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3.5: Conditional Distributions
  

In this section, we study how a probability distribution changes when a given random variable has a known, specified value. So this is an
essential topic that deals with hou probability measures should be updated in light of new information. As usual, if you are a new student or
probability, you may want to skip the technical details.

Basic Theory
Our starting point is a random experiment modeled by a probability space . So to review,  is the set of outcomes,  is the
collection of events, and  is the probability measure on the underlying sample space .

Suppose that  is a random variable defined on the sample space (that is, defined for the experiment), taking values in a set .

Details

Technically, the collection of events  is a -algebra, so that the sample space  is a measurable space. Similarly,  will have a 
-algebra of admissible subsets, so that  is also a measurable space. Random variable  is measurable, so that 

for every . The distribution of  is the probability measure  for .

The purpose of this section is to study the conditional probability measure given  for . That is, if  is an event, we would like
to define and study the probability of  given , denoted . If  has a discrete distribution, the conditioning event has
positive probability, so no new concepts are involved, and the simple definition of conditional probability suffices. When  has a
continuous distribution, however, the conditioning event has probability 0, so a fundamentally new approach is needed.

The Discrete Case

Suppose first that  has a discrete distribution with probability density function . Thus  is countable and we can assume that 
 for .

If  is an event and  then

Proof

The meaning of discrete distribution is that  is countable and  is the collection of all subsets of . Technically,  is the
probability density function of  with respct to counting measure  on , the standard measure for discrete spaces. In the diplayed
equation above, the comma separating the events in the numerator of the fraction means and, and thus functions just like the
intersection symbol. This result follows immediately from the definition of conditional probability:

The next result is a sepcial case of the law of total probability. and will be the key to the definition when  has a continuous distribution.

If  is an event then

Conversely, this condition uniquely determines .

Proof

As noted, the displayed equation is just a special case of the law of total probability. For , the countable collection of events 
 partitions  so

Conversely, suppose that the function , defined for  and , satisfies

(Ω,F ,P) Ω F

P (Ω,F)

X S

F σ (Ω,F) S

σ (S,S ) X {X ∈ A} ∈F
A ∈S X A ↦ P(X ∈ A) A ∈S

X = x x ∈ S E

E X = x P(E ∣ X = x) X

X

X g S

g(x) = P(X = x) > 0 x ∈ S

E x ∈ S

P(E ∣ X = x) =
P(E,X = x)

g(x)
(3.5.1)

S S =P(S) S g

X # S

P(E ∣ X = x) = =
P(E,X = x)

P(X = x)

P(E,X = x)

g(x)
(3.5.2)

X

E

P(E,X ∈ A) = g(x)P(E ∣ X = x), A ⊆ S∑
x∈A

(3.5.3)

P(E ∣ X = x)

A ⊆ S

{{X = x} : x ∈ A} {X ∈ A}

P(E,X ∈ A) = P(E,X = x) = P(E ∣ X = x)P(X = x) = P(E ∣ X = x)g(x)∑
x∈A

∑
x∈A

∑
x∈A

(3.5.4)

Q(x,E) x ∈ S E ∈F

P(E,X ∈ A) = g(x)Q(x,E), A ⊆ S∑
x∈A

(3.5.5)
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Letting  for  gives , so .

The Continuous Case

Suppose now that  has a continuous distribution on  for some , with probability density function . We assume that 
 for . Unlike the discrete case, we cannot use simple conditional probability to define  for an event  and 

 because the conditioning event has probability 0. Nonetheless, the concept should make sense. If we actually run the experiment, 
will take on some value  (even though a priori, this event occurs with probability 0), and surely the information that  should in
general alter the probabilities that we assign to other events. A natural approach is to use the results obtained in the discrete case as
definitions in the continuous case.

If  is an event and , the conditional probability  is defined by the requirement that

Details

Technically,  is a measurable subset of  and the -algebra  consists of the subsets of  that are also measurable as subsets of 
. The function  is also required to be measurable, and is the density function of  with respect to Lebesgue measure . Lebesgue

measure is named for Henri Lebesgue and is the standard measure on .

We will accept the fact that  can be defined uniquely, up to a set of measure 0, by the condition above, but we will return
to this point in the section on Conditional Expectation in the chapter on Expected Value. Essentially the condition means that 

 is defined so that  is a density function for the finite measure .

Conditioning and Bayes' Theorem

Suppose again that  is a random variable with values in  and probability density function , as described above. Our discussions above
in the discrete and continuous cases lead to basic formulas for computing the probability of an event by conditioning on .

The law of total probability. If  is an event, then  can be computed as follows:

1. If X has a discrete distribution then

2. If X has a continuous distribution then

Proof
1. This follows from the discrete theorem with .
2. This follows from the fundamental definition with .

Naturally, the law of total probability is useful when  and  are known for . Our next result is, Bayes' Theorem,
named after Thomas Bayes.

Bayes' Theorem. Suppose that  is an event with . The conditional probability density function  of  given 
 can be computed as follows:

1. If  has a discrete distribution then

2. If  has a continuous distribution then

Proof

A = {x} x ∈ S P(E,X = x) = g(x)Q(x,E) Q(x,E) = P(E,X = x)/g(x) = P(E ∣ X = x)

X S ⊆R
n n ∈ N+ g

g(x) > 0 x ∈ S P(E ∣ X = x) E

x ∈ S X

x X = x

E x ∈ S P(E ∣ X = x)

 P(E,X ∈ A) = g(x)P(E ∣ X = x)dx, A ⊆ S∫
A

(3.5.6)

S R
n σ S S

R
n g X λn

R
n

P(E ∣ X = x)

P(E ∣ X = x) x ↦ g(x)P(E ∣ X = x) A ↦ P(E,X ∈ A)

X S g

X

E P(E)

P(E) = g(x)P(E ∣ X = x)∑
x∈S

(3.5.7)

P(E) = g(x)P(E ∣ X = x)dx∫
S

(3.5.8)

A = S

A = S

P(E ∣ X = x) g(x) x ∈ S

E P(E) > 0 x ↦ g(x ∣ E) X

E

X

g(x ∣ E) = , x ∈ S
g(x)P(E ∣ X = x)

g(s)P(E ∣ X = s)∑s∈S

(3.5.9)

X

g(x ∣ E) = , x ∈ S
g(x)P(E ∣ X = x)

g(s)P(E ∣ X = s)ds∫
S

(3.5.10)
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1. In the discrete case, as usual, the ordinary simple definition of conditional probability suffices. The numerator in the displayed
equation is . The denominator is  by part (a) of the law of total probability. Hence
the fraction is .

2. In the continuous case, as usual, the argument is more subtle. We need to show that the expression in the displayed equation
satisfies the defining property of a PDF for the conditinal distribution. Once again, the denominator is  by part (b) of the law
of total probability. If  then using the fundamental definition,

By the meaning of the term,  is the conditional probability density function of  given .

