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2.7: Measure Spaces
     

In this section we discuss positive measure spaces (which include probability spaces) from a more advanced point of view. The
sections on Measure Theory and Special Set Structures in the chapter on Foundations are essential prerequisites. On the other hand, if
you are not interested in the measure-theoretic aspects of probability, you can safely skip this section.

Positive Measure

Definitions

Suppose that  is a set, playing the role of a universal set for a mathematical theory. As we have noted before,  usually comes with
a -algebra  of admissible subsets of , so that  is a measurable space. In particular, this is the case for the model of a
random experiment, where  is the set of outcomes and  the -algebra of events, so that the measurable space  is the
sample space of the experiment. A probability measure is a special case of a more general object known as a positive measure.

A positive measure on  is a function  that satisfies the following axioms:

1. 
2. If  is a countable, pairwise disjoint collection of sets in  then

The triple  is a measure space.

Axiom (b) is called countable additivity, and is the essential property. The measure of a set that consists of a countable union of
disjoint pieces is the sum of the measures of the pieces. Note also that since the terms in the sum are positive, there is no issue with
the order of the terms in the sum, although of course,  is a possible value.

Figure : A union of four disjoint sets

So perhaps the term measurable space for  makes a little more sense now—a measurable space is one that can have a positive
measure defined on it.

Suppose that  is a measure space.

1. If  then  is a finite measure space.
2. If  then  is a probability space.

So probability measures are positive measures, but positive measures are important beyond the application to probability. The
standard measures on the Euclidean spaces are all positive measures: the extension of length for measurable subsets of , the
extension of area for measurable subsets of , the extension of volume for measurable subsets of , and the higher dimensional
analogues. We will actually construct these measures in the next section on Existence and Uniqueness. In addition, counting measure 

 is a positive measure on the subsets of a set . Even more general measures that can take positive and negative values are explored
in the chapter on Distributions.

Properties

The following results give some simple properties of a positive measure space . The proofs are essentially identical to the
proofs of the corresponding properties of probability, except that the measure of a set may be infinite so we must be careful to avoid
the dreaded indeterminate form .

If , then .

Proof

S S

σ S S (S,S )
S S σ (S,S )

(S,S ) μ :S → [0, ∞]

μ(∅) = 0
{ : i ∈ I}Ai S

μ( ) = μ( )⋃
i∈I

Ai ∑
i∈I

Ai (2.7.1)
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Note that , and the sets in the union are disjoint.

If  and  then

1. 
2. 

Proof

Part (a) follows from the previous theorem, since . Part (b) follows from part (a).

Thus  is an increasing function, relative to the subset partial order  on  and the ordinary order  on . In particular, if  is
a finite measure, then  for every . Note also that if  and  then 

. In the special case that , this becomes . In particular, these results
holds for a finite measure and are just like the difference rules for probability. If  is a finite measure, then .
This is the analogue of the complement rule in probability, with but with  replacing 1.

The following result is the analogue of Boole's inequality for probability. For a general positive measure, the result is referred to as
the subadditive property.

Suppose that  for  in a countable index set . Then

Proof

The proof is exaclty like the one for Boole's inequality. Assume that . Let  and 
for . Then  is a disjoint collection of sets in  with the same union as . Also  for
each  so . Hence

For a union of sets with finite measure, the inclusion-exclusion formula holds, and the proof is just like the one for probability.

Suppose that  for each  where , and that  for . Then

Proof

The proof is by induction on . The proof for  is simple: . The union on the right is disjoint,
so using additivity and the difference rule,

Suppose now that the inclusion-exclusion formula holds for a given , and consider the case . Then

As before, the set in parentheses and the set in square brackets are disjoint. Thus using the additivity axiom, the difference rule,
and the distributive rule we have

By the induction hypothesis, the inclusion-exclusion formula holds for each union of  sets on the right. Applying the formula
and simplifying gives the inclusion-exclusion formula for  sets.

B = (A ∩ B) ∪ (B ∖ A)

A, B ∈S A ⊆ B

μ(B) = μ(A) +μ(B ∖ A)
μ(A) ≤ μ(B)

A ∩ B = A

μ ⊆ S ≤ [0, ∞] μ

μ(A) < ∞ A ∈S A, B ∈S μ(B) < ∞
μ(B ∖ A) = μ(B) −μ(A ∩ B) A ⊆ B μ(B ∖ A) = μ(B) −μ(A)

μ μ( ) = μ(S) −μ(A)Ac

μ(S)

∈SAi i I

μ( ) ≤ μ( )⋃
i∈I

Ai ∑
i∈I

Ai (2.7.2)

I =N+ =B1 A1 = ∖ ( ∪ … ∪ )Bi Ai A1 Ai−1

i ∈ {2, 3, …} { : i ∈ I}Bi S { : i ∈ I}Ai ⊆Bi Ai

i μ( ) ≤ μ( )Bi Ai

μ( ) = μ( ) = μ( ) ≤ μ( )⋃
i∈I

Ai ⋃
i∈I

Bi ∑
i∈I

Bi ∑
i∈I

Ai (2.7.3)

∈SAi i ∈ I #(I) = n μ( ) < ∞Ai i ∈ I

μ( ) = (−1 μ( )⋃
i∈I

Ai ∑
k=1

n

)k−1 ∑
J⊆I, #(J)=k

⋂
j∈J

Aj (2.7.4)

n n = 2 ∪ = ∪ ( ∖ )A1 A2 A1 A2 A1

μ( ∪ ) = μ( ) +μ( ∖ ) = μ( ) +μ( ) −μ( ∩ )A1 A2 A1 A2 A1 A1 A2 A1 A2 (2.7.5)

n ∈ N+ n +1

=( )∪[ ∖( )]⋃
i=1

n+1

Ai ⋃
i=1

n

Ai An+1 ⋃
i=1

n

Ai (2.7.6)

μ( ) = μ( )+μ( ) −μ( ( ∩ ))⋃
i=1

n+1

Ai ⋃
i=1

n

Ai An+1 ⋃
i=1

n

An+1 Ai (2.7.7)

n

n +1

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10135?pdf


2.7.3 https://stats.libretexts.org/@go/page/10135

The continuity theorem for increasing sets holds for a positive measure. The continuity theorem for decreasing events holds also, if
the sets have finite measure. Again, the proofs are similar to the ones for a probability measure, except for considerations of infinite
measure.

