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16.12: Discrete-Time Queuing Chains

Basic Theory
Introduction
In a queuing model, customers arrive at a station for service. As always, the terms are generic; here are some typical examples:

o The customers are persons and the service station is a store.
o The customers are file requests and the service station is a web server.
e The customers are packages and the service station is a processing facility.
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Figure 16.12.1 Ten customers and a server

Queuing models can be quite complex, depending on such factors as the probability distribution that governs the arrival of
customers, the probability distribution that governs the service of customers, the number of servers, and the behavior of the
customers when all servers are busy. Indeed, queuing theory has its own lexicon to indicate some of these factors. In this section,
we will study one of the simplest, discrete-time queuing models. However, as we will see, this discrete-time chain is embedded in a
much more realistic continuous-time queuing process knows as the M/G/1 queue. In a general sense, the main interest in any
queuing model is the number of customers in the system as a function of time, and in particular, whether the servers can adequately
handle the flow of customers.

Our main assumptions are as follows:

1. If the queue is empty at a given time, then a random number of new customers arrive at the next time.

2. If the queue is nonempty at a given time, then one customer is served and a random number of new customers arrive at the
next time.

3. The number of customers who arrive at each time period form an independent, identically distributed sequence.

Thus, let X, denote the number of customers in the system at time n € N, and let U,, denote the number of new customers who
arrive at time n € Ny . Then U = (Uy, Uy, .. .) is a sequence of independent random variables, with common probability density
function f on N, and

U, X,=0
Xp1=14 ¢ n , €N 16.12.1
o { (anl)JrUn-‘—la Xn>0 " ( )
X = (X, X1, X, ...) is a discrete-time Markov chain with state space N and transition probability matrix P given by
P(0,y) =f(y), yeN (16.12.2)
P(z,y) =fly—z+1), zeN;, ye{z—1,z,2+1,...} (16.12.3)

The chain X is the queuing chain with arrival distribution defined by f.
Proof

The Markov property and the form of the transition matrix follow from the construction of the state process X in term of the
IID sequence U. Starting in state 0 (an empty queue), a random number of new customers arrive at the next time unit,
governed by the PDF f. Hence the probability of going from state O to state y in one step is f(y). Starting in state z € N, one
customer is served and a random number of new customers arrive by the next time unit, again governed by the PDF f. Hence
the probability of going from state z to statey € {x —1,z,z+1,...} is fly— (z —1)] .

Recurrence and Transience

From now on we will assume that £(0) >0 and f(0)+ f(1) < 1. Thus, at each time unit, it's possible that no new customers
arrive or that at least 2 new customers arrive. Also, we let m denote the mean of the arrival distribution, so that
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m=> zf(z) (16.12.4)

Thus m is the average number of new customers who arrive during a time period.

The chain X is irreducible and aperiodic.
Proof

In a positive state, the chain can move at least one unit to the right and can move one unit to the left at the next step. From state
0, the chain can move two or more units to the right or can stay in 0 at the next step. Thus, every state leads to every other state
so the chain is irreducible. Since 0 leads back to 0, the chain is aperiodic.

Our goal in this section is to compute the probability that the chain reaches 0, as a function of the initial state (so that the server is
able to serve all of the customers). As we will see, there are some curious and unexpected parallels between this problem and the
problem of computing the extinction probability in the branching chain. As a corollary, we will also be able to classify the queuing
chain as transient or recurrent. Our basic parameter of interest is ¢ = H(1,0) =P(rp < oo | Xg =1) , where as usual, H is the
hitting probability matrix and 7p = min{n € N : X,, =0} is the first positive time that the chain is in state 0 (possibly infinite).
Thus, q is the probability that the queue eventually empties, starting with a single customer.

The parameter g satisifes the following properties:
l.g=H(z,z—1) foreveryz € N, .
2.¢* = H(z,0) forevery z € N .

Proof

1. The critical observation is that if € N then P(z,y) =P(l,y—z+1)=f(y—x+1) for
ye{z—1,z,z+1,...}. Thus, the chain, starting in , and up until the time that it reaches z — 1 (if it does), behaves
stochastically like the chain starting in state 1, and up until it reaches 0.

