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1.9: Topological Spaces
        

Topology is one of the major branches of mathematics, along with other such branches as algebra (in the broad sense of algebraic
structures), and analysis. Topology deals with spatial concepts involving distance, closeness, separation, convergence, and
continuity. Needless to say, entire series of books have been written about the subject. Our goal in this section and the next is
simply to review the basic definitions and concepts of topology that we will need for our study of probability and stochastic
processes. You may want to refer to this section as needed.

Basic Theory

Definitions

A topological space consists of a nonempty set  and a collection  of subsets of  that satisfy the following properties:

1.  and 
2. If  then 
3. If  and  is finite, then 

If , then  is said to be open and  is said to be closed. The collection  of open sets is a topology on .

So the union of an arbitrary number of open sets is still open, as is the intersection of a finite number of open sets. The universal set
 and the empty set  are both open and closed. There may or may not exist other subsets of  with this property.

Suppose that  is a nonempty set, and that  and  are topologies on . If  then  is finer than , and  is
coarser than . Coarser than defines a partial order on the collection of topologies on . That is, if  are topologies
on  then

1.  is coarser than , the reflexive property.
2. If  is coarser than  and  is coarser than  then , the anti-symmetric property.
3. If  is coarser than  and  is coarser than  then  is coarser than , the transitive property.

A topology can be characterized just as easily by means of closed sets as open sets.

Suppose that  is a nonempty set. A collection of subsets  is the collection of closed sets for a topology on  if and only if

1.  and 
2. If  then .
3. If  and  is a finite then .

Proof

The set  must satisfy the axioms of a topology. So the result follows DeMorgan's laws: if  is a collection
of subsets of  then

Suppose that  is a topological space, and that . A set  is a neighborhood of  if there exists  with 
.

So a neighborhood of a point  is simply a set with an open subset that contains . The idea is that points in a “small”
neighborhood of  are “close” to  in a sense. An open set can be defined in terms of the neighborhoods of the points in the set.

Suppose again that  is a topological space. A set  is open if and only if  is a neighborhood of every 

Proof
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If  is open, then clearly  is a neighborhood of every point  and clearly satisfies the condition in the theorem.
Conversely, suppose that  is a neighborhood of every . Then by definition of neighborhood, for every  there
exists an open set  with . But then  is open, and clearly this set is .

Although the proof seems trivial, the neighborhood concept is how you should think of openness. A set  is open if every point in 
 has a set of “nearby points” that are also in .

Our next three definitions deal with topological sets that are naturally associated with a given subset.

Suppose again that  is a topological space and that . The closure of  is the set

This is the smallest closed set containing :

1.  is closed.
2. .
3. If  is closed and  then 

Proof

Note that  is nonempty since .

1. The sets in  are closed so  is closed.
2. By definition,  for each . Hence .
3. If  is closed and  then  so .

Of course, if  is closed then . Complementary to the closure of a set is the interior of the set.

Suppose again that  is a topological space and that . The interior of  is the set

This set is the largest open subset of :

1.  is open.
2. .
3. If  is open and  then 

Proof

Note that  is nonempty since .

1. The sets in  are open so  is open.
2. By definition,  for each . Hence .
3. If  is open and  then  so .

Of course, if  is open then . The boundary of a set is the set difference between the closure and the interior.

Suppose again that  is a topological space. The boundary of  is . This set is closed.

Proof

By definition, , the intersection of two closed sets.

A topology on a set induces a natural topology on any subset of the set.

Suppose that  is a topological space and that  is a nonempty subset of . Then  is a topology
on , known as the relative topology induced by .

Proof

First  and , so . Next,  and  so . Suppose that . For each ,
select  such that . Let  denote the collection of sets selected (we need the axiom of choice to do this).

