
16.3.1 https://stats.libretexts.org/@go/page/10290

16.3: Introduction to Discrete-Time Chains
      

In this and the next several sections, we consider a Markov process with the discrete time space  and with a discrete (countable) state space. Recall that a
Markov process with a discrete state space is called a Markov chain, so we are studying discrete-time Markov chains.

Review
We will review the basic definitions and concepts in the general introduction. With both time and space discrete, many of these definitions and concepts
simplify considerably. As usual, our starting point is a probability space , so  is the sample space,  the -algebra of events, and  the
probability measure on . Let  be a stochastic process defined on the probability space, with time space  and with countable
state space . In the context of the general introduction,  is given the power set  as the -algebra, so all subsets of  are measurable, as are all
functions from  into another measurable space. Counting measure  is the natural measure on , so integrals over  are simply sums. The same comments
apply to the time space : all subsets of  are measurable and counting measure  is the natural measure on .

The vector space  consisting of bounded functions  will play an important role. The norm that we use is the supremum norm defined by

For , let , the -algebra generated by the process up to time . Thus  is the natural filtration
associated with . We also let , the -algebra generated by the process from time  on. So if  represents the present time,
then  contains the events in the past and  the events in the future.

Definitions

We start with the basic definition of the Markov property: the past and future are conditionally independent, given the present.

 is a Markov chain if  for every ,  and .

There are a number of equivalent formulations of the Markov property for a discrete-time Markov chain. We give a few of these.

 is a Markov chain if either of the following equivalent conditions is satisfied:

1.  for every  and .
2.  for every  and .

Part (a) states that for , the conditional probability density function of  given  is the same as the conditional probability density function of 
 given . Part (b) also states, in terms of expected value, that the conditional distribution of  given  is the same as the conditional

distribution of  given . Both parts are the Markov property looking just one time step in the future. But with discrete time, this is equivalent to the
Markov property at general future times.

 is a Markov chain if either of the following equivalent conditions is satisfied:

1.  for every  and .
2.  for every  and .

Part (a) states that for , the conditional probability density function of  given  is the same as the conditional probability density function of
 given . Part (b) also states, in terms of expected value, that the conditional distribution of  given  is the same as the conditional

distribution of  given . In discrete time and space, the Markov property can also be stated without explicit reference to -algebras. If you are not
familiar with measure theory, you can take this as the starting definition.

 is a Markov chain if for every  and every sequence of states ,

The theory of discrete-time Markov chains is simplified considerably if we add an additional assumption.

A Markov chain  is time homogeneous if

for every  and every .

That is, the conditional distribution of  given  depends only on . So if  is homogeneous (we usually don't bother with the time adjective),
then the chain  given  is equivalent (in distribution) to the chain  given . For this reason, the initial
distribution is often unspecified in the study of Markov chains—if the chain is in state  at a particular time , then it doesn't really matter how the
chain got to state ; the process essentially “starts over”, independently of the past. The term stationary is sometimes used instead of homogeneous.

From now on, we will usually assume that our Markov chains are homogeneous. This is not as big of a loss of generality as you might think. A non-
homogenous Markov chain can be turned into a homogeneous Markov process by enlarging the state space, as shown in the introduction to general Markov
processes, but at the cost of creating an uncountable state space. For a homogeneous Markov chain, if , , and , then

N

(Ω,F ,P) Ω F σ P

(Ω,F) X = ( , , , …)X0 X1 X2 N

S S P(S) σ S

S # S S

N N # N

B f : S →R

∥f∥ = sup{|f(x)| : x ∈ S}, f ∈B (16.3.1)
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E[f( ) ∣ ] =E[f( ) ∣ ]Xn+1 Fn Xn+1 Xn n ∈ N f ∈B

n ∈ N Xn+1 Fn

Xn+1 Xn Xn+1 Fn

Xn+1 Xn

X = ( , , , …)X0 X1 X2

P( = x ∣ ) = P( = x ∣ )Xn+k Fn Xn+k Xn n, k ∈ N x ∈ S

E[f( ) ∣ ] =E[f( ) ∣ ]Xn+k Fn Xn+k Xn n, k ∈ N f ∈B

n, k ∈ N Xn+k Fn

Xn+k Xn Xn+k Fn

Xn+k Xn σ

X = ( , , , …)X0 X1 X2 n ∈ N ( , , … , , x, y)x0 x1 xn−1

P( = y ∣ = , = , … , = , = x) = P( = y ∣ = x)Xn+1 X0 x0 X1 x1 Xn−1 xn−1 Xn Xn+1 Xn (16.3.2)

X = ( , , , …)X0 X1 X2

P( = y ∣ = x) = P( = y ∣ = x)Xn+k Xk Xn X0 (16.3.3)

k, n ∈ N x, y ∈ S

Xn+k = xXk n X

{ : n ∈ N}Xk+n = xXk { : n ∈ N}Xn = xX0

x ∈ S k ∈ N
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Stopping Times and the Strong Markov Property

Consider again a stochastic process  with countable state space , and with the natural filtration  as given
above. Recall that a random variable  taking values in  is a stopping time or a Markov time for  if  for each . Intuitively,
we can tell whether or not  by observing the chain up to time . In a sense, a stopping time is a random time that does not require that we see into the
future. The following result gives the quintessential examples of stopping times.

