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2.3: Probability Measures
   

This section contains the final and most important ingredient in the basic model of a random experiment. If you are a new student
of probability, skip the technical detials.

Definitions and Interpretations
Suppose that we have a random experiment with sample space , so that  is the set of outcomes of the experiment and  is
the collection of events. When we run the experiment, a given event  either occurs or does not occur, depending on whether the
outcome of the experiment is in  or not. Intuitively, the probability of an event is a measure of how likely the event is to occur
when we run the experiment. Mathematically, probability is a function on the collection of events that satisfies certain axioms.

Definition

A probability measure (or probability distribution)  on the sample space  is a real-valued function defined on the
collection of events  that satisifes the following axioms:

1.  for every event .
2. .
3. If  is a countable, pairwise disjoint collection of events then

Details

Recall that the collection of events  is required to be a -algebra, which guarantees that the union of the events in (c) is itself
an event. A probability measure is a special case of a positive measure.

Axiom (c) is known as countable additivity, and states that the probability of a union of a finite or countably infinite collection of
disjoint events is the sum of the corresponding probabilities. The axioms are known as the Kolmogorov axioms, in honor of Andrei
Kolmogorov who was the first to formalize probability theory in an axiomatic way. More informally, we say that  is a probability
measure (or distribution) on , the collection of events  usually being understood.

Axioms (a) and (b) are really just a matter of convention; we choose to measure the probability of an event with a number between
0 and 1 (as opposed, say, to a number between  and ). Axiom (c) however, is fundamental and inescapable. It is required for
probability for precisely the same reason that it is required for other measures of the “size” of a set, such as cardinality for finite
sets, length for subsets of , area for subsets of , and volume for subsets of . In all these cases, the size of a set that is
composed of countably many disjoint pieces is the sum of the sizes of the pieces.

Figure :The union of 4 disjoint events

On the other hand, uncountable additivity (the extension of axiom (c) to an uncountable index set ) is unreasonable for probability,
just as it is for other measures. For example, an interval of positive length in  is a union of uncountably many points, each of
which has length 0.

We now have defined the three essential ingredients for the model a random experiment:

A probability space  consists of

1. A set of outcomes 
2. A collection of events 
3. A probability measure  on the sample space 
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Details

Again, the collection of events  is a -algebra, so that the sample space  is a measurable space. The probability space
 is a special case of a positive measure space.

The Law of Large Numbers

Intuitively, the probability of an event is supposed to measure the long-term relative frequency of the event—in fact, this concept
was taken as the definition of probability by Richard Von Mises. Here are the relevant definitions:

Suppose that the experiment is repeated indefinitely, and that  is an event. For ,

1. Let  denote the number of times that  occurred. This is the frequency of  in the first  runs.
2. Let . This is the relative frequency or empirical probability of  in the first  runs.

Note that repeating the original experiment indefinitely creates a new, compound experiment, and that  and  are
random variables for the new experiment. In particular, the values of these variables are uncertain until the experiment is run 
times. The basic idea is that if we have chosen the correct probability measure for the experiment, then in some sense we expect
that the relative frequency of an event should converge to the probability of the event. That is,

regardless of the uncertainty of the relative frequencies on the left. The precise statement of this is the law of large numbers or law
of averages, one of the fundamental theorems in probability. To emphasize the point, note that in general there will be lots of
possible probability measures for an experiment, in the sense of the axioms. However, only the probability measure that models the
experiment correctly will satisfy the law of large numbers.

Given the data from  runs of the experiment, the empirical probability function  is a probability measure on .

Proof

If we run the experiment  times, we generate  points in  (although of course, some of these points may be the same). The
function  for  is simply counting measure corresponding to the  points. Clearly  for an event 

 and . Countable additivity holds by the addition rule for counting measure.

The Distribution of a Random Variable

Suppose now that  is a random variable for the experiment, taking values in a set . Recall that mathematically,  is a function
from  into , and  denotes the event  for . Intuitively,  is a variable of interest for the
experiment, and every meaningful statement about  defines an event.

The function  for  defines a probability measure on .

Proof

Figure : A set  corresponds to the event 

The probability measure in (5) is called the probability distribution of , so we have all of the ingredients for a new probability
space.

A random variable  with values in  defines a new probability space:

1.  is the set of outcomes.
2. Subsets of  are the events.
3. The probability distribution of  is the probability measure on .
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This probability space corresponds to the new random experiment in which the outcome is . Moreover, recall that the outcome of
the experiment itself can be thought of as a random variable. Specifically, if we let  we let  be the identity function on ,
so that  for . Then  is a random variable with values in  and  for each event . Thus, every
probability measure can be thought of as the distribution of a random variable.

Constructions

Measures

How can we construct probability measures? As noted briefly above, there are other measures of the “size” of sets; in many cases,
these can be converted into probability measures. First, a positive measure  on the sample space  is a real-valued function
defined on  that satisfies axioms (a) and (c) in (1), and then  is a measure space. In general,  is allowed to be
infinite. However, if  is positive and finite (so that  is a finite positive measure), then  can easily be re-scaled into a
probability measure.

If  is a positive measure on  with  then  defined below is a probability measure.

Proof
1.  since  and .
2. 
3. If  is a countable collection of disjoint events then

In this context,  is called the normalizing constant. In the next two subsections, we consider some very important special
cases.

Discrete Distributions

In this discussion, we assume that the sample space  is discrete. Recall that this means that the set of outcomes  is
countable and that  is the collection of all subsets of , so that every subset is an event. The standard measure on a
discrete space is counting measure , so that  is the number of elements in  for . When  is finite, the probability
measure corresponding to counting measure as constructed in above is particularly important in combinatorial and sampling
experiments.

Suppose that  is a finite, nonempty set. The discrete uniform distribution on  is given by

The underlying model is refereed to as the classical probability model, because historically the very first problems in probability
(involving coins and dice) fit this model.

In the general discrete case, if  is a probability measure on , then since  is countable, it follows from countable additivity that 
 is completely determined by its values on the singleton events. Specifically, if we define  for , then 

 for every . By axiom (a),  for  and by axiom (b), . Conversely, we can
give a general construction for defining a probability measure on a discrete space.

Suppose that . Then  defined by  for  is a positive measure on . If 
 then  defined as follows is a probability measure on .
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Proof

Trivially  for  since  is nonnegative. The countable additivity property holds since the terms in a sum of
nonnegative numbers can be rearranged in any way without altering the sum. Thus let  be a countable collection of
disjoint subsets of , and let  then

If  then  is a probability measure by scaling result above.

In the context of our previous remarks,  for . Distributions of this type are said to be
discrete. Discrete distributions are studied in detail in the chapter on Distributions.

