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4.7: Conditional Expected Value
         

As usual, our starting point is a random experiment modeled by a probability space . So to review,  is the set of outcomes,  the collection of events, and 
the probability measure on the sample space . Suppose next that  is a random variable taking values in a set  and that  is a random variable taking values in 

. We assume that either  has a discrete distribution, so that  is countable, or that  has a continuous distribution so that  is an interval (or perhaps a union of
intervals). In this section, we will study the conditional expected value of  given , a concept of fundamental importance in probability. As we will see, the expected
value of  given  is the function of  that best approximates  in the mean square sense. Note that  is a general random variable, not necessarily real-valued, but as
usual, we will assume that either  has a discrete distribution, so that  is countable or that  has a continuous distribution on  for some . In the latter
case,  is typically a region defined by inequalites involving elementary functions. We will also assume that all expected values that are mentioned exist (as real
numbers).

Basic Theory

Definitions

Note that we can think of  as a random variable that takes values in the Cartesian product set . We need recall some basic facts from our work with joint
distributions and conditional distributions.

We assume that  has joint probability density function  and we let  denote the (marginal) probability density function . Recall that if  has a discrte
distribution then

and if  has a continuous distribution then

In either case, for , the conditional probability density function of  given  is defined by

We are now ready for the basic definitions:

For , the conditional expected value of  given  is simply the mean computed relative to the conditional distribution. So if  has a discrete
distribution then

and if  has a continuous distribution then

1. The function  defined by  for  is the regression function of  based on .
2. The random variable  is called the conditional expected value of  given  and is denoted .

Intuitively, we treat  as known, and therefore not random, and we then average  with respect to the probability distribution that remains. The advanced section on
conditional expected value gives a much more general definition that unifies the definitions given here for the various distribution types.

Properties

The most important property of the random variable  is given in the following theorem. In a sense, this result states that  behaves just like  in terms
of other functions of , and is essentially the only function of  with this property.

The fundamental property

1.  for every function .
2. If  satisfies  for every  then .

Proof

We give the proof in the continuous case. The discrete case is analogous, with sums replacing integrals.

1. From the change of variables theorem for expected value,

2. Suppose that  and  satisfy the condition in (b). Define  by . Then by assumption, 
 But if  then , a contradiction. Hence we must have 

 and by a symmetric argument, .

(Ω,F ,P) Ω F P

(Ω,F) X S Y

T ⊆R Y T Y T

Y X

Y X X Y X

X S X S ⊆R
n n ∈ N+

S

(X,Y ) S×T

(X,Y ) f g X Y

g(x) = f(x, y), x ∈ S∑
y∈T

(4.7.1)

Y

g(x) = f(x, y)dy, x ∈ S∫
T

(4.7.2)

x ∈ S Y X = x

h(y ∣ x) = , y ∈ T
f(x, y)

g(x)
(4.7.3)

x ∈ S Y X = x ∈ S Y

E(Y ∣ X = x) = yh(y ∣ x), x ∈ S∑
y∈T

(4.7.4)

Y

E(Y ∣ X = x) = yh(y ∣ x)dy, x ∈ S∫
T

(4.7.5)

v : S →R v(x) =E(Y ∣ X = x) x ∈ S Y X

v(X) Y X E(Y ∣ X)

X Y

E(Y ∣ X) E(Y ∣ X) Y

X X

E [r(X)E(Y ∣ X)] =E [r(X)Y ] r : S →R

u : S →R E[r(X)u(X)] =E[r(X)Y ] r : S →R P [u(X) =E(Y ∣ X)] = 1

E [r(X)E(Y ∣ X)] = r(x)E(Y ∣ X = x)g(x)dx = r(x)( yh(y ∣ x)dy) g(x)dx∫
S

∫
S

∫
T

= r(x)yh(y ∣ x)g(x)dy dx = r(x)yf(x, y)d(x, y) =E[r(X)Y ]∫
S

∫
T

∫
S×T

(4.7.6)

(4.7.7)

: S →Ru1 : S →Ru2 r : S →R r(x) = 1[ (x) > (x)]u1 u2

E [r(X) (X)] =E [r(X)Y ] =E [r(X) (X)]u1 u2 P [ (X) > (X)] > 0u1 u2 E [r(X) (X)] >E [r(X) (X)]u1 u2

P [ (X) > (X)] = 0u1 u2 P[ (X) < (X)] = 0u1 u2
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Two random variables that are equal with probability 1 are said to be equivalent. We often think of equivalent random variables as being essentially the same object, so
the fundamental property above essentially characterizes . That is, we can think of  as any random variable that is a function of  and satisfies this
property. Moreover the fundamental property can be used as a definition of conditional expected value, regardless of the type of the distribution of . If you are
interested, read the more advanced treatment of conditional expected value.

Suppose that  is also real-valued. Recall that the best linear predictor of  based on  was characterized by property (a), but with just two functions:  and 
. Thus the characterization in the fundamental property is certainly reasonable, since (as we show below)  is the best predictor of  among all

functions of , not just linear functions.

The basic property is also very useful for establishing other properties of conditional expected value. Our first consequence is the fact that  and  have the same
mean.

.

Proof

Let  be the constant function 1 in the basic property.

Aside from the theoretical interest, this theorem is often a good way to compute  when we know the conditional distribution of  given . We say that we are
computing the expected value of  by conditioning on .

For many basic properties of ordinary expected value, there are analogous results for conditional expected value. We start with two of the most important: every type of
expected value must satisfy two critical properties: linearity and monotonicity. In the following two theorems, the random variables  and  are real-valued, and as
before,  is a general random variable.

Linear Properties

1. .
2. 