Suppose that  is a sequence of sets in .

1. If the sequence is increasing then .
2. If sequence is decreasing and  then .

Proof
1. Note that if  for some  then  for  and . Thus, suppose that  for

each . Let  and  for . Then  is a disjoint sequence with the same union
as . Also,  and by the proper difference rule,  for .
Hence

But .
2. Note that  is increasing in . Hence using the continuity result for increasing sets,

Recall that if  is increasing,  is denoted , and if  is decreasing,  is denoted 
. In both cases, the continuity theorem has the form . The continuity theorem for

decreasing events fails without the additional assumption of finite measure. A simple counterexample is given below.

The following corollary of the inclusion-exclusion law gives a condition for countable additivity that does not require that the sets be
disjoint, but only that the intersections have measure 0. The result is used below in the theorem on completion.

Suppose that  for each  in a countable index set  and that  for  and  for distinct 
. Then

Proof

We will assume that . For ,

as an immediate consequence of the inclusion-exclusion law, under the assumption that  for distinct 
. Next  as , and hence by the continuity theorem for increasing events, 

 as . On the other hand,  as  by the definition of an
infinite series of nonnegative terms.

More Definitions

If a positive measure is not finite, then the following definition gives the next best thing.

The measure space  is -finite if there exists a countable collection  with  and 
 for each .

( , , …)A1 A2 S

μ ( ) = μ( )⋃∞
i=1 Ai limn→∞ An

μ( ) < ∞A1 μ ( ) = μ( )⋂∞
i=1 Ai limn→∞ An

μ( ) = ∞Ak k μ( ) = ∞An n ≥ k μ ( ) = ∞⋃∞
i=1 Ai μ( ) < ∞Ai

i =B1 A1 = ∖Bi Ai Ai−1 i ∈ {2, 3, …} ( , , …)B1 B2

( , , …)A1 A2 μ( ) = μ( )B1 A1 μ( ) = μ( ) −μ( )Bi Ai Ai−1 i ∈ {2, 3, …}

μ( ) = μ( ) = μ( ) = μ( )⋃
i=1

∞

Ai ⋃
i=1

∞

Bi ∑
i=1

∞

Bi lim
n→∞

∑
i=1

n

Bi (2.7.8)

μ( ) = μ( ) + [μ( ) −μ( )] = μ( )∑n
i=1 Bi A1 ∑n

i=2 Ai Ai−1 An

∖A1 An n

μ( )⋂
i=1

∞

Ai = μ[ ∖ ( ∖ )] = μ( ) −μ[ ( ∖ )]A1 ⋃
i=1

∞

A1 Ai A1 ⋃
i=1

∞

A1 An

= μ( ) − μ( ∖ ) = μ( ) − [μ( ) −μ( )] = μ( )A1 lim
n→∞

A1 An A1 lim
n→∞

A1 An lim
n→∞

An

(2.7.9)

(2.7.10)

( , , …)A1 A2 ⋃∞
i=1 Ai limn→∞ An ( , , …)A1 A2 ⋂∞

i=1 Ai

limn→∞ An μ ( ) = μ( )limn→∞ An limn→∞ An

∈SAi i I μ( ) < ∞Ai i ∈ I μ( ∩ ) = 0Ai Aj

i, j ∈ I

μ( ) = μ( )⋃
i∈I

Ai ∑
i∈I

Ai (2.7.11)

I =N+ n ∈ N+

μ( ) = μ( )⋃
i=1

n

Ai ∑
i=1

n

Ai (2.7.12)

μ( ∩ ) = 0Ai Aj

i, j ∈ {1, 2, … , n} ↑⋃n
i=1 Ai ⋃∞

i=1 Ai n → ∞
μ ( ) → μ ( )⋃n

i=1 Ai ⋃∞
i=1 Ai n → ∞ μ( ) → μ( )∑n

i=1 Ai ∑∞
i=1 Ai n → ∞

(S,S , μ) σ { : i ∈ I} ⊆SAi = S⋃i∈I Ai

μ( ) < ∞Ai i ∈ I
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So of course, if  is a finite measure on  then  is -finite, but not conversely in general. On the other hand, for , let 
. Then  is a -algebra of subsets of  and  restricted to  is a finite measure. The point of this (and

the reason for the definition) is that often nice properties of finite measures can be extended to -finite measures. In particular, -
finite measure spaces play a crucial role in the construction of product measure spaces, and for the completion of a measure space
considered below.

Suppose that  is a -finite measure space.

1. There exists an increasing sequence satisfying the -finite definition
2. There exists a disjoint sequence satisfying the -finite definition.

Proof

Without loss of generality, we can take  as the index set in the definition. So there exists  for  such that 
 for each  and . The proof uses some of the same tricks that we have seen before.

1. Let . Then  for  and this sequence is increasing. Moreover,  for 
 and .

2. Let  and let  for . Then  for each  and this sequence is disjoint.
Moreover,  so  and .

Our next definition concerns sets where a measure is concentrated, in a certain sense.

Suppose that  is a measure space. An atom of the space is a set  with the following properties:

1. 
2. If  and  then either  or .

A measure space that has no atoms is called non-atomic or diffuse.

In probability theory, we are often particularly interested in atoms that are singleton sets. Note that  is an atom if and only if 
, since the only subsets of  are  itself and .

Constructions

There are several simple ways to construct new positive measures from existing ones. As usual, we start with a measurable space 
.

Suppose that  is a measurable subspace of . If  is a positive measure on  then  restricted to  is a
positive measure on . If  is a finite measure on  then  is a finite measure on .

