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16.4: Transience and Recurrence for Discrete-Time Chains
      

The study of discrete-time Markov chains, particularly the limiting behavior, depends critically on the random times between visits to a
given state. The nature of these random times leads to a fundamental dichotomy of the states.

Basic Theory
As usual, our starting point is a probability space , so that  is the sample space,  the -algebra of events, and  the
probability measure on . Suppose now that  is a (homogeneous) discrete-time Markov chain with
(countable) state space  and transition probability matrix . So by definition,

for  and . Let , the -algebra of events defined by the chain up to time , so that 
 is the natural filtration associated with .

Hitting Times and Probabilities

Let  be a nonempty subset of . Recall that the hitting time to  is the random variable that gives the first positive time that the chain
is in :

Since the chain may never enter , the random variable  takes values in  (recall our convention that the minimum of the
empty set is ). Recall also that  is a stopping time for . That is,  for . Intuitively, this means that we can
tell if  by observing the chain up to time . This is clearly the case, since explicitly

When  for , we will simplify the notation to . This random variable gives the first positive time that the chain is in
state . When the chain enters a set of states  for the first time, the chain must visit some state in  for the first time, so it's clear that

Next we define two functions on  that are related to the hitting times.

For ,  (nonempty), and  define

1. 
2. 

So .

Note that  is the probability density function of , given , except that the density function may be defective in
the sense that the sum  may be less than 1, in which case of course, . Again, when 

, we will simplify the notation to  and , respectively. In particular,  is the probability, starting at ,
that the chain eventually returns to . If ,  is the probability, starting at , that the chain eventually reaches . Just
knowing when  is 0, positive, and 1 will turn out to be of considerable importance in the overall structure and limiting behavior
of the chain. As a function on , we will refer to  as the hitting matrix of . Note however, that unlike the transition matrix , we
do not have the structure of a kernel. That is,  is not a measure, so in particular, it is generally not true that 

. The same remarks apply to  for . However, there are interesting relationships between the
transition matrix and the hitting matrix.

 if and only if  for some .

Proof

Note that  for all , and . From the increasing property
of probability and Boole's inequality it follows that for each ,

(Ω,F ,P) Ω F σ P

(Ω,F) X = ( , , , …)X0 X1 X2

S P

P (x, y) = P( = y ∣ = x)Xn+1 Xn (16.4.1)

x, y ∈ S n ∈ N = σ{ , , … , }Fn X0 X1 Xn σ n ∈ N

F = ( , , …)F0 F1 X

A S A

A

= min{n ∈ : ∈ A}τA N+ Xn (16.4.2)

A τA ∪ {∞}N+

∞ τA X { = n} ∈τA Fn n ∈ N+

= nτA n

{ = n} = { ∉ A, … , ∉ A, ∈ A}τA X1 Xn−1 Xn (16.4.3)

A = {x} x ∈ S τx
x A A

= min{ : x ∈ A}, A ⊆ SτA τx (16.4.4)

S

x ∈ S A ⊆ S n ∈ N+

(x,A) = P( = n ∣ = x)Hn τA X0

H(x,A) = P( < ∞ ∣ = x)τA X0

H(x,A) = (x,A)∑∞
n=1 Hn

n ↦ (x,A)Hn τA = xX0

H(x,A) 1 −H(x,A) = P( = ∞ ∣ = x)τA X0

A = {y} (x, y)Hn H(x, y) H(x, x) x

x x ≠ y H(x, y) x y

H(x, y)
S2 H X P

A ↦ H(x,A)
H(x,A) = H(x, y)∑y∈A Hn n ∈ N+

H(x, y) > 0 (x, y) > 0P n n ∈ N+

{ = y} ⊆ { < ∞}Xn τy n ∈ N+ { < ∞} = { = y for some k ∈ }τy Xk N+

n ∈ N+

(x, y) ≤ H(x, y) ≤ (x, y)P n ∑
k=1

∞

P k (16.4.5)
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The following result gives a basic relationship between the sequence of hitting probabilities and the sequence of transition probabilities.

