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15.4: Delayed Renewal Processes
       

Basic Theory

Preliminaries

A delayed renewal process is just like an ordinary renewal process, except that the first arrival time is allowed to have a different
distribution than the other interarrival times. Delayed renewal processes arise naturally in applications and are also found
embedded in other random processes. For example, in a Markov chain (which we study in the next chapter), visits to a fixed state,
starting in that state form the random times of an ordinary renewal process. But visits to a fixed state, starting in another state
form a delayed renewal process.

Suppose that  is a sequence of independent variables taking values in , with  identically
distributed. Suppose also that  for . The stochastic process with  as the sequence of interarrival times
is a delayed renewal process.

As before, the actual arrival times are the partial sums of . Thus let

so that  and  is the time of the th arrival for . Also as before,  is the number of arrivals in  (not
counting ):

If we restart the clock at time , we have an ordinary renewal process with interarrival sequence . We use
some of the standard notation developed in the Introduction for this renewal process. In particular,  denotes the common
distribution function and  the common mean of  for . Similarly  denotes the distribution function of
the sum of  independent variables with distribution function , and  denotes the renewal function:

On the other hand, we will let  denote the distribution function of  (the special interarrival time, different from the rest), and
we will let  denote the distribution function of  for . As usual,  and  are the corresponding
right-tail distribution functions.

 for .

Proof

The follows from the fact that  is the sum of  independent random variables; the first has distribution function  and the
remaining  have distribution function .

Finally, we will let  denote the renewal function for the delayed renewal process. Thus,  is the expected number of
arrivals in  for .

The delayed renewal function satisfies

Proof

The proof is just as before.
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The delayed renewal function  satisfies the equation ; that is,

Proof

The proof follows from conditioning on the time of the first arrival . Note first that  if  and
 if . Hence

The delayed renewal function  satisfies the renewal equation ; that is,

Proof

Note that

Asymptotic Behavior

In a delayed renewal process only the first arrival time is changed. Thus, it's not surprising that the asymptotic behavior of a
delayed renewal process is the same as the asymptotic behavior of the corresponding regular renewal process. Our first result is the
strong law of large numbers for the delayed renewal process.

 as  with probability 1.

Proof

We will show that  as  with probability 1. Then, the proof is exactly like the proof of the law of large
numbers for a regular renewal process. For ,

But  as  with probability 1; of course  as ; and  as  with
probability 1 by the ordinary strong law of large numbers.

Our next result is the elementary renewal theorem for the delayed renewal process.

 as .

Next we have the renewal theorem for the delayed renwal process, also known as Blackwell's theorem, named for David Blackwell.

For ,  as  in each of the following cases:

1.  is non-arithmetic
2.  is arithmetic with span , and  is a multiple of .

Finally we have the key renewal theorem for the delayed renewal process.
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Suppose that the renewal process is non-arithmetic and that  is directly Riemann integrable. Then

Stationary Point Processes

Recall that a point process is a stochastic process that models a discrete set of random points in a measure space . Often,
of course,  for some  and  is the corresponding -dimensional Lebesgue measure. The special cases  with
counting measure and  with length measure are of particular interest, in part because renewal and delayed renewal
processes give rise to point processes in these spaces.

For a general point process on , we use our standard notation and denote the number of random points  by . There
are a couple of natural properties that a point process may have. In particular, the process is said to be stationary if 
implies that  and  have the same distribution for . In  the term stationary increments is often used,
because the stationarity property means that for , the distribution of  depends only on .

Consider now a regular renewal process. We showed earlier that the asymptotic distributions of the current life and remaining life
are the same. Intuitively, after a very long period of time, the renewal process looks pretty much the same forward in time or
backward in time. This suggests that if we make the renewal process into a delayed renewal process by giving the first arrival time
this asymptotic distribution, then the resulting point process will be stationary. This is indeed the case. Consider the setting and
notation of the preliminary subsection above.

For the delayed renewal process, the point process  is stationary if and only if the initial arrival time has distribution function

in which case the renewal function is  for .

Proof

Suppose first that  has stationary increments. In particular, this means that the arrival times have continuous distributions.
For ,

A theorem from analysis states that the only increasing solutions to such a functional equation are linear functions, and hence 
 for some positive constant . Substituting  into the renewal equation above gives

Integrating by parts in the last integral and simplifying gives

Finally, if we let , the left side converges to 1 and the right side to , so . Thus  has the form given in the
statement of the theorem and  for .

