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12.2: The Hypergeometric Distribution
       

Basic Theory

Dichotomous Populations

Suppose that we have a dichotomous population . That is, a population that consists of two types of objects, which we will refer to as type 1
and type 0. For example, we could have

balls in an urn that are either red or green
a batch of components that are either good or defective
a population of people who are either male or female
a population of animals that are either tagged or untagged
voters who are either democrats or republicans

Let  denote the subset of  consisting of the type 1 objects, and suppose that  and . As in the basic sampling model,
we sample  objects at random from . In this section, our only concern is in the types of the objects, so let  denote the type of the th
object chosen (1 or 0). The random vector of types is

Our main interest is the random variable  that gives the number of type 1 objects in the sample. Note that  is a counting variable, and thus
like all counting variables, can be written as a sum of indicator variables, in this case the type variables:

We will assume initially that the sampling is without replacement, which is usually the realistic setting with dichotomous populations.

The Probability Density Function

Recall that since the sampling is without replacement, the unordered sample is uniformly distributed over the set of all combinations of size 
chosen from . This observation leads to a simple combinatorial derivation of the probability density function of .

The probability density function of  is given by

Proof

Consider the unordered outcome, which is uniformly distributed on the set of combinations of size  chosen from the population of size 
. The number of ways to select  type 1 objects from the  type 1 objects in the population is . Similarly the number of ways to

select the remaining  type 0 objects from the  type 0 objects in the population is . Finally the number of ways to select
the sample of size  from the population of size  is .

This distribution defined by this probability density function is known as the hypergeometric distribution with parameters , , and .

Another form of the probability density function of  is

Combinatorial Proof

The combinatorial proof is much like the previous proof, except that we consider the ordered sample, which is uniformly distributed on
the set of permutations of size  chosen from the population of  objects. The binomial coefficient  is the number of ways to select
the coordinates where the type 1 objects will go;  is the number of ways to select an ordered sequence of  type 1 objects objects; and 

 is the number of ways to select an ordered sequence of  type 0 objects. Finally  is the number of ways to select
an ordered sequence of  objects from the population.

Algebraic Proof
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The new form of the PDF can also be derived algebraically by starting with the previous form of the PDF. Use the formula 
for each binomial coefficient, and then rearrange things a bit.

Recall our convention that  for . With this convention, the two formulas for the probability density function are correct for 
. We usually use this simpler set as the set of values for the hypergeometric distribution.

The hypergeometric distribution is unimodal. Let . Then

1.  if and only if .
2. The mode occurs at  if  is not an integer, and at  and  if  is an integer greater than 0.

In the ball and urn experiment, select sampling without replacement. Vary the parameters and note the shape of the probability density
function. For selected values of the parameters, run the experiment 1000 times and compare the relative frequency function to the
probability density function.

You may wonder about the rather exotic name hypergeometric distribution, which seems to have nothing to do with sampling from a
dichotomous population. The name comes from a power series, which was studied by Leonhard Euler, Carl Friedrich Gauss, Bernhard
Riemann, and others.

A (generalized) hypergeometric series is a power series

where  is a rational function (that is, a ratio of polynomials).

Many of the basic power series studied in calculus are hypergeometric series, including the ordinary geometric series and the exponential
series.

The probability generating function of the hypergeometric distribution is a hypergeometric series.

Proof

The PGF is  where  is the hypergeometric PDF, given above. Simple algebra shows that

In addition, the hypergeometric distribution function can be expressed in terms of a hypergeometric series. These representations are not
particularly helpful, so basically were stuck with the non-descriptive term for historical reasons.

Moments

Next we will derive the mean and variance of . The exchangeable property of the indicator variables, and properties of covariance and
correlation will play a key role.

 for each .

Proof

Recall that  is an indicator variable with  for each .

From the representation of  as the sum of indicator variables, the expected value of  is trivial to compute. But just for fun, we give the
derivation from the probability density function as well.

.

Proof

This follows from the previous result and the additive property of expected value.

Proof from the definition

Using the hypergeometric PDF,
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Note that the  term is 0. For the other terms, we can use the identity  to get

But substituting  and using another fundamental identity,

So substituting and doing a bit of algebra gives .

Next we turn to the variance of the hypergeometric distribution. For that, we will need not only the variances of the indicator variables, but
their covariances as well.

 for each .

Proof

Again this follows because  is an indicator variable with  for each .

For distinct ,

1. 
2. 

Proof

Note that  is an indicator variable that indicates the event that the th and th objects are both type 1. By the exchangeable property,
. Part (a) then follows from .

Part (b) follows from part (a) and the definition of correlation.

Note that the event of a type 1 object on draw  and the event of a type 1 object on draw  are negatively correlated, but the correlation
depends only on the population size and not on the number of type 1 objects. Note also that the correlation is perfect if , which must be
the case.

.

