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16.23: Continuous-Time Branching Chains
      

Basic Theory

Introduction

Generically, suppose that we have a system of particles that can generate or split into other particles of the same type. Here are some
typical examples:

The particles are biological organisms that reproduce.
The particles are neutrons in a chain reaction.
The particles are electrons in an electron multiplier.

We assume that the lifetime of each particle is exponentially distributed with parameter , and at the end of its life, is replaced
by a random number of new particles that we will refer to as children of the original particle. The number of children  of a particle has
probability density function  on . The particles act independently, so in addition to being identically distributed, the lifetimes and the
number of children are independent from particle to particle. Finally, we assume that , so that a particle cannot simply die and be
replaced by a single new particle. Let  and  denote the mean and variance of the number of offspring of a single particle. So

We assume that  is finite and so  makes sense. In our study of discrete-time Markov chains, we studied branching chains in terms of
generational time. Here we want to study the model in real time.

Let  denote the number of particles at time . Then  is a continuous-time Markov chain on ,
known as a branching chain. The exponential parameter function  and jump transition matrix  are given by

1.  for 
2.  for  and .

Proof

That  is a continuous-time Markov chain follows from the assumptions and the basic structure of continuous-time Markov chains.
In turns out that the assumption that  implies that  is regular, so that  as , where  is the time of the th
jump for .

1. Starting with  particles, the time of the first state change is the minimum of  independent variables, each exponentially
distributed with parameter . As we know, this minimum is also exponentially distributed with parameter .

2. Starting in state , the next state will be  for , if the particle dies and leaves  children in her place. This
happens with probability .

Of course 0 is an absorbing state, since this state means extinction with no particles. (Note that  and so by default, .)
So with a branching chain, there are essentially two types of behavior: population extinction or population explosion.

For the branching chain  one of the following events occurs with probability 1:

1. Extinction:  for some  and hence  for all .
2. Explosion:  as .

Proof

If  then all states lead to the absorbing state 0 and hence the set of positive staties  is transient. With probability 1, the
jump chain  visits a transient state only finitely many times, so with probability 1 either  for some  or  as 

. If  then  is strictly increasing in , since  by assumption. Hence with probability 1,  as 

.

Without the assumption that , explosion can actually occur in finite time. On the other hand, the assumption that  is for
convenience. Without this assumption,  would still be a continuous-time Markov chain, but as discussed in the Introduction, the
exponential parameter function would be  for  and the jump transition matrix would be
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Because all particles act identically and independently, the branching chain starting with  particles is essentially  independent
copies of the branching chain starting with 1 particle. In many ways, this is the fundamental insight into branching chains, and in
particular, means that we can often condition on .

Generator and Transition Matrices

As usual, we will let  denote the semigroup of transition matrices of , so that 
for . Similarly,  denotes the infinitesimal generator matrix of .

The infinitesimal generator  is given by

Proof

This follows immediately from the exponential parameter function and the jump transition matrix above.

The Kolmogorov backward equation is

Proof

The backward equation is , so the result follows from the previous theorem.

Unlike some of our other continuous-time models, the jump chain  governed by  is not the discrete-time version of the model. That is, 
 is not a discrete-time branching chain, since in discrete time, the index  represents the th generation, whereas here it represent the 

th time that a particle reproduces. However, there are lots of discrete-time branching chain embedded in the continuous-time chain.

Fix  and define . Then  is a discrete-time branching chain with offspring probability density
function  given by  for .

Proof

In general, we know that sampling a (homogeneous) continuous-time Markov chain at multiples of a fixed , results in a
(homogeneous) discrete-time Markov chain. For  to be a branching chain, we just need to note that

where  is the convolution power of  of order . This is a consequence of the fundamental fact that  given  has the
same distribution as the sum of  independent copies of  given . Recall that the PDF of a sum of independent variables is
the convolution of the individual PDFs.

Probability Generating Functions

As in the discrete case, probability generating functions are an important analytic tool for continuous-time branching chains.

For  let  denote the probability generating function of  given 

Let  denote the probability generating function of 

The generating functions are defined (the series are absolutely convergent) at least for .
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The collection of generating functions  gives the same information as the collection of probability density
functions . With the fundamental insight that the branching process starting with one particle determines the
branching process in general,  actually determines the transition semigroup .

For  and , the probability generating function of  given  is :

Proof

Again, given , the number of particles  at time  has the same distribution as the sum of  independent copies of  given 
. Recall that the PGF of a sum of independent variables is the product of the PGFs of the variables.

