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6.8: Special Properties of Normal Samples
         

Random samples from normal distributions are the most important special cases of the topics in this chapter. As we will see, many
of the results simplify significantly when the underlying sampling distribution is normal. In addition we will derive the
distributions of a number of random variables constructed from normal samples that are of fundamental important in inferential
statistics.

The One Sample Model
Suppose that  is a random sample from the normal distribution with mean  and standard deviation 

. Recall that the term random sample means that  is a sequence of independent, identically distributed random
variables. Recall also that the normal distribution has probability density function

In the notation that we have used elsewhere in this chapter,  (equivalently, the skewness of the normal
distribution is 0) and  (equivalently, the kurtosis of the normal distribution is 3). Since the sample (and
in particular the sample size ) is fixed is this subsection, it will be suppressed in the notation.

The Sample Mean

First recall that the sample mean is

 is normally distributed with mean and variance given by

1. 
2. 

Proof

This follows from basic properties of the normal distribution. Recall that the sum of independent normally distributed variables
also has a normal distribution, and a linear transformation of a normally distributed variable is also normally distributed. The
mean and variance of  hold in general, and were derived in the section on the Law of Large Numbers.

Of course, by the central limit theorem, the distribution of  is approximately normal, if  is large, even if the underlying
sampling distribution is not normal. The standard score of  is given as follows:

 has the standard normal distribution.

The standard score  associated with the sample mean  plays a critical role in constructing interval estimates and hypothesis
tests for the distribution mean  when the distribution standard deviation  is known. The random variable  will also appear in
several derivations in this section.

The Sample Variance

The main goal of this subsection is to show that certain multiples of the two versions of the sample variance that we have studied
have chi-square distributions. Recall that the chi-square distribution with  degrees of freedom has probability density
function
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and has mean  and variance . The moment generating function is

The most important result to remember is that the chi-square distribution with  degrees of freedom governs , where 
 is a sequence of independent, standard normal random variables.

Recall that if  is known, a natural estimator of the variance  is the statistic

Although the assumption that  is known is almost always artificial,  is very easy to analyze and it will be used in some of the
derivations below. Our first result is the distribution of a simple multiple of . Let

 has the chi-square distribution with  degrees of freedom.

Proof

Note that

and the terms in the sum are independent standard normal variables.

The variable  associated with the statistic  plays a critical role in constructing interval estimates and hypothesis tests for the
distribution standard deviation  when the distribution mean  is known (although again, this assumption is usually not realistic).

The mean and variance of  are

1. 
2. 

Proof

These results follow from the chi-square distribution of  and standard properties of expected value and variance.

As an estimator of , part (a) means that  is unbiased and part (b) means that  is consistent. Of course, these moment
results are special cases of the general results obtained in the section on Sample Variance. In that section, we also showed that 
and  are uncorrelated if the underlying sampling distribution has skewness 0 ( ), as is the case here.

Recall now that the standard version of the sample variance is the statistic

The sample variance  is the usual estimator of  when  is unknown (which is usually the case). We showed earlier that in
general, the sample mean  and the sample variance  are uncorrelated if the underlying sampling distribution has skewness 0 (

). It turns out that if the sampling distribution is normal, these variables are in fact independent, a very important and useful
property, and at first blush, a very surprising result since  appears to depend explicitly on .

The sample mean  and the sample variance  are independent.

Proof

The proof is based on the vector of deviations from the sample mean. Let
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Note that  can be written as a function of  since . Next,  and the vector  have a joint
multivariate normal distribution. We showed earlier that  and  are uncorrelated for each , and hence it follows that 

 and  are independent. Finally, since  is a function of , it follows that  and  are independent.

We can now determine the distribution of a simple multiple of the sample variance . Let

 has the chi-square distribution with  degrees of freedom.

Proof

We first show that  where  is the chi-square variable associated with  and where  is the standard score
associated with . To see this, note that

In the right side of the last equation, the first term is . The second term is 0 because . The last term is 
. Now, from the result above,  has the chi-square distribution with  degrees of freedom. and of course 

 has the chi-square distribution with 1 degree of freedom. From the previous result,  and  are independent. Recall that
the moment generating function of a sum of independent variables is the product of the MGFs. Thus, taking moment
generating functions in the equation  gives

Solving we have  for  and therefore  has the chi-square distribution with  degrees
of freedom.

The variable  associated with the statistic  plays a critical role in constructing interval estimates and hypothesis tests for the
distribution standard deviation  when the distribution mean  is unknown (almost always the case).

The mean and variance of  are

1. 
2. 

Proof

These results follow from the chi-square distribution of  and standard properties of expected value and variance.