Proof

The assumption is that  is a -algebra of subsets of  and . In particular . Since the additivity property of 
holds for a countable, disjoint collection of events in , it trivially holds for a countable, disjoint collection of events in .
Finally, by the increasing property,  so if  then .

However, if  is -finite on , it is not necessarily true that  is -finite on . A counterexample is given below. The
previous theorem would apply, in particular, when  so that  is a sub -algebra of . Next, a positive multiple of a positive
measure gives another positive measure.

If  is a positive measure on  and , then  is also a positive measure on . If  is finite ( -finite) then 
 is finite ( -finite) respectively.

Proof

Clearly . Also . Next if  is a countable, disjoint collection of events in 
then

μ (S,S ) μ σ i ∈ I

= {A ∈S : A ⊆ }Si Ai Si σ Ai μ Si

σ σ

(S,S , μ) σ

σ

σ

N+ ∈SAn n ∈ N+

μ( ) < ∞An n ∈ N+ S =⋃∞
n=1 An

=Bn ⋃n

i=1 Ai ∈SBn n ∈ N+ μ( ) ≤ μ( ) < ∞Bn ∑n

i=1 Ai

n ∈ N+ = = S⋃∞
n=1 Bn ⋃∞

n=1 An

=C1 A1 = ∖Cn An ⋃n−1
i=1 Ai n ∈ {2, 3, …} ∈SCn n ∈ N+

⊆Cn An μ( ) ≤ μ( ) < ∞Cn An = = S⋃∞
n=1 Cn ⋃∞

n=1 An

(S,S , μ) A ∈S

μ(A) > 0
B ∈S B ⊆ A μ(B) = μ(A) μ(B) = 0

{x} ∈S
μ({x}) > 0 {x} {x} ∅

(S,S )

(R,R) (S,S ) μ (S,S ) μ R

(R,R) μ (S,S ) μ (R,R)

R σ R R ⊆S R ∈S μ

S R

μ(R) ≤ μ(S) μ(S) < ∞ μ(R) < ∞

μ σ (S,S ) μ σ (R,R)
R = S R σ S

μ (S,S ) c ∈ (0, ∞) cμ (S,S ) μ σ

cμ σ

cμ :S → [0, ∞] (cμ)(∅) = cμ(∅) = 0 { : i ∈ I}Ai S

(cμ)( ) = cμ( ) = c μ( ) = cμ( )⋃
i∈I

Ai ⋃
i∈I

Ai ∑
i∈I

Ai ∑
i∈I

Ai (2.7.13)
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Finally, since  if and only if  for , the finiteness and -finiteness properties are trivially
preserved.

A nontrivial finite positive measure  is practically just like a probability measure, and in fact can be re-scaled into a probability
measure , as was done in the section on Probability Measures:

Suppose that  is a positive measure on  with . Then  defined by  for  is a
probability measure on .

Proof

 is a measure by the previous result, and trivially .

Sums of positive measures are also positive measures.

If  is a positive measure on  for each  in a countable index set  then  is also a positive measure on 
.

1. If  is finite and  is finite for each  then  is finite.
2. If  is finite and  is -finite for each  then  is -finite.

Proof

Clearly . First . Next if  is a countable, disjoint collection of events in 
then

The interchange of sums is permissible since the terms are nonnegative. Suppose now that  is finite.

1. If  is finite for each  then  so  is finite.
2. Suppose that  is -finite for each . Then for each  there exists a collection  such that 

 and  for each . For , let . Then  for each  and

Moreover,

so  is -finnite.

In the context of the last result, if  is countably infinite and  is finite for each , then  is not necessarily -finite. A
counterexample is given below. In this case,  is said to be -finite, but we've had enough definitions, so we won't pursue this one.
From scaling and sum properties, note that a positive linear combination of positive measures is a positive measure. The next method
is sometimes referred to as a change of variables.

Suppose that  is a measure space. Suppose also that  is another measurable space and that  is
measurable. Then  defined as follows is a positive measure on 

If  is finite then  is finite.

Proof

Clearly . The proof is easy since inverse images preserve all set operations. First  so . Next,
if  is a countable, disjoint collection of sets in , then  is a countable, disjoint collection of sets
in , and . Hence

μ(A) < ∞ (cμ)(A) < ∞ A ∈S σ

μ

P

μ (S,S ) 0 < μ(S) < ∞ P P(A) = μ(A)/μ(S) A ∈S
(S,S )

P P(S) = 1

μi (S,S ) i I μ =∑i∈I μi

(S,S )

I μi i ∈ I μ

I μi σ i ∈ I μ σ

μ :S → [0, ∞] μ(∅) = (∅) = 0∑i∈I μi { : j ∈ J}Aj S

μ( ) = ( ) = ( ) = ( ) = μ( )⋃
j∈J

Aj ∑
i∈I

μi ⋃
j∈J

Aj ∑
i∈I

∑
j∈J

μi Aj ∑
j∈J

∑
i∈I

μi Aj ∑
j∈J

Aj (2.7.14)

I

μi i ∈ I μ(S) = (S) < ∞∑i∈I μi μ

μi σ i ∈ I i ∈ I = { : j ∈ N} ⊆SAi Aij

= S⋃∞
j=1 Aij ( ) < ∞μi Aij j ∈ N j ∈ N =Bj ⋂i∈I Ai,j ∈SBj j ∈ N

= = = S = S⋃
j=1

∞

Bj ⋃
j=1

∞

⋂
i∈I

Aij ⋂
i∈I

⋃
j=1

∞

Aij ⋂
i∈I

(2.7.15)

μ( ) = ( ) ≤ ( ) < ∞Bj ∑
i∈I

μi Bj ∑
i∈I

μi Aij (2.7.16)

μ σ

I μi i ∈ I μ σ

μ s

(S,S , μ) (T ,T ) f : S → T

ν (T ,T )

ν(B) = μ [ (B)] , B ∈ Tf −1 (2.7.17)

μ ν

ν : T → [0, ∞] (∅) = ∅f −1 ν(∅) = 0
{ : i ∈ I}Bi T { ( ) : i ∈ I}f −1 Bi

S ( )= ( )f −1 ⋃i∈I Bi ⋃i∈I f −1 Bi
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Finally, if  is finite then  so  is finite.

