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2.6: Convergence
    

This is the first of several sections in this chapter that are more advanced than the basic topics in the first five sections. In this
section we discuss several topics related to convergence of events and random variables, a subject of fundamental importance in
probability theory. In particular the results that we obtain will be important for:

Properties of distribution functions,
The weak law of large numbers,
The strong law of large numbers.

As usual, our starting point is a random experiment modeled by a probability space . So to review,  is the set of
outcomes,  the -algebra of events, and  the probability measure on the sample space .

Basic Theory

Sequences of events

Our first discussion deals with sequences of events and various types of limits of such sequences. The limits are also event. We
start with two simple definitions.

Suppose that  is a sequence of events.

1. The sequence is increasing if  for every .
2. The sequence is decreasing if  for every .

Note that these are the standard definitions of increasing and decreasing, relative to the ordinary total order  on the index set 
and the subset partial order  on the collection of events. The terminology is also justified by the corresponding indicator
variables.

Suppose that  is a sequence of events, and let  denote the indicator variable of the event  for .

1. The sequence of events is increasing if and only if the sequence of indicator variables is increasing in the ordinary sense.
That is,  for each .

2. The sequence of events is decreasing if and only if the sequence of indicator variables is decreasing in the ordinary sense.
That is,  for each .

Proof

Figure : A sequence of increasing events and their union

Figure : A sequence of decreasing events and their intersection

If a sequence of events is either increasing or decreasing, we can define the limit of the sequence in a way that turns out to be quite
natural.

Suppose that  is a sequence of events.

1. If the sequence is increasing, we define .
2. If the sequence is decreasing, we define .
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Once again, the terminology is clarified by the corresponding indicator variables.

Suppose again that  is a sequence of events, and let  denote the indicator variable of  for .

1. If the sequence of events is increasing, then  is the indicator variable of 
2. If the sequence of events is decreasing, then  is the indicator variable of 

Proof
1. If  then  for some . Since the events are increasing,  for every . In this case, 

 for every  and hence . On the other hand, if  then  for every 
. In this case,  for every  and hence .

2. If  then  for each . In this case,  for each  and hence . If 
 then  for some . Since the events are decreasing,  for all . In this case, 

 for  and hence .

An arbitrary union of events can always be written as a union of increasing events, and an arbitrary intersection of events can
always be written as an intersection of decreasing events:

Suppose that  is a sequence of events. Then

1.  is increasing in  and .
2.  is decreasing in  and .

Proof

1. Trivially . The second statement simply means that .
2. Trivially . The second statement simply means that .

There is a more interesting and useful way to generate increasing and decreasing sequences from an arbitrary sequence of events,
using the tail segment of the sequence rather than the initial segment.

Suppose that  is a sequence of events. Then

1.  is decreasing in .
2.  is increasing in .

Proof
1. Clearly 
2. Clearly 

Since the new sequences defined in the previous results are decreasing and increasing, respectively, we can take their limits. These
are the limit superior and limit inferior, respectively, of the original sequence.

Suppose that  is a sequence of events. Define

1. . This is the event that occurs if an only if  occurs for infinitely
many values of .

2. . This is the event that occurs if an only if  occurs for all but
finitely many values of .

Proof
1. From the definition, the event  occurs if and only if for each  there exists  such that 

occurs.
2. From the definition, the event  occurs if and only if there exists  such that  occurs for every 

.

Once again, the terminology and notation are clarified by the corresponding indicator variables. You may need to review limit
inferior and limit superior for sequences of real numbers in the section on Partial Orders.