Proof
1. Note that  is a function of . If  then

Hence the result follows from the basic property.
2. Note that  is a function of . If  then

Hence the result follows from the basic property

Part (a) is the additive property and part (b) is the scaling property. The scaling property will be significantly generalized below in (8).

Positive and Increasing Properties

1. If  then .
2. If  then .
3. 

Proof
1. This follows directly from the definition.
2. Note that if  then  so by (a) and linearity,

3. Note that  and hence by (b) and linearity, .

Our next few properties relate to the idea that  is the expected value of  given . The first property is essentially a restatement of the fundamental property.

If , then  and  are uncorrelated.

Proof

Note that  has mean 0 by the mean property. Hence, by the basic property,

The next result states that any (deterministic) function of  acts like a constant in terms of the conditional expected value with respect to .

If  then

Proof

Note that  is a function of . If  then

So the result now follow from the basic property.

E(Y ∣ X) E(Y ∣ X) X

(X,Y )

X Y X r(x) = 1

r(x) = x E(Y ∣ X) Y

X

Y E(Y ∣ X)

E [E(Y ∣ X)] =E(Y )

r

E(Y ) Y X

Y X

Y Z

X

E(Y +Z ∣ X) =E(Y ∣ X) +E(Z ∣ X)

E(c Y ∣ X) = cE(Y ∣ X)

E(Y ∣ X) +E(Z ∣ X) X r : S →R

E (r(x) [E(Y ∣ X) +E(Z ∣ X)]) =E [r(X)E(Y ∣ X)] +E [r(X)E(Z ∣ X)] = E [r(X)Y ] +E [r(X)Z] =E [r(X)(Y +Z)] (4.7.8)

cE(Y ∣ X) X r : S →R

E [r(X)cE(Y ∣ X)] = cE [r(X)E(Y ∣ X)] = cE [r(X)Y ] =E [r(X)(cY )] (4.7.9)

Y ≥ 0 E(Y ∣ X) ≥ 0

Y ≤ Z E(Y ∣ X) ≤E(Z ∣ X)

|E(Y ∣ X)| ≤E (|Y | ∣ X)

Y ≤ Z Y −Z ≥ 0

E(Y −Z ∣ X) =E(Y ∣ X) −E(Z ∣ X) ≥ 0 (4.7.10)

−|Y | ≤ Y ≤ |Y | −E (|Y | ∣ X) ≤E(Y ∣ X) ≤E (|Y | ∣ X)

E(Y ∣ X) Y X

r : S →R Y −E(Y ∣ X) r(X)

Y −E(Y ∣ X)

cov [Y −E(Y ∣ X), r(X)] =E {[Y −E(Y ∣ X)] r(X)} =E [Y r(X)] −E [E(Y ∣ X)r(X)] = 0 (4.7.11)

X X

s : S →R

E [s(X)Y ∣ X] = s(X)E(Y ∣ X) (4.7.12)

s(X)E(Y ∣ X) X r : S →R

E [r(X)s(X)E(Y ∣ X)] =E [r(X)s(X)Y ] (4.7.13)
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The following rule generalizes theorem (8) and is sometimes referred to as the substitution rule for conditional expected value.

If  then

In particular, it follows from (8) that . At the opposite extreme, we have the next result: If  and  are independent, then knowledge of  gives no
information about  and so the conditional expected value with respect to  reduces to the ordinary (unconditional) expected value of .

If  and  are independent then

Proof

Trivially,  is a (constant) function of . If  then , the last equality by independence. Hence the result
follows from the basic property.

Suppose now that  is real-valued and that  and  are random variables (all defined on the same probability space, of course). The following theorem gives a
consistency condition of sorts. Iterated conditional expected values reduce to a single conditional expected value with respect to the minimum amount of information. For
simplicity, we write  rather than .

Consistency

1. 
2. 

Proof
1. Suppose that  takes values in  and  takes values in , so that  takes values in . By definition,  is a function of . If  then

trivially  can be thought of as a function on  as well. Hence

It follows from the basic property that .
2. Note that since  is a function of , it is trivially a function of . Hence from (8), .

Finally we show that  has the same covariance with  as does , not surprising since again,  behaves just like  in its relations with .

.

Proof

. But  by basic property, and  by the mean property.
Hence .

Conditional Probability

The conditional probability of an event , given random variable  (as above), can be defined as a special case of the conditional expected value. As usual, let  denote
the indicator random variable of .

If  is an event, defined

Here is the fundamental property for conditional probability:

The fundamental property

1.  for every function .
2. If  and  satisfies  for every function , then .

For example, suppose that  has a discrete distribution on a countable set  with probability density function . Then (a) becomes

But this is obvious since  and . Similarly, if  has a continuous distribution on  then (a) states that

The properties above for conditional expected value, of course, have special cases for conditional probability.

.

Proof

This is a direct result of the mean property, since .

Again, the result in the previous exercise is often a good way to compute  when we know the conditional probability of  given . We say that we are computing
the probability of  by conditioning on . This is a very compact and elegant version of the conditioning result given first in the section on Conditional Probability in the

s : S×T →R

E [s(X,Y ) ∣ X = x] =E [s(x,Y ) ∣ X = x] (4.7.14)

E[s(X) ∣ X] = s(X) X Y X

Y X Y

X Y

E(Y ∣ X) =E(Y ) (4.7.15)

E(Y ) X r : S →R E [E(Y )r(X)] =E(Y )E [r(X)] =E [Y r(X)]

Z X Y

E(Z ∣ X,Y ) E [Z ∣ (X,Y )]

E [E(Z ∣ X,Y ) ∣ X] =E(Z ∣ X)

E [E(Z ∣ X) ∣ X,Y ] =E(Z ∣ X)

