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9.5: Likelihood Ratio Tests

Basic Theory

As usual, our starting point is a random experiment with an underlying sample space, and a probability measure PP. In the basic
statistical model, we have an observable random variable X taking values in a set S. In general, X can have quite a complicated
structure. For example, if the experiment is to sample n objects from a population and record various measurements of interest,
then

X =(X1,X2,...,Xy) (9.5.1)
where X is the vector of measurements for the ith object. The most important special case occurs when (X1, Xo, ..., X,) are

independent and identically distributed. In this case, we have a random sample of size n from the common distribution.

In the previous sections, we developed tests for parameters based on natural test statistics. However, in other cases, the tests may
not be parametric, or there may not be an obvious statistic to start with. Thus, we need a more general method for constructing test
statistics. Moreover, we do not yet know if the tests constructed so far are the best, in the sense of maximizing the power for the set
of alternatives. In this and the next section, we investigate both of these ideas. Likelihood functions, similar to those used in
maximum likelihood estimation, will play a key role.

Tests of Simple Hypotheses

Suppose that X has one of two possible distributions. Our simple hypotheses are

e Hj : X has probability density function fj.
e Hj : X has probability density function f;.

We will use subscripts on the probability measure [P to indicate the two hypotheses, and we assume that fy and f; are postive on S.
The test that we will construct is based on the following simple idea: if we observe X = @, then the condition f;(z) > fo(x) is
evidence in favor of the alternative; the opposite inequality is evidence against the alternative.

The likelihood ratio function L : S — (0, 00) is defined by

fo(x)

L(z) = @)

xes (9.5.2)
The statistic L(X) is the likelihood ratio statistic.

Restating our earlier observation, note that small values of L are evidence in favor of H;. Thus it seems reasonable that the
likelihood ratio statistic may be a good test statistic, and that we should consider tests in which we teject Hy if and only if L <1,
where [ is a constant to be determined:

I The significance level of the test is @ = Po(L <1).

As usual, we can try to construct a test by choosing [ so that « is a prescribed value. If X has a discrete distribution, this will only
be possible when « is a value of the distribution function of L(X).

An important special case of this model occurs when the distribution of X depends on a parameter 6 that has two possible values.
Thus, the parameter space is {6y, 61}, and fy denotes the probability density function of X when # =6, and f; denotes the
probability density function of X when § = 6, . In this case, the hypotheses are equivalent to Hy : § =0 versus Hy : 0 =6 .

As noted earlier, another important special case is when X = (X7, Xs,...,X,,) is a random sample of size n from a distribution
an underlying random variable X taking values in a set R. In this case, S = R" and the probability density function f of X has
the form

f(z1,2a,...,z) = g(z1)g(x2) - - - g(x0n), (21,22,...,2,) ES (9.5.3)

where g is the probability density function of X. So the hypotheses simplify to

e Hj : X has probability density function gg.
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e H; : X has probability density function g; .
and the likelihood ratio statistic is

n

L(Xy, X, ..., Xn) =[]
i=1

0(X;)
1(X5)

@

(9.5.4)

Q

In this special case, it turns out that under H7, the likelihood ratio statistic, as a function of the sample size n, is a martingale.

The Neyman-Pearson Lemma

The following theorem is the Neyman-Pearson Lemma, named for Jerzy Neyman and Egon Pearson. It shows that the test given
above is most powerful. Let

R={xecS:L(x) <!} (9.5.5)
and recall that the size of a rejection region is the significance of the test with that rejection region.

Consider the tests with rejection regions R given above and arbitrary A C S'. If the size of R is at least as large as the size of
A then the test with rejection region R is more powerful than the test with rejection region A. That is, if
Po(X € R)>Py(X € A) thenP1 (X eR)>P1 (X € A).