U U x ∈ U

U x ∈ U x ∈ U

Ux x ∈ ⊆ UUx ⋃x∈U Ux U

U

U U

(S,S ) A ⊆ S A

cl(A) =⋂{B ⊆ S : B is closed and A ⊆ B} (1.9.1)

A
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B A ⊆ B cl(A) ⊆ B
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Then  and , so . Finally, suppose that  is finite. Once again, for each 
there exists  with . Let  denote the collection of sets selected. Then  is finite so . But 

 so .

In the context of the previous result, note that if  is itself open, then the relative topology is , the subsets
of  that are open in the original topology.

Separation Properties

Separation properties refer to the ability to separate points or sets with disjoint open sets. Our first definition deals with separating
two points.

Suppose that  is a topological space and that  are distinct points in . Then  and  can be separated if there exist
disjoint open sets  and  with  and . If every pair of distinct points in  can be separated, then  is called
a Hausdorff space.

Hausdorff spaces are named for the German mathematician Felix Hausdorff. There are weaker separation properties. For example,
there could be an open set  that contains  but not , and an open set  that contains  but not , but no disjoint open sets that
contain  and . Clearly if every open set that contains one of the points also contains the other, then the points are
indistinguishable from a topological viewpoint. In a Hausdorff space, singletons are closed.

Suppose that  is a Hausdorff space. Then  is closed for each .

Proof

The definition shows immediately that  is open: if , there exists on open set  with .

Our next definition deals with separating a point from a closed set.

Suppose again that  is a topological space. A nonempty closed set  and a point  can be separated if there
exist disjoint open sets  and  with  and . If every nonempty closed set  and point  can be separated,
then the space  is regular.

Clearly if  is a regular space and singleton sets are closed, then  is a Hausdorff space.

Bases

Topologies, like other set structures, are often defined by first giving some basic sets that should belong to the collection, and the
extending the collection so that the defining axioms are satisfied. This idea is motivation for the following definition:

Suppose again that  is a topological space. A collection  is a base for  if every set in  can be written as a
union of sets in .

So, a base is a smaller collection of open sets with the property that every other open set can be written as a union of basic open
sets. But again, we often want to start with the basic open sets and extend this collection to a topology. The following theorem
gives the conditions under which this can be done.

Suppose that  is a nonempty set. A collection  of subsets of  is a base for a topology on  if and only if

1. 
2. If  and , there exists  with 

Proof

Suppose that  is a base for a topology  on . Since  is open,  is a union of sets in . Since every set in  is a subset of
, we must have . Suppose that  and that . Since  is open, it's a union of sets in . The

point  must be in one of those sets, so there exists  with .

Suppose now that  satisfies the two conditions in the theorem. Let  be the collection of all unions of sets in . Then 
 by condition (a), and  by taking a vacuous union. Suppose that  for  where  is an arbitrary index
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set. Then for each , there exists an index set  such that  where  for each . But then

Finally, suppose that . Then there exist index sets  and  with  and  where 
for all  and  for all . Then

By condition (b), for each , , and  there exists  with . But then clearly

Here is a slightly weaker condition, but one that is often satisfied in practice.

Suppose that  is a nonempty set. A collection  of subsets of  that satisfies the following properties is a base for a topology
on :

1. 
2. If  then 

Part (b) means that  is closed under finite intersections.

Compactness

Our next discussion considers another very important type of set. Some additional terminology will make the discussion easier.
Suppose that  is a set and . A collection of subsets  of  is said to cover  if . So the word cover simply means
a collection of sets whose union contains a given set. In a topological space, we can have open an open cover (that is, a cover with
open sets), a closed cover (that is, a cover with closed sets), and so forth.

Suppose again that  is a topological space. A set  is compact if every open cover of  has a finite sub-cover.
That is, if  with  then there exists a finite  with .

So intuitively, a compact set is compact in the ordinary sense of the word. No matter how “small” are the open sets in the covering
of , there will always exist a finite number of the open sets that cover .

Suppose again that  is a topological space and that  is a compact. If  is closed, then  is also compact.

Proof

Suppose that  is an open cover of . Since  is closed,  is open, so  is an open cover of . Since  is
compact, this last collection has a finite sub-cover of , which is also a finite sub-cover of .

