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3.10: The Integral With Respect to a Measure
      

Probability density functions have very different interpretations for discrete distributions as opposed to continuous distributions. For a discrete
distribution, the probability of an event is computed by summing the density function over the outcomes in the event, while for a continuous
distribution, the probability is computed by integrating the density function over the outcomes. For a mixed distributions, we have partial discrete
and continuous density functions and the probability of an event is computed by summing and integrating. The various types of density functions
can unified under a general theory of integration, which is the subject of this section. This theory has enormous importance in probability, far
beyond just density functions. Expected value, which we consider in the next chapter, can be interpreted as an integral with respect to a
probability measure. Beyond probability, the general theory of integration is of fundamental importance in many areas of mathematics.

Basic Theory

Definitions

Our starting point is a measure space . That is,  is a set,  is a -algebra of subsets of , and  is a positive measure on . As
usual, the most important special cases are

Euclidean space:  for some , , the -algebra of Lebesgue measurable subsets of , and , standard -
dimensional Lebesgue measure.
Discrete space:  is a countable set,  is the collection of all subsets of , and , counting measure.
Probability space:  is the set of outcomes of a random experiment,  is the -algebra of events, and , a probability measure.

The following definition reflects the fact that in measure theory, sets of measure 0 are often considered unimportant.

Consider a statement with  as a free variable. Technically such a statement is a predicate on . Suppose that .

1. The statement holds on  if it is true for every .
2. The statement holds almost everywhere on  (with respect to ) if there exists  with  such that the statement holds on 

and .

A typical statement that we have in mind is an equation or an inequality with  as a free variable. Our goal is to define the integral of certain
measurable functions , with respect to the measure . The integral may exist as a number in  (in which case we say that  is
integrable), or may exist as  or , or may not exist at all. When it exists, the integral is denoted variously by

We will use the first two.

Since the set of extended real numbers  plays an important role in the theory, we need to recall the arithmetic of  and 
. Here are the conventions that are appropriate for integration:

Arithmetic on 

1. If  then  and 
2. If  then  and 
3.  and 
4. If  then  and 
5. 
6. 

However,  is not defined (because it does not make consistent sense) and we must be careful never to produce this indeterminate form.
You might recall from calculus that  is also an indeterminate form. However, for the theory of integration, the convention that  is
convenient and consistent. In terms of order of course,  for .

We also need to extend topology and measure to . In terms of the first,  is an open neighborhood of  and  is an open
neighborhood of  for every . This ensures that if  for  then  or  as  has its usual calculus
meaning. Technically this topology results in the two-point compactification of . Now we can give  the Borel -algebra , that is, the -
algebra generated by the topology. Basically, this simply means that if  then , , and  are all in .

Desired Properties

As motivation for the definition, every version of integration should satisfy some basic properties. First, the integral of the indicator function of a
measurable set should simply be the size of the set, as measured by . This gives our first definition:
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If  then .

This definition hints at the intimate relationship between measure and integration. We will construct the integral from the measure  in this
section, but this first property shows that if we started with the integral, we could recover the measure. This property also shows why we need 
as a possible value of the integral, and coupled with some of the properties below, why  is also needed. Here is a simple corollary of our first
definition.

Proof

Note that .

We give three more essential properties that we want. First are the linearity properties in two parts—part (a) is the additive property and part (b)
is the scaling property.

If  are measurable functions whose integrals exist, and , then

1.  as long as the right side is not of the form 
2. .

The additive property almost implies the scaling property

The steps below do not constitute a proof because questions of the existence of the integrals are ignored and because the limit interchange in
the last step is not justified. Still, the argument shows the close relationship between the additive property and the scaling property.

1. If , then by (a) and induction, .
2. From step (1), if  then  so .
3. If  then from steps (1) and (2) .
4.  so .
5. By steps (3) and (4),  for every  (the set of rational real numbers).
6. If  there exists  for  with  as . By step (5), .
7. Taking limits in step (6) suggests .

To be more explicit, we want the additivity property (a) to hold if at least one of the integrals on the right is finite, or if both are  or if both are 
. What is ruled out are the two cases where one integral is  and the other is , and this is what is meant by the indeterminate form 

. Our next essential properties are the order properties, again in two parts—part (a) is the positive property and part (b) is the increasing
property.

Suppose that  are measurable.

1. If  on  then .
2. If the integrals of  and  exist and  on  then 

The positive property and the additive property imply the increasing property

Implicit in part (a) is that the integral of a nonnegative, measurable function always exists in . Suppose that the integrals of  and 
exist and  on . Then  on  and . If , then trivially. . Otherwise, by the
additivity property,

But  (so in particular the right side is not ), and hence 

Our last essential property is perhaps the least intuitive, but is a type of continuity property of integration, and is closely related to the continuity
property of positive measure. The official name is the monotone convergence theorem.

Suppose that  is measurable for  and that  is increasing in . Then

Note that since  is increasing in ,  exists in  for each  (and the limit defines a measurable function). This
property shows that it is sometimes convenient to allow nonnegative functions to take the value . Note also that by the increasing property, 

 is increasing in  and hence also has a limit in .
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To see the connection with measure, suppose that  is an increasing sequence of sets in , and let . Note that  is
increasing in  and  as . For this reason, the union  is sometimes called the limit of  as . The continuity
theorem of positive measure states that  as . Equivalently,  as , so the continuity theorem
of positive measure is a special case of the monotone convergence theorem.

