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3.11: Properties of the Integral

Basic Theory

Again our starting point is a measure space (5, .%, ). That is, S is a set, % is a o-algebra of subsets of S, and p is a positive

measure on ..

Definition

In the last section we defined the integral of certain measurable functions f : S — R with respect to the measure . Recall that the
integral, denoted [ s f du, may exist as a number in R (in which case f is integrable), or may exist as co or —oo, or may fail to
exist. Here is a review of how the definition is built up in stages:

Definition of the integral

1. If f is a nonnegative simple function, so that f =", _; a;1,, where I is a finite index set, a; € [0, 00) for i € I, and
{4, : i € I'} is measurable partition of S, then

/fd,u:Za,-,u(Ai) (3.11.1)
S il
2.If f: S — [0, 00) is measurable, then
/fd,u =sup{/ gdu : gissimple and 0 < g < f} (3.11.2)
s s

3.If f: S — R is measurable, then

/Sfduz/sf+ du—/sf— dp (3.11.3)

as long as the right side is not of the form co — 0o, and where f* and f~ denote the positive and negative parts of f.
4.1f f : S — R is measurable and A € ., then the integral of f over A is defined by

[ fan= [ 1asan (3.11.4)

assuming that the integral on the right exists.

Consider a statement on the elements of .S, for example an equation or an inequality with € S as a free variable. (Technically
such a statement is a predicate on S.) For A € ., we say that the statement holds on A if it is true for every x € A. We say that
the statement holds almost everywhere on A (with respect to ) if there exists B € . with B C A such that the statement holds
on Band u(A\ B)=0.

Basic Properties

A few properties of the integral that were essential to the motivation of the definition were given in the last section. In this section,
we extend some of those properties and we study a number of new ones. As a review, here is what we know so far.

Properties of the integral

LIf f, g: § — R are measurable functions whose integrals exist, then [ (f +g)du = [ fdu+ [ggdu aslong as the
right side is not of the form co — oo .

2.1f f: S — R is a measurable function whose integral exists and ¢ € R, then [gcf du=c [q f dp.

3.1f f: S — R is measurable and f > 0 on S then fsfd,uZO.

4.1f f, g: S — R are measurable functions whose integrals exist and f < g on S then [ g fdu< J s 9dp

5.1f f,, : S — [0, 00) is measurable for n € N.. and f,, is increasing in n on S then [¢lim, o f5 dp =lim, oo [ fn dps.

6. f : S — R is measurable and the the integral of f on AU B exists, where A, B € . are disjoint, then

Japfdn=[,fdu+ [z fdu.
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Parts (a) and (b) are the linearity properties; part (a) is the additivity property and part (b) is the scaling property. Parts (c) and (d)
are the order properties; part (c) is the positive property and part (d) is the increasing property. Part (e) is a continuity property
known as the monotone convergence theorem. Part (f) is the additive property for disjoint domains. Properties (a)-(e) hold with S
replaced by 4 € .&“.

Equality and Order

Our first new results are extensions dealing with equality and order. The integral of a function over a null set is 0:

Suppose that f : § — R is measurable and A € . with yu(A) =0. Then [, f du=0.
Proof
The proof proceeds in stages via the definition of the integral.
1. Suppose that g is a nonnegative simple function with g =0 on A°. Then g has the representation g =", _;
ai € (0,00) and A; C A forfori € I. But u(Ai) =0 foreachi € I andso [y gdp = iy aip(Ai) =0
2. Suppose that f : S — [0, c0) is measurable. If g is a nonnegative simple function with g <14 f, then g=0 on A° so by
(a), [§gdp = 0. Hence by part (b) of (1), [, fdu= [¢1afdu=0.
3. Finally, suppose that f : $ — R is measurable. Then [, fdu = [, f*du— [, f~ dp . But both integrals on the right are
0 by part (b).

a;1,, where

Two functions that are indistinguishable from the point of view of p must have the same integral.

Suppose that f: S — R is a measurable function whose integral exists. If g: S — R is measurable and g= f almost
everywhere on S, then [ gdu = [o fdu.

Proof

Note that g= f if and only if g* = f" andg” =f .Let A={z € S:g"(z)=f"(z)} . Then A€ ¥ and u(A°)=0.
Hence by the additivity property and (3),

/g*duz/g*du—&-/ g*d,uz/f*du—i—Oz/f*d,u—i—/ f*duz/f*du (3.11.5)
s A 4° A A 4° s

Similarly [¢ g~ du = [ f~ du . Hence the integral of g exists and [ gdu = [, f dp

Next we have a simple extension of the positive property.

