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3.14: Function Spaces

Basic Theory

Our starting point is a positive measure space (.S, ., u). That is S is a set, . is a o-algebra of subsets of S, and  is a positive
measure on (S, .#). As usual, the most important special cases are

e Euclidean space: S is a Lebesgue measurable subset of R" for some n € N, . is the o-algebra of Lebesgue measurable
subsets of S, and u = A, is n-dimensional Lebesgue measure.

« Discrete space: S is a countable set, ¥ = Z(S) is the collection of all subsets of S, and u = # is counting measure.

e Probability space: S is the set of outcomes of a random experiment, . is the o-algebra of events, and p = IP is a probability
measure.

In previous sections, we defined the integral of certain measurable functions f:S — R with respect to p, and we studied
properties of the integral. In this section, we will study vector spaces of functions that are defined in terms of certain integrability
conditions. These function spaces are of fundamental importance in all areas of analysis, including probability. In particular, the
results of this section will reappear in the form of spaces of random variables in our study of expected value.

Definitions and Basic Properties

Consider a statement on the elements of .S, for example an equation or an inequality with € S as a free variable. (Technically
such a statement is a predicate on S.) For A € ., we say that the statement holds on A if it is true for every z € A. We say that
the statement holds almost everywhere on A (with respect to ) if there exists B € . with B C A such that the statement holds
on Band u(A\ B)=0.

Measurable functions f, g: S — R are equivalent if f =g almost everywhere on .S, in which case we write f =g. The
relation = is an equivalence relation on the collection of measurable functions from S to R. That is, if f, g, h: S — R are
measurable then

1. f = f, the reflexive property.
2.1f f = g then g = f, the symmetric property.
3.1f f =g and g = h then f = h, the transitive property.

Thus, equivalent functions are indistinguishable from the point of view of the measure p. As with any equivalence relation, =
partitions the underlying set (in this case the collection of real-valued measurable functions on .S) into equivalence classes of
mutually equivalent elements. As we will see, we often view these equivalence classes as the basic objects of study. Our next task
is to define measures of the “size” of a function; these will become norms in our spaces.

Suppose that f : S — R is measurable. For p € (0, 00) we define

1 £llp = (/S £ du)l/p (3.14.1)

We also define || f]|ooc =inf{b € [0, 0] : |f| < b almost everywhere on S} .

Since | f[ is a nonnegative, measurable function for p € (0,00), [¢|f[ du exists in [0, cc], and hence so does || f|,. Clearly
I fllo also exists in [0,c0] and is known as the essential supremum of f. A number b € [0, 0c0] such that |f| <b almost
everywhere on S is an essential bound of f and so, appropriately enough, the essential supremum of f is the infimum of the
essential bounds of f. Thus, we have defined || f||, for all p € (0, oco]. The definition for p = oo is special, but we will see that it's
the appropriate one.

l For p € (0, 00|, let L” denote the collection of measurable functions f : S — R such || f||, < oo

So for p € (0,0), f € LP if and only if | f|? is integrable. The symbol L is in honor of Henri Lebesgue, who first developed the
theory. If we want to indicate the dependence on the underlying measure space, we write L? (S, ., ). Of course, L' is simply the
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collection of functions that are integrable with respect to . Our goal is to study the spaces L for p € (0, 0o]. We start with some
simple properties.

Suppose that f : S — R is measurable. Then for p € (0, o0],

L|fllp=0

2. || fllp =0 if and only if f = 0 almost everywhere on .S, so that f =0.
Proof

1. This is obvious from the definitions.

2. For p € (0, 00), this follows from properties of the integral that we already have. First of course, [ 0P du= /. s0du=0
50 [|0]|, = 0. Conversely if || f||, = 0 then [, | f’ du =0 and hence | f[” = 0 almost everywhere on S and so f =0
almost everywhere on S. Suppose p = 0o . Clearly ||0||o = 0. Conversely suppose that || || = 0. Then for each n € N

there exists b, € [0, 00) with n,, — 0 asn — oo and | f| < b, almost everywhere on .S. Hence f = 0 almost everywhere
onS.

Suppose that f : § — R is measurable and ¢ € R. Then ||cf||, = |¢||| f||» for p € (0, o0].

