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12.5: The Matching Problem
       

Definitions and Notation

The Matching Experiment

The matching experiment is a random experiment that can the formulated in a number of colorful ways:

Suppose that  male-female couples are at a party and that the males and females are randomly paired for a dance. A match
occurs if a couple happens to be paired together.
An absent-minded secretary prepares  letters and envelopes to send to  different people, but then randomly stuffs the letters
into the envelopes. A match occurs if a letter is inserted in the proper envelope.

 people with hats have had a bit too much to drink at a party. As they leave the party, each person randomly grabs a hat. A
match occurs if a person gets his or her own hat.

These experiments are clearly equivalent from a mathematical point of view, and correspond to selecting a random permutation 
 of the population . Here are the interpretations for the examples above:

Number the couples from 1 to . Then  is the number of the woman paired with the th man.
Number the letters and corresponding envelopes from 1 to . Then  is the number of the envelope containing the th letter.
Number the people and their corresponding hats from 1 to . Then  is the number of the hat chosen by the th person.

Our modeling assumption, of course, is that  is uniformly distributed on the sample space of permutations of . The number of
objects  is the basic parameter of the experiment. We will also consider the case of sampling with replacement from the
population , because the analysis is much easier but still provides insight. In this case,  is a sequence of independent random
variables, each uniformly distributed over .

Matches

We will say that a match occurs at position  if . Thus, number of matches is the random variable  defined
mathematically by

where  is the indicator variable for the event of match at position . Our problem is to compute the probability
distribution of the number of matches. This is an old and famous problem in probability that was first considered by Pierre-Remond
Montmort; it sometimes referred to as Montmort's matching problem in his honor.

Sampling With Replacement

First let's solve the matching problem in the easy case, when the sampling is with replacement. Of course, this is not the way that
the matching game is usually played, but the analysis will give us some insight.

 is a sequence of  Bernoulli trials, with success probability .

Proof

The variables are independent since the sampling is with replacement. Since  is uniformly distributed, 
.

The number of matches  has the binomial distribution with trial parameter  and success parameter .

Proof

This follows immediately from the previous result on Bernoulli trials.
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The mean and variance of the number of matches are

1. 
2. 

Proof

These results follow from the previous result on the binomial distribution of . Recall that the binomial distribution with
parameters  and  has mean  and variance .

The distribution of the number of matches converges to the Poisson distribution with parameter 1 as :

Proof

This is a special case of the convergence of the binomial distribution to the Poisson. For a direct proof, note that

But  as  and  as  by a famous limit from calculus.

Sampling Without Replacement
Now let's consider the case of real interest, when the sampling is without replacement, so that  is a random permutation of the
elements of .

Counting Permutations with Matches

To find the probability density function of , we need to count the number of permutations of  with a specified number of
matches. This will turn out to be easy once we have counted the number of permutations with no matches; these are called
derangements of . We will denote the number of permutations of  with exactly  matches by  for 

. In particular,  is the number of derrangements of .

The number of derrangements is

Proof

By the complement rule for counting measure . From the inclusion-exclusion formula,

But if  with  then . Finally, the number of subsets  of  with 
 is . Substituting into the displayed equation and simplifying gives the result.

The number of permutations with exactly  matches is

Proof

The following is two-step procedure that generates all permutations with exactly  matches: First select the  integers that will
match. The number of ways of performing this step is . Second, select a permutation of the remaining  integers with
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no matches. The number of ways of performing this step is . By the multiplication principle of combinatorics it follows
that . Using the result above for derrangements and simplifying gives the results.

The Probability Density Function

The probability density function of the number of matches is

Proof

This follows directly from the result above on permutations with matches, since .

In the matching experiment, vary the parameter  and note the shape and location of the probability density function. For
selected values of , run the simulation 1000 times and compare the empirical density function to the true probability density
function.

.

Proof

A simple probabilistic proof is to note that the event is impossible—if there are  matches, then there must be  matches.
An algebraic proof can also be constructed from the probability density function of  above.

The distribution of the number of matches converges to the Poisson distribution with parameter 1 as :

Proof

From the power series for the exponential function,

So the result follows from the probability density function of  above.

The convergence is remarkably rapid.