If  is finite and  is a constant function, then the probability measure  associated with  is the discrete uniform distribution
on .

Proof

Suppose that  for  where . Then  and hence  for 
.

Continuous Distributions

The probability distributions that we will construct next are continuous distributions on  for  and require some calculus.

For , the standard measure  on  is given by

In particular,  is the length of ( A \subseteq \R \),  is the area of , and  is the volume of 
.

Details

Technically,  is Lebesgue measure on the measurable subsets of , named for Henri Lebesgue. The representation above in
terms of the ordinary Riemann integral of calculus is valid for the subsets that typically occur in applications. As usual, all
subsets of  in the discussion below are assumed to be mearuable.

When ,  is sometimes called the -dimensional volume of . The probability measure associated with  on a
set with positive, finite -dimensional volume is particularly important.

Suppose that  with . The continuous uniform distribution on  is defined by

Note that the continuous uniform distribution is analogous to the discrete uniform distribution defined in (8), but with Lebesgue
measure  replacing counting measure . We can generalize this construction to produce many other distributions.

Suppose again that  and that . Then  defined by  for  is a positive measure
on . If , then  defined as follows is a probability measure on .

Proof

Technically, the integral in the definition of  is the Lebesgue integral, but this integral agrees with the ordinary Riemann
integral of calculus when  and  are sufficiently nice. The function  is assumed to be measurable and is the density function
of  with respect to . Technicalities aside, the proof is straightforward:
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1.  for  since  is nonnegative.
2. If  is a countable disjoint collection of subsets of  and , then by a basic property of the integral,

If  then  is a probability measure on  by the scaling result above.

Distributions of this type are said to be continuous. Continuous distributions are studied in detail in the chapter on Distributions.
Note that the continuous distribution above is analogous to the discrete distribution in (9), but with integrals replacing sums. The
general theory of integration allows us to unify these two special cases, and many others besides.

Rules of Probability

Basic Rules

Suppose again that we have a random experiment modeled by a probability space , so that  is the set of outcomes, 
the collection of events, and  the probability measure. In the following theorems,  and  are events. The results follow easily
from the axioms of probability in (1), so be sure to try the proofs yourself before reading the ones in the text.

. This is known as the complement rule.

Proof

Figure : The complement rule

.

Proof

This follows from the the complement rule applied to .

. This is known as the difference rule.

Proof

Figure : The difference rule

If  then .

Proof

This result is a corollary of the difference rule. Note that .

Recall that if  we sometimes write  for the set difference, rather than . With this notation, the difference rule
has the nice form .

If  then .

Proof

This result is a corollary of the previous result. Note that  and hence .
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A ⊆ B P(B∖A) = P(B) −P(A)

A∩B = A

A ⊆ B B−A B∖A
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Thus,  is an increasing function, relative to the subset partial order on the collection of events , and the ordinary order on . In
particular, it follows that  for any event .

Figure : The increasing property

Suppose that .

1. If  then .
2. If  then .

Proof

This follows immediately from the increasing property in the last theorem.

The Boole and Bonferroni Inequalities

The next result is known as Boole's inequality, named after George Boole. The inequality gives a simple upper bound on the
probability of a union.

If  is a countable collection of events then

Proof

Figure : Boole's inequality

Intuitively, Boole's inequality holds because parts of the union have been measured more than once in the sum of the probabilities
on the right. Of course, the sum of the probabilities may be greater than 1, in which case Boole's inequality is not helpful. The
following result is a simple consequence of Boole's inequality.

If  is a countable collection of events with  for each , then

An event  with  is said to be null. Thus, a countable union of null events is still a null event.

The next result is known as Bonferroni's inequality, named after Carlo Bonferroni. The inequality gives a simple lower bound for
the probability of an intersection.

If  is a countable collection of events then

Proof

By De Morgan's law, . Hence by Boole's inequality,

P S R

P(A) ≤ 1 A

2.3.5

A ⊆ B

P(B) = 0 P(A) = 0
P(A) = 1 P(B) = 1

{ : i ∈ I}Ai
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i∈I

Ai ∑
i∈I

Ai (2.3.12)

2.3.6

{ : i ∈ I}Ai P( ) = 0Ai i ∈ I
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Using the complement rule again gives Bonferroni's inequality.

Of course, the lower bound in Bonferroni's inequality may be less than or equal to 0, in which case it's not helpful. The following
result is a simple consequence of Bonferroni's inequality.

If  is a countable collection of events with  for each , then

An event  with  is sometimes called almost sure or almost certain. Thus, a countable intersection of almost sure events
is still almost sure.

Suppose that  and  are events in an experiment.

1. If , then .
2. If , then .

Proof
1. Using the increasing property and Boole's inequality we have 
2. Using the increasing property and Bonferonni's inequality we have 

The Partition Rule

Suppose that  is a countable collection of events that partition . Recall that this means that the events are disjoint
and their union is . For any event ,

Proof

Figure : The partition rule
Naturally, this result is useful when the probabilities of the intersections are known. Partitions usually arise in connection with a
random variable. Suppose that  is a random variable taking values in a countable set , and that  is an event. Then

In this formula, note that the comma acts like the intersection symbol in the previous formula.

The Inclusion-Exclusion Rule

The inclusion-exclusion formulas provide a method for computing the probability of a union of events in terms of the probabilities
of the various intersections of the events. The formula is useful because often the probabilities of the intersections are easier to
compute. Interestingly, however, the same formula works for computing the probability of an intersection of events in terms of the
probabilities of the various unions of the events. This version is rarely stated, because it's simply not that useful. We start with two
events.

If  are events thatn .

P[ ] ≤ P( ) = [1 −P( )]( )⋂
i∈I

Ai

c

∑
i∈I

Ac
i ∑

i∈I

Ai (2.3.15)

{ : i ∈ I}Ai P( ) = 1Ai i ∈ I

P( ) = 1⋂
i∈I

Ai (2.3.16)

A P(A) = 1

A B

P(A) = 0 P(A∪B) = P(B)
P(A) = 1 P(A∩B) = P(B)

P(B) ≤ P(A∪B) ≤ P(A) +P(B) = P(B)
P(B) = P(A) +P(B) −1 ≤ P(A∩B) ≤ P (B)

{ : i ∈ I}Ai S

S B

P(B) = P( ∩B)∑
i∈I

Ai (2.3.17)

2.3.7

X T B

P(B) = P(X = x,B)∑
x∈T

(2.3.18)

A, B P(A∪B) = P(A) +P(B) −P(A∩B)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10131?pdf


2.3.8 https://stats.libretexts.org/@go/page/10131

Proof

Figure : The probability of the union of two events

Here is the complementary result for the intersection in terms of unions:

If  are events then .

Proof

This follows immediately from the previous formula be rearranging the terms

Next we consider three events.

