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5.6: The Normal Distribution
       

The normal distribution holds an honored role in probability and statistics, mostly because of the central limit theorem, one of the
fundamental theorems that forms a bridge between the two subjects. In addition, as we will see, the normal distribution has many
nice mathematical properties. The normal distribution is also called the Gaussian distribution, in honor of Carl Friedrich Gauss,
who was among the first to use the distribution.

The Standard Normal Distribution

Distribution Functions

The standard normal distribution is a continuous distribution on  with probability density function  given by

Proof that  is a probability density function

Let . We need to show that . That is,  is the normalzing constant for the function .
The proof uses a nice trick:

We now convert the double integral to polar coordinates: ,  where  and . So, 
 and . Thus, converting back to iterated integrals,

Substituting  in the inner integral gives  and then the outer integral is . Thus, 
and so .

The standard normal probability density function has the famous “bell shape” that is known to just about everyone.

The standard normal density function  satisfies the following properties:

1.  is symmetric about .
2.  increases and then decreases, with mode .
3.  is concave upward and then downward and then upward again, with inflection points at .
4.  as  and as .

Proof

These results follow from standard calculus. Note that  (which gives (b)) and hence also 
 (which gives (c)).

In the Special Distribution Simulator, select the normal distribution and keep the default settings. Note the shape and location
of the standard normal density function. Run the simulation 1000 times, and compare the empirical density function to the
probability density function.

The standard normal distribution function , given by

and its inverse, the quantile function , cannot be expressed in closed form in terms of elementary functions. However
approximate values of these functions can be obtained from the special distribution calculator, and from most mathematics and
statistics software. Indeed these functions are so important that they are considered special functions of mathematics.
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The standard normal distribution function  satisfies the following properties:

1.  for 
2.  for 
3. , so the median is 0.

Proof

Part (a) follows from the symmetry of . Part (b) follows from part (a). Part (c) follows from part (a) with .

In the special distribution calculator, select the normal distribution and keep the default settings.

1. Note the shape of the density function and the distribution function.
2. Find the first and third quartiles.
3. Compute the interquartile range.

In the special distribution calculator, select the normal distribution and keep the default settings. Find the quantiles of the
following orders for the standard normal distribution:

1. , 
2. , 
3. , 

Moments

Suppose that random variable  has the standard normal distribution.

The mean and variance of  are

1. 
2. 

Proof
1. Of course, by symmetry, if  has a mean, the mean must be 0, but we have to argue that the mean exists. Actually it's not

hard to compute the mean directly. Note that

The integrals on the right can be evaluated explicitly using the simple substitution . The result is 
.

2. Note that

Integrate by parts, using the parts  and . Thus  and . Note that  as 
 and as . Thus, the integration by parts formula gives .

3. 

In the Special Distribution Simulator, select the normal distribution and keep the default settings. Note the shape and size of
the mean  standard deviation bar.. Run the simulation 1000 times, and compare the empirical mean and standard deviation to
the true mean and standard deviation.

More generally, we can compute all of the moments. The key is the following recursion formula.

For , 

Proof

First we use the differential equation in the proof of the PDF properties above, namely .
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Now we integrate by parts, with  and  to get

The moments of the standard normal distribution are now easy to compute.

For ,

1. 
2. 

Proof

The result follows from the mean and variance and recursion relation above.

1. Since  it follows that  for every odd .
2. Since , it follows that  and then , and so forth. You can use induction, if you

like, for a more formal proof.

Of course, the fact that the odd-order moments are 0 also follows from the symmetry of the distribution. The following theorem
gives the skewness and kurtosis of the standard normal distribution.

The skewness and kurtosis of  are

1. 
2. 

Proof
1. This follows immediately from the symmetry of the distribution. Directly, since  has mean 0 and variance 1, 

.
2. Since  and , .

Because of the last result, (and the use of the standard normal distribution literally as a standard), the excess kurtosis of a random
variable is defined to be the ordinary kurtosis minus 3. Thus, the excess kurtosis of the normal distribution is 0.

Many other important properties of the normal distribution are most easily obtained using the moment generating function or the
characteristic function.

The moment generating function  and characteristic function  of  are given by

1.  for .
2.  for .

