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1.6: Cardinality
     

Basic Theory

Definitions

Suppose that  is a non-empty collection of sets. We define a relation  on  by  if and only if there exists a one-to-
one function  from  onto . The relation  is an equivalence relation on . That is, for all ,

1. , the reflexive property
2. If  then , the symmetric property
3. If  and  then , the transitive property

Proof
1. The identity function  on , given by  for , maps  one-to-one onto . Hence 
2. If  then there exists a one-to-one function  from  onto . But then  is a one-to-one function from  onto ,

so 
3. Suppose that  and . Then there exists a one-to-one function  from  onto  and a one-to-one function 

from  onto . But then  is a one-to-one function from  onto , so .

A one-to-one function  from  onto  is sometimes called a bijection. Thus if  then  and  are in one-to-one
correspondence and are said to have the same cardinality. The equivalence classes under this equivalence relation capture the
notion of having the same number of elements.

Let , and for , let . As always,  is the set of all natural numbers.

Suppose that  is a set.

1.  is finite if  for some , in which case  is the cardinality of , and we write .
2.  is infinite if  is not finite.
3.  is countably infinite if .
4.  is countable if  is finite or countably infinite.
5.  is uncountable if  is not countable.

In part (a), think of  as a reference set with  elements; any other set with  elements must be equivalent to this one. We will
study the cardinality of finite sets in the next two sections on Counting Measure and Combinatorial Structures. In this section, we
will concentrate primarily on infinite sets. In part (d), a countable set is one that can be enumerated or counted by putting the
elements into one-to-one correspondence with  for some  or with all of . An uncountable set is one that cannot be so
counted. Countable sets play a special role in probability theory, as in many other branches of mathematics. Apriori, it's not clear
that there are uncountable sets, but we will soon see examples.

Preliminary Examples

If  is a set, recall that  denotes the power set of  (the set of all subsets of ). If  and  are sets, then  is the set of all
functions from  into . In particular,  denotes the set of functions from  into .

If  is a set then .

Proof

The mapping that takes a set  into its indicator function  is one-to-one and onto. Specifically, if 
 and , then , so the mapping is one-to-one. On the other hand, if  then 

where . Hence the mapping is onto.

Next are some examples of countably infinite sets.

The following sets are countably infinite:

S ≈ S A ≈ B

f A B ≈ S A, B, C ∈S

A ≈ A

A ≈ B B ≈ A

A ≈ B B ≈ C   A ≈ C

IA A (x) = xIA x ∈ A A A A ≈ A

A ≈ B f A B f −1 B A

B ≈ A

A ≈ B B ≈ C f A B g

B C g ∘ f A C A ≈ C

f A B A ≈ B A B

= ∅N0 k ∈ N+ = {0, 1, … k −1}Nk N = {0, 1, 2, …}

A

A A ≈Nk k ∈ N k A #(A) = k

A A

A A ≈N

A A

A A

Nk k k

Nk k ∈ N N

S P(S) S S A B AB

B A {0, 1}S S {0, 1}

S P(S) ≈ {0, 1}S

A ∈P(S) ∈ {0, 11A }S

A, B ∈P(S) =1A 1B A = B f ∈ {0, 1}S f = 1A

A = {x ∈ S : f(x) = 1}
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1. The set of even natural numbers 
2. The set of integers 

Proof
1. The function  given by  is one-to-one and onto.
2. The function  given by  if  is even and  if  is odd, is one-to-one and onto.

At one level, it might seem that  has only half as many elements as  while  has twice as many elements as . as the previous
result shows, that point of view is incorrect: , , and  all have the same cardinality (and are countably infinite). The next
example shows that there are indeed uncountable sets.

If  is a set with at least two elements then , the set of all functions from  into , is uncountable.

Proof

The proof is by contradiction, and uses a nice trick known as the diagonalization method. Suppose that  is countably infinite
(it's clearly not finite), so that the elements of  can be enumerated: . Let  and  denote distinct elements
of  and define  by  if  and  if . Note that  for each , so 

. This contradicts the fact that  is the set of all functions from  into .

Subsets of Infinite Sets

Surely a set must be as least as large as any of its subsets, in terms of cardinality. On the other hand, by example (4), the set of
natural numbers , the set of even natural numbers  and the set of integers  all have exactly the same cardinality, even though 

. In this subsection, we will explore some interesting and somewhat paradoxical results that relate to subsets of infinite
sets. Along the way, we will see that the countable infinity is the “smallest” of the infinities.

If  is an infinite set then  has a countable infinite subset.

