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5.38: The Weibull Distribution
         

In this section, we will study a two-parameter family of distributions that has special importance in reliability.

The Basic Weibull Distribution

Distribution Functions

The basic Weibull distribution with shape parameter  is a continuous distribution on  with distribution
function  given by

The special case  gives the standard Weibull distribution.

Proof

Clearly  is continuous and increasing on  with  and  as .

The Weibull distribution is named for Waloddi Weibull. Weibull was not the first person to use the distribution, but was the first to
study it extensively and recognize its wide use in applications. The standard Weibull distribution is the same as the standard
exponential distribution. But as we will see, every Weibull random variable can be obtained from a standard Weibull variable by a
simple deterministic transformation, so the terminology is justified.

The probability density function  is given by

1. If ,  is decreasing and concave upward with  as .
2. If ,  is decreasing and concave upward with mode .

3. If ,  increases and then decreases, with mode .

4. If ,  is concave downward and then upward, with inflection point at 

5. If ,  is concave upward, then downward, then upward again, with inflection points at 

Proof

These results follow from basic calculus. The PDF is  where  is the CDF above. The first order properties come from

The second order properties come from

So the Weibull density function has a rich variety of shapes, depending on the shape parameter, and has the classic unimodal shape
when . If ,  is defined at 0 also.

In the special distribution simulator, select the Weibull distribution. Vary the shape parameter and note the shape of the
probability density function. For selected values of the shape parameter, run the simulation 1000 times and compare the
empirical density function to the probability density function.

The quantile function  is given by

1. The first quartile is .
2. The median is .

k ∈ (0, ∞) [0, ∞)
G

G(t) = 1 −exp(− ), t ∈ [0, ∞)tk (5.38.1)

k = 1

G [0, ∞) G(0) = 0 G(t) → 1 t → ∞

g

g(t) = k exp(− ), t ∈ (0, ∞)tk−1 tk (5.38.2)

0 < k < 1 g g(t) → ∞ t ↓ 0
k = 1 g t = 0

k > 1 g t = ( )k−1
k

1/k

1 < k ≤ 2 g t = [ ]
3(k−1)+ (5k−1)(k−1)√

2k

1/k

k > 2 g t = [ ]
3(k−1)± (5k−1)(k−1)√

2k

1/k

g = G′ G

(t) = k exp(− ) [−k +(k−1)]g′ tk−2 tk tk (5.38.3)

(t) = k exp(− ) [ −3k(k−1) +(k−1)(k−2)]g′′ tk−3 tk k2t2k tk (5.38.4)

k > 1 k ≥ 1 g

G−1

(p) = [−ln(1 −p) , p ∈ [0, 1)G−1 ]1/k (5.38.5)

= (ln4 −ln3q1 )1/k

= (ln2q2 )1/k
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3. The third quartile is .

Proof

The formula for  comes from solving  for  in terms of .

Open the special distribution calculator and select the Weibull distribution. Vary the shape parameter and note the shape of the
distribution and probability density functions. For selected values of the parameter, compute the median and the first and third
quartiles.

The reliability function  is given by

Proof

This follows trivially from the CDF above, since .

The failure rate function  is given by

1. If ,  is decreasing with  as  and  as .
2. If ,  is constant 1.
3. If ,  is increasing with  and  as .

Proof

The formula for  follows immediately from the PDF  and the reliability function  given above, since .

Thus, the Weibull distribution can be used to model devices with decreasing failure rate, constant failure rate, or increasing failure
rate. This versatility is one reason for the wide use of the Weibull distribution in reliability. If ,  is defined at 0 also.

Moments

Suppose that  has the basic Weibull distribution with shape parameter . The moments of , and hence the mean and
variance of  can be expressed in terms of the gamma function 

 for .

Proof

For ,

Substituting  gives

So the Weibull distribution has moments of all orders. The moment generating function, however, does not have a simple, closed
expression in terms of the usual elementary functions.

In particular, the mean and variance of  are

1. 
2. 

Note that  and  as . We will learn more about the limiting distribution below.

