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14.4: The Poisson Distribution
        

Basic Theory

Recall that in the Poisson model,  denotes the sequence of inter-arrival times, and  denotes the sequence of
arrival times. Thus  is the partial sum process associated with :

Based on the strong renewal assumption, that the process restarts at each fixed time and each arrival time, independently of the past, we now know
that  is a sequence of independent random variables, each with the exponential distribution with rate parameter , for some . We also
know that  has stationary, independent increments, and that for ,  has the gamma distribution with rate parameter  and scale parameter 

. Both of the statements characterize the Poisson process with rate .

Recall that for ,  denotes the number of arrivals in the interval , so that . We refer to  as
the counting process. In this section we will show that  has a Poisson distribution, named for Simeon Poisson, one of the most important
distributions in probability theory. Our exposition will alternate between properties of the distribution and properties of the counting process. The two
are intimately intertwined. It's not too much of an exaggeration to say that wherever there is a Poisson distribution, there is a Poisson process lurking
in the background.

Probability density function.

Recall that the probability density function of the th arrival time  is

We can find the distribution of  because of the inverse relation between  and . In particular, recall that

since both events mean that there are at least  arrivals in .

For , the probability density function of  is given by

Proof

Using the inverse relationship noted above, and integration by parts, we have

For  we have . Simplifying gives the result.

Note that the distribution of  depends on the paramters  and  only through the product . The distribution is called the Poisson distribution with
parameter .

In the Poisson experiment, vary  and  with the scroll bars and note the shape of the probability density function. For various values of  and ,
run the experiment 1000 times and compare the relative frequency function to the probability density function.

In general, a random variable  taking values in  is said to have the Poisson distribution with parameter  if it has the probability
density function

1.  if and only if .
2. If , there is a single mode at .
3. If , there are consecutive modes at  and .

Proof

Part (a) follows from simple algebra, and similarly,  if and only if  (and thus ). Parts (b) and (c) then follow.
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The Poisson distribution does not have simple closed-form distribution or quantile functions. Trivially, we can write the distribution function as a sum
of the probability density function.

The Poisson distribution with parameter  has distribution function  given by

Open the special distribution calculator, select the Poisson distribution, and select CDF view. Vary the parameter and note the shape of the
distribution and quantile functions. For various values of the parameter, compute the quartiles.

Sometimes it's convenient to allow the parameter  to be 0. This degenerate Poisson distribution is simply point mass at 0. That is, with the usual
conventions regarding nonnegative integer powers of 0, the probability density function  above reduces to  and  for .

Moments

Suppose that  has the Poisson distribution with parameter . Naturally we want to know the mean, variance, skewness and kurtosis, and the
probability generating function of . The easiest moments to compute are the factorial moments. For this result, recall the falling power notation for
the number of permutations of size  chosen from a population of size :

The factorial moment of  of order  is .

Proof

Using the standard change of variables formula for expected value,

The mean and variance of  are the parameter .

1. 
2. 

Proof
1. This follows directly from the first factorial moment: .
2. Note that .

Open the special distribution simulator and select the Poisson distribution. Vary the parameter and note the location and size of the mean
standard deviation bar. For selected values of the parameter, run the simulation 1000 times and compare the empirical mean and standard

deviation to the distribution mean and standard deviation.

The skewness and kurtosis of  are

1. 
2. 

Proof

These results follow from the computational formulas for skewness and kurtosis and the results for factorial moments above. Specifically,

1.  and 
2.  and 

Note that the Poisson distribution is positively skewed, but  as . Recall also that the excess kurtosis is 
 as . This limit is related to the convergence of the Poisson distribution to the normal, discussed below.

Open the special distribution simulator and select the Poisson distribution. Vary the parameter and note the shape of the probability density
function in the context of the results on skewness and kurtosis above.

The probability generating function  of  is given by

Proof
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Using the change of variables formula again,

Returning to the Poisson counting process  with rate parameter , it follows that  and  for . Once
again, we see that  can be interpreted as the average arrival rate. In an interval of length , we expect about  arrivals.

In the Poisson experiment, vary  and  with the scroll bars and note the location and size of the mean standard deviation bar. For various
values of  and , run the experiment 1000 times and compare the sample mean and standard deviation to the distribution mean and standard
deviation, respectively.

Estimating the Rate

Suppose again that we have a Poisson process with rate . In many practical situations, the rate  in unknown and must be estimated based
on observing data. For fixed , a natural estimator of the rate  is .

The mean and variance of  are

1. 
2. 

Proof

These result follow easily from  and basic properties of expected value and variance.

Part (a) means that the estimator is unbiased. Since this is the case, the variance in part (b) gives the mean square error. Since  decreases to 0
as , the estimator is consistent.