If  are events then 
.

Analytic Proof

First note that . The event in parentheses and the event in square brackets are disjoint.
Thus, using the additivity axiom and the difference rule,

Using the inclusion-exclusion rule for two events (twice) we have

Proof by accounting

Figure : The probability of the union of three events

Here is the complementary result for the probability of an intersection in terms of the probabilities of the unions:

If  are events then 
.

Proof

This follows from solving for  in the previous result, and then using the result for two events on , 
, and .

The inclusion-exclusion formulas for two and three events can be generalized to  events. For the remainder of this discussion,
suppose that  is a collection of events where  is an index set with .

The general inclusion-exclusion formula for the probability of a union.

Proof by induction

The proof is by induction on . We have already established the formula for  and . Thus, suppose that the
inclusion-exclusion formula holds for a given , and suppose that  is a sequence of  events. Then

2.3.8

A, B P(A∩B) = P(A) +P(B) −P(A∪B)

A, B, C
P(A∪B∪C) = P(A) +P(B) +P(C) −P(A∩B) −P(A∩C) −P(B∩C) +P(A∩B∩C)

A∪B∪C = (A∪B) ∪ [C ∖ (A∪B)]

P(A∪B∪C) = P(A∪B) +P(C) −P [C ∩ (A∪B)] = P(A∪B) +P(C) −P [(C ∩A) ∪ (C ∩B)] (2.3.19)

P(A∪B∪C) = P(A) +P(B) −P(A∩B) +P(C) −[P(C ∩A) +P(C ∩B) −P(A∩B∩C)] (2.3.20)

2.3.8

A, B, C
P(A∩B∩C) = P(A) +P(B) +P(C) −P(A∪B) −P(A∪C) −P(B∪C) +P(A∪B∪C)

P(A∩B∩C) P(A∩B)
P(B∩C) P(A∩C)

n

{ : i ∈ I}Ai I #(I) = n

P( ) = (−1 P( )⋃
i∈I

Ai ∑
k=1

n

)k−1 ∑
J⊆I, #(J)=k

⋂
j∈J

Aj (2.3.21)

n n = 2 n = 3
n ( , , … , )A1 A2 An+1 n+1
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As before, the event in parentheses and the event in square brackets are disjoint. Thus using the additivity axiom, the difference
rule, and the distributive rule we have

By the induction hypothesis, the inclusion-exclusion formula holds for each union of  events on the right. Applying the
formula and simplifying gives the inclusion-exclusion formula for  events.

Proof by accounting

This is the general version of the same argument we used above for 3 events.  is the union of the disjoint events of the
form  where  is a nonempty subset of the index set . In the inclusion-exclusion formula, the

event corresponding to a given  is measured in  for every nonempty . Suppose that .

Accounting for the positive and negative signs, the net measurement is .

Here is the complementary result for the probability of an intersection in terms of the probabilities of the various unions:

The general inclusion-exclusion formula for the probability of an intersection.

The general inclusion-exclusion formulas are not worth remembering in detail, but only in pattern. For the probability of a union,
we start with the sum of the probabilities of the events, then subtract the probabilities of all of the paired intersections, then add the
probabilities of the third-order intersections, and so forth, alternating signs, until we get to the probability of the intersection of all
of the events.

The general Bonferroni inequalities (for a union) state that if sum on the right in the general inclusion-exclusion formula is
truncated, then the truncated sum is an upper bound or a lower bound for the probability on the left, depending on whether the last
term has a positive or negative sign. Here is the result stated explicitly:

Suppose that . Then

1.  if  is odd.

2.  if  is event.

Proof

Let , the absolute value of the th term in the inclusion-exclusion formula. The result

follows since the inclusion-exclusion formula is an alternating series, and  is decreasing in .

More elegant proofs of the inclusion-exclusion formula and the Bonferroni inequalities can be constructed using expected value.

Note that there is a probability term in the inclusion-exclusion formulas for every nonempty subset  of the index set , with either
a positive or negative sign, and hence there are  such terms. These probabilities suffice to compute the probability of any
event that can be constructed from the given events, not just the union or the intersection.

The probability of any event that can be constructed from  can be computed from either of the following
collections of  probabilities:

1.  where  is a nonempty subset of .

2.  where  is a nonempty subset of .

=( )∪[ ∖( )]⋃
i=1

n+1

Ai ⋃
i=1

n

Ai An+1 ⋃
i=1

n

Ai (2.3.22)

P( ) = P( )+P( ) −P( ( ∩ ))⋃
i=1

n+1
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Ai An+1 ⋃
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An+1 Ai (2.3.23)

n

n+1

⋃i∈I Ai

( )∩ ( )⋂i∈K Ai ⋂i∈K c Ai K I

K P( )⋂j∈J Aj J ⊆ K #(K) = k

(−1 ( )= 1∑k
j=1 )j−1 k

j

P( ) = (−1 P( )⋂
i∈I

Ai ∑
k=1

n

)k−1 ∑
J⊆I, #(J)=k

⋃
j∈J

Aj (2.3.24)

m ∈ {1, 2, … ,n−1}

P ( )≤ (−1 P( )⋃i∈I Ai ∑m
k=1 )k−1∑J⊆I, #(J)=k ⋂j∈J Aj m

P ( )≥ (−1 P( )⋃i∈I Ai ∑m

k=1 )k−1∑J⊆I, #(J)=k ⋂j∈J Aj m

= P( )Pk ∑J⊆I, #(J)=k ⋂j∈J Aj k

Pk k

J I

−12n

{ : i ∈ I}Ai

−12n

P( )⋂j∈J Aj J I

P( )⋃j∈J Aj J I
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Remark

If you go back and look at your proofs of the rules of probability above, you will see that they hold for any finite measure , not
just probability. The only change is that the number 1 is replaced by . In particular, the inclusion-exclusion rule is as important
in combinatorics (the study of counting measure) as it is in probability.

Examples and Applications

Probability Rules

Suppose that  and  are events in an experiment with , , . Express each of the
following events in the language of the experiment and find its probability:

1. 
2. 
3. 
4. 
5. 

Answer

1.  occurs but not . 
2.  or  occurs. 
3. One of the events does not occur. 
4. Neither event occurs. 
5. Either  occurs or  does not occur. 

Suppose that , , and  are events in an experiment with , , , , 
, , . Express each of the following events in set notation and find its

probability:

1. At least one of the three events occurs.
2. None of the three events occurs.
3. Exactly one of the three events occurs.
4. Exactly two of the three events occur.

Answer
1. 
2. 
3. 
4. 

Suppose that  and  are events in an experiment with , , and . Find the
probability of each of the following events:

1. 
2. 
3. 
4. 
5. 

