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6.2: The Sample Mean
     

Basic Theory

Recall the basic model of statistics: we have a population of objects of interest, and we have various measurements (variables) that
we make on the objects. We select objects from the population and record the variables for the objects in the sample; these become
our data. Our first discussion is from a purely descriptive point of view. That is, we do not assume that the data are generated by an
underlying probability distribution. However, recall that the data themselves define a probability distribution.

Definition and Basic Properties

Suppose that  is a sample of size  from a real-valued variable. The sample mean is simply the arithmetic
average of the sample values:

If we want to emphasize the dependence of the mean on the data, we write  instead of just . Note that  has the same
physical units as the underlying variable. For example, if we have a sample of weights of cicadas, in grams, then  is in grams
also. The sample mean is frequently used as a measure of center of the data. Indeed, if each  is the location of a point mass, then 

 is the center of mass as defined in physics. In fact, a simple graphical display of the data is the dotplot: on a number line, a dot is
placed at  for each . If values are repeated, the dots are stacked vertically. The sample mean  is the balance point of the
dotplot. The image below shows a dot plot with the mean as the balance point.

Figure : A dotplot

The standard notation for the sample mean corresponding to the data  is . We break with tradition and do not use the bar notation
in this text, because it's clunky and because it's inconsistent with the notation for other statistics such as the sample variance,
sample standard deviation, and sample covariance. However, you should be aware of the standard notation, since you will
undoubtedly see it in other sources.

The following exercises establish a few simple properties of the sample mean. Suppose that  and 
 are samples of size  from real-valued population variables and that  is a constant. In vector notation, recall

that  and .

Computing the sample mean is a linear operation.

1. 
2. 

Proof

1. 

2. 

The sample mean preserves order.

1. If  for each  then .
2. If  for each  and  for some  them 

x = ( , , … , )x1 x2 xn n

m =
1

n
∑
i=1

n

xi (6.2.1)

m(x) m m

m

xi
m

xi i m

6.2.1

x x̄

x = ( , , … , )x1 x2 xn
y = ( , , … , )y1 y2 yn n c

x +y = ( + , + , … , + )x1 y1 x2 y2 xn yn cx = (c , c , … , c )x1 x2 xn

m(x +y) = m(x) +m(y)
m(cx) = cm(x)

m(x +y) = ( + ) = + = m(x) +m(y)
1

n
∑
i=1

n

xi yi
1

n
∑
i=1

n

xi
1

n
∑
i=1

n

yi (6.2.2)

m(cx) = c = c = cm(x)
1

n
∑
i=1

n

xi
1

n
∑
i=1

n

xi (6.2.3)

≥ 0xi i m(x) ≥ 0
≥ 0xi i > 0xj j m(x) > 0

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10179?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/06%3A_Random_Samples/6.02%3A_The_Sample_Mean


6.2.2 https://stats.libretexts.org/@go/page/10179

3. If  for each  then 
4. If  for each  and  for some  then 

Proof

Parts (a) and (b) are obvious from the definition. Part (c) follows from part (a) and the linearity of expected value. Specifically,
if  (in the product ordering), then . Hence by (a), . But . Hence 

. Similarly, (d) follows from (b) and the linearity of expected value.

Trivially, the mean of a constant sample is simply the constant. .

If  is a constant sample then .

Proof

Note that

As a special case of these results, suppose that  is a sample of size  corresponding to a real variable , and
that  and  are constants. Then the sample corresponding to the variable , in our vector notation, is . The
sample means are related in precisely the same way, that is, . Linear transformations of this type, when 

, arise frequently when physical units are changed. In this case, the transformation is often called a location-scale
transformation;  is the location parameter and  is the scale parameter. For example, if  is the length of an object in inches, then 

 is the length of the object in centimeters. If  is the temperature of an object in degrees Fahrenheit, then 
is the temperature of the object in degree Celsius.

Sample means are ubiquitous in statistics. In the next few paragraphs we will consider a number of special statistics that are based
on sample means.

