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16.11: Discrete-Time Branching Chain
     

Basic Theory

Introduction

Generically, suppose that we have a system of particles that can generate or split into other particles of the same type. Here are
some typical examples:

The particles are biological organisms that reproduce.
The particles are neutrons in a chain reaction.
The particles are electrons in an electron multiplier.

We assume that each particle, at the end of its life, is replaced by a random number of new particles that we will refer to as children
of the original particle. Our basic assumption is that the particles act independently, each with the same offspring distribution on .
Let  denote the common probability density function of the number of offspring of a particle. We will also let 

 denote the convolution power of degree  of ; this is the probability density function of the total number of
children of  particles.

We will consider the evolution of the system in real time in our study of continuous-time branching chains. In this section, we will
study the evolution of the system in generational time. Specifically, the particles that we start with are in generation 0, and
recursively, the children of a particle in generation  are in generation .

Figure : Generations 0, 1, 2, and 3 of a branching chain.

Let  denote the number of particles in generation . One way to construct the process mathematically is to start with an
array of independent random variables , each with probability density function . We interpret  as the
number of children of the th particle in generation  (if this particle exists). Note that we have more random variables than we
need, but this causes no harm, and we know that we can construct a probability space that supports such an array of random
variables. We can now define our state variables recursively by

 is a discrete-time Markov chain on  with transition probability matrix  given by

The chain  is the branching chain with offspring distribution defined by .

Proof

The Markov property and the form of the transition matrix follow directly from the construction of the state variables given
above. Since the variables  are independent, each with PDF , we have
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The branching chain is also known as the Galton-Watson process in honor of Francis Galton and Henry William Watson who
studied such processes in the context of the survival of (aristocratic) family names. Note that the descendants of each initial particle
form a branching chain, and these chains are independent. Thus, the branching chain starting with  particles is equivalent to 
independent copies of the branching chain starting with 1 particle. This features turns out to be very important in the analysis of the
chain. Note also that 0 is an absorbing state that corresponds to extinction. On the other hand, the population may grow to infinity,
sometimes called explosion. Computing the probability of extinction is one of the fundamental problems in branching chains; we
will essentially solve this problem in the next subsection.

Extinction and Explosion

The behavior of the branching chain in expected value is easy to analyze. Let  denote the mean of the offspring distribution, so
that

Note that . The parameter  will turn out to be of fundamental importance.

Expected value properties

1.  for 
2.  for 
3.  as  if .
4.  for each  if .
5.  as  if  and .

Proof

For part (a) we use a conditioning argument and the construction above. For ,

That is,  so  Part (b) follows from (a) and then parts (c),
(d), and (e) follow from (b).

Part (c) is extinction in the mean; part (d) is stability in the mean; and part (e) is explosion in the mean.

Recall that state 0 is absorbing (there are no particles), and hence  is the extinction event
(where as usual,  is the time of the first return to 0). We are primarily concerned with the probability of extinction, as a function
of the initial state. First, however, we will make some simple observations and eliminate some trivial cases.

Suppose that , so that each particle is replaced by a single new particle. Then

1. Every state is absorbing.
2. The equivalence classes are the singleton sets.
3. With probability 1,  for every .

Proof

These properties are obvious since  for every .

Suppose that  so that with positive probability, a particle will die without offspring. Then

1. Every state leads to 0.
2. Every positive state is transient.
3. With probability 1 either  for some  (extinction) or  as  (explosion).

Proof
1. Note that  for , so every state leads to 0 in one step.
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2. This follows from (a). If , then  leads to the absorbing state 0 with positive probability. Hence a return to ,
starting in , cannot have probability 1.

3. This follows from (a) and (b). With probability 1, every positive state is visited only finitely many times. Hence the only
possibilities are  for some  or  as .

Suppose that  and , so that every particle is replaced by at least one particle, and with positive probability,
more than one. Then

1. Every positive state is transient.
2.  for every , so that explosion is certain, starting with at least one particle.

Proof
1. Let . Under the assumptions on , state  leads to some state  but  does not lead back to . Hence with

positive probability, the chain starting in  will not return to .
2. This follows from (a) and that the fact that positive states do not lead to 0.

