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16.17: Potential Matrices

Prelimnaries

This is the third of the introductory sections on continuous-time Markov chains. So our starting point is a time-homogeneous Markov chain
X ={X;:t€[0,00)} defined on an underlying probability space (2, #,P) and with discrete state space (.5, .%). Thus S is countable and . is
the power set of .S, so every subset of S is measurable, as is every function from .S into another measurable space. In addition, .S is given the discret
topology so that . can also be thought of as the Borel o-algebra. Every function from S to another topological space is continuous. Counting
measure # is the natural measure on (S, %), so in the context of the general introduction, integrals over S are simply sums. Also, kernels on S can
be thought of as matrices, with rows and sums indexed by S, so the left and right kernel operations are generalizations of matrix multiplication. As
before, let # denote the collection of bounded functions f : S — R. With the usual pointwise definitions of addition and scalar multiplication, £ is
a vector space. The supremum norm on £ is given by

[fIl = supf[f(2)| : z € S}, feR (16.17.1)

Of course, if S is finite, 44 is the set of all real-valued functions on S, and || f|| = max{|f(z)| : ¢ € S} for f € 8. The time space is ([0, c0), 7)
where as usual,  is the Borel o-algebra on [0, co) corresponding to the standard Euclidean topology. Lebesgue measure is the natural measure on

([0, 00), 7).

In our first point of view, we studied X in terms of when and how the state changes. To review briefly, let 7 =inf{¢ € (0,00): X; # Xo} .
Assuming that X is right continuous, the Markov property of X implies the memoryless property of 7, and hence the distribution of 7 given Xy =
is exponential with parameter A(z) € [0, 00) for each z € S. The assumption of right continuity rules out the pathological possibility that
A(z) = oo, which would mean that z is an instantaneous state so that P(r =0 | Xo =) =1 . On the other hand, if A(z) € (0, 00) then z is a
stable state, so that 7 has a proper exponential distribution given Xy =z with P(0 <7 <oo| Xg=2)=1 . Finally, if A(z) =0 then z is an
absorbing state, so that P(t = oo | Xog =z) =1 . Next we define a sequence of stopping times: First 7o =0 and 71 = 7. Recursively, if 7, < co
then 7,, =inf{¢t > 7,, : X; # X, } , while if 7, = co then 7,41 = 00. With M =sup{n € N: 7,, < oo} we define ¥,, =X, if n€N with
n <M andY, =Y} if n € N with n > M . The sequence Y = (¥}, Y1, .. .) is a discrete-time Markov chain on .S with one-step transition matrix
Q givenby Q(z,y) =P(X,; =y | Xo ==2) if z, y € S with z stable, and Q(z,z) =1if € S is absorbing. Assuming that X is regular, which
means that 7;, — co as n — oo with probability 1 (ruling out the explosion event of infinitely many transitions in finite time), the structure of X is
completely determined by the sequence of stopping times 7T = (7, 71,...) and the embedded discrete-time jump chain Y = (Yp,Y1,...).
Analytically, the distribution X is determined by the exponential parameter function A\ and the one-step transition matrix @) of the jump chain.

In our second point of view, we studied X in terms of the collection of transition matrices P = {P, : t € [0, 00)} , where for ¢ € [0, co),
Pe,y) =P(Xi =y | Xo =2), (2,y)€ 5 (16.17.2)

The Markov and time-homogeneous properties imply the Chapman-Kolmogorov equations P; P, = P, for s, t € [0,00), so that P is a semigroup
of transition matrices. The semigroup P, along with the initial distribution of X, completely determines the distribution of X. For a regular Markov
chain X, the fundamental integral equation connecting the two points of view is

t
Py(a,y) = I(z,y)e " + / A@)e QP (z,y)ds, (z,y) € S (16.17.3)
0

which is obtained by conditioning on 7 and X. It then follows that the matrix function ¢ — P, is differentiable, with the derivative satisfying the
Kolmogorov backward equation P/ = GP; where the generator matrix G is given by

G(z,y) = -A(@)(2,9) +A(2)Q(z,y), (z,y) € S® (16.17.4)

If the exponential parameter function A is bounded, then the transition semigroup P is uniform, which leads to stronger results. The generator G is a
bounded operator on 4, the backward equation holds as well as a companion forward equation P,/ = P;G, as operators on 2 (so with respect to the
supremum norm rather than just pointwise). Finally, we can represent the transition matrix as an exponential: P, = e!® for ¢ € [0, 00).