The Empirical Distribution

Suppose now that  is a sample of size  from a general variable taking values in a set . For , the
frequency of  corresponding to  is the number of data values that are in :

The relative frequency of  corresponding to  is the proportion of data values that are in :

Note that for fixed ,  is itself a sample mean, corresponding to the data . This fact bears
repeating: every sample proportion is a sample mean, corresponding to an indicator variable. In the picture below, the red dots
represent the data, so .

Figure : The empirical probability of 

 is a probability measure on .
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3. If  is a countable collection of pairwise disjont subsets of  then 

Proof

Parts (a) and (b) are obvious. For part (c) note that since the sets are disjoint,

This probability measure is known as the empirical probability distribution associated with the data set . It is a discrete
distribution that places probability  at each point . In fact this observation supplies a simpler proof of previous theorem. Thus,
if the data values are distinct, the empirical distribution is the discrete uniform distribution on . More generally, if 

 occurs  times in the data then the empirical distribution assigns probability  to .

If the underlying variable is real-valued, then clearly the sample mean is simply the mean of the empirical distribution. It follows
that the sample mean satisfies all properties of expected value, not just the linear properties and increasing properties given above.
These properties are just the most important ones, and so were repeated for emphasis.

Empirical Density

Suppose now that the population variable  takes values in a set  for some . Recall that the standard measure on 
 is given by

In particular  is the length of , for ;  is the area of , for ; and  is the volume of , for 
. Suppose that  is a continuous variable in the sense that . Typically,  is an interval if  and a Cartesian

product of intervals if . Now for  with , the empirical density of  corresponding to  is

Thus, the empirical density of  is the proportion of data values in , divided by the size of . In the picture below
(corresponding to ), if  has area 5, say, then .

Figure : The empirical density of 

The Empirical Distribution Function

Suppose again that  is a sample of size  from a real-valued variable. For , let  denote the relative
frequency (empirical probability) of  corresponding to the data set . Thus, for each ,  is the sample mean of
the data 

 is a distribution function.

1.  increases from 0 to 1.
2.  is a step function with jumps at the distinct sample values .

{ : j∈ J}Aj S p( )= p( )⋃j∈J Aj ∑j∈J Aj

p( )⋃
i∈I

Ai = 1( ∈ ) = 1( ∈ )
1

n
∑
i=1

n

xi ⋃
j∈J

Aj

1

n
∑
i=1

n

∑
j∈J

xi Aj

= 1( ∈ ) = p( )∑
j∈J

1

n
∑
i=1

n

xi Aj ∑
j∈J

Aj

(6.2.7)

(6.2.8)

x
1
n xi

{ , , … , }x1 x2 xn
x ∈ S k k/n x

x S ⊆R
d d ∈ N+

R
d

(A) = 1 dx, A ⊆λd ∫
A

R
d (6.2.9)

(A)λ1 A A ⊆R (A)λ2 A A ⊆R
2 (A)λ3 A

A ⊆R
3 x (S) > 0λd S d = 1

d > 1 A ⊆ S (A) > 0λd A x

D(A) = = 1( ∈ A)
p(A)

(A)λd

1

n (A)λd
∑
i=1

n

xi (6.2.10)

A A A

d = 2 A D(A) = 4/75

6.2.3 A

x = ( , , … , )x1 x2 xn n x ∈ R F (x)
(−∞, x] x x ∈ R F (x)

{1( ≤ x) : i ∈ {1, 2, … ,n}} :xi

F (x) = p ((−∞, x]) = 1( ≤ x)
1

n
∑
i=1

n

xi (6.2.11)

F

F

F { , , … , }x1 x2 xn

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10179?pdf


6.2.4 https://stats.libretexts.org/@go/page/10179

Proof

Suppose that  are the distinct values of the data, ordered from smallest to largest, and that  occurs  times in
the data. Then  for ,  for ,  for , and so forth.

Appropriately enough,  is called the empirical distribution function associated with  and is simply the distribution function of
the empirical distribution corresponding to . If we know the sample size  and the empirical distribution function , we can
recover the data, except for the order of the observations. The distinct values of the data are the places where  jumps, and the
number of data values at such a point is the size of the jump, times the sample size .

