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5.39: Benford's Law
      

Benford's law refers to probability distributions that seem to govern the significant digits in real data sets. The law is named for the
American physicist and engineer Frank Benford, although the “law” was actually discovered earlier by the astronomer and mathematician
Simon Newcomb.

To understand Benford's law, we need some preliminaries. Recall that a positive real number  can be written uniquely in the form 
 (sometimes called scientific notation) where  is the mantissa and  is the exponent (both of these terms are

base 10, of course). Note that

where the logarithm function is the base 10 common logarithm instead of the usual base  natural logarithm. In the old days BC (before
calculators), one would compute the logarithm of a number by looking up the logarithm of the mantissa in a table of logarithms, and then
adding the exponent. Of course, these remarks apply to any base , not just base 10. Just replace 10 with  and the common logarithm
with the base  logarithm.

Distribution of the Mantissa

Distribution Functions

Suppose now that  is a number selected at random from a certain data set of positive numbers. Based on empirical evidence from a
number of different types of data, Newcomb, and later Benford, noticed that the mantissa  of  seemed to have distribution function 

 for . We will generalize this to an arbitrary base .

The Benford mantissa distribution with base , is a continuous distribution on  with distribution function  given by

The special case  gives the standard Benford mantissa distribution.

Proof

Note that  is continuous and strictly increasing on  with  and .

The probability density function  is given by

1.  is decreasing with mode .
2.  is concave upward.

Proof

These results follow from the CDF  above and standard calculus. Recall that .

Open the Special Distribution Simulator and select the Benford mantissa distribution. Vary the base  and note the shape of the
probability density function. For various values of , run the simulation 1000 times and compare the empirical density function to the
probability density function.

The quantile function  is given by

1. The first quartile is 

2. The median is 

3. The third quartile is 

Proof

The formula for  follows by solving  for  in terms of .

Numerical values of the quartiles for the standard (base 10) distribution are given in an exercise below.
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Open the special distribution calculator and select the Benford mantissa distribution. Vary the base and note the shape and location of
the distribution and probability density functions. For selected values of the base, compute the median and the first and third quartiles.

Moments

Assume that  has the Benford mantissa distribution with base .

The moments of  are

Proof

For ,

Note that for fixed ,  as  and  as . We will learn more about the limiting distribution below. The
mean and variance follow easily from the general moment result.

Mean and variance

1. The mean of  is

2. the variance of  is

Numerical values of the mean and variance for the standard (base 10) distribution are given in an exercise below.

In the Special Distribution Simulator, select the Benford mantissa distribution. Vary the base  and note the size and location of the
mean  standard deviation bar. For selected values of , run the simulation 1000 times and compare the empirical mean and standard
deviation to the distribution mean and standard deviation.

Related Distributions

The Benford mantissa distribution has the usual connections to the standard uniform distribution by means of the distribution function and
quantile function given above.

Suppose that .

1. If  has the standard uniform distribution then  has the Benford mantissa distribution with base .
2. If  has the Benford mantissa distribution with base  then  has the standard uniform distribution.

Proof
1. If  has the standard uniform distribution then so does  and hence  has the Benford mantissa

distribution with base .
2. The CDF  is strictly increasing on . Hence if  has the Benford mantissa distribution with base  then 

 has the standard uniform distribution and hence so does .

Since the quantile function has a simple closed form, the Benford mantissa distribution can be simulated using the random quantile method.

Open the random quantile experiment and select the Benford mantissa distribution. Vary the base  and note again the shape and
location of the distribution and probability density functions. For selected values of , run the simulation 1000 times and compare the
empirical density function, mean, and standard deviation to their distributional counterparts.

Also of interest, of course, are the limiting distributions of  with respect to the base .

The Benford mantissa distribution with base  converges to
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1. Point mass at 1 as .
2. Point mass at 0 as .

Proof

Note that the CDF of  above can be written as  for , and of course we also have  for 
 and  for .

1. As , , and , so in the limit we have  for  and  for .
2. As , , and again , so in the limit we have  for  and  for 

Since the probability density function is bounded on a bounded support interval, the Benford mantissa distribution can also be simulated via
the rejection method.

Open the rejection method experiment and select the Benford mantissa distribution. Vary the base  and note again the shape and
location of the probability density functions. For selected values of , run the simulation 1000 times and compare the empirical density
function, mean, and standard deviation to their distributional counterparts.

Distributions of the Digits
Assume now that the base is a positive integer , which of course is the case in standard number systems. Suppose that the
sequence of digits of our mantissa  (in base ) is , so that

Thus, our leading digit  takes values in , while each of the other significant digits takes values in .
Note that  is a stochastic process so at least we would like to know the finite dimensional distributions. That is, we would like
to know the joint probability density function of the first  digits for every . But let's start, appropriately enough, with the first digit
law. The leading digit is the most important one, and fortunately also the easiest to analyze mathematically.

First Digit Law

 has probability density function  given by  for . The
density function  is decreasing and hence the mode is .

Proof

Note that  if and only if  for . Hence using the PDF of  above,

Note that when ,  deterministically, which of course has to be the case. The first significant digit of a number in base 2 must be
1. Numerical values of  for the standard (base 10) distribution are given in an exercise below.

