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3.8: Convergence in Distribution
       

This section is concenred with the convergence of probability distributions, a topic of basic importance in probability theory. Since
we will be almost exclusively concerned with the convergences of sequences of various kinds, it's helpful to introduce the notation 

.

Distributions on 

Definition

We start with the most important and basic setting, the measurable space , where  is the set of real numbers of course, and 
 is the Borel -algebra of subsets of . Recall that if  is a probability measure on , then the function 

defined by  for  is the (cumulative) distribution function of . Recall also that  completely determines 
. Here is the definition for convergence of probability measures in this setting:

Suppose  is a probability measure on  with distribution function  for each . Then  converges (weakly)
to  as  if  as  for every  where  is continuous. We write  as .

Recall that a distribution function  is continuous at  if and only if , so that  is not an atom of the
distribution (a point of positive probability). We will see shortly why this condition on  is appropriate. Of course, a probability
measure on  is usually associated with a real-valued random variable for some random experiment that is modeled by a
probability space . So to review,  is the set of outcomes,  is the -algebra of events, and  is the probability measure
on the sample space . If  is a real-valued random variable defined on the probability space, then the distribution of  is
the probability measure  on  defined by  for , and then of course, the distribution function of 

 is the function  defined by  for . Here is the convergence terminology used in this setting:

Suppose that  is a real-valued random variable with distribution  for each . If  as  then we say
that  converges in distribution to  as . We write  as  in distribution.

So if  is the distribution function of  for , then  as  in distribution if  at every
point  where  is continuous. On the one hand, the terminology and notation are helpful, since again most probability
measures are associated with random variables (and every probability measure can be). On the other hand, the terminology and
notation can be a bit misleading since the random variables, as functions, do not converge in any sense, and indeed the random
variables need not be defined on the same probability spaces. It is only the distributions that converge. However, often the random
variables are defined on the same probability space , in which case we can compare convergence in distribution with the
other modes of convergence we have or will study:

Convergence with probability 1
Convergence in probability
Convergence in mean

We will show, in fact, that convergence in distribution is the weakest of all of these modes of convergence. However, strength of
convergence should not be confused with importance. Convergence in distribution is one of the most important modes of
convergence; the central limit theorem, one of the two fundamental theorems of probability, is a theorem about convergence in
distribution.

Preliminary Examples

The examples below show why the definition is given in terms of distribution functions, rather than probability density functions,
and why convergence is only required at the points of continuity of the limiting distribution function. Note that the distributions
considered are probability measures on , even though the support of the distribution may be a much smaller subset. For the
first example, note that if a deterministic sequence converges in the ordinary calculus sense, then naturally we want the sequence
(thought of as random variables) to converge in distribution. Expand the proof to understand the example fully.

Suppose that  for . Define random variable  with probability 1 for each . Then  as 
 if and only if  as  in distribution.
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Proof

For , the CDF  of  is given by  for  and  for .

1. Suppose that  as . If  then , and hence , for all but finitely many , and
so  as . If  then ,and hence , for all but finitely many , and so 

 as . Nothing can be said about the limiting behavior of  as  without more information.
For example, if  for all but finitely many  then  as . If  for all but finitely
many  then  as . If  for infinitely many  and  for infinitely many 

 then  does not have a limit as . But regardless, we have  as  for every 
 except perhaps , the one point of discontinuity of . Hence  as  in distribution.

2. Conversely, suppose that  as  in distribution. If  then  as  and hence 
for all but finitely many . If  then  as  and hence  for all but finitely many 

. So, for every ,  for all but finitely many , and hence  as .

The proof is finished, but let's look at the probability density functions to see that these are not the proper objects of study. For 
, the PDF  of  is given by  and  for . Only when  for all but

finitely many  do we have  for .

For the example below, recall that  denotes the set of rational numbers. Once again, expand the proof to understand the example
fully

For , let  denote the discrete uniform distribution on  and let  denote the continuous uniform

distribution on the interval . Then

1.  as 
2.  for each  but .

Proof

As usual, let  denote the CDF of  for .

1. For  note that  is given by  for . But  so  as 
 for . Of course,  for  and  for . So  as  for all

.
2. Note that by definition, so  for . On the other hand,  is a continuous distribution and  is countable,

so .

The proof is finished, but let's look at the probability density functions. For , the PDF  of  is given by 

for  and  otherwise. Hence  for  and , so  as 

 for every .