Compactness is also preserved under finite unions.

Suppose again that  is a topological space, and that  is compact for each  in a finite index set . Then 
 is compact.

Proof

Suppose that  is an open cover of . Then trivially,  is also an open cover of  for each . Hence there exists a finite
subcover  of  for each . But then  is also finite and is a covering of .

As we saw above, closed subsets of a compact set are themselves compact. In a Hausdorff space, a compact set is itself closed.

Suppose that  is a Hausdorff space. If  is compact then  is closed.

Proof

i ∈ I Ji =Ui ⋃j∈Ji
Bi,j ∈BBi,j j∈ Ji

= ∈S⋃
i∈I

Ui ⋃
i∈I

⋃
j∈Ji

Bi,j (1.9.3)

U, V ∈S I J U =⋃i∈I Ai V =⋃j∈J Bj ∈BAi

i ∈ I ∈BBj j∈ J

U ∩V = ( ∩ )⋃
i∈I,j∈J

Ai Bj (1.9.4)

i ∈ I j∈ J x ∈ ∩Ai Bj ∈BCx,i,j x ∈ ⊆ ∩Cx,i,j Ai Bj

U ∩V =⋃{ : i ∈ I, j∈ J, x ∈ ∩ } ∈SCx,i,j Ai Bj (1.9.5)
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S
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B
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C C
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(S,S ) ⊆ SCi i I
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We will show that  is open, so fix . For each , the points  and  can be separated, so there exist disjoint open
sets  and  such that  and . Trivially, the collection  is an open cover of , and hence there
exist a finite subset  such that  covers . But then  is open and is disjoint from .
Hence also  is disjoint from . So to summarize,  is open and .

Also in a Hausdorff space, a point can be separated from a compact set that does not contain the point.

Suppose that  is a Hausdorff space. If ,  is compact, and , then there exist disjoint open sets  and 
 with  and 

Proof

Since the space is Hausdorff, for each  there exist disjoint open sets  and  with  and . The collection 
 is an open cover of , and hence there exists a finite set  such that  covers . Thus let 

 and . Then  is open, since  is finite, and  is open. Moreover  and  are disjoint, and 
 and .

In a Hausdorff space, if a point has a neighborhood with a compact boundary, then there is a smaller, closed neighborhood.

Suppose again that  is a Hausdorff space. If  and  is a neighborhood of  with  compact, then there exists a
closed neighborhood  of  with .

Proof

By (20), there exist disjoint open sets  and  with  and . Hence  and  are disjoint. Let 
. Note that  is closed, and is a neighborhood of  since  and  are neighborhoods of . Moreover,

Generally, local properties in a topological space refer to properties that hold on the neighborhoods of a point .

A topological space  is locally compact if every point  has a compact neighborhood.

This definition is important because many of the topological spaces that occur in applications (like probability) are not compact,
but are locally compact. Locally compact Hausdorff spaces have a number of nice properties. In particular, in a locally compact
Hausdorff space, there are arbitrarily “small” compact neighborhoods of a point.

Suppose that  is a locally compact Hausdorff space. If  and  is a neighborhood of , then there exists a compact
neighborhood  of  with .

Proof

Since  is locally compact, there exists a compact neighborhood  of . Hence  is a neighborhood of . Moreover, 
 is closed and is a subset of  and hence is compact. From (21), there exists a closed neighborhood  of  with 

. Since  is closed and ,  is compact. Of course also, .

Countability Axioms

Our next discussion concerns topologies that can be “countably constructed” in a certain sense. Such axioms limit the “size” of the
topology in a way, and are often satisfied by important topological spaces that occur in applications. We start with an important
preliminary definition.

Suppose that  is a topological space. A set  is dense if  is nonempty for every nonempty .

Equivalently,  is dense if every neighborhood of a point  contains an element of . So in this sense, one can find elements
of  “arbitrarily close” to a point . Of course, the entire space  is dense, but we are usually interested in topological spaces
that have dense sets of limited cardinality.