In the matching experiment, increase  and note how the probability density function stabilizes rapidly. For selected values of 
, run the simulation 1000 times and compare the relative frequency function to the probability density function.

Moments

The mean and variance of the number of matches could be computed directly from the distribution. However, it is much better to
use the representation in terms of indicator variables. The exchangeable property is an important tool in this section.

 for .

Proof

 is uniformly distributed on  for each  so .

 for each 

Proof

This follows from the previous result and basic properties of expected value.
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Thus, the expected number of matches is 1, regardless of , just as when the sampling is with replacement.

 for .

Proof

This follows from .

A match in one position would seem to make it more likely that there would be a match in another position. Thus, we might guess
that the indicator variables are positively correlated.

For distinct ,

1. 

2. 

Proof

Note that  is the indicator variable of the event of a match in position  and a match in position . Hence by the
exchangeable property . As before, . The
results now follow from standard computational formulas for covariance and correlation.

Note that when , the event that there is a match in position 1 is perfectly correlated with the event that there is a match in
position 2. This makes sense, since there will either be 0 matches or 2 matches.

 for every .

Proof

This follows from the previous two results on the variance and the covariance of the indicator variables, and basic properties of
covariance. Recall that .

In the matching experiment, vary the parameter  and note the shape and location of the mean  standard deviation bar. For
selected values of the parameter, run the simulation 1000 times and compare the sample mean and standard deviation to the
distribution mean and standard deviation.

For distinct ,  as .

Thus, the event that a match occurs in position  is nearly independent of the event that a match occurs in position  if  is large.
For large , the indicator variables behave nearly like  Bernoulli trials with success probability , which of course, is what
happens when the sampling is with replacement.

A Recursion Relation

In this subsection, we will give an alternate derivation of the distribution of the number of matches, in a sense by embedding the
experiment with parameter  into the experiment with parameter .

The probability density function of the number of matches satisfies the following recursion relation and initial condition:

1.  for .
2. .

Proof

First, consider the random permutation  of . Note that  is a random
permutation of  if and only if  if and only if . It follows that

From the defnition of conditional probability argument we have
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But  and . Substituting into the last displayed equation gives the
recurrence relation. The initial condition is obvious, since if  we must have one match.

This result can be used to obtain the probability density function of  recursively for any .

The Probability Generating Function

Next recall that the probability generating function of  is given by

The family of probability generating functions satisfies the following differential equations and ancillary conditions:

1.  for  and 
2.  for 

Note also that  for . Thus, the system of differential equations can be used to compute  for any .

In particular, for ,

1. 
2. 
3. 

For  with ,

Proof

This follows from differential equation for the PGF given above.

For ,

Proof

This follows from the previous result and basic properties of generating functions.

Examples and Applications

A secretary randomly stuffs 5 letters into 5 envelopes. Find each of the following:

1. The number of outcomes with exactly  matches, for each .
2. The probability density function of the number of matches.
3. The covariance and correlation of a match in one envelope and a match in another envelope.

Answer

1. 0 1 2 3 4 5

44 45 20 10 0 1

2. 0 1 2 3 4 5
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0.3667 0.3750 0.1667 0.0833 0 0.0083

3. Covariance: , correlation 

Ten married couples are randomly paired for a dance. Find each of the following:

1. The probability density function of the number of matches.
2. The mean and variance of the number of matches.
3. The probability of at least 3 matches.

Answer

1. 

0

1

2

3

4

5

6

7

8

9 0

10

2. , 
3. 

In the matching experiment, set . Run the experiment 1000 times and compare the following for the number of matches:

1. The true probabilities
2. The relative frequencies from the simulation
3. The limiting Poisson probabilities

Answer
1. See part (a) of the previous problem.

3. 

0 0.3678794

1 0.3678794

2 0.1839397

3 0.06131324

4 0.01532831

5 0.003065662

6 0.0005109437

7 0.00007299195

P( = k)N5

1
100

1
16
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44 800

≈ 0.367879216 687
45 360

≈ 0.18394102119
11 520

≈ 0.06130952103
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3456

≈ 0.00305555611
3600

≈ 0.00052083331
1920

≈ 0.000066137571
15 120

≈ 0.000012400791
80 640

≈ 2.755732 ×1
3 628 800
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