Proof

This result follows from the previous results on the variance and covariance of the indicator variables. Recall that the variance of  is the
sum of  over all  and .

Note that  if  or  or , which must be true since  is deterministic in each of these cases.

In the ball and urn experiment, select sampling without replacement. Vary the parameters and note the size and location of the mean 
standard deviation bar. For selected values of the parameters, run the experiment 1000 times and compare the empirical mean and
standard deviation to the true mean and standard deviation.

Sampling with Replacement

Suppose now that the sampling is with replacement, even though this is usually not realistic in applications.

 is a sequence of  Bernoulli trials with success parameter .

The following results now follow immediately from the general theory of Bernoulli trials, although modifications of the arguments above
could also be used.

 has the binomial distribution with parameters  and :
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The mean and variance of  are

1. 
2. 

Note that for any values of the parameters, the mean of  is the same, whether the sampling is with or without replacement. On the other
hand, the variance of  is smaller, by a factor of , when the sampling is without replacement than with replacement. It certainly makes
sense that the variance of  should be smaller when sampling without replacement, since each selection reduces the variablility in the
population that remains. The factor  is sometimes called the finite population correction factor.

In the ball and urn experiment, vary the parameters and switch between sampling without replacement and sampling with replacement.
Note the difference between the graphs of the hypergeometric probability density function and the binomial probability density function.
Note also the difference between the mean  standard deviation bars. For selected values of the parameters and for the two different
sampling modes, run the simulation 1000 times.

Convergence of the Hypergeometric Distribution to the Binomial

Suppose that the population size  is very large compared to the sample size . In this case, it seems reasonable that sampling without
replacement is not too much different than sampling with replacement, and hence the hypergeometric distribution should be well
approximated by the binomial. The following exercise makes this observation precise. Practically, it is a valuable result, since the binomial
distribution has fewer parameters. More specifically, we do not need to know the population size  and the number of type 1 objects 
individually, but only in the ratio .

Suppose that  for each  and that  as . Then for fixed , the hypergeometric
probability density function with parameters , , and  converges to the binomial probability density function with parameters  and 

 as 

Proof

Consider the second version of the hypergeometric PDF above. In the fraction, note that there are  factors in the numerator and  in the
denominator. Suppose we pair the factors to write the original fraction as the product of  fractions. The first  fractions have the form 

 where  does not depend on . Hence each of these fractions converge to  as . The remaining  fractions have the

form , where again,  does not depend on . Hence each of these fractions converges to  as .

The type of convergence in the previous exercise is known as convergence in distribution.

In the ball and urn experiment, vary the parameters and switch between sampling without replacement and sampling with replacement.
Note the difference between the graphs of the hypergeometric probability density function and the binomial probability density function.
In particular, note the similarity when  is large and  small. For selected values of the parameters, and for both sampling modes, run the
experiment 1000 times.

In the setting of the convergence result above, note that the mean and variance of the hypergeometric distribution converge to the mean
and variance of the binomial distribution as .

Inferences in the Hypergeometric Model
In many real problems, the parameters  or  (or both) may be unknown. In this case we are interested in drawing inferences about the
unknown parameters based on our observation of , the number of type 1 objects in the sample. We will assume initially that the sampling is
without replacement, the realistic setting in most applications.

Estimation of  with  Known

Suppose that the size of the population  is known but that the number of type 1 objects  is unknown. This type of problem could arise, for
example, if we had a batch of  manufactured items containing an unknown number  of defective items. It would be too costly to test all 
items (perhaps even destructive), so we might instead select  items at random and test those.

A simple estimator of  can be derived by hoping that the sample proportion of type 1 objects is close to the population proportion of type 1
objects. That is,
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Thus, our estimator of  is . This method of deriving an estimator is known as the method of moments.

Proof

This follows from the expected value of  above, and the scale property of expected value.

The result in the previous exercise means that  is an unbiased estimator of . Hence the variance is a measure of the quality of the
estimator, in the mean square sense.

.

Proof

This follows from variance of  above, and standard properties of variance.

For fixed  and ,  as .

Thus, the estimator improves as the sample size increases; this property is known as consistency.

In the ball and urn experiment, select sampling without replacement. For selected values of the parameters, run the experiment 100 times
and note the estimate of  on each run.

1. Compute the average error and the average squared error over the 100 runs.
2. Compare the average squared error with the variance in mean square error given above.

Often we just want to estimate the ratio  (particularly if we don't know  either. In this case, the natural estimator is the sample
proportion .

The estimator of  has the following properties:

1. , so the estimator is unbiased.
2. 
3.  as  so the estimator is consistent.

Estimation of  with  Known

Suppose now that the number of type 1 objects  is known, but the population size  is unknown. As an example of this type of problem,
suppose that we have a lake containing  fish where  is unknown. We capture  of the fish, tag them, and return them to the lake. Next we
capture  of the fish and observe , the number of tagged fish in the sample. We wish to estimate  from this data. In this context, the
estimation problem is sometimes called the capture-recapture problem.