= (ln4q3 )1/k

(p)G−1 G(t) = p t p

Gc

(t) = exp(− ), t ∈ [0, ∞)Gc tk (5.38.6)

= 1 −GGc

r

r(t) = k , t ∈ (0, ∞)tk−1 (5.38.7)

0 < k < 1 r r(t) → ∞ t ↓ 0 r(t) → 0 t → ∞
k = 1 r

k > 1 r r(0) = 0 r(t) → ∞ t → ∞

r g Gc r = g/Gc

k ≥ 1 r

Z k ∈ (0, ∞) Z

Z Γ

E( ) = Γ(1 + )Zn n

k
n ≥ 0

n ≥ 0

E( ) = k exp(− )dtZn ∫
∞

0
tn tk−1 tk (5.38.8)

u = tk

E( ) = du = Γ(1 + )Zn ∫
∞

0
un/ke−u n

k
(5.38.9)

Z

E(Z) = Γ(1 + )1
k

var(Z) = Γ(1 + )− (1 + )2
k

Γ2 1
k

E(Z) → 1 var(Z) → 0 k → ∞
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In the special distribution simulator, select the Weibull distribution. Vary the shape parameter and note the size and location of
the mean  standard deviation bar. For selected values of the shape parameter, run the simulation 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation.

The skewness and kurtosis also follow easily from the general moment result above, although the formulas are not particularly
helpful.

Skewness and kurtosis

1. The skewness of  is

2. The kurtosis of  is

Proof

The results follow directly from the general moment result and the computational formulas for skewness and kurtosis.

Related Distributions

As noted above, the standard Weibull distribution (shape parameter 1) is the same as the standard exponential distribution. More
generally, any basic Weibull variable can be constructed from a standard exponential variable.

Suppose that .

1. If  has the standard exponential distribution then  has the basic Weibull distribution with shape parameter .
2. If  has the basic Weibull distribution with shape parameter  then  has the standard exponential distribution.

Proof

We use distribution functions. The basic Weibull CDF is given above; the standard exponential CDF is  on 
. Note that the inverse transformations  and  are strictly increasing and map  onto .

1.  for .

2.  for .

The basic Weibull distribution has the usual connections with the standard uniform distribution by means of the distribution
function and the quantile function given above.

Suppose that .

1. If  has the standard uniform distribution then  has the basic Weibull distribution with shape parameter .
2. If  has the basic Weibull distribution with shape parameter  then  has the standard uniform distribution.

Proof

Let  denote the CDF of the basic Weibull distribution with shape parameter  and  the corresponding quantile function,
given above.

1. If  has the standard uniform distribution then so does . Hence  has the basic
Weibull distribution with shape parameter .

2. If  has the basic Weibull distribution with shape parameter  then  has the standard uniform distribution. But then
so does .

Since the quantile function has a simple, closed form, the basic Weibull distribution can be simulated using the random quantile
method.

±

Z

skew(Z) =
Γ(1 +3/k) −3Γ(1 +1/k)Γ(1 +2/k) +2 (1 +1/k)Γ3

[Γ(1 +2/k) − (1 +1/k)]Γ2 3/2
(5.38.10)

Z

kurt(Z) =
Γ(1 +4/k) −4Γ(1 +1/k)Γ(1 +3/k) +6 (1 +1/k)Γ(1 +2/k) −3 (1 +1/k)Γ2 Γ4

[Γ(1 +2/k) − (1 +1/k)]Γ2 2
(5.38.11)

k ∈ (0, ∞)

U Z = U 1/k k

Z k U = Zk

u ↦ 1 −e−u

[0, ∞) z = uk u = z1/k [0, ∞) [0, ∞)

P(Z ≤ z) = P (U ≤ ) = 1 −exp(− )zk zk z ∈ [0, ∞)

P(U ≤ u) = P (Z ≤ ) = 1 −exp[− ] = 1 −u1/k ( )u1/k k
e−u u ∈ [0, ∞)

k ∈ (0, ∞)

U Z = (−lnU)1/k k

Z k U = exp(− )Zk

G k G−1

U 1 −U Z = (1 −U) = (−lnUG−1 )1/k

k

Z k G(Z)
U = 1 −G(Z) = exp(− )Zk
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Open the random quantile experiment and select the Weibull distribution. Vary the shape parameter and note again the shape of
the distribution and density functions. For selected values of the parameter, run the simulation 1000 times and compare the
empirical density, mean, and standard deviation to their distributional counterparts.