Proof

Select . It's possible to do this since  is infinite and therefore nonempty. Inductively, having chosen 
, select . Again, it's possible to do this since  is not finite. Manifestly, 

 is a countably infinite subset of .

A set  is infinite if and only if  is equivalent to a proper subset of .

Proof

If  is finite, then  is not equivalent to a proper subset by the “pigeonhole principle”. If  is infinite, then  has countably
infinite subset  by the previous result. Define the function  by  for  and 

 for . Then  maps  one-to-one onto .

When  was infinite in the proof of the previous result, not only did we map  one-to-one onto a proper subset, we actually threw
away a countably infinite subset and still maintained equivalence. Similarly, we can add a countably infinite set to an infinite set 
without changing the cardinality.

If  is an infinite set and  is a countable set, then .

Proof

Consider the most extreme case where  is countably infinite and disjoint from . Then  has a countably infinite subset 
 by the result above, and  can be enumerated, so . Define the function 

 by  if  is even,  if  is odd, and  if . Then 
 maps  one-to-one onto .

In particular, if  is uncountable and  is countable then  and  have the same cardinality as , and in particular are
uncountable. In terms of the dichotomies finite-infinite and countable-uncountable, a set is indeed at least as large as a subset. First
we need a preliminary result.

E = {0, 2, 4, …}
Z

f : N → E f(n) = 2n

g : N → Z g(n) = n

2
n g(n) = −

n+1
2

n

E N Z N

N E Z

A S = AN N A

S

S S = { , , , …}f0 f1 f2 a b

A g : N → A g(n) = b (n) = afn g(n) = a (n) ≠ afn g ≠ fn n ∈ N

g ∉ S S N A

N E Z

E ⊂N ⊂Z

S S

∈ Sa0 S

{ , , … , } ⊆ Sa0 a1 ak−1 ∈ S ∖ { , , … , }ak a0 a1 ak−1 S

{ , , …}a0 a1 S

S S S

S S S S

{ , , , …}a0 a1 a2 f : S → S f ( ) =an a2n n ∈ N

f(x) = x x ∈ S ∖ { , , , …}a0 a1 a2 f S S ∖ { , , , …}a1 a3 a5

S S

S

S B S ≈ S ∪ B

B S S

A = { , , , …}a0 a1 a2 B B = { , , , …}b0 b1 b2

f : S → S ∪ B f ( ) =an an/2 n f ( ) =an b(n−1)/2 n f(x) = x x ∈ S ∖ { , , , …}a0 a1 a2

f S S ∪ B

S B S ∪ B S ∖ B S
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If  is countably infinite and  then  is countable.

Proof

It suffices to show that if  is an infinite subset of  then  is countably infinite. Since  is countably infinite, it can be
enumerated: . Let  be the th smallest index such that . Then  and
hence is countably infinite.

Suppose that .

1. If  is finite then  is finite.
2. If  is infinite then  is infinite.
3. If  is countable then  is countable.
4. If  is uncountable then  is uncountable.

Proof
1. This is clear from the definition of a finite set.
2. This is the contrapositive of (a).
3. If  is finite, then  is countable. If  is infinite, then  is infinite by (b) and hence is countably infinite. But then  is

countably infinite by (9).
4. This is the contrapositive of (c).

Comparisons by one-to-one and onto functions

We will look deeper at the general question of when one set is “at least as big” as another, in the sense of cardinality. Not
surprisingly, this will eventually lead to a partial order on the cardinality equivalence classes.

First note that if there exists a function that maps a set  one-to-one into a set , then in a sense, there is a copy of  contained in 
. Hence  should be at least as large as .

Suppose that  is one-to-one.

1. If  is finite then  is finite.
2. If  is infinite then  is infinite.
3. If  is countable then  is countable.
4. If  is uncountable then  is uncountable.

Proof

Note that  maps  one-to-one onto . Hence  and . The results now follow from (10):

1. If  is finite then  is finite and hence  is finite.
2. If  is infinite then  is infinite and hence  is infinite.
3. If  is countable then  is countable and hence  is countable.
4. If  is uncountable then  is uncountable and hence  is uncountable.

On the other hand, if there exists a function that maps a set  onto a set , then in a sense, there is a copy of  contained in .
Hence  should be at least as large as .

Suppose that  is onto.

1. If  is finite then  is finite.
2. If  is infinite then  is infinite.
3. If  is countable then  is countable.
4. If  is uncountable then  is uncountable.

