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5.11: The F Distribution
       

In this section we will study a distribution that has special importance in statistics. In particular, this distribution arises from ratios of sums of squares when sampling from
a normal distribution, and so is important in estimation and in the two-sample normal model and in hypothesis testing in the two-sample normal model.

Basic Theory

Definition

Suppose that  has the chi-square distribution with  degrees of freedom,  has the chi-square distribution with  degrees of freedom, and that 
 and  are independent. The distribution of

is the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator.

The  distribution was first derived by George Snedecor, and is named in honor of Sir Ronald Fisher. In practice, the parameters  and  are usually positive integers, but
this is not a mathematical requirement.

Distribution Functions

Suppose that  has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator. Then  has a
continuous distribution on  with probability density function  given by

where  is the gamma function.

Proof

The trick, once again, is conditioning. The conditional distribution of  given  is gamma with shape parameter  and scale parameter .
Hence the conditional PDF is

By definition,  has the chi-square distribution with  degrees of freedom, and so has PDF

The joint PDF of  is the product of these functions:

The PDF of  is therefore

Except for the normalizing constant, the integrand in the last integral is the gamma PDF with shape parameter  and scale parameter . Hence
the integral evaluates to

Simplifying gives the result.

Recall that the beta function  can be written in terms of the gamma function by

Hence the probability density function of the  distribution above can also be written as

When , the probability density function is defined at , so the support interval is  is this case.

In the special distribution simulator, select the  distribution. Vary the parameters with the scroll bars and note the shape of the probability density function. For
selected values of the parameters, run the simulation 1000 times and compare the empirical density function to the probability density function.

Both parameters influence the shape of the  probability density function, but some of the basic qualitative features depend only on the numerator degrees of freedom. For
the remainder of this discussion, let  denote the  probability density function with  degrees of freedom in the numerator and  degrees of freedom
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in the denominator.

Probability density function  satisfies the following properties:

1. If ,  is decreasing with  as .
2. If ,  is decreasing with mode at .
3. If ,  increases and then decreases, with mode at .

Proof

These properties follow from standard calculus. The first derivative of  is

Qualitatively, the second order properties of  also depend only on , with transitions at  and .

For , define

The probability density function  satisfies the following properties:

1. If ,  is concave upward.
2. If ,  is concave downward and then upward, with inflection point at .
3. If ,  is concave upward, then downward, then upward again, with inflection points at  and .

Proof

These results follow from standard calculus. The second derivative of  is

The distribution function and the quantile function do not have simple, closed-form representations. Approximate values of these functions can be obtained from the
special distribution calculator and from most mathematical and statistical software packages.

In the special distribution calculator, select the  distribution. Vary the parameters and note the shape of the probability density function and the distribution function.
In each of the following cases, find the median, the first and third quartiles, and the interquartile range.

1. , 
2. , 
3. , 
4. , 

The general probability density function of the  distribution is a bit complicated, but it simplifies in a couple of special cases.

Special cases.

1. If ,

2. If ,

3. If ,

4. If ,

Moments

The random variable representation in the definition, along with the moments of the chi-square distribution can be used to find the mean, variance, and other moments of
the  distribution. For the remainder of this discussion, suppose that  has the  distribution with  degrees of freedom in the numerator and 
degrees of freedom in the denominator.
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Mean

1.  if 
2.  if 

Proof

By independence, . Recall that . Similarly if ,  while if ,

Thus, the mean depends only on the degrees of freedom in the denominator.

Variance

1.  is undefined if 
2.  if 
3. If  then

Proof

By independence, . Recall that

Similarly if ,  while if ,

Hence  if  while if ,

The results now follow from the previous result on the mean and the computational formula .

In the simulation of the special distribution simulator, select the  distribution. Vary the parameters with the scroll bar and note the size and location of the mean 
standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare the empirical mean and standard deviation to the distribution
mean and standard deviation..

General moments. For ,

1.  if 
2. If  then

Proof

By independence, . Recall that

On the other hand,  if  while if ,

If , then using the fundamental identity of the gamma distribution and some algebra,

From the general moment formula, we can compute the skewness and kurtosis of the  distribution.

Skewness and kurtosis
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2. If ,

Proof

These results follow from the formulas for  for  and the standard computational formulas for skewness and kurtosis.

Not surprisingly, the  distribution is positively skewed. Recall that the excess kurtosis is

In the simulation of the special distribution simulator, select the  distribution. Vary the parameters with the scroll bar and note the shape of the probability density
function in light of the previous results on skewness and kurtosis. For selected values of the parameters, run the simulation 1000 times and compare the empirical
density function to the probability density function.

Relations

The most important relationship is the one in the definition, between the  distribution and the chi-square distribution. In addition, the  distribution is related to several
other special distributions.

Suppose that  has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator. Then  has
the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator.

Proof

This follows easily from the random variable interpretation in the definition. We can write

where  and  are independent and have chi-square distributions with  and  degrees of freedom, respectively. Hence

Suppose that  has the  distribution with  degrees of freedom. Then  has the  distribution with 1 degree of freedom in the numerator and 
degrees of freedom in the denominator.

Proof

This follows easily from the random variable representations of the  and  distributions. We can write

where  has the standard normal distribution,  has the chi-square distribution with  degrees of freedom, and  and  are independent. Hence

Recall that  has the chi-square distribution with 1 degree of freedom.

Our next relationship is between the  distribution and the exponential distribution.

