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11.7: The Beta-Bernoulli Process

An interesting thing to do in almost any parametric probability model is to “randomize” one or more of the parameters. Done in a
clever way, this often leads to interesting new models and unexpected connections between models. In this section we will
randomize the success parameter in the Bernoulli trials process. This leads to interesting and surprising connections with Pélya's
urn process.

Basic Theory

Definitions

First, recall that the beta distribution with left parameter a € (0, 00) and right parameter b € (0, co) is a continuous distribution on
the interval (0, 1) with probability density function g given by

g9(p) = P (1-p)"", pe(0,1) (11.7.1)

B(a,b)

where B is the beta function. So B(a, b) is simply the normalizing constant for the function p — p®~1(1 —p)>~! on the interval
(0, 1). Here is our main definition:

Suppose that P has the beta distribution with left parameter a € (0, 00) and right parameter b € (0, 00). Next suppose that
X =(X1,Xs,,...) is a sequence of indicator random variables with the property that given P=p € (0,1), X is a
conditionally independent sequence with

P(X;=1|P=p)=p, €N, (11.7.2)

Then X is the beta-Bernoulli process with parameters a and b.

In short, given P = p, the sequence X is a Bernoulli trials sequence with success parameter p. In the usual language of reliability,
X; is the outcome of trial ¢, where 1 denotes success and 0 denotes failure. For a specific application, suppose that we select a
random probability of heads according to the beta distribution with with parameters a and b, and then toss a coin with this
probability of heads repeatedly.

Outcome Variables
What's our first step? Well, of course we need to compute the finite dimensional distributions of X. Recall that for » € R and

j €N, 71/ denotes the ascending power r(r+1)---[r+(j—1)] . By convention, a product over an empty index set is 1, so
Pl =1.
Suppose that n € N, and (21, 2,...,%,) € {0,1}* Letk=xz; +x3+---+x, .Then
alMpn—=+
IF’(Xl=m1,X2=m2,...,Xn=xn)=m (11.7.3)
Proof

First, note that P(X; =21, X2 =22,..., X, =2, | P=p) :pk(l —p)"_k by the conditional independence. Thus,
conditioning on P gives

IP(X] :.’E]_,X2 = T2y... 7Xn Z:En) ZE[P(Xl ::El,Xz =T2,... ;Xn =Ty | P)] (1174)
1
1
k n—k a—1 b—1

= 1-— 1-— d 11.7.5
/) p(1-p) Bab)? (1-p)" " dp ( )

Bla+k,b+(n—k [Hpfn—H
_ Blediosle )] o (11.7.6)

B(a, b) (a + b)["]

The last step uses a property of the beta function.

From this result, it follows that Pélya's urn process with parameters a, b, ¢ € N is equivalent to the beta-Bernoulli process with
parameters a/c and b/c, quite an interesting result. Note that since the joint distribution above depends only on

https://stats.libretexts.org/@go/page/10239



https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10239?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/11%3A_Bernoulli_Trials/11.07%3A_The_Beta-Bernoulli_Process

LibreTextsw

r1+x9+---+a, , the sequence X is exchangeable. Finally, it's interesting to note that the beta-Bernoulli process with
parameters a¢ and b could simply be defined as the sequence with the finite-dimensional distributions above, without reference to
the beta distribution! It turns out that every exchangeable sequence of indicator random variables can be obtained by randomizing
the success parameter in a sequence of Bernoulli trials. This is de Finetti's theorem, named for Bruno de Finetti, which is studied in
the section on backwards martingales.

For each¢ € N}

1L.E(X;) = aLer
2.var(X;) = aL-&-ba;:-b
Proof

Since the sequence is exchangeable, X; has the same distribution as X7, so P(X; =1) = aL-&-b . The mean and variance now

follow from standard results for indicator variables.

Thus X is a sequence of identically distributed variables, quite surprising at first but of course inevitable for any exchangeable
sequence. Compare the joint distribution with the marginal distributions. Clearly the variables are dependent, so let's compute the
covariance and correlation of a pair of outcome variables.

Suppose that 4, j € N, are distinct. Then
X)) = —ab
1. COV(Xza XJ) (a+b)?(a+b+1)
2. COI(Xi7 Xj) = a+1§+1
Proof

Since the variables are exchangeable, P(X; =1, X; =1) =P(X; =1, X, =1) = aLer ai—;’il . The results now follow from

standard formulas for covariance and correlation.

Thus, the variables are positively correlated. It turns out that in any infinite sequence of exchangeable variables, the the variables
must be nonnegatively correlated. Here is another result that explores how the variables are related.