Additional Properties and Connections

Increments and Characterizations

Let's explore the basic renewal assumption of the Poisson model in terms of the counting process . Recall that  is the number of
arrivals in the interval , so it follows that if  with , then  is the number of arrivals in the interval . Of course,
the arrival times have continuous distributions, so the probability that an arrival occurs at a specific point  is 0. Thus, it does not really matter if we
write the interval above as , ,  or .

The process  has stationary, independent increments.

1. If  with  then  has the same distribution as , namely Poisson with parameter .
2. If  with  then  is an independent sequence.

Statements about the increments of the counting process can be expressed more elegantly in terms of our more general counting process. Recall that
for  (measurable of course),  denotes the number of random points in :

and so in particular, . Thus, note that  is a (random) distribution function and  is the (random) measure associated
with this distribution function. Recall also that  denotes the standard length (Lebesgue) measure on . Here is our third characterization of the
Poisson process.

A process of random points in time is a Poisson process with rate  if and only if the following properties hold:.

1. If  is measurable then  has the Poisson distribution with parameter .
2. if  is a countable, disjoint collection of measurable sets in  then  is a set of independent variables.

From a modeling point of view, the assumptions of stationary, independent increments are ones that might be reasonably made. But the assumption
that the increments have Poisson distributions does not seem as clear. Our next characterization of the process is more primitive in a sense, because it
just imposes some limiting assumptions (in addition to stationary, independent increments.

A process of random points in time is a Poisson process with rate  if and only if the following properties hold:

1. If  are measurable and , then  and  have the same distribution.
2. if  is a countable, disjoint collection of measurable sets in  then  is a set of independent variables.
3. If  is measurable and  for , and if  as  then
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Proof

As usual, let , the number of arrivals in , and in addition let  for  and . Note first that 
satisfies the following differential equation and initial condition:

Hence  for . Next for ,  satisfies the following differential equation and initial condition

Hence  for  and therefore  has the Poisson distribution with parameter .

Of course, part (a) is the stationary assumption and part (b) the independence assumption. The first limit in (c) is sometimes called the rate property
and the second limit the sparseness property. In a “small” time interval of length , the probability of a single random point is approximately ,
and the probability of two or more random points is negligible.

Sums

Suppose that  and  are independent random variables, and that  has the Poisson distribution with parameter  and  has the
Poisson distribution with parameter . Then  has the Poisson distribution with parameter .

Proof from the Poisson process

There are several ways to prove this result, but the one that gives the most insight is a probabilistic proof based on the Poisson process. Thus
suppose that  is a Poisson counting process with rate 1. We can associate  with  and  with , since these
have the correct distributions and are independent. But then  is .

Proof from probability generating functions

From our result above,  has PGF  for , and  has PGF  for . Hence  has PGF 
 for . But this is the PGF of the Poisson distribution with parameter .

Proof from convolution

From our results above,  has PDF  for , and  has PDF  for . Hence the PDF of  is
the convolution . For ,

By the binomial theorem, the last sum is .

From the last theorem, it follows that the Poisson distribution is infinitely divisible. That is, a Poisson distributed variable can be written as the sum
of an arbitrary number of independent, identically distributed (in fact also Poisson) variables.

Suppose that  has the Poisson distribution with parameter . Then for ,  has the same distribution as  where 
 are independent, and each has the Poisson distribution with parameter .

Normal Approximation

Because of the representation as a sum of independent, identically distributed variables, it's not surprising that the Poisson distribution can be
approximated by the normal.

Suppose that  has the Poisson distribution with parameter . Then the distribution of the variable below converges to the standard normal
distribution as .

Proof

As usual, we can assume that  is the Poisson counting process with rate 1. Note that  is simply the standard score associated with 
. For ,  is the sum of  independent variables, each with the Poisson distribution with parameter 1. Thus, from the central limit

theorem, the distribution of  converges to the standard normal distribution as . For general , it's possible to write 
 where  and  as  (in probability and hence in distribution).
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Thus, if  has the Poisson distribution with parameter , and  is “large”, then the distribution of  is approximately normal with mean  and
standard deviation . When using the normal approximation, we should remember to use the continuity correction, since the Poisson is a discrete
distribution.

In the Poisson experiment, set . Increase  and note how the graph of the probability density function becomes more bell-shaped.

General Exponential

The Poisson distribution is a member of the general exponential family of distributions. This fact is important in various statistical procedures.

Suppose that  has the Poisson distribution with parameter . This distribution is a one-parameter exponential family with natural
parameter  and natural statistic .

Proof

This follows from the form of the Poisson PDF:

The Uniform Distribution

The Poisson process has some basic connections to the uniform distribution. Consider again the Poisson process with rate . As usual, 
 denotes the arrival time sequence and  the counting process.