Armed with the properties that we want, the definition of the integral is fairly straightforward, and proceeds in stages. We give the definition
successively for

1. Nonnegative simple functions
2. Nonnegative measurable functions
3. Measurable real-valued functions

Of course, each definition should agree with the previous one on the functions that are in both collections.

Simple Functions

A simple function on  is simply a measurable, real-valued function with finite range. Simple functions are usually expressed as linear
combinations of indicator functions.

Representations of simple functions

1. Suppose that  is a finite index set,  for each , and  is a collection of sets in  that partition . Then 
 is a simple function. Expressing a simple function in this form is a representation of .

2. A simple function  has a unique representation as  where  is a finite index set,  is a set of distinct real
numbers, and  is a collection of nonempty sets in  that partition . This representation is known as the canonical
representation.

Proof
1. Note that  is measurable since  for each . Also  has finite range since  is finite. Specifically, the range of  consists of

the distinct  for  with .
2. Suppose that  is simple. Let  denote the (distinct) values in the range of  and let  for . Then  is finite,

 is a collection of nonempty sets in  that partition , and . Conversely, suppose that  has a
representation of this form. Then  is the range of  and  so the representation is unique.

You might wonder why we don't just always use the canonical representation for simple functions. The problem is that even if we start with
canonical representations, when we combine simple functions in various ways, the resulting representations may not be canonical. The collection
of simple functions is closed under the basic arithmetic operations, and in particular, forms a vector space.

Suppose that  and  are simple functions with representations  and , and that . Then

1.  is simple, with representation .
2.  is simple, with representation .
3.  is simple, with representation .

Proof

Since  and  are measurable, so are , , and . Moreover, since  and  have finite range, so do , , and . For the
representations in parts (a) and (b), note that  is finite,  is a collection of sets in  that partition , and on 

,  and .

As we alluded to earlier, note that even if the representations of  and  are canonical, the representations for  and  may not be. The next
result treats composition, and will be important for the change of variables theorem in the next section.

Suppose that  is another measurable space, and that  is measurable. If  is a simple function on  with representation 
, then  is a simple function on  with representation .

Proof

Recall that  and  so  has finite range.  is measurable, and inverse images preserve all set
operations, so  is a measurable partition of . Finally, if  then  so .

Given the definition of the integral of an indicator function in (3) and that we want the linearity property (5) to hold, there is no question as to
how we should define the integral of a nonnegative simple function.

Suppose that  is a nonnegative simple function, with the representation  where  for . We define
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The definition is consistent

Consistency refers to the fact that a simple function can have more than one representation as a linear combination of indicator functions, and
hence we must show that all such representations lead to the same value for the integral. Let  denote the set of distinct elements
among the numbers  where  and . For , let  and let . Thus, , and
this is the canonical representation. Note that

The first sum is the integral defined in terms of the general representation  while the last sum is the integral defined in terms
of the unique canonical representation . Thus, any representation of a simple function  leads to the same value for the
integral.

Note that if  is a nonnegative simple function, then  exists in , so the order properties holds. We next show that the linearity
properties are satisfied for nonnegative simple functions.

Suppose that  and  are nonnegative simple functions, and that . Then

1. 
2. 

Proof

Suppose that  and  are nonnegative simple functions with the representations  and . Thus  for 
,  for , and  and .

1. As noted above,  has the representation

Note that  is a partition of  for each , and similarly  is a partition of  for each .
Hence

Note that all the terms are nonnegative (although some may be ), so there are no problems with rearranging the order of the terms.
2. This part is easer. For , recall that  has the representation  so

The increasing property holds for nonnegative simple functions.

Suppose that  and  are nonnegative simple functions and  on . Then 

Proof

The proof from the additive property above works. Note that  is a nonnegative simple function, and . By the additivity
property, .

Next we give a version of the continuity theorem in (7) for simple functions. It's not completely general, but will be needed for the next
subsection where we do prove the general version.

Suppose that  is a nonnegative simple function and that  is an increasing sequence of sets in  with . then

f dμ = μ( )∫
S

∑
i∈I

ai Ai (3.10.4)

{ : j∈ J}bj
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S
∫
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j∈J
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∫
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∞
c ∈ [0, ∞) cf cf = c∑i∈I ai1Ai

cf dμ = c μ( ) = c μ( ) = c f dμ∫
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∑
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S

∫
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Proof

Suppose that  has the representation . Then  and similarly, 
. But for each ,  is increasing in  and . By the continuity theorem for

positive measures,  as  for each . Since  is finite,

Note that  is increasing in  and  as , so this really is a special case of the monotone convergence theorem.

Nonnegative Functions

Next we will consider nonnegative measurable functions on . First we note that a function of this type is the limit of nonnegative simple
functions.

Suppose that  is measurable. Then there exists an increasing sequence  of nonnegative simple functions with 
 on  as .

Proof

For  and  Let  and . Note that

1.  is a partition of  for each .
2.  for .

3.  for .