The point of the example is that it's reasonable for the discrete uniform distribution on  to converge to the

continuous uniform distribution on , but once again, the probability density functions are evidently not the correct objects of
study.

Probability Density Functions

As the previous example shows, it is quite possible to have a sequence of discrete distributions converge to a continuous
distribution (or the other way around). Recall that probability density functions have very different meanings in the discrete and
continuous cases: density with respect to counting measure in the first case, and density with respect to Lebesgue measure in the
second case. This is another indication that distribution functions, rather than density functions, are the correct objects of study.
However, if probability density functions of a fixed type converge then the distributions converge. Recall again that we are
thinnking of our probability distributions as measures on  even when supported on a smaller subset.

Convergence in distribution in terms of probability density functions.
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1. Suppose that  is a probability density function for a discrete distribution  on a countable set  for each .
If  as  for each  then  as .

2. Suppose that  is a probability density function for a continuous distribution  on  for each  If 
as  for all  (except perhaps on a set with Lebesgue measure 0) then  as .

Proof
1. Fix . Then  for  and . It follows from Scheffé's

theorem with the measure space  that  as .
2. Fix . Then  for  and . It follows from Scheffé's

theorem with the measure space  that  as .

Convergence in Probability

Naturally, we would like to compare convergence in distribution with other modes of convergence we have studied.

Suppose that  is a real-valued random variable for each , all defined on the same probability space. If 
as  in probability then  as  in distribution.

Proof

Let  denote the distribution function of  for . Fix . Note first that 
. Hence .

Next, note that . Hence 
. From the last two results it follows that

Letting  and using convergence in probability gives

Finally, letting  we see that if  is continuous at  then  as .

Our next example shows that even when the variables are defined on the same probability space, a sequence can converge in
distribution, but not in any other way.

Let  be an indicator variable with , so that  is the result of tossing a fair coin. Let 
 for . Then

1.  as  in distribution.
2. .
3.  does not converge to  as  in probability.
4.  does not converge to  as  in mean.

Proof
1. This trivially holds since  has the same distribution as .
2. This follows since  for every .
3. This follows since  for each .
4. This follows since  for each .

The critical fact that makes this counterexample work is that  has the same distribution as . Any random variable with this
property would work just as well, so if you prefer a counterexample with continuous distributions, let  have probability density
function  given by  for . The distribution of  is an example of a beta distribution.

The following summary gives the implications for the various modes of convergence; no other implications hold in general.

Suppose that  is a real-valued random variable for each , all defined on a common probability space.

1. If  as  with probability 1 then  as  in probability.
2. If  as  in mean then  as  in probability.
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3. If  as  in probability then  as  in distribtion.

It follows that convergence with probability 1, convergence in probability, and convergence in mean all imply convergence in
distribution, so the latter mode of convergence is indeed the weakest. However, our next theorem gives an important converse to
part (c) in (7), when the limiting variable is a constant. Of course, a constant can be viewed as a random variable defined on any
probability space.

Suppose that  is a real-valued random variable for each , defined on the same probability space, and that . If 
 as  in distribution then  as  in probability.

Proof

Assume that the probability space is . Note first that  as  if  and  as 
 if . It follows that  as  for every .

The Skorohod Representation

As noted in the summary above, convergence in distribution does not imply convergence with probability 1, even when the random
variables are defined on the same probability space. However, the next theorem, known as the Skorohod representation theorem,
gives an important partial result in this direction.

Suppose that  is a probability measure on  for each  and that  as . Then there exist real-
valued random variables  for , defined on the same probability space, such that

1.  has distribution  for .
2.  as  with probability 1.

Proof

Let  be a probability space and  a random variable defined on this space that is uniformly distributed on the
interval . For a specific construction, we could take ,  the -algebra of Borel measurable subsets of ,
and  Lebesgue measure on  (the uniform distribution on ). Then let  be the identity function on  so that 

 for , so that  has probability distribution . We have seen this construction many times before.

1. For , let  denote the distribution function of  and define  where  is the quantile functions
of . Recall that  has distribution function  and therefore  has distribution  for . Of course, these
random variables are also defined on .