In this section, we study the Markov chain X in terms of a family of matrices known as potential matrices. This is the least intuitive of the three
points of view, but analytically one of the best approaches. Essentially, the potential matrices are transforms of the transition matrices.

Basic Theory

We assume again that X ={X;:¢ €[0,00)} is a regular Markov chain on S with transition semigroup P ={P;:¢ € [0,00)}. Our first
discussion closely parallels the general theory, except for simplifications caused by the discrete state space.

Definitions and Properties

For a € [0, 00), the ai-potential matrix U, of X is defined as follows:

o0
Us(z,y) =/ e “Pi(z,y)dt, (z,y)cS® (16.17.5)
0

https://stats.libretexts.org/@go/page/10390



https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10390?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/16%3A_Markov_Processes/16.17%3A_Potential_Matrices

LibreTextsw

1. The special case U = Uy is simply the potential matrix of X.
2. For (z.y) € 82, U(z, y) is the expected amount of time that X spends in y, starting at .
3. The family of matrices U = {U, : o € (0,00)} is known as the reolvent of X.

Proof

Since t — P;(z,y) is continuous, U, (z, i) makes sense for (x, %) € 2. The interpretation of U(z, y) involves an interchange of integrals:

Ulz,y) :/OOOPt(w,y) dt :/OOOIE[l(Xt —y)| Xo—a]dt—E (/000 1(X, — y) dt ‘ X, ::c> (16.17.6)

The inside integral is the Lebesgue measure of {t € [0, 00) : X; =y}.

It's quite possible that U(z,y) = oo for some (z,y) € S?, and knowing when this is the case is of considerable interest. If f: S — R and o >0,
then giving the right operation in its many forms,

U1@) = S Uale)f ) = [ ¢ Psa)d

yes

- / e S Pia,y) () = / T e wB[f(X,) | Xy —a]dt, e

yes

assuming, as always, that the sums and integrals make sense. This will be the case in particular if f is nonnegative (although oo is a possible value),
or as we will now see, if f € % and a > 0.

If @ > 0, then U, (z, S) = £ forallz € S.
Proof
Forz e S,
0 o0 1
U, (z,S) :A e P,(z,8)dt :A e dt = = (16.17.7)
It follows that for « € (0, 00), the right potential operator U, is a bounded, linear operator on & with ||U, | = % It also follows that aU, is a

probability matrix. This matrix has a nice interpretation.

If & >0 then alU,(z,-) is the conditional probability density function of Xr given Xy =z, where T is independent of X and has the
exponential distribution on [0, co) with parameter a.
Proof

Suppose that (z,y) € S2. The random time 7" has PDF f(t) = e~ fort € [0, c0). Hence, conditioning on T gives

P(Xr =y | Xo =) = /Ooo ae O P(Xp —y | T =t, Xo — ) dt (16.17.8)
But by the substitution rule and the assumption of independence,
PXr=y|T=t,Xo=2)=P(X;=y|T=t,Xo=2)=P(X; =y | Xo =z) =Pi(z,y) (16.17.9)
Substituting gives
PXr=y|Xo=2z)= /Ooo ae “Py(z,y)dt = al,(z,y) (16.17.10)