Suppose that  and , so that with positive probability, a particle will die without offspring, and with
probability 1, a particle is not replaced by more than one particle. Then

1. Every state leads to 0.
2. Every positive state is transient.
3. With probability 1,  for some , so extinction is certain.

Proof
1. As before,  for , so  leads to 0 in one step.
2. This follows from (a) and the fact that 0 is absorbing.
3. Under the assumptions on , state  leads to state  only if . So this follows from (a) and (b).

Thus, the interesting case is when  and , so that with positive probability, a particle will die without
offspring, and also with positive probability, the particle will be replaced by more than one new particles. We will assume these
conditions for the remainder of our discussion. By the state classification above all states lead to 0 (extinction). We will denote the
probability of extinction, starting with one particle, by

The set of positive states  is a transient equivalence class, and the probability of extinction starting with  particles is

Proof

Under the assumptions on , from any positive state the chain can move 2 or more units to the right and one unit to the left in
one step. It follows that every positive state leads to every other positive state. On the other hand, every positive state leads to
0, which is absorbing. Thus,  is a transient equivalence class.

Recall that the branching chain starting with  particles acts like  independent branching chains starting with one
particle. Thus, the extinction probability starting with  particles is .

The parameter  satisfies the equation

Proof

This result follows from conditioning on the first state.
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But by the Markov property and the previous result,

and of course .

Thus the extinction probability  starting with 1 particle is a fixed point of the probability generating function  of the offspring
distribution:

Moreover, from the general discussion of hitting probabilities in the section on recurrence and transience,  is the smallest such
number in the interval . If the probability generating function  can be computed in closed form, then  can sometimes be
computed by solving the equation .

 satisfies the following properties:

1. .
2. .
3.  for  so  in increasing on .
4.  for  so  in concave upward on .
5. .

Proof

These are basic properties of the probability generating function. Recall that the series that defines  is a power series about 0
with radius of convergence . A function defined by a power series is infinitely differentiable within the open interval of
convergence, and the derivates can be computed term by term. So

If  then . If , the limit result is the best we can do.

Our main result is next, and relates the extinction probability  and the mean of the offspring distribution .

The extinction probability  and the mean of the offspring distribution  are related as follows:

1. If  then , so extinction is certain.
2. If  then , so there is a positive probability of extinction and a positive probability of explosion.

Proof
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Figure : The case of certain extinction.

Figure : The case of possible extinction and possible explosion.

Computational Exercises

Consider the branching chain with offspring probability density function  given by , , where 
is a parameter. Thus, each particle either dies or splits into two new particles. Find each of the following.

1. The transition matrix .
2. The mean  of the offspring distribution.
3. The generating function  of the offspring distribution.
4. The extinction probability .

Answer

Note that an offspring variable has the form  where  is an indicator variable with parameter .

1. For ,  is the PDF of  where  has the binomial distribution with parameters  and . Hence

2. .
3.  for .
4.  if  and  if .

Graphs of  and  when 
Graphs

Graphs of  and  when 
Graphs

Consider the branching chain whose offspring distribution is the geometric distribution on  with parameter , where 
. Thus  for . Find each of the following:

1. The transition matrix .
2. The mean  of the offspring distribution.
3. The generating function  of the offspring distribution.
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4. The extinction probability .

Answer
1. For ,  is the PDF of the negative binomial distribution on  with parameter . So

2. .

3.  for .

4.  if  and  if .

Graphs of  and  when 
Graphs

Graphs of  and  when 
Graphs

Curiously, the extinction probability is the same as for the previous problem.

Consider the branching chain whose offspring distribution is the Poisson distribution with parameter . Thus 
 for . Find each of the following:

1. The transition matrix .
2. The mean  of the offspring distribution.
3. The generating function  of the offspring distribution.
4. The approximate extinction probability  when  and when .

Answer
1. For ,  is the PDF of the Poisson distribution with parameter . So

2. The parameter  is the mean of the Poisson distribution, so the notation is consistent.
3.  for .
4.  if . If  then  is the solution in  of the equation  which can be expressed in terms

of a special function known as the Lambert  function:

For , . For , .

Graphs of  and  when 
Graphs

Graphs of  and  when 
Graphs
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m = 2 q ≈ 0.20319 m = 3 q ≈ 0.059520
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