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2.9: Probability Spaces Revisited
     

In this section we discuss probability spaces from the more advanced point of view of measure theory. The previous two sections on positive
measures and existence and uniqueness are prerequisites. The discussion is divided into two parts: first those concepts that are shared rather
equally between probability theory and general measure theory, and second those concepts that are for the most part unique to probability
theory. In particular, it's a mistake to think of probability theory as a mere branch of measure theory. Probability has its own notation,
terminology, point of view, and applications that makes it an incredibly rich subject on its own.

Basic Concepts
Our first discussion concerns topics that were discussed in the section on positive measures. So no proofs are necessary, but you will notice that
the notation, and in some cases the terminology, is very different.

Definitions

We can now give a precise definition of the probability space, the mathematical model of a random experiment.

A probability space , consists of three essential parts:

1. A set of outcomes .
2. A -algebra of events .
3. A probability measure  on the sample space .

Often the special notation  is used for a probability space in the literature—the symbol  for the set of outcomes is intended to remind
us that these are all possible outcomes. However in this text, we don't insist on the special notation, and use whatever notation seems most
appropriate in a given context.

In probability, -algebras are not just important for theoretical and foundational purposes, but are important for practical purposes as well. A -
algebra can be used to specify partial information about an experiment—a concept of fundamental importance. Specifically, suppose that  is
a collection of events in the experiment, and that we know whether or not  occurred for each . Then in fact, we can determine whether
or not  occurred for each , the -algebra generated by .

Technically, a random variable for our experiment is a measurable function from the sample space into another measurable space.

Suppose that  is a probability space and that  is another measurable space. A random variable  with values in  is a
measurable function from  into .

1. The probability distribution of  is the mapping on  given by .
2. The collection of events  is a sub -algebra of , and is the -algebra generated by , denoted .

Details

Figure : The event  associated with 

If we observe the value of , then we know whether or not each event in  has occurred. More generally, we can construct the -algebra
associated with any collection of random variables.

suppose that  is a measurable space for each  in an index set , and that  is a random variable taking values in  for each .
The -algebra generated by  is

If we observe the value of  for each  then we know whether or not each event in  has occurred. This idea is very important
in the study of stochastic processes.

Null Events, Almost Sure Events, and Equivalence

Suppose that  is a probability space.

Define the following collections of events:
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1. , the collection of null events
2. , the collection of almost sure events
3. , the collection of essentially deterministic events

The collection of essentially deterministic events  is a sub -algebra of .

In the section on independence, we showed that  is also a collection of independent events.

Intuitively, equivalent events or random variables are those that are indistinguishable from a probabilistic point of view. Recall first that the
symmetric difference between events  and  is ; it is the event that occurs if and only if one of the events
occurs, but not the other, and corresponds to exclusive or. Here is the definition for events:

Events  and  are equivalent if , and we denote this by . The relation  is an equivalence relation on . That is, for
,

1.  (the reflexive property).
2. If  then  (the symmetric property).
3. If  and  then  (the transitive property).

Thus  if and only if  if and only if . The equivalence relation 
partitions  into disjoint classes of mutually equivalent events. Equivalence is preserved under the set operations.

Suppose that . If  then .

Suppose that  for  in a countable index set . If  for  then

1. 
2. 

Equivalent events have the same probability.

If  and  then .

The converse trivially fails, and a counterexample is given below However, the null and almost sure events do form equivalence classes.

Suppose that .

1. If  then  if and only if .
2. If  then  if and only if .

We can extend the notion of equivalence to random variables taking values in the same space. Thus suppose that  is another measurable
space. If  and  are random variables with values in , then  is a random variable with values in , which is given the usual
product -algebra . We assume that the diagonal set , which is almost always true in applications.

Random variables  and  taking values in  are equivalent if . Again we write . The relation  is an equivalence
relation on the collection of random variables that take values in . That is, for random variables , , and  with values in ,

1.  (the reflexive property).
2. If  then  (the symmetric property).
3. If  and  then  (the transitive property).