Suppose again that  is a topological space. A set  is dense if and only if .

C c x ∈ C c y ∈ C x y

Uy Vy x ∈ Uy y ∈ Vy { : y ∈ C}Vy C

B ⊆ C { : y ∈ B}Vy C U =⋂y∈B Uy ⋃y∈B Vy

U C U x ∈ U ⊆ C c

(S,S ) x ∈ S C ⊆ S x ∉ C U

V x ∈ U C ⊆ V

y ∈ C Uy Vy x ∈ Uy y ∈ Vy
{ : y ∈ C}Vy C B ⊂ C { : y ∈ B}Vy C

U =⋂y∈B Uy V =⋃y∈B Vy U B V U V

x ∈ U C ⊆ V

(S,S ) x ∈ S A x ∂(A)
B x B ⊆ A

U V x ∈ U ∂(A) ⊆ V cl(U) ∂(A)
B = cl(A∩U) B x U A x

B ⊆ cl(A) ∩ cl(U) = [A∪ ∂(A)] ∩ cl(U) = [A∩ cl(U)] ∪ [∂(A) ∩ cl(U)] = A∩ cl(U) ⊆ A (1.9.6)

x ∈ S

(S,S ) x ∈ S

(S,S ) x ∈ S A x

B x B ⊆ A

S C x A∩C x

∂(A∩C) C B x

B ⊆ A∩C B B ⊆ C B B ⊆ A

(S,S ) D ⊆ S U ∩D U ∈S

D x ∈ S D

D x ∈ S S

(S,S ) D ⊆ S cl(D) = S
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Proof

Suppose that  is dense. Since  is closed,  is open. If this set is nonempty, it must contain a point in . But
that's clearly a contradiction since . Conversely, suppose that . Suppose that  is a nonempty, open set.
Then  is closed, and . If , then . But then  so .

Here is our first countability axiom:

A topological space  is separable if there exists a countable dense subset.

So in a separable space, there is a countable set  with the property that there are points in  “arbitrarily close” to every .
Unfortunately, the term separable is similar to separating points that we discussed above in the definition of a Hausdorff space. But
clearly the concepts are very different. Here is another important countability axiom.

A topological space  is second countable if it has a countable base.

So in a second countable space, there is a countable collection of open sets  with the property that every other open set is a union
of sets in . Here is how the two properties are related:

If a topological space  is second countable then it is separable.

Proof

Suppose that  is a base for , where  is a countable index set. Select  for each , and let 
. Of course,  is countable. If  is open and nonempty, then  for some nonempty . But

then , so  is dense.

As the terminology suggests, there are other axioms of countability (such as first countable), but the two we have discussed are the
most important.

Connected and Disconnected Spaces

This discussion deals with the situation in which a topological space falls into two or more separated pieces, in a sense.

A topological space  is disconnected if there exist nonempty, disjoint, open sets  and  with . If  is
not disconnected, then it is connected.

Since , it follows that  and  are also closed. So the space is disconnected if and only if there exists a proper subset 
that is open and closed (sadly, such sets are sometimes called clopen). If  is disconnected, then  consists of two pieces  and ,
and the points in  are not “close” to the points in , in a sense. To study  topologically, we could simply study  and 
separately, with their relative topologies.

Convergence

There is a natural definition for a convergent sequence in a topological space, but the concept is not as useful as one might expect.

Suppose again that  is a topological space. A sequence of points  in  converges to  if for every
neighborhood  of  there exists  such that  for . We write  as .

So for every neighborhood of , regardless of how “small”, all but finitely many of the terms of the sequence will be in the
neighborhood. One would naturally hope that limits, when they exist, are unique, but this will only be the case if points in the space
can be separated.

Suppose that  is a Hausdorff space. If  is a sequence of points in  with  as  and 
 as , then .