The limiting distribution with respect to the shape parameter is concentrated at a single point.

The basic Weibull distribution with shape parameter  converges to point mass at 1 as .

Proof

Once again, let  denote the basic Weibull CDF with shape parameter  given above. Note that  as  for 
;  for all ; and  as  for . Except for the point of discontinuity , the

limits are the CDF of point mass at 1.

The General Weibull Distribution
Like most special continuous distributions on , the basic Weibull distribution is generalized by the inclusion of a scale
parameter. A scale transformation often corresponds in applications to a change of units, and for the Weibull distribution this
usually means a change in time units.

Suppose that  has the basic Weibull distribution with shape parameter . For , random variable 
has the Weibull distribution with shape parameter  and scale parameter .

Generalizations of the results given above follow easily from basic properties of the scale transformation.

Distribution Functions

Suppose that  has the Weibull distribution with shape parameter  and scale parameter .

 distribution function  given by

Proof

Recall that  for  where  is the CDF of the basic Weibull distribution with shape parameter , given

above.

 has probability density function  given by

1. If ,  is decreasing and concave upward with  as .
2. If ,  is decreasing and concave upward with mode .

3. If ,  increases and then decreases, with mode .

4. If ,  is concave downward and then upward, with inflection point at 

5. If ,  is concave upward, then downward, then upward again, with inflection points at 

Proof

Recall that  for  where  is the PDF of the corresponding basic Weibull distribution given above.

k ∈ (0, ∞) k → ∞

G k G(t) → 0 k → ∞
0 ≤ t < 1 G(1) = 1 −e−1 k G(t) → 1 k → ∞ t > 1 t = 1

[0, ∞)

Z k ∈ (0, ∞) b ∈ (0, ∞) X = bZ

k b

X k ∈ (0, ∞) b ∈ (0, ∞)

X F

F (t) = 1 −exp[− ], t ∈ [0, ∞)( )
t

b

k

(5.38.12)

F (t) = G( )t
b

t ∈ [0, ∞) G k

X f

f(t) = exp[− ], t ∈ (0, ∞)
k

bk
tk−1 ( )

t

b

k

(5.38.13)

0 < k < 1 f f(t) → ∞ t ↓ 0
k = 1 f t = 0

k > 1 f t = b( )k−1
k

1/k

1 < k ≤ 2 f t = b[ ]
3(k−1)+ (5k−1)(k−1)√

2k

1/k

k > 2 f

t = b[ ]
3(k−1)± (5k−1)(k−1)√

2k

1/k

f(t) = g( )1
b

t

b
t ∈ (0, ∞) g
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Open the special distribution simulator and select the Weibull distribution. Vary the parameters and note the shape of the
probability density function. For selected values of the parameters, run the simulation 1000 times and compare the empirical
density function to the probability density function.

 has quantile function  given by

1. The first quartile is .
2. The median is .
3. The third quartile is .

Proof

Recall that  for  where  is the quantile function of the corresponding basic Weibull
distribution given above.

Open the special distribution calculator and select the Weibull distribution. Vary the parameters and note the shape of the
distribution and probability density functions. For selected values of the parameters, compute the median and the first and third
quartiles.

 has reliability function  given by

Proof

This follows trivially from the CDF  given above, since .

As before, the Weibull distribution has decreasing, constant, or increasing failure rates, depending only on the shape parameter.

 has failure rate function  given by

1. If ,  is decreasing with  as  and  as .
2. If ,  is constant .
3. If ,  is increasing with  and  as .

Moments

Suppose again that  has the Weibull distribution with shape parameter  and scale parameter . Recall that by
definition, we can take  where  has the basic Weibull distribution with shape parameter .

 for .

Proof

The result then follows from the moments of  above, since .

In particular, the mean and variance of  are

1. 
2. 

Note that  and  as .

