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Preface

Preface to Pfeiffer Applied Probability

The course

This is a "first course" in the sense that it presumes no previous course in probability. The units are modules taken from the
unpublished text: Paul E. Pfeiffer, ELEMENTS OF APPLIED PROBABILITY, USING MATLAB. The units are numbered as they
appear in the text, although of course they may be used in any desired order. For those who wish to use the order of the text, an
outline is provided, with indication of which modules contain the material.

The mathematical prerequisites are ordinary calculus and the elements of matrix algebra. A few standard series and integrals are
used, and double integrals are evaluated as iterated integrals. The reader who can evaluate simple integrals can learn quickly from
the examples how to deal with the iterated integrals used in the theory of expectation and conditional expectation. Appendix B
provides a convenient compendium of mathematical facts used frequently in this work. And the symbolic toolbox, implementing
MAPLE, may be used to evaluate integrals, if desired.

In addition to an introduction to the essential features of basic probability in terms of a precise mathematical model, the work
describes and employs user defined MATLAB procedures and functions (which we refer to as m-programs, or simply programs) to
solve many important problems in basic probability. This should make the work useful as a stand alone exposition as well as a
supplement to any of several current textbooks.

Most of the programs developed here were written in earlier versions of MATLAB, but have been revised slightly to make them
quite compatible with MATLAB 7. In a few cases, alternate implementations are available in the Statistics Toolbox, but are
implemented here directly from the basic MATLAB program, so that students need only that program (and the symbolic
mathematics toolbox, if they desire its aid in evaluating integrals).

Since machine methods require precise formulation of problems in appropriate mathematical form, it is necessary to provide some
supplementary analytical material, principally the so-called minterm analysis. This material is not only important for computational
purposes, but is also useful in displaying some of the structure of the relationships among events.

A probability model

Much of "real world" probabilistic thinking is an amalgam of intuitive, plausible reasoning and of statistical knowledge and insight.
Mathematical probability attempts to to lend precision to such probability analysis by employing a suitable mathematical model,
which embodies the central underlying principles and structure. A successful model serves as an aid (and sometimes corrective) to
this type of thinking.

Certain concepts and patterns have emerged from experience and intuition. The mathematical formulation (the mathematical
model) which has most successfully captured these essential ideas is rooted in measure theory, and is known as the Kolmogorov
model, after the brilliant Russian mathematician A.N. Kolmogorov (1903-1987).

One cannot prove that a model is correct. Only experience may show whether it is useful (and not incorrect). The usefulness of the
Kolmogorov model is established by examining its structure and showing that patterns of uncertainty and likelihood in any
practical situation can be represented adequately. Developments, such as in this course, have given ample evidence of such
usefulness.

The most fruitful approach is characterized by an interplay of
¢ A formulation of the problem in precise terms of the model and careful mathematical analysis of the problem so formulated.

e A grasp of the problem based on experience and insight. This underlies both problem formulation and interpretation of
analytical results of the model. Often such insight suggests approaches to the analytical solution process.

MATLAB: A tool for learning

In this work, we make extensive use of MATLAB as an aid to analysis. I have tried to write the MATLAB programs in such a way
that they constitute useful, ready-made tools for problem solving. Once the user understands the problems they are designed to
solve, the solution strategies used, and the manner in which these strategies are implemented, the collection of programs should
provide a useful resource.
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However, my primary aim in exposition and illustration is to aid the learning process and to deepen insight into the structure of the
problems considered and the strategies employed in their solution. Several features contribute to that end.

1. Application of machine methods of solution requires precise formulation. The data available and the fundamental assumptions
must be organized in an appropriate fashion. The requisite discipline for such formulation often contributes to enhanced
understanding of the problem.

2. The development of a MATLAB program for solution requires careful attention to possible solution strategies. One cannot
instruct the machine without a clear grasp of what is to be done.

3.1 give attention to the tasks performed by a program, with a general description of how MATLAB carries out the tasks. The
reader is not required to trace out all the programming details. However, it is often the case that available MATLAB resources
suggest alternative solution strategies. Hence, for those so inclined, attention to the details may be fruitful. I have included, as a
separate collection, the m-files written for this work. These may be used as patterns for extensions as well as programs in
MATLAB for computations. Appendix A provides a directory of these m-files.

4. Some of the details in the MATLAB script are presentation details. These are refinements which are not essential to the solution
of the problem. But they make the programs more readily usable. And they provide illustrations of MATLAB techniques for
those who may wish to write their own programs. I hope many will be inclined to go beyond this work, modifying current
programs or writing new ones.

An Invitation to Experiment and Explore

Because the programs provide considerable freedom from the burden of computation and the tyranny of tables (with their limited
ranges and parameter values), standard problems may be approached with a new spirit of experiment and discovery. When a
program is selected (or written), it embodies one method of solution. There may be others which are readily implemented. The
reader is invited, even urged, to explore! The user may experiment to whatever degree he or she finds useful and interesting. The
possibilities are endless.
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CHAPTER OVERVIEW

1: Probability Systems
1.1: Likelihood
1.2: Probability Systems
1.3: Interpretations

1.4: Problems on Probability Systems
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1.1: Likelihood

Introduction

Probability models and techniques permeate many important areas of modern life. A variety of types of random processes,
reliability models and techniques, and statistical considerations in experimental work play a significant role in engineering and the
physical sciences. The solutions of management decision problems use as aids decision analysis, waiting line theory, inventory
theory, time series, cost analysis under uncertainty — all rooted in applied probability theory. Methods of statistical analysis
employ probability analysis as an underlying discipline.

Modern probability developments are increasingly sophisticated mathematically. To utilize these, the practitioner needs a sound
conceptual basis which, fortunately, can be attained at a moderate level of mathematical sophistication. There is need to develop a
feel for the structure of the underlying mathematical model, for the role of various types of assumptions, and for the principal
strategies of problem formulation and solution.

Probability has roots that extend far back into antiquity. The notion of “chance” played a central role in the ubiquitous practice of
gambling. But chance acts were often related to magic or religion. For example, there are numerous instances in the Hebrew Bible
in which decisions were made “by lot” or some other chance mechanism, with the understanding that the outcome was determined
by the will of God. In the New Testament, the book of Acts describes the selection of a successor to Judas Iscariot as one of “the
Twelve.” Two names, Joseph Barsabbas and Matthias, were put forward. The group prayed, then drew lots, which fell on Matthias.

Early developments of probability as a mathematical discipline, freeing it from its religious and magical overtones, came as a
response to questions about games of chance played repeatedly. The mathematical formulation owes much to the work of Pierre de
Fermat and Blaise Pascal in the seventeenth century. The game is described in terms of a well defined trial (a play); the result of
any trial is one of a specific set of distinguishable outcomes. Although the result of any play is not predictable, certain “statistical
regularities” of results are observed. The possible results are described in ways that make each result seem equally likely. If there
are N such possible “equally likely” results, each is assigned a probability 1/N.

The developers of mathematical probability also took cues from early work on the analysis of statistical data. The pioneering work
of John Graunt in the seventeenth century was directed to the study of “vital statistics,” such as records of births, deaths, and
various diseases. Graunt determined the fractions of people in London who died from various diseases during a period in the early
seventeenth century. Some thirty years later, in 1693, Edmond Halley (for whom the comet is named) published the first life
insurance tables. To apply these results, one considers the selection of a member of the population on a chance basis. One then
assigns the probability that such a person will have a given disease. The trial here is the selection of a person, but the interest is in
certain characteristics. We may speak of the event that the person selected will die of a certain disease— say “consumption.”
Although it is a person who is selected, it is death from consumption which is of interest. Out of this statistical formulation came an
interest not only in probabilities as fractions or relative frequencies but also in averages or expectatons. These averages play an
essential role in modern probability.

We do not attempt to trace this history, which was long and halting, though marked by flashes of brilliance. Certain concepts and
patterns which emerged from experience and intuition called for clarification. We move rather directly to the mathematical
formulation (the “mathematical model”) which has most successfully captured these essential ideas. This is the model, rooted in the
mathematical system known as measure theory, is called the Kolmogorov model, after the brilliant Russian mathematician A.N.
Kolmogorov (1903-1987). Kolmogorov succeeded in bringing together various developments begun at the turn of the century,
principally in the work of E. Borel and H. Lebesgue on measure theory. Kolmogorov published his epochal work in German in
1933. It was translated into English and published in 1956 by Chelsea Publishing Company.

Outcomes and events

Probability applies to situations in which there is a well defined trial whose possible outcomes are found among those in a given
basic set. The following are typical.

e A pair of dice is rolled; the outcome is viewed in terms of the numbers of spots appearing on the top faces of the two dice. If the
outcome is viewed as an ordered pair, there are thirty six equally likely outcomes. If the outcome is characterized by the total
number of spots on the two die, then there are eleven possible outcomes (not equally likely).

e A poll of a voting population is taken. Outcomes are characterized by responses to a question. For example, the responses may
be categorized as positive (or favorable), negative (or unfavorable), or uncertain (or no opinion).
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e A measurement is made. The outcome is described by a number representing the magnitude of the quantity in appropriate units.
In some cases, the possible values fall among a finite set of integers. In other cases, the possible values may be any real number
(usually in some specified interval).

e Much more sophisticated notions of outcomes are encountered in modern theory. For example, in communication or control
theory, a communication system experiences only one signal stream in its life. But a communication system is not designed for
a single signal stream. It is designed for one of an infinite set of possible signals. The likelihood of encountering a certain kind
of signal is important in the design. Such signals constitute a subset of the larger set of all possible signals.

These considerations show that our probability model must deal with

e A trial which results in (selects) an outcome from a set of conceptually possible outcomes. The trial is not successfully
completed until one of the outcomes is realized.

o Associated with each outcome is a certain characteristic (or combination of characteristics) pertinent to the problem at hand. In
polling for political opinions, it is a person who is selected. That person has many features and characteristics (race, age, gender,
occupation, religious preference, preferences for food, etc.). But the primary feature, which characterizes the outcome, is the
political opinion on the question asked. Of course, some of the other features may be of interest for analysis of the poll.

Inherent in informal thought, as well as in precise analysis, is the notion of an event to which a probability may be assigned as a
measure of the likelihood the event will occur on any trial. A successful mathematical model must formulate these notions with
precision. An event is identified in terms of the characteristic of the outcome observed. The event “a favorable response” to a
polling question occurs if the outcome observed has that characteristic; i.e., iff (if and only if) the respondent replies in the
affirmative. A hand of five cards is drawn. The event “one or more aces” occurs iff the hand actually drawn has at least one ace. If
that same hand has two cards of the suit of clubs, then the event “two clubs” has occurred. These considerations lead to the
following definition.

Definition. The event determined by some characteristic of the possible outcomes is the set of those outcomes having this
characteristic. The event occurs iff the outcome of the trial is a member of that set (i.e., has the characteristic determining the

event).

e The event of throwing a “seven” with a pair of dice (which we call the event SEVEN) consists of the set of those possible
outcomes with a total of seven spots turned up. The event SEVEN occurs iff the outcome is one of those combinations with a
total of seven spots (i.e., belongs to the event SEVEN). This could be represented as follows. Suppose the two dice are
distinguished (say by color) and a picture is taken of each of the thirty six possible combinations. On the back of each picture,
write the number of spots. Now the event SEVEN consists of the set of all those pictures with seven on the back. Throwing the
dice is equivalent to selecting randomly one of the thirty six pictures. The event SEVEN occurs iff the picture selected is one of
the set of those pictures with seven on the back.

o Observing for a very long (theoretically infinite) time the signal passing through a communication channel is equivalent to
selecting one of the conceptually possible signals. Now such signals have many characteristics: the maximum peak value, the
frequency spectrum, the degree of differentibility, the average value over a given time period, etc. If the signal has a peak
absolute value less than ten volts, a frequency spectrum essentially limited from 60 herz to 10,000 herz, with peak rate of
change 10,000 volts per second, then it is one of the set of signals with those characteristics. The event "the signal has these
characteristics" has occured. This set (event) consists of an uncountable infinity of such signals.

One of the advantages of this formulation of an event as a subset of the basic set of possible outcomes is that we can use
elementary set theory as an aid to formulation. And tools, such as Venn diagrams and indicator functions for studying event
combinations, provide powerful aids to establishing and visualizing relationships between events. We formalize these ideas as
follows:

o Let 2 be the set of all possible outcomes of the basic trial or experiment. We call this the basic space or the sure event, since if
the trial is carried out successfully the outcome will be in §2; hence, the event €2 is sure to occur on any trial. We must specify
unambiguously what outcomes are “possible.” In flipping a coin, the only accepted outcomes are “heads” and “tails.” Should
the coin stand on its edge, say by leaning against a wall, we would ordinarily consider that to be the result of an improper trial.

¢ As we note above, each outcome may have several characteristics which are the basis for describing events. Suppose we are
drawing a single card from an ordinary deck of playing cards. Each card is characterized by a “face value” (two through ten,
jack, queen, king, ace) and a “suit” (clubs, hearts, diamonds, spades). An ace is drawn (the event ACE occurs) iff the outcome
(card) belongs to the set (event) of four cards with ace as face value. A heart is drawn iff the card belongs to the set of thirteen
cards with heart as suit. Now it may be desirable to specify events which involve various logical combinations of the
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characteristics. Thus, we may be interested in the event the face value is jack or king and the suit is heart or spade. The set for
jack or king is represented by the union J U K and the set for heart or spade is the union H U .S. The occurrence of both
conditions means the outcome is in the intersection (common part) designated by N. Thus the event referred to is

E=(JUK)N(HUDS)
The notation of set theory thus makes possible a precise formulation of the event E.

e Sometimes we are interested in the situation in which the outcome does not have one of the characteristics. Thus the set of cards
which does not have suit heart is the set of all those outcomes not in event H . In set theory, this is the complementary set (event)
HC

o Events are mutually exclusive iff not more than one can occur on any trial. This is the condition that the sets representing the
events are disjoint (i.e., have no members in common).

o The notion of the impossible event is useful. The impossible event is, in set terminology, the empty set (). Event () cannot occur,
since it has no members (contains no outcomes). One use of () is to provide a simple way of indicating that two sets are mutually
exclusive. To say AB = () (here we use the alternate AB for AN B) is to assert that events A and B have no outcome in common,
hence cannot both occur on any given trial.

e The language and notaton of sets provide a precise language and notation for events and their combinations. We collect below
some useful facts about logical (often called Boolean) combinations of events (as sets). The notion of Boolean combinations may
be applied to arbitrary classes of sets. For this reason, it is sometimes useful to use an index set to designate membership. We say
the index J is countable if it is finite or countably infinite; otherwise it is uncountable. In the following it may be arbitrary.

A; : i € J is the class of sets A;, one for each index ¢ in the index set J
For example, if J =1,2,3 then A; : ¢ € J is the class A7, Ay, Ag, and
UicsAi=A1UAUAs ,U,c; Ai = A1NA N A3,
If J=1,2,--- then 4; : ¢ € J is the sequence A; : 1 <14, and
Uies 4i =UZ1 Ais Nies Ai =Ny A

If event E is the union of a class of events, then event E occurs iff at least one event in the class occurs. If F is the intersection of a
class of events, then event F occurs iff all events in the class occur on the trial.

The role of disjoint unions is so important in probability that it is useful to have a symbol indicating the union of a disjoint class.
We use the big V to indicate that the sets combined in the union are disjoint. Thus, for example, we write

A=\, A; tosignify A=J! ; A; with the proviso that the A; form a disjoint class

Events derived from a class

Consider the class E1, Es, E3 of events. Let Ay, be the event that exactly & occur on a trial and By, be the event that & or more
occur on a trial. Then

Ay =E{ESES, Ay = E\ESES\| ECEES\| ESESE3, Ay = E\EyES\| E\ESE3\| ESEyEs , A3 = EyEyEs
The unions are disjoint since each pair of terms has E; in one and E; in the other, for at least one 7. Now the By, can be
expressed in terms of the \(A_k\. For example
Va=A3\ A3
The union in this expression for By is disjoint since we cannot have exactly two of the E; occur and exactly three of them
occur on the same trial. We may express Bs directly in terms of the E; as follows:
By =FE1E,UEE3sUEyE3
Here the union is not disjoint, in general. However, if one pair, say E;, F3 is disjoint, then E1FE3 =0 and the pair

E, E,, Ey Ej3 is disjoint (draw a Venn diagram). Suppose C' is the event the first two occur or the last two occur but no other
combination. Then

C=EFEE; V E{E>E;3
Let D be the event that one or three of the events occur,

D=A,\ A3 = B\ ESES\ ESByES\| ESESEs \| BBy By
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The important patterns in set theory known as DeMorgan's rules are useful in the handing of events. For an arbitrary class
A; ;i € J of events,

(Uics Ail° = Mics A5 and [Nie; Ail° = Uies A5
An outcome is not in the union (i.e., not in at least one) of the A; iff it fails to be in all A4;, and it is not in the intersection (i.e. not
in all) iff it fails to be in at least one of the A;.

continuation of example

Express the event of no more than one occurrence of the events in Ey, F», E3 as Bj.
B =[E1E; UEE3 U EyEs|° = (E{ UES)(Ef U Eg)(Eg’ UE3) =E{E;UE{E{UESE;

The last expression shows that not more than one of the E; occurs iff at least two of them fail to occur.

This page titled 1.1: Likelihood is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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1.2: Probability Systems

Probability measures

In the module "Likelihood" we introduce the notion of a basic space QQ of all possible outcomes of a trial or experiment, events as
subsets of the basic space determined by appropriate characteristics of the outcomes, and logical or Boolean combinations of the
events (unions, intersections, and complements) corresponding to logical combinations of the defining characteristics.

Occurrence or nonoccurrence of an event is determined by characteristics or attributes of the outcome observed on a trial.
Performing the trial is visualized as selecting an outcome from the basic set. An event occurs whenever the selected outcome is a
member of the subset representing the event. As described so far, the selection process could be quite deliberate, with a prescribed
outcome, or it could involve the uncertainties associated with “chance.” Probability enters the picture only in the latter situation.
Before the trial is performed, there is uncertainty about which of these latent possibilities will be realized. Probability traditionally
is a number assigned to an event indicating the likelihood of the occurrence of that event on any trial.

We begin by looking at the classical model which first successfully formulated probability ideas in mathematical form. We use
modern terminology and notation to describe it.

Classical probability

1. The basic space € consists of a finite number N of possible outcomes.

-There are thirty six possible outcomes of throwing two dice.

2
-There are C'(52,5) = % = 2598960 different hands of five cards (order not important).

-There are 25 = 32 results (sequences of heads or tails) of flipping five coins.
2. Each possible outcome is assigned a probability 1/N

3. If event (subset) A has N4 elements, then the probability assigned event A is
P(A)=Ny4/N (i.e., the fraction favorable to A)

With this definition of probability, each event A is assigned a unique probability, which may be determined by counting N4, the
number of elements in A (in the classical language, the number of outcomes "favorable" to the event) and IV the total number of
possible outcomes in the sure event Q.

Probabilities for hands of cards

Consider the experiment of drawing a hand of five cards from an ordinary deck of 52 playing cards. The number of outcomes,
as noted above, is N = C(52,5) =2598960N = C(52,5) = 2598960 What is the probability of drawing a hand with
exactly two aces? What is the probability of drawing a hand with two or more aces? What is the probability of not more than
one ace?

Solution

Let A be the event of exactly two aces, B be the event of exactly three aces, and C' be the event of exactly four aces. In the
first problem, we must count the number N4 of ways of drawing a hand with two aces. We select two aces from the four, and
select the other three cards from the 48 non aces. Thus

There are two or more aces iff there are exactly two or exactly three or exactly four. Thus the event D of two or more is
D=A\/ B\ C,since A, B, C are mutually exclusive,

Np =N, +N,+ N, = C(4,2)C(48,3)+C(4,3)C(48,2) +C(4,4)C(48,1) = 103776 + 4512 + 48 = 108336

so that P(D) =~ 0.0417. There is one ace or none iff there are not two or more aces. We thus want P (D). Now the number in
D, is the number not in D which is N — Np, so that

(D) =~

—1-=2 —-1-P(D)=0.9583
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This example illustrates several important properties of the classical probability.

P(A)=N,/N is a nonnegative quantity.
PQ)=N/N=1
If A, B, C are mutually exclusive, then the number in the disjoint union is the sum of the numbers in the individual events, so that

P(A\/ B\ C) = P(A) + P(B) + P(C)

Several other elementary properties of the classical probability may be identified. It turns out that they can be derived from these
three. Although the classical model is highly useful, and an extensive theory has been developed, it is not really satisfactory for
many applications (the communications problem, for example). We seek a more general model which includes classical probability
as a special case and is thus an extension of it. We adopt the Kolmogorov model (introduced by the Russian mathematician A. N.
Kolmogorov) which captures the essential ideas in a remarkably successful way. Of course, no model is ever completely
successful. Reality always seems to escape our logical nets.

The Kolmogorov model is grounded in abstract measure theory. A full explication requires a level of mathematical sophistication
inappropriate for a treatment such as this. But most of the concepts and many of the results are elementary and easily grasped. And
many technical mathematical considerations are not important for applications at the level of this introductory treatment and may
be disregarded. We borrow from measure theory a few key facts which are either very plausible or which can be understood at a
practical level. This enables us to utilize a very powerful mathematical system for representing practical problems in a manner that
leads to both insight and useful strategies of solution.

Our approach is to begin with the notion of events as sets introduced above, then to introduce probability as a number assigned to
events subject to certain conditions which become definitive properties. Gradually we introduce and utilize additional concepts to
build progressively a powerful and useful discipline. The fundamental properties needed are just those illustrated in Example for
the classical case.

Definition

A probability system consists of a basic set {2 of elementary outcomes of a trial or experiment, a class of events as subsets of the
basic space, and a probability measure P(-) which assigns values to the events in accordance with the following rules

(P1): For any event A, the probability P(A) > 0.

(P2): The probability of the sure event P(Q) =1.

(P3): Countable additivity. If A;:1 € J is a mutually exclusive, countable class of events, then the probability of the
disjoint union is the sum of the individual probabilities.

The necessity of the mutual exclusiveness (disjointedness) is illustrated in Example. If the sets were not disjoint, probability would
be counted more than once in the sum. A probability, as defined, is abstract—simply a number assigned to each set representing an
event. But we can give it an interpretation which helps to visualize the various patterns and relationships encountered. We may
think of probability as mass assigned to an event. The total unit mass is assigned to the basic set 2. The additivity property for
disjoint sets makes the mass interpretation consistent. We can use this interpretation as a precise representation. Repeatedly we
refer to the probability mass assigned a given set. The mass is proportional to the weight, so sometimes we speak informally of the
weight rather than the mass. Now a mass assignment with three properties does not seem a very promising beginning. But we soon
expand this rudimentary list of properties. We use the mass interpretation to help visualize the properties, but are primarily
concerned to interpret them in terms of likelihoods.

(P4): P(A°) =1—P(A) . The follows from additivity and the fact that
1=P(Q)=P(AV A°) =P(A)+P(A°)

(P5): P(@) = 0. The empty set represents an impossible event. It has no members, hence cannot occur. It seems reasonable
that it should be assigned zero probability (mass). Since ) = Q¢, this follows logically from P(4) and (P2).
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Figure 1.2.1: Partitions of the union AU B

(P6): If A C B, then P(A) < P(B). From the mass point of view, every point in A is also in B, so that B must have at
least as much mass as A. Now the relationship A C B means that if A occurs, B must also. Hence B is at least as likely to
occur as A. From a purely formal point of view, we have

B=A\/ A°B so that P(B) = P(A)+ P(A°B) > P(A) since P(A°B) >0
(P7):P(AUB) =P(A)+P(A°B) = P(B)+P(AB°) = P(AB°)+ P(AB) + P(A°B)
=P(A)+P(B)—P(AB)
The first three expressions follow from additivity and partitioning of A U B as follows (see Figure 1.2.1).
AUB=A\/ A°B=B\/ AB*=AB°\/ AB\/ A°B

If we add the first two expressions and subtract the third, we get the last expression. In terms of probability mass, the first
expression says the probability in AU B is the probability mass in A plus the additional probability mass in the part of B
which is not in A. A similar interpretation holds for the second expression. The third is the probability in the common part
plus the extra in A and the extra in B. If we add the mass in A and B we have counted the mass in the common part twice.
The last expression shows that we correct this by taking away the extra common mass.

(P8):If B; : i € J is a countable, disjoint class and A is contained in the union, then
A=\/,.; AB; sothat P(A) =3, ; P(AB;)
(P9): Subadditivity. If A =J;2; A;, then P(A) <Y °; P(4;). This follows from countable additivity, property (P6), and
the fact
(Partitions)
A=UZ, Ai =V, Bi, where B; = A; AT AS - AS | C A
This includes as a special case the union of a finite number of events.

Some of these properties, such as (P4), (P5), and (P6), are so elementary that it seems they should be included in the defining
statement. This would not be incorrect, but would be inefficient. If we have an assignment of numbers to the events, we need only
establish (P1), (P2), and (P3) to be able to assert that the assignment constitutes a probability measure. And the other properties
follow as logical consequences.

Flexibility at a price

In moving beyond the classical model, we have gained great flexibility and adaptability of the model. It may be used for systems in
which the number of outcomes is infinite (countably or uncountably). It does not require a uniform distribution of the probability
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mass among the outcomes. For example, the dice problem may be handled directly by assigning the appropriate probabilities to the
various numbers of total spots, 2 through 12. As we see in the treatment of conditional probability, we make new probability
assignments (i.e., introduce new probability measures) when partial information about the outcome is obtained.

But this freedom is obtained at a price. In the classical case, the probability value to be assigned an event is clearly defined
(although it may be very difficult to perform the required counting). In the general case, we must resort to experience, structure of
the system studied, experiment, or statistical studies to assign probabilities.

The existence of uncertainty due to “chance” or “randomness” does not necessarily imply that the act of performing the trial is
haphazard. The trial may be quite carefully planned; the contingency may be the result of factors beyond the control or knowledge
of the experimenter. The mechanism of chance (i.e., the source of the uncertainty) may depend upon the nature of the actual
process or system observed. For example, in taking an hourly temperature profile on a given day at a weather station, the principal
variations are not due to experimental error but rather to unknown factors which converge to provide the specific weather pattern
experienced. In the case of an uncorrected digital transmission error, the cause of uncertainty lies in the intricacies of the correction
mechanisms and the perturbations produced by a very complex environment. A patient at a clinic may be self selected. Before his
or her appearance and the result of a test, the physician may not know which patient with which condition will appear. In each case,
from the point of view of the experimenter, the cause is simply attributed to “chance.” Whether one sees this as an “act of the gods”
or simply the result of a configuration of physical or behavioral causes too complex to analyze, the situation is one of uncertainty,
before the trial, about which outcome will present itself.

If there were complete uncertainty, the situation would be chaotic. But this is not usually the case. While there is an extremely large
number of possible hourly temperature profiles, a substantial subset of these has very little likelihood of occurring. For example,
profiles in which successive hourly temperatures alternate between very high then very low values throughout the day constitute an
unlikely subset (event). One normally expects trends in temperatures over the 24 hour period. Although a traffic engineer does not
know exactly how many vehicles will be observed in a given time period, experience provides some idea what range of values to
expect. While there is uncertainty about which patient, with which symptoms, will appear at a clinic, a physician certainly knows
approximately what fraction of the clinic's patients have the disease in question. In a game of chance, analyzed into “equally likely”
outcomes, the assumption of equal likelihood is based on knowledge of symmetries and structural regularities in the mechanism by
which the game is carried out. And the number of outcomes associated with a given event is known, or may be determined.

In each case, there is some basis in statistical data on past experience or knowledge of structure, regularity, and symmetry in the
system under observation which makes it possible to assign likelihoods to the occurrence of various events. It is this ability to
assign likelihoods to the various events which characterizes applied probability. However determined, probability is a number
assigned to events to indicate their likelihood of occurrence. The assignments must be consistent with the defining properties (P1),
(P2), (P3) along with derived properties (P4) through (P9) (plus others which may also be derived from these). Since the
probabilities are not “built in,” as in the classical case, a prime role of probability theory is to derive other probabilities from a set
of given probabilites.
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1.3: Interpretations

What is Probability?

The formal probability system is a model whose usefulness can only be established by examining its structure and determining
whether patterns of uncertainty and likelihood in any practical situation can be represented adequately. With the exception of the
sure event and the impossible event, the model does not tell us how to assign probability to any given event. The formal system is
consistent with many probability assignments, just as the notion of mass is consistent with many different mass assignments to sets
in the basic space.

The defining properties (P1), (P2), (P3) and derived properties provide consistency rules for making probability assignments. One
cannot assign negative probabilities or probabilities greater than one. The sure event is assigned probability one. If two or more
events are mutually exclusive, the total probability assigned to the union must equal the sum of the probabilities of the separate
events. Any assignment of probability consistent with these conditions is allowed.

One may not know the probability assignment to every event. Just as the defining conditions put constraints on allowable
probability assignments, they also provide important structure. A typical applied problem provides the probabilities of members of
a class of events (perhaps only a few) from which to determine the probabilities of other events of interest. We consider an
important class of such problems in the next chapter.

There is a variety of points of view as to how probability should be interpreted. These impact the manner in which probabilities are
assigned (or assumed). One important dichotomy among practitioners.

o One group believes probability is objective in the sense that it is something inherent in the nature of things. It is to be
discovered, if possible, by analysis and experiment. Whether we can determine it or not, “it is there.”

¢ Another group insists that probability is a condition of the mind of the person making the probability assessment. From this
point of view, the laws of probability simply impose rational consistency upon the way one assigns probabilities to events.
Various attempts have been made to find objective ways to measure the strength of one's belief or degree of certainty that an
event will occur. The probability P(A) expresses the degree of certainty one feels that event A will occur. One approach to
characterizing an individual's degree of certainty is to equate his assessment of P(A) with the amount a he is willing to pay to
play a game which returns one unit of money if A occurs, for a gain of (1 — a), and returns zero if A does not occur, for a gain
of —a. Behind this formulation is the notion of a fair game, in which the “expected” or “average” gain is zero.

The early work on probability began with a study of relative frequencies of occurrence of an event under repeated but independent
trials. This idea is so imbedded in much intuitive thought about probability that some probabilists have insisted that it must be built
into the definition of probability. This approach has not been entirely successful mathematically and has not attracted much of a
following among either theoretical or applied probabilists. In the model we adopt, there is a fundamental limit theorem, known as
Borel's theorem, which may be interpreted “if a trial is performed a large number of times in an independent manner, the fraction of
times that event A occurs approaches as a limit the value P(A). Establishing this result (which we do not do in this treatment)
provides a formal validation of the intuitive notion that lay behind the early attempts to formulate probabilities. Inveterate gamblers
had noted long-run statistical regularities, and sought explanations from their mathematically gifted friends. From this point of
view, probability is meaningful only in repeatable situations. Those who hold this view usually assume an objective view of
probability. It is a number determined by the nature of reality, to be discovered by repeated experiment.

There are many applications of probability in which the relative frequency point of view is not feasible. Examples include
predictions of the weather, the outcome of a game or a horse race, the performance of an individual on a particular job, the success
of a newly designed computer. These are unique, nonrepeatable trials. As the popular expression has it, “You only go around once.”
Sometimes, probabilities in these situations may be quite subjective. As a matter of fact, those who take a subjective view tend to
think in terms of such problems, whereas those who take an objective view usually emphasize the frequency interpretation.

Subjective probability and a football game

The probability that one's favorite football team will win the next Superbowl Game may well be only a subjective probability
of the bettor. This is certainly not a probability that can be determined by a large number of repeated trials. The game is only
played once. However, the subjective assessment of probabilities may be based on intimate knowledge of relative strengths and
weaknesses of the teams involved, as well as factors such as weather, injuries, and experience. There may be a considerable
objective basis for the subjective assignment of probability. In fact, there is often a hidden “frequentist” element in the
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subjective evaluation. There is an assessment (perhaps unrealized) that in similar situations the frequencies tend to coincide
with the value subjectively assigned.

The probabilty of rain

Newscasts often report that the probability of rain of is 20 percent or 60 percent or some other figure. There are several
difficulties here.

o To use the formal mathematical model, there must be precision in determining an event. An event either occurs or it does
not. How do we determine whether it has rained or not? Must there be a measurable amount? Where must this rain fall to
be counted? During what time period? Even if there is agreement on the area, the amount, and the time period, there
remains ambiguity: one cannot say with logical certainty the event did occur or it did not occur. Nevertheless, in this and
other similar situations, use of the concept of an event may be helpful even if the description is not definitive. There is
usually enough practical agreement for the concept to be useful.

o What does a 30 percent probability of rain mean? Does it mean that if the prediction is correct, 30 percent of the area
indicated will get rain (in an agreed amount) during the specified time period? Or does it mean that 30 percent of the
occasions on which such a prediction is made there will be significant rainfall in the area during the specified time period?
Again, the latter alternative may well hide a frequency interpretation. Does the statement mean that it rains 30 percent of
the times when conditions are similar to current conditions?

Regardless of the interpretation, there is some ambiguity about the event and whether it has occurred. And there is some
difficulty with knowing how to interpret the probability figure. While the precise meaning of a 30 percent probability of rain
may be difficult to determine, it is generally useful to know whether the conditions lead to a 20 percent or a 30 percent or a 40
percent probability assignment. And there is no doubt that as weather forecasting technology and methodology continue to
improve the weather probability assessments will become increasingly useful.

Another common type of probability situation involves determining the distribution of some characteristic over a population—
usually by a survey. These data are used to answer the question: What is the probability (likelihood) that a member of the
population, chosen “at random” (i.e., on an equally likely basis) will have a certain characteristic?

Empirical probability based on survey data

A survey asks two questions of 300 students: Do you live on campus? Are you satisfied with the recreational facilities in the
student center? Answers to the latter question were categorized “reasonably satisfied,” “unsatisfied,” or “no definite opinion.”
Let C be the event “on campus;” O be the event “off campus;” S be the event “reasonably satisfied;” U be the event
“unsatisfied;” and NV be the event “no definite opinion.” Data are shown in the following table.

Survey Data
S U N
C 127 31 42
(0] 46 43 11

If an individual is selected on an equally likely basis from this group of 300, the probability of any of the events is taken to be
the relative frequency of respondents in each category corresponding to an event. There are 200 on campus members in the
population, so P(C') =200/300and P(O) =100/300. The probability that a student selected is on campus and satisfied is
taken to be P(C'S) = 127/300. The probability a student is either on campus and satisfied or off campus and not satisfied is

P(CS\/ OU) = P(CS)+P(OU) =127/300 +43/300 = 170/300

If there is reason to believe that the population sampled is representative of the entire student body, then the same probabilities
would be applied to any student selected at random from the entire student body.

It is fortunate that we do not have to declare a single position to be the “correct” viewpoint and interpretation. The formal model is
consistent with any of the views set forth. We are free in any situation to make the interpretation most meaningful and natural to
the problem at hand. Tt is not necessary to fit all problems into one conceptual mold; nor is it necessary to change mathematical
model each time a different point of view seems appropriate.
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Probability and odds

Often we find it convenient to work with a ratio of probabilities. If A and B are events with positive probability the odds favoring

A over B is the probability ratio P(A)P(B). If not otherwise specified, B is taken to be A° and we speak of the odds favoring A
P(A) P(A)

- P(4A°)  1-P(4)

0(4)

This expression may be solved algebraically to determine the probability from the odds

O(4)
Hm_1+mm
. . a/b a
In particular, if O(A) = a/b then P(A) = TTa/b it
a

O(A) =0.7/0.3 =7/3. If the odds favoring A is 5/3, then P(A) =5/(5+3) =5/8.
Partitions and Boolean combinations of events

The countable additivity property (P3) places a premium on appropriate partitioning of events.

A partition is a mutually exclusive class
Aj:icJsuchthat Q =\, ; 4;
A partition of event A is a mutually exclusive class

A;:i€Jsuchthat A=\/,.; 4;

Remarks.

e A partition is a mutually exclusive class of events such that one (and only one) must occur on each trial.
o A partition of event A is a mutually exclusive class of events such that A occurs iff one (and only one) of the A; occurs.
e A partition (no qualifier) is taken to be a partition of the sure event €.
o Ifclass B; : ¢ € J is mutually exclusive and A C B=\/,c; B; , then the class AB; : ¢ € J is a partition of A and

A — ViE J AB; .
We may begin with a sequence A4; : 1 <4 and determine a mutually exclusive (disjoint) sequence B; : 1 <13 as follows:
By =A;,andforany i > 1, B; = A; AFA§ - - - AS

Thus each B; is the set of those elements of A; not in any of the previous members of the sequence.

This representation is used to show that subadditivity (P9) follows from countable additivity and property (P6). Since each
P(Uf; A;) = P(Vf; B;) = ?21 P(B;) < 221 P(4A;)

The representation of a union as a disjoint union points to an important strategy in the solution of probability problems. If an event

can be expressed as a countable disjoint union of events, each of whose probabilities is known, then the probability of the

combination is the sum of the individual probailities. In in the module on Partitions and Minterms, we show that any Boolean

combination of a finiteclass of events can be expressed as a disjoint union in a manner that often facilitates systematic

determination of the probabilities.

The indicator function
One of the most useful tools for dealing with set combinations (and hence with event combinations) is the indicator function Iy for

aset E C Q. It is defined very simply as follows:

_J1 forwekFE
IE(w)_{O forwe E°

Remark. Indicator fuctions may be defined on any domain. We have occasion in various cases to define them on the real line and on
higher dimensional Euclidean spaces. For example, if M is the interval [a, b] on the real line then Ip;(¢t) =1 for each ¢ in the
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interval (and is zero otherwise). Thus we have a step function with unit value over the interval M. In the abstract basic space Q2 we
cannot draw a graph so easily. However, with the representation of sets on a Venn diagram, we can give a schematic representation,
as in Figure 1.3.1.

Figure 1.3.1. Representation of the indicator function I, for event E.
Much of the usefulness of the indicator function comes from the following properties.
(IF1): I <Ip iff ACB.1f I4 <Ip,thenw € A implies I4(w) =Ip(w) =1, so w € B, then I4(w) =1 implies w € A
implies w € B implies Ip(w) =1.
(IF2): I, =1g iff A=B
A=DBiffbothACBand BC Aiff [4 <Ig andIgp <1, iff [, =15
(IF3): I4c =1 —1I4 This follows from the fact I4c(w) =1 iff I4(w) =0.
(IF4): I4p = IoIp =min I4,Ip (extends to any class) An element w belongs to the intersection iff it belongs to all iff the
indicator function for each event is one iff the product of the indicator functions is one.
(F5): Iaup =Ia+Ip—I4Ip =minI4,Ip (the maximum rule extends to any class) The maximum rule follows from
the fact that w is in the union iff it is in any one or more of the events in the union iff any one or more of the individual
indicator function has value one iff the maximum is one. The sum rule for two events is established by DeMorgan's rule and
properties (IF2), (IF3), and (IF4).
Igyop=1—Iyp=1-— [1 —IA][l —IB] =1—-14Ip+14—Islp
(IF6): If the pair A, B is disjoint, I\) g = I4 +Ip (extends to any disjoint class)
The following example illustrates the use of indicator functions in establishing relationships between set combinations. Other uses
and techniques are established in the module on Partitions and Minterms.

I N

Suppose A4; : 1 <i <n is a partition.
If B=\/}, A;C;, then B¢ =\/!" | A;Cf
Proof
Utilizing properties of the indicator function established above, we have
Ip =31 Iale,
Note that since the A; form a partition, we have > " | I,. =1, so that the indicator function for the complementary event is
Ip=1- Z?:l Lale, = Z?:l T — Z?:l Iale, = Z?=1 [1-1Ic] = 2?:1 Lalet

The last sum is the indicator function for \/" ; A;Cf

A technical comment on the class of events

The class of events plays a central role in the intuitive background, the application, and the formal mathematical structure. Events
have been modeled as subsets of the basic space of all possible outcomes of the trial or experiment. In the case of a finite number of
outcomes, any subset can be taken as an event. In the general theory, involving infinite possibilities, there are some technical
mathematical reasons for limiting the class of subsets to be considered as events. The practical needs are these:

1. If A is an event, its complementary set must also be an event.
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2.1f A; : i € J is a finite or countable class of events, the union and the intersection of members of the class need to be events.

A simple argument based on DeMorgan's rules shows that if the class contains complements of all its sets and countable unions,
then it contains countable intersections. Likewise, if it contains complements of all its sets and countable intersections, then it
contains countable unions. A class of sets closed under complements and countable unions is known as a sigma algebra of sets. In
a formal, measure-theoretic treatment, a basic assumption is that the class of events is a sigma algebra and the probability measure
assigns probabilities to members of that class. Such a class is so general that it takes very sophisticated arguments to establish the
fact that such a class does not contain all subsets. But precisely because the class is so general and inclusive in ordinary
applications we need not be concerned about which sets are permissible as events

A primary task in formulating a probability problem is identifying the appropriate events and the relationships between them. The
theoretical treatment shows that we may work with great freedom in forming events, with the assurrance that in most applications a
set so produced is a mathematically valid event. The so called measurability question only comes into play in dealing with random
processes with continuous parameters. Even there, under reasonable assumptions, the sets produced will be events.

This page titled 1.3: Interpretations is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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1.4: Problems on Probability Systems

Exercise 1.4.1

Let §2 consist of the set of positive integers. Consider the subsets
A={w:w<12} B={w:w<8} C ={w:wiseven}
D ={w:wisamultiple of 3} E = {w: wisa multiple of 4}
Describe in terms of A, B, C, D, F and their complements the following sets:
a. {1, 3,5, 7}
b. {3, 6, 9}
c. {8,10}
d. The even integers greater than 12

e. The positive integers which are multiples of six.
f. The integers which are even and no greater than 6 or which are odd and greater than 12.

Answer
a= BC*
b=DAE*
c=CAB°D"
d=CA°
e=CD
f=BC\ A°C®

Exercise 1.4.2

Let  be the set of integers 0 through 10. Let A = {5,6,7,8}, B = the odd integers in 2, and C' = the integers in £ which
are even or less than three. Describe the following sets by listing their elements.

a. AB

b. AC

c. ABcUC
d. ABC<

e. AU B¢

f. AUBC*®
g. ABC

h. AcBC*¢

Answer

a. AB=5,7

b. AC =6,8

c AB°UC=C

d. ABC*=AB

e. AUB°=0,2,4,5,6,7,8,10
f.ABC =0

g. A°BC°=3,9

Exercise 1.4.3

Consider fifteen-word messages in English. Let A = the set of such messages which contain the word “bank” and let B = the
set of messages which contain the word “bank” and the word “credit.” Which event has the greater probability? Why?
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Answer
B C A implies P(B) < P(4) .

Exercise 1.4.4

A group of five persons consists of two men and three women. They are selected one-by-one in a random manner. Let E; be
the event a man is selected on the ¢th selection. Write an expression for the event that both men have been selected by the third
selection.

Answer
A=FE F, V E\EjE;s V EfEyE;

Exercise 1.4.5

Two persons play a game consecutively until one of them is successful or there are ten unsuccessful plays. Let E; be the event
of a success on the ith play of the game. Let A, B, C be the respective events that player one, player two, or neither wins.
Write an expression for each of these events in terms of the events E;, 1 <7 <10.
Answer

A=E|\| E{ESE3s\| E{ESESE{Es \| EYESESE{ESECE,; \| E{ESESE{E{E¢ESESEy

B=E¢E,\| E{ESESEy\| EfESESESECEs \| E{ESESESECESESER \| E¢ESESESECESESESES By

C= ﬂ?ﬂl Ef

Exercise 1.4.6

Suppose the game in Exercise 1.4.5 could, in principle, be played an unlimited number of times. Write an expression for the
event D that the game will be terminated with a success in a finite number of times. Write an expression for the event F' that
the game will never terminate.

Answer
Let Fy = and Fj, = ﬂle E{ for k> 1. Then
D=V, F, 1B, and F = D° =\, E¢

Exercise 1.4.7

Find the (classical) probability that among three random digits, with each digit (0 through 9) being equally likely and each
triple equally likely:

a. All three are alike.

b. No two are alike.

c. The first digit is 0.

d. Exactly two are alike.

Answer
Each triple has probability 1/10° = 1/1000

a. Ten triples, all alike: P =10/1000

b. 10 x 9 x 8 triples all different: P =720,/1000

c. 100 triples with first one zero: P =100/1000

d. C(3,2) =3 ways to pick two positions alike; 10 ways to pick the common value; 9 ways to pick the other.
P =270/1000
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The classical probability model is based on the assumption of equally likely outcomes. Some care must be shown in analysis to
be certain that this assumption is good. A well known example is the following. Two coins are tossed. One of three outcomes is
observed: Let w; be the outcome both are “heads,” wo the outcome that both are “tails,” and w3 be the outcome that they are
different. Is it reasonable to suppose these three outcomes are equally likely? What probabilities would you assign?

Answer

P({wi}) = P({w2}) =1/4, P({ws}) =1/2

Exercise 1.4.9

A committee of five is chosen from a group of 20 people. What is the probability that a specified member of the group will be
on the committee?
Answer
(20, 5) committees; C'(19,4)have a designated member.
19!  5!15!

=— ——=5/20=1/4
41151 20! / /

Exercise 1.4.10

Ten employees of a company drive their cars to the city each day and park randomly in ten spots. What is the (classical)
probability that on a given day Jim will be in place three? There are n! equally likely ways to arrange n items (order
important).

Answer

10! permutations,1 x 9! permutations with Jim in place 3. P =9!/10! =1/10Q

Exercise 1.4.11

An extension of the classical model involves the use of areas. A certain region L (say of land) is taken as a reference. For any
subregion A, define P(A) = area(A)/area(L) . Show that P(-) is a probability measure on the subregions of L.
Answer

Additivity follows from additivity of areas of disjoint regions.

Exercise 1.4.12

John thinks the probability the Houston Texans will win next Sunday is 0.3 and the probability the Dallas Cowboys will win is
0.7 (they are not playing each other). He thinks the probability both will win is somewhere between—say, 0.5. Is that a
reasonable assumption? Justify your answer.

Answer

P(AB) = 0.5 is not reasonable. It must no greater than the minimum of P(A4) =0.3 and P(B) =0.7.

Exercise 1.4.13

Suppose P(A) =0.5 and P(B) = 0.3. What is the largest possible value of P(AB)? Using the maximum value of P(AB),
dertermine P(AB°), P(A°B), P(A°B®) and P(AU B). Are these values determined uniquely?
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Answer
Draw a Venn diagram, or use algebraic expressions P(AB¢) = P(A) — P(AB) =0.2

P(A°B) = P(B)— P(AB) =0 P(A°B°)=P(A°)—P(A°B)=0.5 P(AUB)=0.5

Exercise 1.4.14

For each of the following probability “assignments”, fill out the table. Which assignments are not permissible? Explain why, in

each case.
P(A) P(B) P(AB) P(AUB) P(AB°) P(A°B) P(A)+ P(B)
0.3 0.7 0.4
0.2 0.1 0.4
0.3 0.7 0.2
0.3 0.5 0
0.3 0.8 0
Answer
P(A) P(B) P(AB) P(AU B) P(AB°) P(A°B) P(A)+ P(B)
0.3 0.7 0.4 0.6 -0.1 0.3 1.0
0.2 0.1 0.4 -0.1 -0.2 -0.3 0.3
0.3 0.7 0.2 0.8 0.1 0.5 1.0
0.3 0.5 0 0.8 0.3 0.5 0.8
0.3 0.8 0 1.1 0.3 0.8 1.1

Only the third and fourth assignments are permissible.

Exercise 1.4.15

The class { A, B, C'} of events is a partition. Event A is twice as likely as C and event B is as likely as the combination A or
C. Determine the probabilities P(A), P(B), P(C).

Answer
P(A)+P(B)+P(C)=1 ,P(A)=2P(C), and P(B) = P(A)+P(C) =3P(C) , which implies
P(C)=1/6, P(A)=1/3, P(B) =1/2

Exercise 1.4.16

Determione the probability P(AUBUC) in terms of the probabilities of the events A, B, C' and their intersections.

Answer

P(AUBUC)=P(AUB)+P(C)—P(ACUBC)
= P(A)+P(B) - P(AB)+P(C) - P(AC)— P(BC) +P(ABC)
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If occurrence of event A implies occurrence of B, show that P(A°B) = P(B) — P(A) .

Answer
P(AB) = P(A) and P(AB)+ P(A°B) = P(B) implies P(A°B) = P(B)—P(4) .

Exercise 1.4.18

Show that P(AB) > P(A)+P(B)—1 .

Answer
Follows from P(A)+ P(B) — P(AB)=P(AUB) <1

Exercise 1.4.19

The set combination A@® B = AB¢\/ A°B is known as the disjunctive union or the symetric difference of A and B. This is
the event that only one of the events A or B occurs on a trial. Determine P(A @ B) in terms of P(A), P(B), and P(AB)

Answer
A Venn diagram shows P(A@® B) = P(AB°) + P(AB°) = P(A)+ P(B) —2P(AB)

Exercise 1.4.20

Use fundamental properties of probability to show
a. P(AB) < P(A)<P(AUB)< P(A)+P(B)
b. (N2, Ej) < P(E;) < P(UZ, Bj) < Y32, P(E))

Answer

ABCACAUB implies P(AB) < P(A) < P(AUB)=P(A)+P(B)—P(AB) < P(A)+P(B) . The general
case follows similarly, with the last inequality determined by subadditivity.

Exercise 1.4.21

Suppose P;, P, are probability measures and c;, ¢ are positive numbers such that ¢; +c2 =1 . Show that the assignment
P(E)=c1Pi(E)+cyP2(E) to the class of events is a probability measure. Such a combination of probability measures is
known as a mixture. Extend this to

P(E) =", ¢;P;(E), where the P; are probabilities measures, ¢; >0, and >."" ; ¢; =1
Answer
Clearly P(E) > 0. P(Q) =c1 P (Q) + 2 P () =1 .
E =\, E; implies P(E) =c1 3% Pi(Ei) +c2 37, Po(Ey) =325, P(E)

The pattern is the same for the general case, except that the sum of two terms is replaced by the sum of n terms ¢; P;(E).

Exercise 1.4.22

Suppose {A;, As, - - -, A, } is a partition and {¢1, 2, - - -, ¢, } is a class of positive constants. For each event E, let

Q(E) =311, aP(EA;)/ Y1, ciP(A)

Show that Q(+) us a probability measure.
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Answer
Clearly Q(E) > 0 and since 4;Q = A; we have Q(Q2) =1.1If
E = \/zil Ey , then P(EA;) = Zl?;l P(EA;) Vi

Interchanging the order of summation shows that @ is countably additive.

This page titled 1.4: Problems on Probability Systems is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul

Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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CHAPTER OVERVIEW

2: Minterm Analysis

A fundamental problem in elementary probability is to find the probability of a logical (Boolean) combination of a finite class of
events, when the probabilities of certain other combinations are known. If we partition an event F' into component events whose
probabilities can be determined, then the additivity property implies the probability of F' is the sum of these component
probabilities. Frequently, the event F' is a Boolean combination of members of a finite class— say, {4, B, C} or {4, B, C, D}. For
each such finite class, there is a fundamental partition determined by the class. The members of this partition are called minterms.
Any Boolean combination of members of the class can be expressed as the disjoint union of a unique subclass of the minterms. If
the probability of every minterm in this subclass can be determined, then by additivity the probability of the Boolean combination
is determined. We examine these ideas in more detail.

2.1: Minterms
2.2: Minterms and MATLAB Calculations
2.3: Problems on Minterm Analysis

This page titled 2: Minterm Analysis is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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2.1: Minterms

Partitions and minterms

To see how the fundamental partition arises naturally, consider first the partition of the basic space produced by a single event A.

Q=4\/4 (2.1.1)
Now if B is a second event, then
A=AB\/ AB° (2.1.2)
and
A°=AB\ A°B° (2.1.3)
so that
Q=A°B"\/A°B\/ AB°\/ AB (2.1.4)

The pair {A, B} has partitioned Q into { A°B¢, A°B, AB¢, AB}. Continuation is this way leads systematically to a partition by
three events { A, B, C'}, four events { A, B, C, D}, etc.

We illustrate the fundamental patterns in the case of four events { A, B, C, D}. We form the minterms as intersections of members
of the class, with various patterns of complementation. For a class of four events, there are 2* =16 such patterns, hence 16
minterms. These are, in a systematic arrangement,

A°B°C°D* A°BC°D° AB°C°D* ABC°D¢
A°B°C°D A°BC°D AB°C°D ABC°D
A°B°‘CD" A°BCD* AB°CD¢ ABCD*
A°B‘CD A°BCD AB°CD ABCD

No element can be in more than one minterm, because each differs from the others by complementation of at least one member
event. Each element w is assigned to exactly one of the minterms by determining the answers to four questions:

Isitin A? Isitin B? Isitin C? Isitin D?

Suppose, for example, the answers are: Yes, No, No, Yes. Then w is in the minterm AB°C*D. In a similar way, we can determine
the membership of each w in the basic space. Thus, the minterms form a partition. That is, the minterms represent mutually
exclusive events, one of which is sure to occur on each trial. The membership of any minterm depends upon the membership of
each generating set A, B, C or D, and the relationships between them. For some classes, one or more of the minterms are empty
(impossible events). As we see below, this causes no problems.