2. In order to reach 0, starting in state z € N, the chain must first reach  — 1 and then from & —1 must reach  — 2, until
finally reaching O from state 1. Each of these intermediate trips has probability g by part (a) and are independent by the
Markov property.

The parameter q satisfies the equation:
g=)_ fx)g" (16.12.5)
=0
Proof
This follows from the previous theorem by conditioning on the first state.
o0
P(rg <oo| Xo=1)=> P(r<oo|Xg=1,X; =z)P(X; =z | Xo =1) (16.12.6)
=0
Note first that P(1g < oo | Xo =1, X; =0)=1=¢" . On the other hand, by the Markov property and the previous result,
Pnp<oo|Xo=1,X1=2)=P(rg<oo| X1 =2)=¢", zeN; (16.12.7)

Of course P(X; =z | Xo=1)=P(l,z) = f(z) forz € N.

Note that this is exactly the same equation that we considered for the branching chain, namely ®(q) =g, where ® is the
probability generating function of the distribution that governs the number of new customers that arrive during each period.
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Figure 16.12.2 The graph of ¢ in the recurrent case
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Figure 16.12.3 The graph of ¢ in the transient case

q is the smallest solution in (0, 1] of the equation ®(¢) = ¢. Moreover

1.1f m <1 then ¢ =1 and the chain is recurrent.
2.If m >1then0 < ¢ <1 and the chain is transient..

Proof

This follows from our analysis of branching chains. The graphs above show the two cases. Note that the condition in (a) means
that on average, one or fewer new customers arrive for each customer served. The condition in (b) means that on average, more
than one new customer arrives for each customer served.

Positive Recurrence

Our next goal is to find conditions for the queuing chain to be positive recurrent. Recall that m is the mean of the probability
density function f; that is, the expected number of new customers who arrive during a time period. As before, let 7y denote the first
positive time that the chain is in state 0. We assume that the chain is recurrent, so m < 1 and P(rp < 00) =1.

Let ¥ denote the probability generating function of 7y, starting in state 1. Then

1. ¥ is also the probability generating function of 7y starting in state 0.
2. ¥® is the probability generating function of 7y starting in state z € N .

Proof

1. The transition probabilities starting in state 1 are the same as those starting in state 0: P(0,z) = P(1,z) = f(z) for
x €N.

2. Starting in state x € N , the random time to reach 0 is the sum of the time to reach  — 1, the additional time to reach
x —2 from z —1, and so forth, ending with the time to reach 0 from state 1. These random times are independent by the
Markov property, and each has the same distribution as the time to reach 0 from state 1 by our argument above. Finally,
recall that the PGF of a sum of independent variables is the product of the corresponding PGFs.

U(t) = t®[U(t)] fort € [1,1].

Proof
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Once again, the trick is to condition on the first state:

Y()=E (" [Xo=1)=) E(F"|Xo=1,Xi=3)P(Xy =z | Xp=1) (16.12.8)
=0

First note that E (tTO |X0 =1,X; :0) =t =t¥%(¢) . On the other hand, by the Markov property and the previous
theorem,
E (tTD | Xo=1,X; = z) =K (tl‘”D | Xy = a:) =tE (tm ‘ Xo = a:) =tP*(t), zeN, (16.12.9)

Of course P(X; =z | Xo=1) = P(1,z) = f(x) .Hence we have
U(t) zit\Iﬁ”(t)f(x) =t®[U(t)] (16.12.10)
z=0

The PGF of any variable that takes positive integer values is defined on [—1, 1], and maps this interval back into itself. Hence
the representation is valid at least for ¢ € [—1, 1].

The deriviative of ¥ is

V() = %, te(=1,1) (16.12.11)
Proof

Recall that a PGF is infinitely differentiable on the open interval of convergence. Hence using the result in the previous
theorem and the product and chain rules,

V' (t) = [U(t)] +tD' [T(2)] P (2) (16.12.12)

Solving for W' (t) gives the result.

As usual, let g = E(7 | Xo =0) , the mean return time to state O starting in state 0. Then

1. po = —L_ if ;. < 1 and therefore the chain is positive recurrent.
1-m

2. po = oo if m =1 and therefore the chain is null recurrent.
Proof

Recall that ¥ is the probability generating function of 7y, starting at 0. From basic properties of PGFs we know that ®(¢) 1 1,
()11, ®'(t) t m, and ¥'(t) T po as ¢ 1 1. So letting ¢ 1 1 in the result of the previous theorem, we have g =1/(1—m)
ifm<1andp =00 ifm=1.