So aU,, is a transition probability matrix, just as P; is a transition probability matrix, but corresponding to the random time T (with & € (0, 00) as a
parameter), rather than the deterministic time ¢ € [0, co0). The potential matrix can also be interpreted in economic terms. Suppose that we receive
money at a rate of one unit per unit time whenever the process X is in a particular state y € S. Then U(z, y) is the expected total amount of money
that we receive, starting in state z € S. But money that we receive later is of less value to us now than money that we will receive sooner.
Specifically, suppose that one monetary unit at time ¢ € [0, c0) has a present value of e™* where a € (0, 00) is the inflation factor or discount
factor. Then U, (z, y) is the total, expected, discounted amount that we receive, starting in z € S. A bit more generally, suppose that f € & and that
f(y) is the reward (or cost, depending on the sign) per unit time that we receive when the process is in state y € S. Then U, f(x) is the expected,
total, discounted reward, starting in state x € S.

aU, > T asa— 0.
Proof

Note first that with a change of variables s = at,
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(o) (o)
aU, :/ ae P, dt:/ e * Py ds (16.17.11)
0 0
But for s € [0,0), s/a — 0 and hence P,/, — I as a — co. The result then follows from the dominated convergence theorem.

If f: S — [0, 00), then giving the left potential operation in its various forms,

10 = S S@Una) = [ e R

zeS
o 0] [o¢]
= [ e | r@pew|d= [ o | f@rx=y)| i yes
0 zes 0 zeS
In particular, suppose that o > 0 and that f is the probability density function of X,. Then fP; is the probability density function of X; for
t € [0,00), and hence from the last result, afU, is the probability density function of Xz, where again, T is independent of X and has the
exponential distribution on [0, co) with parameter «. The family of potential kernels gives the same information as the family of transition kernels.

The resolvent U = {U,, : a € (0, 00)} completely determines the family of transition kernels P = {P; : t € (0,00)} .
Proof

Note that for (z,y) € S?, the function a ~— Uy(z,y) on (0, 00) is the Laplace transform of the function ¢ — P;(z,y) on [0, 00). The Laplace
transform of a continuous function determines the function uniquely.

Although not as intuitive from a probability view point, the potential matrices are in some ways nicer than the transition matrices because of
additional smoothness. In particular, the resolvent {U, : « € [0, 00)}, along with the initial distribution, completely determine the finite dimensional
distributions of the Markov chain X. The potential matrices commute with the transition matrices and with each other.

Suppose that &, 3, t € [0, 00). Then
1. PtUa = UaPt = foco e s+tds
2.UUs=UpU, = [}° Ji° e e P Py idsdt
Proof

The interchanges of matrix multiplication and integrals below are interchanges of sums and integrals, and are justified since the underlying
integrands are nonnegative. The other tool used is the semigroup property of P ={P; :t € [0,00)}. You may want to write out the proofs
explicitly to convince yourself

1. First,
o0 o0 o0
U,P;, = (/ e “P, ds> P, =/ e “P,Pds :/ e “P,ids (16.17.12)
0 0 0
Similarly
(o] o0 o0
PU, = Pt/ e “P,ds :/ e “P.P,ds :/ e “P,ids (16.17.13)
0 0 0
2. First

UUp = (/ e %P, ds) (/ e P, dt) :/ / e e P PP, dsdt :/ / e e PP, dsdt (16.17.14)
0 0 o Jo o Jo

The other direction is similar.

The equations above are matrix equations, and so hold pointwise. The same identities hold for the right operators on the space 48 under the additional
restriction that & > 0 and 8 > 0. The fundamental equation that relates the potential kernels, known as the resolvent equation, is given in the next
theorem:

If a, B € [0,00) witha < S then Uy =Us + (8 —a)UpUp .
Proof

If @ = (3 the equation is trivial, so assume o < . From the previous result,
o0 o0
U,Us = / / e e PP, dtds (16.17.15)
o Jo

The transformation u =s+¢, v=s maps [0,00)® one-to-one onto {(u,v)€ [0,00)%>:u>v}. The inverse transformation is
s=wv, t =u—v with Jacobian —1. Hence we have

https://stats.libretexts.org/@go/page/10390


https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10390?pdf

@giL&wéR»GSM
U.Up :/ / e e A=) P, dvdu :/ </ e(ﬂ‘a)”dv> e PP, du
o Jo 0 0
_— / [e(ﬁ*"‘)” = 1} e PP, du
B—a o

1 o o 1
- e P, du— / e ™P, du> =——(Ua-U
ﬂ—a<A 0 R

Simplifying gives the result. Note that Up is finite since 8 > 0, so we don't have to worry about the dreaded indeterminate form oo — oo .