In the Special Distribution Simulator, select the Benford first digit distribution. Vary the base  with the input control and note the shape
of the probability density function. For various values of , run the simulation 1000 times and compare the empirical density function to
the probability density function.

 has distribution function  given by  for .

Proof

Using the PDF of  above note that

More generally,  for 

 has quantile function  given by  for .
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2. The median is .
3. The third quartile is .

Proof

As usual, the formula for  follows from the CDF , by solving  for  in terms of .

Numerical values of the quantiles for the standard (base 10) distribution are given in an exercise below.

Open the special distribution calculator and choose the Benford first digit distribution. Vary the base and note the shape and location of
the distribution and probability density functions. For selected values of the base, compute the median and the first and third quartiles.

For the most part the moments of  do not have simple expressions. However, we do have the following result for the mean.

.

Proof

From the PDF of  above and using standard properties of the logarithm,

The product in the displayed equation simplifies to , and the base  logarithm of this expression is 
.

Numerical values of the mean and variance for the standard (base 10) distribution are given in an exercise below.

Opne the Special Distribution Simulator and select the Benford first digit distribution. Vary the base  with the input control and note
the size and location of the mean  standard deviation bar. For various values of , run the simulation 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation..

Since the quantile function has a simple, closed form, the Benford first digit distribution can be simulated via the random quantile method.

Open the random quantile experiment and select the Benford first digit distribution. Vary the base  and note again the shape and
location of the probability density function. For selected values of the base, run the experiment 1000 times and compare the empirical
density function, mean, and standard deviation to their distributional counterparts.

Higher Digits

Now, to compute the joint probability density function of the first  significant digits, some additional notation will help.

If  and  for , let

Of course, this is just the base  version of what we do in our standard base 10 system: we represent integers as strings of digits between 0
and 9 (except that the first digit cannot be 0). Here is a base 5 example:

The joint probability density function  of  is given by

Proof

Note that . where

Hence using the PDF of  and properties of logarithms,
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The probability density function of  in the standard (base 10) case is given in an exercise below. Of course, the probability density
function of a given digit can be obtained by summing the joint probability density over the unwanted digits in the usual way. However,
except for the first digit, these functions do not reduce to simple expressions.

The probability density function  of  is given by

The probability density function of  in the standard (base 10) case is given in an exercise below.

Theoretical Explanation

Aside from the empirical evidence noted by Newcomb and Benford (and many others since), why does Benford's law work? For a
theoretical explanation, see the article A Statistical Derivation of the Significant Digit Law by Ted Hill.

Computational Exercises

In the following exercises, suppose that  has the standard Benford mantissa distribution (the base 10 decimal case), and that 
are the digits of .

Find each of the following for the mantissa 

1. The density function .
2. The mean and variance
3. The quartiles

Answer

1. 

2. , 
3. , , 

For , find each of the following numerically

1. The probability density function
2. The mean and variance
3. The quartiles

Answer

1. 

1 0.3010

2 0.1761

3 0.1249

4 0.0969

5 0.0792

6 0.0669

7 0.0580

8 0.0512

9 0.0458

2. , 
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Explicitly compute the values of the joint probability density function of .

Answer

2 3 4 5 6 7 8 9

0.0414 0.0212 0.0142 0.0107 0.0086 0.0072 0.0062 0.0054 0.0048

1 0.0378 0.0202 0.0138 0.0105 0.0084 0.0071 0.0061 0.0053 0.0047

2 0.0348 0.0193 0.0134 0.0102 0.0083 0.0069 0.0060 0.0053 0.0047

3 0.0322 0.0185 0.0130 0.0100 0.0081 0.0068 0.0059 0.0052 0.0046

4 0.0300 0.0177 0.0126 0.0098 0.0080 0.0067 0.0058 0.0051 0.0046

5 0.0280 0.0170 0.0122 0.0092 0.0078 0.0066 0.0058 0.0051 0.0045

6 0.0263 0.0164 0.0119 0.0093 0.0077 0.0065 0.0057 0.0050 0.0045

7 0.0248 0.0158 0.0116 0.0091 0.0076 0.0064 0.0056 0.0050 0.0045

8 0.0235 0.0152 0.0113 0.0090 0.0074 0.0063 0.0055 0.0049 0.0044

9 0.0223 0.0147 0.0110 0.0088 0.0073 0.0062 0.0055 0.0049 0.0044

For , find each of the following numerically

1. The probability density function
2. 
3. 

Answer

1. 

0 0.1197

1 0.1139

2 0.1088

3 0.1043

4 0.1003

5 0.0967

6 0.0934

7 0.0904

8 0.0876

9 0.0850

2. 
3. 

Comparing the result for  and the result result for  , note that the distribution of  is flatter than the distribution of . In general, it
turns out that distribution of  converges to the uniform distribution on  as . Interestingly, the digits are
dependent.

 and  are dependent.

Proof

This result follows from the joint PDF, the marginal PDF of , and the marginal PDF of  above.

Find each of the following.
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This page titled 5.39: Benford's Law is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services)
via source content that was edited to the style and standards of the LibreTexts platform.
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