Answer
1. 
2. 
3. 
4. 

μ

μ(S)

A B P(A) = 1
3

P(B) = 1
4

P(A∩B) = 1
10

A ∖B
A∪B

∪Ac Bc

∩Ac Bc

A∪Bc

A B 7
30

A B 29
60

9
10

31
60

A B 17
20

A B C P(A) = 0.3 P(B) = 0.2 P(C) = 0.4 P(A∩B) = 0.04
P(A∩C) = 0.1 P(B∩C) = 0.1 P(A∩B∩C) = 0.01

P(A∪B∪C) = 0.67
P[(A∪B∪C ] = 0.37)c

P[(A∩ ∩ ) ∪ ( ∩B∩ ) ∪ ( ∩ ∩C)] = 0.45Bc C c Ac C c Ac Bc

P[(A∩B∩ ) ∪ (A∩ ∩C) ∪ ( ∩B∩C)] = 0.21C c Bc Ac

A B P(A ∖B) = 1
6

P(B∖A) = 1
4

P(A∩B) = 1
12

A

B

A∪B

∪Ac Bc

∩Ac Bc

1
4
1
3
1
2
11
12
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5. 

Suppose that  and  are events in an experiment with , , and . Find the probability
of each of the following events:

1. 
2. 
3. 
4. 
5. 

Answer

1. 
2. 
3. 
4. 
5. 

Suppose that , , and  are events in an experiment with , , .

1. Use Boole's inequality to find an upper bound for .
2. Use Bonferronis's inequality to find a lower bound for .

Answer

1. 
2. , not helpful.

Open the simple probability experiment.

1. Note the 16 events that can be constructed from  and  using the set operations of union, intersection, and complement.
2. Given , , and  in the table, use the rules of probability to verify the probabilities of the other events.
3. Run the experiment 1000 times and compare the relative frequencies of the events with the probabilities of the events.

Suppose that , , and  are events in a random experiment with , , , 
, , , and . Find the probabilities of the various

unions:

1. 
2. 
3. 
4. 

Answer
1. 
2. 
3. 
4. 

Suppose that , , and  are events in a random experiment with , , , 
, , , and . Find the probabilities of the

various intersections:

1. 
2. 
3. 

1
2

A B P(A) = 2
5
P(A∪B) = 7

10
P(A∩B) = 1

6

B

A ∖B
B∖A

∪Ac Bc

∩Ac Bc

7
15
7

30
3

10
5
6
3

10

A B C P(A) = 1
3
P(B) = 1

4
P(C) = 1

5

P(A∪B∪C)
P(A∩B∩C)

47
60

− 83
60

A B

P(A) P(B) P(A∩B)

A B C P(A) = 1/4 P(B) = 1/3 P(C) = 1/6
P(A∩B) = 1/18 P(A∩C) = 1/16 P(B∩C) = 1/12 P(A∩B∩C) = 1/24

A∪B

A∪C

B∪C

A∪B∪C

19/36
17/48
5/12
85/144

A B C P(A) = 1/4 P(B) = 1/4 P(C) = 5/16
P(A∪B) = 7/16 P(A∪C) = 23/48 P(B∪C) = 11/24 P(A∪B∪C) = 7/12

A∩B

A∩C

B∩C
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4. 

Answer
1. 
2. 
3. 
4. 

Suppose that , , and  are events in a random experiment. Explicitly give all of the Bonferroni inequalities for 

Proof
1. 
2. 
3. 

Coins

Consider the random experiment of tossing a coin  times and recording the sequence of scores  (where 1
denotes heads and 0 denotes tails). This experiment is a generic example of  Bernoulli trials, named for Jacob Bernoulli. Note that
the set of outcomes is , the set of bit strings of length . If the coin is fair, then presumably, by the very meaning of the
word, we have no reason to prefer one point in  over another. Thus, as a modeling assumption, it seems reasonable to give  the
uniform probability distribution in which all outcomes are equally likely.

Suppose that a fair coin is tossed 3 times and the sequence of coin scores is recorded. Let  be the event that the first coin is
heads and  the event that there are exactly 2 heads. Give each of the following events in list form, and then compute the
probability of the event:

1. 
2. 
3. 
4. 
5. 
6. 
7. 

Answer

1. , 
2. , 
3. , 
4. , 
5. , 
6. , 
7. , 

In the Coin experiment, select 3 coins. Run the experiment 1000 times, updating after every run, and compute the empirical
probability of each event in the previous exercise.

Suppose that a fair coin is tossed 4 times and the sequence of scores is recorded. Let  denote the number of heads. Give the
event  (as a subset of the sample space) in list form, for each , and then give the probability of the
event.

Answer
1. , 
2. , 

A∩B∩C

1/16
1/12
5/48
1/48

A B C

P(A∪B∪C)

P(A∪B∪C) ≤ P(A) +P(B) +P(C)
P(A∪B∪C) ≥ P(A) +P(B) +P(C) −P(A∩B) −P(A∩C) −P(B∩C)
P(A∪B∪C) = P(A) +P(B) +P(C) −P(A∩B) −P(A∩C) −P(B∩C) +P(A∩B∩C)

n X = ( , , … , )X1 X2 Xn

n

S = {0, 1}n n

S S

A

B

A

B

A∩B

A∪B

∪Ac Bc

∩Ac Bc

A∪Bc

{100, 101, 110, 111}1
2

{110, 101, 011}3
8

{110, 101} 1
4

{100, 101, 110, 111, 011}5
8

{000, 001, 010, 100, 011, 111}3
4

{000, 001, 010}3
8

{100, 101, 110, 111, 000, 010, 001}7
8

Y

{Y = k} k ∈ {0, 1, 2, 3, 4}

{Y = 0} = {0000} P(Y = 0) = 1
16

{Y = 1} = {1000, 0100, 0010, 0001}P(Y = 1) = 4
16
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3. , 
4. , 
5. , 

Suppose that a fair coin is tossed  times and the sequence of scores is recorded. Let  denote the number of heads.

Proof

The number of bit strings of length  is , and since the coin is fair, these are equally likely. The number of bit strings of
length  with exactly  1's is . Hence the probability of 1 occurring exactly  times is .

The distribution of  in the last exercise is a special case of the binomial distribution. The binomial distribution is studied in more
detail in the chapter on Bernoulli Trials.

Dice

Consider the experiment of throwing  distinct, -sided dice (with faces numbered from 1 to ) and recording the sequence of
scores . We can record the outcome as a sequence because of the assumption that the dice are distinct; you
can think of the dice as somehow labeled from 1 to , or perhaps with different colors. The special case  corresponds to
standard dice. In general, note that the set of outcomes is . If the dice are fair, then again, by the very meaning
of the word, we have no reason to prefer one point in  over another, so as a modeling assumption it seems reasonable to give 
the uniform probability distribution.

