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6.7: Sample Correlation and Regression
              

Descriptive Theory

Recall the basic model of statistics: we have a population of objects of interest, and we have various measurements (variables) that we make on these objects. We select objects
from the population and record the variables for the objects in the sample; these become our data. Our first discussion is from a purely descriptive point of view. That is, we do
not assume that the data are generated by an underlying probability distribution. But as always, remember that the data themselves define a probability distribution, namely the
empirical distribution that assigns equal probability to each data point.

Suppose that  and  are real-valued variables for a population, and that  is an observed sample of size  from . We will let 
 denote the sample from  and  the sample from . In this section, we are interested in statistics that are measures of association

between the  and , and in finding the line (or other curve) that best fits the data.

Recall that the sample means are

and the sample variances are

Scatterplots

Often, the first step in exploratory data analysis is to draw a graph of the points; this is called a scatterplot an can give a visual sense of the statistical realtionship between the
variables.

Figure : A scatterplot

In particular, we are interested in whether the cloud of points seems to show a linear trend or whether some nonlinear curve might fit the cloud of points. We are interested in
the extent to which one variable  can be used to predict the other variable .

Defintions

Our next goal is to define statistics that measure the association between the  and  data.

The sample covariance is defined to be

Assuming that the data vectors are not constant, so that the standard deviations are positive, the sample correlation is defined to be

Note that the sample covariance is an average of the product of the deviations of the  and  data from their means. Thus, the physical unit of the sample covariance is the
product of the units of  and . Correlation is a standardized version of covariance. In particular, correlation is dimensionless (has no physical units), since the covariance in the
numerator and the product of the standard devations in the denominator have the same units (the product of the units of  and ). Note also that covariance and correlation have
the same sign: positive, negative, or zero. In the first case, the data  and  are said to be positively correlated; in the second case  and  are said to be negatively correlated;
and in the third case  and  are said to be uncorrelated

To see that the sample covariance is a measure of association, recall first that the point  is a measure of the center of the bivariate data. Indeed, if each point is the
location of a unit mass, then  is the center of mass as defined in physics. Horizontal and vertical lines through this center point divide the plane into four
quadrants. The product deviation  is positive in the first and third quadrants and negative in the second and fourth quadrants. After we study linear
regression below, we will have a much deeper sense of what covariance measures.
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Figure : Scatterplot with means

You may be perplexed that we average the product deviations by dividing by  rather than . The best explanation is that in the probability model discussed below, the
sample covariance is an unbiased estimator of the distribution covariance. However, the mode of averaging can also be understood in terms of degrees of freedom, as was done
for sample variance. Initially, we have  degrees of freedom in the bivariate data. We lose two by computing the sample means  and . Of the remaining 
degrees of freedom, we lose  by computing the product deviations. Thus, we are left with  degrees of freedom total. As is typical in statistics, we average not by
dividing by the number of terms in the sum but rather by the number of degrees of freedom in those terms. However, from a purely descriptive point of view, it would also be
reasonable to divide by .

Recall that there is a natural probability distribution associated with the data, namely the empirical distribution that gives probability  to each data point . (Thus, if
these points are distinct this is the discrete uniform distribution on the data.) The sample means are simply the expected values of this bivariate distribution, and except for a
constant multiple (dividing by  rather than ), the sample variances are simply the variances of this bivarite distribution. Similarly, except for a constant multiple (again
dividing by  rather than ), the sample covariance is the covariance of the bivariate distribution and the sample correlation is the correlation of the bivariate distribution.
All of the following results in our discussion of descriptive statistics are actually special cases of more general results for probability distributions.

Properties of Covariance

The next few exercises establish some essential properties of sample covariance. As usual, bold symbols denote samples of a fixed size  from the corresponding population
variables (that is, vectors of length ), while symbols in regular type denote real numbers. Our first result is a formula for sample covariance that is sometimes better than the
definition for computational purposes. To state the result succinctly, let  denote the sample from the product variable .

The sample covariance can be computed as follows:

Proof

Note that

The following theorem gives another formula for the sample covariance, one that does not require the computation of intermediate statistics.

The sample covariance can be computed as follows:

Proof

Note that

We compute the sums term by term. The first is

The second two sums are 0. The last sum is
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Dividing the entire sum by  results in .

As the name suggests, sample covariance generalizes sample variance.

.

In light of the previous theorem, we can now see that the first computational formula and the second computational formula above generalize the computational formulas for
sample variance. Clearly, sample covariance is symmetric.

.

Sample covariance is linear in the first argument with the second argument fixed.

If , , and  are data vectors from population variables , , and , respectively, and if  is a constant, then

1. 
2. 

Proof
1. Recall that . Hence

2. Recall that . Hence

By symmetry, sample covariance is also linear in the second argument with the first argument fixed, and hence is bilinear. The general version of the bilinear property is given
in the following theorem:

Suppose that  is a data vector from a population variable  for  and that  is a data vector from a population variable  for . Suppose
also that  and  are constants. Then

A special case of the bilinear property provides a nice way to compute the sample variance of a sum.

.

Proof

From the preceding results,

The generalization of this result to sums of three or more vectors is completely straightforward: namely, the sample variance of a sum is the sum of all of the pairwise sample
covariances. Note that the sample variance of a sum can be greater than, less than, or equal to the sum of the sample variances, depending on the sign and magnitude of the pure
covariance term. In particular, if the vectors are pairwise uncorrelated, then the variance of the sum is the sum of the variances.

If  is a constant data set then .

Proof

This follows directly from the definition. If  for each , then  and hence  for each .

Combining the result in the last exercise with the bilinear property, we see that covariance is unchanged if constants are added to the data sets. That is, if  and  are constant
vectors then .