Note that  is the generating function of the offspring distribution for the embedded discrete-time branching chain 
for . On the other hand,  is the generating function of the offspring distribution for the continuous-time chain. So our main
goal in this discussion is to see how  is built from . Because  is a semigroup under matrix multiplication, and because the particles
act identically and independently,  is a semigroup under composition.

 for .

Proof

Using the semigroup property (the Chapman-Kolmogorov equations) and the previous result we have

Note also that  for all . This also follows from the semigroup property: . The
fundamental relationship between the collection of generating functions  and the generating function  is given in the following
theorem:

The mapping  satisfies the differential equation

Proof

Using the Kolmogorov backward equation we have

Using the generator above,

Substituting and using the result above gives

This differential equation, along with the initial condition  for all  determines the collection of generating functions . In
fact, an implicit solution for  is given by the integral equation
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Another relationship is given in the following theorem. Here,  refers to the derivative of the generating function  with respect to its
argument, of course (so , not ).

For ,

Proof

From the semigroup property, we have  for . Differentiating with respect to  and using the chain
rule along with the previous theorem gives

Evaluating at  and using the condition  we have

Using the previous theorem once again gives

Solving for  gives the result.

Moments

In this discussion, we wil study the mean and variance of the number of particles at time . Let

so that  and  are the mean and variance, starting with a single particle. As always with a branching process, it suffices to consider a
single particle:

For  and ,

1. 
2. 

Proof

Once again, the distribution of  given  is the same as the distribution of the sum of  independent copies of  given 
. Recall that the mean of a sum of variables is the sum of the individual means, and the variance of the sum of independent

variables is the sum of the individual variances.

Recall also that  and  are the the mean and variance of the number of offspring of a particle. Here is the connection between the
means:

 for .

1. If  then  as . This is extinction in the mean.
2. If  then  as . This is explosion in the mean.
3. If  then  for all . This is stability in the mean.

Proof

From the proof of the previous theorem,

Differentiating with respect to , interchanging the order of integration on the left, and using the product rule on the right gives
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Now let  and recall that . We get

From the basic theory of probability generating functions,  and similarly, . Hence we have

Of course we have the initial condition .

This result is intuitively very appealing. As a function of time, the expected number of particles either grows or decays exponentially,
depending on whether the expected number of offspring of a particle is greater or less than one. The connection between the variances is
more complicated. We assume that .

If  then

If  then .

1. If  then  as 
2. If  then  as 

Proof

Probability generating functions are naturally connected to factorial moments, so it's best to work with these. Thus, let 
 for  and let . These are the factorial moments of order 2. In the proof of

the last theorem we showed that

Differentiating with respect to  again gives

Now substitute . Recall that , , , , and . We get the
differential equation
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Suppose that . Then using standard methods for a linear, first order differential equations with constant coefficients and an
exponential forcing function, the solution is

But , and similarly  with . Substitution and some algebra then gives the result.

Suppose now that . Then also  for all  and so  and . The differential equation above reduces
simply to

with initial condition  so trivially . Finally, in the context of part (b), note that if  we must have  since
we have assumed that .

(r) = α (r)[Ψ(r) −r] +α (r)[ (r) −1]
d

dt
Φ′
t Φ′′

t Φ′
t Ψ′ (16.23.18)

r = 1 Φ(1) = 1

(1) = α (1)[ (1) −1]
d

dt
Φ′
t Φ′

t Ψ′ (16.23.19)

= (1)mt Φ′
t μ = (1)Ψ′

= α(μ−1)
d

dt
mt mt (16.23.20)

= 1m0

< ∞σ2

μ ≠ 1

= [ +(μ−1)] [ − ] , t ∈ [0, ∞)vt
σ2

μ−1
e2α(μ−1)t eα(μ−1)t (16.23.21)

μ = 1 = α tvt σ2

μ < 1 → 0vt t → ∞

μ ≥ 1 → ∞vt t → ∞

=E[ ( −1) ∣ = 1]wt Xt Xt X0 t ∈ [0, ∞) δ =E[N(N −1)]

(r) = α (r)[Ψ(r) −r] +α (r)[ (r) −1]
d

dt
Φ′
t Φ′′

t Φ′
t Ψ′ (16.23.22)

r

(r) = α (r)[Ψ(r) −r] +2α (r)[ (r) −1] +α (r) (r)
d

dt
Φ′′
t Φ′′′

t Φ′′
t Ψ′ Φ′

t Ψ′′ (16.23.23)

r = 1 (1) =Φ′′
t wt (1) = =Φ′

t mt eα(μ−1)t (1) = δΨ′′ (1) = μΨ′ Ψ(1) = 1

= 2α(μ−1) +αδ
d

dt
wt wt eα(μ−1)t (16.23.24)

