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16.20: Chains Subordinate to the Poisson Process
     

Basic Theory

Introduction

Recall that the standard Poisson process with rate parameter  involves three interrelated stochastic processes. First the
sequence of interarrival times  is independent, and each variable has the exponential distribution with parameter 
. Next, the sequence of arrival times  is the partial sum sequence associated with the interrival sequence :

For , the arrival time  has the gamma distribution with parameters  and . Finally, the Poisson counting process 
 is defined by

so that  is the number of arrivals in  for . The counting variable  has the Poisson distribution with parameter 
 for . The counting process  and the arrival time process  are inverses in the sense that  if and only if 

 for  and . The Poisson counting process can be viewed as a continuous-time Markov chain.

Suppose that  takes values in  and is independent of . Define  for . Then 
 is a continuous-time Markov chain on  with exponential parameter function given by  for 

 and jump transition matrix  given by  for .

Proof

This follows directly from the basic structure of a continuous-time Markov chain. Given , the holding time in state 
 is exponential with parameter , and the next state is deterministically . Note that the addition of the variable 

is just to allow us the freedom of arbitrary initial distributions on the state space, as is routine with Markov processes.

Note that the Poisson process, viewed as a Markov chain is a pure birth chain. Clearly we can generalize this continuous-time
Markov chain in a simple way by allowing a general embedded jump chain.

Suppose that  is a Markov chain with (countable) state space , and with constant exponential
parameter  for , and jump transition matrix . Then  is said to be subordinate to the Poisson
process with rate parameter .

1. The transition times  are the arrival times of the Poisson process with rate .
2. The inter-transition times  are the inter-arrival times of the Poisson process with rate  (independent, and

each with the exponential distribution with rate ).
3.  is the Poisson counting process, where  is the number of transitions in (0, t] for .
4. The Poisson process and the jump chain  are independent, and  for .

Proof

These results all follow from the basic structure of a continuous-time Markov chain.

Since all states are stable, note that we must have  for . Note also that for  with , the exponential
rate parameter for the transition from  to  is . Conversely suppose that  satisfies 

 and  for every . Then the Markov chain with transition rates given by  is subordinate to the
Poisson process with rate . It's easy to construct a Markov chain subordinate to the Poisson process.

Suppose that  is a Poisson counting process with rate  and that  is a
discrete-time Markov chain on , independent of , whose transition matrix satisfies  for every . Let 

 for . Then  is a continuous-time Markov chain subordinate to the Poisson
process.
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Generator and Transition Matrices

Next let's find the generator matrix and the transition semigroup. Suppose again that  is a continuous-time
Markov chain on  subordinate to the Poisson process with rate  and with jump transition matrix . As usual, let 

 denote the transition semigroup and  the infinitesimal generator.

The generator matrix  of  is . Hence for 

1. The Kolmogorov backward equation is 
2. The Kolmogorov forward equation is 

Proof

This follows directly from the general theory since  for  and 
 for distinct .

There are several ways to find the transition semigroup . The best way is a probabilistic argument using the
underlying Poisson process.

For , the transition matrix  is given by

Proof from the underlying Poisson process

Let  denote the number of transitions in  for , so that  is the Poisson counting
process. Let  denote the jump chain, with transition matrix . Then  and  are independent, and 

 for . Conditioning we have

Proof using the generator matrix

Note first that for ,

Hence

Potential Matrices

Next let's find the potential matrices. As with the transition matrices, we can do this in (at least) two different ways.

Suppose again that  is a continuous-time Markov chain on  subordinate to the Poisson process with
rate  and with jump transition matrix . For , the potential matrix  of  is
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Proof from the definition

Using the previous result,

The interchange of sum and integral is justified since the terms are nonnegative. Using the change of variables 
gives

The last integral is .

Proof using the generator

From the result above,

Since  we have

Recall that for , the -potential matrix of the jump chain  is . Hence we have the following nice
relationship between the potential matrix of  and the potential matrix of :

Next recall that  is the probability density function of  given , where  has the exponential distribution with
parameter  and is independent of . On the other hand,  where . We know from our
study of discrete potentials that  is the probability density function of  where  has the geometric distribution
on  with parameter  and is independent of . But also . So it follows that if  has the exponential distribution
with parameter ,  is a Poisson process with rate , and is independent of , then  has the geometric
distribution on  with parameter . Of course, we could easily verify this directly, but it's still fun to see such
connections.

Limiting Behavior and Stationary Distributions

Once again, suppose that  is a continuous-time Markov chain on  subordinate to the Poisson process with
rate  and with jump transition matrix . Let  denote the jump process. The limiting behavior and
stationary distributions of  are closely related to those of .

