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15.6: Renewal Reward Processes
       

Basic Theory

Preliminaries

In a renewal reward process, each interarrival time is associated with a random variable that is generically thought of as the reward
associated with that interarrival time. Our interest is in the process that gives the total reward up to time . So let's set up the usual
notation. Suppose that  are the interarrival times of a renewal process, so that  is a sequence of independent,
identically distributed, nonnegative variables with common distribution function  and mean . As usual, we assume that 

 so that the interarrival times are not deterministically 0, and in this section we also assume that . Let

so that  is the time of the th arrival for  and  is the arrival time sequence. Finally, Let

so that  is the number of arrivals in  and  is the counting process. As usual, let  for 
 so that  is the renewal function.

Suppose now that  is a sequence of real-valued random variables, where  is thought of as the reward associated
with the interarrival time . However, the term reward should be interpreted generically since  might actually be a cost or
some other value associated with the interarrival time, and in any event, may take negative as well as positive values. Our basic
assumption is that the interarrival time and reward pairs  form an independent and identically
distributed sequence. Recall that this implies that  is an IID sequence, as required by the definition of the renewal process, and
that  is also an IID sequence. But  and  might well be dependent, and in fact  might be a function of  for . Let 

 denote the mean of a generic reward , which we assume exists in .

The stochastic process  defined by

is the reward renewal process associated with . The function  given by  for  is the reward function.

As promised,  is the total reward up to time . Here are some typical examples:

The arrivals are customers at a store. Each customer spends a random amount of money.
The arrivals are visits to a website. Each visitor spends a random amount of time at the site.
The arrivals are failure times of a complex system. Each failure requires a random repair time.
The arrivals are earthquakes at a particular location. Each earthquake has a random severity, a measure of the energy released.

So  is a random sum of random variables for each . In the special case that  and  independent, the distribution of 
 is known as a compound distribution, based on the distribution of  and the distribution of a generic reward . Specializing

further, if the renewal process is Poisson and is independent of , the process  is a compound Poisson process.

Note that a renewal reward process generalizes an ordinary renewal process. Specifically, if  for each , then 
 for , so that the reward process simply reduces to the counting process, and then  reduces to the renewal

function .

The Renewal Reward Theorem

For , the average reward on the interval  is , and the expected average reward on that interval is . The
fundamental theorem on renewal reward processes gives the asymptotic behavior of these averages.
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The renewal reward theorem

1.  as  with probability 1.
2.  as 

Proof
1. Note that

But by the ordinary strong law of large numbers for the IID sequence ,

as  with probability 1. Recal also that  as  with probability 1. Hence it follows that

as  with probability 1. From the law or large numbers for the renewal process, we know that  as 
 with probability 1.

2. Note first that

Next Recall that  is a stopping time for the sequence of interarrival times  for , and hence is also a
stopping time for the sequence of interarrival time, reward pairs . (If a random time is a stopping time for a filtration, then
it's a stopping time for any larger filtration.) By Wald's equation,

By the elementary renewal theorem,

Thus returning to the first displayed equation above, it remains to show that

Let  for . Taking cases for the first arrival time  we have

But  if and only if  so the first term is , which we will note by . We have assumed that
the expected reward  exists in . Hence  so that  is bounded, and  as . For the
second term, if the first arrival occurs at time , then the renewal process restarts, independently of the past, so

It follows that  satisfies the renewal equation . By the fundamental theorem on renewal equations, the
solution is . Now, fix . There exists  such that  for . So for ,
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Using the elementary renewal theorem again, the last expression converges to  as . Since  is arbitrary, it
follows that  as .

Part (a) generalizes the law of large numbers and part (b) generalizes elementary renewal theorem, for a basic renewal process.
Once again, if  for each , then (a) becomes  as  and (b) becomes  as . It's not
surprising then that these two theorems play a fundamental role in the proof of the renewal reward theorem.

General Reward Processes

The renewal reward process  above is constant, taking the value , on the renewal interval 
 for each . Effectively, the rewards are received discretely:  at time , an additional  at time , and so forth.

It's possible to modify the construction so the rewards accrue continuously in time or in a mixed discrete/continuous manner. Here
is a simple set of conditions for a general reward process.

Suppose again that  is the sequence of interarrival times and rewards. A stochastic process 
 (on our underlying probability space) is a reward process associated with  if the following conditions

hold:

1.  for 
2.  is between  and  for  and 

In the continuous case, with nonnegative rewards (the most important case), the reward process will typically have the following
form:

Suppose that the rewards are nonnegative and that  is a nonnegative stochastic process (on our
underlying probability space) with

1.  piecewise continous
2.  for 

Let  for . Then  is a reward process associated with .