In the context of the last result, if  is -finite on , it is not necessarily true that  is -finite on , even if  is one-to-
one. A counterexample is given below. The takeaway is that -finiteness of  depends very much on the nature of the -algebra .
Our next result shows that it's easy to explicitly construct a positive measure on a countably generated -algebra, that is, a -algebra
generated by a countable partition. Such -algebras are important for counterexamples and to gain insight, and also because many -
algebras that occur in applications can be constructed from them.

Suppose that  is a countable partition of  into nonempty sets, and that , the -algebra generated
by the partition. For , define  arbitrarily. For  where , define

Then  is a positive measure on .

1. The atoms of the measure are the sets of the form  where  and where  for one and only one 
.

2. If  for  and  is finite then  is finite.
3. If  for  and  is countably infinite then  is -finite.

Proof

Recall that every  has a unique representation of the form  where . In particular,  in this
representation gives . The sum over an empty index set is 0, so . Next suppose that  is a countable,
disjoint collection of sets in . Then there exists a disjoint collection  of subsets of  such that .
Hence

The fact that the terms are all nonnegative means that we do not have to worry about the order of summation.

1. Again, every  has the unique representation  where . The subsets of  that are in  are 
 ahere . Hence  is an atom if and only if  for one and only one .

2. If  is finite and  then , so  is finite.
3. If  is countabley infinite and  for  then  satisfies the condition for  to be -finite.

One of the most general ways to construct new measures from old ones is via the theory of integration with respect to a positive
measure, which is explored in the chapter on Distributions. The construction of positive measures more or less “from scratch” is
considered in the next section on Existence and Uniqueness. We close this discussion with a simple result that is useful for
counterexamples.

Suppose that the measure space  has an atom  with . Then the space is not -finite.

Proof

Let  be a countable disjoint collection of sets in  that partitions . Then  partitions . Since 
, we must have  for some . Since  is an atom and  it follows that 

. Hence also therefore .

Measure and Topology

Often the spaces that occur in probability and stochastic processes are topological spaces. Recall that a topological space 
consists of a set  and a topology  on  (the collection of open sets). The topology as well as the measure theory plays an
important role, so it's natural to want these two types of structures to be compatible. We have already seen the most important step in
this direction: Recall that , the -algebra generated by the topology, is the Borel -algebra on , named for Émile Borel.

ν ( ) = μ[ ( )] = μ[ ( )] = μ [ ( )] = ν( )⋃
i∈I

Bi f −1 ⋃
i∈I

Bi ⋃
i∈I

f −1 Bi ∑
i∈I

f −1 Bi ∑
i∈I

Bi (2.7.18)

μ ν(T ) = μ[ (T )] = μ(S) < ∞f −1 ν

μ σ (S,S ) ν σ (T ,T ) f

σ ν σ T

σ σ

σ σ

A = { : i ∈ I}Ai S S = σ(A ) σ

i ∈ I μ( ) ∈ [0, ∞]Ai A =⋃j∈J Aj J ⊆ I

μ(A) = μ( )∑
j∈J

Aj (2.7.19)

μ (S,S )

A =⋃j∈J Aj J ⊆ I μ( ) > 0Aj

j ∈ J

μ( ) < ∞Ai i ∈ I I μ

μ( ) < ∞Ai i ∈ I I μ σ

A ∈S A =⋃j∈J Aj J ⊆ I J = ∅

A = ∅ μ(∅) = 0 { : k ∈ K}Bk

S { : k ∈ K}Jk I =Bk ⋃j∈Jk
Aj

μ( ) = μ( ) = μ( ) = μ( )⋃
k∈K

Bk ⋃
k∈K

⋃
j∈Jk

Aj ∑
k∈k

∑
j∈Jk

Aj ∑
k∈K

Bk (2.7.20)

A ∈S A =⋃j∈J Aj J ⊆ I A S

⋃k∈K Ak K ⊆ J A μ( ) > 0Aj j ∈ J

I μ( ) < ∞Ai μ(S) = μ( ) < ∞∑i∈I Ai μ

I μ( ) < ∞Ai i ∈ I A μ σ

(S,S , μ) A ∈S μ(A) = ∞ σ

{ : i ∈ I}Ai S S {A ∩ : i ∈ I}Ai A

μ(A) = μ(A ∩ )∑i∈I Ai μ(A ∩ ) > 0Ai i ∈ I A A ∩ ⊆ AAi

μ(A ∩ ) = ∞Ai μ( ) = ∞Ai

(S,T )
S T S

S = σ(T ) σ σ S
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Since the complement of an open set is a closed set,  is also the -algebra generated by the collection of closed sets. Moreover, 
contains countable intersections of open sets (called  sets) and countable unions of closed sets (called  sets).

Suppose that  is a topological space and let  be the Borel -algebra. A positive measure  on  is a
Borel measure and then  is a Borel measure space.

The next definition concerns the subset on which a Borel measure is concentrated, in a certain sense.

Suppose that  is a Borel measure space. The support of  is

The set  is closed.

Proof

Let . For , there exists an open neighborhood  of  such that . If , then  is also an
open neighborhood of , so . Hence  for every  and so  is open.

The term Borel measure has different definitions in the literature. Often the topological space is required to be locally compact,
Hausdorff, and with a countable base (LCCB). Then a Borel measure  is required to have the additional condition that  if 

 is compact. In this text, we use the term Borel measures in this more restricted sense.

Suppose that  is a Borel measure space corresponding to an LCCB topolgy. Then the space is -finite.

Proof

Since the topological space is locally compact and has a countable base,  where  is a countable
collection of compact sets. Since  is a Borel measure,  and hence  is -finite.

Here are a couple of other definitions that are important for Borel measures, again linking topology and measure in natural ways.

Suppose again that  is a Borel measure space.

1.  is inner regular if  for .
2.  is outer regular if  for .
3.  is regular if it is both inner regular and outer regular.

