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16.10: Discrete-Time Reliability Chains

The Success-Runs Chain

Suppose that we have a sequence of trials, each of which results in either success or failure. Our basic assumption is that if there
have been z € N consecutive successes, then the probability of success on the next trial is p(z), independently of the past, where
p: N — (0,1). Whenever there is a failure, we start over, independently, with a new sequence of trials. Appropriately enough, p is
called the success function. Let X,, denote the length of the run of successes after n trials.

X = (X, X1, Xs,...) is a discrete-time Markov chain with state space N and transition probability matrix P given by
P(z,z+1)=p(z), P(z,0)=1—p(z); z€N (16.10.1)

The Markov chain X is called the success-runs chain.
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Figure 16.10.1: State graph of the success-runs chain

Now let T' denote the trial number of the first failure, starting with a fresh sequence of trials. Note that in the context of the
success-runs chain X, T =7y, the first return time to state 0, starting in 0. Note that T takes values in N} U{oo}, since
presumably, it is possible that no failure occurs. Let r(n) =P(T >n) for n € N, the probability of at least » consecutive
successes, starting with a fresh set of trials. Let f(n) =P(T'=n+1) for n € N, the probability of exactly n consecutive
successes, starting with a fresh set of trails.

The functions p, r, and f are related as follows:

1. p(z )—ra:—f-l/r ) forx € N
r(n) =120 p(z )fornEN

3. f(n)= [ ()]Hzop()fOFnEN
r(n) = Of( z) forn €N
5. f(n) = ( )—r(n+1) forn € N

Thus, the functions p, , and f give equivalent information. If we know one of the functions, we can construct the other two, and
hence any of the functions can be used to define the success-runs chain. The function r is the reliability function associated with T'.
The function r is characterized by the following properties:

1. r is positive.
2.7(0)=1
3. r is strictly decreasing.

The function f is characterized by the following properties:

1. f is positive.

2.3 0 f(@) <1

Essentially, f is the probability density function of T"— 1, except that it may be defective in the sense that the sum of its values
may be less than 1. The leftover probability, of course, is the probability that 7'= oo. This is the critical consideration in the
classification of the success-runs chain, which we will consider shortly.

Verify that each of the following functions has the appropriate properties, and then find the other two functions:

1. p is a constant in (0, 1).
2.7(n)=1/(n+1) forn€N.
3.r(n)=(n+1)/(2n+1) forneN.
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4.p(z)=1/(z+2) forz € N.

Answer
1.p(z)=p forx € N.7(n) =p" forn e N. f(n) =(1—p)p" forn e N.

Z.p(x)zﬁ for;z:eN.r(n)znlj fornEN.f(n)anH—% forn € N.

(z+2)(22+1) +1 +1 +2
3.p(m)=m foerN.r(n)zznn+1 fornEN.f(n)z2’;—“—2"”—+3 forn € N.
4.p(x)=$ formGN.r(n):ﬁ forneN.f(n)zm—ﬁ forn € N.

In part (a), note that the trials are Bernoulli trials. We have an app for this case.

The success-runs app is a simulation of the success-runs chain based on Bernoulli trials. Run the simulation 1000 times for
various values of p and various initial states, and note the general behavior of the chain.

The success-runs chain is irreducible and aperiodic.
Proof

The chain is irreducible, since 0 leads to every other state, and every state leads back to 0. The chain is aperiodic since
P(0,0) >0.

Recall that T" has the same distribution as 7y, the first return time to 0 starting at state 0. Thus, the classification of the chain as
recurrent or transient depends on o = P(T' = o) . Specifically, the success-runs chain is transient if & > 0 and recurrent if & = 0.
Thus, we see that the chain is recurrent if and only if a failure is sure to occur. We can compute the parameter « in terms of each of
the three functions that define the chain.

In terms of p, r, and f,

QZﬁP(m)ZT}E&T(n)Zl—iﬂ-’E) (16.10.2)
z=0 =0

Compute « and determine whether the success-runs chain X is transient or recurrent for each of the examples above.

Answer
1. « = 0, recurrent.
2. o = 0, recurrent.
3.a= % , transient.

4. a = 0, recurrent.

Run the simulation of the success-runs chain 1000 times for various values of p, starting in state 0. Note the return times to
state 0.

Let u =[E(T), the expected trial number of the first failure, starting with a fresh sequence of trials.

w is related to «, f, and 7 as follows:

1.If o >0 then g = 0
2.Ifa=0thenp=1+> > nf(n)
3. p=37",r(n)
Proof
LIfa=P(T=00)>0 thenpy=E(T)=00.
2.If &« =0, so that T' takes values in N , then f isthe PDFof T —1,sou=1+E(T—1) .
3. This is a basic result from the general theory of expected value: E(T) =3 > (P(T >n) .

The success-runs chain X is positive recurrent if and only if u < co.
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Proof

Since T is the return time to 0, starting at 0, and since the chain is irreducible, it follows from the general theory that the chain
is positive recurrent if and only if 4 =E(T) < oo .

If X is recurrent, then r is invariant for X. In the positive recurrent case, when p < co, the invariant distribution has
probability density function g given by
o) ="2 Len (16.10.3)
I
Proof
If y € N, then from the result above,
o0
(rP)(y) = r(x)P(z,y) =r(y—1)ply—1) =r(y) (16.10.4)
=0
For y = 0, using the result above again,
(rP)(0) =) r(2)P(z,0) =) _r(z)[1 —p(z)] = ) [r(z) —r(@)p(z)] = ) [r(z) —r(z+1)] (16.10.5)
=0 =0 =0 =0
If the chain is recurrent, 7(n) — 0 as n — oo so the last sum collapses to r(0) = 1. Recall that =" 7(n) . Hence if
1 < 00, so that the chain is positive recurrent, the function g (which is just » normalized) is the invariant PDF.