= 0w0

μ ≠ 1

= [ − ]wt

δ

μ−1
e2α(μ−1) eα(μ−1)t (16.23.25)

δ = + −μσ2 μ2 = + −wt vt m2
t mt =mt eα(μ−1)t

μ = 1 = 1mt t ∈ [0, ∞) δ = σ2 =vt wt

= α
d

dt
vt σ2 (16.23.26)

= 0v0 = α tvt σ2 μ = 1 > 0σ2

f(1) = 0

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10396?pdf


16.23.6 https://stats.libretexts.org/@go/page/10396

If  so that  as  and we have extinction in the mean, then  as  also. If  so that  as 
 and we have explosion in the mean, then  as  also. We would expect these results. On the other hand, if  so

that  for all  and we have stability in the mean, then  grows linearly in . This gives some insight into what to expect
next when we consider the probability of extinction.

The Probability of Extinction

As shown above, there are two types of behavior for a branching process, either population extinction or population explosion. In this
discussion, we study the extinction probability, starting as usual with a single particle:

Need we say it? The extinction probability starting with an arbitrary number of particles is easy.

For ,

Proof

Given , extinction has occurred by time  if and only if extinction has occurred by time  for each of the  independent
branching chains formed from the descendents of the  initial particles.

We can easily relate extinction for the continuous-time branching chain  to extinction for any of the embedded discrete-time branching
chains.

If extinction occurs for  then extinction occurs for  for every . Conversely if extinction occurs for  for some 
 then extinction occurs for  for every  and extinction occurs for . Hence  is the minimum solution in 

of the equation  for every .

Proof

The statements about the extinction event follow immediately from the fact that  is absorbing, so that if  for some 
then  for every . The result for the extinction probability  follows from the theory of discrete-time branching
chains.

So whether or not extinction is certain depends on the critical parameter .

The extinction probability  and the mean of the offspring distribution  are related as follows:

1. If  then , so extinction is certain.
2. If  then , so there is a positive probability of extinction and a positive probability of explosion.

Proof

These results follow from the corresponding results for discrete-time branching chains. Fix  and recall that  is the mean
of the offspring distribution for the discrete-time chain . From the result above,

1. If  then .
2. If  then .

It would be nice to have an equation for  in terms of the offspring probability generating function . This is also easy

The probability of extinction  is the minimum solution in  of the equation .

Proof

From the result above,  for every . Substituting  in the differential equation above, we have 
and hence . As in the theory of discrete branching chains, the equation  has only the solution 1 in (0, 1] if 

 or there are two solutions  and  if . In both cases,  is the smaller solution.

Special Models

We now turn our attention to a number of special branching chains that are important in applications or lead to interesting insights. We
will use the notation established above, so that  is the parameter of the exponential lifetime of a particle,  is the transition matrix of the
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jump chain,  is the infinitesimal generator matrix, and  is the transition matrix at time . Similarly, , 
, and  are the mean, variance, and generating function of the number of particles at time , starting

with a single particle. As always, be sure to try these exercises yourself before looking at the proofs and solutions.

The Pure Death Branching Chain

First we consider the branching chain in which each particle simply dies without offspring. Sadly for these particles, extinction is
inevitable, but this case is still a good place to start because the analysis is simple and lead to explicit formulas. Thus, suppose that 

 is a branching process with lifetime parameter  and offspring probability density function  with 
.

The transition matrix of the jump chain and the generator matrix are given by

1.  and  for 
2.  for  and  for 

The time-varying functions are more interesting.

Let . Then

1. 
2. 
3.  for 
4. Given  the distribution of  is binomial with trial parameter  and success parameter .

Direct Proof

All of these results follow from the general methods above, with  and  for . But it's helpful to give direct
proofs. Given , let  be the time until the first transition, which is simply the lifetime of the particle. So  has the exponential
distribution with parameter . For ,  is an indicator random variable (taking just values 0 and 1) with

Part (a), (b), and (c) are standard results for an indicator variable. For part (d), given , each of the  particles, independently,
is still alive at time  with probability . Hence the number of particles still alive has the binomial distribution with parameters 
and .

