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1.5: Equivalence Relations
   

Basic Theory

A relation  on a nonempty set  that is reflexive, symmetric, and transitive is an equivalence relation on . Thus, for all 
,

1. , the reflexive property.
2. If  then , the symmetric property.
3. If  and  then , the transitive property.

As the name and notation suggest, an equivalence relation is intended to define a type of equivalence among the elements of .
Like partial orders, equivalence relations occur naturally in most areas of mathematics, including probability.

Suppose that  is an equivalence relation on . The equivalence class of an element  is the set of all elements that are
equivalent to , and is denoted

Results

The most important result is that an equivalence relation on a set  defines a partition of , by means of the equivalence classes.

Suppose that  is an equivalence relation on a set .

1. If  then .
2. If  then .
3. The collection of (distinct) equivalence classes is a partition of  into nonempty sets.

Proof
1. Suppose that . If  then  and hence  by the transitive property. Hence . Similarly, if 

then . But  by the symmetric property, and hence  by the transitive property. Hence .
2. Suppose that . If , then  and , so  and . But then  by the symmetric

property, and then  by the transitive property. This is a contradiction, so .
3. From (a) and (b), the (distinct) equivalence classes are disjoint. If , then  by the reflexive property, and hence 

. Therefore .

Sometimes the set  of equivalence classes is denoted . The idea is that the equivalence classes are new “objects” obtained
by “identifying” elements in  that are equivalent. Conversely, every partition of a set defines an equivalence relation on the set.

Suppose that  is a collection of nonempty sets that partition a given set . Define the relation  on  by  if and only if
 and  for some .

1.  is an equivalence relation.
2.  is the set of equivalence classes.

Proof
1. If , then  for some , since  partitions . Hence , and so the reflexive property holds. Next, 

is trivially symmetric by definition. Finally, suppose that  and . Then  for some  and 
for some . But then . The sets in  are disjoint, so . Hence , so . Thus  is
transitive.

2. If , then  for a unique , and then by definition, .

 Definitions

≈ S S

x, y, z ∈ S

x ≈ x

x ≈ y y ≈ x

x ≈ y y ≈ z x ≈ z

S

≈ S x ∈ S

x

[x] = {y ∈ S : y ≈ x} (1.5.1)

S S

≈ S

x ≈ y [x] = [y]
x ≉ y [x] ∩ [y] = ∅

S

x ≈ y u ∈ [x] u ≈ x u ≈ y u ∈ [y] u ∈ [y]
u ≈ y y ≈ x u ≈ x u ∈ [x]

x ≉ y u ∈ [x] ∩ [y] u ∈ [x] u ∈ [y] u ≈ x u ≈ y x ≈ u

x ≈ y [x] ∩ [y] = ∅
x ∈ S x ≈ x

x ∈ [x] [x] = S⋃x∈S

S S/ ≈
S

S S ≈ S x ≈ y

x ∈ A y ∈ A A ∈S

≈
S

x ∈ S x ∈ A A ∈S S S x ≈ x ≈
x ≈ y y ≈ z x, y ∈ A A ∈S y, z ∈ B

B ∈S y ∈ A∩B S A = B x, z ∈ A x ≈ z ≈

x ∈ S x ∈ A A ∈S [x] = A
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Figure : A partition of . Any two points in the same partition set are equivalent.

Sometimes the equivalence relation  associated with a given partition  is denoted . The idea, of course, is that elements in
the same set of the partition are equivalent.

The process of forming a partition from an equivalence relation, and the process of forming an equivalence relation from a
partition are inverses of each other.

1. If we start with an equivalence relation  on , form the associated partition, and then construct the equivalence relation
associated with the partition, then we end up with the original equivalence relation. In modular notation,  is the
same as .

2. If we start with a partition  of , form the associated equivalence relation, and then form the partition associated with the
equivalence relation, then we end up with the original partition. In modular notation,  is the same as .

Suppose that  is a nonempty set. The most basic equivalence relation on  is the equality relation . In this case  for
each . At the other extreme is the trivial relation  defined by  for all . In this case  is the only equivalence
class.

