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6.6: Order Statistics
        

Descriptive Theory

Recall again the basic model of statistics: we have a population of objects of interest, and we have various measurements (variables) that we
make on these objects. We select objects from the population and record the variables for the objects in the sample; these become our data.
Our first discussion is from a purely descriptive point of view. That is, we do not assume that the data are generated by an underlying
probability distribution. But as always, remember that the data themselves define a probability distribution, namely the empirical distribution.

Order Statistics

Suppose that  is a real-valued variable for a population and that  are the observed values of a sample of size 
corresponding to this variable. The order statistic of rank  is the th smallest value in the data set, and is usually denoted . To emphasize
the dependence on the sample size, another common notation is . Thus,

Naturally, the underlying variable  should be at least at the ordinal level of measurement. The order statistics have the same physical units as 
. One of the first steps in exploratory data analysis is to order the data, so order statistics occur naturally. In particular, note that the extreme

order statistics are

The sample range is  and the sample midrange is . These statistics have the same physical units as  and
are measures of the dispersion of the data set.

The Sample Median

If  is odd, the sample median is the middle of the ordered observations, namely  where . If  is even, there is not a single
middle observation, but rather two middle observations. Thus, the median interval is  where . In this case, the sample
median is defined to be the midpoint of the median interval, namely  where . In a sense, this definition is a bit
arbitrary because there is no compelling reason to prefer one point in the median interval over another. For more on this issue, see the
discussion of error functions in the section on Sample Variance. In any event, sample median is a natural statistic that gives a measure of the
center of the data set.

Sample Quantiles

We can generalize the sample median discussed above to other sample quantiles. Thus, suppose that . Our goal is to find the value
that is the fraction  of the way through the (ordered) data set. We define the rank of the value that we are looking for as . Note
that the rank is a linear function of , and that the rank is 1 when  and  when . But of course, the rank will not be an integer in
general, so we let , the integer part of the desired rank, and we let , the fractional part of the
desired rank. Thus,  where  and . So, using linear interpolation, we define the sample
quantile of order  to be

Sample quantiles have the same physical units as the underlying variable . The algorithm really does generalize the results for sample
medians.

The sample quantile of order  is the median as defined earlier, in both cases where  is odd and where  is even.

The sample quantile of order  is known as the first quartile and is frequently denoted . The the sample quantile of order  is known as the
third quartile and is frequently denoted . The sample median which is the quartile of order  is sometimes denoted . The interquartile
range is defined to be . Note that  is a statistic that measures the spread of the distribution about the median, but of course
this number gives less information than the interval .

The statistic  is called the lower fence and the statistic  is called the upper fence. Sometimes lower limit and upper limit
are used instead of lower fence and upper fence. Values in the data set that are below the lower fence or above the upper fence are potential
outliers, that is, values that don't seem to fit the overall pattern of the data. An outlier can be due to a measurement error, or may be a valid but
rather extreme value. In any event, outliers usually deserve additional study.

The five statistics  are often referred to as the five-number summary. Together, these statistics give a great deal of
information about the data set in terms of the center, spread, and skewness. The five numbers roughly separate the data set into four intervals
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each of which contains approximately 25% of the data. Graphically, the five numbers, and the outliers, are often displayed as a boxplot,
sometimes called a box and whisker plot. A boxplot consists of an axis that extends across the range of the data. A line is drawn from smallest
value that is not an outlier (of course this may be the minimum ) to the largest value that is not an outlier (of course, this may be the
maximum ). Vertical marks (“whiskers”) are drawn at the ends of this line. A rectangular box extends from the first quartile  to the third
quartile  and with an additional whisker at the median . Finally, the outliers are denoted as points (beyond the extreme whiskers). All
statistical packages will compute the quartiles and most will draw boxplots. The picture below shows a boxplot with 3 outliers.

Figure : Boxplot

Alternate Definitions

The algorithm given above is not the only reasonable way to define sample quantiles, and indeed there are lots of alternatives. One natural
method would be to first compute the empirical distribution function

Recall that  has the mathematical properties of a distribution function, and in fact  is the distribution function of the empirical distribution
of the data. Recall that this is the distribution that places probability  at each data value  (so this is the discrete uniform distribution on 

 if the data values are distinct). Thus,  for . Then, we could define the quantile function to be the
inverse of the distribution function, as we usually do for probability distributions:

It's easy to see that with this definition, the quantile of order  is simply  where .