( , , …)A1 A2 =In 1An An n ∈ N+

limn→∞ In ⋃∞
n=1 An

limn→∞ In ⋂∞
n=1 An

s ∈⋃∞
n=1 An s ∈ Ak k ∈ N+ s ∈ An n ≥ k

(s) = 1In n ≥ k (s) = 1limn→∞ In s ∉⋃∞
n=1 An s ∉ An

n ∈ N+ (s) = 0In n ∈ N+ (s) = 0limn→∞ In
s ∈⋂∞

n=1 An s ∈ An n ∈ N+ (s) = 1In n ∈ N+ (s) = 1limn→∞ In
s ∉⋂∞

n=1 An s ∉ Ak k ∈ N+ s ∉ An n ≥ k

(s) = 0In n ≥ k (s) = 0limn→∞ In

( , , …)A1 A2

⋃n

i=1 Ai n ∈ N+ =⋃∞
i=1 Ai limn→∞⋃

n

i=1 Ai

⋂n

i=1 Ai n ∈ N+ =⋂∞
i=1 Ai limn→∞⋂

n

i=1 Ai

⊆⋃n
i=1 Ai ⋃n+1

i=1 Ai =⋃∞
n=1⋃

n
i=1 Ai ⋃∞

i=1 Ai

⊆⋂n+1
i=1 Ai ⋂n

i=1 Ai =⋂∞
n=1⋂

n
i=1 Ai ⋂∞

i=1 Ai

( , , …)A1 A2

⋃∞
i=n Ai n ∈ N+

⋂∞
i=n Ai n ∈ N+

⊆⋃∞
i=n+1 Ai ⋃∞

i=n Ai

⊆⋂∞
i=n Ai ⋂∞

i=n+1 Ai

( , , …)A1 A2

= =lim supn→∞ An limn→∞⋃
∞
i=n Ai ⋂∞

n=1⋃
∞
i=n Ai An

n

= =lim infn→∞ An limn→∞⋂
∞
i=n Ai ⋃∞

n=1⋂
∞
i=n Ai An

n

lim supn→∞ An n ∈ N+ i ≥ n Ai

lim infn→∞ An n ∈ N+ Ai

i ≥ n

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10134?pdf


2.6.3 https://stats.libretexts.org/@go/page/10134

Suppose that  is a sequence of events, and et  denote the indicator variable of  for . Then

1.  is the indicator variable of .
2.  is the indicator variable of .

Proof
1. By the result above,  is the indicator variable of . But 

 and hence .
2. By the result above,  is the indicator variable of . But 

 and hence .

Suppose that  is a sequence of events. Then .

Proof

If  occurs for all but finitely many  then certainly  occurs for infinitely many .

Suppose that  is a sequence of events. Then

1. 
2. .

Proof

These results follows from DeMorgan's laws.

The Continuity Theorems

Generally speaking, a function is continuous if it preserves limits. Thus, the following results are the continuity theorems of
probability. Part (a) is the continuity theorem for increasing events and part (b) the continuity theorem for decreasing events.

Suppose that  is a sequence of events.

1. If the sequence is increasing then 
2. If the sequence is decreasing then 

Proof
1. Let  and let  for . Note that the collection of events  is pairwise

disjoint and has the same union as . From countable additivity and the definition of infinite series,

But  and  for . Therefore  and hence we
have .

The construction in the continuity theorem for increasing events
The construction in the continuity theorem

2. The sequence of complements  is increasing. Hence using part (a), DeMorgan's law, and the complement rule
we have

The continuity theorems can be applied to the increasing and decreasing sequences that we constructed earlier from an arbitrary
sequence of events.

Suppose that  is a sequence of events.

1. 
2. 
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Proof

These results follow immediately from the continuity theorems.

Suppose that  is a sequence of events. Then

1. 
2. 

Proof

These results follows directly from the definitions, and the continuity theorems.

The next result shows that the countable additivity axiom for a probability measure is equivalent to finite additivity and the
continuity property for increasing events.

Temporarily, suppose that  is only finitely additive, but satisfies the continuity property for increasing events. Then  is
countably additive.

Proof

Suppose that  is a sequence of pairwise disjoint events. Since we are assuming that  is finitely additive we have

If we let , the left side converges to  by the continuity assumption and the result above, while the right side
converges to  by the definition of an infinite series.

There are a few mathematicians who reject the countable additivity axiom of probability measure in favor of the weaker finite
additivity axiom. Whatever the philosophical arguments may be, life is certainly much harder without the continuity theorems.

The Borel-Cantelli Lemmas

The Borel-Cantelli Lemmas, named after Emil Borel and Francessco Cantelli, are very important tools in probability theory. The
first lemma gives a condition that is sufficient to conclude that infinitely many events occur with probability 0.

First Borel-Cantelli Lemma. Suppose that  is a sequence of events. If  then 
.