Suppose that two fair, standard dice are thrown and the sequence of scores recorded. Let  denote the event that the first die
score is less than 3 and  the event that the sum of the dice scores is 6. Give each of the following events in list form and then
find the probability of the event.

1. 
2. 
3. 
4. 
5. 

Answer

1. , 
2. , 
3. , 
4. , 
5. , 

In the dice experiment, set . Run the experiment 100 times and compute the empirical probability of each event in the
previous exercise.

Consider again the dice experiment with  fair dice. Let  denote the set of outcomes,  the sum of the scores,  the
minimum score, and  the maximum score.

1. Express  as a function on  and give the set of values.
2. Find  for each  in the set in part (a).
3. Express  as a function on  and give the set of values.
4. Find  for each  in the set in part (c).
5. Express  as a function on  and give the set of values.
6. Find  for each  in the set in part (e).
7. Find the set of values of .

{Y = 2} = {1100, 1010, 1001, 0110, 0101, 0011}P(Y = 2) = 6
16

{Y = 3} = {1110, 1101, 1011, 0111}P(Y = 3) = 4
16

{Y = 4} = {1111} P(Y = 4) = 1
16

n Y

P(Y = k) =( ) , k ∈ {0, 1, … ,n}
n

k
( )

1

2

n

(2.3.25)

n 2n

n k ( )nk k ( )/n
k 2n

Y

n k k

X = ( , , … , )X1 X2 Xn

n k = 6
S = {1, 2, … , k}n

S S

A

B

A

B

A∩B

A∪B

B∖A

{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)}12
36

{(1, 5), (5, 1), (2, 4), (4, 2), (3, 3)} 5
36

{(1, 5), (2, 4)} 2
36

{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (5, 1), (4, 2), (3, 3)}15
36

{(5, 1), (4, 2), (3, 3)} 3
36

n = 2

n = 2 S Y U

V

Y S

P(Y = y) y

U S

P(U = u) u

V S

P(V = v) v

(U,V )
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8. Find  for each  in the set in part (g).

Answer

Note that .

1.  for . The set of values is 

2. 2 3 4 5 6 7 8 9 10 11 12

3.  for . The set of values is 

4. 1 2 3 4 5 6

5.  for . The set of values is 

6. 1 2 3 4 5 6

7. 

8. 

In the previous exercise, note that  could serve as the outcome vector for the experiment of rolling two standard, fair dice if
we do not bother to distinguish the dice (so that we might as well record the smaller score first and then the larger score). Note that
this random vector does not have a uniform distribution. On the other hand, we might have chosen at the beginning to just record
the unordered set of scores and, as a modeling assumption, imposed the uniform distribution on the corresponding set of outcomes.
Both models cannot be right, so which model (if either) describes real dice in the real world? It turns out that for real (fair) dice, the
ordered sequence of scores is uniformly distributed, so real dice behave as distinct objects, whether you can tell them apart or not.
In the early history of probability, gamblers sometimes got the wrong answers for events involving dice because they mistakenly
applied the uniform distribution to the set of unordered scores. It's an important moral. If we are to impose the uniform distribution
on a sample space, we need to make sure that it's the right sample space.

A pair of fair, standard dice are thrown repeatedly until the sum of the scores is either 5 or 7. Let  denote the event that the
sum of the scores on the last throw is 5 rather than 7. Events of this type are important in the game of craps.

1. Suppose that we record the pair of scores on each throw. Give the set of outcomes  and express  as a subset of .
2. Compute the probability of  in the setting of part (a).
3. Now suppose that we just record the pair of scores on the last throw. Give the set of outcomes  and express  as a subset

of .
4. Compute the probability of  in the setting of parts (c).

Answer

Let , , , 

1. , 
2. 
3. , 
4. 

The previous problem shows the importance of defining the set of outcomes appropriately. Sometimes a clever choice of this set
(and appropriate modeling assumptions) can turn a difficult problem into an easy one.

P(U = u,V = v) (u, v)

S = {1, 2, 3, 4, 5, 6}2

Y ( , ) = +x1 x2 x1 x2 ( , ) ∈ Sx1 x2 {2, 3, … , 12}

y

P(Y = y) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

U( , ) = min{ , }x1 x2 x1 x2 ( , ) ∈ Sx1 x2 {1, 2, 3, 4, 5, 6}

u

P(U = u) 11
36

9
36

7
36

5
36

3
36

1
36

V ( , ) = max{ , }x1 x2 x1 x2 ( , ) ∈ Sx1 x2 {1, 2, 3, 4, 5, 6}

v

P(V = v) 1
36

3
36

5
36

7
36

9
36

11
36

{(u, v) ∈ S : u ≤ v}

P(U = u,V = v) ={
,2

36

,1
36

u < v

u = v

(U,V )

A

S A S

A

T A

T

A

= {(1, 4), (2, 3), (3, 2), (4, 1)}D5 = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}D7 D = ∪D5 D7

C = {1, 2, 3, 4, 5, 6 ∖D}2

S = D∪ (C ×D) ∪ ( ×D) ∪ ⋯C 2 A = ∪ (C × ) ∪ ( × ) ∪ ⋯D5 D5 C 2 D5
2
5

T = D A = D5
2
5
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Sampling Models

Recall that many random experiments can be thought of as sampling experiments. For the general finite sampling model, we start
with a population  with  (distinct) objects. We select a sample of  objects from the population, so that the sample space  is
the set of possible samples. If we select a sample at random then the outcome  (the random sample) is uniformly distributed on 

:

Recall from the section on Combinatorial Structures that there are four common types of sampling from a finite population, based
on the criteria of order and replacement.

If the sampling is with replacement and with regard to order, then the set of samples is the Cartesian power . The number of
samples is .
If the sampling is without replacement and with regard to order, then the set of samples is the set of all permutations of size 
from . The number of samples is .
If the sampling is without replacement and without regard to order, then the set of samples is the set of all combinations (or
subsets) of size  from . The number of samples is .
If the sampling is with replacement and without regard to order, then the set of samples is the set of all multisets of size  from 

. The number of samples is .

If we sample with replacement, the sample size  can be any positive integer. If we sample without replacement, the sample size
cannot exceed the population size, so we must have .

The basic coin and dice experiments are examples of sampling with replacement. If we toss a fair coin  times and record the
sequence of scores  (where as usual, 0 denotes tails and 1 denotes heads), then  is a random sample of size  chosen with order
and with replacement from the population . Thus,  is uniformly distributed on . If we throw  (distinct) standard
fair dice and record the sequence of scores, then we generate a random sample  of size  with order and with replacement from
the population . Thus,  is uniformly distributed on . Of an analogous result would hold for fair, 

-sided dice.