2. Let  and let . Pick a continuity point  of  such that . Then 
and hence  for all but finitely many . It follows that  for all but finitely
many . Let  and  to conclude that . Next, let  satisfy 
and let . Pick a continuity point  of  such that . Then  and hence 

 for all but finitely many . It follows that  for all but finitely many .
Let  and  to conclude that . Letting  it follows that 

 if  is a point of continuity of . Therefore  as  if  is a
point of continuity of . Recall from analysis that since  is increasing, the set  of discontinuities of 

 is countable. Since  has a continuous distribution, . Finally, it follows that 
.

The following theorem illustrates the value of the Skorohod representation and the usefulness of random variable notation for
convergence in distribution. The theorem is also quite intuitive, since a basic idea is that continuity should preserve convergence.

Suppose that  is a real-valued random variable for each  (not necessarily defined on the same probability space).
Suppose also that  is measurable, and let  denote the set of discontinuities of , and  the distribution of .
If  as  in distribution and , then  as  in distribution.

Proof

By Skorohod's theorem, there exists random variables  for , defined on the same probability space , such
that  has the same distribution as  for , and  as  with probability 1. Since 
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 it follows that  as  with probability 1. Hence by the theorem above, 
 as  in distribution. But  has the same distribution as  for each .

As a simple corollary, if  converges  as  in distribution, and if  then  converges to  as 
 in distribution. But we can do a little better:

Suppose that  is a real-valued random variable and that  for each . If  as  in
distribution and if  and  as , then  as  in distribution.

Proof

Again by Skorohod's theorem, there exist random variables  for , defined on the same probability space 
such that  has the same distribution as  for  and  as  with probability 1. Hence also 

 as  with probability 1. By the result above,  as  in
distribution. But  has the same distribution as  for .

The definition of convergence in distribution requires that the sequence of probability measures converge on sets of the form 
 for  when the limiting distrbution has probability 0 at . It turns out that the probability measures will converge on

lots of other sets as well, and this result points the way to extending convergence in distribution to more general spaces. To state the
result, recall that if  is a subset of a topological space, then the boundary of  is  where  is the
closure of  (the smallest closed set that contains ) and  is the interior of  (the largest open set contained in ).

Suppose that  is a probability measure on  for . Then  as  if and only if 
as  for every  with .

Proof

Suppose that  as . Let  be a random variable with distribution  for . (We don't care about the
underlying probability spaces.) If  then the set of discontinuities of , the indicator function of , is . So, suppose 

. By the continuity theorem above,  as  in distribution. Let  denote the CDF of 
 for . The only possible points of discontinuity of  are 0 and 1. Hence  as .

But  for . Hence  and so also  as .

Conversely, suppose that the condition in the theorem holds. If , then the boundary of  is , so if 
then  as . So by definition,  as .

In the context of this result, suppose that  with . If , then as  we have 
, , , and . Of course, the limiting values are all the

same.

Examples and Applications
Next we will explore several interesting examples of the convergence of distributions on . There are several important cases
where a special distribution converges to another special distribution as a parameter approaches a limiting value. Indeed, such
convergence results are part of the reason why such distributions are special in the first place.

The Hypergeometric Distribution

Recall that the hypergeometric distribution with parameters , , and  is the distribution that governs the number of type 1
objects in a sample of size , drawn without replacement from a population of  objects with  objects of type 1. It has discrete
probability density function  given by

The pramaters , , and  are positive integers with  and . The hypergeometric distribution is studied in more detail
in the chapter on Finite Sampling Models
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Recall next that Bernoulli trials are independent trials, each with two possible outcomes, generically called success and failure. The
probability of success  is the same for each trial. The binomial distribution with parameters  and  is the
distribution of the number successes in  Bernoulli trials. This distribution has probability density function  given by

The binomial distribution is studied in more detail in the chapter on Bernoulli Trials. Note that the binomial distribution with
parameters  and  is the distribution that governs the number of type 1 objects in a sample of size , drawn with
replacement from a population of  objects with  objects of type 1. This fact is motivation for the following result:

Suppose that  for each  and that  as . For fixed , the hypergeometric
distribution with parameters , , and  converges to the binomial distribution with parameters  and  as .

Proof

Recall that for  and , we let  denote the falling power of  of order . The
hypergeometric PDF can be written as

In the fraction above, the numerator and denominator both have  fractors. Suppose that we group the  factors in  with the
first  factors of  and the  factors of  with the last  factors of  to form a product of 
fractions. The first  fractions have the form  for some  that does not depend on . Each of these
converges to  as . The last  fractions have the form  for some  that does not
depend on . Each of these converges to  as . Hence

The result now follows from the theorem above on density functions.

