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2.5: Independence

In this section, we will discuss independence, one of the fundamental concepts in probability theory. Independence is frequently invoked
as a modeling assumption, and moreover, (classical) probability itself is based on the idea of independent replications of the experiment.
As usual, if you are a new student of probability, you may want to skip the technical details.

Basic Theory

As usual, our starting point is a random experiment modeled by a probability space (S, ., P) so that S is the set of outcomes, . the
collection of events, and P the probability measure on the sample space (.5, .%). We will define independence for two events, then for
collections of events, and then for collections of random variables. In each case, the basic idea is the same.

Independence of Two Events

Two events A and B are independent if

P(AN B) = P(A)P(B) (2.5.1)

If both of the events have positive probability, then independence is equivalent to the statement that the conditional probability of one
event given the other is the same as the unconditional probability of the event:

P(A| B) =P(4) <= P(B|A)=P(B) < P(ANB)=P(A)P(B) (2.5.2)

This is how you should think of independence: knowledge that one event has occurred does not change the probability assigned to the
other event. Independence of two events was discussed in the last section in the context of correlation. In particular, for two events,
independent and uncorrelated mean the same thing.

The terms independent and disjoint sound vaguely similar but they are actually very different. First, note that disjointness is purely a set-
theory concept while independence is a probability (measure-theoretic) concept. Indeed, two events can be independent relative to one
probability measure and dependent relative to another. But most importantly, two disjoint events can never be independent, except in the
trivial case that one of the events is null.

Suppose that A and B are disjoint events, each with positive probability. Then A and B are dependent, and in fact are negatively
correlated.

Proof
Note that P(ANB) =P(@) =0 but P(A)P(B) >0.

If A and B are independent events then intuitively it seems clear that any event that can be constructed from A should be independent of
any event that can be constructed from B. This is the case, as the next result shows. Moreover, this basic idea is essential for the
generalization of independence that we will consider shortly.

If A and B are independent events, then each of the following pairs of events is independent:

1. A%, B
2. B, A°
3. A¢, B¢

Proof

Suppose that A and B are independent. Then by the difference rule and the complement rule,
P(A°NB) =P(B)—P(ANB) =P(B) —P(A)P(B) =P(B) [1 —P(4)] =P(B)P(A°) (2.5.3)

Hence A€ and B are equivalent. Parts (b) and (c) follow from (a).

An event that is “essentially deterministic”, that is, has probability 0 or 1, is independent of any other event, even itself.

Suppose that A and B are events.

1.1f P(A) =0 or P(A) =1, then A and B are independent.
2. A is independent of itself if and only if P(A) =0 or P(4) =1.

Proof
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1. Recall that if P(A) =0 then P(ANB) =0, and if P(A) =1 then P(AN B) =P(B) . In either case we have
P(ANB) =P(A)P(B) .
2. The independence of A with itself gives P(A) = [P(A)]?> and hence either P(4) =0 or P(4) =1.

General Independence of Events

To extend the definition of independence to more than two events, we might think that we could just require pairwise independence, the
independence of each pair of events. However, this is not sufficient for the strong type of independence that we have in mind. For
example, suppose that we have three events A, B, and C. Mutual independence of these events should not only mean that each pair is
independent, but also that an event that can be constructed from A and B (for example A U B¢) should be independent of C. Pairwise
independence does not achieve this; an exercise below gives three events that are pairwise independent, but the intersection of two of the
events is related to the third event in the strongest possible sense.

Another possible generalization would be to simply require the probability of the intersection of the events to be the product of the
probabilities of the events. However, this condition does not even guarantee pairwise independence. An exercise below gives an example.
However, the definition of independence for two events does generalize in a natural way to an arbitrary collection of events.

Suppose that A; is an event for each ¢ in an index set I. Then the collection & = {A; : ¢ € I} is independent if for every finite
JCI,

P (ﬂ A,-) =[] P4y (2.5.4)

jeJ jedJ

Independence of a collection of events is much stronger than mere pairwise independence of the events in the collection. The basic
inheritance property in the following result follows immediately from the definition.
Suppose that 7 is a collection of events.

1. If & is independent, then 4 is independent for every 4 C o .
2. If A is independent for every finite 4 C &/ then &/ is independent.

For a finite collection of events, the number of conditions required for mutual independence grows exponentially with the number of
events.
There are 2" —n —1 non-trivial conditions in the definition of the independence of n events.

1. Explicitly give the 4 conditions that must be satisfied for events A, B, and C' to be independent.
2. Explicitly give the 11 conditions that must be satisfied for events A, B, C, and D to be independent.
Answer

There are 2" subcollections of the n events. One is empty and n involve a single event. The remaining 2" —n — 1 subcollections
involve two or more events and correspond to non-trivial conditions.

1. A, B, C are independent if and only if

P
P
P
P

AN B) = P(A)P(B)
ANC) =P(A)P(C)
BNC) =P(B)P(C)
ANBNC) =P(A)P(B)P(C)

—_ o~~~

2. A, B, C, D are independent if and only if
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P(AN B) = P(A)P(B)

P(ANC) = P(A)P(C)

P(AN D) = P(A)P(D)
P(BNC) = P(B)P(C)

P(BN D) =P(B)P(D)

P(C'N D) = P(C)P(D)
P(ANBNC) = P(A)P(B)P(C)
P(AN BN D) = P(A)P(B)P(D)
P(ANC N D) =P(A)P(C)P(D)
P(BNC N D) =P(B)P(C)P(D)
P(AN BN C N D) =P(A)B(B)P(C)P(D)

If the events A, As, ..., A, are independent, then it follows immediately from the definition that

P (ﬁ Ai> :ﬁ]P’(A,-) (2.5.5)
i=1 i=1

This is known as the multiplication rule for independent events. Compare this with the general multiplication rule for conditional
probability.