The measure spaces that occur in probability and stochastic processes are usually regular Borel spaces associated with LCCB
topologies.

Null Sets and Equivalence

Sets of measure 0 in a measure space turn out to be very important precisely because we can often ignore the differences between
mathematical objects on such sets. In this disucssion, we assume that we have a fixed measure space .

A set  is null if .

Consider a measurable “statement” with  as a free variable. (Technically, such a statement is a predicate on .) If the statement
is true for all  except for  in a null set, we say that the statement holds almost everywhere on . This terminology is used often
in measure theory and captures the importance of the definition.

Let , the collection of null and co-null sets. Then  is a sub -algebra of .

Proof

Trivially  since  and . Next if  then  by the symmetry of the definition. Finally, suppose
that  for  where  is a countable index set. If  for every  then  by
the subadditive property. On the other hand, if  for some  then .
In either case, .

S σ S

Gδ Fσ

(S,T ) S = σ(T ) σ μ (S,S )
(S,S , μ)

(S,S , μ) μ

supp(μ) = {x ∈ S : μ(U) > 0 for every open neighborhood U  of x} (2.7.21)

supp(μ)

A = supp(μ) x ∈ Ac Vx x μ( ) = 0Vx y ∈ Vx Vx

y y ∈ Ac ⊆Vx Ac x ∈ Ac Ac

μ μ(C) < ∞
C ⊆ S

(S,S , μ) σ

S =⋃i∈I Ci { : i ∈ I}Ci

μ μ( ) < ∞Ci μ σ

(S,S , μ)

μ μ(A) = sup{μ(C) : C  is compact and C ⊆ A} A ∈S
μ μ(A) = inf{μ(U) : U  is open and A ⊆ U} A ∈S
μ

(S,S , μ)

A ∈S μ(A) = 0

x ∈ S S

x ∈ S x S

D = {A ∈S : μ(A) = 0 or μ( ) = 0}Ac D σ S

S ∈ D = ∅Sc μ(∅) = 0 A ∈ D ∈ DAc

∈ DAi i ∈ I I μ( ) = 0Ai i ∈ I μ ( )≤ μ( ) = 0⋃i∈I Ai ∑i∈I Ai

μ( ) = 0Ac
j j ∈ J μ [ ] = μ ( )≤ μ( ) = 0( )⋃i∈I Ai

c ⋂i∈I Ac
i Ac

j

∈ D⋃i∈I Ai
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Of course  restricted to  is not very interesting since  or  for every . Our next definition is a type of
equivalence between sets in . To make this precise, recall first that the symmetric difference between subsets  and  of  is 

. This is the set that consists of points in one of the two sets, but not both, and corresponds to exclusive
or.

Sets  are equivalent if , and we denote this by .

Thus  if and only if  if and only if . In the predicate
terminology mentioned above, the statement

is true for almost every . As the name suggests, the relation  really is an equivalence relation on  and hence  is
partitioned into disjoint classes of mutually equivalent sets. Two sets in the same equivalence class differ by a set of measure 0.

The relation  is an equivalence relation on . That is, for ,

1.  (the reflexive property).
2. If  then  (the symmetric property).
3. If  and  then  (the transitive property).

Proof
1. The reflexive property is trivial since .
2. The symmetric property is also trivial since .
3. For the transitive property, suppose that  and . Note that , and hence 

. By a symmetric argument, .

Equivalence is preserved under the standard set operations.

If  and  then .

Proof

Note that  and , so .

Suppose that  and that  for  in a countable index set . Then

1. 
2. 

Proof
1. Note that

To see this, note that if  is in the set on the left then either  for some  and  for every , or  for
every  and  for some . In either case,  for some .

2. Similarly

If  is in the set on the left then  for every  and  for some , or  for every  or  for
some . In either case,  for some 

In both parts, the proof is completed by noting that the common set on the right in the displayed equations is null:

μ D μ(A) = 0 μ(A) = μ(S) A ∈S
S A B S

A △ B = (A ∖ B) ∪ (B ∖ A)

A, B ∈S μ(A △ B) = 0 A ≡ B

A ≡ B μ(A △ B) = μ(A ∖ B) +μ(B ∖ A) = 0 μ(A ∖ B) = μ(B ∖ A) = 0

x ∈ A if and only if x ∈ B (2.7.22)

x ∈ S ≡ S S

≡ S A, B, C ∈S

A ≡ A

A ≡ B B ≡ A

A ≡ B B ≡ C A ≡ C

A △ A = ∅
A △ B = B △ A

A ≡ B B ≡ C A ∖ C ⊆ (A ∖ B) ∪ (B ∖ C)
P(A ∖ C) = 0 P(C ∖ A) = 0

A, B ∈S A ≡ B ≡Ac Bc

∖ = B ∖ AAc Bc ∖ = A ∖ BBc Ac
△ = A △ BAc Bc

, ∈SAi Bi ≡Ai Bi i I

≡⋃i∈I Ai ⋃i∈I Bi

≡⋂i∈I Ai ⋂i∈I Bi

( )△ ( ) ⊆ ( △ )⋃
i∈I

Ai ⋃
i∈I

Bi ⋃
i∈I

Ai Bi (2.7.23)

x x ∈ Aj j ∈ I x ∉ Bi i ∈ I x ∉ Ai

i ∈ I x ∈ Bj j ∈ I x ∈ △Aj Bj j ∈ I

( )△ ( ) ⊆ ( △ )⋂
i∈I

Ai ⋂
i∈I

Bi ⋃
i∈I

Ai Bi (2.7.24)

x x ∈ Ai i ∈ I x ∉ Bj j ∈ I x ∈ Bi i ∈ I x ∉ Aj

j ∈ I x ∈ △Aj Bj j ∈ I

μ[ ( △ )] ≤ μ( △ ) = 0⋃
i∈I

Ai Bi ∑
i∈I

Ai Bi (2.7.25)
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Equivalent sets have the same measure.

If  and  then .

Proof

Note again that . If  then . By a symmetric argument, .