Note that the th partition divides the interval  into  subintervals of length . Thus, (b) follows because the st partition
divides each of the first  intervals of the th partition in half, and (c) follows because the st partition divides the interval 

 into subintervals of length . Now let  and  for  and . Since
inverse images preserve all set operations, (a), (b), and (c) hold with  replacing  everywhere, and  replacing  in (a). Moreover,
since  is measurable,  and  for each  and . Now, define

Then  is a simple function and  for each . To show convergence, fix . If  then 
and hence  as . All that remains is to show that  is increasing in . Let  and . If  for some 

, then . But either  or . If  then 
. But either  for some  or . In all cases, 

.

The last result points the way towards the definition of the integral of a measurable function  in terms of the integrals of simple
functions. If  is a nonnegative simple function with , then by the order property, we need . On the other hand, there
exists a sequence of nonnegative simple function converging to . Thus the continuity property suggests the following definition:

If  is measurable, define

Note that  exists in  so the positive property holds. Note also that if  is simple, the new definition agrees with the old one. As
always, we need to establish the essential properties. First, the increasing property holds.

If  are measurable and  on  then .

Proof

Note that . therefore

f dμ → f dμ as n → ∞∫
S

1An ∫
S

1A (3.10.12)

f f = ∑i∈I bi1Bi
f = =1An

∑i∈I bi1An
1Bi

∑i∈I bi1 ∩An Bi

f =1A ∑i∈I bi1A∩Bi
i ∈ I ∩Bi An n ∈ N+ ( ∩ ) = ∩A⋃∞

n=1 Bi An Bi

μ( ∩ ) → μ( ∩A)Bi An Bi n → ∞ i ∈ I I

f dμ = μ( ∩ ) → μ(A∩ ) = f dμ as n → ∞∫
An

∑
i∈I

bi An Bi ∑
i∈I

bi Bi ∫
A

(3.10.13)

f1An n ∈ N+ f → f1An 1A n → ∞

S

f : S → [0, ∞) ( , , …)f1 f2

→ ffn S n → ∞

n ∈ N+ k ∈ {1, 2, … ,n }2n = [(k−1)/ , k/ )In,k 2n 2n = [n, ∞)In

{ : k = 1, … ,n } ∪ { }In,k 2n In [0, ∞) n ∈ N+

= ∪In,k In+1,2k−1 In+1,2k k ∈ {1, 2, … ,n }2n

= ( )∪In ⋃(n+1)2n+1

k=n +12n+1 In+1,k In+1 n ∈ N+

n [0,n) n2n 1/2n (n+1)
2n n (n+1)

[n,n+1) 1/2n+1 = ( )An,k f−1 In,k = ( )An f−1 In n ∈ N+ k ∈ {1, 2, … ,n }2n

A I S [0, ∞)
f ∈SAn ∈SAn,k n k

= +nfn ∑
k=1

n2n k−1

2n
1An,k

1An
(3.10.14)

fn 0 ≤ ≤ ffn n ∈ N+ x ∈ S n > f(x) |f(x) − (x)| ≤fn 2−n

(x) → f(x)fn n → ∞ fn n x ∈ S n ∈ N+ x ∈ An,k

k ∈ {1, 2, … ,n }2n (x) = (k−1)/fn 2n (x) = (2k−2)/fn+1 2n+1 (x) = (2k−1)/fn+1 2n+1 x ∈ An

(x) = nfn (x) = (k−1)/fn+1 2n+1 k ∈ {n +1, … , (n+1) }2n+1 2n+1 (x) = n+1fn+1

(x) ≥ (x)fn+1 fn

f : S → [0, ∞)
g g ≤ f gdμ ≤ f dμ∫S ∫S

f

f : S → [0, ∞)

f dμ = sup{ gdμ : g is simple and 0 ≤ g ≤ f}∫
S

∫
S

(3.10.15)

f dμ∫S [0, ∞] f

f , g : S → [0, ∞) f ≤ g S f dμ ≤ gdμ∫
S

∫
S

{h : h is simple and 0 ≤ h ≤ f} ⊆ {h : h is simple and 0 ≤ h ≤ g}

f dμ = sup{ h dμ : h is simple and 0 ≤ h ≤ f} ≤ sup{ h dμ : h is simple and 0 ≤ h ≤ g} = gdμ∫
S

∫
S

∫
S

∫
S

(3.10.16)
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We can now prove the continuity property known as the monotone convergence theorem in full generality.

Suppose that  is measurable for  and that  is increasing in . Then

Proof

Let . By the order property, note that  is increasing in  and hence has a limit in , which we will denote by
. Note that  on  for , so by the order property again,  for . Letting  gives .

To show that  we need to show that  for every simple function  with . Fix  and let 
. Since  is increasing in , . Moreover, since  as  on  and  on , 

. But by definition,  on  so

Letting  in the extreme parts of the displayed inequality and using the version of the monotone convergence theorem for simple
functions, we have  for every . Finally, letting  gives 

If  is measurable, then by the theorem above, there exists an increasing sequence  of simple functions with  as
. By the monotone convergence theorem in (18),  as . These two facts can be used to establish other

properties of the integral of a nonnegative function based on our knowledge that the properties hold for simple functions. This type of argument
is known as bootstrapping. We use bootstrapping to show that the linearity properties hold:

If  are measurable and , then

1. 
2. 

Proof
1. Let  and  be increasing sequences of nonnegative simple functions with  and  as . Then 

 is also an increasing sequence of simple functions, and  as . By the monotone
convergence theorem, , , and  as . But 

 for each  so taking limits gives .
2. Similarly,  is an increasing sequence of nonnegative simple functions with  as . Again, by the MCT, 

 and  as . But  so taking limits gives .