Suppose that . Then

Proof

This result follows from conditioning on . Starting in state , the chain is in state  at time  if and only if the chain hits  for the
first time at some previous time , and then returns to  in the remaining  steps. More formally,

But the event  implies  and is in . Hence by the Markov property,

Of course, by definition, , so the result follows by substitution.

Suppose that  and . Then

1.  for 
2. 

Proof

These results follow form conditioning on .

1. Starting in state , the chain first enters  at time  if and only if the chain goes to some state  at time 1, and then
from state , first enters  in  steps.

But  for . By the Markov and time homogeneous properties, 
 for . Of course 

. So the result follows by substitution.
2. Starting in state , the chain eventually enters  if and only if it either enters  at the first step, or moves to some other state 

 at the first step, and then eventually enters  from .

But  for . By the Markov and homogeneous properties, 
 for . Substituting we have

The following definition is fundamental for the study of Markov chains.

Let .

1. State  is recurrent if .
2. State  is transient if .

Thus, starting in a recurrent state, the chain will, with probability 1, eventually return to the state. As we will see, the chain will return to
the state infinitely often with probability 1, and the times of the visits will form the arrival times of a renewal process. This will turn out
to be the critical observation in the study of the limiting behavior of the chain. By contrast, if the chain starts in a transient state, then
there is a positive probability that the chain will never return to the state.

(x, y) ∈ S2

(x, y) = (x, y) (y, y), n ∈P n ∑
k=1

n

Hk P n−k
N+ (16.4.6)

τy x y n y

k y n−k

(x, y) = P( = y ∣ = x) = P( = y ∣ = k, = x)P( = k ∣ = x)P n Xn X0 ∑
k=0

∞

Xn τy X0 τy X0 (16.4.7)

= kτy = yXk Fk

P( = y ∣ = k, = x) = P( = y ∣ = y, = k, = x) = P( = y ∣ = y) = (x, y)Xn τy X0 Xn Xk τy X0 Xn Xk P k (16.4.8)

P( = k ∣ = x) = (x, y)τy X0 Hk

x ∈ S A ⊆ S

(x,A) = P (x, y) (y,A)Hn+1 ∑y∉A Hn n ∈ N+

H(x,A) = P (x,A) + P (x, y)H(y,A)∑y∉A

X1

x A n+1 y ∉ A

y A n

(x,A) = P( = n+1 ∣ = x) = P( = n+1 ∣ = x, = y)P( = y ∣ = x)Hn+1 τA X0 ∑
y∈S

τA X0 X1 X1 X0 (16.4.9)

P( = n+1 ∣ = x, = y) = 0τA X0 X1 y ∈ A

P( = n+1 ∣ = x, = y) = P( = n ∣ = y) = (x,A)τA X0 X1 τA X0 Hn y ∉ A

P( = y ∣ = x) = P (x, y)X1 X0

x A A

y ∉ A A y

H(x,A) = P( < ∞ ∣ = x) = P( < ∞ ∣ = y, = x)P( = y ∣ = x)τA X0 ∑
y∈S

τA X1 X0 X1 X0 (16.4.10)

P( < ∞ ∣ = y, = x) = 1τA X1 X0 y ∈ A

P( < ∞ ∣ = y, = x) = P( < ∞ ∣ = y) = H(y,A)τA X1 X0 τA X0 y ∉ A

H(x,A) = P (x, y) + P (x, y)H(y,A) = P (x,A) + P (x, y)H(y,A)∑
y∈A

∑
y∉A

∑
y∉A

(16.4.11)

x ∈ S

x H(x, x) = 1
x H(x, x) < 1
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Counting Variables and Potentials

Again, suppose that  is a nonempty set of states. A natural complement to the hitting time to  is the counting variable that gives the
number of visits to  (at positive times). Thus, let

Note that  takes value in . We will mostly be interested in the special case  for , and in this case, we will
simplify the notation to .

Let  for  and . Then  is a kernel on  and

Proof

Note that

The interchange of sum and expected value is justified since the terms are nonnegative. For fixed ,  is a
positive measure on  since  is a probability measure on  for each . Note also that  is a random,
counting measure on  and hence  is a (deterministic) positive measure on .