Suppose that  (and hence ) are irreducible and positive recurrent

1.  is invariant for  if and only if  is invariant for .
2.  is an invariant probability density function for  if and only if  is an invariant probability density function for .
3.  is null recurrent if and only if  is null recurrent, and in this case,  for 

.
4.  is positive recurrent if and only if  is positive recurrent. If  is aperiodic, then 

 for , where  is the invariant probability density function.
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Proof

All of these results follow from the basic theory of stationary and limiting distributions for continuous-time chains, and the fact
that the exponential parameter function  is constant.

Time Reversal

Once again, suppose that  is a continuous-time Markov chain on  subordinate to the Poisson process with
rate  and with jump transition matrix . Let  denote the jump process. We assume that  (and
hence ) are irreducible. The time reversal of  is closely related to that of .

Suppose that  is invariant for . The time reversal  with respect to  is also subordinate to the Poisson
process with rate . The jump chain  of  is the (discrete) time reversal of  with respect to .

Proof

From the previous result,  is also invariant for . From the general theory of time reversal,  has the same exponential
parameter function as  (namely the constant function ) and so is also subordinate to the Poisson process with rate . Finally,
the jump chain  of  is the reversal of  with respect to  and hence also with respect to .

In particular,  is reversible with respect to  if and only if  is reversible with respect to . As noted earlier,  and  are of the
same type: both transient or both null recurrent or both positive recurrent. In the recurrent case, there exists a positive invariant
function that is unique up to multiplication by constants. In this case, the reversal of  is unique, and is the chain subordinate to
the Poisson process with rate  whose jump chain is the reversal of .

Uniform Chains

In the construction above for a Markov chain  that is subordinate to the Poisson process with rate  and
jump transition kernel , we assumed of course that  for every . So there are no absorbing states and the
sequence  of arrival times of the Poisson process are the jump times of the chain . However in our introduction to
continuous-time chains, we saw that the general construction of a chain starting with the function  and the transition matrix 
works without this assumption on , although the exponential parameters and transition probabilities change. The same idea works
here.

Suppose that  is a counting Poisson process with rate  and that  is a
discrete-time Markov chain with transition matrix  on  satisfying  for . Assume also that  and 
are independent. Define  for . Then  is a continuous-Markov chain with
exponential parameter function  for  and jump transition matrix  given by

Proof

This follows from the result in the introduction.

The Markov chain constructed above is no longer a chain subordinate to the Poisson process by our definition above, since the
exponential parameter function is not constant, and the transition times of  are no longer the arrival times of the Poisson process.
Nonetheless, many of the basic results above still apply.

Let  be the Markov chain constructed in the previous theorem. Then

1. For , the transition matrix  is given by

2. For , the  potential matrix is given by
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3. The generator matrix is 
4.  is invariant for  if and only if  is invariant for .

Proof

The proofs are just as before.

It's a remarkable fact that every continuous-time Markov chain with bounded exponential parameters can be constructed as in the
last theorem, a process known as uniformization. The name comes from the fact that in the construction, the exponential parameters
become constant, but at the expense of allowing the embedded discrete-time chain to jump from a state back to that state. To review
the definition, suppose that  is a continuous-time Markov chain on  with transition semigroup 

, exponential parameter function  and jump transition matrix . Then  is uniform if  as 
 uniformly in , or equivalently if  is bounded.

Suppose that  is bounded and that  is a transition matrix on  with  for every . Let 
 be an upper bound on  and  a Poisson counting process with rate . Define the transition

matrix  on  by

and let  be a discrete-time Markov chain with transition matrix , independent of . Define  for 
. Then  is a continuous-time Markov chain with exponential parameter function  and jump

transition matrix .

Proof

Note that  for every  and  for every . Thus  is a transition matrix on .

Note also that  for every . By construction,  for  and

So the result now follows from the theorem above.

Note in particular that if the state space  is finite then of course  is bounded so the previous theorem applies. The theorem is
useful for simulating a continuous-time Markov chain, since the Poisson process and discrete-time chains are simple to simulate. In
addition, we have nice representations for the transition matrices, potential matrices, and the generator matrix.

Suppose that  is a continuous-time Markov chain on  with bounded exponential parameter function 
 and jump transition matrix . Define  and  as in the last theorem. Then

1. For , the transition matrix  is given by

2. For , the  potential matrix is given by

3. The generator matrix is 
4.  is invariant for  if and only if  is invariant for .
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Proof

These results follow from the theorem above.

Examples

The Two-State Chain

The following exercise applies the uniformization method to the two-state chain.

Consider the continuous-time Markov chain  on  with exponential parameter function 
, where . Thus, states 0 and 1 are stable and the jump chain has transition matrix

Let , an upper bound on . Show that

1. 

2. 

3.  for 

4.  for 

Proof

The form of  follows easily from the definition above . Note that the rows of  are the invariant PDF. It then follows that 

 for . The results for the transition matrix  and the potential  then follow easily from the theorem above.

Although we have obtained all of these results for the two-state chain before, the derivation based on uniformization is the easiest.
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