Suppose that f : S — R is measurable and f > 0 almost everywhere on S. Then
L [ofdu=>0
2. [¢ f =0 if and only if f =0 almost everywhere on S.
Proof
l.LetA={z € S: f(x) >0} .Then A € ¥ and (A°) = 0. By the additivity of the integral over disjoint sets we have

/sfd”:/Afd“Jr/Acfd” (3.11.6)

But fA f dp > 0 by the positive property and fAC f dp =0 by the null property, so fS fdu>0.

2. Note first that if 4(A) =0 then both integrals in the displayed equation are 0 so f g f du = 0. For the converse, let
B,={z€S: f(z)> %} forn e Ny and B={z € S: f(x) >0} . Then B, is increasing in n and | J;~ ; B, = B.If
w(B) >0 then p(B,,) >0 for some n € N, . But f > ~1p, on A, so by the increasing property,
Jsfap=[,fdu> [, +1p, du=+pu(By) >0 .

So, if f >0 almost everywhere on S then [¢ fdy >0 if and only if u{z € S: f(z) >0} > 0. The simple extension of the
positive property in turn leads to a simple extension of the increasing property.

Suppose that f, g: S — R are measurable functions whose integrals exist, and that f < g almost everywhere on S. Then

L[sf<[sg
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2. Except in the case that both integrals are co or both —co, . sfdu= /. 5 9gdp if and only if f = g almost everywhere on S.

Proof

1. Note that g= f +(g— f) andg— f >0 almost everywhere on S. If [¢ f du = —oco then trivially [ fdu < [y gdp.
Otherwise, by the additive property,

/Sgdu=/sfdu+/s(g—f)du (3.11.7)

By the positive property, [¢(g—f)du >0 so fggdu> [ fdu.
2. Except in the case that both integrals are oo or both are —oo we have

/Sgdu—/sfduZ/S(g—f) dp (3.11.8)

By assumption g— f > 0 almost everywhere on S, and hence by the positive property, the integral on the right is 0 if and
only if g— f =0 almost everywhere on S.

So if f<g almost everywhere on S then, except in the two cases mentioned, fs fdu< fsgdp if and only if
p{z € S: f(z) <g(z)} >0. The exclusion when both integrals are co or —oo is important. A counterexample when this
condition does not hold is given below. The next result is the absolute value inequality.

Suppose that f : S — R is a measurable function whose integral exists. Then

‘/Sfdu’S/Slfl dp (3.11.9)

If f is integrable, then equality holds if and only if f > 0 almost everywhere on .S or f < 0 almost everywhere on S.
Proof

First note that — | f| < f <|f| on S. The integrals of all three functions exist, so the increasing property and scaling properties

give
~[istdu< [ gau< [ 17 au (3.11.10)
S S S
which is equivalent to the inequality above. If f is integrable, then by the increasing property, equality holds if and only if
f=—|f]| almost everywhere on S or f = | f| almost everywhere on S. In the first case, f <0 almost everywhere on S and in

the second case, f > 0 almost everywhere on S.

Change of Variables

Suppose that (T, Z) is another measurable space and that w: S — T is measurable. As we saw in our first study of positive
measures, v defined by

v(B)=p[u'(B)], BeZ (3.11.11)
is a positive measure on (7', ). The following result is known as the change of variables theorem.

If f: T — R is measurable then, assuming that the integrals exist,

[ sav= [ (Fowan (3.11.12)

Proof

We will show that if either of the integrals exist then they both do, and are equal. The proof is a classical bootstrapping
argument that parallels the definition of the integral.