The collection of essentially deterministic events 9 = {A € ¥ : P(A) =0 or P(A) =1} is independent.

Proof

Suppose that {41, As,...,4,} CD.1f P(A4;) =0 forsome i € {1,2,...,n}then P(A;NA2N---NA,) =0 .IfP(4;) =1 for
everyi € {1,2,...,n}then P(4; N A;N---NA,) =1 .Ineither case, P(4A; N Ay ---NA,) =P(4;)P(42)---P(4,) .

The next result generalizes the theorem above on the complements of two independent events.
Suppose that & ={A;:i€ I} and Z={B;:i €I} are two collections of events with the property that for each i € I, either
B; = A; or B; = A¢ . Then & is independent if and only if 8 is an independent.

Proof

The proof is actually very similar to the proof for two events, except for more complicated notation. First, by the symmetry of the
relation between &7 and 4, it suffices to show & indpendent implies % independent. Next, by the inheritance property, it suffices to
consider the case where the index set [ is finite.

1. Fix k € I and define By, = A}, and B; = A; fori € I'\ {k}. Suppose now that J C I . If k ¢ J then trivially,
P (ﬂjeJ Bj) =[I;c; P(Bj) - If k € J, then using the difference rule,

(00) -+ (02)+(04)

=11 ]P’(Aj)—H]P’(Aj)Z{ 11 ]P’(Aj)] [1-P(A)] =[] P(B))

je\{k} jeJ je\{k} jeJ

Hence {B; : i € I} is a collection of independent events.
2. Suppose now that # = {B; : ¢ € I'} is a general collection of events where B; = A; or B; = A¢$ for each ¢ € I. Then % can be
obtained from & by a finite sequence of complement changes of the type in (a), each of which preserves independence.

The last theorem in turn leads to the type of strong independence that we want. The following exercise gives examples.

If A, B, C, and D are independent events, then

1. AUB, C*¢, D are independent.
2. AUB°®, C°UDF° are independent.

Proof
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We will give proofs that use the complement theorem, but to do so, some additional notation is helpful. If E is an event, let E 1—_F
and E° = E°.
1. Note that AUB =J; ;. AN B’ where I ={(1,0), (0,1), (1, 1)}and note that the events in the union are disjoint. By the
distributive property, (AU B)NC®=; jes A*NBINCY  and again the events in the union are disjoint. By additivity and

complement theorem,

P[(AUB)NC = Y PAYPB)P(C’) = Y P(A)P(B’) | P(C°) =P(AU B)P(C) (2.5.6)
(i,5)el (6,5)€l
By exactly the same type of argument, P[(AU B)N D] =P(AUB)P(D) and P[(AUB)NC*N D] =P(AUB)P(C*¢)P(D)
Directly from the result above on complements, P(C¢N D) = P(C¢)P(D) .

2. Note that AU B¢ =J,; jc; A' N B/ where I ={(0,0), (1,0), (1,1)}and note that the events in the union are disjoint. Similarly
CeUD* =, C?'NDI where J = {(0,0),(1,0), (0, 1)} and again the events in the union are disjoint. By the distributive
rule for set operations,

(AuB)n(CcuDy)= |J A'nBnc*nD (2.5.7)
(i kD elxJ

and once again, the events in the union are disjoint. By additivity and the complement theorem,

P(AUB)N(C°UD) = >  PA)PB)PCHPD) (2.5.8)

(irj k1) €I T

But also by additivity, the complement theorem, and the distributive property of arithmetic,

P(AUB*)P(C°UD") = (Z P A’)}P’(B]> (Z P(CH)P ) = Y PAPBE)PCHPD) (2.5.9)
(

ig)el (kl)eJ (ird ko1 ETXT

The complete generalization of these results is a bit complicated, but roughly means that if we start with a collection of indpendent events,
and form new events from disjoint subcollections (using the set operations of union, intersection, and complment), then the new events are
independent. For a precise statement, see the section on measure spaces. The importance of the complement theorem lies in the fact that
any event that can be defined in terms of a finite collection of events { 4; : ¢ € I'} can be written as a disjoint union of events of the form
(;c; B: where B; = A; or B; = A¢ foreachi € I.

Another consequence of the general complement theorem is a formula for the probability of the union of a collection of independent events
that is much nicer than the inclusion-exclusion formula.

If Ay, As, ..., A, are independent events, then

P (OA,-) :l—ﬁ[l—P(Ai)] (2.5.10)

Proof

From DeMorgan's law and the independence of A§, A3, ..., A§ we have

IF’(OA,») =1—P(ﬁAg) :1—ﬁ1@(Ag)=1 ﬁ 1—P(4;)] (2.5.11)

Independence of Random Variables

Suppose now that X; is a random variable for the experiment with values in a set T; for each ¢ in a nonempty index set /. Mathematically,
X; is a function from S into T}, and recall that {X; € B} denotes the event {s € S: X;(s) € B} for BCT;. Intuitively, X; is a
variable of interest in the experiment, and every meaningful statement about X; defines an event. Intuitively, the random variables are
independent if information about some of the variables tells us nothing about the other variables. Mathematically, independence of a
collection of random variables can be reduced to the independence of collections of events.

