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3.12: General Measures

Basic Theory

Our starting point in this section is a measurable space (.S, .%). That is, S is a set and . is a o-algebra of subsets of S. So far, we
have only considered positive measures on such spaces. Positive measures have applications, as we know, to length, area, volume,
mass, probability, counting, and similar concepts of the nonnegative “size” of a set. Moreover, we have defined the integral of a
measurable function f : S — R with respect to a positive measure, and we have studied properties of the integral.

Definition
But now we will consider measures that can take negative values as well as positive values. These measures have applications to
electric charge, monetary value, and other similar concepts of the “content” of a set that might be positive or negative. Also, this

generalization will help in our study of density functions in the next section. The definition is exactly the same as for a positive
measure, except that values in R* = RU{—o00, 0o} are allowed.

A measure on (S, ) is a function p : ¥ — R* that satisfies the following properties:

1. pu(@)=0
2.1f {A; : i € I} is a countable, disjoint collection of sets in & then pu (U;c; 4i) = > ;c; 1(4s)

As before, (b) is known as countable additivity and is the critical assumption: the measure of a set that consists of a countable
number of disjoint pieces is the sum of the measures of the pieces. Implicit in the statement of this assumption is that the sum in (b)
exists for every countable disjoint collection {A4; : ¢ € I'}. That is, either the sum of the positive terms is finite or the sum of the
negative terms is finite. In turn, this means that the order of the terms in the sum does not matter (a good thing, since there is no
implied order). The term signed measure is used by many, but we will just use the simple term measure, and add appropriate
adjectives for the special cases. Note that if u(A) >0 for all A € 7, then p is a positive measure, the kind we have already
studied (and so the new definition really is a generalization). In this case, the sum in (b) always exists in [0, co]. If 4(A) € R for all
A € % then u is a finite measure. Note that in this case, the sum in (b) is absolutely convergent for every countable disjoint
collection {A; : ¢ € I'}.If u is a positive measure and p(S) =1 then p is a probability measure, our favorite kind. Finally, as with
positive measures, y is o-finite if there exists a countable collection {4;:4 € I} of sets in % such that S=J,.; 4; and
u(A;) eR foriel.

Basic Properties

We give a few simple properties of general measures; hopefully many of these will look familiar. Throughout, we assume that p is
a measure on (.5, ). Our first result is that although p can take the value co or —oo, it turns out that it cannot take both of these
values.

Either p(A) > —oo forall A € % or p(A) < oo forall A € <.

Proof

Suppose that there exist A, B € . with u(A4) =00 and p(B) =—oco. Then A= (ANB)U(A\ B) and the sets in the
union are disjoint. By the additivity assumption, p(A) = p(ANB)+u(A\ B) . Similarly, u(B) = u(ANB)+u(B\ A4) .
The only way that both of these equations can make sense is for u(A\ B) = oo, u(B\ A) = —o0, and (AN B) € R . But
then u(A A B) = u(A\ B) +u(B\ A) is undefined, and so we have a contradiction.

We will say that two measures are of the same type if neither takes the value oo or if neither takes the value —co. Being of the same
type is trivially an equivalence relation on the collection of measures on (5, .%#).

The difference rule holds, as long as the sets have finite measure:
Suppose that A, B € . If u(B) € R then u(B\ A) = u(B) —pu(ANB) .
Proof

Note that B=(ANB)U(B\ A) and the sets in the union are disjoint. Thus p(B) =u(ANB)+u(B\ A) . Since
u(B) € R, we must have (AN B) € R and u(B\ A) € R also, and then the difference rule holds by subtraction.

https://stats.libretexts.org/@go/page/10152



https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10152?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/03%3A_Distributions/3.12%3A_General_Measures

LibreTextsw

The following corollary is the difference rule for subsets, and will be needed below.

Suppose that A, B€ . and A C B.If u(B) € R then p(A4) € R and u(B\ 4) = u(B) —p(4) .
Proof

Note that B= AU (B\ A) and the sets in the union are disjoint. Thus u(B) = pu(A)+ p(B\ A) . Since p(B) € R, we
must have u(A) € R and pu(B\ A) € R also, and then the difference rule holds by subtraction.