Properties of Correlation

A few simple properties of correlation are given next. Most of these follow easily from the corresponding properties of covariance. First, recall that the standard scores of 
and  are, respectively,

n [m(x) − ][m(y) − ] = n [ −m(x)][ −m(y)]∑
j=1

n

xj yj ∑
i=1

n

xi yi (6.7.14)

2n(n−1) cov(x,y)

s(x,x) = (x)s2

s(x,y) = s(y,x)

x y z x y z c

s(x+y, z) = s(x, z) +s(y, z)
s(cx,y) = cs(x,y)

m(x+y) = m(x) +m(y)

s(x+y, z) = [ + −m(x+y)][ −m(z)]
1

n−1
∑
i=1

n

xi yi zi

= ([ −m(x)] +[ −m(y)]) [ −m(z)]
1

n−1
∑
i=1

n

xi yi zi

= [ −m(x)][ −m(z)] + [ −m(y)][ −m(z)]
1

n−1
∑
i=1

n

xi zi
1

n−1
∑
i=1

n

yi zi

= s(x, z) +s(y, z)

(6.7.15)

(6.7.16)

(6.7.17)

(6.7.18)

m(cx) = cm(x)

s(cx,y) = [c −m(cx)][ −m(y)]
1

n−1
∑
i=1

n

xi yi

= [c −cm(x)][ −m(y)] = cs(x,y)
1

n−1
∑
i=1

n

xi yi

(6.7.19)

(6.7.20)

xi xi i ∈ {1, 2, … , k} yj yj j∈ {1, 2, … , l}
, , … ,a1 a2 ak , , … ,b1 b2 bl

s( , ) = s( , )∑
i=1

k

ai xi ∑
j=1

l

bj yj ∑
i=1

k

∑
j=1

l

ai bj xi yj (6.7.21)

(x+y) = (x) +2s(x,y) + (y)s2 s2 s2

(x+y)s2 = s(x+y,x+y) = s(x,x) +s(x,y) +s(y,x) +s(y,y)

= (x) +2s(x,y) + (y)s2 s2

(6.7.22)

(6.7.23)

c s(x, c) = 0

= cci i m(c) = c −m(c) = 0ci i

c d

s(x+c,y+d) = s(x,y)

xi
yi

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10184?pdf


6.7.4 https://stats.libretexts.org/@go/page/10184

The standard scores from a data set are dimensionless quantities that have mean 0 and variance 1.

The correlation between  and  is the covariance of their standard scores  and . That is, .

Proof

In vector notation, note that

Hence the result follows immediatedly from properties of covariance:

Correlation is symmetric.

.

Unlike covariance, correlation is unaffected by multiplying one of the data sets by a positive constant (recall that this can always be thought of as a change of scale in the
underlying variable). On the other hand, muliplying a data set by a negative constant changes the sign of the correlation.

If  is a constant then

1.  if 
2.  if 

Proof

By definition and from the scaling property of covariance,

and of course,  if  and  if .

Like covariance, correlation is unaffected by adding constants to the data sets. Adding a constant to a data set often corresponds to a change of location.

If  and  are constant vectors then .

Proof

This result follows directly from the corresponding properties of covariance and standard deviation:

The last couple of properties reinforce the fact that correlation is a standardized measure of association that is not affected by changing the units of measurement. In the first
Challenger data set, for example, the variables of interest are temperature at time of launch (in degrees Fahrenheit) and O-ring erosion (in millimeters). The correlation between
these variables is of critical importance. If we were to measure temperature in degrees Celsius and O-ring erosion in inches, the correlation between the two variables would be
unchanged.

The most important properties of correlation arise from studying the line that best fits the data, our next topic.

Linear Regression

We are interested in finding the line  that best fits the sample points . This is a basic and important problem in many areas of
mathematics, not just statistics. We think of  as the predictor variable and  as the response variable. Thus, the term best means that we want to find the line (that is, find the
coefficients  and ) that minimizes the average of the squared errors between the actual  values in our data and the predicted  values:

Note that the minimizing value of  would be the same if the function were simply the sum of the squared errors, of if we averaged by dividing by  rather than , or
if we used the square root of any of these functions. Of course that actual minimum value of the function would be different if we changed the function, but again, not the point 

 where the minimum occurs. Our particular choice of  as the error function is best for statistical purposes. Finding  that minimize  is a standard problem in
calculus.

The graph of  is a paraboloid opening upward. The function  is minimized when

Proof

We can tell from the algebraic form of  that the graph is a paraboloid opening upward. To find the unique point that minimizes , note that
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Solving , gives . Substituting this into  and solving for  gives

Dividing the numerator and denominator in the last expression by  and using the computational formula above, we see that .

Of course, the optimal values of  and  are statistics, that is, functions of the data. Thus the sample regression line is

Figure : Scatterplot with regression line

Note that the regression line passes through the point , the center of the sample of points.

Figure : The regression line passes through the center

The minimum mean square error is

Proof

This follows from substituting   into  and simplifying.

Sample correlation and covariance satisfy the following properties.

1. 
2. 
3.  if and only if the sample points lie on a line with negative slope.
4.  if and only if the sample points lie on a line with positive slope.

Proof

Note that  and hence from the previous theorem, we must have . This is equivalent to part (a), which in turn, from the definition of sample
correlation, is equivalent to part (b). For parts (c) and (d), note that  if and only if  for each , and moreover,  has the same sign as 

.