In particular, note that  as . that is, the probability of extinction by time  increases to 1 exponentially
fast. Since we have an explicit formula for the transition matrices, we can find an explicit formula for the potential matrices as well. The
result uses the beta function .

For  the potential matrix  is given by

For , the potential matrix  is given by

1.  for 
2.  for  and .

Proof

Suppose that  and that  with . By definition

Substitute  so that  or equivalently . After some algebra, the result is
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(x, y) = ( ) (1 −u duUβ

1

α

x

y
∫

1

0

uy+β/α−1 )x−y (16.23.33)
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By definition, the last integral is .

1. For ,

2. For  with , the derivation above and properties of the beta function give

We could argue the results for the potential  directly. Recall that  is the expected time spent in state  starting in state . Since 0
is absorbing and all states lead to 0,  for . If  and , then  leads to  with probability 1. Once in state 

 the time spent in  has an exponential distribution with parameter , and so the mean is . Of course, when the chain
leaves , it never returns.

Recall that  is a transition probability matrix for , and in fact  is the probability density function of  given 
where  is independent of  has the exponential distribution with parameter . For the next result, recall the ascending power notation

For  and , the function  is the beta-binomial probability density function with parameters , , and 1.

Proof

From the previous result and properties of the beta function.

But from properties of the beta function,

Substituting gives the result

The Yule Process

Next we consider the pure birth branching chain in which each particle, at the end of its life, is replaced by 2 new particles. Equivalently,
we can think of particles that never die, but each particle gives birth to a new particle at a constant rate. This chain could serve as the
model for an unconstrained nuclear reaction, and is known as the Yule process, named for George Yule. So specifically, let 

 be the branching chain with exponential parameter  and offspring probability density function given
by . Explosion is inevitable, starting with at least one particle, but other properties of the Yule process are interesting. in
particular, there are fascinating parallels with the pure death branching chain. Since 0 is an isolated, absorbing state, we will sometimes
restrict our attention to positive states.

The transition matrix of the jump chain and the generator matrix are given by

1.  and  for 
2.  for  and  for 

Since the Yule process is a pure birth process and the birth rate in state  is , the process is also called the linear birth chain. As
with the pure death process, we can give the distribution of  specifically.

Let . Then

1. 
2. 
3.  for 

B(y+β/α, x−y+1)

x ∈ N

U(x, 0) = (1 − dd = ∞∫
∞

0

e−αt)x (16.23.34)

x, y ∈ N+ x ≤ y

U(x, y) = ( )B(y, x−y+1) = ( ) =
1

α

x

y

1

α

x

y

(y−1)!(x−y)!

x!

1

αy
(16.23.35)

U U(x, y) y x

U(x, 0) = ∞ x ∈ N x, y ∈ N+ x ≤ y x y

y y λ(y) = αy 1/αy

y

βUβ β > 0 β (x, ⋅)Uβ XT = xX0

T X β

= a(a+1) ⋯ (a+k−1), a ∈ R, k ∈ Na[k] (16.23.36)

β > 0 x ∈ N+ β (x, ⋅)Uβ x β/α

β (x, y) =( ) , x ∈ N, y ∈ {0, 1, … x}Uβ

x

y

(β/α)[y]1[x−y]

(1 +β/α)[x]
(16.23.37)

β (x, y) = ( )B(y+β/α, x−y+1), x ∈ N, y ∈ {0, 1, … , x}Uβ

β

α

x

y
(16.23.38)

B(y+β/α, x−y+1) = B(β/α, 1) =
(β/α)[y]1[x−y]

(1 +β/α)[x]

α

β

(β/α)[y]1[x−y]

(1 +β/α)[x]
(16.23.39)

X = { : t ∈ [0, ∞)}Xt α ∈ (0, ∞)

f(2) = 1

Q(0, 0) = 1 Q(x, x+1) = 1 x ∈ N+

G(x, x) = −αx x ∈ N G(x, x+1) = αx x ∈ N+

x ∈ N αx

Xt

t ∈ [0, ∞)

=mt eαt

= −vt e2αt eαt

(r) =Φt
re−αt

1−r+re−αt |r| < 1
1−e−αt
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4. Given ,  has the negative binomial distribution on  with stopping parameter  and success parameter .

Proof from the general results

Parts (a) and (b) follow from the general moment results above, with  and . For part (c), note that  for ,
so the integral equation for  is

From partial fractions, , so the result follows by standard integration and algebra. We recognize  as the
probability generating function of the geometric distribution on  with success parameter , so for part (d) we use our standard
argument. Given ,  has the same distribution as the sum of  independent copies of  given , and so this is
the distribution of the sum of  independent variables each with the geometric distribution on  with parameter . But this is the
negative binomial distribution on  with parameters  and .