In the context of Bayes' theorem,  is called the prior probability density function of  and  is the posterior probability
density function of  given . Note also that the conditional probability density function of  given  is proportional to the function 

, the sum or integral of this function that occurs in the denominator is simply the normalizing constant. As with the
law of total probability, Bayes' theorem is useful when  and  are known for .

Conditional Probability Density Functions

The definitions and results above apply, of course, if  is an event defined in terms of another random variable for our experiment. Here is
the setup:

Suppose that  and  are random variables on the probability space, with values in sets  and , respectively, so that  is a
random variable with values in . We assume that  has probability density function , as discussed in the section on Joint
Distributions. Recall that  has probability density function  defined as follows:

1. If  has a discrete distribution on the countable set  then

2. If  has a continuous distribution on  then

Similary, the probability density function  of  can be obtained by summing  over  if  has a discrete distribution or integrating 
over  if  has a continuous distribution.

Suppose that  and that . The function  defined below is a probability density function on :

Proof

The result is simple, since  is the normalizing constant for . Specifically, fix . Then . If  has a
discrete distribution then

Similarly, if  has a continuous distribution then

The distribution that corresponds to this probability density function is what you would expect:

For , the function  is the conditional probability density function of  given . That is,

1. If  has a discrete distribution then

P(X = x)P(E ∣ X = x) = P(E,X = x) P(E)
P(E,X = x)/P(E) = P(X = x ∣ E)

P(E)
A ⊆ S

g(x ∣ E)dx = g(x)P(E ∣ X = x)dx = = P(X ∈ A ∣ E)∫
A

1

P(E)
∫
A

P(E,X ∈ A)

P(E)
(3.5.11)

x ↦ g(x ∣ E) X E

g X x ↦ g(x ∣ E)
X E X E

x ↦ g(x)P(E ∣ X = x)
P(E ∣ X = x) g(x) x ∈ S

E

X Y S T (X,Y )
S×T (X,Y ) f

X g

Y T

g(x) = f(x, y), x ∈ S∑
y∈T

(3.5.12)

Y T ⊆R
k

g(x) = f(x, y)dy, x ∈ S∫
T

(3.5.13)

h Y f x ∈ S X f

S X

x ∈ S g(x) > 0 y ↦ h(y ∣ x) T

h(y ∣ x) = , y ∈ T
f(x, y)

g(x)
(3.5.14)

g(x) y ↦ h(y ∣ x) x ∈ S h(y ∣ x) ≥ 0 Y

h(y ∣ x) = f(x, y) = = 1∑
y∈T

1

g(x)
∑
y∈T

g(x)

g(x)
(3.5.15)

Y

h(y ∣ x)dy = f(x, y)dy = = 1∫
T

1

g(x)
∫
T

g(x)

g(x)
(3.5.16)

x ∈ S y ↦ h(y ∣ x) Y X = x

Y
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2. If  has a continuous distribution then

Proof

There are four cases, depending on the type of distribution of  and , but the computations are identical, except for sums in the
discrete case and integrals in the continuous case. The main tool is the basic theorem when  has a discrete distribution and the
fundamental definition when  has a continuous distribution, with the event  replaced by  for . The other main
element is the fact that  is the PDF of the (joint) distribution of .

1. Suppose that  has a discrete distribution on the countable set . If  also has a discrete distribution on the countable set  then

In this jointly discrete case, there is a simpler argument of course:

If  has a continuous distribution on  then

2. Suppose that  has continuous distributions on . If  has a discrete distribution on the countable set  then

If  has a continuous distribution  then

The following theorem gives Bayes' theorem for probability density functions. We use the notation established above.

Bayes' Theorem. For , the conditional probability density function  of  given  can be computed as follows:

1. If  has a discrete distribution then

2. If  has a continuous distribution then

Proof

In both cases the numerator is  while the denominator is .

In the context of Bayes' theorem,  is the prior probability density function of  and  is the posterior probability density
function of  given  for . Note that the posterior probability density function  is proportional to the function 

. The sum or integral in the denominator is the normalizing constant.

Independence

Intuitively,  and  should be independent if and only if the conditional distributions are the same as the corresponding unconditional
distributions.

P(Y ∈ B ∣ X = x) = h(y ∣ x), B ⊆ T∑
y∈B

(3.5.17)

Y

P(Y ∈ B ∣ X = x) = h(y ∣ x)dy, B ⊆ T∫
B

(3.5.18)

X Y

X

X E {Y ∈ B} B ⊆ T

f (X,Y )

Y T X S

g(x) h(y ∣ x) = g(x)h(y ∣ x) = f(x, y) = P(X ∈ A,Y ∈ B), A ⊆ S∑
x∈A

∑
y∈B

∑
x∈A

∑
y∈B

∑
x∈A

∑
y∈B

(3.5.19)

h(y ∣ x) = = = P(Y = y ∣ X = x), y ∈ T
f(x, y)

g(x)

P(X = x,Y = y)

P (X = x)
(3.5.20)

X S ⊆R
j

g(x) h(y ∣ x)dx = g(x)h(y ∣ x)dx = f(x, y) = P(X ∈ A,Y ∈ B), A ⊆ S∫
A

∑
y∈B

∫
A

∑
y∈B

∫
A

∑
y∈B

(3.5.21)

Y T ⊆R
k X S

g(x) h(y ∣ x)dy = g(x)h(y ∣ x)dy = f(x, y)dy = P(X ∈ A,Y ∈ B), A ⊆ S∑
x∈A

∫
B

∑
x∈A

∫
B

∑
x∈A

∫
B

(3.5.22)

X S ⊆R
j

g(x) h(y ∣ x)dy dx = g(x)h(y ∣ x)dy dx = f(x, y)dy dx = P(X ∈ A,Y ∈ B), A ⊆ S∫
A

∫
B

∫
A

∫
B

∫
A

∫
B

(3.5.23)

y ∈ T x ↦ g(x ∣ y) X y = y

X

g(x ∣ y) = , x ∈ S
g(x)h(y ∣ x)

g(s)h(y ∣ s)∑s∈S

(3.5.24)

X

g(x ∣ y) = , x ∈ S
g(x)h(y ∣ x)

g(s)h(y ∣ s)ds∫S
(3.5.25)

f(x, y) h(y)

g X x ↦ g(x ∣ y)
X Y = y y ∈ T x ↦ g(x ∣ y)

x ↦ g(x)h(y ∣ x)

X Y
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The following conditions are equivalent:

1.  and  are independent.
2.  for , 
3.  for , 
4.  for , 

Proof

The equivalence of (a) and (b) was established in the section on joint distributions. Parts (c) and (d) are equivalent to (b). For a
continuous distribution as described in the details in (4), a probability density function is not unique. The values of a PDF can be
changed to other nonnegative values on a set of measure 0 and the resulting function is still a PDF. So if  or  has a continuous
distribution, the equations above have to be interpreted as holding for  or , respectively, except on a set of measure 0.

Examples and Applications
In the exercises that follow, look for special models and distributions that we have studied. A special distribution may be embedded in a
larger problem, as a conditional distribution, for example. In particular, a conditional distribution sometimes arises when a parameter of a
standard distribution is randomized.