The collection of random variables £ = {X; : ¢ € I'} is independent if the collection of events {{X; € B;} : ¢ € I} is independent
for every choice of B; C T; for i € I. Equivalently then, & is independent if for every finite J C I, and for every choice of B; C T}
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for j € J we have

P (ﬂ{X,- € Bj}) =[[P(x; € By) (2.5.12)

jeJ jeJ
Details

Recall that T; will have a o-algebra J; of admissible subsets so that (7}, J;) is a measurable space just like the sample space (S, %)
for each i € I. Also X; is measurable as a function from S into T; for each 7 € I. These technical assumptions ensure that the
definition makes sense.

Suppose that Z is a collection of random variables.

1. If Z is independent, then # is independent for every % C Z°
2.1f % is independent for every finite % C £ then £  is independent.

It would seem almost obvious that if a collection of random variables is independent, and we transform each variable in deterministic way,
then the new collection of random variables should still be independent.

Suppose now that g; is a function from 7} into a set U; for each ¢ € I. If {X; : 4 € I'} is independent, then {g;(X;):¢ € I'} is also
independent.

Proof

Except for the abstract setting, the proof of independence is easy. Suppose that C; CU; for each i€ I. Then
{9:(X;) e C;} ={Xieg;'(C;)} for iel. By the independence of {X;:iecI}, the collection of events
{{Xi€g;"(C;)} :i €I} isindependent.

Technically, the set U; will have a o-algebra %; of admissible subsets so that (U;, %;) is a measurable space just like (7}, ;) and just

like the sample space (S, ). The function g; is required to be measurable as a function from 7} into U; just as X; is measurable as a
function form S into 7. In the proof above, C; € %; so that g~ (C;) € Z; and hence {X; € g71(C;)} € <.

As with events, the (mutual) independence of random variables is a very strong property. If a collection of random variables is
independent, then any subcollection is also independent. New random variables formed from disjoint subcollections are independent. For a
simple example, suppose that X, Y, and Z are independent real-valued random variables. Then

1. sin(X), cos(Y), and eZ are independent.
2.(X,Y) and Z are independent.

3. X2 +Y? and arctan(Z) are independent.
4. X and Z are independent.

5.Y and Z are independent.

In particular, note that statement 2 in the list above is much stronger than the conjunction of statements 4 and 5. Contrapositively, if X and
Z are dependent, then (X,Y") and Z are also dependent. Independence of random variables subsumes independence of events.

A collection of events & is independent if and only if the corresponding collection of indicator variables {14: A € &} is
independent.

Proof

Let o = {A; : i € I} where I is a nonempty index set. For ¢ € I, the only non-trivial events that can be defined in terms of 1 4, are
{14, =1} =A; and {14 =0} = AS. So {14, : ¢ € I'} is independent if and only if every collection of the form {B;: 4 € I'} is
independent, where for each i € I, either B; = A; or B; = A7. But by the complement theorem, this is equivalent to the
independence of {4; : ¢ € I'}.

Many of the concepts that we have been using informally can now be made precise. A compound experiment that consists of “independent
stages” is essentially just an experiment whose outcome is a sequence of independent random variables X = (X1, X, ...) where X; is
the outcome of the ith stage.

In particular, suppose that we have a basic experiment with outcome variable X. By definition, the outcome of the experiment that consists
of “independent replications” of the basic experiment is a sequence of independent random variables X = (Xj, X, ...) each with the
same probability distribution as X. This is fundamental to the very concept of probability, as expressed in the law of large numbers. From
a statistical point of view, suppose that we have a population of objects and a vector of measurements X of interest for the objects in the
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sample. The sequence X above corresponds to sampling from the distribution of X; that is, X; is the vector of measurements for the ith
object drawn from the sample. When we sample from a finite population, sampling with replacement generates independent random
variables while sampling without replacement generates dependent random variables.

Conditional Independence and Conditional Probability

As noted at the beginning of our discussion, independence of events or random variables depends on the underlying probability measure.
Thus, suppose that B is an event with positive probability. A collection of events or a collection of random variables is conditionally
independent given B if the collection is independent relative to the conditional probability measure A+ P(A | B) . For example, a
collection of events { 4; : ¢ € I'} is conditionally independent given B if for every finite J C I,

I@(ﬂAj

jeJ

B) =][P4;|B) (2.5.13)

jeJ
Note that the definitions and theorems of this section would still be true, but with all probabilities conditioned on B.

Conversely, conditional probability has a nice interpretation in terms of independent replications of the experiment. Thus, suppose that we
start with a basic experiment with .S as the set of outcomes. We let X denote the outcome random variable, so that mathematically X is
simply the identity function on S. In particular, if A is an event then trivially, P(X € A) =P(A) . Suppose now that we replicate the
experiment independently. This results in a new, compound experiment with a sequence of independent random variables (X7, Xs,...),
each with the same distribution as X. That is, X; is the outcome of the 4th repetition of the experiment.

Suppose now that A and B are events in the basic experiment with P(B) > 0. In the compound experiment, the event that “when B
occurs for the first time, A also occurs” has probability

P(ANB)
P(B) P(A | B) (2.5.14)

Proof
In the compound experiment, if we record (X7, Xs,...) then the new set of outcomes is S =S x .S x --- . The event that “when
B occurs for the first time, A also occurs” is

(o9

U{x1¢B,X,¢B,...,X, 1 ¢ B,X, € ANB} (2.5.15)

n=1

The events in the union are disjoint. Also, since (X7, X»,...) is a sequence of independent variables, each with the distribution of X
we have

P(X1¢B,Xs¢B,...,X, 1¢ B, X, € ANB) = [P(B)]" 'P(ANB) = [1 —P(B)|" 'P(AN B) (2.5.16)
Hence, using geometric series, the probability of the union is

P(ANB) _ P(ANB)
1-[1-P(B)]  P(B)

" [1-B(B))" (4N B) = (2.5.17)

n=1
Heuristic Argument
Suppose that we create a new experiment by repeating the basic experiment until B occurs for the first time, and then record the

outcome of just the last repetition of the basic experiment. Now the set of outcomes is simply B and the appropriate probability
measure on the new experiment is A — P(A4 | B) .

