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7.2: The Method of Moments

Basic Theory

The Method
Suppose that we have a basic random experiment with an observable, real-valued random variable X. The distribution of X has k
unknown real-valued parameters, or equivalently, a parameter vector @ = (61, 60s, ..., 60y) taking values in a parameter space, a

subset of R¥. As usual, we repeat the experiment n times to generate a random sample of size n from the distribution of X.
X =(X1,Xo2,...,Xy) (7.2.1)

Thus, X is a sequence of independent random variables, each with the distribution of X. The method of moments is a technique for
constructing estimators of the parameters that is based on matching the sample moments with the corresponding distribution
moments. First, let

p9(0) =E (X7), jeN, (7.2.2)

so that p(j) (6) is the jth moment of X about 0. Note that we are emphasizing the dependence of these moments on the vector of
parameters 0. Note also that ,u(l)(O) is just the mean of X, which we usually denote simply by . Next, let

. 1 & .
M(ﬁ(x):;ZXg, jEN, (7.2.3)
=1

so that M (X) is the jth sample moment about 0. Equivalently, M ()(X) is the sample mean for the random sample
(X{ , X%, e ,XZ; from the distribution of X7. Note that we are emphasizing the dependence of the sample moments on the

sample X. Note also that M (1)(X ) is just the ordinary sample mean, which we usually just denote by M (or by M,, if we wish to
emphasize the dependence on the sample size). From our previous work, we know that M (j)(X ) is an unbiased and consistent
estimator of (%) (0) for each j. Here's how the method works:

To construct the method of moments estimators (Wi, Wa, ..., W},) for the parameters (61,60s,...,0) respectively, we
consider the equations

pO W1, Wa, ..., W) = MO(X1, X, ..., Xon) (7.2.4)

consecutively for j € N until we are able to solve for (Wy, Wy, ..., W}) in terms of (M(l), M )

The equations for j € {1,2,...,k} give k equations in k unknowns, so there is hope (but no guarantee) that the equations can be
solved for (Wi, Wa, ..., Wy,) in terms of (M), M®) ... M®). In fact, sometimes we need equations with j > k. Exercise 28
below gives a simple example. The method of moments can be extended to parameters associated with bivariate or more general
multivariate distributions, by matching sample product moments with the corresponding distribution product moments. The method
of moments also sometimes makes sense when the sample variables (X7, Xs,...,X,) are not independent, but at least are
identically distributed. The hypergeometric model below is an example of this.

Of course, the method of moments estimators depend on the sample size n € N, . We have suppressed this so far, to keep the
notation simple. But in the applications below, we put the notation back in because we want to discuss asymptotic behavior.

Estimates for the Mean and Variance

Estimating the mean and variance of a distribution are the simplest applications of the method of moments. Throughout this
subsection, we assume that we have a basic real-valued random variable X with u=E(X) € R and o2 = var(X) € (0, 00).
Occasionally we will also need o4 = E[(X — u1)*] , the fourth central moment. We sample from the distribution of X to produce a
sequence X = (Xj,Xs,...) of independent variables, each with the distribution of X. For each mé&N,,
X, =(X1,Xs,...,X,) is a random sample of size n from the distribution of X. We start by estimating the mean, which is
essentially trivial by this method.

I Suppose that the mean g is unknown. The method of moments estimator of  based on X, is the sample mean
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M, =13 x, (7.2.5)

1. E(M,) = p so M,, is unbiased for n € N
2.var(M,) =o?/n forn € N;so M = (My, My, ...) is consistent.
Proof

It does not get any more basic than this. The method of moments works by matching the distribution mean with the sample
mean. The fact that E(M,,) = p and var(M,,) = 0% /n forn € N, are properties that we have seen several times before.

Estimating the variance of the distribution, on the other hand, depends on whether the distribution mean p is known or unknown.
First we will consider the more realistic case when the mean in also unknown. Recall that for n € {2, 3, ...}, the sample variance
based on X, is

1 n
D (X - M,)? (7.2.6)

i=1

2
"on-1
Recall also that E(S2) = 02 so S2 is unbiased for n € {2,3, ...}, and that var(S2) = + <a4 - Z—j’o4) so 8% =(S53,52,...)

is consistent.