So the collection of random variables with values in  is partitioned into disjoint classes of mutually equivalent variables.

Suppose that  and  are random variables taking values in  and that . Then

1.  for every .
2.  and  have the same probability distribution on .

Again, the converse to part (b) fails with a passion, and a counterexample is given below. It often happens that a definition for random variables
subsumes the corresponding definition for events, by considering the indicator variables of the events. So it is with equivalence.

Suppose that . Then  if and only if .

N = {A ∈S : P(A) = 0}
M = {A ∈S : P(A) = 1}
D =N ∪M = {A ∈S : P(A) = 0 or P(A) = 1}

D σ S

D

A B A △ B = (A ∖ B) ∪ (B ∖ A)

A B A △ B ∈N A ≡ B ≡ S

A, B, C ∈S

A ≡ A

A ≡ B B ≡ A

A ≡ B B ≡ C A ≡ C

A ≡ B P(A △ B) = P(A ∖ B) +P(B ∖ A) = 0 P(A ∖ B) = P(B ∖ A) = 0 ≡
S

A, B ∈S A ≡ B ≡Ac Bc

, ∈SAi Bi i I ≡Ai Bi i ∈ I

≡⋃i∈I Ai ⋃i∈I Bi

≡⋂i∈I Ai ⋂i∈I Bi

A, B ∈S A ≡ B P(A) = P(B)

A ∈S

A ∈N A ≡ B B ∈N
A ∈M A ≡ B B ∈M

(T ,T )
X Y T (X, Y ) T ×T

σ T ⊗T D = {(x, x) : x ∈ T } ∈ T ⊗T

X Y T P(X = Y ) = 1 X ≡ Y ≡
T X Y Z T

X ≡ X

X ≡ Y Y ≡ X

X ≡ Y Y ≡ Z X ≡ Z

T

X Y T X ≡ Y

{X ∈ B} ≡ {Y ∈ B} B ∈ T
X Y (T ,T )

A, B ∈S A ≡ B ≡1A 1B
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Equivalence is preserved under a deterministic transformation of the variables. For the next result, suppose that  is yet another
measurable space, along with .

Suppose  are random variables with values in  and that  is measurable. If  then .

Suppose again that  is a probability space corresponding to a random experiment. Let  denote the collection of all real-valued
random variables for the experiment, that is, all measurable functions from  into . With the usual definitions of addition and scalar
multiplication,  is a vector space. However, in probability theory, we often do not want to distinguish between random variables that
are equivalent, so it's nice to know that the vector space structure is preserved when we identify equivalent random variables. Formally, let 
denote the equivalence class generated by a real-valued random variable , and let  denote the collection of all such equivalence
classes. In modular notation,  is the set . We define addition and scalar multiplication on  by

 is a vector space.

Often we don't bother to use the special notation for the equivalence class associated with a random variable. Rather, it's understood that
equivalent random variables represent the same object. Spaces of functions in a general measure space are studied in the chapter on
Distributions, and spaces of random variables are studied in more detail in the chapter on Expected Value.

Completion

Suppose again that  is a probability space, and that  denotes the collection of null events, as above. Suppose that  so that 
. If  and , then we know that  so  also. However, in general there might be subsets of  that are not

in . This leads naturally to the following definition.

The probability space  is complete if  and  imply  (and hence ).

So the probability space is complete if every subset of an event with probability 0 is also an event (and hence also has probability 0). We know
from our work on positive measures that every -finite measure space that is not complete can be completed. So in particular a probability
space that is not complete can be completed. To review the construction, recall that the equivalence relation  that we used above on  is
extended to  (the power set of ).

For , define  if and only if there exists  such that . The relation  is an equivalence relation on 
.

Here is how the probability space is completed:

Let . For , define  where  and . Then

1.  is a -algebra of subsets of  and .
2.  is a probability measure on .
3.  is complete, and is the completion of .

