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4.10: Conditional Expected Value Revisited

Conditional expected value is much more important than one might at first think. In fact, conditional expected value is at the core of modern probability theory because it
provides the basic way of incorporating known information into a probability measure.

Basic Theory

Definition

As usual, our starting point is a random experiment modeled by a probability space (€2, .#,P), so that § is the set of outcomes,, Z is the o-algebra of events, and PP is the
probability measure on the sample space (€2, .%). In our first elementary discussion, we studied the conditional expected value of a real-value random variable X given a
general random variable Y. The more general approach is to condition on a sub o-algebra & of #. The sections on c-algebras and measure theory are essential
prerequisites for this section.

Before we get to the definition, we need some preliminaries. First, all random variables mentioned are assumed to be real valued. next the notion of equivalence plays a
fundamental role in this section. Next recall that random variables X; and X, are equivalent if P(X; = X5) = 1 . Equivalence really does define an equivalence relation on
the collection of random variables defined on the sample space. Moreover, we often regard equivalent random variables as being essentially the same object. More precisely
from this point of view, the objects of our study are not individual random variables but rather equivalence classes of random variables under this equivalence relation.
Finally, for A € Z, recall the notation for the expected value of X on the event A

E(X; A) =E(X1,4) (4.10.1)
assuming of course that the expected value exists. For the remainder of this subsection, suppose that ¢ is a sub g-algebra of %#.
Suppose that X is a random variable with E(| X|) < co. The conditional expected value of X given ¢ is the random variable E(X | ¢) defined by the following
properties:

1. E(X | 4) is measurable with repsect to &.
2IfAc ¥ thenE[E(X |¥); A] =E(X; A)

The basic idea is that E(X | ¢) is the expected value of X given the information in the o-algebra . Hopefully this idea will become clearer during our study. The
conditions above uniquely define E(X | ¢) up to equivalence. The proof of this fact is a simple application of the Radon-Nikodym theorem, named for Johann Radon and
Otto Nikodym

Suppose again that X is a random variable with E(] X|) < oo.

1. There exists a random variable V' satisfying the definition.

2.If Vi and V; satisfy the definition, then P(V; = V5) =1 so that V4 and V» are equivalent.
Proof

1. Note that v(A) =E(X; A) for A € ¢ defines a (signed) measure on ¢. Moreover, if A € ¢ and P(A) =0 then v(A) = 0. Hence v is absolutely continuous with
respect to the restriction of IP to ¢. By the Radon-Nikodym theorem, there exists a random variable V' that is measurable with respect to ¢ such that
v(A)=E(V; A) for A€ 9. Thatis, V is the density or derivative of v with respect to I’ on &.

2. This follows from the uniqueness of the Radon-Nikodym derivative, up to equivalence.

The following characterization might seem stronger but in fact in equivalent to the definition.

Suppose again that X is a random variable with E(] X|) < co. Then E(X | ¢) is characterized by the following properties:
1. E(X | 4) is measurable with respect to ¢
2.If U is measurable with respect to ¢ and E(|[UX|) < oo then E[UE(X | ¥)] =E(UX).
Proof
We have to show that part (b) in the definition is equivalent to part (b) here. First (b) here implies (b) in the definition since 14 is ¢-measurable if A € ¢. Conversely
suppose that (b) in the definition holds. We will show that (b) here holds by a classical bootstrapping argument.. First E[lUE(X | ¥)] =E(UX) if U =14 for some

A € 9. Next suppose that U is a simple random variable that is ¢-measurable. That is, U = >, _; a;14, where I is a finite index set, a; >0 fori € I, and 4; € 4
fori € I.then

il

E[UE(X |¥) =E [Z a;14E(X | g)] =Y aE[14EX|9)] =) aE(14X)=E (Z a,-lAIX) =E(UX) (4.10.2)
icl icl il icl

Next suppose that U is nonnegative and ¢-measurable. Then there exists a sequence of simple ¢-measurable random variables (U, Ua, . ..) with U, t U as n — co.

Then by the previous step, E[U,E(X | )] =E(U,X) for each n. Letting n — oo and using the monotone convergence theorem we have E[UE(X | ¢9)] =E(UX).

