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3.2: Continuous Distributions
   

In the previous section, we considered discrete distributions. In this section, we study a complementary type of distribution. As
usual, if you are a new student of probability, you may want to skip the technical details.

Basic Theory

Definitions and Basic Properties

As usual, our starting point is a random experiment modeled by a probability space . So to review,  is the set of
outcomes,  the collection of events, and  the probability measure on the sample space . We use the terms probability
measure and probability distribution synonymously in this text. Also, since we use a general definition of random variable, every
probability measure can be thought of as the probability distribution of a random variable, so we can always take this point of view
if we like. Indeed, most probability measures naturally have random variables associated with them.

In this section, we assume that  for some .

Details

Technically,  is a measurable subset of  and  is the -algebra measurable subsets of . Typically in applications,  is
defined by a finite number of inequalities involving elementary function.

Here is our first fundamental definition.

The probability measure  is continuous if  for all .

The fact that each point is assigned probability 0 might seem impossible or paradoxical at first, but soon we will see very familiar
analogies.

If  is a continuous distribtion then  for every countable .

Proof

Since  is countable, it follows from the additivity axiom of probability that

Thus, continuous distributions are in complete contrast with discrete distributions, for which all of the probability mass is
concentrated on the points in a discrete set. For a continuous distribution, the probability mass is continuously spread over  in
some sense. In the picture below, the light blue shading is intended to suggest a continuous distribution of probability.

Figure : A continuous probability distribution on 

Typically,  is a region of  defined by inequalities involving elementary functions, for example an interval in , a circular
region in , and a conical region in . Suppose that  is a continuous probability measure on . The fact that each point in 
has probability 0 is conceptually the same as the fact that an interval of  can have positive length even though it is composed of
points each of which has 0 length. Similarly, a region of  can have positive area even though it is composed of points (or curves)
each of which has area 0. In the one-dimensional case, continuous distributions are used to model random variables that take values
in intervals of , variables that can, in principle, be measured with any degree of accuracy. Such variables abound in applications
and include
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time
mass and weight
charge, voltage, and current
resistance, capacitance, and inductance
velocity and acceleration
energy, force, and work

Usually a continuous distribution can usually be described by certain type of function.

Suppose again that  is a continuous distribution on . A function  is a probability density function for  if

Details

Technically,  must be measurable and is a probability density function of  with respect to Lebesgue measure, the standard
measure on . Moreover, the integral is the Lebesgue integral, but the ordinary Riemann integral of calculus suffices for the
sets that occur in typical applications.

So the probability distribution  is completely determined by the probability density function . As a special case, note that 
. Conversely, a nonnegative function on  with this property defines a probability measure.

A function  that satisfies  is a probability density function on  and then  defined as follows is
a continuous probability measure on :

Proof

Figure : A continuous distribution is completely determined by its probability density function

Note that we can always extend  to a probability density function on a subset of  that contains , or to all of , by defining 
 for . This extension sometimes simplifies notation. Put another way, we can be a bit sloppy about the “set of

values” of the random variable. So for example if  with  and  has a continuous distribution on the interval ,
then we could also say that  has a continuous distribution on  or , or .

The points  that maximize the probability density function  are important, just as in the discrete case.

Suppose that  is a continuous distribution on  with probability density function . An element  that maximizes  is a
mode of the distribution.

If there is only one mode, it is sometimes used as a measure of the center of the distribution.

You have probably noticed that probability density functions for continuous distributions are analogous to probability density
functions for discrete distributions, with integrals replacing sums. However, there are essential differences. First, every discrete
distribution has a unique probability density function  given by  for . For a continuous distribution, the
existence of a probability density function is not guaranteed. The advanced section on absolute continuity and density functions has
several examples of continuous distribution that do not have density functions, and gives conditions that are necessary and
sufficient for the existence of a probability density function. Even if a probability density function  exists, it is never unique. Note
that the values of  on a finite (or even countably infinite) set of points could be changed to other nonnegative values and the new
function would still be a probability density function for the same distribution. The critical fact is that only integrals of  are
important. Second, the values of the PDF  for a discrete distribution are probabilities, and in particular  for . For a
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continuous distribution the values are not probabilities and in fact it's possible that  for some or even all . Further, 
can be unbounded on . In the typical calculus interpretation,  really is probability density at . That is,  is
approximately the probability of a “small” region of size  about .