Proof

From the result above on limit superiors, we have . But from Boole's inequality, 
. Since , we have  as .

The second lemma gives a condition that is sufficient to conclude that infinitely many independent events occur with probability 1.

Second Borel-Cantelli Lemma. Suppose that  is a sequence of independent events. If  then 
.

Proof

Note first that  for every , and hcnce  for each . From the results above
on limit superiors and complements,

But by independence and the inequality above,
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For independent events, both Borel-Cantelli lemmas apply of course, and lead to a zero-one law.

If  is a sequence of independent events then  has probability 0 or 1:

1. If  then .
2. If  then .

This result is actually a special case of a more general zero-one law, known as the Kolmogorov zero-one law, and named for Andrei
Kolmogorov. This law is studied in the more advanced section on measure. Also, we can use the zero-one law to derive a calculus
theorem that relates infinite series and infinte products. This derivation is an example of the probabilistic method—the use of
probability to obtain results, seemingly unrelated to probability, in other areas of mathematics.

Suppose that  for each . Then

Proof

We can easily construct a probability space with a sequence of independent events  such that  for
each . The result then follows from the proofs of the two Borel-Cantelli lemmas.

Our next result is a simple application of the second Borel-Cantelli lemma to independent replications of a basic experiment.

Suppose that  is an event in a basic random experiment with . In the compound experiment that consists of
independent replications of the basic experiment, the event “  occurs infinitely often” has probability 1.

Proof

Let  denote the probability of  in the basic experiment. In the compound experiment, we have a sequence of independent
events  with  for each  (these are “independent copies” of ). But  since 

 so the result follows from the second Borel-Cantelli lemma.

Convergence of Random Variables

Our next discussion concerns two ways that a sequence of random variables defined for our experiment can “converge”. These are
fundamentally important concepts, since some of the deepest results in probability theory are limit theorems involving random
variables. The most important special case is when the random variables are real valued, but the proofs are essentially the same for
variables with values in a metric space, so we will use the more general setting.

Thus, suppose that  is a metric space, and that  is the corresponding Borel -algebra (that is, the -algebra generated by
the topology), so that our measurable space is . Here is the most important special case:

For , is the -dimensional Euclidean space is  where

Euclidean spaces are named for Euclid, of course. As noted above, the one-dimensional case where  for 
is particularly important. Returning to the general metric space, recall that if  is a sequence in  and , then 

 as  means that  as  (in the usual calculus sense). For the rest of our discussion, we assume
that  is a sequence of random variable with values in  and  is a random variable with values in , all defined on
the probability space .

We say that  as  with probability 1 if the event that  as  has probability 1. That is,
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We need to make sure that the definition makes sense, in that the statement that  converges to  as  defines a valid
event. Note that  does not converge to  as  if and only if for some ,  for infinitely many 

. Note that if the this condition holds for a given  then it holds for all smaller . Moreover, there are
arbitrarily small rational  so  does not converge to  as  if and only if for some rational , 
for infinitely many . Hence

where  is the set of positive rational numbers. A critical point to remember is that this set is countable. So, building a little
at a time, note that  is an event for each  and  since  and  are random variables. Next, the
limit superior of a sequence of events is an event. Finally, a countable union of events is an event.

As good probabilists, we usually suppress references to the sample space and write the definition simply as 
. The statement that an event has probability 1 is usually the strongest affirmative statement that we

can make in probability theory. Thus, convergence with probability 1 is the strongest form of convergence. The phrases almost
surely and almost everywhere are sometimes used instead of the phrase with probability 1.

Recall that metrics  and  on  are equivalent if they generate the same topology on . Recall also that convergence of a
sequence is a topological property. That is, if  is a sequence in  and , and if  are equivalent metrics on ,
then  as  relative to  if and only if  as  relative to . So for our random variables as defined above,
it follows that  as  with probability 1 relative to  if and only if  as  with probability 1 relative to

.

The following statements are equivalent:

1.  as  with probability 1.
2.  for every rational .
3.  for every .
4.  as  for every .

Proof

From the details in the definition above,  if and only if

where again  is the set of positive rational numbers. But by Boole's inequality, a countable union of events has probability 0
if and only if every event in the union has probability 0. Thus, (a) is equivalent to (b). Statement (b) is clearly equivalent to (c)
since there are arbitrarily small positive rational numbers. Finally, (c) is equivalent to (d) by the continuity result in above.

