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14.8: Poisson Processes on General Spaces
        

Basic Theory

The Process

So far, we have studied the Poisson process as a model for random points in time. However there is also a Poisson model for random points in space. Some specific
examples of such “random points” are

Defects in a sheet of material.
Raisins in a cake.
Stars in the sky.

The Poisson process for random points in space can be defined in a very general setting. All that is really needed is a measure space . Thus,  is a set (the
underlying space for our random points),  is a -algebra of subsets of  (as always, the allowable sets), and  is a positive measure on  (a measure of the
size of sets). The most important special case is when  is a (Lebesgue) measurable subset of  for some ,  is the -algebra of measurable subsets of ,
and  is -dimensional Lebesgue measure. Specializing further, recall the lower dimensional spaces:

1. When ,  and  is length measure.
2. When ,  and  is area measure.
3. When ,  and  is volume measure.

Of course, the characterizations of the Poisson process on , in term of the inter-arrival times and the characterization in terms of the arrival times do not
generalize because they depend critically on the order relation on . However the characterization in terms of the counting process generalizes perfectly to our
new setting. Thus, consider a process that produces random points in , and as usual, let  denote the number of random points in . Thus  is a
random, counting measure on 

The random measure  is a Poisson process or a Poisson random measure on  with density parameter  if the following axioms are satisfied:

1. If  then  has the Poisson distribution with parameter .
2. If  is a countable, disjoint collection of sets in  then  is a set of independent random variables.

To draw parallels with the Poison process on , note that axiom (a) is the generalization of stationary, Poisson-distributed increments, and axiom (b) is the
generalization of independent increments. By convention, if  then  with probability 1, and if  then  with probability 1.
(These distributions are considered degenerate members of the Poisson family.) On the other hand, note that if  then  has support .

In the two-dimensional Poisson process, vary the width  and the rate . Note the location and shape of the probability density function of . For selected
values of the parameters, run the simulation 1000 times and compare the empirical density function to the true probability density function.

For 

1. 
2. 

Proof

These result follow of course form our previous study of the Poisson distribution. Recall that the parameter of the Poisson distribution is both the mean and the
variance.

In particular,  can be interpreted as the expected density of the random points (that is, the expected number of points in a region of unit size), justifying the name of
the parameter.

In the two-dimensional Poisson process, vary the width  and the density parameter . Note the size and location of the mean standard deviation bar of . For
various values of the parameters, run the simulation 1000 times and compare the empirical mean and standard deviation to the true mean and standard
deviation.

The Distribution of the Random Points

As before, the Poisson model defines the most random way to distribute points in space, in a certain sense. Assume that we have a Poisson process  on 
with density parameter .

Given that  contains exactly one random point, the position  of the point is uniformly distributed on .

Proof

For  with ,

Using the Poisson distributions we have

(S,S ,μ) S

S σ S μ (S,S )
S R

d d ∈ N+ S σ S

μ = λd d

d = 1 S ⊆R λ1

d = 2 S ⊆R
2 λ2

d = 3 S ⊆R
3 λ3

[0, ∞)
[0, ∞)

S N(A) A ∈ S N

(S,S )

N S r > 0

A ∈ S N(A) rμ(A)
{ : i ∈ I}Ai S {N( ) : i ∈ I}Ai

[0, ∞)
μ(A) = 0 N(A) = 0 μ(A) = ∞ N(A) = ∞

0 < μ(A) < ∞ N(A) N

w r N

A ⊆ D

E [N(A)] = rμ(A)
var [N(A)] = rμ(A)

r

w r ± N

N (S,S ,μ)
r ∈ (0, ∞)

A ∈ S X A

B ∈ S B ⊆ A

P [N(B) = 1 ∣ N(A) = 1] = = =
P [N(B) = 1,N(A) = 1]

P [N(A) = 1]

P [N(B) = 1,N(A ∖B) = 0]

P [N(A) = 1]

P [N(B) = 1]P [N(A ∖B) = 0]

P [N(A) = 1]
(14.8.1)

P [N(B) = 1 ∣ N(A) = 1] = =
exp[−rμ(B)] [rμ(B)] exp[−rμ(A ∖B)]

exp[−rμ(A)] [rμ(A)]

μ(B)

μ(A)
(14.8.2)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10273?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/14%3A_The_Poisson_Process/14.08%3A_Poisson_Processes_on_General_Spaces


14.8.2 https://stats.libretexts.org/@go/page/10273

As a function of , this is the uniform distribution on  (with respect to ).

More generally, if  contains  points, then the positions of the points are independent and each is uniformly distributed in .

Suppose that  and . For , the conditional distribution of  given  is the binomial distribution with trial parameter 
and success parameter .

Proof

For ,

Using the Poisson distribtuions,

Canceling factors and letting , we have

Thus, given , each of the  random points falls into , independently, with probability , regardless of the density parameter .

More generally, suppose that  and that  is partitioned into  subsets  in . Then the conditional distribution of 
 given  is the multinomial distribution with parameters  and , where  for 

.

Thinning and Combining

Suppose that  is a Poisson random process on  with density parameter . Thinning (or splitting) this process works just like thinning the
Poisson process on . Specifically, suppose that the each random point, independently of the others is either type 1 with probability  or type 0 with probability

, where  is a new parameter. Let  and  denote the random counting measures associated with the type 1 and type 0 points, respectively. That is,
 is the number of type  random points in , for  and .

 and  are independent Poisson processes on  with density parameters  and , respectively.