From a practical point of view, the last result means that if the population size  is “large” compared to sample size , then the
hypergeometric distribution with parameters , , and  (which corresponds to sampling without replacement) is well
approximated by the binomial distribution with parameters  and  (which corresponds to sampling with replacement).
This is often a useful result, not computationally, but rather because the binomial distribution has fewer parameters than the
hypergeometric distribution (and often in real problems, the parameters may only be known approximately). Specifically, in the
limiting binomial distribution, we do not need to know the population size  and the number of type 1 objects  individually, but
only in the ratio .

In the ball and urn experiment, set  and . For each of the following values of  (the sample size), switch
between sampling without replacement (the hypergeometric distribution) and sampling with replacement (the binomial
distribution). Note the difference in the probability density functions. Run the simulation 1000 times for each sampling mode
and compare the relative frequency function to the probability density function.

1. 10
2. 20
3. 30
4. 40
5. 50

The Binomial Distribution

Recall again that the binomial distribution with parameters  and  is the distribution of the number successes in 
Bernoulli trials, when  is the probability of success on a trial. This distribution has probability density function  given by

p ∈ [0, 1] n ∈ N+ p

n g

g(k) =( ) (1 −p , k ∈ {0, 1, … ,n}
n

k
pk )n−k (3.8.4)

n p = r/m n

m r

∈ {0, 1, … ,m}rm m ∈ N+ /m → prm m → ∞ n ∈ N+

m rm n n p m → ∞

a ∈ R j∈ N = a (a−1) ⋯ [a−(j−1)]a(j) a j

(k) =( ) , k ∈ {0, 1, … ,n}fm
n

k

(m−r
(k)
m rm)(n−k)

m(n)
(3.8.5)

n k r(k)
m

k m(n) n−k (m−rm)(n−k) n−k m(n) n

k ( −j)/(m−j)rm j m

p m → ∞ n−k (m− −j)/(m−k−j)rm j

m 1 −p m → ∞

(k) →( ) (1 −p  as m → ∞ for each k ∈ {0, 1, … ,n}fm
n

k
pk )n−k (3.8.6)

m n

m r n

n p = r/m

m r

r/m

m = 100 r = 30 n

n ∈ N+ p ∈ [0, 1] n

p f

f(k) =( ) (1 −p , k ∈ {0, 1, … ,n}
n

k
pk )n−k (3.8.7)
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Recall also that the Poisson distribution with parameter  has probability density function  given by

The distribution is named for Simeon Poisson and governs the number of “random points” in a region of time or space, under
certain ideal conditions. The parameter  is proportional to the size of the region of time or space. The Poisson distribution is
studied in more detail in the chapter on the Poisson Process.

Suppose that  for  and that  as . Then the binomial distribution with parameters 
 and  converges to the Poisson distribution with parameter  as .

Proof

For  with , the binomial PDF can be written as

First,  as  for . Next, by a famous limit from calculus, 
 as . Hence also  as  for fixed . Therefore 

 as  for each . The result now follows from the theorem above on density functions.

From a practical point of view, the convergence of the binomial distribution to the Poisson means that if the number of trials  is
“large” and the probability of success  “small”, so that  is small, then the binomial distribution with parameters  and  is well
approximated by the Poisson distribution with parameter . This is often a useful result, again not computationally, but rather
because the Poisson distribution has fewer parameters than the binomial distribution (and often in real problems, the parameters
may only be known approximately). Specifically, in the approximating Poisson distribution, we do not need to know the number of
trials  and the probability of success  individually, but only in the product . As we will see in the next chapter, the condition
that  be small means that the variance of the binomial distribution, namely  is approximately ,
which is the variance of the approximating Poisson distribution.

In the binomial timeline experiment, set the parameter values as follows, and observe the graph of the probability density
function. (Note that  in each case.) Run the experiment 1000 times in each case and compare the relative frequency
function and the probability density function. Note also the successes represented as “random points” in discrete time.

1. , 
2. , 
3. , 

In the Poisson experiment, set  and , to get the Poisson distribution with parameter 5. Note the shape of the
probability density function. Run the experiment 1000 times and compare the relative frequency function to the probability
density function. Note the similarity between this experiment and the one in the previous exercise.