A couple of special distributions will occur frequently in the exercises. First, recall that the discrete uniform distribution on a finite,
nonempty set  has probability density function  given by  for . This distribution governs an element selected at
random from .

Recall also that Bernoulli trials (named for Jacob Bernoulli) are independent trials, each with two possible outcomes generically called
success and failure. The probability of success  is the same for each trial, and is the basic parameter of the random process. The
number of successes in  Bernoulli trials has the binomial distribution with parameters  and . This distribution has probability
density function  given by  for . The binomial distribution is studied in more detail in the
chapter on Bernoulli trials

Coins and Dice

Suppose that two standard, fair dice are rolled and the sequence of scores  is recorded. Let  and 
 denote the minimum and maximum scores, respectively.

1. Find the conditional probability density function of  given  for each .
2. Find the conditional probability density function of  given  for each .

Answer

1. 2 3 4 5 6

1 0 0 0 0 0

2 0 0 0 0

3 0 0 0

4 0 0

5 0

6

2. 2 3 4 5 6

0 0 0 0 0

2 0 0 0 0

3 0 0 0

4 0 0

5 0

X Y

f(x, y) = g(x)h(y) x ∈ S y ∈ T

h(y ∣ x) = h(y) x ∈ S y ∈ T

g(x ∣ y) = g(x) x ∈ S y ∈ T

X Y

x y

S f f(x) = 1/#(S) x ∈ S

S

p ∈ [0, 1]
n ∈ N+ n p

f f(x) = ( ) (1 −pn

x
px )n−x x ∈ {0, 1, … ,n}

( , )X1 X2 U = min{ , }X1 X2

V = max{ , }X1 X2

U V = v v∈ {1, 2, 3, 4, 5, 6}
V U = u u ∈ {1, 2, 3, 4, 5, 6}

g(u ∣ v) u = 1

v = 1

2
3

1
3

2
5

2
5

1
5

2
7

2
7

2
7

1
7

2
9

2
9

2
9

2
9

1
9

2
11

2
11

2
11

2
11

2
11

1
11

h(v ∣ u) u = 1

v = 1 1
11

2
11

1
9

2
11

2
9

1
7

2
11

2
9

2
7

1
5

2
11

2
9

2
7

2
5

1
3
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2 3 4 5 6

6

In the die-coin experiment, a standard, fair die is rolled and then a fair coin is tossed the number of times showing on the die. Let 
denote the die score and  the number of heads.

1. Find the joint probability density function of .
2. Find the probability density function of .
3. Find the conditional probability density function of  given  for each .

Answer
1. and b.

2 3 4 5 6

1

2 0

3 0 0

4 0 0 0

5 0 0 0 0

6 0 0 0 0 0

1

3. 2 3 4 5 6

1

2 0

3 0 0

4 0 0 0

5 0 0 0 0

6 0 0 0 0 0 1

In the die-coin experiment, select the fair die and coin.

1. Run the simulation of 1000 times and compare the empirical density function of  with the true probability density function in the
previous exercise

2. Run the simulation 1000 times and compute the empirical conditional density function of  given . Compare with the
conditional probability density functions in the previous exercise.

In the coin-die experiment, a fair coin is tossed. If the coin is tails, a standard, fair die is rolled. If the coin is heads, a standard, ace-six
flat die is rolled (faces 1 and 6 have probability  each and faces 2, 3, 4, 5 have probability  each). Let  denote the coin score (0 for
tails and 1 for heads) and  the die score.

1. Find the joint probability density function of .
2. Find the probability density function of .
3. Find the conditional probability density function of  given  for each .

h(v ∣ u) u = 1

2
11

2
9

2
7

2
5

2
3 1

N

Y

(N ,Y )
Y

N Y = y y ∈ {0, 1, 2, 3, 4, 5, 6}

f(n, y) n = 1 h(y)

y = 0
1
12

1
24

1
48

1
96

1
102

1
384

63
384

1
12

1
12

1
16

1
24

5
192

1
64

120
384

1
24

1
16

1
16

5
96

5
128

99
384

1
48

1
24

5
96

5
96

64
384

1
96

5
192

5
128

29
384

1
192

1
64

8
384

1
384

1
384

g(n) 1
6

1
6

1
6

1
6

1
6

1
6

g(n ∣ y) n = 1

y = 0
32
63

16
63

8
63

4
63

2
63

1
63

16
60

16
60

12
60

8
60

5
60

3
60

16
99

24
99

24
99

20
99

15
99

2
16

4
16

5
16

5
16

4
29

10
29

15
29

1
4

3
4

Y

N Y = 3

1
4

1
8

X

Y

(X,Y )
Y

X Y = y y ∈ {1, 2, 3, 4, 5, 6}
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Answer
1. and b.

2 3 4 5 6

1

1

3. 2 3 4 5 6

1

In the coin-die experiment, select the settings of the previous exercise.

1. Run the simulation 1000 times and compare the empirical density function of  with the true probability density function in the
previous exercise.

2. Run the simulation 100 times and compute the empirical conditional probability density function of  given . Compare with
the conditional probability density function in the previous exercise.

Suppose that a box contains 12 coins: 5 are fair, 4 are biased so that heads comes up with probability , and 3 are two-headed. A coin
is chosen at random and tossed 2 times. Let  denote the probability of heads of the selected coin, and  the number of heads.

1. Find the joint probability density function of .
2. Find the probability density function of .
3. Find the conditional probability density function of  given  for .

Answer
1. and b.

1 2

1 0 0

1

3. 1 2

1 0 0

Compare the die-coin experiment with the box of coins experiment. In the first experiment, we toss a coin with a fixed probability of heads
a random number of times. In the second experiment, we effectively toss a coin with a random probability of heads a fixed number of
times.

Suppose that  has probability density function  for . Given , a coin with probability of heads  is
tossed 3 times. Let  denote the number of heads.

1. Find the joint probability density function of .
2. Find the probability density of function of .
3. Find the conditional probability density of  given  for . Graph these on the same axes.

f(x, y) y = 1 g(x)

x = 0 1
12

1
12

1
12

1
12

1
12

1
12

1
2

1
8

1
16

1
16

1
16

1
16

1
8

1
2

h(y) 5
24

7
24

7
48

7
48

7
48

5
24

g(x ∣ y) y = 1

x = 0 2
5

4
7

4
7

4
7

4
7

2
5

3
5

3
7

3
7

3
7

3
7

3
5

Y

X Y = 2

1
3

P X

(P ,X)
X

P X = x x ∈ {0, 1, 2}

f(p, x) x = 0 g(p)

p = 1
2

5
48

10
48

5
48

5
12

1
3

4
27

4
27

1
27

4
12

1
4

3
12

h(x) 109
432

154
432

169
432

g(p ∣ x) x = 0

p = 1
2

45
109

45
77

45
169

1
3

64
109

32
77

16
169

108
169

P g(p) = 6p(1 −p) p ∈ [0, 1] P = p p

X

(P ,X)
X

P X = x x ∈ {0, 1, 2, 3}
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Answer

1.  for  and 
2. , .
3. , , , , in each case for 

Compare the box of coins experiment with the last experiment. In the second experiment, we effectively choose a coin from a box with a
continuous infinity of coin types. The prior distribution of  and each of the posterior distributions of  in part (c) are members of the
family of beta distributions, one of the reasons for the importance of the beta family. Beta distributions are studied in more detail in the
chapter on Special Distributions.