Product Spaces

Our next discussion concerns the construction of probability spaces that correspond to specified distributions. To set the stage, suppose that 
 is a probability space. If we let  denote the identity function on , so that  for , then  for 

and hence . That is,  is the probability distribution of . We have seen this before—every probability measure can be
thought of as the distribution of a random variable. The next result shows how to construct a probability space that corresponds to a sequence of
independent random variables with specified distributions.

Suppose  and that  is a probability space for . The corresponding product measure space  is
a probability space. If  is the th coordinate function on  so that  for  then 

 is a sequence of independent random variables on , and  has distribution  on  for each 
.

Proof

Of course, the existence of the product space  follows immediately from the more general result for products of positive measure
spaces. Recall that  and that  is the -algebra generated by sets of the from  where  for each 

. Finally,  is the unique positive measre on  satisfying

(U,U )
(T ,T )

X, Y T g : T → U X ≡ Y g(X) ≡ g(Y )

(S,S ,P) V

S R

(V , +, ⋅)
[X]

X ∈ V W

W V / ≡ V

[X] + [Y ] = [X +Y ], c[X] = [cX]; [X], [Y ] ∈ V , c ∈ R (2.9.2)

(W , +, ⋅)

(S,S ,P) N A ∈N
P(A) = 0 B ⊆ A B ∈S P(B) = 0 B ∈N A

S

(S,S ,P) A ∈N B ⊆ A B ∈S B ∈N

σ

≡ S

P(S) S

A, B ⊆ S A ≡ B N ∈N A △ B ⊆ N ≡
P(S)

= {A ⊆ S : A ≡ B for some B ∈S }S0 A ∈S0 (A) = P(B)P0 B ∈S A ≡ B

S0 σ S S ⊆S0

P0 (S, )S0

(S, , )S0 P0 (S,S ,P)

(S,S ,P) X S X(x) = x x ∈ S {X ∈ A} = A A ∈S
P(X ∈ A) = P(A) P X

n ∈ N+ ( , , )Si Si Pi i ∈ {1, 2, … , n} (S,S ,P)
: S →Xi Si i S (x) =Xi xi x = ( , , … , ) ∈ Sx1 x2 xn

( , , … , )X1 X2 Xn (S,S ,P) Xi Pi ( , )Si Si

i ∈ {1, 2, … , n}

(S,S ,P)
S =∏n

i=1 Si S σ ∏n
i=1 Ai ∈Ai Si

i ∈ {1, 2, … , n} P (S,S )
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where again,  for each . Clearly  is a probability measure since . Suppose that 
 for . Then . Hence

If we fix  and let  for , then the displayed equation give , so  has distribution 
on . Returning to the displayed equation we have

so  are independent.

Intuitively, the given probability spaces correspond to  random experiments. The product space then is the probability space that corresponds
to the experiments performed independently. When modeling a random experiment, if we say that we have a finite sequence of independent
random variables with specified distributions, we can rest assured that there actually is a probability space that supports this statement

We can extend the last result to an infinite sequence of probability spaces. Suppose that  is a measurable space for each . Recall
that the product space  consists of all sequences  such that  for each . The corresponding product -
algebra  is generated by the collection of cylinder sets. That is,  where

Suppose that  is a probability space for . Let  denote the product measurable space so that  where 
is the collection of cylinder sets. Then there exists a unique probability measure  on  that satisfies

If  is the th coordinate function on  for , so that  for , then  is a
sequence of independent random variables on , and  has distribution  on  for each .

Proof

The proof is similar to the one in for positive measure spaces in the section on existence and uniqueness. First recall that the collection of
cylinder sets  is a semi-algebra. We define  as in the statement of the theorem. Note that all but finitely many factors are 1.
The consistency conditions are satisfied, so  can be extended to a probability measure on the algebra  generated by . That is,  is the
collection of all finite, disjoint unions of cylinder sets. The standard extension theorem and uniqueness theorem now apply, so  can be
extended uniquely to a measure on . The proof that  are independent and that  has distribution  for each 

 is just as in the previous theorem.