Suppose again  is a discrete-time Markov chain with state space  as defined above. For , the following random times are
stopping times:

1. , the entrance time to .
2. , the hitting time to .

Proof

For 

1. 
2. 

An example of a random time that is generally not a stopping time is the last time that the process is in :

We cannot tell if  without looking into the future:  for .

If  is a stopping time for , the -algebra associated with  is

Intuitively,  contains the events that can be described by the process up to the random time , in the same way that  contains the events that can be
described by the process up to the deterministic time . For more information see the section on filtrations and stopping times.

The strong Markov property states that the future is independent of the past, given the present, when the present time is a stopping time. For a discrete-time
Markov chain, the ordinary Markov property implies the strong Markov property.

If  is a discrete-time Markov chain then  has the strong Markov property. That is, if  is a finite stopping time for  then

1.  for every  and .
2.  for every  and .

Part (a) states that the conditional probability density function of  given  is the same as the conditional probability density function of  given
just . Part (b) also states, in terms of expected value, that the conditional distribution of  given  is the same as the conditional distribution of 

 given just . Assuming homogeneity as usual, the Markov chain  given  is equivalent in distribution to the chain 
 given .

Transition Matrices

Suppose again that  is a homogeneous, discrete-time Markov chain with state space . With a discrete state space, the transition
kernels studied in the general introduction become transition matrices, with rows and columns indexed by  (and so perhaps of infinite size). The kernel
operations become familiar matrix operations. The results in this section are special cases of the general results, but we sometimes give independent proofs
for completeness, and because the proofs are simpler. You may want to review the section on kernels in the chapter on expected value.

For  let

The matrix  is the -step transition probability matrix for .

Thus,  is the probability density function of  given . In particular,  is a probability matrix (or stochastic matrix) since 
 for  and  for . As with any nonnegative matrix on ,  defines a kernel on  for :

So  is the probability distribution of  given . The next result is the Chapman-Kolmogorov equation, named for Sydney Chapman
and Andrei Kolmogorov. It gives the basic relationship between the transition matrices.

If  then 

Proof

This follows from the Markov and time-homogeneous properties and a basic conditioning argument. If  then

E[f( ) ∣ = x] =E[f( ) ∣ = x]Xk+n Xk Xn X0 (16.3.4)

X = ( , , , …)X0 X1 X2 S F = ( , , , …)F0 F1 F2

τ N∪ {∞} X {τ = n} ∈Fn n ∈ N

τ = n n

X = { : n ∈ N}Xn S A ⊆ S

= inf{n ∈ N : ∈ A}ρA Xn A

= inf{n ∈ : ∈ A}τA N+ Xn A

n ∈ N

{ = n} = { ∉ A, ∉ A, … , ∉ A, ∈ A} ∈ρA X0 X1 Xn−1 Xn Fn

{ = n} = { ∉ A, ∉ A, … , ∉ A, ∈ A} ∈τA X1 X2 Xn−1 Xn Fn

A

= max{n ∈ : ∈ A}ζA N+ Xn (16.3.5)

= nζA { = n} = { ∈ A, ∉ A, ∉ A, …}ζA Xn Xn+1 Xn+2 n ∈ N

τ X σ τ

= {A ∈F : A∩ {τ = n} ∈  for all n ∈ N}Fτ Fn (16.3.6)

Fτ τ Fn

n ∈ N

X = ( , , , …)X0 X1 X2 X τ X

P( = x ∣ ) = P( = x ∣ )Xτ+k Fτ Xτ+k Xτ k ∈ N x ∈ S

E[f( ) ∣ ] =E[f( ) ∣ ]Xτ+k Fτ Xτ+k Xτ k ∈ N f ∈B

Xτ+k Fτ Xτ+k

Xτ Xτ+k Fτ

Xτ+k Xτ { : n ∈ N}Xτ+n = xXτ

{ : n ∈ N}Xn = xX0

X = ( , , , …)X0 X1 X2 S

S

n ∈ N

(x, y) = P( = y ∣ = x), (x, y) ∈ S×SPn Xn X0 (16.3.7)

Pn n X

y ↦ (x, y)Pn Xn = xX0 Pn

(x, y) ≥ 0Pn (x, y) ∈ S2 P (x, y) = 1∑y∈S x ∈ S S Pn S n ∈ N

(x,A) = (x, y) = P( ∈ A ∣ = x), x ∈ S, A ⊆ SPn ∑
y∈A

Pn Xn X0 (16.3.8)

A ↦ (x,A)Pn Xn = xX0

m, n ∈ N =PmPn Pm+n

x, z ∈ S
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But by the Markov property and time-homogeneous properties

Of course also  Hence we have

The right side, by definition, is .