1. Suppose first that f is a nonnegative simple function on 7" with the representation f = ;c; b;1p, where I is a finite
index set, {B; : ¢ € I'} is a measurable partition of T, and b; € [0, 00) for ¢ € I. Recall that f o w is a nonnegative simple
function on S, with representation f ou = 7,y b;1,-1(p,) . Hence
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/deu =S b (B =Y b [u (B)] = /S(fou) du (3.11.13)

i€l iel
2. Next suppose that f : T — [0, 00) is measurable, so that f ow : .S — [0, 00) is also measurable. There exists an increasing
sequence (f1, f2, .. .) of nonnegative simple functions on T" with f, — f asn — oo. Then (fi ou, faowu,...) isan

increasing sequence of simple functions on S with f, ou — fou asn — oo. By step (a), [ fn dv = [¢(fnou)dp for
each n € N, . But by the monotone convergence theorem, [ . f, dv — [, f dv asn — co and

Js(faou)dp — [¢(fou)du sowe conclude that [ fdv = [4(fou)du
3. Finally, suppose that f : T'— R is measurable, so that fou : S — R is also measurable. Note that (fou)t = ftou

and (fou)~™ = f~ ow . By part (b),
N vV = +O = (@) + . .
[rra = [ ouydu= [ (o) du (3.11.14)
/Tf7 dv :/;(f’ou)duz/s(fou)* du (3.11.15)

Assuming that at least one of the integrals in the displayed equations is finite, we have

/deu:/Tﬁdu—/Tf—du:/S(fou)wu—/s(fou)—d#:/s(fou)du (3.11.16)

The change of variables theorem will look more familiar if we give the variables explicitly. Thus, suppose that we want to evaluate

/5 £ [u(@)] du(z) (3.11.17)

where again, w : S — T and f : T — R. One way is to use the substitution u = u(z), find the new measure v, and then evaluate

| sty dviw) (3.11.18)
T

Convergence Properties
We start with a simple but important corollary of the monotone convergence theorem that extends the additivity property to a

countably infinite sum of nonnegative functions.

Suppose that f,, : S — [0, 00) is measurable for n € N . Then

/Sandu:;/andu (3.11.19)

n=1
Proof
Let g, =Y. iy fi forn €N, . Then g, : S — [0,00) is measurable and g, is increasing in n. Moreover, by definition,

gn — >.ic1 f; asm — co. Hence by the MCT, Jsgndu— [ 324 fidu asn — co. But we know the additivity property
holds for finite sums, so [ gn duw =Y. [¢ fi du and again, by definition, this sum converges to >, [¢ fi du as n — 0.

A theorem below gives a related result that relaxes the assumption that f be nonnegative, but imposes a stricter integrability
requirement. Our next result is the additivity of the integral over a countably infinite collection of disjoint domains.

Suppose that f : S — R is a measurable function whose integral exists, and that {4, : n € N, } is a disjoint collection of sets
in.Let A=J,_, 4, . Then

/Afduzg/Anfdu (3.11.20)

Proof

Suppose first that f is nonnegative. Note that 14 =>_>° ;14 andhence 14f=>"""; 14 f. Thus from the theorem above,
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/Afd#:/S]-Afdﬂ:/gglAnfdﬂzg/glAnfdngAnfd,u, (3.11.21)

Suppose now that f:S—R is measurable and [ fdy exists. Note that for Be.#, (le)+ =1pf"t and
(1pf)” =1pf~ . Hence from the previous argument,

Af*duziAnf+du, /Af_duzif,%f_d# (3.11.22)

Both of these are sums of nonnegative terms, and one of the sums, at least, is finite. Hence we can group the terms to get

Afd,u:[lf+d,u—[4fduzg[‘ln(f+_f)dp:g/4nfd,u (3.11.23)

Of course, the previous theorem applies if f is nonnegative or if f is integrable. Next we give a minor extension of the monotone
convergence theorem that relaxes the assumption that the functions be nonnegative.

Monotone Convergence Theorem. Suppose that f, : S — R is a measurable function whose integral exists for each n € N
and that f, is increasing inn on S. If |, g fidp > —oo then

lim f, du = lim/fn du (3.11.24)
n—o Jg

S n—0o0

Proof

Let f(z) = limy, o fn(z) forz € S which exists in R U {oo} since f,(z) is increasing in n € Ny . If [¢ fi du = oo, then
by the increasing property, [, gJndu=o0 forall n €N, and J: g fdu =00, so the conclusion of the MCT trivially holds.
Thus suppose that f; is integrable. Let g, = f,, — f1 forn € N and let g= f — f; . Then g, is nonnegative and increasing in
n on S, and g, — g as n — oo on S. By the ordinary MCT, [, gn du — [ggdu as n — oo. But since [, fi dy is finite,

Jsgndp=[gfadu— [sfrdpy and [gqgdu= [fdu— [¢fidp . Again since [gfidp is finite, it follows that
[s fadu— [ fdp asn— oo,

Here is the complementary result for decreasing functions.