Suppose that A and B are disjoint events in a basic experiment with P(4) > 0 and P(B) > 0. In the compound experiment obtained
by replicating the basic experiment, the event that “A occurs before B” has probability
P(4)
P(A) +P(B)

(2.5.18)

Proof

Note that the event “A occurs before B” is the same as the event “when A U B occurs for the first time, A occurs”.
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Examples and Applications
Basic Rules

Suppose that A, B, and C' are independent events in an experiment with P(4) = 0.3, P(B) = 0.4, and P(C') = 0.8. Express each of
the following events in set notation and find its probability:

1. All three events occur.

2. None of the three events occurs.

3. At least one of the three events occurs.

4. At least one of the three events does not occur.
5. Exactly one of the three events occurs.

6. Exactly two of the three events occurs.

Answer

1.P(ANBNC) = 0.096

2.P(A°NB°NC)=0.084

3. P(AUBUC) =0.916

4.P(A°UB°UC®) =0.904

5.P[(ANB°NC)U(A°NBNC)U(A°NB°NC)] =0.428

6.P[(ANBNC)U(ANB°NC)U(A°NBNC)|] =0.392
Suppose that A, B, and C are independent events for an experiment with P(4) = %, P(B) = i, and P(C) = +. Find the probability
of each of the following events:

1.(AnB)UC

2. AUB°UC

3.(A°nBEUCe
Answer

1 =

2.1

3 2

Simple Populations

A small company has 100 employees; 40 are men and 60 are women. There are 6 male executives. How many female executives
should there be if gender and rank are independent? The underlying experiment is to choose an employee at random.

Answer

9

Suppose that a farm has four orchards that produce peaches, and that peaches are classified by size as small, medium, and large. The
table below gives total number of peaches in a recent harvest by orchard and by size. Fill in the body of the table with counts for the
various intersections, so that orchard and size are independent variables. The underlying experiment is to select a peach at random
from the farm.

Frequency Size Small Medium Large Total
Orchard 1 Total2000 400
2 Total2000 600
3 Total2000 300
4 Total2000 700
Total 400 1000 600 2000
Answer
Frequency Size Small Medium Large Total
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Orchard 1 80 200 120 400
2 120 300 180 600
3 60 150 90 300
4 140 350 210 700
total 400 1000 600 2000

Note from the last two exercises that you cannot “see” independence in a Venn diagram. Again, independence is a measure-theoretic
concept, not a set-theoretic concept.

Bernoulli Trials

A Bernoulli trials sequence is a sequence X = (X7, X5, ...) of independent, identically distributed indicator variables. Random variable
X is the outcome of trial ¢, where in the usual terminology of reliability theory, 1 denotes success and 0 denotes failure. The canonical
example is the sequence of scores when a coin (not necessarily fair) is tossed repeatedly. Another basic example arises whenever we start
with an basic experiment and an event A of interest, and then repeat the experiment. In this setting, X; is the indicator variable for event A
on the ¢th run of the experiment. The Bernoulli trials process is named for Jacob Bernoulli, and has a single basic parameter

p =P(X; =1). This random process is studied in detail in the chapter on Bernoulli trials.

For (z1,x2,...,T,) € {0,1}",
P(Xy =21, X5 = @3, ..., Xy = @,) = p7 @+ Fn (1 — p)r—{mtent an) (2.5.19)

Proof

If X is a generic Bernoulli trial, then by definition, P(X=1)=p and P(X=0)=1-—p .  Equivalently,
P(X =2)=p"(1 —p)'® forzx € {0,1}. Thus the result follows by independence.

Note that the sequence of indicator random variables X is exchangeable. That is, if the sequence (z1, z2, . . ., &, ) in the previous result is
permuted, the probability does not change. On the other hand, there are exchangeable sequences of indicator random variables that are
dependent, as Pélya's urn model so dramatically illustrates.

Let Y denote the number of successes in the first 7 trials. Then

B(Y =y) = (Z)pm—p)n*y, ye{0,1,...,n} (2.5.20)

Proof

Note that Y =>"" | X;, where X is the outcome of trial ¢, as in the previous result. For y € {0,1,...,n} the event {Y =y}
occurs if and only if exactly y of the n trials result in success (1). The number of ways to choose the y trials that result in success is

(Z), and by the previous result, the probability of any particular sequence of y successes and n —y failures is p¥ (1 — p)"~¥. Thus the

result follows by the additivity of probability.

The distribution of Y is called the binomial distribution with parameters 7 and p. The binomial distribution is studied in more detail in the
chapter on Bernoulli Trials.

More generally, a multinomial trials sequence is a sequence X = (X7, X, ...) of independent, identically distributed random variables,
each taking values in a finite set S. The canonical example is the sequence of scores when a k-sided die (not necessarily fair) is thrown
repeatedly. Multinomial trials are also studied in detail in the chapter on Bernoulli trials.

Cards

Consider the experiment that consists of dealing 2 cards at random from a standard deck and recording the sequence of cards dealt. For
i € {1,2}, let Q; be the event that card ¢ is a queen and H; the event that card 7 is a heart. Compute the appropriate probabilities to
verify the following results. Reflect on these results.