Constructing Probability Density Functions

Just as in the discrete case, a nonnegative function on  can often be scaled to produce a produce a probability density function.

Suppose that  and let

If  then  defined by  for  defines a probability density function for a continuous distribution
on .

Proof

Technically, the function  is measurable. Technicalities aside, the proof is trivial. Clearly  for  and

Note again that  is just a scaled version of . So this result can be used to construct probability density functions with desired
properties (domain, shape, symmetry, and so on). The constant  is sometimes called the normalizing constant of .

Conditional Densities

Suppose now that  is a random variable defined on a probability space  and that  has a continuous distribution on .
A probability density function for  is based on the underlying probability measure on the sample space . This measure
could be a conditional probability measure, conditioned on a given event  with . Assuming that the conditional
probability density function exists, the usual notation is

Note, however, that except for notation, no new concepts are involved. The defining property is

and all results that hold for probability density functions in general hold for conditional probability density functions. The event 
could be an event described in terms of the random variable  itself:

Suppose that  has a continuous distribution on  with probability density function  and that  with .
The conditional probability density function of  given  is the function on  given by

Proof

For  with ,

Of course,  and hence is the normaliziang constant for the restriction of  to , as in (8)

Examples and Applications

As always, try the problems yourself before looking at the answers.
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The Exponential Distribution

Let  be the function defined by  for , where  is a parameter.

1. Show that  is a probability density function.
2. Draw a careful sketch of the graph of , and state the important qualitative features.

Proof

1. Note that  for . Also  so  is a PDF.
2.  is decreasing and concave upward so the mode is 0.  as .

The distribution defined by the probability density function in the previous exercise is called the exponential distribution with rate
parameter . This distribution is frequently used to model random times, under certain assumptions. Specifically, in the Poisson
model of random points in time, the times between successive arrivals have independent exponential distributions, and the
parameter  is the average rate of arrivals. The exponential distribution is studied in detail in the chapter on Poisson Processes.

The lifetime  of a certain device (in 1000 hour units) has the exponential distribution with parameter . Find

1. 
2. 

Answer
1. 
2. 

In the gamma experiment, set  to get the exponential distribution. Vary the rate parameter  and note the shape of the
probability density function. For various values of , run the simulation 1000 times and compare the the empirical density
function with the probability density function.

A Random Angle

In Bertrand's problem, a certain random angle  has probability density function  given by  for .

1. Show that  is a probability density function.
2. Draw a careful sketch of the graph , and state the important qualitative features.
3. Find .

Answer

1. Note that  for  and .
2.  is increasing and concave downward so the mode is .
3. 

Bertand's problem is named for Joseph Louis Bertrand and is studied in more detail in the chapter on Geometric Models.

In Bertrand's experiment, select the model with uniform distance. Run the simulation 1000 times and compute the empirical
probability of the event . Compare with the true probability in the previous exercise.

Gamma Distributions

Let  be the function defined by  for  where  is a parameter.

1. Show that  is a probability density function for each .
2. Draw a careful sketch of the graph of , and state the important qualitative features.

Proof
1. Note that  for . Also,  is the probability density function of the exponential distribution with parameter 1.

For , integration by parts with  and  gives . Hence it follows
by induction that  is a PDF for each .
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2.  is decreasing and concave downward, with mode . For ,  increases and then decreases, with mode . 
 is concave downward and then upward, with inflection point at . For ,  is concave upward, then

downward, then upward again, with inflection points at . For all ,  as .

Interestingly, we showed in the last section on discrete distributions, that  is a probability density function on  for
each  (it's the Poisson distribution with parameter ). The distribution defined by the probability density function  belongs
to the family of Erlang distributions, named for Agner Erlang;  is known as the shape parameter. The Erlang distribution is
studied in more detail in the chapter on the Poisson Process. In turn the Erlang distribution belongs to the more general family of
gamma distributions. The gamma distribution is studied in more detail in the chapter on Special Distributions.