In the simulation of the beta coin experiment, set  and  to get the experiment studied in the previous exercise. For
various “true values” of , run the experiment in single step mode a few times and observe the posterior probability density function on
each run.

Simple Mixed Distributions

Recall that the exponential distribution with rate parameter  has probability density function  given by  for 
. The exponential distribution is often used to model random times, under certain assumptions. The exponential distribution is

studied in more detail in the chapter on the Poisson Process. Recall also that for  with , the continuous uniform distribution
on the interval  has probability density function  given by  for . This distribution governs a point selected at
random from the interval.

Suppose that there are 5 light bulbs in a box, labeled 1 to 5. The lifetime of bulb  (in months) has the exponential distribution with
rate parameter . A bulb is selected at random from the box and tested.

1. Find the probability that the selected bulb will last more than one month.
2. Given that the bulb lasts more than one month, find the conditional probability density function of the bulb number.

Answer

Let  denote the bulb number and  the lifetime.

1. 

2. 1 2 3 4 5

0.6364 0.2341 0.0861 0.0317 0.0117

Suppose that  is uniformly distributed on , and given , random variable  is uniformly distributed on the
interval .

1. Find the joint probability density function of .
2. Find the probability density function of .
3. Find the conditional probability density function of  given  for .

Answer

1.  for  and .

2. 

3. For , , ,  
For , , ,  
For , , .

The Poisson Distribution

Recall that the Poisson distribution with parameter  has probability density function  for . This distribution
is widely used to model the number of “random points” in a region of time or space; the parameter  is proportional to the size of the
region. The Poisson distribution is named for Simeon Poisson, and is studied in more detail in the chapter on the Poisson Process.

f(p, x) = 6( ) (1 −p3
x px+1 )4−x p ∈ [0, 1] x ∈ {0, 1, 2, 3, 4}

h(0) = h(3) = 1
5

h(1) = h(2) = 3
10

g(p ∣ 0) = 30p(1 −p)4 g(p ∣ 1) = 60 (1 −pp2 )3 g(p ∣ 2) = 60 (1 −pp3 )2 g(p ∣ 3) = 30 (1 −p)p4 p ∈ [0, 1]

P P

a = b = 2 n = 3
p

r ∈ (0, ∞) f f(t) = re−rt

t ∈ [0, ∞)
a, b ∈ R a < b

[a, b] f f(x) = 1
b−a

x ∈ [a, b]

n

n

N T

P(T > 1) = 0.1156

n

g(n ∣ T > 1)

X {1, 2, 3} X = x ∈ {1, 2, 3} Y

[0, x]

(X,Y )
Y

X Y = y y ∈ [0, 3]

f(x, y) = 1
3x

y ∈ [0, x] x ∈ {1, 2, 3}

h(y) =

⎧

⎩
⎨
⎪⎪

⎪⎪

,11
18

,5
18

,2
18

0 ≤ y ≤ 1

1 < y ≤ 2

2 < y ≤ 3

y ∈ [0, 1] g(1 ∣ y) = 6
11

g(2 ∣ y) = 3
11

g(3 ∣ y) = 2
11

y ∈ (1, 2] g(1 ∣ y) = 0 g(2 ∣ y) = 3
5

g(3 ∣ y) = 2
5

y ∈ (2, 3] g(1 ∣ y) = g(2 ∣ y) = 0 g(3 ∣ y) = 1

a ∈ (0, ∞) g(n) = e−a an

n!
n ∈ N

a
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Suppose that  is the number of elementary particles emitted by a sample of radioactive material in a specified period of time, and has
the Poisson distribution with parameter . Each particle emitted, independently of the others, is detected by a counter with probability 

 and missed with probability . Let  denote the number of particles detected by the counter.

1. For , argue that the conditional distribution of  given  is binomial with parameters  and .
2. Find the joint probability density function of .
3. Find the probability density function of .
4. For , find the conditional probability density function of  given .

Answer
1. Each particle, independently, is detected (success) with probability . This is the very definition of Bernoulli trials, so given 

, the number of detected particles has the binomial distribution with parameters  and 
2. The PDF  of  is defined by

3. The PDF  of  is defined by

This is the Poisson distribution with parameter .
4. The conditional PDF of  given  is defined by

This is the Poisson distribution with parameter , shifted to start at .

The fact that  also has a Poisson distribution is an interesting and characteristic property of the distribution. This property is explored in
more depth in the section on thinning the Poisson process.

Simple Continuous Distributions

Suppose that  has probability density function  defined by  for .

1. Find the conditional probability density function of  given  for 
2. Find the conditional probability density function of  given  for 
3. Find .
4. Are  and  independent?

Answer

1. For ,  for 

2. For ,  for 

3. 
4.  and  are dependent.

Suppose that  has probability density function  defined by  for .

1. Find the conditional probability density function of  given  for .
2. Find the conditional probability density function of  given  for .
3. Find .
4. Are  and  independent?

Answer

1. For ,  for .

2. For ,  for .

3. 
4.  and  are dependent.

N

a

p ∈ (0, 1) 1 −p Y

n ∈ N Y N = n n p

(N ,Y )
Y

y ∈ N N Y = y

p

N = n n p

f (N ,Y )

f(n, y) = , n ∈ N, y ∈ {0, 1, … ,n}e−aan
py

y!

(1 −p)n−y

(n−y)!
(3.5.26)

h Y

h(y) = , y ∈ Ne−pa
(pa)y

y!
(3.5.27)

pa

N Y = y

g(n ∣ y) = , n ∈ {y, y+1, …}e−(1−p)a [(1 −p)a]n−y

(n−y)!
(3.5.28)

(1 −p)a y

Y

(X,Y ) f f(x, y) = x+y (x, y) ∈ (0, 1)2

X Y = y y ∈ (0, 1)
Y X = x x ∈ (0, 1)

P ( ≤ Y ≤ X = )1
4

3
4

∣∣
1
3

X Y

y ∈ (0, 1) g(x ∣ y) =
x+y

y+1/2
x ∈ (0, 1)

x ∈ (0, 1) h(y ∣ x) =
x+y

x+1/2
y ∈ (0, 1)

1
2

X Y

(X,Y ) f f(x, y) = 2(x+y) 0 < x < y < 1

X Y = y y ∈ (0, 1)
Y X = x x ∈ (0, 1)

P (Y ≥ X = )3
4

∣∣
1
2

X Y

y ∈ (0, 1) g(x ∣ y) =
x+y

3y2
x ∈ (0, y)

x ∈ (0, 1) h(y ∣ x) =
x+y

(1+3x)(1−x)
y ∈ (x, 1)

3
10

X Y
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Suppose that  has probability density function  defined by  for .