1. @, and H; are independent.
2. Q2 and Hy are independent.
3. Q; and @5 are negatively correlated.
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4. Hy and H, are negatively correlated.
5. @1 and H; are independent.
6. H; and Q- are independent.

Answer

LP(Q1) =P(Q1 | H1) = 3
2.P(Q2) :P(QZ | Hy) = 15
3.P(Q1) = 13 JP(Q1]Q2) = —7
4.P(Hy) =y, P(H: | Hz) =
5.P(Q1) = P(Ql | Hy) =15
6.P(Q:) =P(Q2 | Hi) = 5

In the card experiment, set n = 2. Run the simulation 500 times. For each pair of events in the previous exercise, compute the product
of the empirical probabilities and the empirical probability of the intersection. Compare the results.

Dice
The following exercise gives three events that are pairwise independent, but not (mutually) independent.

Consider the dice experiment that consists of rolling 2 standard, fair dice and recording the sequence of scores. Let A denote the event
that first score is 3, B the event that the second score is 4, and C' the event that the sum of the scores is 7. Then

1. A, B, C are pairwise independent.
2. AN B implies (is a subset of) C' and hence these events are dependent in the strongest possible sense.
Answer
Note that ANB=ANC =BNC ={(3,4)} , and the probability of the common intersection is . On the other hand,

P(4) =P(B)=P(C)= =1 36

In the dice experiment, set n = 2. Run the experiment 500 times. For each pair of events in the previous exercise, compute the product
of the empirical probabilities and the empirical probability of the intersection. Compare the results.

The following exercise gives an example of three events with the property that the probability of the intersection is the product of the
probabilities, but the events are not pairwise independent.

Suppose that we throw a standard, fair die one time. Let A = {1,2,3,4}, B=C = {4,5,6}. Then

1.P(ANBNC)=P(A)P(B)P(C) .
2. B and C are the same event, and hence are dependent in the strongest possbile sense.

Answer
Note that ANBNC ={4},s0P(ANBNC) = % . On the other hand, P(4) = 4 and P(B) =P(C) ==

Suppose that a standard, fair die is thrown 4 times. Find the probability of the following events.

1. Six does not occur.
2. Six occurs at least once.
3. The sum of the first two scores is 5 and the sum of the last two scores is 7.

Answer

5 4
1 (§) ~0.4823
2.1 3 ~0.5177

Suppose that a pair of standard, fair dice are thrown 8 times. Find the probability of each of the following events.

1. Double six does not occur.
2. Double six occurs at least once.
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3. Double six does not occur on the first 4 throws but occurs at least once in the last 4 throws.

Answer
1. (%)8 ~0.7982

2. 1—(%) ~0.2018
gl (%) {1—(36) ] ~0.0952

Consider the dice experiment that consists of rolling n, k-sided dice and recording the sequence of scores

X =(X;,Xs,...,X,).The following conditions are equivalent (and correspond to the assumption that the dice are fair):
1. X is uniformly distributed on {1, 2, ..., k}"
2. X is a sequence of independent variables, and X; is uniformly distributed on {1, 2, ..., k} for each i.

Proof

Let S={1,2,...,k} and note that S™ has k™ points. Suppose that X is uniformly distributed on S™. Then P(X =) =1/k" for
eachx € S" so P(X; =z) =k*1/k*» =1/k foreachz € S. Hence X; is uniformly distributed on S. Moreover,

P(X =z)=P(X; =21)P(Xy =23) - - - P(X,, =2,), x=(z1,22,...,2,)€S" (2.5.21)

so X is an independent sequence. Conversely, if X is an independent sequence and X;; is uniformly distributed on S for each 4 then
P(X; =z)=1/k foreachz € S and hence P(X =x) =1/k" for each ® € S". Thus X is uniformly distributed on S™.

A pair of standard, fair dice are thrown repeatedly. Find the probability of each of the following events.

1. A sum of 4 occurs before a sum of 7.
2. A sum of 5 occurs before a sum of 7.
3. A sum of 6 occurs before a sum of 7.
4. When a sum of 8 occurs the first time, it occurs “the hard way” as (4, 4).

Answer

1.
2.

! »—Al"’"ol"‘ I

B
4.

Problems of the type in the last exercise are important in the game of craps. Craps is studied in more detail in the chapter on Games of
Chance.

Coins

A biased coin with probability of heads % is tossed 5 times. Let X denote the outcome of the tosses (encoded as a bit string) and let Y’
denote the number of heads. Find each of the following:

1.P(X =) for each z € {0,1}°.

2.P(Y =y) foreachy €{0,1,2,3,4,5}

3P(1<Y <3)
Answer

1. ﬁ ife = 00000, 1f @ has exactly one 1 (there are 5 of these) 1f a has exactly two 1s (there are 10 of these) — 1f @ has

exactly three 15 (there are 10 of these), 7 43 if « has exactly four 1s (there are 5 of these), 533 43 ife=11111
243 ity =0, 55 243 ify=1, 555 243 ify=2, 55 243 ify =3, 55 243 ify=4, 55 243 ify=>5

3 200

" 243

A box contains a fair coin and a two-headed coin. A coin is chosen at random from the box and tossed repeatedly. Let F' denote the
event that the fair coin is chosen, and let H; denote the event that the ¢th toss results in heads. Then

1. (Hy, Hs, . . .) are conditionally independent given F', with P(H; | F) = % for each 7.

2. (Hy, Ho, . . .) are conditionally independent given F'¢, with P(H; | F¢) =1 for each i.
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3. ]P’(Hi):% for each 4.
4 P(HiNHN---NHy) == +1 .