Thus  is the expected number of visits to  at positive times. As usual, when  for  we simplify the notation to 
, and then more generally we have  for . So, as a matrix on , . The matrix 

is closely related to the potential matrix  of , given by . So , and  gives the expected number of
visits to  at all times (not just positive times), starting at . The matrix  is more useful for our purposes in this section.

The distribution of  has a simple representation in terms of the hitting probabilities. Note that because of the Markov property and
time homogeneous property, whenever the chain reaches state , the future behavior is independent of the past and is stochastically the
same as the chain starting in state  at time 0. This is the critical observation in the proof of the following theorem.

If  then

1. 
2.  for 

Proof

Figure : Visits to state  starting in state 

The essence of the proof is illustrated in the graphic above. The thick lines are intended as reminders that these are not one step
transitions, but rather represent all paths between the given vertices. Note that in the special case that  we have

In all cases, the counting variable  has essentially a geometric distribution, but the distribution may well be defective, with some of
the probability mass at . The behavior is quite different depending on whether  is transient or recurrent.

If  and  is transient then

1. 
2. 
3. 

Proof

A A

A

= 1( ∈ A)NA ∑
n=1

∞

Xn (16.4.12)

NA N∪ {∞} A = {x} x ∈ S

Nx

G(x,A) =E( ∣ = x)NA X0 x ∈ S A ⊆ S G S

G(x,A) = (x,A)∑
n=1

∞

P n (16.4.13)

G(x,A) =E( 1( ∈ A) = x) = P( ∈ A ∣ = x) = (x,A)∑
n=1

∞

Xn
∣
∣
∣ X0 ∑

n=1

∞

Xn X0 ∑
n=1

∞

P n (16.4.14)

x ∈ S A ↦ G(x,A)
S A ↦ (x,A)P n S n ∈ N+ A ↦ NA

S A ↦ G(x,A) S

G(x,A) A A = {y} y ∈ S

G(x, y) G(x,A) = G(x, y)∑y∈A A ⊆ S S G= ∑∞
n=1 P

n G

R X R = ∑∞
n=0 P

n R = I +G R(x, y)
y ∈ S x ∈ S G

Ny

y

y

x, y ∈ S

P( = 0 ∣ = x) = 1 −H(x, y)Ny X0

P( = n ∣ = x) = H(x, y)[H(y, y) [1 −H(y, y)]Ny X0 ]n−1 n ∈ N+

16.4.1 y x

x = y

P( = n ∣ = x) = [H(x, x) [1 −H(x, x)], n ∈ NNx X0 ]n (16.4.15)

Ny

∞ y

x, y ∈ S y

P( < ∞ ∣ = x) = 1Ny X0

G(x, y) = H(x, y)/[1 −H(y, y)]

H(x, y) = G(x, y)/[1 +G(y, y)]
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1. If  is transient then . Hence using the result above and geometric series,

Hence

2. Using the derivative of the geometric series,

3. From (b),  so solving for  gives . Substituting this
back into (b) gives .

if  and  is recurrent then

1.  and 
2.  if  and  if 
3.  and 

Proof
1. If  is recurrent,  and so from the result above,  for all . Hence 

.
2. If  then , so . If  then  so 

.
3. From the result above,  for all , so .

Note that there is an invertible relationship between the matrix  and the matrix ; if we know one we can compute the other. In
particular, we can characterize the transience or recurrence of a state in terms of . Here is our summary so far:

Let .

1. State  is transient if and only if  if and only if .
2. State  is recurrent if and only if  if and only if .

Of course, the classification also holds for the potential matrix . That is, state  is transient if and only if 
and state  is recurrent if and only if .

Relations

The hitting probabilities suggest an important relation on the state space .

For , we say that  leads to  and we write  if either  or .

It follows immediately from the result above that  if and only if  for some . In terms of the state graph of the
chain,  if and only if  or there is a directed path from  to . Note that the leads to relation is reflexive by definition: 
for every . The relation has another important property as well.

The leads to relation is transitive: For , if  and  then .