Direct proof

As usual, let  and let  denote the time of the th transition (birth) for . Given , the population is  at time 
. So the random interval  (the time until the next birth) has the exponential distribution with parameter  and these

intervals are independent as  varies. From a result in the section on the exponential distribution, it follows that 
 has distribution function given by

Curiously, this is also the distribution function of the maximum of  independent variables, each with the exponential distribution
with rate . Hence

and therefore

So given ,  has the geometric distribution with parameter . The other results then follow easily.

Recall that the negative binomial distribution with parameters  and  governs the trial number of the th success in a
sequence of Bernoulli trials with success parameter . So the occurrence of this distribution in the Yule process suggests such an
interpretation. However this interpretation is not nearly as obvious as with the binomial distribution in the pure death branching chain.
Next we give the potential matrices.

For  the potential matrix  is given by

If , the function  is the beta-negative binomial probability density function with parameters , , and 1:

Proof

The proof is very similar to the one above. Suppose that  and that  with . By definition

Substitute  so that  or equivalently . After some algebra, the result is

= xX0 Xt N+ x e−αt

(x, y) =( ) (1 − , x ∈ , y ∈ {x, x+1, …}Pt

y−1

x−1
e−xαt e−αt)y−x

N+ (16.23.40)

μ = 2 = 0σ2 Ψ(r) = r2 r ∈ R

Φt

= αt∫
(r)Φt

r

1

−uu2
(16.23.41)

= −1

−uu2

1

u−1

1
u

Φt

N+ e−αt

= x ∈X0 N+ Xt x Xt = 1X0

x N+ e−αt

N+ x e−αt

= 0τ0 τn n n ∈ N+ = 1X0 n

τn−1 −τn τn−1 αn

n

= ( − )τn ∑n
k=1 τk τk−1

P( ≤ t ∣ = 1) = (1 − , t ∈ [0, ∞)τn X0 e−αt)n (16.23.42)

n

α

P( ≥ n ∣ = 1) = P( ≤ t ∣ = 1) = (1 − , n ∈Xt X0 τn−1 X0 e−αt)n−1
N+ (16.23.43)

P( = n ∣ = 1) = P( ≥ n ∣ = 1) −P( ≥ n+1 ∣ = 1) = (1 − , n ∈Xt X0 Xt X0 Xt X0 e−αt)n−1e−αt
N+ (16.23.44)

= 1X0 Xt e−αt

k ∈ N+ p ∈ (0, 1) k

p

β ∈ [0, ∞) Uβ

(x, y) = ( )B(x+β/α, y−x+1), x ∈ , y ∈ {x, x+1, …}Uβ

1

α

y−1

x−1
N+ (16.23.45)

β > 0 β (x, ⋅)Uβ x β/α

β (x, y) =( ) , x ∈ N, y ∈ {x, x+1, …}Uβ

y−1

x−1

(β/α)[x]1[y−x]

(1 +β/α)[y]
(16.23.46)

β ≥ 0 x, y ∈ N+ y ≥ x

(x, y) = (x, y)dt = ( ) (1 − dtUβ ∫
∞

0

e−βtPt ∫
∞

0

e−βt y−1

x−1
e−αtx e−αt)y−x (16.23.47)

u = e−αt du = −α dte−αt dt = −du/αu

(x, y) = ( ) (1 −u duUβ

1

α

y−1

x−1
∫

1

0

ux+β/α−1 )y−x (16.23.48)
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By definition, the last integral is .

If we think of the Yule process in terms of particles that never die, but each particle gives birth to a new particle at rate , then we can
study the age of the particles at a given time. As usual, we can start with a single, new particle at time 0. So to set up the notation, let 

 be the Yule branching chain with birth rate , and assume that . Let  and for ,
let  denote the time of the th transition (birth).

For , let  denote the total age of the particles at time . Then

The random process  is the age process.

Proof

Note that there have been  births in the interval . For , the age at time  of the particle born at time 
 is .

Here is another expression for the age process.

Again, let  be the age process for the Yule chain starting with a single particle. Then

Proof

Suppose that  where , so that . Note that  for  and , while 
 for . Hence

From the previous result,

With the last representation, we can easily find the expected total age at time .