Proof
1. Note that

We complete the square in  to get . Thus we have

In the integral, if we use the simple substitution  then the integral becomes . Hence 

,
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Thus, the standard normal distribution has the curious property that the characteristic function is a multiple of the probability
density function:

The moment generating function can be used to give another derivation of the moments of , since we know that 
.

The General Normal Distribution

The general normal distribution is the location-scale family associated with the standard normal distribution.

Suppose that  and  and that  has the standard normal distribution. Then  has the normal
distribution with location parameter  and scale parameter .

Distribution Functions

Suppose that  has the normal distribution with location parameter  and scale parameter . The basic properties of
the density function and distribution function of  follow from general results for location scale families.

The probability density function  of  is given by

Proof

This follows from the change of variables formula corresponding to the transformation .

The probability density function  satisfies the following properties:

1.  is symmetric about .
2.  increases and then decreases with mode .
3.  is concave upward then downward then upward again, with inflection points at .
4.  as  and as .

Proof

These properties follow from the corresponding properties of .

In the special distribution simulator, select the normal distribution. Vary the parameters and note the shape and location of the
probability density function. With your choice of parameter settings, run the simulation 1000 times and compare the empirical
density function to the true probability density function.

Let  denote the distribution function of , and as above, let  denote the standard normal distribution function.

The distribution function  and quantile function  satsify the following properties:

1.  for .

2.  for .
3.  so the median occurs at .

Proof

Part (a) follows since . Parts (b) and (c) follow from (a).

In the special distribution calculator, select the normal distribution. Vary the parameters and note the shape of the density
function and the distribution function.
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Moments

Suppose again that  has the normal distribution with location parameter  and scale parameter . As the notation
suggests, the location and scale parameters are also the mean and standard deviation, respectively.

The mean and variance of  are

1. 
2. 

Proof

This follows from the representation  and basic properties of expected value and variance.

So the parameters of the normal distribution are usually referred to as the mean and standard deviation rather than location and
scale. The central moments of  can be computed easily from the moments of the standard normal distribution. The ordinary (raw)
moments of  can be computed from the central moments, but the formulas are a bit messy.

For ,

1. 
2. 

All of the odd central moments of  are 0, a fact that also follows from the symmetry of the probability density function.

In the special distribution simulator select the normal distribution. Vary the mean and standard deviation and note the size and
location of the mean/standard deviation bar. With your choice of parameter settings, run the simulation 1000 times and
compare the empirical mean and standard deviation to the true mean and standard deviation.

The following exercise gives the skewness and kurtosis.

The skewness and kurtosis of  are

1. 
2. 

Proof

The skewness and kurtosis of a variable are defined in terms of the standard score, so these results follows from the
corresponding result for .

The moment generating function  and characteristic function  of  are given by

1.  for .
2.  for 

Proof
1. This follows from the representation , basic properties of expected value, and the MGF of  in (12):

2. This follows from (a) since .

Relations

The normal family of distributions satisfies two very important properties: invariance under linear transformations of the variable
and invariance with respect to sums of independent variables. The first property is essentially a restatement of the fact that the
normal distribution is a location-scale family.

Suppose that  is normally distributed with mean  and variance . If  and , then  is normally
distributed with mean  and variance .

Proof

X μ ∈ R σ ∈ (0, ∞)

X

E(X) = μ

var(X) = σ2

X = μ+σZ

X

X

n ∈ N

E [(X−μ ] = 1 ⋅ 3 ⋯ (2n−1) = (2n)! /(n! ))2n σ2n σ2n 2n

E [(X−μ ] = 0)2 n+1

X

X

skew(X) = 0
kurt(X) = 3

Z

M χ X

M(t) = exp(μt+ )1
2
σ2t2 t ∈ R

χ(t) = exp(iμt− )1
2
σ2t2 t ∈ R

X = μ+σZ Z

E ( ) =E ( ) = E ( ) = =etX etμ+tσZ etμ etσZ etμe
1

2
t2σ2

etμ+
1

2
σ2t2 (5.6.13)

χ(t) = M(it)

X μ σ2 a ∈ R b ∈ R ∖ {0} a+bX

a+bμ b2σ2

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10172?pdf


5.6.6 https://stats.libretexts.org/@go/page/10172

The MGF of  is

which we recognize as the MGF of the normal distribution with mean  and variance .