The Geometric Distribution

Recall that the geometric distribution on  with success parameter  has probability density function  given by

The geometric distribution governs the trial number of the first success in a sequence of Bernoulli trials.

Suppose that  has the geometric distribution on  with success parameter . For , the conditional
distribution of  given  converges to the uniform distribution on  as .

Proof

The CDF  of  is given by  for . Hence for , the conditional CDF of  given 
is

r ∈ (0, ∞) g

g(k) = , k ∈ Ne−r r
k

k!
(3.8.8)

r

∈ [0, 1]pn n ∈ N+ n → r ∈ (0, ∞)pn n → ∞
n pn r n → ∞

k, n ∈ N k ≤ n

(k) = (1 − = (n ) [(n−1) ] ⋯ [(n−k+1) ] (1 −fn
n(k)

k!
pkn pn)n−k 1

k!
pn pn pn pn)n−k (3.8.9)

(n−j) → rpn n → ∞ j∈ {0, 1, … ,n−1}
(1 − = (1 −n /n →pn)n pn )n e−r n → ∞ (1 − →pn)n−k e−r n → ∞ k ∈ N+

(k) → /k!fn e−rrk n → ∞ k ∈ N+

n

p np2 n p

r = np

n p np

np2 np(1 −p) = np−np2 r = np

np = 5

n = 10 p = 0.5
n = 20 p = 0.25
n = 100 p = 0.05

r = 5 t = 1

N+ p ∈ (0, 1] f

f(k) = p(1 −p , k ∈)k−1 N+ (3.8.10)

U N+ p ∈ (0, 1] n ∈ N+

U U ≤ n {1, 2, … ,n} p ↓ 0

F U F (k) = 1 −(1 −p)k k ∈ N+ n ∈ N+ U U ≤ n
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Using L'Hospital's rule, gives  as  for . As a function of  this is the CDF of the uniform
distribution on .

Next, recall that the exponential distribution with rate parameter  has distribution function  given by

The exponential distribution governs the time between “arrivals” in the Poisson model of random points in time.

Suppose that  has the geometric distribution on  with success parameter  for , and that 
 as . The distribution of  converges to the exponential distribution with parameter  as 

.

Proof

Let  denote the CDF of . Then for 

We showed in the proof of the convergence of the binomial distribution that  as , and hence 
 as . But by definition,  or equivalently,  so it

follows from the squeeze theorem that  as . Hence  as . As a function
of .

Note that the limiting condition on  and  in the last result is precisely the same as the condition for the convergence of the
binomial distribution to the Poisson distribution. For a deeper interpretation of both of these results, see the section on the Poisson
distribution.

In the negative binomial experiment, set  to get the geometric distribution. Then decrease the value of  and note the
shape of the probability density function. With  run the experiment 1000 times and compare the relative frequency
function to the probability density function.

In the gamma experiment, set  to get the exponential distribution, and set . Note the shape of the probability density
function. Run the experiment 1000 times and compare the empirical density function and the probability density function.
Compare this experiment with the one in the previous exercise, and note the similarity, up to a change in scale.

The Matching Distribution

For , consider a random permutation  of the elements in the set . We say that a match
occurs at position  if .

 for each .

Proof

The number of permutations of  is . For , the number of such permutations with  in position 
is . Hence . A more direct argument is that  is no more or less likely to end up in
position  as any other number.

So the matching events all have the same probability, which varies inversely with the number of trials.

 for  with .

Proof

(k) = P(U ≤ k ∣ U ≤ n) = = , k ∈ {1, 2, … n}Fn

P(U ≤ k)

P(U ≤ n)

1 −(1 −p)k

1 −(1 −p)n
(3.8.11)

(k) → k/nFn p ↓ 0 k ∈ {1, 2, … ,n} k

{1, 2, … ,n}

r ∈ (0, ∞) G

G(t) = 1 − , 0 ≤ t < ∞e−rt (3.8.12)

Un N+ ∈ (0, 1]pn n ∈ N+

n → r ∈ (0, ∞)pn n → ∞ /nUn r

n → ∞

Fn /nUn x ∈ [0, ∞)

(x) = P( ≤ x) = P( ≤ nx) = P ( ≤ ⌊nx⌋) = 1 −Fn

Un

n
Un Un (1 − )pn

⌊nx⌋ (3.8.13)