Suppose that f,, : § — R is a measurable function whose integral exists for each n € N and that f;, is decreasing in n on S.
If [ fi dp < oo then

/lim frndp= lim/fndp (3.11.25)
S n—00 S

n—oo

Proof

The functions —f, for n &N, satisfy the hypotheses of the MCT for increasing functions and hence
Jslimy, 00 —fn dpp =1imy, o0 — [4 fr dpv . By the scaling property, [qlimy, o0 fr dp =1imy o0 [g fr dp .

The additional assumptions on the integral of f; in the last two extensions of the monotone convergence theorem are necessary. An
example is given in below.

Our next result is also a consequence of the montone convergence theorem, and is called Fatou's lemma in honor of Pierre Fatou.
Its usefulness stems from the fact that no assumptions are placed on the integrand functions, except that they be nonnegative and
measurable.

Fatou's Lemma. Suppose that f,, : S — [0, 00) is measurable for n € N, . Then

n—oo

/liminffn dp < liminf/ fadu (3.11.26)
S n—0o0 S

Proof
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Letg, =inf{fx: k€ {n,n+1,...}} forn €N, . Then g, : S — [0,00) is measurable for n € N, , g, is increasing in n,
and by definition, lim,, ., g, =liminf, .. f, . By the MCT,

n—oo

/liminffndu: lim/gnd,u (3.11.27)
S n—oo S

Butg, < fr on Sforn € N, and k € {n,n+1,...} so by the increasing property, [ g, du < [ frdp for n € N, and
ke{n,n+1,...}.Hence [gg,du <inf{ [ frdu:ke{n,n+1,...}} forn €N, and therefore

n—oo

lim [ g,dp< liminf/ fndu (3.11.28)
S n—o0 S

Given the weakness of the hypotheses, it's hardly surprising that strict inequality can easily occur in Fatou's lemma. An example is
given below.

Our next convergence result is one of the most important and is known as the dominated convergence theorem. It's sometimes also
known as Lebesgue's dominated convergence theorem in honor of Henri Lebesgue, who first developed all of this stuff in the
context of R"™. The dominated convergence theorem gives a basic condition under which we may interchange the limit and
integration operators.

Dominated Convergence Theorem. Suppose that f,, : S — R is measurable for n € N, and that lim,,_,,, f,, exists on S.
Suppose also that | f,,| < g forn € N where g: S — [0, 00) is integrable. Then

/lim frndp= lim/fndp (3.11.29)
S n—oo S

n—oo

Proof

First note that by the increasing property, | o | ful du < fsgdu < oo and hence f, is integrable for n € N . Let
f =lim,_ f». Then f is measurable, and by the increasing property again, |, e |fl dp < [ g9dp < oo, so f is integrable.

Now for n € Ny, let u, =inf{fr: k€ {n,n+1,...}} andlet v, =sup{fr: k€ {n,n+1,...}} . Then u, < f, <wv,
for n€ N,, wu, is increasing in n, v, is decreasing in n, and w, — f and v, — f as n—oo. Moreover,
Jsuwdp>— [¢gdu>—oco so by the version of the MCT above, [qu,du— [qfdu as n—oco. Similarly,
Jsvidp < [ggdp <oco, so by the MCT in (11), [qv,du— [ fdp as n— oo. But by the increasing property,
Jgundp < [¢ frndp < [gv,dp forn € Ny so by the squeeze theorem for limits, [ f, du — [ f dp asn — co.

As you might guess, the assumption that |f,| is uniformly bounded in n by an integrable function is critical. A counterexample
when this assumption is missing is given below when this assumption is missing. The dominated convergence theorem remains
true if lim,, ,o, f,, exists almost everywhere on S. The follow corollary of the dominated convergence theorem gives a condition
for the interchange of infinite sum and integral.