Another method is to compute the rank of the quantile of order  as , rather than , and then use linear
interpolation just as we have done. To understand the reasoning behind this method, suppose that the underlying variable  takes value in an
interval . Then the  points in the data set  separate this interval into  subintervals, so it's reasonable to think of  as the
quantile of order . This method also reduces to the standard calculation for the median when . However, the method will fail if  is
so small that  or so large that .

The primary definition that we give above is the one that is most commonly used in statistical software and spreadsheets. Moreover, when the
sample size  is large, it doesn't matter very much which of these competing quantile definitions is used. All will give similar results.

Transformations

Suppose again that  is a sample of size  from a population variable , but now suppose also that  is a new
variable, where  and . Recall that transformations of this type are location-scale transformations and often correspond to
changes in units. For example, if  is the length of an object in inches, then  is the length of the object in centimeters. If  is the
temperature of an object in degrees Fahrenheit, then  is the temperature of the object in degrees Celsius. Let 
denote the sample from the variable .

Order statistics and quantiles are preserved under location-scale transformations:

1.  for 
2.  for 

Proof

Part (a) follows easily from the fact that the location-scale transformation is strictly increasing and hence preserves order:  if and
only if . For part (b), let  and let  and  be as above in the definition of the sample
quantile or order . Then

Like standard deviation (our most important measure of spread), range and interquartile range are not affected by the location parameter, but
are scaled by the scale parameter.

The range and interquartile range of  are
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Proof

These results follow immediately from the previous result.

More generally, suppose  where  is a strictly increasing real-valued function on the set of possible values of . Let 
 denote the sample corresponding to the variable . Then (as in the proof of Theorem 2), the order statistics are

preserved so . However, if  is nonlinear, the quantiles are not preserved (because the quantiles involve linear interpolation).
That is,  and  are not usually the same. When  is convex or concave we can at least give an inequality for the sample quantiles.

Suppose that  where  is strictly increasing. Then

1.  for 
2. If  is convex then  for 
3. If  is concave then  for 

Proof

As noted, part (a) follows since  is strictly increasing and hence preserves order. Part (b) follows from the definition of convexity. For 
, and  and  as in the definition of the sample quantile of order , we have

Part (c) follows by the same argument.

Stem and Leaf Plots

A stem and leaf plot is a graphical display of the order statistics . It has the benefit of showing the data in a graphical
way, like a histogram, and at the same time, preserving the ordered data. First we assume that the data have a fixed number format: a fixed
number of digits, then perhaps a decimal point and another fixed number of digits. A stem and leaf plot is constructed by using an initial part
of this string as the stem, and the remaining parts as the leaves. There are lots of variations in how to do this, so rather than give an exhaustive,
complicated definition, we will just look at a couple of examples in the exercise below.

Probability Theory

We continue our discussion of order statistics except that now we assume that the variables are random variables. Specifically, suppose that
we have a basic random experiment, and that  is a real-valued random variable for the experiment with distribution function . We perform 

 independent replications of the basic experiment to generate a random sample  of size  from the distribution of .
Recall that this is a sequence of independent random variables, each with the distribution of . All of the statistics defined in the previous
section make sense, but now of course, they are random variables. We use the notation established previously, except that we follow our usual
convention of denoting random variables with capital letters. Thus, for ,  is the th order statistic, that is, the  smallest
of . Our interest now is on the distribution of the order statistics and statistics derived from them.

Distribution of the th order statistic

Finding the distribution function of an order statistic is a nice application of Bernoulli trials and the binomial distribution.

The distribution function  of  is given by

Proof

For , let

so that  is the number of sample variables that fall in the interval . The indicator variables in the sum are independent, and
each takes the value 1 with probability . Thus,  has the binomial distribution with parameters  and . Next note that 

 if and only if  for  and , since both events mean that there are at least  sample variables in the
interval . Hence
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As always, the extreme order statistics are particularly interesting.

The distribution functions  of  and  of  are given by

1.  for 
2.  for 

The quantile functions  and  of  and  are given by

1.  for 
2.  for 

Proof

The formulas follow from the previous theorem and simple algebra. Recall that if  is a distribution function, then the corresponding
quantile function is given by  for .