1. Find the conditional probability density function of  given  for .
2. Find the conditional probability density function of  given  for .
3. Find .
4. Are  and  independent?

Answer

1. For ,  for .

2. For ,  for .

3. 
4.  and  are dependent.

Suppose that  has probability density function  defined by  for  and .

1. Find the conditional probability density function of  given  for .
2. Find the conditional probability density function of  given  for .
3. Are  and  independent?

Answer
1. For ,  for .
2. For ,  for .
3.  and  are independent.

Suppose that  has probability density function  defined by  for .

1. Find the conditional probability density function of  given  for .
2. Find the conditional probability density function of  given  for .
3. Are  and  independent?

Answer

1. For ,  for .
2. For ,  for .
3.  and  are dependent.

Suppose that  is uniformly distributed on the interval , and that given ,  is uniformly distributed on the interval .

1. Find the joint probability density function of .
2. Find the probability density function of .
3. Find the conditional probability density function of  given  for .
4. Are  and  independent?

Answer

1.  for 
2.  for 
3. For ,  for .
4.  and  are dependent.

Suppose that  has probability density function  defined by  for . The conditional probability density function

of  given  is  for .

1. Find the joint probability density function of .
2. Find the probability density function of .
3. Find the conditional probability density function of  given .
4. Are  and  independent?

Answer

1.  for .
2.  for .

(X,Y ) f f(x, y) = 15 yx2 0 < x < y < 1

X Y = y y ∈ (0, 1)
Y X = x x ∈ (0, 1)

P (X ≤ Y = )1
4

∣∣
1
3

X Y

y ∈ (0, 1) g(x ∣ y) = 3x2

y3
x ∈ (0, y)

x ∈ (0, 1) h(y ∣ x) =
2y

1−x2
y ∈ (x, 1)

27
64

X Y

(X,Y ) f f(x, y) = 6 yx2 0 < x < 1 0 < y < 1

X Y = y y ∈ (0, 1)
Y X = x x ∈ (0, 1)

X Y

y ∈ (0, 1) g(x ∣ y) = 3x2 y ∈ (0, 1)
x ∈ (0, 1) h(y ∣ x) = 2y y ∈ (0, 1)

X Y

(X,Y ) f f(x, y) = 2e−xe−y 0 < x < y < ∞

X Y = y y ∈ (0, ∞)
Y X = x x ∈ (0, ∞)

X Y

y ∈ (0, ∞) g(x ∣ y) = e−x

1−e−y
x ∈ (0, y)

x ∈ (0, ∞) h(y ∣ x) = ex−y y ∈ (x, ∞)
X Y

X (0, 1) X = x Y (0, x)

(X,Y )
Y

X Y = y y ∈ (0, 1)
X Y

f(x, y) = 1
x

0 < y < x < 1

h(y) = −lny y ∈ (0, 1)

y ∈ (0, 1) g(x ∣ y) = − 1
x ln y

x ∈ (y, 1)

X Y

X g g(x) = 3x2 x ∈ (0, 1)

Y X = x h(y ∣ x) =
3y2

x3 y ∈ (0, x)

(X,Y )
Y

X Y = y

X Y

f(x, y) =
9y2

x
0 < y < x < 1

h(y) = −9 lnyy2 y ∈ (0, 1)
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3. For ,  for .
4.  and  are dependent.

Multivariate Uniform Distributions

Multivariate uniform distributions give a geometric interpretation of some of the concepts in this section.

Recall that For , the standard measure  on  is given by

In particular,  is the length of ,  is the area of  and  is the volume of .

Details

Technically,  is Lebesgue measure defined on the -algebra of measurable subsets of . In the disccusion below, we assume that
all sets are measurable. The integral representation is valid for the sets that occur in typical applications.

Suppose now that  takes values in ,  takes values in , and that  is uniformly distributed on a set . So 
 and then the joint probability density function  of  is given by  for . Now let 

 and  be the projections of  onto  and  respectively, defined as follows:

Note that . Next we denote the cross sections at  and at , respectively by

Figure : The projections  and , and the cross sections at  and 

In the last section on Joint Distributions, we saw that even though  is uniformly distributed, the marginal distributions of  and 
are not uniform in general. However, as the next theorem shows, the conditional distributions are always uniform.

Suppose that  is uniformly distributed on . Then

1. The conditional distribution of  given  is uniformly on  for each .
2. The conditional distribution of  given  is uniformly on  for each .

Proof

The results are symmetric, so we will prove (a). Recall that  has PDF  given by

Hence for , the conditional PDF of  given  is

and this is the PDF of the uniform distribution on .

Find the conditional density of each variable given a value of the other, and determine if the variables are independent, in each of the
following cases:

1.  is uniformly distributed on the square .

y ∈ (0, 1) g(x ∣ y) = − 1
x ln y

x ∈ (y, 1)

X Y

n ∈ N+ λn R
n

(A) = 1 dx, A ⊆λn ∫
A

R
n (3.5.29)

(A)λ1 A ⊆R (A)λ2 A ⊆R
2 (A)λ3 A ⊆R

3

λn σ R
n

X R
j Y R

k (X,Y ) R ⊆R
j+k

0 < (R) < ∞λj+k f (X,Y ) f(x, y) = 1/ (R)λj+k (x, y) ∈ R

S T R R
j

R
k

S = {x ∈ : (x, y) ∈ R for some y ∈ } , T = {y ∈ : (x, y) ∈ R for some x ∈ }R
j

R
k

R
k

R
j (3.5.30)

R ⊆ S×T x ∈ S y ∈ T

= {t ∈ T : (x, t) ∈ R}, = {s ∈ S : (s, y) ∈ R}Tx Sy (3.5.31)

3.5.1 S T x y

(X,Y ) X Y

(X,Y ) R

Y X = x Tx x ∈ S

X Y = y Sy y ∈ T

X g

g(x) = f(x, y)dy = dy = , x ∈ S∫
Tx

∫
Tx

1

(R)λj+k

( )λk Tx

(R)λj+k

(3.5.32)

x ∈ S Y X = x

h(y ∣ x) = = , y ∈
f(x, y)

g(x)

1

( )λk Tx
Tx (3.5.33)

Tx

(X,Y ) R = (−6, 6)2
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2.  is uniformly distributed on the triangle .
3.  is uniformly distributed on the circle .

Answer

The conditional PDF of  given  is denoted . The conditional PDF of  given  is denoted .

1. For ,  for .
For ,  for .

,  are independent.

2. For ,  for 

For ,  for 
,  are dependent.

3. For ,  for 

For ,  for 

,  are dependent.

In the bivariate uniform experiment, run the simulation 1000 times in each of the following cases. Watch the points in the scatter plot
and the graphs of the marginal distributions.

1. square
2. triangle
3. circle

Suppose that  is uniformly distributed on .

1. Find the conditional density of each pair of variables given a value of the third variable.
2. Find the conditional density of each variable given values of the other two.