As a consequence, suppose that A, B€ . and A C B. If u(A) = 0o, then by the infinity rule we cannot have p(B) = —oo and
by the difference rule we cannot have p(B) € R, so we must have u(B) = oo . Similarly, if u(A) = —oco then pu(B) = —oo. The
inclusion-exclusion rules hold for general measures, as long as the sets have finite measure.

Suppose that A; € .7 for each ¢ € I where #(I) =n, and that u(4;) € R for i € I. Then
(UA) Z Dt N (ﬂAj> (3.12.1)
el k=1 JCI, #(J)=k JjeJ
Proof

For n =2, note that A; U Ay = A; U(As\ A1) and the sets in the last union are disjoint. By the additivity axiom and the
difference rule (3),

The general result then follows by induction, just like the proof for probability measures.

The continuity properties hold for general measures. Part (a) is the continuity property for increasing sets, and part (b) is the
continuity property for decreasing sets.

Suppose that 4,, € . forn € N, .
LIf A, C A,y forn e Ny thenlim, o p(An) = p(Uio; 4i) -
2.1f Ay1 C A, forn €Ny and pu(A4;) € R, then limy, o p(An) = (N2 Ai)
Proof
The proofs are almost the same as for positive measures, except for technicalities involving oo and —oo.

1. Let A =J;2; A; . From the infinity rule and the difference rule, if pu(A,,) = oo (respectively —oo) for some m € N,
then u(A,) = oo (—o0) for n > m and p(A) = co (—o0), so the result trivially holds. Thus, assume that u(4,) € R for
allm € N, .Let By = A; andlet B; = A;\ A;—; fori€{2,3,...} Then {B; : i € N, } is a disjoint collection of sets
and also has union A. Moreover, from the difference rule, p(B;) = p(Air1) — p(4;) fori € {2,3,...}. Thus

iu _JE&Z“ = lim (/‘(Al)"’_i[N(Ai)_ﬂ(Ail)]) = lim p(4,)  (3.12.3)
=2

i=1

2.LetC,, = Ay \ A, forn € Ny.Then C,, C Cpyy forn € Ny and 32, C; = A; \ N2y 4; . Part (a) applies, so
limy, o0 p(Cr) = p (Ui, Cs) - But by the difference rule, u(Cy) = p(A1) — u(Ay) forn € Ny and
(U2, Ci) = (A1) — (N4 As) . All of these are real numbers, so subtracting j(A;) gives the result.

Recall that a positive measure is an increasing function, relative to the subset partial order on .# and the ordinary order on [0, o],
and this property follows from the difference rule. But for general measures, the increasing property fails, and so do other
properties that flow from it, including the subadditive property (Boole's inequality in probability) and the Bonferroni inequalities.
Constructions

It's easy to construct general measures as differences of positive measures.

Suppose that p and v are positive measures on (.S, ) and that at least one of them is finite. Then § = ;1 — v is a measure.

Proof
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Suppose that v is a finite measure; the proof when g is finite is similar. First, §(0) = u(0) —v(0) =0 . Suppose that
{A; : i € I'} is a countable, disjoint collection of sets in .# and let A = |J,; 4;. Then

S(A) = p(A) —v(A) = pu(Ai) = v(4) (3.12.4)

i€l iel
Since v(4;) < oo fori € I, we can combine terms to get

5(A) = Y [u(4i) —v(4)] = 3 6(A)) (3.12.5)

el el

The collection of measures on our space is closed under scalar multiplication.

If 1 is a measure on (S, %) and ¢ € R, then cp is a measure on (S, %)
Proof

First, (cp)(0) = cp(0) = c0 = 0 . Next suppose that { A; : ¢ € I'} is a countable, disjoint collection of sets in .. Then

(cp) (Ufh-) =cp <UAi) =c> w(A) =) cu(4) =) (cu)(Ai) (3.12.6)

el el el el el

The last step is the important one, and holds since the sum exists.

If u is a finite measure, then so is cu for ¢ € R. If u is not finite then p and cy are of the same type if ¢ > 0 and are of opposite
types if ¢ < 0. We can add two measures to get another measure, as long as they are of the same type. In particular, the collection
of finite measures is closed under addition as well as scalar multiplication, and hence forms a vector space.

If p and v are measures on (.9, %) of the same type then &+ v is a measure on (S, ).

Proof

First, (u+v)(0) = u(0) +v(0) =04+0=0 . Next suppose that { 4; : ¢ € I'} is a countable, disjoint collection of sets in ..