Suppose that  and  are independent random variables, each with the exponential distribution with rate parameter . Then . has the 
distribution with  degrees of freedom in both the numerator and denominator.

Proof

We first find the distribution function  of  by conditioning on :

But  for  so . Also,  has PDF  for  so

Differentiating gives the PDF of 

which we recognize as the PDF of the  distribution with 2 degrees of freedom in the numerator and the denominator.
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A simple transformation can change a variable with the  distribution into a variable with the beta distribution, and conversely.

Connections between the  distribution and the beta distribution.

1. If  has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator, then

has the beta distribution with left parameter  and right parameter .
2. If  has the beta distribution with left parameter  and right parameter  then

has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator.

Proof

The two statements are equivalent and follow from the standard change of variables formula. The function

maps  one-to-one onto (0, 1), with inverse

Let  denote the PDF of the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator, and let  denote the PDF of the
beta distribution with left parameter  and right parameter . Then  and  are related by

1. 

2. 

The  distribution is closely related to the beta prime distribution by a simple scale transformation.

Connections with the beta prime distributions.

1. If  has the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the denominator, then  has the
beta prime distribution with parameters  and .

2. If  has the beta prime distribution with parameters  and  then  has the  distribution with  degrees of the freedom in the
numerator and  degrees of freedom in the denominator.

Proof

Let  denote the PDF of  and  the PDF of .

1. By the change of variables formula,

Substituting into the beta  PDF shows that  has the appropriate beta prime distribution.
2. Again using the change of variables formula,

Substituting into the beta prime PDF shows that  has the appropriate  PDF.

The Non-Central  Distribution
The  distribution can be generalized in a natural way by replacing the ordinary chi-square variable in the numerator in the definition above with a variable having a non-
central chi-square distribution. This generalization is important in analysis of variance.

Suppose that  has the non-central chi-square distribution with  degrees of freedom and non-centrality parameter ,  has the chi-square
distribution with  degrees of freedom, and that  and  are independent. The distribution of

is the non-central  distribution with  degrees of freedom in the numerator,  degrees of freedom in the denominator, and non-centrality parameter .

One of the most interesting and important results for the non-central chi-square distribution is that it is a Poisson mixture of ordinary chi-square distributions. This leads to
a similar result for the non-central  distribution.

Suppose that  has the Poisson distribution with parameter , and that the conditional distribution of  given  is the  distribution with  degrees of
freedom in the numerator and  degrees of freedom in the denominator, where  and . Then  has the non-central  distribution with 
degrees of freedom in the numerator,  degrees of freedom in the denominator, and non-centrality parameter .

Proof

F

F

X F n ∈ (0, ∞) d ∈ (0, ∞)

Y =
(n/d)X

1 +(n/d)X
(5.11.37)

n/2 d/2
Y a ∈ (0, ∞) b ∈ (0, ∞)

X =
bY

a(1 −Y )
(5.11.38)

F 2a 2b

y =
(n/d)x

1 +(n/d)x
(5.11.39)

(0, ∞)

x =
d

n

y

1 −y
(5.11.40)

f F n d g

n/2 d/2 f g

g(y) = f(x) dx

dy

f(x) = g(y)
dy

dx

F

X F n ∈ (0, ∞) d ∈ (0, ∞) Y = Xn

d

n/2 d/2

Y a ∈ (0, ∞) b ∈ (0, ∞) X = Xb
a

F 2a

2b

f X g Y

g(y) = f ( y) , y ∈ (0, ∞)
d

n

d

n
(5.11.41)

F Y

f(x) = g( x) , x ∈ (0, ∞)
a

b

a

b
(5.11.42)

X F

F

F

U n ∈ (0, ∞) λ ∈ [0, ∞) V

d ∈ (0, ∞) U V

X =
U/n

V /d
(5.11.43)

F n d λ

F

N λ/2 X N F N +2n
d λ ∈ [0, ∞) n, d ∈ (0, ∞) X F n

d λ

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10351?pdf


5.11.6 https://stats.libretexts.org/@go/page/10351

As in the theorem, let  have the Poisson distribution with parameter , and suppose also that the conditional distribution of  given  is chi-square with 
degrees of freedom, and that  has the chi-square distribution with  degrees of freedom and is independent of . Let . Since  is
independent of , the variable  satisfies the condition in the theorem; that is, the conditional distribution of  given  is the  distribution with 
degrees of freedom in the numerator and  degrees of freedom in the denominator. But then also, (unconditionally)  has the non-central chi-square distribution with 

 degrees of freedom in the numerator and non-centrality parameter ,  has the chi-square distribution with  degrees of freedom, and  and  are independent. So
by definition  has the  distribution with  degrees of freedom in the numerator,  degrees of freedom in the denominator, and non-centrality parameter .

From the last result, we can express the probability density function and distribution function of the non-central  distribution as a series in terms of ordinary  density
and distribution functions. To set up the notation, for  let  be the probability density function and  the distribution function of the  distribution with 
degrees of freedom in the numerator and  degrees of freedom in the denominator. For the rest of this discussion,  and  as usual.

The probability density function  of the non-central  distribution with  degrees of freedom in the numerator,  degrees of freedom in the denominator, and non-
centrality parameter  is given by

The distribution function  of the non-central  distribution with  degrees of freedom in the numerator,  degrees of freedom in the denominator, and non-centrality
parameter  is given by
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