It follows immediately that the transition matrices are just the matrix powers of the one-step transition matrix. That is, letting  we have  for
all . Note that , the identity matrix on  given by  if  and 0 otherwise. The right operator corresponding to  yields an
expected value.

Suppose that  and that . Then, assuming that the expected value exists,

Proof

This follows easily from the definitions:

The existence of the expected value is only an issue if  is infinte. In particular, the result holds if  is nonnegative or if  (which in turn would always
be the case if  is finite). In fact,  is a linear contraction operator on the space  for . That is, if  then  and . The
left operator corresponding to  is defined similarly. For 

assuming again that the sum makes sense (as before, only an issue when  is infinite). The left operator is often restricted to nonnegative functions, and we
often think of such a function as the density function (with respect to ) of a positive measure on . In this sense, the left operator maps a density function
to another density function.

A function  is invariant for  (or for the chain ) if .

Clearly if  is invariant, so that  then  for all . If  is a probability density function, then so is .

If  has probability density function , then  has probability density function  for .

Proof

Again, this follows easily from the definitions and a conditioning argument.

In particular, if  has probability density function , and  is invariant for , then  has probability density function  for all , so the sequence of
variables  is identically distributed. Combining two results above, suppose that  has probability density function  and that 

. Assuming the expected value exists, . Explicitly,

It also follows from the last theorem that the distribution of  (the initial distribution) and the one-step transition matrix determine the distribution of 
for each . Actually, these basic quantities determine the finite dimensional distributions of the process, a stronger result.

Suppose that  has probability density function . For any sequence of states ,

Proof

This follows directly from the Markov property and the multiplication rule of conditional probability:

(x, z) = P( = z ∣ = x) = P( = z ∣ = x, = y)P( = y ∣ = x)Pm+n Xm+n X0 ∑
y∈S

Xm+n X0 Xm Xm X0 (16.3.9)

P( = z ∣ = x, = y) = P( = z ∣ = y) = (y, z)Xm+n X0 Xm Xn X0 Pn (16.3.10)

P( = y ∣ = x) = (x, y)Xm X0 Pm

(x, z) = (x, y) (y, z)Pm+n ∑
y∈S

Pm Pn (16.3.11)

(x, z)PmPn

P = P1 =Pn P n

n ∈ N = IP 0 S I(x, y) = 1 x = y P n

n ∈ N f : S →R

f(x) = (x, y)f(y) =E[f( ) ∣ = x], x ∈ SP n ∑
y∈S

P n Xn X0 (16.3.12)

f(x) = (x, y)f(y) = P( = y ∣ = x)f(y) =E[f( ) ∣ = x], x ∈ SP n ∑
y∈S

P n ∑
y∈S

Xn X0 Xn X0 (16.3.13)

S f f ∈B
S P n B n ∈ N f ∈B f ∈BP n ∥ f∥ ≤ ∥f∥P n

P n f : S →R

f (y) = f(x) (x, y), y ∈ SP n ∑
x∈S

P n (16.3.14)

S

# S

f : S →R P X fP = f

f fP = f f = fP n n ∈ N f fP

X0 f Xn fP n n ∈ N

P( = y) = P( = x)P( = y ∣ = x) = f(x) (x, y) = f (y), y ∈ SXn ∑
x∈S

X0 Xn X0 ∑
x∈S

P n P n (16.3.15)

X0 f f X Xn f n ∈ N

X = ( , , , …)X0 X1 X2 X0 f

g : S →R E[g( )] = f gXn P n

E[g( )] = f(x) (x, y)g(y)Xn ∑
x∈S

∑
y∈S

P n (16.3.16)

X0 Xn

n ∈ N

X0 f0 ( , , … , ) ∈ ,x0 x1 xn Sn

P( = , = , … , = ) = ( )P ( , )P ( , ) ⋯P ( , )X0 x0 X1 x1 Xn xn f0 x0 x0 x1 x1 x2 xn−1 xn (16.3.17)

P( = , = , … , = ) = P( = )P( = ∣ = )P( = ∣ = , = )X0 x0 X1 x1 Xn xn X0 x0 X1 x1 X0 x0 X2 x2 X0 x0 X1 x1

⋯P( = ∣ = , … , = )Xn xn X0 x0 Xn−1 xn−1

(16.3.18)
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But by the Markov property, this reduces to

Computations of this sort are the reason for the term chain in the name Markov chain. From this result, it follows that given a probability matrix  on  and
a probability density function  on , we can construct a Markov chain  such that  has probability density function  and the
chain has one-step transition matrix . In applied problems, we often know the one-step transition matrix  from modeling considerations, and again, the
initial distribution is often unspecified.