For , the conditional distribution of  given  is uniform on the interval .

Proof

Given  (one arrival in ) the arrival time  takes values in . From independent and stationary increments properties,

Hence using the Poisson distribution,

More generally, for  and , the conditional distribution of  given  is the same as the distribution of the order
statistics of a random sample of size  from the uniform distribution on the interval .

Heuristic proof

Suppose that . On the event , the probability density of  at  is the probability
density function of independent inter-arrival times  times the probability of no arrivals in the interval . Hence
given , the conditional density of  at  is

But this is the PDF of the order statistics from a sample of size  from the uniform distribution on .

Note that the conditional distribution in the last result is independent of the rate . This means that, in a sense, the Poisson model gives the most
“random” distribution of points in time.

The Binomial Distribution

The Poisson distribution has important connections to the binomial distribution. First we consider a conditional distribution based on the number of
arrivals of a Poisson process in a given interval, as we did in the last subsection.

Suppose that  is a Poisson counting process with rate . If  with , and , then the
conditional distribution of  given  is binomial with trial parameter  and success parameter .

Proof

Note that given , the number of arrivals  in  takes values in . Again, the stationary and independent increments
properties are critical for the proof.
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Subsitituting into the Poisson PDFs gives

Note again that the conditional distribution in the last result does not depend on the rate . Given , each of the  arrivals, independently of the
others, falls into the interval  with probability  and into the interval  with probability . Here is essentially the same
result, outside of the context of the Poisson process.

Suppose that  has the Poisson distribution with parameter ,  has the Poisson distribution with parameter , and that 
and  are independent. Then the conditional distribution of  given  is binomial with parameters  and .

Proof

The proof is essentially the same as the previous theorem, with minor modifications. First recall from the result above that  has the
Poisson distribution with parameter . For  with ,

Subsitituting into the Poisson PDFs gives

More importantly, the Poisson distribution is the limit of the binomial distribution in a certain sense. As we will see, this convergence result is related
to the analogy between the Bernoulli trials process and the Poisson process that we discussed in the Introduction, the section on the inter-arrival
times, and the section on the arrival times.

Suppose that  for  and that  as . Then the binomial distribution with parameters  and 
converges to the Poisson distribution with parameter  as . That is, for fixed ,

Direct proof

The binomial PDF with parameters  and  at  can be written as

But  as  for fixed . Also, using a basic theorem from calculus,  as .

Proof from generating functions

An easier proof uses probability generating functions. For , using the same basic limit from calculus,

The left side is the PGF of the binomial distribution with parameters  and , while the right side is the PGF of the Poisson distribution with
parameter .

The mean and variance of the binomial distribution converge to the mean and variance of the limiting Poisson distribution, respectively.

1.  as 
2.  as 

Of course the convergence of the means is precisely our basic assumption, and is further evidence that this is the essential assumption. But for a
deeper look, let's return to the analogy between the Bernoulli trials process and the Poisson process. Recall that both have the strong renewal property
that at each fixed time, and at each arrival time, the process stochastically starts over, independently of the past. The difference, of course, is that time
is discrete in the Bernoulli trials process and continuous in the Poisson process. The convergence result is a special case of the more general fact that
if we run Bernoulli trials at a faster and faster rate but with a smaller and smaller success probability, in just the right way, the Bernoulli trials process
converges to the Poisson process. Specifically, suppose that we have a sequence of Bernoulli trials processes. In process  we perform the trials at a
rate of  per unit time, with success probability . Our basic assumption is that  as  where . Now let  denote the number
of successes in the time interval  for Bernoulli trials process , and let  denote the number of arrivals in this interval for the Poisson process
with rate . Then  has the binomial distribution with parameters  and , and of course  has the Poisson distribution with parameter .
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For , the distribution of  converges to the distribution of  as .

Proof

Note that  and hence . Since  and  as , it follows from the squeeze
theorem for limits that  as . Thus, the result follows from our previous convergence theorem.

Compare the Poisson experiment and the binomial timeline experiment.

1. Open the Poisson experiment and set  and . Run the experiment a few times and note the general behavior of the random points in
time. Note also the shape and location of the probability density function and the mean standard deviation bar.

2. Now open the binomial timeline experiment and set  and . Run the experiment a few times and note the general behavior of
the random points in time. Note also the shape and location of the probability density function and the mean standard deviation bar.

From a practical point of view, the convergence of the binomial distribution to the Poisson means that if the number of trials  is “large” and the
probability of success  “small”, so that  is small, then the binomial distribution with parameters  and  is well approximated by the Poisson
distribution with parameter . This is often a useful result, because the Poisson distribution has fewer parameters than the binomial distribution
(and often in real problems, the parameters may only be known approximately). Specifically, in the approximating Poisson distribution, we do not
need to know the number of trials  and the probability of success  individually, but only in the product . The condition that  be small means
that the variance of the binomial distribution, namely  is approximately , the variance of the approximating Poisson
distribution.