The converse trivially fails, and a counterexample is given below. However, the collection of null sets and the collection of co-null
sets do form equivalence classes.

Suppose that .

1. If  then  if and only if .
2. If  then  if and only if .

Proof
1. Suppose that  and . Then  by the result above. Conversely, note that  and 

so if  then  so .
2. Part (b) follows from part (a) and the result above on complements.

We can extend the notion of equivalence to measruable functions with a common range space. Thus suppose that  is another
measurable space. If  are measurable, then  is measurable with respect the usual product -algebra 

. We assume that the diagonal set , which is almost always true in applications.

Measurable functions  are equivalent if . Again we write .

Details

Note that  by our assumption, so the definition makes sense.

In the terminology discussed earlier,  means that  almost everywhere on . As with measurable sets, the relation 
really does define an equivalence relation on the collection of measurable functions from  to . Thus, the collection of such
functions is partitioned into disjoint classes of mutually equivalent variables.

The relation  is an equivalence relation on the collection of measurable functions from  to . That is, for measurable 
,

1.  (the reflexive property).
2. If  then  (the symmetric property).
3. If  and  then  (the transitive property).

Proof

Parts (a) and (b) are trivially. For (c) note that  and  implies  for . Negating this
statement gives  implies  or . So

Since  and , the two sets on the right have measure 0. Hence, so does the set on the left.

Suppose agaom that  are measurable and that . Then for every , the sets .

Proof

Note that .

Thus if  are measurable and , then by the previous result,  where  are the measures on 
associated with  and , as above. Again, the converse fails with a passion.

It often happens that a definition for functions subsumes the corresponding definition for sets, by considering the indicator functons
of the sets. So it is with equivalence. In the following result, we can take  with  the collection of all subsets.

Suppose that . Then  if and only if .

A, B ∈S A ≡ B μ(A) = μ(B)

A = (A ∩ B) ∪ (A ∖ B) A ≡ B μ(A) = μ(A ∩ B) μ(B) = μ(A ∩ B)

A ∈S

μ(A) = 0 A ≡ B μ(B) = 0
μ( ) = 0Ac A ≡ B μ( ) = 0Bc

μ(A) = 0 A ≡ B μ(B) = 0 A ∖ B ⊆ A B ∖ A ⊆ B

μ(A) = μ(B) = 0 μ(A △ B) = 0 A ≡ B

(T ,T )
f , g : S → T (f , g) : S → T ×T σ

T ⊗T D = {(y, y) : y ∈ T } ∈ T ⊗T

f , g : S → T μ{x ∈ S : f(x) ≠ g(x)} = 0 f ≡ g

{x ∈ S : f(x) ≠ g(x)} = {x ∈ S : (f(x), g(x)) ∈ D ∈S}c

f ≡ g f(x) = g(x) S ≡
S T

≡ S T

f , g, h : S → T

f ≡ f

f ≡ g g ≡ f

f ≡ g g ≡ h f ≡ h

f(x) = g(x) g(x) = h(x) f(x) = h(x) x ∈ S

f(x) ≠ h(x) f(x) ≠ g(x) g(x) ≠ h(x)

{x ∈ S : f(x) ≠ h(x)} ⊆ {x ∈ S : f(x) ≠ g(x)} ∪ {x ∈ S : g(x) ≠ h(x)} (2.7.26)

f ≡ g g ≡ h

f , g : S → T f ≡ g B ∈ T (B) ≡ (B)f −1 g−1

(B) △ (B) ⊆ {x ∈ S : f(x) ≠ g(x)}f −1 g−1

f , g : S → T f ≡ g =νf νg ,νf νg (T ,T )
f g

T = {0, 1} T

A, B ∈S A ≡ B ≡1A 1B
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Proof

Note that .

Equivalence is preserved under composition. For the next result, suppose that  is yet another measurable space.

Suppose that  are measurable and that  is measurable. If  then .

Proof

Note that .

Suppose again that  is a measure space. Let  denote the collection of all measurable real-valued random functions from 
into . (As usual,  is given the Borel -algebra.) From our previous discussion of measure theory, we know that with the usual
definitions of addition and scalar multiplication,  is a vector space. However, in measure theory, we often do not want to
distinguish between functions that are equivalent, so it's nice to know that the vector space structure is preserved when we identify
equivalent functions. Formally, let  denote the equivalence class generated by , and let  denote the collection of all such
equivalence classes. In modular notation,  is . We define addition and scalar multiplication on  by

 is a vector space.

Proof

All that we have to show is that addition and scalar multiplication are well defined. That is, we must show that the definitions do
not depend on the particularly representative of the equivalence class. Then the other properties that define a vector space are
inherited from . Thus we must show that if  and , and if , then  and .
For the first problem, note that  and  are measurable functions from  to . (  is given the product -algebra
which also happens to be the Borel -algebra corresponding to the standard Euclidean topolgy). Moreover, 
since

But the function  from  into  is measurable and hence from composition property, it follows that 
. The second problem is easier. The function  from  into  is measurable so again it follos from

composition property that .

Often we don't bother to use the special notation for the equivalence class associated with a function. Rather, it's understood that
equivalent functions represent the same object. Spaces of functions in a measure space are studied further in the chapter on
Distributions.

Completion

Suppose that  is a measure space and let  denote the collection of null sets of the space. If 
 and  is a subset of , then we know that  so  also. However, in general there might be subsets of 

 that are not in . This leads naturally to the following definition.

The measure space  is complete if  and  imply  (and hence ).

Our goal in this discussion is to show that if  is a -finite measure that is not complete, then it can be completed. That is 
can be extended to -algebra that includes all of the sets in  and all subsets of null sets. The first step is to extend the equivalence
relation defined in our previous discussion to .

For , define  if and only if there exists  such that . The relation  is an equivalence
relation on : For ,

1.  (the reflexive property).
2. If  then  (the symmetric property).
3. If  and  then  (the transitive property).