General Functions

Our final step is to define the integral of a measurable function . First, recall the positive and negative parts of :

Note that , , , and . Given that we want the integral to have the linearity properties in (5), there is no
question as to how we should define the integral of  in terms of the integrals of  and , which being nonnegative, are defined by the
previous subsection.

If  is measurable, we define

assuming that at least one of the integrals on the right is finite. If both are finite, then  is said to be integrable.

Assuming that either the integral of the positive part or the integral of the negative part is finite ensures that we do not get the dreaded
indeterminate form .

Suppose that  is measurable. Then  is integrable if and only if .

Proof

Suppose that  is integrable. Recall that . By the additive property for nonnegative functions, 
. Conversely, suppose that . Then  and  so by the increasing

property for nonnegative functions,  and .

: S → [0, ∞)fn n ∈ N+ fn n

dμ = dμ∫
S

lim
n→∞

fn lim
n→∞

∫
S

fn (3.10.17)

f = limn→∞ fn dμ∫S fn n ∈ N+ R
∗

c ≤ ffn S n ∈ N+ dμ ≤ f dμ∫
S
fn ∫

S
n ∈ N+ n → ∞ c ≤ f dμ∫

S

c ≥ f dμ∫S c ≥ gdμ∫S g 0 ≤ g ≤ f a ∈ (0, 1)
= {x ∈ S : (x) ≥ ag(x)}An fn fn n ⊆An An+1 → ffn n → ∞ S g ≤ f S

= S⋃∞
n=1 An αg ≤ fn An

α gdμ = α gdμ ≤ dμ ≤ dμ∫
S

1An
∫
S

1An
∫
S

1An
fn ∫

S

fn (3.10.18)

n → ∞
a gdμ ≤ c∫

S
a ∈ (0, 1) a ↑ 1 gdμ ≤ c∫

S

f : S → [0, ∞) ( , , …)f1 f2 → ffn
n → ∞ dμ → f dμ∫S fn ∫S n → ∞

f , g : S → [0, ∞) c ∈ [0, ∞)

(f +g)dμ = f dμ+ gdμ∫S ∫S ∫S
cf dμ = c f dμ∫

S
∫
S

( , , …)f1 f2 ( , , …)g1 g2 → ffn → ggn n → ∞
( + , + , …)f1 g1 f2 g2 + → f +gfn gn n → ∞

dμ → f dμ∫S fn ∫S dμ → gdμ∫S gn ∫S ( + )dμ → (f +g)dμ∫S fn gn ∫S n → ∞
( + )dμ = dμ+ dμ∫

S
fn gn ∫

S
fn ∫

S
gn n ∈ N+ (f +g)dμ = f dμ+ gdμ∫

S
∫
S

∫
S

(c , c , …)f1 f2 c → cffn n → ∞
dμ → f dμ∫

S
fn ∫

S
c dμ → cf dμ∫

S
fn ∫

S
n → ∞ c dμ = c dμ∫

S
fn ∫

S
fn cf dμ = c f dμ∫

S
∫
S

f : S →R x ∈ R

= max{x, 0}, = max{−x, 0}x+ x− (3.10.19)

≥ 0x+ ≥ 0x− x = −x+ x− |x| = +x+ x−

f f+ f−

f : S →R

f dμ = dμ− dμ∫
S

∫
S

f+ ∫
S

f− (3.10.20)

f

∞ −∞

f : S →R f |f | dμ < ∞∫S

f |f | = +f+ f−

|f | dμ = dμ+ dμ < ∞∫S ∫S f
+ ∫S f

− |f | dμ < ∞∫S ≤ |f |f+ ≤ |f |f−

dμ ≤ |f | dμ < ∞∫S f
+ ∫S dμ ≤ |f | dμ < ∞∫S f

− ∫S
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Note that if  is nonnegative, then our new definition agrees with our old one, since  and . For simple functions the integral has
the same basic form as for nonnegative simple functions:

Suppose that  is a simple function with the representation . Then

assuming that the sum does not have both  and  terms.

Proof

Note that  and  are also simple, with the representations  and . hence

as long as one of the sums is finite. Given that this is the case, we can recombine the sums to get

Once again, we need to establish the essential properties. Our first result is an intermediate step towards linearity.

If  are measurable then  as long as at least one of the integrals on the right is finite.

Proof

We take cases. Suppose first that  and . Note that  and . By the increasing property
for nonnegative functions,  and . Thus  is integrable. Next we have 

 and therefore . All four of the functions in the last equation are nonnegative,
and therefore by additivity property for nonnegative functions, we have

All of these integrals are finite, and hence

Next suppose that  and . Then  and hence . Using the additivity and
increasing properties for nonnegative functions, we have . Since  we must have 

. On the other hand,  so . Hence 

Finally, suppose that  and . By the argument in the last paragraph, we have  and 
. Equivalently,  and . Hence .

We finally have the linearity properties in full generality.

If  are measurable functions whose integrals exist, and , then

1.  as long as the right side is not of the form .
2. 