Proof

If  and , then there exist  such that  and . But then 
 so .

y H(y, y) < 1

P( ∈ ∣ = x) = P( = n ∣ = x) = H(x, y)[1 −H(y, y)] [H(y, y) = H(x, y)Ny N+ X0 ∑
n=1

∞

Ny X0 ∑
n=1

∞

]n−1 (16.4.16)

P( < ∞ ∣ = x)Ny X0 = P( ∈ N ∣ = x) = P( = 0 ∣ = x) +P( ∈ ∣ = x)Ny X0 Ny X0 Ny N+ X0

= [1 −H(x, y)] +H(x, y) = 1

G(x, y) =E( ∣ = x) = nP( = n ∣ = x)Ny X0 ∑
n=1

∞

Ny X0

= H(x, y)[1 −H(y, y)] n[H(y, y) =∑
n=1

∞

]n−1
H(x, y)

1 −H(y, y)

G(y, y) = H(y, y)/[1 −H(y, y)] H(y, y) H(y, y) = G(y, y)/[1 +G(y, y)]

G(x, y) = H(x, y)[1 +G(y, y)]

x, y ∈ S y

P( = 0 ∣ = x) = 1 −H(x, y)Ny X0 P( = ∞ ∣ = x) = H(x, y)Ny X0

G(x, y) = 0 H(x, y) = 0 G(x, y) = ∞ H(x, y) > 0
P( = ∞ ∣ = y) = 1Ny X0 G(y, y) = ∞

y H(y, y) = 1 P( = n ∣ = x) = 0Ny X0 n ∈ N+

P( = ∞ ∣ = x) = 1 −P( = 0 ∣ = x) = 1 −H(x, y)Ny X0 Ny X0

H(x, y) = 0 P( = 0 ∣ = x) = 1Ny X0 E( ∣ = x) = 0Ny X0 H(x, y) > 0 P( = ∞ ∣ = x) > 0Ny X0

E( ∣ = x) = ∞Ny X0

P( = n ∣ = y) = 0Ny X0 n ∈ N P( = ∞ ∣ = y) = 1Ny X0

H G

G

x ∈ S

x H(x, x) < 1 G(x, x) < ∞
x H(x, x) = 1 G(x, x) = ∞

R = I +G x ∈ S R(x, x) < ∞
x R(x, x) = ∞

S

(x, y) ∈ S2 x y x → y x = y H(x, y) > 0

x → y (x, y) > 0P n n ∈ N

x → y x = y x y x → x

x ∈ S

x, y, z ∈ S x → y y → z x → z

x → y y → z j, k ∈ N (x, y) > 0P j (y, z) > 0P k

(x, z) ≥ (x, y) (y, z) > 0P j+k P j P k x → z
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The leads to relation naturally suggests a couple of other definitions that are important.

Suppose that  is nonempty.

1.  is closed if  and  implies .
2.  is irreducible if  is closed and has no proper closed subsets.

Suppose that  is closed. Then

1. , the restriction of  to , is a transition probability matrix on .
2.  restricted to  is a Markov chain with transition probability matrix .
3.  for .

Proof
1. If  and , then  does not lead to  so in particular . It follows that  for  so 

is a transition probability matrix.
2. This follows from (a). If the chain starts in , then the chain remains in  for all time, and of course, the Markov property still

holds.
3. Again, this follows from (a).

Of course, the entire state space  is closed by definition. If it is also irreducible, we say the Markov chain  itself is irreducible.
Recall that for a nonempty subset  of  and for , the notation  refers to  and not . In general, these are not the
same, and in fact for ,

the probability of going from  to  in  steps, remaining in  all the while. But if  is closed, then as noted in part (c), this is just 
.

Suppose that  is a nonempty subset of . Then  is the smallest closed set containing 
, and is called the closure of . That is,

1.  is closed.
2. .
3. If  is closed and  then 

Proof
1. Suppose that  and that . Then there exists  such that . By the transitive property,  and hence

.
2. If  then  so .
3. Suppose that  is closed and that . If , then there exists  such that . Hence  and .

Since  is closed, it follows that . Hence .

Recall that for a fixed positive integer ,  is also a transition probability matrix, and in fact governs the -step Markov chain 
. It follows that we could consider the leads to relation for this chain, and all of the results above would still hold

(relative, of course, to the -step chain). Occasionally we will need to consider this relation, which we will denote by , particularly in

our study of periodicity.