Thus, we now see in a deeper way that the sample covariance and correlation measure the degree of linearity of the sample points. Recall from our discussion of measures of
center and spread that the constant  that minimizes

is the sample mean , and the minimum value of the mean square error is the sample variance . Thus, the difference between this value of the mean square error and
the one above, namely  is the reduction in the variability of the  data when the linear term in  is added to the predictor. The fractional reduction is ,
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and hence this statistics is called the (sample) coefficient of determination. Note that if the data vectors  and  are uncorrelated, then  has no value as a predictor of ; the
regression line in this case is the horizontal line  and the mean square error is .

The choice of predictor and response variables is important.

The sample regression line with predictor variable  and response variable  is not the same as the sample regression line with predictor variable  and response variable 
, except in the extreme case  where the sample points all lie on a line.

Residuals

The difference between the actual  value of a data point and the value predicted by the regression line is called the residual of that data point. Thus, the residual corresponding
to  is  where  is the regression line at :

Note that the predicted value  and the residual  are statistics, that is, functions of the data , but we are suppressing this in the notation for simplicity.

The residuals sum to 0: .

Proof

This follows from the definition, and is a restatement of the fact that the regression line passes through the center of the data set .

Various plots of the residuals can help one understand the relationship between the  and  data. Some of the more common are given in the following definition:

Residual plots

1. A plot of  for , that is, a plot of indices versus residuals.
2. A plot of  for , that is, a plot of  values versus residuals.
3. A plot of  for , that is, a plot of residuals versus actual  values.
4. A plot of  for , that is a plot of residuals versus predicted  values.
5. A histogram of the residuals .

Sums of Squares

For our next discussion, we will re-interpret the minimum mean square error formulat above. Here are the new definitions:

Sums of squares

1.  is the total sum of squares.
2.  is the regression sum of squares
3.  is the error sum of squares.

Note that  is simply  times the variance  and is the total of the sums of the squares of the deviations of the  values from the mean of the  values. Similarly, 
 is simply  times the minimum mean square error given above. Of course,  has  degrees of freedom, while  has  degrees of freedom

and  a single degree of freedom. The total sum of squares is the sum of the regression sum of squares and the error sum of squares:

The sums of squares are related as follows:

1. 
2. 

Proof

By definition of  and , we see that . But from the regression equation,

Summing over  gives

Hence . Finally, multiplying the result above by  gives .

Note that , so once again,  is the coefficient of determination—the proportion of the variability in the  data explained by the  data. We
can average  by dividing by its degrees of freedom and then take the square root to obtain a standard error:

The standard error of estimate is

This really is a standard error in the same sense as a standard deviation. It's an average of the errors of sorts, but in the root mean square sense.

Finally, it's important to note that linear regression is a much more powerful idea than might first appear, and in fact the term linear can be a bit misleading. By applying
various transformations to  or  or both, we can fit a variety of two-parameter curves to the given data . Some of the most common
transformations are explored in the exercises below.
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s(x,y)

s(x)2
xi (6.7.38)
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Probability Theory

We continue our discussion of sample covariance, correlation, and regression but now from the more interesting point of view that the variables are random. Specifically,
suppose that we have a basic random experiment, and that  and  are real-valued random variables for the experiment. Equivalently,  is a random vector taking values
in . Let  and  denote the distribution means,  and  the distribution variances, and let  denote the distribution
covariance, so that the distribution correlation is

We will also need some higher order moments. Let , , and . Naturally, we assume that all of these
moments are finite.

Now suppose that we run the basic experiment  times. This creates a compound experiment with a sequence of independent random vectors 
 each with the same distribution as . In statistical terms, this is a random sample of size  from the distribution of . The

statistics discussed in previous section are well defined but now they are all random variables. We use the notation established previously, except that we use our usual
convention of denoting random variables with capital letters. Of course, the deterministic properties and relations established above still hold. Note that 

 is a random sample of size  from the distribution of  and  is a random sample of size  from the distribution of . The main
purpose of this subsection is to study the relationship between various statistics from  and , and to study statistics that are natural estimators of the distribution covariance
and correlation.

The Sample Means

Recall that the sample means are

From the sections on the law of large numbers and the central limit theorem, we know a great deal about the distributions of  and  individually. But we need to
know more about the joint distribution.

The covariance and correlation between  and  are

1. 
2. 

Proof

Part (a) follows from the bilinearity of the covariance operator:

By independence, the terms in the last sum are 0 if . For  the terms are . There are  such terms so . For part (b),
recall that  and . Hence

Note that the correlation between the sample means is the same as the correlation of the underlying sampling distribution. In particular, the correlation does not depend on the
sample size .

The Sample Variances

Recall that special versions of the sample variances, in the unlikely event that the distribution means are known, are

Once again, we have studied these statistics individually, so our emphasis now is on the joint distribution.

The covariance and correlation between  and  are

1. 
2. 

Proof

For part (a), we use the bilinearity of the covariance operator to obtain

By independence, the terms in the last sum are 0 when . When  the terms are

There are  such terms, so . Part (b) follows from part (a) and the variances of  and  from the section on Sample
Variance.