When the underlying distribution is continuous, we can give a simple formula for the probability density function of an order statistic.

Suppose now that  has a continuous distribution with probability density function . Then  has a continuous distribution with
probability density function  given by

Proof

Of course, . We take the derivatives term by term and use the product rule on

We use the binomial identities  and . The net effect is

The sums cancel, leaving only the  term in the first sum. Hence

But .

Heuristic Proof

There is a simple heuristic argument for this result First,  is the probability that  is in an infinitesimal interval of size 
about . On the other hand, this event means that one of sample variables is in the infinitesimal interval,  sample variables are less
than , and  sample variables are greater than . The number of ways of choosing these variables is the multinomial coefficient

By independence, the probability that the chosen variables are in the specified intervals is

Here are the special cases for the extreme order statistics.

The probability density function  of  and  of  are given by

1.  for 
2.  for 
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Joint Distributions

We assume again that  has a continuous distribution with distribution function  and probability density function .

Suppose that  with . The joint probability density function  of  is given by

Heuristic Proof

We want to compute the probability that  is in an infinitesimal interval  about  and  is in an infinitesimal interval  about .
Note that there must be  sample variables that are less than , one variable in the infinitesimal interval about ,  sample
variables that are between  and , one variable in the infinitesimal interval about , and  sample variables that are greater than .
The number of ways to select the variables is the multinomial coefficient

By independence, the probability that the chosen variables are in the specified intervals is

From the joint distribution of two order statistics we can, in principle, find the distribution of various other statistics: the sample range ;
sample quantiles  for , and in particular the sample quartiles , , ; and the inter-quartile range IQR. The joint distribution
of the extreme order statistics  is a particularly important case.

The joint probability density function  of  is given by

Proof

This is a corollary of Theorem 7 with  and .

Arguments similar to the one above can be used to obtain the joint probability density function of any number of the order statistics. Of
course, we are particularly interested in the joint probability density function of all of the order statistics. It turns out that this density function
has a remarkably simple form.

 has joint probability density function  given by

Proof

For each permutation  of , let . On , the mapping 
 is one-to-one, has continuous first partial derivatives, and has Jacobian 1. The sets  where 

ranges over the  permutations of  are disjoint. The probability that  is not in one of these sets is 0. The
result now follows from the multivariate change of variables formula.

Heuristic Proof

Again, there is a simple heuristic argument for this result. For each  with , there are  permutations of the
coordinates of . The probability density of  at each of these points is . Hence the probability
density of  at  is  times this product.

Probability Plots

A probability plot, also called a quantile-quantile plot or a Q-Q plot for short, is an informal, graphical test to determine if observed data
come from a specified distribution. Thus, suppose that we observe real-valued data  from a random sample of size . We are
interested in the question of whether the data could reasonably have come from a continuous distribution with distribution function . First,
we order that data from smallest to largest; this gives us the sequence of observed values of the order statistics: .

Note that we can view  has the sample quantile of order . Of course, by definition, the distribution quantile of order  is 

. If the data really do come from the distribution, then we would expect the points  to
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be close to the diagonal line ; conversely, strong deviation from this line is evidence that the distribution did not produce the data. The
plot of these points is referred to as a probability plot.

Usually however, we are not trying to see if the data come from a particular distribution, but rather from a parametric family of distributions
(such as the normal, uniform, or exponential families). We are usually forced into this situation because we don't know the parameters; indeed
the next step, after the probability plot, may be to estimate the parameters. Fortunately, the probability plot method has a simple extension for
any location-scale family of distributions. Thus, suppose that  is a given distribution function. Recall that the location-scale family
associated with  has distribution function  for, , where  is the location parameter and  is the scale
parameter. Recall also that for , if  denote the quantile of order  for  and  the quantile of order  for 

. Then . It follows that if the probability plot constructed with distribution function  is nearly linear (and in particular, if it is
close to the diagonal line), then the probability plot constructed with distribution function  will be nearly linear. Thus, we can use the
distribution function  without having to know the location and scale parameters.

In the exercises below, you will explore probability plots for the normal, exponential, and uniform distributions. We will study a formal,
quantitative procedure, known as the chi-square goodness of fit test in the chapter on Hypothesis Testing.