X S Y T (X,Y ) S×T E(Z ∣ X) X r : S →R

r S×T

E [r(X)E(Z ∣ X)] =E [r(X)Z] =E [r(X)E(Z ∣ X,Y )] (4.7.16)

E [E(Z ∣ X,Y ) ∣ X] =E(Z ∣ X)

E(Z ∣ X) X (X,Y ) E [E(Z ∣ X) ∣ X,Y ] =E(Z ∣ X)

E(Y ∣ X) X Y E(Y ∣ X) Y X

cov [X,E(Y ∣ X)] = cov(X,Y )

cov [X,E(Y ∣ X)] =E [XE(Y ∣ X)] −E(X)E [E(Y ∣ X)] E [XE(Y ∣ X)] =E(XY ) E [E(Y ∣ X)] =E(Y )

cov [X,E(Y ∣ X)] =E(XY ) −E(X)E(Y ) = cov(X,Y )

A X 1A

A

A

P(A ∣ X) =E ( ∣ X)1A (4.7.17)

E [r(X)P(A ∣ X)] =E [r(X) ]1A r : S →R

u : S →R u(X) E[r(X)u(X)] =E [r(X) ]1A r : S →R P [u(X) = P(A ∣ X)] = 1

X S g

r(x)P(A ∣ X = x)g(x) = r(x)P(A,X = x)∑
x∈S

∑
x∈S

(4.7.18)

P(A ∣ X = x) = P(A,X = x)/P(X = x) g(x) = P(X = x) X S ⊆R
n

E [r(X) ] = r(x)P(A ∣ X = x)g(x)dx1A ∫
S

(4.7.19)

P(A) =E [P(A ∣ X)]

E( ) = P(A)1A

P(A) A X

A X
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chapter on Probability Spaces and later in the section on Discrete Distributions in the Chapter on Distributions.

The following result gives the conditional version of the axioms of probability.

Axioms of probability

1.  for every event .
2. 
3. If  is a countable collection of disjoint events then .

Details

There are some technical issues involving the countable additivity property (c). The conditional probabilities are random variables, and so for a given collection 
, the left and right sides are the same with probability 1. We will return to this point in the more advanced section on conditional expected value

From the last result, it follows that other standard probability rules hold for conditional probability given . These results include

the complement rule
the increasing property
Boole's inequality
Bonferroni's inequality
the inclusion-exclusion laws

The Best Predictor

The next result shows that, of all functions of ,  is closest to , in the sense of mean square error. This is fundamentally important in statistical problems
where the predictor vector  can be observed but not the response variable . In this subsection and the next, we assume that the real-valued random variables have
finite variance.

If , then

1. 

2. Equality holds in (a) if and only if  with probability 1.

Proof
1. Note that

But  has mean 0, so the middle term on the right is . Moreover,  is a function of 
and hence is uncorrelated with  by the general uncorrelated property. Hence the middle term is 0, so

and therefore .

2. Equality holds if and only if , if and only if .

Suppose now that  is real-valued. In the section on covariance and correlation, we found that the best linear predictor of  given  is

On the other hand,  is the best predictor of  among all functions of . It follows that if  happens to be a linear function of  then it must be the case
that . However, we will give a direct proof also:

If  for constants  and  then ; that is,

1. 
2. 

Proof

First, , so . Next,  and therefore 
.

Conditional Variance

The conditional variance of  given  is defined like the ordinary variance, but with all expected values conditioned on .

The conditional variance of  given  is defined as

Thus,  is a function of , and in particular, is a random variable. Our first result is a computational formula that is analogous to the one for standard variance
—the variance is the mean of the square minus the square of the mean, but now with all expected values conditioned on :

P(A ∣ X) ≥ 0 A

P(Ω ∣ X) = 1

{ : i ∈ I}Ai P ( X) = P( ∣ X)⋃i∈I Ai ∣∣ ∑i∈I Ai

{ : i ∈ I}Ai

X

X E(Y ∣ X) Y

X Y

u : S →R

E( )≤E( )[E(Y ∣ X) −Y ]
2

[u(X) −Y ]
2

u(X) =E(Y ∣ X)

E( )[Y −u(X)]2 =E( )[Y −E(Y ∣ X) +E(Y ∣ X) −u(X)] 2

=E( )+2E ([Y −E(Y ∣ X)] [E(Y ∣ X) −u(X)]) +E( )[Y −E(Y ∣ X)]2 [E(Y ∣ X) −u(X)] 2

(4.7.20)

(4.7.21)

Y −E(Y ∣ X) 2cov [Y −E(Y ∣ X),E(Y ∣ X) −u(X)] E(Y ∣ X) −u(X) X

Y −E(Y ∣ X)

E( )=E( )+E( )[Y −u(X)]2 [Y −E(Y ∣ X)]2 [E(Y ∣ X) −u(X)] 2 (4.7.22)

E( )≤E( )[Y −E(Y ∣ X)] 2 [Y −u(X)] 2

E( )= 0[E(Y ∣ X) −u(X)] 2
P [u(X) =E(Y ∣ X)] = 1

X Y X

L(Y ∣ X) =E(Y ) + [X−E(X)]
cov(X,Y )

var(X)
(4.7.23)

E(Y ∣ X) Y X E(Y ∣ X) X

E(Y ∣ X) = L(Y ∣ X)

E(Y ∣ X) = a+bX a b E(Y ∣ X) = L(Y ∣ X)

b = cov(X,Y )/var(X)

a =E(Y ) −E(X)cov(X,Y )/var(X)

E(Y ) =E [E(Y ∣ X)] = a+bE(X) a =E(Y ) −bE(X) cov(X,Y ) = cov[XE(Y ∣ X)] = cov(X, a+bX) = bvar(X)

b = cov(X,Y )/var(X)

Y X X

Y X

var(Y ∣ X) =E( X)[Y −E(Y ∣ X)]2 ∣
∣
∣ (4.7.24)

var(Y ∣ X) X

X
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.