Proof

Again, when p € (0, 00), this result follow easily from properties of the integral that we already have:

/ICfI"du=ICI"/|f|”du (3.14.2)
S S

Taking the pth root of both sides gives the result. For p = oo, the result is trivially true if ¢ =0. For ¢ # 0, note that
b € [0, oo] is an essential bound of | f| if and only if |c|bis an essential bound if |c |

In particular, if f € L? and ¢ € R then cf € LP.

Conjugate Indices and Holder's inequality
Certain pairs of our function spaces turn out to be dual or complimentary to one another in a sense. To understand this, we need the

following definition.

l Indices p, g € (1, 0o) are said to be conjugate if 1/p+1/q=1. In addition, 1 and oo are conjugate indices.

For justification of the last case, note that if p € (1, co), then the index conjugate to p is

1
= 3.14.3
=T, ( )
and g 1T oo asp | 1. Note that p = g =2 are conjugate indices, and this is the only case where the indices are the same. Ultimately,
the importance of conjugate indices stems from the following inequality:

If z, y € (0,00) and if p, g € (1, 00) are conjugate indices, then

1 1
zy < —aP +—y? (3.14.4)
p q
Moreover, equality occurs if and only if 2 = y?.
Proof 1
From properties of the natural logarithm function,
1 1
In(zy) =In(z) +1In(y) = z—jln(x”) + Eln(yq) (3.14.5)
But the natural logarithm function is concave and 1/p+1/g=1 so
) 11(xp)+11(q)<1(1 P+1‘1) (3.14.6)
n(zy) = —In —In(y?) <ln( =2 +—y .14.
p q b )
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Taking exponentials we have

1 1
zy < —af +—y* (3.14.7)
p q
Proof 2
Fix y € (0, 00) and define f : (0,00) — R by
1 1
fz) = S e, BE (0,00) (3.14.8)

Then f'(z)=2P'—y and f’(z)=(p—1)2P 2 for z € (0,00). Hence f has a single critical point at
x =y"/(P) =49/ and f"(z) >0 for x € (0,00). It follows that the minimum value of f on (0, c0) occurs at y%? and
£ (y¥?) =0. Hence f(z) >0 for z € (0, c0) with equality only at z = y%? (that is, z¥ =y?).

our next major result is Hélder's inequality, named for Otto Holder, which clearly indicates the importance of conjugate indices.

Suppose that f, g: .S — R are measurable and that p and g are conjugate indices. Then

1 7gllx < 11 71l51lgllq (3.14.9)

Proof

The result is obvious if || f||, = oo or ||g||; = 00, so suppose that f € LP and g € L4. For our first case, suppose that p =1
and ¢ = oo . Note that |g| <||g||cc almost everywhere on S. Hence

[ 173l due= [ 11116l die < gl [ 151 die= 111l (3.14.10)
S S S

For the second case, suppose p, g € (1, 00). By part (b) of the positive property, the result holds if || f||, =0 or ||g|l; =0, so
assume that || f||, > 0 and || g||; > 0. By the additivity of the integral over disjoint domains, we can restrict the integrals to the
set {z €8S: f(z)#£0,g(z)#0} , or simply assume that f # 0 and g # 0 on S. From the basic inequality,

1 1
| f4l S;Ifl’”rgiglq (3.14.11)

Suppose first that || f||, = |/g|lq = 1. From the increasing and linearity properties of the integral,

1 1 1 1
/Ifgl dué—/Iflpdu+—/|glqdu=—+—=1 (3.14.12)
S DPJs qJs b 4q

For the general case where [|f|, >0 and ||g||; >0, let fi = f/||f[, and g1 =g/| glls. Then [ fill, =llgsll,=1 so
| fig1ll; < 1. So by the scaling property,

I £gllx

~ WoEM= 3.14.13
LTl = (3.14.13)

| frgrll; =

In particular, if f € LP and g € L? then fg € L'. The most important special case of Hélder's inequality is when p = ¢ =2, in
which case we have the Cauchy-Schwartz inequality, named for Augustin Louis Cauchy and Karl Hermann Schwarz:

[ £gllr < 11 7112llgll2 (3.14.14)

Minkowski's Inequality

Our next major result is Minkowski's inequality, named for Hermann Minkowski. This inequality will help show that L? is a vector
space and that || - ||, is a norm (up to equivalence) whenp > 1.