Then
(u+v) (UA’) =pu (UA;) +v (UAz)
el el i€l
= A+ v(A) =) [w(A) +v(A) =D (n+v)(Ai)

il iel il iel
The sums can be combined because the measures are of the same type. That is, either the sum of all of the positive terms is

finite or the sum of all the negative terms is finite. In short, we don't have to worry about the dreaded indeterminate form
00— 00 .

Finally, it is easy to explicitly construct measures on a o-algebra generated by a countable partition. Such o-algebras are important
for counterexamples and to gain insight, and also because many c-algebras that occur in applications can be constructed from
them.

Suppose that & ={A; : 4 € I} is a countable partition of S into nonempty sets, and that . = o(&7). For ¢ € I, define
1(A;) € R* arbitrarily, subject only to the condition that the sum of the positive terms is finite, or the sum of the negative
terms is finite. For A =J e A; where J C I, define

u(A) =Y u(4)) (3.12.7
jeT
Then p is a measure on (.5, ).
Proof

Recall that every A € . has a unique representation of the form A =J,_; A; where JC I.

jeJ

1. J =0 in the representation gives A = (). The sum over an empty index set is 0, so () = 0.
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2. Suppose that { By, : k € K} is a countable, disjoint collection of events in .%. Then for each k € K there exists J; C I
and {A;c 1j€E Jk} C of suchthat By =J,., A*.Hence

IS0/
(U] =s(UUs) - T 5y - 3wt 8.12:9)
keK keK jeJy kek jeJi, keK

The fact that either the sum of all positive terms is finite or the sum of all the negative terms is finite means that we do not
have to worry about the order of summation.

Positive, Negative, and Null Sets

To understand the structure of general measures, we need some basic definitions and properties. As before, we assume that p is a
measure on (S, &)

Definitions

1. A € & is a positive set for p if u(B) >0 for every B€ . with BC A.
2. A € & is a negative set for p if pu(B) <0 forevery B€ . with BC A.
3. A€ isanull set for p if u(B) =0 forevery B€ ¥ with BC A.

Note that positive and negative are used in the weak sense (just as we use the terms increasing and decreasing in this text). Of
course, if p is a positive measure, then every A € . is positive for u, and A € . is negative for y if and only if A is null for p if
and only if u(A)=0. For a general measure, A € . is both positive and negative for y if and only if A is null for y. In
particular, @ is null for u. A set A € . is a support set for y if and only if A° is a null set for p. A support set is a set where the
measure “lives” in a sense. Positive, negative, and null sets for yx have a basic inheritance property that is essentially equivalent to
the definition.

Suppose A € .¥.

1. If A is positive for p then B is positive for p for every B € . with BC A.
2.1f A is negative for p then B is negative for u for every B € . with BC A.
3.1If A is null for y then B is null for y for every B € . with BC A.

The collections of positive sets, negative sets, and null sets for y are closed under countable unions.

Suppose that { 4; : ¢ € I} is a countable collection of sets in ..

1. If A; is positive for p for ¢ € I then J,.; A; is positive for .
2.1f A; is negative for p for i € I then | J,.; A; is negative for p.
3.If A; is null for p for i € I then | J,; A; is null for p.

Proof
We will prove (a); the proofs for (b) and (c) are analogous. Without loss of generality, we can suppose that I =N, . Let
A=7 A, Now let By =A; and B, =4, \ (Uf:_ll Ai) for n € {2,3,...}. Them {B,:n€N,} is a countable,

disjoint collection in ., and | J;” ; B, = A.If C C A then C =J,” ;(C'N B,,) and the sets in this union are disjoint. Hence
by additivity, u(C) =Y u(CNB,) .ButCNB, CB, CA, sou(CNB,)>0.Henceu(C)>0.

It's easy to see what happens to the positive, negative, and null sets when a measure is multiplied by a non-zero constant.

Suppose that 4 is a measure on (S, %), c € R,and 4 € ..

1. If ¢ > 0 then A is positive (negative) for y if and only if A is positive (negative) for cp.
2.1f ¢ < 0 then A is positive (negative) for y if and only if A is negative (positive) for cp.
3.1f ¢ # 0 then A is null for p if and only if A is null for cpe

Positive, negative, and null sets are also preserved under countable sums, assuming that the measures make senes.
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Suppose that ; is a measure on (S, %) for each ¢ in a countable index set I, and that 4 =), _; p1; is a well-defined measure
on (S,.). Let A€ 7.