Proof
1. Note that  and the two functions in parentheses in the last expression are

nonnegative. By the previous lemma and the additivity property for nonnegative functions, we have

assuming that either both integrals in the first parentheses are finite or both integrals in the second parentheses are finite. In either case,
we can group the terms (without worrying about the dreaded ) to get

f = ff+ = 0f−

f f = ∑i∈I ai1Ai

f dμ = μ( )∫
S

∑
i∈I

ai Ai (3.10.21)

∞ −∞

f+ f− =f+ ∑i∈I a
+
i 1Ai

=f− ∑i∈I a
−
i 1Ai

f dμ = μ( ) − μ( )∫
S

∑
i∈I

a+
i Ai ∑

i∈I

a−
i Ai (3.10.22)

f dμ = μ( )∫
S

∑
i∈I

ai Ai (3.10.23)

f , g : S → [0, ∞) (f −g)dμ = f dμ− gdμ∫
S

∫
S

∫
S

f dμ < ∞∫S gdμ < ∞∫S (f −g ≤ f)+ (f −g ≤ g)−

(f −g dμ ≤ f dμ < ∞∫
S

)+ ∫
S

(f −g dμ ≤ gdμ < ∞∫
S

)− ∫
S

f −g

f −g = (f −g −(f −g)+ )− f +(f −g = g+(f −g)− )+

f dμ+ (f −g dμ = gdμ+ (f −g dμ∫
S

∫
S

)− ∫
S

∫
S

)+ (3.10.24)

(f −g)dμ = (f −g dμ− (f −g dμ = f dμ− gdμ∫
S

∫
S

)+ ∫
S

)− ∫
S

∫
S

(3.10.25)

f dμ = ∞∫S gdμ < ∞∫S f −g ≤ (f −g)+ f ≤ (f −g +g)+

∞ = f dμ ≤ (f −g dμ+ gdμ∫
S

∫
S

)+ ∫
S

gdμ < ∞∫
S

(f −g dμ = ∞∫S )+ (f −g ≤ g)− (f −g dμ ≤ gdμ < ∞∫S )− ∫S
(f −g)dμ = ∞ = f dμ− gdμ∫

S
∫
S

∫
S

f dμ < ∞∫
S

gdμ = ∞∫
S

(g−f dμ = ∞∫
S

)+

(g−f dμ < ∞∫
S

)− (f −g dμ < ∞∫
S

)+ (f −g dμ = ∞∫
S

)− (f −g)dμ = −∞ = f dμ− gdμ∫
S

∫
S

∫
S

f , g : S →R c ∈ R

(f +g)dμ = f dμ+ gdμ∫S ∫S ∫S ∞ −∞
cf dμ = c f dμ∫

S
∫
S

f +g = ( − ) +( − ) = ( + ) −( + )f+ f− g+ g− f+ g+ f− g−

(f +g)dμ∫
S

= ( + )dμ− ( + )dμ∫
S

f+ g+ ∫
S

f− g−

=( dμ+ dμ)−( dμ+ dμ)∫
S

f+ ∫
S

g+ ∫
S

f− ∫
S

g−

(3.10.26)

(3.10.27)

∞ −∞
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2. Note that if  then  and . Hence using the scaling property for nonnegative functions,

On the other hand, if ,  and . Again using the scaling property for nonnegative functions,

In particular, note that if  and  are integrable, then so are  and  for . Thus, the set of integrable functions on  forms a
vector space, which is denoted . The  is in honor of Henri Lebesgue, who first developed the theory. This vector space, and other
related ones, will be studied in more detail in the section on function spaces.

We also have the increasing property in full generality.

If  are measurable functions whose integrals exist, and if  on  then 

Proof

We can use the proof based on the additive property from (6). First  and  on . If  then trivially, 
. Otherwise  and therefore .

The Integral Over a Set

Now that we have defined the integral of a measurable function  over all of , there is a natural extension to the integral of  over a measurable
subset

If  is measurable and , we define

assuming that the integral on the right exists.

If  is a measurable function whose integral exists and , then the integral of  over  exists.

Proof

Note that  and . Also  and . If  exists, then either  or 
. By the increasing property, it follows that either  or , so  exists.

On the other hand, it's clearly possible for  to exist for some , but not .

We could also simply think of  as the integral of a measurable function  over the measure space , where 
 is the -algebra of measurable subsets of , and where  is the restriction of  to . It

follows that all of the essential properties hold for integrals over : the linearity properties, the order properties, and the monotone convergence
theorem. The following property is a simple consequence of the general additive property, and is known as additive property for disjoint
domains.

Suppose that  is a measurable function whose integral exists, and that  are disjoint. then

Proof

Recall that . Hence by the additive property and the previous result,

By induction, the additive property holds for a finite collection of disjoint domains. The extension to a countably infinite collection of disjoint
domains will be considered in the next section on properties of the integral.