When X is recurrent, we know from the general theory that every other nonnegative left invariant function is a nonnegative
multiple of r

Determine whether the success-runs chain X is transient, null recurrent, or positive recurrent for each of the examples above.
If the chain is positive recurrent, find the invariant probability density function.

Answer
lp= ﬁ , positive recurrent. g(z) = (1 —p)p® forz € N.
2.a =0, u = oo, null recurrent.
3.a= % , transient.

4.y =e—1 , positive recurrent. g(z) = m forz € N.

From (a), the success-runs chain corresponding to Bernoulli trials with success probability p € (0, 1) has the geometric distribution
on N, with parameter 1 — p, as the invariant distribution.

Run the simulation of the success-runs chain 1000 times for various values of p and various initial states. Compare the
empirical distribution to the invariant distribution.

The Remaining Life Chain

Consider a device whose (discrete) time to failure U takes values in N, with probability density function f. We assume that
f(n) >0 for n € N. When the device fails, it is immediately (and independently) replaced by an identical device. For n € N, let
Y,, denote the time to failure of the device that is in service at time 7.

Y = (Y, Y1,Y5,...) is a discrete-time Markov chain with state space N and transition probability matrix @) given by

Q(0,z)=f(z), Qz+1,2)=1; =zeN (16.10.6)

The Markov chain Y is called the remaining life chain with lifetime probability density function f, and has the state graph below.
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Figure 16.10.2: State graph of the remaining life chain
We have an app for the remaining life chain whose lifetime distribution is the geometric distribution on N, with parameter
1-p€(0,1).

Run the simulation of the remaining-life chain 1000 times for various values of p and various initial states. Note the general
behavior of the chain.

If U denotes the lifetime of a device, as before, note that 7' =1+ U is the return time to 0 for the chain Y, starting at 0.

Y is irreducible, aperiodic, and recurrent.
Proof

From the assumptions on f, state 0 leads to every other state (including 0), and every positive state leads (deterministically) to
0. Thus the chain is irreducible and aperiodic. By assumption, P(U € N) =1 so P(T < o0) =1 and hence the chain is
recurrent.

Now let r(n)=P(U>n)=P(T >n) for n€N and let p=E(T)=1+E(U) . Note that 7(n)=> " f(z) and
p=1+3720 () =202 r(n) -

The success-runs chain X is positive recurrent if and only if ¢ < co, in which case the invariant distribution has probability
density function g given by

g(x) = , z€N (16.10.7)

Proof
Since the chain is irreducible, it is positive recurrent if and only if 4 = E(T") < oo . The function r is invariant for Q: for

yeN
(rQ)(y) =) r(@)Q(=,y) =r(0)Q(0,y) +r(y+1)Q(y+1,y)

zeN

=fy)+rly+1)=r(y)

In the positive recurrent case, p is the normalizing constant for r, so g is the invariant PDF.

Suppose that Y is the remaining life chain whose lifetime distribution is the geometric distribution on N with parameter
1—p € (0,1). Then this distribution is also the invariant distribution.

Proof

By assumption, f(z)=(1—p)p® for €N, and the mean of this distribution is p/(1—p). Hence
p=14p/(1-p)=1/(1—p) ,andr(z)=>"7, f(y) =p* forz € N. Henceg= f.

Run the simulation of the success-runs chain 1000 times for various values of p and various initial states. Compare the
empirical distribution to the invariant distribution.

Time Reversal
You probably have already noticed similarities, in notation and results, between the success-runs chain and the remaining-life
chain. There are deeper connections.
Suppose that f is a probability density function on N with f(n) > 0 for n € N. Let X be the success-runs chain associated
with f and Y the remaining life chain associated with f. Then X and Y are time reversals of each other.

Proof
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Under the assumptions on f, both chains are recurrent and irreducible. Hence it suffices to show that

r(z)P(z,y) =r(y)Q(y,z), =z, yeN (16.10.8)

It will then follow that the chains are time reversals of each other, and that  is a common invariant function (unique up to
multiplication by positive constants). In the case that 4= 7(n) < oo , the function g =7/ is the common invariant
PDF. There are only two cases to consider. With y =0, we have r(z)P(z,0) =r(z)[1 —p(z)] and 7(0)Q(y,0) = f(z).
But r(z)[1 —p(z)] = f(z) by the result above. When z € N and y =z + 1, we have r(z)P(z,z +1) =r(z)p(z) and
r(z+1)Q(z+1,z) =r(z+1) .Butr(z)p(z)=r(z+1) by theresult above.

In the context of reliability, it is also easy to see that the chains are time reversals of each other. Consider again a device whose
random lifetime takes values in N, with the device immediately replaced by an identical device upon failure. For n € N, we can
think of X, as the age of the device in service at time n and Y,, as the time remaining until failure for that device.

Run the simulation of the success-runs chain 1000 times for various values of p, starting in state 0. This is the time reversal of
the simulation in the next exercise

Run the simulation of the remaining-life chain 1000 times for various values of p, starting in state 0. This is the time reversal
of the simulation in the previous exercise.

This page titled 16.10: Discrete-Time Reliability Chains is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle
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