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5.28: The Laplace Distribution
          

The Laplace distribution, named for Pierre Simon Laplace arises naturally as the distribution of the difference of two independent,
identically distributed exponential variables. For this reason, it is also called the double exponential distribution.

The Standard Laplace Distribution

Distribution Functions

The standard Laplace distribution is a continuous distribution on  with probability density function  given by

Proof

It's easy to see that  is a valid PDF. By symmetry

The probability density function  satisfies the following properties:

1.  is symmetric about 0.
2.  increases on  and decreases on , with mode .
3.  is concave upward on  and on  with a cusp at 

Proof

These results follow from standard calculus, since  for  and  for .

Open the Special Distribution Simulator and select the Laplace distribution. Keep the default parameter value and note the shape of the
probability density function. Run the simulation 1000 times and compare the emprical density function and the probability density
function.

The standard Laplace distribution function  is given by

Proof

Again this follows from basic calculus, since  for  and  for . Of course .

The quantile function  given by

1.  for 
2. The first quartile is .
3. The median is 
4. The third quartile is .

Proof

The formula for the quantile function follows immediately from the CDF by solving  for  in terms of . Part (a) is
due to the symmetry of  about 0.

Open the Special Distribution Calculator and select the Laplace distribution. Keep the default parameter value. Compute selected values
of the distribution function and the quantile function.
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Moments

Suppose that  has the standard Laplace distribution.

 has moment generating function  given by

Proof

For ,

The moments of  are

1.  if  is odd.
2.  if  is even.

Proof

This result can be obtained from the moment generating function or directly. That the odd order moments are 0 follows from the
symmetry of the distribution. For the even order moments, symmetry and an integration by parts (or using the gamma function) gives

The mean and variance of  are

1. 
2. 

Open the Special Distribution Simulator and select the Laplace distribution. Keep the default parameter value. Run the simulation 1000
times and compare the empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof
1. This follows from the symmetry of the distribution.
2. Since , we have

It follows that the excess kurtosis is .

Related Distributions

Of course, the standard Laplace distribution has simple connections to the standard exponential distribution.

If  has the standard Laplace distribution then  has the standard exponential distribution.

Proof

Using the CDF of U we have  for . This function is the CDF of
the standard exponential distribution.

If  and  are independent and each has the standard exponential distribution, then  has the standard Laplace distribution.

Proof using PDFs
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kurt(U) −3 = 3

U V = |U|

P(V ≤ v) = P(−v≤ U ≤ v) = G(v) −G(−v) = 1 −e−v v∈ [0, ∞)
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Let  denote the standard exponential PDF, extended to all of , so that  if  and  if . Using
convolution, the PDF of  is . If ,

If  then

Proof using MGFs

The MGF of  is  for . The MGF of  is  for . Hence the MGF of  is 
 for , which is the standard Laplace MGF.

If  has the standard exponential distribution,  has the standard Bernoulli distribution, and  and  are independent, then 
 has the standard Laplace distribution.

Proof

If  then

If ,

The standard Laplace distribution has a curious connection to the standard normal distribution.

Suppose that  is a random sample of size 4 from the standard normal distribution. Then  has the
standard Laplace distribution.

Proof

 and  are independent, and each has a distribution known as the product normal distribution. The MGF of this distribution is

Changing to polar coordinates gives

The inside integral can be done with a simple substitution for , yielding

Hence  has MGF  for , which again is the standard Laplace MGF.

The standard Laplace distribution has the usual connections to the standard uniform distribution by means of the distribution function and
the quantile function computed above.

Connections to the standard uniform distribution.

1. If  has the standard uniform distribution then  has the standard Laplace
distribution.

2. If  has the standard Laplace distribution then  has the standard uniform distribution.

From part (a), the standard Laplace distribution can be simulated with the usual random quantile method.
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Open the random quantile experiment and select the Laplace distribution. Keep the default parameter values and note the shape of the
probability density and distribution functions. Run the simulation 1000 times and compare the empirical density function, mean, and
standard deviation to their distributional counterparts.

The General Laplace Distribution

The standard Laplace distribution is generalized by adding location and scale parameters.

Suppose that  has the standard Laplace distribution. If  and , then  has the Laplace distribution with
location parameter  and scale parameter .