(f +g)dμ =( dμ− dμ)+( dμ− dμ) = f dμ+ gdμ∫
S

∫
S

f+ ∫
S

f− ∫
S

g+ ∫
S

g− ∫
S

∫
S

(3.10.28)

c ≥ 0 (cf = c)+ f+ (cf = c)− f−

cf dμ = (cf dμ− (cf dμ = c dμ− c dμ = c dμ−c dμ = c f dμ∫
S

∫
S

)+ ∫
S

)− ∫
S

f+ ∫
S

f− ∫
S

f+ ∫
S

f− ∫
S

(3.10.29)

c < 0 (cf = −c)+ f− (cf = −c)− f+

cf dμ = (cf dμ− (cf dμ = −c dμ− −c dμ = −c dμ+c dμ = c f dμ∫
S

∫
S

)+ ∫
S

)− ∫
S

f− ∫
S

f+ ∫
S

f− ∫
S

f+ ∫
S

(3.10.30)

f g f +g cf c ∈ R (S,S ,μ)
L (S,S ,μ) L

f , g : S →R f ≤ g S f dμ ≤ gdμ∫S ∫S

g = f +(g−f) g−f ≥ 0 S f dμ = −∞∫S
f dμ ≤ gdμ∫

S
∫
S

(g−f)dμ ≥ 0∫
S

gdμ = f dμ+ (g−f)dμ ≥ f dμ∫
S

∫
S

∫
S

∫
S

f S f

f : S →R A ∈S

f dμ = f dμ∫
A

∫
S

1A (3.10.31)

f : S →R A ∈S f A

=( f)1A
+

1Af
+ =( f)1A

−
1Af

− ≤1Af
+ f+ ≤1Af

− f− f dμ∫S dμ < ∞∫S f
+

dμ < ∞∫
S
f− dμ < ∞∫

S
1Af

+ dμ < ∞∫
S
1Af

− f dμ∫
A

f dμ∫
A

A ∈S f dμ∫
S

f dμ∫
A

f : A →R (A, , )SA μA

= {B ∈S : B ⊆ A} = {C ∩A : C ∈S }SA σ A μA μ SA

A

f : S →R A, B ∈S

f dμ = f dμ+ f dμ∫
A∪B

∫
A

∫
B

(3.10.32)

= +1A∪B 1A 1B

f dμ = f dμ = ( f + f) dμ = f dμ+ f dμ = f dμ+ f dμ∫
A∪B

∫
S

1A∪B ∫
S

1A 1B ∫
S

1A ∫
S

1B ∫
A

∫
B

(3.10.33)
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Special Cases

Discrete Spaces

Recall again that the measure space  is discrete if  is countable,  is the collection of all subsets of , and  is counting measure on
. Thus all functions  are measurable, and and as we will see, integrals with respect to  are simply sums.

If  then

as long as either the sum of the positive terms or the sum of the negative terms in finite.

Proof

The proof is a bootstrapping argument.

1. Suppose first that  is finite. In this case, every function  is simple and has the representation  where  is
an abbreviation of . Thus the result follows from the definition of the integral.

2. Next suppose that  is countable infinite and . Let  be an increasing sequence of finite subsets of  with 
. Define . Then  is an increasing sequence of simple functions with  as .

Thus

But by definition, the last limit on the right is just .
3. Finally consider the general case where  is countable and . In this case the result follows from the definition of the integral as

 as long as one of the integrals on the right is finite. By (b),  is the sum of the positive terms
and  is the sum of the negative terms.

If the sum of the positive terms and the sum of the negative terms are both finite, then  is integrable with respect to , but the usual term from
calculus is that the series  is absolutely convergent. The result will look more familiar in the special case . Functions on  are
simply sequences, so we can use the more familiar notation  rather than  for a function . Part (b) of the proof (with 

) is just the definition of an infinite series of nonnegative terms as the limit of the partial sums:

Part (c) of the proof is just the definition of a general infinite series

as long as one of the series on the right is finite. Again, when both are finite, the series is absolutely convergent. In calculus we also consider
conditionally convergent series. This means that , , but  exists in . Such series have no place in
general integration theory. Also, you may recall that such series are pathological in the sense that, given any number in , there exists a
rearrangement of the terms so that the rearranged series converges to the given number.

The Lebesgue and Riemann Integrals on 

Consider the one-dimensional Euclidean space  where  is the usual -algebra of Lebesgue measurable sets and  is Lebesgue
measure. The theory developed above applies, of course, for the integral  of a measurable function  over a set . It's not
surprising that in this special case, the theory of integration is referred to as Lebesgue integration in honor of our good friend Henri Lebesgue,
who first developed the theory.

On the other hand, we already have a theory of integration on , namely the Riemann integral of calculus, named for our other good friend
Georg Riemann. For a suitable function  and domain  this integral is denoted , as we all remember from calculus. How are the two
integrals related? As we will see, the Lebesgue integral generalizes the Riemann integral.

To understand the connection we need to review the definition of the Riemann integral. Consider first the standard case where the domain of
integration is a closed, bounded interval. Here are the preliminary definitions that we will need.

Suppose that , where  and .

1. A partition  of  is a finite collection of disjoint subintervals whose union is .

(S,S , #) S S S #
S f : S →R #

f : S →R

f d# = f(x)∫
S

∑
x∈S

(3.10.34)

S f : S →R f = f(x)∑x∈S 1x 1x

1{x}

S f : S → [0, ∞) ( , , …)A1 A2 S

= S⋃∞
i=1 Ai = f(x)fn ∑x∈An

1x ( , , …)f1 f2 → ffn n → ∞

f d# = d# = f(x)∫
S

lim
n→∞

∫
S

fn lim
n→∞

∑
x∈An

(3.10.35)

f(x)∑x∈S

S f : S →R

f d# = d# − d#∫
S

∫
S
f+ ∫

S
f− d#∫

S
f+

− d#∫S f
−

f #
f(x)∑x∈S S =N+ S

ai a(i) a : S →R

= {1, 2, … ,n}An

=∑
i=1

∞

ai lim
n→∞

∑
i=1

n

ai (3.10.36)