Note that the correlation does not dependend on the sample size . Next, recall that the standard versions of the sample variances are

X Y (X,Y )

R
2 μ =E(X) ν =E(Y ) = var(X)σ2 = var(Y )τ 2 δ = cov(X,Y )

ρ = cor(X,Y ) = =
cov(X,Y )

sd(X) sd(Y )

δ

σ τ
(6.7.42)

=E [(X−μ ]σ4 )4 =E [(Y −ν ]τ4 )4 =E [(X−μ (Y −ν ]δ2 )2 )2

n

(( , ), ( , ), … , ( , ))X1 Y1 X2 Y2 Xn Yn (X,Y ) n (X,Y )

X = ( , , … , )X1 X2 Xn n X Y = ( , , … , )Y1 Y2 Yn n Y

X Y

M(X) = , M(Y ) =
1

n
∑
i=1

n

Xi

1

n
∑
i=1

n

Yi (6.7.43)

M(X) M(Y )

M(X) M(Y )

cov[M(X),M(Y )] = δ/n
cor[(M(X),M(Y )] = ρ

cov( , ) = cov( , )
1

n
∑
i=1

n

Xi

1

n
∑
j=1

n

Yj
1

n2
∑
i=1

n

∑
j=1

n

Xi Yj (6.7.44)

i ≠ j i = j cov(X,Y ) = δ n cov[M(X),M(Y )] = δ/n
var[M(X)] = /nσ2 var[M(Y )] = /nτ 2

cor[M(X),M(Y )] = = = ρ
δ/n

(σ/ )(τ/ )n−−√ n−−√

δ

στ
(6.7.45)

n

(X) = ( −μ , (Y ) = ( −νW 2 1

n
∑
i=1

n

Xi )2 W 2 1

n
∑
i=1

n

Yi )2 (6.7.46)

(X)W 2 (Y )W 2

cov[ (X), (Y )] = ( − )/nW 2 W 2 δ2 σ2τ 2

cor[ (X), (Y )] = ( − )/W 2 W 2 δ2 σ2τ 2 ( − )( − )σ4 σ4 τ4 τ 4− −−−−−−−−−−−−−−
√

cov[ (X), (Y )] = cov( ( −μ , ( −ν ) = cov[( −μ , ( −ν ]W 2 W 2 1

n
∑
i=1

n

Xi )2 1

n
∑
j=1

n

Yj )2 1

n2
∑
i=1

n

∑
j=1

n

Xi )2 Yj )2 (6.7.47)

i ≠ j i = j

cov[(X−μ (Y −ν ] =E[(X−μ (Y −ν ] −E[(X−μ ]E[(Y −ν ] = −)2 )2 )2 )2 )2 )2 δ2 σ2τ 2 (6.7.48)

n cov[ (X), (Y )] = ( − )/nW 2 W 2 δ2 σ2τ 2 (X)W 2 (Y )W 2

n
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The covariance and correlation of the sample variances are

1. 
2. 

Proof

Recall that

Hence using the bilinearity of the covariance operator we have

We compute the covariances in this sum by considering disjoint cases:

 if  or if , and there are  such terms.
 by independence if  are distinct, and there are  such terms.

 if  and , and there are  such terms.
 if , , and , and there are  such terms.

Substituting and simplifying gives the result in (a). For (b), we use the definition of correlation and the formulas for  and  from the section on the
sample variance.

Asymptotically, the correlation between the sample variances is the same as the correlation between the special sample variances given above:

Sample Covariance

Suppose first that the distribution means  and  are known. As noted earlier, this is almost always an unrealistic assumption, but is still a good place to start because the
analysis is very simple and the results we obtain will be useful below. A natural estimator of the distsribution covariance  in this case is the special sample
covariance

Note that the special sample covariance generalizes the special sample variance: .

 is the sample mean for a random sample of size  from the distribution of  and satisfies the following properties:

1. 
2. 
3.  as  with probability 1

Proof

These results follow directly from the section on the Law of Large Numbers. For part (b), note that

As an estimator of , part (a) means that  is unbiased and part (b) means that  is consistent.

Consider now the more realistic assumption that the distribution means  and  are unknown. A natural approach in this case is to average  over 
. But rather than dividing by  in our average, we should divide by whatever constant gives an unbiased estimator of . As shown in the next theorem, this

constant turns out to be , leading to the standard sample covariance:

.

Proof

Expanding as above we have,

But . Similarly, from the covariance of the sample means and the unbiased property, 
. So taking expected values in the displayed equation above gives

(X) = [ −M(X) , (Y ) = [ −M(Y )S2 1

n−1
∑
i=1

n

Xi ]2 S2 1

n−1
∑
i=1

n

Yi ]2 (6.7.49)

cov[ (X), (Y )] = ( − )/n+2 /[n(n−1)]S2 S2 δ2 σ2τ 2 δ2

cor[ (X), (Y )] = [(n−1)( − ) +2 ]/S2 S2 δ2 σ2τ 2 δ2 [(n−1) −(n−3) ][(n−1) −(n−3) ]σ4 σ4 τ4 τ 4
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

(X) = ( − , (Y ) = ( −S2 1

2n(n−1)
∑
i=1

n

∑
j=1

n

Xi Xj)
2 S2 1

2n(n−1)
∑
k=1

n

∑
l=1

n

Yk Yl)
2 (6.7.50)

cov[ (X), (Y )] = cov[( − , ( − ]S2 S2 1

4 (n−1n2 )2
∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

Xi Xj)
2 Yk Yl)

2 (6.7.51)

cov[( − , ( − ] = 0Xi Xj)
2 Yk Yl)

2 i = j k = l 2 −n3 n2

cov[( − , ( − ] = 0Xi Xj)
2 Yk Yl)

2 i, j, k, l n(n−1)(n−2)(n−3)
cov[( − , ( − ] = 2 −2 +4Xi Xj)

2 Yk Yl)
2 δ2 σ2τ 2 δ2 i ≠ j {k, l} = {i, j} 2n(n−1)

cov[( − , ( − ] = −Xi Xj)
2 Yk Yl)

2 δ2 σ2τ 2 i ≠ j k ≠ l #({i, j} ∩ {k, l}) = 1 4n(n−1)(n−2)

var[ (X)]S2 var[ (Y )]S2

cor [ (X), (Y )] →  as n → ∞S2 S2 −δ2 σ2τ 2

( − )( − )σ4 σ4 τ4 τ 4− −−−−−−−−−−−−−−
√

(6.7.52)