Once again, if we model a random process by starting with an infinite sequence of independent random variables, we can be sure that there
exists a probability space that supports this sequence. The particular probability space constructed in the last theorem is called the canonical
probability space associated with the sequence of random variables. Note also that it was important that we had probability measures rather than
just general positive measures in the construction, since the infinite product  is always well defined. The next section on Stochastic
Processes continues the discussion of how to construct probability spaces that correspond to a collection of random variables with specified
distributional properties.

Probability Concepts
Our next discussion concerns topics that are unique to probability theory and do not have simple analogies in general measure theory.

Independence

As usual, suppose that  is a probability space. We have already studied the independence of collections of events and the
independence of collections of random variables. A more complete and general treatment results if we define the independence of collections of
collections of events, and most importantly, the independence of collections of -algebras. This extension actually occurred already, when we
went from independence of a collection of events to independence of a collection of random variables, but we did not note it at the time. In spite
of the layers of set theory, the basic idea is the same.

P( ) = ( )∏
i=1

n

Ai ∏
i=1

n

Pi Ai (2.9.3)

∈Ai Si i ∈ {1, 2, … , n} P P(S) = ( ) = 1∏n
i=1 Pi Si

∈Ai Si i ∈ {1, 2, … , n} { ∈ , ∈ … , ∈ } = ∈SX1 A1 X2 A2 Xn An ∏n
i=1 Ai

P( ∈ , ∈ , … , ∈ ) = ( )X1 A1 X2 A2 Xn An ∏
i=1

n

Pi Ai (2.9.4)

i ∈ {1, 2, … , n} =Aj Sj j ≠ i P( ∈ ) = ( )Xi Ai Pi Ai Xi Pi

( , )Si Si

P( ∈ , ∈ , … , ∈ ) = P( ∈ )X1 A1 X2 A2 Xn An ∏
i=1

n

Xi Ai (2.9.5)

( , , … , )X1 X2 Xn

n

( , )Si Si i ∈ N+

∏∞
i=1 Si x = ( , , …)x1 x2 ∈xi Si i ∈ N+ σ

S S = σ(B)

B ={ : ∈  for each i ∈  and  =  for all but finitely many i ∈ }∏
i=1

∞

Ai Ai Si N+ Ai Si N+ (2.9.6)

( , , )Si Si Pi i ∈ N+ (S,S ) S = σ(B) B

P (S,S )

P( ) = ( ), ∈B∏
i=1

∞

Ai ∏
i=1

∞

Pi Ai ∏
i=1

∞

Ai (2.9.7)

: S →Xi Si i S i ∈ N+ (x) =Xi xi x = ( , , …) ∈ Sx1 x2 ( , , …)X1 X2

(S,S ,P) Xi Pi ( , )Si Si i ∈ N+

B P :B→ [0, 1]
P A B A

P

S = σ(A ) ( , , …)X1 X2 Xi Pi

i ∈ N+

( )∏∞
i=1 Pi Ai

(S,S ,P)

σ
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Suppose that  is a collection of events for each  in an index set . Then  is independent if and only if for every choice
of  for , the collection of events  is independent. That is, for every finite ,

As noted above, independence of random variables, as we defined previously, is a special case of our new definition.

Suppose that  is a measurable space for each  in an index set , and that  is a random variable taking values in a set  for each 
. The independence of  is equivalent to the independence of .

Independence of events is also a special case of the new definition, and thus our new definition really does subsume our old one.

Suppose that  is an event for each . The independence of  is equivalent to the independence of  where 
 for each .

For every collection of objects that we have considered (collections of events, collections of random variables, collections of collections of
events), the notion of independence has the basic inheritance property.