An examination of the development above shows that if we begin with a class of n events, there are 2" minterms. To aid in
systematic handling, we introduce a simple numbering system for the minterms, which we illustrate by considering again the four
events A, B, C, D, in that order. The answers to the four questions above can be represented numerically by the scheme

No ~ 0 and Yes ~ 1

Thus, if w is in A°B°C°D°, the answers are tabulated as 0 0 0 0. If w is in AB°C°D, then this is designated 1 0 0 1. With this
scheme, the minterm arrangement above becomes

0000 ~ 0 0100 ~ 4 1000 ~ 8 1100 ~ 12
0001 ~ 1 0101 ~ 5 1001 ~ 9 1101 ~ 13
0010 ~ 2 0110 ~ 6 1010 ~ 10 1110 ~ 14
0011 ~ 3 0111 ~ 7 1011 ~ 11 1111 ~ 15
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We may view these quadruples of zeros and ones as binary representations of integers, which may also be represented by their
decimal equivalents, as shown in the table. Frequently, it is useful to refer to the minterms by number. If the members of the
generating class are treated in a fixed order, then each minterm number arrived at in the manner above specifies a minterm
uniquely. Thus, for the generating class { A, B, C, D}, in that order, we may designate

AcBeC¢D¢ = M, (minterm 0) AB¢C*¢D = My (minterm 9), etc.

We utilize this numbering scheme on special Venn diagrams called minterm maps. These are illustrated in Figure, for the cases of
three, four, and five generating events. Since the actual content of any minterm depends upon the sets A, B,C, and D in the
generating class, it is customary to refer to these sets as variables. In the three-variable case, set A is the right half of the diagram
and set C is the lower half; but set B is split, so that it is the union of the second and fourth columns. Similar splits occur in the
other cases.

Remark. Other useful arrangements of minterm maps are employed in the analysis of switching circuits.

—_ A

B B
0 2 4 6

c
Three variables
—_ A
B B
0 4 8 12
1 5 3 13
D
| 2 G 0 8
¢ 3 T 1" 15
| D
Four variables
A
—_ B — —_ B —
¢ ¢ c c
0 4 B 12 16 20 24 28
1 5 9 13 17 21 25 29
E
| 2 5 10 14 18 22 26 30
D
€ 3 7 " 15 19 23 27 Ell

Five variables

Figure 2.1.1. Minterm maps for three, four, or five variables

Minterm maps and the minterm expansion
The significance of the minterm partition of the basic space rests in large measure on the following fact.
Minterm expansion

Each Boolean combination of the elements in a generating class may be expressed as the disjoint union of an appropriate subclass
of the minterms. This representation is known as the minterm expansion for the combination.

In deriving an expression for a given Boolean combination which holds for any class { A, B, C, D} of four events, we include all
possible minterms, whether empty or not. If a minterm is empty for a given class, its presence does not modify the set content or
probability assignment for the Boolean combination.

The existence and uniqueness of the expansion is made plausible by simple examples utilizing minterm maps to determine
graphically the minterm content of various Boolean combinations. Using the arrangement and numbering system introduced above,
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we let M; represent the ith minterm (numbering from zero) and let p(%) represent the probability of that minterm. When we deal
with a union of minterms in a minterm expansion, it is convenient to utilize the shorthand illustrated in the following.

M(1,3, 7) =M VM3 VM7 andp(l, 3, 7) :p(l) +p(3) +p(7)

Figure 2.1.2. E = ABUA°(BUC®)*=M(1:6,7) Minterm expansion for Example 2.1.1

Consider the following simple example.

Example 2.1.1 Minterm expansion

Suppose E = ABU A°(BUC*)¢ . Examination of the minterm map in Figure 2.1.2 show that AB consists of the union of
minterms Mg, My, which we designate M (6,7). The combination BUC*° = M(0,2,3,4,6,7), so that its complement
(BUC®)®=M(1,5). This leaves the comon part A°(BUC®)°=M;, Hence, E=DM(1,6,7). Similarly,
F=AUBC=M(1,4,5,6,7).

A key to establishing the expansion is to note that each minterm is either a subset of the combination or is disjoint from it. The
expansion is thus the union of those minterms included in the combination. A general verification using indicator functions is
sketched in the last section of this module.

Use of minterm maps

A typical problem seeks the probability of certain Boolean combinations of a class of events when the probabilities of various other
combinations is given. We consider several simple examples and illustrate the use of minterm maps in formulation and solution.

Example 2.1.2 Survey on software

Statistical data are taken for a certain student population with personal computers. An individual is selected at random. Let
A = the event the person selected has word processing, B = the event he or she has a spread sheet program, and C' = the
event the person has a data base program. The data imply

e The probability is 0.80 that the person has a word processing program: P(A) = 0.8

e The probability is 0.65 that the person has a spread sheet program: P(B) = 0.65

o The probability is 0.30 that the person has a data base program: P(C') = 0.3

« The probability is 0.10 that the person has all three: P(ABC) = 0.1

 The probability is 0.05 that the person has neither word processing nor spread sheet: P(A°B¢ = 0.05

o The probability is 0.65 that the person has at least two: P(ABU AC' U BC) = 0.65

o The probability of word processor and data base, but no spread sheet is twice the probabilty of spread sheet and data base,
but no word processor: P(AB°C) =2P(A°BC)

a. What is the probability that the person has exactly two of the programs?
b. What is the probability that the person has only the data base program?

Several questions arise:

o Are these data consistent?
o Are the data sufficient to answer the questions?
o How may the data be utilized to anwer the questions?

Solution
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The data, expressed in terms of minterm probabilities, are:

P(A)=p(4,5,6,7) =0.80; hence P(A¢) =p(0,1,2,3)=0.20

P(B) =p(2,3,6,7) =0.65 hence P(B°) =p(0,1,4,5) =0.35
P(C) =p(1,3,5,7) = 0.30 hence P(C°) = p(0, 2,4, 6) = 0.70
P(ABC) = p(7) =0.10 P(A°B°) =p(0,1) =0.05
P(ABUACUBC) =p(3,5,6,7) = 0.65

P(AB°C) = p(5) = 2p(3) = 2P(A°BC)

These data are shown on the minterm map in Figure 2.1.3 a. We use the patterns displayed in the minterm map to aid in an
algebraic solution for the various minterm probabilities.

p(2,3) =p(0,1,2,3) —p(0,1) =0.20 —0.05 = 0.15
p(6,7) =p(2,3,6,7) —p(2,3) =0.65—0.15 = 0.50
p(6) =p(6,7) —p(7) =0.50 —0.10 = 0.40
(3,5) =p(3,5,6,7) —p(6,7) =0.65 — 0.50 = 0.15 = p(3) = 0.05,
( )
(

]

p(5)=0.10 = p(2) =0.10

p(1)=p(1,3,5,7) —p(3,5) —p(7) =0.30 —0.15—0.10 = 0.05 = p(0) =

p(4)=p(4,5,6,7) —p(5) —p(6,7) =0.80 —0.10 — 0.50 = 0.20

Thus, all minterm probabilities are determined. They are displayed in Figure 2.1.3 b. From these we get

P(A°BC\/ AB*C'\] ABC*) =p(3,5,6) = 0.05+0.10 +-0.40 = 0.55 and P(A°B°C) = p(1) = 0.05

B B

0 2 4 6

i 3 5 7

c 0.30
0.10
006 e (1Y) J—

T—085—

pl3.5.6,7) =0.65 P(5) =2p(2t

a. Data for software survey, Example 2.3.1

b. Minterm probabilities for software survey. Example 3.3.1

Figure 2.1.3. Minterm maps for software survey.
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Example 2.1.3 Survey on personal computers

A survey of 1000 students shows that 565 have PC compatible desktop computers, 515 have Macintosh desktop computers,
and 151 have laptop computers. 51 have all three, 124 have both PC and laptop computers, 212 have at least two of the three,
and twice as many own both PC and laptop as those who have both Macintosh desktop and laptop. A person is selected at
random from this population. What is the probability he or she has at least one of these types of computer? What is the
probability the person selected has only a laptop?

0082 0376 0364 0077

0016 0.011 0073 0,051

Figure 2.1.4. Minterm probabilities for computer survey. Example 2.1.3
Solution

Let A = the event of owning a PC desktop, B = the event of owning a Macintosh desktop, and C = the event of owning a
laptop. We utilize a minterm map for three variables to help determine minterm patterns. For example, the event
AC = M5 \/ M7 so that P(AC) =p(5) +p(7) =p(5,7).

The data, expressed in terms of minterm probabilities, are:
P(A)=p(4,5,6,7) =0.565, hence P(A°) =p(0,1,2,3) =0.435
P(B) =p(2,3,6,7) =0.515, hence P(B°) =p(0,1,4,5) = 0.485
P(C)=p(1,3,5,7) =0.151 hence P(C*°) =p(0,2,4,6) =0.849
P(ABC)=p(7)=0.051 P(AC) =p(5,7)=0.124
P(ABUACUBC) =p(3,5,6,7)=0.212
(AC) = p(5,7) = 2p(3,7) = 2P(BC)

We use the patterns displayed in the minterm map to aid in an algebraic solution for the various minterm probabilities.

P

p(5)=p(5,7) —p(7) =0.124 — 0.051 = 0.073
p(1,3) = P(A°C) =0.151 —0.124 = 0.027 P(AC*®) = p(4,6) = 0.565 — 0.124 = 0.441
p(3,7) = P(BC) =0.124/2 = 0.062
p(3) =0.062 —0.051 = 0.011
p(6) =p(3,4,6,7) —p(3) —p(5,7) =0.212 —0.011 —0.124 = 0.077
p(4) = P(A)—p(6) —p(5,7) = 0.565 — 0.077 — 0.1124 = 0.364
p(1) =p(1,3)—p(3) =0.027 —0.11 = 0.016
p(2) = P(B)—p(3,7) —p(6) = 0.515 — 0.062 — 0.077 = 0.376
p(0) = P(C°) —p(4, 6) — p(2) = 0.8490.441 — 0.376 = 0.032

We have determined the minterm probabilities, which are displayed on the minterm map Figure 2.1.4. We may now compute
the probability of any Boolean combination of the generating events A, B, C. Thus,

P(AUBUC) =1—P(A°B°C¢)—1—p(0) =0.968 and P(A°B°C) =p(1) =0.016
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D

Figure 2.1.5. Minterm probabilities for opinion survey. Example 2.1.4

Example 2.1.4 Opinion survey

A survey of 1000 persons is made to determine their opinions on four propositions. Let A, B, C, D be the events a person
selected agrees with the respective propositions. Survey results show the following probabilities for various combinations:

P(A) =0.200, P(B) =0.500, P(C) =0.300, P(D) =0.700, P(A(BUC*)D) = 0.055
P(AUBCUD®) =0.520, P(A°BC*°D) =0.120, P(ABCD) = 0.015, P(AB°C) =0.030
P(A°B°C°D) =0.195, P(A°BC) =0.120, P(A°B°D¢) =0.120, P(AC*¢) =0.140
P(ACD*®) =0.025, P(ABC°D*) =0.020
Determine the probabilities for each minterm and for each of the following combinations
A°(BC°UB°C) - thatis, not A and (B or C, but not both)
AU BCe® - thatis, A or (B and not C)
Solution

At the outset, it is not clear that the data are consistent or sufficient to determine the minterm probabilities. However, an
examination of the data shows that there are sixteen items (including the fact that the sum of all minterm probabilities is one).
Thus, there is hope, but no assurance, that a solution exists. A step elimination procedure, as in the previous examples, shows
that all minterms can in fact be calculated. The results are displayed on the minterm map in Figure 2.1.5. It would be desirable
to be able to analyze the problem systematically. The formulation above suggests a more systematic algebraic formulation
which should make possible machine aided solution.

Systematic formulation

Use of a minterm map has the advantage of visualizing the minterm expansion in direct relation to the Boolean combination. The
algebraic solutions of the previous problems involved ad hoc manipulations of the data minterm probability combinations to find
the probability of the desired target combination. We seek a systematic formulation of the data as a set of linear algebraic equations
with the minterm probabilities as unknowns, so that standard methods of solution may be employed. Consider again the software
survey of Example 2.1.1.

Example 2.1.5 The softerware survey problem reformulated

The data, expressed in terms of minterm probabilities, are:
P(A)=p(4,5,6,7)=0.80

P(B)=p(2,3,6,7) =0.65
P(C)=p(1,3,5,7)=0.30

P(ABC)=p(7)=0.10

P(A°B°) =p(0,1) =0.05
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P(ABUACUBC)=p(3,5,6,7) =0.65

P(AB¢C)=p(5) =2p(3) =2P(A°BC), so that p(5) —2p(3) =0
We also have in any case

P(Q)=P(AUA°) =p(0,1,2,3,4,5,6,7)=1

to complete the eight items of data needed for determining all eight minterm probabilities. The first datum can be expressed as
an equation in minterm probabilities:

0-p(0)+0-p(1)+0-p(2)+0-p(3)+1-p(4)+1-p(5)+1-p(6)+1-p(7) =0.80
This is an algebraic equation in p(0), - - -, p(7) with a matrix of coefficients
[00001111]

The others may be written out accordingly, giving eight linear algebraic equations in eight variables p(0) through p(7). Each
equation has a matrix or vector of zero-one coefficients indicating which minterms are included. These may be written in
matrix form as follows:

111 1 111 1][p@] [ 17 [ P(2) ]
000 0 111 1|]|p®1) 0.80 P(A)

0 0 1 1 0 0 1 1 p(2) 0.65 P(B)

0 1 0 1 01 01 p(3)| 1030 P(C)

0 0 0 0 00 0 1||p@| [010] P(ABC)

1 10 0 0 0 0 O p(5) 0.05 P(A<Be)

0 0 O 1 01 11 p(6) 0.65 P(ABUACUBC)

000 =20 100]|pn] Lol [rusoc)-2puBo)]

o The patterns in the coefficient matrix are determined by logical operations. We obtained these with the aid of a minterm

map.
o The solution utilizes an algebraic procedure, which could be carried out in a variety of ways, including several standard
computer packages for matrix operations.

We show in the module Minterm Vectors and MATLAB how we may use MATLAB for both aspects.

Indicator functions and the minterm expansion

Previous discussion of the indicator function shows that the indicator function for a Boolean combination of sets is a numerical
valued function of the indicator functions for the individual sets.

¢ As an indicator function, it takes on only the values zero and one.

o The value of the indicator function for any Boolean combination must be constant on each minterm. For example, for each w in
the minterm AB°C' D¢, we must have I4(w) =1, Ig(w) =0, I¢(w) =1, and Ip(w) = 0. Thus, any function of 14, I, I¢,
Ip must be constant over the minterm.

« Consider a Boolean combination E of the generating sets. If w is in EN M; , then Ig(w) =1 for all w € M;, so that M; C E.
Since each w € M; or some ¢, E must be the union of those minterms sharing an w with E.

e Let{M, :i € Jg} be the subclass of those minterms on which I has the value one. Then

E:VJEMZ

which is the minterm expansion of E.

This page titled 2.1: Minterms is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via source content

that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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2.2: Minterms and MATLAB Calculations

The concepts and procedures in this unit play a significant role in many aspects of the analysis of probability topics and in the use
of MATLAB throughout this work.

Minterm vectors and MATLAB

The systematic formulation in the previous module Minterms shows that each Boolean combination, as a union of minterms, can be
designated by a vector of zero-one coefficients. A coefficient one in the ith position (numbering from zero) indicates the inclusion
of minterm M; in the union. We formulate this pattern carefully below and show how MATLAB logical operations may be utilized
in problem setup and solution.

Suppose E is a Boolean combination of A, B, C. Then, by the minterm expansion,
E=\; M,
where M; is the ¢th minterm and Jg is the set of indices for those M; included in E. For example, consider
E=ABUC°)UAY(BUC) =M\ My \ Mg\ M; =M(1,4,6,7)
F=A°B°UAC =M, \ M\ M5 \/ M7 =M(0,1,5,7)

We may designate each set by a pattern of zeros and ones (eg, €1, - - -, e7). The ones indicate which minterms are present in the set.
In the pattern for set E, minterm M; is included in E iff e; = 1. This is, in effect, another arrangement of the minterm map. In this
form, it is convenient to view the pattern as a minterm vector, which may be represented by a row matrix or row vector [
€o, €1, +,er]. We find it convenient to use the same symbol for the name of the event and for the minterm vector or matrix
representing it. Thus, for the examples above,

E~[01001011]and F~[11000101]
It should be apparent that this formalization can be extended to sets generated by any finite class.
Minterm vectors for Boolean combinations

If E and F are combinations of n generating sets, then each is represented by a unique minterm vector of length 2”. In the
treatment in the module Minterms, we determine the minterm vector with the aid of a minterm map. We wish to develop a
systematic way to determine these vectors.

As a first step, we suppose we have minterm vectors for E and F' and want to obtain the minterm vector of Boolean combinations
of these.

1. The minterm expansion for £ U F' has all the minterms in either set. This means the jth element of the vector for EU F' is the
maximum of the jth elements for the two vectors.

2. The minterm expansion for £ N F' has only those minterms in both sets. This means the jth element of the vector for EN F' is
the minimum of the jth elements for the two vectors.

3. The minterm expansion for ¢ has only those minterms not in the expansion for E. This means the vector for E has zeros and
ones interchanged. The jth element of E° is one iff the corresponding element of E is zero.

We illustrate for the case of the two combinations F and F' of three generating sets, considered above
E=A(BUC*)UA(BUC*)*UA(BUC®)*~ [01001011]and F=A°B°UAC ~ [11000101]
Then
EUF~[11001111,ENF~[01000001],and E€~[10110100]
MATLAB logical operations

MATLAB logical operations on zero-one matrices provide a convenient way of handling Boolean combinations of minterm vectors
represented as matrices. For two zero-one matrices F, F' of the same size

e E|F is the matrix obtained by taking the maximum element in each place.
e FE&F is the matrix obtained by taking the minimum element in each place.
o FE¢ is the matrix obtained by interchanging one and zero in each place in E.
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Thus, if E, F are minterm vectors for sets by the same name, then E|F is the minterm vector for EU F', E&F is the minterm
vector for ENF,and E =1— F is the minterm vector for E°.

This suggests a general approach to determining minterm vectors for Boolean combinations.

Start with minterm vectors for the generating sets.
Use MATLAB logical operations to obtain the minterm vector for any Boolean combination.

Suppose, for example, the class of generating sets is { A, B, C'}. Then the minterm vectors for A, B, and C, respectively, are
A=[00001111]B=[00110011]C=[01010101]

If E=ABUC® , then the logical combination E = (A&B) | C' of the matrices yields E=[1010101 1].

MATLAB implementation

A key step in the procedure just outlined is to obtain the minterm vectors for the generating elements { A, B, C'}. We have an m-
function to provide such fundamental vectors. For example to produce the second minterm vector for the family (i.e., the minterm
vector for B), the basic zero-one pattern ¢ ¢ 1 1 is replicated twice to give

I (0] (0] 1 1 (0] (0] 1 1

The function minterm(n,k) generates the kth minterm vector for a class of n generating sets.

minterms for the class {a, b, c}.

>> A = minterm(3,1)
A= 0 (C] (C] (C] 1 1 1 1
>> B = minterm(3,2)
B= 0 (0] 1 1 (0] (0] 1 1
>> C = minterm(3,3)
cC= 0 1 0] 1 0] 1 (C] 1

minterm patterns for the boolean combinations

F=ABUB‘C G=AUAC

F = (A&B)|(~B&C)

F= 0 1 (C] (C] (C] 1 1 1

>> G = A|(~A&C)

G= 0 1 (C] 1 1 1 1 1

>> JF = find(F)-1 % Use of find to determine index set for F
JF= 1 5 6 7 % Shows F = M(1, 5, 6, 7)

These basic minterm patterns are useful not only for Boolean combinations of events but also for many aspects of the analysis of
those random variables which take on only a finite number of values.

Zero-one arrays in MATLAB

The treatment above hides the fact that a rectangular array of zeros and ones can have two quite different meanings and functions in
MATLAB.

A numerical matrix (or vector) subject to the usual operations on matrices..
A logical array whose elements are combined by a. Logical operators to give new logical arrays; b. Array operations
(element by element) to give numerical matrices; c. Array operations with numerical matrices to give numerical results.

Some simple examples will illustrate the principal properties.
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>>> A = minterm(3,1);

>> B = minterm(3,2);

>> C = minterm(3,3);

>> F = (A&B)|(~B&C)

F= 0 1 (0] (0] (0] 1 1 1
>> G = A|(~A&C)

G= 0 1 (0] 1 1 1 1 1
>> islogical(A) % Test for logical array

ans = 0

>> islogical(F)

ans = 1

>> m = max(A,B) % A matrix operation

m = (0] (0] 1 1 1 1 1 1
>> jislogical(m)

ans = 0

>>ml = A|B % A logical operation

mli = (0] (0] 1 1 1 1 1 1
>> islogical(m1)

ans = 1

>> a = logical(A) % Converts 0-1 matrix into logical array
a= 0 0 0 0 1 1 1 1

>> b = logical(B)
>> m2 = alb

m2 = (0] (0] 1 1 1 1 1 1

>> p = dot(A,B) % Equivalently, p = A*B'

p= 2

>> pl = total(A.*b)

pl1 = 2

>> p3 = total(A.*B)

p3 = 2

>> p4 = a*b' % Cannot use matrix operations on logical arrays

??? Error using ==> mtimes % MATLAB error signal
Logical inputs must be scalar.

Often it is desirable to have a table of the generating minterm vectors. Use of the function minterm in a simple “for loop” yields the
following m-function.

The function mintable(n) Generates a table of minterm vectors for n generating sets.
mintable for three variables

>> M3 = mintable(3)

M3 = 0 0] (0] (0] 1 1 1 1
(0] 0] 1 1 0] 0] 1 1
0] 1 0] 1 0] 1 0] 1

As an application of mintable, consider the problem of determining the probability of k of n events. If {4; : 1 <7 <n} is any
finite class of events, the event that exactly k of these events occur on a trial can be characterized simply in terms of the minterm
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expansion. The event Ay, that exactly k occur is given by
Ay, = the disjoint union of those minterms with exactly k positions uncomplemented

In the matrix " = minteble(n) these are the minterms corresponding to columns with exactly k ones. The event BknBkn that k or
more occur is given by

By, = V?:k A

If we have the minterm probabilities, it is easy to pick out the appropriate minterms and combine the probabilities. The following
example in the case of three variables illustrates the procedure.

the software survey (continued)

In the software survey problem, the minterm probabilities are
pm = [00.05 0.10 0.05 0.20 0.10 0.40 0.10]

where A = event has word processor, B = event has spread sheet, C' = event has a data base program. It is desired to get the
probability an individual selected has k of these, k =0, 1,2, 3.

Solution

We form a mintable for three variables. We count the number of “successes” corresponding to each minterm by using the
MATLAB function sum, which gives the sum of each column. In this case, it would be easy to determine each distinct value
and add the probabilities on the minterms which yield this value. For more complicated cases, we have an m-function called
csort (for sort and consolidate) to perform this operation.

>> pm = 0.01*[0 5 10 5 20 10 40 10];
>> M = mintable(3)

M =
(C] (C] (C] (C] 1 1 1 1
(C] (C] 1 1 (C] (C] 1 1
(C] 1 (C] 1 (C] 1 (C] 1
>> T = sum(M) % Column sums give number
T= 0 1 1 2 1 2 2 3 % of successes on each
>> [k, pk] = csort(T,pm); % minterm, determines

% distinct values in T and
>> disp([k;pk]") % consolidates probabilities
(C] (C]

1.0000 0.3500
2.0000 0.5500
3.0000 0.1000

For three variables, it is easy enough to identify the various combinations “by eye” and make the combinations. For a larger
number of variables, however, this may become tedious. The approach is much more useful in the case of Independent Events,
because of the ease of determining the minterm probabilities.

Minvec procedures

Use of the tilde ~ to indicate the complement of an event is often awkward. It is customary to indicate the complement of an event
FE by E°. In MATLAB, we cannot indicate the superscript, so we indicate the complement by E° instead of ~ E. To facilitate
writing combinations, we have a family of minvec procedures (minvec3, minvec4, ..., minvec10) to expedite expressing Boolean
combinations of n = 3,4, 5, - - -, 10 sets. These generate and name the minterm vector for each generating set and its complement.
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boolean combinations using minvec3

We wish to generate a matrix whose rows are the minterm vectors for 2 = AU A¢, A, AB, ABC, C, and A¢C*, respectively.

>> minvec3 % Call for the setup procedure

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired

>> V = [A|Ac; A; A&B; A&B&C; C; Ac&Cc]; % Logical combinations (one per
% row) yield logical vectors

>> disp(V)

1 1 1 1 1 1 1 1 % Mixed logical and
0] 0] 0] 0] 1 1 1 1 % numerical vectors
0 0 0 0 0 0 1 1

(0] (0] (0] (0] (0] (0] (0] 1

(C] 1 (C] 1 (C] 1 (C] 1

1 0 1 0 0 0 0 0

Minterm probabilities and Boolean combination

If we have the probability of every minterm generated by a finite class, we can determine the probability of any Boolean
combination of the members of the class. When we know the minterm expansion or, equivalently, the minterm vector, we simply
pick out the probabilities corresponding to the minterms in the expansion and add them. In the following example, we do this “by
hand” then show how to do it with MATLAB .

Consider E = A(BUC°)UA°(BUC®)® and F = A°B°UAC of the example above, and suppose the respective minterm
probabilites are

po = 0.21, py = 0.06, py = 0.29, p3 = 0.11, py = 0.09, ps = 0.03, pg = 0.14, p; = 0.07
Use of a minterm map shows E = M(1,4,6,7) and F = M (0, 1,5, 7). so that
P(E)=p1 +ps+ps+p7 =p(1,4,6,7) =0.36 and P(F)=p(0,1,5,7) =0.37
This is easily handled in MATLAB.

o Use minvec3 to set the generating minterm vectors.
e Use logical matrix operations

E = (A&(B|Cc))|(Ac&((B|Cc))) and F' = (Ac&Bc)|(A&C)

to obtain the (logical) minterm vectors for E and F'
o If pm is the matrix of minterm probabilities, perform the algebraic dot product or scalar product of the pmpm matrix and
the minterm vector for the combination. This can be called for by the MATLAB commands PE = E*pm' and PF = F*pm'.

The following is a transcript of the MATLAB operations.

>> minvec3 % Call for the setup procedure
Variables are A, B, C, Ac, Bc, Cc
They may be renamed, if desired.

>> E = (A&(B]|Cc))]|(Ac&~(B]|Cc));

>> F = (Ac&Bc) | (A&C);

>> pm = 0.01*[21 6 29 11 9 3 14 7];

>> PE = E*pm' % Picks out and adds the minterm probabilities

PE = 0.3600
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>> PF = F*pm'
= 0.3700

solution of the software survey problem

We set up the matrix equations with the use of MATLAB and solve for the minterm probabilities. From these, we may solve
for the desired “target” probabilities.

>> minvec3

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Data vector combinations are:

>> DV = [A|Ac; A; B; C; A&B&C; Acé&Bc; (A&B)]|(A&C)|(B&C); (A&Bc&C) - 2*(Ac&B&C)]

DV =

1 1 1 1 1 1 1 1 % Data mixed numerical

0 0 0 0 1 1 1 1 % and logical vectors

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0

0 0 0 1 0 1 1 1

0 0 0 -2 0 1 0 0

>> DP = [1 0.8 0.65 0.3 0.1 0.05 0.65 0]; % Corresponding data probabilities

>> pm = DV\DP' % Solution for minterm probabilities

pm =

-0.0000 % Roundoff -3.5 x 10-17

0.0500

0.1000

0.0500

0.2000

0.1000

0.4000

0.1000

>> TV = [(A&B&Cc) | (A&Bc&C) | (Ac&B&C); Ac&Bc&C] % Target combinations

TV =

0 0 0 1 0 1 1 0 % Target vectors

0 1 0 0 0 0 0 0

>> PV = TV*pm % Solution for target probabilities

PV =

0.5500 % Target probabilities

0.0500
The previous procedure first obtained all minterm probabilities, then used these to determine probabilities for the target
combinations. The following procedure does not require calculation of the minterm probabilities. Sometimes the data are not
sufficient to calculate all minterm probabilities, yet are sufficient to allow determination of the target probabilities.
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Suppose the data minterm vectors are linearly independent, and the target minterm vectors are linearly dependent upon the data
vectors (i.e., the target vectors can be expressed as linear combinations of the data vectors). Now each target probability is the
same linear combination of the data probabilities. To determine the linear combinations, solve the matrix equation

TV = CT x DV which has the MATLAB solution CT =TV /DV
Then the matrix ¢p of target probabilites is given by tp = C'T * DP' . Continuing the MATLAB procedures above, we have:

>> CT = TV/DV;
>> tp = CT*DP'

tp = 0.5500
0.0500

The procedure mincalc

The procedure mincalc performs calculations as in the preceding examples. The refinements consist of determining consistency and
computability of various individual minterm probabilities and target probilities. The consistency check is principally for negative
minterm probabilities. The computability tests are tests for linear independence by means of calculation of ranks of various
matrices. The procedure picks out the computable minterm probabilities and the computable target probabilities and calculates
them.

To utilize the procedure, the problem must be formulated appropriately and precisely, as follows:

Use the MATLAB program minvecq to set minterm vectors for each of g basic events.
Data consist of Boolean combinations of the basic events and the respective probabilities of these combinations. These are
organized into two matrices:

o The data vector matrix DV has the data Boolean combinations— one on each row. MATLAB translates each row
into the minterm vector for the corresponding Boolean combination. The first entry (on the first row) is A | Ac (for
A/ A°), which is the whole space. Its minterm vector consists of a row of ones.

o The data probability matrix DP is a row matrix of the data probabilities. The first entry is one, the probability of
the whole space.

The objective is to determine the probability of various target Boolean combinations. These are put into the target vector
matrix T'V, one on each row. MATLAB produces the minterm vector for each corresponding target Boolean combination.

Computational note. In mincalc, it is necessary to turn the arrays DV and TV consisting of zero-one patterns into zero-one

matrices. This is accomplished for DV by the operation PV = ones(size(DV)).*DV ~anq similarly for TV. Both the original and the
transformed matrices have the same zero-one pattern, but MATLAB interprets them differently.

Usual case

Suppose the data minterm vectors are linearly independent and the target vectors are each linearly dependent on the data minterm
vectors. Then each target minterm vector is expressible as a linear combination of data minterm vectors. Thus, there is a matrix CT’
such that TV = CT % DV . MATLAB solves this with the command CT =TV / DV The target probabilities are the same linear
combinations of the data probabilities. These are obtained by the MATLAB operation tp = DP « CT" .

Cautionary notes

The program mincalc depends upon the provision in MATLAB for solving equations when less than full data are available (based
on the singular value decomposition). There are several situations which should be dealt with as special cases. It is usually a good
idea to check results by hand to determine whether they are consistent with data. The checking by hand is usually much easier than
obtaining the solution unaided, so that use of MATLAB is advantageous even in questionable cases.

The Zero Problem. If the total probability of a group of minterms is zero, then it follows that the probability of each minterm
in the group is zero. However, if mincalc does not have enough information to calculate the separate minterm probabilities in
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the case they are not zero, it will not pick up in the zero case the fact that the separate minterm probabilities are zero. It
simply considers these minterm probabilities not computable.

Linear dependence. In the case of linear dependence, the operation called for by the command CT = TV/DV may not be able
to solve the equations. The matrix may be singular, or it may not be able to decide which of the redundant data equations to
use. Should it provide a solution, the result should be checked with the aid of a minterm map.

Consistency check. Since the consistency check is for negative minterms, if there are not enough data to calculate the
minterm probabilities, there is no simple check on the consistency. Sometimes the probability of a target vector included in
another vector will actually exceed what should be the larger probability. Without considerable checking, it may be difficult
to determine consistency.

In a few unusual cases, the command CT = TV/DV does not operate appropriately, even though the data should be adequate
for the problem at hand. Apparently the approximation process does not converge.

MATLAB Solutions for examples using mincalc

% file mcalcO1l Data for software survey
minvec3;

DV = [A|Ac; A; B; C; A&B&C; Ac&Bc; (A&B)|(A&C)|(B&C); (A&Bc&C) - 2*(Ac&B&C)];
DP = [1 0.8 0.65 0.3 0.1 0.05 0.65 0];
TV = [(A&B&Cc) | (A&BC&C) | (Ac&B&C); Ac&Bcé&C];

disp('Call for mincalc')

>> mcalcO1l % Call for data

Call for mincalc % Prompt supplied in the data file
>> mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.5500

2.0000 0.0500

The number of minterms is 8

The number of available minterms is 8

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

>> disp(PMA) % Optional call for minterm probabilities
0 0

1.0000 0.0500

2.0000 0.1000

3.0000 0.0500

4.0000 0.2000

5.0000 0.1000

6.0000 0.4000

7.0000 0.1000

computer survey

% file mcalc02.m Data for computer survey

minvec3

DV = [A]Ac; A; B; C; A&B&C; A&C; (A&B)|(A&C)|(B&C);
2*(B&C) - (A&C)];
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disp('Call for mincalc')

>> mcalc02

Call for mincalc

>> mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.9680

2.0000 0.0160

The number of minterms is 8

The number of available minterms is 8

Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA
>> disp(PMA)

DP = 0.001*[1000 565 515 151 51 124 212 0]; TV = [A|B]|C; Acé&Bcé&C];

(C] 0.0320

1.0000 0.0160

2.0000 0.3760

3.0000 0.0110

4.0000 0.3640

5.0000 0.0730

6.0000 0.0770

7.0000 0.0510

% file mcalc03.m Data for opinion survey
minvec4

DV = [A|Ac; A; B; C; D; A&(B|Cc)&Dc; A|((B&C)|Dc) ; Ac&B&Ccé&D;

DP = 0.001*[1000 200 500 300 700 55 520 200 15 30 195 120 120
140 25 20];

TV = [Ac&((B&Cc)|(Bc&C)); A|(B&Cc)];

disp('Call for mincalc')

>> mincalc0@3

Call for mincalc

>> mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.4000

2.0000 0.4800

The number of minterms is 16

The number of available minterms is 16

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

>> disp(minmap(pma)) % Display arranged as on minterm map

0.0850 0.0800 0.0200 0.0200

0.1950 0.2000 0.0500 0.0500

A&B&C&D; A&BC&C; AC&BC&CC&D; AC&B&C; Ac&Bc&Dc; A&Cc; A&C&DC; A&B&Cc&DC];
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0.0350 0.0350 0.0100 0.0150
0.0850 0.0850 0.0200 0.0150

The procedure mincalct

A useful modification, which we call mincalct, computes the available target probabilities, without checking and computing the
minterm probabilities. This procedure assumes a data file similar to that for mincalc, except that it does not need the target matrix
TV, since it prompts for target Boolean combination inputs. The procedure mincalct may be used after mincalc has performed its
operations to calculate probabilities for additional target combinations.

(continued) Additional target datum for the opinion survey

Suppose mincalc has been applied to the data for the opinion survey and that it is desired to determine P(ADU BD®). It is

not necessary to recalculate all the other quantities. We may simply use the procedure mincalct and input the desired Boolean
combination at the prompt.

>> mincalct
Enter matrix of target Boolean combinations (A&D) | (B&Dc)
Computable target probabilities

1.0000 0.2850

Repeated calls for mcalct may be used to compute other target probabilities.

This page titled 2.2: Minterms and MATLAB Calculations is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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2.3: Problems on Minterm Analysis

Exercise 2.3.1

Consider the class {A, B, C, D} of events. Suppose the probability that at least one of the events A or C' occurs is 0.75 and
the probability that at least one of the four events occurs is 0.90. Determine the probability that neither of the events A or C'
but at least one of the events B or D occurs.
Answer

Use the pattern P(EUF) = P(E)+ P(E°F) and (AUC)°® = A°C*° .

P(AUCUBUD) =P(AUC)+P(AcC¢(BUD)) ,sothat P(A°C¢(BUD))=0.90—-0.75=0.15

Exercise 2.3.2

1. Use minterm maps to show which of the following statements are true for any class { 4, B, C'}:

a. AU(BC)c=AUBUBeC*
b. (AUB)¢ = AcCU B<C
c. ACABUACUBC
2. Repeat part (1) using indicator functions (evaluated on minterms).
3. Repeat part (1) using the m-procedure minvec3 and MATLAB logical operations.

Answer

We use the MATLAB procedure, which displays the essential patterns.

minvec3

Variables are A, B, C, Ac, Bc, Cc
They may be renamed, if desired.
E = A|~(B&C);

F = A|B|(Bc&Cc);

disp([E;F])

1 1 1 0 1 1 1 1 % Not equal
1 (C] 1 1 1 1 1 1

G = ~(A[B);

H = (Ac&C)|(Bc&C);

disp([G;H])
1 1 0 0 0 0 0 0 % Not equal
(C] 1 (C] 1 (C] 1 (C] (C]

K = (A&B)|(A&C) | (B&C);

disp([A;K])
0] 0] 0] 0] 1 1 1 1 % A not contained in K
0 0 0 1 0 1 1 1

Exercise 2.3.3

Use (1) minterm maps, (2) indicator functions (evaluated on minterms), (3) the m-procedure minvec3 and MATLAB logical
operations to show that

a. A(BUC®)UA°BC C A(BCUC°)U A°B

b. AUA*BC = ABUBCUACUAB<C*
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Answer

We use the MATLAB procedure, which displays the essential patterns.

minvec3

Variables are A, B, C, Ac, Bc, Cc
They may be renamed, if desired.
E = (A&(B|Cc)) | (Ac&B&C);

F = (A&((B&C)|Cc))| (Ac&B);
disp([E;F])

0 0 0 1 1 0 1 1 % E subset of F
0 0 1 1 1 0 1 il
G = A|(AC&B&C);
H = (A&B)|(B&C) | (A&C) | (A&Bc&Cc);
disp([G;H])
0 0 0 1 1 1 1 1 %G=H
0 0 0 1 1 1 1 1

Exercise 2.3.4

Minterms for the events { A, B, C, D}, arranged as on a minterm map are

0.0168 0.0072 0.0252 0.0108
0.0392 0.0168 0.0588 0.0252
0.0672 0.0288 0.1008 0.0432
0.1568 0.0672 0.2352 0.1008

What is the probability that three or more of the events occur on a trial? Of exactly two? Of two or fewer?

Answer

We use mintable(4) and determine positions with correct number(s) of ones (number of occurrences). An alternate is to use
minvec4 and express the Boolean combinations which give the correct number(s) of ones.

npro2_04
Minterm probabilities are in pm. Use mintable(4)

a = mintable(4);

s = sum(a); % Number of ones in each minterm position
P1 = (s>=3)*pm' % Select and add minterm probabilities

P1 = 0.4716

P2 = (s==2)*pm'

P2 = 0.3728

P3 = (s<=2)*pm'

P3 = 0.5284

Minterms for the events { A, B, C, D, E}, arranged as on a minterm map are
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0.0216 0.0324 0.0216 0.0324 0.0144 0.0216 0.0144 0.0216
0.0144 0.0216 0.0144 0.0216 0.0096 0.0144 0.0096 0.0144
0.0504 0.0756 0.0504 0.0756 0.0336 0.0504 0.0336 0.0504
0.0336 0.0504 0.0336 0.0504 0.0224 0.0336 0.0224 0.0336

What is the probability that three or more of the events occur on a trial? Of exactly four? Of three or fewer? Of either two or
four?

Answer

We use mintable(5) and determine positions with correct number(s) of ones (number of occurrences).

npro2_05

Minterm probabilities are in pm. Use mintable(5)

a = mintable(5);

s = sum(a); % Number of ones in each minterm position
P1 = (s>=3)*pm' % Select and add minterm probabilities
P1 = 0.5380

P2 = (s==4)*pm'

P2 = 0.1712

P3 = (s<=3)*pm'

P3 = 0.7952

P4 = ((s==2)|(s==4))*pm’

P4 = 0.4784

Exercise 2.3.6

Suppose P(AU B°C) =0.65, P(AC) =0.2, P(A°B) =0.25
P(A°C*°) =0.25, P(BC) = 0.30. Determine P((AC® U A°C)B°).
Then determine P((AB°U A°)C*¢) and P(A°(BUC?)), if possible.

Answer
% file npro2_06.m % Data file
% Data for Exercise 2.3.6.
minvec3
DV = [A|Ac; A|(Bc&C); A&C; Ac&B; Ac&Cc; B&Cc];
DP = [1 0.65 0.20 0.25 0.25 0.30];
TV = [((A&Cc) | (Ac&C))&Bc; ((A&Bc)|Ac)&Cc; Ac&(B|Cc)];

disp('Call for mincalc')

npro2_06 % Call for data
Variables are A, B, C, Ac, Bc, Cc
They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities
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1.0000 0.3000 % The first and third target probability
3.0000 0.3500 % is calculated. Check with minterm map.
The number of minterms is 8
The number of available minterms is 4
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA

Exercise 2.3.7

Suppose P((AB°UA°B)C)=0.4, P(AB)=0.2, P(A°C°)=0.3, P(A)=0.6, P(C)=0.5, and P(AB°C°)=0.1.
Determine P(A°C°U AC), P(AB°U A°)C°), and P(A°(BUC®)), if possible.

Answer

% file npro2_07.m
% Data for Exercise 2.3.7.

minvec3

DV = [A|Ac; ((A&Bc)|(Ac&B))&C; A&B; Ac&Cc; A; C; A&Bcé&Cc];
DP = [ 1 0.4 0.2 0.3 0.6 0.5 0.1];
TV = [(Ac&Cc) | (A&C); ((A&Bc)|Ac)&Cc; Ac&(B|Cc)];

disp('Call for mincalc')

npro2_o7 % Call for data

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities
1.0000 0.7000 % All target probabilities calculable
2.0000 0.4000 % even though not all minterms are available
3.0000 0.4000

The number of minterms is 8

The number of available minterms is 6

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

Exercise 2.3.8

Suppose P(A) =0.6, P(C)=0.4, P(AC) =0.3, P(A°B) = 0.2 and P(A°B°C°) =0.1.
Determine P((AU B)C¢, P(AC°U A°C), and P(AC°U A°B), if possible.

Answer

% file npro2_08.m
% Data for Exercise 2.3.8.

minvec3
DV = [A|Ac; A; C; A&C; Ac&B; Acé&Bcé&Cc];
DP = [ 1 0.6 0.4 0.3 0.2 0.1];
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TV = [(A|B)&Cc; (A&Cc)|(Ac&C); (A&Cc)|(Ac&B)];
disp('Call for mincalc')

npro2_08 % Call for data

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities
1.0000 0.5000 % All target probabilities calculable
2.0000 0.4000 % even though not all minterms are available
3.0000 0.5000

The number of minterms is 8

The number of available minterms is 4

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

Exercise 2.3.9

Suppose P(A) =0.5, P(AB) = P(AC)=0.3, and P(ABC*°) =0.1.
Determine P(A(BC*®)¢ and P(ABUACUBC) .
Then repeat with additional data P(A°B°C*¢) = 0.1 and P(A°BC) =0.05

Answer

% file npro2_09.m

% Data for Exercise 2.3.9.

minvec3

DV = [A|Ac; A; A&B; A&C; A&B&Cc];

DP = [ 1 0.5 0.3 0.3 0.1];

TV = [A&(~(B&Cc)); (A&B)|(A&C)|(B&C)];
disp('Call for mincalc')

% Modification for part 2

% DV = [DV; Ac&Bcé&Cc; Ac&B&C];

% DP = [DP 0.1 0.05];

npro2_09 % Call for data
Variables are A, B, C, Ac, Bc, Cc
They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent
Computable target probabilities

1.0000 0.4000 % Only the first target probability calculable

The number of minterms is 8
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The number of available minterms is 4

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

DV = [DV; Ac&Bc&Cc; Ac&B&C]; % Modification of data

DP = [DP 0.1 0.05];

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.4000 % Both target probabilities calculable
2.0000 0.4500 % even though not all minterms are available

The number of minterms is 8

The number of available minterms 1is 6

Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

Exercise 2.3.10

Given P(A) =0.6, P(A°B°) =0.2, P(AC°®)=0.4, and P(ACD*) =0.1.
Determine P(A¢BU A(C¢U D)) .

Answer

% file npro2_10.m
% Data for Exercise 2.3.10.

minvec4

DV = [A|Ac; A; Acé&Bc; A&Cc; A&C&Dc];
DP = [1 0.6 0.2 0.4 0.1];
TV = [(Ac&B) | (A&(Cc|D))];

disp('Call for mincalc')

npro2_10
Variables are A, B, C, D, Ac, Bc, Cc, Dc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.7000 % Checks with minterm map solution

The number of minterms is 16

The number of available minterms is 0
Available minterm probabilities are in vector pma

To view available minterm probabilities, call for PMA

A survey of a represenative group of students yields the following information:

e 52 percent are male
e 85 percent live on campus
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e 78 percent are male or are active in intramural sports (or both)
e 30 percent live on campus but are not active in sports

e 32 percent are male, live on campus, and are active in sports

o 8 percent are male and live off campus

o 17 percent are male students inactive in sports

a. What is the probability that a randomly chosen student is male and lives on campus?
b. What is the probability of a male, on campus student who is not active in sports?
c. What is the probability of a female student active in sports?

Answer

% file npro2_11.m

% Data for Exercise 2.3.11.

% A = male; B = on campus; C = active in sports
minvec3

DV = [A|Ac; A; B; A|C; B&Cc; A&B&C; A&Bc; A&Cc];
DP [ 1 0.52 0.85 0.78 0.30 0.32 0.08 0.17];
TV [A&B; A&B&Cc; Ac&C];

disp('Call for mincalc')

npro2_11
Variables are A, B, C, Ac, Bc, Cc
They may be renamed, if desired.
Call for mincalc
mincalc
Data vectors are linearly independent
Computable target probabilities
1.0000 0.4400
2.0000 0.1200
3.0000 0.2600
The number of minterms is 8
The number of available minterms is 8
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA

Exercise 2.3.12

A survey of 100 persons of voting age reveals that 60 are male, 30 of whom do not identify with a political party; 50 are
members of a political party; 20 nonmembers of a party voted in the last election, 10 of whom are female. How many
nonmembers of a political party did not vote? Suggestion Express the numbers as a fraction, and treat as probabilities.

Answer

% file npro2_12.m

% Data for Exercise 2.3.12.

% A = male; B = party member; C = voted last election
minvec3

DV [A]Ac; A; A&Bc; B; Bc&C; Ac&Bcé&C];

DP [ 1 ©0.60 0.30 0.50 0.20 0.10];
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TV = [Bc&Cc];

disp('Call for mincalc')

npro2_12

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities

1.0000 0.3000

The number of minterms is 8
The number of available minterms is 4
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA

Exercise 2.3.13

During a period of unsettled weather, let A be the event of rain in Austin, B be the event of rain in Houston, and C be the event
of rain in San Antonio. Suppose:

P(AB) =0.35, P(AB°) =0.15, P(AC) = 0.20, P(AB°U A°B) = 0.45
P(BC) =0.30 P(B°C) =0.05 P(A°B°C*®) =0.15

a. What is the probability of rain in all three cities?
b. What is the probability of rain in exactly two of the three cities?
c. What is the probability of rain in exactly one of the cities?

Answer

% file npro2_13.m

% Data for Exercise 2.3.13.

% A = rain in Austin; B = rain in Houston;
% C = rain in San Antonio

minvec3

DV = [A|Ac; A&B; A&Bc; A&C; (A&Bc)|(Ac&B); B&C; Bc&C; Ac&Bcé&Cc];

DP = [ 1 0.35 0.15 0.20 0.45 0.30 0.05 0.15];

TV = [A&B&C; (A&B&Cc) | (A&BC&C) | (Ac&B&C); (A&Bc&Cc)|(Ac&B&Cc) | (Ac&Bc&C)];

disp('Call for mincalc')
npre2_13
Variables are A, B, C, Ac, Bc, Cc
They may be renamed, if desired.
Call for mincalc
mincalc
Data vectors are linearly independent
Computable target probabilities
1.0000 0.2000
2.0000 0.2500
3.0000 0.4000
The number of minterms is 8
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The number of available minterms is 8
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA

Exercise 2.3.14

One hundred students are questioned about their course of study and plans for graduate study. Let A = the event the student is
male; B = the event the student is studying engineering; C' = the event the student plans at least one year of foreign language;
D = the event the student is planning graduate study (including professional school). The results of the survey are:

There are 55 men students; 23 engineering students, 10 of whom are women; 75 students will take foreign language classes,
including all of the women; 26 men and 19 women plan graduate study; 13 male engineering students and 8 women
engineering students plan graduate study; 20 engineering students will take a foreign language and plan graduate study; 5 non
engineering students plan graduate study but no foreign language courses; 11 non engineering, women students plan foreign
language study and graduate study.

a. What is the probability of selecting a student who plans foreign language classes and graduate study?

b. What is the probability of selecting a women engineer who does not plan graduate study?

c. What is the probability of selecting a male student who either studies a foreign language but does not intend graduate study
or will not study a foreign language but plans graduate study?

Answer

% file npro2_14.m
% Data for Exercise 2.3.14.
% A = male; B = engineering;
% C = foreign language; D = graduate study
minvec4
DV [A]Ac; A; B; Ac&B; C; Ac&C; A&D; Ac&D; A&B&D;
Ac&B&D; B&C&D; Bc&Cc&D; Ac&Bc&C&D];
DP [1 ©6.55 0.23 0.10 0.75 0.45 0.26 0.19 0.13 0.08 0.20 0.05 0.11];
TV = [C&D; Ac&Dc; A&((C&Dc)|(Cc&D))];
disp('Call for mincalc')
npro2_14
Variables are A, B, C, D, Ac, Bc, Cc, Dc
They may be renamed, if desired.
Call for mincalc
mincalc
Data vectors are linearly independent
Computable target probabilities
1.0000 0.3900
2.0000 0.2600 % Third target probability not calculable
The number of minterms is 16
The number of available minterms is 4
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA
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A survey of 100 students shows that: 60 are men students; 55 students live on campus, 25 of whom are women; 40 read the
student newspaper regularly, 25 of whom are women; 70 consider themselves reasonably active in student affairs—50 of these
live on campus; 35 of the reasonably active students read the newspaper regularly; All women who live on campus and 5 who
live off campus consider themselves to be active; 10 of the on-campus women readers consider themselves active, as do 5 of
the off campus women; 5 men are active, off-campus, non readers of the newspaper.

a. How many active men are either not readers or off campus?
b. How many inactive men are not regular readers?

Answer

% file npro2_15.m
% Data for Exercise 2.3.15.
% A = men; B = on campus; C = readers; D = active
minvec4
DV = [A|Ac; A; B; Ac&B; C; Ac&C; D; B&D; C&D;
Ac&B&D; Ac&Bc&D; Ac&B&C&D; Ac&Bc&C&D; A&Bc&Cc&D];
DP [1 0.6 0.55 0.25 0.40 0.25 0.70 0.50 0.35 0.25 0.05 0.10 0.05 0.05];
TV [A&D&(Cc|Bc); A&Dcé&Cc];
disp('Call for mincalc')
npro2_15
Variables are A, B, C, D, Ac, Bc, Cc, Dc
They may be renamed, if desired.
Call for mincalc
mincalc
Data vectors are linearly independent
Computable target probabilities
1.0000 0.3000
2.0000 0.2500
The number of minterms is 16
The number of available minterms is 8
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA

Exercise 2.3.16

A television station runs a telephone survey to determine how many persons in its primary viewing area have watched three
recent special programs, which we call a, b, and c. Of the 1000 persons surveyed, the results are:

221 have seen at least a; 209 have seen at least b; 112 have seen at least ¢; 197 have seen at least two of the programs; 45 have
seen all three; 62 have seen at least a and c; the number having seen at least a and b is twice as large as the number who have
seen at least b and c.

¢ (a) How many have seen at least one special?
o (b) How many have seen only one special program?

Answer
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% file npr02_16.m
% Data for Exercise 2.3.16.

minvec3

DV = [A|Ac; A; B; C; (A&B)|(A&C)|(B&C); A&B&C; A&C; (A&B)-2*(B&C)];
DP = [ 1 0.221 0.209 0.112 0.197 0.045 0.062 0]1;

TV = [A|B|C; (A&Bc&Cc) | (Ac&B&Cc) | (Ac&Bc&C)];

npro2_16

Variables are A, B, C, Ac, Bc, Cc
They may be renamed, if desired.
Call for mincalc
mincalc
Data vectors are linearly independent
Computable target probabilities
1.0000 0.3000
2.0000 0.16030
The number of minterms is 8
The number of available minterms is 8
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA

Exercise 2.3.17

An automobile safety inspection station found that in 1000 cars tested:

e 100 needed wheel alignment, brake repair, and headlight adjustment
e 325 needed at least two of these three items

e 125 needed headlight and brake work

e 550 needed at wheel alignment

a. How many needed only wheel alignment?
b. How many who do not need wheel alignment need one or none of the other items?

Answer

% file npro2_17.m
% Data for Exercise 2.3.17.
% A = alignment; B = brake work; C = headlight

minvec3

DV = [A|Ac; A&B&C; (A&B)|(A&C)|(B&C); B&C; A ],
DP = [ 1 0.100 0.325 0.125 0.550];
TV = [A&Bc&Cc; Ac&(~(B&C))];

disp('Call for mincalc')

npro2_17

Variables are A, B, C, Ac, Bc, Cc
They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent
Computable target probabilities
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1.0000 0.2500
2.0000 0.4250
The number of minterms is 8
The number of available minterms is 3
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA

Exercise 2.3.18

Suppose P(A(BUC))=0.3, P(A°) =0.6, and P(A°B°C°) =0.1.
Determine P(BUC'), P((ABU A¢B¢)C¢U AC) , and P(A¢(BUC?)), if possible.
Repeat the problem with he additional data P(A°BC') =0.2 and P(A°B) =0.3.