Finally, suppose that U is a general ¢-measurable random variable. Then U =U" —U~ where U" and U~ are the usual positive and negative parts of U. These

parts are nonnegative and ¢-measurable, so by the previous step, E[lUTE(X | 4)] =E(U*X) and E[U E(X | ¢)] =E(U " X). hence

E[UE(X | )] =E[U" —U)E(X |¥)] =E[U'E(X | 9)] ~E[U E(X | ¢)] =E(U" X) —-E(U" X) =E(UX) (4.10.3)

Properties

Our next discussion concerns some fundamental properties of conditional expected value. All equalities and inequalities are understood to hold modulo equivalence, that is,
with probability 1. Note also that many of the proofs work by showing that the right hand side satisfies the properties in the definition for the conditional expected value on
the left side. Once again we assume that ¢ is a sub sigma-algebra of Z.

Our first property is a simple consequence of the definition: X and E(X | ¢) have the same mean.

I Suppose that X is a random variable with E(|X|) < co. Then E[E(X | ¢)] = E(X).

https://stats.libretexts.org/@go/page/10338



https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10338?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/04%3A_Expected_Value/4.10%3A_Conditional_Expected_Value_Revisited

LibreTextsw

Proof
This follows immediately by letting A = € in the definition.

The result above can often be used to compute E(X), by choosing the o-algebra ¢ in a clever way. We say that we are computing E(X) by conditioning on ¢. Our next
properties are fundamental: every version of expected value must satisfy the linearity properties. The first part is the additive property and the second part is the scaling

property.

Suppose that X and Y are random variables with E(|X]|) < co and E(|Y|) < oo, and that ¢ € R. Then
LE(X+Y |9)=E(X|¥9)+E(Y |¥)
2E(cX|¥9)=cE(X|¥9)

Proof

1. Note that E(| X +Y|) <E(|X|)+E(]Y]|) <oo soE(X+Y |¥) is defined. We show that E(X | ) +E(Y | ¥) satisfies the conditions in the definition for
E(X+Y |¥) . Note first that E(X | 9) + E(Y | ¢) is ¥-measurable since both terms are. If A € ¢ then

E{[E(X |¥)+E(Y | 9)}; A} =E[E(X | 9); A] + E[E(Y | ¥); A] = E(X; A) + E(Y; A) = E[X +Y; 4] (4.10.4)

2. Note that E(|cX|) = [¢|E(|X]|) < oo so E(cX | ¢) is defined. We show that cE(X | ) satisfy the conditions in the definition for E(cX | ¢). Note first that
cE(X | 9) is 9-measurable since the second factor is. If A € ¢ then

E[cE(X | 9); Al = cE[E(X | 9); A] = cE(X; A) =E(cX; A) (4.10.5)

The next set of properties are also fundamental to every notion of expected value. The first part is the positive property and the second part is the increasing property.

Suppose again that X and Y are random variables with E(| X|) < co and E(]Y]) < co.

LIfX>0thenE(X|¥9)>0
2UX<Y thenE(X |%) <E(Y |¥)

Proof

1.Let A={E(X |¥) <0} . Note that A € ¢ and hence E(X; A) =E[E(X | ¢); 4]. Since X > 0 with probability 1 we have F(X; A) > 0. On the other hand, if
P(A) >0 then E[E(X | ¢); A] < 0 which is a contradiction. Hence we must have P(4) =0.
2. Note that if X <Y then Y — X > 0 . Hence by (a) and the additive property, E(Y — X |4) =E(Y | ¥9) -E(X |9) >0 soE(Y|¥9)>E(X|¥9) .

The next few properties relate to the central idea that E(X | &) is the expected value of X given the information in the o-algebra 4.