Suppose that the mean y and the variance % are both unknown. For n € N, the method of moments estimator of o based
on X, is

1 n

1. bias(T}2) = —o?/n forn € Ny so T? = (T2,T2,...) is asymptotically unbiased.

2. mse(T;?) = = [(n—1)%04 — (n® —5n+3)o*] forn € N, so T? is consistent.
Proof
As before, the method of moments estimator of the distribution mean p is the sample mean M,. On the other hand,
o2 = u® — 112 and hence the method of moments estimator of o2 is T2 = M,\®) — M2 , which simplifies to the result above.
Note that 7,2 = anlSﬁ forne€{2,3,...}

1. Note that E(T}2) = 2=LE(S2) = 2102 , so bias(T2) = 2Lo2 —02 = — 102 .

n n n n

n—1

2
2. Recall that mse(T}?) = var(T;2) + bias®(T}?) . But var(T}?) = (—) var(S?2) . The result follows from substituting

n

var(S?) given above and bias(7}?) in part (a).

Hence T;? is negatively biased and on average underestimates o%. Because of this result, 7;? is referred to as the biased sample
variance to distinguish it from the ordinary (unbiased) sample variance S2.

Next let's consider the usually unrealistic (but mathematically interesting) case where the mean is known, but not the variance.

Suppose that the mean g is known and the variance o> unknown. For n € N , the method of moments estimator of o> based
on X, is

1 n
Wi==) (Xi—u) 7.2.8
2 20 (7.2.8)
1. E(W,2) = 02 so W2 is unbiased for n € N,
2.var(Wy) = 2(04 —o*) forne N, so W? = (W7, Wy, ...) is consistent.

Proof

These results follow since \Wi is the sample mean corresponding to a random sample of size n from the distribution of
(X —p)?.
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We compared the sequence of estimators S? with the sequence of estimators W2 in the introductory section on Estimators. Recall
that var(W,?) < var(S2) for n € {2,3,...} but var(S2)/var(W,?) — 1 as n — oo. There is no simple, general relationship
between mse(7;2) and mse(S2) or between mse(7,2) and mse(W,2), but the asymptotic relationship is simple.
mse(T;?)/mse(W,;?) — 1 and mse(7,?)/mse(S2) — 1 asn — 0o
Proof

In light of the previous remarks, we just have to prove one of these limits. The first limit is simple, since the coefficients of o4
and o in mse(7}2) are asymptotically 1/nasn — co.

It also follows that if both p and 02 are unknown, then the method of moments estimator of the standard deviation o is T' = +/T'2.
In the unlikely event that p is known, but o2 unknown, then the method of moments estimator of ¢ is W = vW?2.

Estimating Two Parameters

There are several important special distributions with two paraemters; some of these are included in the computational exercises
below. With two parameters, we can derive the method of moments estimators by matching the distribution mean and variance with
the sample mean and variance, rather than matching the distribution mean and second moment with the sample mean and second
moment. This alternative approach sometimes leads to easier equations. To setup the notation, suppose that a distribution on R has
parameters @ and b. We sample from the distribution to produce a sequence of independent variables X = (X7, Xa, . ..), each with
the common distribution. For n € N, X,, = (X1, X>,...,X,,) is a random sample of size n from the distribution. Let M,,,

MT(LQ), and T;2 denote the sample mean, second-order sample mean, and biased sample variance corresponding to X,,, and let

p(a,b), u'®(a,b), and o%(a, b) denote the mean, second-order mean, and variance of the distribution.

If the method of moments estimators U,, and V,, of a and b, respectively, can be found by solving the first two equations
WUn, Vo) = My, 5P (Un, Vi) = M, (7.2.9)
then U,, and V,, can also be found by solving the equations
p(Un, Vo) = My, 0*(Un, V) =T72 (7.2.10)
Proof

Recall that o2(a,b) = u®(a,b) —p2(a,b) . In addition, T;2 = M” — M2 . Hence the equations w(Un, V) =M,
0%(Uy, V) =T;? are equivalent to the equations u(Uy,, V;,) = M, , ,u(2)(Un, Vo) = M,EQ) .