X F −1

(p) = b[− ln(1 −p) , p ∈ [0, 1)F −1 ]1/k (5.38.14)

= b(ln4 −ln3q1 )1/k

= b(ln2q2 )1/k

= b(ln4q3 )1/k

(p) = b (p)F −1 G−1 p ∈ [0, 1) G−1

X F c

(t) = exp[− ], t ∈ [0, ∞)F c ( )
t

b

k

(5.38.15)

F = 1 −FF c

X R

R(t) = , t ∈ (0, ∞)
ktk−1

bk
(5.38.16)

0 < k < 1 R R(t) → ∞ t ↓ 0 R(t) → 0 t → ∞
k = 1 R 1

b

k > 1 R R(0) = 0 R(t) → ∞ t → ∞

X k ∈ (0, ∞) b ∈ (0, ∞)
X = bZ Z k

E( ) = Γ(1 + )Xn bn n

k
n ≥ 0

Z E( ) = E( )Xn bn Zn

X

E(X) = bΓ(1 + )1
k

var(X) = [Γ(1 + )− (1 + )]b2 2
k

Γ2 1
k

E(X) → b var(X) → 0 k → ∞
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Open the special distribution simulator and select the Weibull distribution. Vary the parameters and note the size and location
of the mean  standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare the
empirical mean and standard deviation to the distribution mean and standard deviation.

Skewness and kurtosis

1. The skewness of  is

2. The kurtosis of  is

Proof

Skewness and kurtosis depend only on the standard score of the random variable, and hence are invariant under scale
transformations. So the results are the same as the skewness and kurtosis of .

Related Distributions

Since the Weibull distribution is a scale family for each value of the shape parameter, it is trivially closed under scale
transformations.

Suppose that  has the Weibull distribution with shape parameter  and scale parameter . If 
then  has the Weibull distribution with shape parameter  and scale parameter .

Proof

By definition, we can take  where  has the basic Weibull distribution with shape parameter . But then 
.

The exponential distribution is a special case of the Weibull distribution, the case corresponding to constant failure rate.

The Weibull distribution with shape parameter 1 and scale parameter  is the exponential distribution with scale
parameter .

Proof

When , the Weibull CDF  is given by  for . But this is also the CDF of the exponential
distribution with scale parameter .

More generally, any Weibull distributed variable can be constructed from the standard variable. The following result is a simple
generalization of the connection between the basic Weibull distribution and the exponential distribution.

Suppose that .

1. If  has the standard exponential distribution (parameter 1), then  has the Weibull distribution with shape
parameter  and scale parameter .

2. If  has the Weibull distribution with shape parameter  and scale parameter , then  has the standard
exponential distribution.

Proof

The results are a simple consequence of the corresponding result above

1. If  has the standard exponential distribution then  has the basic Weibull distribution with shape parameter , and
hence  has the Weibull distribution with shape parameter  and scale parameter .

2. If  has the Weibull distribution with shape parameter  and scale parameter  then  has the basic Weibull distribution
with shape parameter , and hence  has the standard exponential distributioon.

±

X

skew(X) =
Γ(1 +3/k) −3Γ(1 +1/k)Γ(1 +2/k) +2 (1 +1/k)Γ3

[Γ(1 +2/k) − (1 +1/k)]Γ2 3/2
(5.38.17)

X

kurt(X) =
Γ(1 +4/k) −4Γ(1 +1/k)Γ(1 +3/k) +6 (1 +1/k)Γ(1 +2/k) −3 (1 +1/k)Γ2 Γ4

[Γ(1 +2/k) − (1 +1/k)]Γ2 2
(5.38.18)

Z

X k ∈ (0, ∞) b ∈ (0, ∞) c ∈ (0, ∞)
Y = cX k bc

X = bZ Z k

Y = cX = (bc)Z

b ∈ (0, ∞)
b

k = 1 F F (t) = 1 −e−t/b t ∈ [0, ∞)
b

k, b ∈ (0, ∞)

X Y = bX1/k

k b

Y k b X = (Y /b)k

X X1/k k

Y = bX1/k k b

Y k b Y /b
k X = (Y /b)k
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The Rayleigh distribution, named for William Strutt, Lord Rayleigh, is also a special case of the Weibull distribution.

The Rayleigh distribution with scale parameter  is the Weibull distribution with shape parameter  and scale
parameter .