Answer

% file npr02_18.m
% Date for Exercise 2.3.18.

minvec3

DV = [A|Ac; A&(B|C); Ac; Ac&Bc&Cc];

DP = [ 1 0.3 0.6 0.1];

TV = [B|C; (((A&B)|(Ac&Bc))&Cc)|(A&C); Ac&(B|Cc)];

disp('Call for mincalc')
% Modification
% DV = [DV; Ac&B&C; Ac&B];
% DP = [DP 0.2 0.3];
npro2_18
Variables are A, B, C, Ac, Bc, Cc
They may be renamed, if desired.
Call for mincalc
mincalc
Data vectors are linearly independent
Computable target probabilities
1.0000 0.8000
2.0000 0.4000
The number of minterms is 8
The number of available minterms 1is 2
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA

DV = [DV; Ac&B&C; Ac&B]; % Modified data
DP = [DP 0.2 0.3];
mincalc % New calculation

Data vectors are linearly independent
Computable target probabilities
1.0000 0.8000
2.0000 0.4000
3.0000 0.4000
The number of minterms is 8
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The number of available minterms is 5
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA

Exercise 2.3.19

A computer store sells computers, monitors, printers. A customer enters the store. Let A, B, C be the respective events the
customer buys a computer, a monitor, a printer. Assume the following probabilities:

e The probability P(AB) of buying both a computer and a monitor is 0.49.

e The probability P(ABC*) of buying both a computer and a monitor but not a printer is 0.17.
e The probability P(AC) of buying both a computer and a printer is 0.45.

e The probability P(BC') of buying both a monitor and a printer is 0.39

 The probability P(AC*\/ A¢C) of buying a computer or a printer, but not both is 0.50.

o The probability P(AB¢\/ A¢B) of buying a computer or a monitor, but not both is 0.43.

o The probability P(BC*\/ B¢C') of buying a monitor or a printer, but not both is 0.43.

a. What is the probability P(A), P(B), or P(C) of buying each?
b. What is the probability of buying exactly two of the three items?
c. What is the probability of buying at least two?

d. What is the probability of buying all three?

Answer

% file npr02_19.m
% Data for Exercise 2.3.19.
% A = computer; B = monitor; C = printer
minvec3
DV = [A|Ac; A&B; A&B&Cc; A&C; B&C; (A&Cc)|(Ac&C);
(A&Bc) | (Ac&B); (B&Cc)|(Bc&C)];
DP [1 0.49 0.17 0.45 0.39 0.50 0.43 0.43];
TV [A; B; C; (A&B&Cc)|(A&Bc&C)|(Ac&B&C); (A&B)|(A&C)|(B&C); A&B&C];
disp('Call for mincalc')
npre2_19
Variables are A, B, C, Ac, Bc, Cc
They may be renamed, if desired.
Call for mincalc
mincalc
Data vectors are linearly independent
Computable target probabilities
1.0000 0.8000

2.0000 0.6100
3.0000 0.6000
4.0000 0.3700
5.0000 0.6900

6.0000 0.3200
The number of minterms is 8
The number of available minterms is 8
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA
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Exercise 2.3.20

Data are P(A)=0.232, P(B)=0.228, P(ABC)=0.045, P(AC)=0.062, P(ABUACUBC)=0.197 and
P(BCO = 2P(AC).

Determine P(AUBUC) and P(A°B°C), if possible.
Repeat, with the additional data P(C') = 0.230.

Answer

% file npro2_20.m
% Data for Exercise 2.3.20.

minvec3

DV = [A|Ac; A; B; A&B&C; A&C; (A&B)|(A&C)|(B&C); B&C - 2*(A&C)];
DP = [ 1 0.232 0.228 0.045 0.062 0.197 01,

TV = [A|B]|C; Acé&Bc&Cc];

disp('Call for mincalc')
% Modification

% DV = [DV; C];

% DP = [DP 0.230 ];

npro2_20
Variables are A, B, C, Ac, Bc, Cc
They may be renamed, if desired.
mincalc
Data vectors are linearly independent
Data probabilities are INCONSISTENT
The number of minterms is 8
The number of available minterms is 6
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA
disp(PMA)
2.0000 0.0480
.0000 -0.0450 % Negative minterm probabilities indicate
.0000 -0.0100 % inconsistency of data
.0000 0.0170
.0000 0.1800
.0000 0.0450
DV = [DV; C];
DP = [DP 0.230];
mincalc
Data vectors are linearly independent
Data probabilities are INCONSISTENT
The number of minterms is 8
The number of available minterms is 8
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA

~N o 0o b~ W
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Exercise 2.3.21

Data are: P(A)=0.4, P(AB)=0.3, P(ABC)=0.25, P(C)=0.65, P(A°C°) =0.3. Determine available minterm

@0

probabilities and the following,
if computable:

P(AC® U A°C), P(A°B), P(AUB), P(AB")

With only six items of data (including P(Q) = P(A\/ A°) =1, not all minterms are available. Try the additional data
P(A°BC°)=0.1 and P(A°B°)=0.3. Are these consistent and linearly independent? Are all minterm probabilities

available?

Answer

% file npro2_21.m
% Data for Exercise 2.3.21.
minvec3

DV = [A|Ac; A; A&B; A&B&C; C; Acé&Cc];
DP = [ 1 0.4 0.3 0.25 0.65 0.3 ];
TV = [(A&Cc) | (Ac&C); Ac&Bc; A|B; A&Bc];

disp('Call for mincalc')
% Modification

% DV = [DV; Ac&B&Cc; Ac&Bc];
% DP = [DP 0.1 0.3 1;
npro2_21

Variables are A, B, C, Ac, Bc, Cc
They may be renamed, if desired.
Call for mincalc
mincalc
Data vectors are linearly independent
Computable target probabilities
1.0000 0.3500
4.0000 0.1000
The number of minterms is 8
The number of available minterms is 4
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA
DV = [DV; Acé&B&Cc; Acé&Bc];
DP = [DP 0.1 0.3 ];
mincalc
Data vectors are linearly independent
Computable target probabilities
1.0000 0.3500
2.0000 0.3000
3.0000 0.7000
4.0000 0.1000
The number of minterms is 8
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The number of available minterms is 8
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA

Exercise 2.3.22

Repeat Exercise with P(AB) changed from 0.3 to 0.5. What is the result? Explain the reason for this result.

Answer

% file npro2_22.m
% Data for Exercise 2.3.22.
minvec3

DV = [A|Ac; A; A&B; A&B&C; C; Ac&Cc];
DP = [ 1 0.4 0.5 0.25 0.65 0.3 ];
TV = [(A&Cc) | (Ac&C); Ac&Bc; A|B; A&Bc];

disp('Call for mincalc')

% Modification

% DV = [DV; Ac&B&Cc; Ac&Bc];
% DP = [DP 0.1 0.3 1;

npre2_22
Variables are A, B, C, Ac, Bc, Cc
They may be renamed, if desired.
Call for mincalc
mincalc
Data vectors are linearly independent
Data probabilities are INCONSISTENT
The number of minterms is 8
The number of available minterms is 4
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA
disp(PMA)
4.0000 -0.2000
5.0000 0.1000
6.0000 0.2500
7.0000 0.2500
DV = [DV; Acé&B&Cc; Ac&Bc];
DP = [DP 0.1 0.3 ]1;
mincalc
Data vectors are linearly independent
Data probabilities are INCONSISTENT
The number of minterms is 8
The number of available minterms is 8
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA
disp(PMA)
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0] 0.2000
1.0000 0.1000
2.0000 0.1000
3.0000 0.2000
4.0000 -0.2000
5.0000 0.1000
6.0000 0.2500
7.0000 0.2500

Exercise 2.3.23

Repeat Exercise with the original data probability matrix, but with AB replaced by AC in the data vector matrix. What is the

result? Does mincalc work in this case? Check results on a minterm map.

Answer

% file npr02_23.m

% Data for Exercise 2.3.23.

minvec3

DV = [A|Ac; A; A&C; A&B&C; C; Ac&Cc];
DP [ 1 0.4 0.3 0.25 0.65 0.3 ];
TV [(A&Cc) | (Ac&C); Ac&Bc; A|B; A&Bc];
disp('Call for mincalc')

% Modification

% DV = [DV; Ac&B&Cc; Ac&Bc];
% DP = [DP 0.1 0.3 ];
npro2_23

Variables are A, B, C, Ac, Bc, Cc
They may be renamed, if desired.
Call for mincalc

mincalc
Data vectors are NOT linearly independent
Warning: Rank deficient, rank = 5 tol = 5.0243e-15

Computable target probabilities
1.0000 0.4500

The number of minterms is 8

The number of available minterms is 2
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA
DV = [DV; Ac&B&Cc; Ac&Bc];

DP = [DP 0.1 0.3 ];

mincalc

Data vectors are NOT linearly independent
Warning: Matrix is singular to working precision.

Computable target probabilities

1 Inf % Note that p(4) and p(7) are given in data

2 Inf

https://stats.libretexts.org/@go/page/10866


https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10866?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/02%3A_Minterm_Analysis/Bookshelves/Probability_Theory/Book:_Applied_Probability_(Pfeiffer)/17:_Appendices/17.8_Matlab_files_for_%22Problems%22_in_%22Applied_Probability%22

LibreTextsw

3 Inf
The number of minterms is 8
The number of available minterms is 6
Available minterm probabilities are in vector pma
To view available minterm probabilities, call for PMA

This page titled 2.3: Problems on Minterm Analysis is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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CHAPTER OVERVIEW

3: Conditional Probability

The probability P(A) of an event A is a measure of the likelihood that the event will occur on any trial. Sometimes partial
information determines that an event C has occurred. Given this information, it may be necessary to reassign the likelihood for each
event A. This leads to the notion of conditional probability. For a fixed conditioning event C, this assignment to all events
constitutes a new probability measure which has all the properties of the original probability measure. In addition, because of the
way it is derived from the original, the conditional probability measure has a number of special properties which are important in
applications.

3.1: Conditional Probability
3.2: Problems on Conditional Probability

This page titled 3: Conditional Probability is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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3.1: Conditional Probability

The original or prior probability measure utilizes all available information to make probability assignments P(A), P(B), etc.,
subject to the defining conditions (P1), (P2), and (P3). The probability P(A) indicates the likelihood that event A will occur on any
trial.

Frequently, new information is received which leads to a reassessment of the likelihood of event A. For example

o An applicant for a job as a manager of a service department is being interviewed. His résumé shows adequate experience and
other qualifications. He conducts himself with ease and is quite articulate in his interview. He is considered a prospect highly
likely to succeed. The interview is followed by an extensive background check. His credit rating, because of bad debts, is found
to be quite low. With this information, the likelihood that he is a satisfactory candidate changes radically.

¢ A young woman is seeking to purchase a used car. She finds one that appears to be an excellent buy. It looks “clean,” has
reasonable mileage, and is a dependable model of a well known make. Before buying, she has a mechanic friend look at it. He
finds evidence that the car has been wrecked with possible frame damage that has been repaired. The likelihood the car will be
satisfactory is thus reduced considerably.

o A physician is conducting a routine physical examination on a patient in her seventies. She is somewhat overweight. He
suspects that she may be prone to heart problems. Then he discovers that she exercises regularly, eats a low fat, high fiber,
variagated diet, and comes from a family in which survival well into their nineties is common. On the basis of this new
information, he reassesses the likelihood of heart problems.

New, but partial, information determines a conditioning event C, which may call for reassessing the likelihood of event A. For one
thing, this means that A occurs iff the event AC' occurs. Effectively, this makes C' a new basic space. The new unit of probability
mass is P(C). How should the new probability assignments be made? One possibility is to make the new assignment to
A proportional to the probability P(AC). These considerations and experience with the classical case suggests the following
procedure for reassignment. Although such a reassignment is not logically necessary, subsequent developments give substantial
evidence that this is the appropriate procedure.

Definition

If C is an even having prositive probabilty, the conditional probability of A, given C is
P(AC)

PUAIO) =3

For a fixed conditioning event C, we have a new likelihood assignment to the event A. Now

P(A|C) >0, P(?|C) =1, and P(\; 4;|C) = PO > P(4;C)/P(C) =3 P(4|C)
Thus, the new function P(-|C) satisfies the three defining properties (P1), (P2), and (P3) for probability, so that for fixed C, we
have a new probability measure, with all the properties of an ordinary probability measure.

Remark. When we write P(A|C') we are evaluating the likelihood of event A when it is known that event C' has occurred. This is
not the probability of a conditional event A|C. Conditional events have no meaning in the model we are developing.

Example 3.1.1 Conditional probabilities from joint frequency data

A survey of student opinion on a proposed national health care program included 250 students, of whom 150 were
undergraduates and 100 were graduate students. Their responses were categorized Y (affirmative), N (negative), and D
(uncertain or no opinion). Results are tabulated below.

Y N D
U 60 40 50
70 20 10

Suppose the sample is representative, so the results can be taken as typical of the student body. A student is picked at random.
Let Y be the event he or she is favorable to the plan, N be the event he or she is unfavorable, and D is the event of no opinion
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(or uncertain). Let U be the event the student is an undergraduate and G be the event he or she is a graduate student. The data
may reasonably be interpreted

P(G) =100/250, P(U) =150/250, P(Y) = (60 +70)/250, P(YU) = 60/250, etc.
Then
P(YU) 60/250 60

P(Y|U) = P(U) ~ 150/250 150

Similarly, we can calculate
P(N|U)=40/150, P(D|U) =50/150, P(Y|G) =70/100, P(N|G) =20/100, P(D|G) =10/100

We may also calculate directly

P(U|Y) =60/130, P(G|N) = 20/60, etc.

Conditional probability often provides a natural way to deal with compound trials carried out in several steps.

Example 3.1.2 Jet aircraft with two engines

An aircraft has two jet engines. It will fly with only one engine operating. Let F; be the event one engine fails on a long
distance flight, and F» the event the second fails. Experience indicates that P(F;) = 0.0003. Once the first engine fails, added
load is placed on the second, so that P(F>|F;) =0.001. Now the second engine can fail only if the other has already failed.
Thus F, C F; so that

P(F,) = P(F\Fy) = P(Fy)P(Fy|F}) =3 x 1077

Thus reliability of any one engine may be less than satisfactory, yet the overall reliability may be quite high.

The following example is taken from the UMAP Module 576, by Paul Mullenix, reprinted in UMAP Journal, vol 2, no. 4. More
extensive treatment of the problem is given there.

Example 3.1.3 Responses to a sensitive question on a survey

In a survey, if answering “yes” to a question may tend to incriminate or otherwise embarrass the subject, the response given
may be incorrect or misleading. Nonetheless, it may be desirable to obtain correct responses for purposes of social analysis.
The following device for dealing with this problem is attributed to B. G. Greenberg. By a chance process, each subject is
instructed to do one of three things:

1. Respond with an honest answer to the question.
2. Respond “yes” to the question, regardless of the truth in the matter.
3. Respond “no” regardless of the true answer.

Let A be the event the subject is told to reply honestly, B be the event the subject is instructed to reply “yes,” and C be the event the
answer is to be “no.” The probabilities P(A), P(B), and P(C) are determined by a chance mechanism (i.e., a fractio P(A)
selected randomly are told to answer honestly, etc.). Let E be the event the reply is “yes.” We wish to calculate P(E|A), the
probability the answer is “yes” given the response is honest.

Solution
Since E = EA\/ B, we have
P(E)=P(EA)+P(B)=P(E|A)P(A)+ P(B)
which may be solved algebraically to give
P(E) - P(B)

P(B|A) = ——p

Suppose there are 250 subjects. The chance mechanism is such that P(4) =0.7, P(B) =0.4 and P(C) = 0.16. There are 62
responses “yes,” which we take to mean P(E) = 62/250. According to the pattern above
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62/250 —14/100 27

~0.154
70/100 175

P(E|A) =

The formulation of conditional probability assumes the conditioning event C is well defined. Sometimes there are subtle
difficulties. It may not be entirely clear from the problem description what the conditioning event is. This is usually due to some
ambiguity or misunderstanding of the information provided.

Example 3.1.4 What is the conditioning event?

Five equally qualified candidates for a job, Jim, Paul, Richard, Barry, and Evan, are identified on the basis of interviews and
told that they are finalists. Three of these are to be selected at random, with results to be posted the next day. One of them, Jim,
has a friend in the personnel office. Jim asks the friend to tell him the name of one of those selected (other than himself). The
friend tells Jim that Richard has been selected. Jim analyzes the problem as follows.

Analysis

Let A;,1 <14 <5 be the event the ith of these is hired (A; is the event Jim is hired, A3 is the event Richard is hired, etc.).
Now P(A4;) (for each ) is the probability that finalist ¢ is in one of the combinations of three from five. Thus, Jim's probability
of being hired, before receiving the information about Richard, is

1xC(4,2
P(A1)=¥=£=P(Ai),1§i§5

The information that Richard is one of those hired is information that the event A3 has occurred. Also, for any pair 7 # j the
number of combinations of three from five including these two is just the number of ways of picking one from the remaining
three. Hence,

The conditional probability

P(A;A3)  3/10
P(A;) 6/10

This is consistent with the fact that if Jim knows that Richard is hired, then there are two to be selected from the four remaining

finalists, so that

P(A1]As) = 1/2

P(A1]45) = % SERRYZ.

Discussion

Although this solution seems straightforward, it has been challenged as being incomplete. Many feel that there must be
information about how the friend chose to name Richard. Many would make an assumption somewhat as follows. The friend
took the three names selected: if Jim was one of them, Jim's name was removed and an equally likely choice among the other
two was made; otherwise, the friend selected on an equally likely basis one of the three to be hired. Under this assumption, the
information assumed is an event B3 which is not the same as As. In fact, computation (see Example 5, below) shows

P(A1|B5) = o = P(A1) # P(41]45)

Both results are mathematically correct. The difference is in the conditioning event, which corresponds to the difference in the
information given (or assumed).

Some properties

In addition to its properties as a probability measure, conditional probability has special properties which are consequences of the
way it is related to the original probability measure P(-). The following are easily derived from the definition of conditional
probability and basic properties of the prior probability measure, and prove useful in a variety of problem situations.

(CP1) Product rule If P(ABCD) >0, then P(ABCD) = P(A)P(B|A)P(C|AB)P(D|ABC).
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Derivation

The defining expression may be written in product form: P(AB) = P(A)P(B|A) . Likewise

P(AB) P(ABQC)
P(A) P(AB)

P(ABC) = P(A) = P(A)P(B|A)P(C|AB)

and

B P(AB) P(ABC) P(ABCD)
P(ABCD) = PUA) 5o - o me = PAIP(BIA)P(CIAB)P(DIAEC)

This pattern may be extended to the intersection of any finite number of events. Also, the events may be taken in any order.

—0

Example 3.1.5 Selection of items from a lot

An electronics store has ten items of a given type in stock. One is defective. Four successive customers purchase one of the
items. Each time, the selection is on an equally likely basis from those remaining. What is the probability that all four customes
get good items?

Solution
Let E; be the event the ith customer receives a good item. Then the first chooses one of the nine out of ten good ones, the
second chooses one of the eight out of nine goood ones, etc., so that
P(E\E5E3E,) = P(E,)P(E2|E\)P(Es|E1Es)P(Ey|E1EsE3) = — - — - —- =
Note that this result could be determined by a combinatorial argument: under the assumptions, each combination of four of ten
is equally likely; the number of combinations of four good ones is the number of combinations of four of the nine. Hence
c(9,4) 126

P(E,\E,E3E,) = G 3/5

Example 3.1.6 A selection problem

Three items are to be selected (on an equally likely basis at each step) from ten, two of which are defective. Determine the
probability that the first and third selected are good.

Solution

Let G;, 1 <i < 3 be the even the ith unit selected is good. Then G1G3 = G1G2G3 \/ G1G5G3 . By the product rule

8 7 6, 8 27 28
P(G1G3) = P(G1)P(G:|G1)P(G3|G1G:) + P(G1)P(G5|G1)P(Gs|GiGS) = 5 o s v 10 5 8 = 15

~ 0.6

(CP2) Law of total probability Suppose the class {4; : 1 <i <n} of events is mutually exclusive and every outcome in E is in
one of these events. Thus, E = A1 E\/ AyE\/---\/ A, E , a disjoint union. Then

P(E) = P(E|A1)P(A1) + P(E|A3)P(As) +- - -+ P(E|An) P(An)

Example 3.1.7 a compound experiment

Five cards are numbered one through five. A two-step selection procedure is carried out as follows.

1. Three cards are selected without replacement, on an equally likely basis.

o If card 1 is drawn, the other two are put in a box
o If card 1 is not drawn, all three are put in a box

2. One of cards in the box is drawn on an equally likely basis (from either two or three)

Let A; be the event the ¢th card is drawn on the first selection and let B; be the event the card numbered 7 is drawn on the
second selection (from the box). Determine P(Bs), P(A;Bs), and P(A;|Bs5).
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Solution
From Example 3.1.4, we have P(A;) =6/10 and P(A;A;) = 3/10. This implies
P(A; A5) = P(A;) — P(A4;45) =3/10
Now we can draw card five on the second selection only if it is selected on the first drawing, so that By C As. Also
As = A; A5 \/ AS As . We therefore have By = Bs A5 = B; A1 A5 \/ B5 A{ A5 . By the law of total probability (CP2),
1 3 1 3 1

P(Bs) = P(Bs| A1 A5)P(AyAs) + P(Bs| A{ As) P(A{ As) = 3 1—0+§‘1—0 =7
Also, since A1 Bs = A1 A5Bs,
3

3 1
P(AlB5):P(A1A5B50ZP(A1A5)P(B5|A1A5): Ei 20

We thus have

Occurrence of event B; has no affect on the likelihood of the occurrence of A;. This condition is examined more thoroughly
in the chapter on "Independence of Events".

Often in applications data lead to conditioning with respect to an event but the problem calls for “conditioning in the opposite
direction.”

Example 3.1.8 Reversal of conditioning

Students in a freshman mathematics class come from three different high schools. Their mathematical preparation varies. In
order to group them appropriately in class sections, they are given a diagnostic test. Let H; be the event that a student tested is
from high school 7, 1 <7 < 3. Let F be the event the student fails the test. Suppose data indicate

P(Hy) =0.2, P(H,) = 0.5, P(Hs) = 0.3, P(F|H;) = 0.10, P(F|H,) = 0.02, P(F|H;) = 0.06

A student passes the exam. Determine for each 4 the conditional probability P(H;|F¢) that the student is from high school 4.

Solution
P(F¢) = P(F°|H,)P(H,) + P(F¢|Hy)P(H,) + P(F¢|H3)P(H3) =0.90-0.24+0.98- 0.5 +0.94- 0.3 = 0.952
Then
P(F°H,) P(F°|H,)P(Hy) 180
P(H|F°) = = =— =0.1891
(FL|F°) P(F°) P(F¢) 952 0189
Similarly,
P(F¢|Hy)P(Hy) 590 P(F°¢|H3)P(H;) 282
c = -_—— = c = = = =
P(H,|F°) = P o5 — 0-5147 and P(Hy|F*) P o5 = 0-2962

The basic pattern utilized in the reversal is the following.
(CP3) Bayes' rule If £ C \/"_; A; (as in the law of total probability), then
P(A;E)  P(E|A:)P(A) ) o
P(A|E) = = 1 <4 <n The law of total probabilty yields P(E)
P(E) P(E)

Such reversals are desirable in a variety of practical situations.

Example 3.1.9 A compound selection and reversal

Begin with items in two lots:

1. Three items, one defective.
2. Four items, one defective.
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One item is selected from lot 1 (on an equally likely basis); this item is added to lot 2; a selection is then made from lot 2 (also
on an equally likely basis). This second item is good. What is the probability the item selected from lot 1 was good?

Solution

Let G be the event the first item (from lot 1) was good, and G2 be the event the second item (from the augmented lot 2) is
good. We want to determine P(G1|G2). Now the data are interpreted as

P(G1)=2/3, P(G2|G1) =4/5, P(G2|G{) =3/5
By the law of total probability (CP2),

—_
—_

P(Gy) = P(G1)P(G2|G1) + P(G])P(G2|GY) =

+

[SCARN)
ot i
w |
ot w
I

fu—
ot

By Bayes' rule (CP3),

P(G1|Gs) = P(G,|G1)P(G1) 4/5x2/3 _i~073
YT P@G,)  11j15 11

Example 3.1.10 Additional problems requiring reversals

e Medical tests. Suppose D is the event a patient has a certain disease and T is the event a test for the disease is positive. Data
are usually of the form: prior probability P (D) (or prior odds P(D)/P(D¢)), probability P(T|D¢) of a false positive, and
probability P(T'¢| D) of a false negative. The desired probabilities are P(D|T') and P(D¢|T¢).

e Safety alarm. If D is the event a dangerous condition exists (say a steam pressure is too high) and T is the event the safety
alarm operates, then data are usually of the form P (D), P(T'|D¢), and P(T'¢|D), or equivalently (e.g., P(T¢| D¢) and
P(T|D)). Again, the desired probabilities are that the safety alarms signals correctly, P(D|T) and P(D¢|T¢).

e Job success. If H is the event of success on a job, and E is the event that an individual interviewed has certain desirable
characteristics, the data are usually prior P(H) and reliability of the characteristics as predictors in the form P(H) and
P(E|H¢). The desired probability is P(H|E).

o Presence of oil. If H is the event of the presence of oil at a proposed well site, and E is the event of certain geological
structure (salt dome or fault), the data are usually P(H) (or the odds), P(E|H), and P(E|H¢). The desired probability is

e Market condition. Before launching a new product on the national market, a firm usually examines the condition of a test
market as an indicator of the national market. If H is the event the national market is favorable and E is the event the test
market is favorable, data are a prior estimate P(H) of the likelihood the national market is sound, and data P(E|H) and
P(E|H¢) indicating the reliability of the test market. What is desired is P(H|E), the likelihood the national market is
favorable, given the test market is favorable.

The calculations, as in Example 3.8, are simple but can be tedious. We have an m-procedure called bayes to perform the
calculations easily. The probabilities P(A;) are put into a matrix PA and the conditional probabilities P(E|A;) are put into matrix
PEA. The desired probabilities P(A;|E) and P A;| E®) are calculated and displayed

Example 3.1.11 matlab calculations for

>> PEA = [0.10 0.02 0.06];
>> PA = [0.2 0.5 0.3];

>> bayes

Requires input PEA = [P(E|Al1) P(E|A2) ... P(E|An)]

and PA = [P(A1) P(A2) ... P(An)]

Determines PAE = [P(A1|E) P(A2]|E) ... P(An]|E)]
and PAEc = [P(A1|Ec) P(A2|Ec) ... P(An|Ec)]

Enter matrix PEA of conditional probabilities PEA
Enter matrix PA of probabilities PA
P(E) = 0.048
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P(E|A1) P(A1) P(A1|E) P(Ai|Ec)

0.1000 0.2000 0.4167 0.1891

0.0200 0.5000 0.2083 0.5147

0.0600 0.3000 0.3750 0.2962

Various quantities are in the matrices PEA, PA, PAE, PAEc, named above

The procedure displays the results in tabular form, as shown. In addition, the various quantities are in the workspace in the
matrices named, so that they may be used in further calculations without recopying.

The following variation of Bayes' rule is applicable in many practical situations.

CP3*) Ratio f iB ' rul P(A|C) B P(AQ) B P(C|A) P(4)
( ) Ratio form of Bayes' rule P(BIC) = P(BO) = P(C|B) . P(B)

The left hand member is called the posterior odds, which is the odds after knowledge of the occurrence of the conditioning event.
The second fraction in the right hand member is the prior odds, which is the odds before knowledge of the occurrence of the
conditioning event C. The first fraction in the right hand member is known as the likelihood ratio. It is the ratio of the probabilities
(or likelihoods) of C for the two different probability measures P(-|A) and P(-|B).

Example 3.1.12 A performance test

As a part of a routine maintenance procedure, a computer is given a performance test. The machine seems to be operating so
well that the prior odds it is satisfactory are taken to be ten to one. The test has probability 0.05 of a false positive and 0.01 of a
false negative. A test is performed. The result is positive. What are the posterior odds the device is operating properly?

Solution

Let S be the event the computer is operating satisfactorily and let 7' be the event the test is favorable. The data are
P(S)/P(S¢) =10, P(T|S°) =0.05, and P(T°|S) = 0.01.Then by the ratio form of Bayes' rule
P(S|T) B P(T|S) P(S) ~0.99 198

P(S¢|T)  P(T|S¢ P(S¢) 0.05 so that P(S|T) = o5

The following property serves to establish in the chapters on "Independence of Events" and "Conditional Independence" a number
of important properties for the concept of independence and of conditional independence of events.

(CP4) Some equivalent conditions If 0 < P(A4) <1 and 0 < P(B) <1, then
P(A|B)«x P(A) iff P(B|A) « P(B) iff P(AB) * P(A)P(B) and
P(AB)* P(A)P(B) iff P(A¢B¢)x P(A°¢)P(Be) iff P(AB¢)o P(A)P(B¢)
where * is <, <, =, >, or > and ¢ is >, >, =, <, or <, respectively.

Because of the role of this property in the theory of independence and conditional independence, we examine the derivation of
these results.

VERIFICATION of (CP4)
P(AB)x P(A)P(B) iff P(A|B)* P(A) (divide by P(B) - may exchange A and A°
P(AB) P(A)P(B) iff P(B|A)* P(B) (divide by P(A) - may exchange B and B¢
P(AB)x P(A)P(B) iff [P(A)—P(AB®)|xP(A)[1-P(B%)] iff —P(AB°)x—P(A)P(B°) iff
P(AB°)o P(A)P(B°)
we may use ¢ to get P(AB) x P(A)P(B) iff P(ABC)o P(A)P(B°) iff P(A°B°) x P(A°)P(B°)

—0O

A number of important and useful propositons may be derived from these.

P(A|B)+P(A¢|B) =1, but, in general, P(A|B)+ P(A|B°) #1.
P(A|B) > P(A) iff P(A|B°) < P(A).
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P(A|B) > P(A°) iff P(A|B) < P(A).
P(A|B) > P(A) iff P(A°| B°) > P(A°).

VERIFICATION — Exercises (see problem set)
—0O

Repeated conditioning

Suppose conditioning by the event C' has occurred. Additional information is then received that event D has occurred. We have a
new conditioning event C'D. There are two possibilities:
Reassign the conditional probabilities. Pr(A) becomes
Po(AD P(ACD
Pg(D) P(CD)

Reassign the total probabilities: P(A) becomes

P(ACD)

P(CD)
Basic result: Po(A|D) = P(A|CD) = Pp(A|C). Thus repeated conditioning by two events may be done in any order, or may be
done in one step. This result extends easily to repeated conditioning by any finite number of events. This result is important in

extending the concept of "Independence of Events" to "Conditional Independence”. These conditions are important for many
problems of probable inference.

Pep(A) = P(A|CD) =

This page titled 3.1: Conditional Probability is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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3.2: Problems on Conditional Probability

Exercise 3.2.1

Given the following data:
P(A) =0.55, P(AB) = 0.30, P(BC)) = 0.20, P(A° U BC) = 0.55, P(A°BC*) = 0.15
Determine, if possible, the conditional probability P(A¢|B) = P(A°B)/P(B).

Answer

% file npre3_01.m
% Data for Exercise 3.2.1.

minvec3

DV = [A|Ac; A; A&B; B&C; Ac|(B&C); Ac&B&Cc];
DP = [ 1 0.55 0.30 0.20 0.55 0.15 1;
TV = [Acé&B; B];

disp('Call for mincalc')

npre3_oe1

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

Call for mincalc

mincalc

Data vectors are linearly independent

Computable target probabilities
1.0000 0.2500
2.0000 0.5500

The number of minterms is 8

The number of available minterms is 4

0.25/0.55

0.4545

T ©
I

Exercise 3.2.2

In Exercise 11 from "Problems on Minterm Analysis," we have the following data: A survey of a represenative group of
students yields the following information:

e 52 percent are male

o 85 percent live on campus

e 78 percent are male or are active in intramural sports (or both)
o 30 percent live on campus but are not active in sports

e 32 percent are male, live on campus, and are active in sports

e 8 percent are male and live off campus

e 17 percent are male students inactive in sports

Let A = male, B = on campus, C = active in sports.

a. A student is selected at random. He is male and lives on campus. What is the (conditional) probability that he is active in
sports?
b. A student selected is active in sports. What is the(conditional) probability that she is a female who lives on campus?
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Answer

npro2_11
mincalc
mincalct
Enter matrix of target Boolean combinations [A&B&C; A&B; Ac&B&C; C]
Computable target probabilities
1.0000 0.3200
2.0000 0.4400
3.0000 0.2300
4.0000 0.6100
PC_AB = 0.32/0.44
PC_AB = 0.7273
PAcB_C = 0.23/0.61
PAcB_C = 0.3770

Exercise 3.2.3

In a certain population, the probability a woman lives to at least seventy years is 0.70 and is 0.55 that she will live to at least
eighty years. If a woman is seventy years old, what is the conditional probability she will survive to eighty years? Note that if
A C B then P(AB)=P(A).

Answer

Let A= -event she lives to seventy and B= event she lives to eighty. Since BC A,
P(B|A) = P(AB)/P(A) = P(B)/P(A) =55/70.

Exercise 3.2.4

From 100 cards numbered 00, 01, 02, - - -, 99, one card is drawn. Suppose A; is the event the sum of the two digits on a card is
1,0 <14 <18, and B; is the event the product of the two digits is j. Determine P(A;|By) for each possible i.

Answer

By is the event one of the first ten is draw. A;By is the event that the card with numbers 07 is drawn.
P(a;|By) =(1/100)/(1/10) = 1/10for each i, 0 through 9.

Exercise 3.2.5

Two fair dice are rolled.

a. What is the (conditional) probability that one turns up two spots, given they show different numbers?
b. What is the (conditional) probability that the first turns up six, given that the sum is &, for each & from two through 12?
c. What is the (conditional) probability that at least one turns up six, given that the sum is k, for each k from two through 12?

Answer

a. There are 6 x 5 ways to choose all different. There are 2 x 5 ways that they are different and one turns up two spots. The
conditional probability is 2/6.
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b. Let Ag = event first is a six and S; = event the sum is k. Now AS; =0 for k<6. A table of sums shows
P(AS;)=1/36 and P(S;)=6/36,5/36,4/36,3/36,2/36,1/3Gor k=7 through 12, respectively. Hence
P(A¢|Sr)=1/6,1/5.1/4,1/3.1/2, Tespectively.

c. If ABg is the event at least one is a six, then ABgSy) =2/36 for k=7 through 11 and P(ABgS;2) =1/36. Thus, the
conditional probabilities are 2/6, 2/5, 2/4, 2/3, 1, 1, respectively.

Exercise 3.2.6

Four persons are to be selected from a group of 12 people, 7 of whom are women.

a. What is the probability that the first and third selected are women?

b. What is the probability that three of those selected are women?

c. What is the (conditional) probability that the first and third selected are women, given that three of those selected are
women?

Answer

7 6 5 7 5 6 7
P(WWs) = P(WiWoWs) + P(WaWeWs) = —  — . — 4 . 2. 2 -
(13)(123)+(123)121110+12111022

Exercise 3.2.7

Twenty percent of the paintings in a gallery are not originals. A collector buys a painting. He has probability 0.10 of buying a
fake for an original but never rejects an original as a fake, What is the (conditional) probability the painting he purchases is an
original?

Answer

Let B= the event the collector buys, and G = the event the painting is original. Assume P(B|G)=1 and
P(B|G°) =0.1.1f P(G) =0.8, then
P(GB P(B|G)P(G 0.8 40
p(cip) - PP (BIG)P(C) _

P(B) P(BIG)P(G)+ P(B|G°)P(G?) 08+0.1-0.2 41

Exercise 3.2.8

Five percent of the units of a certain type of equipment brought in for service have a common defect. Experience shows that 93
percent of the units with this defect exhibit a certain behavioral characteristic, while only two percent of the units which do not
have this defect exhibit that characteristic. A unit is examined and found to have the characteristic symptom. What is the
conditional probability that the unit has the defect, given this behavior?

Answer

Let D = the event the unit is defective and C' = the event it has the characteristic. Then P(D) = 0.05, P(C|D) = 0.93,
and P(C|D¢) = 0.02.

PDIC) = P(C|D)P(D) B 0.93-0.05 93
~ P(C|D)P(D)+P(C|D°)P(D°)  0.93-0.05+0.02-0.95 131

Exercise 3.2.9

A shipment of 1000 electronic units is received. There is an equally likely probability that there are 0, 1, 2, or 3 defective units
in the lot. If one is selected at random and found to be good, what is the probability of no defective units in the lot?

Answer

Let Dy, = the event of k defective and G be the event a good one is chosen.
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P(Do|G) = P(G|Dy)P(Dy)
’ P(G|Dy)P(Dy)+ P(G|D1)P(D1) + P(G|D2)P(D2) + P(G|D3)P(D3)
1-1/4 1000

(1/4)(1 +999/1000 +998,/1000 +997/1000) 3994

Exercise 3.2.10

Data on incomes and salary ranges for a certain population are analyzed as follows. S1= event annual income is less than
$25,000; S2= event annual income is between $25,000 and $100,000; S3= event annual income is greater than $100,000. E; =
event did not complete college education; E»= event of completion of bachelor's degree; E3= event of completion of graduate
or professional degree program. Data may be tabulated as follows: P(E;) =0.65., P(E,) =0.30 and .P(E3) = 0.05.

P(S;|E;)
S, S, A
B, 0.85 0.10 0.05
B, 0.10 0.80 0.10
B, 0.05 0.50 0.45
P(S;) 0.50 0.40 0.10

a. Determine .P(E3S3).
b. Suppose a person has a university education (no graduate study). What is the (conditional) probability that he or she will
make $25,000 or more?
c. Find the total probability that a person's income category is at least as high as his or her educational level.
Answer
b. P(S;V S5|E;) =0.80+0.10 =0.90
c.p=(0.854+0.10+0.05)-0.65 + (0.80+0.10) - 0.30 +0.45 - 0.05 = 0.9425

Exercise 3.2.11

In a survey, 85 percent of the employees say they favor a certain company policy. Previous experience indicates that 20 percent
of those who do not favor the policy say that they do, out of fear of reprisal. What is the probability that an employee picked at
random really does favor the company policy? It is reasonable to assume that all who favor say so.

Answer
P(S)=0.85, P(S|F*°) =0.20. Also, reasonable to assume P(S|F) =1.
P(S)—P(S|F¢) 13
1_P(S|F) 16

P(S)=P(S|F)P(F)+P(S|F°)[1—P(F)] implies P(F)=

Exercise 3.2.12

A quality control group is designing an automatic test procedure for compact disk players coming from a production line.
Experience shows that one percent of the units produced are defective. The automatic test procedure has probability 0.05 of
giving a false positive indication and probability 0.02 of giving a false negative. That is, if D is the event a unit tested is
defective, and T is the event that it tests satisfactory, then P(T'|D) = 0.05 and .P(7°°| D) = 0.02. Determine the probability
P(D¢|T). that a unit which tests good is, in fact, free of defects.

Answer
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DT P(T|D°)P(D°) 0.98-0.99 9702
P(D|T) P(T|D)P(D) 0.05-0.01 5
9702 5
T 9707 9707

P(D*|T)

Exercise 3.2.13

Five boxes of random access memory chips have 100 units per box. They have respectively one, two, three, four, and five
defective units. A box is selected at random, on an equally likely basis, and a unit is selected at random therefrom. It is
defective. What are the (conditional) probabilities the unit was selected from each of the boxes?

Answer
H; = the event from box i. P(H;) =1/5 and P(D|H;) =/100.
P(D|H;)P(H;
P(H;|D) = (D\H:)P(H,) =i/15,1<i<5

Y P(D|H;)P(H;)

Exercise 3.2.14

Two percent of the units received at a warehouse are defective. A nondestructive test procedure gives two percent false positive
indications and five percent false negative. Units which fail to pass the inspection are sold to a salvage firm. This firm applies a
corrective procedure which does not affect any good unit and which corrects 90 percent of the defective units. A customer buys
a unit from the salvage firm. It is good. What is the (conditional) probability the unit was originally defective?
Answer
Let T' = event test indicates defective, D = event initially defective, and G = event unit purchased is good. Data are
P(D)=0.02, P(T°|D)=0.02, P(T|D°) =0.05 P(GT*) =0,
P(G|DT)=0.90, P(G|DT)=1
P(GD
P(D|G) = IE(G)) ,P(GD) = P(GTD)=P(D)P(T|D)P(G|TD)
P(G) =P(GT) = P(GDT)+ P(GD°T) = P(D)P(T|D)P(G|TD)+ P(D°)P(T|D°)P(G|TD")

0.02-0.98-0.90 441

0.02-0.98-0.90+0.98-0.05-1.00 1666

P(D|G) =

Exercise 3.2.15

At a certain stage in a trial, the judge feels the odds are two to one the defendent is guilty. It is determined that the defendent is
left handed. An investigator convinces the judge this is six times more likely if the defendent is guilty than if he were not.
What is the likelihood, given this evidence, that the defendent is guilty?

Answer

Let G = event the defendent is guilty, L = the event the defendent is left handed. Prior odds: P(G)/P(G¢) =2 . Result of
testimony: P(L|G)/P(L|G¢) =6.

PEID) PO PEG)

P(Ge|L)  P(Ge) P(LIGe) ~

P(G|L)=12/13
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Show that if P(A|C) > P(B|C) and P(A|C¢) > P(B|C*¢), then P(A) > P(B). Is the converse true? Prove or give a
counterexample.

Answer
P(A)=P(A|C)P(C)+ P(A|C*)P(C®) > P(B|C)P(C)+ P(B|C°)P(C®) = P(B)
The converse is not true. Consider P(C') = P(C°) =0.5 , P(A|C) =1/4.
P(A|C°¢)=3/4, P(B|C) =1/2, and P(B|C*¢) =1/4. Then

1/2 = P(4) = %(1/4+3/4) > %(1/2+1/4) — P(B)—3/8
But P(A|C) < P(BIC).

Exercise 3.2.17

Since P(-|B) is a probability measure for a given B, we must have P(A|B)+ P(A¢|B) =1 . Construct an example to show
that in general P(A|B)+ P(A|B¢) #1.

Answer

Suppose A C B with P(A) < P(B) . Then P(A|B) = P(A)/P(B) <1 and P(A|B°) =0 so the sum is less than one.

Exercise 3.2.18

Use property (CP4) to show
a. P(A|B) > P(A) iff P(A|B¢) < P(A)
b. P(A¢|B) > P(A°) iff P(A|B) < P(A)
c. P(A|B) > P(A) iff P(A°|B°) > P(A°)
Answer

a. P(A|B) > P(4) iff P(AB) > P(A)P(B) iff P(AB®) < P(A)P(B°) iff P(A|B°) < P(A)

b. P(A¢|B) > P(A°) iff P(A°B) > P(A°)P(B) iff P(AB) < P(A)P(B) iff P(A|B) < P(A)

c. P(A|B) > P(4A) iff P(AB) > P(A)P(B) iff P(A°B°) > P(A°)P(B°) iff P(A¢|B°) > P(A°)

Exercise 3.2.19

Show that P(A|B) > (P(A) +P(B) —1)/P(B) .
Answer

1>P(AUB)=P(A)+P(B)—P(AB)=P(A)+P(B)—P(A|B)P(B) .Simple algebra gives the desired result.

Exercise 3.2.20

Show that P(A| B) = P(A|BC)P(C|B) + P(A|BC)P(C¢|B).

Answer
P(AB) P(ABC)+P(ABC*)

PR = %G = r@
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_ PAIBOPIBO) + PAIBCYP(BCY) _ b 4 5oy p(C|B) + P(A|BC)P(C¥| B)

P(B)
Exercise 3.2.21

An individual is to select from among n alternatives in an attempt to obtain a particular one. This might be selection from
answers on a multiple choice question, when only one is correct. Let A be the event he makes a correct selection, and B be the
event he knows which is correct before making the selection. We suppose P(B)=p and .P(A|B°) =1/n. Determine
P(B|A); show that P(B|A) > P(B) and P(B|A) increases with n for fixed p.

Answer
P(A|B)=1, P(A|B%)=1/n, P(B)=p
_ P(A|B)P(B) _ P _ np
PB4 = P(A|B)P(B)+P(A|B°)P(B°) pti_p) - (n—1)p+1

P(B|A) n

P(B) np+l-p

increases from 1to 1/pasn — oo

Exercise 3.2.22

Polya's urn scheme for a contagious disease. An urn contains initially b black balls and r red balls (r+b=mn) . A ball is
drawn on an equally likely basis from among those in the urn, then replaced along with ¢ additional balls of the same color.
The process is repeated. There are n balls on the first choice, n + ¢ balls on the second choice, etc. Let By, be the event of a
black ball on the kth draw and Ry, be the event of a red ball on the kth draw. Determine

a. P(B2|R1)
b. P(B1B,)
C. P(Rz)

d. P(B1|Rz)

Answer

b
d. P(Bz|R1) = m

b b+c
b. P(B1B,) = P(By)P(Ba|B1) = =

¢. P(Ry)P(Rz|R1)P(R1) + P(R2| B1)P(Bi)
r+c r T b r(r+c+bd)

“n+tc n n+c n n(n+te)

P(Rs;|B;)P(B b
d. P(B1|Ry) = M with P(Rz|B1)P(B;) = . - . Using (c), we have

P(Rz) n—+c
b b

P(B1|R2) = r+b+c - n+c
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4.1: Independence of Events

Historically, the notion of independence has played a prominent role in probability. If events form an independent class, much less
information is required to determine probabilities of Boolean combinations and calculations are correspondingly easier. In this unit,
we give a precise formulation of the concept of independence in the probability sense. As in the case of all concepts which attempt
to incorporate intuitive notions, the consequences must be evaluated for evidence that these ideas have been captured successfully.

Independence as lack of conditioning
There are many situations in which we have an “operational independence.”

e Supose a deck of playing cards is shuffled and a card is selected at random then replaced with reshuffling. A second card picked
on a repeated try should not be affected by the first choice.

o If customers come into a well stocked shop at different times, each unaware of the choice made by the others, the the item
purchased by one should not be affected by the choice made by the other.

o If two students are taking exams in different courses, the grade one makes should not affect the grade made by the other.

The list of examples could be extended indefinitely. In each case, we should expect to model the events as independent in some
way. How should we incorporate the concept in our developing model of probability?

We take our clue from the examples above. Pairs of events are considered. The “operational independence” described indicates that
knowledge that one of the events has occured does not affect the likelihood that the other will occur. For a pair of events {4, B},
this is the condition

P(A|B) = P(4)

Occurrence of the event A is not “conditioned by” occurrence of the event B. Our basic interpretation is that P(A) indicates of the
likelihood of the occurrence of event A. The development of conditional probability in the module Conditional Probability, leads to
the interpretation of P(A|B) as the likelihood that A will occur on a trial, given knowledge that B as occurred. If such knowledge
of the occurrence of B does not affect the likelihood of the occurrence of A, we should be inclined to think of the events A and B
as being independent in a probability sense.

Independent pairs

We take our clue from the condition P(A|B) = P(A). Property (CP4) for conditional probability (in the case of equality) yields
sixteen equivalent conditions as follows.

P(A|B) = P(4) P(B|A) = P(B) P(AB) = P(A)P(B)
P(A|B*) = P(A) P(B°|A) = P(B) P(AB*) = P(A)P(B°)

P(A°|B) = P(A°) P(B|A%) = P(B) P(A°B) = P(A°)P(B)

P(A°|B°) = P(A°) P(B|A°) = P(B°) P(A°B°) = P(A°)P(B)

P(A|B) = P(A|BY) P(A°|B) = P(A°|B°) P(B|A) = P(B|A°) P(B|A) = P(B°|A°)

These conditions are equivalent in the sense that if any one holds, then all hold. We may chose any one of these as the defining
condition and consider the others as equivalents for the defining condition. Because of its simplicity and symmetry with respect to
the two events, we adopt the product rule in the upper right hand corner of the table.

Definition. The pair { A, B} of events is said to be (stochastically) independent iff the following product rule holds:
P(AB)=P(A)P(B)

Remark. Although the product rule is adopted as the basis for definition, in many applications the assumptions leading to
independence may be formulated more naturally in terms of one or another of the equivalent expressions. We are free to do this, for
the effect of assuming any one condition is to assume them all.
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The equivalences in the right-hand column of the upper portion of the table may be expressed as a replacement rule, which we
augment and extend below:

If the pair { A, B} independent, so is any pair obtained by taking the complement of either or both of the events.

We note two relevant facts

e Suppose event IV has probability zero (is a null event). Then for any event A, we have
0<P(AN)<P(N)=0=P(A)P(N), so that the product rule holds. Thus { NN, A} is an independent pair for any event A.

 If event S has probability one (is an almost sure event), then its complement S° is a null event. By the replacement rule and the
fact just established, \({S/c\), A} is independent, so {S, A} is independent.

The replacement rule may thus be extended to:

Replacement Rule

If the pair { A, B} independent, so is any pair obtained by replacing either or both of the events by their complements or by a null
event or by an almost sure event.

CAUTION

1. Unless at least one of the events has probability one or zero, a pair cannot be both independent and mutually exclusive.
Intuitively, if the pair is mutually exclusive, then the occurrence of one requires that the other does not occur. Formally:
Suppose 0 < P(A4) <1 and 0 < P(B) <1.{A, B} mutually exclusive implies P(AB) = P(0) =0 # P(A)P(B) . {A, B}
independent implies P(AB) = P(A)P(B) > 0= P(0)

2. Independence is not a property of events. Two non mutually exclusive events may be independent under one probability
measure, but may not be independent for another. This can be seen by considering various probability distributions on a Venn
diagram or minterm map.

Independent classes
Extension of the concept of independence to an arbitrary class of events utilizes the product rule.
Definition. A class of events is said to be (stochastically) independent iff the product rule holds for every finite subclass of two or
more events in the class.
A class {A, B, C} is independent iff all four of the following product rules hold
P(AB)=P(A)P(B) P(AC)=P(A)P(C) P(BC)=P(B)P(C) P(ABC)=P(A)P(B)P(C)
If any one or more of these product expressions fail, the class is not independent. A similar situation holds for a class of four

events: the product rule must hold for every pair, for every triple, and for the whole class. Note that we say “not independent” or
“nonindependent” rather than dependent. The reason for this becomes clearer in dealing with independent random variables.

We consider some classical exmples of nonindependent classes

SOME NONINDEPENDENT CLASSES

1. Suppose {A;1, As, As, A4} is a partition, with each P(A4;) =1/4. Let
A=A \VA:B=A,\| AsC=A,\V Ay

Then the class {4, B, C} has P(A) = P(B) = P(C) =1/2 and is pairwise independent, but not independent, since
P(AB)=P(A;)=1/4=P(A)P(B) and similarly for the other pairs, but
P(ABC)=P(A;)=1/4#P(A)P(B)P(C)

2. Consider the class {4, B, C, D} with AD=BD =(,C =AB\/ D, P(A)=P(B)=1/4, P(AB) =1/64, and
P(D) =15/64. Use of a minterm maps shows these assignments are consistent. Elementary calculations show the product
rule applies to the class { A, B, C'} but no two of these three events forms an independent pair.

As noted above, the replacement rule holds for any pair of events. It is easy to show, although somewhat cumbersome to write out,
that if the rule holds for any finite number k of events in an independent class, it holds for any k41 of them. By the principle of
mathematical induction, the rule must hold for any finite subclass. We may extend the replacement rule as follows.
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General Replacement Rule

If a class is independent, we may replace any of the sets by its complement, by a null event, or by an almost sure event, and the
resulting class is also independent. Such replacements may be made for any number of the sets in the class. One immediate and
important consequence is the following.

Minterm Probabilities

If {A; : 1 <i<wn}is an independent class and the the class {P(4;):1 <4 <n } of individual probabilities is known, then the
probability of every minterm may be calculated.

Suppose the class {A, B, C'} is independent with respective probabilities P(A) = 0.3, P(B) = 0.6, and P(C) = 0.5. Then
{A°, B¢, C°} is independent and P (Ml = P(A°)P(B°)P(C°) =0.14
{A°, B¢, C'} is independent and P(M;) = P(A°)P(B°)P(C) =0.14

Similarly, the probabilities of the other six minterms, in order, are 0.21, 0.21, 0.06, 0.06, 0.09, and 0.09. With these minterm
probabilities, the probability of any Boolean combination of A, B, and C may be calculated

In general, eight appropriate probabilities must be specified to determine the minterm probabilities for a class of three events. In the
independent case, three appropriate probabilities are sufficient.

Three probabilities yield the minterm probabilities

Suppose {A, B, C} is independent with P(AUBC)=0.51, P(AC°)=0.15, and P(A)=0.30. Then
P(C°)=0.15/0.3=0.5=P(C)and
P@Q+qum3w«n:umsmmu%m:9§%§%9=ae

With each of the basic probabilities determined, we may calculate the minterm probabilities, hence the probability of any
Boolean combination of the events.