Because of this result, the biased sample variance 7;? will appear in many of the estimation problems for special distributions that
we consider below.
Special Distributions

The Normal Distribution

The normal distribution with mean p € R and variance o € (0, 00) is a continuous distribution on R with probability density
function g given by

1 1/xz—p 2
g(w):mgexpl—§< )], zeR (7.2.11)

This is one of the most important distributions in probability and statistics, primarily because of the central limit theorem. The
normal distribution is studied in more detail in the chapter on Special Distributions.

Suppose now that X = (X7, Xs, ..., X,,) is a random sample of size n from the normal distribution with mean y and variance
o%. Form our general work above, we know that if 4 is unknown then the sample mean M is the method of moments estimator of
u, and if in addition, o2 is unknown then the method of moments estimator of o2 is T'2. On the other hand, in the unlikely event

that g is known then W2 is the method of moments estimator of o'. Our goal is to see how the comparisons above simplify for the
normal distribution.
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Mean square errors of S2 and T}2.

1. mse(T?) = 2L 54
5 4
2. mse(8?) = o
3. mse(T'?) < mse(S?) forn € {2,3,...,}
Proof
Recall that for the normal distribution, o4 = 30#. Substituting this into the general results gives parts (a) and (b). Part (c)
follows from (a) and (b). Of course the asymptotic relative efficiency is still 1, from our previous theorem.

Thus, S? and T'? are multiplies of one another; S? is unbiased, but when the sampling distribution is normal, 7'? has smaller mean
square error. Surprisingly, 72 has smaller mean square error even than 2.

Mean square errors of 7' and W 2.

1. mse(W?) = %04
2. mse(T?) < mse(W?) forn € {2,3,...}
Proof

Again, since the sampling distribution is normal, 04 = 304 . Substituting this into the gneral formula for var(W,2) gives part

(a).

Run the normal estimation experiment 1000 times for several values of the sample size n and the parameters p and o.
Compare the empirical bias and mean square error of S? and of T'? to their theoretical values. Which estimator is better in
terms of bias? Which estimator is better in terms of mean square error?

Next we consider estimators of the standard deviation o. As noted in the general discussion above, T' = \/1T2 is the method of
moments estimator when g is unknown, while W = +/W? is the method of moments estimator in the unlikely event that y is
known. Another natural estimator, of course, is .S = /.52, the usual sample standard deviation. The following sequence, defined in
terms of the gamma function turns out to be important in the analysis of all three estimators.

Consider the sequence

2 I'[(n+1)/2)
an = ;W, n € Ny (7.2.12)

Then0 <a, <1 forne N, anda, T1asn? oco.

First, assume that g is known so that W, is the method of moments estimator of o.

Forn e N,
1LEW)=a,o
2. bias(W) = (ap, —1)o
3.var(W) = (1-a}) o?
4. mse(W) =2(1 —ay,)o?
Proof

Recall that U? =nW?/o? has the chi-square distribution with n degrees of freedom, and hence U has the chi distribution
with n degrees of freedom. Solving gives

W= %U (7.2.13)

From the formulas for the mean and variance of the chi distribution we have
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R CREVE)
Vi A \/ﬁﬂ T(n/2)

——{n U} =0 (1-ai)

E(W) =

=oay,
var(W) =

Thus W is negatively biased as an estimator of ¢ but asymptotically unbiased and consistent. Of course we know that in general
(regardless of the underlying distribution), W?2 is an unbiased estimator of o2 and so W is negatively biased as an estimator of o.
In the normal case, since a,, involves no unknown parameters, the statistic W /a,, is an unbiased estimator of o. Next we consider
the usual sample standard deviation S.

Forne {2,3,...},

1.E(S)=an_10

2. bias(S) (@n—1 —1)

3.var(S) = (1-a2_,)o?

4. mse(S) = 2(1—an 1)o?
Proof
Recall that V2 = (n—1)S%/0? has the chi-square distribution with n —1 degrees of freedom, and hence V' has the chi

distribution with n — 1 degrees of freedom. The proof now proceeds just as in the previous theorem, but with n — 1 replacing
n.

As with W, the statistic .S is negatively biased as an estimator of o but asymptotically unbiased, and also consistent. Since a,_1
involves no unknown parameters, the statistic S/a,_; is an unbiased estimator of o. Note also that, in terms of bias and mean
square error, S with sample size n behaves like W with sample size n —1. Finally we consider T, the method of moments
estimator of o when g is unknown.