Suppose that . If  and  then .

Proof

If  then there exists  such that . If , there exists  such that . Hence 

 so .

By combining the leads to relation  with its inverse, the comes from relation , we can obtain another very useful relation.

For , we say that  to and from  and we write  if  and .

A ⊆ S

A x ∈ A x → y y ∈ A

A A

A ⊆ S

PA P A×A A

X A PA

( = (P n)A PA)n n ∈ N

x ∈ A y ∉ A x y P (x, y) = 0 P (x, y) = 1∑y∈A x ∈ A PA

A A

S X

A S n ∈ N P n
A

(PA)n (P n)A
x, y ∈ A

(x, y) = P( ∈ A, … , ∈ A, = y ∣ = x)P n
A X1 Xn−1 Xn X0 (16.4.17)

x y n A A

(x, y)P n

A S cl(A) = {y ∈ S : x → y for some x ∈ A}
A A

cl(A)
A ⊆ cl(A)
B A ⊆ B cl(A) ⊆ B

x ∈ cl(A) x → y a ∈ A a → x a → y

y ∈ cl(A)
x ∈ A x → x x ∈ cl(A)

B A ⊆ B x ∈ cl(A) a ∈ A a → x a ∈ B a → x

B x ∈ B cl(A) ⊆ B

k P k k

( , , , …)X0 Xk X2k

k →
k

j, k ∈ N+ x y→
k

j ∣ k x y→
j

x y→
k

n ∈ N (x, y) > 0P nk j ∣ k m ∈ N+ k = mj

(x, y) > 0P nmj x y→
j

→ ←

(x, y) ∈ S2 x y x ↔ y x → y y → x
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By definition, this relation is symmetric: if  then . From our work above, it is also reflexive and transitive. Thus, the to and
from relation is an equivalence relation. Like all equivalence relations, it partitions the space into mutually disjoint equivalence classes.
We will denote the equivalence class of a state  by

Thus, for any two states , either  or , and moreover, .

Figure : The equivalence relation partitions  into mutually disjoint equivalence classes

Two negative results:

1. A closed set is not necessarily an equivalence class.
2. An equivalence class is not necessarily closed.

Example

Consider the trivial Markov chain with state space  and transition matrix . So state 0 leads

deterministically to 1 in one step, while state 1 is absorbing. For the leads to relation, the only relationships are , , and 
. Thus, the equivalence classes are  and .

1. The entire state space  is closed, but is not an equivalence class.
2.  is an equivalence class but is not closed.

On the other hand, we have the following result:

If  is irreducible, then  is an equivalence class.

Proof

Fix  (recall that closed sets are nonempty by definition). Since  is closed it follows that . Since  is irreducible, 
 for each  and in particular, . It follows that  for each . Hence .

The to and from equivalence relation is very important because many interesting state properties turn out in fact to be class properties,
shared by all states in a given equivalence class. In particular, the recurrence and transience properties are class properties.

Transient and Recurrent Classes

Our next result is of fundamental importance: a recurrent state can only lead to other recurrent states.

If  is a recurrent state and  then  is recurrent and .

Proof

The result trivially holds if , so we assume . Let  denote the probability, starting at , that the chain reaches 
without an intermediate return to . It must be the case that  since . In terms of the graph of , if there is a path
from  to , then there is a path from  to  without cycles. Starting at , the chain could fail to return to  by first reaching 
without an intermediate return to , and then from  never reaching . From the Markov and time homogeneous properties, it
follows that . But  so it follows that . So we now know that
there exist positive integers  such that  and . Hence for every ,

Recall that  since  is recurrent. Thus, summing over  in the displayed equation gives . Hence  is
recurrent. Finally, reversing the roles of  and , if follows that 

From the last theorem, note that if  is recurrent, then all states in  are also recurrent. Thus, for each equivalence class, either all
states are transient or all states are recurrent. We can therefore refer to transient or recurrent classes as well as states.