MATLAB and the product rule

Frequently we have a large enough independent class {E;, Es, -- cdot, E, } that it is desirable to use MATLAB (or some
other computational aid) to calculate the probabilities of various “and” combinations (intersections) of the events or their
complements. Suppose the independent class { £y, Es, - - cdot , E1¢} has respective probabilities

0.13 0.370.12 0.56 0.33 0.71 0.22 0.43 0.57 0.31

It is desired to calculate (a) P(E1Ey E{E4ESESEr), and (b) P(E{Es ESEsESE{E7 Eg EgExy).

We may use the MATLAB function prod and the scheme for indexing a matrix.

>>p = 0.01*[13 37 12 56 33 71 22 43 57 31];

>>q = 1-p;

>> % First case

> e =[1247]; % Uncomplemented positions

>> f = [3 5 6]; % Complemented positions

>> P = prod(p(e))*prod(q(f)) % p(e) probs of uncomplemented factors
P = 0.0010 % q(f) probs of complemented factors
>> % Case of uncomplemented in even positions; complemented in odd positions
>> g = find(rem(1:10,2) == 0); % The even positions

>> h = find(rem(1:10,2) ~= 0); % The odd positions

>> P = prod(p(g))*prod(q(h))

P = 0.0034
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In the unit on MATLAB and Independent Classes, we extend the use of MATLAB in the calculations for such classes.

This page titled 4.1: Independence of Events is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via
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4.2: MATLAB and Independent Classes

MATLAB and Independent Classes

In the unit on Minterms, we show how to use minterm probabilities and minterm vectors to calculate probabilities of Boolean
combinations of events. In Independence of Events we show that in the independent case, we may calculate all minterm
probabilities from the probabilities of the basic events. While these calculations are straightforward, they may be tedious and
subject to errors. Fortunately, in this case we have an m-function minprob which calculates all minterm probabilities from the
probabilities of the basic or generating sets. This function uses the m-function mintable to set up the patterns of p's and ¢'s for the
various minterms and then takes the products to obtain the set of minterm probabilities.

Example 4.2.1

minprob(0.1*[4 7 6])
0.0720 0.1080 0.1680 0.2520 0.0480 0.0720 0.1120 ©0.1680

>> pm
pm

It may be desirable to arrange these as on a minterm map. For this we have an m-function minmap which reshapes the row
matrix pm, as follows:

>> t = minmap(pm)
t = 0.0720 0.1680 0.0480 0.1120
0.1080 0.2520 0.0720 0.1680

Probability of occurrence of k of n independent events

In Example 2, we show how to use the m-functions mintable and csort to obtain the probability of the occurrence of k of n events,
when minterm probabilities are available. In the case of an independent class, the minterm probabilities are calculated easily by
minprob, It is only necessary to specify the probabilities for the n basic events and the numbers k of events. The size of the class,
hence the mintable, is determined, and the minterm probabilities are calculated by minprob. We have two useful m-functions. If P
is a matrix of the n individual event probabilities, and & is a matrix of integers less than or equal to n, then

function y = ikn(P, k) calculates individual probabilities that &k of 7 occur

function y = ckn(P, k) calculates the probabilities that & or more occur

Example 4.2.2

>> p = 0.01*[13 37 12 56 33 71 22 43 57 31];

>> k = [2 5 7];

>> P = ikn(p, k)

P = 0.1401 0.1845 0.0225 % individual probabilities
>> Pc = ckn(p, k)

Pc = 0.9516 0.2921 0.0266 % cumulative probabilities

Reliability of systems with independent components

Suppose a system has n components which fail independently. Let E; be the event the ¢th component survives the designated time
period. Then R; = P(E;) is defined to be the reliability of that component. The reliability R of the complete system is a function
of the component reliabilities. There are three basic configurations. General systems may be decomposed into subsystems of these
types. The subsystems become components in the larger configuration. The three fundamental configurations are:

Series. The system operates iff all n components operate: R =[] | R;
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Parallel. The system operates iff not all components fail: R=1—-[[", (1 —R;)

k of n. The system operates iff k¥ or more components operate. R may be calculated with the m-function ckn. If the
component probabilities are all the same, it is more efficient to use the m-function cbinom (see Bernoulli trials and the
binomial distribution, below).

MATLAB solution. Put the component reliabilities in matrix RC' = [Ry Ry -+ Ry

Series Configuration

I >> R = prod(RC) % prod is a built in MATLAB function

Parallel Configuration

I >> R = parallel(RC) % parallel is a user defined function

k of n Configuration

I >> R = ckn(RC, k) % ckn is a user defined function (in file ckn.m).

Example 4.2.3

There are eight components, numbered 1 through 8. Component 1 is in series with a parallel combination of components 2 and
3, followed by a 3 of 5 combination of components 4 through 8 (see Figure 1 for a schematic representation). Probabilities of
the components in order are

0.950.90 0.92 0.80 0.83 0.91 0.85 0.85

The second and third probabilities are for the parallel pair, and the last five probabilities are for the 3 of 5 combination.

>> RC = 0.01*[95 90 92 80 83 91 85 85]; % Component reliabilities
>> Ra RC(1)*parallel(RC(2:3))*ckn(RC(4:8),3) % Solution
Ra = 0.9172

rors

Figure 4.2.1. Schematic representation of the system in Example

Example 4.2.4

>> RC = 0.01*[95 90 92 80 83 91 85 85]; % Component reliabilities 1--8
>> Rb = prod(RC(1:2))*parallel([RC(3),ckn(RC(4:8),3)]) % Solution
Rb = 0.8532
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R3

Figure 4.2.2. Schematic representation of the system in Example
A test for independence

It is difficult to look at a list of minterm probabilities and determine whether or not the generating events form an independent
class. The m-function imintest has as argument a vector of minterm probabilities. It checks for feasible size, determines the number
of variables, and performs a check for independence.

Example 4.2.5

>> pm = 0.01*[15 5 2 18 25 5 18 12]; % An arbitrary class
>> disp(imintest(pm))
The class is NOT independent
Minterms for which the product rule fails
1 1 1 0]
1 1 1 0]

Example 4.2.6

>> pm = [0.10 0.15 0.20 0.25 0.30]: %An improper number of probabilities
>> disp(imintest(pm))
The number of minterm probabilities incorrect

Example 4.2.7

>> pm = minprob([0.5 0.3 0.7]);
>> disp(imintest(pm))
The class is independent

Probabilities of Boolean combinations

As in the nonindependent case, we may utilize the minterm expansion and the minterm probabilities to calculate the probabilities of
Boolean combinations of events. However, it is frequently more efficient to manipulate the expressions for the Boolean
combination to be a disjoint union of intersections.
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Example 4.2.8 A simple Boolean combination

Suppose the class {A, B, C} is independent, with respective probabilities 0.4, 0.6, 0.8. Determine P(AU BC'). The minterm
expansion is

AUBC = M(3,4,5,6,7), so that P(AU BC) = p(3,4,5,6,7)

It is not difficult to use the product rule and the replacement theorem to calculate the needed minterm probabilities. Thus
p(3) =P(A°)P(B)=P(C)=0.6-0.6-0.8=0.2280. Similarly p(4)=0.0320, p(5)=0.1280, p(6)=0.0480,
p(7) =0.1920. The desired probability is the sum of these, 0.6880.

As an alternate approach, we write
AUBC =A\ A°BC ,sothat P(AUBC)=0.440.6-0.6-0.8 =0.6880
Considerbly fewer arithmetic operations are required in this calculation.

In larger problems, or in situations where probabilities of several Boolean combinations are to be determined, it may be desirable to
calculate all minterm probabilities then use the minterm vector techniques introduced earlier to calculate probabilities for various
Boolean combinations. As a larger example for which computational aid is highly desirable, consider again the class and the
probabilities utilized in Example 4.2.2, above.

Example 4.2.9

Consider again the independent class { £, Es, - - - E19} with respective probabilities [0.13 0.37 0.12 0.56 0.33 0.71 0.22 0.43
0.57 0.31]. We wish to calculate

P(F) = P(E, U E3(E4 U ES) U By (E¢ U EgEg) U By E¢,)

There are 2!° = 1024 minterm probabilities to be calculated. Each requires the multiplication of ten numbers. The solution with
MATLAB is easy, as follows:

>> P = 0.01*[13 37 12 56 33 71 22 43 57 31];

>> minvecl0

Vectors are Al thru A10 and Alc thru Al0c

They may be renamed, if desired.

>> F = (A1| (A3&(A4|A7c))) | (A2&(A5c| (A6&A8))) | (A9&A10C);
>> pm = minprob(P);

>> PF = F*pm'

PF = 0.6636

Writing out the expression for F' is tedious and error prone. We could simplify as follows:

>> A = Al| (A3&(A4|A7c));

>> B = A2&(A5c| (AB&A8));

>> C = A9&A10c;

>> F = A|B|C; % This minterm vector is the same as for F above

This decomposition of the problem indicates that it may be solved as a series of smaller problems. First, we need some central facts
about independence of Boolean combinations.

Independent Boolean combinations

Suppose we have a Boolean combination of the events in the class {A4; : 1 <7 <n } and a second combination the events in the
class {B;:1<j<m }. If the combined class {4;,B;:1<i<n,1<j<m } is independent, we would expect the
combinations of the subclasses to be independent. It is important to see that this is in fact a consequence of the product rule, for it is
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further evidence that the product rule has captured the essence of the intuitive notion of independence. In the following discussion,
we exhibit the essential structure which provides the basis for the following general proposition.

Proposition. Consider n distinct subclasses of an independent class of events. If for each ¢ the event
A;)isaBoolean(logical)combinationofmembersofthe\ (i th subclass, then the class {\(A_1, A_2, \cdot\cdot\cdot, A_n} is an
independent class.

Verification of this far reaching result rests on the minterm expansion and two elementary facts about the disjoint subclasses of an
independent class. We state these facts and consider in each case an example which exhibits the essential structure. Formulation of
the general result, in each case, is simply a matter of careful use of notation.

A class each of whose members is a minterm formed by members of a distinct subclass of an independent class is itself an
independent class.

Example 4.2.10

Consider the independent class { A1, Ay, A3, By, By, B3, B4}, with respective probabilities 0.4, 0.7, 0.3, 0.5, 0.8, 0.3, 0.6.
Consider M3, minterm three for the class {A1, Ay, A3}, and N5, minterm five for the class {B1, B, Bs, Bs}. Then

P(Ms) = P(AS Ay A3) =0.6-0.7-0.3 = 0.126 and P(N5) = P(BSB,B5B,) =0.5-0.8-0.7-0.6 = 0.168

Also
P(M3Ns5) = P(A$ A3 A3 BB, B§B40=0.6-0.7-0.3-0.5-0.8-0.7-0.6
=(0.6-0.7-0.3)-(0.5-0.8-0.7-0.6) = P(M3)P(N;5) =0.0212
The product rule shows the desired independence.

Again, it should be apparent that the result holds for any number of A; and Bj; and it can be extended to any number of distinct
subclasses of an independent class.

Suppose each member of a class can be expressed as a disjoint union. If each auxiliary class formed by taking one member from
each of the disjoint unions is an independent class, then the original class is independent.

Example 4.2.11

Suppose A = A; \/ A2 \/ A3 and B= B; \/ By, with {4;, A;} independent for each pair 7, j. Suppose
P(A;)=0.3, P(43) = 0.4, P(A43) =0.1, P(B;) = 0.2, P(B;) =0.5
We wish to show that the pair {A, B} is independent; i.e., the product rule P(AB) = P(A)P(B) holds.
COMPUTATION
P(A) = P(A1)+ P(A3) + P(A3) =0.3+0.4+0.1=0.8 and P(B) = P(By)+P(B;) =0.2+0.5 =0.7
Now
AB=(A;\ A2\ A3)(B1\/ B2) =A1B1\V A1By\/ AyB1 \| A3 By \/ A3B; \/ A3Bs
By additivity and pairwise independence, we have

P(AB) = P(A,)P(By)+ P(A;)P(By) + P(A3)P(By) + P(Ay)P(By) + P(A3)P(By) + P(A3)P(B,)
~0.3-0.240.3-0.540.4-0.240.4-0.540.1-0.240.1-0.5 = 0.56 = P(A) P(B)

The product rule can also be established algebraically from the expression for P(AB), as follows:

P(AB) = P(A41)[P(B1) + P(B2)| + P(A2)[P(B1) + P(By)] + P(A3)[P(B1) + P(B2)]
= [P(A1) + P(A2) + P(A3)][P(B1) + P(B)] = P(A)P(B)

It should be clear that the pattern just illustrated can be extended to the general case. If

A=V, 4; and B=\/7, B;, with each pair {4;, B;} independent

then the pair { A, B} is independent. Also, we may extend this rule to the triple { A, B, C'}
A=\, A, ,B= V;nzl Bj,and C = \/}_; Cy, with each class {4;, Bj, Cy} independent
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and similarly for any finite number of such combinations, so that the second proposition holds.

Begin with an independent class & of n events. Select m distinct subclasses and form Boolean combinations for each of these. Use
of the minterm expansion for each of these Boolean combinations and the two propositions just illustrated shows that the class of
Boolean combinations is independent

To illustrate, we return to Example 4.2.9, which involves an independent class of ten events.

Example 4.2.12 A hybrid approach

Consider again the independent class { F1, Fs, - - -, E1¢} with respective probabilities {0.13 0.37 0.12 0.56 0.33 0.71 0.22 0.43
0.57 0.31}. We wish to calculate

P(F) = P(Ey U E3(Ey UES) U Ey(ES UEsEs) U EgE40°)

In the previous solution, we use minprob to calculate the 2'% — 1024 minterms for all ten of the E; and determine the minterm

vector for F'. As we note in the alternate expansion of F,
F=AUBUC ,when A=EF, UE3(E4 UE?) B= E2(E5c UE6E8) C= EgElco
We may calculate directly P(C)=0.57-0.69 =0.3933. Now A is a Boolean combination of {Ey, E3, E4, E7} and B is a

combination of {Ey, E5, EgFEg}. By the result on independence of Boolean combinations, the class { A, B, C'} is independent. We
use the m-procedures to calculate P(A) and P(B). Then we deal with the independent class {A, B, C'} to obtain the probability of

F.
>>p = 0.01*[13 37 12 56 33 71 22 43 57 31];
>> pa = p([1347]); % Selection of probabilities for A
>> pb = p([2 5 6 8]); % Selection of probabilities for B
>> pma = minprob(pa); % Minterm probabilities for calculating P(A)
>> pmb = minprob(pb); % Minterm probabilities for calculating P(B)
>> minvec4;
>> a = A|(B&(C|Dc)); % A corresponds to E1, B to E3, C to E4, D to E7
>> PA = a*pma’
PA = 0.2243
>> b = A&(Bc|(C&D)); % A corresponds to E2, B to E5, C to E6, D to E8
>> PB = b*pmb'
PB = 0.2852
>> PC = p(9)*(1 - p(10))
PC = 0.3933
>> pm = minprob([PA PB PC]);
>> minvec3 % The problem becomes a three variable problem
>> F = A|B|C; % with {A,B,C} an independent class
>> PF = F*pm'
PF = 0.6636 % Agrees with the result of Example 4.2.7

This page titled 4.2: MATLAB and Independent Classes is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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4.3: Composite Trials

Composite trials and component events

Often a trial is a composite one. That is, the fundamental trial is completed by performing several steps. In some cases, the steps are
carried out sequentially in time. In other situations, the order of performance plays no significant role. Some of the examples in the
unit on Conditional Probability involve such multistep trials. We examine more systematically how to model composite trials in
terms of events determined by the components of the trials. In the subsequent section, we illustrate this approach in the important
special case of Bernoulli trials, in which each outcome results in a success or failure to achieve a specified condition.

We call the individual steps in the composite trial component trials. For example, in the experiment of flipping a coin ten times, we
refer the ith toss as the ¢th component trial. In many cases, the component trials will be performed sequentially in time. But we
may have an experiment in which ten coins are flipped simultaneously. For purposes of analysis, we impose an ordering— usually
by assigning indices. The question is how to model these repetitions. Should they be considered as ten trials of a single simple
experiment? It turns out that this is not a useful formulation. We need to consider the composite trial as a single outcome— i.e.,
represented by a single point in the basic space w.

Some authors give considerable attention the the nature of the basic space, describing it as a Cartesian product space, with each
coordinate corresponding to one of the component outcomes. We find that unnecessary, and often confusing, in setting up the basic
model. We simply suppose the basic space has enough elements to consider each possible outcome. For the experiment of flipping
a coin ten times, there must be at least 2'° = 1024 elements, one for each possible sequence of heads and tails.

Of more importance is describing the various events associated with the experiment. We begin by identifying the appropriate
component events. A component event is determined by propositions about the outcomes of the corresponding component trial.

Example 4.3.1 Component events

e In the coin flipping experiment, consider the event Hj that the third toss results in a head. Each outcome w of the
experiment may be represented by a sequence of H's and T''s, representing heads and tails. The event Hj consists of those
outcomes represented by sequences with H in the third position. Suppose A is the event of a head on the third toss and a
tail on the ninth toss. This consists of those outcomes corresponding to sequences with H in the third position and 7 in the
ninth. Note that this event is the intersection H3 H.

o A somewhat more complex example is as follows. Suppose there are two boxes, each containing some red and some blue
balls. The experiment consists of selecting at random a ball from the first box, placing it in the second box, then making a
random selection from the modified contents of the second box. The composite trial is made up of two component
selections. We may let R; be the event of selecting a red ball on the first component trial (from the first box), and Rs be the
event of selecting a red ball on the second component trial. Clearly R; and R, are component events.

In the first example, it is reasonable to assume that the class {H; : 1 <¢ <10 } is independent, and each component probability is
usually taken to be 0.5. In the second case, the assignment of probabilities is somewhat more involved. For one thing, it is
necessary to know the numbers of red and blue balls in each box before the composite trial begins. When these are known, the
usual assumptions and the properties of conditional probability suffice to assign probabilities. This approach of utilizing component
events is used tacitly in some of the examples in the unit on Conditional Probability.

When appropriate component events are determined, various Boolean combinations of these can be expressed as minterm
expansions.

Example 4.3.2

Four persons take one shot each at a target. Let E; be the event the ith shooter hits the target center. Let A3 be the event exacty
three hit the target. Then Aj is the union of those minterms generated by the F; which have three places uncomplemented.

A3 = By Ey B35\ EyEyESEy \ By ESESEy \| E{Ey B3 ES

Usually we would be able to assume the E; form an independent class. If each P(E;) is known, then all minterm probabilities
can be calculated easily.
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The following is a somewhat more complicated example of this type.

Example 4.3.3

Ten race cars are involved in time trials to determine pole positions for an upcoming race. To qualify, they must post an
average speed of 125 mph or more on a trial run. Let E; be the event the 3th car makes qualifying speed. It seems reasonable to
suppose the class {E; : 1 <4 <10 } is independent. If the respective probabilities for success are 0.90, 0.88, 0.93, 0.77, 0.85,
0.96, 0.72, 0.83, 0.91, 0.84, what is the probability that & or more will qualify (k=6,7,8,9,10)?

Solution

Let Ay, be the event exactly k qualify. The class {E; : 1 <¢ < 10 } generates 210 — 1024 minterms. The event Ay, is the union
of those minterms which have exactly k places uncomplemented. The event By, that k or more qualify is given by

By, = :l:k 4,
The task of computing and adding the minterm probabilities by hand would be tedious, to say the least. However, we may use

the function ckn, introduced in the unit on MATLAB and Independent Classes and illustrated in Example 4.4.2, to determine
the desired probabilities quickly and easily.

>> P = [0.90, 0.88, 0.93, 0.77, 0.85, 0.96,0.72, 0.83, 0.91, 0.84];
>> k = 6:10;

>> PB = ckn(P, k)

PB = 0.9938 0.9628 0.8472 0.5756 0.2114

An alternate approach is considered in the treatment of random variables.

Bernoulli trials and the binomial distribution

Many composite trials may be described as a sequence of success-failure trials. For each component trial in the sequence, the
outcome is one of two kinds. One we designate a success and the other a failure. Examples abound: heads or tails in a sequence of
coin flips, favor or disapprove of a proposition in a survey sample, and items from a production line meet or fail to meet
specifications in a sequence of quality control checks. To represent the situation, we let E; be the event of a success on the ith
component trial in the sequence. The event of a failure on the ith component trial is thus E;.

In many cases, we model the sequence as a Bernoulli sequence, in which the results on the successive component trials are
independent and have the same probabilities. Thus, formally, a sequence of success-failure trials is Bernoulli iff

The class {E; : 1 <14} is independent.

The probability P(E;) = p, invariant with 3.

Simulation of Bernoulli trials

It is frequently desirable to simulate Bernoulli trials. By flipping coins, rolling a die with various numbers of sides (as used in
certain games), or using spinners, it is relatively easy to carry this out physically. However, if the number of trials is large—say
several hundred—the process may be time consuming. Also, there are limitations on the values of p, the probability of success. We
have a convenient two-part m-procedure for simulating Bernoulli sequences. The first part, called btdata, sets the parameters. The
second, called bt, uses the random number generator in MATLAB to produce a sequence of zeros and ones (for failures and
successes). Repeated calls for bt produce new sequences.

Example 4.3.4

>> btdata

Enter n, the number of trials 10

Enter p, the probability of success on each trial 0.37
Call for bt

>> bt
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n = 10 p = 0.37 % n is kept small to save printout space
Frequency = 0.4
To view the sequence, call for SEQ
>> disp(SEQ) % optional call for the sequence
1 1
1
3 (C]
4 0
5 (C]
6 0
7 0
8 (C]
9 1
10 1
Repeated calls for bt yield new sequences with the same parameters.

To illustrate the power of the program, it was used to take a run of 100,000 component trials, with probability p of success 0.37, as
above. Successive runs gave relative frequencies 0.37001 and 0.36999. Unless the random number generator is “seeded” to make
the same starting point each time, successive runs will give different sequences and usually different relative frequencies.

The binomial distribution

A basic problem in Bernoulli sequences is to determine the probability of & successes in n component trials. We let S, be the
number of successes in n trials. This is a special case of a simple random variable, which we study in more detail in the chapter on
"Random Variables and Probabilities".

Let us characterize the events Ay, = {S, =k}, 0 <k <n. As noted above, the event Ay, of exactly k successes is the union of
the minterms generated by {E; : 1 <14 } in which there are k successes (represented by & uncomplemented E;) and n — k failures
(represented by n —k complemented Ef). Simple combinatorics show there are C(n,k) ways to choose the k places to be

nl
uncomplemented. Hence, among the 2" minterms, there are C'(n, k) = ————— which have % places uncomplemented. Each

El(n—k)!
such minterm has probability p*(1 —p)"*. Since the minterms are mutually exclusive, their probabilities add. We conclude that
P(S, =k)=C(n,k)p*(1 —p)"* =C(n, k)p*q"* whereq=1-p for0<k<n

These probabilities and the corresponding values form the distribution for S,. This distribution is known as the binomial
distribution, with parameters (n, p). We shorten this to binomial (n,p), and often writ S,, ~ binomial (7, p). A related set of
probabilities is P(S,, > k) = P(By,), 0 <k <n. If the number n of component trials is small, direct computation of the
probabilities is easy with hand calculators.

Example 4.3.5 A reliability problem

A remote device has five similar components which fail independently, with equal probabilities. The system remains operable
if three or more of the components are operative. Suppose each unit remains active for one year with probability 0.8. What is
the probability the system will remain operative for that long?

Solution

P=0C(5,3)0.8%-0.22 +C(5,4)0.8*-0.2 + C(5,5)0.8° = 10-0.8%-0.22 +5-0.8*- 0.2 +0.8° = 0.9421

Because Bernoulli sequences are used in so many practical situations as models for success-failure trials, the probabilities
P(S, =k) and P(S, > k) have been calculated and tabulated for a variety of combinations of the parameters (n, p). Such tables
are found in most mathematical handbooks. Tables of P(S,, = k) are usually given a title such as binomial distribution, individual
terms. Tables of P(S,, > k) have a designation such as binomial distribution, cumulative terms. Note, however, some tables for
cumulative terms give P(S,, < k). Care should be taken to note which convention is used.
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Example 4.3.6 A reliability problem

Consider again the system of Example 5, above. Suppose we attempt to enter a table of Cumulative Terms, Binomial
Distribution at n =5, k = 3, and p = 0.8. Most tables will not have probabilities greater than 0.5. In this case, we may work
with failures. We just interchange the role of E; and Ef. Thus, the number of failures has the binomial (n, p) distribution. Now
there are three or more successes iff there are not three or more failures. We go the the table of cumulative terms at n =5,
k =3, and p = 0.2. The probability entry is 0.0579. The desired probability is 1 - 0.0579 = 0.9421.

In general, there are k£ or more successes in 7 trials iff there are not m —k+1 or more failures.
m-functions for binomial probabilities

Although tables are convenient for calculation, they impose serious limitations on the available parameter values, and when the
values are found in a table, they must still be entered into the problem. Fortunately, we have convenient m-functions for these
distributions. When MATLAB is available, it is much easier to generate the needed probabilities than to look them up in a table,
and the numbers are entered directly into the MATLAB workspace. And we have great freedom in selection of parameter values.
For example we may use n of a thousand or more, while tables are usually limited to n of 20, or at most 30. The two m-functions
for calculating P(Ag, and P(By,, are

P(A;y,) is calculated by vy = ibinom(n,p, k) , where k is a row or column vector of integers between 0 and n. The result y is a row vector

of the same size as k.

P(Byy,) is calculated by vy = chinom(n,p, k) , where k is a row or column vector of integers between 0 and n. The result y is a row vector
of the same size as k.

Example 4.3.7 Use of m-functions ibinom and cbinom

If n =10 and p = 0.39, determine P(Ay,) and P(By,) for k=3,5,6,8.

V
\
o
1

0.39;
[3 56 8];

>> Pi = ibinom(10,p, k) % individual probabilities
Pi = 0.2237 0.1920 0.1023 0.0090

>> Pc = cbinom(10,p, k) % cumulative probabilities
Pc = 0.8160 0.3420 0.1500 0.0103

>> Kk

Note that we have used probability p = 0.39. It is quite unlikely that a table will have this probability. Although we use only
n = 10, frequently it is desirable to use values of several hundred. The m-functions work well for n up to 1000 (and even higher
for small values of p or for values very near to one). Hence, there is great freedom from the limitations of tables. If a table with a
specific range of values is desired, an m-procedure called binomial produces such a table. The use of large n raises the question of
cumulation of errors in sums or products. The level of precision in MATLAB calculations is sufficient that such roundoff errors are
well below pratical concerns.

Example 4.3.8

>> binomial % call for procedure
Enter n, the number of trials 13
Enter p, the probability of success 0.413
Enter row vector k of success numbers 0:4
n p
13.0000 0.4130
k P(X=k) P(X>=k)
0 0.0010 1.0000
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1.0000 0.0090 0.9990
2.0000 0.0379 0.9900
3.0000 0.0979 0.9521
4.0000 0.1721 0.8542

Remark. While the m-procedure binomial is useful for constructing a table, it is usually not as convenient for problems as the m-
functions ibinom or cbinom. The latter calculate the desired values and put them directly into the MATLAB workspace.
Joint Bernoulli trials

Bernoulli trials may be used to model a variety of practical problems. One such is to compare the results of two sequences of
Bernoulli trials carried out independently. The following simple example illustrates the use of MATLAB for this.

Example 4.3.9 A joint Bernoulli trial

Bill and Mary take ten basketball free throws each. We assume the two segences of trials are independent of each other, and
each is a Bernoulli sequence.

Mary: Has probability 0.80 of success on each trial.
Bill: Has probability 0.85 of success on each trial.
What is the probability Mary makes more free throws than Bill?
Solution
We have two Bernoulli sequences, operating independently.
Mary: n =10, p =0.80
Bill: n =10,p=0.85
Let
M be the event Mary wins
M, be the event Mary makes k or more freethrows.
B; be the event Bill makes exactly j reethrows
Then Mary wins if Bill makes none and Mary makes one or more, or Bill makes one and Mary makes two or more, etc. Thus
M =BoM;\/ BiM\/---\/ By My
and
P(M) = P(By)P(M.)+P(B1)P(M>) +- -+ P(By) P(Mio)

We use cbinom to calculate the cumulative probabilities for Mary and ibinom to obtain the individual probabilities for Bill.

>> pm = cbinom(10,0.8,1:10); % cumulative probabilities for Mary
>> pb = ibinom(10,0.85,0:9); % individual probabilities for Bill
>> D = [pm; pb]' % display: pm in the first column

D = % pb in the second column

1.0000 0.0000

1.0000 0.0000

0.9999 0.0000

0.9991 0.0001

0.9936 0.0012

0.9672 0.0085

0.8791 0.0401
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0.6778 0.1298
0.3758 0.2759
0.1074 0.3474

To find the probability P(M) that Mary wins, we need to multiply each of these pairs together, then sum. This is just the dot or
scalar product, which MATLAB calculates with the command pm * pb’. We may combine the generation of the probabilities
and the multiplication in one command:

>> P
[

cbinom(10,0.8,1:10)*ibinom(10,0.85,0:9)"'
0.273

The ease and simplicity of calculation with MATLAB make it feasible to consider the effect of different values of n. Is there an
optimum number of throws for Mary? Why should there be an optimum?

An alternate treatment of this problem in the unit on Independent Random Variables utilizes techniques for independent simple
random variables.

Alternate MATLAB implementations

Alternate implementations of the functions for probability calculations are found in the Statistical Package available as a

supplementary package. We have utilized our formulation, so that only the basic MATLAB package is needed.

This page titled 4.3: Composite Trials is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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4.4: Problems on Independence of Events

Exercise 4.4.1

The minterms generated by the class { A, B, C'} have minterm probabilities
pm =1[0.150.050.02 0.18 0.25 0.05 0.18 0.12]

Show that the product rule holds for all three, but the class is not independent.

Answer

pm = [0.15 0.05 0.02 0.18 0.25 0.05 0.18 0.12];
y = imintest(pm)

The class is NOT independent

Minterms for which the product rule fails

1 1 1 (€]
1 1 1 © % The product rule hold for M7 = ABC

Exercise 4.4.2

The class {4, B, C, D}is independent, with respective probabilities 0.65, 0.37, 0.48, 0.63. Use the m-function minprob to
obtain the minterm probabilities. Use the m-function minmap to put them in a 4 by 4 table corresponding to the minterm map
convention we use.

Answer

P = [0.65 0.37 0.48 0.63];
minmap(minprob(P))

T T
| 1]

0.0424 0.0249 0.0788 0.0463
0.0722 0.0424 0.1342 0.0788
0.0392 0.0230 0.0727 0.0427
0.0667 0.0392 0.1238 0.0727

Exercise 4.4.3

The minterm probabilities for the software survey in Example 2 from "Minterms" are
pm =1[00.050.10 0.05 0.20 0.10 0.40 0.10]

Show whether or not the class { A, B, C'} is independent: (1) by hand calculation, and (2) by use of the m-function imintest.

Answer

pm = [0 0.05 0.10 0.05 0.20 0.10 0.40 0.10];
y = imintest(pm)

The class is NOT independent

Minterms for which the product rule fails

y:
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‘ I 1 1 1 1 % By hand check product rule for any minterm
1 1 1 1

Exercise 4.4.4

The minterm probabilities for the computer survey in Example 3 from "Minterms" are
pm =[0.0320.016 0.376 0.011 0.364 0.073 0.077 0.051]

Show whether or not the class { A, B, C'} is independent: (1) by hand calculation, and (2) by use of the m-function imintest.

Answer

npro4_04

Minterm probabilities for Exercise 4.4.4. are in pm
y = imintest(pm)

The class is NOT independent

Minterms for which the product rule fails

Exercise 4.4.5

Minterm probabilities p(0) through p(15) for the class {4, B, C, D} are, in order,
pm =[0.084 0.196 0.036 0.084 0.085 0.196 0.035 0.084 0.021 0.049 0.009 0.021 0.020 0.049 0.010 0.021]

Use the m-function imintest to show whether or not the class { A, B, C, D} is independent.

Answer

npro4_o5

Minterm probabilities for Exercise 4.4.5. are in pm
imintest(pm)

The class is NOT independent

Minterms for which the product rule fails

ans =

®© @ ® ©
©r o R
®© @ ® ©
©r o R

Exercise 4.4.6

Minterm probabilities p(0) through p(15) for the opinion survey in Example 4 from "Minterms" are
pm =[0.085 0.195 0.035 0.085 0.080 0.200 0.035 0.085 0.020 0.050 0.010 0.020 0.020 0.050 0.015 0.015]

show whether or not the class {4, B, C, D} is independent.

Answer
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npro4_06

Minterm probabilities for Exercise 4.4.6. are in pm
y = imintest(pm)

The class is NOT independent

Minterms for which the product rule fails

y:

R R R R
kR R R
R R R R
kR R R

Exercise 4.4.7

The class {4, B,C?} is independent, with P(A)=0.30, P(B°C)=0.32, and P(AC) =0.12. Determine the minterm
probabilities.

Answer

P(C) = P(AC)/P(A) =0.40 AND P(B) =1— P(B°C)/P(C) =0.20 .

minprob([0.3 0.2 0.4])
0.3360 0.2240 0.0840 0.0560 0.1440 0.0960 0.0360 0.0240

pm
pm

Exercise 4.4.8

The class {A, B, C} is independent, with P(AUB) =0.6, P(AUC) =0.7, and P(C) = 0.4. Determine the probability of
each minterm.

Answer
P(AcC°) = P(A°)P(C*) =0.3 implies P(A°) =0.3/0.6 =0.5 = P(A).
P(A°B°) = P(A°)P(B°)=0.4 implies P(B°) =0.4/0.5 = 0.8implies P(B) = 0.2

= [0.5 0.2 0.4];
pm = minprob(P)
0.2400 0.1600 0.0600 0.0400 0.2400 0.1600 0.0600 0.0400

Exercise 4.4.9

A pair of dice is rolled five times. What is the probability the first two results are “sevens” and the others are not?

Answer
P =(1/6)%(5/6)% =0.0161.

Exercise 4.4.10

David, Mary, Joan, Hal, Sharon, and Wayne take an exam in their probability course. Their probabilities of making 90 percent
or more are

0.72 0.83 0.75 0.92 0.65 0.79
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respectively. Assume these are independent events. What is the probability three or more, four or more, five or more make
grades of at least 90 percent?

Answer
P = 0.01*[72 83 75 92 65 79];
y = ckn(P,[3 4 5])
y = 0.9780 0.8756 0.5967

Exercise 4.4.11

Two independent random numbers between 0 and 1 are selected (say by a random number generator on a calculator). What is
the probability the first is no greater than 0.33 and the other is at least 57?

Answer
P=0.33- (1 — 0.57) =0.1419

Exercise 4.4.12

Helen is wondering how to plan for the weekend. She will get a letter from home (with money) with probability 0.05. There is
a probability of 0.85 that she will get a call from Jim at SMU in Dallas. There is also a probability of 0.5 that William will ask
for a date. What is the probability she will get money and Jim will not call or that both Jim will call and William will ask for a
date?

Answer

A ~ letter with money, B ~ call from Jim, C' ~ William ask for date

P = 0.01*[5 85 50];

minvec3

Variables are A, B, C, Ac, Bc, Cc
They may be renamed, if desired.
pm = minprob(P);

p = ((A&Bc) | (B&C))*pm’

p = 0.4325

Exercise 4.4.13

A basketball player takes ten free throws in a contest. On her first shot she is nervous and has probability 0.3 of making the
shot. She begins to settle down and probabilities on the next seven shots are 0.5, 0.6 0.7 0.8 0.8, 0.8 and 0.85, respectively.
Then she realizes her opponent is doing well, and becomes tense as she takes the last two shots, with probabilities reduced to
0.75, 0.65. Assuming independence between the shots, what is the probability she will make k& or more for k =2, 3, ---10?

Answer
P = 0.01*[30 50 60 70 80 80 80 85 75 65];
k = 2:10;
p = ckn(P, k)
p =
Columns 1 through 7
0.9999 0.9984 0.9882 0.9441 0.8192 0.5859 0.3043
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Columns 8 through 9
0.0966 0.0134

Exercise 4.4.14

In a group there are M men and W women; m of the men and w of the women are college graduates. An individual is picked
at random. Let A be the event the individual is a woman and B be the event he or she is a college graduate. Under what
condition is the pair { A, B} independent?

Answer

P(A|B) =w/(m+w) =W /(W + M) =P(A)

Exercise 4.4.15

Consider the pair {A, B} of events. Let P(A) =p, P(A°)=q=1—p, P(B|A) =p;, and P(B|A°) =p,. Under what
condition is the pair { A, B} independent?

Answer

p1 = P(B|A) = P(B|A°®) =p, (see table of equivalent conditions).

Exercise 4.4.16

Show that if event A is independent of itself, then P(A) =0 or P(A) = 1. (This fact is key to an important "zero-one law".)

Answer
P(A)=P(ANA)=P(A)P(A) .z?2=z iffr=0o0rz=1.

Exercise 4.4.17

Does {A, B} independent and { B, C'} independent imply { A, C'} is independent? Justify your answer.

Answer

% No. Consider for example the following minterm probabilities:
pm = [0.2 0.05 0.125 0.125 0.05 0.2 0.125 0.125];

minvec3

Variables are A, B, C, Ac, Bc, Cc

They may be renamed, if desired.

PA = A*pm'
PA = 0.5000
PB = B*pm'
PB = 0.5000
PC = C*pm'

PC = 0.5000

PAB = (A&B)*pm' % Product rule holds
PAB = 0.2500
PBC = (B&C)*pm' % Product rule holds
PBC = 0.2500
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Exercise 4.4.18

Suppose event A implies B (i.e. A C B). Show that if the pair { A, B} is independent, then either P(A) =0 or P(B) =1.

(A&C)*pm' % Product rule fails
0.3250

Answer
A C B implies P(AB) = P(A) ; independence implies P(AB) = P(A)P(B). P(A) = P(A)P(B) only if P(B) =1
or P(4)=0.

Exercise 4.4.19

A company has three task forces trying to meet a deadline for a new device. The groups work independently, with respective
probabilities 0.8, 0.9, 0.75 of completing on time. What is the probability at least one group completes on time? (Think. Then
solve “by hand.”)

Answer

At least one completes iff not all fail. P =1—0.2-0.1-0.25 =0.9950

Exercise 4.4.20

Two salesmen work differently. Roland spends more time with his customers than does Betty, hence tends to see fewer
customers. On a given day Roland sees five customers and Betty sees six. The customers make decisions independently. If the
probabilities for success on Roland's customers are 0.7, 0.8, 0.8, 0.6, 0.7 and for Betty's customers are 0.6, 0.5, 0.4, 0.6, 0.6,
0.4, what is the probability Roland makes more sales than Betty? What is the probability that Roland will make three or more
sales? What is the probability that Betty will make three or more sales?

Answer
PR = 0.1*[7 8 8 6 7];
PB = 0.1*[6 5 4 6 6 4];
PR3 = ckn(PR,3)
PR3 = 0.8662
PB3 = ckn(PB, 3)
PB3 = 0.6906
PRgB = ikn(PB,0:4)*ckn(PR,1:5)"
PRgB = 0.5065

Exercise 4.4.21

Two teams of students take a probability exam. The entire group performs individually and independently. Team 1 has five
members and Team 2 has six members. They have the following indivudal probabilities of making an *”A” on the exam.

Team 1: 0.83 0.87 0.92 0.77 0.86 Team 2: 0.68 0.91 0.74 0.68 0.73 0.83

a. What is the probability team 1 will make at least as many A's as team 27?
b. What is the probability team 1 will make more A's than team 2?

Answer

@ 0 4.4.6 https://stats.libretexts.org/@go/page/10870



https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10870?pdf

LibreTextsw

P1 0.01*[83 87 92 77 86];

P2 = 0.01*[68 91 74 68 73 83];
Pigeq = ikn(P2,0:5)*ckn(P1,0:5)"'
Plgeq = 0.5527

P1g = ikn(P2,0:4)*ckn(P1,1:5)"'
P1g = 0.2561

Exercise 4.4.22

A system has five components which fail independently. Their respective reliabilities are 0.93, 0.91, 0.78, 0.88, 0.92. Units 1
and 2 operate as a “series” combination. Units 3, 4, 5 operate as a two of three subsytem. The two subsystems operate as a
parallel combination to make the complete system. What is reliability of the complete system?

Answer
R = 0.01*[93 91 78 88 92];
Ra = prod(R(1:2))
Ra = 0.8463
Rb = ckn(R(3:5),2)
Rb = 0.9506
Rs = parallel([Ra Rb])
Rs = 0.9924

Exercise 4.4.23

A system has eight components with respective probabilities

0.96 0.90 0.93 0.82 0.85 0.97 0.88 0.80

Units 1 and 2 form a parallel subsytem in series with unit 3 and a three of five combination of units 4 through 8. What is the
reliability of the complete system?

Answer

R =0.01*[96 90 93 82 85 97 88 80];

Ra = parallel(R(1:2))
Ra = 0.9960
Rb = ckn(R(4:8),3)

Rb = 0.9821
prod([Ra R(3) Rb])
0.9097

Exercise 4.4.24

How would the reliability of the system in Exercise 4.4.23. change if units 1, 2, and 3 formed a parallel combination in series
with the three of five combination?

A A
n u
I

Answer
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Rc = parallel(R(1:3))
Rc = 0.9997

Rss = prod([Rb Rc])
Rss = 0.9818

Exercise 4.4.25

How would the reliability of the system in Exercise 4.4.23. change if the reliability of unit 3 were changed from 0.93 to 0.96?
What change if the reliability of unit 2 were changed from 0.90 to 0.95 (with unit 3 unchanged)?

Answer
R1 = R;
R1(3) =0.96;
Ra = parallel(R1(1:2))
Ra = 0.9960
Rb = ckn(R1(4:8),3)
Rb = 0.9821

Rs3 = prod([Ra R1(3) Rb])
Rs3 = 0.9390

R2 = R;

R2(2) = 0.95;

Ra = parallel(R2(1:2))
Ra = 0.9980

Rb = ckn(R2(4:8),3)

Rb = 0.9821

Rs4 = prod([Ra R2(3) Rb])
Rs4 = 0.9115

Exercise 4.4.26

Three fair dice are rolled. What is the probability at least one will show a six?

Answer
P=1-(5/6)3=0.4213

Exercise 4.4.27

A hobby shop finds that 35 percent of its customers buy an electronic game. If customers buy independently, what is the
probability that at least one of the next five customers will buy an electronic game?

Answer

P=1-0.65 =0.8840
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Under extreme noise conditions, the probability that a certain message will be transmitted correctly is 0.1. Successive messages
are acted upon independently by the noise. Suppose the message is transmitted ten times. What is the probability it is
transmitted correctly at least once?

Answer

P=1-0.99=0.6513

Exercise 4.4.29

Suppose the class {4; : 1 <i <n} is independent, with P(4;) =p;, 1 <i <n.What is the probability that at least one of
the events occurs? What is the probability that none occurs?

Answer

P1=1-P0,P0=][",(1-p)

Exercise 4.4.30

In one hundred random digits, 0 through 9, with each possible digit equally likely on each choice, what is the probility 8 or
more are sevens?

Answer

P = cbinom(100, 0.1, 8) = 0.7939

Exercise 4.4.31

Ten customers come into a store. If the probability is 0.15 that each customer will buy a television set, what is the probability
the store will sell three or more?
Answer

P = cbinom(10, 0.15, 3) = 0.1798

Exercise 4.4.32

Seven similar units are put into service at time £ = 0. The units fail independently. The probability of failure of any unit in the
first 400 hours is 0.18. What is the probability that three or more units are still in operation at the end of 400 hours?
Answer

P = cbinom(7, 0.82, 3) = 0.9971

Exercise 4.4.33

A computer system has ten similar modules. The circuit has redundancy which ensures the system operates if any eight or
more of the units are operative. Units fail independently, and the probability is 0.93 that any unit will survive between
maintenance periods. What is the probability of no system failure due to these units?

Answer

P = cbinom(10,0.93,8) = 0.9717

https://stats.libretexts.org/@go/page/10870


https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10870?pdf

LibreTextsm

Only thirty percent of the items from a production line meet stringent requirements for a special job. Units from the line are
tested in succession. Under the usual assumptions for Bernoulli trials, what is the probability that three satisfactory units will
be found in eight or fewer trials?

Answer

P = cbinom(8, 0.3, 3) = 0.4482

Exercise 4.4.35

The probability is 0.02 that a virus will survive application of a certain vaccine. What is the probability that in a batch of 500
viruses, fifteen or more will survive treatment?

Answer

P = cbinom(500, 0.02, 15) = 0.0814

Exercise 4.4.36

In a shipment of 20,000 items, 400 are defective. These are scattered randomly throughout the entire lot. Assume the
probability of a defective is the same on each choice. What is the probability that

1. Two or more will appear in a random sample of 35?
2. At most five will appear in a random sample of 50?

Answer
P1 = cbinom(35, 0.02, 2) = 0.1547.
P2 =1 - cbinom(35, 0.02, 6) = 0.9999

Exercise 4.4.37

A device has probability p of operating successfully on any trial in a sequence. What probability p is necessary to ensure the
probability of successes on all of the first four trials is 0.85? With that value of p, what is the probability of four or more
successes in five trials?

Answer

p=0.85"40, \ (P cbinom(5, p, 4) = 0.9854.

Exercise 4.4.38

A survey form is sent to 100 persons. If they decide independently whether or not to reply, and each has probability 1/4 of
replying, what is the probability of k& or more replies, where k = 15, 20, 25, 30, 35, 4

Answer

o
1]

cbinom(100,1/4,15:5:40)
P = 0.9946 0.9005 0.5383 0.1495 0.0164 0.0007
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Ten numbers are produced by a random number generator. What is the probability four or more are less than or equal to 0.63?

Answer

P1 = cbinom(10, 0.63, 4) = 0.9644

Exercise 4.4.40

A player rolls a pair of dice five times. She scores a “hit” on any throw if she gets a 6 or 7. She wins iff she scores an odd
number of hits in the five throws. What is the probability a player wins on any sequence of five throws? Suppose she plays the
game 20 successive times. What is the probability she wins at least 10 times? What is the probability she wins more than half

the time?
Answer
Each roll yields a hit with probability p = 5 + S = U .
36 36 36

PW = sum(ibinom(5,11/36,[1 3 5]))
PW = 0.4956
P2 = cbinom(20,PW,10)
P2 = 0.5724
P3 = cbinom(20,Pw,11)
P3 = 0.3963

Exercise 4.4.41

Erica and John spin a wheel which turns up the integers 0 through 9 with equal probability. Results on various trials are
independent. Each spins the wheel 10 times. What is the probability Erica turns up a seven more times than does John?
Answer

P =ibinom(10, 0.1, 0:9) * cbinom(10, 0.1, 1:10)' = 0.3437

Exercise 4.4.42

Erica and John play a different game with the wheel, above. Erica scores a point each time she gets an integer 0, 2, 4, 6, or 8.
John scores a point each time he turns up a 1, 2, 5, or 7. If Erica spins eight times; John spins 10 times. What is the probability
John makes more points than Erica?

Answer

P =ibinom(8, 0.5, 0:8) * cbinom(10, 0.4, 1:9)' = 0.4030

Exercise 4.4.43

A box contains 100 balls; 30 are red, 40 are blue, and 30 are green. Martha and Alex select at random, with replacement and
mixing after each selection. Alex has a success if he selects a red ball; Martha has a success if she selects a blue ball. Alex
selects seven times and Martha selects five times. What is the probability Martha has more successes than Alex?

Answer

P = ibinom(7, 0.3, 0:4) * cbinem(5, 0.4, 1:5)' = 0.3613
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Two players roll a fair die 30 times each. What is the probability that each rolls the same number of sixes?

Answer

P = sum(ibinom(30, 1/6, 0:30).A2) = 0.1386

Exercise 4.4.45

A warehouse has a stock of n items of a certain kind, » of which are defective. Two of the items are chosen at random, without
replacement. What is the probability that at least one is defective? Show that for large n the number is very close to that for
selection with replacement, which corresponds to two Bernoulli trials with pobability p = r/n of success on any trial.

Answer
p1=" r—1 Lropor  nor r _(271—1)7‘—7'2
n n—-1 n n-1 n n-1 n(n—1)
T 2nr —r?
P2=1-(=)?=
Ly =2

Exercise 4.4.46

A coin is flipped repeatedly, until a head appears. Show that with probability one the game will terminate.

The probability of not terminating in 7 trials is ¢".

Answer

Let N = event never terminates and /Ny = event does not terminate in k plays. Then N C N; for all k& implies
0 < P(N) < P(Ny)=1/2* forall k, we conclude P(N) =0.

Exercise 4.4.47

Two persons play a game consecutively until one of them is successful or there are ten unsuccesful plays. Let E; be the event
of a success on the ith play of the game. Suppose {E; : 1 <i} is an independent class with P(E;) =p; for i odd and
P(E;) =p, fori even. Let A be the event the first player wins, B be the event the second player wins, and C' be the event
that neither wins.

a. Express A, B, and C in terms of the E;.

b. Determine P(A), P(B), and P(C) in terms of p1, pa, g1 =1 —p; , and go = 1 — p, . Obtain numerical values for the case
p1=1/4andpy, =1/3.

c. Use appropriate facts about the geometric series to show that P(A) = P(B) iff py =pa/(1 +pa).

d. Suppose pa = 0.5. Use the result of part (c) to find the value of p; to make P(A) = P(B) and then determine P(A),
P(B), and P(C).

Answer
a.C=Ny> Er.
A=E\\|E{ESE;\| E{ESE{E{Es\| E{ESESE{ESESE;\| E{EsESE{ESESESESEy
B=E{E,\| E{ESESE,\| E{ESESE{ESCEs \| EfESESESESESELEs \| E{ESESESESE§ESESESEy
1— (1)’

PA) =pi[l+qa+(01e)* +(@1e)® + (@) =pl 1—qiqe
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1—(qg2)®
P(B) = 0220 p(0) = (g2
— 4192
Forp; =1/4, pp =1/3, we have q1g2 =1/2 and g1 p; = 1/4. In this case
1 31
(4) = 716" 31/64 =0.4844 = P(B),P(C)=1/32

Note that P(A)+ P(B)+P(C)=1 .
c. P(A)=P(B) iffp1 =q1ps = (1 —p1)ps iff p1 =p2/(1+p2) .
dp =05/1.5=1/3

Exercise 4.4.48

Three persons play a game consecutively until one achieves his objective. Let E; be the event of a success on the 7th trial, and
suppose {E; : 1 <i} is an independent class, with P(E;)=p; for i =1,4,7,---, P(E;) =p, for 1 =2,5,8,---, and
P(E;) =p; fori=3,6,9,---. Let A, B, C be the respective events the first, second, and third player wins.

a. Express A, B, and C in terms of the F;.

b. Determine the probabilities in terms of p;,p2,ps, then obtain numerical values in the case p; =1/4, po =1/3, and
pP3 = 1 / 2.

Answer
a. A=E Vil 01351 EfEs3pq
B=E{E;\| V4 ﬂf’ffl EfE3p.
C =E{EsEs\| V32, N Ef Esiss

b1
b P(4) =1 X2 (016208)* = T——
—4q192G3
q1P2
P(B)=————
(B) 1-qi1qoq3
q192P3
PC)=———
(©) 1-qiq2q3

Forpi =1/4,p,=1/3.p3=1/2, P(A)=P(B)=P(C)=1/3 .

Exercise 4.4.49

What is the probability of a success on the ¢th trial in a Bernoulli sequence of n component trials, given there are r successes?

Answer
P(AE;=pC(n—1,r—1)p" 1q"" and P(4,,) =C(n,7)p"q" .
Hence P(E;|Agrn) =C(n—1,7r—1)/C(n,r)=71/n .

Exercise 4.4.50

A device has N similar components which may fail independently, with probability p of failure of any component. The device
fails if one or more of the components fails. In the event of failure of the device, the components are tested sequentially.

a. What is the probability the first defective unit tested is the nth, given one or more components have failed?
b. What is the probability the defective unit is the nth, given that exactly one has failed?
c. What is the probability that more than one unit has failed, given that the first defective unit is the nth?

Answer
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Let A; = event one failure, B; = event of one or more failures, By = event of two or more failures, and F;, = the event the first
defective unit found is the nth.
" 'p
1—gN
P(FnAl qn—lqu—n 1

P(F,|4;) = - _ 1

a. F,, C By implies P(F,|B;) = P(F,)/P(B;) =

(see Exercise)
b. Since probability not all from nth are good is 1 — g™V ™.
P(ByF, ¢"'p(1-Q"!

P(By|F,) = =1—¢gN "
(BalF) P(F,) " 'p

This page titled 4.4: Problems on Independence of Events is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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5.1: Conditional Independence

5.1. Conditional Independence”

The idea of stochastic (probabilistic) independence is explored in the unit Independence of Events. The concept is approached as
lack of conditioning: P(A|B) = P(A). This is equivalent to the product rule P(AB) = P(A)P(B). We consider an extension to
conditional independence.

The concept

Examination of the independence concept reveals two important mathematical facts:

¢ Independence of a class of non mutually exclusive events depends upon the probability measure, and not on the relationship
between the events. Independence cannot be displayed on a Venn diagram, unless probabilities are indicated. For one
probability measure a pair may be independent while for another probability measure the pair may not be independent.

o Conditional probability is a probability measure, since it has the three defining properties and all those properties derived
therefrom.