Forn € {2,3,...},

1L.E(T) = @an_la
2. bias(T) = (\/;;an,l - 1) o

3.var(T) = "T_l (1—a2_;)o?
4. mse(T) = (2 -1 \/gan_l) o?
Proof
The results follow easily from the previous theorem since T}, = nT4Sn .

The Bernoulli Distribution

Recall that an indicator variable is a random variable X that takes only the values 0 and 1. The distribution of X is known as the
Bernoulli distribution, named for Jacob Bernoulli, and has probability density function g given by

g(z) =p*(1-p)'*, ze{0,1} (7.2.14)
where p € (0, 1) is the success parameter. The mean of the distribution is p and the variance is p(1 — p).

Suppose now that X = (X;, Xs,...,X,,) is a random sample of size n from the Bernoulli distribution with unknown success
parameter p. Since the mean of the distribution is p, it follows from our general work above that the method of moments estimator
of p is M, the sample mean. In this case, the sample X is a sequence of Bernoulli trials, and M has a scaled version of the
binomial distribution with parameters n and p:

P(M:%) = (Z)pk(l—p)"k, ke{0,1,...,n} (7.2.15)

Note that since X* = X for every k € N, it follows that (¥) =p and M*) = M for every k € N, . So any of the method of
moments equations would lead to the sample mean M as the estimator of p. Although very simple, this is an important application,
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since Bernoulli trials are found embedded in all sorts of estimation problems, such as empirical probability density functions and
empirical distribution functions.
The Geometric Distribution

The geometric distribution on N with success parameter p € (0, 1) has probability density function g given by

g(z)=p(1-p)*"', zeN; (7.2.16)

The geometric distribution on N governs the number of trials needed to get the first success in a sequence of Bernoulli trials with
success parameter p. The mean of the distribution is 4 =1 /p.

Suppose that X = (X3, Xs,...,X,) is a random sample of size n from the geometric distribution on N; with unknown
success parameter p. The method of moments estimator of p is

v=L (7.2.17)
M

Proof

The method of moments equation for U is 1/U = M.

The geometric distribution on N with success parameter p € (0, 1) has probability density function
g(z)=p(l—-p)*, z€N (7.2.18)

This version of the geometric distribution governs the number of failures before the first success in a sequence of Bernoulli trials.
The mean of the distribution is 4 = (1 —p) /p .

Suppose that X = (X3, X»,...,X,) is a random sample of size n from the geometric distribution on N with unknown
parameter p. The method of moments estimator of p is

(7.2.19)

Proof

The method of moments equation for U is (1 —U) /U =M .

The Negative Binomial Distribution

More generally, the negative binomial distribution on N with shape parameter k € (0, 00) and success parameter p € (0,1) has
probability density function

9(z) = <$Zf1 1)pk(1p)x, zeN (7.2.20)
If k is a positive integer, then this distribution governs the number of failures before the kth success in a sequence of Bernoulli
trials with success parameter p. However, the distribution makes sense for general k € (0, 00). The negative binomial distribution
is studied in more detail in the chapter on Bernoulli Trials. The mean of the distribution is k(1 —p) / p and the variance is
k(1 —p)/p*. Suppose now that X = (X1, Xa, ..., X,) is a random sample of size n from the negative binomial distribution on
N with shape parameter k& and success parameter p

If k& and p are unknown, then the corresponding method of moments estimators U and V are
M? M
U=——-——, V=— 7.2.21
T2 - M T2 ( )
Proof
Matching the distribution mean and variance to the sample mean and variance gives the equations
1-V 1-V 9
U——=M, U =T 7.2.22
|4 V2 ( )
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As usual, the results are nicer when one of the parameters is known.

Suppose that k is known but p is unknown. The method of moments estimator V}, of p is

k
Vi = 7.2.23
P Mk ( )
Proof
Matching the distribution mean to the sample mean gives the equation
1-V;
k—t =M (7.2.24)
Vi
Suppose that k is unknown but p is known. The method of moments estimator of k is
p
U,=—M 7.2.25
E(U,) =k so U is unbiased.
2 var(Up 1y S0 Up is consistent.
Proof

] 8 e et q q =
Matching the distribution mean to the sample mean gives the equation U, Tp =M.