Suppose that X and V' are random variables with E(|X|) < co and E(| XV|) < co and that V' is measurable with respect to ¢. Then E(VX | ¢) =VE(X | ¥9) .
Proof

We show that VE(X | ¢) satisfy the in properties that characterize E(VX | ¢). First, VE(X | ¢) is ¢-measurable since both factors are. If U is ¢/-measurable with
E(JUVX]|) < oo then UV is also ¢-measurable and hence

E[UVE(X | 9)] = E(UVX) = E[U(VX)] (4.10.6)

Compare this result with the scaling property. If V' is measurable with respect to ¢ then V is like a constant in terms of the conditional expected value given ¢. On the other
hand, note that this result implies the scaling property, since a constant can be viewed as a random variable, and as such, is measurable with respect to any o-algebra. As a
corollary to this result, note that if X itself is measurable with respect to ¢ then E(X | ¢) = X . The following result gives the other extreme.

Suppose that X is a random variable with E(| X|) < co. If X and ¢ are independent then E(X | ¢) = E(X) .

Proof

We show that E(X)) satisfy the properties in the definiton for E(X | ¢). First of course, E(X) is ¢-measurable as a constant random variable. If A € ¢ then X and
1,4 are independent and hence

E(X; A) = E(X)P(A) = E[E(X); 4] (4.10.7)

Every random variable X is independent of the trivial o-algebra {0, 2} so it follows that E(X | {0, Q}) = E(X).
The next properties are consistency conditions, also known as the tower properties. When conditioning twice, with respect to nested c-algebras, the smaller one
(representing the least amount of information) always prevails.
Suppose that X is a random variable with E(|X|) < co and that 5 is a sub o-algebra of &. Then
LEEX | )| 9 =E(X| )
2EE(X|9)| #)=E(X| )
Proof

1. Note first that E(X | 5#) is 5#-measurable and hence also ¢/-measurable. Thus by (7), E[E(X | 5#) | 9] = E(X | 52) .
2. We show that E(X | #) satisfies the coonditions in the definition for E[E(X | ¢) | 5] . Note again that E(X | ) is 5 -measurable. If A € & then A € 4
and hence

E[E(X | 9); A] = E(X; A) = E[E(X | 2#); 4] (4.10.8)

The next result gives Jensen's inequality for conditional expected value, named for Johan Jensen.

Suppose that X takes values in an interval S C R and that g: § — R is convex. If E(|X]|) < oo and E(|g(X)| < oo then
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Proof

E[g(X)| 9] =z g[E(X | 9)] (4.10.9)

As with Jensen's inequality for ordinary expected value, the best proof uses the characterization of convex functions in terms of supporting lines: For each t € S there
exist numbers a and b (depending on ¢) such that

o a+bt=g(t)
e atbz <g(z) forzeS

A convex function and several supporting lines
|#.Convex function

Random variables X and E(X | ¢) takes values in S. We can construct a random supporting line at E(X | ¢). That is, there exist random variables A and B,
measurable with respect to ¢, such that

1. A+BE(X |9) = g[E(X | 9)]
2. A+ BX < g(X)

We take conditional expected value through the inequality in (b) and then use properties of conditional expected value and property (a):
E[g(X)|¥9) >E(A+BX |¥9)=A+BE(X |¥9) =g[E(X | ¥] (4.10.10)

Note that the second step uses the fact that A and B are measurable with respect to &.

Conditional Probability

For our next discussion, suppose as usual that ¢ is a sub o-algebra of .#. The conditional probability of an event A given ¢ can be defined as a special case of conditional
expected value. As usual, let 14 denote the indicator random variable of A.

For A € & we define
P(A|¥9)=E(14|9) (4.10.11)

Thus, we have the following characterizations of conditional probability, which are special cases of the definition and the alternate version:

If A€ Z then P(A | ¥) is characterized (up to equivalence) by the following properties

1.P(A| ¥) is measurable with respect to 4.
2.If Be ¥ thenE[P(A | 9); B =P(AN B)

Proof

For part (b), note that

E[1pP(A|¥)] =E[15E(14 | )] =E(141p) =E(14n5) =P(AN B) (4.10.12)

If A€ & then P(A | ¥) is characterized (up to equivalence) by the following properties

1.P(A| ¥) is measurable with respect to 4.
2.If U is measurable with respect to ¢ and E(|U|) < oo then E[UP(A | )] =E(U; A)

The properties above for conditional expected value, of course, have special cases for conditional probability. In particular, we can compute the probability of an event by
conditioning on a o-algebra:

If Ac Z thenP(A) =E[P(A | 9)].
Proof
This is a direct result of the mean property since E(14) =P(A4) .