Suppose that  is a collection of collections of events.

1. If  is independent then  is independent for every .
2. If  is independent for every finite  then  is independent.

Our most important collections are -algebras, and so we are most interested in the independence of a collection of -algebras. The next result
allows us to go from the independence of certain types of collections to the independence of the -algebras generated by these collections. To
understand the result, you will need to review the definitions and theorems concerning -systems and -systems. The proof uses Dynkin's -
theorem, named for Eugene Dynkin.

Suppose that  is a collection of events for each  in an index set , and that  is a -system for each . If  is
independent, then  is independent.

Proof

In light of the previous result, it suffices to consider a finite set of collections. Thus, suppose that  is independent. Now,
fix  for  and let . Let . Trivially  since 

. Next suppose that . Then

Thus . Finally, suppose that  is a countable collection of disjoint sets in . Then

Therefore  and so  is a -system. Trivially  by the original independence assumption, so by the -  theorem, 
. Thus, we have that for every  and  for ,

Thus we have shown that  is independent. Repeating the argument  additional times, we get that 
 is independent.

The next result is a rigorous statement of the strong independence that is implied the independence of a collection of events.

Suppose that  is an independent collection of events, and that  is a partition of . That is,  for  and 
. Then  is independent.

Proof

Let  denote the set of all finite intersections of sets in , for each . Then clearly  is a -system for each , and 
is independent. By the previous theorem,  is independent. But clearly  for .

Ai i I A = { : i ∈ I}Ai

∈Ai Ai i ∈ I { : i ∈ I}Ai J ⊆ I

P( ) = P( )⋂
j∈J

Aj ∏
j∈J

Aj (2.9.8)

( , )Ti Ti i I Xi Ti

i ∈ I { : i ∈ I}Xi {σ( ) : i ∈ I}Xi

Ai i ∈ I { : i ∈ I}Ai { : i ∈ I}Ai

= σ{ } = {S, ∅, , }Ai Ai Ai Ac
i i ∈ I

A

A B B ⊆A
B B ⊆A A

σ σ

σ

π λ π λ

Ai i I Ai π i ∈ I { : i ∈ I}Ai

{σ( ) : i ∈ I}Ai

{ , , … , }A1 A2 An

∈Ai Ai i ∈ {2, 3, … , n} E =⋂n
i=2 Ai L = {B ∈S : P(B ∩ E) = P(B)P(E)} S ∈L

P(S ∩ E) = P(E) = P(S)P(E) A ∈L

P( ∩ E) = P(E) −P(A ∩ E) = P(E) −P(A)P(E) = [1 −P(A)]P(E) = P( )P(E)Ac Ac (2.9.9)

∈LAc { : j ∈ J}Aj L

P[( )∩ E] = P[ ( ∩ E)] = P( ∩ E) = P( )P(E) = P(E) P( ) = P(E)P( )⋃
j∈J

Aj ⋃
j∈J

Aj ∑
j∈J

Aj ∑
j∈J

Aj ∑
j∈J

Aj ⋃
j∈J

Aj (2.9.10)

∈L⋃j∈J Aj L λ ⊆LA1 π λ

σ( ) ⊆LA1 ∈ σ( )A1 A1 ∈Ai Ai i ∈ {2, 3, … , n}

P( ) = P( )⋂
i=1

n

Ai ∏
i=1

n

Ai (2.9.11)

{σ( ), , … , }A1 A2 An n −1
{σ( ), σ( ), … , σ( )}A1 A2 An

A { : j ∈ J}Bj A ∩ = ∅Bj Bk j ≠ k

=A⋃j∈J Bj {σ( ) : j ∈ J}Bj

B
∗
j Bj j ∈ J B

∗
j π j { : j ∈ J}B

∗
j

{σ( ) : j ∈ J}B
∗
j σ( ) = σ( )B

∗
j Bj j ∈ J
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Let's bring the result down to earth. Suppose that  are independent events. In our elementary discussion of independence, you were
asked to show, for example, that  and  are independent. This is a consequence of the much stronger statement that the -
algebras  and  are independent.