Suppose that f, g: S — R are measurable and that p € [1, co]. Then
1 +4gllp <[ £llp +lgllp (3.14.15)

Proof
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Again, the result is trivial if || f||, = oo or || g||, = o0, so assume that f, g € L?. When p = 1, the result is the simple triangle
inequality for the integral:

17+l =/S|f+g| duS/S(IfIJrIgI) du=/5|f| du+/Slgl dp =) £l + gl (3.14.16)

For the case p = 0o, note that if a € [0, oo] is an essential bound for f and b € [0, o] is an essential bound for g then a +b is
an essential bound for f +g. Hence || f + glloo < || flloo + ||gllco - For the last case, suppose that p € (1, 00) and let ¢ be the
index conjugate to p. Then

F+a? =Ff+g" " If+g <|F+a” (fl+lg) = [f+gP " |F|+|f+9" " |gl (3.14.17)

Integrating over .S and using the additive and increasing properties of the integral gives

£ +al < [ 17+9 I£1 du+ [ 17+ ol du (3.14.18)
But by Hoder's inequality,
/S £ +91"7 1£] dp <111F +” " llall £l /S £ +91" 1ol d <I11£ +9" " lllallo (3.14.19)
Combining this with the previous inequality we have
1F+ gl <I11F+91" g (11l + llgllp) (3.14.20)
But(p—1)g=p and1/q=(p—1)/p so
1/q (p-1)/p
r+aP o= [1r+a0 ) =([1redra)”  =ireap?  @asa)
Hence we have
17 +gllp < I1F +gl5™ (£l +lgll,) (3.14.22)

and therefore || f +gl[p < | fllp + llgllp -

Vector Spaces
We can now discuss various vector spaces of functions. First, we know from our previous work with measure spaces, that the set ¥
of all measurable functions f : S — R is a vector space under our standard (pointwise) definitions of sum and scalar multiple. The
spaces we are studying in this section are subspaces:

L? is a subspace of ¥ for every p € [1, o0].

Proof

We just need to show that L? is closed under addition and scalar multiplication. From the positive property, if f € L and
c € R then c¢f € LP. From Minkowski's inequality, if f, g€ LP then f+g € LP .

However, we usually want to identify functions that are equal almost everywhere on S (with respect to p). Recalling the
equivalence relation = defined above, here are the definitions:

Let [f] denote the equivalence class of f € ¥ under the equivalence relation =, and let = {[f]: f€ ¥}.If f, g€ ¥ and
c € R we define

L[fl+[g] =[f +dl
2. c[f] = [cf]

Then % is a vector space.

Proof
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we know from our previous work that these definitions are consistent in the sense that they do not depend on the particular
representatives of the equivalence classes. That is if f{ = f and gy =g then fi+g1 =f+g9 and cf; =cf. That Z is a
vector space then follows from the fact that ¥ is a vector space.

Now we can define the Lebesgue vector spaces precisely.

For p € [1,00], let £” ={[f]: f € LP}. For f € ¥ define [|[f]||, =/ f|l,. Then -£” is a subspace of % and |- |, is a
norm on #Z?. That is, for f,g€ LP and c € R

L. || f|l, > 0 and || f||, =0 if and only if f = 0, the positive property

2. |lefllp = le| || f]lp» the scaling property
3.(1f +gllp <[ fllp +lgllp , the triangle inequality

Proof

That .£? is a subspace of % follows immediately from the fact that L? is a subspace of ¥". The fact that || - || is a norm on .£?
also follows from our previous work.

We have stated these results precisely, but on the other hand, we don't want to be overly pedantic. It's more natural and intuitive to
simply work with the space ¥ and the subspaces LP for p € [1,00], and just remember that functions that are equal almost
everywhere on S are regarded as the same vector. This will be our point of view for the rest of this section.

Every norm on a vector space naturally leads to a metric. That is, we measure the distance between vectors as the norm of their
difference. Stated in terms of the norm || - ||,,, here are the properties of the metric on L”.

For f, g, h € LP,

L ||f—gllp >0 and || f —g||[, =0 if and only if f = g, the positive property

2./[f —gllp=llg—£llp , the symmetric property
3. f=hll, <[ f—dllp +1lg—hl, ,the triangle inequality

Once we have a metric, we naturally have a criterion for convergence.

Suppose that f,, € L? forn € N and f € L”. Then by definition, f,, — f as n — oo in L? if and only if || f, — f||, =0 as
n— 00.

Limits are unique, up to equivalence. (That is, limits are unique in £?.)