Suppose that the sampling is without replacement (the most common case). If we record the ordered sample 
, then the unordered sample  is a random variable (that is, a function of ). On the

other hand, if we just record the unordered sample  in the first place, then we cannot recover the ordered sample.

Suppose that  is a random sample of size  chosen with order and without replacement from , so that  is uniformly
distributed on the space of permutations of size  from . Then , the unordered sample, is uniformly distributed on the
space of combinations of size  from . Thus,  is also a random sample.

Proof

Let  be a combination of size  from . Then there are  permutations of the elements in . If  denotes this set of
permutations, then .

The result in the last exercise does not hold if the sampling is with replacement (recall the exercise above and the discussion that
follows). When sampling with replacement, there is no simple relationship between the number of ordered samples and the number
of unordered samples.

Sampling From a Dichotomous Population

Suppose again that we have a population  with  (distinct) objects, but suppose now that each object is one of two types—either
type 1 or type 0. Such populations are said to be dichotomous. Here are some specific examples:

The population consists of persons, each either male or female.
The population consists of voters, each either democrat or republican.
The population consists of devices, each either good or defective.
The population consists of balls, each either red or green.

D m n S

X

S

P(X ∈ A) = , A ⊆ S
#(A)

#(S)
(2.3.26)

Dn

mn

n

D = m(m−1) ⋯ (m−n+1)m(n)

n D ( )= /n!m

n
m(n)

n

D ( )m+n−1
n

n

n ∈ {1, 2, … ,m}

n

X X n

{0, 1} X {0, 1}n n

X n

{1, 2, 3, 4, 5, 6} X {1, 2, 3, 4, 5, 6}n

k

X = ( , , … , )X1 X2 Xn W = { , , …}X1 X2 X

W

X n D X

n D W

n D W

w n D n! w A

P(W = w) = P(X ∈ A) = n!/ = 1/( )m(n) m
n

D m
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Suppose that the population  has  type 1 objects and hence  type 0 objects. Of course, we must have .
Now suppose that we select a sample of size  at random from the population. Note that this model has three parameters: the
population size , the number of type 1 objects in the population , and the sample size . Let  denote the number of type 1
objects in the sample.

If the sampling is without replacement then

Proof

Recall that the unordered sample is uniformly distributed over the set of combinations of size  chosen from the population.
There are  such samples. By the multiplication principle, the number of samples with exactly  type 1 objects and 
type 0 objects is .

In the previous exercise, random variable  has the hypergeometric distribution with parameters , , and . The hypergeometric
distribution is studied in more detail in the chapter on Findite Sampling Models.

If the sampling is with replacement then

Proof

Recall that the ordered sample is uniformly distributed over the set  and there are  elements in this set. To count the
number of samples with exactly  type 1 objects, we use a three-step procedure: first, select the coordinates for the type 1
objects; there are  choices. Next select the  type 1 objects for these coordinates; there are  choices. Finally select the 

 type 0 objects for the remaining coordinates of the sample; there are  choices. The result now follows from
the multiplication principle.

In the last exercise, random variable  has the binomial distribution with parameters  and . The binomial distribution is
studied in more detail in the chapter on Bernoulli Trials.

Suppose that a group of voters consists of 40 democrats and 30 republicans. A sample 10 voters is chosen at random. Find the
probability that the sample contains at least 4 democrats and at least 4 republicans, each of the following cases:

1. The sampling is without replacement.
2. The sampling is with replacement.

Answer

1. 
2. 

Look for other specialized sampling situations in the exercises below.

Urn Models

Drawing balls from an urn is a standard metaphor in probability for sampling from a finite population.

Consider an urn with 30 balls; 10 are red and 20 are green. A sample of 5 balls is chosen at random, without replacement. Let 
 denote the number of red balls in the sample. Explicitly compute  for each .

answer

0 1 2 3 4 5

D r m−r r ∈ {0, 1, … ,m}
n

m r n Y

P(Y = y) = , y ∈ {0, 1, … ,n}
( )( )r

y

m−r

n−y

( )m
n

(2.3.27)

n

( )mn y n−y

( )( )r
y

m−r
n−y

Y m r n

P(Y = y) =( ) =( ) , y ∈ {0, 1, … ,n}
n

y

(m−rry )n−y

mn

n

y
( )
r

m

y

(1 − )
r

m

n−y

(2.3.28)

Dn mn

y

( )n
y

y ry

n−y (m−r)n−y

Y n p = r
m

≈ 0.63821 391 351 589
2 176 695 188

≈ 0.607424 509 952
40 353 607

Y P(Y = y) y ∈ {0, 1, 2, 3, 4, 5}

y

P(Y = y) 2584
23751

8075
23751

8550
23751

3800
23751

700

23751/
42

23751
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In the simulation of the ball and urn experiment, select 30 balls with 10 red and 20 green, sample size 5, and sampling without
replacement. Run the experiment 1000 times and compare the empirical probabilities with the true probabilities that you
computed in the previous exercise.

Consider again an urn with 30 balls; 10 are red and 20 are green. A sample of 5 balls is chosen at random, with replacement.
Let  denote the number of red balls in the sample. Explicitly compute  for each .

Answer

0 1 2 3 4 5

In the simulation of the ball and urn experiment, select 30 balls with 10 red and 20 green, sample size 5, and sampling with
replacement. Run the experiment 1000 times and compare the empirical probabilities with the true probabilities that you
computed in the previous exercise.

An urn contains 15 balls: 6 are red, 5 are green, and 4 are blue. Three balls are chosen at random, without replacement.

1. Find the probability that the chosen balls are all the same color.
2. Find the probability that the chosen balls are all different colors.

Answer

1. 
2. 

Suppose again that an urn contains 15 balls: 6 are red, 5 are green, and 4 are blue. Three balls are chosen at random, with
replacement.

1. Find the probability that the chosen balls are all the same color.
2. Find the probability that the chosen balls are all different colors.

Answer

1. 
2. 

Cards

Recall that a standard card deck can be modeled by the product set

where the first coordinate encodes the denomination or kind (ace, 2–10, jack, queen, king) and where the second coordinate
encodes the suit (clubs, diamonds, hearts, spades). Sometimes we represent a card as a string rather than an ordered pair (for
example  for the queen of hearts).

Card games involve choosing a random sample without replacement from the deck , which plays the role of the population. Thus,
the basic card experiment consists of dealing  cards from a standard deck without replacement; in this special context, the sample
of cards is often referred to as a hand. Just as in the general sampling model, if we record the ordered hand 

, then the unordered hand  is a random variable (that is, a function of ). On the
other hand, if we just record the unordered hand  in the first place, then we cannot recover the ordered hand. Finally, recall that 

 is the poker experiment and  is the bridge experiment. The game of poker is treated in more detail in the chapter on
Games of Chance. By the way, it takes about 7 standard riffle shuffles to randomize a deck of cards.