There is a natural graph (in the combinatorial sense) associated with a homogeneous, discrete-time Markov chain.

Suppose again that  is a Markov chain with state space  and transition probability matrix . The state graph of  is the
directed graph with vertex set  and edge set .

That is, there is a directed edge from  to  if and only if state  leads to state  in one step. Note that the graph may well have loops, since a state can
certainly lead back to itself in one step. More generally, we have the following result:

Suppose again that  is a Markov chain with state space  and transition probability matrix . For  and , there is
a directed path of length  in the state graph from  to  if and only if .

Proof

This follows since  if and only if there exists a sequence of states  with 
. This is also precisely the condition for the existence of a directed path  of

length  from  to  in the state graph.

Potential Matrices

For , the -potential matrix  of  is

1.  is simply the potential matrix of .
2.  is the expected number of visits by  to , starting at .

Proof

First the definition of  as an infinite series of matrices makes sense since  is a nonnegative matrix for each . The interpretation of  for 
 comes from interchanging sum and expected value, again justified since the terms are nonnegative.

Note that it's quite possible that  for some . In fact, knowing when this is the case is of considerable importance in recurrence and
transience, which we study in the next section. As with any nonnegative matrix, the -potential matrix defines a kernel and defines left and right operators.
For the kernel,

In particular,  is the expected number of visits by the chain to  starting in :

If , then  for all .

Proof

Using geometric series,

Hence  is a bounded matrix for  and  is a probability matrix. There is a simple interpretation of this matrix.

If  then  for , where  is independent of  and has the geometric distribution on 
with parameter .

P( = , = , … , = )X0 x0 X1 x1 Xn xn = P( = )P( = ∣ = )P( = ∣ = ) ⋯P( = ∣ = )X0 x0 X1 x1 X0 x0 X2 x2 X1 x1 Xn xn Xn−1 xn−1

= ( )P ( , )P ( , ) ⋯P ( , )f0 x0 x0 x1 x1 x2 xn−1 xn

P S

f S X = ( , , , …)X0 X1 X2 X0 f

P P

X = ( , , , …)X0 X1 X2 S P X

S E = {(x, y) ∈ : P (x, y) > 0}S2

x y x y

X = ( , , , …)X0 X1 X2 S P x, y ∈ S n ∈ N+

n x y (x, y) > 0P n

(x, y) > 0P n ( , , … , )x1 x2 xn−1

P (x, ) > 0,P ( , ) > 0, … ,P ( , y) > 0x1 x1 x2 xn−1 (x, , … , , y)x1 xn−1

n x y

α ∈ (0, 1] α Rα X

= , (x, y) ∈Rα ∑
n=0

∞

αnP n S2 (16.3.19)

R = R1 X

R(x, y) X y ∈ S x ∈ S

Rα P n n R(x, y)
(x, y) ∈ S2

R(x, y) = (x, y) = E[1( = y) ∣ = x] =E( 1( = y) = x) =E[#{n ∈ N : = y} ∣ = x]∑
n=0

∞

P n ∑
n=0

∞

Xn X0 ∑
n=0

∞

Xn
∣
∣∣ X0 Xn X0 (16.3.20)

R(x, y) = ∞ (x, y) ∈ S2

α

(x,A) = (x, y) = (x,A), x ∈ S,A ⊆ SRα ∑
y∈A

Rα ∑
n=0

∞

αnP n (16.3.21)

R(x,A) A x

R(x,A) = R(x, y) = (x,A) =E[ 1( ∈ A)] , x ∈ S, A ⊆ S∑
y∈A

∑
n=0

∞

P n ∑
n=0

∞

Xn (16.3.22)

α ∈ (0, 1) (x,S) =Rα
1

1−α
x ∈ S

(x,S) = (x,S) = =Rα ∑
n=0

∞

αnP n ∑
n=0

∞

αn 1

1 −α
(16.3.23)

Rα α ∈ (0, 1) (1 −α)Rα

α ∈ (0, 1) (1 −α) (x, y) = P( = y ∣ = x)Rα XN X0 (x, y) ∈ S2 N X N

1 −α
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Proof

Let . Conditioning on  gives

But by the substitution rule and the assumption of independence,

Since  has the geometric distribution on  with parameter  we have . Hence

So  can be thought of as a transition matrix just as  is a transition matrix, but corresponding to the random time  (with  as a paraamter)
rather than the deterministic time . An interpretation of the potential matrix  for  can also be given in economic terms. Suppose that we
receive one monetary unit each time the chain visits a fixed state . Then  is the expected total reward, starting in state . However,
typically money that we will receive at times distant in the future have less value to us now than money that we will receive soon. Specifically suppose that a
monetary unit at time  has a present value of , so that  is an inflation factor (sometimes also called a discount factor). Then  gives the
expected total discounted reward, starting at .