Exercises and Applications

Basic Properties

Suppose that  is the temperature (in degrees Fahrenheit) for a certain type of electronic component after 10 hours of operation. A sample
of 30 components has five number summary .

1. Classify  by type and level of measurement.
2. Find the range and interquartile range.
3. Find the five number summary, range, and interquartile range if the temperature is converted to degrees Celsius. The transformation is

.

Answer
1. continuous, interval
2. 51, 18
3. , 28.33, 10

Suppose that  is the length (in inches) of a machined part in a manufacturing process. A sample of 50 parts has five number summary
(9.6, 9.8, 10.0, 10.1, 10.3).

1. Classify  by type and level of measurement.
2. Find the range and interquartile range.
3. Find the five number summary, range, and interquartile if length is measured in centimeters. The transformation is .

Answer
1. continuous, ratio
2. 0.7, 0.3
3. , 1.78, 0.76
4. 

Professor Moriarity has a class of 25 students in her section of Stat 101 at Enormous State University (ESU). For the first midterm exam,
the five number summary was (16, 52, 64, 72, 81) (out of a possible 100 points). Professor Moriarity thinks the grades are a bit low and is
considering various transformations for increasing the grades.

1. Find the range and interquartile range.
2. Suppose she adds 10 points to each grade. Find the five number summary, range, and interquartile range for the transformed grades.
3. Suppose she multiplies each grade by 1.2. Find the five number summary, range, and interquartile range for the transformed grades.
4. Suppose she uses the transformation , which curves the grades greatly at the low end and very little at the high end. Give

whatever information you can about the five number summary of the transformed grades.
5. Determine whether the low score of 16 is an outlier.

Answer
1. 65, 20
2. , 65, 20
3. , 78, 24
4. , , , , 
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9
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x

x

y = 2.54x

(24.38, 24.89, 25.40, 25.65, 26.16)

w = 10 x−−√

(26, 62, 74, 82, 91)
(19.2, 62.4, 76.8, 86.4, 97.2)

= 40y(1) ≤ 72.11q1 ≤ 80q2 ≤ 84.85q3 = 90y(25)
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5. The lower fence is 27, so yes 16 is an outlier.

Computational Exercises

All statistical software packages will compute order statistics and quantiles, draw stem-and-leaf plots and boxplots, and in general perform the
numerical and graphical procedures discussed in this section. For real statistical experiments, particularly those with large data sets, the use of
statistical software is essential. On the other hand, there is some value in performing the computations by hand, with small, artificial data sets,
in order to master the concepts and definitions. In this subsection, do the computations and draw the graphs with minimal technological aids.

Suppose that  is the number of math courses completed by an ESU student. A sample of 10 ESU students gives the data 
.

1. Classify  by type and level of measurement.
2. Give the order statistics
3. Compute the five number summary and draw the boxplot.
4. Compute the range and the interquartile range.

Answer
1. discrete, ratio
2. 
3. 
4. 4, 1.5

Suppose that a sample of size 12 from a discrete variable  has empirical density function given by , , 
, , .

1. Give the order statistics.
2. Compute the five number summary and draw the boxplot.
3. Compute the range and the interquartile range.

Answer
1. 
2. 
3. 4, 2

The stem and leaf plot below gives the grades for a 100-point test in a probability course with 38 students. The first digit is the stem and
the second digit is the leaf. Thus, the low score was 47 and the high score was 98. The scores in the 6 row are 60, 60, 62, 63, 65, 65, 67,
68.

Compute the five number summary and draw the boxplot.

Answer

App Exercises

In the histogram app, construct a distribution with at least 30 values of each of the types indicated below. Note the five number summary.