(1 − →pn)n e−r n → ∞
→(1 − )pn

nx e−rx n → ∞ ⌊nx⌋ ≤ nx < ⌊nx⌋+1 nx−1 < ⌊nx⌋ ≤ nx

→(1 − )pn
⌊nx⌋ e−rx n → ∞ (x) → 1 −Fn e−rx n → ∞

x ∈ [0, ∞), thisistheCDFoftheexponentialdistributionwithparameter\(r

n p

k = 1 p

p = 0.5

k = 1 r = 5

n ∈ N+ ( , , … , )X1 X2 Xn {1, 2, … ,n}
i = iXi

P ( = i) =Xi
1
n i ∈ {1, 2, … ,n}

{1, 2, … ,n} n! i ∈ {1, 2, … ,n} i i

(n−1)! P( = i) = (n−1)!/n! = 1/nXi i

i
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1
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Again, the number of permutations of  is . For distinct , the number of such permutations
with  in position  and  in position  is . Hence .

So the matching events are dependent, and in fact are positively correlated. In particular, the matching events do not form a
sequence of Bernoulli trials. The matching problem is studied in detail in the chapter on Finite Sampling Models. In that section we
show that the number of matches  has probability density function  given by:

The distribution of  converges to the Poisson distribution with parameter 1 as .

Proof

For ,

As a function of , this is the PDF of the Poisson distribution with parameter 1. So the result follows from the theorem
above on density functions.

In the matching experiment, increase  and note the apparent convergence of the probability density function for the number of
matches. With selected values of , run the experiment 1000 times and compare the relative frequency function and the
probability density function.

The Extreme Value Distribution

Suppose that  is a sequence of independent random variables, each with the standard exponential distribution
(parameter 1). Thus, recall that the common distribution function  is given by

As , the distribution of  converges to the distribution with distribution function 
given by

Proof

Let  and recall that  has CDF . Let  denote the CDF of . For 

By our famous limit from calculus again,  as .

The limiting distribution in Exercise (27) is the standard extreme value distribution, also known as the standard Gumbel
distribution in honor of Emil Gumbel. Extreme value distributions are studied in detail in the chapter on Special Distributions.

The Pareto Distribution

Recall that the Pareto distribution with shape parameter  has distribution function  given by

The Pareto distribution, named for Vilfredo Pareto, is a heavy-tailed distribution sometimes used to model financial variables. It is
studied in more detail in the chapter on Special Distributions.

Suppose that  has the Pareto distribution with parameter  for each . Then

{1, 2, … ,n} n! i, j∈ {1, 2, … ,n}
i i j j (n−2)! P( = i, = j) = (n−2)!/n! = 1/n(n−1)Xi Xj

Nn fn

(k) = , k ∈ {0, 1, … ,n}fn
1

k!
∑
j=0

n−k (−1)j

j!
(3.8.14)

Nn n → ∞

k ∈ N

(k) = → =fn
1

k!
∑
j=0

n−k (−1)j

j!

1

k!
∑
j=0

∞ (−1)j

j!

1

k!
e−1 (3.8.15)

k ∈ N

n

n

( , , …)X1 X2

G

G(x) = 1 − , 0 ≤ x < ∞e−x (3.8.16)

n → ∞ = max{ , , … , } −lnnYn X1 X2 Xn F

F (x) = , x ∈ Re−e−x

(3.8.17)

= max{ , , … , }X(n) X1 X2 Xn X(n) Gn Fn Yn x ∈ R

(x) = P( ≤ x) = P ( ≤ x+lnn) = (x+lnn) = =Fn Yn X(n) Gn [1 − ]e−(x+ln n)
n

(1 − )
e−x

n

n

(3.8.18)

(x) →Fn e−e−x

n → ∞

a ∈ (0, ∞) F

F (x) = 1 − , 1 ≤ x < ∞
1

xa
(3.8.19)
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1.  as  in distribution (and hence also in probability).
2. The distribution of  converges to the standard exponential distribution as .

Proof
1. The CDF of  is  for . Hence  for  and  while  as 

for . Thus the limit of  agrees with the CDF of the constant 1, except at , the point of discontinuity.
2. Let  denote the CDF of . For ,

By our famous theorem from calculus again, it follows that  as . As a function of 
, this is the CDF of the standard exponential distribution.