This raises the question: is there a useful conditional independence—i.e., independence with respect to a conditional probability
measure? In this chapter we explore that question in a fruitful way.

Among the simple examples of “operational independence" in the unit on independence of events, which lead naturally to an
assumption of “probabilistic independence” are the following:

o If customers come into a well stocked shop at different times, each unaware of the choice made by the other, the the item
purchased by one should not be affected by the choice made by the other.
o If two students are taking exams in different courses, the grade one makes should not affect the grade made by the other.

Example 5.1.1 Buying umbrellas and the weather

A department store has a nice stock of umbrellas. Two customers come into the store “independently.” Let A be the event the
first buys an umbrella and B the event the second buys an umbrella. Normally, we should think the events {A, B} form an
independent pair. But consider the effect of weather on the purchases. Let C be the event the weather is rainy (i.e., is raining or
threatening to rain). Now we should think P(A|C) > P(A|C*) and P(B|C) > P(B|C°). The weather has a decided effect
on the likelihood of buying an umbrella. But given the fact the weather is rainy (event C has occurred), it would seem
reasonable that purchase of an umbrella by one should not affect the likelihood of such a purchase by the other. Thus, it may be
reasonable to suppose

P(A|C) = P(A|BC) or, in another notation, Po(A) = Pc(A|B)

An examination of the sixteen equivalent conditions for independence, with probability measure P replaced by probability measure
P, shows that we have independence of the pair {A, B} with respect to the conditional probability measure Pg(-) = P(-|C).
Thus, P(A|C*¢) = P(A|BC*). For this example, we should also expect that P(A|C¢ = P(A|BC*), so that there is independence
with respect to the conditional probability measure P(-|C*). Does this make the pair { A, B} independent (with respect to the prior
probability measure P)? Some numerical examples make it plain that only in the most unusual cases would the pair be
independent. Without calculations, we can see why this should be so. If the first customer buys an umbrella, this indicates a higher
than normal likelihood that the weather is rainy, in which case the second customer is likely to buy. The condition leads to
P(B|A) > P(B). Consider the following numerical case. Suppose P(AB|C)=P(A|C)P(B|C) and
P(AB|C®)=P(A|C°)P(B|C*) and
P(A|C)=0.60, P(A|C*¢) =0.20, P(B|C) =0.50, P(B|C*) =0.15, with P(C) = 0.30.
Then
P(A)=P(A|C)P(C)+P(A|C°)P(C¢) =0.3200 P(B) = P(B|C)P(C)+ P(B|C°)P(C*) =0.2550
P(AB)=P(AB|C)P(C)+P(AB|C°)P(C°) = P(A|C)P(B|C)P(C)+P(A|C°)P(C*) =0.1110

As aresult,

P(A)P(B) =0.0816 #0.1110 = P(AB)
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The product rule fails, so that the pair is not independent. An examination of the pattern of computation shows that independence
would require very special probabilities which are not likely to be encountered.

Example 5.1.2 Students and exams

Two students take exams in different courses, Under normal circumstances, one would suppose their performances form an
independent pair. Let A be the event the first student makes grade 80 or better and B be the event the second has a grade of 80
or better. The exam is given on Monday morning. It is the fall semester. There is a probability 0.30 that there was a football
game on Saturday, and both students are enthusiastic fans. Let C be the event of a game on the previous Saturday. Now it is
reasonable to suppose

P(A|C) = P(A|BC) and P(A|C*) = P(A|BC®)

If we know that there was a Saturday game, additional knowledge that B has occurred does not affect the lielihood that A occurs.
Again, use of equivalent conditions shows that the situation may be expressed

P(AB|C)=P(A|C)P(B|C) and P(AB|C®) = P(A|C°)P(B|C°)
Under these conditions, we should suppose that P(A|C) < P(A|C°) and P(B|C) < P(B|C?). If we knew that one did poorly
on the exam, this would increase the likelihoood there was a Saturday game and hence increase the likelihood that the other did

poorly. The failure to be independent arises from a common chance factor that affects both. Although their performances are
“operationally” independent, they are not independent in the probability sense. As a numerical example, suppose

P(A|C)=0.7T P(A|C®)=0.9 P(B|C)=0.6 P(B|C°)=0.8 P(C)=0.3
Straightforward calculations show P(A) = 0.8400, P(B) = 0.7400, P(AB) = 0.6300. Note that P(A|B) = 0.8514 > P(A) as
would be expected.
Sixteen equivalent conditions

Using the facts on repeated conditioning and the equivalent conditions for independence, we may produce a similar table of
equivalent conditions for conditional independence. In the hybrid notation we use for repeated conditioning, we write

Po(A|B) = Pc(A) or Po(AB) = Pc(A)Po(B)
This translates into
P(A|BC)=P(A|C) or P(AB|C) =P(A|C)P(B|C)
If it is known that C' has occurred, then additional knowledge of the occurrence of B does not change the likelihood of A.

If we write the sixteen equivalent conditions for independence in terms of the conditional probability measure Py (+), then translate
as above, we have the following equivalent conditions.

Table 5.1. Sixteen equivalent conditions

P(A|BC) = P(A|C) P(B|AC) = P(B|C) P(AB|C) = P(A|C)P(B|C)

P(A|B°C) = P(A|C)) P(B°|AC) = P(B°|C) P(AB¢|C) = P(A|C)P(B°|C)

P(A°|BC) = P(A¢|C) P(B|A°C) = P(B|C) P(A°B|C) = P(A¢|C)P(B|C)

P(A°|B°C) = P(a®|C) P(B¢|A°C) = P(B°|C) P(A°B¢|C) = P(A°|C)P(B°|C)
Table 5.2.

P(A|BC) = P(A|B°C) P(A°|B°C) = P(A°|B°C) P(B|AC) = P(B|A°C) | P(B°|AC) = P(B°|A°C)

The patterns of conditioning in the examples above belong to this set. In a given problem, one or the other of these conditions may
seem a reasonable assumption. As soon as one of these patterns is recognized, then all are equally valid assumptions. Because of its
simplicity and symmetry, we take as the defining condition the product rule P(AB|C) = P(A|C) = P(B|C).
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Definition

A pair of events {A, B} is said to be conditionally independent, given C, designated {A, B} iff the following product rule
holds: P(AB|C) = P(A|C)P(B|C).

The equivalence of the four entries in the right hand column of the upper part of the table, establish

The replacement rule

If any of the pairs {A, B}, {4, B¢}, {A¢, B} or { A¢, B°} is conditionally independent, given C, then so are the others.
—0O

This may be expressed by saying that if a pair is conditionally independent, we may replace either or both by their complements
and still have a conditionally independent pair.

To illustrate further the usefulness of this concept, we note some other common examples in which similar conditions hold: there is
operational independence, but some chance factor which affects both.

o Two contractors work quite independently on jobs in the same city. The operational independence suggests probabilistic
independence. However, both jobs are outside and subject to delays due to bad weather. Suppose A is the event the first
contracter completes his job on time and B is the event the second completes on time. If C is the event of “good” weather, then
arguments similar to those in Examples 1 and 2 make it seem reasonable to suppose {A, B} ci |C and {A, B} ci |C*. Remark.
In formal probability theory, an event must be sharply defined: on any trial it occurs or it does not. The event of “good weather”
is not so clearly defined. Did a trace of rain or thunder in the area constitute bad weather? Did rain delay on one day in a month
long project constitute bad weather? Even with this ambiguity, the pattern of probabilistic analysis may be useful.

e A patient goes to a doctor. A preliminary examination leads the doctor to think there is a thirty percent chance the patient has a
certain disease. The doctor orders two independent tests for conditions that indicate the disease. Are results of these tests really
independent? There is certainly operational independence—the tests may be done by different laboratories, neither aware of the
testing by the others. Yet, if the tests are meaningful, they must both be affected by the actual condition of the patient. Suppose
D is the event the patient has the disease, A is the event the first test is positive (indicates the conditions associated with the
disease) and B is the event the second test is positive. Then it would seem reasonable to suppose {4, B} ci | D and {4, B} ci
| De.

In the examples considered so far, it has been reasonable to assume conditional independence, given an event C, and conditional

independence, given the complementary event. But there are cases in which the effect of the conditioning event is asymmetric. We
consider several examples.

e Two students are working on a term paper. They work quite separately. They both need to borrow a certain book from the
library. Let C be the event the library has two copies available. If A is the event the first completes on time and B the event the
second is successful, then it seems reasonable to assume {A, B} ci |C. However, if only one book is available, then the two
conditions would not be conditionally independent. In general P(B|AC*¢) < P(B|C*), since if the first student completes on
time, then he or she must have been successful in getting the book, to the detriment of the second.

o If the two contractors of the example above both need material which may be in scarce supply, then successful completion
would be conditionally independent, give an adequate supply, whereas they would not be conditionally independent, given a
short supply.

e Two students in the same course take an exam. If they prepared separately, the event of both getting good grades should be
conditionally independent. If they study together, then the likelihoods of good grades would not be independent. With neither
cheating or collaborating on the test itself, if one does well, the other should also.

Since conditional independence is ordinary independence with respect to a conditional probability measure, it should be clear how
to extend the concept to larger classes of sets.

Definition

A class {4; : 7 € J}, where J is an arbitrary index set, is conditionally independent, given event C, denoted {4; : i € J} ci
|C, iff the product rule holds for every finite subclass of two or more.

As in the case of simple independence, the replacement rule extends.
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The replacement rule

If the class {A; : ¢ € J} ci |C, then any or all of the events A; may be replaced by their complements and still have a conditionally
independent class.

The use of independence techniques

Since conditional independence is independence, we may use independence techniques in the solution of problems. We consider
two types of problems: an inference problem and a conditional Bernoulli sequence.

Example 5.1.3 Use of independence techniques

Sharon is investigating a business venture which she thinks has probability 0.7 of being successful. She checks with five
“independent” advisers. If the prospects are sound, the probabilities are 0.8, 0.75, 0.6, 0.9, and 0.8 that the advisers will advise
her to proceed; if the venture is not sound, the respective probabilities are 0.75, 0.85, 0.7, 0.9, and 0.7 that the advice will be
negative. Given the quality of the project, the advisers are independent of one another in the sense that no one is affected by the
others. Of course, they are not independent, for they are all related to the soundness of the venture. We may reasonably assume
conditional independence of the advice, given that the venture is sound and also given that the venture is not sound. If Sharon
goes with the majority of advisers, what is the probability she will make the right decision?

Solution

If the project is sound, Sharon makes the right choice if three or more of the five advisors are positive. If the venture is
unsound, she makes the right choice if three or more of the five advisers are negative. Let H = the event the project is sound,
F' = the event three or more advisers are positive, G = F'¢ = the event three or more are negative, and F = the event of the
correct decision. Then

P(E) = P(FH)+P(GH®) = P(F|H)P(H) + P(G|H®)P(H*)

Let E; be the event the ith adviser is positive. Then P(F|H) = the sum of probabilities of the form P(Mj|H), where Mj, are
minterms generated by the class {E; : 1 <4 <5} . Because of the assumed conditional independence,

P(Ey BB E, 55| H) = P(E, | H)P(E§| H) P(E§| H)P(E,| H)P(Es | H)

with similar expressions for each P(Mj|H) and P(Mj|H¢). This means that if we want the probability of three or more
successes, given H, we can use ckn with the matrix of conditional probabilities. The following MATLAB solution of the
investment problem is indicated.

P1 = 0.01*[80 75 60 90 80];

P2 = 0.01*[75 85 70 90 70];

PH = 0.7;

PE = ckn(P1,3)*PH + ckn(P2,3)*(1 - PH)
PE = 0.9255

Often a Bernoulli sequence is related to some conditioning event H. In this case it is reasonable to assume the sequence
{E;:1<i<mn} ci|H andci |H¢°. We consider a simple example.

Example 5.1.4 Test of a claim

A race track regular claims he can pick the winning horse in any race 90 percent of the time. In order to test his claim, he picks
a horse to win in each of ten races. There are five horses in each race. If he is simply guessing, the probability of success on
each race is 0.2. Consider the trials to constitute a Bernoulli sequence. Let H be the event he is correct in his claim. If S is the
number of successes in picking the winners in the ten races, determine P(H|S = k) for various numbers k of correct picks.
Suppose it is equally likely that his claim is valid or that he is merely guessing. We assume two conditional Bernoulli trials:

claim is valid: Ten trials, probability p = P(E;|H) =0.9.
Guessing at random: Ten trials, probability p = P(E;|H¢) =0.2.

Let S = number of correct picks in ten trials. Then
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PH|S=k _ P(H) P(S=kH) . . 4
P(He|S=k) P(H®) P(S=klH®) "~~~

Giving him the benefit of the doubt, we suppose P(H)/P(H¢) =1 and calculate the conditional odds.

k = 0:10;
Pk1 = ibinom(10,0.9,Kk); % Probability of k successes, given H
Pk2 = ibinom(10,0.2,Kk); % Probability of k successes, given HAc
OH = Pk1./Pk2; % Conditional odds-- Assumes P(H)/P(HAc) =1
e = 0OH > 1; % Selects favorable odds
disp(round([k(e);0H(e)]"))
6 2 % Needs at least six to have creditability
7 73 % Seven would be creditable,
8 2627 % even if P(H)/P(HAc) = 0.1
9 94585
10 3405063

Under these assumptions, he would have to pick at least seven correctly to give reasonable validation of his claim.

This page titled 5.1: Conditional Independence is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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5.2: Patterns of Probable Inference

Some Patterns of Probable Inference

We are concerned with the likelihood of some hypothesized condition. In general, we have evidence for the condition which can
never be absolutely certain. We are forced to assess probabilities (likelihoods) on the basis of the evidence. Some typical examples:

Table 5.3.
HYPOTHESIS EVIDENCE
Job success Personal traits
Presence of oil Geological structures
Operation of a device Physical condition
Market condition Test market condition
Presence of a disease Tests for symptoms

If H is the event the hypothetical condition exists and E is the event the evidence occurs, the probabilities available are usually
P(H) (or an odds value), P(E|H), and . What is desired is P(H|E) or, equivalently, the odds P(H|E)/P(H¢|E). We simply
use Bayes' rule to reverse the direction of conditioning.

P(H|E) _ P(E|H) P(H)

P(H|E) ~ P(E|H®) P(H¢)
No conditional independence is involved in this case.
Independent evidence for the hypothesized condition

Suppose there are two “independent” bits of evidence. Now obtaining this evidence may be “operationally” independent, but if the
items both relate to the hypothesized condition, then they cannot be really independent. The condition assumed is usually of the
form P(E,|H) = P(E,|HE,) —if H occurs, then knowledge of F> does not affect the likelihood of E;. Similarly, we usually
have P(E,|H¢) = P(E,|H E). Thus {E1, Ex} ci |H and { Ey, B} ci |H®.

Example 5.2.1 Independent medical tests

Suppose a doctor thinks the odds are 2/1 that a patient has a certain disease. She orders two independent tests. Let H be the
event the patient has the disease and E; and E5 be the events the tests are positive. Suppose the first test has probability 0.1 of
a false positive and probability 0.05 of a false negative. The second test has probabilities 0.05 and 0.08 of false positive and
false negative, respectively. If both tests are positive, what is the posterior probability the patient has the disease?

Solution

Assuming {E1, E»} ci |H and ci |H®, we work first in terms of the odds, then convert to probability.
P(H|E\E,)  P(H) P(E\E;|H) P(H) P(E|H)P(E; H)

P(He¢|E\E,) P(H¢) P(E\E;|He) P(He¢) P(Ei|He)P(Eq|He)
The data are
P(H)/P(H®)=2, P(Ei|H)=0.95 P(E;|H®)=0.1, P(Ey|H) =0.92, P(E;|H¢) =0.05
Substituting values, we get
P(H|E\E») 9. 0.95-0.92 1748

1748 5
= = so that P(H|Ey By) = —— =1— —— =1—-0.0029
P(H®|E\E, 0.10-0.05 5 1753 1753

Evidence for a symptom

Sometimes the evidence dealt with is not evidence for the hypothesized condition, but for some condition which is stochastically
related. For purposes of exposition, we refer to this intermediary condition as a symptom. Consider again the examples above.
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Table 5.4.

HYPOTHESIS

SYMPTOM

EVIDENCE

Job success

Personal traits

Diagnostic test results

Presence of oil

Geological structures

Geophysical survey results

Operation of a device

Physical condition

Monitoring report

Market condition

Test market condition

Market survey result

Presence of a disease

Physical symptom

Test for symptom

We let S be the event the symptom is present. The usual case is that the evidence is directly related to the symptom and not the
hypothesized condition. The diagnostic test results can say something about an applicant's personal traits, but cannot deal directly
with the hypothesized condition. The test results would be the same whether or not the candidate is successful in the job (he or she
does not have the job yet). A geophysical survey deals with certain structural features beneath the surface. If a fault or a salt dome
is present, the geophysical results are the same whether or not there is oil present. The physical monitoring report deals with certain
physical characteristics. Its reading is the same whether or not the device will fail. A market survey treats only the condition in the
test market. The results depend upon the test market, not the national market. A blood test may be for certain physical conditions
which frequently are related (at least statistically) to the disease. But the result of the blood test for the physical condition is not
directly affected by the presence or absence of the disease.

Under conditions of this type, we may assume
P(E|SH)=P(E|SH®) and P(E|S°H) = P(E|S°H®)

These imply { E, H} ci |S and ci | S¢. Now

P(H|E) P(HE)  P(HES)+P(HES®) P(HS)P(E|HS)+P(HS®)P(E|HS®)

P(H¢|E) P(H°E) P(HCES)+P(H¢ES¢) P(H<S)P(E|H¢S)+ P(HcS¢)P(E|H¢S°)

P(HS)P(E|S)P(HS®)P(E|S°)
~ P(H<S)P(E|S)+ P(H¢S¢)P(E|S°)

It is worth noting that each term in the denominator differs from the corresponding term in the numerator by having H € in place of

H. Before completing the analysis, it is necessary to consider how H and S are related stochastically in the data. Four cases may
be considered.

Data are P(S|H), P(S|H¢), and P(H).
Data are P(S|H), P(S|H¢), and P(S).
Data are P(H|S), P(H|S¢), and P(S).
Data are P(H|S), P(H|S°¢), and P(H).
Case a:

\dfrac{P(H|S)}{P(H/c|S)} = \dfrac{P(H) P(S|H) P(E|S) + P(H) P(SAc|H) P(E|SAc)}{P(H c) P(S|HAc) P(E|S) + P(HAc) P(SAC|HAC)
P(E|S\O)})

Example 5.2.2 Geophysical survey

Let H be the event of a successful oil well, S be the event there is a geophysical structure favorable to the presence of oil, and
E be the event the geophysical survey indicates a favorable structure. We suppose { H, E'} ci |.S and ci |S¢. Data are

P(H)/P(H¢) =3, P(S|H)=0.92, P(S|H®) =0.20, P(E|S) =0.95, P(E|S°¢) =0.15
Then

P(H|E) _, 092:0.9540.08-0.15 1329
P(H°|E) 0.20-0.95+0.80-0.15 155

=8.5742

155
so that P(H|E) =1 — - = 0.8956
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The geophysical result moved the prior odds of 3/1 to posterior odds of 8.6/1, with a corresponding change of probabilities
from 0.75 to 0.90.

Case b: Data are P(S)P(S|H), P(S|H®), P(E|S), and P(E|S°). If we can determine P(H), we can proceed as in case a. Now
by the law of total probability

P(S) = P(S|H)P(H) + P(S|H®)[1 - P(H)

which may be solved algebraically to give

pi) - P~ PSIH)

- P(S|H)—P(S|H)
Example 5.2.3 Geophysical survey revisited

In many cases a better estimate of P(.S) or the odds P(.S)/P(S°) can be made on the basis of previous geophysical data.
Suppose the prior odds for S are 3/1, so that P(.S) = 0.75. Using the other data in Example, we have

P(S)—P(S|H®)  0.75-0.20 \(P(H)

P(H)= = =55/72, so that =55/17
H) = B —P(S|H) ~ 0.92—0.20 >/ T2 %0 that ey =55/
Using the pattern of case a, we have
P(H|E .92-0. .08-0.1 4
(H| )_ﬁ.OQ 0.95+0.08-0.15 873:9.2467

P(H°|E) 17 0.20-0.95+0.80-0.15 527

527
hat P(H|E) =1— —— =0.9024
so that P(H|E) £400 0.90

Usually data relating test results to symptom are of the form P(E|S) and P(E|S°), or equivalent. Data relating the symptom and
the hypothesized condition may go either way. In cases a and b, the data are in the form P(S|H) and P(S|H®), or equivalent,
derived from data showing the fraction of times the symptom is noted when the hypothesized condition is identified. But these data
may go in the opposite direction, yielding P(H|S) and P(H|S®), or equivalent. This is the situation in cases c and d.

Data c: Data are P(E|S), P(E|S¢), P(H|S), P(H|S¢) and P(S).

Example 5.2.4 Evidence for a disease symptom with prior P(S)

When a certain blood syndrome is observed, a given disease is indicated 93 percent of the time. The disease is found without
this syndrome only three percent of the time. A test for the syndrome has probability 0.03 of a false positive and 0.05 of a false
negative. A preliminary examination indicates a probability 0.30 that a patient has the syndrome. A test is performed; the result
is negative. What is the probability the patient has the disease?

Solution
In terms of the notation above, the data are
P(S)=0.30, P(E|S°¢) =0.03, P(E*|S) =0.05
P(H|S)=0.93, and P(H|S) =0.03
We suppose {H, E'} ci |S and ci | S°.
P(H|E®) P(S)P(H|S)P(E®|S)+ P(S°)P(H|S®)P(E*°|S°)
P(H®|E®) - P(S)P(H¢|S)P(E¢|s)+ P(S¢)P(H¢|S¢)P(E¢|S¢)
~0.30-0.93-0.05+0.07-0.03-0.97 429
0.30-0.07-0.054-0.70-0.97-0.97 8246
which implies P(H|E°) =429/8675 ~ 0.05

Case d: This differs from case c only in the fact that a prior probability for H is assumed. In this case, we determine the
corresponding probability for .S by
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() P(H|SY)
PS) = Blas)—p(ase)

and use the pattern of case c.

Example 5.2.5 Evidence for a disease symptom with prior P(h)

Suppose for the patient in Example the physician estimates the odds favoring the presence of the disease are 1/3, so that
P(H) = 0.25. Again, the test result is negative. Determine the posterior odds, given E°.

Solution

First we determine
P(H)—P(H|S°)  0.25-0.03
~ P(H|S)—P(H|S°)  0.93-0.03

=11/45

P(H|ES)  (11/45)-0.93-0.05+(34/45)-0.03-0.97 15009
P(H¢|E°) ~ (11/45)-0.07-0.05+(34/45)-0.97-0.97 320291

=0.047

The result of the test drops the prior odds of 1/3 to approximately 1/21.

Independent evidence for a symptom

In the previous cases, we consider only a single item of evidence for a symptom. But it may be desirable to have a “second
opinion.” We suppose the tests are for the symptom and are not directly related to the hypothetical condition. If the tests are
operationally independent, we could reasonably assume

P(EI‘SEQ) = P(E1|SE20) {El, Ez} ci |S

P(E,|SH)=P(E,|SH®) {E;,H}ci|S

P(E;|SH)=P(E;|SH®) {E»,H}ci|S

P(E1E2|SH) :P(ElEz‘SHC) {El,E2,H} ci |S
This implies { £y, E2, H} ci |S. A similar condition holds for S¢. As for a single test, there are four cases, depending on the tie
between S and H. We consider a "case a" example.

Example 5.2.6 A market survey problem

A food company is planning to market nationally a new breakfast cereal. Its executives feel confident that the odds are at least
3 to 1 the product would be successful. Before launching the new product, the company decides to investigate a test market.
Previous experience indicates that the reliability of the test market is such that if the national market is favorable, there is
probability 0.9 that the test market is also. On the other hand, if the national market is unfavorable, there is a probability of
only 0.2 that the test market will be favorable. These facts lead to the following analysis. Let

H be the event the national market is favorable (hypothesis)
S be the event the test market is favorable (symptom)
The initial data are the following probabilities, based on past experience:
e (a)Prior odds: P(H)/P(H®)=3
o (b) Reliability of the test market: P(S|H) =0.9 P(S|H¢) =0.2
If it were known that the test market is favorable, we should have

P(H|S) _ P(SH)P(H) _09 , ...

P(H¢|S) P(S|H®)P(H®) 0.2
Unfortunately, it is not feasible to know with certainty the state of the test market. The company decision makers engage two

market survey companies to make independent surveys of the test market. The reliability of the companies may be expressed as
follows. Let
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E; be the event the first company reports a favorable test market.
E be the event the second company reports a favorable test market.

On the basis of previous experience, the reliability of the evidence about the test market (the symptom) is expressed in the
following conditional probabilities.

P(E;|S)=0.9 P(E,|S°)=0.3 P(E»|S)=0.8 B(F-|S°)=0.2
Both survey companies report that the test market is favorable. What is the probability the national market is favorable, given
this result?

Solution

The two survey firms work in an “operationally independent” manner. The report of either company is unaffected by the work
of the other. Also, each report is affected only by the condition of the test market— regardless of what the national market may
be. According to the discussion above, we should be able to assume

{El,EQ,H}Ci|Sand{E1,E2,H}CiSC
We may use a pattern similar to that in Example 2, as follows:
P(H) _P(S|H)P(E\|S)P(E|S) +P(S°|H)P(E1|S)P(E|S?)
P(H¢) P(S|H®)P(E\|S)P(E|S)+ P(S¢|H)P(E1|5)P(E|S¢)
0.9-09-0.8+0.1-0.3-0.2 _ 327 ~10.99
0.2-09-0.840.8-0.3-0.2 32
in terms of the posterior probability, we have

327/32 327 32
PH|EE)=——"1——=2"—-1-"= 20091
(H| B Bp) 1+327/32 359 359 - 0Y

\dfrascP(H|E, Ey)P(H¢|Ey Ey) =

We note that the odds favoring H, given positive indications from both survey companies, is 10.2 as compared with the odds
favoring H, given a favorable test market, of 13.5. The difference reflects the residual uncertainty about the test market after
the market surveys. Nevertheless, the results of the market surveys increase the odds favoring a satisfactory market from the
prior 3 to 1 to a posterior 10.2 to 1. In terms of probabilities, the market surveys increase the likelihood of a favorable market
from the original P(H) = 0.75 to the posterior P(H|E1 E3). The conditional independence of the results of the survey makes
possible direct use of the data.

A classification problem

A population consists of members of two subgroups. It is desired to formulate a battery of questions to aid in identifying the
subclass membership of randomly selected individuals in the population. The questions are designed so that for each individual the
answers are independent, in the sense that the answers to any subset of these questions are not affected by and do not affect the
answers to any other subset of the questions. The answers are, however, affected by the subgroup membership. Thus, our treatment
of conditional idependence suggests that it is reasonable to supose the answers are conditionally independent, given the subgroup
membership. Consider the following numerical example.

Example 5.2.7 A classification problem

A sample of 125 subjects is taken from a population which has two subgroups. The subgroup membership of each subject in
the sample is known. Each individual is asked a battery of ten questions designed to be independent, in the sense that the
answer to any one is not affected by the answer to any other. The subjects answer independently. Data on the results are
summarized in the following table:

Table 5.5.
GROUP 1 (69 members) GROUP 2 (56 members)
Q Yes No Unc. Yes No Unc.
1 42 22 5 20 31 5
2 34 27 8 16 37 3
3 15 45 9 33 19 4
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GROUP 1 (69 members) GROUP 2 (56 members)

4 19 44 6 31 18 7
5 22 43 4 23 28 5
6 41 13 15 14 37 5
7 9 52 8 31 17 8
8 40 26 3 13 38 5
9 48 12 9 27 24 5
10 20 37 12 35 16 5

Assume the data represent the general population consisting of these two groups, so that the data may be used to calculate
probabilities and conditional probabilities.

Several persons are interviewed. The result of each interview is a “profile” of answers to the questions. The goal is to classify
the person in one of the two subgroups on the basis of the profile of answers.

The following profiles were taken.

s ,NNYN,YUNUYU
* NNUNYY,UNNY
* LYY, NYUUNNYY

Classify each individual in one of the subgroups.
Solution
Let G; = the event the person selected is from group 1, and G = G = the event the person selected is from group 2. Let
A; = the event the answer to the ith question is “Yes”
B; = the event the answer to the :th question is “No”
C; = the event the answer to the ith question is “Uncertain”
The data are taken to mean P(A;|G1) =42/69, P(B3|G2) =19/56, etc. The profile
Y,N,Y,N,Y,U,N,U,Y. U corresponds to the event £ = A; By A3 B4 A5CsB7CsAgC1g
We utilize the ratio form of Bayes' rule to calculate the posterior odds
P(G\[E) P(E|G) P(Gi)

P(G2|E)  P(E|G:) P(G2)

If the ratio is greater than one, classify in group 1; otherwise classify in group 2 (we assume that a ratio exactly one is so
unlikely that we can neglect it). Because of conditional independence, we are able to determine the conditional probabilities

42-27-15-44-22-15-52-3-48-12

P(E|G1) = 6910 and
29.37-33-18-23-5-17-5-24-5
P(E|Gs) = =

The odds P(G2)/P(G2) = 69/56. We find the posterior odds to be

P(Ci|E) _42-27-15-44.22.15.52-3-48-12  56° .

P(G2|E)  29-37-33-18-23-5-17-5-24-5  g9°
The factor 56°/69° comes from multiplying 56'°/691° by the odds P(G;)/P(G>) = 69/56. Since the resulting posterior
odds favoring Group 1 is greater than one, we classify the respondent in group 1.

While the calculations are simple and straightforward, they are tedious and error prone. To make possible rapid and easy
solution, say in a situation where successive interviews are underway, we have several m-procedures for performing the
calculations. Answers to the questions would normally be designated by some such designation as Y for yes, N for no, and U
for uncertain. In order for the m-procedure to work, these answers must be represented by numbers indicating the appropriate

https://stats.libretexts.org/@go/page/10872


https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10872?pdf

LibreTextsm

columns in matrices A and B. Thus, in the example under consideration, each Y must be translated into a 1, each N into a 2,
and each U into a 3. The task is not particularly difficult, but it is much easier to have MATLAB make the translation as well as
do the calculations. The following two-stage approach for solving the problem works well.

The first m-procedure oddsdf sets up the frequency information. The next m-procedure odds calculates the odds for a given
profile. The advantage of splitting into two m-procedures is that we can set up the data once, then call repeatedly for the
calculations for different profiles. As always, it is necessary to have the data in an appropriate form. The following is an
example in which the data are entered in terms of actual frequencies of response.

% file oddsf4.m

% Frequency data for classification

A = [42 22 5; 34 27 8; 15 45 9; 19 44 6; 22 43 4;
41 13 15; 9 52 8; 40 26 3; 48 12 9; 20 37 12];

B = [20 31 5; 16 37 3; 33 19 4; 31 18 7; 23 28 5;
14 37 5; 31 17 8; 13 38 5; 27 24 5; 35 16 5];

disp('Call for oddsdf')

Example 5.2.8 Classification using frequency data

oddsf4 % Call for data in file oddsf4.m
Call for oddsdf % Prompt built into data file
oddsdf % Call for m-procedure oddsdf

Enter matrix A of frequencies for calibration group 1 A
Enter matrix B of frequencies for calibration group 2 B
Number of questions = 10
Answers per question = 3

Enter code for answers and call for procedure "odds"

y =1; % Use of lower case for easier writing
n=2;

u=3;

odds % Call for calculating procedure

Enter profile matrix E [y nynyunuy u] % First profile
0dds favoring Group 1: 5.845

Classify in Group 1

odds % Second call for calculating procedure
Enter profile matrix E [nnunyyunny] % Second profile
0dds favoring Group 1: 0.2383

Classify in Group 2

odds % Third call for calculating procedure
Enter profile matrix E [y ynyuunnyy] % Third profile
0dds favoring Group 1: 5.05

Classify in Group 1

The principal feature of the m-procedure odds is the scheme for selecting the numbers from the A and B matrices. If E = [
yynyuunnyy , then the coding translates this into the actual numerical matrix

[112133221 1] used internally. Then A(:, E) is a matrix with columns corresponding to elements of E. Thus
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e = A(:,E)

e = 42 42 22 42
34 34 27 34
15 15 45 15

22 22 42 42
27 27 34 34
45 45 15 15
19 19 44 19 44 44 19 19
22 22 43 22 43 43 22 22
41 41 13 41 15 15 13 13 41 41

A OO © 00 O
A OO © 00 O

9 9 52 9 8 8 52 52 9 9
40 40 26 40 3 3 26 26 40 40
48 48 12 48 9 9 12 12 48 48

20 20 37 20 12 12 37 37 20 20

The ¢th entry on the ¢th column is the count corresponding to the answer to the ith question. For example, the answer to the
third question is N (no), and the corresponding count is the third entry in the N (second) column of A. The element on the
diagonal in the third column of A(:, E) is the third element in that column, and hence the desired third entry of the N column.
By picking out the elements on the diagonal by the command diag(A(:,E)), we have the desired set of counts corresponding to
the profile. The same is true for diag(B(:,E)).

Sometimes the data are given in terms of conditional probabilities and probabilities. A slight modification of the procedure
handles this case. For purposes of comparison, we convert the problem above to this form by converting the counts in matrices
A and B to conditional probabilities. We do this by dividing by the total count in each group (69 and 56 in this case). Also,
P(G1) =69/125 =0.552and P(G2) =56/125 = 0.448.

Table 5.6.

GROUP 1 P(G1) = 69/125 GROUP 2 P(G2) = 56/125

Q Yes No Unc. Yes No Unc.

1 0.6087 0.3188 0.0725 0.3571 0.5536 0.0893
2 0.4928 0.3913 0.1159 0.2857 0.6607 0.0536
8 0.2174 0.6522 0.1304 0.5893 0.3393 0.0714
4 0.2754 0.6376 0.0870 0.5536 0.3214 0.1250
5 0.3188 0.6232 0.0580 0.4107 0.5000 0.0893
6 0.5942 0.1884 0.2174 0.2500 0.6607 0.0893
7 0.1304 0.7536 0.1160 0.5536 0.3036 0.1428
8 0.5797 0.3768 0.0435 0.2321 0.6786 0.0893
9 0.6957 0.1739 0.1304 0.4821 0.4286 0.0893
10 0.2899 0.5362 0.1739 0.6250 0.2857 0.0893

These data are in an m-file oddsp4.m. The modified setup m-procedure oddsdp uses the conditional probabilities, then calls for
the m-procedure odds.

Example 5.2.9 Calculation using conditional probability data

oddsp4 % Call for converted data (probabilities)
oddsdp % Setup m-procedure for probabilities
Enter conditional probabilities for Group 1 A

Enter conditional probabilities for Group 2 B

Probability p1 individual is from Group 1 0.552

Number of questions = 10
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Answers per question = 3
Enter code for answers and call for procedure "odds"

y =1;
n=2;
u = 3;
odds

Enter profile matrix E [y nynyunuy uj
0dds favoring Group 1: 5.845
Classify in Group 1

The slight discrepancy in the odds favoring Group 1 (5.8454 compared with 5.8452) can be attributed to rounding of the
conditional probabilities to four places. The presentation above rounds the results to 5.845 in each case, so the discrepancy is
not apparent. This is quite acceptable, since the discrepancy has no effect on the results.

This page titled 5.2: Patterns of Probable Inference is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul

Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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5.3: Problems on Conditional Independence

Exercise 5.3.1

Suppose {A., B} ci |C and {4, B} ci |C° P(C)=0.7, and
P(A|C)=0.4, P(B|C)=0.6, P(A|C®) =0.3, P(B|C®)=0.2
Show whether or not the pair { A., B} is independent.

Answer
P(A)=P(A|C)P(C)+P(A|C°)P(C*) , P(B) = P(B|C)P(C) +P(B|CAc) P(C/o)\), and
P(AB) = P(A|C)P(B|C)P(C)+ P(A|C¢)P(B|C*)P(B|C)P(C®)

PA = 0.4%0.7 + 0.3%0.3

PA = 0.3700

PB = 0.6*0.7 + 0.2*0.3

PB = 0.4800

PA*PB

ans = 0.1776

PAB = 0.4*0.6%0.7 + 0.3%0.2%0.3

PAB = 0.1860 % PAB not equal PA*PB; not independent

Exercise 5.3.2

Suppose {A;, Az, A3} ci |C and ci |C€, with P(C) = 0.4, and
P(4;|C)=0.90,0.85,0.80P(4;|C°) =0.20,0.15,0.20for ¢ = 1, 2, 3, respectively
Determine the posterior odds P(C|A; ASA3)/P(C°| A1 A5 A3).

Answer

P(C|A145435)  P(C)  P(A,C)P(43|C)P(435]C)

P(C°|A14354;)  P(C%) P(A1|0°)P(A3]C%)P(4:]C7)
_0.4 0.9-0.15-0.80 108

= = —— =212
0.6 0.20-0.85-0.20 51

Exercise 5.3.3

Five world class sprinters are entered in a 200 meter dash. Each has a good chance to break the current track record. There is a
thirty percent chance a late cold front will move in, bringing conditions that adversely affect the runners. Otherwise, conditions
are expected to be favorable for an outstanding race. Their respective probabilities of breaking the record are:

¢ Good weather (no front): 0.75, 0.80, 0.65, 0.70, 0.85
¢ Poor weather (front in): 0.60, 0.65, 0.50, 0.55, 0.70

The performances are (conditionally) independent, given good weather, and also, given poor weather. What is the probability
that three or more will break the track record?

Hint. If Bj is the event of three or more, P(B3) = P(B3|W)P (W) + P(Bs|W¢)P(W¥¢).

Answer
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PW = 0.01*[75 80 65 70 85];

Pwc = 0.01*[60 65 50 55 70];

P = ckn(PW,3)*0.7 + ckn(PWc,3)*0.3
P = 0.8353

Exercise 5.3.4

A device has five sensors connected to an alarm system. The alarm is given if three or more of the sensors trigger a switch. If a
dangerous condition is present, each of the switches has high (but not unit) probability of activating; if the dangerous condition
does not exist, each of the switches has low (but not zero) probability of activating (falsely). Suppose D = the event of the
dangerous condition and A = the event the alarm is activated. Proper operation consists of AD\/ A°D¢. Suppose E; = the
event the 4th unit is activated. Since the switches operate independently, we suppose

{E1,Ey,E3,E4, E5} ci|D and ci | D°

Assume the conditional probabilities of the E7, given D, are 0.91, 0.93, 0.96, 0.87, 0.97, and given D¢, are 0.03, 0.02, 0.07, 0.04,
0.01, respectively. If P(D)=0.02, what is the probability the alarm system acts properly? Suggestion. Use the conditional
independence and the procedure ckn.

Answer
P1 = 0.01*[91 93 96 87 97];
P2 = 0.01*[3 2 7 4 1];
P = ckn(P1,3)*0.02 + (1 - ckn(P2,3))*0.98
P = 0.9997

Exercise 5.3.5

Seven students plan to complete a term paper over the Thanksgiving recess. They work independently; however, the likelihood
of completion depends upon the weather. If the weather is very pleasant, they are more likely to engage in outdoor activities
and put off work on the paper. Let E; be the event the ith student completes his or her paper, A; be the event that k¥ or more
complete during the recess, and W be the event the weather is highly conducive to outdoor activity. It is reasonable to suppose
{E;:1<i<7} andci |W*°. Suppose

P(E;|W)=0.4,0.5,0.3,0.7,0.5,0.6, 0.2
P(E;|W¢)=0.7,0.8,0.5,0.9,0.7,0.8,0.5

respectively, and P(W) = 0.8. Determine the probability P(A4) that four our more complete their papers and P(As5) that five
or more finish.

Answer
PW = 0.1*[4 53 7 5 6 2];
Pwc = 0.1*[7 8 5 9 7 8 5];
PA4 = ckn(PW,4)*0.8 + ckn(PWc,4)*0.2
PA4 = 0.4993
PA5 = ckn(PW,5)*0.8 + ckn(PWc,5)*0.2
PA5 = 0.2482
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A manufacturer claims to have improved the reliability of his product. Formerly, the product had probability 0.65 of operating
1000 hours without failure. The manufacturer claims this probability is now 0.80. A sample of size 20 is tested. Determine the
odds favoring the new probability for various numbers of surviving units under the assumption the prior odds are 1 to 1. How
many survivors would be required to make the claim creditable?

Answer

Let E; be the event the probability is 0.80 and E; be the event the probability is 0.65. Assume P(E;)/P(E;) =1.
P(E,|S,=k) P(E\) P(S,=klE)

P(Es|S,=k) P(E) P(S,=k|E)

k = 1:20;
odds = ibinom(20,0.80,k)./ibinom(20,0.65,k);
disp([k;odds]")

13.0000 0.2958
14.0000 0.6372
15.0000 1.3723 % Need at least 15 or 16 successes
16.0000 2.9558
17.0000 6.3663

18.0000 13.7121
19.0000 29.5337
20.0000 63.6111

Exercise 5.3.7

A real estate agent in a neighborhood heavily populated by affluent professional persons is working with a customer. The agent
is trying to assess the likelihood the customer will actually buy. His experience indicates the following: if H is the event the
customer buys, S is the event the customer is a professional with good income, and E is the event the customer drives a
prestigious car, then

P(S)=0.7 P(S|H)=0.90 P(S|H¢) =0.2 P(E|S) =0.95 P(E|S°) =0.25
Since buying a house and owning a prestigious car are not related for a given owner, it seems reasonable to suppose

P(E|HS)=P(E|H°S) and P(E|HS®) = P(E|H*°S°). The customer drives a Cadillac. What are the odds he will buy a
house?

Answer
Assumptions amount to { H, E'} ci | S and ci |S°.
P(H|S) P(H)P(S|H)
P(H[S) ~ P(H*)P(S|H")
P(S)=P(H)P(S|H)+[1—P(H)|P(S|H®) which implies
P(S)—P(S|H®) P(H|S) 5 09 45

P(H) = = hat —————~ = 2. = — =
(H) 5/7 so that PES) 2 02 4

~ P(S|H)—P(S|H¢)

https://stats.libretexts.org/@go/page/10873



https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10873?pdf

LibreTextsw

In deciding whether or not to drill an oil well in a certain location, a company undertakes a geophysical survey. On the basis of
past experience, the decision makers feel the odds are about four to one favoring success. Various other probabilities can be
assigned on the basis of past experience. Let

o H be the event that a well would be successful
e S be the event the geological conditions are favorable
o E be the event the results of the geophysical survey are positive

The initial, or prior, odds are P(H)/P(H®) = 4. Previous experience indicates

P(S|H) =0.9 P(S|H®) =0.20 P(E|S) =0.95 P(E|S¢) =0.10

Make reasonable assumptions based on the fact that the result of the geophysical survey depends upon the geological formations
and not on the presence or absence of oil. The result of the survey is favorable. Determine the posterior odds P(H|E)/P(H¢|E).

Answer
P(H|E) _ P(H) P(S|H)P(E|S)+P(S°|H)P(E|S°)
P(H¢|E) P(Hc) P(S|H¢)P(E|S)+P(S¢|H¢)P(E|S¢)
0.90-0.95+0.10-0.10

=4 0200951080 010 L2848

Exercise 5.3.9

A software firm is planning to deliver a custom package. Past experience indicates the odds are at least four to one that it will
pass customer acceptance tests. As a check, the program is subjected to two different benchmark runs. Both are successful.
Given the following data, what are the odds favoring successful operation in practice? Let

e H be the event the performance is satisfactory

o S be the event the system satisfies customer acceptance tests
o FE); be the event the first benchmark tests are satisfactory.

¢ [E be the event the second benchmark test is ok.

Under the usual conditions, we may assume {H, E, E»} ci |.S and ci |S°. Reliability data show
P(H|S) =0.95, P(H|S°) =0.45
P(E1|S) =0.90 P(E,|S¢) = 0.25 P(E|S) = 0.95 P(Ey|S¢) = 0.20
Determine the posterior odds P(H|Ey Es)/ P(H€|E1 E3).

Answer
P(H|E1E2) _ (HE1E2 ) P(HElEQSc)
P(HC|E1E2) P(HcElEz,S') (HCElEQSC)
_ _P(S)P(H|S)P(E1|S)P(E|S) + P(S°)P(H|S°)P(Eq|S°)P(E|S°)
P(S)P(H¢|S)P(E1|S)P(E>|S) +P(S¢)P(H¢|S¢)P(E1|S¢)P(E>|S°)
_ 0.80-0.95-0.90-0.95+0.20-0.45-0.25-0.20
"~ 0.80-0.05-0.90-0.95+0.20-0.55-0.25-0.20

=16.64811

Exercise 5.3.10

A research group is contemplating purchase of a new software package to perform some specialized calculations. The systems
manager decides to do two sets of diagnostic tests for significant bugs that might hamper operation in the intended application.
The tests are carried out in an operationally independent manner. The following analysis of the results is made.

e H = the event the program is satisfactory for the intended application
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e S = the event the program is free of significant bugs

e F; = the event the first diagnostic tests are satisfactory

o E, = the event the second diagnostic tests are satisfactory

Since the tests are for the presence of bugs, and are operationally independent, it seems reasonable to assume { H, Ey, F»} ci
|S and {H, E1, E>} ci |S°. Because of the reliability of the software company, the manager thinks P(S) =0.85. Also,

experience suggests

P(H|S) = 0.95 P(E1|S) = 0.90 P(E-|S) = 0.95

P(H|S) = 0.30

P(E1|S¢) = 0.20 P(E2|5°) = 0.25

Determine the posterior odds favoring H if results of both diagnostic tests are satisfactory.

Answer
P(H|E1E2) B P(HE1E25) +P(HE1E2SC)

P(HC|E1E2) P(HCE1E25)+P(HCE1EQSC)
P(HE\E,S) = P(S)P(H|S)P(E\|SH)P(E;|SHE,) = P(S)P(H|S)P(E\|S)P(E,|S)

with similar expressions for the other terms.
P(H|E\E») ~0.85-0.95-0.90-0.95+0.15-0.30-0.25-0.20 16.6555
P(H¢|E1 E») ©0.85-0.05-0.90-0.95+0.15-0.70-0.25-0.20

Exercise 5.3.11

A company is considering a new product now undergoing field testing. Let

e H be the event the product is introduced and successful
e S be the event the R&D group produces a product with the desired characteristics.

o E be the event the testing program indicates the product is satisfactory
The company assumes P(S) = 0.9 and the conditional probabilities
P(H|S)=0.90 P(H|S°)=0.10 P(E|S)=0.95 P(E|S°) =0.15

Since the testing of the merchandise is not affected by market success or failure, it seems reasonable to suppose { H, E'} ci | S and

ci |.S¢. The field tests are favorable. Determine P(H|E)/P(H¢|E).

Answer
P(H|E)  P(S)P(H|S)P(E|S)+ P(5°)P(H|S°)P(E|S°)
P(H¢|E) P(S)P(H¢|S)P(E|S)+ P(S¢)P(H¢|S¢)P(E|S°)
0.90-0.90-0.95+0.10-0.10-0.15
©0.90-0.10-0.95+0.10-0.90-0.15 =7.7879

Exercise 5.3.12

Martha is wondering if she will get a five percent annual raise at the end of the fiscal year. She understands this is more likely
if the company's net profits increase by ten percent or more. These will be influenced by company sales volume. Let

e H =the event she will get the raise

o S = the event company profits increase by ten percent or more

o FE = the event sales volume is up by fifteen percent or more

Since the prospect of a raise depends upon profits, not directly on sales, she supposes {H, E'} ci |S and {H, E} ci | S°. She
thinks the prior odds favoring suitable profit increase is about three to one. Also, it seems reasonable to suppose

P(H|S) = 0.80 P(H|S¢) =0.10 P(E|S) = 0.95 P(E|S¢) =0.10
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End of the year records show that sales increased by eighteen percent. What is the probability Martha will get her raise?

Answer

P(H|E)  P(S)P(H|S)P(E|S)+ P(5°)P(H|S°)P(E|S°¢)
P(H¢|E) P(S)P(H¢|S)P(E|S)+ P(S¢)P(H¢|S°)P(E|S¢)
~0.75-0.80-0.95+0.25-0.10-0.10
0.75-0.20-0.95+0.25-0.90-0.10

=3.4697

Exercise 5.3.13

A physician thinks the odds are about 2 to 1 that a patient has a certain disease. He seeks the “independent” advice of three
specialists. Let H be the event the disease is present, and A, B, Cbe the events the respective consultants agree this is the case.
The physician decides to go with the majority. Since the advisers act in an operationally independent manner, it seems
reasonable to suppose { A, B, C'} ci |H and ci | H®. Experience indicates

P(A|H)=0.8, P(B|H)=0.7, P(C|H)—0.75
P(A°|H®) =0.85, P(B°|H®)=0.8, P(C°|H®) =0.7
What is the probability of the right decision (i.e., he treats the disease if two or more think it is present, and does not if two or

more think the disease is not present)?

Answer

PH = 0.01*[80 70 75];
PHC = 0.01*[85 80 70];

pH = 2/3;
P = ckn(PH,2)*pH + ckn(PHc,2)*(1 - pH)
P = 0.8577

Exercise 5.3.14

A software company has developed a new computer game designed to appeal to teenagers and young adults. It is felt that there
is good probability it will appeal to college students, and that if it appeals to college students it will appeal to a general youth
market. To check the likelihood of appeal to college students, it is decided to test first by a sales campaign at Rice and
University of Texas, Austin. The following analysis of the situation is made.

e H = the event the sales to the general market will be good
e s = the event the game appeals to college students

e F;=the event the sales are good at Rice

o FE, = the event the sales are good at UT, Austin

Since the tests are for the reception are at two separate universities and are operationally independent, it seems reasonable to
assume {H, Ey,Es} ci |S and {H, E1, E>} ci |S°. Because of its previous experience in game sales, the managers think
P(S) =0.80. Also, experience suggests

P(H|S) = 0.95 P(E4|S) = 0.90 P(E,|S) = 0.95
P(H|S°) = 0.30 P(E4|S¢) = 0.20 P(E,|S¢) = 0.25

Determine the posterior odds favoring H if sales results are satisfactory at both schools.

Answer
P(H|E\E») B P(HE,E»S)+ P(HElEQSC)

P(HC|E1E2) P(HCElEzs)-‘rP(HCElEQSC)
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__P(S)P(H|S)P(E:|S)P(B|S) + P(S°)P(H|S*)P(Ey|S°)P(Ey|S°)
~ P(S)P(H*|S)P(E4|S)P(B:|S) + P(S*)P(H*|S9)P(Er|S*)P(E3|S°)
- 0.80-0.95-0.90-0.95+0.20-0.30-0.20-0.25
~0.80-0.05-0.90-0.95+0.20-0.70-0.20-0.25

=15.8447

Exercise 5.3.15

In a region in the Gulf Coast area, oil deposits are highly likely to be associated with underground salt domes. If H is the event
that an oil deposit is present in an area, and S is the event of a salt dome in the area, experience indicates P(S|H) = 0.9 and
P(S|H¢) =1. Company executives believe the odds favoring oil in the area is at least 1 in 10. It decides to conduct two
independent geophysical surveys for the presence of a salt dome. Let 2 — 1, E5 be the events the surveys indicate a salt dome.
Because the surveys are tests for the geological structure, not the presence of oil, and the tests are carried out in an
operationally independent manner, it seems reasonable to assume {H, E1, E»} ci |S and ci |S€. Data on the reliability of the
surveys yield the following probabilities

P(E4|S) =0.95 P(E;|S°) = 0.05 P(E|S) = 0.90 P(E,|S¢) =0.10

P(H|E\ E,)

. Should the well be drilled?
P(H¢|E\E,)

Determine the posterior odds

Answer
P(H|E1E2) B P(HE1E25’) +P(HE1E2SC)

P(H|E\E;)  P(H°E,E,S) { P(H°E, E,5°)
P(HE\E»S) = P(H)P(S|H)P(E\|SH)P(E;|SHE:) = P(H)P(S|H)P(E:|S)P(E|S)

with similar expressions for the other terms.

P(H|E1E) 0.9-0.95-0.90+0.10-0.05-0.10

1
P(H¢|E\E,) 10 0.1-0.95-0.90+0.90-0.05-0.10

=0.8556

Exercise 5.3.16

A sample of 150 subjects is taken from a population which has two subgroups. The subgroup membership of each subject in
the sample is known. Each individual is asked a battery of ten questions designed to be independent, in the sense that the
answer to any one is not affected by the answer to any other. The subjects answer independently. Data on the results are
summarized in the following table:

GROUP 1 (84 members) GROUP 2 (66 members)

Q Yes No Unc Yes No Unc

1 51 26 7 27 34 5

2 42 32 10 19 43 4

3 19 54 11 39 22 5

4 24 53 7 38 19 9

5 27 52 5 28 33 5

6 49 19 16 19 41 6

7 16 59 9 37 21 8

8 47 32 5 19 42 5

9 55 17 12 27 33 6

10 24 53 7 39 21 6
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probabilities and conditional probabilities.

the person in one of the two subgroups
For the following profiles, classify each individual in one of the subgroups

Lynynyunuy.u
ii.n,n,u,n,y,yunny

iil. y,y,n,y,u,u,n,0,y,y

Answer

Assume the data represent the general population consisting of these two groups, so that the data may be used to calculate

Several persons are interviewed. The result of each interview is a “profile” of answers to the questions. The goal is to classify

% file npr05_16.m
% Data for Exercise 5.3.16.