Suppose that n € N and (21, 22, ...,2,) € {0,1}". Letk=>_" ; ;. Then

a+k

P(XH_HZ].‘X]_ :zl,Xz :$2,Xn:$"):m

(11.7.7)

Proof

Using the joint distribution,

P(X; =x1, Xo =22,... X =2, Xny1 =1)
P(Xl = CL‘1,X2 =T2y... Xn = Clin)

B alE+1pln—Fkl (a—|—b)["] a+k

" (a+b)ntl gk a+b+n

P(Xn+1:1|X1 ::El,Xz Z:IEQ,...XHZCE”) =

The beta-Bernoulli model starts with the conditional distribution of X given P. Let's find the conditional distribution in the other

direction.
Suppose that n € N, and (21, ®2,...,2,) € {0,1}" Let k=>"", ®;. Then the conditional distribution of P given
(X1 =21, Xs,=x9,...,X,, =z,) is beta with left parameter a + k and right parameter b+ (n — k) . Hence
a+k
E(P|X1=x1,Xo=23,..., Xy =2z,) = ———— 11.7.8

( | 1 1 2 2 n n) a+ b + k ( )
Proof
This follows from Bayes' theorem. The conditional PDF g(- | z1, za, . . ., Z,) is given by
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g(p)]P)(Xl :$1,X2 :‘/L'2:~"aXn:-'Bn) | P:p)
g(p | X17$2a'-';$n)

fol g(t)P(Xl ::1,'1,X2 = I2,.. .,Xn =Ty | P :t)dt

, pe(0,1)  (11.7.9)

The numerator is

1
B(a,b)

1
B(a,b)

pafl (1 _p)bflpk(l _p)nfk — pa+k71 (1 _p)bJrn*k*l (11710)

The denominator is simply the normalizing constant for the expression, as a function of p and is
B(a+k,b+n—k)/B(a,b) .Hence

1
B(a+k,b+n—k)

glp| k)= p* (1 —p)Ptnhl s pe(0,1) (11.7.11)

The last result follows since the mean of the beta distribution is the left parameter divided by the sum of the parameters.

Thus, the left parameter increases by the number of successes while the right parameter increases by the number of failures. In the
language of Bayesian statistics, the original distribution of P is the prior distribution, and the conditional distribution of P given
the data (z1, @3, . . ., T, ) is the posterior distribution. The fact that the posterior distribution is beta whenever the prior distribution
is beta means that the beta distributions is conjugate to the Bernoulli distribution. The conditional expected value in the last
theorem is the Bayesian estimate of p when p is modeled by the random variable P. These concepts are studied in more generality
in the section on Bayes Estimators in the chapter on Point Estimation. It's also interesting to note that the expected values in the last
two theorems are the same: If n € N, (21, 22,...,%,) € {0,1}"and k= >_" | x; then

a+k

E(Xn+1|X1:w1,---,Xn:$n):E(P|X1:wl,---,anmn):m

(11.7.12)

Run the simulation of the beta coin experiment for various values of the parameter. Note how the posterior probability density
function changes from the prior probability density function, given the number of heads.

The Number of Successes

It's already clear that the number of successes in a given number of trials plays an important role, so let's study these variables. For
nec N+ 5 let

Y. =Y X (11.7.13)
i=1

denote the number of successes in the first n trials. Of course, Y = (Yp,Y1,...) is the partial sum process associated with
X =(X1,Xs,...).

Y,, has probability density function given by

(K] pln—H
") a’b ke{0,1,...,n} (11.7.14)

P(Y,=k) = —
=4 (k (a+b)r
Proof

Every bit string of length n with 1 occurring exactly k times has the probability given in the joint distribution above. There are

(Z) such bit strings.

The distribution of Y;, is known as the beta-binomial distribution with parameters n, a, and b.

In the simulation of the beta-binomial experiment, vary the parameters and note how the shape of the probability density
function of Y,, (discrete) parallels the shape of the probability density function of P (continuous). For various values of the
parameters, run the simulation 1000 times and compare the empirical density function to the probability density function.

The case where the parameters are both 1 is interesting.

I If a=b=1, so that P is uniformly distributed on (0, 1), then ¥, is uniformly distributed on {0, 1,...,n}
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Proof
Note that 1/ = j1 and 217/ = (j+1)! for j e N. Hence, from the general PDF Y,, above
! kl(n—k)! 1
P(Y, = k) = —— (n=ht _ , ke{0,1,...,n} (11.7.15)
El(n—k)! (n+1)! n+1
Next, let's compute the mean and variance of Y,.
The mean and variance of Y;, are
1LEY,)= naL-&-b
2.var(Y,)=n (ail;)f [1 +(n— 1)ﬁ]
Proof
These results follow from the mean and covariance results given above:
n
a
E(Y,) = E(X;)=n 11.7.16
(%) =3B =n (11.7.16)
var(Y,) —iicov(X» X-)—na—b—l—n(n—l) ab (11.7.17)
Vg g T a (a+b)’(a+b+1) o

In the simulation of the beta-binomial experiment, vary the parameters and note the location and size of the mean-standard
deviation bar. For various values of the parameters, run the simulation 1000 times and compare the empirical moments to the
true moments.