Recall that the binomial distribution can also be approximated by the normal distribution, by virtue of the central limit theorem. The normal
approximation works well when  and  are large; the rule of thumb is that both should be at least 5. The Poisson approximation works
well, as we have already noted, when  is large and  small.

Computational Exercises

Suppose that requests to a web server follow the Poisson model with rate  per minute. Find the probability that there will be at least 8
requests in a 2 minute period.

Answer

0.7798

Defects in a certain type of wire follow the Poisson model with rate 1.5 per meter. Find the probability that there will be no more than 4 defects
in a 2 meter piece of the wire.

Answer

0.8153

Suppose that customers arrive at a service station according to the Poisson model, at a rate of . Find the mean and standard deviation of the
number of customers in an 8 hour period.

Answer

32, 5.657

In the Poisson experiment, set  and . Run the experiment 1000 times and compute the following:

1. 
2. The relative frequency of the event .
3. The normal approximation to .

Answer
1. 0.6157
3. 0.6025

Suppose that requests to a web server follow the Poisson model with rate  per minute. Compute the normal approximation to the probability
that there will be at least 280 requests in a 1 hour period.

Answer

0.8818

Suppose that requests to a web server follow the Poisson model, and that 1 request comes in a five minute period. Find the probability that the
request came during the first 3 minutes of the period.

Answer

t > 0 Yn,t Nt n → ∞

nt−1 < ⌊nt⌋≤ nt n t− < ⌊nt⌋ ≤ n tpn pn pn pn n → rpn → 0pn n → ∞
⌊nt⌋ → rtpn n → ∞

r = 1 t = 5
±

n = 100 p = 0.05
±

n

p np2 n p

r = np

n p np np2

np(1 −p) = np−np2 r = np

np n(1 −p)
n np2

r = 5

r = 4

r = 5 t = 4

P(15 ≤ ≤ 22)N4

{15 ≤ ≤ 22}N4

P(15 ≤ ≤ 22)N4

r = 5
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Suppose that requests to a web server follow the Poisson model, and that 10 requests come during a 5 minute period. Find the probability that at
least 4 requests came during the first 3 minutes of the period.

Answer

0.9452

In the Poisson experiment, set  and . Run the experiment 100 times.

1. For each run, compute the estimate of  based on .
2. Over the 100 runs, compute the average of the squares of the errors.
3. Compare the result in (b) with .

Suppose that requests to a web server follow the Poisson model with unknown rate  per minute. In a one hour period, the server receives 342
requests. Estimate .

Answer

 per minute

In the binomial experiment, set  and , and run the simulation 1000 times. Compute and compare each of the following:

1. 
2. The relative frequency of the event 
3. The Poisson approximation to 

Answer
1. 0.8245
3. 0.8153

Suppose that we have 100 memory chips, each of which is defective with probability 0.05, independently of the others. Approximate the
probability that there are at least 3 defectives in the batch.

Answer

0.7350

In the binomial timeline experiment, set  and  and run the simulation 1000 times. Compute and compare each of the following:

1. 
2. The relative frequency of the event 
3. The Poisson approximation to 
4. The normal approximation to 

Answer
1. 0.2063
3. 0.2149
4. 0.2146

In the binomial timeline experiment, set  and  and run the simulation 1000 times. Compute and compare each of the following:

1. 
2. The relative frequency of the event 
3. The Poisson approximation to 
4. The normal approximation to 

Answer
1. 0.6066
3. 0.5837
4. 0.6247

A text file contains 1000 words. Assume that each word, independently of the others, is misspelled with probability .

1. If , approximate the probability that the file contains at least 20 misspelled words.
2. If , approximate the probability that the file contains at least 3 misspelled words.

Answer

r = 3 t = 5

r Nt

var( )Nt

r

r

r = 5.7

n = 30 p = 0.1

P( ≤ 4)Y30

{ ≤ 4}Y30

P( ≤ 4)Y30

n = 40 p = 0.1

P( > 5)Y40

{ > 5}Y40

P( > 5)Y40

P( > 5)Y40

n = 100 p = 0.1

P(8 < < 15)Y100

{8 < < 15}Y100

P(8 < < 15)Y100

P(8 < < 15)Y100

p

p = 0.015
p = 0.001
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The true distribution of the number of misspelled words is binomial, with  and .

1. The normal approximation (with  and ) is 0.120858. The Poisson approximation (with parameter 
) is 0.124781. The true binomial probability is 0.123095.

2. The Poisson approximation (with parameter ) is 0.0803014. The true binomial probability is 0.0802093.
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