As before, these moment results are special cases of the general results obtained in the section on Sample Variance. Again, as an
estimator of , part (a) means that  is unbiased, and part (b) means that  is consistent. Note also that  is larger than 

 (not surprising), by a factor of .

In the special distribution simulator, select the chi-square distribution. Vary the degree of freedom parameter and note the
shape and location of the probability density function and the mean, standard deviation bar. For selected values of the
parameter, run the experiment 1000 times and compare the empirical density function and moments to the true probability
density function and moments.

The covariance and correlation between the special sample variance and the standard sample variance are

1. 
2. 
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These results follows from general results obtained in the section on sample variance and the fact that .

Note that the correlation does not depend on the parameters  and , and converges to 1 as ,

The  Variable

Recall that the Student  distribution with  degrees of freedom has probability density function

where  is the appropriate normalizing constant. The distribution has mean 0 if  and variance  if . In this
subsection, the main point to remember is that the  distribution with  degrees of freedom is the distribution of

where  has the standard normal distribution;  has the chi-square distribution with  degrees of freedom; and  and  are
independent. Our goal is to derive the distribution of

Note that  is similar to the standard score  associated with , but with the sample standard deviation  replacing the
distribution standard deviation . The variable  plays a critical role in constructing interval estimates and hypothesis tests for the
distribution mean  when the distribution standard deviation  is unknown.

As usual, let  denote the standard score associated with the sample mean , and let  denote the chi-square variable
associated with the sample variance . Then

and hence  has the student  distribution with  degrees of freedom.

Proof

In the definition of , divide the numerator and denominator by . The numerator is then  and
the denominator is . Since  and  are independent,  has the standard normal distribution, and  has
the chi-squre distribution with  degrees of freedom, it follows that  has the student  distribution with  degrees of
freedom.

In the special distribution simulator, select the  distribution. Vary the degree of freedom parameter and note the shape and
location of the probability density function and the mean standard deviation bar. For selected values of the parameters, run the
experiment 1000 times and compare the empirical density function and moments to the distribution density function and
moments.

The Two Sample Model
Suppose that  is a random sample of size  from the normal distribution with mean  and standard
deviation , and that  is a random sample of size  from the normal distribution with mean 
and standard deviation . Finally, suppose that  and  are independent. Of course, all of the results above in the one
sample model apply to  and  separately, but now we are interested in statistics that are helpful in inferential procedures that
compare the two normal distributions. We will use the basic notation established above, but we will indicate the dependence on the
sample.

The two-sample (or more generally the multi-sample model) occurs naturally when a basic variable in the statistical experiment is
filtered according to one or more other variable (often nominal variables). For example, in the cicada data, the weights of the male
cicadas and the weights of the female cicadas may fit observations from the two-sample normal model. The basic variable weight is
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filtered by the variable gender. If weight is filtered by gender and species, we might have observations from the 6-sample normal
model.

The Difference in the Sample Means

We know from our work above that  and  have normal distributions. Moreover, these sample means are independent
because the underlying samples  and  are independent. Hence, it follows from a basic property of the normal distribution that
any linear combination of  and  will be normally distributed as well. For inferential procedures that compare the
distribution means  and , the linear combination that is most important is the difference.

 has a normal distribution with mean and variance given by

1. 
2. 

Hence the standard score

has the standard normal distribution. This standard score plays a fundamental role in constructing interval estimates and hypothesis
test for the difference  when the distribution standard deviations  and  are known.

Ratios of Sample Variances

Next we will show that the ratios of certain multiples of the sample variances (both versions) of  and  have  distributions.
Recall that the  distribution with  degrees of freedom in the numerator and  degrees of freedom in the
denominator is the distribution of

where  has the chi-square distribution with  degrees of freedom;  has the chi-square distribution with  degrees of freedom;
and  and  are independent. The  distribution is named in honor of Ronald Fisher and has probability density function

where  is the appropriate normalizing constant. The mean is  if , and the variance is  if .

The random variable given below has the  distribution with  degrees of freedom in the numerator and  degrees of
freedom in the denominator:

Proof

Using the notation in the subsection on the special sample variances, note that  and 
. The result then follows immediately since  and  are independent chi-square variables

with  and  degrees of freedom, respectivley.

The random variable given below has the  distribution with  degrees of freedom in the numerator and  degrees of
freedom in the denominator:

Proof
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Using the notation in the subsection on the standard sample variances, note that  and 
. The result then follows immediately since  and  are independent chi-square

variables with  and  degrees of freedom, respectively.