Proof

If , there exist disjoint neighborhoods  and  of  and , respectively. There exist  such that  for all
 and  for all . But then if ,  and , a contradiction.

D cl(D) [cl(D)]c D

D ⊆ cl(D) cl(D) = S U

U c ≠ SU c D∩U = ∅ D ⊆ U c cl(D) ⊆ U c cl(D) ≠ S

(S,S )

D D x ∈ S

(S,S )

B

B

(S,S )

B = { : i ∈ I}Ui S I ∈xi Ui i ∈ I

D = { : i ∈ I}xi D U U =⋃j∈J Uj J ⊆ I

{ : j∈ J} ⊆ Uxj D

(S,S ) U V S = U ∪V (S,S )

U = V c U V U

S S U V

U V S U V

(S,S ) ( : n ∈ )xn N+ S x ∈ S

A x m ∈ N+ ∈ Axn n > m → xxn n → ∞

x

(S,S ) ( : n ∈ )xn N+ S → x ∈ Sxn n → ∞
→ y ∈ Sxn n → ∞ x = y

x ≠ y A B x y k, m ∈ N+ ∈ Axn
n > k ∈ Bxn n > m n > max{k,m} ∈ Axn ∈ Bxn
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On the other hand, if distinct points  cannot be separated, then any sequence that converges to  will also converge to .

Continuity

Continuity of functions is one of the most important concepts to come out of general topology. The idea, of course, is that if two
points are close together in the domain, then the functional values should be close together in the range. The abstract topological
definition, based on inverse images is very simple, but not very intuitive at first.

Suppose that  and  are topological spaces. A function  is continuous if  for every 
.

So a continuous function has the property that the inverse image of an open set (in the range space) is also open (in the domain
space). Continuity can equivalently be expressed in terms of closed subsets.

Suppose again that  and  are topological spaces. A function  is continuous if and only if  is a
closed subset of  for every closed subset  of .

Proof

Recall that  for . The result follows directly from the definition and the fact that a set is open if
and only if its complement is closed.

Continuity preserves limits.

Suppose again that  and  are topological spaces, and that  is continuous. If  is a
sequence of points in  with  as , then  as .

Proof

Suppose that  is open and . Then  is open in  and . Hence there exists  such
that  for every . But then  for . So  as .

The converse of the last result is not true, so continuity of functions in a general topological space cannot be characterized in terms
of convergent sequences. There are objects like sequences but more general, known as nets, that do characterize continuity, but we
will not study these. Composition, the most important way to combine functions, preserves continuity.

Suppose that , , and  are topological spaces. If  and  are continuous, then 
 is continuous.

Proof

If  is open in  then  is open in  and therefore  is open in . But 
.

The next definition is very important. A recurring theme in mathematics is to recognize when two mathematical structures of a
certain type are fundamentally the same, even though they may appear to be different.

Suppose again that  and  are topological spaces. A one-to-one function  that maps  onto  with both  and 
 continuous is a homeomorphism from  to . When such a function exists, the topological spaces are said to

be homeomorphic.

Note that in this definition,  refers to the inverse function, not the mapping of inverse images. If  is a homeomorphism, then 
is open in  if and only if  is open in . It follows that the topological spaces are essentially equivalent: any purely
topological property can be characterized in terms of open sets and therefore any such property is shared by the two spaces.

Being homeomorphic is an equivalence relation on the collection of topological spaces. That is, for spaces , ,
and ,

1.  is homeomorphic to  (the reflexive property).
2. If  is homeomorphic to  then  is homeomorphic to  (the symmetric property).