1. A uniform distribution.
2. A symmetric, unimodal distribution.
3. A unimodal distribution that is skewed right.
4. A unimodal distribution that is skewed left.
5. A symmetric bimodal distribution.
6. A -shaped distribution.

x

x = (3, 1, 2, 0, 2, 4, 3, 2, 1, 2)

x

(0, 1, 1, 2, 2, 2, 2, 3, 3, 4)
(0, 1.25, 2, 2.75, 4)

x f(−2) = 1/12 f(−1) = 1/4
f(0) = 1/3 f(1) = 1/6 f(2) = 1/6

(−2, −1, −1, −1, 0, 0, 0, 0, 1, 1, 2, 2)
(−2, −1, 0, 1, 2)

4

5

6

7

8

9

7

0346

00235578

0112346678899

0367889

1368

(47, 65, 75, 83, 98)

u

https://libretexts.org/
https://creativecommons.org/licenses/by/2.0/
https://stats.libretexts.org/@go/page/10183?pdf


6.6.8 https://stats.libretexts.org/@go/page/10183

In the error function app, Start with a distribution and add additional points as follows. Note the effect on the five number summary:

1. Add a point below .
2. Add a point between  and .
3. Add a point between  and .
4. Add a point between  and .
5. Add a point between  and .
6. Add a point above .

In the last problem, you may have noticed that when you add an additional point to the distribution, one or more of the five statistics does not
change. In general, quantiles can be relatively insensitive to changes in the data.

The Uniform Distribution

Recall that the standard uniform distribution is the uniform distribution on the interval .

Suppose that  is a random sample of size  from the standard uniform distribution. For ,  has the beta
distribution, with left parameter  and right parameter . The probability density function  is given by

Proof

This follows immediately from the basic theorem above since  and  for . From the form of  we can
identify the distribution as beta with left parameter  and right parameter .

In the order statistic experiment, select the standard uniform distribution and . Vary  from 1 to 5 and note the shape of the
probability density function of . For each value of , run the simulation 1000 times and compare the empirical density function to the
true probability density function.

It's easy to extend the results for the standard uniform distribution to the general uniform distribution on an interval.

Suppose that  is a random sample of size  from the uniform distribution on the interval  where  and . For 
,  has the beta distribution with left parameter , right parameter , location parameter , and scale

parameter . In particular,

1. 

2. 

Proof

Suppose that  is a random sample of size  from the standard uniform distribution, and let  for 
. Then  is a random sample of size  from the uniform distribution on the interval ,

and moreover, . So the distribution of  follows from the previous result. Parts (a) and (b) follow from standard
results for the beta distribution.

We return to the standard uniform distribution and consider the range of the random sample.

Suppose that  is a random sample of size  from the standard uniform distribution. The sample range  has the beta distribution with
left parameter  and right parameter 2. The probability density function  is given by

Proof

From the result above, the joint PDF of  is  for . Hence, for ,

It follows that the CDF of  is  for . Taking the derivative with respect to  and simplifying gives
the PDF  for . We can tell from the form of  that the distribution is beta with left parameter 

 and right parameter 2.

x(1)

x(1) q1

q1 q2

q2 q3

q3 x(n)

x(n)

[0, 1]

X n k ∈ {1, 2, … ,n} X(k)

k n−k+1 fk

(x) = (1 −x , 0 ≤ x ≤ 1fk
n!

(k−1)!(n−k)!
xk−1 )n−k (6.6.22)

f(x) = 1 F (x) = x 0 ≤ x ≤ 1 fk
k n−k+1

n = 5 k

X(k) k

X n [a, a+h] a ∈ R h ∈ (0, ∞)
k ∈ {1, 2, … ,n} X(k) k n−k+1 a

h

E ( ) = a+hX(k)
k

n+1

var( ) =X(k) h2 k(n−k+1)

(n+1 (n+2))
2

U = ( , , … , )U1 U2 Un n = a+hXi Ui

i ∈ {1, 2, … ,n} X = ( , , … , )X1 X2 Xn n [a, a+h]
= a+hX(k) U(k) X(k)

X n R

n−1 g

g(r) = n(n−1) (1 −r), 0 ≤ r ≤ 1rn−2 (6.6.23)

( , )X(1) X(n) (x, y) = n(n−1)(y−xf1,n )n−2 0 ≤ x ≤ y ≤ 1 r ∈ [0, 1]

P(R > r) = P( − > r) = n(n−1)(y−x dy dx = (n−1) −n +1X(n) X(1) ∫
1−r

0
∫

1

x+r

)n−2 rn rn−1 (6.6.24)

R G(r) = n −(n−1)rn−1 rn 0 ≤ r ≤ 1 r

g(r) = n(n−1) (1 −r)rn−2 0 ≤ r ≤ 1 g

n−1
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Once again, it's easy to extend this result to a general uniform distribution.