The potential kernels  completely determine the transition kernels .

Proof

Note that for , the function  is a power series in  with coefficients . In the language of combinatorics, 
 is the ordinary generating function of the sequence . As noted above, this power series has radius of convergence at least

1, so we can extend the domain to . Thus, given the potential matrices, we can recover the transition matrices by taking derivatives and
evaluating at 0:

Of course, it's really only necessary to determine , the one step transition kernel, since the other transition kernels are powers of . In any event, it follows
that the matrices , along with the initial distribution, completely determine the finite dimensional distributions of the Markov chain 

. The potential matrices commute with each other and with the transition matrices.

If  and , then

1. 
2. 

Proof

Distributing matrix products through matrix sums is allowed since the matrices are nonnegative.

1. Directly

The other direction requires an interchange.

2. First,

The other direction is similar.

The fundamental equation that relates the potential matrices is given next.

If  with  then

Proof

If  the equation is trivial, so assume . From the previous result,

(x, y) ∈ S2 N

P( = y ∣ = x) = P(N = n)P( = y ∣ = x,N = n)XN X0 ∑
n=0

∞

XN X0 (16.3.24)

P( = y ∣ N = n, = x) =E( = y ∣ N = n, = x) = P( = y ∣ = x) = (x, y)XN X0 Xn X0 Xn X0 P n (16.3.25)

N N 1 −α P(N = n) = (1 −α)αn

P( = y ∣ = x) = (1 −α) (x, y) = (1 −α) (x, y)XN X0 ∑
n=0

∞

αnP n Rα (16.3.26)

(1 −α)Rα P n N α

n Rα α ∈ (0, 1)
y ∈ S R(x, y) x ∈ S

n ∈ N αn α (x, y)Rα

x ∈ S

R = { : α ∈ (0, 1)}Rα P = { : n ∈ N}Pn

(x, y) ∈ S2 α ↦ (x, y)Rα α n ↦ (x, y)P n

α ↦ (x, y)Rα n ↦ (x, y)P n

α ∈ (−1, 1)

(x, y) =P n 1

n!
[ (x, y)]
dn

dαn
Rα

α=0

(16.3.27)

P P

R = { : α ∈ (0, 1)}Rα

X

α, β ∈ (0, 1] k ∈ N

= =P kRα RαP
k ∑∞

n=0 α
nP n+k

= =RαRβ RβRα ∑∞
m=0 ∑

∞
n=0 α

mβnP m+n

= =RαP
k ∑

n=0

∞

αnP nP k ∑
n=0

∞

αnP n+k (16.3.28)

= = =P kRα P k∑
n=0

∞

αnP n ∑
n=0

∞

αnP kP n ∑
n=0

∞

αnP n+k (16.3.29)

= = ( ) = =RαRβ ∑
m=0

∞

αmP mRβ ∑
m=0

∞

αmP m ∑
n=0

∞

βnP n ∑
m=0

∞

∑
n=0

∞

αmβnP mP n ∑
m=0

∞

∑
n=0

∞

αmβnP m+n (16.3.30)

α, β ∈ (0, 1] α ≥ β

α = β +(α−β)Rα Rβ RαRβ (16.3.31)

α = β α > β
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Changing variables to sum over  and  gives

Simplifying gives

Note that since , the matrix  has finite values, so we don't have to worry about the dreaded indeterminate form .

If  then .

Proof

From the result above,

This leads to an important result: when , there is an inverse relationship between  and .

If , then

1. 
2. 

Proof

The matrices have finite values, so we can subtract. The identity  leads to  and the identity  leads
to . Hence (a) holds. Part (b) follows from (a).

This result shows again that the potential matrix  determines the transition operator .

Sampling in Time

If we sample a Markov chain at multiples of a fixed time , we get another (homogeneous) chain.

Suppose that  is an Markov chain with state space  and transition probability matrix . For fixed , the sequence 
 is a Markov chain on  with transition probability matrix .

If we sample a Markov chain at a general increasing sequence of time points  in , then the resulting stochastic process 
, where  for , is still a Markov chain, but is not time homogeneous in general.

Recall that if  is a nonempty subset of , then  is the matrix  restricted to . So  is a sub-stochastic matrix, since the row sums may be less
than 1. Recall also that  means , not ; in general these matrices are different.

If  is a nonempty subset of  then for ,

That is,  is the probability of going from state  to  in  steps, remaining in  all the while. In terms of the state graph of , it is the sum of
products of probabilities along paths of length  from  to  that stay inside .