We can restate the conditional distributions in the last subsection more elegantly in terms of Y, .

Letn € N.

1. The conditional distribution of X, ; given Y, is

at+Y,

P(Xpnt1=1|Y,)=E(Xp11 | Yn)=—7 11.7.18
(KXut =11 ¥) =E(Xns1 | Ya) = = (11.7.18)

2. The conditional distribution of P given Y, is beta with left parameter a +Y;, and right parameter b+ (n —Y;,) . In

particular
a+Y,
EP|Y,)=—— 11.7.19
(PI%) = =2 (11.7.19)
Proof

The proof is easy using the nesting property of conditional expected value and the fact that the conditional distributions given
(X1,Xs,...,X5) dependonlyon Y, =>"" | X

1. Note that
E(Xni1 | Ye) =EE(Xni | Ya) | X1, Xo, ..., Xa] (11.7.20)
=E[E(Xps1 | X1, X2, ..., X0) | Vo] =E (% ’ n) - % (11.7.21)
2. Similarly, if A C (0,1) is measurable then P(P € A | X, X5, ..., X,) depends only on Y,, and so
P(PcA|Y,) =EBPcA|Y,)| X1, Xs,...,X,] (11.7.22)
—E[P(PcA| Xy, Xa,...,X,) | Vo] =P(P € A|Y,) (11.7.23)

Once again, the conditional expected value E(P | Y,,) is the Bayesian estimator of p. In particular, if a =b =1, so that P has the

uniform distribution on (0, 1), then P(X,,41 =1|Y, =n) = % . This is Laplace's rule of succession, another interesting

https://stats.libretexts.org/@go/page/10239



https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10239?pdf

LibreTextsw

connection. The rule is named for Pierre Simon Laplace, and is studied from a different point of view in the section on
Independence.

The Proportion of Successes

Forn e N, let

M—Yn—lzn:X (11.7.24)
" n n — ! o
so that M,, is the sample mean of (X1, X, ..., X,,), or equivalently the proportion of successes in the first n trials. Properties of

M, follow easily from the corresponding properties of Y;,. In particular, P(M,, = k/n) =P(Y,, =k) for k€ {0,1,...,n} as
given above, so let's move on to the mean and variance.

For n € N , the mean and variance of M,, are

LE(M,) =%
_1_ab nol_ ab
2. Va,I'(Mn) “n (a+b)2 + n (a+b)2(a+b+1)
Proof

These results follow from the mean and variance of Y;, above and properties of expected value and variance:

LE(M,) = E(Y,)
2. var(M,) = %var(Yn)

So E(M,,) is constant in n € N while var(M,,) — ab/(a+b)?>(a+b-+1) asn — co. These results suggest that perhaps M,
has a limit, in some sense, as n — oo . For an ordinary sequence of Bernoulli trials with success parameter p € (0, 1), we know
from the law of large numbers that M,, — p as n — co with probability 1 and in mean (and hence also in distribution). What
happens here when the success probability P has been randomized with the beta distribution? The answer is what we might hope.
M, — P as n — oo with probability 1 and in mean square, and hence also in in distribution.

Proof

Let g denote the PDF of P. For convergence with probability 1, we condition on P

P(M,, — Pasn — oo0) =E[P(M, — Pasn— c0) | P] (11.7.25)
= /(;1 P(M, - pasn—oo| P =p)g(p)dp = /01 g(p)dp=1 (11.7.26)
For convergence in mean square, once again we condition on P. Note that
E[(M,, — P)* | P =p| =E[(M,, —p)* | P=p] = @ —0 asn — oo (11.7.27)
Hence by the dominated convergence theorem,
E[(M, — P)’] :Al @g(p)dp%Oasn—)oo (11.7.28)

Proof of convergence in distribution

Convergence with probability 1 implies convergence in distribution, but it's interesting to gove a direct proof. For z € (0,1),

note that
P(M, P(Y, Q= () bt 11.7.29
n<x)=PY, <nzx)= — -7
(4, < 2) =P <nw) = 3 (k) P (11.7.29)

where |- | is the floor function. But recall that

https://stats.libretexts.org/@go/page/10239



https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10239?pdf

LibreTextsw

aMplnH Blatkbtn—k) 1 /1pa+k1(1—p)b+”“dp (11.7.30)
(a+0b) B(a,b) B(a,b) Jo o
Substituting and doing some algebra we get
1 g= AW k 1 b-1
P(M, <) = g /0 3 (k)p (1—p)"*| p* (1 —p)* Ldp (11.7.31)
) k=0