The Empirical Discrete Density Function

Suppose now that  is a sample of size  from a discrete variable that takes values in a countable set . For 
, let  be the relative frequency (empirical probability) of  corresponding to the data set . Thus, for each , 

is the sample mean of the data :

In the picture below, the dots are the possible values of the underlying variable. The red dots represent the data, and the numbers
indicate repeated values. The blue dots are possible values of the the variable that did not happen to occur in the data. So, the
sample size is 12, and for the value  that occurs 3 times, we have .

Figure : The discrete probability density function

 is a discrete probabiltiy density function:

1.  for 
2. 

Proof

Part (a) is obvious. For part (b), note that

Appropriately enough,  is called the empirical probability density function or the relative frequency function associated with ,
and is simply the probabiltiy density function of the empirical distribution corresponding to . If we know the empirical PDF  and
the sample size , then we can recover the data set, except for the order of the observations.

If the underlying population variable is real-valued, then the sample mean is the expected value computed relative to the
empirical density function. That is,

Proof

Note that

As we noted earlier, if the population variable is real-valued then the sample mean is the mean of the empirical distribution.
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The Empirical Continuous Density Function

Suppose now that  is a sample of size  from a continuous variable that takes values in a set . Let 
 be a partition of  into a countable number of subsets, each of positive, finite measure. Recall that the word

partition means that the subsets are pairwise disjoint and their union is . Let  be the function on  defined by the rule that 
is the empricial density of , corresponding to the data set , for each . Thus,  is constant on each of the partition sets:

 is a continuous probabiltiy density function.

1.  for 
2. 

Proof

Part (a) is obvious. For part (b) note that since  is constant on  for each  we have

The function  is called the empirical probability density function associated with the data  and the partition . For the
probability distribution defined by , the empirical probability  is uniformly distributed over  for each . In the
picture below, the red dots represent the data and the black lines define a partition of  into 9 rectangles. For the partition set  in
the upper right, the empirical distribution would distribute probability  uniformly over . If the area of  is, say, 4,
then  for .

Figure : Empirical probability density function

Unlike the discrete case, we cannot recover the data from the empirical PDF. If we know the sample size, then of course we can
determine the number of data points in  for each , but not the precise location of these points in . For this reason, the mean of
the empirical PDF is not in general the same as the sample mean when the underlying variable is real-valued.

Histograms

Our next discussion is closely related to the previous one. Suppose again that  is a sample of size  from a
variable that takes values in a set  and that  is a partition of  into  subsets. The sets in the partition are
sometimes known as classes. The underlying variable may be discrete or continuous.

The mapping that assigns frequencies to classes is known as a frequency distribution for the data set and the given partition.
The mapping that assigns relative frequencies to classes is known as a relative frequency distribution for the data set and the
given partition.
In the case of a continuous variable, the mapping that assigns densities to classes is known as a density distribution for the data
set and the given partition.

In dimensions 1 or 2, the bar graph any of these distributions, is known as a histogram. The histogram of a frequency distribution
and the histogram of the corresponding relative frequency distribution look the same, except for a change of scale on the vertical
axis. If the classes all have the same size, the histogram of the corresponding density histogram also looks the same, again except
for a change of scale on the vertical axis. If the underlying variable is real-valued, the classes are usually intervals (discrete or
continuous) and the midpoints of these intervals are sometimes referred to as class marks.
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Figure : A density histogram

The whole purpose of constructing a partition and graphing one of these empirical distributions corresponding to the partition is to
summarize and display the data in a meaningful way. Thus, there are some general guidelines in choosing the classes:

1. The number of classes should be moderate.
2. If possible, the classes should have the same size.

For highly skewed distributions, classes of different sizes are appropriate, to avoid numerous classes with very small frequencies.
For a continuous variable with classes of different sizes, it is essential to use a density histogram, rather than a frequency or relative
frequency histogram, otherwise the graphic is visually misleading, and in fact mathematically wrong.