= −∑
i=1

∞

ai ∑
i=1

∞

a+
i ∑

i=1

∞

a−
i (3.10.37)

= ∞∑∞
i=1 a

+
i = ∞∑∞

i=1 a
−
i limn→∞ ∑n

i=1 ai R

R
∗

R

(R,R,λ) R σ λ

f dμ∫
A

f : R →R A ∈R

R

f A f(x)dx∫
A

f : [a, b] →R a, b ∈ R a < b

A = { : i ∈ I}Ai [a, b] [a, b]

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10150?pdf


3.10.10 https://stats.libretexts.org/@go/page/10150

2. The norm of a partition  is , the length of the largest subinterval of .
3. A set of points  where  for each  is said to be associated with the partition .
4. The Riemann sum of  corresponding to a partition  and and a set  associated with  is

Note that the Riemann sum is simply the integral of the simple function . Moreover, since  is an interval for each , 
is a step function, since it is constant on a finite collection of disjoint intervals. Moreover, again since  is an interval for each ,  is
simply the length of the subinterval , so of course measure theory per se is not needed for Riemann integration. Now for the definition from
calculus:

 is Riemann integrable on  if there exists  with the property that for every  there exists  such that if  is a partition
of  with  then  for every set of points  associated with . Then of course we define the integral by

Here is our main theorem of this subsection.

If  is Riemann integrable on  then  is Lebesgue integrable on  and

On the other hand, there are lots of functions that are Lebesgue integrable but not Riemann integrable. In fact there are indicator functions of this
type, the simplest of functions from the point of view of Lebesgue integration.

Consider the function  where as usual,  is the set of rational number in . Then

1. .
2.  is not Riemann integrable on any interval  with .

Proof

Part (a) follows from the definition of the Lebesgue integral:

For part (b), note that there are rational and irrational numbers in every interval of  of positive length (the rational numbers and the
irrational numbers are dense in ). Thus, given any partition  of , no matter how small the norm, there are Riemann
sums that are 0 (take  irrational for each ), and Riemann sums that are  (take  rational for each )

The following fundamental theorem completes the picture.

 is Riemann integrable on  if and only if  is bounded on  and  is continuous almost everywhere on .

Now that the Riemann integral is defined for a closed bounded interval, it can be extended to other domains.

Extensions of the Riemann integral.

1. If  is defined on  and Riemann integrable on  for , we define  if the limit exists in 
.

2. If  is defined on  and Riemann integrable on  for , we define  if the limit exists in 
.

3. If  is defined on , we select  and define  if the integrals on the right exist in 
by (a) and (b), and are not of the form .

4. If  is defined an  and Riemann integrable on  for  we define .
5. if  is defined on  and Riemann integrable on  for  we define  if the limit

exists in 
6. if  is defined on  we select  and define  if both integrals on the right exist by (d)

and (e), and are not of the form .

A ∥A∥ = max{λ( ) : i ∈ I}Ai A

B = { : i ∈ I}xi ∈xi Ai i ∈ I A

f A B A

R (f ,A ,B) = f( )λ( )∑
i∈I

xi Ai (3.10.38)

g = f( )∑i∈I xi 1Ai
Ai i ∈ I g

Ai i ∈ I λ( )Ai

Ai

f [a, b] r ∈ R ϵ > 0 δ > 0 A

[a, b] ∥A∥ < δ |r−R (f ,A ,B)| < ϵ B A

f(x)dx = r∫
b

a

(3.10.39)

f : [a, b] →R [a, b] f [a, b]

f dλ = f(x)dx∫
[a,b]

∫
b

a

(3.10.40)

1Q Q R

dλ = 0∫R 1Q

1Q [a, b] a < b

dλ = λ(Q) = 0∫
R

1Q (3.10.41)

R

R A = { : i ∈ I}Ai [a, b]
∈xi Ai i ∈ I b−a ∈xi Ai i ∈ I

f : [a, b] →R [a, b] f [a, b] f [a, b]

f [a, b) [a, t] a < t < b f(x)dx = f(x)dx∫ b

a limt↑b ∫ t

a

R∗

f (a, b] [t, b] a < t < b f(x)dx = f(x)dx∫ b

a limt↓a ∫ b

t

R∗

f (a, b) c ∈ (a, b) f(x)dx = f(x)dx+ f(x), dx∫ b

a
∫ c

a
∫ b

c
R∗

∞ −∞

f [a, ∞) [a, t] a < t < ∞ f(x)dx = f(x)dx∫ ∞
a

limt→∞ ∫ t

a

f (−∞, b] [t, b] −∞ < t < b f(x)dx = f(x)dx∫ b

−∞
limt→−∞ ∫ b

t

R∗

f R c ∈ R f(x)dx = f(x)dx+ f(x)dx∫ ∞
−∞

∫ c

−∞
∫ ∞
c

∞ −∞
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7. The integral is be defined for a domain that is the union of a finite collection of disjoint intervals by the requirement that the integral be
additive over disjoint domains

As another indication of its superiority, note that none of these convolutions is necessary for the Lebesgue integral. Once and for all, we have
defined  for a general measurable function  and a general domain 

The Lebesgue-Stieltjes Integral

Consider again the measurable space  where  is the usual -algebra of Lebesgue measurable subsets of . Suppose that  is a
general distribution function, so that by definition,  is increasing and continuous from the right. Recall that the Lebesgue-Stieltjes measure 
associated with  is the unique measure on  that satisfies

Recall that  satisfies some, but not necessarily all of the properties of a probability distribution function. The properties not necessarily satisfied
are the normalizing properties

 as 
 as 

If  does satisfy these two additional properties, then  is a probability measure and  its probability distribution function.