The sum in the square brackets is P(W,, <nz) =P(W, /n <z) where W, has the ordinary binomial distribution with
parameters n and p. But W, /n converges (in every sense) to p asn — oo so P(W,/n <z) —1(p <z) asn — 0o. So by
the dominated convergence theorem,

P(M, < o) — / P (1 p)tldp — P(P < ) (11.7.32)
B(a, b) Jo
Recall again that the Bayesian estimator of p based on (X1, Xo, ..., X,)is
Yo M,
E(P|Y,) = —— a/nt (11.7.33)

a+b+n  a/n+b/n+1

It follows from the last theorem that E(P | Y;,) — P with probability 1, in mean square, and in distribution. The stochastic process
Z={Z,=(a+Yn)/(a+b+n):necN} that we have seen several times now is of fundamental importance, and turns out to
be a martingale. The theory of martingales provides powerful tools for studying convergence in the beta-Bernoulli process.

The Trial Number of a Success

For k € N, let Vj denote the trial number of the kth success. As we have seen before in similar circumstances, the process
V = (V4, Va,...) can be defined in terms of the process Y:

Vi =min{n €N, :Y, =k}, keN, (11.7.34)

Note that V}, takes values in {k,k+1,...}. The random processes V = (V4,Va,...) and Y = (¥}, Y3, . ..) are inverses of each
other in a sense.

ForkeNandn € N, withk <n,

1. Vy <nifandonlyif ¥, >k
2.Viy=nifandonlyif Y, 1 =k—1 and X,, =1

The probability denisty function of V}, is given by

_ 1\ alMpnH
" )“ ne{kk+1,...} (11.7.35)

]P pu— p— _—
Proof 1

As usual, we can condition on P and use known results for ordinary Bernoulli trials. Given P = p, random variable V}, has the
negative binomial distribution with parameters k and p. Hence

n—1

P=n) = [ BO=nlP=pisir= [ (1 1)o@ -pr

n—1 1 ! +k—1 b+n—k—1
= > 1-— n d
(k—l)B(a,b)/o = P

(n—l) Bla+kb+n—k) (n—l) alFpln—F]
k—1 B(a,b) ~\k—1) (a+b)

P (1-p)dp

B(a,b)

Proof 2

In this proof, we condition on Y;,_;. Using the PDF of Y;,_; and the result above,
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P(Vi=n) =P(Y,1=k—1,X,=1)=PY,1=k—1)P(X,=1|Y,, =k—1)
n— ]_ a[k_l]b[(n_l)_(k_l)] a + k — ]_ n— ]_ a[k]b[n_k]
_(k—l) (a+d)r-1  a+b+(n—1) _(k—l) (a+b)

The distribution of V}, is known as the beta-negative binomial distribution with parameters k, a, and b.

Ifa=b=1 so that P is uniformly distributed on (0, 1), then

P(Vi =n) = ne{kk+1,k+2,...} (11.7.36)

n(n+1)’
Proof

Recall again that 11/ = j! and 217/ = (j+1)! for j € N. Hence from the previous result,
(n—1)! k(n—k)! k

PV =1 = ikt (at D) s D)

nef{kk+1,...} (11.7.37)

In the simulation of the beta-negative binomial experiment, vary the parameters and note the shape of the probability density
function. For various values of the parameters, run the simulation 1000 times and compare the empirical density function to the
probability density function.

The mean and variance of Vj, are
a+b—1 .
1. E(Vk) :kaT ifa>1.

2
_ a+b—1 o 1.2 atb-1
2. var(Vi) = bl b+ b(a+b—2)] — (—a_1 )

Proof

From our work with the negative binomial distribution we know that E(V;|P =p) = k% and E(V2|P =p) = k:p;2 +5

Thus, conditioning on P we have

1, pa—1(1 _ o\b-1 a—1, ath—
IE(Vk)=IE[IE(VkIP)]=/O %p ;ta f)) - B;(alb)b) =k :fll (11.7.38)
which gives part (a). Similarly
2_ ) B 1 l—p k_2 pa—l(l_p)b—l
E(Vk)—lE[lEEVkIP)]— )0 (k p(2 p2>—B((a,b) | ( )( | (11.7.39)
B(a—2,b+1 , B(a—2,b) _, bla+b-2 , (@+b—1)(a+b—2
T B B@b) - (a-D(a—2) @—1)e—2) (11.7.40)

Simplifying and using part (a) gives part (b).

In the simulation of the beta-negative binomial experiment, vary the parameters and note the location and size of the mean
+standard deviation bar. For various values of the parameters, run the simulation 1000 times and compare the empirical
moments to the true moments.

This page titled 11.7: The Beta-Bernoulli Process is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.
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