balls

Suppose that , so that the process continues indefinitely. For , the proportion of red balls selected in the first  trials is

This is an interesting variable, since a little reflection suggests that it may have a limit as . Indeed, if , then  is just the sample mean
corresponding to  Bernoulli trials. Thus, by the law of large numbers,  converges to the success parameter  as  with probability 1. On
the other hand, the proportion of red balls in the urn after  trials is

When , of course,  so that in this case,  and  have the same limiting behavior. Note that

Since the constant term converges to 0 as  and the coefficient of  converges to 1 as , it follows that the limits of  and  as 
 will be the same, if the limit exists, for any mode of convergence: with probability 1, in mean, or in distribution. Here is the general result

when .

Suppose that . There exists a random variable  having the beta distribution with parameters  and  such that  and 
 as  with probability 1 and in mean square, and hence also in distribution.

Proof

As noted earlier, the urn process is equivalent to the beta-Bernoulli process with parameters  and . We showed in that section that 
 as  with probability 1 and in mean square, where  is the beta random variable used in the construction.

In turns out that the random process  is a martingale. The theory of martingales provides powerful
tools for studying convergence in Pólya's urn process. As an interesting special case, note that if  then the limiting distribution is the
uniform distribution on .

The Trial Number of the th Red Ball

Suppose again that , so that the process continues indefinitely. For  let  denote the trial number of the th red ball selected. Thus

Note that  takes values in . The random processes  and  are inverses of each other in a sense.
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For  with ,

1.  if and only if 
2.  if and only if  and 

The probability denisty function of  is given by

Proof

We condition on . Using the PDF of  and the result above,

Of course this probability density function reduces to the negative binomial density function with trial parameter  and success parameter 
when  (sampling with replacement). When , the distribution is a special case of the beta-negative binomial distribution.

If  then  has the beta-negative binomial distribution with parameters , , and . That is,

Proof

As with previous proofs, this result follows since the underlying process  is the beta-Bernoulli process with parameters 
and . The form of the PDF also follows easily from the previous result by dividing the numerator and denominator .

If  then

Proof

As in the corresponding proof for the number of red balls, the fraction in the PDF of  in the previous result reduces to , while the

binomial coefficient is .

Fix , , and , and let . Then

1. 
2. 

Thus, the limiting distribution of  is concentrated on  and . The limiting probabilities at these two points are just the initial proportion of red and
green balls, respectively. Interpret this result in terms of the dynamics of Pólya's urn scheme.
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