Suppose that  is a random sample of size  from the uniform distribution on  where  and 
. The sample range  has the beta distribution with left parameter , right parameter , and scale

parameter . In particular,

1. 

2. 

Proof

Suppose again that  is a random sample of size  from the standard uniform distribution, and let 
for . Then  is a random sample of size  from the uniform distribution on the interval 

, and moreover, . Hence  so the distribution of  follows from the previous
result. Parts (a) and (b) follow from standard results for the beta distribution.

The joint distribution of the order statistics for a sample from the uniform distribution is easy to get.

Suppose that  is a random sample of size  from the uniform distribution on the interval , where  and 
. Then  is uniformly distributed on .

Proof

This follows easily from the fact that  is uniformly distributed on . From the result above, the joint PDF of
the order statistics is  for  with .

The Exponential Distribution

Recall that the exponential distribution with rate parameter  has probability density function

The exponential distribution is widely used to model failure times and other random times under certain ideal conditions. In particular, the
exponential distribution governs the times between arrivals in the Poisson process.

Suppose that  is a random sample of size  from the exponential distribution with rate parameter . The probability density function of
the th order statistic  is

In particular, the minimum of the variables  also has an exponential distribution, but with rate parameter .

Proof

The PDF of  follows from the theorem above since  for . Substituting  gives 
for .

In the order statistic experiment, select the standard exponential distribution and . Vary  from 1 to 5 and note the shape of the
probability density function of . For each value of , run the simulation 1000 times and compare the empirical density function to the
true probability density function.

Suppose again that  is a random sample of size  from the exponential distribution with rate parameter . The sample range  has the
same distribution as the maximum of a random sample of size  from the exponential distribution. The probability density function is

Proof

By the result above,  has joint PDF  for . Hence for 
,

Substituting ,  into the inside integral and evaluating gives

X = ( , , … , )X1 X2 Xn n [a, a+h] a ∈ R

h ∈ (0, ∞) R = −X(n) X(1) n−1 2

h

E(R) = h n−1
n+1

var(R) = h2 2( )n1

(n+1 (n+2))2

U = ( , , … , )U1 U2 Un n = a+hXi Ui

i ∈ {1, 2, … ,n} X = ( , , … , )X1 X2 Xn n

[a, a+h] = a+hX(k) U(k) − = h( −X(n) X(1) U(n) U(1) R

( , , … , )X1 X2 Xn n [a, a+h] a ∈ R

h ∈ (0, ∞) ( , , … , )X(1) X(2) X(n) {x ∈ [a, a+h : a ≤ ≤ ≤ ⋯ ≤ < a+h}]n x1 x2 xn

( , , … , )X1 X2 Xn [a, a+h]n

g( , , … , ) = n!/x1 x2 xn hn ( , , … , ) ∈ [a, a+hx1 x2 xn ]n a ≤ ≤ ≤ ⋯ ≤ ≤ a+hx1 x2 xn

λ > 0

f(x) = λ , 0 ≤ x < ∞e−λx (6.6.25)

X n λ

k X(k)

(x) = λ(1 − , 0 ≤ x < ∞fk
n!

(k−1)!(n−k)!
e−λx )k−1e−λ(n−k+1)x (6.6.26)

X(1) nλ

X(k) F (x) = 1 −e−λx 0 ≤ x < ∞ k = 1 (x) = nλf1 e−nλx

0 ≤ x < ∞

n = 5 k

X(k) k

X n λ R

n−1

h(t) = (n−1)λ(1 − , 0 ≤ t < ∞e−λt )n−2e−λt (6.6.27)

( , )X(1) X(n) (x, y) = n(n−1) ( −f1,n λ2 e−λx e−λy )n−2e−λxe−λy 0 ≤ x ≤ y < ∞
0 ≤ t < ∞

P(R ≤ t) = P( − ≤ t) = n(n−1) ( − dy dxX(n) X(1) ∫
∞

0
∫

x+t

x

λ2 e−λx e−λy )n−2e−λxe−λy (6.6.28)

u = e−λy du = −λ dye−λy
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Differentiating with respect to  gives the the PDF. Comparing with our previous result, we see that this is the PDF of the maximum of a
sample of size  from the exponential distribution.