x, y ∈ S x y

(S,S ) (T ,T ) f : S → T (A) ∈Sf−1

A ∈ T

(S,S ) (T ,T ) f : S → T (A)f−1

S A T

( ) =f−1 Ac [ (A)]f−1 c
A ⊆ T

(S,S ) (T ,T ) f : S → T ( : n ∈ )xn N+

S → x ∈ Sxn n → ∞ f( ) → f(x)xn n → ∞

V ⊆ T f(x) ∈ V (V )f−1 S x ∈ (V )f−1 m ∈ N+

∈ (V )xn f−1 n > m f( ) ∈ Vxn n > m f( ) → f(x)xn n → ∞

(S,S ) (T ,T ) (U,U ) f : S → T g : T → U

g∘ f : S → U

A U (A)g−1 T [ (A)] = ( ∘ ) (A)f−1 g−1 f−1 g−1 S

(g∘ f = ∘)−1 f−1 g−1

(S,S ) (T ,T ) f S T f

f−1 (S,S ) (T ,T )

f−1 f A

S f(A) T

(S,S ) (T ,T )
(U,U )

(S,S ) (S,S )
(S,S ) (T ,T ) (T ,T ) (S,S )
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3. If  is homeomorphic to  and  is homeomorphic to  then  is homeomorphic to 
(the transitive property).

Proof
1. The identity function  defined by  for  is a homeomorphism from the space  to itself.
2. If  is a homoemorphism from  to  then  is a homeomorphism from  to .
3. If  is a homeomorphism from  to  and  is a homeomorphism from  to , then  is a

homeomorphism from  to .

Continuity can also be defined locally, by restricting attention to the neighborhoods of a point.

Suppose again that  and  are topological spaces, and that . A function  is continuous at  if 
 is a neighborhood of  in  whenever  is a neighborhood of  in . If , then  is continuous on  is  is

continuous at each .

Suppose again that  and  are topological spaces, and that . Then  is continuous if and only if  is
continuous at each .

Proof

Suppose that  is continuous. Let  and let  be a neighborhood of . Then there exists an open set  in  with 
. But then  is open in , and , so  is a neighborhood of . Hence  is

continuous at .

Conversely, suppose that  is continuous at each , and suppose that . If  contains no points in the range of ,
then . Otherwise, there exists  with . But then  is a neighborhood of , so 

 is a neighborhood of . Let . Then  also, so  is also a neighborhood of . Hence .

Properties that are defined for a topological space can be applied to a subset of the space, with the relative topology. But one has to
be careful.

Suppose again that  are topological spaces and that . Suppose also that , and let  denote the relative
topology on  induced by , and let  denote the restriction of  to . If  is continuous on  then  is continuous
relative to the spaces  and . The converse is not generally true.

Proof

Suppose that . If  then . Otherwise, suppose there exists  with . Then
 is a neighborhood of  in  so  is a neighborhood of  in . Hence  is a

neighborhood of  in . Since  is continuous (relative to ) at each ,  is continuous from the previous
result.

For a simple counterexample, suppose that  is not continuous at a particular . The set  has the trivial relative
topology , and so  restricted to  is trivially continuous.

Product Spaces

Cartesian product sets are ubiquitous in mathematics, so a natural question is this: given topological spaces  and ,
what is a natural topology for ? The answer is very simple using the concept of a base above.

Suppose that  and  are topological spaces. The collection  is a base for a
topology on , called the product topology associated with the given spaces.

Proof

Trivially, . In fact . Next if  and , so that  are open in  and 
are open in , then

Hence  is a base for a topology on .

(S,S ) (T ,T ) (T ,T ) (U,U ) (S,S ) (U,U )

I : S → S I(x) = x x ∈ S (S,S )
f (S,S ) (T ,T ) f−1 (T ,T ) (S,S )
f (S,S ) (T ,T ) g (T ,T ) (U,U ) g∘ f

(S,S ) (U,U )

(S,S ) (T ,T ) x ∈ S f : S → T x

(B)f−1 x S B f(x) T A ⊆ S f A f

x ∈ A

(S,S ) (T ,T ) f : S → T f f

x ∈ S

f x ∈ S B f(x) V T

f(x) ∈ V ⊆ B (V )f−1 S x ∈ (V ) ⊆ (B)f−1 f−1 (B)f−1 x f

x

f x ∈ S V ∈ T V f

(V ) = ∅ ∈Sf−1 x ∈ S f(x) ∈ V V f(x)
U = (V )f−1 x y ∈ U f(y) ∈ V U y U ∈S

(S,S ) f : S → T A ⊆ S A

A S fA f A f A fA
(A,A ) (T ,T )