Suppose again that f,, € LP for n € N . Recall that this sequence is said to be a Cauchy sequence if for every ¢ > 0 there exists
N e Ny such thatif n > N and m > N then || f, — fin|lp < €. Needless to say, the Cauchy criterion is named for our ubiquitous
friend Augustin Cauchy. A metric space in which every Cauchy sequence converges (to an element of the space) is said to be
complete. Intuitively, one expects a Cauchy sequence to converge, so a complete space is literally one that is not missing any
elements that should be there. A complete, normed vector space is called a Banach space, after the Polish mathematician Stefan
Banach. Banach spaces are of fundamental importance in analysis, in large part because of the following result:

l L? is a Banach space for every p € [1, o0].
The Space L?
The norm || - ||2 is special because it corresponds to an inner product.

For f, g € L?, define

(f,99= [ fgdu (3.14.23)

Note that the integral is well-defined by the Cauchy-Schwarz inequality. As with all of our other definitions, this one is consistent
with the equivalence relation. That is, if f=f; and g=g; then fg=jfigi so [qfgdp= [¢figidp and hence
(f,9) = (f1, 1) . Note also that (£, f) = || f||2 for f € L?, so this definition generates the 2-norm.
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L? is an inner product space. That is, if f, g, h € L? and ¢ € R then

1.{(f, f) >0and (f, f) = 0if and only if f = 0, the positive property
2.{f,9) = (g, f) , the symmetric property
3. {cf,g) =c(f, g), the scaling property
4.(f+g,h) = (f,g) +(f,h) , the additive property
Proof

Part (a) is a restatement of the positive property of the norm || - ||z . Part (b) is obvious and parts (c) and (d) follow from the
linearity of the integral.

From parts (c) and (d), the inner product is linear in the first argument, with the second argument fixed. By the symmetric property
(b), it follows that the inner product is also linear in the second argument with the first argument fixed. That is, the inner product is
bi-linear. A complete. inner product space is known as a Hilbert space, named for the German mathematician David Hilbert. Thus,
the following result follows immediately from the previous two.

l L? is a Hilbert space.

All inner product spaces lead naturally to the concept of orthogonality; L? is no exception.

Functions f, g € L? are orthogonal if (f, g) = 0, in which case we write f | g. Equivalently f 1 g if

/fgdu=0 (3.14.24)
S

Of course, all of the basic theorems of general inner product spaces hold in L?. For example, the following result is the
Pythagorean theorem, named of course for Phythagoras.

If f, g€ L* and f L g then || f+g[3 = flI3+lgl3 .
Proof

The proof just uses basic properties of inner product in (17). No special properties of L? are used. If f, g€ L? and f | g then

If+g> =(f+g, f+9)=(f, f)+2(f.9)+ (g9 =l fI>+]lgl? (3.14.25)

Examples and Special Cases

Discrete Spaces

Recall again that the measure space (S, ., #) is discrete if S is countable, ./ = Z(S) is the o-algebra of all subsets of .S, and of
course, # is counting measure. In this case, recall that integrals are sums. The exposition will look more familiar if we use the
notation of sequences rather than functions. Thus, let z : S — R, and denote the value of x at ¢ € S by x; rather than (¢). For
p € [1, 00), the p-norm is

1/p
Iz, = (Z le?> (3.14.26)

€S

On the other hand, ||z||s = sup{z; : i € S} . The only null set for # is @, so the equivalence relation = is simply equality, and so
the spaces L? and £? are the same. For p € [1,00), z € L? if and only if

Dzl < oo (3.14.27)
icS
When p € N, (as is often the case), this condition means that > ;cg xf is absolutely convergent. On the other hand, € L™ if
and only if z is bounded. When S = N, the space L? is often denoted /. The inner produce on L? is

(@y)=> ziyi, z,yel’ (3.14.28)

€S
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When S ={1,2,...,n}, L* is simply the vector space R™ with the usual addition, scalar multiplication, inner product, and norm
that we study in elementary linear algebra. Orthogonal vector are perpendicular in the usual sense.

Probability Spaces

Suppose that (S, ., P) is a probability space, so that S is the set of outcomes of a random experiment, . is the o-algebra of
events, and PP is a probability measure on the sample space (S, ). Of course, a measurable function X : S — R is simply a real-
valued random variable. For p € [1, 00), the integral [ |z|” dP is the expected value of | X|”, and is denoted EE (| X|"). Thus in this
case, L is the collection of real-valued random variables X with IE (] X|?) < co. We will study these spaces in more detail in the
chapter on expected value.

This page titled 3.14: Function Spaces is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.
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