Proof

For each , select a specific  with  (if you are persnickety, you may need to invoke the axiom of choice).
Let  be the set of chosen points. Then  maps  one-to-one onto , so  and . The results now follow from
(11):

S A ⊆ S A

A S A S

S = { , , , …}x0 x1 x2 ni i ∈ Axni A = { , , , …}xn0 xn1 xn2

A ⊆ B

B A

A B

B A

A B

A A A B A

A B A

B B A

f : A → B

B A

A B

B A

A B

f A f(A) A ≈ f(A) f(A) ⊆ B

B f(A) A

A f(A) B

B f(A) A

A f(A) B

A B B A

A B

f : A → B

A B

B A

A B

B A

y ∈ B x ∈ A f(x) = y

C f C B C ≈ B C ⊆ A
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1. If  is finite then  is finite and hence  is finite.
2. If  is infinite then  is infinite and hence  is infinite.
3. If  is countable then  is countable and hence  is countable.
4. If  is uncountable then  is uncountable and hence  is uncountable.

The previous exercise also could be proved from the one before, since if there exists a function  mapping  onto , then there
exists a function  mapping  one-to-one into . This duality is proven in the discussion of the axiom of choice. A simple and
useful corollary of the previous two theorems is that if  is a given countably infinite set, then a set  is countable if and only if
there exists a one-to-one function  from  into , if and only if there exists a function  from  onto .

If  is a countable set for each  in a countable index set , then  is countable.

Proof

Consider the most extreme case in which the index set  is countably infinite. Since  is countable, there exists a function 
that maps  onto  for each . Let . Note that the points in  are distinct, that is, 

 if  and . Hence  is infinite, and since ,  is countably infinite.
The function  given by  for  maps  onto , and hence this last set is countable.

If  and  are countable then  is countable.

Proof

There exists a function  that maps  onto , and there exists a function  that maps  onto . Again, let 
 and recall that  is countably infinite. Define  by .

Then  maps  onto  and hence this last set is countable.

The last result could also be proven from the one before, by noting that

Both proofs work because the set  is essentially a copy of , embedded inside of . The last theorem generalizes to the
statement that a finite product of countable sets is still countable. But, from (5), a product of infinitely many sets (with at least 2
elements each) will be uncountable.

The set of rational numbers  is countably infinite.

Proof

The sets  and  are countably infinite and hence the set  is countably infinite. The function  given
by  is onto.

A real number is algebraic if it is the root of a polynomial function (of degree 1 or more) with integer coefficients. Rational
numbers are algebraic, as are rational roots of rational numbers (when defined). Moreover, the algebraic numbers are closed under
addition, multiplication, and division. A real number is transcendental if it's not algebraic. The numbers  and  are transcendental,
but we don't know very many other transcendental numbers by name. However, as we will see, most (in the sense of cardinality)
real numbers are transcendental.

The set of algebraic numbers  is countably infinite.

Proof

Let  and let  for . The set  is countably infinite for each . Let .
Think of  as the set of coefficients and note that  is countably infinite. Let  denote the set of polynomials of degree 1 or
more, with integer coefficients. The function  maps  onto , and hence  is
countable. For , let  denote the set of roots of . A polynomial of degree  in  has at most  roots, by the
fundamental theorem of algebra, so in particular  is finite for each . Finally, note that  and so  is
countable. Of course , so  is countably infinite.

A C B

B C A

A C B

B C A

f A B

g B A

B A

f A B g B A

Ai i I ⋃i∈I Ai

I Ai fi

N Ai i ∈ N M = { : (i, j) ∈ N×N}2i3j M

≠2i3j 2m3n (i, j), (m, n) ∈ N×N (i, j) ≠ (m, n) M M ⊂N M

f f ( ) = (j)2i3j fi (i, j) ∈ N×N M ⋃i∈I Ai

A B A ×B

f N A g N B

M = { : (i, j) ∈ N×N}2i3j M h : M → A ×B h ( ) = (f(i), g(j))2i3j

h M A ×B

A ×B = {a} ×B⋃
a∈A

(1.6.1)

M N×N N

Q

Z N+ Z×N+ f : Z× →QN+

f(m, n) = m
n

e π

A

=Z ∖ {0}Z0 = ×Zn Zn−1 Z0 n ∈ N+ Zn n C = ⋃∞
n=1 Zn

C C P

( , , … , ) ↦ + x +⋯ +a0 a1 an a0 a1 an xn C P P

p ∈ P Ap p n P n

Ap p ∈ P A = ⋃p∈P Ap A

N ⊂A A
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Now let's look at some uncountable sets.

The interval  is uncountable.