Again, the last theorem is often a good way to compute P(A) when we know the conditional probability of A given ¢. This is a very compact and elegant version of the
law of total probability given first in the section on Conditional Probability in the chapter on Probability Spaces and later in the section on Discrete Distributions in the
Chapter on Distributions. The following theorem gives the conditional version of the axioms of probability.

The following properties hold (as usual, modulo equivalence):

1.P(A|¥9) >0 forevery A e #
2P ¥9)=1
3.1f {A; : i € I} is a countable disjoint subset of & then P({J,.; 4; | 9) = Y,c; P(4i | 9)
Proof
1. This is a direct consequence of (6).
2. This is trivial since 1o = 1.
3. We show that the right side satisfies the conditions in (11) that define the left side. Note that Y ;c; P(4; | ¢) is ¢-measurable since each term in the sum has this
property. Let B € 4. then

E [ZP(A,- |9); B

el

= E[P(4; | ¥); B] =ZIP’(A,-OB)=IP’<BOUAZ-> (4.10.13)
el

i€l il

From the last result, it follows that other standard probability rules hold for conditional probability given ¢ (as always, modulo equivalence). These results include

o the complement rule
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o the increasing property

o Boole's inequality

« Bonferroni's inequality

o the inclusion-exclusion laws

However, it is not correct to state that A — P(A | &) is a probability measure, because the conditional probabilities are only defined up to equivalence, and so the mapping
does not make sense. We would have to specify a particular version of E(A | ¢) for each A € & for the mapping to make sense. Even if we do this, the mapping may not
define a probability measure. In part (c), the left and right sides are random variables and the equation is an event that has probability 1. However this event depends on the
collection {4; : i € I'}. In general, there will be uncountably many such collections in .%, and the intersection of all of the corresponding events may well have probability
less than 1 (if it's measurable at all). It turns out that if the underlying probability space (2, .#,P) is sufficiently “nice” (and most probability spaces that arise in
applications are nice), then there does in fact exist a regular conditional probability. That is, for each A € Z, there exists a random variable P(A4 | ¢) satisfying the

conditions in (12) and such that with probability 1, A — P(A | ) is a probability measure.

The following theorem gives a version of Bayes' theorem, named for the inimitable Thomas Bayes.

Suppose that A € 4 and B € Z. then

_ EP(B|9); 4]
PA|B= = (4.10.14)

Proof
The proof is absolutely trivial. By definition of conditional probability given ¢, the numerator is P(A N B) and the denominator is P(B). Nonetheless, Bayes' theorem
is useful in settings where the expected values in the numerator and denominator can be computed directly

Basic Examples
The purpose of this discussion is to tie the general notions of conditional expected value that we are studying here to the more elementary concepts that you have seen
before. Suppose that A is an event (that is, a member of .#) with P(4) > 0. If B is another event, then of course, the conditional probability of B given A4 is

P(ANB)
P(B|A) = ———— 4.10.1
(B14)=—50p (4.10.15)
If X is a random variable then the conditional distribution of X given A is the probability measure on R given by
P{X e R}NA)
IP(4)

If E(] X]) < oo then the conditional expected value of X given A, denoted E(X | A), is simply the mean of this conditional distribution.

R—P(XecR|A)= for measurable R C R (4.10.16)

Suppose now that @ = {A; : ¢ € I'} is a countable partition of the sample space {2 into events with positive probability. To review the jargon, & C .Z ; the index set I is
countable; A; N A; =0 for distinct ¢, j € I'; U;e; Ai =Q; and P(4;) >0 fori € I. Let 4 = o (&), the o-algebra generated by 7. The elements of ¢ are of the form
UJ-E 7 Aj for J C I. Moreover, the random variables that are measurable with respect to ¢ are precisely the variables that are constant on A; for each i € I. The o-algebra