A= [5126 7; 42 32 10; 19 54 11; 24 53 7; 27 52 5;
49 19 16; 16 59 9; 47 32 5; 55 17 12; 24 53 7];
B=[27 34 5; 19 43 4; 39 22 5; 38 19 9; 28 33 5;

19 41 6; 37 21 8; 19 42 5; 27 33 6; 39 21 6];

disp('Call for oddsdf')

npro5_16
Call for oddsdf
oddsdf

Enter matrix A of frequencies for calibration group 1 A
Enter matrix B of frequencies for calibration group 2 B
Number of questions = 10
Answers per question = 3

Enter code for answers and call for procedure "odds"

y =1;
n=2;
u=3;
odds

Enter profile matrix E [y ny nyunuy u]
0dds favoring Group 1: 3.743

Classify in Group 1

odds

Enter profile matrix E [nnunyyunny]
0dds favoring Group 1: 0.2693

Classify in Group 2

odds

Enter profile matrix E [y ynyuunnyy]
0dds favoring Group 1: 5.286

Classify in Group 1

The data of Exercise 5.3.16., above, are converted to conditional probabilities and probabilities, as follows (probabilities are

rounded to two decimal places).

GROUP 1 P(G,) = 0.56 |GROUP2P«%):0A4
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Answer

Q Yes No Unc Yes No Unc
1 0.61 0.31 0.08 0.41 0.51 0.08
2 0.50 0.38 0.12 0.29 0.65 0.06
3 0.23 0.64 0.13 0.59 0.33 0.08
4 0.29 0.63 0.08 0.57 0.29 0.14
5 0.32 0.62 0.06 0.42 0.50 0.08
6 0.58 0.23 0.19 0.29 0.62 0.09
7 0.19 0.70 0.11 0.56 0.32 0.12
8 0.56 0.38 0.06 0.29 0.63 0.08
9 0.65 0.20 0.15 0.41 0.50 0.09
10 0.29 0.63 0.08 0.59 0.32 0.09
For the following profiles classify each individual in one of the subgroups.
Lynynyunuyu
ii.n,n,u,n,y,yunny
iii. y,y,n,y,u,u,n,0,Vy,y

npros5_17
% file nprO5_17.m

% Data for Exercise 5.3.17.
PGl = 84/150;

PG2 = 66/125;

A = [0.61 0.31 0.08
0.50 0.38 0.12
0.23 0.64 0.13
0.29 0.63 0.08
0.32 0.62 0.06
0.58 0.23 0.19
0.19 0.70 0.11
0.56 0.38 0.06
0.65 0.20 0.15
0.29 0.63 0.08];

B = [0.41 0.51 0.08
0.29 0.65 0.06
0.59 0.33 0.08
0.57 0.29 0.14
0.42 0.50 0.08
0.29 0.62 0.09
0.56 0.32 0.12
0.29 0.64 0.08
0.41 0.50 0.09
0.59 0.32 0.09];

disp('Call for oddsdp')
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Call for oddsdp
oddsdp
Enter matrix A of conditional probabilities for Group 1 A
Enter matrix B of conditional probabilities for Group 2 B
Probability p1 an individual is from Group 1 PG1
Number of questions = 10
Answers per question = 3
Enter code for answers and call for procedure "odds"

y =1;
n =2,
u=3;
odds

Enter profile matrix E [y nynyunuy u]
0dds favoring Group 1: 3.486

Classify in Group 1

odds

Enter profile matrix E [nnunyyunny]
0dds favoring Group 1: 0.2603

Classify in Group 2

odds

Enter profile matrix E [y ynyuunnyy]
0dds favoring Group 1: 5.162

Classify in Group 1

This page titled 5.3: Problems on Conditional Independence is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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6.1: Random Variables and Probabilities

Probability associates with an event a number which indicates the likelihood of the occurrence of that event on any trial. An event
is modeled as the set of those possible outcomes of an experiment which satisfy a property or proposition characterizing the event.

Often, each outcome is characterized by a number. The experiment is performed. If the outcome is observed as a physical quantity,
the size of that quantity (in prescribed units) is the entity actually observed. In many nonnumerical cases, it is convenient to assign
a number to each outcome. For example, in a coin flipping experiment, a “head” may be represented by a 1 and a “tail” by a 0. In a
Bernoulli trial, a success may be represented by a 1 and a failure by a 0. In a sequence of trials, we may be interested in the number
of successes in a sequence of n component trials. One could assign a distinct number to each card in a deck of playing cards.
Observations of the result of selecting a card could be recorded in terms of individual numbers. In each case, the associated number
becomes a property of the outcome.

Random variables as functions

We consider in this chapter real random variables (i.e., real-valued random variables). In the chapter on Random Vectors and Joint
Distributions, we extend the notion to vector-valued random quantites. The fundamental idea of a real random variable is the
assignment of a real number to each elementary outcome w in the basic space 2. Such an assignment amounts to determining a
function X, whose domain is {2 and whose range is a subset of the real line R. Recall that a real-valued function on a domain (say
an interval I on the real line) is characterized by the assignment of a real number y to each element x (argument) in the domain.
For a real-valued function of a real variable, it is often possible to write a formula or otherwise state a rule describing the
assignment of the value to each argument. Except in special cases, we cannot write a formula for a random variable X. However,
random variables share some important general properties of functions which play an essential role in determining their usefulness.

Mappings and inverse mappings

There are various ways of characterizing a function. Probably the most useful for our purposes is as a mapping from the domain €2
to the codomain R. We find the mapping diagram of Figure 1 extremely useful in visualizing the essential patterns. Random
variable X, as a mapping from basic space € to the real line R, assigns to each element w a value ¢ = X (w) . The object point w is
mapped, or carried, into the image point ¢. Each w is mapped into exactly one ¢, although several w may have the same image
point.

: \

L

b= X{w)
Figure 6.1.1. The basic mapping diagram t = X (w) .
Associated with a function X as a mapping are the inverse mapping X ! and the inverse images it produces. Let M be a set of
numbers on the real line. By the inverse image of M under the mapping X, we mean the set of all those w € € which are mapped

into M by X (see Figure 2). If X does not take a value in M, the inverse image is the empty set (impossible event). If M includes
the range of X, (the set of all possible values of X), the inverse image is the entire basic space 2. Formally we write

X (M) = {w: X(w) € M}

Now we assume the set X (M), a subset of 2, is an event for each M. A detailed examination of that assertion is a topic in
measure theory. Fortunately, the results of measure theory ensure that we may make the assumption for any X and any subset M of
the real line likely to be encountered in practice. The set X ~! (M) is the event that X takes a value in M. As an event, it may be
assigned a probability.
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[

1 1 1 1 1

Figure 6.1.2. E is the inverse image X 1 (M).

Example 6.1.1 Some illustrative examples

1. I where FE is an event with probability p. Now X takes on only two values, 0 and 1. The event that X take on the value 1
is the set

{w: X(w)=1}=X"({1})=E

so that P({w: X(w) =1}) = p. This rather ungainly notation is shortened to P(X = 1) = p . Similarly, . Consider any set
M. Tf neither 1 nor 0 is in M, then X ~1 (M) = () If 0 is in M, but 1 is not, then X ~! (M) = E¢ If 1 is in M, but 0 is not,
then X 1 (M) = E Ifboth 1 and 0 are in M, then X ~! (M) = Q In this case the class of all events X ~! (M) consists of
event E, its complement E°, the impossible event ), and the sure event Q.

2. Consider a sequence of n Bernoulli trials, with probability p of success. Let .S, be the random variable whose value is the
number of successes in the sequence of n component trials. Then, according to the analysis in the section "Bernoulli Trials
and the Binomial Distribution”

P(S, =k)=C(n,k)p* (1 —p)"™* 0<k<n

Before considering further examples, we note a general property of inverse images. We state it in terms of a random variable,
which maps € to the real line (see Figure 3).

Preservation of set operations

Let X be a mapping from (2 to the real line R. If M, M;, i € J are sets of real numbers, with respective inverse images F, E;, then
X (M) =B, X (Uies Mi) =U,c; Bi and X1 (Niy Mi) =iy Ei

Examination of simple graphical examples exhibits the plausibility of these patterns. Formal proofs amount to careful reading of

the notation. Central to the structure are the facts that each element w is mapped into only one image point ¢t and that the inverse
image of M is the set of all those w which are mapped into image points in M.

Figure 6.1.3. Preservation of set operations by inverse images.

An easy, but important, consequence of the general patterns is that the inverse images of disjoint M, N are also disjoint. This
implies that the inverse of a disjoint union of M; is a disjoint union of the separate inverse images.

Example 6.1.2 Events determined by a random variable

Consider, again, the random variable S,, which counts the number of successes in a sequence of n Bernoulli trials. Let n = 10
and p = 0.33. Suppose we want to determine the probability P(2 < S19 < 8).Let Ay = {w: S19(w) =k} , which we usually
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shorten to Ay = {S190 =k} . Now the A; form a partition, since we cannot have w € Ay and w € Ay, j#k (i.e., for any w,
we cannot have two values for S, (w)). Now,

{2 < St SS} :A3vA4VA5VA6VA7VA8

since S takes on a value greater than 2 but no greater than 8 iff it takes one of the integer values from 3 to 8. By the additivity of
probability,

Mass transfer and induced probability distribution

Because of the abstract nature of the basic space and the class of events, we are limited in the kinds of calculations that can be
performed meaningfully with the probabilities on the basic space. We represent probability as mass distributed on the basic space
and visualize this with the aid of general Venn diagrams and minterm maps. We now think of the mapping from 2 to R as a
producing a point-by-point transfer of the probability mass to the real line. This may be done as follows:

To any set M on the real line assign probability mass Px (M) = P(X 1 (M))
It is apparent that Px (M) > 0 and Px(R) = P(2) = 1. And because of the preservation of set operations by the inverse mapping
Px(ViZy Mi) = P(X7H(VE M) = P(VE X1 (M) = 3075 P(XH(M;)) = 3275 Px(M;)

This means that Py has the properties of a probability measure defined on the subsets of the real line. Some results of measure
theory show that this probability is defined uniquely on a class of subsets of R that includes any set normally encountered in
applications. We have achieved a point-by-point transfer of the probability apparatus to the real line in such a manner that we can
make calculations about the random variable X. We call Px the probability measure induced by X. Its importance lies in the fact
that P(X € M) = Px(M) . Thus, to determine the likelihood that random quantity X will take on a value in set M, we determine
how much induced probability mass is in the set M. This transfer produces what is called the probability distribution for X. In the
chapter "Distribution and Density Functions", we consider useful ways to describe the probability distribution induced by a random
variable. We turn first to a special class of random variables.

Simple random variables

We consider, in some detail, random variables which have only a finite set of possible values. These are called simple random
variables. Thus the term “simple” is used in a special, technical sense. The importance of simple random variables rests on two
facts. For one thing, in practice we can distinguish only a finite set of possible values for any random variable. In addition, any
random variable may be approximated as closely as pleased by a simple random variable. When the structure and properties of
simple random variables have been examined, we turn to more general cases. Many properties of simple random variables extend
to the general case via the approximation procedure.

Representation with the aid of indicator functions

In order to deal with simple random variables clearly and precisely, we must find suitable ways to express them analytically. We do
this with the aid of indicator functions. Three basic forms of representation are encountered. These are not mutually exclusive
representatons.

Standard or canonical form, which displays the possible values and the corresponding events. If X takes on distinct values
{t1, %2, - -, t, } with respective probabilities {p1, pa, - - -, Pn }

andif A; ={X =¢;},for1 <i<m,then {4y, As,---, A,} is a partition (i.e., on any trial, exactly one of these events occurs).
We call this the partition determined by (or, generated by) X. We may write

X=t1IA1 +t2.[A2 —|—---+tnIA" :Z?:l tiIAi

If X(w)=t;, then w € A;, so that I4,(w) =1 and all the other indicator functions have value zero. The summation expression
thus picks out the correct value ¢;. This is true for any ¢;, so the expression represents X (w)for all w. The distinct set { A, B, C'} of
the values and the corresponding probabilities {p1, ps, - - -, pn } constitute the distribution for X. Probability calculations for X are
made in terms of its distribution. One of the advantages of the canonical form is that it displays the range (set of values), and if the
probabilities { A, B, C, D} are known, the distribution is determined. Note that in canonical form, if one of the ¢; has value zero,
we include that term. For some probability distributions it may be that P(A;) =0 for one or more of the #;. In that case, we call
these values null values, for they can only occur with probability zero, and hence are practically impossible. In the general
formulation, we include possible null values, since they do not affect any probabilitiy calculations.
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Example 6.1.3 Successes in Bernoulli trials

As the analysis of Bernoulli trials and the binomial distribution shows (see Section 4.8), canonical form must be

Sn =Yk kla, with P(Ax) = C(n, k)p* (1 —p)" *,0 <k <n

For many purposes, both theoretical and practical, canonical form is desirable. For one thing, it displays directly the range (i.e., set
of values) of the random variable. The distribution consists of the set of values {t; : 1 <k <n} paired with the corresponding set
of probabilities {py, : 1 <k <n}, where p,, = P(Ay) = P(X =) .
Simple random variable X may be represented by a primitive form
X=cilo, +cole,+- - emlc, , where {C;:1<j<m} isa partition
Remarks
o If{C;:1<j<m} isadisjoint class, but Jj.; C; # (2, we may append the event Cp,s1 = [UJj2; C;|° and assign value zero
to it.
e We say a primitive form, since the representation is not unique. Any of the C; may be partitioned, with the same value ¢;

associated with each subset formed.
o Canonical form is a special primitive form. Canonical form is unique, and in many ways normative.

Example 6.1.4 Simple random variables in primitive form

e A wheel is spun yielding, on a equally likely basis, the integers 1 through 10. Let C; be the event the wheel stops at ,
1 <4 <10. Each P(C;) = 0.1. If the numbers 1, 4, or 7 turn up, the player loses ten dollars; if the numbers 2, 5, or 8 turn
up, the player gains nothing; if the numbers 3, 6, or 9 turn up, the player gains ten dollars; if the number 10 turns up, the
player loses one dollar. The random variable expressing the results may be expressed in primitive form as

X = —10I¢, +0Ig, + 101, — 10I¢, +0Ig, +10Ig, — 10Ig, +0Ig, + 101, — I,

e A store has eight items for sale. The prices are $3.50, $5.00, $3.50, $7.50, $5.00, $5.00, $3.50, and $7.50, respectively. A
customer comes in. She purchases one of the items with probabilities 0.10, 0.15, 0.15, 0.20, 0.10 0.05, 0.10 0.15. The
random variable expressing the amount of her purchase may be written

X =3.5I¢, +5.0I¢, +3.51¢, +7.5I¢, +5.0I¢, +5.0I¢, +3.51¢, +7.51¢,

We commonly have X represented in affine form, in which the random variable is represented as an affine combination of indicator
functions (i.e., a linear combination of the indicator functions plus a constant, which may be zero).

X =co+elp +ealp, +- - +enlp, =co+ 327" ¢jlE,

In this form, the class {E1, Es, - - -, B, } is not necessarily mutually exclusive, and the coefficients do not display directly the set
of possible values. In fact, the E; often form an independent class. Remark. Any primitive form is a special affine form in which
co =0 and the E; form a partition.

Example 6.1.5

Consider, again, the random variable S,, which counts the number of successes in a sequence of n Bernoulli trials. If E; is the
event of a success on the ith trial, then one natural way to express the count is

Sp=>1 1g,withP(E)=pl<i<n

This is affine form, with ¢ =0 and ¢; =1 for 1 <4 <n. In this case, the E; cannot form a mutually exclusive class, since
they form an independent class.

Events generated by a simple random variable: canonical form

We may characterize the class of all inverse images formed by a simple random X in terms of the partition it determines. Consider
any set M of real numbers. If ¢; in the range of X is in M, then every point w € A; maps into ¢;, hence into M. If the set J is the
set of indices ¢ such that ¢; € M, then

Only those points w in Ay = \/;c; A; map into M.
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Hence, the class of events (i.e., inverse images) determined by X consists of the impossible event ), the sure event §2, and the
union of any subclass of the A; in the partition determined by X.

Example 6.1.6 Events determined by a simple random variable

Suppose simple random variable X is represented in canonical form by
X=-2I,—Ig+0Ic+3Ip
Then the class { A, B, C, D} is the partition determined by X and the range of X is {—2, —1,0,3}.

1. If M is the interval [-2, 1], the the values -2, -1, and 0 are in M and X *(M) = A\/B\/C.

2. If M is the set (-2, -1] U [1, 5], then the values -1, 3 are in M and X (M) =B\/ D.

3. The event {X <1} = {X € (o0, 1]} = X} (M), where M = (—o0, 1]. Since values -2, -1, 0 are in M, the event
{X<1}=AVYB\C.

Determination of the distribution

Determining the partition generated by a simple random variable amounts to determining the canonical form. The distribution is
then completed by determining the probabilities of each event Ay, = {X =1t;} .

From a primitive form

Before writing down the general pattern, we consider an illustrative example.

Example 6.1.7 The distribution from a primitive form

Suppose one item is selected at random from a group of ten items. The values (in dollars) and respective probabilities are

cj 2.00 1.50 2.00 2.50 1.50 1.50 1.00 2.50 2.00 1.50

P(Cj) 0.08 0.11 0.07 0.15 0.10 0.09 0.14 0.08 0.08 0.10

By inspection, we find four distinct values: t; = 1.00, ¢ = 1.50, t3 =2.00, and ¢4 = 2.50. The value 1.00 is taken on for
w € Cq,sothat Ay = C7 and P(A;) = P(C;) =0.14. Value 1.50 is taken on for w € Cy, C5, Cs, Cyg so that

Ay =C2 \/ Cs\/ Cg \/ Cyp and P(Ay) = P(C2)+ P(Cs) + P(Cs) + P(Ch9) =0.40

Similarly
P(Ag) = P(Cl) +P(03) +P(Cg) =0.23 and P(A4) = P(C4) +P(Cg) =0.25

The distribution for X is thus

k 1.00 1.50 2.00 2.50

P(X = k) 0.14 0.40 0.23 0.23

The general procedure may be formulated as follows:

If X = 27:1 ¢;l., , we identify the set of distinct values in the set {c;: 1 <j<m} . Suppose these are t; <ty <--- <t, . For
any possible value ¢; in the range, identify the index set J; of those j such that ¢; = ¢; Then the terms

ZJi Cjch =1 ZJi IC]. = tiIAi , where 4; = Vj € J,C] ,
and
P(A;)=P(X =t)=>,c; P(C))
Examination of this procedure shows that there are two phases:

e Select and sort the distinct values ¢1,t2, - -, &,
« Add all probabilities associated with each value ¢; to determine P (X =t;)

We use the m-function csort which performs these two operations (see Example 4 from "Minterms and MATLAB Calculations").

https://stats.libretexts.org/@go/page/10857



https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10857?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/02%3A_Minterm_Analysis/2.02%3A_Minterms_and_MATLAB_Calculations

LibreTextsw
Example 6.1.8 Use of csort on Example 6.1.7

> C = [2.00 1.50 2.00 2.50 1.50 1.50 1.00 2.50 2.00 1.50]; % Matrix of c_j
>> pc = [0.08 0.11 0.07 0.15 0.10 0.09 0.14 0.08 0.08 0.10]; % Matrix of P(C_j)
>> [X,PX] = csort(C,pc); % The sorting and consolidating operation
>> disp([X;PX]") % Display of results
1.0000 0.1400
1.5000 0.4000
2.0000 0.2300
2.5000 0.2300

For a problem this small, use of a tool such as csort is not really needed. But in many problems with large sets of data the m-
function csort is very useful.

From affine form
Suppose X is in affine form,
X=cy+cilg +colg, +---+cnlg, =c +Z;-n:1 cilEg;

We determine a particular primitive form by determining the value of X on each minterm generated by the class
{E;:1<j<m} .Wedo this in a systematic way by utilizing minterm vectors and properties of indicator functions.

X is constant on each minterm generated by the class { E1, Es, - - -, E,, } since, as noted in the treatment of the minterm expansion,
each indicator function I, is constant on each minterm. We determine the value s; of X on each minterm M;. This describes X in
a special primitive form

X =215y, with P(M;) =p; ,0<i<2m—1
We apply the csort operation to the matrices of values and minterm probabilities to determine the distribution for X.

We illustrate with a simple example. Extension to the general case should be quite evident. First, we do the problem “by hand” in
tabular form. Then we use the m-procedures to carry out the desired operations.

Example 6.1.9 Finding the distribution from affine form

A mail order house is featuring three items (limit one of each kind per customer). Let

e F; = the event the customer orders item 1, at a price of 10 dollars.
e E, = the event the customer orders item 2, at a price of 18 dollars.
o FE5 = the event the customer orders item 3, at a price of 10 dollars.

There is a mailing charge of 3 dollars per order.

We suppose { E1, Es, Es} is independent with probabilities 0.6, 0.3, 0.5, respectively. Let X be the amount a customer who
orders the special items spends on them plus mailing cost. Then, in affine form,

X =105, +18Ig, +10Ig, +3

We seek first the primitive form, using the minterm probabilities, which may calculated in this case by using the m-function
minprob.

1. To obtain the value of X on each minterm we

o Multiply the minterm vector for each generating event by the coefficient for that event
o Sum the values on each minterm and add the constant

To complete the table, list the corresponding minterm probabilities.

7 10 IE1 18 IE2 10 IE3 C s—1 pm;

0 0 0 0 3 3 0.14
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1 0 0 10 3 13 0.14
2 0 18 0 3 21 0.06
3 0 18 10 3 31 0.06
4 10 0 0 3 13 0.21
5 10 0 10 3 23 0.21
6 10 18 0 3 31 0.09
7 10 18 10 3 41 0.09

We then sort on the s;, the values on the various M;, to expose more clearly the primitive form for X.

“Primitive form” Values

[ S; pm;
0 B 0.14
1 13 0.14
4 13 0.21
2 21 0.06
5 23 0.21
3 31 0.06
6 31 0.09
7 41 0.09

The primitive form of X is thus
\(X=3_{M_0} +12[_{M_1} + 131_{M_4} + 211_{M_2} + 23I_{M_5} + 311_{M_3} + 311_{M_6} + 411_{M_7}

We note that the value 13 is taken on on minterms M; and My. The probability X has the value 13 is thus p(1) +p(4).
Similarly, X has value 31 on minterms M3 and M.

e To complete the process of determining the distribution, we list the sorted values and consolidate by adding together the
probabilities of the minterms on which each value is taken, as follows:

k 172 Pk

1 3 0.14

2 13 0.14 + 0.21 =0.35
3 21 0.06

4 23 0.21

5 31 0.06 + 0.09 = 0.15
6 41 0.09

The results may be put in a matrix X of possible values and a corresponding matrix PX of probabilities that X takes on
each of these values. Examination of the table shows that

X =1[31321233141]and PX = [0.14 0.35 0.06 0.21 0.15 0.09]

Matrices X and PX describe the distribution for X.

An m-procedure for determining the distribution from affine form

We now consider suitable MATLAB steps in determining the distribution from affine form, then incorporate these in the m-
procedure canonic for carrying out the transformation. We start with the random variable in affine form, and suppose we have
available, or can calculate, the minterm probabilities.
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The procedure uses mintable to set the basic minterm vector patterns, then uses a matrix of coefficients, including the
constant term (set to zero if absent), to obtain the values on each minterm. The minterm probabilities are included in a row
matrix.

Having obtained the values on each minterm, the procedure performs the desired consolidation by using the m-function csort.

Example 6.1.10 Steps in determining the distribution for X in Example 6.1.9

>> c = [10 18 10 3]; % Constant term is listed last
>> pm = minprob(0.1*[6 3 5]);
>> M = mintable(3) % Minterm vector pattern
M =
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
(C] 1 (C] 1 (C] 1 (C] 1
% - - - - - - - - - - - - - - % An approach mimicking "~ “hand'' calculation
>> C = colcopy(c(1:3),8) % Coefficients in position
C =

10 10 10 10 10 10 10 10
18 18 18 18 18 18 18 18
10 10 10 10 10 10 10 10

>> CM = C.*M % Minterm vector values
CM =
0 0 0 0 10 10 10 10
(0] (0] 18 18 (0] (0] 18 18
(C] 10 (C] 10 (C] 10 (C] 10
>> cM = sum(CM) + c(4) % Values on minterms
cM =
3 13 21 31 13 23 31 41
% - - - - - - - - - - - - - % Practical MATLAB procedure
>> s = ¢c(1:3)*M + c(4)
S:

3 13 21 31 13 23 31 41
>> pm = 0.14 0.14 0.06 0.06 0.21 0.21 0.09 0.09 % Extra zeros deleted
>> const = c(4)*ones(1,8);}

>> disp([CM;const;s;pm]") % Display of primitive form
0 0 0] 3 3 0.14 % MATLAB gives four decimals
(0] (0] 10 3 13 0.14
(C] 18 (C] 3 21 0.06
0 18 06 3 31 0.06
10 (C] (C] 3 13 0.21
10 0 106 3 23 0.21
10 18 e 3 31 0.09
10 18 10 3 41 0.09
>> [X,PX] = csort(s,pm); % Sorting on s, consolidation of pm
>> disp([X;PX]") % Display of final result
3 0.14
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13 0.35
21 0.06
23 0.21
31 0.15
41 0.09

The two basic steps are combined in the m-procedure canonic, which we use to solve the previous problem.

Example 6.1.11 Use of canonic on the variables of Example 6.1.10

>> c = [10 18 10 3]; % Note that the constant term 3 must be included last
>> pm = minprob([0.6 0.3 0.5]);
>> cahonic
Enter row vector of coefficients c
Enter row vector of minterm probabilities pm
Use row matrices X and PX for calculations
Call for XDBN to view the distribution
>> disp(XDBN)

3.0000 0.1400
13.0000 0.3500
21.0000 0.0600
23.0000 0.2100
31.0000 0.1500
41.0000 0.0900

With the distribution available in the matrices X (set of values) and PX (set of probabilities), we may calculate a wide variety of
quantities associated with the random variable.

We use two key devices:

1. Use relational and logical operations on the matrix of values X to determine a matrix M which has ones for those values which
meet a prescribed condition. P(X € M): PM = M*PX'
2. Determine G = g(X) = [g(X1)g(X2) - - - g(X,)] by using array operations on matrix X. We have two alternatives:

a. Use the matrix G, which has values g(¢;) for each possible value ¢; for X, or,
b. Apply csort to the pair (G, PX) to get the distribution for Z = g(X) . This distribution (in value and probability matrices)
may be used in exactly the same manner as that for the original random variable X.

Example 6.1.12 Continuation of Example 6.1.11

Suppose for the random variable X in Example 6.11 it is desired to determine the probabilities

P(15 < X < 35), P(|X —20| < 7), and (X — 10)(X —25) > 0)

>> M = (X>=15)&(X<=35);

M=0 0] 1 1 1 0] % Ones for minterms on which 15 <= X <= 35
>> PM = M*PX' % Picks out and sums those minterm probs
PM = 0.4200

>> N = abs(X-20)<=7;

N=20 1 1 1 0] 0 % Ones for minterms on which |X - 20| <=7
>> PN = N*PX' % Picks out and sums those minterm probs
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PN = 0.6200

>> G = (X - 10).*(X - 25)

G = 154 -36 -44 -26 126 496 % Value of g(t_i) for each possible value
>> P1 = (G>0)*PX' % Total probability for those t_i such that
P1 = 0.3800 % g(t_i) > 0

>> [Z,PZ] = csort(G, PX) % Distribution for Z = g(X)

Z = -44 -36 -26 126 154 496

PZ = 0.0600 0.3500 0.2100 0.1500 0.1400 0.0900

>> P2 = (Z>0)*pPZ' % Calculation using distribution for Z

P2 = 0.3800

Example 6.1.13 Alternate formulation of from "Composite Trials"

Ten race cars are involved in time trials to determine pole positions for an upcoming race. To qualify, they must post an
average speed of 125 mph or more on a trial run. Let E; be the event the ¢th car makes qualifying speed. It seems reasonable to
suppose the class {E; : 1 <4 <10} is independent. If the respective probabilities for success are 0.90, 0.88, 0.93, 0.77, 0.85,
0.96, 0.72, 0.83, 0.91, 0.84, what is the probability that & or more will qualify (k = 6,7,8,9,10)?

Solution

Let X = 21121 I,

>> C [ones(1,10) 0];
>> P = [0.90, 0.88, 0.93, 0.77, 0.85, 0.96, 0.72, 0.83, 0.91, 0.84];
>> cahonic
Enter row vector of coefficients c
Enter row vector of minterm probabilities minprob(P)
Use row matrices X and PX for calculations
Call for XDBN to view the distribution
>> k = 6:10;
>> for 1 = 1:length(k)
Pk(i) = (X>=k(i))*PX';
end
>> disp(Pk)
0.9938 0.9628 0.8472 0.5756 0.2114

This solution is not as convenient to write out. However, with the distribution for X as defined, a great many other probabilities can
be determined. This is particularly the case when it is desired to compare the results of two independent races or “heats.” We
consider such problems in the study of Independent Classes of Random Variables.

A function form for canonic

One disadvantage of the procedure canonic is that it always names the output X and PX. While these can easily be renamed,
frequently it is desirable to use some other name for the random variable from the start. A function form, which we call caneonicf, is
useful in this case.

Example 6.1.14 Alternate solution of Example 6.1.13, using canonicf
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>> ¢ = [160 18 10 3];
>> pm = minprob(0.1*[6 3 5]);
>> [Z,PZ] = canonicf(c,pm);

>> disp([Z;PZ]"') % Numbers as before, but the distribution
3.0000 0.1400 % matrices are now named Z and Pz
13.0000 0.3500
21.0000 0.0600
23.0000 0.2100
31.0000 0.1500
41.0000 0.0900

General random variables

The distribution for a simple random variable is easily visualized as point mass concentrations at the various values in the range,
and the class of events determined by a simple random variable is described in terms of the partition generated by X (i.e., the class
of those events of the form 4; = [X =¢;] for each ¢; in the range). The situation is conceptually the same for the general case, but
the details are more complicated. If the random variable takes on a continuum of values, then the probability mass distribution may
be spread smoothly on the line. Or, the distribution may be a mixture of point mass concentrations and smooth distributions on
some intervals. The class of events determined by X is the set of all inverse images X ! (M) for M any member of a general class
of subsets of subsets of the real line known in the mathematical literature as the Borel sets. There are technical mathematical
reasons for not saying M is any subset, but the class of Borel sets is general enough to include any set likely to be encountered in
applications—certainly at the level of this treatment. The Borel sets include any interval and any set that can be formed by
complements, countable unions, and countable intersections of Borel sets. This is a type of class known as a sigma algebra of
events. Because of the preservation of set operations by the inverse image, the class of events determined by random variable X is
also a sigma algebra, and is often designated o(X). There are some technical questions concerning the probability measure Px
induced by X, hence the distribution. These also are settled in such a manner that there is no need for concern at this level of
analysis. However, some of these questions become important in dealing with random processes and other advanced notions
increasingly used in applications. Two facts provide the freedom we need to proceed with little concern for the technical details.

X1(M) is an event for every Borel set M iff for every semi-infinite interval (—oo,] on the real line
X1 ((—o0,t]) is an event.

The induced probability distribution is determined uniquely by its assignment to all intervals of the form
(—o0,t].

These facts point to the importance of the distribution function introduced in the next chapter.

Another fact, alluded to above and discussed in some detail in the next chapter, is that any general random variable can be
approximated as closely as pleased by a simple random variable. We turn in the next chapter to a description of certain commonly
encountered probability distributions and ways to describe them analytically.

This page titled 6.1: Random Variables and Probabilities is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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6.2: Problems on Random Variables and Probabilities

Exercise 6.2.1

The following simple random variable is in canonical form:
X =-3.7514—1.13Ip+0Ic+2.61p .
Express the events {X € (—4, 2]}, {X € (0, 3]}, {X € (—o0,1]}, and {X >0} in terms of A, B, C, and D.

Answer
« A\VBVC
e D
« C
« C\VD

Exercise 6.2.2

Random variable X, in canonical form, is givenby X = —2I4 —Ip+Ic +2Ip +51g .
Express the events { X € [2,3)}, {X <0}, {X <0}, {|X —2| <3}, and {X? >4}, interms of A, B,C, D, andE.

Answer
e D
« A\B
« A\/B
« B\\CVDVE
« A\VDVE

Exercise 6.2.3

The class {Cj :1<j<10} is a partition. Random variable X has values {1, 3, 2, 3, 4, 2, 1, 3, 5, 2} on C} through Cio,
respectively. Express X\) in canonical form.

Answer

T=[1323421352];

[X,I] = sort(T)

X = 1 2 2 2 3 3 3 4 5
I

1
1 7 3 6 10 2 4 8 5 9

X=I,+2Ip+3Ic+4Ip+5Ig
A=C1VVC;,B=C3\/Cs\VC1p,C=C2\VCy\/Cs,D=C5,E=Cy

Exercise 6.2.4

The class {Cj :1<35<10} in Exercise has respective probabilities 0.08, 0.13, 0.06, 0.09, 0.14, 0.11, 0.12, 0.07, 0.11, 0.09.
Determine the distribution for X

Answer
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T=[1323421352];

pc = 0.01*[8 13 6 9 14 11 12 7 11 9];
[X,PX] = csort(T,pc);

disp([X;PX]"')

1.0000 0.2000
2.0000 0.2600
3.0000 0.2900
4.0000 0.1400
5.0000 0.1100

Exercise 6.2.5

A wheel is spun yielding on an equally likely basis the integers 1 through 10. Let C; be the event the wheel stops at i,
1 <4 <10. Each P(C;) = 0.1. If the numbers 1, 4, or 7 turn up, the player loses ten dollars; if the numbers 2, 5, or 8 turn up,
the player gains nothing; if the numbers 3, 6, or 9 turn up, the player gains ten dollars; if the number 10 turns up, the player
loses one dollar. The random variable expressing the results may be expressed in primitive form as

X = —101I¢, +01I¢, +101¢, —10Ig, +0Ic, +10Ig, — 10Ig, +0Ig, +10Ig, — I,

o Determine the distribution for X, (a) by hand, (b) using MATLAB.
¢ Determine P(X < 0), P(X >0).

Answer

p = 0.1%ones(1,10);
c=1[-10 0 10 -10 0 10 -10 0 10 -1];
[X,PX] = csort(c,p);
disp([X;PX]")
-10.0000 0.3000
-1.0000 0.1000
(0] 0.3000
10.0000 0.3000
Pneg = (X<0)*PX'
Pneg 0.4000
Ppos (X>0)*PX'
Ppos = 0.300

Exercise 6.2.6

A store has eight items for sale. The prices are $3.50, $5.00, $3.50, $7.50, $5.00, $5.00, $3.50, and $7.50, respectively. A
customer comes in. She purchases one of the items with probabilities 0.10, 0.15, 0.15, 0.20, 0.10 0.05, 0.10 0.15. The random
variable expressing the amount of her purchase may be written

X =3.5I¢, +5.0Ic, +3.51¢, + 7.5I¢, +5.01¢, +5.0Ic, +3.51¢, +7.51¢,

Determine the distribution for X (a) by hand, (b) using MATLAB.

Answer
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p
c

[X,PX] = csort(c,p);

disp([X;PX]")

3.5000 0.3500
5.0000 0.3000
7.5000 0.3500

0.01*[10 15 15 20 10 5 10 15];
[3.553.57.555 3.5 7.5];

Exercise 6.2.7

Suppose X, Y in canonical form are
X =214, +314,+514, Y =1Ip +2Ip,+31p,

The P(A;) are 0.3, 0.6, 0.1, respectively, and the P(B;) are 0.2 0.6 0.2. Each pair {4;, B;} is independent. Consider the
random variable Z =X +4Y . Then Z=2+1 on A;B;, Z=3+3 on Ay B3, etc. Determine the value of Z on each A;B;
and determine the corresponding P (A; B;). From this, determine the distribution for Z.

P = pa.*pb
P = 0.0600
0.1800
0.0600

disp([Z;PZ]")
3.0000
.0000
.0000
.0000
.0000
.0000

0w N O O A

© 0 06 06 0 6

pa= rowcopy(PA,3);
pb = colcopy(PB, 3);

0.1200
0.3600
0.1200

[z,PZ] = csort(z,P);

.0600
.3000
.4200
.1400
.0600
.0200

Answer

A = [2 3 5];

B =1[12 3];

a = rowcopy(A,3);

b = colcopy(B,3);

Z=a+bhb % Possible values of sum Z = X + Y

Z =3 4 6
4 5 7
5 6 8

PA = [0.3 0.6 0.1];

PB = [0.2 0.6 0.2];

% Probabilities for various values
0.0200
0.0600
0.0200

% Distribution for Z = X + Y
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For the random variables in Exercise, let W = XY . Determine the value of W on each A; B; and determine the distribution of
Ww.
Answer
XY = a.*b
Xy = 2 3 5 % XY values
4 6 10
6 9 15
W PwW % Distribution for W = XY
2.0000 0.0600
3.0000 0.1200
4,0000 0.1800
5.0000 0.0200
6.0000 0.4200
9.0000 0.1200
10.0000 0.0600
15.0000 0.0200
Exercise 6.2.9
A pair of dice is rolled.
a. Let X be the minimum of the two numbers which turn up. Determine the distribution for X
b. Let Y be the maximum of the two numbers. Determine the distribution for Y.
c. Let Z be the sum of the two numbers. Determine the distribution for Z.
d. Let W be the absolute value of the difference. Determine its distribution.

Answer

t = 1:6;
c = ones(6,6);

[X,y] = meshgrid(t,t)
2 3

X = % x-values in each position

% y-values in each position

<

I
OO R WNRRERRERRER
O b WNRNNNNN
OO b WOWNERE ®®W W W
o0 b ®WNRDMMDINDIMAN
o b WNR OO OO0 Oa
O b WNR OO O O
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m = min(Xx,y); % min in each position

M = max(Xx,Yy); % max in each position

S =X +vy; % sum x+y in each position

d = abs(x - vy); % |x - y| in each position

[X,fX] = csort(m,c) % sorts values and counts occurrences
X = 1 2 3 4 5 6

X =11 9 7 5 3 1 % PX = fX/36

[Y,fY] = csort(M,c)

Y = 1 2 3 4 5 6

fy = 1 3 5 7 9 11 % PY = fY/36

[z,fZ] = csort(s,c)

Z = 2 3 4 5 6 7 8 9 10 11 12

fz = 1 2 3 4 5 6 5 4 3 2 1 %Pz = fz/36
[W, fW] = csort(d,c)

W = (0] 1 2 3 4 5

fWw= 6 10 8 6 4 2 % PW = fW/36

Exercise 6.2.10

Minterm probabilities p(0) through p(15) for the class { A, B, C, D} are, in order,
0.072 0.048 0.018 0.012 0.168 0.112 0.042 0.028 0.062 0.048 0.028 0.010 0.170 0.110 0.040 0.
Determine the distribution for random variable

X =-5314—-2.5Ip+2.3Ic+4.2Ip —3.7

Answer

% file npro6_10.m
% Data for Exercise 6.2.10.
pm = [ 0.072 0.048 0.018 0.012 0.168 0.112 0.042 0.028
0.062 0.048 0.028 0.010 0.170 0.110 0.040 0.032];
c = [-5.3 -2.5 2.3 4.2 -3.7];
disp('Minterm probabilities are in pm, coefficients in c')
npro6_10
Minterm probabilities are in pm, coefficients in c
canonic
Enter row vector of coefficients c
Enter row vector of minterm probabilities pm
Use row matrices X and PX for calculations
Call for XDBN to view the distribution

XDBN

XDBN =
-11.5000 0.1700
-9.2000 0.0400
-9.0000 0.0620
-7.3000 0.1100
-6.7000 0.0280
-6.2000 0.1680
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-5.0000 0.0320
-4.8000 0.0480
-3.9000 0.0420
-3.7000 0.0720
-2.5000 0.0100
-2.0000 0.1120
-1.4000 0.0180
0.3000 0.0280
0.5000 0.0480
2.8000 0.0120

Exercise 6.2.11

On a Tuesday evening, the Houston Rockets, the Orlando Magic, and the Chicago Bulls all have games (but not with one
another). Let A be the event the Rockets win, B be the event the Magic win, and C be the event the Bulls win. Suppose the
class {A, B, C} is independent, with respective probabilities 0.75, 0.70 0.8. Ellen's boyfriend is a rabid Rockets fan, who does
not like the Magic. He wants to bet on the games. She decides to take him up on his bets as follows:

e $10 to 5 on the Rockets --- i.e. She loses five if the Rockets win and gains ten if they lose
o $10 to 5 against the Magic
 even $5 to 5 on the Bulls.

Ellen's winning may be expressed as the random variable

X =-5I4+10I4+10Ig —5Ip- —5Ic +5I5c =—15144+15Ip —10I;+10

Determine the distribution for X. What are the probabilities Ellen loses money, breaks even, or comes out ahead?

Answer

P =0.01*[75 70 80];
c = [-15 15 -10 10];
canonic
Enter row vector of coefficients <c
Enter row vector of minterm probabilities minprob(P)
Use row matrices X and PX for calculations
Call for XDBN to view the distribution

disp(XDBN)
-15.0000 0.1800
-5.0000 0.0450
0 0.4800
10.0000 0.1200
15.0000 0.1400

25.0000 0.0350
PXneg = (X<0)*PX'
PXneg = 0.2250
PX0 = (X==0)*PX'

PX0 = 0.4800
PXpos = (X>0)*PX'
PXpos = 0.2950
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Exercise 6.2.12

The class { A, B, C, D} has minterm probabilities
pm =0.001%[57689 14 22 33 21 32 50 75 86 129 201 302]

e Determine whether or not the class is independent.

o The random variable X =1, 4+ I+ I¢c + Ip counts the number of the events which occur on a trial. Find the distribution for
X and determine the probability that two or more occur on a trial. Find the probability that one or three of these occur on a trial.

Answer

npro6_12

Minterm probabilities in pm, coefficients in c
a = imintest(pm)

The class is NOT independent

Minterms for which the product rule fails

a =
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
canonic

Enter row vector of coefficients <c
Enter row vector of minterm probabilities pm
Use row matrices X and PX for calculations
Call for XDBN to view the distribution
XDBN =
(¢} 0.0050
1.0000 0.0430
2.0000 0.2120
3.0000 0.4380
4.0000 0.3020
P2 = (X>=2)*PX'
P2 = 0.9520
P13 = ((X==1)]|(X==3))*PX'
P13 = 0.4810

Exercise 6.2.13

James is expecting three checks in the mail, for $20, $26, and $33 dollars. Their arrivals are the events A, B, C'. Assume the

class is independent, with respective probabilities 0.90, 0.75, 0.80. Then
X =20I4+26Ig+331I¢

represents the total amount received. Determine the distribution for X. What is the probability he receives at least $50? Less than

$30?

Answer
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c = [20 26 33 0];
P 0.01*[90 75 80];
canonic
Enter row vector of coefficients c
Enter row vector of minterm probabilities minprob(P)
Use row matrices X and PX for calculations
Call for XDBN to view the distribution

disp(XDBN)

0 0.0050
20.0000 0.0450
26.0000 0.0150
33.0000 0.0200
46.0000 0.1350
53.0000 0.1800
59.0000 0.0600

79.0000 0.5400
P50 = (X>=50)*PX'
P50 = 0.7800
P30 = (X <30)*PX'
P30 = 0.0650

Exercise 6.2.14

A gambler places three bets. He puts down two dollars for each bet. He picks up three dollars (his original bet plus one dollar)
if he wins the first bet, four dollars if he wins the second bet, and six dollars if he wins the third. His net winning can be
represented by the random variable

X =3I4+4I5+6Ic—6 , with P(A)=0.5, P(B) =0.4, P(C) =0.3

Assume the results of the games are independent. Determine the distribution for X.

Answer
c =1[346 -6];
P=0.1*[5 4 3];
canonic

Enter row vector of coefficients c

Enter row vector of minterm probabilities minprob(P)
Use row matrices X and PX for calculations
Call for XDBN to view the distribution

dsp(XDBN)

-6.0000 0.2100
-3.0000 0.2100
-2.0000 0.1400

(0] 0.0900
1.0000 0.1400
3.0000 0.0900
4.0000 0.0600
7.0000 0.0600
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Exercise 6.2.15

Henry goes to a hardware store. He considers a power drill at $35, a socket wrench set at $56, a set of screwdrivers at $18, a
vise at $24, and hammer at $8. He decides independently on the purchases of the individual items, with respective probabilities
0.5, 0.6, 0.7, 0.4, 0.9. Let X be the amount of his total purchases. Determine the distribution for X.
Answer
c = [35 56 18 24 8 0];
P =0.1*[5 6 7 4 9];
canonic
Enter row vector of coefficients ¢
Enter row vector of minterm probabilities minprob(P)
Use row matrices X and PX for calculations
Call for XDBN to view the distribution
disp(XDBN)
0 0.0036
8.0000 0.0324
18.0000 0.0084
24.0000 0.0024
26.0000 0.0756
32.0000 0.0216
35.0000 0.0036
42.0000 0.0056
43.0000 0.0324
50.0000 0.0504
53.0000 0.0084
56.0000 0.0054
59.0000 0.0024
61.0000 0.0756
64.0000 0.0486
67.0000 0.0216
74.0000 0.0126
77.0000 0.0056
80.0000 0.0036
82.0000 0.1134
85.0000 0.0504
88.0000 0.0324
91.0000 0.0054
98.0000 0.0084
99.0000 0.0486
106.0000 0.0756
109.0000 0.0126
115.0000 0.0036
117.0000 0.1134
123.0000 0.0324
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133.0000 0.0084
141.0000 0.0756

Exercise 6.2.16

A sequence of trials (not necessarily independent) is performed. Let E; be the event of success on the ith component trial. We
associate with each trial a "payoff function" X; = alg, +b1 EE - Thus, an amount a is earned if there is a success on the trial
and an amount b (usually negative) if there is a failure. Let S,, be the number of successes in the n trials and W be the net
payoff. Show that W = (a — b)S,, +bn .
Answer
X; = aIEI. +b(1 _IEl) = (a—b)IEI +b
W=>" Xi=(-b)>", Ig+bn=(a—b)S,+bn

Exercise 6.2.17

A marker is placed at a reference position on a line (taken to be the origin); a coin is tossed repeatedly. If a head turns up, the
marker is moved one unit to the right; if a tail turns up, the marker is moved one unit to the left.

a. Show that the position at the end of ten tosses is given by the random variable

X =330 I5 — 330 g =253 Ig, —10 =28, — 10

where F; is the event of a head on the ith toss and S7g is the number of heads in ten trials.

o After ten tosses, what are the possible positions and the probabilities of being in each?

Answer
Xi :IEl _IEf :IEZ — (1 _IE,) = 2IE1 -1
X=X, =237, I, — 10
S = 0:10;
PS = ibinom(10,0.5,0:10);
X = 2*S - 10;
disp([X;PS]")
-10.0000 0.0010
-8.0000 0.0098
-6.0000 0.0439
-4.0000 0.1172
-2.0000 0.2051
(¢} 0.2461
2.0000 0.2051
4.0000 0.1172
6.0000 0.0439
8.0000 0.0098
10.0000 0.0010
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Margaret considers five purchases in the amounts 5, 17, 21, 8, 15 dollars with respective probabilities 0.37, 0.22, 0.38, 0.81,
0.63. Anne contemplates six purchases in the amounts 8, 15, 12, 18, 15, 12 dollars, with respective probabilities 0.77, 0.52,
0.23, 0.41, 0.83, 0.58. Assume that all eleven possible purchases form an independent class.

a. Determine the distribution for X, the amount purchased by Margaret.
b. Determine the distribution for Y, the amount purchased by Anne.
c. Determine the distribution for Z = X +Y , the total amount the two purchase.

Suggestion for part (c). Let MATLAB perform the calculations.

Answer
[r,s] = ndgrid(X,Y);
[t,u] = ndgrid(PX,PY);
Z=r +s;
pz = t.*u;

[z,PZ] = csort(z,pz);

% file npr06_18.m
cx = [5 17 21 8 15 0];
cy = [8 15 12 18 15 12 0];

pmx = minprob(0.01*[37 22 38 81 63]);
pmy = minprob(0.01*[77 52 23 41 83 58]);
npro6_18

[X,PX] = canonicf(cx,pmx); [Y,PY] = canonicf(cy,pmy);

[r,s] = ndgrid(X,Y); [t,u] = ndgrid(PX,PY);

Z=r +s; pz = t.*u;

[z,PZ] = csort(z,pz);

a = length(z)

a = 125 % 125 different values
plot(Z,cumsum(PZ)) % See figure Plotting details omitted

This page titled 6.2: Problems on Random Variables and Probabilities is shared under a CC BY 3.0 license and was authored, remixed, and/or
curated by Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.
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7.1: Distribution and Density Functions

In the unit on Random Variables and Probability we introduce real random variables as mappings from the basic space 2 to the real
line. The mapping induces a transfer of the probability mass on the basic space to subsets of the real line in such a way that the
probability that X takes a value in a set M is exactly the mass assigned to that set by the transfer. To perform probability
calculations, we need to describe analytically the distribution on the line. For simple random variables this is easy. We have at each
possible value of X a point mass equal to the probability X takes that value. For more general cases, we need a more useful
description than that provided by the induced probability measure Pyx.

The Distribution Function

In the theoretical discussion on Random Variables and Probability, we note that the probability distribution induced by a random
variable X is determined uniquely by a consistent assignment of mass to semi-infinite intervals of the form (—oo, | for each real ¢.
This suggests that a natural description is provided by the following.

Definition
The distribution function Fx for random variable X is given by
Fx(t)P(X <t)=P(X € (—o0o,t]) VtER

In terms of the mass distribution on the line, this is the probability mass at or to the left of the point t. As a consequence, F'x has
the following properties:

e (F1) : F'x must be a nondecreasing function, for if £ > s there must be at least as much probability mass at or to the left of ¢ as
there is for s.

o (F2): Fx is continuous from the right, with a jump in the amount py at o iff P(X =ty) = po . If the point ¢ approaches ty
from the left, the interval does not include the probability mass at ¢y until ¢ reaches that value, at which point the amount at or
to the left of t increases ("jumps") by amount py; on the other hand, if ¢ approaches ¢y from the right, the interval includes the
mass pg all the way to and including %, but drops immediately as ¢ moves to the left of ¢;.

o (F3) : Except in very unusual cases involving random variables which may take “infinite” values, the probability mass included
in (—o0, t] must increase to one as t moves to the right; as ¢ moves to the left, the probability mass included must decrease to
zero, so that

Fx(~00) = lim Fx(t)=0 (7.1.1)
and
FX(OO):tlimFX(t)Zl (712)

A distribution function determines the probability mass in each semiinfinite interval (oo, t]. According to the discussion referred to
above, this determines uniquely the induced distribution.

The distribution function F'x for a simple random variable is easily visualized. The distribution consists of point mass p; at each
point ¢; in the range. To the left of the smallest value in the range, Fx(t) =0; as t increases to the smallest value ¢1, Fx(t)
remains constant at zero until it jumps by the amount p; ... Fix (t) remains constant at p; until ¢ increases to t2, where it jumps by
an amount p, to the value p; + p, . This continues until the value of Fx(t) reaches 1 at the largest value ¢,. The graph of Fx is
thus a step function, continuous from the right, with a jump in the amount p; at the corresponding point ¢; in the range. A similar
situation exists for a discrete-valued random variable which may take on an infinity of values (e.g., the geometric distribution or the
Poisson distribution considered below). In this case, there is always some probability at points to the right of any ¢;, but this must
become vanishingly small as ¢ increases, since the total probability mass is one.

The procedure ddbn may be used to plot the distribution function for a simple random variable from a matrix X of values and a
corresponding matrix PX of probabilities.
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Example 7.1.1: Graph of FX for a simple random variable

>> ¢ = [10 18 10 3]; % Distribution for X in Example 6.5.1
>> pm = minprob(0.1*[6 3 5]);
>> canhonic
Enter row vector of coefficients c
Enter row vector of minterm probabilities pm
Use row matrices X and PX for calculations
Call for XDBN to view the distribution
>> ddbn % Circles show values at jumps
Enter row matrix of VALUES X
Enter row matrix of PROBABILITIES PX
% Printing details See Figure 7.1
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Figure 7.1.1. Distribution function for Example 7.1.1

Description of some common discrete distributions

We make repeated use of a number of common distributions which are used in many practical situations. This collection includes
several distributions which are studied in the chapter "Random Variables and Probabilities".

Indicator function. X = IzpP(X =1)=P(E)=pP(X =0)=g=1—p . The distribution function has a jump in the amount
g att =0 and an additional jump of p to the value 1 at¢ =1.

Simple random variable X = Zti I, (canonical form)
P(X:t,) :P(AZ) =D

The distribution function is a step function, continuous from the right, with jump of p; at t =¢; (See Figure 7.1.1 for Example
7.1.1)

Binomial (n, p). This random variable appears as the number of successes in a sequence of n Bernoulli trials with probability p of
success. In its simplest form

X=>",1Ig with{E; :1 <i <n} independent
P(E))=p P(X =k)=C(n, k)p*q"*

As pointed out in the study of Bernoulli sequences in the unit on Composite Trials, two m-functions ibinom andcbinom are
available for computing the individual and cumulative binomial probabilities.

