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14.3: The Gamma Distribution
        

Basic Theory

We now know that the sequence of inter-arrival times  in the Poisson process is a sequence of independent
random variables, each having the exponential distribution with rate parameter , for some . No other distribution gives the
strong renewal assumption that we want: the property that the process probabilistically restarts, independently of the past, at each
arrival time and at each fixed time.

The th arrival time is simply the sum of the first  inter-arrival times:

Thus, the sequence of arrival times  is the partial sum process associated with the sequence of inter-arrival times 
.

Distribution Functions

Recall that the common probability density function of the inter-arrival times is

Our first goal is to describe the distribution of the th arrival .

For ,  has a continuous distribution with probability density function  given by

1.  increases and then decreases, with mode at .
2.  is concave upward.  is concave downward and then upward, with inflection point at . For ,  is

concave upward, then downward, then upward again with inflection points at .

Proof

Since  is the sum of  independent variables, each with PDF , the PDF of  is the convolution power of  of order .
That is, . A simple induction argument shows that  has the form given above. For example,

Parts (a) and (b) follow from standard calculus.

The distribution with this probability density function is known as the gamma distribution with shape parameter  and rate
parameter . It is lso known as the Erlang distribution, named for the Danish mathematician Agner Erlang. Again,  is the scale
parameter, and that term will be justified below. The term shape parameter for  clearly makes sense in light of parts (a) and (b) of
the last result. The term rate parameter for  is inherited from the inter-arrival times, and more generally from the underlying
Poisson process itself: the random points are arriving at an average rate of  per unit time. A more general version of the gamma
distribution, allowing non-integer shape parameters, is studied in the chapter on Special Distributions. Note that since the arrival
times are continuous, the probability of an arrival at any given instant of time is 0.

In the gamma experiment, vary  and  with the scroll bars and watch how the shape of the probability density function
changes. For various values of the parameters, run the experiment 1000 times and compare the empirical density function to
the true probability density function.

The distribution function and the quantile function of the gamma distribution do not have simple, closed-form expressions.
However, it's easy to write the distribution function as a sum.
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For ,  has distribution function  given by

Proof

Note that

The result follows by repeated integration by part.

Open the special distribution calculator, select the gamma distribution, and select CDF view. Vary the parameters and note the
shape of the distribution and quantile functions. For selected values of the parameters, compute the quartiles.

Moments

The mean, variance, and moment generating function of  can be found easily from the representation as a sum of independent
exponential variables.

The mean and variance of  are.

1. 
2. 

Proof

Recall that the exponential distribution with rate parameter  has mean  and variance .

1. The expected value of a sum is the sum of the expected values, so .
2. The variance of a sum of independent variables is the sum of the variances, so .

For , the moment of order  of  is

Proof

Using the standard change of variables theorem,

But the integral on the right is the moment of order  for the exponential distribution, which we showed in the last
section is . Simplifying gives the result.

More generally, the moment of order  (not necessarily an integer) is

where  is the gamma function.

In the gamma experiment, vary  and  with the scroll bars and watch how the size and location of the mean standard
deviation bar changes. For various values of  and , run the experiment 1000 times and compare the empirical moments to
the true moments.

Our next result gives the skewness and kurtosis of the gamma distribution.
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The skewness and kurtosis of  are

1. 

2. 

Proof

These results follows from the moment results above and the computational formulas for skewness and kurtosis.

In particular, note that the gamma distribution is positively skewed but  and as . Recall also that the excess
kurtosis is  as . This result is related to the convergence of the gamma distribution to the normal,
discussed below. Finally, note that the skewness and kurtosis do not depend on the rate parameter . This is because, as we show
below,  is a scale parameter.

The moment generating function of  is

Proof

Recall that the MGF of a sum of independent variables is the product of the corresponding MGFs. We showed in the last
section that the exponential distribution with parameter  has MGF  for .

The moment generating function can also be used to derive the moments of the gamma distribution given above—recall that 
.

Estimating the Rate

In many practical situations, the rate  of the process in unknown and must be estimated based on data from the process. We start
with a natural estimate of the scale parameter . Note that

is the sample mean of the first  inter-arrival times . In statistical terms, this sequence is a random sample of size
 from the exponential distribution with rate .

 satisfies the following properties:

1. 
2. 
3.  as  with probability 1

Proof

Parts (a) and (b) follow from the expected value of  and standard properties. Part (c) is the strong law of large numbers.

In statistical terms, part (a) means that  is an unbiased estimator of  and hence the variance in part (b) is the mean square
error. Part (b) means that  is a consistent estimator of  since  as . Part (c) is a stronger from of
consistency. In general, the sample mean of a random sample from a distribution is an unbiased and consistent estimator of the
distribution mean. On the other hand, a natural estimator of  itself is . However, this estimator is positively biased.

.

Proof

This follows immediately from Jensen's inequality since  is concave upward on .
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Properties and Connections

Scaling

As noted above, the gamma distribution is a scale family.

Suppose that  has the gamma distribution with rate parameter  and shape parameter . If  then 
 has the gamma distribution with rate parameter  and shape parameter .

Proof

The moment generating function of  is

The scaling property also follows from the fact that the gamma distribution governs the arrival times in the Poisson process. A time
change in a Poisson process clearly does not change the strong renewal property, and hence results in a new Poisson process.