¢ is said to be countably generated.
If B Z then P(B| ¥) is the random variable whose value on 4; is P(B | A;) for eachs € I.
Proof

Let U denote the random variable that takes the value P(B | A;) on A; for each ¢ € I. First, U is measurable with respect to ¢ since U is constant on 4; for each
i € I. So we just need to show that E(U; A) =P(ANB) foreach A € ¢. Thus, let A =J,.; A; where J C I Then

E(U; A) =Y E(U; 4;) =Y _P(B| 4;)P(4;) =P(AN B) (4.10.17)
jeJ jeJ

In this setting, the version of Bayes' theorem in (15) reduces to the usual elementary formulation: For i€ I, E[P(B|¥); ;] =P(4;)P(B|4;) and
EP(B|9)] = Y, P(4,)P(B| 4;) . Hence
P(4;)P(B | 4;)

P(A4; | B) = W (4.10.18)

If X is a random variable with E(| X]) < oo, then E(X | ¢) is the random variable whose value on A; is E(X | A;) for eachs € I.

Proof
Let U denote the random variable that takes the value E(X | A;) on A; for each ¢ € I. First, U is measurable with respect to ¢ since U is constant on A; for each
i € I. So we just need to show that E(U; A) = E(X; A) foreach A € 4. Thus, let A =J,.; A; where J C I.Then

E(U; A) =) E(U; 4;) = > E(X | A))P(4;) = E(X; A) (4.10.19)
jeJ jeJ

The previous examples would apply to 4 =0 (Y) if Y is a discrete random variable taking values in a countable set 7. In this case, the partition is simply
o ={{Y =y} :y €T}.On the other hand, suppose that Y is a random variable taking values in a general set T' with o-algebra 7. The real-valued random variables
that are measurable with respect to 4 = o(Y") are (up to equivalence) the measurable, real-valued functions of Y.

Specializing further, Suppose that X takes values in S C R, Y takes values in 7' C R"™ (where S and T" are Lebesgue measurable) and that (X, Y") has a joint continuous
distribution with probability density function f. Then Y has probability density function ~ given by

h(y):/sf(x,y)d% yeT (4.10.20)
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Assume that h(y) > 0 fory € T Then for y € T', a conditional probability density function of X given Y =y is defined by

glz |y) = f@y) e (4.10.21)
h(y)
This is precisely the setting of our elementary discussion of conditional expected value. If E(|X|) < oo then we usually write E(X |Y') instead of the clunkier
E[X | o(Y)).
In this setting above suppose that E(| X |) < co. Then
IE(X|Y):/Szg(x|Y) & (4.10.22)

Proof

Once again, we show that the integral on the right satisfies the properties in the definition for E(X | Y) =E[X | o(Y)] . First, y — [ zg(x | y) dz is measurable as a
function from T" into R and hence the random variable fw g(z | Y)dz is a measurable function of ¥ and so is measurable with respect to o(Y"). Next suppose that
Beo(Y).Then B={Y € A} forsome A € Z. Then

]E[/ng(x\Y)dx;B} :]E[/Smg(z\Y)dx;YeA}

e, [ e,
-=(/ w) veal=f [ W) W

- /S of(e,)d(e,y) =BG € 4) =E(X; B)

Best Predictor

In our elementary treatment of conditional expected value, we showed that the conditional expected value of a real-valued random variable X given a general random
variable Y is the best predictor of X, in the least squares sense, among all real-valued functions of Y. A more careful statement is that E(X | Y) is the best predictor of X
among all real-valued random variables that are measurable with respect to o(Y"). Thus, it should come as not surprise that if ¢ is a sub o-algebra of Z, then E(X | ¥) is
the best predictor of X, in the least squares sense, among all real-valued random variables that are measurable with respect to ¢). We will show that this is indeed the case
in this subsection. The proofs are very similar to the ones given in the elementary section. For the rest of this discussion, we assume that ¢ is a sub o-algebra of & and that
all random variables mentioned are real valued.