The integral with respect to the measure  is, appropriately enough, referred to as the Lebesgue-Stieltjes integral with respect to , and like the
measure, is named for the ubiquitous Henri Lebesgue and for Thomas Stieltjes. In addition to our usual notation , the Lebesgue-Stieltjes
integral is also denoted  and .

Probability Spaces

Suppose that  is a probability space, so that  is the set of outcomes of a random experiment,  is the -algebra of events, and  the
probability measure on the sample space . A measurable, real-valued function  on  is, of course, a real-valued random variable. The
integral with respect to , if it exists, is the expected value of  and is denoted

This concept is of fundamental importance in probability theory and is studied in detail in a separate chapter on Expected Value, mostly from an
elementary point of view that does not involve abstract integration. However an advanced section treats expected value as an integral over the
underlying probability measure, as above.

Suppose next that  is a discrete space and that  is a random variable for the experiment, taking values in . In this case  has a
discrete distribution and the probability density function  of  is given by  for . More generally,

On the other hand, suppose that  is a random variable with values in , where as usual,  is -dimensional Euclidean space. If 
has a continuous distribution, then  is a probability density function of  if

Technically,  is the density function of  with respect to counting measure  in the discrete case, and  is the density function of  with
respect to Lebesgue measure  in the continuous case. In both cases, the probability of an event  is computed by integrating the density
function, with respect to the appropriate measure, over . There are still differences, however. In the discrete case, the existence of the density
function with respect to counting measure is guaranteed, and indeed we have an explicit formula for it. In the continuous case, the existence of a
density function with respect to Lebesgue measure is not guaranteed, and indeed there might not be one. More generally, suppose that we have a
measure space  and a random variable  with values in . A measurable function  is a probability density function of 

 (or more precisely, the distribution of ) with respect to  if

This fundamental question of the existence of a density function will be clarified in the section on absolute continuity and density functions.

Suppose again that  is a real-valued random variable with distribution function . Then, by definition, the distribution of  is the Lebesgue-
Stieltjes measure associated with :

f(x)dx∫A f : R →R A ∈R

(R,R) R σ R F : R →R

F μ

F R

μ(a, b] = F (b) −F (a); a, b ∈ R, a < b (3.10.42)

F

F (x) → 0 x → −∞
F (x) → 1 x → ∞

F μ F

μ F

f dμ∫S
f dF∫

S
f(x)dF (x)∫

S

(S,S ,P) S S σ P

(S,S ) X S

P X

E(X) = XdP∫
S

(3.10.43)

(T ,T , #) X T X

f X f(x) = P(X = x) x ∈ T

P(X ∈ A) = f(x) = f d#, A ⊆ T∑
x∈A

∫
A

(3.10.44)

X R
n ( , , )R

n
Rn λn n X

f : T → [0, ∞) X

P(X ∈ A) = f d , A ∈∫
A

λn Rn (3.10.45)

f X # f X

λn A

A

(T ,T ,μ) X T f : T → [0, ∞)
X X μ

P(X ∈ A) = f dμ, A ∈ T∫
A

(3.10.46)

X F X

F

P(a < X ≤ b) = F (b) −F (a), a, b ∈ R, a < b (3.10.47)
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regardless of whether the distribution is discrete, continuous, or mixed. Trivially,  for  and the expected value of 
 defined above can also be written as . Again, all of this will be explained in much more detail in the next chapter on

Expected Value.

Computational Exercises

Let  for .

1. Find .
2. Show that  does not exist.

Answer
1. 

2. , 

You may recall that the function  in the last exercise is important in the study of the Cauchy distribution, named for Augustin Cauchy. You may
also remember that the graph of  is known as the witch of Agnesi, named for Maria Agnesi.

Let  for  where  is a parameter. Find 

Answer

You may recall that the function  in the last exercise is important in the study of the Pareto distribution, named for Vilfredo Pareto.

Suppose that  if  and  if .

1. Find 
2. Does  exist?

Answer
1. 2
2. No
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P(X ∈ A) = dF∫
S
1A A ∈R

X E(X) = x dF (x)∫
R

g(x) = 1
1+x2 x ∈ R

g(x)dx∫ ∞
−∞

xg(x)dx∫ ∞
−∞

g(x)dx = π∫ ∞
−∞

xg(x)dx = ∞∫
∞

0 xg(x)dx = −∞∫
0

−∞

g

g

g(x) = 1
xb

x ∈ [1, ∞) b > 0 g(x)dx∫ ∞
1

g(x)dx ={∫ ∞
1

∞,

,1
b−1

0 < b ≤ 1

b > 1

g

f(x) = 0 x ∈ Q f(x) = sin(x) x ∈ R−Q

f(x)dλ(x)∫
[0,π]

f(x)dx∫ π

0
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