Our next result gives a fundamental criterion for convergence with probability 1:

If  for every  then  as  with probability 1.

Proof

By the first Borel-Cantelli lemma, if  then 
. Hence the result follows from the previous theorem.

Here is our next mode of convergence.

We say that  as  in probability if

The phrase in probability sounds superficially like the phrase with probability 1. However, as we will soon see, convergence in
probability is much weaker than convergence with probability 1. Indeed, convergence with probability 1 is often called strong
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convergence, while convergence in probability is often called weak convergence.

If  as  with probability 1 then  as  in probability.

Proof

Let . Then . But if  as  with probability 1, then
the expression on the right converges to 0 as  by part (d) of the result above. Hence  as  in
probability.

The converse fails with a passion. A simple counterexample is given below. However, there is a partial converse that is very useful.

If  as  in probability, then there exists a subsequence  of  such that  as 
with probability 1.

Proof

Suppose that  as  in probability. Then for each  there exists  such that 
. We can make the choices so that  for each . It follows that 

 for every . By the result above,  as  with probability 1.

Note that the proof works because  as  and . Any two sequences with these properties would
work just as well.

There are two other modes of convergence that we will discuss later:

Convergence in distribution.
Convergence in mean,

Examples and Applications

Coins

Suppose that we have an infinite sequence of coins labeled  Moreover, coin  has probability of heads  for each 
, where  is a parameter. We toss each coin in sequence one time. In terms of , find the probability of the

following events:

1. infinitely many heads occur
2. infinitely many tails occur

Answer

Let  be the event that toss  results in heads, and  the event that toss  results in tails.

1. ,  if 
2. ,  if 

The following exercise gives a simple example of a sequence of random variables that converge in probability but not with
probability 1. Naturally, we are assuming the standard metric on .

Suppose again that we have a sequence of coins labeled , and that coin  lands heads up with probability  for each .
We toss the coins in order to produce a sequence  of independent indicator random variables with

1. , so that infinitely many tails occur with probability 1.
2. , so that infinitely many heads occur with probability 1.
3. .
4.  as  in probability.

Proof
1. This follow from the second Borel-Cantelli lemma, since 
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2. This also follows from the second Borel-Cantelli lemma, since .
3. This follows from parts (a) and (b). Recall that the intersection of two events with probability 1 still has probability 1.
4. Suppose . Then  as .

Discrete Spaces

Recall that a measurable space  is discrete if  is countable and  is the collection of all subsets of  (the power set of ).
Moreover,  is the Borel -algebra corresponding to the discrete metric  on  given by  for  and 
for distinct . How do convergence with probability 1 and convergence in probability work for the discrete metric?

Suppose that  is a discrete space. Suppose further that  is a sequence of random variables with values in 
and  is a random variable with values in , all defined on the probability space . Relative to the discrete metric ,

1.  as  with probability 1 if and only if .
2.  as  in probability if and only if  as .

Proof
1. If  is a sequence of points in  and , then relative to metric ,  as  if and only if 

for all but finitely many .
2. If  then . If  then .

Of course, it's important to realize that a discrete space can be the Borel space for metrics other than the discrete metric.

This page titled 2.6: Convergence is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.

P( = 1) = ∞∑∞
n=1 Xn

0 < ϵ < 1 P (| −0| > ϵ) = P( = 1) = → 0Xn Xn
1
n

n → ∞

(S,S ) S S S S

S σ d S d(x, x) = 0 x ∈ S d(x, y) = 1

x, y ∈ S

(S,S ) ( , , …)X1 X2 S

X S (Ω,F ,P) d

→ XXn n → ∞ P( = X for all but finitely many n ∈ ) = 1Xn N+

→ XXn n → ∞ P( ≠ X) → 0Xn n → ∞

( , , …)x1 x2 S x ∈ S d → xxn n → ∞ = xxn
n ∈ N+

ϵ ≥ 1 P[d( ,X) > ϵ] = 0Xn ϵ ∈ (0, 1) P[d( ,X) > ϵ] = P( ≠ X)Xn Xn
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