Fundamental Theorems

The two fundamental theorems of basic probability theory, the law of large numbers and the central limit theorem, are studied in
detail in the chapter on Random Samples. For this reason we will simply state the results in this section. So suppose that 

 is a sequence of independent, identically distributed, real-valued random variables (defined on the same probability
space) with mean  and standard deviation . For , let  denote the sum of the first 
variables,  the average of the first  variables, and  the standard score of .

The fundamental theorems of probability

1.  as  with probability 1 (and hence also in probability and in distribution). This is the law of large numbers.
2. The distribution of  converges to the standard normal distribution as . This is the central limit theorem.

In part (a), convergence with probability 1 is the strong law of large numbers while convergence in probability and in distribution
are the weak laws of large numbers.

General Spaces
Our next goal is to define convergence of probability distributions on more general measurable spaces. For this discussion, you
may need to refer to other sections in this chapter: the integral with respect to a positive measure, properties of the integral, and
density functions. In turn, these sections depend on measure theory developed in the chapters on Foundations and Probability
Measures.

Definition and Basic Properties

First we need to define the type of measurable spaces that we will use in this subsection.

We assume that  is a complete, separable metric space and let  denote the Borel -algebra of subsets of , that is, the 
-algebra generated by the topology. The standard spaces that we often use are special cases of the measurable space :

1. Discrete:  is countable and is given the discrete metric so  is the collection of all subsets of .
2. Euclidean:  is given the standard Euclidean metric so  is the usual -algebra of Borel measurable subsets of .

Additional details

Recall that the metric space  is complete if every Cauchy sequence in  converges to a point in . The space is separable
if there exists a coutable subset that is dense. A complete, separable metric space is sometimes called a Polish space because
such spaces were extensively studied by a group of Polish mathematicians in the 1930s, including Kazimierz Kuratowski.

As suggested by our setup, the definition for convergence in distribution involves both measure theory and topology. The
motivation is the theorem above for the one-dimensional Euclidean space .

Convergence in distribution:

1. Suppose that  is a probability measure on  for each . Then  converges (weakly) to  as  if 
 as  for every  with . We write  as .

→ 1Xn n → ∞
= n −nYn Xn n → ∞

Xn (x) = 1 −1/Fn xn x ≥ 1 (x) = 0Fn n ∈ N+ x ≤ 1 (x) → 1Fn n → ∞
x > 1 Fn x = 1
Gn Yn x ≥ 0

(x) = P( ≤ x) = P( ≤ 1 +x/n) = 1 −Gn Yn Xn

1

(1 +x/n)n
(3.8.20)

(x) → 1 −1/ = 1 −Gn ex e−x n → ∞
x ∈ [0, ∞

( , , …)X1 X2

μ ∈ (−∞. ∞) σ ∈ (0, ∞) n ∈ N+ =Yn ∑n
i=1 Xi n

= /nMn Yn n = ( −nμ)/ σZn Yn n−−√ Yn

→ μMn n → ∞
Zn n → ∞

(S, d) S σ S

σ (S,S )

S S S

R
n

Rn σ R
n

(S, d) S S

(R,R)

Pn (S,S ) n ∈ N
∗
+ Pn P∞ n → ∞

(A) → (A)Pn P∞ n → ∞ A ∈S (∂A) = 0P∞ ⇒Pn P∞ n → ∞
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2. Suppose that  is a random variable with distribution  on  for each . Then  converges in distribution
to  as  if  as . We write  as  in distribution.

Notes
1. The definition makes sense since  implies . Specifically,  because  is closed, and 

 because  is open.
2. The random variables need not be defined on the same probability space.

Let's consider our two special cases. In the discrete case, as usual, the measure theory and topology are not really necessary.

Suppose that  is a probability measures on a discrete space  for each . Then  as  if and
only if  as  for every .

Proof

This follows from the definition. Every subset is both open and closed so  for every .

In the Euclidean case, it suffices to consider distribution functions, as in the one-dimensional case. If  is a probability measure on 
, recall that the distribution function  of  is given by

Suppose that  is a probability measures on  with distribution function  for each . Then  as 
 if and only if  as  for every  where  is continuous.

Convergence in Probability

As in the case of , convergence in probability implies convergence in distribution.

Suppose that  is a random variable with values in  for each , all defined on the same probability space. If 
 as  in probability then  as  in distribution.

Notes

Assume that the common probability space is . Recall that convergence in probability means that 
 as  for every ,

So as before, convergence with probability 1 implies convergence in probability which in turn implies convergence in distribution.