These variables are useful for constructing interval estimates and hypothesis tests of the ratio of the standard deviations . The
choice of the  variable depends on whether the means  and  are known or unknown. Usually, of course, the means are
unknown and so the statistic in above is used.

In the special distribution simulator, select the  distribution. Vary the degrees of freedom parameters and note the shape and
location of the probability density function and the mean standard deviation bar. For selected values of the parameters, run the
experiment 1000 times and compare the empirical density function and moments to the true distribution density function and
moments.

The  Variable

Our final construction in the two sample normal model will result in a variable that has the student  distribution. This variable
plays a fundamental role in constructing interval estimates and hypothesis test for the difference  when the distribution
standard deviations  and  are unknown. The construction requires the additional assumption that the distribution standard
deviations are the same: . This assumption is reasonable if there is an inherent variability in the measurement variables that
does not change even when different treatments are applied to the objects in the population.

Note first that the standard score associated with the difference in the sample means becomes

To construct our desired variable, we first need an estimate of . A natural approach is to consider a weighted average of the
sample variances  and , with the degrees of freedom as the weight factors (this is called the pooled estimate of .
Thus, let

The random variable  given below has the chi-square distribution with  degrees of freedom:

Proof

The variable can be expressed as the sum of independent chi-square variables.

The variables  and  are independent.

Proof

The following pairs of variables are independent:  and ;  and ;  and 

The random variable  given below has the student  distribution with  degrees of freedom.

Proof

The random variable can be written as  where  is the the standard normal variable given above and  is
the chi-square variable given above. Moreover,  and  are independent by the previous result.
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The Bivariate Sample Model
Suppose now that  is a random sample of size  from the bivariate normal distribution with
means  and , standard deviations  and , and correlation . Of course, 

 is a random sample of size  from the normal distribution with mean  and standard deviation , and 
 is a random sample of size  from the normal distribution with mean  and standard deviation , so the

results above in the one sample model apply to  and  individually. Thus our interest in this section is in the relation between
various  and  statistics and properties of sample covariance.

The bivariate (or more generally multivariate) model occurs naturally when considering two (or more) variables in the statistical
experiment. For example, the heights of the fathers and the heights of the sons in Pearson's height data may well fit observations
from the bivariate normal model.

In the notation that we have used previously, recall that , , 
, , . and .

The data vector  has a multivariate normal distribution.

1. The mean vector has a block form, with each block being .

2. The variance-covariance matrix has a block-diagonal form, with each block being .

Proof

This follows from standard results for the multivariate normal distribution. Of course the blocks in parts (a) and (b) are simply
the mean and variance-covariance matrix of a single observation .

Sample Means

 has a bivariate normal distribution. The covariance and correlation are

1. 
2. 

Proof

The bivariate normal distribution follows from previous result since  can be obtained from the data vector by
a linear transformation. Parts (a) and (b) follow from our previous general results.

Of course, we know the individual means and variances of  and  from the one-sample model above. Hence we know
the complete distribution of .

Sample Variances

The covariance and correlation between the special sample variances are

1. 
2. 

Proof

These results follow from our previous general results and the special form of , , and .

The covariance and correlation between the standard sample variances are

1. 
2. 

Proof

These results follow from our previous general results and the special form of , , , and .
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Sample Covariance

If  and  are known (again usually an artificial assumption), a natural estimator of the distribution covariance  is the special
version of the sample covariance

The mean and variance of  are

1. 
2. 

Proof

These results follow from our previous general results and the special form of  and .

If  and  are unknown (again usually the case), then a natural estimator of the distribution covariance  is the standard sample
covariance

The mean and variance of the sample variance are

1. 
2. 

Proof

These results follow from our previous general results and the special form of  and .

Computational Exercises
We use the basic notation established above for samples  and , and for the statistics , , , , and so forth.

Suppose that the net weights (in grams) of 25 bags of M&Ms form a random sample  from the normal distribution with
mean 50 and standard deviation 4. Find each of the following:

1. The mean and standard deviation of .
2. The mean and standard deviation of .
3. The mean and standard deviation of .
4. The mean and standard deviation of .
5. .
6. .

Answer
1. 
2. 
3. 
4. 
5. 
6. 

Suppose that the SAT math scores from 16 Alabama students form a random sample  from the normal distribution with mean
550 and standard deviation 20, while the SAT math scores from 25 Georgia students form a random sample  from the normal
distribution with mean 540 and standard deviation 15. The two samples are independent. Find each of the following:

1. The mean and standard deviation of .
2. The mean and standard deviation of .
3. The mean and standard deviation of .
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4. .
5. The mean and standard deviation of .
6. The mean and standard deviation of .
7. The mean and standard deviation of 
8. .

Answer
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
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