Suppose again that  is a random sample of size  from the exponential distribution with rate parameter . The joint probability density
function of the order statistics  is

Proof

This follows from the result above and simple algebra.

Dice

Four fair dice are rolled. Find the probability density function of each of the order statistics.

Answer

1 2 3 4 5 6

In the dice experiment, select the order statistic and die distribution given in parts (a)–(d) below. Increase the number of dice from 1 to 20,
noting the shape of the probability density function at each stage. Now with , run the simulation 1000 times, and note the apparent
convergence of the relative frequency function to the probability density function.

1. Maximum score with fair dice.
2. Minimum score with fair dice.
3. Maximum score with ace-six flat dice.
4. Minimum score with ace-six flat dice.

Four fair dice are rolled. Find the joint probability density function of the four order statistics.

Answer

The joint probability density function  is defined on 

1.  if the coordinates are all the same (there are 6 such vectors).
2.  if there are two distinct coordinates, one value occurring 3 times and the other value once (there are 30 such

vectors).
3.  if there are two distinct coordinates in , each value occurring 2 times (there are 15 such

vectors).
4.  if there are three distinct coordinates, one value occurring twice and the other values once (there are 60 such

vectors).
5.  if the coordinates are distinct (there are 15 such vectors).

Four fair dice are rolled. Find the probability density function of the sample range.

Answer

 has probability density function  given by 

Probability Plot Simulations

In the probability plot experiment, set the sampling distribution to normal distribution with mean 5 and standard deviation 2. Set the
sample size to . For each of the following test distributions, run the experiment 50 times and note the geometry of the probability

P(R ≤ t) = nλ (1 − dx = (1 −∫
∞

0
e−nλx e−λt )n−1 e−λt )n−1 (6.6.29)

t

n−1

X n λ

( , , … , )X(1) X(2) X(n)

g( , , … , ) = n! , 0 ≤ ≤ ⋯ ≤ < ∞x1 x2 xn λne−λ( + +⋯+ )x1 x2 xn x1 x2 xn (6.6.30)

x

(x)f1
671

1296
369

1296
175

1296
65

1296
15

1296
1

1296

(x)f2
171

1296
357

1296
363

1296
261

1296
123

1296
21

1296

(x)f3
21

1296
123

1296
261

1296
363

1296
357

1296
171

1296

(x)f4
1

1296
15

1296
65

1296
175

1296
369

1296
671

1296

n = 4

g {( , , , ) ∈ {1, 2, 3, 4, 5, 6 : ≤ ≤ ≤ }x1 x2 x3 x4 }4 x1 x2 x3 x4

g( , , , ) =x1 x2 x3 x4
1

1296

g( , , , ) =x1 x2 x3 x4
4

1296

g( , , , ) =x1 x2 x3 x4
6

1296
( , , , )x1 x2 x3 x4

g( , , , ) =x1 x2 x3 x4
12

1296

g( , , , ) =x1 x2 x3 x4
24

1296

R h h(0) = , h(1) = , h(2) = , h(3) = , h(4) = , h(5) =6
1296

70
1296

300
1296

300
1296

318
1296

302
1296

n = 20
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plot:

1. Standard normal
2. Uniform on the interval 
3. Exponential with parameter 1

In the probability plot experiment, set the sampling distribution to the uniform distribution on . Set the sample size to . For
each of the following test distributions, run the experiment 50 times and note the geometry of the probability plot:

1. Standard normal
2. Uniform on the interval 
3. Exponential with parameter 1

In the probability plot experiment, Set the sampling distribution to the exponential distribution with parameter 3. Set the sample size to 
. For each of the following test distributions, run the experiment 50 times and note the geometry of the probability plot:

1. Standard normal
2. Uniform on the interval 
3. Exponential with parameter 1

Data Analysis Exercises

Statistical software should be used for the problems in this subsection.

Consider the petal length and species variables in Fisher's iris data.

1. Classify the variables by type and level of measurement.
2. Compute the five number summary and draw the boxplot for petal length.
3. Compute the five number summary and draw the boxplot for petal length by species.
4. Draw the normal probability plot for petal length.

Answers
1. petal length: continuous, ratio. type: discrete, nominal
2. 
3. type 0: ; type 1: ; type 2: 

Consider the erosion variable in the Challenger data set.