Proof

{x ∈ S : (x) ≠ (x)} = A △ B1A 1B

(U,U )

f , g : S → T h : T → U f ≡ g h ∘ f ≡ h ∘ g

{x ∈ S : h[f(x)] ≠ h[g(x)]} ⊆ {x ∈ S : f(x) ≠ g(x)}

(S,S , μ) V S

R R σ

(V , +, ⋅)

[f ] f ∈ V W

W V / ≡ W

[f ] + [g] = [f +g], c[f ] = [cf ]; f , g ∈ V , c ∈ R (2.7.27)

(W , +, ⋅)

(V , +, ⋅) ≡f1 f2 ≡g1 g2 c ∈ R + ≡ +f1 g1 f2 g2 c ≡ cf1 f2

( , )f1 g1 ( , )f2 g2 S R
2

R
2 σ

σ ( , ) ≡ ( , )f1 g1 f2 g2

{x ∈ S : ( (x), (x)) ≠ ( (x), (x))} = {x ∈ S : (x) ≠ (x)} ∪ {x ∈ S : (x) ≠ (x)}f1 g1 f2 g2 f1 f2 g1 g2 (2.7.28)

(a, b) ↦ a +b R
2

R

+ ≡ +f1 g1 f2 g2 a ↦ ca R R

c ≡ cf1 f2

(S,S , μ) N = {A ∈S : μ(A) = 0}
A ∈N B ∈S A μ(B) = 0 B ∈N
A S

(S,S , μ) A ∈N B ⊆ A B ∈S B ∈N

(S,S , μ) σ μ

σ S

P(S)

A, B ⊆ S A ≡ B N ∈N A △ B ⊆ N ≡
P(S) A, B, C ⊆ S

A ≡ A

A ≡ B B ≡ A

A ≡ B B ≡ C A ≡ C
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1. Note that  and .
2. Suppose that  where . Then .
3. Suppose that  and  where . Then ,

and .

So the equivalence relation  partitions  into mutually disjoint equivalence classes. Two sets in an equivalence class differ by a
subset of a null set. In particular,  if and only if  for some . The extended relation  is preserved under the set
operations, just as before. Our next step is to enlarge the -algebra  by adding any set that is equivalent to a set in .

Let . Then  is a -algebra of subsets of , and in fact is the -algebra generated
by .

Proof

Note that if  then  so . In particular, . Also,  so if  then . Suppose that 
 so that  for some . Then  and  so . Next suppose that  for  in a

countable index set . Then for each  there exists  such that . But then  and 
, so . Therefore  is a -algebra of subsets of . Finally, suppose that  is a -algebra of

subsets of  and that . We need to show that . Thus, suppose that  Then there
exists  such that . But  and  so . Also , so 

.

Our last step is to extend  to a positive measure on the enlarged -algebra .

Suppose that  so that  for some . Define . Then

1.  is well defined.
2.  for .
3.  is a positive measure on .

The measure space  is complete and is known as the completion of .

Proof
1. Suppose that  and that  and  where . Then  so by the result above 

. Thus,  is well-defined.
2. Next, if  then of course  so .
3. Trivially  for . Thus we just need to show the countable additivity property. To understand the proof you

need to keep several facts in mind: the functions  and  agree on  (property (b)); equivalence is preserved under set
operations; equivalent sets have the same value under  (property (a)). Since the measure space  is -finite, there
exists a countable disjoint collection  of sets in  such that  and  for each .
Suppose first that , so that there exists  with . Then

Suppose next that  is a sequence of pairwise disjoint sets in  so that there exists a sequence  of
sets in  such that  for each . For fixed ,

The next-to-the-last equality use the inclusion-exclusion law, since we don't know (and it's probably not true) that the
sequence  is disjoint. The use of inclusion-exclusion is why we need  to be -finite. Finally, using the
previous displayed equations,

A △ A = ∅ ∅ ∈N
A △ B ⊆ N N ∈N B △ A = A △ B ⊆ N

A △ B ⊆ N1 B △ C ⊆ N2 , ∈NN1 N2 A △ C ⊆ (A △ B) ∪ (B △ C) ⊆ ∪N1 N2

∪ ∈NN1 N2

≡ P(S)
A ≡ ∅ A ⊆ N N ∈N ≡

σ S S

= {A ⊆ S : A ≡ B for some B ∈S }S0 S0 σ S σ

S ∪ {A ⊆ S : A ≡ ∅}

A ∈S A ≡ A A ∈S0 S ∈S0 ∅ ∈S A ≡ ∅ A ∈S0

A ∈S0 A ≡ B B ∈S ∈SBc ≡Ac Bc ∈Ac S0 ∈Ai S0 i

I i ∈ I ∈SBi ≡Ai Bi ∈S⋃i∈I Bi

≡⋃i∈I Ai ⋃i∈I Bi ∈⋃i∈I Ai S0 S0 σ S T σ

S S ∪ {A ⊆ S : A ≡ ∅} ⊆T ⊆TS0 A ∈S0

B ∈S A ≡ B B ∈ T A △ B ∈ T A ∩ B = B ∖ (A △ B) ∈ T A ∖ B ∈ T
A = (A ∩ B) ∪ (A ∖ B) ∈ T

μ σ S0

A ∈S0 A ≡ B B ∈S (A) = μ(B)μ0

μ0

(A) = μ(A)μ0 A ∈S
μ0 S0

(S, , )S0 μ0 (S,S , μ)

A ∈S0 A ≡ B1 A ≡ B2 , ∈SB1 B2 ≡B1 B2

μ( ) = μ( )B1 B2 μ0

A ∈S A ≡ A (A) = μ(A)μ0

(A) ≥ 0μ0 A ∈S0

μ μ0 S

μ0 (S,S , μ) σ

{ : i ∈ I}Ci S S =⋃i∈I Ci μ( ) < ∞Ci i ∈ I

A ∈S0 B ∈S A ≡ B

(A) = [ (A ∩ )] = μ[ (B ∩ )] = μ(B ∩ ) = (A ∩ )μ0 μ0 ⋃
i∈I

Ci ⋃
i∈I

Ci ∑
i∈I

Ci ∑
i∈I

μ0 Ci (2.7.29)

( , , …)A1 A2 S0 ( , , …)B1 B2

S ≡Ai Bi i ∈ N+ i ∈ I

[ ( ∩ )] = [ ( ∩ )] = μ[ ( ∩ )] = μ( ∩ ) = ( ∩ )μ0 ⋃
n=1

∞

An Ci μ0 ⋃
n=1

∞

Bn Ci ⋃
n=1

∞

Bn Ci ∑
in=1

∞

Bn Ci ∑
n=1

∞

μ0 An Ci (2.7.30)

( , , …)B1 B2 (S,S , μ) σ
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Examples and Exercises
As always, be sure to try the computational exercises and proofs yourself before reading the answers and proofs in the text. Recall
that a discrete measure space consists of a countable set, with the -algebra of all subsets, and with counting measure .