Proof

Expanding the square in the definition and using basic properties of conditional expectation, we have

Our next result shows how to compute the ordinary variance of  by conditioning on .

.

Proof

From the previous theorem and properties of conditional expected value we have . But 

and similarly, . But also,  so subsituting we get 

.

Thus, the variance of  is the expected conditional variance plus the variance of the conditional expected value. This result is often a good way to compute  when
we know the conditional distribution of  given . With the help of (21) we can give a formula for the mean square error when  is used a predictor of .

Mean square error

Proof

From the definition of conditional variance, and using mean property and variance formula we have

Let us return to the study of predictors of the real-valued random variable , and compare the three predictors we have studied in terms of mean square error.

Suppose that  is a real-valued random variable.

1. The best constant predictor of  is  with mean square error .
2. If  is another real-valued random variable, then the best linear predictor of  given  is

with mean square error .
3. If  is a general random variable, then the best overall predictor of  given  is  with mean square error .

Conditional Covariance

Suppose that  and  are real-valued random variables, and that  is a general random variable, all defined on our underlying probability space. Analogous to variance,
the conditional covariance of  and  given  is defined like the ordinary covariance, but with all expected values conditioned on .

The conditional covariance of  and  given  is defined as

Thus,  is a function of , and in particular, is a random variable. Our first result is a computational formula that is analogous to the one for standard
covariance—the covariance is the mean of the product minus the product of the means, but now with all expected values conditioned on :

.

Proof

Expanding the product in the definition and using basic properties of conditional expectation, we have

Our next result shows how to compute the ordinary covariance of  and  by conditioning on .

.

Proof

From (25) and properties of conditional expected value we have

var(Y ∣ X) =E ( ∣ X) −Y 2 [E(Y ∣ X)]2

var(Y ∣ X) =E( −2Y E(Y ∣ X) + X) =E( ∣ X) −2E [Y E(Y ∣ X) ∣ X] +E( ∣ X)Y 2 [E(Y ∣ X)]
2 ∣

∣
∣ Y 2 [E(Y ∣ X)]

2

=E ( ∣ X) −2E(Y ∣ X)E(Y ∣ X) + =E ( ∣ X) −Y 2 [E(Y ∣ X)]2 Y 2 [E(Y ∣ X)]2

(4.7.25)

(4.7.26)

Y X

var(Y ) =E [var(Y ∣ X)] +var [E(Y ∣ X)]

E [var(Y ∣ X)] =E ( ) −E( )Y 2 [E(Y ∣ X)]
2

E ( ) = var(Y ) +Y 2 [E(Y )]
2

E( )= var [E(Y ∣ X)] +[E(Y ∣ X)]
2

(E [E(Y ∣ X)])
2

E [E(Y ∣ X)] =E(Y )

E [var(Y ∣ X)] = var(Y ) −var [E(Y ∣ X)]

Y var(Y )

Y X E(Y ∣ X) Y

E( )= var(Y ) −var [E(Y ∣ X)][Y −E(Y ∣ X)]2 (4.7.27)

E( )=E [var(Y ∣ X)] = var(Y ) −var [E(Y ∣ X)][Y −E(Y ∣ X)]2 (4.7.28)

Y

Y

Y E(Y ) var(Y )

X Y X

L(Y ∣ X) =E(Y ) + [X−E(X)]
cov(X,Y )

var(X)
(4.7.29)

var(Y ) [1 − (X,Y )]cor2

X Y X E(Y ∣ X) var(Y ) −var [E(Y ∣ X)]

Y Z X

Y Z X X

Y Z X

cov(Y ,Z ∣ X) =E([Y −E(Y ∣ X)][Z−E(Z ∣ X) X)∣
∣
∣ (4.7.30)

cov(Y ,Z ∣ X) X

X

cov(Y ,Z ∣ X) =E (Y Z ∣ X) −E(Y ∣ X)E(Z ∣ X)

cov(Y ,Z ∣ X) =E(Y Z−Y E(Z ∣ X) −ZE(Y ∣ X) +E(Y ∣ X)E(Z ∣ X) X) =E(Y Z ∣ X) −E [Y E(Z ∣ X) ∣ X] −E [ZE(Y ∣ X) ∣ X]
∣
∣
∣

+E [E(Y ∣ X)E(Z ∣ X) ∣ X]

=E (Y Z ∣ X) −E(Y ∣ X)E(Z ∣ X) −E(Y ∣ X)E(Z ∣ X) +E(Y ∣ X)E(Z ∣ X) =E (Y Z ∣ X) −E(Y ∣ X)E(Z ∣ X)

(4.7.31)

(4.7.32)

Y Z X

cov(Y ,Z) =E [cov(Y ,Z ∣ X)] +cov [E(Y ∣ X),E(Z ∣ X)]
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But  and similarly,

But also,  and  so subsituting we get

Thus, the covariance of  and  is the expected conditional covariance plus the covariance of the conditional expected values. This result is often a good way to compute
 when we know the conditional distribution of  given .

Examples and Applications
As always, be sure to try the proofs and computations yourself before reading the ones in the text.

Simple Continuous Distributions

Suppose that  has probability density function  defined by  for , .

1. Find .
2. Find .
3. Graph  and  as functions of , on the same axes.
4. Find .
5. Find .
6. Find .

Answer

1. 
2. 

4. 
5. 
6. 

Suppose that  has probability density function  defined by  for .

1. Find .
2. Find .
3. Graph  and  as functions of , on the same axes.
4. Find .
5. Find .
6. Find .

Answer

1. 