μ ν

δ = cov(X,Y )

W (X,Y ) = ( −μ)( −ν)
1

n
∑
i=1

n

Xi Yi (6.7.53)

W (X,X) = (X)W 2

W (X,Y ) n (X−μ)(Y −ν)

E[W (X,Y )] = δ

var[W (X,Y )] = ( − )1
n δ2 δ2

W (X,Y ) → δ n → ∞

var[(X−μ)(Y −ν)] =E[(X−μ (Y −ν ] − = −)2 )2 (E[(X−μ)(Y −ν)]) 2 δ2 δ2 (6.7.54)

δ W (X,Y ) W (X,Y )

μ ν [( −M(X)][ −M(Y )]Xi Yi
i ∈ {1, 2, … ,n} n δ

n−1

S(X,Y ) = [ −M(X)][ −M(Y )]
1

n−1
∑
i=1

n

Xi Yi (6.7.55)

E[S(X,Y )] = δ

[ −M(X)][ −M(Y )] = −nM(X)M(Y )∑
i=1

n

Xi Yi ∑
i=1

n

XiYi (6.7.56)

E( ) = cov( , ) +E( )E( ) = δ+μνXiYi Xi Yi Xi Yi
E[M(X)M(Y )] = cov[M(X),M(Y )] +E[M(X)]E[M(Y )] = δ/n+μν

E( [ −M(X)][ −M(Y )]) = n(δ+μν) −n(δ/n+μν) = (n−1)δ∑
i=1

n

Xi Yi (6.7.57)
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 as  with probability 1.

Proof

Once again, we have

where  denotes the sample mean for the sample of the products . By the strong law of large numbers,  as , 
 as , and  as , each with probability 1. So the result follows by letting  in the displayed equation.

Of courese, the sample correlation is

Since the sample correlation  is a nonlinear function of the sample covariance and sample standard deviations, it will not in general be an unbiased estimator of the
distribution correlation . In most cases, it would be difficult to even compute the mean and variance of . Nonetheless, we can show convergence of the sample
correlation to the distribution correlation.

 as  with probability 1.

Proof

This follows immediately from the strong law of large numbers and previous results. From the result above  as , and from the section on the sample
variance,  as  and  as , each with probability 1. Hence  as  with probability 1.

Our next theorem gives a formuala for the variance of the sample covariance, not to be confused with the covariance of the sample variances given above!

The variance of the sample covariance is

Proof

Recall first that

Hence using the bilinearity of the covariance operator we have

We compute the covariances in this sum by considering disjoint cases:

 if  or if , and there are  such terms.
 if  are distinct, and there are  such terms.

 if  and , and there are  such terms.
 if , , and , and there are  such terms.

Substituting and simplifying gives the result

It's not surprising that the variance of the standard sample covariance (where we don't know the distribution means) is greater than the variance of the special sample
covariance (where we do know the distribution means).

.

Proof

From results above, and some simple algebra,

But note that the difference goes to 0 as .

 as . Thus, the sample covariance is a consistent estimator of the distribution covariance.

Regression

In our first discussion above, we studied regression from a deterministic, descriptive point of view. The results obtained applied only to the sample. Statistically more
interesting and deeper questions arise when the data come from a random experiment, and we try to draw inferences about the underlying distribution from the sample
regression. There are two models that commonly arise. One is where the response variable is random, but the predictor variable is deterministic. The other is the model we
consider here, where the predictor variable and the response variable are both random, so that the data form a random sample from a bivariate distribution.

Thus, suppose again that we have a basic random vector  for an experiment. Recall that in the section on (distribution) correlation and regression, we showed that the
best linear predictor of  given , in the sense of minimizing mean square error, is the random variable

S(X,Y ) → δ n → ∞

S(X,Y ) = [M(XY ) −M(X)M(Y )]
n

n−1
(6.7.58)

M(XY ) ( , , … , )X1Y1 X2Y2 XnYn M(X) → μ n → ∞
M(Y ) → ν n → ∞ M(XY ) → E(XY ) = δ+μν n → ∞ n → ∞

R(X,Y ) =
S(X,Y )

S(X)S(Y )
(6.7.59)

R(X,Y )
ρ R(X,Y )

R(X,Y ) → ρ n → ∞

S(X,Y ) → δ n → ∞
S(X) → σ n → ∞ S(Y ) → τ n → ∞ R(X,Y ) → δ/στ = ρ n → ∞

var[S(X,Y )] = ( + − )
1

n
δ2

1

n−1
σ2 τ 2 n−2

n−1
δ2 (6.7.60)

S(X,Y ) = ( − )( − )
1

2 n (n−1)
∑
i=1

n

∑
j=1

n

Xi Xj Yi Yj (6.7.61)

var[S(X),Y )] = cov[( − )( − ), ( − )( − )]
1

4 (n−1n2 )2
∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

Xi Xj Yi Yj Xk Xl Yk Yl (6.7.62)

cov[( − )( − ), ( − )( − )] = 0Xi Xj Yi Yj Xk Xl Yk Yl i = j k = l 2 −n3 n2

cov[( − )( − ), ( − )( − )] = 0Xi Xj Yi Yj Xk Xl Yk Yl i, j, k, l n(n−1)(n−2)(n−3)
cov[( − )( − ), ( − )( − )] = 2 +2Xi Xj Yi Yj Xk Xl Yk Yl δ2 σ2τ 2 i ≠ j {k, l} = {i, j} 2n(n−1)
cov[( − )( − ), ( − )( − )] = −Xi Xj Yi Yj Xk Xl Yk Yl δ2 δ2 i ≠ j k ≠ l #({i, j} ∩ {k, l}) = 1 4n(n−1)(n−2)

var[S(X,Y )] > var[W (X,Y )]

var[S(X,Y )] −var[W (X,Y )] = ( + ) > 0
1

n(n−1)
δ2 σ2τ 2 (6.7.63)

n → ∞

var[S(X,Y )] → 0 n → ∞

(X,Y )
Y X

L(Y ∣ X) =E(Y ) + [X−E(X)] = ν + (X−μ)
cov(X,Y )

var(X)

δ

σ2
(6.7.64)
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so that the distribution regression line is given by

Moreover, the (minimum) value of the mean square error is .