In the gamma experiment, keep the default rate parameter . Vary the shape parameter and note the shape and location of
the probability density function. For various values of the shape parameter, run the simulation 1000 times and compare the
empirical density function with the probability density function.

Suppose that the lifetime of a device  (in 1000 hour units) has the gamma distribution above with . Find each of the
following:

1. .
2. 
3. 

Answer

1. 
2. 
3. 

Beta Distributions

Let  be the function defined by  for .

1. Show that  is a probability density function.
2. Draw a careful sketch of the graph of , and state the important qualitative features.

Answer

1. Note that  for . Also, , so  is a PDF
2.  increases and then decreases, with mode at .  is concave downward.  is symmetric about  (in fact, the

graph is a parabola).

Let  be the function defined by  for .

1. Show that  is a probability density function.
2. Draw a careful sketch the graph of , and state the important qualitative features.

Answer

1. Note that  for . Also , so  is a PDF.
2.  increases and then decreases, with mode at .  is concave upward and then downward, with inflection point at 

.

The distributions defined in the last two exercises are examples of beta distributions. These distributions are widely used to model
random proportions and probabilities, and physical quantities that take values in bounded intervals (which, after a change of units,
can be taken to be ). Beta distributions are studied in detail in the chapter on Special Distributions.

In the special distribution simulator, select the beta distribution. For the following parameter values, note the shape of the
probability density function. Run the simulation 1000 times and compare the empirical density function with the probability
density function.
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1. , . This gives the first beta distribution above.
2. , . This gives the second beta distribuiton above.

Suppose that  is a random proportion. Find  in each of the following cases:

1.  has the first beta distribution above.
2.  has the second beta distribution above.

Answer

1. 
2. 

Let  be the function defined by

1. Show that  is a probability density function.
2. Draw a careful sketch of the graph of , and state the important qualitative features.

Answer
1. Note that  for . Using the substitution  givens

Thus  is a PDF.
2.  is symmetric about .  decreases and then increases, with minimum at .  as  and as 

so the distribution has no mode.  is concave upward.

The distribution defined in the last exercise is also a member of the beta family of distributions. But it is also known as the
(standard) arcsine distribution, because of the arcsine function that arises in the proof that  is a probability density function. The
arcsine distribution has applications to a very important random process known as Brownian motion, named for the Scottish
botanist Robert Brown. Arcsine distributions are studied in more generality in the chapter on Special Distributions.

In the special distribution simulator, select the (continuous) arcsine distribution and keep the default parameter values. Run the
simulation 1000 times and compare the empirical density function with the probability density function.

Suppose that  represents the change in the price of a stock at time , relative to the value at an initial reference time 0. We
treat  as a continuous variable measured in weeks. Let , the last time during the first week that
the stock price was unchanged over its initial value. Under certain ideal conditions,  will have the arcsine distribution. Find
each of the following:

1. 
2. 
3. 

Answer

1. 
2. 
3. 

Open the Brownian motion experiment and select the last zero variable. Run the experiment in single step mode a few times.
The random process that you observe models the price of the stock in the previous exercise. Now run the experiment 1000
times and compute the empirical probability of each event in the previous exercise.
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The Pareto Distribution

Let  be the function defined by  for , where  is a parameter.

1. Draw a careful sketch the graph of , and state the important qualitative features.
2. Find the values of  for which there exists a probability density function  (8)proportional to . Identify the mode.

Answer
1.  is decreasing and concave upward, with  as .
2. Note that if 

When  we have . Thus, when , there is no PDF proportional to . When ,

the PDF proportional to  is  for . The mode is 1.

Note that the qualitative features of  are the same, regardless of the value of the parameter , but only when  can  be
normalized into a probability density function. In this case, the distribution is known as the Pareto distribution, named for Vilfredo
Pareto. The parameter , so that , is known as the shape parameter. Thus, the Pareto distribution with shape
parameter  has probability density function

The Pareto distribution is widely used to model certain economic variables and is studied in detail in the chapter on Special
Distributions.