Do you think that the main assumption of the sampling model, namely equally likely samples, would be satisfied for a real capture-
recapture problem? Explain.

Once again, we can use the method of moments to derive a simple estimate of , by hoping that the sample proportion of type 1 objects is
close the population proportion of type 1 objects. That is,

Thus, our estimator of  is  if  and is  if .

In the ball and urn experiment, select sampling without replacement. For selected values of the parameters, run the experiment 100 times.

1. On each run, compare the true value of  with the estimated value.
2. Compute the average error and the average squared error over the 100 runs.

If  then  maximizes  as a function of  for fixed  and . This means that  is a maximum likelihood estimator of .
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Proof

This result follows from Jensen's inequality since  is a convex function on .

Thus, the estimator is positivley biased and tends to over-estimate . Indeed, if , so that  then . For
another approach to estimating the population size , see the section on Order Statistics.

Sampling with Replacement

Suppose now that the sampling is with replacement, even though this is unrealistic in most applications. In this case,  has the binomial
distribution with parameters  and . The estimators of  with  known, , and  with  known make sense, just as before, but have
slightly different properties.

The estimator  of  with  known satisfies

1. 

2. 

The estimator  of  satisfies

1. 
2. 

Thus, the estimators are still unbiased and consistent, but have larger mean square error than before. Thus, sampling without replacement
works better, for any values of the parameters, than sampling with replacement.

In the ball and urn experiment, select sampling with replacement. For selected values of the parameters, run the experiment 100 times.

1. On each run, compare the true value of  with the estimated value.
2. Compute the average error and the average squared error over the 100 runs.

Examples and Applications

A batch of 100 computer chips contains 10 defective chips. Five chips are chosen at random, without replacement. Find each of the
following:

1. The probability density function of the number of defective chips in the sample.
2. The mean and variance of the number of defective chips in the sample
3. The probability that the sample contains at least one defective chip.

Answer

Let  denote the number of defective chips in the sample

1. 

2. , 
3. 

A club contains 50 members; 20 are men and 30 are women. A committee of 10 members is chosen at random. Find each of the
following:

1. The probability density function of the number of women on the committee.
2. The mean and variance of the number of women on the committee.
3. The mean and variance of the number of men on the committee.
4. The probability that the committee members are all the same gender.

Answer

Let  denote the number of women, so that  is the number of men.
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2. 
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P(Y > 0) = 0.416

Y Z = 10 −Y

P(Y = y) = , y ∈ {0, 1, … , 10}
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4. 

A small pond contains 1000 fish; 100 are tagged. Suppose that 20 fish are caught. Find each of the following:

1. The probability density function of the number of tagged fish in the sample.
2. The mean and variance of the number of tagged fish in the sample.
3. The probability that the sample contains at least 2 tagged fish.
4. The binomial approximation to the probability in (c).

Answer

Let  denote the number of tagged fish in the sample

1. 

2. , 
3. 
4. 

Forty percent of the registered voters in a certain district prefer candidate . Suppose that 10 voters are chosen at random. Find each of
the following:

1. The probability density function of the number of voters in the sample who prefer .
2. The mean and variance of the number of voters in the sample who prefer .
3. The probability that at least 5 voters in the sample prefer .

Answer

1. 
2. , 
3. 

Suppose that 10 memory chips are sampled at random and without replacement from a batch of 100 chips. The chips are tested and 2 are
defective. Estimate the number of defective chips in the entire batch.

Answer

20

A voting district has 5000 registered voters. Suppose that 100 voters are selected at random and polled, and that 40 prefer candidate .
Estimate the number of voters in the district who prefer candidate .

Answer

2000

From a certain lake, 200 fish are caught, tagged and returned to the lake. Then 100 fish are caught and it turns out that 10 are tagged.
Estimate the population of fish in the lake.

Answer

2000

Cards

Recall that the general card experiment is to select  cards at random and without replacement from a standard deck of 52 cards. The special
case  is the poker experiment and the special case  is the bridge experiment.

In a poker hand, find the probability density function, mean, and variance of the following random variables:

1. The number of spades
2. The number of aces

Answer

Let  denote the number of spades and  the number of aces.

P(Y = 0) +P(Y = 10) = 0.00294

Y

P(Y = y) = , y ∈ {0, 1, … , 20}
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1. , , 

2. , , 

In a bridge hand, find each of the following:

1. The probability density function, mean, and variance of the number of hearts
2. The probability density function, mean, and variance of the number of honor cards (ace, king, queen, jack, or 10).
3. The probability that the hand has no honor cards. A hand of this kind is known as a Yarborough, in honor of Second Earl of

Yarborough.