Proof

The proof is like the one for the Poisson process on . For ,

But given , the number of type 1 points  has the binomial distribution with parameters  and . Hence letting  to simplify the
notation, we have

It follows from the factorization theorem that  has the Poisson distribution with parameter ,  has the Poisson distribution with parameter 
, and  and  are independent. Next suppose that  is a countable, disjoint collection of sets in . Then 

and  are each independent sets of random variables, and the two sets are independent of each other.

This result extends naturally to  types. As in the standard case, combining independent Poisson processes produces a new Poisson process, and the density
parameters add.

Suppose that  and  are independent Poisson processes on , with density parameters  and , respectively. Then the process obtained by
combining the random points is also a Poisson process on  with density parameter .

Proof

The new random measure, of course, is simply . Thus for , . But  has the Poisson distribution with
parameter  for , and the variables are independent, so  has the Poisson distribution with parameter 

. Next suppose that  is a countable, disjoint collection of sets in . Then 
 is a set of independent random variables.

Applications and Special Cases

Non-homogeneous Poisson Processes

A non-homogeneous Poisson process on  can be thought of simply as a Poisson process on  with respect to a measure that is not the standard Lebesgue
measure  on . Thus suppose that  is piece-wise continuous with , and let
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Consider the non-homogeneous Poisson process with rate function  (and hence mean function ). Recall that the Lebesgue-Stieltjes measure on  associated
with  (which we also denote by ) is defined by the condition

Equivalently,  is the measure that is absolutely continuous with respect to , with density function . That is, if  is a measurable subset of  then

The non-homogeneous Poisson process on  with rate function  is the Poisson process on  with respect to the measure .

Proof

This follows directly from the definitions. If  denotes the counting process associated with the non-homogeneous Poisson process, then  has stationary
increments, and for  with ,  has the Poisson distribution with parameter .

Nearest Points in 

In this subsection, we consider a rather specialized topic, but one that is fun and interesting. Consider the Poisson process on  with density parameter 
, where as usual,  is the -algebra of Lebesgue measurable subsets of , and  is -dimensional Lebesgue measure. We use the usual Euclidean norm on

:

For , let  denote the ball of radius  centered at the origin. Recall that  where

is the measure of the unit ball in , and where  is the gamma function. Of course, , , .

For , let , the number of random points in the ball , or equivalently, the number of random points within distance  of the origin. From our
formula for the measure of  above, it follows that  has the Poisson distribution with parameter .

Now let  and for  let  denote the distance of the th closest random point to the origin. Note that  is analogous to the th arrival time for the
Poisson process on . Clearly the processes  and  are inverses of each other in the sense that  if and only if 

. Both of these events mean that there are at least  random points within distance  of the origin.

Distributions

1.  has the gamma distribution with shape parameter  and rate parameter .
2.  has probability density function  given by

Proof

Let .

1. From the inverse relationship above,

But  has the Poisson distribution with parameter  so

which we know is the gamma CDF with parameters  and 
2. Let  denote the gamma PDF with parameters  and  and let . From the standard change of variables formula,

Substituting and simplifying gives the result.

 are independent for  and each has the exponential distribution with rate parameter .

Computational Exercises

Suppose that defects in a sheet of material follow the Poisson model with an average of 1 defect per 2 square meters. Consider a 5 square meter sheet of
material.
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1. Find the probability that there will be at least 3 defects.
2. Find the mean and standard deviation of the number of defects.

Answer
1. 0.4562
2. 2.5, 1.581

Suppose that raisins in a cake follow the Poisson model with an average of 2 raisins per cubic inch. Consider a slab of cake that measures 3 by 4 by 1 inches.

1. Find the probability that there will be at no more than 20 raisins.
2. Find the mean and standard deviation of the number of raisins.

Answer
1. 0.2426
2. 24, 4.899

Suppose that the occurrence of trees in a forest of a certain type that exceed a certain critical size follows the Poisson model. In a one-half square mile region of
the forest there are 40 trees that exceed the specified size.

1. Estimate the density parameter.
2. Using the estimated density parameter, find the probability of finding at least 100 trees that exceed the specified size in a square mile region of the forest

Answer
1.  per square mile
2. 0.0171

Suppose that defects in a type of material follow the Poisson model. It is known that a square sheet with side length 2 meters contains one defect. Find the
probability that the defect is in a circular region of the material with radius  meter.

Answer

0.0491

Suppose that raisins in a cake follow the Poisson model. A 6 cubic inch piece of the cake with 20 raisins is divided into 3 equal parts. Find the probability that
each piece has at least 6 raisins.

Answer

0.2146

Suppose that defects in a sheet of material follow the Poisson model, with an average of 5 defects per square meter. Each defect, independently of the others is
mild with probability 0.5, moderate with probability 0.3, or severe with probability 0.2. Consider a circular piece of the material with radius 1 meter.

1. Give the mean and standard deviation of the number of defects of each type in the piece.
2. Find the probability that there will be at least 2 defects of each type in the piece.

Answer
1. Mild: 7.854, 2.802; Moderate: 4.712, 2.171; Severe: 3.142, 1.772
2. 0.7762
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