Skorohod's Representation Theorem

As you might guess, Skorohod's theorem for the one-dimensional Euclidean space  can be extended to the more general
spaces. However the proof is not nearly as straightforward, because we no longer have the quantile function for constructing
random variables on a common probability space.

Suppose that  is a probability measures on  for each  and that  as . Then there exists a
random variable  with values in  for each , defined on a common probability space, such that

1.  has distribution  for 
2.  as  with probability 1.

One of the main consequences of Skorohod's representation, the preservation of convergence in distribution under continuous
functions, is still true and has essentially the same proof. For the general setup, suppose that  and  are spaces of
the type described above.

Suppose that  is a random variable with values in  for each  (not necessarily defined on the same probability
space). Suppose also that  is measurable, and let  denote the set of discontinuities of , and  the distribution of

. If  as  in distribution and , then  as  in distribution.

Proof

Xn Pn (S,S ) n ∈ N∗
+ Xn

X∞ n → ∞ ⇒Pn P∞ n → ∞ →Xn X∞ n → ∞

A ∈S ∂A ∈S cl(A) ∈S cl(A)
int(A) ∈S int(A)

Pn (S,S ) n ∈ N∗
+ ⇒Pn P∞ n → ∞

(A) → (A)Pn P∞ n → ∞ A ⊆ S

∂A = ∅ A ⊆ S

P

( , )Rn Rn F P

F ( , , … , ) = P ((−∞, ] ×(−∞, ] ×⋯ ×(−∞, ]) , ( , , … , ) ∈x1 x2 xn x1 x2 xn x1 x2 xn R
n (3.8.21)

Pn ( , )R
n
Rn Fn n ∈ N

∗
+ ⇒Pn P∞

n → ∞ (x) → (x)Fn F∞ n → ∞ x ∈ R
n F∞

(R,R)

Xn S n ∈ N∗
+

→Xn X∞ n → ∞ →Xn X∞ n → ∞

(Ω,F ,P)
P[d( , ) > ϵ] → 0Xn X∞ n → ∞ ϵ > 0

(R,R)

Pn (S,S ) n ∈ N
∗
+ ⇒Pn P∞ n → ∞

Xn S n ∈ N
∗
+

Xn Pn n ∈ N
∗
+

→Xn X∞ n → ∞

(S, d,S ) (T , e,T )

Xn S n ∈ N
∗
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g : S → T Dg g P∞
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By Skorohod's theorem, there exists random variables  with values in  for , defined on the same probability space 
, such that  has the same distribution as  for , and  as  with probability 1. Since 

 it follows that  as  with probability 1. Hence  as 
 in distribution. But  has the same distribution as  for each .

A simple consequence of the continuity theorem is that if a sequence of random vectors in  converge in distribution, then the
sequence of each coordinate also converges in distribution. Let's just consider the two-dimensional case to keep the notation
simple.

Suppose that  is a random variable with values in  for  and that  as  in
distribution. Then

1.  as  in distribution.
2.  as  in distribution.

Scheffé's Theorem

Our next discussion concerns an important result known as Scheffé's theorem, named after Henry Scheffé. To state our theorem,
suppose that  is a measure space, so that  is a set,  is a -algebra of subsets of , and  is a positive measure on 

. Further, suppose that  is a probability measure on  that has density function  with respect to  for each 
, and that  is a probability measure on  that has density function  with respect to .

If  as  for almost all  (with respect to ) then  as  uniformly in .

Proof

From basic properties of the integral it follows that for ,

Let , and let  denote the positive part of  and  the negative part of . Note that  and  as 
 almost everywhere on . Since  is a probability density function, it is trivially integrable, so by the dominated

convergence theorem,  as . But  so . Therefore 
 as . Hence  as  uniformly in .

Of course, the most important special cases of Scheffé's theorem are to discrete distributions and to continuous distributions on a
subset of , as in the theorem above on density functions.

Expected Value

Generating functions are studied in the chapter on Expected Value. In part, the importance of generating functions stems from the
fact that ordinary (pointwise) convergence of a sequence of generating functions corresponds to the convergence of the
distributions in the sense of this section. Often it is easier to show convergence in distribution using generating functions than
directly from the definition.

In addition, converence in distribution has elegant characterizations in terms of the convergence of the expected values of certain
types of functions of the underlying random variables.
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