The equation above is a matrix equation, and so holds pointwise. The same identity holds for the right potential operators on the space %, under the
additional restriction that o« > 0.

Connections with the Generator

Once again, assume that X = {X; : t € [0,00)} is a regular Markov chain on S with transition semigroup P ={P, : ¢ € [0, 00)}, infinitesimal
generator G, resolvent U = {U, : & € (0, 00)}, exponential parameter function A, and one-step transition matrix @ for the jump chain. There are
fundamental connections between the potential U, and the generator matrix G, and hence between U, and the function A and the matrix Q.

If o € (0, 00) then I +GU,, = aU, . In terms of A and Q,

Az)
Uy(z,y) = ——I(z, ——_QUy(z,y), ,y) € S? 16.17.16
(z,9) T A@) (z y)+a+)\(x)Q (z,9), (2,9) ( )
Proof 1
First,
GUazG/ e’atPtdt:/ e"’tGPtdt=/ e P/ dt (16.17.17)
0 0 0

Passing G through the integrand is justified since GP;(z,y) is a sum with just one negative term for (z,y) € S2. The second identity in the
displayed equation follows from the backward equation. Integrating by parts then gives

[o.¢)

GU,=e P,

+/ ae P, dt = —I+al, (16.17.18)
0 0

Proof 2

This proof use the fundamental integral equation relating P, A, and @ as well as the definition of U, and interchanges of integrals. The
interchange is justified since the integrand is nonnegative. So for « € [0, 00) and (z,y) € S?,

Uae) = [ e Pay)di
0
o5} t
:/ e {ef)‘(’”)tl(w,y)+)\(m)ef’\(z)t/ QP (z,y) dr| dt
0 0

=) 00 t
I(m,y)[) e_[a*"\(w)]tdt—k)\(m)‘/o A e 0P@IEAD QP (2, y) dr dt

——— @A) [ [T QR o,y dedr
0 T

a+A(z)
_ 1 . )‘(1‘) *® ef[aJr)\(m)]re)\(z)r o b
——aHmI( ,y)+—a“(m)/0 QP (z,y)d
__ 1 Alz) ® 1 . ) N
= aaE) T ) /0 eTREEYdr= e (YT @ W)

Proof 3

Recall that aU, (z,y) =P(X1 =y | Xo =) where T is independent of X and has the exponential distribution with parameter o. This proof
works by conditioning on whether T' <1y or T' > 7 :

alUy(z,y) =P(Xr=y | Xo=z,T<n)P(T <7 | Xo=2)+PXr=y | Xo=z,T>n)PT>n | Xo=z) (16.17.19)
But Xo=z and T' <7 imply Xr =z so P(Xy =y | Xo=2,T <71)=I(z,y) . And by a basic property of independent exponential
variables that we have seen many times before,
e

P(T < Xo=z)= —
( nlXo=2) a+A(z)

(16.17.20)

Next, for the first factor in the second term of the displayed equation, we condition on X7, :
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]P(XT =y | XO =1‘,T2T1) :Z]P’(XT =y | XO Z:E,X.,.l =Z,TZT1)]P(X7-1 :Z|X0 =$,T2Tl) (161721)

ze8

But by the strong Markov property, given X, = z, we can restart the clock at time 7 in state z. Moreover, by the memoryless property and
independence, the distribution of T'— 71 given 7" > 7 is the same as the distribution of 7", mainly exponential with parameter . It follows that