2. 

4. 
5. 
6. 

Suppose that  has probability density function  defined by  for , .

1. Find .
2. Find .
3. Graph  and  as functions of , on the same axes.
4. Find .
5. Find .
6. Find .

Answer

Note that  and  are independent.

1. 
2. 
4. 
5. 
6. 

Suppose that  has probability density function  defined by  for .

1. Find .
2. Find .

E [cov(Y ,Z ∣ X)] =E(Y Z) −E [E(Y ∣ X)E(Z ∣ X)] (4.7.33)

E(Y Z) = cov(Y ,Z) +E(Y )E(Z)

E [E(Y ∣ X)E(Z ∣ X)] = cov[E(Y ∣ X),E(Z ∣ X) +E[E(Y ∣ X)]E[E(Z ∣ X)] (4.7.34)

E[E(Y ∣ X)] =E(Y ) E[E(Z ∣ X)] =E(Z)

E [cov(Y ,Z ∣ X)] = cov(Y ,Z) −cov [E(Y ∣ X),E(Z ∣ X)] (4.7.35)

Y Z

cov(Y ,Z) (Y ,Z) X

(X,Y ) f f(x, y) = x+y 0 ≤ x ≤ 1 0 ≤ y ≤ 1

L(Y ∣ X)

E(Y ∣ X)

L(Y ∣ X = x) E(Y ∣ X = x) x

var(Y )

var(Y ) [1 − (X,Y )]cor2

var(Y ) −var [E(Y ∣ X)]

− X7

11

1

11
3X+2

6X+3

= 0.076411
144

= 0.07585

66

− ln3 = 0.07571
12

1
144

(X,Y ) f f(x, y) = 2(x+y) 0 ≤ x ≤ y ≤ 1

L(Y ∣ X)

E(Y ∣ X)

L(Y ∣ X = x) E(Y ∣ X = x) x

var(Y )

var(Y ) [1 − (X,Y )]cor2

var(Y ) −var [E(Y ∣ X)]

+ X26
43

15
43

5 +5X+2X2

9X+3

= 0.03753
80

= 0.030213

430

− ln(2) = 0.02991837

21 870

512

6561

(X,Y ) f f(x, y) = 6 yx2 0 ≤ x ≤ 1 0 ≤ y ≤ 1

L(Y ∣ X)

E(Y ∣ X)

L(Y ∣ X = x) E(Y ∣ X = x) x

var(Y )

var(Y ) [1 − (X,Y )]cor2

var(Y ) −var [E(Y ∣ X)]

X Y

2

3
2
3
1

18
1

18
1

18

(X,Y ) f f(x, y) = 15 yx2 0 ≤ x ≤ y ≤ 1

L(Y ∣ X)

E(Y ∣ X)
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3. Graph  and  as functions of , on the same axes.
4. Find .
5. Find .
6. Find .

Answer

1. 

2. 

4. 
5. 
6. 

Exercises on Basic Properties

Suppose that , , and  are real-valued random variables with  and . Find .

Answer

Uniform Distributions

As usual, continuous uniform distributions can give us some geometric insight.

Recall first that for , the standard measure on  is

In particular,  is the length of ,  is the area of , and  is the volume of .

Details

Technically  is Lebesgue measure on the measurable subsets of . The integral representation is valid for the types of sets that occur in applications. In the
discussion below, all subsets are assumed to be measurable.

With our usual setup, suppose that  takes values in ,  takes values in , and that  is uniformly distributed on . So 
, and the joint probability density function  of  is given by  for . Recall that uniform distributions, whether

discrete or continuous, always have constant densities. Finally, recall that the cross section of  at  is .

In the setting above, suppose that  is a bounded interval with midpoint  and length  for each . Then

1. 
2. 

Proof

This follows immediately from the fact that the conditional distribution of  given  is uniformly distributed on  for each .

So in particular, the regression curve  follows the midpoints of the cross-sectional intervals.

In each case below, suppose that  is uniformly distributed on the give region. Find  and 

1. The rectangular region  where  and .
2. The triangular region  where .
3. The circular region  where .

Answer

1. , . Note that  and  are independent.
2. , 
3. , 

In the bivariate uniform experiment, select each of the following regions. In each case, run the simulation 2000 times and note the relationship between the cloud of
points and the graph of the regression function.

1. square
2. triangle
3. circle

Suppose that  is uniformly distributed on the interval , and that given , random variable  is uniformly distributed on . Find each of the following:

1. 
2. 
3. 
4. 

Answer

L(Y ∣ X = x) E(Y ∣ X = x) x

var(Y )

var(Y ) [1 − (X,Y )]cor2

var(Y ) −var [E(Y ∣ X)]

+ X30
51

20
51

2( +X+1)X2

3(X+1)

= 0.01985

252

= 0.01405
357

− ln(2) = 0.0139292
63

20
3

X Y Z E(Y ∣ X) = X3
E(Z ∣ X) = 1

1+X2 E (Y −Z sinX ∣ X)eX

−X3eX sinX

1+X2

n ∈ N+ R
n

(A) = 1dx, A ⊆λn ∫
A

R
n (4.7.36)

(A)λ1 A ⊆R (A)λ2 A ⊆R
2 (A)λ3 A ⊆R

3

λn R
n

X S ⊆R
n Y T ⊆R (X,Y ) R ⊆ S×T ⊆R

n+1

0 < (R) < ∞λn+1 f (X,Y ) f(x, y) = 1/ (R)λn+1 (x, y) ∈ R

R x ∈ S = {y ∈ T : (x, y) ∈ R}Tx

Tx m(x) l(x) x ∈ S

E(Y ∣ X) = m(X)

var(Y ∣ X) = (X)1
12
l2

Y X = x Tx x ∈ S

x ↦ E(Y ∣ X = x)