V ∈ T f(A) ∩V = ∅ (V ) = ∅ ∈Af−1
A

x ∈ A f(x) ∈ V

V f(x) T (V )f−1 x (S,S ) (V ) ∩A = (V )f−1 f−1
A

x (A,A ) fA (A,A ) x ∈ A fA

f x ∈ S {x}
{∅, {x}} f {x}

(S,S ) (T ,T )
S×T

(S,S ) (T ,T ) B = {A×B : A ∈S ,B ∈ T }
S×T

S×T =⋃B S×T ∈B A×B ∈B C ×D ∈B A, C S B, D
T

(A×B) ∩ (C ×D) = (A∩C) ×(B∩D) ∈B (1.9.7)

B S×T
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So basically, we want the product of open sets to be open in the product space. The product topology is the smallest topology that
makes this happen. The definition above can be extended to very general product spaces, but to state the extension, let's recall how
general product sets are constructed. Suppose that  is a set for each  in a nonempty index set . Then the product set  is
the set of all functions  such that  for .

Suppose that  is a topological space for each  in a nonempty index set . Then

is a base for a topology on , known as the product topology associated with the given spaces.

Proof

The proof is just as before, except for the more complicated notation. Trivially , and  is closed under finite
intersections.

Suppose again that  is a set for each  in a nonempty index set . For , recall that projection function  is
defined by .

Suppose again that  is a topological space for each , and give the product spacee  the product topology.
The projection function  is continuous for each .

Proof

If  is open in  then  where  for  with , and , so clearly this inverse image is
open in the product space.

As a special case of all this, suppose that  is a topological space, and that  for all . Then the product space 
 is the set of all functions from  to , sometimes denoted . In this case, the base for the product topology on  is

For , the projection function  just returns the value of a function  at : . This projection function is
continuous. Note in particular that no topology is necessary on the domain .

Examples and Special Cases

The Trivial Topology

Suppose that  is a nonempty set. Then  is a topology on , known as the trivial topology.

With the trivial topology, no two distinct points can be separated. So the topology cannot distinguish between points, in a sense,
and all points in  are close to each other. Clearly, this topology is not very interesting, except as a place to start. Since there is only
one nonempty open set (  itself), the space is connected, and every subset of  is compact. A sequence in  converges to every
point in .

Suppose that  has the trivial topology and that  is another topological space.

1. Every function from  to  is continuous.
2. If  is a Hausdorff space then the only continuous functions from  to  are constant functions.

Proof
1. Suppose . Then  and , so  is continuous.
2. Suppose that  is continuous and that  are distinct elements in the range of . There exist disjoint open sets 

 with  and . But  and  are nonempty and so must be . If ,  and 
, a contradiction.

Si i I ∏i∈I Si

x : I →⋃i∈I Si x(i) ∈ Si i ∈ I

( , )Si Si i I

B ={ : ∈  for all i ∈ I and  =  for all but finitely many i ∈ I}∏
i∈I

Ai Ai Si Ai Si (1.9.8)

∏i∈I Si

=⋃B∏i∈I Si B

Si i I j∈ I : →pj ∏i∈I Si Sj

(x) = x(j)pj

( , )Si Si i ∈ I ∏i∈I Si

pj j∈ I

U Sj (U) =p−1
j ∏i∈I Ai =Ai Si i ∈ I i ≠ j = UAj

(S,S ) = SSi i ∈ I

∏i∈I Si I S SI SI

B ={ : ∈S  for all i ∈ I and  = S for all but finitely many i ∈ I}∏
i∈I

Ai Ai Ai (1.9.9)

j∈ I pj x : I → S j (x) = x(j)pj
I

S {S, ∅} S

S

S S S

S

S (T ,T )

T S

(T ,T ) S T

f : T → S (S) = T ∈ Tf−1 (∅) = ∅ ∈ Tf−1 f

f : S → T u, v f

U, V ∈ T u ∈ U v∈ V (U)f−1 (V )f−1 S x ∈ S f(x) ∈ U

f(x) ∈ V
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The Discrete Topology

At the opposite extreme from the trivial topology, with the smallest collection of open sets, is the discrete topology, with the largest
collection of open sets.