Suppose that 2 cards are dealt from a well-shuffled deck and the sequence of cards is recorded. For , let  denote
the event that card  is a heart. Find the probability of each of the following events.

1. 

Y P(Y = y) y ∈ {0, 1, 2, 3, 4, 5}

y

P(Y = y) 32
243

80
243

80
243

40
243

10
243

1
243

34
455
120
455

405
3375
720

3375

D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, k} ×{♣,♢,♡,♠} (2.3.29)

q♡

D

n

X = ( , , … , )X1 X2 Xn W = { , , … , }X1 X2 Xn X

W

n = 5 n = 13

i ∈ {1, 2} Hi

i

H1
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2. 
3. 
4. 
5. 
6. 

Answer

1. 
2. 
3. 
4. 
5. 
6. 

Think about the results in the previous exercise, and suppose that we continue dealing cards. Note that in computing the probability
of , you could conceptually reduce the experiment to dealing a single card. Note also that the probabilities do not depend on the
order in which the cards are dealt. For example, the probability of an event involving the 1st, 2nd and 3rd cards is the same as the
probability of the corresponding event involving the 25th, 17th, and 40th cards. Technically, the cards are exchangeable. Here's
another way to think of this concept: Suppose that the cards are dealt onto a table in some pattern, but you are not allowed to view
the process. Then no experiment that you can devise will give you any information about the order in which the cards were dealt.

In the card experiment, set . Run the experiment 100 times and compute the empirical probability of each event in the
previous exercise

In the poker experiment, find the probability of each of the following events:

1. The hand is a full house (3 cards of one kind and 2 cards of another kind).
2. The hand has four of a kind (4 cards of one kind and 1 of another kind).
3. The cards are all in the same suit (thus, the hand is either a flush or a straight flush).

Answer

1. 
2. 
3. 

Run the poker experiment 10000 times, updating every 10 runs. Compute the empirical probability of each event in the
previous problem.

Find the probability that a bridge hand will contain no honor cards that is, no cards of denomination 10, jack, queen, king, or
ace. Such a hand is called a Yarborough, in honor of the second Earl of Yarborough.

Answer

Find the probability that a bridge hand will contain

1. Exactly 4 hearts.
2. Exactly 4 hearts and 3 spades.
3. Exactly 4 hearts, 3 spades, and 2 clubs.

Answer

1. 
2. 
3. 

∩H1 H2

∖H2 H1

H2

∖H1 H2

∪H1 H2

1
4
1

17
13
68
1
4
13
68
15
34

Hi

n = 2

≈ 0.0014413744
2 598 960

≈ 0.000240624
2 598 960

≈ 0.0019815148
2 598 960

≈ 0.000547347 373 600
635 013 559 600

≈ 0.2386151 519 319 380
635 013 559 600

≈ 0.074147 079 732 700
635 013 559 600

≈ 0.017911 404 407 300
635 013 559 600
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A card hand that contains no cards in a particular suit is said to be void in that suit. Use the inclusion-exclusion rule to find the
probability of each of the following events:

1. A poker hand is void in at least one suit.
2. A bridge hand is void in at least one suit.

Answer

1. 
2. 

Birthdays

The following problem is known as the birthday problem, and is famous because the results are rather surprising at first.

Suppose that  persons are selected and their birthdays recorded (we will ignore leap years). Let  denote the event that the
birthdays are distinct, so that  is the event that there is at least one duplication in the birthdays.

1. Define an appropriate sample space and probability measure. State the assumptions you are making.
2. Find  and  in terms of the parameter .
3. Explicitly compute  and  for 

Answer
1. Tthe set of outcomes is  where  is the set of days of the year. We assume that the outcomes are equally likely, so

that  has the uniform distribution.
2. , so  and 

3. 

10 0.883 0.117

20 0.589 0.411

30 0.294 0.706

40 0.109 0.891

50 0.006 0.994

The small value of  for relatively small sample sizes  is striking, but is due mathematically to the fact that  grows much
faster than  as  increases. The birthday problem is treated in more generality in the chapter on Finite Sampling Models.

Suppose that 4 persons are selected and their birth months recorded. Assuming an appropriate uniform distribution, find the
probability that the months are distinct.

Answer

Continuous Uniform Distributions

Recall that in Buffon's coin experiment, a coin with radius  is tossed “randomly” on a floor with square tiles of side
length 1, and the coordinates  of the center of the coin are recorded, relative to axes through the center of the square in
which the coin lands (with the axes parallel to the sides of the square, of course). Let  denote the event that the coin does not
touch the sides of the square.

1. Define the set of outcomes  mathematically and sketch .
2. Argue that  is uniformly distributed on .
3. Express  in terms of the outcome variables  and sketch .
4. Find .

≈ 0.7363
1 913 496
2 598 960

≈ 0.05132 427 298 180
635 013 559 600

n A

Ac

P (A) P( )Ac n

P (A) P ( )Ac n ∈ {10, 20, 30, 40, 50}

S = Dn D

S

#(A) = 365(n)
P(A) = /365(n) 365n P( ) = 1 − /Ac 365(n) 365n

n P(A) P( )Ac

P(A) n 365n

365(n) n

≈ 0.57311880
20736

r ≤ 1
2

(X,Y )
A

S S

(X,Y ) S

A (X,Y ) A

P(A)
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5. Find .

Answer

1. 
2. Since the coin is tossed “randomly”, no region of  should be preferred over any other.
3. 
4. 
5. 

In Buffon's coin experiment, set . Run the experiment 100 times and compute the empirical probability of each event in
the previous exercise.

A point  is chosen at random in the circular region  of radius 1, centered at the origin. Let  denote the event
that the point is in the inscribed square region centered at the origin, with sides parallel to the coordinate axes, and let  denote
the event that the point is in the inscribed square with vertices , . Sketch each of the following events as a subset
of , and find the probability of the event.

1. 
2. 
3. 
4. 
5. 
6. 

Answer
1. 
2. 
3. 
4. 
5. 
6. 

Suppose a point  is chosen at random in the circular region  of radius 12, centered at the origin. Let  denote
the distance from the origin to the point. Sketch each of the following events as a subset of , and compute the probability of
the event. Is  uniformly distributed on the interval ?

1. 
2. 
3. 
4. 

Answer

No,  is not uniformly distributed on .

1. 
2. 
3. 
4. 

In the simple probability experiment, points are generated according to the uniform distribution on a rectangle. Move and
resize the events  and  and note how the probabilities of the various events change. Create each of the following
configurations. In each case, run the experiment 1000 times and compare the relative frequencies of the events to the
probabilities of the events.