Suppose that X and U are random variables with E(]X|) < oo and E(|XU|) < oo and that U is measurable with respect to ¢. Then X —E(X |¥) and U are
uncorrelated.
Proof
Note that X —E(X | ¢) has mean 0 by the mean property. Using the properties that characterize E(X | ¢) we have
cov[X —E(X | 9),U] =E(U[X —~E(X | 9)]) =E(UX) - E[UE(X | 4] =E(UX) ~E(UX) =0 (4.10.23)

The next result is the main one: E(X | ¢) is closer to X in the mean square sense than any other random variable that is measurable with respect to . Thus, if ¢ represents
the information that we have, then E(X | ¢) is the best we can do in estimating X.
Suppose that X and U are random variables with E(X?) < co and E(U?) < oo and that U is measurable with respect to ¢. Then

LE(X —E(X| 9)?) <E[(X-U)?] .
2. Equality holds if and only if P[U =E(X | )] =1, s0 U and E(X | ¢) are equivalent.

Proof
1. Note that

E[(X-U)?] =E(X-E(X|9)+EX|¥9) -U]? (4.10.24)
=E(X-E(X|9))?) +2E(X -EX |9)[EX |¥) -U)+E(E(X |¥)-U?) (4.10.25)

By mean property, X —E(X | ¢) has mean 0, so the middle term in the displayed equation is 2cov[X —E(X | ¢),E(X | ¢9) —U] .BwtE(X |¥)—U is¥9-
measurable and hence this covariance is 0 by uncorrelated proerty. Therefore

E[(X —U)?] = (X~ E(X | 9)]2) + E((E(X | 9) ~ U]") > E(1X ~E(X | 9)]°) (1.10.26)
2. Equality holds if and only if E([E(X | 4) —U]?) =0 ifandonlyif P([U=E(X |¥)] =1

Conditional Variance
Once again, we assume that ¢ is a sub o-algebra of .# and that all random variables mentioned are real valued, unless otherwise noted. It's natural to define the conditional
variance of a random variable given ¢ in the same way as ordinary variance, but witl all expected values conditioned on ¢.

Suppose that X is a random variable with E(X?) < co. The conditional variance of X given ¢ is

var(X |9) =E ([X—IE(X|£4’)]2 %) (4.10.27)

Like all conditional expected values relative to ¢, var(X | ¢) is a random variable that is measurable with respect to ¢ and is unique up to equivalence. The first property
is analogous to the computational formula for ordinary variance.

Suppose again that X is a random variable with E(X?) < co. Then
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Proof

var(X |9) =E(X* | 9) - [E(X | 9)]? (4.10.28)

Expanding the square in the definition and using basic properties of conditional expectation, we have
var(X |¥9) =E(X?-2XE(X|¥9)+[EX|¥9))*|¥9) =E(X?|¥9) —2EXE(X|¥Y) |9 +E(E(X|9)*|¥) (4.10.29)
=E(X?|¥) 2E(X |9)EX |9) +[E(X|9)? =E(X?|9) - [E(X|¥9)? (4.10.30)

Next is a formula for the ordinary variance in terms of conditional variance and expected value.
Suppose again that X is a random variable with E(X?) < co. Then

var(X) =E[var(X | ¢)] + var[E(X | )] (4.10.31)
Proof

From the previous theorem and properties of conditional expected value we have E[var(X | ¢)] = E(X?) —E([E(X | 9)]?) . But E(X?) = var(X) + [E(X)]? and
similarly, E([E(X | 9))?) = var[E(X | 9)] + (E[E(X | €)])? . Butalso, E[E(X | ¢)] =E(X) so subsituting we get E[var(X | ¢)] = var(X) — var[E(X | ¢)] .

So the variance of X is the expected conditional variance plus the variance of the conditional expected value. This result is often a good way to compute var(X) when we
know the conditional distribution of X given ¢. In turn, this property leads to a formula for the mean square error when E(X | ¢) is thought of as a predictor of X.

Suppose again that X is a random variable with E(X?) < co.
E([X —E(X | 9)]*) = var(X) —var[E(X | 9)] (4.10.32)
Proof

From the definition and from the mean property and variance formula,

E(X —E(X | 9)?) =E[var(X | ¢)] = var(X) — var[E(X | ©)] (4.10.33)

Let us return to the study of predictors of the real-valued random variable X, and compare them in terms of mean square error.