So to summarize, the queuing chain is positive recurrent if m < 1, null recurrent if m =1, and transient if m > 1. Since m is the
expected number of new customers who arrive during a service period, the results are certainly reasonable.

Computational Exercises

Consider the queuing chain with arrival probability density function f given by f(0) =1 —p, f(2) =p, where p € (0,1) is a
parameter. Thus, at each time period, either no new customers arrive or two arrive.

1. Find the transition matrix P.

2. Find the mean m of the arrival distribution.

3. Find the generating function ® of the arrival distribution.

4. Find the probability q that the queue eventually empties, starting with one customer.
5. Classify the chain as transient, null recurrent, or positive recurrent.

6. In the positive recurrent case, find j19, the mean return time to 0.

Answer
1. P(0,0)=1-p, P(0,2)=p.Forz e N, P(z,z—1)=1—p ,P(z,z+1)=p.
2.m =2p.
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3.8(t) =pt’+(1—p) forteR.
4¢=1if0<p<i andg=—Lif3<p<l.
5. The chain is transient if p > % , null recurrent if p = % , and positive recurrent if p < % .

6.,u0=ﬁforp<%.

Graphs of ¢t — ®(t) and ¢t — t whenp = %
| .Graphs

Graphs of ¢ — ®(t) and ¢t — ¢ whenp = %
["_"‘Graphs

Consider the queuing chain whose arrival distribution is the geometric distribution on N with parameter 1 —p, where
p € (0,1). Thus f(n) = (1 —p)p"™ forn € N.

1. Find the transition matrix P.

2. Find the mean m of the arrival distribution.

3. Find the generating function ® of the arrival distribution.

4. Find the probability g that the queue eventually empties, starting with one customer.
5. Classify the chain as transient, null recurrent, or positive recurrent.

6. In the positive recurrent case, find pg, the mean return time to 0.

Answer
1. P(0,y)=(1—p)p? fory e N.Forz € N,, P(z,y) = (1 —p)p? > foryec{z—1,z,2+1,...}.
2.m= -+
l—p1
-p 1
3. (I)(t) = =5 for |t| < =

. 1 1-p .. 1
4.9=1if0<p<3 andq:T ifs <p<l.
5. The chain is transient if p > % , null recurrent if p = % , and positive recurrent if p < % .
_1-p 1
6. o = 2% forp < 5 -
Graphs of ¢t — ®(t) and ¢t — ¢t whenp = %

| .Graphs

Graphs of ¢ — ®(t) and ¢t — ¢ whenp = %
| Graphs

Curiously, the parameter q and the classification of the chain are the same in the last two models.

Consider the queuing chain whose arrival distribution is the Poisson distribution with parameter m € (0,00). Thus
f(n) =e™™m"/n! for n € N. Find each of the following:

1. The transition matrix P

2. The mean m of the arrival distribution.

3. The generating function ® of the arrival distribution.

4. The approximate value of ¢ when m = 2 and when m = 3.

5. Classify the chain as transient, null recurrent, or positive recurrent.
6. In the positive recurrent case, find g, the mean return time to 0.

Answer
L P(0,y) =e ™m¥/ylfory e N.Forz € N, P(z,y) =e ™"m¥ ™ [(y—z+1)! forye{z—1,z,2+1,...}.
2. The parameter m is the mean of the Poisson distribution, so the notation is consistent.
3. 8(t) =™ fort € R.
4.q=1if 0 <m <1.If m > 1 then g is the solution in (0, 1) of the equation e™471) = ¢ which can be expressed in terms
of a special function known as the Lambert W function:

1 -m
q:—EW(—me ) (16.12.13)

Form =2,9~0.20319 Form =3, ¢ =~ 0.05952Q
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5. The chain is transient if 72 > 1, null recurrent if m = 1, and positive recurrent if m < 1.
6. o = ﬁ form < 1.
Graphs of ¢ — ®(t) and t — ¢t when m = %
QGraphs
Graphs of ¢t — ®(t) and ¢ — t when m =2
E:Graphs

This page titled 16.12: Discrete-Time Queuing Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
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