Suppose that  is a nonempty set. The power set  (consisting of all subsets of ) is a topology, known as the discrete
topology.

So in the discrete topology, every set is both open and closed. All points are separated, and in a sense, widely so. No point is close
to another point. With the discrete topology,  is Hausdorff, disconnected, and the compact subsets are the finite subsets. A
sequence in  converges to , if and only if all but finitely many terms of the sequence are .

Suppose that  has the discrete topology and that  is another topological space.

1. Every function from  to  is continuous.
2. If  is connected, then the only continuous functions from  to  are constant functions.

Proof
1. Trivially, if , then  for  so  is continuous.
2. Suppose that  is continuous and that  is in the range of . Then  is open and closed in , so  is open

and closed in . If  is connected, this means that .

Euclidean Spaces

The standard topologies used in the Euclidean spaces are the topologies built from open sets that you familiar with.

For the set of real numbers , let , the collection of open intervals. Then  is a base for a
topology  on , known as the Euclidean topology.

Proof

Clearly the conditions for  to be a base given above are satisfied. First . Next, if  and  and 
, then .

The space  satisfies many properties that are motivations for definitions in topology in the first place. The convergence of a
sequence in , in the topological sense given above, is the same as the definition of convergence in calculus. The same statement
holds for the continuity of a function  from  to .

Before listing other topological properties, we give a characterization of compact sets, known as the Heine-Borel theorem, named
for Eduard Heine and Émile Borel. Recall that  is bounded if  for some  with .

A subset  is compact if and only if  is closed and bounded.

So in particular, closed, bounded intervals of the form  with  and  are compact.

The space  has the following properties:

1. Hausdorff.
2. Connected.
3. Locally compact.
4. Second countable.

Proof
1. Distinct points in  can be separated by open intervals.
2.  has no proper subset that is both open and closed.
3. If  is a neighborhood of , then there exists  with  such that . The closed interval 

is compact.
4. The collection  is a countable base for , where as usual,  is the set of rational real

numbers.

S P(S) S

S

S x ∈ S x

S (T ,S )

S T

(T ,T ) T S

f : S → T (U) ∈P(S)f− U ∈ T f

f : T → S x f {x} S {x}f−1

T T {x} = Tf−1

R B = {(a, b) : a, b ∈ R, a < b} B

R R

B R =⋃B (a, b) ∈B (c, d) ∈B
x ∈ (a, b) ∩ (c, d) x ∈ (max{a, c}, min{b, d}) ⊆ (a, b) ∩ (c, d)

(R,R)
R

f R R

A ⊆R A ⊆ [a, b] a, b ∈ R a < b

C ⊆R C

[a, b] a, b ∈ R a < b

(R,R)

R

R

A x ∈ R a, b ∈ R a < b x ∈ [a, b] ⊆ A [a, b]

Q = {(a, b) : a, b ∈ Q, a < b} R Q
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As noted in the proof, , the set of rationals, is countable and is dense in . Another countable, dense subset is 
, the set of dyadic rationals (or binary rationals). For the higher-dimensional Euclidean spaces, we

can use the product topology based on the topology of the real numbers.

For , let  be the -fold product space corresponding to the space . Then  is the Euclidean
topology on .

A subset  is bounded if there exists  with  such that , so that  fits inside of an -dimensional
“block”.

A subset  is compact if and only if  is closed and bounded.

The space  has the following properties:

1. Hausdorff.
2. Connected.
3. Locally compact.
4. Second countable.
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