General Exponential Family

The gamma distribution is also a member of the general exponential family of distributions.

Suppose that  has the gamma distribution with shape parameter  and rate parameter . Then  has a two
parameter general exponential distribution with natural parameters  and , and natural statistics  and .

Proof

This follows from the form of the PDF and the definition of the general exponential family:

Increments

A number of important properties flow from the fact that the sequence of arrival times  is the partial sum process
associated with the sequence of independent, identically distributed inter-arrival times .

The arrival time sequence  has stationary, independent increments:

1. If  then  has the same distribution as , namely the gamma distribution with shape parameter 
and rate parameter .

2. If  then  is an independent sequence.

Proof

The stationary and independent increments properties hold for any partial sum process associated with an independent,
identically distributed sequence.

Of course, the stationary and independent increments properties are related to the fundamental “renewal” assumption that we
started with. If we fix , then  is independent of  and has the same
distribution as . That is, if we “restart the clock” at time , then the process in the future looks just like the
original process (in a probabilistic sense) and is indpendent of the past. Thus, we have our second characterization of the Poisson
process.

A process of random points in time is a Poisson process with rate  if and only if the arrival time sequence  has
stationary, independent increments, and for ,  has the gamma distribution with shape parameter  and rate parameter
.

Sums

The gamma distribution is closed with respect to sums of independent variables, as long as the rate parameter is fixed.
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Suppose that  has the gamma distribution with shape parameter  and rate parameter ,  has the gamma
distribution with shape parameter  and rate parameter , and that  and  are independent. Then  has the
gamma distribution with shape parameter  and rate parameter .

Proof

There are at least three different proofs of this fundamental result. Perhaps the best is a probabilistic proof based on the Poisson
process. We start with an IID sequence  of independent exponentially distributed variables, each with rate parameter . Then
we can associate  with  and  with  so that  becomes . The result now follows from the
previous theorem.

Another simple proof uses moment generating functions. Recall again that the MGF of  is the product of the MGFs of 
 and of . A third, analytic proof uses convolution. Recall again that the PDF of  is the convolution of the PDFs of 
 and of .

Normal Approximation

In the gamma experiment, vary  and  with the scroll bars and watch how the shape of the probability density function
changes. Now set  and for various values of  run the experiment 1000 times and compare the empirical density
function to the true probability density function.

Even though you are restricted to relatively small values of  in the app, note that the probability density function of the th arrival
time becomes more bell shaped as  increases (for  fixed). This is yet another application of the central limit theorem, since  is
the sum of  independent, identically distributed random variables (the inter-arrival times).

The distribution of the random variable  below converges to the standard normal distribution as :

Proof

 is the standard score associated with , so the result follows from the central limit theorem.

Connection to Bernoulli Trials

We return to the analogy between the Bernoulli trials process and the Poisson process that started in the Introduction and continued
in the last section on the Exponential Distribution. If we think of the successes in a sequence of Bernoulli trials as random points in
discrete time, then the process has the same strong renewal property as the Poisson process, but restricted to discrete time. That is,
at each fixed time and at each arrival time, the process “starts over”, independently of the past. In Bernoulli trials, the time of the 

th arrival has the negative binomial distribution with parameters  and  (the success probability), while in the Poisson process,
as we now know, the time of the th arrival has the gamma distribution with parameters  and  (the rate). Because of this strong
analogy, we expect a relationship between these two processes. In fact, we have the same type of limit as with the geometric and
exponential distributions.

Fix  and suppose that for each   has the negative binomial distribution with parameters  and 
, where  as . Then the distribution of  converges to the gamma distribution

with parameters  and  as .

Proof

Suppose that  has the geometric distribution on  with success parameter . We know from our convergence result in
the last section that the distribution of  converges to the exponential distribution with rate parameter  as . It
follows that if  denotes the moment generating function of , then  as  for . But
then  is the MGF of  and clearly
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as  for . The expression on the right is the MGF of the gamma distribution with shape parameter  and rate
parameter .

Computational Exercises

Suppose that customers arrive at a service station according to the Poisson model, at a rate of  per hour. Relative to a
given starting time, find the probability that the second customer arrives sometime after 1 hour.

Answer

0.1991

Defects in a type of wire follow the Poisson model, with rate 1 per 100 meter. Find the probability that the 5th defect is located
between 450 and 550 meters.

Answer

0.1746

Suppose that requests to a web server follow the Poisson model with rate . Relative to a given starting time, compute the
mean and standard deviation of the time of the 10th request.

Answer

2, 0.6325

Suppose that  has a gamma distribution with mean 40 and standard deviation 20. Find the shape parameter  and the rate
parameter .

Answer

, 

Suppose that accidents at an intersection occur according to the Poisson model, at a rate of 8 per year. Compute the normal
approximation to the event that the 10th accident (relative to a given starting time) occurs within 2 years.

Answer

0.5752

In the gamma experiment, set  and . Run the experiment 1000 times and compute the following:

1. 
2. The relative frequency of the event 
3. The normal approximation to 

Answer
1. 0.5302
3. 0.4871

Suppose that requests to a web server follow the Poisson model. Starting at 12:00 noon on a certain day, the requests are
logged. The 100th request comes at 12:15. Estimate the rate of the process.

Answer

 hits per minute
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