Examples and Applications

Computational Exercises

Let  be the Markov chain on  with transition matrix

For the Markov chain ,

1. Draw the state graph.
2. Find 

=RαRβ ∑
j=0

∞

∑
k=0

∞

αjqkP j+k (16.3.32)

n = j+k k

= = =RαRβ ∑
n=0

∞

∑
k=0

n

αn−kβkP n ∑
n=0

∞

∑
k=0

n

( )
β

α

k

αnP n ∑
n=0

∞ 1 −( )
β

α

n+1

1 − β

α

αnP n (16.3.33)

= [α −β ]RαRβ

1

α−β
Rα Rβ (16.3.34)

β < 1 Rβ ∞ −∞

α ∈ (0, 1] I +α P = I +αP =Rα Rα Rα

I +α P = I +αP = I + = =Rα Rα ∑
n=0

∞

αn+1P n+1 ∑
n=0

∞

αnP n Rα (16.3.35)

α ∈ (0, 1) P Rα

α ∈ (0, 1)

= (I −αPRα )−1

P = (I − )1
α

R−1
α

I +α P =Rα Rα (I −αP ) = IRα I +αP =Rα Rα

(I −αP ) = IRα

Rα P

k

X = ( , , , …)X0 X1 X2 S P k ∈ N+

= ( , , , …)Xk X0 Xk X2k S P k

0 < < < ⋯n1 n2 N

Y = ( , , , …)Y0 Y1 Y2 =Yk Xnk k ∈ N

A S PA P A×A PA

P n
A

(PA)n (P n)A

A S n ∈ N

(x, y) = P( ∈ A, ∈ A, … , ∈ A, = y ∣ = x), (x, y) ∈ A×AP n
A

X1 X2 Xn−1 Xn X0 (16.3.36)

(x, y)P n
A

x y n A X

n x y A

X = ( , , …)X0 X1 S = {a, b, c}

P =
⎡

⎣

⎢⎢

1
2
1
4

1

1
2

0

0

0
3
4

0

⎤

⎦

⎥⎥ (16.3.37)

X

P( = a, = b, = c ∣ = a)X1 X2 X3 X0
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3. Find 
4. Suppose that  is given by , , . Find  for .
5. Suppose that  has the uniform distribution on . Find the probability density function of .

Answer
1. The edge set is 
2. 
3. By standard matrix multiplication,

4. In matrix form,

5. In matrix form,  has PDF , and  has PDF .

Let . Find each of the following:

1. 
2. 
3. 

Proof

1. 

2. 

3. 

Find the invariant probability density function of 

Answer

Solving  subject to the condition that  is a PDF gives 

Compute the -potential matrix  for .

Answer

Computing  gives

As a check on our work, note that the row sums are .

The Two-State Chain

Perhaps the simplest, non-trivial Markov chain has two states, say  and the transition probability matrix given below, where  and 
 are parameters.

For ,

Proof

P 2

g : S →R g(a) = 1 g(b) = 2 g(c) = 3 E[g( ) ∣ = x]X2 X0 x ∈ S

X0 S X2

E = {(a, a), (a, b), (b, a), (b, c), (c, a)}

P (a, a)P (a, b)P (b, c) = 3
16

=P 2

⎡

⎣

⎢⎢⎢

3
8
7
8
1
2

1
4
1
8
1
2

3
8

0

0

⎤

⎦

⎥⎥⎥ (16.3.38)

g = , g =
⎡

⎣
⎢

1

2

3

⎤

⎦
⎥ P 2

⎡

⎣

⎢⎢

2
9
8
3
2

⎤

⎦

⎥⎥ (16.3.39)

X0 f = [ ]1
3

1
3

1
3

X2 f = [ ]P 2 7
12

7
24

1
8

A = {a, b}

PA

P 2
A

(P 2)A

= [ ]PA

1
2
1
4

1
2

0

= [ ]P 2
A

3
8
1
8

1
4
1
8

( = [ ]P 2)A

3
8
7
8

1
4
1
8

X

fP = f f f = [ ]8
15

4
15

3
15

α Rα α ∈ (0, 1)

= (I −αPRα )−1

=Rα

1

(1 −α)(8 +4α+3 )α2

⎡

⎣
⎢

8

2α+6α2

8α

4α

8 −4α

4α2

3α2

6α−3α2

8 −4α−α2

⎤

⎦
⎥ (16.3.40)

1
1−α

S = {0, 1} p ∈ (0, 1)
q ∈ (0, 1)

P = [ ]
1 −p

q

p

1 −q
(16.3.41)

n ∈ N

= [ ]P n 1

p+q

q+p(1 −p−q)n

q−q(1 −p−q)n
p−p(1 −p−q)n

p+q(1 −p−q)n
(16.3.42)

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10290?pdf


16.3.8 https://stats.libretexts.org/@go/page/10290

The eigenvalues of  are 1 and . Next,  where

Hence , which gives the expression above.

As ,

Proof

Note that  and so . Hence  as .