Proof

Recall that  is the set of all functions from  into , which in this case, can be thought of as infinite sequences
or bit strings:

By (5), this set is uncountable. Let , the set of bit strings that
eventually terminate in all 1s. Note that  where . Clearly  is
finite for all , so  is countable, and therefore  is uncountable. In fact, . The function

maps  one-to-one onto . In words every number in  has a unique binary expansion in the form of a sequence in .
Hence  and in particular, is uncountable. The reason for eliminating the bit strings that terminate in 1s is to ensure
uniqueness, so that the mapping is one-to-one. The bit string  corresponds to the same number in  as
the bit string .

The following sets have the same cardinality, and in particular all are uncountable:

1. , the set of real numbers.
2. Any interval  of , as long as the interval is not empty or a single point.
3. , the set of irrational numbers.
4. , the set of transcendental numbers.
5. , the power set of .

Proof

1. The mapping  maps  one-to-one onto  so . But , so ,

and all of these sets are uncountable by the previous result.
2. Suppose  and . The mapping  maps  one-to-one onto  and hence 

. Also, , , and , so 
. The function  maps  one-to-one onto , so . For ,

the function  maps  one-to-one onto  and the mapping  maps  one to one onto 
 so . Next,  and , so 

.
3.  is countably infinite, so .
4. Similarly,  is countably infinite, so .
5. If  is countably infinite, then by the previous result and (a), .

The Cardinality Partial Order

Suppose that  is a nonempty collection of sets. We define the relation  on  by  if and only if there exists a one-to-one
function  from  into , if and only if there exists a function  from  onto . In light of the previous subsection,  should
capture the notion that  is at least as big as , in the sense of cardinality.

The relation  is reflexive and transitive.

Proof

For , the identity function  given by  is one-to-one (and also onto), so . Suppose that 
 and that  and . Then there exist one-to-one functions  and . But then 
 is one-to-one, so .

[0, 1)

{0, 1}N+ N+ {0, 1}

{0, 1 = {x = ( , , …) : ∈ {0, 1} for all n ∈ }}N+ x1 x2 xn N+ (1.6.2)

N = {x ∈ {0, 1 : = 1 for all but finitely many n}}N+ xn

N = ⋃∞
n=1 Nn = {x ∈ {0, 1 : = 1 for all k ≥ n}Nn }N+ xk Nn

n ∈ N+ N S = {0, 1 ∖ N}N+ S ≈ {0, 1}N+

x ↦∑
n=1

∞ xn

2n
(1.6.3)

S [0, 1) [0, 1) S

[0, 1) ≈ S

⋯ 0111 ⋯x1x2 xk [0, 1)
⋯ 1000 ⋯x1x2 xk

R

I R

R ∖Q
R ∖A
P(N) N

x ↦
2x−1

x(1−x)
(0, 1) R (0, 1) ≈R (0, 1) = [0, 1) ∖ {0} (0, 1] ≈ (0, 1) ≈R

a, b ∈ R a < b x ↦ a +(b −a)x (0, 1) (a, b)
(a, b) ≈ (0, 1) ≈R [a, b) = (a, b) ∪ {a} (a, b] = (a, b) ∪ {b} [a, b] = (a, b) ∪ {a, b}
(a, b) ≈ [a, b) ≈ (a, b] ≈ [a, b] ≈R x ↦ ex R (0, ∞) (0, ∞) ≈R a ∈ R

x ↦ a +x (0, ∞) (a, ∞) x ↦ a −x (0, ∞)
(−∞, a) (a, ∞) ≈ (−∞, a) ≈ (0, ∞) ≈R [a, ∞) = (a, ∞) ∪ {a} (−∞, a] = (−∞, a) ∪ {a}
[a, ∞) ≈ (−∞, a] ≈R

Q R ∖Q≈R

A R ∖A ≈R

S P(S) ≈P( ) ≈ {0, 1 ≈ [0, 1)N+ }N+

S ⪯ S A⪯B

f A B g B A A⪯B

B A

⪯

A ∈S : A → AIA (x) = xIA A⪯A

A, B, C ∈S A⪯B B⪯C f : A → B g : B → C

g ∘ f : A → C A⪯C
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Thus, we can use the construction in the section on on Equivalence Relations to first define an equivalence relation on , and then
extend  to a true partial order on the collection of equivalence classes. The only question that remains is whether the equivalence
relation we obtain in this way is the same as the one that we have been using in our study of cardinality. Rephrased, the question is
this: If there exists a one-to-one function from  into  and a one-to-one function from  into , does there necessarily exist a
one-to-one function from  onto ? Fortunately, the answer is yes; the result is known as the Schröder-Bernstein Theorem, named
for Ernst Schröder and Felix Bernstein.