Suppose again that X is a random variable with E(X?) < oo.

1. The best constant predictor of X is E(X) with mean square error var(X).
2.If Y is another random variable with E(Y %) < oo, then the best predictor of X among linear functions of Y is

cov(X,Y)

L(X|Y) =E(0) +— 5

[Y-E(Y)] (4.10.34)
with mean square error var(X)[1 — cor?(X,Y)].

3.If Y is a (general) random variable, then the best predictor of X among all real-valued functions of Y with finite variance is E(X | Y) with mean square error
var(X) —var[E(X | Y)].

4.1f ¢ is a sub o-algebra of .Z, then the best predictor of X among random variables with finite variance that are measurable with respect to ¢ is E(X | ¢) with mean
square error var(X) —var[E(X | ¢)].

Of course, (a) is a special case of (d) with ¢ ={0,Q} and (c) is a special case of (d) with ¥ = (Y’). Only (b), the linear case, cannot be interpreted in terms of
conditioning with respect to a o-algebra.

Conditional Covariance
Suppose again that ¢ is a sub o-algebra of Z. The conditional covariance of two random variables is defined like the ordinary covariance, but with all expected values
conditioned on 4.

Suppose that X and Y are random variables with E(X?) < oo and E(Y 2) < co. The conditional covariance of X and Y given ¢ is defined as

cov(X,Y |9) =E ([XfIE(X |D)[Y ~E(Y |9)] ’g> (4.10.35)

So cov(X,Y | ¢) is a random variable that is measurable with respect to ¢ and is unique up to equivalence. As should be the case, conditional covariance generalizes
conditional variance.

Suppose that X is a random variable with E(X?2) < co. Then cov(X, X | 4) =var(X | ¥).
Proof
This follows immediately from the two definitions.

Our next result is a computational formula that is analogous to the one for standard covariance—the covariance is the mean of the product minus the product of the means,
but now with all expected values conditioned on ¢:

Suppose again that X and Y are random variables with E(X?) < oo and E(Y?) < co. Then
cov(X,Y |9) =E(XY |¥9)-E(X |9)E(Y |¥9) (4.10.36)
Proof

Expanding the product in the definition and using basic properties of conditional expectation, we have
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cov(X,Y |¥9) =E (XY—X]E(Y |9)-YE(X|9)+E(X |9)E(Y |9) ‘ %) =EXY |9)-EXE(Y |¥9) |4 -E[YE(X |¥)|¥] (4.10.37)
+EEX|9EY |9)|¥9)
=E(XY |9)-EX |9EY |9) -EX |9EY |9 +EX|9EY |9) =E(XY |9)-E(X |9)EY |9) (4.10.38)
Our next result shows how to compute the ordinary covariance of X and Y by conditioning on X.
Suppose again that X and Y are random variables with E(X?) < co) and E(Y'? < 00). Then
cov(X,Y) =E[cov(X,Y |¥)] +cov [E(X | ¥9),E(Y | 9)] (4.10.39)
Proof

From (29) and properties of conditional expected value we have

Elcov(X,Y |9)] =E(XY)-E [E(X | 9)E(Y | ¥) (4.10.40)
But E(XY) =cov(X,Y)+E(X)E(Y) and similarly,
E[EX |9E(Y |9)] =cov[E(X |¥),E(Y |9)+E[E(X | 9)E[E(Y |¥9)] (4.10.41)
But also, E [E(X | ¢4)] =E(X) and E[E(Y | ¢4)] =E(Y) so subsituting we get
E[cov(X,Y |¥)] =cov(X,Y) —cov[E(X |¥9),E(Y | 9)] (4.10.42)

Thus, the covariance of X and Y is the expected conditional covariance plus the covariance of the conditional expected values. This result is often a good way to compute
cov(X,Y’) when we know the conditional distribution of (X,Y) given &.

This page titled 4.10: Conditional Expected Value Revisited is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via source
content that was edited to the style and standards of the LibreTexts platform.
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