Open the simulation of the two-state, discrete-time Markov chain. For various values of  and , and different initial states, run the simulation 1000
times. Compare the relative frequency distribution to the limiting distribution, and in particular, note the rate of convergence. Be sure to try the case 

The only invariant probability density function for the chain is

Proof

Let . The matrix equation  leads to  so . The condition  for  to be a PDF then gives , 

For , the -potential matrix is

Proof

In this case,  can be computed directly as  using geometric series.

In spite of its simplicity, the two state chain illustrates some of the basic limiting behavior and the connection with invariant distributions that we will study
in general in a later section.

Independent Variables and Random Walks

Suppose that  is a sequence of independent random variables taking values in a countable set , and that  are
identically distributed with (discrete) probability density function .

 is a Markov chain on  with transition probability matrix  given by  for . Also,  is invariant for .

Proof

As usual, let  for . Since the sequence  is independent,

Also,

As a Markov chain, the process  is not very interesting, although of course it is very interesting in other ways. Suppose now that , the set of
integers, and consider the partial sum process (or random walk)  associated with :

 is a Markov chain on  with transition probability matrix  given by  for .

Proof

Again, let  for . Then also,  for . Hence

since the sequence  is independent. In particular,

P 1 −p−q PB = DB−1

B = [ ] , D = [ ]
1

1

−p

q

1

0

0

1 −p−q
(16.3.43)

= BP n DnB−1

n → ∞

→ [ ]P n 1

p+q

q

q

p

p
(16.3.44)

0 < p+q < 2 −1 < 1 −(p+q) < 1 (1 −p−q → 0)n n → ∞

p q

p = q = 0.01

f = [ ]
q

p+q

p

p+q (16.3.45)

f = [ ]a b fP = f −pa+qb = 0 b = a
p

q
a+b = 1 f a =

q

p+q

b =
p

p+q

α ∈ (0, 1) α

= [ ]+ [ ]Rα

1

(p+q)(1 −α)

q

q

p

p

1

(p+q (1 −α))2

p

−q

−p

q
(16.3.46)

Rα ∑∞
n=0 α

nP n

X = ( , , , …)X0 X1 X2 S ( , , …)X1 X2

f

X S P P (x, y) = f(y) (x, y) ∈ S×S f P

= σ{ , … , }Fn X0 X1 Xn n ∈ N X

P( = y ∣ ) = P( = y) = f(y), y ∈ SXn+1 Fn Xn+1 (16.3.47)

fP (y) = f(x)P (x, y) = f(x)f(y) = f(y), y ∈ S∑
x∈S

∑
x∈S

(16.3.48)

X S =Z

Y X

= , n ∈ NYn ∑
i=0

n

Xi (16.3.49)

Y Z Q Q(x, y) = f(y−x) (x, y) ∈ Z×Z

= σ{ , , … , }Fn X0 X1 Xn n ∈ N = σ{ , , … , }Fn Y0 Y1 Yn n ∈ N

P( = y ∣ ) = P( + = y ∣ ) = P( + = y ∣ ), y ∈ ZYn+1 Fn Yn Xn+1 Fn Yn Xn+1 Yn (16.3.50)

X
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Thus the probability density function  governs the distribution of a step size of the random walker on .

Consider the special case of the random walk on  with  and , where .

1. Give the transition matrix  explicitly.
2. Give  explicitly for .

Answer
1. ,  for .
2. For 

This corresponds to  steps to the right and  steps to the left.

This special case is the simple random walk on . When  we have the simple, symmetric random walk. The simple random walk on  is studied in
more detail in the section on random walks on graphs. The simple symmetric random walk is studied in more detail in the chapter on Bernoulli Trials.

Doubly Stochastic Matrices

A matrix  on  is doubly stochastic if it is nonnegative and if the row and columns sums are 1:

Suppose that  is a Markov chain on a finite state space  with doubly stochastic transition matrix . Then the uniform distribution on  is invariant.

Proof

Constant functions are left invariant. Suppose that  for . Then

Hence if  is finite, the uniform PDF  given by  for  is invariant.

If  and  are doubly stochastic matrices on , then so is .

Proof

For ,

The interchange of sums is valid since the terms are nonnegative.

It follows that if  is doubly stochastic then so is  for .

Suppose that  is the Markov chain with state space  and with transition matrix

1. Draw the state graph.
2. Show that  is doubly stochastic
3. Find .
4. Show that the uniform distribution on  is the only invariant distribution for .
5. Suppose that  has the uniform distribution on . For , find  and .
6. Find the -potential matrix  for .