It is important to realize that frequency data is inevitable for a continuous variable. For example, suppose that our variable
represents the weight of a bag of M&Ms (in grams) and that our measuring device (a scale) is accurate to 0.01 grams. If we
measure the weight of a bag as 50.32, then we are really saying that the weight is in the interval  (or perhaps some
other interval, depending on how the measuring device works). Similarly, when two bags have the same measured weight, the
apparent equality of the weights is really just an artifact of the imprecision of the measuring device; actually the two bags almost
certainly do not have the exact same weight. Thus, two bags with the same measured weight really give us a frequency count of 2
for a certain interval.

Again, there is a trade-off between the number of classes and the size of the classes; these determine the resolution of the empirical
distribution corresponding to the partition. At one extreme, when the class size is smaller than the accuracy of the recorded data,
each class contains a single datum or no datum. In this case, there is no loss of information and we can recover the original data set
from the frequency distribution (except for the order in which the data values were obtained). On the other hand, it can be hard to
discern the shape of the data when we have many classes with small frequency. At the other extreme is a frequency distribution
with one class that contains all of the possible values of the data set. In this case, all information is lost, except the number of the
values in the data set. Between these two extreme cases, an empirical distribution gives us partial information, but not complete
information. These intermediate cases can organize the data in a useful way.

Ogives

Suppose now the underlying variable is real-valued and that the set of possible values is partitioned into intervals 
, with the endpoints of the intervals ordered from smallest to largest. Let  denote the frequency of class , so

that  is the relative frequency of class . Let  denote the class mark (midpoint) of class . The cumulative frequency
of class  is  and the cumulative relative frequency of class  is . Note that the cumulative
frequencies increase from  to  and the cumulative relative frequencies increase from  to 1.

The mapping that assigns cumulative frequencies to classes is known as a cumulative frequency distribution for the data set and
the given partition. The polygonal graph that connects the points  for  is the cumulative frequency
ogive.
The mapping that assigns cumulative relative frequencies to classes is known as a cumulative relative frequency distribution for
the data set and the given partition. The polygonal graph that connects the points  for  is the cumulative
relative frequency ogive.

Note that the relative frquency ogive is simply the graph of the distribution function corresponding to the probability distibution
that places probability  at  for each .

6.2.6

[50.315, 50.324)

( , , … , )A1 A2 Ak nj Aj

= /npj nj Aj tj Aj

Aj =Nj ∑j
i=1 ni Aj = = /nPj ∑j

i=1 pi Nj

n1 n p1

( , )tj Nj j∈ {1, 2, … , k}

( , )tj Pj j∈ {1, 2, … , k}

pj tj j

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10179?pdf


6.2.7 https://stats.libretexts.org/@go/page/10179

Approximating the Mean

In the setting of the last subsection, suppose that we do not have the actual data , but just the frequency distribution. An
approximate value of the sample mean is

This approximation is based on the hope that the mean of the data values in each class is close to the midpoint of that class. In fact,
the expression on the right is the expected value of the distribution that places probability  on class mark  for each .

Exercises

Basic Properties

Suppose that  is the temperature (in degrees Fahrenheit) for a certain type of electronic component after 10 hours of
operation.

1. Classify  by type and level of measurement.
2. A sample of 30 components has mean 113°. Find the sample mean if the temperature is converted to degrees Celsius. The

transformation is .

Answer
1. continuous, interval
2. 45°

Suppose that  is the length (in inches) of a machined part in a manufacturing process.

1. Classify  by type and level of measurement.
2. A sample of 50 parts has mean 10.0. Find the sample mean if length is measured in centimeters. The transformation is 

.

Answer
1. continuous, ratio
2. 25.4

Suppose that  is the number of brothers and  the number of sisters for a person in a certain population. Thus,  is
the number of siblings.

1. Classify the variables by type and level of measurement.
2. For a sample of 100 persons,  and . Find .

Answer
1. discrete, ratio
2. 2.0

Professor Moriarity has a class of 25 students in her section of Stat 101 at Enormous State University (ESU). The mean grade
on the first midterm exam was 64 (out of a possible 100 points). Professor Moriarity thinks the grades are a bit low and is
considering various transformations for increasing the grades. In each case below give the mean of the transformed grades, or
state that there is not enough information.