Proof

By the additivity of the integral and (b),  for . Since  is nonnegative,  is increasing, so 
 for 

Thus in this special case, the rewards are being accrued continuously and  is the rate at which the reward is being accrued at
time . So  plays the role of a reward density process. For a general reward process, the basic renewal reward theorem still holds.

Suppose that  is a reward process associated with , and let 
for  be the corresponding reward function.

1.  as  with probability 1.
2.  as .

Proof

Suppose first that the reward variables  are nonnegative. Then

From the proof of the renewal reward theorem above,  as  with probability 1, and  as 
with probability 1. Hence (a) holds. Taking expected values,
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But again from the renewal reward theorem above,  as  and  as . Hence (b)
holds. A similar argument works if the reward variables are negative. If the reward variables take positive and negative values,
we split the variables into positive and negative parts in the usual way.

Here is the corollary for a continuous reward process.

Suppose that the rewards are positive, and consider the continuous reward process with density process 
 as above. Let  for . Then

1.  as  with probability 1

2.  as 

Special Cases and Applications
With a clever choice of the “rewards”, many interesting renewal processes can be turned into renewal reward processes, leading in
turn to interesting limits via the renewal reward theorem.

Alternating Renewal Processes

Recall that in an alternating renewal process, a system alternates between on and off states (starting in the on state). If we let 
 be the lengths of the successive time periods in which the system is on, and  the lengths of the

successive time periods in which the system is off, then the basic assumptions are that  is an independent,
identically distributed sequence, and that the variables  for  form the interarrival times of a standard
renewal process. Let  denote the mean of a time period that the device is on, and  the mean of a time period
that the device is off. Recall that  denotes the state (1 or 0) of the system at time , so that  is the
state process. The state probability function  is given by  for .

Limits for the alternating renewal process.

1.  as  with probability 1

2.  as 

Proof

Consider the renewal reward process where the reward associated with the interarrival time  is , the on period for that
renewal period. The rewards  are nonnegative and clearly . So  for  defines a
continuous reward process of the form given above. Parts (a) and (b) follow directly from the reward renewal theorem above.

Thus, the asymptotic average time that the device is on, and the asymptotic mean average time that the device is on, are both
simply the ratio of the mean of an on period to the mean of an on-off period. In our previous study of alternating renewal processes,
the fundamental result was that in the non-arithmetic case,  as . This result implies part (b) in the
theorem above.

Age Processes

Renewal reward processes can be used to derive some asymptotic results for the age processes of a standard renewal process So,
suppose that we have a renewal process with interarrival sequence , arrival sequence , and counting process . As usual, let 

 denote the mean of an interarrival time, but now we will also need , the second moment. We assume that
both moments are finite.

For , recall that the current life, remaining life and total life at time  are

respectively. In the usual terminology of reliability,  is the age of the device in service at time ,  is the time remaining until
this device fails, and  is total life of the device. (To avoid notational clashes, we are using different notation than in past
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sections.) Let , , and  for , the corresponding mean functions. To derive our
asymptotic results, we simply use the current life and the remaining life as reward densities (or rates) in a renewal reward process.

Limits for the current life process.

1.  as  with probability 1

2.  as 

Proof

Consider the renewal reward process where the reward associated with the interarrival time  is  for . The

process  for  is a continuous reward process for this sequence of rewards, as defined above. To see
this, note that for , we have , so with a change of variables and noting that  we
have

The results now follow from the renewal reward theorem above.

Limits for the remaining life process.

1.  as  with probability 1

2.  as 

Proof

Consider again the renewal reward process where the reward associated with the interarrival time  is  for . The
process  for  is a continuous reward process for this sequence of rewards, as defined above. To see
this, note that for , we have , so once again with a change of variables and noting that 

 we have

The results now follow from the renewal reward theorem above.

With a little thought, it's not surprising that the limits for the current life and remaining life processes are the same. After a long
period of time, a renewal process looks stochastically the same forward or backward in time. Changing the “arrow of time”
reverses the role of the current and remaining life. Asymptotic results for the total life process now follow trivially from the results
for the current and remaining life processes.

Limits for the total life process

1.  as  with probability 1

2.  as 

Replacement Models

Consider again a standard renewal process as defined in the Introduction, with interarrival sequence , arrival
sequence , and counting process . One of the most basic applications is to reliability,
where a device operates for a random lifetime, fails, and then is replaced by a new device, and the process continues. In this model,

 is the lifetime and  the failure time of the th device in service, for , while  is the number of failures in  for 
. As usual,  denotes the distribution function of a generic lifetime , and  the corresponding right

distribution function (reliability function). Sometimes, the device is actually a system with a number of critical components—the
failure of any of the critical components causes the system to fail.