Proof
1. The edge set is 
2. Just note that the row sums and the column sums are 1.
3. By matrix multiplication,

P( = y ∣ = x) = P(x+ = y ∣ = x) = P( = y−x) = f(y−x), (x, y) ∈Yn+1 Yn Xn+1 Yn Xn+1 Z
2 (16.3.51)

f Z

Z f(1) = p f(−1) = 1 −p p ∈ (0, 1)

Q

Qn n ∈ N

Q(x, x−1) = 1 −p Q(x, x+1) = p x ∈ Z

k ∈ {0, 1, … ,n}

(x, x+2k−n) =( ) (1 −pQn n

k
pk )n−k (16.3.52)

k n−k

Z p = 1
2

Z

P S

P (x, u) = 1, P (u, y) = 1, (x, y) ∈ S×S∑
u∈S

∑
u∈s

(16.3.53)

X S P S

f(x) = c x ∈ S

fP (y) = f(x)P (x, y) = c P (x, y) = c, y ∈ S∑
x∈S

∑
x∈S

(16.3.54)

S f f(x) = 1/#(S) x ∈ S

P Q S PQ

y ∈ S

PQ(x, y) = P (x, z)Q(z, y) = Q(z, y) P (x, z) = Q(z, y) = 1∑
x∈S

∑
x∈S

∑
z∈S

∑
z∈S

∑
x∈S

∑
z∈S

(16.3.55)

P P n n ∈ N

X = ( , , …)X0 X1 S = {−1, 0, 1}

P =

⎡

⎣

⎢⎢

1
2

0
1
2

1
2
1
2

0

0
1
2
1
2

⎤

⎦

⎥⎥ (16.3.56)

P

P 2

S X

X0 S n ∈ N E( )Xn var( )Xn

α Rα α ∈ (0, 1)

E = {(−1, −1), (−1, 0), (0, 0), (0, 1), (1, −1), (1, 1)}
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4. Let . Solving the equation  gives . The requirement that  be a PDF then forces the common value to be .
5. If  has the uniform distribution on , then so does  for every , so  and .

6. 

Recall that a matrix  indexed by a countable set  is symmetric if  for all .

If  is a symmetric, stochastic matrix then  is doubly stochastic.

Proof

This is trivial since

The converse is not true. The doubly stochastic matrix in the exercise above is not symmetric. But since a symmetric, stochastic matrix on a finite state space
is doubly stochastic, the uniform distribution is invariant.

Suppose that  is the Markov chain with state space  and with transition matrix

1. Draw the state graph.
2. Show that  is symmetric
3. Find .
4. Find all invariant probability density functions for .
5. Find the -potential matrix  for .

Proof
1. The edge set is 
2. Just note that  is symmetric with respect to the main diagonal.
3. By matrix multiplication,

4. Let . Solving the equation  gives simply . The requirement that  be a PDF forces . Thus the invariant
PDFs are  where . The special case  gives the uniform distribution on .

5. 

Special Models

The Markov chains in the following exercises model interesting processes that are studied in separate sections.

Read the introduction to the Ehrenfest chains.

Read the introduction to the Bernoulli-Laplace chain.

Read the introduction to the reliability chains.

Read the introduction to the branching chain.

Read the introduction to the queuing chains.

=P 2

⎡

⎣

⎢⎢⎢

1
4
1
4
1
2

1
2
1
4
1
4

1
4
1
2
1
4

⎤

⎦

⎥⎥⎥ (16.3.57)

f = [ ]p q r fP = f p = q = r f 1
3

X0 S Xn n ∈ N E( ) = 0Xn var( ) =E ( ) =Xn X2
0

2
3

= (I −αP =Rα )−1 1

(1 −α)(4 −2α+ )α2

⎡

⎣
⎢

4 −4a+a2

a2

2a−a2

2a−a2

4 −4a+a2

a2

a2

2a−a2

4 −4a+a2

⎤

⎦
⎥ (16.3.58)

M S M(x, y) = M(y, x) x, y ∈ S

P P

P (x, y) = P (y, x) = 1, y ∈ S∑
x∈S

∑
x∈S

(16.3.59)

X = ( , , …)X0 X1 S = {−1, 0, 1}

P =
⎡

⎣

⎢⎢

1

0

0

0
1
4
3
4

0
3
4
1
4

⎤

⎦

⎥⎥ (16.3.60)

P

P 2

X

α Rα α ∈ (0, 1)

E = {(−1, −1), (0, 0), (0, 1), (1, 0), (1, 1)}
P

=P 2
⎡

⎣

⎢⎢

1

0

0

0
5
8
3
8

0
3
8
5
8

⎤

⎦

⎥⎥ (16.3.61)

f = [ ]p q r fP = f r = q f p = 1 −2q

f = [ ]1 −2q q q q ∈ [0, ]1
2

q = 1
3

S

= (I −αP =Rα )−1 1

2(1 −α (2 +α))2

⎡

⎣
⎢

4 −2α−2α2

0

0

0

4 −5α+α2

3α−3α2

0

3α−3α2

4 −5α+α2

⎤

⎦
⎥ (16.3.62)
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Read the introduction to random walks on graphs.

Read the introduction to birth-death chains.
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