Every function  defines an equivalence relation on its domain, known as the equivalence relation associated with . Moreover,
the equivalence classes have a simple description in terms of the inverse images of .

Suppose that . Define the relation  on  by  if and only if .

1. The relation  is an equivalence relation on .
2. The set of equivalences classes is .
3. The function  defined by  is well defined and is one-to-one.

Proof
1. If  then trivially , so . Hence  is reflexive. If  then  so trivially 

and hence . Thus  is symmetric. If  and  then  and , so trivially 
and so . Hence  is transitive.

2. Recall that  if and only if  for some . Then by definition, 

3. From (3),  if and only if  if and only if . This shows both that  is well defined, and that  is
one-to-one.

Figure : The equivalence relation on  associated with 

Suppose again that .

1. If  is one-to-one then the equivalence relation associated with  is the equality relation, and hence  for each 
.

2. If  is a constant function then the equivalence relation associated with  is the trivial relation, and hence  is the only
equivalence class.

Proof
1. If  is one-to-one, then  if and only if  if and only if .
2. If  is constant on  then  and hence  for all .

1.5.1 S

≈ S S/S

≈ S

S/(S/ ≈)
≈

S S

S/(S/S ) S

S S = [x] = {x}
x ∈ S ≈ x ≈ y x, y ∈ S S

f f

f

f : S → T ≈ S x ≈ y f(x) = f(y)

≈ S

S = { {t} : t ∈ range(f)}f−1

F : S → T F ([x]) = f(x)

x ∈ S f(x) = f(x) x ≈ x ≈ x ≈ y f(x) = f(y) f(y) = f(x)
y ≈ x ≈ x ≈ y y ≈ z f(x) = f(y) f(y) = f(z) f(x) = f(z)

x ≈ z ≈
t ∈ range(f) f(x) = t x ∈ S

[x] = {t} = {y ∈ S : f(y) = t} = {y ∈ S : f(y) = f(x)}f−1

[x] = [y] x ≈ y f(x) = f(y) F F

1.5.2 S f : S → T

f : S → T

f f [x] = {x}
x ∈ S

f f S

f x ≈ y f(x) = f(y) x = y

f S f(x) = f(y) x ≈ y x, y ∈ S

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10120?pdf


1.5.3 https://stats.libretexts.org/@go/page/10120

Equivalence relations associated with functions are universal: every equivalence relation is of this form:

Suppose that  is an equivalence relation on a set . Define  by . Then  is the equivalence relation
associated with .

Proof

From (6),  if and only if  if and only if .

The intersection of two equivalence relations is another equivalence relation.

Suppose that  and  are equivalence relations on a set . Let  denote the intersection of  and  (thought of as subsets of 
). Equivalently,  if and only if  and .

1.  is an equivalence relation on .
2. .

Suppose that we have a relation that is reflexive and transitive, but fails to be a partial order because it's not anti-symmetric. The
relation and its inverse naturally lead to an equivalence relation, and then in turn, the original relation defines a true partial order on
the equivalence classes. This is a common construction, and the details are given in the next theorem.

Suppose that  is a relation on a set  that is reflexive and transitive. Define the relation  on  by  if and only if 
and .

1.  is an equivalence relation on .
2. If  and  are equivalence classes and  for some  and , then  for all  and .
3. Define the relation  on the collection of equivalence classes  by  if and only if  for some (and hence all) 

 and . Then  is a partial order on .

Proof
1. If  then  since  is reflexive. Hence , so  is reflexive. Clearly  is symmetric by the symmetry of the

definition. Suppose that  and . Then , ,  and . Hence  and  since  is
transitive. Therefore  so  is transitive.

2. Suppose that  and  are equivalence classes of  and that  for some  and . If  and , then 
 and . Therefore  and . By transitivity, .

3. Suppose that . If  then  and hence . Therefore  and so  is reflexive. Next suppose that
 and that  and . If  and  then  and . Hence  so . Therefore 

is antisymmetric. Finally, suppose that  and that  and . Note that  so let . If 
 then  and . Hence  and therefore . So  is transitive.