If  and  then .

Proof

Set inclusion  is a partial order on  (the power set of ) with the property that every subcollection of  has a
supremum (namely the union of the subcollection). Suppose that  maps  one-to-one into  and  maps  one-to-one into 

. Define the function  by  for . Then  is increasing:

From the fixed point theorem for partially ordered sets, there exists  such that . Hence 
and therefore . Now define  by  if  and  if .

 maps  one-to-one onto ;  maps  one-to-one onto 
Schroder-Bernstein Theorem

Next we show that  is one-to-one. Suppose that  and . If  then  so 
 since  is one-to-one. If  then  so  since  is one-to-one. If 

and . Then  while , so  is impossible.

Finally we show that  is onto. Let . If  then  for some  so . If  then 
 so .

We will write  if , but , That is, there exists a one-to-one function from  into , but there does not exist a
function from  onto . Note that  would have its usual meaning if applied to the equivalence classes. That is,  if and
only if  but . Intuitively, of course,  means that  is strictly larger than , in the sense of cardinality.

 in each of the following cases:

1.  and  are finite and .
2.  is finite and  is countably infinite.
3.  is countably infinite and  is uncountable.

We close our discussion with the observation that for any set, there is always a larger set.

If  is a set then .

Proof

First, it's trivial to map  one-to-one into ; just map  to . Suppose now that  maps  onto  and let 
. Since  is onto, there exists  such that . Note that  if and only if .

The proof that a set cannot be mapped onto its power set is similar to the Russell paradox, named for Bertrand Russell.

The continuum hypothesis is the statement that there is no set whose cardinality is strictly between that of  and . The continuum
hypothesis actually started out as the continuum conjecture, until it was shown to be consistent with the usual axioms of the real
number system (by Kurt Gödel in 1940), and independent of those axioms (by Paul Cohen in 1963).

Assuming the continuum hypothesis, if  is uncountable then there exists  such that  and  are uncountable.

Proof

Under the continuum hypothesis, if  is uncountable then . Hence there exists a one-to-one function .
Let . Then  is uncountable, and since ,  is uncountable.

S

⪯

A B B A

A B

A⪯B B⪯A A ≈ B

⊆ P(A) A P(A)
f A B g B

A h : P(A) →P(A) h(U) = A ∖ g[B ∖ f(U)] U ⊆ A h

U ⊆ V ⟹ f(U) ⊆ f(V ) ⟹ B ∖ f(V ) ⊆ B ∖ f(U)
⟹ g[B ∖ f(V )] ⊆ g[B ∖ f(U)] ⟹ A ∖ g[B ∖ f(U)] ⊆ A ∖ g[B ∖ f(V )]

(1.6.4)
(1.6.5)

U ⊆ A h(U) = U U = A ∖ g[B ∖ f(U)]
A ∖ U = g[B ∖ f(U)] F : A → B F (x) = f(x) x ∈ U F (x) = (x)g−1 x ∈ A ∖ U

f U f(U) g B ∖ f(U) A ∖ U

F , ∈ Ax1 x2 F ( ) = F ( )x1 x2 , ∈ Ux1 x2 f( ) = f( )x1 x2

=x1 x2 f , ∈ A ∖ Ux1 x2 ( ) = ( )g−1 x1 g−1 x2 =x1 x2 g−1 ∈ Ux1

∈ A ∖ Ux2 F ( ) = f( ) ∈ f(U)x1 x1 F ( ) = ( ) ∈ B ∖ f(U)x2 g−1 x2 F ( ) = F ( )x1 x2

F y ∈ B y ∈ f(U) y = f(x) x ∈ U F (x) = y y ∈ B ∖ f(U)
x = g(y) ∈ A ∖ U F (x) = (x) = yg−1

A ≺ B A⪯B A ≉ B A B

A B ≺ [A] ≺ [B]
[A] ⪯ [B] [A] ≠ [B] A ≺ B B A

A ≺ B

A B #(A) < #(B)
A B

A B

S S ≺P(S)

S P(S) x {x} f S P(S)
R = {x ∈ S : x ∉ f(x)} f t ∈ S f(t) = R t ∈ f(t) t ∉ f(t)

N R

S A ⊆ S A Ac

S [0, 1)⪯ S f : [0, 1) → S

A = f [0, )1
2

A f [ , 1) ⊆1
2

Ac Ac
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There is a more complicated proof of the last result, without the continuum hypothesis and just using the axiom of choice.
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