(X,Y ) E(Y ∣ X) var(Y ∣ X)

R = [a, b] × [c, d] a < b c < d

T = {(x, y) ∈ : −a ≤ x ≤ y ≤ a}R
2 a > 0

C = {(x, y) ∈ : + ≤ r}R
2 x2 y2 r > 0

E(Y ∣ X) = (c+d)1
2

var(Y ∣ X) = (d−c1
12

)2 X Y

E(Y ∣ X) = (a+X)1

2
var(Y ∣ X) = (a−X1

12
)2

E(Y ∣ X) = 0 var(Y ∣ X) = 4( − )r2 X2

X (0, 1) X Y (0,X)

E(Y ∣ X)

E(Y )

var(Y ∣ X)

var(Y )
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1. 
2. 
3. 
4. 

The Hypergeometric Distribution

Suppose that a population consists of  objects, and that each object is one of three types. There are  objects of type 1,  objects of type 2, and  objects of
type 0. The parameters  and  are positive integers with . We sample  objects from the population at random, and without replacement, where 

. Denote the number of type 1 and 2 objects in the sample by  and , so that the number of type 0 objects in the sample is . In the in the
chapter on Distributions, we showed that the joint, marginal, and conditional distributions of  and  are all hypergeometric—only the parameters change. Here is the
relevant result for this section:

In the setting above,

1. 

2. 

3. 

Proof

Recall that  has the (multivariate) hypergeometric distribution with parameters , , , and . Marginally,  has the hypergeometric distribution with
parameters , , and , and  has the hypergeometric distribution with parameters , , and . Given , the remaining  objects are
chosen at random from a population of  objects, of which  are type 2 and  are type 0. Hence, the conditional distribution of  given  is
hypergeometric with parameters , , and . Parts (a) and (b) then follow from the standard formulas for the mean and variance of the hypergeometric
distribution, as functions of the parameters. Part (c) is the mean square error, and in this case can be computed most easily as

Simplifying gives the result.

Note that  is a linear function of  and hence .

In a collection of 120 objects, 50 are classified as good, 40 as fair and 30 as poor. A sample of 20 objects is selected at random and without replacement. Let 
denote the number of good objects in the sample and  the number of poor objects in the sample. Find each of the following:

1. 
2. 
3. The predicted value of  given 

Answer

1. 
2. 
3. 

The Multinomial Trials Model

Suppose that we have a sequence of  independent trials, and that each trial results in one of three outcomes, denoted 0, 1, and 2. On each trial, the probability of outcome
1 is , the probability of outcome 2 is , so that the probability of outcome 0 is . The parameters  with , and of course . Let 
denote the number of trials that resulted in outcome 1,  the number of trials that resulted in outcome 2, so that  is the number of trials that resulted in
outcome 0. In the in the chapter on Distributions, we showed that the joint, marginal, and conditional distributions of  and  are all multinomial—only the parameters
change. Here is the relevant result for this section:

In the setting above,

1. 

2. 

3. 

Proof

Recall that  has the multinomial distribution with parameters , , and . Marginally,  has the binomial distribution with parameters  and , and  has the
binomial distribution with parameters  and . Given , the remaining  trials are independent, but with just two outcomes: outcome 2
occurs with probability  and outcome 0 occurs with probability . (These are the conditional probabilities of outcomes 2 and 0, respectively,
given that outcome 1 did not occur.) Hence the conditional distribution of  given  is binomial with parameters  and . Parts (a) and (b) then
follow from the standard formulas for the mean and variance of the binomial distribution, as functions of the parameters. Part (c) is the mean square error and in this
case can be computed most easily from

Note again that  is a linear function of  and hence .

X1
2
1

4
1

12
X2

7

144

m a b m−a−b

a b a+b < m n

n ∈ {0, 1, … ,m} X Y n−X−Y

X Y

E(Y ∣ X) = (n−X)b
m−a

var(Y ∣ X) = (n−X)(m−a−n+X)
b(m−a−b)

(m−a (m−a−1))
2

E ([Y −E(Y ∣ X) ) =]2
n(m−n)b(m−a−b)

m(m−1)(m−a)

(X,Y ) m a b n X

m a n Y m b n X = x ∈ {0, 1, … ,n} n−x

m−a b m−a−b Y X = x

m−a b n−x

var(Y ) −var[E(Y ∣ X)] = var(Y ) − var(X) = n − n( )
b

m−a

2
b

m

m−b

m

m−n

m−1
( )

b

m−a

2
a

m

m−a

m

m−n

m−1
(4.7.37)

E(Y ∣ X) X E(Y ∣ X) = L(Y ∣ X)

X

Y

E(Y ∣ X)

var(Y ∣ X)

Y X = 8

E(Y ∣ X) = − X80
7

4
7

var(Y ∣ X) = (20 −X)(50 +X)4

1127
48

7

n

p q 1 −p−q p, q ∈ (0, 1) p+q < 1 n ∈ N+ X

Y n−X−Y

X Y

E(Y ∣ X) = (n−X)
q

1−p

var(Y ∣ X) = (n−X)
q(1−p−q)

(1−p)
2

E ([Y −E(Y ∣ X) ) = n]2
q(1−p−q)

1−p

(X,Y ) n p q X n p Y

n q X = x ∈ {0, 1, … ,n} n−x

q/(1 −p) 1 −q/(1 −p)

Y X = x n−x q/(1 −p)

E[var(Y ∣ X)] = [n−E(X)] = (n−np) = n
q(1 −p−q)

(1 −p)2

q(1 −p−q)

(1 −p)2

q(1 −p−q)

1 −p
(4.7.38)

E(Y ∣ X) X E(Y ∣ X) = L(Y ∣ X)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10163?pdf


4.7.9 https://stats.libretexts.org/@go/page/10163

Suppose that a fair, 12-sided die is thrown 50 times. Let  denote the number of throws that resulted in a number from 1 to 5, and  the number of throws that
resulted in a number from 6 to 9. Find each of the following:

1. 
2. 
3. The predicted value of  given 

Answer

1. 
2. 
3. 