Recall that in general, if  is a random variable with mean  and standard deviation , then  is the standard
score of . A corollary of the last result is that if  has a normal distribution then the standard score  has a standard normal
distribution. Conversely, any normally distributed variable can be constructed from a standard normal variable.

Standard score.

1. If  has the normal distribution with mean  and standard deviation  then  has the standard normal distribution.
2. If  has the standard normal distribution and if  and , then  has the normal distribution with

mean  and standard deviation .

Suppose that  and  are independent random variables, and that  is normally distributed with mean  and variance 
for . Then  is normally distributed with

1. 
2. 

Proof

The MGF of  is the product of the MGFs, so

which we recognize as the MGF of the normal distribution with mean  and variance .

This theorem generalizes to a sum of  independent, normal variables. The important part is that the sum is still normal; the
expressions for the mean and variance are standard results that hold for the sum of independent variables generally. As a
consequence of this result and the one for linear transformations, it follows that the normal distribution is stable.

The normal distribution is stable. Specifically, suppose that  has the normal distribution with mean  and variance 
. If  are independent copies of , then  has the same distribution as 

, namely normal with mean  and variance .

Proof

As a consequence of the result for sums  has the normal distribution with mean  and variance .
As a consequence of the result for linear transforamtions,  has the normal distribution with mean 

 and variance .

All stable distributions are infinitely divisible, so the normal distribution belongs to this family as well. For completeness, here is
the explicit statement:

The normal distribution is infinitely divisible. Specifically, if  has the normal distribution with mean  and variance 
, then for ,  has the same distribution as  where  are

independent, and each has the normal distribution with mean  and variance .

Finally, the normal distribution belongs to the family of general exponential distributions.

Suppose that  has the normal distribution with mean  and variance . The distribution is a two-parameter exponential

family with natural parameters , and natural statistics .

Proof

Expanding the square, the normal PDF can be written in the form
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so the result follows from the definition of the general exponential family.

A number of other special distributions studied in this chapter are constructed from normally distributed variables. These include

The lognormal distribution
The folded normal distribution, which includes the half normal distribution as a special case
The Rayleigh distribution
The Maxwell distribution
The Lévy distribution

Also, as mentioned at the beginning of this section, the importance of the normal distribution stems in large part from the central
limit theorem, one of the fundamental theorems of probability. By virtue of this theorem, the normal distribution is connected to
many other distributions, by means of limits and approximations, including the special distributions in the following list. Details
are given in the individual sections.

The binomial distribution
The negative binomial distribution
The Poisson distribution
The gamma distribution
The chi-square distribution
The student  distribution
The Irwin-Hall distribution

Computational Exercises

Suppose that the volume of beer in a bottle of a certain brand is normally distributed with mean 0.5 liter and standard deviation
0.01 liter.

1. Find the probability that a bottle will contain at least 0.48 liter.
2. Find the volume that corresponds to the 95th percentile

Answer

Let  denote the volume of beer in liters

1. 
2. 

A metal rod is designed to fit into a circular hole on a certain assembly. The radius of the rod is normally distributed with mean
1 cm and standard deviation 0.002 cm. The radius of the hole is normally distributed with mean 1.01 cm and standard deviation
0.003 cm. The machining processes that produce the rod and the hole are independent. Find the probability that the rod is to
big for the hole.

Answer

Let  denote the radius of the rod and  the radius of the hole. 

The weight of a peach from a certain orchard is normally distributed with mean 8 ounces and standard deviation 1 ounce. Find
the probability that the combined weight of 5 peaches exceeds 45 ounces.

Answer

Let  denote the combined weight of the 5 peaches, in ounces. 

A Further Generlization
In some settings, it's convenient to consider a constant as having a normal distribution (with mean being the constant and variance
0, of course). This convention simplifies the statements of theorems and definitions in these settings. Of course, the formulas for

f(x) = exp(− ) exp( x− ), x ∈ R
1

σ2π
−−

√

μ2

2σ2

μ

σ2

1

2σ2
x2 (5.6.16)

t
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= 0.51645x0.95

X Y P(Y −X < 0) = 0.0028

X P(X > 45) = 0.0127
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the probability density function and the distribution function do not hold for a constant, but the other results involving the moment
generating function, linear transformations, and sums are still valid. Moreover, the result for linear transformations would hold for
all  and .
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