x ↔ y y ↔ x

x ∈ S

[x] = {y ∈ S : x ↔ y} (16.4.18)

x, y ∈ S [x] = [y] [x] ∩ [y] = ∅ [x] = S⋃x∈S

16.4.2 S

S = {0, 1} P = [ ]
0

0

1

1
0 → 0 0 → 1

1 → 1 {0} {1}

S

{0}

A ⊆ S A

x ∈ A A [x] ⊆ A A

cl(y) = A y ∈ A cl(x) = A x ↔ y y ∈ A A ⊆ [x]

x x → y y H(x, y) = H(y, x) = 1

x = y x ≠ y α(x, y) x y

x α(x, y) > 0 x → y X

x y x y x x y

x y x

1 −H(x, x) ≥ α(x, y)[1 −H(y, x)] ≥ 0 H(x, x) = 1 H(y, x) = 1
j, k (x, y) > 0P j (y, x) > 0P k n ∈ N

(y, y) ≥ (y, x) (x, x) (x, y)P j+k+n P k P n P j (16.4.19)

G(x, x) = ∞ x n G(y, y) = ∞ y

x y H(x, y) = 1

x [x]
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If  is a recurrent equivalence class then  is irreducible.

Proof

Suppose that  and that . Since  is recurrent,  is also recurrent and . Hence  and so  since  is an
equivalence class. Suppose that  is closed. Since  is nonempty by definition, there exists  and so  also. For
every ,  so  since  is closed. Thus  so  is irreducible.

If  is finite and closed then  has a recurrent state.

Proof

Fix . Since  is closed, it follows that . Since  is finite, it follows that 
 for some . But then  is recurrent.

If  is finite and irreducible then  is a recurrent equivalence class.

Proof

Note that  is an equivalence class by a result above, and  has a recurrent state by previous result. It follows that all states in 
are recurrent.

Thus, the Markov chain  will have a collection (possibly empty) of recurrent equivalence classes  where  is a countable
index set. Each  is irreducible. Let  denote the set of all transient states. The set  may be empty or may consist of a number of
equivalence classes, but the class structure of  is usually not important to us. If the chain starts in  for some  then the chain
remains in  forever, visiting each state infinitely often with probability 1. If the chain starts in , then the chain may stay in 
forever (but only if  is infinite) or may enter one of the recurrent classes , never to escape. However, in either case, the chain will
visit a given transient state only finitely many time with probability 1. This basic structure is known as the canonical decomposition of
the chain, and is shown in graphical form below. The edges from  are in gray to indicate that these transitions may not exist.

Figure : The canonical decomposition of the state space

Staying Probabilities and a Classification Test

Suppose that  is a proper subset of . Then

1.  for 
2.  for 

Proof

Recall that  means  where  is the restriction of  to .

1. This is a consequence of the Markov property, and is the probability that the chain stays in  at least through time , starting in 
.

2. This follows from (a) and the continuity theorem for decreasing events. This is the probability that the chain stays in  forever,
starting in .

Let  denote the function defined by part (b), so that

The staying probability function  is an interesting complement to the hitting matrix studied above. The following result characterizes
this function and provides a method that can be used to compute it, at least in some cases.

A A

x ∈ A x → y x y y → x x ↔ y y ∈ A A

B ⊆ A B x ∈ B x ∈ A

y ∈ A x ↔ y y ∈ B B A = B A

A A

x ∈ A A P( = ∞ ∣ = x) = 1NA X0 A

P( = ∞ ∣ = x) > 0Ny X0 y ∈ A y

A A

A A A

X { : j∈ J}Aj J

Aj B B

B Aj j∈ J

Aj B B

B Aj

B

16.4.3

A S

(x,A) = P( ∈ A, ∈ A, … , ∈ A ∣ = x)P n
A X1 X2 Xn X0 x ∈ A

(x,A) = P( ∈ A, ∈ A… ∣ = x)limn→∞ P n
A X1 X2 X0 x ∈ A

P n
A

(PA)n PA P A×A

A n

x ∈ A

A

x ∈ A

gA

(x) = P( ∈ A, ∈ A, … ∣ = x), x ∈ AgA X1 X2 X0 (16.4.20)

gA
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For ,  is the largest function on  that takes values in  and satisfies . Moreover, either  or 
.