L E(U,) = {=E(M) and E(M) = =Lk

2.var(U,) = (Lp)?var(M) and var(M) = %var(X) = 1=

1—- 'n,p2

The Poisson Distribution

The Poisson distribution with parameter r € (0, 0o) is a discrete distribution on N with probability density function g given by
g(z)=e"—, z€eN (7.2.26)
T

The mean and variance are both 7. The distribution is named for Simeon Poisson and is widely used to model the number of
“random points” is a region of time or space. The parameter r is proportional to the size of the region, with the proportionality
constant playing the role of the average rate at which the points are distributed in time or space. The Poisson distribution is studied
in more detail in the chapter on the Poisson Process.

Suppose now that X = (X1, X», ..., X,) is a random sample of size n from the Poisson distribution with parameter r. Since r is
the mean, it follows from our general work above that the method of moments estimator of 7 is the sample mean M.

The Gamma Distribution

The gamma distribution with shape parameter k € (0, c0) and scale parameter b € (0, 00) is a continuous distribution on (0, co)
with probability density function g given by

1
gl@)=————a"te’, ze(0,00) (7.2.27)

The gamma probability density function has a variety of shapes, and so this distribution is used to model various types of positive
random variables. The gamma distribution is studied in more detail in the chapter on Special Distributions. The mean is u = kb
and the variance is o = kb? .

Suppose now that X = (X3, Xs,...,X,) is a random sample from the gamma distribution with shape parameter k and scale
parameter b.

Suppose that k and b are both unknown, and let U and V' be the corresponding method of moments estimators. Then

M? T?
U="—r, V="1 (7.2.28)
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Proof

Matching the distribution mean and variance with the sample mean and variance leads to the equations UV =M ,
UV2 =T2. Solving gives the results.

The method of moments estimators of & and b given in the previous exercise are complicated, nonlinear functions of the sample
mean M and the sample variance T'2. Thus, computing the bias and mean square errors of these estimators are difficult problems
that we will not attempt. However, we can judge the quality of the estimators empirically, through simulations.

When one of the parameters is known, the method of moments estimator of the other parameter is much simpler.

Suppose that k is unknown, but b is known. The method of moments estimator of k is
U, =— (7.2.29)

1. E(Uy) = k so Uy, is unbiased.
2. var(Up) = k/n so U is consistent.

Proof

If b is known, then the method of moments equation for U, is bU, =M. Solving gives (a). Next,
E(Uy) =E(M)/b=kb/b=k , so U, is unbiased. Finally var(U,) = var(M)/b*> = kb*>/ (nb®) = k/n .

Suppose that b is unknown, but & is known. The method of moments estimator of b is

M
Vi= (7.2.30)

1. E(V%) = b so Vj is unbiased.
2. var(V}) = b%/kn so that V}, is consistent.
Proof

If k£ is known, then the method of moments equation for Vi is kVy =M. Solving gives (a). Next,
E(Vi) =E(M)/k=kb/k=0b ,so Vj is unbiased. Finally var(V}) = var(M)/k* = kb*/ (nk?) = b% /kn .

Run the gamma estimation experiment 1000 times for several different values of the sample size n and the parameters k and b.
Note the empirical bias and mean square error of the estimators U, V, Uj, and Vj. One would think that the estimators when
one of the parameters is known should work better than the corresponding estimators when both parameters are unknown; but
investigate this question empirically.

The Beta Distribution
The beta distribution with left parameter a € (0, 00) and right parameter b € (0, c0) is a continuous distribution on (0, 1) with
probability density function g given by
1
B(a,b)

9(z) = 2 H1-2), 0<z<1 (7.2.31)

The beta probability density function has a variety of shapes, and so this distribution is widely used to model various types of
random variables that take values in bounded intervals. The beta distribution is studied in more detail in the chapter on Special

el . . _ _a_ (2) _ a(a+1)
Distributions. The first two moments are p = —= and p'*/ = [P
Suppose now that X = (X7, X, ..., X,,) is a random sample of size n from the beta distribution with left parameter a and right

parameter b.

Suppose that a and b are both unknown, and let U and V' be the corresponding method of moments estimators. Then

M (M-MP) (1-M)(M-M®?)
M@ M2

, V= D T (7.2.32)
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Proof

The method of moments equations for U and V" are

UU+1
v =M, G+1) =M® (7.2.33)
U+v U+V)(U+V+1)

Solving gives the result.