1. Add 10 points to each grade, so the transformation is .
2. Multiply each grade by 1.2, so the transformation is 
3. Use the transformation . Note that this is a non-linear transformation that curves the grades greatly at the low

end and very little at the high end. For example, a grade of 100 is still 100, but a grade of 36 is transformed to 60.

One of the students did not study at all, and received a 10 on the midterm. Professor Moriarity considers this score to be an
outlier.

4. What would the mean be if this score is omitted?
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Density Cum Freq Cum Rel Freq Midpoint

Answer
1. 74
2. 76.8
3. Not enough information
4. 66.25

Computational Exercises

All statistical software packages will compute means and proportions, draw dotplots and histograms, and in general perform the
numerical and graphical procedures discussed in this section. For real statistical experiments, particularly those with large data sets,
the use of statistical software is essential. On the other hand, there is some value in performing the computations by hand, with
small, artificial data sets, in order to master the concepts and definitions. In this subsection, do the computations and draw the
graphs with minimal technological aids.

Suppose that  is the number of math courses completed by an ESU student. A sample of 10 ESU students gives the data 
.

1. Classify  by type and level of measurement.
2. Sketch the dotplot.
3. Compute the sample mean  from the definition and indicate its location on the dotplot.
4. Find the empirical density function  and sketch the graph.
5. Compute the sample mean  using .
6. Find the empirical distribution function  and sketch the graph.

Answer
1. discrete, ratio
3. 2
4. , , , , 
5. 2
6.  for ,  for ,  for ,  for , 

 for ,  for 

Suppose that a sample of size 12 from a discrete variable  has empirical density function given by , 
, , , .

1. Sketch the graph of .
2. Compute the sample mean  using .
3. Find the empirical distribution function 
4. Give the sample values, ordered from smallest to largest.

Answer
2. 
3.  for ,  for ,  for ,  for , 

 for ,  for 
4. 

The following table gives a frequency distribution for the commuting distance to the math/stat building (in miles) for a sample
of ESU students.

Class Freq Rel Freq Density Cum Freq Cum Rel Freq Midpoint

6      

16      

18      

Total   

x

x = (3, 1, 2, 0, 2, 4, 3, 2, 1, 2)

x

m

f

m f

F

f(0) = 1/10 f(1) = 2/10 f(2) = 4/10 f(3) = 2/10 f(4) = 1/10

F (x) = 0 x < 0 F (x) = 1/10 0 ≤ x < 1 F (x) = 3/10 1 ≤ x < 2 F (x) = 7/10 2 ≤ x < 3
F (x) = 9/10 3 ≤ x < 4 F (x) = 1 x ≥ 4

x f(−2) = 1/12
f(−1) = 1/4 f(0) = 1/3 f(1) = 1/6 f(2) = 1/6

f

m f

F

1/12
F (x) = 0 x < −2 F (x) = 1/12 −2 ≤ x < −1 F (x) = 1/3 −1 ≤ x < 0 F (x) = 2/3 0 ≤ x < 1
F (x) = 5/6 1 ≤ x < 2 F (x) = 1 x ≥ 2
(−2, −1, −1, −1, 0, 0, 0, 0, 1, 1, 2, 2)

(0, 2]

(2, 6]

(6, 10]
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Density Cum Freq Cum Rel Freq Midpoint

Class Freq Rel Freq Density Cum Freq Cum Rel Freq Midpoint

10      

Total   

1. Complete the table
2. Sketch the density histogram
3. Sketch the cumulative relative frquency ogive.
4. Compute an approximation to the mean

Answer

1. Class Freq Rel Freq Density Cum Freq Cum Rel Freq Midpoint

6 0.12 0.06 6 0.12 1

16 0.32 0.08 22 0.44 4

18 0.36 0.09 40 0.80 8

10 0.20 0.02 50 1 15

Total 50 1

4. 7.28

App Exercises

In the interactive histogram, click on the -axis at various points to generate a data set with at least 20 values. Vary the number
of classes and switch between the frequency histogram and the relative frequency histogram. Note how the shape of the
histogram changes as you perform these operations. Note in particular how the histogram loses resolution as you decrease the
number of classes.