Figure : The distribution regression line

Of course, in real applications, we are unlikely to know the distribution parameters , , , and . If we want to estimate the distribution regression line, a natural approach
would be to consider a random sample  from the distribution of  and compute the sample regression line. Of course, the results are
exactly the same as in the discussion above, except that all of the relevant quantities are random variables. The sample regression line is

The mean square error is  and the coefficient of determination is .

Figure : The distribution and sample regression lines

The fact that the sample regression line and mean square error are completely analogous to the distribution regression line and mean square error is mathematically elegant and
reassuring. Again, the coefficients of the sample regression line can be viewed as estimators of the respective coefficients in the distribution regression line.

The coefficients of the sample regression line converge to the coefficients of the distribution regression line with probability 1.

1.  as 

2.  as 

Proof

This follows from the strong law of large numbers and previous results. with probability 1,  as ,  as ,  as ,
and  as .

Of course, if the linear relationship between  and  is not strong, as measured by the sample correlation, then transformation applied to one or both variables may help.
Again, some typical transformations are explored in the exercises below.

Exercises

Basic Properties

Suppose that  and  are population variables, and  and  samples of size  from  and  respectively. Suppose also that , , , 
, and . Find each of the following:

1. 
2. 
3. 
4. 

Suppose that  is the temperature (in degrees Fahrenheit) and  the resistance (in ohms) for a certain type of electronic component after 10 hours of operation. For a
sample of 30 components, , , , , .

1. Classify  and  by type and level of measurement.
2. Find the sample covariance.
3. Find the equation of the regression line.

Suppose now that temperature is converted to degrees Celsius (the transformation is ).

4. Find the sample means.

y = L(Y ∣ X = x) = ν + (x−μ)
δ

σ2
(6.7.65)

E{[Y −L(Y ∣ X)]} = var(Y )[1 − (X,Y )] = (1 − )cor2 r2 ρ2

6.7.5

μ ν σ2 δ

(( , ), ( , ), … , ( , ))X1 Y1 X2 Y2 Xn Yn (X,Y )

y = M(Y ) + [x−M(X)]
S(X,Y )

(X)S2
(6.7.66)

(Y )[1 − (X,Y )]S2 R2 (X,Y )R2

6.7.6

→
S(X,Y)

(X)S 2

δ

σ2 n → ∞

M(Y ) − M(X) → ν − μ
S(X,Y)

(X)S 2

δ

σ2 n → ∞

S(X,Y ) → δ n → ∞ (X) →S2 σ2 n → ∞ M(X) → μ n → ∞
M(Y ) → ν n → ∞

X Y

x y x y n x y m(x) = 3 m(y) = −1 (x) = 4s2

(y) = 9s2 s(x,y) = 5

r(x,y)
m(2x+3y)

(2x+3y)s2

s(2x+3y−1, 4x+2y−3)

x y

m(x) = 113 s(x) = 18 m(y) = 100 s(y) = 10 r(x,y) = 0.6

x y

(x−32)5
9
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5. Find the sample standard deviations.
6. Find the sample covariance and correlation.
7. Find the equation of the regression line.

Answer
1. continuous, interval
2. , 

Suppose that  is the length and  the width (in inches) of a leaf in a certain type of plant. For a sample of 50 leaves , , , , and 
.

1. Classify  and  by type and level of measurement.
2. Find the sample covariance.
3. Find the equation of the regression line with  as the predictor variable and  as the response variable.

Suppose now that  and  are converted to inches (0.3937 inches per centimeter).

4. Find the sample means.
5. Find the sample standard deviations.
6. Find the sample covariance and correlation.
7. Find the equation of the regression line.

Answer
1. continuous, ratio
2. , 

Scatterplot Exercises

Click in the interactive scatterplot, in various places, and watch how the means, standard deviations, correlation, and regression line change.

Click in the interactive scatterplot to define 20 points and try to come as close as possible to each of the following sample correlations:

1. 
2. 
3. 
4. 
5. 
6. 
7. .

Click in the interactive scatterplot to define 20 points. Try to generate a scatterplot in which the regression line has

1. slope 1, intercept 1
2. slope 3, intercept 0
3. slope , intercept 1

Simulation Exercises

Run the bivariate uniform experiment 2000 times in each of the following cases. Compare the sample means to the distribution means, the sample standard deviations to
the distribution standard deviations, the sample correlation to the distribution correlation, and the sample regression line to the distribution regression line.

1. The uniform distribution on the square
2. The uniform distribution on the triangle.
3. The uniform distribution on the circle.

Run the bivariate normal experiment 2000 times for various values of the distribution standard deviations and the distribution correlation. Compare the sample means to
the distribution means, the sample standard deviations to the distribution standard deviations, the sample correlation to the distribution correlation, and the sample
regression line to the distribution regression line.

Transformations

Consider the function .