Suppose that f; : S — R is measurable for i € N, and that Y, | f;| is integrable. then

/SZfidu:iz_l:/Sfidu (3.11.30)

i=1
Proof

The assumption that g =, | f;| is integrable implies that g < co almost everywhere on S. In turn, this means that > >°, f;
is absolutely convergent almost everywhere on S. Let f(z) = :°; fi(z) if g(x) < co, and for completeness, let f(z) =0
if g(z) = 0o . Since only the integral of f appears in the theorem, it doesn't matter how we define f on the null set where
g=o00. Now let g, =>", fi. Then g, — f as n — oo almost everywhere on S and |g,| <g on S. Hence by the
dominated convergence theorem, fS gn dp — fS fdp as m — oco. But we know the additivity property holds for finite sums,
s0 [ogndp=>3 1, [¢fidy, and in tumn this converges to Y . [sfidu as m—oo. Thus we have

The following corollary of the dominated convergence theorem is known as the bounded convergence theorem.

https://stats.libretexts.org/@go/page/10151



https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10151?pdf

LibreTextsw

Bounded Convergence Theorem. Suppose that f,, : S — R is measurable for n € N, and there exists A € % such that
u(A) < 00, limy, s f exists on A, and | f,| is bounded in n € N on A. Then

/ lim f,dp= lim/fnd,u, (3.11.31)
A n—o0 A

n—oo

Proof

Suppose that | f,| is bounded in n on A by ¢ € (0, 00). The constant c is integrable on A since [, cdu = cu(A) < oo, and
|frn] <con A forn € N, . Thus the result follows from the dominated convergence theorem.

Again, the bounded convergence remains true if lim,, ,, f, exists almost everywhere on A. For a finite measure space (and in
particular for a probability space), the condition that (A) < co automatically holds.
Product Spaces

Suppose now that (S, ., 1) and (T, 7, v) are o-finite measure spaces. Please recall the basic facts about the product o-algebra
7 ®J of subsets of S x T, and the product measure ;4 ® v on . ® . The product measure space (S x T, Q® 7, u®v) is
the standard one that we use for product spaces. If f : S x T'— R is measurable, there are three integrals we might consider. First,
of course, is the integral of f with respect to the product measure p ® v

f(z,y)dpev)(z,y) (3.11.32)
SxT

sometimes called a double integral in this context. But also we have the nested or iterated integrals where we integrate with
respect to one variable at a time:

/(/fwyd” ) /(/f:z:ydu )du(y) (3.11.33)

How are these integrals related? Well, just as in calculus with ordinary Riemann integrals, under mild conditions the three integrals
are the same. The resulting important theorem is known as Fubini's Theorem in honor of the Italian mathematician Guido Fubini.

Fubini's Theorem. Suppose that f : S x T — R is measurable. If the double integral on the left exists, then
f(z,y)d(pev)(z,y) //fw y) dv(y) du(z //fw y) du(z) dv(y) (3.11.34)
SxT
Proof
We will show that
f(w,y)d(u®v)(w,y)=//f(m,y)dv(y)du(w) (3.11.35)
SxT SJT

The proof with the other iterated integral is symmetric. The proof proceeds in stages, paralleling the definition of the integral.

1. Suppose that f =1 4.p where A € . and B € 7. The equation holds by definition of the product measure, since the
double integral is (4 ® v)(A x B) and the iterated integral is

//leB z,y)dv(y) dv(z //IA )1p(y) dv(y) du(z )/ A(x)v(B)dp=p(A)v(B) (3.11.36)

2. Consider f =1¢ where C € ¥ ® . The double integral is (u ® v)(C) , and so as a function of C € ¥ ® 7 defines
the measure p ® v . On the other hand, the iterated integral is

//lcwy Vel il //101 ) du(y) dus(z) = / V(Cy) du(a) (3.11.37)

where C; ={y €T : (z,y) € C} is the cross-section of C' at z € S. Recall that z — v(C;) is a nonnegative,
measurable function of z, so C — [ v(C;)du(z) makes sense. Moreover, as a function of C € . ®  , this integral
also forms a measure: If {C?:i € I} is a countable, disjoint collection sets in ¥ ® Z , then {C% : ¢ € I} is a countable,
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disjoint collection of sets in 7. Cross-sections preserve set operations, so if C' = J,.; C' then C, = e C! . By the
additivity of the measure v and the integral we have

/S v(Cy) dp(x / (UCZ) du(z /Z (Ci) du(z Z/ (Ci) du(z)  (3.11.38)

el el el

To summarize, the double integral and the iterated integral define positive measures on . ® < . By (a), these measure
agree on the measurable rectangles. By the uniqueness theorem, they must be the same measure. Thus the double integral
and the iterated integral agree with integrand f = 1¢ forevery C € S ® J .