Counterexamples

The continuity theorem for decreasing events can fail if the events do not have finite measure.

Consider  with counting measure  on the -algebra of all subsets. Let  for . The continuity
theorem fails for .

Proof

The sequence is decreasing and  for each , but .

Equal measure certainly does not imply equivalent sets.

Suppose that  is a measure space with the property that there exist disjoint sets  such that 
. Then  and  are not equivalent.

Proof

Note that  and .

For a concrete example, we could take  with counting measure  on -algebra of all subsets, and , .

The -finite property is not necessarily inherited by a sub-measure space. To set the stage for the counterexample, let  denote the
Borel -algebra of , that is, the -algebra generated by the standard Euclidean topology. There exists a positive measure  on 

 that generalizes length. The measure , known as Lebesgue measure, is constructed in the section on Existence. Next let 
denote the -algebra of countable and co-countable sets:

That  is a -algebra was shown in the section on measure theory in the chapter on foundations.

 is a subspace of . Moreover,  is -finite but  is not.

Proof

If , then the singleton  is closed and hence is in . A countable set is a countable union of singletons, so if  is
countable then . It follows that . Next, let  denote the interval  for . Then  for 
and , so  is -finite. On the other hand,  for  (since the set is an interval of length 0).
Therefore  if  is countable and  if  is countable. It follows that  cannot be written as a countable
union of sets in , each with finite measure.

A sum of finite measures may not be -finite.

Let  be a nonempty, finite set with the -algebra  of all subsets. Let  be counting measure on  for .
Then  is a finite measure for each , but  is not -finite.

Proof

Note that  is the trivial measure on  given by  if  (and of course ).

( )μ0 ⋃
n=1

∞

An = [( )∩ ] = ( ∩ )∑
i∈I

μ0 ⋃
n=1

∞

An Ci ∑
i∈I

μ0 ⋃
n=1

∞

An Ci

= ( ∩ ) = ( ∩ ) = ( )∑
i∈I

∑
n=1

∞

μ0 An Ci ∑
n=1

∞

∑
i∈I

μ0 An Ci ∑
n=1

∞

μ0 An

σ #

Z # σ = {z ∈ Z : z ≤ −n}An n ∈ N+

( , , …)A1 A2

#( ) = ∞An n # ( ) = #(∅) = 0⋂∞
i=1 Ai

(S,S , μ) A, B ∈S
μ(A) = μ(B) > 0 A B

A △ B = A ∪ B μ(A ∪ B) > 0

S = {0, 1} # σ A = {0} B = {1}

σ R

σ R σ λ

(R,R) λ C

σ

C = {A ⊆R : A is countable or   is countable}Ac (2.7.31)

C σ

(R,C ) (R,R) (R,R, λ) σ (R,C , λ)

x ∈ R {x} R A

A ∈R C ⊂R In [n, n +1) n ∈ Z λ( ) = 1In n ∈ Z

R =⋃n∈Z In (R,R, λ) σ λ{x} = 0 x ∈ R

λ(A) = 0 A λ(A) = ∞ Ac
R

C

σ

S σ S = #μn (S,S ) n ∈ N+

μn n ∈ N+ μ =∑n∈N+
μn σ

μ (S,S ) μ(A) = ∞ A ≠ ∅ μ(∅) = 0
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Basic Properties

In the following problems,  is a positive measure on the measurable space .

Suppose that  and that  with , , . Find the measure of each of the
following sets:

1. 
2. 
3. 
4. 
5. 

Answer
1. 3
2. 9
3. 18
4. 11
5. 16

Suppose that  and that  with , , and . Find the measure of each
of the following sets:

1. 
2. 
3. 
4. 
5. 

Answer
1. 6
2. 7
3. 9
4. 
5. 

Suppose that  and that  with , , and . Find the measure of each of
the following events:

1. 
2. 
3. 
4. 
5. 

Answer
1. 6
2. 1
3. 4
4. 8
5. 3

Suppose that  with , , , , , , and 
. Find the probabilities of the various unions:

1. 
2. 
3. 

μ (S,S )

μ(S) = 20 A, B ∈S μ(A) = 5 μ(B) = 6 μ(A ∩ B) = 2

A ∖ B

A ∪ B

∪Ac Bc

∩Ac Bc

A ∪ Bc

μ(S) = ∞ A, B ∈S μ(A ∖ B) = 2 μ(B ∖ A) = 3 μ(A ∩ B) = 4

A

B

A ∪ B

∩Ac Bc

∪Ac Bc

∞
∞

μ(S) = 10 A, B ∈S μ(A) = 3 μ(A ∪ B) = 7 μ(A ∩ B) = 2

B

A ∖ B

B ∖ A

∪Ac Bc

∩Ac Bc

A, B, C ∈S μ(A) = 10 μ(B) = 12 μ(C) = 15 μ(A ∩ B) = 3 μ(A ∩ C) = 4 μ(B ∩ C) = 5
μ(A ∩ B ∩ C) = 1S

A ∪ B

A ∪ C

B ∪ C
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4. 

Answer
1. 21
2. 23
3. 22
4. 28

This page titled 2.7: Measure Spaces is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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