In the special distribution simulator, select the Pareto distribution. Leave the scale parameter fixed, but vary the shape
parameter, and note the shape of the probability density function. For various values of the shape parameter, run the simulation
1000 times and compare the empirical density function with the probability density function.

Suppose that the income  (in appropriate units) of a person randomly selected from a population has the Pareto distribution
with shape parameter . Find each of the following:

1. 
2. 
3. 

Answer

1. 
2. 
3. 

The Cauchy Distribution

Let  be the function defined by

1. Show that  is a probability density function.
2. Draw a careful sketch the graph of , and state the important qualitative features.

Answer
1. Note that  for . Also
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∣
∣
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(3.2.12)
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and hence  is a PDF.
2.  increases and then decreases, with mode .  is concave upward, then downward, then upward again, with inflection

points at .  is symmetric about .

The distribution constructed in the previous exercise is known as the (standard) Cauchy distribution, named after Augustin Cauchy
It might also be called the arctangent distribution, because of the appearance of the arctangent function in the proof that  is a
probability density function. In this regard, note the similarity to the arcsine distribution above. The Cauchy distribution is studied
in more generality in the chapter on Special Distributions. Note also that the Cauchy distribution is obtained by normalizing the
function ; the graph of this function is known as the witch of Agnesi, in honor of Maria Agnesi.

In the special distribution simulator, select the Cauchy distribution with the default parameter values. Run the simulation 1000
times and compare the empirical density function with the probability density function.

A light source is 1 meter away from position 0 on an infinite, straight wall. The angle  that the light beam makes with the
perpendicular to the wall is randomly chosen from the interval . The position  of the light beam on the
wall has the standard Cauchy distribution. Find each of the following:

1. .

2. 

3. 

Answer

1. 
2. 
3. 

The Cauchy experiment (with the default parameter values) is a simulation of the experiment in the last exercise.

1. Run the experiment a few times in single step mode.
2. Run the experiment 1000 times and compare the empirical density function with the probability density function.
3. Using the data from (b), compute the relative frequency of each event in the previous exercise, and compare with the true

probability.

The Standard Normal Distribution

Let  be the function defined by  for .

1. Show that  is a probability density function.
2. Draw a careful sketch the graph of , and state the important qualitative features.

Proof

2. Note that  for . Let . Then

Change to polar coordinates: ,  where  and . Then  and 
. Hence

Using the simple substitution , the inner integral is . Then the outer integral is . Hence
 and so  is a PDF.

3. Note that  is symmetric about 0.  increases and then decreases, with mode .  is concave upward, then downward,
then upward again, with inflection points at .  as  and as .

f

f x = 0 f
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2π√
e− /2z2

z ∈ R

ϕ

ϕ

ϕ(z) > 0 z ∈ R c = dz∫ ∞
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∞
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∞
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The distribution defined in the last exercise is the standard normal distribution, perhaps the most important distribution in
probability and statistics. It's importance stems largely from the central limit theorem, one of the fundamental theorems in
probability. In particular, normal distributions are widely used to model physical measurements that are subject to small, random
errors. The family of normal distributions is studied in more generality in the chapter on Special Distributions.

In the special distribution simulator, select the normal distribution and keep the default parameter values. Run the simulation
1000 times and compare the empirical density function and the probability density function.

The function  is a notorious example of an integrable function that does not have an antiderivative that can be expressed
in closed form in terms of other elementary functions. (That's why we had to resort to the polar coordinate trick to show that  is a
probability density function.) So probabilities involving the normal distribution are usually computed using mathematical or
statistical software.

Suppose that the error  in the length of a certain machined part (in millimeters) has the standard normal distribution. Use
mathematical software to approximate each of the following:

1. 
2. 
3. 

Answer
1. 0.6827
2. 0.0228
3. 0.0013

The Extreme Value Distribution

Let  be the function defined by  for .

1. Show that  is a probability density function.
2. Draw a careful sketch of the graph of , and state the important qualitative features.
3. Find , where  has probability density function .

Answer
1. Note that  for . Using the substitution ,

(note that the integrand in the last integral is the exponential PDF with parameter 1.
2.  increases and then decreases, with mode .  is concave upward, then downward, then upward again, with inflection

points at . Note however that  is not symmetric about 0.  as  and as .
3. 