3. Suppose f =, ; ¢ilc; is a nonnegative simple function on S x T'. Thus, I is a finite index set, ¢; € [0, 00) fori € I,
and {C; : i € I} is a disjoint collection of sets in . ® . The double integral and the iterated integral satisfy the linearity
properties, and hence by (b), agree with integrand f.

4. Suppose that f : S — [0, co0) is measurable. Then there exists a sequence of nonnegative simple functions g,, n € N
such that g,, is increasing in neN; on SxT,and g, — f asn — oo on S x T . By the monotone convergence
theorem, [¢ - gn d(u®v) = [ . fd(u®v) .Butforfixedz € S,y gn(z,y) is increasing in n on T and has limit
f(z,y)as n — co. By another application of the montone convergence theorem, [ g, (z,y) dv(y) — [ f(z,y) dv(y) as
n — oco. Butx — fT gn(z,y) dv(y) is measurable and is 1ncrea51ng inn € N on S, so by yet another application of the
monotone convergence theorem, [ [ gn (2, y) dv(y ) = [ Jp F(2,y) dv(y) du(z) as n — co. But the double
integral and the iterated integral agree with integrand In by (c) for each n € N, so it follows that the double integral and
the iterated integral agree with integrand f.

5. Suppose that f : S x T — R is measurable. By (d), the double integral and the iterated integral agree with integrand
functions £ and f . Assuming that at least one of these is finite, then by the additivity property, they agree with integrand
function f = f+ —f~ .

Of course, the double integral exists, and so Fubini's theorem applies, if either f is nonnegative or integrable with respect to p @ v .
When f is nonnegative, the result is sometimes called Tonelli's theorem in honor of another Italian mathematician, Leonida Tonelli.
On the other hand, the iterated integrals may exist, and may be different, when the double integral does not exist. A
counterexample and a second counterexample are given below.

A special case of Fubini's theorem (and indeed part of the proof) is that we can compute the measure of a set in the product space
by integrating the cross-sectional measures.

IfCe®7 then
(@)= [ v(C.) dutw) = [ n(") vy (311.39)
where C, ={y €T : (z,y) € C} forz € S,and CY ={z € S: (z,y) € C} fory € T.

In particular, if C, D € ¥ ®  have the property that v(Cy) =v(D,) forallz € S, or 1 (CY) = (DY) forall y € T (that is,
C and D have the same cross-sectional measures with respect to one of the variables), then (u ®v)(C) = (1 ®v)(D) . In R? with
area, and in R® with volume (Lebesgue measure in both cases), this is known as Cavalieri's principle, named for Bonaventura
Cavalieri, yet a third Italian mathematician. Clearly, Italian mathematicians cornered the market on theorems of this sort.

A simple corollary of Fubini's theorem is that the double integral of a product function over a product set is the product of the
integrals. This result has important applications to independent random variables.

Suppose that g: S — R and h: T — R are measurable, and are either nonnegative or integrable with respect to x and v,
respectively. Then

/Sng(a:)h(y)d(uobu)(m,y): ([Sg(w)du(z)) (/Th(y) dv(y)) (3.11.40)

Recall that a discrete measure space consists of a countable set with the o-algebra of all subsets and with counting measure. In such
a space, integrals are simply sums and so Fubini's theorem allows us to rearrange the order of summation in a double sum.
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Suppose that I and J are countable and that a;; € R for ¢ € I and j € J. If the sum of the positive terms or the sum of the

negative terms is finite, then
Z “i:’zzzaz’jzzzau (3.11.41)

(4,5)eIxJ i€l jeJ jedJ iel

Often I = J =N, , and in this case, a;; can be viewed as an infinite array, with ¢ € N; the row number and j € N the column

number:
a1l a2 ais
a1 a2 a3
asi as ass

The significant point is that N is totally ordered. While there is no implied order of summation in the double sum > e @i,
+ (4,5)eN; %ij

the iterated sum » 3, > ™% a;; is obtained by summing over the rows in order and then summing the results by column in order,

while the iterated sum Z]oil > o2, a;; is obtained by summing over the columns in order and then summing the results by row in

order.

Of course, only one of the product spaces might be discrete. Theorems (9) and (15) which give conditions for the interchange of

sum and integral can be viewed as applications of Fubini's theorem, where one of the measure spaces is (S, %, ) and the other is
N with counting measure.