1. If A is positive for p; for every i € I then A is positive for p.
2.1f A is negative for y; for every ¢ € I then A is negative for p.
3.If A is null for y; for every ¢ € I then A is null for p.

In particular, note that 4 =), _; p4; is a well-defined measure if y; is a positive measure for each i € I, or if I is finite and y; is a
finite measure for each 7 € I. It's easy to understand the positive, negative, and null sets for a o-algebra generated by a countable
partition.

Suppose that & = {A; :4 € I} is a countable partition of S into nonempty sets, and that . = o(&/). Suppose that p is a
measure on (S, .%). Define

I.={iel:pu(4)>0}, I_={iel:u(4;)<0}, Iy={icl:pu(4)=0} (3.12.9)

Let A€ ./, sothat A=|J, ; A; for some J C I (and this representation is unique). Then

jeJ
1. A is positive for g if and only if J C I, Uy .
2. A is negative for p if and only if JC I U Iy .
3. A is null for g if and only if J C Ij.

The Hahn Decomposition

The fundamental results in this section and the next are two decomposition theorems that show precisely the relationship between
general measures and positive measures. First we show that if a set has finite, positive measure, then it has a positive subset with at
least that measure.

If Ac . and 0 < p(A) < oo then there exists P € . with P C A such that P is positive for p and p(P) > pu(A).

Proof

The proof is recursive, and works by successively removing sets of negative measure from A. For the initialization step, let
Ay = A. Then trivially, Ag C A and pu(Ag) > p(A) . For the recursive step, suppose that A,, € % has been defined with
A, CA  and p(4,)>p(4). If A, is positive for p, let P=A,. Otherwise let
a, =inf{u(B): B€ ¥,BC A,, u(B) <0} . Note that since A,, is not positive for y, the set in the infimum is nonempty
and hence a,, <0 (and possibly —o0). Let b, = a, /2 if —00 <a, <0 and let b, =—1 if a, = —oc0 . Since b, > a, , by
definition of the infimum, there exists B, C A with u(B,,) <b, .Let 4,11 = A, \ B, . Then 4,,,; C A, C A and

1A 1) = p(An) — (Bn) > p(An) — by > p(Ar) > u(A) (3.12.10)

Now, if the recursive process terminates after a finite number of steps, P is well defined and is positive for p. Otherwise, we
have a disjoint sequence of sets (By, Bs,...). Let P = A\ (U;°; B;) . Then P C A, and by countable additivity and the
difference rule,

H(P) = p(A) =D _ 1(Ba) = p(A) =D _bn = p(4) (3.12.11)

Suppose that BC P and u(B) <0. Then BC A, and by definition, a, < p(B) for every n € N, . It follows that
b, < %N(B) or b, =—1 for every n € N;. Hence ) > b, =—oco0 and therefore u(P)=o00, a contradiction since
1(A) < oo . Hence we must have p(B) > 0 and thus P is positive for .

The assumption that p(A) < co is critical; a counterexample is given below. Our first decomposition result is the Hahn
decomposition theorem, named for the Austrian mathematician Hans Hahn. It states that .S’ can be partitioned into a positive set and
a negative set, and this decomposition is essentially unique.

Hahn Decomposition Theorem. There exists P € .% such that P is positive for 2 and P¢ is negative for u. The pair (P, P°)
is a Hahn decomposition of S. If (Q, Q°) is another Hahn decomposition, then P A @ is null for .

Proof
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Suppose first that x4 does not take the value co. As with the previous result, the proof is recursive. For the initialization step, let
Py = (. Then trivially, Py is positive for u. For the recursive step, suppose that P, € . is positive for p. If P¢ is negative for
u, let P = P, . Otherwise let a,, =sup{u(4): A € &, A C P¢} . Since P is not negative for y, it follows that a,, > 0 (and
possibly co). Let b, = a,/2 if 0 < a, < oo and b, =1 if a, = co. Then b, < a,, so there exists B,, € . with B,, C P¢
and p(By) > b, > 0 . By the previous lemma, there exists 4,, € & with A,, C B,, , A, positive for u, and p(A4,) > u(B,) .
Let P, .1 = P,UA, . Then P, ; € .% is positive for p.