Answer

Let  denote the number of hearts and  the number of honor cards.

1. , , 

2. , , 

3. 

The Randomized Urn

An interesting thing to do in almost any parametric probability model is to randomize one or more of the parameters. Done in the right way,
this often leads to an interesting new parametric model, since the distribution of the randomized parameter will often itself belong to a
parametric family. This is also the natural setting to apply Bayes' theorem.

In this section, we will randomize the number of type 1 objects in the basic hypergeometric model. Specifically, we assume that we have 
objects in the population, as before. However, instead of a fixed number  of type 1 objects, we assume that each of the  objects in the
population, independently of the others, is type 1 with probability  and type 0 with probability . We have eliminated one parameter, ,
in favor of a new parameter  with values in the interval . Let  denote the type of the th object in the population, so that 

 is a sequence of Bernoulli trials with success parameter . Let  denote the number of type 1 objects in
the population, so that  has the binomial distribution with parameters  and .

As before, we sample  object from the population. Again we let  denote the type of the th object sampled, and we let 
denote the number of type 1 objects in the sample. We will consider sampling with and without replacement. In the first case, the sample size
can be any positive integer, but in the second case, the sample size cannot exceed the population size. The key technique in the analysis of the
randomized urn is to condition on . If we know that , then the model reduces to the model studied above: a population of size  with 
 type 1 objects, and a sample of size .

With either type of sampling, 

Proof

Thus, in either model,  is a sequence of identically distributed indicator variables. Ah, but what about dependence?

Suppose that the sampling is without replacement. Let  and let . Then

Proof

Conditioning on  gives

Now let . Note that  is a is a probability generating function of sorts. From the binomial theorem, 
. Let  denote the partial derivative of  of order , with  derivatives with respect to the first

argument and  derivatives with respect to the second argument. From the definition of , . But from
the binomial representation, 
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(m −VV (y) )(n−y)

m(n)
(12.2.14)

G(s, t) =E( )sV tm−V G

G(s, t) = [ps +(1 −p)t]m Gj,k G j+k j

k G (1, 1) =E[ (m −V ]Gj,k V (j) )(k)

(1, 1) = (1 −pGj,k mj+kpj )k
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From the joint distribution in the previous exercise, we see that  is a sequence of Bernoulli trials with success parameter , and hence  has
the binomial distribution with parameters  and . We could also argue that  is a Bernoulli trials sequence directly, by noting that 

 is a randomly chosen subset of .

Suppose now that the sampling is with replacement. Again, let  and let . Then

Proof

The result follows as before by conditioning on :

A closed form expression for the joint distribution of , in terms of the parameters , , and  is not easy, but it is at least clear that the joint
distribution will not be the same as the one when the sampling is without replacement. In particular,  is a dependent sequence. Note
however that  is an exchangeable sequence, since the joint distribution is invariant under a permutation of the coordinates (this is a simple
consequence of the fact that the joint distribution depends only on the sum ).

The probability density function of  is given by

Suppose that  and  are distinct indices. The covariance and correlation of  are

1. 
2. 

Proof

Conditioning on  once again we have . The results now follow from standard

formulas for covariance and correlation.

The mean and variance of  are

1. 
2. 

Proof

Part (a) follows from the distribution of the indicator variables above, and the additive property of expected value. Part (b) follows from
the previous result on covariance. Recall again that the variance of  is the sum of  over all  and .

Let's conclude with an interesting observation: For the randomized urn,  is a sequence of independent variables when the sampling is
without replacement but a sequence of dependent variables when the sampling is with replacement—just the opposite of the situation for the
deterministic urn with a fixed number of type 1 objects.

This page titled 12.2: The Hypergeometric Distribution is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

X p Y

n p X

{ , , … , }X1 X2 Xn { , , … , }U1 U2 Um

( , , … , ) ∈ {0, 1x1 x2 xn }n y =∑n
i=1 xi

P( = , = , … , = ) =E [ ]X1 x1 X2 x2 Xn xn

(m −VV y )n−y

mn
(12.2.15)

V

P( = , = , … , = ) =E [P( = , = , … , = ∣ V )] =E [ ]X1 x1 X2 x2 Xn xn X1 x1 X2 x2 Xn xn

(m −VV y )n−y

mn
(12.2.16)

X m n p

X

X

y

Y

P(Y = y) =( )E [ ] , y ∈ {0, 1, … , n}
n

y

(m −VV y )n−y

mn
(12.2.17)

i j ( , )Xi Xj

cov ( , ) =Xi Xj
p(1−p)

m

cor ( , ) =Xi Xj
1
m

V P ( = 1, = 1) =E [ ] = +Xi Xj ( )V

m

2 p(1−p)

m
p2

Y

E(Y ) = np

var(Y ) = np(1 −p) m+n−1
m

Y cov ( , )Xi Xj i j

X
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