The Poisson Distribution

Recall that the Poisson distribution, named for Simeon Poisson, is widely used to model the number of “random points” in a region of time or space, under certain ideal
conditions. The Poisson distribution is studied in more detail in the chapter on the Poisson Process. The Poisson distribution with parameter  has probability
density function  defined by

The parameter  is the mean and variance of the distribution.

Suppose that  and  are independent random variables, and that  has the Poisson distribution with parameter  and  has the Poisson distribution with
parameter . Let . Then

1. 
2. 

3. 

Proof

We have shown before that the distribution of  is also Poisson, with parameter , and that the conditional distribution of  given  is binomial with
parameters  and . Hence parts (a) and (b) follow from the standard formulas for the mean and variance of the binomial distribution, as functions of the
parameters. Part (c) is the mean square error, and in this case can be computed most easily as

Once again,  is a linear function of  and so . If we reverse the roles of the variables, the conditional expected value is trivial from our
basic properties:

Coins and Dice

A pair of fair dice are thrown, and the scores  recorded. Let  denote the sum of the scores and  the minimum score. Find
each of the following:

1. 
2. 
3. 
4. 

Answer

1. 

2. 1 2 3 4 5 6

1 3

3. 1 2 3 4 5 6

12

4. 

A box contains 10 coins, labeled 0 to 9. The probability of heads for coin  is . A coin is chosen at random from the box and tossed. Find the probability of heads.

Answer

This problem is an example of Laplace's rule of succession, named for Pierre Simon Laplace.

X Y

E(Y ∣ X)

var(Y ∣ X)

Y X = 20

E(Y ∣ X) = (50 −X)4
7

var(Y ∣ X) = (50 −X)12

49
120
7

r ∈ (0, ∞)

f

f(x) = , x ∈ Ne−r r
x

x!
(4.7.39)

r

X Y X a ∈ (0, ∞) Y

b ∈ (0, ∞) N = X+Y

E(X ∣ N) = Na

a+b

var(X ∣ N) = Nab

(a+b)
2

E ([X−E(X ∣ N) ) =]2 ab

a+b

N a+b X N = n ∈ N

n a/(a+b)

E[var(X ∣ N)] = E(N) = (a+b) =
ab

(a+b)2

ab

(a+b)2

ab

a+b
(4.7.40)

E(X ∣ N) N E(X ∣ N) = L(X ∣ N)

E(N ∣ X) =E(X+Y ∣ X) = X+b (4.7.41)

( , )X1 X2 Y = +X1 X2 U = min{ , }X1 X2

E (Y ∣ )X1

E (U ∣ )X1

E (Y ∣ U)

E ( ∣ )X2 X1

+7
2

X1

x

E(U ∣ = x)X1
11
6

5
2

10
3

7
2

u

E(Y ∣ U = u) 52
11

56
9

54
7

46
5

32
3

7

2

i i

9

1
2
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Random Sums of Random Variables

Suppose that  is a sequence of independent and identically distributed real-valued random variables. We will denote the common mean, variance, and
moment generating function, respectively, by , , and . Let

so that  is the partial sum process associated with . Suppose now that  is a random variable taking values in , independent of . Then

is a random sum of random variables; the terms in the sum are random, and the number of terms is random. This type of variable occurs in many different contexts. For
example,  might represent the number of customers who enter a store in a given period of time, and  the amount spent by the customer , so that  is the total
revenue of the store during the period.

The conditional and ordinary expected value of  are

1. 
2. 

Proof
1. Using the substitution rule and the independence of  and  we have

so .
2. From (a) and conditioning, .

Wald's equation, named for Abraham Wald, is a generalization of the previous result to the case where  is not necessarily independent of , but rather is a stopping
time for . Roughly, this means that the event  depends only . Wald's equation is discussed in the chapter on Random Samples. An elegant
proof of and Wald's equation is given in the chapter on Martingales. The advanced section on stopping times is in the chapter on Probability Measures.

The conditional and ordinary variance of  are

1. 
2. 

Proof
1. Using the substitution rule, the independence of  and , and the fact that  is an IID sequence, we have

so .
2. From (a) and the previous result,

Let  denote the probability generating function of . The conditional and ordinary moment generating function of  are

1. 
2. 

Proof
1. Using the substitution rule, the independence of  and , and the fact that  is an IID sequence, we have

(Recall that the MGF of the sum of independent variables is the product of the individual MGFs.)
2. From (a) and conditioning, .

Thus the moment generating function of  is , the composition of the probability generating function of  with the common moment generating function of , a
simple and elegant result.