Exchangeability

As usual, suppose that  is a probability space corresponding to a random experiment Roughly speaking, a sequence of events or a
sequence of random variables is exchangeable if the probability law that governs the sequence is unchanged when the order of the events or
variables is changed. Exchangeable variables arise naturally in sampling experiments and many other settings, and are a natural generalization
of a sequence of independent, identically distributed (IID) variables. Conversely, it turns out that any exchangeable sequence of variables can be
constructed from an IID sequence. First we give the definition for events:

Suppose that  is a collection of events, where  is a nonempty index set. Then  is exchangeable if the probability of
the intersection of a finite number of the events depends only on the number of events. That is, if  and  are finite subsets of  and 

 then

Exchangeability has the same basic inheritance property that we have seen before.

Suppose that  is a collection of events.

1. If  is exchangeable then  is exchangeable for every .
2. Conversely, if  is exchangeable for every finite  then  is exchangeable.

For a collection of exchangeable events, the inclusion exclusion law for the probability of a union is much simpler than the general version.

Suppose that  is an exchangeable collection of events. For  with , let .

Then

Proof

The inclusion-exclusion rule gives

But  for every  with , and there are  such subsets.

The concept of exchangeablility can be extended to random variables in the natural way. Suppose that  is a measurable space.

Suppose that  is a collection of random variables, each taking values in . The collection  is exchangeable if for any 
, the distribution of the random vector  depends only on .

Thus, the distribution of the random vector is unchanged if the coordinates are permuted. Once again, exchangeability has the same basic
inheritance property as a collection of independent variables.

Suppose that  is a collection of random variables, each taking values in .

1. If  is exchangeable then  is exchangeable for every .
2. Conversely, if  is exchangeable for every finite  then  is exchangeable.

Suppose that  is a collection of random variables, each taking values in , and that  is exchangeable. Then trivially the variables are
identically distributed: if  and , then . Also, the definition of exchangeable variables subsumes the
definition for events:

Suppose that  is a collection of events, and let  denote the corresponding collection of indicator random variables.
Then  is exchangeable if and only if  is exchangeable.

A, B, C, D

A ∪ Bc ∪C c Dc σ

σ{A, B} σ{C, D}

(S,S ,P)

A = { : i ∈ I}Ai I A

J K I

#(J) = #(K)

P( ) = P( )⋂
j∈J

Aj ⋂
k∈K

Ak (2.9.12)

A

A B B ⊆A
B B ⊆A A

{ , , … , }A1 A2 An J ⊆ {1, 2, … , n} #(J) = k = P( )pk ⋂j∈J Aj

P( ) = (−1 ( )⋃
i=1

n

Ai ∑
k=1

n

)k−1 n

k
pk (2.9.13)

P( ) = (−1 P( )⋃
i∈I

Ai ∑
k=1

n

)k−1 ∑
J⊆I, #(J)=k

⋂
j∈J

Aj (2.9.14)

= P( )pk ⋂j∈J Aj J ⊆ {1, 2, … , n} #(J) = k ( )n
k

(T ,T )

A T A

{ , , … , } ⊆AX1 X2 Xn ( , , … , )X1 X2 Xn n

A T

A B B ⊆A
B B ⊆A A

A T A

X, Y ∈A A ∈ T P(X ∈ A) = P(Y ∈ A)

A B = { : A ∈A }1A

A B
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Tail Events and Variables

Suppose again that we have a random experiment modeled by a probability space .

Suppose that  be a sequence of random variables. The tail sigma algebra of the sequence is

1. An event  is a tail event for the sequence.
2. A random variable  that is measurable with respect to  is a tail random variable for the sequence.