A prime example of the construction in the previous theorem occurs when we have a function whose range space is partially
ordered. We can construct a partial order on the equivalence classes in the domain that are associated with the function.

Suppose that  and  are sets and that  is a partial order on . Suppose also that . Define the relation  on 
by  if and only if .

1.  is reflexive and transitive.
2. The equivalence relation on  constructed in (10) is the equivalence relation associated with , as in (6).
3.  can be extended to a partial order on the equivalence classes corresponding to .

Proof
1. If  then  since  is reflexive, and hence . Thus  is reflexive. Suppose that 

and that  and . Then  and . Hence  since  is transitive. Thus 
 is transitive.

2. For the equivalence relation  on  constructed in (10),  if and only if  and  if and only if 
 and  if and only if , since  is antisymmetric. Thus  is the equivalence

relation associated with .

≈ S f : S →P(S) f(x) = [x] ≈
f

x ≈ y [x] = [y] f(x) = f(y)

≈ ≅ S ≡ ≈ ≅
S×S x ≡ y x ≈ y x ≅y

≡ S

[x = [x ∩ [x]≡ ]≈ ]≅

⪯ S ≈ S x ≈ y x ⪯ y

y ⪯ x

≈ S

A B x ⪯ y x ∈ A y ∈ B u ⪯ v u ∈ A v∈ B

⪯ S A⪯B x ⪯ y

x ∈ A y ∈ B ⪯ S

x ∈ S x ⪯ x ⪯ x ≈ x ≈ ≈
x ≈ y y ≈ z x ⪯ y y ⪯ z z⪯ y y ⪯ x x ⪯ z z⪯ x ⪯

x ≈ z ≈
A B ≈ x ⪯ y x ∈ A y ∈ B u ∈ A v∈ B

x ≈ u y ≈ v u ⪯ x y ⪯ v u ⪯ v

A ∈S x, y ∈ A x ≈ y x ⪯ y A⪯A ⪯

A, B ∈S A⪯B B⪯A x ∈ A y ∈ B x ⪯ y y ⪯ x x ≈ y A = B ⪯

A, B, C ∈S A⪯B B⪯C B ≠ ∅ y ∈ B

x ∈ A, z ∈ C x ⪯ y y ⪯ z x ⪯ z A⪯C ⪯

S T ⪯T T f : S → T ⪯S S

x y⪯S f(x) f(y)⪯T

⪯S

S f

⪯S f

x ∈ S f(x) f(x)⪯T ⪯T x x⪯S ⪯S x, y, z ∈ S

x y⪯S y z⪯S f(x) f(y)⪯T f(y) f(z)⪯T f(x) f(z)⪯T ⪯T

⪯S

≈ S x ≈ y x y⪯S y x⪯S

f(x) f(y)⪯T f(y) f(x)⪯T f(x) = f(y) ⪯T ≈
f
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3. This follows immediately from (10) and parts (a) and (b). If , then  if and only if 
.

Examples and Applications

Simple functions

Give the equivalence classes explicitly for the functions from  into  defined below:

1. .
2. .
3. .

Answer
1. 
2. 
3. 

Calculus

Suppose that  is a fixed interval of , and that  is the set of differentiable functions from  into . Consider the equivalence
relation associated with the derivative operator  on , so that . For , give a simple description of .

Answer

Congruence

Recall the division relation  from  to : For  and ,  means that  for some . In words,  divides 
 or equivalently  is a multiple of . In the previous section, we showed that  is a partial order on .

Fix .

1. Define the relation  on  by  if and only if . The relation  is known as congruence modulo .
2. Let  be defined so that  is the remainder when  is divided by .

Recall that by the Euclidean division theorem, named for Euclid of course,  can be written uniquely in the form 
where  and , and then .

Congruence modulo .

1.  is the equivalence relation associated with the function .
2. There are  distinct equivalence classes, given by  for .

Proof
1. Recall that for the equivalence relation associated with , integers  and  are equivalent if and only if .

By the division theorem,  and , where  and , and these
representations are unique. Thus , and so  if and only if  if and only if 

 if and only if .
2. Recall that the equivalence classes are  for . By the division theorem, 

.