Examples and Applications

Probability Spaces

Suppose that (2, Z,P) is a probability space, so that  is the set of outcomes of a random experiment, % is the o-algebra of
events, and P is a probability measure on the sample space (€2, #). Suppose also that (S, %) is another measurable space, and that
X is a random variable for the experiment, taking values in .S. Of course, this simply means that X is a measurable function from
2 to S. Recall that the probability distribution of X is the probability measure Py on (S, %) defined by

Py(A)=P(Xc 4), Ac (3.11.42)

Since { X € A} is just probability notation for the inverse image of A under X, Px is simply a special case of constructing a new
positive measure from a given positive measure via a change of variables. Suppose now that 7 : § — R is measurable, so that 7(X)
is a real-valued random variable. The integral of (X) (assuming that it exists) is known as the expected value of r(X) and is of
fundamental importance. We will study expected values in detail in the next chapter. Here, we simply note different ways to write
the integral. By the change of variables formula (8) we have

/ r[X(w)] dP(w) = / r(z) dPy (z) (3.11.43)
Q

S

Now let Fy denote the distribution function of Y = r(X). By another change of variables, Y has a probability distribution Py on
R, which is also a Lebesgue-Stielties measure, named for Henri Lebesgue and Thomas Stiletjes. Recall that this probability
measure is characterized by

Py(a,b] =P(a <Y <b)=Fy(b)—Fy(a); a,beR, a<d (3.11.44)

With another application of our change of variables theorem, we can add to our chain of integrals:
[ rixe) v = [ r@)dps@) = [ varvw) = [ yaro (3.11.45)
Q s R R

Of course, the last two integrals are simply different notations for exactly the same thing. In the section on absolute continuity and
density functions, we will see other ways to write the integral.
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Counterexamples

In the first three exercises below, (R, %, A) is the standard one-dimensional Euclidean space, so mathscrR is o-algebra of
Lebesgue measurabel sets and A is Lebesgue measure.

Let f = 1[1,0) and g = 1{g o) . Show that
1.f<gonR

2 Mz eR: f(z) <g(z)} =1

3. fy FdA= [y gd) = oo

This example shows that the strict increasing property can fail when the integrals are infinite.

Let fn = 1[p,00) forn € N, . Show that

1. f, is decreasing inn € N, on R.
2. fp > 0asn— o0 onR.
3. Jg fndA =00 foreachn e N, .

This example shows that the monotone convergence theorem can fail if the first integral is infinite. It also illustrates strict
inequality in Fatou's lemma.

Let fn = 1j, p4q) forn € N, . Show that
L lim, o0 frn =0 onRso [, limy, o0 fr dpp =0
2. [z fandA =1 forn e Ny solim, o [ fndX=1
3.sup{fp:neN,} =11 ) onR

This example shows that the dominated convergence theorem can fail if | f,,| is not bounded by an integrable function. It also
shows that strict inequality can hold in Fatou's lemma.

Consider the product space [0, 1]2 with the usual Lebesgue measurable subsets and Lebesgue measure. Let f : [0, 1]2 — R be
defined by

22—y

Show that
1. f[o 2 f (@) d(z, y) does not exist.
2. fol fol f(z,y)dedy =—5
3. fol fol f(z,y)dyde =12

This example shows that Fubini's theorem can fail if the double integral does not exist.

For ¢, j € N define the sequence a;; as follows: a; =1 and a;11,; = —1 fori € N, a;; = 0 otherwise.
1. Give a;; in array form with ¢ € N, as the row number and j € N as the column number
2. Show that 3 ; ;) e @i does not exist
3. Show that Y _;°; Z]oil a; =1
4. Show that 3222, >, a;; =0

This example shows that the iterated sums can exist and be different when the double sum does not exist, a counterexample to
the corollary to Fubini's theorem for sums when the hypotheses are not satisfied.

Computational Exercises

Compute [}, f(z,y) d(z, y)in each case below for the given D C R? and f: D — R.
1 f(z,y) =e e, D =[0,00) x [0, 00)
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I 2. f(z,y) =e22e 3, D={(z,y) eR*: 0 <z <y < oo}
Integrals of the type in the last exercise are useful in the study of exponential distributions.

This page titled 3.11: Properties of the Integral is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
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