The distribution in the last exercise is the (standard) type 1 extreme value distribution, also known as the Gumbel distribution in
honor of Emil Gumbel. Extreme value distributions are studied in more generality in the chapter on Special Distributions.

In the special distribution simulator, select the extreme value distribution. Keep the default parameter values and note the shape
and location of the probability density function. Run the simulation 1000 times and compare the empirical density function
with the probability density function.

The Logistic Distribution

Let  be the function defined by

z ↦ e− /2z2

ϕ

Z

P(−1 ≤ Z ≤ 1)
P(Z > 2)
P(Z < −3)

f f(x) = e−xe−e−x

x ∈ R

f

f

P(X > 0) X f

f(x) > 0 x ∈ R u = e−x

dx = du = 1∫
∞

−∞
e−xe−e−x

∫
∞

0
e−u (3.2.18)

f x = 0 f

x = ±ln[(3 + )/2]5
–

√ f f(x) → 0 x → ∞ x → −∞
1 − ≈ 0.6321e−1

f

f(x) = , x ∈ R
ex

(1 +ex)2
(3.2.19)
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1. Show that  is a probability density function.
2. Draw a careful sketch the graph of , and state the important qualitative features.
3. Find , where  has probability density function .

Answer
1. Note that  for . The substitution  gives

2.  is symmetric about 0.  increases and then decreases with mode .  is concave upward, then downward, then
upward again, with inflection points at .  as  and as .

3. 

The distribution in the last exercise is the (standard) logistic distribution. Logistic distributions are studied in more generality in the
chapter on Special Distributions.

In the special distribution simulator, select the logistic distribution. Keep the default parameter values and note the shape and
location of the probability density function. Run the simulation 1000 times and compare the empirical density function with the
probability density function.

Weibull Distributions

Let  be the function defined by  for .

1. Show that  is a probability density function.
2. Draw a careful sketch the graph of , and state the important qualitative features.

Answer
1. Note that  for . The substitution  gives .
2.  increases and then decreases, with mode .  is concave downward and then upward, with inflection point at 

.  as .

Let  be the function defined by  for .

1. Show that  is a probability density function.
2. Draw a careful sketch the graph of , and state the important qualitative features.

Answer
1. Note that  for . The substitution  gives

2.  increases and then decreases, with mode .  is concave upward, then downward, then upward again, with

inflection points at .  as .

The distributions in the last two exercises are examples of Weibull distributions, name for Waloddi Weibull. Weibull distributions
are studied in more generality in the chapter on Special Distributions. They are often used to model random failure times of devices
(in appropriately scaled units).

In the special distribution simulator, select the Weibull distribution. For each of the following values of the shape parameter ,
note the shape and location of the probability density function. Run the simulation 1000 times and compare the empirical
density function with the probability density function.

1. . This gives the first Weibull distribution above.
2. . This gives the second Weibull distribution above.

f

f

P(X > 1) X f

f(x) > 0 x ∈ R u = ex

f(x)dx = du = 1∫
∞

−∞
∫

∞

0

1

(1 +u)2
(3.2.20)

f f x = 0 f

x = ±ln(2 + )3
–

√ f(x) → 0 x → ∞ x → −∞

≈ 0.26891
1+e

f f(t) = 2te−t2
t ∈ [0, ∞)

f

f

f(t) ≥ 0 t ≥ 0 u = t2 f(t)dt = du = 1∫ ∞
0 ∫ ∞

0 e−u

f t = 1/ 2
–

√ f

t = 3/2
−−−

√ f(t) → 0 t → ∞

f f(t) = 3t2e−t3

t ≥ 0

f

f

f(t) ≥ 0 t ≥ 0 u = t3

f(t)dt = du = 1∫
∞

0
∫

∞

0
e−u (3.2.21)

f t = ( )2
3

1/3
f

t = (1 ± )1
3

7
–

√
1/3

f(t) → 0 t → ∞

k

k = 2
k = 3
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Suppose that  is the failure time of a device (in 1000 hour units). Find  in each of the following cases:

1.  has the first Weibull distribution above.
2.  has the second Weibull distribution above.