1. Classify the variable by type and level of measurement.
2. Compute the five number summary and draw the boxplot.
3. Identify any outliers.

Answer
1. continuous, ratio
2. 
3. All of the positive values 28, 40, 48, and 53 are outliers.

A stem and leaf plot of Michelson's velocity of light data is given below. In this example, the last digit (which is always 0) has been left
out, for convenience. Also, note that there are two sets of leaves for each stem, one corresponding to leaves from 0 to 4 (so actually from
00 to 40) and the other corresponding to leaves from 5 to 9 (so actually from 50 to 90). Thus, the minimum value is 620 and the numbers
in the second 7 row are 750, 760, 760, and so forth.

[0, 1]

[4, 10] n = 20

[0, 1]

n = 20

[0, 1]

(10, 15, 44, 51, 69)
(10, 14, 15, 16, 19) (45, 51, 55.5, 59, 69) (30, 40, 44, 47, 56)

(0, 0, 0, 0, 53)

6

6

7

7

8

9

9

10

10

2

5

222444

566666788999

000001111111111223344444444

0011233444

55566667888

000

7
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Classify the variable by type and level of measurement.

1. Compute the five number summary and draw the boxplot.
2. Compute the five number summary for the velocity in . The transformation is .
3. Draw the normal probability plot.

Answer
1. continuous, interval
2. 
3. 

Consider Short's paralax of the sun data.

1. Classify the variable by type and level of measurement.
2. Compute the five number summary and draw the boxplot.
3. Compute the five number summary and draw the boxplot if the variable is converted to degrees. There are 3600 seconds in a degree.
4. Compute the five number summary and draw the boxplot if the variable is converted to radians. There are  radians in a degree.
5. Draw the normal probability plot.

Answer
1. continuous, ratio
2. 
3. 
4. 

Consider Cavendish's density of the earth data.

1. Classify the variable by type and level of measurement.
2. Compute the five number summary and draw the boxplot.
3. Draw the normal probability plot.

Answer
1. continuous, ratio
2. 

Consider the M&M data.

1. Classify the variables by type and level of measurement.
2. Compute the five number summary and draw the boxplot for each color count.
3. Construct a stem and leaf plot for the total number of candies.
4. Compute the five number summary and draw the boxplot for the total number of candies.
5. Compute the five number summary and draw the boxplot for net weight.

Answer
1. color counts: discrete ratio. net weight: continuous ratio.
2. red: ; green: ; blue: ; orange: ; yellow: ; brown: 

3. 5 0

5 3

5 4 5 5 5 5

5 6 6 6 6 7 7 7

5 8 8 8 8 8 8 8 8 8 9 9 9

6 0 0 1 1

4. 
5. 

Consider the body weight, species, and gender variables in the Cicada data.

km/hr y = x+299 000

(620, 805, 850, 895, 1071)
(299 620, 299 805, 299 850, 299 895, 300 071)

π/180

(5.76, 8.34, 8.50, 9.02, 10.57)
(0.00160, 0.00232, 0.00236, 0.00251, 0.00294)
(0.0000278, 0.0000404, 0.0000412, 0.0000437, 0.0000512)

(4.88, 5.30, 5.46, 5.61, 5.85)

(3, 5.5, 9, 14, 20) (2, 5, 7, 9, 17) (1, 4, 6.5, 10, 19) (0, 3.5, 6, 10.5, 13) (3, 8, 13.5, 18, 26)
(4, 8, 12.5, 18, 20)

(50, 55.5, 58, 60, 61)
(46.22, 48.28, 49.07, 50.23, 52.06)
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1. Classify the variables by type and level of measurement.
2. Compute the five number summary and draw the boxplot for body weight.
3. Compute the five number summary and draw the boxplot for body weight by species.
4. Compute the five number summary and draw the boxplot for body weight by gender.

Answer
1. body weight: continuous, ratio. species: discrete, nominal. gender: discrete, nominal.
2. 
3. species 0: ; species 1: ; species 2: 
4. female: ; male: 

Consider Pearson's height data.

1. Classify the variables by type and level of measurement.
2. Compute the five number summary and sketch the boxplot for the height of the father.
3. Compute the five number summary and sketch the boxplot for the height of the son.

Answer
1. continuous ratio
2. 
3. 
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