Answer

The subscripts 1, 2, and 3 correspond to the variables , , and , respectively. Note that the conditions on  in each case are
those in the definition of the domain . They are stated differently to emphasize the domain of the conditional PDF as opposed to the
given values, which function as parameters. Note also that each distribution is uniform on the appropriate region.

1. For ,  for 

2. For ,  for  and 

3. For ,  for 

4. For ,  for 
5. For ,  for 
6. For ,  for 

The Multivariate Hypergeometric Distribution

Recall the discussion of the (multivariate) hypergeometric distribution given in the last section on joint distributions. As in that discussion,
suppose that a population consists of  objects, and that each object is one of four types. There are  objects of type 1,  objects of type 2,
and  objects of type 3, and  objects of type 0. We sample  objects from the population at random, and without
replacement. The parameters , , , and  are nonnegative integers with  and . Denote the number of type 1, 2, and
3 objects in the sample by , , and , respectively. Hence, the number of type 0 objects in the sample is . In the
following exercises, .

Suppose that  and . Then the conditional distribution of  given  is hypergeometric, and has the
probability density function defined by

Proof

(X,Y ) R = {(x, y) ∈ : −6 < y < x < 6}R
2

(X,Y ) R = {(x, y) ∈ : + < 36}R
2 x2 y2

X Y = y x ↦ g(x ∣ y) Y X = x y ↦ h(y ∣ x)

y ∈ (−6, 6) g(x ∣ y) = 1
12

x ∈ (−6, 6)

x ∈ (−6, 6) h(y ∣ x) = 1
12

y ∈ (−6, 6)

X Y

y ∈ (−6, 6) g(x ∣ y) = 1
6−y

x ∈ (y, 6)

x ∈ (−6, 6) h(y ∣ x) = 1
x+6

y ∈ (−6, x)

X Y

y ∈ (−6, 6) g(x ∣ y) = 1

2 36−y2√
x ∈ (− , )36 −y2− −−−−−

√ 36 −y2− −−−−−
√

x ∈ (−6, 6) g(x ∣ y) = 1

2 36−x2√
y ∈ (− , )36 −x2

− −−−−−
√ 36 −x2

− −−−−−
√

X Y

(X,Y ,Z) R = {(x, y, z) ∈ : 0 < x < y < z < 1}R
3

X Y Z (x, y, z)
R

0 < z < 1 (x, y ∣ z) =f1,2∣3
2
z2

0 < x < y < z

0 < y < 1 (x, z ∣ y) =f1,3∣2
1

y(1−y)
0 < x < y y < z < 1

0 < x < 1 (y, z ∣ x) =f2,3∣1
2

(1−x)2
x < y < z < 1

0 < y < z < 1 (x ∣ y, z) =f1∣2,3
1
y 0 < x < y

0 < x < z < 1 (y ∣ x, z) =f2∣1,3
1

z−x
x < y < z

0 < x < y < 1 (z ∣ x, y) =f3∣1,2
1

1−y
y < z < 1

m a b

c m−a−b−c n

a b c n a+b+c ≤ m n ≤ m

X Y Z n−X−Y −Z

x, y, z ∈ N

z ≤ c n−m+c ≤ z ≤ n (X,Y ) Z = z

g(x, y ∣ z) = , x+y ≤ n−z
( )( )( )a

x

b

y

m−a−b−c

n−x−y−z

( )m−c
n−z

(3.5.34)
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This result can be proved analytically but a combinatorial argument is better. The essence of the argument is that we are selecting a
random sample of size  without replacement from a population of size , with  objects of type 1,  objects of type 2, and 

 objects of type 0. The conditions on  ensure that , or equivalently, that the new parameters make sense.

Suppose that , , and . Then the conditional distribution of  given  and  is
hypergeometric, and has the probability density function defined by

Proof

Again, this result can be proved analytically, but a combinatorial argument is better. The essence of the argument is that we are
selecting a random sample of size  from a population of size , with  objects of type 1 and  objects
type 0. The conditions on  and  ensure that , or equivalently that the new parameters make sense.

These results generalize in a completely straightforward way to a population with any number of types. In brief, if a random vector has a
hypergeometric distribution, then the conditional distribution of some of the variables, given values of the other variables, is also
hypergeometric. Moreover, it is clearly not necessary to remember the hideous formulas in the previous two theorems. You just need to
recognize the problem as sampling without replacement from a multi-type population, and then identify the number of objects of each type
and the sample size. The hypergeometric distribution and the multivariate hypergeometric distribution are studied in more detail in the
chapter on Finite Sampling Models.

In a population of 150 voters, 60 are democrats and 50 are republicans and 40 are independents. A sample of 15 voters is selected at
random, without replacement. Let  denote the number of democrats in the sample and  the number of republicans in the sample.
Give the probability density function of each of the following:

1. 
2. 
3.  given 

Answer

1.  for 

2.  for 

3.  for 

Recall that a bridge hand consists of 13 cards selected at random and without replacement from a standard deck of 52 cards. Let , ,
and  denote the number of spades, hearts, and diamonds, respectively, in the hand. Find the probability density function of each of
the following:

1. 
2. 
3. 
4.  given 
5.  given  and 

Answer

1.  for .

2.  for 

3.  for 

4.  for 

5.  for 

n−z m−c a b

m−a−b z P(Z = z) > 0

y ≤ b z ≤ c n−m+b ≤ y+z ≤ n X Y = y Z = z

g(x ∣ y, z) = , x ≤ n−y−z
( )( )a
x

m−a−b−c
n−x−y−z

( )m−b−c
n−y−z

(3.5.35)

n−y−z m−b−c a m−a−b−c

y z P(Y = y,Z = z) > 0

X Y

(X,Y )
X

Y X = 5

f(x, y) = ( )( )( )1

( )150
15

60
x

50
y

40
15−x−y x+y ≤ 15

g(x) = ( )( )1

( )150
15

60
x

90
15−x x ≤ 15

h(y ∣ 5) = ( )( )1

( )90
10

50
y

40
10−y y ≤ 10

X Y

Z

(X,Y ,Z)
(X,Y )
X

(X,Y ) Z = 3
X Y = 3 Z = 2

f(x, y, z) = ( )( )( )( )1

( )52
13

13
x

13
y

13
z

13
13−x−y−z

x+y+z ≤ 13

g(x, y) = ( )( )( )1

( )52
13

13
x

13
y

26
13−x−y

x+y ≤ 13

h(x) = ( )( )1

( )52
13

13
x

39
13−x

x ≤ 13

g(x, y ∣ 3) = ( )( )( )1

( )39
10

13
x

13
y

13
10−x−y

x+y ≤ 10

h(x ∣ 3, 2) = ( )( )1

( )26
8

13
x

13
8−x

x ≤ 8
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Multinomial Trials

Recall the discussion of multinomial trials in the last section on joint distributions. As in that discussion, suppose that we have a sequence
of  independent trials, each with 4 possible outcomes. On each trial, outcome 1 occurs with probability , outcome 2 with probability ,
outcome 3 with probability , and outcome 0 with probability . The parameters , with , and 

. Denote the number of times that outcome 1, outcome 2, and outcome 3 occurs in the  trials by , , and  respectively. Of
course, the number of times that outcome 0 occurs is . In the following exercises, .