Explicitly give the equivalence classes for , congruence mod 4.

Answer

u, v∈ range(f) ({u}) ({v})f−1 ⪯S f−1

u v⪯T

R R

f(x) = x2

g(x) = ⌊x⌋

h(x) = sin(x)

[x] = {x, −x}
[x] = [⌊x⌋, ⌊x⌋+1)
[x] = {x+2nπ : n ∈ Z} ∪ {(2n+1)π−x : n ∈ Z}

I R S I R

D S D(f) = f ′ f ∈ S [f ]

[f ] = {f +c : c ∈ R}

∣ N+ Z d ∈ N+ n ∈ Z d ∣ n n = kd k ∈ Z d

n n d ∣ N+

d ∈ N+

≡d Z m n≡d d ∣ (n−m) ≡d d

: Z → {0, 1, … , d−1}rd r(n) n d

n ∈ Z n = kd+q

k ∈ Z q ∈ {0, 1, … , d−1} (n) = qrd

d

≡d rd
d [q = {q+kd : k ∈ Z}]d q ∈ {0, 1, … , d−1}

rd m n (m) = (n)rd rd
m = jd+p n = kd+q j, k ∈ Z p, q ∈ {0.1, … , d−1}

n−m = (k−j)d+(q−p) m n≡d d ∣ (n−m)
p = q (m) = (n)rd rd

{q}r−1
d

q ∈ range ( ) = {0, 1, … , d−1}rd

{q} = {kd+q : k ∈ Z}r−1
d

≡4

[0 = {0, 4, 8, 12, …} ∪ {−4, −8, −12, −16, …}]4
[1 = {1, 5, 9, 13, …} ∪ {−3, −7, −11, −15, …}]4
[2 = {2, 6, 10, 14, …} ∪ {−2, −6, −10, −14, …}]4
[3 = {3, 7, 11, 15, …} ∪ {−1, −5, −9, −13, …}]4
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Linear Algebra

Linear algebra provides several examples of important and interesting equivalence relations. To set the stage, let  denote the
set of  matrices with real entries, for .

Recall that the following are row operations on a matrix:

1. Multiply a row by a non-zero real number.
2. Interchange two rows.
3. Add a multiple of a row to another row.

Row operations are essential for inverting matrices and solving systems of linear equations.

Matrices  are row equivalent if  can be transformed into  by a finite sequence of row operations. Row
equivalence is an equivalence relation on .

Proof.

If , then  is row equivalent to itself: we can simply do nothing, or if you prefer, we can multiply the first row of 
by 1. For symmetry, the key is that each row operation can be reversed by another row operation: multiplying a row by 
is reversed by multiplying the same row of the resulting matrix by . Interchanging two rows is reversed by interchanging
the same two rows of the resulting matrix. Adding  times row  to row  is reversed by adding  times row  to row  in the
resulting matrix. Thus, if we can transform  into  by a finite sequence of row operations, then we can transform  into 
by applying the reversed row operations in the reverse order. Transitivity is clear: If we can transform  into  by a sequence
of row operations and  into  by another sequence of row operations, then we can transform  into  by putting the two
sequences together.

Our next relation involves similarity, which is very important in the study of linear transformations, change of basis, and the theory
of eigenvalues and eigenvectors.

Matrices  are similar if there exists an invertible  such that . Similarity is an equivalence
relation on .

Proof

If  then , where  is the  identity matrix, so  is similar to itself. Suppose that  and
that  is similar to  so that  for some invertible . Then  so  is
similar to . Finally, suppose that  and that  is similar to  and that  is similar to . Then 
and  for some invertible . Then , so  is similar to .

Next recall that for , the transpose of  is the matrix  with the property that  entry of  is the 
entry of , for . Simply stated,  is the matrix whose rows are the columns of . For the theorem that
follows, we need to remember that  for  and , and  if  is
invertible.