Proof

First note that from the definitions of L and R that the following inequalities hold:

Po(X € A) <IPi(X € A)for ACR (9.5.6)
Po(X € A) > 1P (X € A)for ACR® (9.5.7)

Now for arbitrary A C S, writte R= (RN A)U(R\ A) and A=(ANR)U(A\ R) . From the additivity of probability and

the inequalities above, it follows that

Pl(X € R) —]Pl(.X E A) > []P()(X € R) —]P)()(.X € A)] (958)

~|F

Hence if Po(X € R) >Py(X € A) thenP1 (X € R) >P1(X € A) .

The Neyman-Pearson lemma is more useful than might be first apparent. In many important cases, the same most powerful test
works for a range of alternatives, and thus is a uniformly most powerful test for this range. Several special cases are discussed
below.

Generalized Likelihood Ratio

The likelihood ratio statistic can be generalized to composite hypotheses. Suppose again that the probability density function fy of
the data variable X depends on a parameter 6, taking values in a parameter space ©. Consider the hypotheses 6§ € Oy versus

0 ¢ Oy, where ©) C 0.
Define

sup {fs(®) : 6 € O}

L(xz) = 9.5.9
@)= {h@):0c0) (9:5:9)
The function L is the likelihood ratio function and L(X) is the likelihood ratio statistic.
By the same reasoning as before, small values of L(z) are evidence in favor of the alternative hypothesis.
Examples and Special Cases
Tests for the Exponential Model
Suppose that X = (X7, X, ..., X,) is a random sample of size n € N from the exponential distribution with scale parameter

b € (0, 00). The sample variables might represent the lifetimes from a sample of devices of a certain type. We are interested in
testing the simple hypotheses Hy : b =by versus H; : b =b; , where by, b; € (0, 00) are distinct specified values.

https://stats.libretexts.org/@go/page/10215


https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10215?pdf

LibreTextsw

Recall that the sum of the variables is a sufficient statistic for b:
Y=Y X (9.5.10)

Recall also that Y has the gamma distribution with shape parameter n and scale parameter b. For a > 0, we will denote the
quantile of order « for the this distribution by v, 3(t).

1 (2 e](£- 2)7] o5

Recall that the PDF g of the exponential distribution with scale parameter b € (0, 00) is given by g(x) = (1/b)e */® for
z € (0,00). If g; denotes the PDF when b = b; for j € {0,1} then

—z/b
go(z) _ (1/bg)e /% _ b_le(l/bl—l/bo)z, z € (0, 00) (9.5.12)

gi(z)  (1/b)e /v by

Hence the likelihood ratio function is

The likelihood ratio statistic is

Proof

L(x1,a:z,...,;pn):ﬁ o(zi)

i-1 91 (z:)

Q

‘ :<%) Mooy (g oL xy) € (0, 00)" (9.5.13)
i 0

where y =" | x;.

The following tests are most powerful test at the o level

1. Suppose that by > by . Reject Hy : b=by versus H; : b="b; ifandonly if Y >, 5, (1 — ) .
2. Suppose that by < by . Reject Hy : b=1by versus Hy : b=1b; if andonly if Y <y, ().

Proof
Under Hy, Y has the gamma distribution with parameters n and by .

1.1f by > by then 1/by < 1/by. From simple algebra, a rejection region of the form L(X') <1 becomes a rejection region of
the form Y > y. The precise value of y in terms of [ is not important. For the test to have significance level & we must
choose y = vp 5, (1 — )

2.1f by < by then 1/b; > 1/by. From simple algebra, a rejection region of the form L(X') <! becomes a rejection region of
the form Y <y. Again, the precise value of y in terms of [ is not important. For the test to have significance level a we
must choose y = Yy b, ()

Note that the these tests do not depend on the value of b;. This fact, together with the monotonicity of the power function can be
used to shows that the tests are uniformly most powerful for the usual one-sided tests.

Suppose that by € (0, 00).

1. The decision rule in part (a) above is uniformly most powerful for the test Hy : b < by versus Hy : b > by .
2. The decision rule in part (b) above is uniformly most powerful for the test Hy : b > by versus Hj : b < by .