The method of moments estimators of @ and b given in the previous exercise are complicated nonlinear functions of the sample
moments M and M ). Thus, we will not attempt to determine the bias and mean square errors analytically, but you will have an
opportunity to explore them empricially through a simulation.

Suppose that a is unknown, but b is known. Let Uj be the method of moments estimator of a. Then

M
1-M

Up=b (7.2.34)

Proof

If b is known then the method of moments equation for U, as an estimator of a is Uy / (Up+b) = M . Solving for U, gives the
result.

Suppose that b is unknown, but a is known. Let V,, be the method of moments estimator of . Then

1-M

I/a/:
M

(7.2.35)

Proof

If @ is known then the method of moments equation for V; as an estimator of b is a/(a+V,) = M . Solving for V, gives the
result.

Run the beta estimation experiment 1000 times for several different values of the sample size n and the parameters a and b.
Note the empirical bias and mean square error of the estimators U, V, Uj, and V,. One would think that the estimators when
one of the parameters is known should work better than the corresponding estimators when both parameters are unknown; but
investigate this question empirically.

The following problem gives a distribution with just one parameter but the second moment equation from the method of moments
is needed to derive an estimator.

Suppose that X = (X3, Xs,...,X,) is a random sample from the symmetric beta distribution, in which the left and right
parameters are equal to an unknown value ¢ € (0, co). The method of moments estimator of ¢ is
oM (2)
U= m (7.2.36)

Proof

Note that the mean p of the symmetric distribution is %, independently of ¢, and so the first equation in the method of

moments is useless. However, matching the second distribution moment to the second sample moment leads to the equation

_U+1 =M® (7.2.37)
22U +1)

Solving gives the result.

The Pareto Distribution

The Pareto distribution with shape parameter a € (0, 00) and scale parameter b € (0, 00) is a continuous distribution on (b, o)
with probability density function g given by
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g(z) = i, b<z<oo (7.2.38)
ma+1

The Pareto distribution is named for Vilfredo Pareto and is a highly skewed and heavy-tailed distribution. It is often used to model
income and certain other types of positive random variables. The Pareto distribution is studied in more detail in the chapter on

Special Distributions. If a > 2, the first two moments of the Pareto distribution are px = a“_bl and ,u(2) = % .
Suppose now that X = (X3, Xs,...,X,) is a random sample of size n from the Pareto distribution with shape parameter a > 2

and scale parameter b > 0.

Suppose that a and b are both unknown, and let U and V' be the corresponding method of moments estimators. Then

M2
U=1 e — 7.2.39
RITEYE (7.2.:39)
M® M®) — M2
V=" (1_\/ M® ) (7.2.40)

The method of moments equations for U and V are

Proof

% —M (7.2.41)
2
UU‘—/Z =M® (7.2.42)

Solving for U and V' gives the results.

As with our previous examples, the method of moments estimators are complicatd nonlinear functions of M and M), so
computing the bias and mean square error of the estimator is difficult. Instead, we can investigate the bias and mean square error
empirically, through a simulation.

Run the Pareto estimation experiment 1000 times for several different values of the sample size n and the parameters a and b.
Note the empirical bias and mean square error of the estimators U and V.

When one of the parameters is known, the method of moments estimator for the other parameter is simpler.

Suppose that @ is unknown, but b is known. Let Uy, be the method of moments estimator of a. Then

M
U= (7.2.43)

Proof

If b is known then the method of moment equation for U as an estimator of a is bU, / (Uy —1) = M . Solving for U, gives
the result.

Suppose that b is unknown, but a is known. Let V,, be the method of moments estimator of . Then

-1
Vi=2—m (7.2.44)
1. E(V,) =b so V, is unbiased.
2.var(V,) = na(li—Z) so V, is consistent.
Proof

If a is known then the method of moments equation for V, as an estimator of b is aV, / (a—1) =M . Solving for V, gives
(a). Next, E(V,) = “a;lE(M y=2lab _p $0 V. is unbiased. Finally,

a a—1
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2 2
| Var(‘/a) — (ﬂ) VaI'(M) —_ (a—l) ab? _ b2

@ a®  p(a-1)%(a-2) na(a-2) °

The Uniform Distribution

The (continuous) uniform distribution with location parameter a € R and scale parameter h € (0, 00) has probability density
function g given by

g(z) = 7 TE [a,a+h] (7.2.45)

The distribution models a point chosen “at random” from the interval [a, a + h]. The mean of the distribution is 4 = a + %h and
the variance is 0% = %h2 . The uniform distribution is studied in more detail in the chapter on Special Distributions. Suppose now
that X = (X3, Xs, ..., X,) is a random sample of size n from the uniform distribution.