1. Sketch the graph for some representative values of  and .
2. Note that  is a linear function of , with intercept  and slope .
3. Hence, to fit this curve to sample data, simply apply the standard regression procedure to the data from the variables  and .

Consider the function .

1. Sketch the graph for some representative values of  and .
2. Note that  is a linear function of , with intercept  and slope .
3. Hence, to fit this curve to our sample data, simply apply the standard regression procedure to the data from the variables  and .

Consider the function .

1. Sketch the graph for some representative values of  and .
2. Note that  is a linear function of , with intercept  and slope .

m = 45° s = 10°

x y m(x) = 10 s(x) = 2 m(y) = 4 s(y) = 1
r(x,y) = 0.8

x y

x y

x y

m = 25.4 s = 5.08

0
0.5
−0.5
0.7
−0.7
0.9
−0.9

−2

y = a+bx2

a b

y x2 a b

x2 y

y = 1
a+bx

a b
1
y x a b

x 1
y

y = x

a+bx

a b
1
y

1
x

b a
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3. Hence, to fit this curve to sample data, simply apply the standard regression procedure to the data from the variables  and .
4. Note again that the names of the intercept and slope are reversed from the standard formulas.

Consider the function .

1. Sketch the graph for some representative values of  and .
2. Note that  is a linear function of , with intercept  and slope .
3. Hence, to fit this curve to sample data, simply apply the standard regression procedure to the data from the variables  and .
4. After solving for the intercept , recover the statistic .

Consider the function .

1. Sketch the graph for some representative values of  and .
2. Note that  is a linear function of , with intercept  and slope .
3. Hence, to fit this curve to sample data, simply apply the standard regression procedure to the data from the variables  and .
4. After solving for the intercept , recover the statistic .

Computational Exercises

All statistical software packages will perform regression analysis. In addition to the regression line, most packages will typically report the coefficient of determination 
, the sums of squares , , , and the standard error of estimate . Most packages will also draw the scatterplot, with the regression line

superimposed, and will draw the various graphs of residuals discussed above. Many packages also provide easy ways to transform the data. Thus, there is very little reason to
perform the computations by hand, except with a small data set to master the definitions and formulas. In the following problem, do the computations and draw the graphs with
minimal technological aids.

Suppose that  is the number of math courses completed and  the number of science courses completed for a student at Enormous State University (ESU). A sample of 10
ESU students gives the following data: .

1. Classify  and  by type and level of measurement.
2. Sketch the scatterplot.

Construct a table with rows corresponding to cases and columns corresponding to , , , , , , , 
, , , , , and . Add a rows at the bottom for totals and means. Use precision arithmetic.

3. Complete the first 8 columns.
4. Find the sample correlation and the coefficient of determination.
5. Find the sample regression equation.
6. Complete the table.
7. Verify the identities for the sums of squares.

Answer

1 1 1

2 3 3

3 6 4

4 2 1

5 8 5

6 2 2

7 4 3

8 6 4

9 4 3

10 4 4

Total

Mean

1. discrete, ratio
4. , 
5. 
7. 

The following two exercise should help you review some of the probability topics in this section.

Suppose that  has a continuous distribution with probability density function  for . Find each of the following:

1.  and 
2.  and 
3.  and 
4.  and 
5. , , and 

1
x

1
y

y = aebx

a b

ln(y) x ln(a) b

x ln(y)
ln(a) a = eln(a)

y = axb

a b

ln(y) ln(x) ln(a) b

ln(x) ln(y)
ln(a) a = eln(a)

(x,y)r2 sst(y) ssr(x,y) sse(x,y) se(x,y)

x y

((1, 1), (3, 3), (6, 4), (2, 1), (8, 5), (2, 2), (4, 3), (6, 4), (4, 3), (4, 4))

x y

i xi yi −m(x)xi −m(y)yi [ −m(x)xi ]2 [ −m(y)yi ]2

[ −m(x)][ −m(y)]xi yi ŷ i −m(y)ŷ i [ −m(y)ŷ i ]2 −yi ŷ i ( −yi ŷ i)
2

i xi yi −m(x)xi −m(y)yi [ −m(x)xi ]2[ −m(y)yi ]2 [ −m(x)][ −m(y)]xi yiŷ i −m(y)ŷ i [ −m(y)ŷ i ]2 −yi ŷ i ( −yi ŷ i)
2

−3 −2 9 4 6 9/7 −12/7 144/49 −2/7 4/49

−1 0 1 0 0 17/7 −4/7 16/49 4/7 16/49

2 1 4 1 2 29/7 8/7 64/49 −1/7 1/49

−2 −2 4 4 4 13/7 −8/7 64/49 −6/7 36/49

4 2 16 4 8 37/7 16/7 256/49 −2/7 4/49

−2 −1 4 1 2 13/7 −8/7 64/49 1/7 1/49

0 0 0 0 0 3 0 0 0 0

2 1 4 1 2 29/7 8/7 64/49 −1/7 1/49

0 0 0 0 0 3 0 0 0 0

0 1 0 1 0 3 0 0 1 1

40 30 0 0 42 16 24 30 0 96/7 0 16/7

4 3 0 0 14/3 16/9 8/3 3 0 96/7 0 2/7

r = 2 ≈ 0.9263/14
− −−−

√ = 6/7r2

y = 3 + (x−4)4
7

16 = 96/7 +16/7

(X,Y ) f(x, y) = 15 yx2 0 ≤ x ≤ y ≤ 1

μ =E(X) ν =E(Y )
= var(X)σ2 = var(Y )τ 2

=E [(X−μ ]σ3 )3 =E [(Y −ν ]τ3 )3

=E [(X−μ ]σ4 )4 =E [(Y −ν ]τ4 )4

δ = cov(X,Y ) ρ = cor(X,Y ) =E [(X−μ (Y −ν ]δ2 )2 )2
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6.  and 

Answer
1. , 
2. , 
3. , 
4. , 
5. , , 
6. , 

Suppose now that  is a random sample of size  from the distribution in the previous exercise. Find each of the following:

1.  and 
2.  and 
3.  and 
4.  and 
5.  and 
6.  and 
7.  and 
8.  and 
9.  and 

Answer
1. , 
2. , 
3. , 
4. , 
5. , 
6. , 
7. , 
8. , 
9. , 

Data Analysis Exercises

Use statistical software for the following problems.