Answer

1. 
2. 

Additional Examples

Let  be the function defined by  for .

1. Show that  is a probability density function.
2. Draw a careful sketch of the graph of , and state the important qualitative features.
3. Find  where  has the probability density function in (a).

Answer
1. Note that  for . Integration by parts with  and  gives

2.  is decreasing and concave upward, with  as , so there is no mode.
3. 

Let  be the function defined by  for .

1. Show that  is a probability density function.
2. Draw a careful sketch of the graph of , and give the important qualitative features.
3. Find  where  has the probability density function in (a).

Answer

1. Note that  for . Also, , so  is a PDF.
2.  increases and then decreases, with mode .  is concave downward and then upward, with an inflection point at 

.  as .
3. 

The following problems deal with two and three dimensional random vectors having continuous distributions. The idea of
normalizing a function to form a probability density function is important for some of the problems. The relationship between the
distribution of a vector and the distribution of its components will be discussed later, in the section on joint distributions.

Let  be the function defined by  for , .

1. Show that  is a probability density function, and identify the mode.
2. Find  where  has the probability density function in (a).
3. Find the conditional density of  given .

Answer
1. mode 
2. 
3.  for , 

Let  be the function defined by  for .

1. Find the probability density function  that is proportional to .
2. Find  where  has the probability density function in (a).

Answer

T P (T > )1
2

T

T

≈ 0.7788e−1/4

≈ 0.8825e−1/8

f f(x) = −lnx x ∈ (0, 1]

f

f

P ( ≤ X ≤ )1
3

1
2

X

−lnx ≥ 0 0 < x ≤ 1 u = −lnx dv= dx

−lnx dx = −x lnx + 1 dx = 1∫
1

0

∣
∣
∣
1

0
∫

1

0
(3.2.22)

f f(x) → ∞ x ↓ 0
ln2 − ln3 + ≈ 0.1471

2
1
3

1
6

f f(x) = 2 (1 − )e−x e−x x ∈ [0, ∞)

f

f

P(X ≥ 1) X

f(x) > 0 0 < x < ∞. ( − ) dx =∫ ∞
0

e−x e−2x 1
2

f

f x = ln(2) f

x = ln(4) f(x) → 0 x → ∞
2 − ≈ 0.6004e−1 e−2

f f(x, y) = x+y 0 ≤ x ≤ 1 0 ≤ y ≤ 1

f

P(Y ≥ X) (X,Y )
(X,Y ) {X < ,Y < }1

2
1
2

(1, 1)
1
2

f (x, y X < ,Y < ) = 8(x+y)∣∣
1
2

1
2

0 < x < 1
2

0 < y < 1
2

g g(x, y) = x+y 0 ≤ x ≤ y ≤ 1

f g

P(Y ≥ 2X) (X,Y )
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1. , 
2. 

Let  be the function defined by  for , .

1. Find the probability density function  that is proportional to .
2. Find  where  has the probability density function in (a).

Answer
1.  for , 
2. 

Let  be the function defined by  for .

1. Find the probability density function  that is proportional to .
2. Find  where  has the probability density function in (a).

Answer
1.  for 
2. 

Let  be the function defined by  for , , .

1. Find the probability density function  that is proportional to .
2. Find  where  has the probability density function in (a).

Answer

1.  for , , 
2. 

Let  be the function defined by  for .

1. Find the probability density function  that is proportional to .
2. Find  where  has the probability density function in (a).

Answer
1. , 
2. 

Continuous Uniform Distributions

Our next discussion will focus on an important class of continuous distributions that are defined purely in terms of geometry. We
need a preliminary definition.

For , the standard measure  on  is given by

In particular,  is the length of ,  is the area of , and  is the volume of .