Matrices  are congruent if there exists an invertible  such that . Congruence is an
equivalence relation on 

Proof

If  then , where again  is the  identity matrix, so  is congruent to itself. Suppose that 
 and that  is congruent to  so that  for some invertible . Then 

 so  is congruent to . Finally, suppose that  and that  is congruent
to  and that  is congruent to . Then  and  for some invertible . Then 

, so  is congruent to .

Congruence is important in the study of orthogonal matrices and change of basis. Of course, the term congruence applied to
matrices should not be confused with the same term applied to integers.

R
m×n

m×n m, n ∈ N+

A, B ∈ R
m×n A B

R
m×n

A ∈ R
m×n A A

c ≠ 0
1/c

c i j −c i j

A B B A

A B

B C A C

A, B ∈ R
n×n P ∈ R

n×n AP = BP −1

R
n×n

A ∈ R
n×n A = AII−1 I n×n A A, B ∈ R

n×n

A B B = APP −1 P ∈ R
n×n A = PB = BP −1 ( )P −1 −1

P −1 B

A A, B, C ∈ Rn×n A B B C B = APP −1

C = BQQ−1 P , Q ∈ Rn×n C = APQ = (PQ A(PQ)Q−1P −1 )−1 A C

A ∈ R
m×n A ∈AT

R
n×m (i, j) A (j, i)

AT i, j∈ {1, 2, … ,m} AT A

(AB =)T BTAT A ∈ R
m×n B ∈ R

n×k =( )AT −1
( )A−1 T

A ∈ R
n×n

A, B ∈ R
n×n P ∈ R

n×n B = APP T

R
n×n

A ∈ R
n×n A = AII T I n×n A

A, B ∈ R
n×n A B B = APP T P ∈ R

n×n

A = B = B( )P T −1
P −1 ( )P −1 T

P −1 B A A, B, C ∈ Rn×n A

B B C B = APP T C = BQQT P , Q ∈ Rn×n

C = APQ = (PQ A(PQ)QTP T )T A C
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Number Systems

Equivalence relations play an important role in the construction of complex mathematical structures from simpler ones. Often the
objects in the new structure are equivalence classes of objects constructed from the simpler structures, modulo an equivalence
relation that captures the essential properties of the new objects.

The construction of number systems is a prime example of this general idea. The next exercise explores the construction of rational
numbers from integers.

Define a relation  on  by  if and only if .

1.  is an equivalence relation.
2. Define , the equivalence class generated by , for  and . This definition captures the

essential properties of the rational numbers.

Proof
1. For ,  of course, so . Hence  is reflexive. If  and 

, then  so trivially , and hence . Thus  is symmetric. Finally, suppose
that  and that  and . Then  and , so 

 which implies , and so . Hence  so  is transitive.
2. Suppose that  and  are rational numbers in the usual, informal sense, where  and . Then  if

and only if  if and only if , so it makes sense to define  as the equivalence class generated by 
. Addition and multiplication are defined in the usual way: if  then

The definitions are consistent; that is they do not depend on the particular representations of the equivalence classes.

This page titled 1.5: Equivalence Relations is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist
(Random Services) via source content that was edited to the style and standards of the LibreTexts platform.

≈ Z×N+ (j, k) ≈ (m,n) jn = km

≈
= [(m,n)]m

n
(m,n) m ∈ Z n ∈ N+

(m,n) ∈ Z×N+ mn = nm (m,n) ≈ (m,n) ≈ (j, k), (m,n) ∈ Z×N+

(j, k) ≈ (m,n) jn = km mk = nj (m,n) ≈ (j, k) ≈
(j, k), (m,n), (p, q) ∈ Z×N+ (j, k) ≈ (m,n) (m,n) ≈ (p, q) jn = km mq = np

jnp = kmp jmq = kmp jq = kp (j, k) ≈ (p, q) ≈
j

k

m
n j, m ∈ Z k, n ∈ N+ =

j

k

m
n

jn = km (j, k) ≈ (m,n) m
n

(m,n) (j, k), (m,n) ∈ Z×N+

+ = ,    ⋅ =
j

k

m

n

jn+mk

kn

j

k

m

n

jm

kn
(1.5.2)
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