Tests for the Bernoulli Model

Suppose that X = (X7, X, ..., X,,) is a random sample of size n € N from the Bernoulli distribution with success parameter
p. The sample could represent the results of tossing a coin n times, where p is the probability of heads. We wish to test the simple
hypotheses Hy : p =po versus Hy : p=p;, where pg, p; € (0,1) are distinct specified values. In the coin tossing model, we
know that the probability of heads is either py or p;, but we don't know which.

Recall that the number of successes is a sufficient statistic for p:
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Y:ZXi (9.5.14)

Recall also that Y has the binomial distribution with parameters n and p. For a € (0, 1), we will denote the quantile of order « for
the this distribution by b, ,(t); although since the distribution is discrete, only certain values of « are possible.

The likelihood ratio statistic is

() ) 0219

Proof

Recall that the PDF g of the Bernoulli distribution with parameter p € (0,1) is given by g(z) = p*(1 —p)'=® forz € {0,1}.
If g; denotes the PDF when p = p; for j € {0, 1} then

it~ () (o) =) ]+ e wo

Hence the likelihood ratio function is

o(:) < 1 —po )n [Po(l —p1)

n Y
g
L e ) = - , oo zn) € {0,137 9.5.17
(m17x2 CL‘) Hg ] 1_p1 p1(1—po)] (5121,1132, 71:) { } ( )

where y =" | @;.

The following tests are most powerful test at the « level

1. Suppose that p; > po . Reject Hy : p = pg versus H; : p=p; ifandonly if Y > b, ,, (1 —a) .
2. Suppose that p; < py . Reject p =py versus p = p; if and only if Y < by, , ().

Proof
Under Hy, Y has the binomial distribution with parameters n and py.

1. If p1 > po then po(1 —p1)/p1(1 —po) <1 . From simple algebra, a rejection region of the form L(X) <! becomes a
rejection region of the form Y > y. The precise value of y in terms of  is not important. For the test to have significance
level o we must choose y = bn,p, (1 — )

2.If py <pg then pg(1 —p1)/p1(1 —po) >1 . From simple algebra, a rejection region of the form L(X) <! becomes a
rejection region of the form Y < y. Again, the precise value of y in terms of [ is not important. For the test to have
significance level & we must choose y = by, p, (@)

Note that these tests do not depend on the value of p;. This fact, together with the monotonicity of the power function can be used
to shows that the tests are uniformly most powerful for the usual one-sided tests.
Suppose that pg € (0, 1).

1. The decision rule in part (a) above is uniformly most powerful for the test Hy : p < pg versus Hy : p > pg .
2. The decision rule in part (b) above is uniformly most powerful for the test Hy : p > pg versus Hy : p < py -

Tests in the Normal Model

The one-sided tests that we derived in the normal model, for p with o known, for p with o unknown, and for o with p unknown
are all uniformly most powerful. On the other hand, none of the two-sided tests are uniformly most powerful.

A Nonparametric Example

Suppose that X = (X7, Xs,...,X,,) is a random sample of size n € N, either from the Poisson distribution with parameter 1 or
from the geometric distribution on N with parameter p = % Note that both distributions have mean 1 (although the Poisson
distribution has variance 1 while the geometric distribution has variance 2). So, we wish to test the hypotheses

e Hj: X has probability density function go(z) = e! % forz € N.
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e Hj : X has probability density function g; (z) = (%)I+1 forz € N
The likelihood ratio statistic is
2Y n n
L:2"e—"7whereY=ZXi andU:HXi! (9.5.18)
=1 i=1
Proof
Note that
T e l/x! 27
ZOEx; = (1/2§M =2¢7'=, zeN (9.5.19)
1 .
Hence the likelihood ratio function is
n
L(zy,za,...,2,) = H g1Emz‘; =2"e o (z1,22,...,2,) EN (9.5.20)
i=1 i

wherey =>"  @; andu =[]} ; ;!.

The most powerful tests have the following form, where d is a constant: reject Hy if and only if In(2)Y —In(U) <d .
Proof

A rejection region of the form L(X) <1 is equivalent to

2 <= (9.5.21)

Taking the natural logarithm, this is equivalent to In(2)Y —In(U) < d where d = n+In(I) — nIn(2)
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