Conversely, suppose that  has the form given in the theorem. Note that this is a continuous distribution with density function 
. Substituting into the renewal equation above, it follows that the renewal density  satisfies

Hence  for . Next, the process  has stationary increments if and only if the remaining life  at time  has
distribution function  for each . Arguing just as in Section 2, we have
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But  and , so substituting into the last displayed equation and using a simple
substitution in the integral gives

Examples and Applications

Patterns in Multinomial Trials

Suppose that  is a sequence of independent, identically distributed random variables taking values in a finite set 
, so that  is a sequence of multinomial trials. Let  denote the common probability density function so that for a generic trial

variable , we have  for . We assume that all outcomes in  are actually possible, so  for .

In this section, we interpret  as an alphabet, and we write the sequence of variables in concatenation form,  rather
than standard sequence form. Thus the sequence is an infinite string of letters from our alphabet . We are interested in the
repeated occurrence of a particular finite substring of letters (that is, a “word” or “pattern”) in the infinite sequence.

So, fix a word  (again, a finite string of elements of ), and consider the successive random trial numbers  where the
word  is completed in . Since the sequence  is independent and identically distributed, it seems reasonable that these variables
are the arrival times of a renewal process. However there is a slight complication. An example may help.

Suppose that  is a sequence of Bernoulli trials (so ). Suppose that the outcome of  is

1. For the word  note that , , 
2. For the word , note that , , , 

In this example, you probably noted an important difference between the two words. For , a suffix of the word (a proper substring
at the end) is also a prefix of the word (a proper substring at the beginning. Word  does not have this property. So, once we
“arrive” at , there are ways to get to  again (taking advantage of the suffix-prefix) that do not exist starting from the beginning of
the trials. On the other hand, once we arrive at , arriving at  again is just like with a new sequence of trials. Thus we are lead to
the following definition.

Suppose that  is a finite word from the alphabet . If no proper suffix of  is also a prefix, then  is simple. Otherwise,  is
compound.

Returning to the general setting, let  and then let  for . For , let .
For occurrences of the word ,  is the sequence of interarrival times,  is the sequence of
arrival times, and  is the counting process. If  is simple, these form an ordinary renewal process. If  is
compound, they form a delayed renewal process, since  will have a different distribution than . Since the structure
of a delayed renewal process subsumes that of an ordinary renewal process, we will work with the notation above for the delayed
process. In particular, let  denote the renewal function. Everything in this paragraph depends on the word  of course, but we
have suppressed this in the notation.

Suppose , where  for each , so that  is a word of length . Note that  takes values in 
. If  is simple, this applies to the other interarrival times as well. If  is compound, the situation is more

complicated  will have some minimum value , but the possible values are positive integers, of course, and
include . In any case, the renewal process is arithmetic with span 1. Expanding the definition of the probability
density function , let

so that  is the probability of forming  with  consecutive trials. Let  denote the common mean of  for 
, so  is the mean number of trials between occurrences of . Let , so that  is the mean time
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number of trials until  occurs for the first time. Our first result is an elegant connection between  and , which has a
wonderfully simple proof from renewal theory.

If  is a word in  then

Proof

Suppose that  has length , and consider the discrete interval . By the renewal
theorem,  as . But , the number of times that  occurs in the interval, is either 1 or
0. Hence  for any .

Our next goal is to compute  in the case that  is a compound word.

Suppose that  is a compound word, and that  is the largest word that is a proper suffix and prefix of . Then

Proof

Since  is the largest prefix-suffix, the expected number of trials to go from  to  is the same as the expected number of trials
to go from  to , namely . (Note that the paths from  to  are the same as the paths from  to .) But to form the word 

 initially, the word  must be formed first, so this result follows from the additivity of expected value and the previous result.

By repeated use of the last result, we can compute the expected number of trials needed to form any compound word.

Consider Bernoulli trials with success probability , and let . For each of the following strings, find the
expected number of trials between occurrences and the expected number of trials to the first occurrence.

1. 
2. 
3. 
4.  (  times)

Answer

1. 

2. , 

3. , 

4.  

Recall that an ace-six flat die is a six-sided die for which faces 1 and 6 have probability  each while faces 2, 3, 4, and 5 have
probability  each. Ace-six flat dice are sometimes used by gamblers to cheat.

Suppose that an ace-six flat die is thrown repeatedly. Find the expected number of throws until the pattern  first
occurs.

Solution

From our main theorem,

a μ(a) f(a)

a S

μ(a) =
1
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(15.4.21)
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Suppose that a monkey types randomly on a keyboard that has the 26 lower-case letter keys and the space key (so 27 keys).
Find the expected number of keystrokes until the monkey produces each of the following phrases:

1. it was the best of times
2. to be or not to be

Proof
1. 
2. 
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