Again, let  be the age process for the Yule chain starting with a single particle. Then

Proof

We can interchange the expected value and the integral by Fubini's theorem. So using the moment result above,

The General Birth-Death Branching Chain

Next we consider the continuous-time branching chain in which each particle, at the end of its life, leaves either no children or two
children. At each transition, the number of particles either increases by 1 or decreases by 1, and so such a branching chain is also a
continuous-time birth-death chain. Specifically, let  be a continuous-time branching chain with lifetime parameter 

 and offspring probability density function  given by , , where . When  we have the
pure death chain, and when  we have the Yule process. We have already studied these, so the interesting case is when  so
that both extinction and explosion are possible.

The transition matrix of the jump chain and the generator matrix are given by

B(x+β/α, y−x+1)

α

X = { : t ∈ [0, ∞)}Xt α ∈ (0, ∞) = 1X0 = 0τ0 n ∈ N+

τn n

t ∈ [0, ∞) At t

= (t− ), t ∈ [0, ∞)At ∑
n=0

−1Xt

τn (16.23.49)

A = { : t ∈ [0, ∞)}At

−1Xt [0, t] n ∈ {0, 1, … , −1}Xt t

τn t−τn

A = { : t ∈ [0, ∞)}At

= ds, t ∈ [0, ∞)At ∫
t

0

Xs (16.23.50)

= k+1Xt k ∈ N ≤ t <τk τk+1 = nXs ≤ s <τn−1 τn n ∈ {1, 2, … , k}

= k+1Xs ≤ s ≤ tτk

ds = n( − ) +(k+1)(t− ) = (k+1)t−∫
t

0

Xs ∑
n=1

k

τn τn−1 τk ∑
n=0

k

τn (16.23.51)

= (t− ) = (k+1)t−At ∑
n=0

k

τn ∑
n=0

k

τn (16.23.52)

t

A = { : t ∈ [0, ∞)}At

E( ) = , t ∈ [0, ∞)At

−1eαt

α
(16.23.53)

E( ) =E( ds) = E( )ds = ds =At ∫
t

0

Xs ∫
t

0

Xs ∫
t

0

eαs
−1eαt

α
(16.23.54)

X = { : t ∈ [0, ∞)}Xt

α ∈ (0, ∞) f f(0) = 1 −p f(2) = p p ∈ [0, 1] p = 0

p = 1 p ∈ (0, 1)
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1. , and ,  for 
2.  for , and ,  for 

As mentioned earlier,  is also a continuous-time birth-death chain on , with 0 absorbing. In state , the birth rate is  and the
death rate is . The moment functions are given next.

For ,

1. 
2. If ,

If , .

Proof

These results follow from the general formulas above for  and , since  and .

The next result gives the generating function of the offspring distribution and the extinction probability.

For the birth-death branching chain,

1.  for .
2.  if  and  if .

Proof

Figure : Graphs of  and  when 

Figure : Graphs of  and  when 

For , the generating function  is given by

Solution

The integral equation for  is

Q(0, 0) = 1 Q(x, x−1) = 1 −p Q(x, x+1) = p x ∈ N+

G(x, x) = −αx x ∈ N G(x, x−1) = α(1 −p)x G(x, x+1) = αpx x ∈ N+

X N x ∈ N+ αpx

α(1 −p)x

t ∈ [0, ∞)

=mt eα(2p−1)t

p ≠ 1
2

= [ +(2p−1)] [ − ]vt
4p(1 −p)

2p−1
e2α(2p−1)t eα(2p−1)t (16.23.55)

p = 1
2

= 4αp(1 −p)tvt

mt vt μ = 2p = 4p(1 −p)σ2

Ψ(r) = p +(1 −p)r2 r ∈ R

q = 1 0 < p ≤ 1
2

q =
1−p

p < p < 11
2

16.23.1 r ↦ Ψ(r) r ↦ r p = 1
3

16.23.2 r ↦ Ψ(r) r ↦ r p = 2
3

t ∈ [0, ∞) Φt

(r)Φt

(r)Φt

= , if p ≠ 1/2
pr−(1 −p) +(1 −p)(1 −r)eα(2p−1)t

pr−(1 −p) +p(1 −r)eα(2p−1)t

= , if p =
2r+(1 −r)αt

2 +(1 −r)αt

1

2

Φt

= αt∫
(r)Φt

r

du

p +(1 −p) −uu2
(16.23.56)
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The denominator in the integral factors into . If , use partial fractions, standard integration, and some
algebra. If  the factoring is  and partial fractions is not necessary. Again, use standard integration and algebra.
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