1.  and  in general position

P( )Ac

S = [− , ]1
2

1
2

2

S

{r− < X < −r, r− < Y < −r}1
2

1
2

1
2

1
2

P(A) = (1 −2 r)2

P( ) = 1 −(1 −2 rAc )2

r = 0.2

(X,Y ) S ⊂R
2 A

B

(±1, 0) (0, ±1)
S

A

B

A∩Bc

B∩Ac

A∩B

A∪B

2/π
2/π
(6 −4 )/π2

–
√

(6 −4 )/π2
–

√

4( −1)/π2
–

√

4(2 − )/π2
–

√

(X,Y ) S ⊆R
2 R

S

R [0, 12]

{R ≤ 3}
{3 < R ≤ 6}
{6 < R ≤ 9}
{9 < R ≤ 12}

R [0, 12]

1
16
3

16
5

16
7

16

A B

A B
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2.  and  disjoint
3. 
4. 

Genetics

Please refer to the discussion of genetics in the section on random experiments if you need to review some of the definitions in this
subsection.

Recall first that the ABO blood type in humans is determined by three alleles: , , and . Furthermore,  and  are co-dominant
and  is recessive. Suppose that the probability distribution for the set of blood genotypes in a certain population is given in the
following table:

Genotype

Probability 0.050 0.038 0.310 0.007 0.116 0.479

A person is chosen at random from the population. Let , , , and  be the events that the person is type , type , type 
, and type  respectively. Let  be the event that the person is homozygous and  the event that the person has an 

allele. Find the probability of the following events:

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

Answer
1. 0.360
2. 0.123
3. 0.038
4. 0.479
5. 0.536
6. 0.905
7. 0.962
8. 0.095

Suppose next that pod color in certain type of pea plant is determined by a gene with two alleles:  for green and  for yellow, and
that  is dominant.

Let  be the event that a child plant has green pods. Find  in each of the following cases:

1. At least one parent is type .
2. Both parents are type .
3. Both parents are type .
4. One parent is type  and the other is type .

Answer
1. 
2. 
3. 
4. 

A B

A ⊆ B

B ⊆ A

a b o a b

o

aa ab ao bb bo oo

A B AB O A B

AB O H D o

A

B

AB

O

H

D

H ∪D

Dc

g y

g

G P(G)

gg

yy

gy

yy gy

1
0
3
4
1
2
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Next consider a sex-linked hereditary disorder in humans (such as colorblindness or hemophilia). Let  denote the healthy allele
and  the defective allele for the gene linked to the disorder. Recall that  is recessive for women.

Let  be the event that a son has the disorder,  the event that a daughter is a healthy carrier, and  the event that a daughter
has the disease. Find ,  and  in each of the following cases:

1. The mother and father are normal.
2. The mother is a healthy carrier and the father is normal.
3. The mother is normal and the father has the disorder.
4. The mother is a healthy carrier and the father has the disorder.
5. The mother has the disorder and the father is normal.
6. The mother and father both have the disorder.

Answer
1. , , 
2. , 0, 
3. , , 
4. , , 
5. , , 
6. , , 

From this exercise, note that transmission of the disorder to a daughter can only occur if the mother is at least a carrier and the
father has the disorder. In ordinary large populations, this is a unusual intersection of events, and thus sex-linked hereditary
disorders are typically much less common in women than in men. In brief, women are protected by the extra X chromosome.

Radioactive Emissions

Suppose that  denotes the time between emissions (in milliseconds) for a certain type of radioactive material, and that  has
the following probability distribution, defined for measurable  by

1. Show that this really does define a probability distribution.
2. Find .
3. Find .

Answer
1. Note that 
2. 
3. 

Suppose that  denotes the number of emissions in a one millisecond interval for a certain type of radioactive material, and
that  has the following probability distribution:

1. Show that this really does define a probability distribution.
2. Find .
3. Find .

Answer

1. Note that 
2. 
3. 

h

d d

B C D

P(B) P(C) P(D)

0 0 0
1/2 1/2
0 1/2 0
1/2 1/2 1/2
1 1/2 0
1 0 1

T T

A ⊆ [0, ∞)

P(T ∈ A) = dt∫
A

e−t (2.3.30)

P(T > 3)
P(2 < T < 4)

dt = 1∫ ∞
0

e−t

e−3

−e−2 e−4

N

N

P(N ∈ A) = , A ⊆N∑
n∈A

e−1

n!
(2.3.31)

P(N ≥ 3)
P(2 ≤ N ≤ 4)

= 1∑∞
n=0

e−1

n!

1 − 5
2
e−1

17
24
e−1
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The probability distribution that governs the time between emissions is a special case of the exponential distribution, while the
probability distribution that governs the number of emissions is a special case of the Poisson distribution, named for Simeon
Poisson. The exponential distribution and the Poisson distribution are studied in more detail in the chapter on the Poisson process.

Matching

Suppose that at an absented-minded secretary prepares 4 letters and matching envelopes to send to 4 different persons, but then
stuffs the letters into the envelopes randomly. Find the probability of the event  that at least one letter is in the proper
envelope.

Solution

Note first that the set of outcomes  can be taken to be the set of permutations of . For ,  is the number of
the envelope containing the th letter. Clearly  should be given the uniform probability distribution. Next note that 

 where  is the event that the th letter is inserted into the th envelope. Using the inclusion-
exclusion rule gives .

This exercise is an example of the matching problem, originally formulated and studied by Pierre Remond Montmort. A complete
analysis of the matching problem is given in the chapter on Finite Sampling Models.

In the simulation of the matching experiment select . Run the experiment 1000 times and compute the relative frequency
of the event that at least one match occurs.

Data Analysis Exercises

For the M&M data set, let  denote the event that a bag has at least 10 red candies,  the event that a bag has at least 57
candies total, and  the event that a bag weighs at least 50 grams. Find the empirical probability the following events:

1. 
2. 
3. 
4. 
5. 

Answer

1. 
2. 
3. 
4. 
5. 

For the cicada data, let  denote the event that a cicada weighs at least 0.20 grams,  the event that a cicada is female, and 
the event that a cicada is type tredecula. Find the empirical probability of each of the following:

1. 
2. 
3. 
4. 
5. 

Answer

1. 
2. 
3. 
4. 
5. 

A

S {1, 2, 3, 4} x ∈ S xi
i S

A = ∪ ∪ ∪A1 A2 A3 A4 Ai i i

P(A) = 5
8

n = 4

R T

W

R

T

W

R∩T

T ∖W

13
30
19
30
9

30
9

30
11
30

W F T

W

F

T

W ∩F

F ∪T ∪W

37
104
59
104
44
104
34
104
85
104
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