Proof

Note that  for . Taking the limit as  and using the bounded convergence theorem gives 
. Suppose now that  is a function on  that takes values in  and satisfies . Then  and hence 

 for all . Letting  it follows that . Next, let . Then  and hence 
 for each . Letting  gives . It follows that either  or .

Note that the characterization in the last result includes a zero-one law of sorts: either the probability that the chain stays in  forever is
0 for every initial state , or we can find states in  for which the probability is arbitrarily close to 1. The next two results explore
the relationship between the staying function and recurrence.

Suppose that  is an irreducible, recurrent chain with state space . Then  for every proper subset  of .

Proof

Fix  and note that  for every . But  since the chain is irreducible and recurrent.
Hence  for .

Suppose that  is an irreducible Markov chain with state space  and transition probability matrix . If there exists a state  such
that  where , then  is recurrent.

Proof

With  as defined above, note that . Hence , so  is recurent. Since the  is
irreducible, it follows that  is recurrent.

More generally, suppose that  is a Markov chain with state space  and transition probability matrix . The last two theorems can be
used to test whether an irreducible equivalence class  is recurrent or transient. We fix a state  and set . We then try
to solve the equation  on . If the only solution taking values in  is , then the class  is recurrent by the previous
result. If there are nontrivial solutions, then  is transient. Often we try to choose  to make the computations easy.

Computing Hitting Probabilities and Potentials

We now know quite a bit about Markov chains, and we can often classify the states and compute quantities of interest. However, we do
not yet know how to compute:

 when  and  are transient
 when  is transient and  is transient or recurrent.

These problems are related, because of the general inverse relationship between the matrix  and the matrix  noted in our discussion
above. As usual, suppose that  is a Markov chain with state space , and let  denote the set of transient states. The next result shows
how to compute , the matrix  restricted to the transient states. Recall that the values of this matrix are finite.

 satisfies the equation  and is the smallest nonnegative solution. If  is finite then .

Proof

First note the  since a path between two transient states can only pass through other transient states. Thus 
. From the monotone convergence theorem it follows that . Suppose now that  is a

nonnegative matrix on  satisfying . Then  for each . Hence  for
every  and therefore . It follows that . If  is finite, the matrix  is invertible.

Now that we can compute , we can also compute  using the result above. All that remains is for us to compute the hitting
probability  when  is transient and  is recurrent. The first thing to notice is that the hitting probability is a class property.

Suppose that  is transient and that  is a recurrent class. Then  for .

That is, starting in the transient state , the hitting probability to  is constant for , and is just the hitting probability to the
class . As before, let  denote the set of transient states and suppose that  is a recurrent equivalence class. Let  denote the

A ⊂ S gA A [0, 1] g = gPA =gA 0A

sup{ (x) : x ∈ A} = 1gA

=P n+1
A

1A PAP n
A
1A n ∈ N n → ∞

=gA PAgA g A [0, 1] g = gPA g ≤ 1A

g ≤ P n
A1A n ∈ N n → ∞ g ≤ gA c = sup{ (x) : x ∈ A}gA ≤ cgA 1A

≤ cgA P n
A
1A n ∈ N n → ∞ ≤ cgA gA =gA 0A c = 1

A

x ∈ A A

X S =gA 0A A S

y ∉ A 0 ≤ (x) ≤ 1 −H(x, y)gA x ∈ A H(x, y) = 1
(x) = 0gA x ∈ A

X S P x

=gA 0A A = S ∖ {x} X

A 1 −H(x, x) = P (x, y) (y)∑y∈A gA H(x, x) = 1 x X

X

X S P

C x ∈ C A = C ∖ {x}
g = gPA A [0, 1] 0A C

C x

G(x, y) x y

H(x, y) x y

H G

X S B

GB G

GB = +GB PB PBGB B = ( −GB IB PB)−1PB

( = (P n)B PB)n

=GB ∑∞
n=1 P

n
B

= −PBGB GB PB U

B U = + UPB PB U = + U∑n
k=1 P

k
B P n+1

B n ∈ N+ U ≥ ∑n
k=1 P

k
B

n ∈ N+ U ≥ GB ( − )( + ) =IB PB IB GB IB B −IB PB

GB HB

H(x, y) x y

x A H(x, y) = H(x,A) y ∈ A

x ∈ S y y ∈ A

A B A hA
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function on  that gives the hitting probability to class , and let  denote the function on  that gives the probability of entering 
on the first step:

.