For , the conditional distribution of  given  is also multinomial, and has the probability density function.

Proof

This result can be proved analytically, but a probability argument is better. First, let  denote the outcome of a generic trial. Then 
. Similarly,  and 

. Now, the essence of the argument is that effectively, we have  independent
trials, and on each trial, outcome 1 occurs with probability  and outcome 2 with probability .

For , the conditional distribution of  given  and  is binomial, with the probability density function

Proof

Again, this result can be proved analytically, but a probability argument is better. As before, let  denote the outcome of a generic trial.
Then  and . Thus, the essence of the
argument is that effectively, we have  independent trials, and on each trial, outcome 1 occurs with probability 

.

These results generalize in a completely straightforward way to multinomial trials with any number of trial outcomes. In brief, if a random
vector has a multinomial distribution, then the conditional distribution of some of the variables, given values of the other variables, is also
multinomial. Moreover, it is clearly not necessary to remember the specific formulas in the previous two exercises. You just need to
recognize a problem as one involving independent trials, and then identify the probability of each outcome and the number of trials. The
binomial distribution and the multinomial distribution are studied in more detail in the chapter on Bernoulli Trials.

Suppose that peaches from an orchard are classified as small, medium, or large. Each peach, independently of the others is small with
probability , medium with probability , and large with probability . In a sample of 20 peaches from the orchard, let  denote the
number of small peaches and  the number of medium peaches. Give the probability density function of each of the following:

1. 
2. 
3.  given 

Answer

1.  for 

2.  for 

3.  for 

For a certain crooked, 4-sided die, face 1 has probability , face 2 has probability , face 3 has probability , and face 4 has
probability . Suppose that the die is thrown 50 times. Let , , and  denote the number of times that scores 1, 2, and 3 occur,
respectively. Find the probability density function of each of the following:

1. 
2. 
3. 
4.  given 

n p q

r 1 −p−q−r p, q, r ∈ (0, 1) p+q+r < 1
n ∈ N+ n X Y Z

n−X−Y −Z x, y, z ∈ N

z ≤ n (X,Y ) Z = z

g(x, y ∣ z) =( ) , x+y ≤ n−z
n−z

x, y
( )

p

1 −r

x

( )
q

1 −r

y

(1 − − )
p

1 −r

q

1 −r

n−x−y−z

(3.5.36)

I

P(I = 1 ∣ I ≠ 3) = P(I = 1)/P(I ≠ 3) = p/(1 −r) P(I = 2 ∣ I ≠ 3) = q/(1 −r)

P(I = 0 ∣ I ≠ 3) = (1 −p−q−r)/(1 −r) n−z

p/(1 −r) q/(1 −r)

y+z ≤ n X Y = y Z = z

h(x ∣ y, z) =( ) , x ≤ n−y−z
n−y−z

x
( )

p

1 −q−r

x

(1 − )
p

1 −q−r

n−x−y−z

(3.5.37)

I

P(I = 1 ∣ I ∉ {2, 3}) = p/(1 −q−r) P(I = 0 ∣ I ∉ {2, 3}) = (1 −p−q−r)/(1 −q−r)

n−y−z

p/(1 −q−r)

3
10

1
2

1
5

X

Y

(X,Y )
X

Y X = 5

f(x, y) = ( )20
x, y ( )3

10

x

( )1
2

y
( )1

5

20−x−y

x+y ≤ 20

g(x) = ( )20
x ( )3

10

x

( )7
10

20−x

x ≤ 20

h(y ∣ 5) = ( )15
y
( )5

7

y

( )2
7

15−y

y ≤ 15

2
5

3
10

1
5

1
10

X Y Z

(X,Y ,Z)
(X,Y )
X

(X,Y ) Z = 5
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5.  given  and 

Answer

1.  for 

2.  for 

3.  for 

4.  for 

5.  for 

Bivariate Normal Distributions

The joint distributions in the next two exercises are examples of bivariate normal distributions. The conditional distributions are also
normal, an important property of the bivariate normal distribution. In general, normal distributions are widely used to model physical
measurements subject to small, random errors. The bivariate normal distribution is studied in more detail in the chapter on Special
Distributions.

Suppose that  has the bivariate normal distribution with probability density function  defined by

1. Find the conditional probability density function of  given  for .
2. Find the conditional probability density function of  given  for .
3. Are  and  independent?

Answer

1. For ,  for . This is the PDF of the normal distribution with mean 0 and variance 4.

2. For ,  for . This is the PDF of the normal distribution with mean 0 and variance 9.

3.  and  are independent.

Suppose that  has the bivariate normal distribution with probability density function  defined by

1. Find the conditional probability density function of  given  for .
2. Find the conditional probability density function of  given  for .
3. Are  and  independent?

Answer

1. For ,  for . This is the PDF of the normal distribution with mean  and variance .

2. For ,  for . This is the PDF of the normal distribution with mean  and variance .

3.  and  are dependent.

Mixtures of Distributions

With our usual sets  and , as above, suppose that  is a probability measure on  for each . Suppose also that  is a probability
density function on . We can obtain a new probability measure on  by averaging (or mixing) the given distributions according to .

First suppose that  is the probability density function of a discrete distribution on the countable set . Then the function  defined
below is a probability measure on :

Proof

X Y = 10 Z = 5

f(x, y, z) = ( )50
x, y, z

( )2
5

x

( )3
10

y

( )1
5

z

( )1
10

50−x−y−z

x+y+z ≤ 50

g(x, y) = ( )50
x, y
( )2

5

x

( )3
10

y

( )3
10

50−x−y

x+y ≤ 50

h(x) = ( )50
x ( )2

5

x

( )3
5

50−x

x ≤ 50

g(x, y ∣ 5) = ( )45
x, y

( )1
2

x
( )3

8

y

( )1
8

45−x−y

x+y ≤ 45

h(x ∣ 10, 5) = ( )35
x
( )4

5

x

( )1
4

10−x
x ≤ 35

(X,Y ) f

f(x, y) = exp[−( + )], (x, y) ∈
1

12π

x2

8

y2

18
R

2 (3.5.38)

X Y = y y ∈ R

Y X = x x ∈ R

X Y

y ∈ R g(x ∣ y) = 1
2 2π√

e− /8x2
x ∈ R

x ∈ R h(y ∣ x) = 1

3 2π√
e− /18y2

y ∈ R

X Y

(X,Y ) f

f(x, y) = exp[− ( −xy+ )], (x, y) ∈
1

π3
–

√

2

3
x2 y2

R
2 (3.5.39)

X Y = y y ∈ R

Y X = x x ∈ R

X Y

y ∈ R g(x ∣ y) = 2
3π

−−
√ e− (x−y/2

2
3

)
2

x ∈ R y/2 3/4

x ∈ R h(y ∣ x) = 2
3π

−−
√ e− (y−x/2

2

3
)2

y ∈ R x/2 3/4

X Y

S T Px T x ∈ S g

S T g

g S P

T

P(B) = g(x) (B), B ⊆ T∑
x∈S

Px (3.5.40)
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Clearly  for  and . Suppose that  is a countable, disjoint collection of subsets
of . Then

Reversing the order of summation is justified since the terms are nonnegative.