Distribution Functions

Suppos that  has the Laplace distribution with location parameter  and scale parameter .

 has probability density function  given by

1.  is symmetric about .
2.  increases on  and decreases on  with mode .
3.  is concave upward on  and on  with a cusp at .

Proof

Recall that  where  is the standard Laplace PDF.

Open the Special Distribution Simulator and select the Laplace distribution. Vary the parameters and note the shape and location of the
probability density function. For various values of the parameters, run the simulation 1000 times and compare the emprical density
function to the probability density function.

 has distribution function  given by

Proof

Recall that  where  is the standard Laplace CDF.

 has quantile function  given by

1.  for 
2. The first quartile is .
3. The median is 
4. The third quartile is .

Proof

Recall that  where  is the standard Laplace quantile function.

Open the Special Distribution Calculator and select the Laplace distribution. For various values of the scale parameter, compute selected
values of the distribution function and the quantile function.

Moments

Again, we assume that  has the Laplace distribution with location parameter  and scale parameter , so that by definition, 
 where  has the standard Lapalce distribution.
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 has moment generating function  given by

Proof

Recall that  where  is the standard Laplce MGF.

The moments of  about the location parameter have a simple form.

The moments of  about  are

1.  if  is odd.
2.  if  is even.

Proof

Note that  so the results follow the moments of .

The mean and variance of  are

1. 
2. 

Proof

Recall that  and , so the results follow from the mean and variance of .

Open the Special Distribution Simulator and select the Laplace distribution. Vary the parameters and note the size and location of the
mean  standard deviation bar. For various values of the scale parameter, run the simulation 1000 times and compare the empirical
mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

Recall that skewness and kurtosis are defined in terms of the standard score, and hence are unchanged by a location-scale
transformation. Thus the results from the skewness and kurtosis of .

As before, the excess kurtosis is .

Related Distributions

By construction, the Laplace distribution is a location-scale family, and so is closed under location-scale transformations.

Suppose that  has the Laplace distribution with location parameter  and scale parameter , and that  and 
. Then  has the Laplace distribution with location parameter  scale parameter .

Proof

Again by definition, we can take  where  has the standard Laplace distribution. Hence 
.

Once again, the Laplace distribution has the usual connections to the standard uniform distribution by means of the distribution function and
the quantile function computed above. The latter leads to the usual random quantile method of simulation.

Suppose that  and .

1. If  has the standard uniform distribution then

has the Laplace distribution with location parameter  and scale parameter .
2. If  has the Laplace distribution with location parameter  and scale parameter , then

X M

M(t) =E ( ) = , t ∈ (−1/b, 1/b)etX
eat

1 −b2t2
(5.28.19)

M(t) = m(bt)eat m

X

X a

E [(X−a ] = 0)n n ∈ N

E [(X−a ] = n!)n bn n ∈ N

E [(X−a ] = E( ))n bn U n U

X

E(X) = a

var(X) = 2b2

E(X) = a+bE(U) var(X) = var(U)b2 U

±

X

skew(X) = 0

kurt(X) = 6

U

kurt(X) −3 = 3

X a ∈ R b ∈ (0, ∞) c ∈ R

d ∈ (0, ∞) Y = c+dX c+ad bd

X = a+bU U

Y = c+dX = (c+ad) +(bd)U

a ∈ R b ∈ (0, ∞)

V

U = [a+b ln(2V )] 1(V < )+(a−b ln[2(1 −V )])1(V ≥ )
1

2

1

2
(5.28.20)

a b

X a b

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10368?pdf


5.28.6 https://stats.libretexts.org/@go/page/10368

has the standard uniform distribution.

Open the random quantile experiment and select the Laplace distribution. Vary the parameter values and note the shape of the
probability density and distribution functions. For selected values of the parameters, run the simulation 1000 times and compare the
empirical density function, mean, and standard deviation to their distributional counterparts.

The Laplace distribution is also a member of the general exponential family of distributions.

Suppose that  has the Laplace distribution with known location parameter  and unspecified scale parameter . Then 
has a general exponential distribution in the scale parameter , with natural parameter  and natural statistics .

Proof

This follows from the definition of the general exponential family and the form of the probability density function 

This page titled 5.28: The Laplace Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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