In the die-coin experiment, a fair die is rolled and then a fair coin is tossed the number of times showing on the die. Let  denote the die score and  the number of
heads. Find each of the following:

1. The conditional distribution of  given .
2. 
3. 
4. 
5. 

Answer

X = ( , , …)X1 X2

μ =E( )Xi = var( )σ2 Xi G(t) =E ( )et Xi

= , n ∈ NYn ∑
i=1

n

Xi (4.7.42)

( , , …)Y0 Y1 X N N X

=YN ∑
i=1

N

Xi (4.7.43)

N Xi i YN

YN

E ( ∣ N) = NμYN
E ( ) =E(N)μYN

N X

E ( ∣ N = n) =E ( ∣ N = n) =E( ) = E( ) = nμYN Yn Yn ∑
i=1

n

Xi (4.7.44)

E ( ∣ N) = NμYN
E ( ) =E [E ( ∣ N)] =E(Nμ) =E(N)μYN YN

N X

X N = n ( , , … , )X1 X2 Xn

YN

var ( ∣ N) = NYN σ2

var ( ) =E(N) +var(N)YN σ2 μ2

N X X

var ( ∣ N = n) = var ( ∣ N = n) = var ( ) = var( ) = nYN Yn Yn ∑
i=1

n

Xi σ2 (4.7.45)

var ( ∣ N) = NYN σ2

var ( ) =E [var ( ∣ N)] +var [E( ∣ N)] =E( N) +var(μN) =E(N) + var(N)YN YN YN σ2 σ2 μ2 (4.7.46)

H N YN

E ( ∣ N) =etYN [G(t)]
N

E ( ) = H (G(t))etN

N X X

E ( ∣ N = n) =E ( ∣ N = n) =E ( ) =etYN etYn etYn [G(t)]
n

(4.7.47)

E ( ) =E [E ( ∣ N)] =E (G(t ) = H(G(t))etN etN )N

YN H ∘G N X

N Y

Y N

E (Y ∣ N)

var (Y ∣ N)

E ( )Yi
var(Y )
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1. Binomial with parameters  and 
2. 
3. 
4. 
5. 

Run the die-coin experiment 1000 times and compare the empirical mean and standard deviation to the distribution mean and standard deviation.

The number of customers entering a store in a given hour is a random variable with mean 20 and standard deviation 3. Each customer, independently of the others,
spends a random amount of money with mean $50 and standard deviation $5. Find the mean and standard deviation of the amount of money spent during the hour.

Answer
1. 
2. 

A coin has a random probability of heads  and is tossed a random number of times . Suppose that  is uniformly distributed on ;  has the Poisson
distribution with parameter ; and  and  are independent. Let  denote the number of heads. Compute the following:

1. 
2. 
3. 
4. 
5. 
6. 

Answer
1. 
2. 
3. 
4. 
5. 
6. 

Mixtures of Distributions

Suppose that  is a sequence of real-valued random variables. Denote the mean, variance, and moment generating function of  by , 
, and , for . Suppose also that  is a random variable taking values in , independent of . Denote the probability density

function of  by  for . The distribution of the random variable  is a mixture of the distributions of , with the distribution
of  as the mixing distribution.

The conditional and ordinary expected value of  are

1. 
2. 

Proof
1. Using the substitution rule and the independence of  and , we have 
2. From (a) and the conditioning rule,

The conditional and ordinary variance of  are

1. 
2. .

Proof
1. Using the substitution rule and the independence of  and , we have 
2. From (a) we have

The conditional and ordinary moment generating function of  are

1. 
2. .

Proof
1. Using the substitution rule and the independence of  and , we have 

N p = 1
2

N1

2

N1
4
7

4
7
3

$1000

$30.82

V N V [0, 1] N

a > 0 V N Y

E(Y ∣ N ,V )

E(Y ∣ N)

E(Y ∣ V )

E(Y )

var(Y ∣ N ,V )

var(Y )

NV

N1
2

aV

a1

2

NV (1 −V )

+ a1
12
a2 1

2

X = ( , , …)X1 X2 Xi =E( )μi Xi

= var( )σ2
i Xi (t) =E ( )Mi et Xi i ∈ N+ N N+ X

N = P(N = n)pn n ∈ N+ XN X = ( , , …)X1 X2

N

XN

E( ∣ N) =XN μN

E( ) =XN ∑∞
n=1 pn μn

N X E( ∣ N = n) =E( ∣ N = n) =E( ) =XN Xn Xn μn

E ( ) =E [E ( )] =E ( ) =XN XN μN ∑
n=1

∞

pnμn (4.7.48)

XN

var ( ∣ N) =XN σ2
N

var( ) = ( + ) −XN ∑∞
n=1 pn σ2

n μ2
n ( )∑∞

n=1 pn μn
2

N X var ( ∣ N = n) = var ( ∣ N = n) = var ( ) =XN Xn Xn σ2
n

var ( )XN =E [var ( ∣ N)] +var [E ( ∣ N)] =E ( ) +var ( ) =E ( ) +E ( ) −XN XN σ2
N μN σ2

N μ2
N [E ( )]μN

2

= + −∑
n=1

∞

pnσ
2
n ∑

n=1

∞

pnμ
2
n ( )∑

n=1

∞

pnμn

2

(4.7.49)

(4.7.50)

XN

E ( ∣ N) = (t)etXN MN

E ( ) = (t)etXN ∑∞
i=1 piMi

N X E ( ∣ N = n) =E ( ∣ N = n) =E ( ) = (t)etXN etXn tXn Mn
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2. From (a) and the conditioning rule, 

In the coin-die experiment, a biased coin is tossed with probability of heads . If the coin lands tails, a fair die is rolled; if the coin lands heads, an ace-six flat die is
rolled (faces 1 and 6 have probability  each, and faces 2, 3, 4, 5 have probability  each). Find the mean and standard deviation of the die score.

Answer

1. 
2. 

Run the coin-die experiment 1000 times and note the apparent convergence of the empirical mean and standard deviation to the distribution mean and standard
deviation.

This page titled 4.7: Conditional Expected Value is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via source content that
was edited to the style and standards of the LibreTexts platform.

E ( ) =E [E ( ∣ N)] =E [ (t)] = (t)etXN etXN MN ∑∞
n=1 pnMn

1
3

1
4

1
8

7
2

1.8634
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