If the recursive process ends after a finite number of steps, then P is well-defined and (P, P¢) is a Hahn decomposition.
Otherwise we generate an infinite sequence (A1, As, . ..) of disjoint sets in .7, each positive for p. Let P = J7° ; A, . Then
P € & is positive for p by the closure result above. Let A C P¢. If pu(A) >0 then u(A) <a, for every n € N, . Hence
b, > %,LI,(A) or b, =1 for every n € N . But then

,u(P):iu(An) Ziu(Bn) zibn =00 (3.12.12)

n=1
a contradiction. Hence p(A) <0 so P¢ is negative for p and thus (P, P¢) is a Hahn decomposition.

Suppose that (@, Q°) is another Hahn decomposition of S. Then P N Q° and @ N P¢ are both positive and negative for y and
hence are null for . Hence P A Q = (PN Q°)U(QNP¢) isnull for y.

Finally, suppose that u takes the value co. Then p does not take the value —oo by the infinity rule and hence —yp does not take
the value co. By our proof so far, there exists a Hahn decomposition (P, P€) for —u that is essentially unique. But then
(P¢, P) is a Hahn decomposition for .

It's easy to see the Hahn decomposition for a measure on a o-algebra generated by a countable partition.

Suppose that & = {A; :4 € I} is a countable partition of S into nonempty sets, and that . = o(&/). Suppose that y is a
measure on (S, ). Let I, ={i € I : u(A;) >0} and Iy ={i € I : u(A;) =0 . Then (P, P¢) is a Hahn decomposition of
p if and only if the positive set P has the form P = UjeJ Aj where J=I, UK and K C I .

The Jordan Decomposition

The Hahn decomposition leads to another decomposition theorem called the Jordan decomposition theorem, named for the French
mathematician Camille Jordan. This one shows that every measure is the difference of positive measures. Once again we assume
that y is a measure on (S, .%).

Jordan Decomposition Theorem. The measure p can be written uniquely in the form g = g —pu— where p and p_ are
positive measures, at least one finite, and with the property that if (P, P¢) is any Hahn decomposition of S, then P¢ is a null
set of 4 and P is a null set of p_. The pair (u, p—) is the Jordan decomposition of .

Proof
Let (P, P¢) be a Hahn decomposition of S relative to p. Define pi (A) =pu(ANP) and p_(A)=—-p(ANPC) for

A€ & Then py and p_ are positive measures and p = 1+ — p— . Moreover, since p cannot take both co and —oo as values
by the infinity rule, one of these two positive measures is finite.

Suppose that (@, Q) is an arbitrary Hahn decomposition. If A C Q¢, then u; (A) = u(PNA)=0 since PNQ° is a null
set of p by the Hahn decomposition theorem. Similarly if A C @ then p_ (A) = u(P*NA)=0 since P°NQ is a null set

of p.
Suppose that pu=wv, —v_ is another decomposition with the same properties. If A€ . then
pi(A)=p(ANP)=[v (ANP)—v_(ANP)|=v (ANP)] . But also

vi(A)=v (ANP)+vi(ANP°)=v.(ANP) .Hencev, = p, and thereforealsov_ = p_.

The Jordan decomposition leads to an important set of new definitions.

Suppose that ;2 has Jordan decomposition pp = 1y —p— .

1. The positive measure p is called the positive variation measure of p.
2. The positive measure p_ is called the negative variation measure of p.
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3. The positive measure |u| = p +p— is called the total variation measure of p.
4. |||l = || (S) is the total variation of p.

Note that, in spite of the similarity in notation, p (A) and pu—_(A) are not simply the positive and negative parts of the (extended)
real number p(A), nor is || (A) the absolute value of p(A). Also, be careful not to confuse the total variation of x4, a number in
[0, oo], with the total variation measure. The positive, negative, and total variation measures can be written directly in terms of .

ForAe .7,
1. pi(A) =sup{u(B): Be ¥/, BC A}
2. pu_(A)=—inf{u(B): Be &,BC A}
3. [u(A)| =sup {3, u(A;) : {4 : i € I'} is a finite, measurable partition of A}
4. ||pll = sup {3 icr u(A;) : {A; : i € I} is a finite, measurable partition of S}

The total variation measure is related to sum and scalar multiples of measures in a natural way.