Suppose that @ and h are both unknown, and let U and V' denote the corresponding method of moments estimators. Then
U=2M—+/3T, V =2.3T (7.2.46)
Proof

Matching the distribution mean and variance to the sample mean and variance leads to the equations U + %V =M and
1 2 m2 3 q
15 V° =T*. Solving gives the result.

As usual, we get nicer results when one of the parameters is known.

Suppose that a is known and h is unknown, and let V, denote the method of moments estimator of h. Then
Vo=2(M—a) (7.2.47)
1. E(V,) =h so V is unbiased.
2.var(V,) = g—; so V, is consistent.
Proof
Matching the distribution mean to the sample mean leads to the equation a + %V; = M . Solving gives the result.
1.E(V,)=2[E(M)—a]|=2(a+h/2—a)=h

2. var(V,) =4var(M) = %

Suppose that h is known and a is unknown, and let U}, denote the method of moments estimator of a. Then
1
U :M_Eh (7.2.48)

1. E(Up) = a so Uy, is unbiased.

2.var(Uy) = 1h—2

5, SO Uy, is consistent.

Proof
Matching the distribution mean to the sample mean leads to the quation Up, + %h = M . Solving gives the result.
_ 1y 1y 15
1L.E(U) =E(M) 2h—2a—i— 2h 2h—a
2. var(Uy) = var(M) = 2

12n

The Hypergeometric Model

Our basic assumption in the method of moments is that the sequence of observed random variables X = (X1, X»,...,X,) is a
random sample from a distribution. However, the method makes sense, at least in some cases, when the variables are identically
distributed but dependent. In the hypergeometric model, we have a population of N objects with  of the objects type 1 and the
remaining /N —r objects type 0. The parameter N, the population size, is a positive integer. The parameter r, the type 1 size, is a
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nonnegative integer with 7 < N. These are the basic parameters, and typically one or both is unknown. Here are some typical
examples:

1. The objects are devices, classified as good or defective.

2. The objects are persons, classified as female or male.

3. The objects are voters, classified as for or against a particular candidate.
4. The objects are wildlife or a particular type, either tagged or untagged.

We sample n objects from the population at random, without replacement. Let X; be the type of the ith object selected, so that our
sequence of observed variables is X = (X3, Xs,...,X,). The variables are identically distributed indicator variables, with
P(X;=1)=r/N foreachi € {1,2,...,n}, but are dependent since the sampling is without replacement. The number of type 1
objects in the sample is Y = ZLI X; . This statistic has the hypergeometric distribution with parameter IV, r, and n, and has
probability density function given by

PY=y)= y € {max{0, N —n+r},...,min{n,r}} (7.2.49)

N n ’
() v N
The hypergeometric model is studied in more detail in the chapter on Finite Sampling Models.

As above, let X = (X7, X, ..., X,,) be the observed variables in the hypergeometric model with parameters N and r. Then

1. The method of moments estimator of p =7/ N is M =Y /n, the sample mean.
2. The method of moments estimator of » with N knownisU = NM = NY /n .
3. The method of moments estimator of N with r knownis V =r/M =rn/Y ifY > 0.

Proof
These results all follow simply from the fact that E(X) =P(X =1)=r/N .

In the voter example (3) above, typically N and r are both unknown, but we would only be interested in estimating the ratio
p=r/N. In the reliability example (1), we might typically know N and would be interested in estimating . In the wildlife
example (4), we would typically know r and would be interested in estimating IN. This example is known as the capture-recapture
model.

Clearly there is a close relationship between the hypergeometric model and the Bernoulli trials model above. In fact, if the
sampling is with replacement, the Bernoulli trials model would apply rather than the hypergeometric model. In addition, if the
population size N is large compared to the sample size n, the hypergeometric model is well approximated by the Bernoulli trials
model.

This page titled 7.2: The Method of Moments is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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