In the interactive histogram, click on the axis to generate a distribution of the given type with at least 30 points. Now vary the
number of classes and note how the shape of the distribution changes.

1. A uniform distribution
2. A symmetric unimodal distribution
3. A unimodal distribution that is skewed right.
4. A unimodal distribution that is skewed left.
5. A symmetric bimodal distribution
6. A -shaped distribution.

Data Analysis Exercises

Statistical software should be used for the problems in this subsection.

Consider the petal length and species variables in Fisher's iris data.

1. Classify the variables by type and level of measurement.
2. Compute the sample mean and plot a density histogram for petal length.
3. Compute the sample mean and plot a density histogram for petal length by species.

Answers
1. petal length: continuous, ratio. species: discrete, nominal
2. 
3. 

Consider the erosion variable in the Challenger data set.

(10, 20]

(0, 2]

(2, 6]

(6, 10]

(10, 20])

x

u

m = 37.8
m(0) = 14.6, m(1) = 55.5, m(2) = 43.2
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1. Classify the variable by type and level of measurement.
2. Compute the mean
3. Plot a density histogram with the classes , , , .

Answer
1. continuous, ratio
2. 

Consider Michelson's velocity of light data.

1. Classify the variable by type and level of measurement.
2. Plot a density histogram.
3. Compute the sample mean.
4. Find the sample mean if the variable is converted to . The transformation is 

Answer
1. continuous, interval
3. 
4. 

Consider Short's paralax of the sun data.

1. Classify the variable by type and level of measurement.
2. Plot a density histogram.
3. Compute the sample mean.
4. Find the sample mean if the variable is converted to degrees. There are 3600 seconds in a degree.
5. Find the sample mean if the variable is converted to radians. There are  radians in a degree.

Answer
1. continuous, ratio
3. 8.616
4. 0.00239
5. 0.0000418

Consider Cavendish's density of the earth data.

1. Classify the variable by type and level of measurement.
2. Compute the sample mean.
3. Plot a density histogram.

Answer
1. continuous, ratio
2. 

Consider the M&M data.

1. Classify the variables by type and level of measurement.
2. Compute the sample mean for each color count variable.
3. Compute the sample mean for the total number of candies, using the results from (b).
4. Plot a relative frequency histogram for the total number of candies.
5. Compute the sample mean and plot a density histogram for the net weight.

Answer
1. color counts: discrete ratio. net weight: continuous ratio.
2. , , , , , 
3. 
5. 

[0, 5) [5, 40) [40, 50) [50, 60)

m = 7.7

km/hr y = x+299 000

m = 852.4
m = 299 852.4

π/180

m = 5.448

m(r) = 9.60 m(g) = 7.40 m(bl) = 7.23 m(o) = 6.63 m(y) = 13.77 m(br) = 12.47
m(n) = 57.10
m(w) = 49.215
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Consider the body weight, species, and gender variables in the Cicada data.

1. Classify the variables by type and level of measurement.
2. Compute the relative frequency function for species and plot the graph.
3. Compute the relative frequeny function for gender and plot the graph.
4. Compute the sample mean and plot a density histogram for body weight.
5. Compute the sample mean and plot a density histogrm for body weight by species.
6. Compute the sample mean and plot a density histogram for body weight by gender.

Answer
1. body weight: continuous, ratio. species: discrete, nominal. gender: discrete, nominal.
2. , , 
3. , 
4. 
5. 
6. 

Consider Pearson's height data.

1. Classify the variables by type and level of measurement.
2. Compute the sample mean and plot a density histogram for the height of the father.
3. Compute the sample mean and plot a density histogram for the height of the son.

Answer
1. continuous ratio
2. 
3. 

This page titled 6.2: The Sample Mean is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.

f(0) = 0.423 f(1) = 0.519 f(2) = 0.058
f(0) = 0.567 f(1) = 0.433
m = 0.180
m(0) = 0.168, m(1) = 0.185, m(2) = 0.225
m(0) = 0.206, m(1) = 0.145

m(f) = 67.69
m(s) = 68.68
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