- gn+l
5. (Hi, Hs, . ..) are dependent.
6.P(F | HyNHyN---NH,) = 72+ .
7.P(F|HiNHyN---NH,) =0 asn—oo.

Proof

Parts (a) and (b) are essentially modeling assumptions, based on the design of the experiment. If we know what kind of coin we have,
then the tosses are independent. Parts (c) and (d) follow by conditioning on the type of coin and using parts (a) and (b). Part (e)

follows from (c) and (d). Note that the expression in (d) is not (3/4)™ Part (f) follows from part (d) and Bayes' theorem. Finally part
(g) follows from part (f).

Consider again the box in the previous exercise, but we change the experiment as follows: a coin is chosen at random from the box

and tossed and the result recorded. The coin is returned to the box and the process is repeated. As before, let H; denote the event that
toss ¢ results in heads. Then

1. (Hy, Ha, . . .) are independent.

2.P(H;) = % for each 4.

3.P(HyNHpN---Hy)=(3)" .
Proof

Again, part (a) is essentially a modeling assumption. Since we return the coin and draw a new coin at random each time, the results of
the tosses should be independent. Part (b) follows by conditioning on the type of the ith coin. Part (c) follows from parts (a) and (b).

Think carefully about the results in the previous two exercises, and the differences between the two models. Tossing a coin produces
independent random variables if the probability of heads is fixed (that is, non-random even if unknown). Tossing a coin with a random
probability of heads generally does not produce independent random variables; the result of a toss gives information about the probability
of heads which in turn gives information about subsequent tosses.

Uniform Distributions

Recall that Buffon's coin experiment consists of tossing a coin with radius r» < % randomly on a floor covered with square tiles of side

length 1. The coordinates (X,Y") of the center of the coin are recorded relative to axes through the center of the square in which the
coin lands. The following conditions are equivalent:

1. (X,Y) is uniformly distributed on [— %, %] 2,

2. X and Y are independent and each is uniformly distributed on [— %, %] .

172 FxE

¥

-1/2 1]

-172

Figure 2.5.1: Buffon's coin experiment

Proof

Let S = [—%, %] ,and let \; denote length measure on S and A, area measure on S2. Note that A1 (S) = X\2(S?) =1 . Suppose that
(X,Y) is uniformly distributed on S, so that P[(X,Y) € C] = Ay(C) forC CS%.For AC S,

P(X € A)=P[(X,Y) € Ax S] = Ao(AxS) =\ (A) (2.5.22)

Hence X is uniformly distributed on S. By a similar argument, Y is also uniformly distributed on .S. Moreover, for A C.S and
BCS,

P(X € A,Y € B)=P[(X,Y) € Ax B] = \y(A x B) = A\ (A)\ (B) =P(X € A)P(Y € B) (2.5.23)
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so X and Y are independent. Conversely, if X and Y are independent and each is uniformly distributed on .S, then for A C S and
BCS,
P[(X,Y)e AxB|=P(X € A)P(Y € B) = 1(A)\1(B) = 2(A x B) (2.5.24)

It then follows that P[(X,Y) € C] = A2(C) for every C C S?. For more details about this last step, see the advanced section on
existence and uniqueness of measures.

Compare this result with the result above for fair dice.

In Buffon's coin experiment, set 7 = 0.3. Run the simulation 500 times. For the events {X >0} and {Y < 0}, compute the product
of the empirical probabilities and the empirical probability of the intersection. Compare the results.

The arrival time X of the A train is uniformly distributed on the interval (0, 30), while the arrival time Y of the B train is uniformly
distributed on the interval (15, 30). (The arrival times are in minutes, after 8:00 AM). Moreover, the arrival times are independent.
Find the probability of each of the following events:

1. The A train arrives first.
2. Both trains arrive sometime after 20 minutes.
Answer

1.
2.

© [rows [0

Reliability

Recall the simple model of structural reliability in which a system is composed of n components. Suppose in addition that the components
operate independently of each other. As before, let X; denote the state of component 7, where 1 means working and 0 means failure. Thus,
our basic assumption is that the state vector X = (X1, X, ..., X,) is a sequence of independent indicator random variables. We assume
that the state of the system (either working or failed) depends only on the states of the components. Thus, the state of the system is an
indicator random variable

Y:y(XlaX27"'aXn) (2525)

where y : {0,1}" — {0, 1} is the structure function. Generally, the probability that a device is working is the reliability of the device.
Thus, we will denote the reliability of component i by p; =P(X; =1) so that the vector of component reliabilities is
p = (p1,p2,---,Dn)- By independence, the system reliability r is a function of the component reliabilities:

T(p1, P25, 0n) =P(Y =1) (2.5.26)

Appropriately enough, this function is known as the reliability function. Our challenge is usually to find the reliability function, given the
structure function. When the components all have the same probability p then of course the system reliability r is just a function of p. In
this case, the state vector X = (X3, Xs, ..., X,,) forms a sequence of Bernoulli trials.

l Comment on the independence assumption for real systems, such as your car or your computer.

Recall that a series system is working if and only if each component is working.

1. The state of the system is U = X1 X5 - - - X, = min{ X3, X»,..., X, }.
2. The reliability is P(U =1) = pi1p2 - - - pn, -

Recall that a parallel system is working if and only if at least one component is working.

1. The state of the systemis V =1—(1—-X7)(1 - X3)--- (1 - X,) =max{X1, X,..., X} .
2. The reliability is P(V =1) =1— (1 —p1)(1 —p2)--- (1 —pp) .