Replacement models are variations on the basic model in which the device is replaced (or the critical components replaced) at times
other than failure. Often the cost  of a planned replacement is less than the cost  of an emergency replacement (at failure), so
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replacement models can make economic sense. We will consider the the most common model.

In the age replacement model, the device is replaced either when it fails or when it reaches a specified age . This model
gives rise to a new renewal process with interarrival sequence  where  for . If 

 are the costs of planned and unplanned replacements, respectively, then the cost associated with the renewal period 
 is

Clearly  satisfies the assumptions of a renewal reward process given above. The model makes
mathematical sense for any  but if , so that the planned cost of replacement is at least as large as the unplanned
cost of replacement, then  for , so the model makes no financial sense. Thus we assume that .

In the age replacement model, with planned replacement at age ,

1. The expected cost of a renewal period is .
2. The expected length of a renewal period is 

The limiting expected cost per unit time is

Proof

Parts (a) and (b) follow from the definition of the reward  and the renewal period , and then the formula for  follows
from the reward renewal theorem above

So naturally, given the costs  and , and the lifetime distribution function , the goal is be to find the value of  that minimizes 
; this value of  is the optimal replacement time. Of course, the optimal time may not exist.

Properties of 

1.  as 
2.  as 

Proof
1. Recall that  and  as 
2. As  note that ,  and 

As , the age replacement model becomes the standard (unplanned) model with limiting expected average cost .

Suppose that the lifetime of the device (in appropriate units) has the standard exponential distribution. Find  and solve the
optimal age replacement problem.

Answer

The exponential reliability function is  for . After some algebra, the long term expected average cost
per unit time is

But clearly  is strictly decreasing in , with limit , so there is no minimum value.

The last result is hardly surprising. A device with an exponentially distributed lifetime does not age—if it has not failed, it's just as
good as new. More generally, age replacement does not make sense for any device with decreasing failure rate. Such devices
improve with age.

Suppose that the lifetime of the device (in appropriate units) has the gamma distribution with shape parameter  and scale
parameter 1. Suppose that the costs (in appropriate units) are  and .

1. Find .
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2. Sketch the graph of .
3. Solve numerically the optimal age replacement problem.

Answer

The gamma reliability function is  for 

1. 

2. The graph of  on the interval 
Cost function

3.  is minimized for replacement time . The optimal cost is about 2.26476.

Suppose again that the lifetime of the device (in appropriate units) has the gamma distribution with shape parameter  and
scale parameter 1. But suppose now that the costs (in appropriate units) are  and .

1. Find .
2. Sketch the graph of .
3. Solve the optimal age replacement problem.

Answer

The gamma reliability function is  for 

1. 

2. The graph of  on the interval 
Cost function

3.  is strictly decreasing on  with limit 1, so there is no minimum value.

In the last case, the difference between the cost of an emergency replacement and a planned replacement is not great enough for age
replacement to make sense.

Suppose that the lifetime of the device (in appropriately scaled units) is uniformly distributed on the interval . Find 
and solve the optimal replacement problem. Give the results explicitly for the following costs:

1. , 
2. , 
3. , 

Proof

The reliability function is  for . After standard computations,

After more standard calculus, the optimal replacement time is

1. , 
2. , 

3. , 

Thinning

We start with a standard renewal process with interarrival sequence , arrival sequence  and
counting process . As usual, let  denote the mean of an interarrival time. For , suppose
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now that arrival  is either accepted or rejected, and define random variable  to be 1 in the first case and 0 in the second. Let 
 denote the interarrival time and rejection variable pair for , and assume that  is an

independent, identically distributed sequence.

Note that we have the structure of a renewal reward process, and so in particular,  is a sequence of Bernoulli
trials. Let  denote the parameter of this sequence, so that  is the probability of accepting an arrival. The procedure of accepting or
rejecting points in a point process is known as thinning the point process. We studied thinning of the Poisson process. In the
notation of this section, note that the reward process  is the thinned counting process. That is,

is the number of accepted points in  for . So then  is the expected number of accepted points in .
The renewal reward theorem gives the asymptotic behavior.

Limits for the thinned process.

1.  as 
2.  as 

Proof

This follows immediately from the renewal reward theorem above, since .
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i=1

Nt
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[0, t] t ∈ [0, ∞) r(t) =E( )Rt [0, t]

/t → p/μRt t → ∞
r(t)/t → p/μ t → ∞

ν = p
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