Consider the height variables in Pearson's height data.

1. Classify the variables by type and level of measurement.
2. Compute the correlation coefficient and the coefficient of determination
3. Compute the least squares regression line, with the height of the father as the predictor variable and the height of the son as the response variable.
4. Draw the scatterplot and the regression line together.
5. Predict the height of a son whose father is 68 inches tall.
6. Compute the regression line if the heights are converted to centimeters (there are 2.54 centimeters per inch).

Answer
1. Continuous, ratio
2. , 
3. 
5. 68.85
6. 

Consider the petal length, petal width, and species variables in Fisher's iris data.

1. Classify the variables by type and level of measurement.
2. Compute the correlation between petal length and petal width.
3. Compute the correlation between petal length and petal width by species.

Answer
1. Species: discrete, nominal; petal length and width: continuous ratio
2. 0.9559
3. Setosa: 0.3316, Verginica: 0.3496, Versicolor: 0.6162

Consider the number of candies and net weight variables in the M&M data.

1. Classify the variable by type and level of measurement.
2. Compute the correlation coefficient and the coefficient of determination.
3. Compute the least squares regression line with number of candies as the predictor variable and net weight as the response variable.
4. Draw the scatterplot and the regression line in part (b) together.
5. Predict the net weight of a bag of M&Ms with 56 candies.
6. Naively, one might expect a much stronger correlation between the number of candies and the net weight in a bag of M&Ms. What is another source of variability in net

weight?

Answer

L(Y ∣ X) L(X ∣ Y )

5/8 5/6
17/448 5/252
−5/1792 −5/1512
305/86 0165/3024

5/336 5/17
− −−−

√ 1/768

L(Y ∣ X) = + X10
17

20
51

L(X ∣ Y ) = Y3
4

(( , ), ( , ), … ( , ))X1 Y1 X2 Y2 X9 Y9 9

E[M(X)] var[M(X)]
E[M(Y )] var[M(Y )]
cov[M(X),M(Y )] cor[M(X),M(Y )]
E[ (X)]W 2 var[ (X)]W 2

E[ (Y )]W 2 var[ (Y )]W 2

E[ (X)]S2 var[ (X)]S2

E[ (Y )]S2 var[ (Y )]S2

E[W (X,Y )] var[W (X,Y )]
E[S(X,Y )] var[S(X,Y )]

5/8 17/4032
5/6 5/2268
5/3024 5/17

− −−−√
17/448 317/1 354 752
5/252 5/35 721
17/448 5935/21 676 032
5/252 115/762 048
5/336 61/508 032
5/336 181/1 354 752

r = 0.501 = 0.251r2

y = 33.893 +0.514x

y = 86.088 +0.514x
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1. Number of candies: discrete, ratio; net weight: continuous, ratio
2. , 
3. 
5. 48.657
6. Variability in the weight of individual candies.

Consider the response rate and total SAT score variables in the SAT by state data set.

1. Classify the variables by type and level of measurement.
2. Compute the correlation coefficient and the coefficient of determination.
3. Compute the least squares regression line with response rate as the predictor variable and SAT score as the response variable.
4. Draw the scatterplot and regression line together.
5. Give a possible explanation for the negative correlation.

Answer
1. Response rate: continuous, ratio. SAT score could probably be considered either discrete or continuous, but is only at the interval level of measurement, since the

smallest possible scores is 400 (200 each on the verbal and math portions).
2. , 
3. 
5. States with low response rate may be states for which the SAT is optional. In that case, the students who take the test are the better, college-bound students. Conversely,

states with high response rates may be states for which the SAT is mandatory. In that case, all students including the weaker, non-college-bound students take the test.

Consider the verbal and math SAT scores (for all students) in the SAT by year data set.

1. Classify the variables by type and level of measurement.
2. Compute the correlation coefficient and the coefficient of determination.
3. Compute the least squares regression line.
4. Draw the scatterplot and regression line together.

Answer
1. Continuous perhaps, but only at the interval level of measurement because the smallest possible score on each part is 200.
2. , 
3. 

Consider the temperature and erosion variables in the first data set in the Challenger data.

1. Classify the variables by type and level of measurement.
2. Compute the correlation coefficient and the coefficient of determination.
3. Compute the least squares regression line.
4. Draw the scatter plot and the regression line together.
5. Predict the O-ring erosion with a temperature of 31° F.
6. Is the prediction in part (c) meaningful? Explain.
7. Find the regression line if temperature is converted to degrees Celsius. Recall that the conversion is .

Answer
1. temperature: continuous, interval; erosion: continuous ratio
2. , 
3. 
5. 62.9.
6. This estimate is problematic, because 31° is far outside of the range of the sample data.
7. 
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r = 0.793 = 0.629r2

y = 20.278 +0.507x

r = −0.849 = 0.721r2

y = 1141.5 −2.1x

r = 0.614 = 0.377r2

y = 321.5 +0.3 x

(x−32)5
9

r = −0.555 = 0.308r2

y = 106.8 −1.414x

y = 61.54 −2.545x
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