Recall that a k out of n system is working if and only if at least & of the n components are working. Thus, a parallel system is a 1 out of n
system and a series system is an n out of n system. A k out of 2k —1 system is a majority rules system. The reliability function of a
general k out of n system is a mess. However, if the component reliabilities are the same, the function has a reasonably simple form.

For a k out of n system with common component reliability p, the system reliability is
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r(p) = Xn: (?)p"(l —-p)" (2.5.27)

i=k

Consider a system of 3 independent components with common reliability p = 0.8. Find the reliability of each of the following:

1. The parallel system.
2. The 2 out of 3 system.
3. The series system.

Answer
1.0.992
2.0.896
3.0.512

Consider a system of 3 independent components with reliabilities p; = 0.8, p; = 0.8, p3 = 0.7. Find the reliability of each of the
following:

1. The parallel system.
2. The 2 out of 3 system.
3. The series system.

Answer
1. 0.994

2.0.902
3.0.504

Consider an airplane with an odd number of engines, each with reliability p. Suppose that the airplane is a majority rules system, so
that the airplane needs a majority of working engines in order to fly.

1. Find the reliability of a 3 engine plane as a function of p.
2. Find the reliability of a 5 engine plane as a function of p.
3. For what values of p is a 5 engine plane preferable to a 3 engine plane?

Answer
1.7r3(p) =3 p? —2p®
2.75(p) =6 p° — 15 p* +10p°
3. The 5-engine plane would be preferable if p > % (which one would hope would be the case). The 3-engine plane would be
preferable if p < % fp= % , the 3-engine and 5-engine planes are equally reliable.

The graph below is known as the Wheatstone bridge network and is named for Charles Wheatstone. The edges represent components,
and the system works if and only if there is a working path from vertex a to vertex b.

1. Find the structure function.
2. Find the reliability function.

Figure 2.5.2: The Wheatstone bridge netwok

Answer
1.Y= X3(X1 + X9 — X1X2)(X4 + X5 — Xy, X5) + (1 = X3)(X1X4 + X9 X5 —X1X2X4X5)
2.7(p1, P2, P35 Pay P5) = P3(P1 +p2 —p1p2) (P4 +P5 —Pa, P5) + (1 —p3)(P1pa + P25 — P1P2Paps)

A system consists of 3 components, connected in parallel. Because of environmental factors, the components do not operate
independently, so our usual assumption does not hold. However, we will assume that under low stress conditions, the components are
independent, each with reliability 0.9; under medium stress conditions, the components are independent with reliability 0.8; and under
high stress conditions, the components are independent, each with reliability 0.7. The probability of low stress is 0.5, of medium stress
is 0.3, and of high stress is 0.2.
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1. Find the reliability of the system.
2. Given that the system works, find the conditional probability of each stress level.
Answer

1. 0.9917. Condition on the stress level.
2. 0.5037 for low, 0.3001 for medium, 0.1962 for high. Use Bayes' theorem and part (a).

Suppose that bits are transmitted across a noisy communications channel. Each bit that is sent, independently of the others, is received
correctly with probability 0.9 and changed to the complementary bit with probability 0.1. Using redundancy to improve reliability,
suppose that a given bit will be sent 3 times. We naturally want to compute the probability that we correctly identify the bit that was
sent. Assume we have no prior knowledge of the bit, so we assign probability % each to the event that 000 was sent and the event that
111 was sent. Now find the conditional probability that 111 was sent given each of the 8 possible bit strings received.

Answer

Let X denote the string sent and Y™ the string received.

y P(X=111]|Y =)
1m 729/730

110 9/10

101 9/10

011 9/10

100 1/10

010 1/10

001 1/10

000 1/730

Diagnostic Testing

Recall the discussion of diagnostic testing in the section on Conditional Probability. Thus, we have an event A for a random experiment
whose occurrence or non-occurrence we cannot observe directly. Suppose now that we have n tests for the occurrence of A, labeled from
1 to n. We will let T; denote the event that test ¢ is positive for A. The tests are independent in the following sense:

o If A occurs, then (T1, T3, ..., T,) are (conditionally) independent and test ¢ has sensitivity a; = P(T; | A) .
o If A does not occur, then (T1, T3, . . ., T,,) are (conditionally) independent and test % has specificity b; = P(T¢ | A°).

Note that unconditionally, it is not reasonable to assume that the tests are independent. For example, a positive result for a given test
presumably is evidence that the condition A has occurred, which in turn is evidence that a subsequent test will be positive. In short, we
expect that T; and T} should be positively correlated.

We can form a new, compound test by giving a decision rule in terms of the individual test results. In other words, the event T' that the
compound test is positive for A is a function of (3,75, ..., T, ). The typical decision rules are very similar to the reliability structures
discussed above. A special case of interest is when the n tests are independent applications of a given basic test. In this case, a; =a and
b; = b for each 1.

Consider the compound test that is positive for A if and only if each of the n tests is positive for A.
1.T=T1NnTrnN---NT,
2. The sensitivity is P(T' | A) = ajaz - - ay, .
3. The specificity is P(T¢ | A°) =1 — (1 —b1)(1 —by)--- (1 —by)

Consider the compound test that is positive for A if and only if each at least one of the n tests is positive for A.
1. T=T1UTU---UT,
2. The sensitivity is P(T' | A)=1—(1—a1)(1 —az2)--- (1 —a,) .
3. The specificity is P(T | A°) =b1by - - - by, .

https://stats.libretexts.org/@go/page/10133



https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10133?pdf

LibreTextsw

More generally, we could define the compound & out of n test that is positive for A if and only if at least k of the individual tests are
positive for A. The series test is the n out of n test, while the parallel test is the 1 out of n test. The k out of 2k — 1 test is the majority
rules test.