Geometric (p) There are two related distributions, both arising in the study of continuing Bernoulli sequences. The first counts the
number of failures before the first success. This is sometimes called the “waiting time.” The event { X = k } consists of a sequence
of k failures, then a success. Thus
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The second designates the component trial on which the first success occurs. The event {Y = k} consists of k — 1 failures, then a
success on the kth component trial. We have

P(X=k)=q¢"p,0<k

PY=k)=¢"p,1<k

We say X has the geometric distribution with parameter (p), which we often designate by X geometric (p). Now Y =X +1 or
Y —1 =X . For this reason, it is customary to refer to the distribution for the number of the trial for the first success by saying
Y —1 geometric (p). The probability of k or more failures before the first success is P(X > k) = q* . Also

P(X>n+k)
P(X >n)
This suggests that a Bernoulli sequence essentially "starts over" on each trial. If it has failed n times, the probability of failing an

additional k& or more times before the next success is the same as the initial probability of failing & or more times before the first
success.

Example 7.1.2: The geometric distribution

A statistician is taking a random sample from a population in which two percent of the members own a BMW automobile. She
takes a sample of size 100. What is the probability of finding no BMW owners in the sample?

P(XZ>n+klX>n)= =q""/q" =¢* =P(X > k)

Solution

The sampling process may be viewed as a sequence of Bernoulli trials with probability p = 0.02 of success. The probability of
100 or more failures before the first success is 0.98'%° = 0.1326 or about 1/7.5.

Negative binomial (m, p). X is the number of failures before the mth success. It is generally more convenient to work with
Y = X +m, the number of the trial on which the mth success occurs. An examination of the possible patterns and elementary
combinatorics show that

PY=k)=Ck—1,m—-1)p"¢"™ ,m<k

There are m—1 successes in the first k—1 trials, then a success. Each combination has probability p™¢* ™. We have an m-
function nbinom to calculate these probabilities.

Example 7.1.3: A game of chance

A player throws a single six-sided die repeatedly. He scores if he throws a 1 or a 6. What is the probability he scores five times
in ten or fewer throws?

>> p = sum(nbinom(5,1/3,5:10))
p = 0.2131

An alternate solution is possible with the use of the binomial distribution. The mth success comes not later than the kth trial iff
the number of successes in k trials is greater than or equal to m.

>> P = chinom(10,1/3,5)
P = 0.2131

Poisson (©). This distribution is assumed in a wide variety of applications. It appears as a counting variable for items arriving with
exponential interarrival times (see the relationship to the gamma distribution below). For large n and small p (which may not be a
value found in a table), the binomial distribution is approximately Poisson (np). Use of the generating function (see Transform
Methods) shows the sum of independent Poisson random variables is Poisson. The Poisson distribution is integer valued, with

k
P(X=Fk) = e’“% ©\le k)
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Although Poisson probabilities are usually easier to calculate with scientific calculators than binomial probabilities, the use of
tables is often quite helpful. As in the case of the binomial distribution, we have two m-functions for calculating Poisson
probabilities. These have advantages of speed and parameter range similar to those for ibinom and cbinom.

P(X =k) is calculated by P = ipoisson(mu, k) , wherek is a row or column vector of integers and the result P is a
row matrix of the probabilities.
P(X > k) is calculated by P = cpoisson(mu, k) ,where k is a row or column vector of integers and the result P is a
row matrix of the probabilities.

Example 7.1.4: Poisson counting random variable

The number of messages arriving in a one minute period at a communications network junction is a random variable N~
Poisson (130). What is the probability the number of arrivals is greater than equal to 110, 120, 130, 140, 150, 160 ?

>> p = cpoisson(130,110:10:160)
p = 0.9666 0.8209 0.5117 0.2011 0.0461 0.0060

The descriptions of these distributions, along with a number of other facts, are summarized in the table DATA ON SOME
COMMON DISTRIBUTIONS in Appendix C.

The Density Function
If the probability mass in the induced distribution is spread smoothly along the real line, with no point mass concentrations, there is
a probability density function fx which satisfies

P(X € M)=Px(M)= [;; fx(t) dt (are under the graph of fx over M)

Ateach t, fx(t) is the mass per unit length in the probability distribution. The density function has three characteristic properties:

(f) fx >0 (f2) [, fx =1 (83) Fx(t) = [*_ fx

A random variable (or distribution) which has a density is called absolutely continuous. This term comes from measure theory. We
often simply abbreviate as continuous distribution.

Remarks

1. There is a technical mathematical description of the condition “spread smoothly with no point mass concentrations.” And
strictly speaking the integrals are Lebesgue integrals rather than the ordinary Riemann kind. But for practical cases, the two
agree, so that we are free to use ordinary integration techniques.

2. By the fundamental theorem of calculus

fx(t) = Fy(t) atevery point of continuity of fx

« Any integrable, nonnegative function f with [ f =1 determines a distribution function F', which in turn determines a
probability distribution. If [ f # 1, multiplication by the appropriate positive constant gives a suitable f. An argument based
on the Quantile Function shows the existence of a random variable with that distribution.

o In the literature on probability, it is customary to omit the indication of the region of integration when integrating over the
whole line. Thus

J9@) fx(t)dt = [ g(t) fx(t)dt

The first expression is not an indefinite integral. In many situations, fx will be zero outside an interval. Thus, the integrand
effectively determines the region of integration.

https://stats.libretexts.org/@go/page/10861


https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10861?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/17%3A_Appendices/17.03%3A_Appendix_C-_Data_on_some_common_distributions

LibreTextsm

wycibe Ifalpha. aunboa) densily o alpha = 2

12
! \_
16 P
" lmbda = 4
140
) il
12p ! !
) v
= 1
iE
c 1 1
i -
coaal o, ERE TN
- N
| p v  larnbadzr = 1
; \ N
oG} r | 5
. -
r \ -
i RS bl = 025
nap o \/-—— <
. T i
. ~
aeli s / g ~ \\_\_
= b/ - \. = - )
., ., S
Q I = I = - "
r 0.5 1 [ E Fa S

Figure 7.1.2. The Weibull density fora =2, A =0.25,1,4

woiibul deagiy for alphz = 19,

* lambda = 1000
7 |

0 (=1 | 15 ? ] 3

Figure 7.1.3. The Weibull density for « =10, A =0.001,1,1000

Some common absolutely continuous distributions

Uniform (a, b).

Mass is spread uniformly on the interval [a,b]. It is immaterial whether or not the end points are included, since probability
associated with each individual point is zero. The probability of any subinterval is proportional to the length of the subinterval. The
probability of being in any two subintervals of the same length is the same. This distribution is used to model situations in which it
is known that X takes on values in [a, b] but is equally likely to be in any subinterval of a given length. The density must be
constant over the interval (zero outside), and the distribution function increases linearly with ¢ in the interval. Thus,

1
fx(@) = b—a (a <t < b) (zero outside the interval)

The graph of F'x rises linearly, with slope 1/(b —a ) from zero at¢ =a tooneatt =b.

(a+t)/a®> —a<t<0

(a—t)/a®> 0<t<a

This distribution is used frequently in instructional numerical examples because probabilities can be obtained geometrically. It can
be shifted, with a shift of the graph, to different sets of values. It appears naturally (in shifted form) as the distribution for the sum
or difference of two independent random variables uniformly distributed on intervals of the same length. This fact is established
with the use of the moment generating function (see Transform Methods). More generally, the density may have a triangular graph
which is not symmetric.

Symmetric triangular (—a, a), fx(t) = {

Example 7.1.5: Use of a triangular distribution

Suppose X symmetric triangular (100, 300). Determine P(120 < X < 250).

Remark. Note that in the continuous case, it is immaterial whether the end point of the intervals are included or not.

Solution
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To get the area under the triangle between 120 and 250, we take one minus the area of the right triangles between 100 and 120
and between 250 and 300. Using the fact that areas of similar triangles are proportional to the square of any side, we have

P=1- %((20/100)2 +(50/100)?) = 0.855

Exponential (\) fx(t) = Ae™ t >0 (zero elsewhere).
Integration shows Fx(t) =1—e™ (t\ge 0\) (zero elsewhere). We note that P(X >0) =1 — Fx(t) =e™ ¢ >0. This leads
to an extremely important property of the exponential distribution. Since X > ¢+ h , h > 0 implies X > ¢, we have

P(X>t+h|X>t)=P(X>t+h)/P(X>t)=e N JeX =N = P(X > h)

Because of this property, the exponential distribution is often used in reliability problems. Suppose X represents the time to failure
(i.e., the life duration) of a device put into service at ¢ = 0. If the distribution is exponential, this property says that if the device
survives to time ¢ (i.e., X > t) then the (conditional) probability it will survive A more units of time is the same as the original
probability of surviving for A units of time. Many devices have the property that they do not wear out. Failure is due to some stress
of external origin. Many solid state electronic devices behave essentially in this way, once initial “burn in” tests have removed
defective units. Use of Cauchy's equation (Appendix B) shows that the exponential distribution is the only continuous distribution
with this property.

/\ata—l e—)\t
Gamma distribution (o, A) fx(t) = ———

I(a)

We have an m-function gammadbn to determine values of the distribution function for X gamma (a, A). Use of moment
generating functions shows that for « =n, a random variable X gamma (n,\) has the same distribution as the sum of n
independent random variables, each exponential (lambda). A relation to the Poisson distribution is described in Sec 7.5.

Example 7.1.6: An arrival problem

On a Saturday night, the times (in hours) between arrivals in a hospital emergency unit may be represented by a random
quantity which is exponential (A = 3). As we show in the chapter Mathematical Expectation, this means that the average
interarrival time is 1/3 hour or 20 minutes. What is the probability of ten or more arrivals in four hours? In six hours?

t > 0 (zero elsewhere)

Solution

The time for ten arrivals is the sum of ten interarrival times. If we suppose these are independent, as is usually the case, then
the time for ten arrivals is gamma (10, 3).

>> p = gammadbn(10,3,[4 6])
p = 0.7576 0.9846

1 1 t—p
Normal, or Gaussian (u, 02 t) = exp (—— 2) vt
(1) £x(0)= = o0 (-3 (L)

We generally indicate that a random variable X has the normal or gaussian distribution by writing X N (s, 02), putting in the
actual values for the parameters. The gaussian distribution plays a central role in many aspects of applied probability theory,
particularly in the area of statistics. Much of its importance comes from the central limit theorem (CLT), which is a term applied to
a number of theorems in analysis. Essentially, the CLT shows that the distribution for the sum of a sufficiently large number of
independent random variables has approximately the gaussian distribution. Thus, the gaussian distribution appears naturally in such
topics as theory of errors or theory of noise, where the quantity observed is an additive combination of a large number of
essentially independent quantities. Examination of the expression shows that the graph for fx(¢) is symmetric about its maximum
at t = p.. The greater the parameter o2, the smaller the maximum value and the more slowly the curve decreases with distance
from f.. Thus parameter p. locates the center of the mass distribution and o is a measure of the spread of mass about y. The
parameter 4 is called the mean value and &2 is the variance. The parameter o, the positive square root of the variance, is called the
standard deviation. While we have an explicit formula for the density function, it is known that the distribution function, as the
integral of the density function, cannot be expressed in terms of elementary functions. The usual procedure is to use tables obtained
by numerical integration.

Since there are two parameters, this raises the question whether a separate table is needed for each pair of parameters. It is a
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remarkable fact that this is not the case. We need only have a table of the distribution function for X N (0, 1). This is refered to as
the standardized normal distribution. We use ¢ and ¢ for the standardized normal density and distribution functions, respectively.

e /2 50 that the distribution function is ¢(t) = ffoo o(u)du.

Standardized normal varphi(t) = 5
T

The graph of the density function is the well known bell shaped curve, symmetrical about the origin (see Figure 7.1.4). The
symmetry about the origin contributes to its usefulness.
P(X <t)=¢(t) = areaunder the curve to the left of ¢

Note that the area to the left of ¢ = —1.5 is the same as the area to the right of ¢ = 1.5, so that ¢(—2) =1 —#(2) . The same is
true for any ¢, so that we have

P(—t)=1-0(t) vt
This indicates that we need only a table of values of ¢(¢) for ¢t >0 to be able to determine ¢(¢) for any ¢. We may use the
symmetry for any case. Note that ¢(0) =1/2,
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Figure 7.1.4. The standardized normal distribution.

Example 7.1.7: Standardized normal calculations

Suppose X N (0, 1). Determine P(—1 < X <2) and P(|X| > 1)
Solution

LP(-1<X<2)=6(2)—¢(-1) = ¢(2) —[1-¢(1)] = $(2) + (1) -1
2.P(|X|>1)=P(X>1)+P(X <-1) =1—¢(1) +¢(-1) =2[1 — ¢(1)]

From a table of standardized normal distribution function (see Appendix D), we find

$(2) =0.9772 and ¢(1) = 0.8413 which gives P(—1 < X < 2) =0.8185 and P(|X| > 1) =0.3174

General gaussian distribution

For X N(u,c?), the density maintains the bell shape, but is shifted with different spread and height. Figure 7.1.5 shows the
distribution function and density function for X N(2,0.1). The density is centered about ¢ = 2. It has height 1.2616 as compared
with 0.3989 for the standardized normal density. Inspection shows that the graph is narrower than that for the standardized normal.
The distribution function reaches 0.5 at the mean value 2.
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A change of variables in the integral shows that the table for standardized normal distribution function can be used for any case.

1 1 z—p t T—p 1
X( ) 0_\/27.( f—oo exp( 2( ) ) z f—mfty (P( P )O' T
Make the change of variable and corresponding formal changes
T — 1 t—
U= K du=—dr z=tu= K
o o

to get

Fy(t) = [M7 p(u)du = p(E—L)

g
Example 7.1.8: General gaussian calculation

Suppose X N (3,16) (i.e., u = 3 and 02 = 16). Determine P(—1 < X <11) and P(|X —3| >4).
Solution

1 Fx(11) = Fr(-1) = g(F) ~ () = 6(2) — (1) = 0.8185

2. P(X—3<—4)+P(X—3>4)=Fx(—1)+[1—Fx(7)] = ¢(—1)+1— (1) = 0.3174

In each case the problem reduces to that in Example.

We have m-functions gaussian and gaussdensity to calculate values of the distribution and density function for any reasonable
value of the parameters.
The following are solutions of example 7.1.7 and example 7.1.8, using the m-function gaussian.

Example 7.1.9: Example 7.1.7 and Example 7.1.8 (continued)

>> P1 = gaussian(0,1,2) - gaussian(0,1,-1)

P1 = 0.8186

>> P2 = 2*(1 - gaussian(0,1,1))

P2 = 0.3173

>> P1 = gaussian(3,16,11) - gaussian(3,16,-1)

P2 = 0.8186

>> P2 = gaussian(3,16,-1)) + 1 - (gaussian(3,16,7)
P2 = 0.3173

The differences in these results and those above (which used tables) are due to the roundoff to four places in the tables.
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T(r+s)
Beta (r,5),7>0,5>0. fx(t) = ————t"1(1—-t)*! 0<t<1
eta (r,9), 7> 0,5> 0. fx(t) = p s st (1)
Analysis is based on the integrals
I(r)L(s)
1 o, s .
fO u 1(1 —u) 1du = m Wlth F(t+1) :tF(t)

Figure 7.6 and Figure 7.7 show graphs of the densities for various values of r, s. The usefulness comes in approximating densities
on the unit interval. By using scaling and shifting, these can be extended to other intervals. The special case r =s=1 gives the
uniform distribution on the unit interval. The Beta distribution is quite useful in developing the Bayesian statistics for the problem
of sampling to determine a population proportion. If r, s are integers, the density function is a polynomial. For the general case we
have two m-functions, beta and betadbn to perform the calculatons.

Lictair.s) consily—r =2

45

Density

o
[ a1

Figure 7.6. The Beta (r, ) density forr =2,s=1, 2, 10.
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Figure 7.7. The Beta (r, ) density forr =5, s=2,5, 10.

Weibull (o, A, v) Fx(t) =1—e )" 0 >0,1>0,v>0,t>v

The parameter v is a shift parameter. Usually we assume v = 0. Examination shows that for a=1 the distribution is exponential ().
The parameter a provides a distortion of the time scale for the exponential distribution. Figure 7.6 and Figure 7.7 show graphs of
the Weibull density for some representative values of a and A (v=0). The distribution is used in reliability theory. We do not
make much use of it. However, we have m-functions weibull (density) and weibulld (distribution function) for shift parameter
v =10 only. The shift can be obtained by subtracting a constant from the ¢ values.

This page titled 7.1: Distribution and Density Functions is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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7.2: Distribution Approximations

Binomial, Poisson, gamma, and Gaussian distributions

The Poisson approximation to the binomial distribution

The following approximation is a classical one. We wish to show that for small p and sufficiently large n

P(X =k)=C(n, k)p*(1 —p)" * ~ e—"P% (7.2.1)
Suppose p = pu/n with n large and p/n < 1. Then,
B nn—1)---(n—k+1 B o uE
PX =) = Clon W/ (1 — -t = ZEL D g Byovg Byl (g2

The first factor in the last expression is the ratio of polynomials in n of the same degree k, which must approach one as n becomes
large. The second factor approaches one as n becomes large. According to a well known property of the exponential

(1- %)" —e (7.2.3)
asn — 00.
uk
The result is that for large n, P(X = k) = e™# R where p = np.
The Poisson and Gamma Distributions
Suppose Y Poisson (At). Now X gamma («, A) iff
A& 1 L e 1 t L 1 At .
P(X<t)= /:I:a_e_ d:z:z—/ Az) e d)\wz—/ u* e du 7.2.4
(X <t) @ /, 11(04)0() (Az) @) /, (7.2.4)
A well known definite integral, obtained by integration by parts, is
n—1 ak
intPt" letdt =T(n)e ® Y — (7.2.5)
k!
k=1
withT'(n) = (n—1)!.
k
Noting that 1 = e %e* =e™* Y 77 % we find after some simple algebra that
1 /a n—1_—t — - ak
—_— t"etdt=e "y — 7.2.6
T'(n) Jo ; k! ( )
For a = A\t and a = n, we have the following equality iff X gamma (a, \)
1 A 0 ()\t)k
P(X<t)=—— it du=e N — 7.2.7
== > o2
Now
00 k
Y (At)
P(Y>n)=e ;T (7.2.8)

iff Y Poisson (At.

The Gaussian (normal) approximation

The central limit theorem, referred to in the discussion of the Gaussian or normal distribution above, suggests that the binomial and
Poisson distributions should be approximated by the Gaussian. The number of successes in n trials has the binomial (n,p)
distribution. This random variable may be expressed
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X:;IEi (7.2.9)

Since the mean value of X is np and the variance is npg, the distribution should be approximately N (np, npq).
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Figure 7.2.8. Gaussian approximation to the binomial.

Use of the generating function shows that the sum of independent Poisson random variables is Poisson. Now if X )Poisson(\ (),
then X may be considered the sum of n independent random variables, each Poisson (/7). Since the mean value and the variance
are both g, it is reasonable to suppose that suppose that X is approximately N (u, ©).

It is generally best to compare distribution functions. Since the binomial and Poisson distributions are integer-valued, it turns out
that the best Gaussian approximation is obtained by making a “continuity correction.” To get an approximation to a density for an
integer-valued random variable, the probability at ¢ = k is represented by a rectangle of height p; and unit width, with k as the
midpoint. Figure 1 shows a plot of the “density” and the corresponding Gaussian density for n = 300, p = 0.1. It is apparent that
the Gaussian density is offset by approximately 1/2. To approximate the probability X < k, take the area under the curve from & +
1/2; this is called the continuity correction.

Use of m-procedures to compare
We have two m-procedures to make the comparisons. First, we consider approximation of the
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Figure 7.2.9. Gaussian approximation to the Poisson distribution function g = 10.
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Figure 7.2.10. Gaussian approximation to the Poisson distribution function x = 100.

Poisson () distribution. The m-procedure poissapp calls for a value of u, selects a suitable range about k = p and plots the
distribution function for the Poisson distribution (stairs) and the normal (Gaussian) distribution (dash dot) for N (, 1). In addition,
the continuity correction is applied to the gaussian distribution at integer values (circles). Figure 7.2.10 shows plots for p = 10. It is
clear that the continuity correction provides a much better approximation. The plots in Figure 7.2.11 are for g = 100. Here the
continuity correction provides the better approximation, but not by as much as for the smaller .
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Figure 7.2.11. Poisson and Gaussian approximation to the binomial: n = 1000, p = 0.03.
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Figure 7.2.12. Poisson and Gaussian approximation to the binomial: n = 50, p = 0.6.

The m-procedure bincomp compares the binomial, gaussian, and Poisson distributions. It calls for values of n and p, selects
suitable k values, and plots the distribution function for the binomial, a continuous approximation to the distribution function for
the Poisson, and continuity adjusted values of the gaussian distribution function at the integer values. Figure 7.2.11 shows plots for
n =1000, p =0.03. The good agreement of all three distribution functions is evident. Figure 7.2.12 shows plots for
n =50, p = 0.6. There is still good agreement of the binomial and adjusted gaussian. However, the Poisson distribution does not
track very well. The difficulty, as we see in the unit Variance, is the difference in variances--npq for the binomial as compared with
np for the Poisson.
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Approximation of a real random variable by simple random variables

Simple random variables play a significant role, both in theory and applications. In the unit Random Variables, we show how a
simple random variable is determined by the set of points on the real line representing the possible values and the corresponding set
of probabilities that each of these values is taken on. This describes the distribution of the random variable and makes possible
calculations of event probabilities and parameters for the distribution.

A continuous random variable is characterized by a set of possible values spread continuously over an interval or collection of
intervals. In this case, the probability is also spread smoothly. The distribution is described by a probability density function, whose
value at any point indicates "the probability per unit length" near the point. A simple approximation is obtained by subdividing an
interval which includes the range (the set of possible values) into small enough subintervals that the density is approximately
constant over each subinterval. A point in each subinterval is selected and is assigned the probability mass in its subinterval. The
combination of the selected points and the corresponding probabilities describes the distribution of an approximating simple
random variable. Calculations based on this distribution approximate corresponding calculations on the continuous distribution.

Before examining a general approximation procedure which has significant consequences for later treatments, we consider some
illustrative examples.

Example 7.2.10: Simple approximation to Poisson

A random variable with the Poisson distribution is unbounded. However, for a given parameter value p, the probability for
k >mn, n sufficiently large, is negligible. Experiment indicates n = p+6,/p (i.e., six standard deviations beyond the mean)
is a reasonable value for 5 < . < 200.

Solution

>> mu = [5 10 20 30 40 50 70 100 150 200];
>> K = zeros(1,length(mu));
>> p = zeros(1,length(mu));
>> for 1 = 1:length(mu)
K(1) floor(mu(i)+ 6*sqrt(mu(i)));
p(i) cpoisson(mu(i),K(1i));

end
>> disp([mu;K;p*1e6]")

5.0000 18.0000 5.4163 % Residual probabilities are 0.000001
10.0000 28.0000 2.2535 % times the numbers in the last column.
20.0000 46.0000 0.4540 % K is the value of k needed to achieve
30.0000 62.0000 0.2140 % the residual shown.

40.0000 77.0000 0.1354
50.0000 92.0000 0.0668
70.0000 120.0000 0.0359
100.0000 160.0000 0.0205
150.0000 223.0000 0.0159
200.0000 284.0000 0.0133

An m-procedure for discrete approximation

If X is bounded, absolutely continuous with density functon fx, the m-procedure tappr sets up the distribution for an
approximating simple random variable. An interval containing the range of X is divided into a specified number of equal
subdivisions. The probability mass for each subinterval is assigned to the midpoint. If dz is the length of the subintervals, then the
integral of the density function over the subinterval is approximated by fx (¢;)dx. where ¢; is the midpoint. In effect, the graph of
the density over the subinterval is approximated by a rectangle of length dz and height fx(¢;). Once the approximating simple
distribution is established, calculations are carried out as for simple random variables.
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Example 7.2.11: a numerical example

Suppose fx(t) =3t%,0 <t <1.Determine P(0.2 < X <0.9).
Solution

In this case, an analytical solution is easy. Fix(t) =t on the interval [0, 1], so

P =0.9-0.2> =0.7210 . We use tappr as follows.

>> tappr

Enter matrix [a b] of x-range endpoints [0 1]
Enter number of x approximation points 200
Enter density as a function of t 3*t.A2

Use row matrices X and PX as in the simple case

>> M = (X >= 0.2)&(X <= 0.9);
>> p = M*PX'
p = 0.7210

Because of the regularity of the density and the number of approximation points, the result agrees quite well with the theoretical
value.

The next example is a more complex one. In particular, the distribution is not bounded. However, it is easy to determine a bound
beyond which the probability is negligible.

Diglriuliar 1 arcliar

0.8 /
0.8 /
[ /

Q.6

Fit)

0.4

[ | B4 2 4 B ] I 2
L a1

Figure 7.2.13. Distribution function for Example 7.2.12.

Example 7.2.12: Radial tire mileage

The life (in miles) of a certain brand of radial tires may be represented by a random variable X with density

Frlt) = t2/a? for 0<t<a
S (b/a)e * = for a <t

where a = 40,000, b = 20/3, and k = 1/4000. Determine P(X > 45, 000.

>> a = 40000;
>> b = 20/3;

>> k = 1/4000;

>> % Test shows cutoff point of 80000 should be satisfactory
>> tappr

Enter matrix [a b] of x-range endpoints [0 80000]
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Enter number of x approximation points 80000/20

Enter density as a function of t (t.n2/an3).*(t < 40000) +
(b/a)*exp(k*(a-t)).*(t >= 40000)

Use row matrices X and PX as in the simple case

>> P = (X >= 45000)*PX'

P = 0.1910 % Theoretical value = (2/3)exp(-5/4) = 0.191003
>> cdbn

Enter row matrix of VALUES X

Enter row matrix of PROBABILITIES PX % See Figure 7.2.14 for plot

In this case, we use a rather large number of approximation points. As a consequence, the results are quite accurate. In the
single-variable case, designating a large number of approximating points usually causes no computer memory problem.

The general approximation procedure

We show now that any bounded real random variable may be approximated as closely as desired by a simple random variable (i.e.,
one having a finite set of possible values). For the unbounded case, the approximation is close except in a portion of the range
having arbitrarily small total probability.

We limit our discussion to the bounded case, in which the range of X is limited to a bounded interval I = [a,b]. Suppose I is
partitioned into n subintervals by points ¢;, 1 <¢ <n—1, witha=1%; and b=t,. Let M; = [t;_1,t;) be the ith subinterval,
1<i<n-—1 and M,, = [t,_1,1,] (see Figure 7.14). Now random variable X may map into any point in the interval, and hence
into any point in each subinterval M;. Let E; X ~!(M;) be the set of points mapped into M; by X. Then the E; form a partition of
the basic space (2. For the given subdivision, we form a simple random variable X as follows. In each subinterval, pick a point s;,
t;—1 <s; <t;.Consider the simple random variable X = Z?:l silg, .

Ly M f
Figure 7.2.14. Partition of the interval I including the range of X
MI-' Mi"

b1 5" i

M
Figure 7.2.15. Refinement of the partition by additional subdividion points.
This random variable is in canonical form. If w € E;, then X (w) € M; and X;(w) = s; . Now the absolute value of the difference
satisfies
| X (w) — Xs(w)| <t —t;—1 the length of subinterval M;
Since this is true for each w and the corresponding subinterval, we have the important fact
| X (w) — Xs(w)| < maximum length of the M;

By making the subintervals small enough by increasing the number of subdivision points, we can make the difference as small as
we please.

While the choice of the s; is arbitrary in each M;, the selection of s; =¢; 1 (the left-hand endpoint) leads to the property
X;(w) < X(w)Vw. In this case, if we add subdivision points to decrease the size of some or all of the M;, the new simple
approximation Y; satisfies

X5 (w) =Y (w) < X(w) Yw

To see this, consider ¢t} € M; (see Figure 7.15). M; is partitioned into Ml/ U Mi” and E; is partitioned into E; U E;'. X maps E;
into Mi/ and E;' into Mi”. Y, maps El' into ¢; and maps E;' into t;./ > t_i\). X maps both El' and El'./ into ¢;. Thus, the asserted
inequality must hold for each w By taking a sequence of partitions in which each succeeding partition refines the previous (i.e. adds
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subdivision points) in such a way that the maximum length of subinterval goes to zero, we may form a nondecreasing sequence of
simple random variables X, which increase to X for each w.

The latter result may be extended to random variables unbounded above. Simply let N th set of subdivision points extend from a
to N, making the last subinterval [N, c0). Subintervals from a to N are made increasingly shorter. The result is a nondecreasing
sequence { Xy : 1 < N} of simple random variables, with Xy (w) — X(w) as N — oo, for each w € {2.

For probability calculations, we simply select an interval I large enough that the probability outside I is negligible and use a
simple approximation over I.

This page titled 7.2: Distribution Approximations is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer

via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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7.3: Problems on Distribution and Density Functions

Exercise 7.3.1

(See Exercises 3 and 4 from "Problems on Random Variables and Probabilities"). The class {C; : 1 < j <10} is a partition.
Random variable X has values {1, 3, 2, 3, 4, 2, 1, 3, 5, 2} on C} through C}y, respectively, with probabilities 0.08, 0.13, 0.06,
0.09, 0.14, 0.11, 0.12, 0.07, 0.11, 0.09. Determine and plot the distribution function F'x.

Answer

T=[1323421352];

pc = 0.01*[8 13 6 9 14 11 12 7 11 9];

[X,PX] = csort(T,pc);

ddbn

Enter row matrix of VALUES X

Enter row matrix of PROBABILITIES PX % See MATLAB plot

Exercise 7.3.2

(See Exercise 6 from "Problems on Random Variables and Probabilities"). A store has eight items for sale. The prices are
$3.50, $5.00, $3.50, $7.50, $5.00, $5.00, $3.50, and $7.50, respectively. A customer comes in. She purchases one of the items
with probabilities 0.10, 0.15, 0.15, 0.20, 0.10 0.05, 0.10 0.15. The random variable expressing the amount of her purchase may
be written

X =3.51¢, +5.0I¢, +3.51¢, +7.51¢, +5.0I¢, +5.0I¢, +3.51¢, +7.51¢,

Determine and plot the distribution function for X.

Answer

T=[3.553.57.555 3.57.5];

pc = 0.01*[10 15 15 20 10 5 10 15];

[X,PX] = csort(T,pc);

ddbn

Enter row matrix of VALUES X

Enter row matrix of PROBABILITIES PX % See MATLAB plot

Exercise 7.3.3

(See Exercise 12 from "Problems on Random Variables and Probabilities"). The class { A, B, C, D} has minterm probabilities
pm =0.001%[57 689 14 22 33 21 32 50 75 86 129 201 302]

Determine and plot the distribution function for the random variable X =14 + I+ I¢ + Ip , which counts the number of
the events which occur on a trial.

Answer

npro6_12
Minterm probabilities in pm, coefficients in c

T = sum(mintable(4)); % Alternate solution. See Exercise 6.2.12 from "Problems
[X,PX] = csort(T,pm);
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ddbn
Enter row matrix of VALUES X
Enter row matrix of PROBABILITIES PX % See MATLAB plot

Exercise 7.3.4

Suppose a is a ten digit number. A wheel turns up the digits 0 through 9 with equal probability on each spin. On ten spins what
is the probability of matching, in order, k or more of the ten digits in @, 0 < k < 10 ? Assume the initial digit may be zero.

Answer

P = cbinom(10, 0.1, 0 : 10).

Exercise 7.3.5

In a thunderstorm in a national park there are 127 lightning strikes. Experience shows that the probability of of a lightning
strike starting a fire is about 0.0083. What is the probability that k fires are started, k£ = 0,1,2,3?
Answer

P = ibinom(127,0.0083,0:3) P = 0.3470 0.3688 0.1945 0.0678

Exercise 7.3.6

A manufacturing plant has 350 special lamps on its production lines. On any day, each lamp could fail with probability p =
0.0017. These lamps are critical, and must be replaced as quickly as possible. It takes about one hour to replace a lamp, once it
has failed. What is the probability that on any day the loss of production time due to lamp failaures is k£ or fewer hours,
k=0,1,2,3,4,5

Answer

P =1 - chinom(350, 0.0017, 1:6)

I = 0.5513 0.8799 0.9775 0.9968 0.9996 1.0000

Exercise 7.3.7

Two hundred persons buy tickets for a drawing. Each ticket has probability 0.008 of winning. What is the probability of k& or
fewer winners, k = 2, 3,4?

Answer

P =1 - cbinom(200,0.008,3:5) = 0.7838 0.9220 0.9768

Exercise 7.3.8

Two coins are flipped twenty times. What is the probability the results match (both heads or both tails) & times, 0 < k <20°?

Answer

P = ibinom(20,1/2,0:20)
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Exercise 7.3.9

Thirty members of a class each flip a coin ten times. What is the probability that at least five of them get seven or more heads?

Answer

p = cbinom(10,0.5,7) = 0.1719

I P = cbinom(30,p,5) = 0.6052

Exercise 7.3.10

For the system in Exercise 6, call a day in which one or more failures occur among the 350 lamps a “service day.” Since a
Bernoulli sequence “starts over” at any time, the sequence of service/nonservice days may be considered a Bernoulli sequence
with probability p;, the probability of one or more lamp failures in a day.

a. Beginning on a Monday morning, what is the probability the first service day is the first, second, third, fourth, fifth day of
the week?
b. What is the probability of no service days in a seven day week?

Answer

pl=1-(1-0.0017)A350 = 0.4487 k = 1:5; (prob given day is a service day)

a.I P = pl*(1 - p1l).A(k-1) = 0.4487 0.2474 0.1364 0.0752 0.0414

b.I PO = (1 - p1l)A7 = 0.0155

Exercise 7.3.11

For the system in Exercise 6 and Exercise 10 assume the plant works seven days a week. What is the probability the third
service day occurs by the end of 10 days? Solve using the negative binomial distribution; repeat using the binomial
distribution.

Answer
pl=1-(1-0.0017)A350 = 0.4487

e P = sum(nbinom(3,p1,3:10)) = 0.8990
e Pa = cbinom(10,p1,3) = 0.8990

Exercise 7.3.12

A residential College plans to raise money by selling “chances” on a board. Fifty chances are sold. A player pays $10 to play;
he or she wins $30 with probability p = 0.2. The profit to the College is

X =50-10—-30N, where NN is the number of winners
Determine the distribution for X and calculate P(X > 0), P(X > 200), and P(X > 300)

Answer

N = 0:50,

PN = ibinom(50,0.2,0:50);
X = 500 - 30*N;

Ppos = (X>0)*PN'
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Ppos = 0.9856
P200 = (X>=200)*PN'
P200 = 0.5836
P300 = (X>=300)*PN'
P300 = 0.1034

Exercise 7.3.13

A single six-sided die is rolled repeatedly until either a one or a six turns up. What is the probability that the first appearance of
either of these numbers is achieved by the fifth trial or sooner?
Answer

P =1-(2/3)\5 = 0.8683

Exercise 7.3.14

Consider a Bernoulli sequence with probability p = 0.53 of success on any component trial.

a. The probability the fourth success will occur no later than the tenth trial is determined by the negative binomial
distribution. Use the procedure nbinom to calculate this probability .
b. Calculate this probability using the binomial distribution.

Answer

a P = sum(nbinom(4,0.53,4:10)) = 0.8729
b. Pa = cbinom(10,0.53,4) = 0.8729

Exercise 7.3.15

Fifty percent of the components coming off an assembly line fail to meet specifications for a special job. It is desired to select
three units which meet the stringent specifications. Items are selected and tested in succession. Under the usual assumptions for
Bernoulli trials, what is the probability the third satisfactory unit will be found on six or fewer trials?

Answer

P = cbinom(6,0.5,3) = 0.6562

Exercise 7.3.16

The number of cars passing a certain traffic count position in an hour has Poisson (53) distribution. What is the probability the
number of cars passing in an hour lies between 45 and 55 (inclusive)? What is the probability of more than 55?

Answer

P1 = cpoisson(53,45) - cpoisson(53,56) = 0.5224

I P2 = cpoisson(53,56) = 0.3581

Exercise 7.3.17

Compare P(X <k) and P(Y <k) for X binomial(5000, 0.001) and Y Poisson (5), for 0 < k < 10. Do this directly with
ibinom and ipoisson. Then use the m-procedure bincomp to obtain graphical results (including a comparison with the normal
distribution).
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Answer

k = 0:10;

Pb = 1 - cbinom(5000,0.001, k+1);
Pp = 1 - cpoisson(5,k+1);
disp([k;Pb;Pp]")

0 0.0067 0.0067
1.0000 0.0404 0.0404
2.0000 0.1245 0.1247
3.0000 0.2649 0.2650
4.0000 0.4404 0.4405
5.0000 0.6160 0.6160
6.0000 0.7623 0.7622
7.0000 0.8667 0.8666
8.0000 0.9320 0.9319
9.0000 0.9682 0.9682

10.0000 0.9864 0.9863
bincomp

Enter the parameter n 5000
Enter the parameter p 0.001
Binomial-- stairs

Poisson-- -.-.

Adjusted Gaussian-- o 0 O
gtext('Exercise 17')

Exercise 7.3.18

Suppose X binomial (12, 0.375), Y Poisson (4.5), and Z exponential (1/4.5). For each random variable, calculate and
tabulate the probability of a value at least &, for integer values 3 < k < 8.

Answer

k = 3:8;
cbinom(12,0.375,Kk);
Py = cpoisson(4.5,k);

o
X
1

Pz = exp(-k/4.5);

disp([k;Px;Py;Pz]")
3.0000 0.8865 0.8264 0.5134
4.0000 0.7176 0.6577 0.4111
5.0000 0.4897 0.4679 0.3292
6.0000 0.2709 0.2971 0.2636
7.0000 0.1178 0.1689 0.2111
8.0000 0.0390 0.0866 0.1690
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The number of noise pulses arriving on a power circuit in an hour is a random quantity having Poisson (7) distribution. What is
the probability of having at least 10 pulses in an hour? What is the probability of having at most 15 pulses in an hour?
Answer

P1 = cpoisson(7,10) = 0.1695 P2 = 1 - cpoisson(7,16) = 0.9976

Exercise 7.3.20

The number of customers arriving in a small specialty store in an hour is a random quantity having Poisson (5) distribution.
What is the probability the number arriving in an hour will be between three and seven, inclusive? What is the probability of
no more than ten?

Answer

P1 = cpoisson(5,3) - cpoisson(5,8) = 0.7420

I P2 = 1 - cpoisson(5,11) = 0.9863

Exercise 7.3.21

Random variable X binomial (1000, 0.1).

a. Determine P(X > 80), P(X >100), P(X >120)
b. Use the appropriate Poisson distribution to approximate these values.

Answer
k = [80 100 120];
P = cbinom(1000,0.1,Kk)
P = 0.9867 0.5154 0.0220

P1 = cpoisson(100, k)
P1 0.9825 0.5133 0.0282

Exercise 7.3.22

The time to failure, in hours of operating time, of a televesion set subject to random voltage surges has the exponential (0.002)
distribution. Suppose the unit has operated successfully for 500 hours. What is the (conditional) probability it will operate for
another 500 hours?

Answer

P(X >500+500|X >500) = P(X > 500) = ¢0:002:500 — 0 3679

Exercise 7.3.23

For X exponential (A), determine P(X >1/)), P(X >2/)).

Answer
P(X>k\) =e MW =¢*
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Twenty “identical” units are put into operation. They fail independently. The times to failure (in hours) form an iid class,
exponential (0.0002). This means the “expected” life is 5000 hours. Determine the probabilities that at least k, for k =
5,8,10,12,15, will survive for 5000 hours.

Answer
p = exp(-0.0002*5000)
p = 0.3679
k = [5 8 10 12 15];
P = cbinom(20, p, k)
P = 0.9110 0.4655 0.1601 0.0294 0.0006

Exercise 7.3.25

Let 7' gamma (20, 0.0002) be the total operating time for the units described in Exercise 24.

a. Use the m-function for the gamma distribution to determine P(7" < 100, 000).
b. Use the Poisson distribution to determine P(T" < 100, 000).

Answer

P1 = gammadbn(20,0.0002,100000) = 0.5297 P2 = cpoisson(0.0002*100000,20) = 0.5297

Exercise 7.3.26

The sum of the times to failure for five independent units is a random variable X gamma (5, 0.15). Without using tables or m-
programs, determine P (X1e25).

Answer
P(X <25)=P(Y >5),Y Poisson (0.15-25 =3.75)

3.752  3.75°  3.75

P(Y>5)=1-P(Y <4)=1-e33(1+3.75+ TR +—24)=03m5

Exercise 7.3.27

Interarrival times (in minutes) for fax messages on a terminal are independent, exponential (A = 0.1). This means the time X
for the arrival of the fourth message is gamma(4, 0.1). Without using tables or m-programs, utilize the relation of the gamma to
the Poisson distribution to determine P < 30.

Answer

P(X <30)=P(Y >4),Y poisson (0.2-30 =3)

3z 3
PQ@EQ=1—PQ¢§$=1—e4u+3+3~+§0=03ms

Exercise 7.3.28

Customers arrive at a service center with independent interarrival times in hours, which have exponential (3) distribution. The
time X for the third arrival is thus gamma (3, 3). Without using tables or m-programs, determine P(X < 2).

Answer
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P(X<2)=P(Y >3),Y poisson(3-2=6)
P(Y>3)=1-P(Y <2)=1-e5(1+6+36/2) =0.9380

Exercise 7.3.29

Five people wait to use a telephone, currently in use by a sixth person. Suppose time for the six calls (in minutes) are iid,
exponential (1/3). What is the distribution for the total time Z from the present for the six calls? Use an appropriate Poisson
distribution to determine P(Z < 20).
Answer
Z gamma (6, 1/3).
P(Z<20)=P(Y >6),Y poisson(1/3-20)
P(Y >6) = cpoisson(20/3, 6) = 0.6547

Exercise 7.3.30

A random number generator produces a sequence of numbers between 0 and 1. Each of these can be considered an observed
value of a random variable uniformly distributed on the interval [0, 1]. They assume their values independently. A sequence of
35 numbers is generated. What is the probability 25 or more are less than or equal to 0.71? (Assume continuity. Do not make a
discrete adjustment.)

Answer

p = cbinom(35,0.71,25) = 0.5620

Exercise 7.3.31

Five “identical” electronic devices are installed at one time. The units fail independently, and the time to failure, in days, of
each is a random variable exponential (1/30). A maintenance check is made each fifteen days. What is the probability that at
least four are still operating at the maintenance check?

Answer

p = exp(-15/30) = 0.6065 P = cbinom(5,p,4) = 0.3483

Exercise 7.3.32

Suppose X N (4, 81). That is, X has gaussian distribution with mean u = 4 and variance o2 = 81.

a. Use a table of standardized normal distribution to determine P(2 < X < 8) and P(|X —4| <5).
b. Calculate the probabilities in part (a) with the m-function gaussian.

Answer
d.
PR<X<8)=¢((8-4)/9)—¢((2-4)/9) =
?(4/9)+¢(2/9)—1=0.6712+0.5875 —1 = 0.2587
P(|X—4]<5)=2¢(5/9)—1=1.4212-1=0.4212
b.
P1 = gaussian(4,81,8) - gaussian(4,81,2)
P1 = 0.2596
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P2
P2
Exercise 7.3.33

Suppose X N(5,81). That is, X has gaussian distribution with 4 = 5 and o2 = 81. Use a table of standardized normal
distribution to determine P(3 < X < 9) and P(|X —5|le5). Check your results using the m-function gaussian.

gaussian(4,81,9) - gaussian(4,84,-1)
0.4181

Answer
PB<X<9)=¢((9-5)/9)—#((3—5)/9) =¢(4/9) +#(2/9) —1 =0.6712+0.5875 — 1 = 0.2587
P(|X—5|<5)=2¢(5/9)—1=1.4212 -1 =0.4212
P1 = gaussian(5,81,9) - gaussian(5,81,3)
P1 = 0.2596
P2 = gaussian(5,81,10) - gaussian(5,84,0)
P2 = 0.4181

Exercise 7.3.34

Suppose X N(3,64). That is, X has gaussian distribution with 4 = 3 and o2 = 64. Use a table of standardized normal
distribution to determine P(1 < X < 9) and P(|X — 3|le4). Check your results with the m-function gaussian.

Answer
P1<X<9)=¢((9-3)/8)—¢(1-3)/9) =

#(0.75) +#(0.25) —1 =0.7734+0.5987 —1 = 0.3721
P(|X—3]<4)=2¢(4/8)—1=1.3829 —1 =10.3829

P1 = gaussian(3,64,9) - gaussian(3,64,1)

P1 = 0.3721

P2 = gaussian(3,64,7) - gaussian(3,64,-1)

P2 = 0.3829

Exercise 7.3.35

Items coming off an assembly line have a critical dimension which is represented by a random variable N (10, 0.01). Ten
items are selected at random. What is the probability that three or more are within 0.05 of the mean value p.

Answer
p = gaussian(10,0.01,10.05) - gaussian(10,0.01,9.95)
p = 0.3829
P = cbinom(10,p, 3)
P = 0.8036
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The result of extensive quality control sampling shows that a certain model of digital watches coming off a production line
have accuracy, in seconds per month, that is normally distributed with ¢ = 5 and o2 = 300. To achieve a top grade, a watch
must have an accuracy within the range of -5 to +10 seconds per month. What is the probability a watch taken from the
production line to be tested will achieve top grade? Calculate, using a standardized normal table. Check with the m-function
gaussian.
Answer

P(-5 < X <10) =¢(5/4/300) +¢(10/+/300) — 1 = ¢(0.289) + ¢(0.577) — 1 =0.614 +0.717 -1 = 0.331

P = gaussian(5, 300, 10) - gaussian(5, 300, -5) = 0.3317

Exercise 7.3.37

Use the m-procedure bincomp with various values of 7 from 10 to 500 and p from 0.01 to 0.7, to observe the approximation of
the binomial distribution by the Poisson.

Answer

Experiment with the m-procedure bincomp.

Exercise 7.3.38
Use the m-procedure poissapp to compare the Poisson and gaussian distributions. Use various values of & from 10 to 500.

Answer

Experiment with the m-procedure poissapp.

Exercise 7.3.39

3
Random variable X has density fx(t) = §t2 ,—1 <t <1 (and zero elsewhere).

a. Determine P(—0.5 < X < 0.8), P(|X] > 0.5), P(|X —0.25) <0.5).
b. Determine an expression for the distribution function.
c. Use the m-procedures tappr and cdbn to plot an approximation to the distribution function.

Answer

a. %fﬁ:t?’/z

3
P1=0.5% (0.8 —(—0.5)%) =0.3185 P2 =2 f0f5 §t2 =(1-(-0.5)%)=17/8

P3=P(|X—0.25 <0.5) = P(—0.25 < X < 0.75) = %[(3/4)3 —(~1/4)}] =17/32

b Fx(t) = [, frr = 5 +1)

c || tappr
Enter matrix [a b] of x-range endpoints [-1 1]
Enter number of x approximation points 200
Enter density as a function of t 1.5*t.A2
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Use row matrices X and PX as in the simple case

cdbn

Enter row matrix of VALUES X

Enter row matrix of PROBABILITIES PX % See MATLAB plot

Exercise 7.3.40

3
Random variable X has density function fx(t) =t — Et?’ , 0 <t <2 (and zero elsewhere).

a. Determine P(X <0.5), P(0.56 <X <1.5), P(|X —1]| <1/4).
b. Determine an expression for the distribution function.
c. Use the m-procedures tappr and cdbn to plot an approximation to the distribution function.

Answer
3 2
. t—=t})=———
: Jt-3 =53
P1=0.5*/2-05%/8=7/64 P2=1.5"/2—-1.5%/8 —7/64 =19/32 P3 =79/256)

2
b.Fx(t)ZE—g ,0<t <2

C tappr
Enter matrix [a b] of x-range endpoints [0 2]
Enter number of x approximation points 200
Enter density as a function of t t - (3/8)*t.A2
Use row matrices X and PX as in the simple case
cdbn
Enter row matrix of VALUES X
Enter row matrix of PROBABILITIES PX % See MATLAB plot

Exercise 7.3.41

Random variable X has density function
_ J(6/5)t for0<t<1 _ 6, 6
fx() = { (6/5)(2—t) forl<t<?2 =10, @) gt + 1) 52 —1)

a. Determine P(X <0.5), P(0.56 <X <1.5), P(|X —1]| <1/4).
b. Determine an expression for the distribution function.
c. Use the m-procedures tappr and cdbn to plot an approximation to the distribution function.

Answer
a. P1:§f1/2t2_1/20P2_ Fpt+5 S [ @—t)=4/5
pg):§ f31/4t2+ [P4@2—)=79/160
7.6 t?
b. = Ij, t Iy, —(2t — —
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C tappr
Enter matrix [a b] of x-range endpoints [0 2]
Enter number of x approximation points 400
Enter density as a function of t (6/5)*(t<=1).*t.Nn2 +
(6/5)*(t>1).*(2 - t)
Use row matrices X and PX as in the simple case
cdbn
Enter row matrix of VALUES X
Enter row matrix of PROBABILITIES PX % See MATLAB plot

This page titled 7.3: Problems on Distribution and Density Functions is shared under a CC BY 3.0 license and was authored, remixed, and/or
curated by Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.
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8.1: Random Vectors and Joint Distributions

A single, real-valued random variable is a function (mapping) from the basic space 2 to the real line. That is, to each possible
outcome w of an experiment there corresponds a real value ¢ = X (w) . The mapping induces a probability mass distribution on the
real line, which provides a means of making probability calculations. The distribution is described by a distribution function Fx. In
the absolutely continuous case, with no point mass concentrations, the distribution may also be described by a probability density
function fx. The probability density is the linear density of the probability mass along the real line (i.e., mass per unit length). The
density is thus the derivative of the distribution function. For a simple random variable, the probability distribution consists of a
point mass p; at each possible value ¢; of the random variable. Various m-procedures and m-functions aid calculations for simple
distributions. In the absolutely continuous case, a simple approximation may be set up, so that calculations for the random variable
are approximated by calculations on this simple distribution.

Often we have more than one random variable. Each can be considered separately, but usually they have some probabilistic ties
which must be taken into account when they are considered jointly. We treat the joint case by considering the individual random
variables as coordinates of a random vector. We extend the techniques for a single random variable to the multidimensional case.
To simplify exposition and to keep calculations manageable, we consider a pair of random variables as coordinates of a two-
dimensional random vector. The concepts and results extend directly to any finite number of random variables considered jointly.

Random variables considered jointly; random vectors

As a starting point, consider a simple example in which the probabilistic interaction between two random quantities is evident.

Example 8.1.1: A selection problem

Two campus jobs are open. Two juniors and three seniors apply. They seem equally qualified, so it is decided to select them by
chance. Each combination of two is equally likely. Let X be the number of juniors selected (possible values 0, 1, 2) and Y be
the number of seniors selected (possible values 0, 1, 2). However there are only three possible pairs of values for (X,Y): (0,
2), (1, 1), or (2, 0). Others have zero probability, since they are impossible. Determine the probability for each of the possible
pairs.

Solution

There are C(5,2) =10 equally likely pairs. Only one pair can be both juniors. Six pairs can be one of each. There are
C(3,2) = 3 ways to select pairs of seniors. Thus

P(X=0,Y=2)=3/10,P(X=1,Y =1)=6/10, P(X =2,Y =0) =1/10

These probabilities add to one, as they must, since this exhausts the mutually exclusive possibilities. The probability of any
other combination must be zero. We also have the distributions for the random variables conisidered individually.

X=[012]PX=1[3/106/101/10]Y = [01 2] PY =[1/10 6/10 3/10]

We thus have a joint distribution and two individual or marginal distributions.

We formalize as follows:

A pair {X, Y} of random variables considered jointly is treated as the pair of coordinate functions for a two-dimensional random
vector W = (X,Y). To each w € Q, W assigns the pair of real numbers (¢, u), where X(w) =t and Y (w) = u. If we represent
the pair of values {¢, u} as the point (¢, u) on the plane, then W (w) = (¢, u), so that

W=(X,Y):Q— R?

is a mapping from the basic space 2 to the plane R2. Since W is a function, all mapping ideas extend. The inverse mapping W —1
plays a role analogous to that of the inverse mapping X ~! for a real random variable. A two-dimensional vector W is a random
vector iff W—1(Q) is an event for each reasonable set (technically, each Borel set) on the plane.

A fundamental result from measure theory ensures

W = (X,Y) is a random vector iff each of the coordinate functions X and Y is a random variable.

In the selection example above, we model X (the number of juniors selected) and Y (the number of seniors selected) as random
variables. Hence the vector-valued function
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Induced distribution and the joint distribution function

In a manner parallel to that for the single-variable case, we obtain a mapping of probability mass from the basic space to the plane.
Since W~1(Q) is an event for each reasonable set ) on the plane, we may assign to @ the probability mass

Pxy(Q)=PW Q)] =P[(X,Y) (Q)]
Because of the preservation of set operations by inverse mappings as in the single-variable case, the mass assignment determines
Pxy as a probability measure on the subsets of the plane R%. The argument parallels that for the single-variable case. The result is
the probability distribution induced by W = (X,Y’). To determine the probability that the vector-valued function W = (X,Y’)
takes on a (vector) value in region (), we simply determine how much induced probability mass is in that region.