P(Xr=y|Xo=2,X, =2,T2>n)=PXr=y|Xo=2)=ala(zy) (16.17.22)
Also, X, is independent of 7, and T" so
P(Xn =2|Xo=2,T >7)=Q(z,2) (16.17.23)

Finally using the basic property of exponential distributions again,

Alz)
P(T > Xo=z)=—— 16.17.24
(T>m|Xo=2) T A@) ( )
Putting all the pieces together we have
aUa(w,y):LI(m,y) E Q(z, 2)alU,(z,y) = LI(w,y)—i—ﬂQaUa(w,y) (16.17.25)
a+A(z) +)\ = +A(x) a+A(z)

As before, we can get stronger results if we assume that A is bounded, or equivalently, the transition semigroup P is uniform.

Suppose that A is bounded and & € (0, 00). Then as operators on 4 (and hence also as matrices),

1. I+GU, = al,
2.14+U,G=alU,

Proof

Since A is bounded, G is a bounded operator on 4. The proof of (a) then proceeds as before. For (b) we know from the forward and backward
equations that GP, = P,G fort € [0, 00) and hence GU,, = U, G for a € (0, 00).

As matrices, the equation in (a) holds with more generality than the equation in (b), much as the Kolmogorov backward equation holds with more
generality than the forward equation. Note that

U,G(z,y) ZU z,2)G(z,y) = —)\(y)Ua(x,y)—i—ZUa(w,z))\(z)Q(z,y), (z,y) € §* (16.17.26)
€8 ze8

If X is unbounded, it's not clear that the second sum is finite.

Suppose that )\ is bounded and & € (0, 00). Then as operators on 4 (and hence also as matrices),
LUy=(al-G)!
2.G=al -U;!

Proof

1. This follows immediately from the previous result, since U, (el —G) =1 and (al —G)U, =
2. This follows from (a): al —G =Ugz"' so G=al-U;!

So the potential operator U, and the generator G have a simple, elegant inverse relationship. Of course, these results hold in particular if S is finite,
so that all of the various matrices really are matrices in the elementary sense.

Examples and Exercises

The Two-State Chain

Let X ={X;:t<[0,00)} be the Markov chain on the set of states S = {0, 1}, with transition rate a € [0, 00) from 0 to 1 and transition rate
b € [0, 00) from 1 to 0. To avoid the trivial case with both states absorbing, we will assume that a +b > 0 . The first two results below are a review
from the previous two sections.

The generator matrix G is

G= [_a N } (16.17.27)

The transition matrix at time ¢ € [0, 00) is
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1 b a 1 —a a
P = — [b a] _a__H)e—(a+b)t { ) —b] , te0,00) (16.17.28)

Now we can find the potential matrix in two ways.

For a € (0, 00), show that the potential matrix U, is

= b o] e o ) o720

1. From the definition.
2. From the relation U, = (ol —G)7! .
Computational Exercises

Consider the Markov chain X = {X;:¢ € [0,00)} on S={0,1,2} with exponential parameter function A = (4,1, 3) and jump transition

matrix
101
0 5 3
o=11 0 o (16.17.30)
12
3 3 0
1. Draw the state graph and classify the states.
2. Find the generator matrix G.
3. Find the potential matrix U, for a € (0, 00).
Answer
1. The edge set is E = {(0, 1), (0, 2), (1, 0), (2, 0), (2, 1)} All states are stable.
2. The generator matrix is
-4 2 2
G=|1 -1 o0 (16.17.31)
1 2 -3
3. Fora € (0,00),
. 3+4da+a? 10 +2a 2+42a
Up=(l-G) =" 1 2 2 16.17.32
o= (a ) Tha T2 T a8 3+a 0+7a+a ) ( )
3+a 10+ 2 24+5a+a

Special Models

l Read the discussion of potential matrices for chains subordinate to the Poisson process.

This page titled 16.17: Potential Matrices is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services) via
source content that was edited to the style and standards of the LibreTexts platform.
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