Details

Technically,  is Lebesgue measure on the -algebra of measurable subsets of . The name is in honor of Henri Lebesgue.
The representation above in terms of the standard Riemann integral of calculus works for the sets that occur in typical
applications. For the remainder of this discussion, we assume that all subsets of  that are mentioned are measurable

Note that if , the integral above is a multiple integral. Generally,  is referred to as the -dimensional volumve of 
.

f(x, y) = 2(x+y) 0 ≤ x ≤ y ≤ 1
5

12

g g(x, y) = yx2 0 ≤ x ≤ 1 0 ≤ y ≤ 1

f g

P(Y ≥ X) (X,Y )

f(x, y) = 6 yx2 0 ≤ x ≤ 1 0 ≤ y ≤ 1
2
5

g g(x, y) = yx2 0 ≤ x ≤ y ≤ 1

f g

P (Y ≥ 2X) (X,Y )

f(x, y) = 15 yx2 0 ≤ x ≤ y ≤ 1
1
8

g g(x, y, z) = x+2y+3z 0 ≤ x ≤ 1 0 ≤ y ≤ 1 0 ≤ z ≤ 1

f g

P(X ≤ Y ≤ Z) (X,Y ,Z)

f(x, y, z) = (x+2y+3z)1
3

0 ≤ x ≤ 1 0 ≤ y ≤ 1 0 ≤ z ≤ 1
7

36

g g(x, y) = e−xe−y 0 ≤ x ≤ y < ∞

f g

P(X+Y < 1) (X,Y )

f(x, y) = 2e−xe−y 0 < x < y < ∞
1 −2 ≈ 0.2642e−1

n ∈ N+ λn R
n

(A) = 1 dx, A ⊆λn ∫
A

R
n (3.2.23)

(A)λ1 A ⊆R (A)λ2 A ⊆R
2 (A)λ3 A ⊆R

3

λn σ R
n

R
n

n > 1 (A)λn n

A ∈⊆R
n
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Suppose that  for some  with .

1. the function  defined by  for  is a probability density function on .
2. The probability measure associated with  is given by  for , and is known as the uniform

distribution on .

Proof

The proof is simple: Clearly  for  and

In particular, when  we have .

Note that the probability assigned to a set  is proportional to the size of , as measured by . Note also that in both the
discrete and continuous cases, the uniform distribution on a set  has constant probability density function on . The uniform
distribution on a set  governs a point  chosen “at random” from , and in the continuous case, such distributions play a
fundamental role in various Geometric Models. Uniform distributions are studied in more generality in the chapter on Special
Distributions.

The most important special case is the uniform distribution on an interval  where  and . In this case, the
probability density function is

This distribution models a point chosen “at random” from the interval. In particular, the uniform distribution on  is known as
the standard uniform distribution, and is very important because of its simplicity and the fact that it can be transformed into a
variety of other probability distributions on . Almost all computer languages have procedures for simulating independent,
standard uniform variables, which are called random numbers in this context.

Conditional distributions corresponding to a uniform distribution are also uniform.

Suppose that  for some , and that  and . If  is the uniform distribution on , then
the conditional distribution given  is uniform on .

Proof

The proof is very simple: For ,

The last theorem has important implications for simulations. If we can simulate a random variable that is uniformly distributed on a
set, we can simulate a random variable that is uniformly distributed on a subset.

Suppose again that  for some , and that  and . Suppose further that 
 is a sequence of independent random variables, each uniformly distributed on . Let 

. Then

1.  has the geometric distribution on  with success parameter .
2.  is uniformly distributed on .

Proof
1. Since the variables are unifromly distributed on ,  for each . Since the variables are

independent, each point is in  or not independently. Hence , the index of the first point to fall in , has the geometric
distribution on  with success probability . That is,  for .

2. Note that , so  and hence  is well defined. We know from our work on independence and
conditional probability that the distribution of  is the same as the conditional distribution of  given , which by
the previous theorem, is uniformly distributed on .