Suppose that a woman initially believes that there is an even chance that she is or is not pregnant. She buys three identical pregnancy
tests with sensitivity 0.95 and specificity 0.90. Tests 1 and 3 are positive and test 2 is negative.

1. Find the updated probability that the woman is pregnant.
2. Can we just say that tests 2 and 3 cancel each other out? Find the probability that the woman is pregnant given just one positive
test, and compare the answer with the answer to part (a).

Answer

1.0.834
2. No: 0.905.

Suppose that 3 independent, identical tests for an event A are applied, each with sensitivity a and specificity b. Find the sensitivity
and specificity of the following tests:

1. 1 out of 3 test
2. 2 out of 3 test
3. 3 out of 3 test

Answer
1. sensitivity 1 — (1 —a)? , specificity b
2. sensitivity 3 a?, specificity b° + 3 b(1 —b)
3. sensitivity a3, specificity 1 — (1 —b)3

In a criminal trial, the defendant is convicted if and only if all 6 jurors vote guilty. Assume that if the defendant really is guilty, the
jurors vote guilty, independently, with probability 0.95, while if the defendant is really innocent, the jurors vote not guilty,
independently with probability 0.8. Suppose that 70% of defendants brought to trial are guilty.

1. Find the probability that the defendant is convicted.
2. Given that the defendant is convicted, find the probability that the defendant is guilty.
3. Comment on the assumption that the jurors act independently.

Answer

1.0.5148
2.0.99996
3. The independence assumption is not reasonable since jurors collaborate.

Genetics
Please refer to the discussion of genetics in the section on random experiments if you need to review some of the definitions in this

section.

Recall first that the ABO blood type in humans is determined by three alleles: a, b, and o. Furthermore, @ and b are co-dominant and o is
recessive. Suppose that in a certain population, the proportion of a, b, and o alleles are p, g, and r respectively. Of course we must have
p>0,¢>0,r>0andp+qg+r=1.

Suppose that the blood genotype in a person is the result of independent alleles, chosen with probabilities p, g, and r as above.

1. The probability distribubtion of the geneotypes is given in the following table:
Genotype aa ab ao bb bo 00

Probability p? 2pq 2pr q 2qr T

2. The probability distribution of the blood types is given in the following table:
Blood type A B AB (0]

Probability p2 + 2pr q2 + 2qr 2pq r
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Proof

Part (a) follows from the independence assumption and basic rules of probability. Even though genotypes are listed as unordered pairs,
note that there are two ways that a heterozygous genotype can occur, since either parent could contribute either of the two distinct
alleles. Part (b) follows from part (a) and basic rules of probability.

The discussion above is related to the Hardy-Weinberg model of genetics. The model is named for the English mathematician Godfrey
Hardy and the German physician Wilhelm Weiberg

Suppose that the probability distribution for the set of blood types in a certain population is given in the following table:

Blood type A B AB (0]

Probability 0.360 0.123 0.038 0.479

Find p, g, and r.
Answer
p=0.224,q=0.084, r =0.692

Suppose next that pod color in certain type of pea plant is determined by a gene with two alleles: g for green and y for yellow, and that g is
dominant and o recessive.

Suppose that 2 green-pod plants are bred together. Suppose further that each plant, independently, has the recessive yellow-pod allele
with probability %.

1. Find the probability that 3 offspring plants will have green pods.
2. Given that the 3 offspring plants have green pods, find the updated probability that both parents have the recessive allele.

Answer

987
1 1024
2. W

Next consider a sex-linked hereditary disorder in humans (such as colorblindness or hemophilia). Let ~ denote the healthy allele and d the
defective allele for the gene linked to the disorder. Recall that A is dominant and d recessive for women.

Suppose that a healthy woman initially has a % chance of being a carrier. (This would be the case, for example, if her mother and
father are healthy but she has a brother with the disorder, so that her mother must be a carrier).

1. Find the probability that the first two sons of the women will be healthy.
2. Given that the first two sons are healthy, compute the updated probability that she is a carrier.
3. Given that the first two sons are healthy, compute the conditional probability that the third son will be healthy.

Answer
5

1.
2.
B

[ b= ool

1

o

Laplace's Rule of Succession

Suppose that we have m 41 coins, labeled 0,1, ..., m Coin ¢ lands heads with probability % for each ¢. The experiment is to
choose a coin at random (so that each coin is equally likely to be chosen) and then toss the chosen coin repeatedly.

1. The probability that the first » tosses are all heads is py, , = m;ﬂ > (%)n

2.pm,n—>n+r1 asm — oo

3. The conditional probability that toss n + 1 is heads given that the previous n tosses were all heads is ppm’—"“

'm,n

Pm,
4, Zmet it aem — 00
Pmn n+2
Proof
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Part (a) follows by conditioning on the chosen coin. For part (b), note that p,, , is an approximating sum for fol " dr = nLH . Part (c)
follows from the definition of conditional probability, and part (d) is a trivial consequence of (b), (c).

Note that coin 0 is two-tailed, the probability of heads increases with ¢, and coin m is two-headed. The limiting conditional probability in
part (d) is called Laplace's Rule of Succession, named after Simon Laplace. This rule was used by Laplace and others as a general principle
for estimating the conditional probability that an event will occur on time n + 1, given that the event has occurred n times in succession.

Suppose that a missile has had 10 successful tests in a row. Compute Laplace's estimate that the 11th test will be successful. Does this
make sense?

Answer

11
15 - No, not really.

This page titled 2.5: Independence is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist (Random Services)
via source content that was edited to the style and standards of the LibreTexts platform.
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