Proof

The Rayleigh distribution with scale parameter  has CDF  given by

But this is also the Weibull CDF with shape parameter  and scale parameter .

Recall that the minimum of independent, exponentially distributed variables also has an exponential distribution (and the rate
parameter of the minimum is the sum of the rate parameters of the variables). The Weibull distribution has a similar, but more
restricted property.

Suppose that  is an independent sequence of variables, each having the Weibull distribution with shape
parameter  and scale parameter . Then  has the Weibull distribution with
shape parameter  and scale parameter .

Proof

Recall that the reliability function of the minimum of independent variables is the product of the reliability functions of the
variables. It follows that  has reliability function given by

and so the result follows.

As before, Weibull distribution has the usual connections with the standard uniform distribution by means of the distribution
function and the quantile function given above..

Suppose that .

1. If  has the standard uniform distribution then  has the Weibull distribution with shape parameter  and
scale parameter .

2. If  has the basic Weibull distribution with shape parameter  then  has the standard uniform
distribution.

Proof

Let  denote the Weibull CDF with shape parameter  and scale parameter  and so that  is the corresponding quantile
function.

1. If  has the standard uniform distribution then so does . Hence  has the Weibull
distribution with shape parameter  and scale parameter .

2. If  has the Weibull distribution with shape parameter  and scale parameter  then  has the standard uniform
distribution. But then so does .

Again, since the quantile function has a simple, closed form, the Weibull distribution can be simulated using the random quantile
method.

Open the random quantile experiment and select the Weibull distribution. Vary the parameters and note again the shape of the
distribution and density functions. For selected values of the parameters, run the simulation 1000 times and compare the
empirical density, mean, and standard deviation to their distributional counterparts.

The limiting distribution with respect to the shape parameter is concentrated at a single point.

b ∈ (0, ∞) 2
b2

–
√

b F

F (x) = 1 −exp(− ), x ∈ [0, ∞)
x2

2b2
(5.38.19)

2 b2
–

√

( , , … , )X1 X2 Xn

k ∈ (0, ∞) b ∈ (0, ∞) U = min{ , , … , }X1 X2 Xn

k b/n1/k

U

P(U > t) = = exp[−n ] = exp[− ], t ∈ [0, ∞){exp[− ]}( )
t

b

k n

( )
t

b

k

( )
t

b/n1/k

k

(5.38.20)

k, b ∈ (0, ∞)

U X = b(−lnU)1/k k

b

X k U = exp[−(X/b ])k

F k b F −1

U 1 −U X = (1 −U) = b(−lnUF −1 )1/k

k b

X k b F (X)
U = 1 −F (X) = exp[−(X/b ])k
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The Weibull distribution with shape parameter  and scale parameter  converges to point mass at  as 
.

Proof

If  has the Weibull distribution with shape parameter  and scale parameter , then we can write  where  has the
basic Weibull distribution with shape parameter . We showed above that the distribution of  converges to point mass at 1, so
by the continuity theorem for convergence in distribution, the distribution of  converges to point mass at .

Finally, the Weibull distribution is a member of the family of general exponential distributions if the shape parameter is fixed.

Suppose that  has the Weibull distribution with shape parameter  and scale parameter . For fixed , 
has a general exponential distribution with respect to , with natural parameter  and natural statistics .

Proof

This follows from the definition of the general exponential distribution, since the Weibull PDF can be written in the form

Computational Exercises

The lifetime  of a device (in hours) has the Weibull distribution with shape parameter  and scale parameter .

1. Find the probability that the device will last at least 1500 hours.
2. Approximate the mean and standard deviation of .
3. Compute the failure rate function.

Answer
1. 
2. , 
3. 
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k ∈ (0, ∞) b ∈ (0, ∞) b

k → ∞

X k b X = bZ Z

k Z

X b

X k ∈ (0, ∞) b ∈ (0, ∞) k X

b k−1 lnX

f(t) = exp(− ) exp[(k−1) ln t], t ∈ (0, ∞)
k

bk
tk (5.38.21)

T k = 1.2 b = 1000

T

P(T > 1500) = 0.1966
E(T ) = 940.7 sd(T ) = 787.2
h(t) = 0.000301t0.2
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