S ⊆R
n n ∈ N+ 0 < (S) < ∞λn

f f(x) = 1/ (S)λn x ∈ S S

f P(A) = (A)/ (S)λn λn A ⊆ S

S

f(x) > 0 x ∈ S

f(x)dx = 1 dx = , A ⊆ S∫
A

1

(S)λn
∫
A

(A)λn

(S)λn
(3.2.24)

A = S f(x)dx = 1∫S

A ⊆R
n A λn

S S

S X S

[a, b] a, b ∈ R a < b

f(x) = , a ≤ x ≤ b
1

b−a
(3.2.25)

[0, 1]

R

R ⊆ S ⊆R
n n ∈ N+ (R) > 0λn (S) < ∞λn P S

R R

A ⊆ R

P(A ∣ R) = = = =
P(A∩R)

P(R)

P(A)

P(R)

(A)/ (S)λn λn

(R)/ (S)λn λn

(A)λn

(R)λn
(3.2.26)

R ⊆ S ⊆R
n n ∈ N+ (R) > 0λn (S) < ∞λn

X = ( , , …)X1 X2 S

N = min{k ∈ : ∈ R}N+ Xk

N N+ p = (R)/ (S)λn λn
XN R

S P( ∈ R) = (R)/ (S)Xk λn λn k ∈ N+

R N R

N+ p = (R)/ (S)λn λn P(N = k) = (1 −p p)k−1 k ∈ N+

p ∈ (0, 1] P(N ∈ ) = 1N+ XN

XN X X ∈ R

R
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Suppose in particular that  is a Cartesian product of  bounded intervals. It turns out to be quite easy to simulate a sequence of
independent random variables  each of which is uniformly distributed on . Thus, the last theorem give an
algorithm for simulating a random variable that is uniformly distributed on an irregularly shaped region  (assuming that we
have an algorithm for recognizing when a point  falls in ). This method of simulation is known as the rejection method,
and as we will see in subsequent sections, is more important that might first appear.

Figure : With a sequence of independent, uniformly distributed points in , the first one to fall in  is uniformly distributed
on .

In the simple probability experiment, random points are uniformly distributed on the rectangular region . Move and resize the
events  and  and note how the probabilities of the 16 events that can be constructed from  and  change. Run the
experiment 1000 times and note the agreement between the relative frequencies of the events and the probabilities of the
events.

Suppose that  is uniformly distributed on the circular region of radius 5, centered at the origin. We can think of 
as the position of a dart thrown “randomly” at a target. Let , the distance from the center to .

1. Give the probability density function of .
2. Find  for .

Answer

1.  for 
2.  for 

Suppose that  is uniformly distributed on the cube . Find  in two ways:

1. Using the probability density function.
2. Using a combinatorial argument.

Answer

1. 
2. Each of the 6 strict orderings of  are equally likely, so 

The time  (in minutes) required to perform a certain job is uniformly distributed over the interval .

1. Find the probability that the job requires more than 30 minutes
2. Given that the job is not finished after 30 minutes, find the probability that the job will require more than 15 additional

minutes.

Answer

1. 
2. 

Data Analysis Exercises

If  is a data set from a variable  with a continuous distribution, then an empirical density function can be computed by
partitioning the data range into subsets of small size, and then computing the probability density of points in each subset. Empirical
probability density functions are studied in more detail in the chapter on Random Samples.

S n

X = ( , , …)X1 X2 S

R ⊆ S

x ∈ R
n R

3.2.3 S R
R

S

A B A B

(X,Y ) (X,Y )

R = +X2 Y 2
− −−−−−−

√ (X,Y )

(X,Y )
P(n ≤ R ≤ n+1 n ∈ {0, 1, 2, 3, 4}

f(x, y) = 1
25π

{(x, y) ∈ : + ≤ 25}R
2 x2 y2

P(n ≤ R ≤ n+1) =
2n+1

25
n ∈ {0, 1, 2, 3, 4}

(X,Y ,Z) S = [0, 1]3 P(X < Y < Z)

P(X < Y < Z) = 1 dx dy dz =∫ 1
0 ∫ z

0 ∫ y

0
1
6

(X,Y ,Z) P(X < Y < Z) = 1
6

T [15, 60]

2
3
1
6

D X
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For the cicada data,  denotes body weight (in grams),  body length (in millimeters), and  gender (0 for female and 1
for male). Construct an empirical density function for each of the following and display each as a bar graph:

1. 
2. 
3.  given 

Answer

1. BW

Density 0.8654 5.8654 3.0769 0.1923

2. BL

Density 0.0058 0.1577 0.0346 0.0019

3. BW

Density given 0.3390 4.4068 5.0847 0.1695

This page titled 3.2: Continuous Distributions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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