Proof

First note that  for . The result then follows by summing over .

This result is adequate if we have already computed  (using the result in above, for example). However, we might just want to
compute  directly.

 satisfies the equation  and is the smallest nonnegative solution. If  is finite, .

Proof

First, conditioning on  gives . Next suppose that  is nonnegative and satisfies . Then 
 for each . Hence . Letting  gives . The

representation when  is finite follows from the result above.

Examples and Applications

Finite Chains

Consider a Markov chain with state space  and transition matrix  given below:

1. Draw the state graph.
2. Find the equivalent classes and classify each as transient or recurrent.
3. Compute the matrix .
4. Compute the matrix .

Answer

1. State graph
State1.png

2.  recurrent;  recurrent;  transient.

3. 

4. 

Consider a Markov chain with state space  and transition matrix  given below:

B A pA B A

(x) = H(x,A), (x) = P (x,A), x ∈ BhA pA (16.4.21)

= +hA pA GBpA

P( = n ∣ = x) = ( )(x)τA X0 P n−1
B

pA n ∈ N+ n

GB

hA

hA = +hA pA PBhA B = ( −hA IB PB)−1pA

X1 = +hA pA PBhA h h = + hpA PB

h = + + hpA ∑n−1
k=1 P

k
BpA P n

B n ∈ N+ h ≥ +pA ∑n−1
k=1 P

k
BpA n → ∞ h ≥ hA

B

S = {a, b, c, d} P

P =

⎡

⎣

⎢⎢⎢⎢⎢

1
2

1

0
1
4

2
3

0

0
1
4

0

0

1
1
4

0

0

0
1
4

⎤

⎦

⎥⎥⎥⎥⎥
(16.4.22)

G

H

{a, b} {c} {d}

G=

⎡

⎣

⎢⎢⎢⎢

∞

∞

0

∞

∞

∞

0

∞

0

0

∞

∞

0

0

0
1
3

⎤

⎦

⎥⎥⎥⎥

H =

⎡

⎣

⎢⎢⎢⎢

1

1

0
2
3

1

1

0
2
3

0

0

1
1
3

0

0

0
1
4

⎤

⎦

⎥⎥⎥⎥

S = {1, 2, 3, 4, 5, 6} P
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1. Sketch the state graph.
2. Find the equivalence classes and classify each as recurrent or transient.
3. Compute the matrix .
4. Compute the matrix .

Answer

1. State graph
State2.png

2.  recurrent;  transient;  recurrent.

3. 

4. 

Consider a Markov chain with state space  and transition matrix  given below:

1. Sketch the state graph.
2. Find the equivalence classes and classify each as recurrent or transient.
3. Compute the matrix .
4. Compute the matrix .

Answer

1. State graph
State3.png

2.  recurrent;  transient;  recurrent.

P =

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

0
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4
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0

0

0
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4

1
2

0
1
2

0
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3
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4
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0

0

1

0
1
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2
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1
4

0
2
3

0

0

1

0

0

0
1
4

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

(16.4.23)

G
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{1, 3, 5} {2, 6} {4}
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⎤
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⎤

⎦
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3. 

4. 

Special Models

Read again the definitions of the Ehrenfest chains and the Bernoulli-Laplace chains. Note that since these chains are irreducible and
have finite state spaces, they are recurrent.

Read the discussion on recurrence in the section on the reliability chains.

Read the discussion on random walks on  in the section on the random walks on graphs.

Read the discussion on extinction and explosion in the section on the branching chain.

Read the discussion on recurrence and transience in the section on queuing chains.

Read the discussion on recurrence and transience in the section on birth-death chains.

This page titled 16.4: Transience and Recurrence for Discrete-Time Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or
curated by Kyle Siegrist (Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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