Suppose that y and v are measures of the same type and that ¢ € R. Then

1. |u| = 0 if and only if g = 0 (the zero measure).
2. |ep| = el |l
3. |p+v| <|ul+v|
Proof
1. Since py, pi— and |p| = p4 4+ p—  are positive measures, |p| = 0 if and only if gy = p— =0 if and only if x =0.
2.If ¢ >0 then (cu)+ = cp and (cu)- =cp— . If ¢ <0 then (cp)y = —cp— and (cp)- = —cpy . Of course, if ¢ = 0 then
(ep)+ = (cpu)— =0.1In all cases,

lepl = (ep)+ + (cp) - = el (ps +p-) = el (3.12.13)
3. From the theorem above, (u+v)y <p; +vy and (u+v)- <p_ +v_ .So

lwt+vl =@p+v)e+@+v)- <(pr +vi)+(p- +v-)
= iy )+ () = [+ o]

You may have noticed that the properties in the last result look a bit like norm properties. In fact, total variation really is a norm on
the vector space of finite measures on (.5, %)

Suppose that ¢ and v are measures of the same type and that ¢ € R. Then

1. |||l = 0 if and only if & = O (the zero property)

2. ||lepll = [e| ||| (the scaling property)
3. |p+v| <|pll+]v| (the triangle inequality)

Proof
1. Since |p| is a positive measure, ||u|| = |p(S)| =0 if and only if || = 0. From part (a) of the previous theorem, |u| =0 if
andonly if p =0.
2. From part (b) of the previous theorem, ||ep|| = [ep(S)| = |c||(S)| = |e||| p|l-
3. From part (c) of the previous theorem, ||+ p|| = | +v|(S) < |p|(S) + |v|(S) = ||pl +||v] -

Every norm on a vector space leads to a corresponding measure of distance (a metric). Let .# denote the collection of finite
measures on (.5, ). Then .#, under the usual definition of addition and scalar multiplication of measures, is a vector space, and
as the last theorem shows, || - || is a norm on .. Here are the corresponding metric space properties:

Suppose that u, v, p € A and ¢ € R. Then

1 ||u—v| =||v— ul| , the symmetric property
2. ||»] = 0 if and only if p = 0, the zero property
3l —pll < |p—v| + v —p| , the triangle inequality
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Now that we have a metric, we have a corresponding criterion for convergence.

Suppose that p, € # for n € N, and p € 4 . We say that p, — p as n — oo in total variation if ||u, —p| — 0 as
n—00.

Of course, . includes the probability measures on (.S, .7), so we have a new notion of convergence to go along with the others
we have studied or will study. Here is a list:

e convergence with probability 1
e convergence in probability

e convergence in distribution

e convergence in kth mean

e convergence in total variation

The Integral

Armed with the Jordan decomposition, the integral can be extended to general measures in a natural way.

Suppose that 4 is a measure on (.S, .#) and that f : S — R is measurable. We define

/Sfdu=/sfdu+—/5fduf (3.12.14)

assuming that the integrals on the right exist and that the right side is not of the form co — oo .

We will not pursue this extension, but as you might guess, the essential properties of the integral hold.

Complex Measures
Again, suppose that (S, %) is a measurable space. The same axioms that work for general measures can be used to define complex
measures. Recall that C = {z +iy : z, y € R} denotes the set of complex numbers, where { is the imaginary unit.

A complex measure on (S, ) is a function p : ¥ — C that satisfies the following properties:

L u(@)=0
2.1f {A; : i € I} is a countable, disjoint collection of sets in . then p (U;c; 4i) = 2 ;c; 1(4s)

Clearly a complex measure 4 can be decomposed as p = v +4p where v and p are finite (real) measures on (S, .). We will have
no use for complex measures in this text, but from the decomposition into finite measures, it's easy to see how to develop the
theory.

Computational Exercises

Counterexamples

The lemma needed for the Hahn decomposition theorem can fail without the assumption that p(A4) < oo .

Let S be a set with subsets A and B satisfying ) C BC AC S . Let ¥ = oc{A, B} be the o-algebra generated by {4, B}.
Define pu(B) = —1, u(A\ B) =0, p(A4°) =1.

1. Draw the Venn diagram of A4, B, S.

2. List the sets in ..

3. Using additivity, give the value of y on each set in ..
4. Show that A does not have a positive subset P € . with u(P) > p(A).
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