Informally, a tail event (random variable) is an event (random variable) that can be defined in terms of  for each . The
tail sigma algebra for a sequence of events  is defined analogously (or simply let , the indicator variable of , for
each ). For the following results, you may need to review some of the definitions in the section on Convergence.

Suppose that  is a sequence of events.

1. If the sequence is increasing then  is a tail event of the sequence.
2. If the sequence is decreasing then  is a tail event of the sequence.

Proof
1. If the sequence is increasing then  for every .
2. If the sequence is decreasing then  for every 

Suppose again that  is a sequence of events. Each of the following is a tail event of the sequence:

1. 
2. 

Proof
1. The events  are decreasing in  and hence  by the previous result.
2. The events  are increasing in  and hence  by the previous result.

Suppose that  is a sequence of real-valued random variables.

1.  is a tail event for .
2.  is a tail random variable for .
3.  is a tail random variable for .

Proof
1. The Cauchy criterion for convergence (named for Augustin Cauchy of course) states that  converges as  if an only if for

every  there exists  (depending on ) such that if  then . In this criterion, we can without loss
of generality take  to be rational, and for a given  we can insist that . With these restrictions, the Cauchy criterion is a
countable intersection of events, each of which is in .

2. Recall that .
3. Similarly, recall that .

The random variable in part (b) may take the value , and the random variable in (c) may take the value . From parts (b) and (c) together,
note that if  as  on the sample space , then  is a tail random variable for .

There are a number of zero-one laws in probability. These are theorems that give conditions under which an event will be essentially
deterministic; that is, have probability 0 or probability 1. Interestingly, it can sometimes be difficult to determine which of these extremes is
actually the case. The following result is the Kolmogorov zero-one law, named for Andrey Kolmogorov. It states that an event in the tail -
algebra of an independent sequence will have probability 0 or 1.

Suppose that  is an independent sequence of random variables

1. If  is a tail event for  then  or .
2. If  is a real-valued tail random variable for  then  is constant with probability 1.

Proof
1. By definition  for each , and hence  is an independent set of random variables.

Thus  is an independent set of random variables. But , so it follows that the event  is
independent of itself. Therefore  or .
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2. The function  on  is the (cumulative) distribution function of . This function is clearly increasing. Moreover, simple
applications of the continuity theorems show that it is right continuous and that  as  and  as 

. (Explicit proofs are given in the section on distribution functions in the chapter on Distributions.) But since  is a tail random
variable,  is a tail event and hence  for each . It follows that there exists  such that 

 for  and  for . Hence .

From the Komogorov zero-one law and the result above, note that if  is a sequence of independent events, then 
must have probability 0 or 1. The Borel-Cantelli lemmas give conditions for which of these is correct:

Suppose that  is a sequence of independent events.

1. If  then .
2. If  then .

Another proof of the Kolmogorov zero-one law will be given using the martingale convergence theorem.

Examples and Exercises
As always, be sure to try the computational exercises and proofs yourself before reading the answers and proofs in the text.

Counterexamples

Equal probability certainly does not imply equivalent events.

Consider the simple experiment of tossing a fair coin. The event that the coin lands heads and the event that the coin lands tails have the
same probability, but are not equivalent.

Proof

Let  denote the sample space, and  the event of heads, so that  is the event of tails. Since the coin is fair, . But 
, so , so  and  are as far from equivalent as possible.

Similarly, equivalent distributions does not imply equivalent random variables.

Consider the experiment of rolling a standard, fair die. Let  denote the score and . Then  and  have the same distribution
but are not equivalent.

Proof

Since the die is fair,  is uniformly distributed on . Also  for , so  also has

the uniform distribution on . But , so  and  are as far from equivalent as possible.

Consider the experiment of rolling two standard, fair dice and recording the sequence of scores . Then  and  are independent and
have the same distribution, but are not equivalent.

Proof

Since the dice are fair,  has the uniform distribution on . Equivalently,  and  are independent, and each has the
uniform distribution on . But , so  and  are not equivalent.
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