In the setting of the previous theorem, suppose that  has probability density function  for each . Then  has probability
density function  given by

Proof

As usual, we will consider the discrete and continuous cases for the distributions on  separately.

1. Suppose that  is countable so that  is a discrete probability measure for each . By definition, for each , 
 for . So the probability density function  of  is given by

2. Suppose now that  has a continuous distribution on , with PDF  for each , For ,

So by definition,  is the PDF of . Again, the interchange of sum and integral is justified because the functions are nonnegative.
Technically, we also need  to be measurable for  so that the integral makes sense.

Conversely, given a probability density function  on  and a probability density function  on  for each , the function  defined
in the previous theorem is a probability density function on .

Suppose now that  is the probability density function of a continuous distribution on . Then the function  defined below is a
probability measure on :

Proof

The proof is just like the proof of Theorem (45) with integrals over  replacing the sums over . Clearly  for  and 
. Suppose that  is a countable, disjoint collection of subsets of . Then

Reversing the integral and the sum is justified since the terms are nonnegative. Technically, we need the subsets of  and the mapping 
 to be measurable.

In the setting of the previous theorem, suppose that  is a discrete (respectively continuous) distribution with probability density
function  for each . Then  is also discrete (respectively continuous) with probability density function  given by

Proof

The proof is just like the proof of Theorem (46) with integrals over  replacing the sums over .

1. Suppose that  is countable so that  is a discrete probability measure for each . By definition, for each , 
 for . So the probability density function  of  is given by

P(B) ≥ 0 B ⊆ T P(T ) = g(x) 1 = 1∑x∈S { : i ∈ I}Bi

T

P( ) = g(x) ( ) = g(x) ( ) = g(x) ( ) = P( )⋃
i∈I

Bi ∑
x∈S

Px ⋃
i∈I

Bi ∑
x∈S

∑
i∈I

Px Bi ∑
i∈I

∑
x∈S

Px Bi ∑
i∈I

Bi (3.5.41)

Px hx x ∈ S P

h

h(y) = g(x) (y), y ∈ T∑
x∈S

hx (3.5.42)

T

T Px x ∈ S x ∈ S

(y) = ({y})hx Px y ∈ T h P

h(y) = P ({y}) = g(x) ({y}) = g(x) (y), y ∈ T∑
x∈S

Px ∑
x∈S

hx (3.5.43)

Px T ⊆ Rk gx x ∈ S B ⊆ T

P(B) = g(x) (B) = g(x) (y)dy = g(x) (y)dy = h(y)dy∑
x∈S

Px ∑
x∈S

∫
B

hx ∫
B

∑
x∈S

hx ∫
B

(3.5.44)

h P

y ↦ (y)hx x ∈ S

g S hx T x ∈ S h

T

g S ⊆R
j

P

T

P(B) = g(x) (B)dx, B ⊆ T∫
S

Px (3.5.45)

S S P(B) ≥ 0 B ⊆ T

P(T ) = g(x) (T )dx = g(x)dx = 1∫S Px ∫S { : i ∈ I}Bi T

P( ) = g(x) ( ) = g(x) ( ) = g(x) ( ) = P( )⋃
i∈I

Bi ∫
S

Px ⋃
i∈I

Bi ∫
S

∑
i∈I

Px Bi ∑
i∈I

∫
S

Px Bi ∑
i∈I

Bi (3.5.46)

T

x ↦ (B)Px

Px

hx x ∈ S P h

h(y) = g(x) (y)dx, y ∈ T∫
S

hx (3.5.47)

S S

T Px x ∈ S x ∈ S

(y) = ({y})hx Px y ∈ T h P
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Technically, we need  to be measurable for .
2. Suppose now that  has a continuous distribution on , with PDF  for each , For ,

So by definition,  is the PDF of . Again, the interchange of sum and integral is justified because the functions are nonnegative.
Technically, we also need  to be measurable so that the integral makes sense.

In both cases, the distribution  is said to be a mixture of the set of distributions , with mixing density .

One can have a mixture of distributions, without having random variables defined on a common probability space. However, mixtures are
intimately related to conditional distributions. Returning to our usual setup, suppose that  and  are random variables for an experiment,
taking values in  and  respectively and that  probability density function . The following result is simply a restatement of the law of
total probability.

The distribution of  is a mixture of the conditional distributions of  given , over , with mixing density .

Proof

Only the notation is different.

1. If  has a discrete distribuion on the countable set  then

2. If  has a continuous distribution  then

Finally we note that a mixed distribution (with discrete and continuous parts) really is a mixture, in the sense of this discussion.

Suppose that  is a mixed distribution on a set . Then  is a mixture of a discrete distribution and a continuous distribution.

Proof

Recall that mixed distribution means that  can be partitioned into a countable set  and a set  for some  with the
properties that  for ,  for , and . Let  and define the PDF  on  by 

 and . Recall that the conditional distribution  defined by  for  is a discrete
distribution on  and similarly the conditional distribution  defined by  for  is a continuous
distribution on . Clearly with this setup,

This page titled 3.5: Conditional Distributions is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random
Services) via source content that was edited to the style and standards of the LibreTexts platform.

h(y) = P ({y}) = g(x) ({y})dx = g(x) (y)dx, y ∈ T∫
S

Px ∫
S

hx (3.5.48)

x ↦ ({y}) = (y)Px hx y ∈ T

Px T ⊆ Rk gx x ∈ S B ⊆ T

P(B) = g(x) (B)dx = g(x) (y)dy dx = g(x) (y)dx dy = h(y)dy∫
S

Px ∫
S

∫
B

hx ∫
B

∫
S

hx ∫
B

(3.5.49)

h P

(x, y) ↦ (y)hx

P { : x ∈ S}Px g

X Y

S T X g

Y Y X = x x ∈ S g

X S

P(Y ∈ B) = g(x)P(Y ∈ B ∣ X = x), B ⊆ T∑
x∈S

(3.5.50)

X S ⊆R
j

P(Y ∈ B) = g(x)P(Y ∈ B ∣ X = x)dx, B ⊆ T∫
S

(3.5.51)

P T P

T D C ⊆R
n n ∈ N+

P({x}) > 0 x ∈ D P({x}) = 0 x ∈ C p = P(D) ∈ (0, 1) S = {d, c} g S

g(d) = p g(c) = 1 −p Pd (A) = P(A∩D)/P(D)Pd A ⊆ T

T Pc (A) = P(A∩C)/P(C)Pc A ⊆ T

T

P(A) = g(c) (A) +g(d) (A), A ⊆ TPc Pd (3.5.52)
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