Example 8.1.2: Induced distribution and probability calculations

To determine P(1 < X <,Y > 0), we determine the region for which the first coordinate value (which we call ¢) is between
one and three and the second coordinate value (which we call ) is greater than zero. This corresponds to the set @) of points on
the plane with 1 <¢ <3 and u > 0. Geometrically, this is the strip on the plane bounded by (but not including) the horizontal
axis and by the vertical lines ¢ =1 and ¢ = 3 (included). The problem is to determine how much probability mass lies in that
strip. How this is achieved depends upon the nature of the distribution and how it is described.

As in the single-variable case, we have a distribution function.

Definition: Joint Distribution Function

The joint distribution function Fxy for W = (X,Y) is given by

Fxy(t,u)=P(X <t,Y <u) VY(t,u) € R (8.1.1)

This means that F'xy (¢, ) is equal to the probability mass in the region Qy, on the plane such that the first coordinate is less than
or equal to £ and the second coordinate is less than or equal to u. Formally, we may write

Fxy(t,u) = P[(X,Y) € Qu], where \Q_{tu} =\{(r, s) : r\le t, s \le u\}\)

Now for a given point (a, b), the region Q,; is the set of points (¢, u) on the plane which are on or to the left of the vertical line
through (¢, 0)and on or below the horizontal line through (0, u) (see Figure 1 for specific point ¢t = a,u = b). We refer to such
regions as semiinfinite intervals on the plane.

The theoretical result quoted in the real variable case extends to ensure that a distribution on the plane is determined uniquely by
consistent assignments to the semiinfinite intervals @,. Thus, the induced distribution is determined completely by the joint
distribution function.

Fiey(a, b) = Pyy(Qgp)

(a b)

Qap

1

Figure 8.1.1. The region Q, for the value Fxy (a, b).

Distribution function for a discrete random vector

The induced distribution consists of point masses. At point (¢;,u;) in the range of W = (X,Y") there is probability mass
P =P[W = (t,uj)] = P(X =t;,Y =wu;) . As in the general case, to determine [P(X,Y) € Q] we determine how much
probability mass is in the region. In the discrete case (or in any case where there are point mass concentrations) one must be careful
to note whether or not the boundaries are included in the region, should there be mass concentrations on the boundary.
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Figure 8.1.2. The joint distribution for Example 8.1.3.

Example 8.1.3: distribution function for the selection problem in Example 8.1.1

The probability distribution is quite simple. Mass 3/10 at (0,2), 6/10 at (1,1), and 1/10 at (2,0). This distribution is plotted in
Figure 8.2. To determine (and visualize) the joint distribution function, think of moving the point (¢,u) on the plane. The
region \Q_{tu}\) is a giant “sheet” with corner at ¢, ). The value of Fxy (¢, u) is the amount of probability covered by the
sheet. This value is constant over any grid cell, including the left-hand and lower boundariies, and is the value taken on at the
lower left-hand corner of the cell. Thus, if (¢,u) is in any of the three squares on the lower left hand part of the diagram, no
probability mass is covered by the sheet with corner in the cell. If (¢,«) is on or in the square having probability 6/10 at the
lower left-hand corner, then the sheet covers that probability, and the value of Fxy (¢,u) =6/10. The situation in the other
cells may be checked out by this procedure.

Distribution function for a mixed distribution

The pair { X, Y} produces a mixed distribution as follows (see Figure 8.3)

Point masses 1/10 at points (0,0), (1,0), (1,1), (0,1)

Mass 6/10 spread uniformly over the unit square with these vertices

The joint distribution function is zero in the second, third, and fourth quadrants.

e If the point (¢, w) is in the square or on the left and lower boundaries, the sheet covers the point mass at (0,0) plus 0.6 times
the area covered within the square. Thus in this region

1
FXy(t, u) = 1—0(1 +6tu)

o If the pont (¢, u) is above the square (including its upper boundary) but to the left of the line t = 1, the sheet covers two
point masses plus the portion of the mass in the square to the left of the vertical line through (¢, «). In this case

1
FXy(t, u) = 1—0 (2 +6t)
o If the point (¢, w) is to the right of the square (including its boundary) with 0 < u < 1, the sheet covers two point masses
and the portion of the mass in the square below the horizontal line through (¢, u), to give
F_{XY} (t, u) =\dfrac{1}{10} (2 + 6u)\)

e If (¢,u) is above and to the right of the square (i.e., both 1 < ¢ and 1 < w). then all probability mass is covered and
Fxy(t,u) =1 in this region.

Figure 8.3. Mixed joint distribution for Example 8.4.
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Marginal Distributions
If the joint distribution for a random vector is known, then the distribution for each of the component random variables may be
determined. These are known as marginal distributions. In general, the converse is not true. However, if the component random
variables form an independent pair, the treatment in that case shows that the marginals determine the joint distribution.
To begin the investigation, note that

Fx(t)=P(X <t)=P(X <t,Y <oo) ie. Y cantake any of its possible values.

Thus
Fx(t) = ny(t, OO) = limy o FXy(t, u)
This may be interpreted with the aid of Figure 8.1.4. Consider the sheet for point (¢, ).

u

Boundary moves up to
i include all probability
Half plane 1 mass in the half plane.

Q

e e T ——————— - u increases without limit

t

Fx[t) = prebability in the
half plane = FX‘T‘ (t,o0)

Figure 8.1.4. Construction for obtaining the marginal distribution for X.

If we push the point up vertically, the upper boundary of @y, is pushed up until eventually all probability mass on or to the left of
the vertical line through (¢, w) is included. This is the total probability that X <t. Now Fx(t) describes probability mass on the
line. The probability mass described by Fx(t) is the same as the total joint probability mass on or to the left of the vertical line
through (¢, u). We may think of the mass in the half plane being projected onto the horizontal line to give the marginal distribution

for X. A parallel argument holds for the marginal for Y.

Fy(u) =P(Y <u) = Fxy(oo,u) = mass on or below horizontal line through (¢, u)

This mass is projected onto the vertical axis to give the marginal distribution for Y.
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Marginals for a joint discrete distribution
Consider a joint simple distribution.
P(X:ti) ZE;n:l P(X:ti,Y:uj) andP(Y:uj) 22?11 P(X:ti,Y:’U,j)

Thus, all the probability mass on the vertical line through (¢;,0) is projected onto the point ¢; on a horizontal line to give

P(X =t;). Similarly, all the probability mass on a horizontal line through (0, u;) is projected onto the point u; on a vertical line
to give P(Y =u;).

S EllolRMMMMarginals for a discrete distribution
The pair { X, Y} produces a joint distribution that places mass 2/10 at each of the five points

(0,0), (1, 1), (2, 0), (2, 2), (3, 1) (See Figure 8.1.5)

The marginal distribution for X has masses 2/10, 2/10, 4/10, 2/10 at points t = 0, 1, 2, 3, respectively. Similarly, the marginal
distribution for Y has masses 4/10, 4/10, 2/10 at points u = 0, 1, 2, respectively.

! ! i
i i i
i I I
0.2 | 04 | 0.8 110
i i i
1 1 I
2 ________ \’_ _______ -CIT ________ T
i i |
0.2 | 04 L 0.6 |08
i i H
| i I
N B--omne- po-o-e- Goommeeoe
i I '
0.2 ! 02 b4 104
i i i
0 i é : .
To 1 2 3
Joint distribution
0.2 0.2 0.4 0.2
N o t
0 1 2 3

Marginal distribution for X

Figure 8.1.5. Marginal distribution for Example 8.1.1.

Consider again the joint distribution in Example 8.4. The pair { X, Y’} produces a mixed distribution as follows:
Point masses 1/10 at points (0,0), (1,0), (1,1), (0,1)

Mass 6/10 spread uniformly over the unit square with these vertices

The construction in Figure 8.1.6 shows the graph of the marginal distribution function F'x. There is a jump in the amount of
0.2 att =0, corresponding to the two point masses on the vertical line. Then the mass increases linearly with ¢, slope 0.6, until
a final jump at £ =1 in the amount of 0.2 produced by the two point masses on the vertical line. At ¢ =1, the total mass is
“covered” and Fx (t) is constant at one for ¢ > 1. By symmetry, the marginal distribution for Y is the same.
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Point masses 1/10 at each vertex

Mass 6/10 spread
uniformly on the
square. Density 0.6.

Mass 0.2 + 0.6t covered by the half plane.

0.8 |—

Fy (t) =02+ 0.6t

0.2

) 1
Marginal distribution for X

Figure 8.1.6. Marginal distribution for Example 8.1.6

This page titled 8.1: Random Vectors and Joint Distributions is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
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8.2: Random Vectors and MATLAB

m-procedures for a pair of simple random variables

We examine, first, calculations on a pair of simple random variables X, Y considered jointly. These are, in effect, two components
of a random vector W = (X,Y’), which maps from the basic space 2 to the plane. The induced distribution is on the (¢, u)-plane.
Values on the horizontal axis (¢-axis) correspond to values of the first coordinate random variable X and values on the vertical axis
(u-axis) correspond to values of Y. We extend the computational strategy used for a single random variable.

First, let us review the one-variable strategy. In this case, data consist of values ¢; and corresponding probabilities arranged in
matrices

X =[t1,t2, -ty and PX = [P(X =t1), P(X =t3), -+, P(X =1,)]
To perform calculations on Z = g(X), we we use array operations on X to form a matrix

G = [g(t1)g(t2) - - 9(tn)]
which has g(¢;) in a position corresponding to P(X =t;) in matrix PX.
Basic problem. Determine P(g(X) € M), where M is some prescribed set of values.

« Use relational operations to determine the positions for which g(¢;) € M . These will be in a zero-one matrix N, with ones in
the desired positions.

« Select the P(X =t;) in the corresponding positions and sum. This is accomplished by one of the MATLAB operations to
determine the inner product of N and PX

We extend these techniques and strategies to a pair of simple random variables, considered jointly.
The data for a pair { X, Y} of random variables are the values of X and Y, which we may put in row matrices
X =[tite---t,] and Y = [uguz - - - Uy,

and the joint probabilities P(X =t¢;,Y =wu;) in a matrix P. We usually represent the distribution graphically by putting
probability mass P(X =t¢;,Y =u;) at the point (¢;,u;) on the plane. This joint probability may is represented by the matrix P
with elements arranged corresponding to the mass points on the plane. Thus

P has elememt P(X =t;,Y =u;) atthe (¢;,u;) position

To perform calculations, we form computational matrices ¢ and w such that — ¢ has element ¢; at each (t;, u;) position (i.e., at
each point on the ¢th column from the left) — w has element w; at each (¢;, u;) position (i.e., at each point on the jth row from the
bottom) MATLAB array and logical operations on t, u, P perform the specified operations on t;,u;, and P(X =t;,Y =wu;) at
each (t;, u;) position, in a manner analogous to the operations in the single-variable case.

Formation of the t and u matrices is achieved by a basic setup m-procedure called jcalc. The data for this procedure are in three
matrices: X = [t1,t2,- -, t,] is the set of values for random variable X Y = [uy, ug, - -, U] is the set of values for random
variable Y, and P = [p;;], where p;; = P(X =t;,Y =wu;) . We arrange the joint probabilities as on the plane, with X-values
increasing to the right and Y-values increasing upward. This is different from the usual arrangement in a matrix, in which values of
the second variable increase downward. The m-procedure takes care of this inversion. The m-procedure forms the matrices ¢ and w,
utilizing the MATLAB function meshgrid, and computes the marginal distributions for X and Y. In the following example, we
display the various steps utilized in the setup procedure. Ordinarily, these intermediate steps would not be displayed.

el RPAASetup and basic calculations

>> jdemo4 % Call for data in file jdemo4.m
>> jcalc % Call for setup procedure

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P

>> disp(P) % Optional call for display of P
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0.0360 0.0198 0.0297 0.0209 0.0180

0.0372 0.0558 0.0837 0.0589 0.0744

0.0516 0.0774 0.1161 0.0817 0.1032

0.0264 0.0270 0.0405 0.0285 0.0132
>> PX % Optional call for display of PX
PX = 0.1512 0.1800 0.2700 0.1900 0.2088
>> PY % Optional call for display of PY

PY = 0.1356 0.4300 0.3100 0.1244
S T T R % Steps performed by jcalc

>> PX = sum(P) % Calculation of PX as performed by jcalc
PX = 0.1512 0.1800 0.2700 0.1900 0.2088
>> PY = fliplr(sum(P')) % Calculation of PY (note reversal)

PY = 0.1356 0.4300 0.3100 0.1244
>> [t,u] = meshgrid(X,fliplr(Y)); % Formation of t, u matrices (note reversal)
>> disp(t) % Display of calculating matrix t

-3 0 1 3 5 % A row of X-values for each value of Y
-3 (C] 1 3 5
-3 0 1 3 5
-3 0 1 3 5
>> disp(u) % Display of calculating matrix u
2 2 2 2 2 % A column of Y-values (increasing
1 1 1 1 % upward) for each value of X
(C] (C] (C] (C] (C]
-2 -2 -2 -2 -2

Suppose we wish to determine the probability P(X 23y > 1) . Using array operations on ¢ and u, we obtain the matrix

G =g(ti, ;)] .
>> G = t.A2 - 3*u % Formation of G = [g(t_i,u_j)] matrix
G =3 -6 -5 3 19
6 -3 -2 6 22
9 0 1 9 25
15 6 7 15 31
> M =G > 1 % Positions where G >= 1
M= 1 (0] (0] 1 1
1 (C] (C] 1 1
1 (C] 1 1 1
1 1 1 1 1
>> pM = M.*P % Selection of probabilities
pM =
0.0360 (C] (C] 0.0209 0.0180
0.0372 0 0 0.0589 0.0744
0.0516 (0] 0.1161 0.0817 0.1032
0.0264 0.0270 0.0405 0.0285 0.0132
>> PM = total(pM) % Total of selected probabilities
PM = 0.7336 % P(g(X,Y) >= 1)
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In Example 8.1.3 from "Random Vectors and Joint Distributions" we note that the joint distribution function F'xy is constant over
any grid cell, including the left-hand and lower boundaries, at the value taken on at the lower left-hand corner of the cell. These
lower left-hand corner values may be obtained systematically from the joint probability matrix P by a two step operation.

e Take cumulative sums upward of the columns of P.
e Take cumulative sums of the rows of the resultant matrix.

This can be done with the MATLAB function cumsum, which takes column cumulative sums downward. By flipping the matrix
and transposing, we can achieve the desired results.

S EN o] EREPZASEN AR Calculation of xy values for Example 8.3 from "Random Vectors and Joint Distributions"

>> P = 0.1*[30 0; 066 0; 0 0 1];
>> FXY = flipud(cumsum(flipud(P))) % Cumulative column sums upward

FXY =
0.3000 0.6000 0.1000
0 0.6000 0.1000
0] 0] 0.1000
>> FXY = cumsum(FXY')' % Cumulative row sums
FXY =
0.3000 0.9000 1.0000

0 0.6000 0.7000

0 0 0.1000
u
l 0.3 , 09 1.0
PR 2 S
ot oos | a7
PR D ,“"f}‘? _____ -
0 , 0 Lo01
0 : 11/10
: : t
0 1 2

Figure 8.2.7. The joint distribution for Example 8.1.3 in "Random Vectors and Joint Distributions'.

Comparison with Example 8.3 from "Random Vectors and Joint Distributions" shows agreement with values obtained by hand.
The two step procedure has been incorprated into an m-procedure jddbn. As an example, return to the distribution in Example
Example 8.7

S el ERPA BT oint distribution function for example 8.7

>> jddbn
Enter joint probability matrix (as on the plane) P
To view joint distribution function, call for FXY
>> disp(FXY)
0.1512 0.3312 0.6012 0.7912 1.0000
0.1152 0.2754 0.5157 0.6848 0.8756
0.0780 0.1824 0.3390 0.4492 0.5656
0.0264 0.0534 0.0939 0.1224 0.1356

These values may be put on a grid, in the same manner as in Figure 8.1.2 for Example 8.1.3 in "Random Vectors and Joint
Distributions".
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As in the case of canonic for a single random variable, it is often useful to have a function version of the procedure jcalc to provide
the freedom to name the outputs conveniently. function [x,y,t,u,px,py,p] = jcalcf(X,Y,P) The quantities
z,y,t,u, pz, pyand p may be given any desired names.

Joint absolutely continuous random variables

In the single-variable case, the condition that there are no point mass concentrations on the line ensures the existence of a
probability density function, useful in probability calculations. A similar situation exists for a joint distribution for two (or more)
variables. For any joint mapping to the plane which assigns zero probability to each set with zero area (discrete points, line or curve
segments, and countable unions of these) there is a density function.

Definition

If the joint probability distribution for the pair {X, Y} assigns zero probability to every set of points with zero area, then there
exists a joint density function fxy with the property

P[(XY GQ fofXY
We have three properties analogous to those for the single-variable case:
(F1) fxv >0 (82) [ [ v =1 (83) Py (t,0) = [ [*, Fxr
At every continuity point for fxy, the density is the second partial

82FXY(t7u)

Fxy(tw) = —F%5"

Now
Fx(t) = Fxy(t,00) = [* [ fxv(r,s)dsdr
A similar expression holds for Fy(u) Use of the fundamental theorem of calculus to obtain the derivatives gives the result
f fxvy(t,s)ds and fy(u f Fxy(r,u)du

Marginal densities. Thus, to obtain the marginal density for the first variable, integrate out the second variable in the joint density,
and similarly for the marginal for the second variable.

IEENTEEREL R Marginal density functions
Let fxy(t,u) =8tu 0 <wu <t <1.This region is the triangle bounded by w = 0,u =t, and ¢t = 1 (see Figure 8.2.8)
fX(t) = [ fxy(t,u)du =8t [} udu =4t ,0<t <1
fr(w) = [ fxy(t,u)dt =8u [} tdt =4u(l—u?) ,0<u <1

P(0.5<X<0.75,Y >0.5) = [(X, Y) € Q] where Q is the common part of the triangle with the strip between ¢ = 0.5
and t = 0.75 and above the line v = 0.5. This is the small triangle bounded by u = 0.5, u = ¢, and ¢ = 0.75. Thus

p=8 [, J{stududt = 25/256 ~ 0.0977
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1.0 —
0.75
Q
0.5 —
fxy(t,u) = Btu
| 1 t
o 0.5 0.75 1.0

Figure 8.2.8. Distribution for Example 8.2.10

S ET o) CRPREB Marginal distribution with compound expression

The pair { X, Y'} has joint density \f_{XY }(t, u) = \dfrac{6}{37} (t + 2u)\) on the region bounded by t =0,¢t =2, =0 and
u =max{1,t} (see Figure 8.9). Determine the marginal density fx.

Solution

Examination of the figure shows that we have different limits for the integral with respect to u for 0 <¢ <1 and for
1<t<2.

e For0<t<1

6 .1 6
fe(t) = - Jo @ +2u)du = 37(t+1)
o Forl<t<2

_6 _ 12,
fx@t)= = Jo (t+2u)du = 3t

We may combine these into a single expression in a manner used extensively in subsequent treatments. Suppose M = [0, 1] and
N =(1,2]. Then Ips(t) =1 fort € M (i.e, 0 <¢ <1) and zero elsewhere. Likewise, In(¢t) =1 for t € N and zero elsewhere.
We can, therefore express fx by

{2,2)

Fop(t,u) = (6/37)Ct + 2u)

’ \

4

a 1 2
Figure 8.2.9. Marginal distribution for Example 8.2.11

Discrete approximation in the continuous case

For a pair { X, Y'} with joint density fxy, we approximate the distribution in a manner similar to that for a single random variable.
We then utilize the techniques developed for a pair of simple random variables. If we have n approximating values ¢; for X and m
approximating values u; for Y, we then have n-m pairs (t;,u;), corresponding to points on the plane. If we subdivide the
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horizontal axis for values of X, with constant increments dz, as in the single-variable case, and the vertical axis for values of Y,
with constant increments dy, we have a grid structure consisting of rectangles of size dx - dy. We select ¢; and u; at the midpoint
of its increment, so that the point (¢;,u;) is at the midpoint of the rectangle. If we let the approximating pair be {X*,Y *}, we
assign

pij = P((X*,Y*) = (t;,u;)) = P(X* =t;,Y* =u;) = P((X,Y) inijthrectangle)
As in the one-variable case, if the increments are small enough,
P((X,Y) € ijthrectangle) ~ dx - dy - fxy(ti, u;)

The m-procedure tuappr calls for endpoints of intervals which include the ranges of X and Y and for the numbers of subintervals
on each. It then prompts for an expression for fxy (¢, u), from which it determines the joint probability distribution. It calculates
the marginal approximate distributions and sets up the calculating matrices ¢ and u as does the m-process jcalc for simple random
variables. Calculations are then carried out as for any joint simple pair.

ST o] R F28 A pproximation to a joint continuous distribution
fxv(t,u)=3on0<u<t’<1

Determine P(X <0.8,Y >0.1).

>> tuappr

Enter matrix [a b] of X-range endpoints [0 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density 3*(u <= t.A2)

Use array operations on X, Y, PX, PY, t, u, and P

>> M = (t <= 0.8)&(u > 0.1);

>> p = total(M.*P) % Evaluation of the integral with
p = 0.3355 % Maple gives 0.3352455531

The discrete approximation may be used to obtain approximate plots of marginal distribution and density functions.

e Marginal Density 2nd Cistibutior er X

0.5

[l = =
-1 Qa8 ke -De 02 o QF  hd 0OR 0B 1
Hevaluos

Figure 8.2.10. Marginal density and distribution function for Example 8.2.13
S ET o) [SREWMEHN A pproximate plots of marginal density and distribution functions

fxy(t,u) = 3u on the triangle bounded by u = 0,4 < 1+¢,andu <1—¢.

>> tuappr
Enter matrix [a b] of X-range endpoints [-1 1]
Enter matrix [c d] of Y-range endpoints [0 1]
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Enter number of X approximation points 400

Enter number of Y approximation points 200

Enter expression for joint density 3*u.*(u<=min(1+t,1-t))
Use array operations on X, Y, PX, PY, t, u, and P

>> fx = PX/dx; % Density for X (see Figure 8.2.10)
% Theoretical (3/2)(1 - |t])"2
>> fy = PY/dy; % Density for Y
>> FX = cumsum(PX); % Distribution function for X (Figure 8.2.10)
>> FY = cumsum(PY); % Distribution function for Y
>> plot (X, fx, X, FX) % Plotting details omitted

These approximation techniques useful in dealing with functions of random variables, expectations, and conditional expectation
and regression.

This page titled 8.2: Random Vectors and MATLAB is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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8.3: Problems on Random Vectors and Joint Distributions

Exercise 8.3.1

Two cards are selected at random, without replacement, from a standard deck. Let X be the number of aces and Y be the
number of spades. Under the usual assumptions, determine the joint distribution and the marginals.

Answer

Let X be the number of aces and Y be the number of spades. Define the events AS;, 4;, S;, and N;, i =1, 2 of drawing
ace of spades, other ace, spade (other than the ace), and neither on the i selection. Let P(i, k) = P(X =4,Y =k) .

36 35 1260
P(0,0)=P(N\No) = = - 52 = 5=
36 12 12 36 864
P(0,1)= P(Ni SV 5iNe) = = == + 25 52 = 5o
12 11 132

52 51 2652

| P(1, 0) = P(A_N_2 \bigvee N_1 S_2) =\dfrac{3}{52} \cdot \dfrac{36}{51} +\dfrac{36}{52} \cdot \dfrac{3}{51} = \dfrac{216} {2652} |
3 12 12 3 1 36 36 1 144

1 12 12 1 24

P(0,2) = P(5,55) =

P(1,2) = P(AS15: \V S148;) = 2 51 -l-a 51 2652
3 2 6
P(2,0)=P(A1Ay) = 52 51 2652
1 3 3 1 6
P(2,1)=P(AS14:V M1A8) = -5 -0+ 55" 51 = 2682

P(2,2)=P(0)=0

% type nprog 01

% file npro8_01.m

% Solution for Exercise 8.3.1.

X = 0:2;

Y = 0:2;

Pn = [132 24 0; 864 144 6; 1260 216 6];
P = Pn/(52*51);

disp('Data in Pn, P, X, Y')

nprog_o1 % Call for mfile
Data in Pn, P, X, Y % Result
PX = sum(P)

PX = 0.8507 0.1448 0.0045
PY = fliplr(sum(P'))
PY 0.5588 0.3824 0.0588

Exercise 8.3.2

Two positions for campus jobs are open. Two sophomores, three juniors, and three seniors apply. It is decided to select two at
random (each possible pair equally likely). Let X be the number of sophomores and Y be the number of juniors who are
selected. Determine the joint distribution for the pair { X, Y’} and from this determine the marginals for each.
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Answer

Let A;, B;, C; be the events of selecting a sophomore, junior, or senior, respectively, on the ith trial. Let X be the number
of sophomores and Y be the number of juniors selected.

Set P(i, k) = P(X =14,Y = k)

5,8 85_1

778 7 56
P(0,2)=P(B1B2):%.;:%
P(LO):P(A102)+P(01A2)Zg-%—i-g-%:%
P(lal):P(AlB2)+P(B1A2):g'%4‘%'%Z%
P(2,0) = P(4; 45) = % . % _ %

P(1,2) =P(2,1)=P(2,2) =0
PX = [30/56 24/56 2/56] PY = [20/56 30/56 6/56]

% file npro08_02.m

% Solution for Exercise 8.3.2.

X =0:2;

Y = 0:2,

Ph = [6 0 0; 18 12 0; 6 12 2];

P = Pn/56;

disp('Data are in X, Y,Pn, P')
nprog8_02

Data are in X, Y,Pn, P

PX = sum(P)

PX = 0.5357 0.4286 0.0357
PY = fliplr(sum(P'))

PY = 0.3571 0.5357 0.1071

Exercise 8.3.3

A die is rolled. Let X be the number that turns up. A coin is flipped X times. Let Y be the number of heads that turn up.
Determine the joint distribution for the pair {X,Y}. Assume P(X =k)=1/6 for 1<k<6 and for each k,
P(Y =j|X =k) has the binomial (k, 1/2) distribution. Arrange the joint matrix as on the plane, with values of Y increasing
upward. Determine the marginal distribution for Y. (For a MATLAB based way to determine the joint distribution see
Example 14.1.7 from "Conditional Expectation, Regression")

Answer

P(X=i,Y =k)=P(X =i)P(Y = k| X =1i) = (1/6)P(Y = k| X =1)

% file npro8_03.m

% Solution for Exercise 8.3.3.
X = 1:6;

Y = 0:6;
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PO = zeros(6,7); % Initialize

for 1 = 1:6 % Calculate rows of Y probabilities
PO(i,1:i+1) = (1/6)*ibinom(i,1/2,0:1);

end

P = rot90(PO); % Rotate to orient as on the plane

PY = fliplr(sum(P')); % Reverse to put in normal order
disp('Answers are in X, Y, P, PY')

npro8_03 % Call for solution m-file
Answers are in X, Y, P, PY
disp(P)
0 0 0 0 0 0.0026
(C] (C] (C] (C] 0.0052 0.0156
0 0 0 0.0104 0.0260 0.0391
(C] (C] 0.0208 0.0417 0.0521 0.0521
(C] 0.0417 0.0625 0.0625 0.0521 0.0391
0.0833 0.0833 0.0625 0.0417 0.0260 0.0156
0.0833 0.0417 0.0208 0.0104 0.0052 0.0026

disp(PY)
0.1641 0.3125 0.2578 0.1667 0.0755 0.0208 0.0026

Exercise 8.3.4

pair { X, Y’} and from this determine the marginal distribution for Y.

Answer

As a variation of Exercise 8.3.3., Suppose a pair of dice is rolled instead of a single die. Determine the joint distribution for the

% file npro8_04.m
% Solution for Exercise 8.3.4.
2:12;
0:12;
PX = (1/36)*[1 23 4565 4 3 2 1];
PO = zeros(11,13);
for i = 1:11
PO(i,1:i+2) = PX(i)*ibinom(i+1,1/2,0:1i+1);

< X
I n

end
P = rot90(P0O);
PY = fliplr(sum(P'));
disp('Answers are in X, Y, PY, P')
npro8_o04
Answers are in X, Y, PY, P
disp(P)
Columns 1 through 7

© 0 0 o
© 0 0 o
© 0 0 o
© 0 0 o
© 0 0 o
© 0 0 o

© 0 0 o
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(C] (0] (0] (0] (0] (0] 0.0005
0 0 0 0 0 0.0013 0.0043
0 0 0 0 0.0022 0.0091 0.0152
(C] (C] (C] 0.0035 0.0130 0.0273 0.0304
0 0 0.0052 0.0174 0.0326 0.0456 0.0380
(0] 0.0069 0.0208 0.0347 0.0434 0.0456 0.0304
0.0069 0.0208 0.0312 0.0347 0.0326 0.0273 0.0152
0.0139 0.0208 0.0208 0.0174 0.0130 0.0091 0.0043
0.0069 0.0069 0.0052 0.0035 0.0022 0.0013 0.0005
Columns 8 through 11
0 0 0 0.0000
(C] (C] 0.0000 0.0001
0 0.0001 0.0003 0.0004
0.0002 0.0008 0.0015 0.0015
0.0020 0.0037 0.0045 0.0034
0.0078 0.0098 0.0090 0.0054
0.0182 0.0171 0.0125 0.0063
0.0273 0.0205 0.0125 0.0054
0.0273 0.0171 0.0090 0.0034
0.0182 0.0098 0.0045 0.0015
0.0078 0.0037 0.0015 0.0004
0.0020 0.0008 0.0003 0.0001
0.0002 0.0001 0.0000 0.0000
disp(PY)
Columns 1 through 7
0.0269 0.1025 0.1823 0.2158 0.1954 0.1400 0.0806
Columns 8 through 13
0.0375 0.0140 0.0040 0.0008 0.0001 0.0000

Exercise 8.3.5

Suppose a pair of dice is rolled. Let X be the total number of spots which turn up. Roll the pair an additional X times. Let Y
be the number of sevens that are thrown on the X rolls. Determine the joint distribution for the pair {X,Y} and from this
determine the marginal distribution for Y. What is the probability of three or more sevens?

Answer

% file npro8_05.m
% Data and basic calculations for Exercise 8.3.5.
PX = (1/36)*[1 23 4565 432 1];
X = 2:12;
Y = 0:12;
PO = zeros(11,13);
for 1 = 1:11
PO(i,1:i+2) = PX(i)*ibinom(i+1,1/6,0:1i+1);
end
P = rot90(PO);
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PY = fliplr(sum(P'));
disp('Answers are in X, Y, P, PY')
npro8_o5
Answers are in X, Y, P, PY
disp(PY)
Columns 1 through 7
0.3072 0.3660 0.2152 0.0828 0.0230 0.0048 0.0008
Columns 8 through 13
0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

Exercise 8.3.6

The pair { X, Y} has the joint distribution (in m-file npr08_06.m):
X=1[-23-0.711395.11Y ==[1.32.54.15.3]
0.0483 0.0357 0.0420 0.0399 0.0441
0.0437 0.0323 0.0380 0.0361 0.0399

0.0713 0.0527 0.0620 0.0609 0.0551
0.0667 0.0493 0.0580 0.0651 0.0589

Determine the marginal distribution and the corner values for Fxy . Determine P(X +Y > 2) and P(X >Y).

Answer

npro8_06

Data are in X, Y, P

jcalc

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P
disp([X;PX]")

-2.3000  0.2300
-0.7000  0.1700
1.1000  0.2000
3.9000  0.2020
5.1000  0.1980

disp([Y;PY]")
1.3000  0.2980
2.5000  0.3020
4.1000  0.1900
5.3000  0.2100

jddbn

Enter joint probability matrix (as on the plane) P
To view joint distribution function, call for FXY
disp(FXY)

0.2300 0.4000 0.6000 0.8020 1.0000
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@%meﬁm&m

0.1817 0.3160 0.4740 0.6361 0.7900
0.1380 0.2400 0.3600 0.4860 0.6000
0.0667 0.1160 0.1740 0.2391 0.2980

P1 = total((t+u>2).*P)

P1 = 0.7163

total((t>=u).*P)

0.2799

T T
NN
I

Exercise 8.3.7

The pair { X, Y'} has the joint distribution (in m-file npr08 _07.m):

P(X=i,Y =u)
t= -3.1 -0.5 1.2 24 3.7 4.9
u=7.5 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203
4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231
-2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189
-3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

Determine the marginal distributions and the corner values for Fixy. Determine P(1 < X <4,Y >4) and P(|X -Y| <2).

Answer

npro8_07

Data are in X, Y, P

jcalc

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P
disp([X;PX]")

-3.1000  0.1500
-0.5000  0.2200
1.2000  0.3300
2.4000  0.1200
3.7000  0.1100
4.9000  0.0700

disp([Y;PY]")
-3.8000  0.1929
-2.0000  0.3426
4.1000  0.2706
7.5000  0.1939

jddbn

Enter joint probability matrix (as on the plane) P
To view joint distribution function, call for FXY
disp(FXY)
0.1500 0.3700 0.7000 0.8200 0.9300 1.0000
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1.0000
.0000
.0000
.0000
.0000
11.0000
13.0000
15.0000
17.0000
19.0000

© N 01 W

-5.0000
-3.0000

disp([X;PX]")

[cl ol ool oM oMol oM oMOo)

disp([Y;PY]")

(o]

.0800
.1300
.0900
.0500
.1300
.1000
.1400
.0800
.1300
.0700

.1092
.1768

0.1410 0.3214 0.5920 0.6904 0.7564 0.8061
0.0915 0.2719 0.4336 0.4792 0.5089 0.5355
0.0510 0.0994 0.1720 0.1852 0.1852 0.1929
M = (1<=t)&(t<=4)&(u>4);
P1 = total(M.*P)
P1 = 0.3230
P2 = total((abs(t-u)<=2).*P)
P2 = 0.3357
Exercise 8.3.8
The pair { X, Y} has the joint distribution (in m-file npr08_08.m):
P(X=tY =u)
t= 1 3 5 7 9 11 13 15 17 19
u=12 0.0156 0.0191 0.0081 0.0035 0.0091 0.0070 0.0098 0.0056 0.0091 0.0049
10 0.0064 0.0204 0.0108 0.0040 0.0054 0.0080 0.0112 0.0064 0.0104 0.0056
9 0.0196 0.0256 0.0126 0.0060 0.0156 0.0120 0.0168 0.0096 0.0056 0.0084
5 0.0112 0.0182 0.0108 0.0070 0.0182 0.0140 0.0196 0.0012 0.0182 0.0038
3 0.0060 0.0260 0.0162 0.0050 0.0160 0.0200 0.0280 0.0060 0.0160 0.0040
-1 0.0096 0.0056 0.0072 0.0060 0.0256 0.0120 0.0268 0.0096 0.0256 0.0084
-3 0.0044 0.0134 0.0180 0.0140 0.0234 0.0180 0.0252 0.0244 0.0234 0.0126
-5 0.0072 0.0017 0.0063 0.0045 0.0167 0.0090 0.0026 0.0172 0.0217 0.0223
Determine the marginal distributions. Determine Fxy (10, 6)and P(X >Y).
Answer
npro8_os
Data are in X, Y, P
jcalc
Use array operations on matrices X, Y, PX, PY, t, u, and P
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-1.0000 0.1364
3.0000 0.1432
5.0000 0.1222
9.0000 0.1318

10.0000 0.0886

12.0000 0.0918

F = total(((t<=10)&(u<=6)).*P)
F = 0.2982

P = total((t>u).*P)

P = 0.7390

Exercise 8.3.9

Data were kept on the effect of training time on the time to perform a job on a production line. X is the amount of training, in
hours, and Y is the time to perform the task, in minutes. The data are as follows (in m-file npr08_09.m):

P(X=tY =u)
t= 1 15 2 2.5 3
u=>5 0.039 0.011 0.005 0.001 0.001
4 0.065 0.070 0.050 0.015 0.010
3 0.031 0.061 0.137 0.051 0.033
2 0.012 0.049 0.163 0.058 0.039
1 0.003 0.009 0.045 0.025 0.017

Determine the marginal distributions. Determine Fxy(2,3)and P(Y /X > 1.25).

Answer

npre8_09

Data are in X, Y, P

jcalc

Use array operations on matrices X, Y, PX, PY, t, u, and P
disp([X;PX]")

1.0000  0.1500
1.5000  0.2000
2.0000  0.4000
2.5000  0.1500
3.0000  0.1000

disp([Y;PY]")

1.0000  0.0990
2.0000  0.3210
3.0000  0.3130
4.0000  0.2100

5.0000 0.0570
F = total(((t<=2)&(u<=3)).*P)
0.5100

-
1
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p
p

For the joint densities in Exercises 10-22 below

total((u./t>=1.25).*P)
0.5570

a. Sketch the region of definition and determine analytically the marginal density functions fx and fy.

b. Use a discrete approximation to plot the marginal density fx and the marginal distribution function F.
c. Calculate analytically the indicated probabilities.

d. Determine by discrete approximation the indicated probabilities.

Exercise 8.3.10

fxy(t,u)=1for0<t<1,0<u<2(1-t%).
P(X>1/2,Y>1),P(0<X<1/2,Y>1/2),P(Y <X)
Answer
Region is triangle with vertices (0, 0), (1, 0), (0, 2).
fx@®) = [F0du=2(1—-t) ,0<t<1
frw)= [ dt=1-u/2 ,0<u<?2
M1={(t,u):t>1/2,u > 1} lies outside the trianlge P((X,Y) € M1)=0
M2 ={(t,u):0<t<1/2,u>1/2} has area in the triangle = 1/2

M3 = the region in the triangle under v = ¢, which has area 1/3

tuappr

Enter matrix [a b] of X-range endpoints [0 1]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 200

Enter number of Y approximation points 400

Enter expression for joint density (t<=1)&(u<=2*(1-t))
Use array operations on X, Y, PX, PY, t, u, and P

fx = PX/dx;

FX = cumsum(PX);

plot (X, fx, X, FX) % Figure not reproduced
M1 = (t>0.5)&(u>1);

o
[t
1

total(M1.*P)

P1L = 0 % Theoretical = 0
M2 = (t<=0.5)&(u>0.5);

P2 = total(M2.*P)

P2 = 0.5000 % Theoretical = 1/2
P3 = total((u<=t).*P)

P3 = 0.3350 % Theoretical = 1/3

Exercise 8.3.11

fxy(t,u) =1/2 on the square with vertices at (1, 0), (2, 1), (1, 2), (0, 1).
P(X>1,Y >1),P(X<1/2,1<Y),P(Y <X)
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Answer
The region is bounded by linesu =1+t ,u=1—-¢t,u=3—t,andu=¢t—1
Fx(t) = Io,1)(£)0.5 [ du+I(1,9(8)0.5 [*1F du = I 5(t) (2 —t) = fyr(t) by symmetry
M1={(t,u):t>1,u> 1} has area in the trangle = 1/2, so PM1 =1/4
M2 ={(t,u):t<1/2,u > 1} has area in the trangle = 1/8\), so PM2 =1/16
M3 ={(t,u): u <t} has area in the trangle = 1, so PM3 =1/2
tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density 0.5*(u<=min(1+t,3-t))& ...
(u>=max(1-t,t-1))

Use array operations on X, Y, PX, PY, t, u, and P

fx = PX/dx;

FX = cumsum(PX);

plot (X, fx, X, FX) % Plot not shown
= (t>1)&(u>1);

PM1 = total(M1.*P)

PM1 = 0.2501 % Theoretical = 1/4
= (t<=1/2)&(u>1);

PM2 = total(M2.*P)

PM2 = 0.0631 % Theoretical = 1/16 = 0.0625

M3 = u<=t;

PM3 = total(M3.*P)

PM3 = 0.5023 % Theoretical = 1/2

Exercise 8.3.12

fxy(t,u)=4t(1—u) for0<t<1,0<u<1.
P(1/2<X<3/4,Y >1/2),P(X<1/2,Y >1/2),P(Y <X)
Answer
Region is the unit square,
Fx(®)= [ 4t(1 —u)du=2t ,0<t <1
fr(u) = [y 4t(1 —u)dt =2(1 —u) ,0<u<1

3/4 p1 1/2
-Pl-—JLé,ﬁ/24tﬂr—U)dudt:=5/64.P2-— /,ﬁ/24t1 w)dudt =1/16

P3= [ [ 4t(1 —u)dudt =5/6

tuappr

Enter matrix [a b] of X-range endpoints [0 1]
Enter matrix [c d] of Y-range endpoints [0 1]
Enter number of X approximation points 200
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Enter number of Y approximation points 200
Enter expression for joint density 4*t.*(1 - u)
Use array operations on X, Y, PX, PY, t, u, and P

fx = PX/dx;
FX = cumsum(PX);
plot (X, fx, X, FX) % Plot not shown

M1 = (1/2<t)&(t<3/4)&(u>1/2);

P1 = total(M1.*P)

P1 = 0.0781 % Theoretical = 5/64 = 0.0781
M2 = (t<=1/2)&(u>1/2);

P2 = total(M2.*P)

P2 = 0.0625 % Theoretical = 1/16 = 0.0625
M3 = (u<=t);

P3 = total(M3.*P)

P3 = 0.8350 % Theoretical = 5/6 = 0.8333

Exercise 8.3.13

1
ny(t,u)zg(t—i-u) for0<t<2,0<u<2.
P(X>1/2,Y >1/2),P(0<X <1,Y >1),P(Y < X)

Answer
Region is the square 0 <t <2,0 <u <2
1 o 1
fﬂnzgku+mzzu+nzﬁﬁ),mggz
P1= [}, [,(t+u)dudt = 45/64 P2 =[] [7(t+u)dudt=1/4

P3=[? [} (t+u)dudt =1/2

tuappr

Enter matrix [a b] of X-range endpoints [0 2]
Enter matrix [c d] of Y-range endpoints [0 2]
Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density (1/8)*(t+u)
Use array operations on X, Y, PX, PY, t, u, and P
fx = PX/dx;

FX = cumsum(PX);

plot (X, fx, X, FX)

M1 = (t>1/2)&(u>1/2);

P1 = total(M1.*P)

P1 = 0.7031 % Theoretical = 45/64 = 0.7031
M2 = (t<=1)&(u>1);

P2 = total(M2.*P)

P2 = 0.2500 % Theoretical = 1/4

M3 = u<=t;

https://stats.libretexts.org/@go/page/10882



https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10882?pdf

LibreTextsm

Exercise 8.3.14

fxy(t,u) =4ue  for0 <t,0<u <1
P(X<1,Y>1),P(X>0,1/2 <Y <3/4), P(X <Y)

total(M3.*P)
0.5025 % Theoretical = 1/2

Answer
Regionisstripbyt =0,u =0,u =1
fx(t)=2e7%,0<t, fy(u) =2u,0 <u <1, fxy = fxfy
P1=0, P2 = [%2e dt [ 2udu = e'5/16

1
P3=4 [ [ uedudt = %e* + =0.7030

tuappr

Enter matrix [a b] of X-range endpoints [0 3]
Enter matrix [c d] of Y-range endpoints [0 1]
Enter number of X approximation points 400

Enter number of Y approximation points 200

Enter expression for joint density 4*u.*exp(-2*t)
Use array operations on X, Y, PX, PY, t, u, and P
M2 = (t > 0.5)&(u > 0.5)&(u<3/4);

p2 = total(M2.*P)
p2 = 0.1139 % Theoretical = (5/16)exp(-1) = 0.1150
p3 = total((t<u).*P)
p3 = 0.7047 % Theoretical = 0.7030
Exercise 8.3.15
Fxv(t,u) = 88(2t+3u)f0r0§t§2,0§u§1+t.
Fxy(1,1), P(X<1,Y >1),P(|X-Y|<1)
Answer
Region bounded byt =0,t =2, u=0,u =1+t
3 3 3
Fx(®) = — [ (2t +3u2)du = — (1 +)(1 +4t +12) = — (1 + 5t + 582 +3) ,0<t<2
88 V0 88 88
Iy ( ) I[g 1] fO 2t+3u )dt+I(1 3] fu 1 2t—|—3u )dt

3 3
I[O,l}(u)s— (6U2 +4) +I(1’3](t)_(3 +2u —|—8u2 — 3u3)
FXY 1 1 fO fO fXY t u)dudt 3/44

Pl= [} [ fxy(t,u)dudt =41/352 P2 = [," [ fxy(t, u)dudt = 329/352
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tuappr

Enter matrix [a b] of X-range endpoints [0 2]
Enter matrix [c d] of Y-range endpoints [0 3]
Enter number of X approximation points 200

Enter number of Y approximation points 300

Enter expression for joint density (3/88)*(2*t+3*u.n2).*(u<=1+t)
Use array operations on X, Y, PX, PY, t, u, and P
fx = PX/dx;

FX = cumsum(PX);

plot (X, fx, X, FX)

MF = (t<=1)&(u<=1);

F = total(MF.*P)

F = 0.0681 % Theoretical = 3/44 = 0.0682
M1 = (t<=1)&(u>1);

P1 = total(M1.*P)

P1 = 0.1172 % Theoretical = 41/352 = 0.1165
M2 = abs(t-u)<1;

P2 = total(M2.*P)

P2 = 0.9297 % Theoretical = 329/352 = 0.9347

Exercise 8.3.16

fxv(t,u) = 12t?u on the parallelogram with vertices (-1, 0), (0, 0), (1, 1), (0, 1).
P(X <1/2,Y >0),P(X <1/2,Y <1/2), P(Y >1/2)
Answer
Region bounded by u =0, u =t,u=1,u=¢t+1
Fx(®) = I1,0®)12 [ 2udu + o 1(8)12 [ udu = Iy 0(8)6¢2(¢ 4+ 1)% + L0,1)() 61> (1 — 2)
fr(w) =12 [1 | Pudu+12u® — 120> +4u ,0<u <1
P1=1-12 [}, [ tududt =33/80, P2 =12 [}/ [ | *udtdu=3/16
P3=1-P2=13/16

tuappr

Enter matrix [a b] of X-range endpoints [-1 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 400

Enter number of Y approximation points 200

Enter expression for joint density 12*u.*t.A2.*((u<=t+1)&(u>=t))
Use array operations on X, Y, PX, PY, t, u, and P

pl = total((t<=1/2).*P)

pl = 0.4098 % Theoretical = 33/80 = 0.4125
M2 = (t<1/2)&(u<=1/2);

p2 = total(M2.*P)

p2 = 0.1856 % Theoretical = 3/16 = 0.1875
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Exercise 8.3.17

24
ny(t,u)zﬁtu for0<t<2,0<u<min{l,2—t}

total((u>=1/2).*P)
0.8144 % Theoretical = 13/16 = 0.8125

P(X<1,Y<1),P(X>1),P(X<Y)

Answer
Region is bounded by t =0, u =0, u =2, u =2 —t¢
24

24 2-
Fx(®) = Ton®) 7 Jo tudu+ Tna@®) 37 fo* tudu=

12 12
Tp )7t + T2t 72 - 1)

11
24 5 12 ,
=17 tudt:ﬁu(u—2) 0<u<l1

24 1 .1 24 9 ot
Pl:ﬁfo Ik tududt:6/11P2:ﬁf1 o tududt=5/11

fr(u)

24
P3=17 [ [, tududt = 3/11

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 400

Enter number of Y approximation points 200

Enter expression for joint density (24/11)*t.*u.*(u<=2-t)
Use array operations on X, Y, PX, PY, t, u, and P

M1 = (t<=1)&(u<=1);

P1 = total(M1i.*P)

P1 = 0.5447 % Theoretical = 6/11 = 0.5455
P2 = total((t>1).*P)

P2 = 0.4553 % Theoretical = 5/11 = 0.4545
P3 = total((t<u).*P)

P3 = 0.2705 % Theoretical = 3/11 = 0.2727

Exercise 8.3.18

3
fxy(t,u) = g(t+2u) for0 <t <2,0<wu<max{2-t,t}

P(X>1,Y >1),P(Y <1),P(Y < X)

Answer
Region is bounded by t =0, =2,u=0,u=2—-¢t (0<t<1),u=¢t(1<t<2)

3

fx(8) =1Ipy(t) =

» 3 6 6
2 [77(t+2u)du +I(1’2](t)2—3 [yt +2u)du = I[oil](t)2—3(2 —t) +I(172](t)2—3t2
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3 o 3
fr(w) =TIjo1)(u 23ﬁ)t+2uﬂu+lum()[3f2 @+ath+§§ﬁﬂt+2mdﬂ:
6 3
%u() @u+D+Qmﬂ) (4 +6u —4u?)
Pl:—f1 [H(t+2u)dudt = 13/46, P2_—f0 i (¢ +2u)dudt = 12/23

2 pt
P3= ﬁ JE[I(t +2u)dudt = 16/23

tuappr
Enter matrix [a b] of X-range endpoints [0 2]
Enter matrix [c d] of Y-range endpoints [0 2]
Enter number of X approximation points 200
Enter number of Y approximation points 200
Enter expression for joint density (3/23)*(t+2*u).*(u<=max(2-t,t))
Use array operations on X, Y, PX, PY, t, u, and P
= (t>=1)&(u>=1);
P1 = total(M1.*P)
P1 = 0.2841

13/46 % Theoretical = 13/46 = 0.2826

P2 = total((u<=1).*P)

P2 = 0.5190 % Theoretical = 12/23 = 0.5217
P3 = total((u<=t).*P)

P3 = 0.6959 % Theoretical = 16/23 = 0.6957

Exercise 8.3.19

fxy(t,u) = 179(3t2+u) for0 <t <2,0 <wu <min{1+¢,2}
P(X>1,Y>1),P(X<1,Y<1),P(Y < X)
Answer
Region has two parts: (1) 0 <t <1,0<u <2 (2)1<t<2,0<u <3 -t
12 12
fXU):IEM()lﬂ)f(39**Udu+112()1ﬂrf "(3¢2 +u)du =
24 o 6 2 3
Iyt )179(3t +1) + I 2t )179(9 6t +19t° —6¢°)
12 2 12 5
fr(u) = Ijg 4)(u )179f (3t° +u)dt + Iy o(u )179f “(3t% +u)dt =
24 12
I[ ]( )179(4—1—11,)—}-](12]( )179(27 24y + 8u? —u)
12 2 41/179 P2 = 2 =18/1
179‘f "(3t% + u)dudt = 41 /179 179{ﬁ)j5 (3t* +u)dudt =18/179
. 3/2 2 2
P3= 179 Iy 3t—+u)dudt+—179‘g/2 *(3t> +u)dudt = 1001,/1432
tuappr

Enter matrix [a b] of X-range endpoints [0 2]
Enter matrix [c d] of Y-range endpoints [0 2]
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Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density (12/179)*(3*t.A2+u).*
(u<=min(2,3-t))

Use array operations on X, Y, PX, PY, t, u, and P

fx = PX/dx;

FX = cumsum(PX);

plot (X, fx, X, FX)

1= (t>=1)&(u>=1);

P1 = total(Mi.*P)

P1 = 2312 % Theoretical = 41/179 = 0.2291

M2 = (t<=1)&(u<=1);

P2 = total(M2.*P)

P2 = 0.1003 % Theoretical = 18/179 = 0.1006

M3 = u<=min(t,3-t);

P3 = total(M3.*P)

P3 = 0.7003 % Theoretical = 1001/1432 = 0.6990

Exercise 8.3.20

Fxy(t,u)= (3t+2tu) for0 <t <2,0<u<min{l+¢,2}

227
P(X<1/2,Y <3/2),P(X<15,Y >1), P(Y < X)

Answer
Region is in two parts:

L0<t<1,0<u<1+t
221<t<2,0<u<2

fx(t) = Ijg 5( fo " fxv(t,u) )du + Iy (¢ f02 fxy (t,w)du =
12 120
ﬁmu()227(9‘*5R‘+4ﬂ‘+ﬁl2()227t

fr(u) = Ijg 4y(u) fo Fxy (t,u)dt + I 5(u) fuﬂ fxy (t,u)dt =

I, K);;@u+$+lmm)6 (2u +3)(3 + 2u —u?)

227
_ 24 6
—Imq()227QU+3)+IUﬂ()227@+42u+u —2u?)

12

57 V2 [ (3t + 2tu)dudt = 139/3632

P1 =

12
227.& f+t3t+-2ﬁ0dudt+-5§7 32 [2 (3¢ + 2tu)dudt — 68 /227

P3 = 227]5‘ﬁ (3t + 2tu)dudt = 144 /227

tuappr

Enter matrix [a b] of X-range endpoints [0 2]
Enter matrix [c d] of Y-range endpoints [0 2]
Enter number of X approximation points 200
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Enter number of Y approximation points 200

Enter expression for joint density (12/227)*(3*t+2*t.*u).*
(u<=min(1+t, 2))

Use array operations on X, Y, PX, PY, t, u, and P

M1 = (t<=1/2)&(u<=3/2);

P1 = total(M1.*P)

P1 = 0.0384 % Theoretical = 139/3632 = 0.0383
M2 = (t<=3/2)&(u>1);

P2 = total(M2.*P)

P2 = 0.3001 % Theoretical = 68/227 = 0.2996
M3 = u<t;

P3 = total(M3.*P)

P3 = 0.6308 % Theoretical = 144/227 = 0.6344

Exercise 8.3.21

2
t+2u) for0 <t <2,0 <wu <min {2¢,3 —¢}

Fror (t,0) = 75

P(X<1),P(X>1,Y <1),P(Y < X/2)
Answer

Region bounded by t =2,u =2¢ (0<t<1),3—¢ (1<t<2)

2 12 6
fx(t) = To(t 13ﬂ)t+QUMu+R1ﬂ)13f (¢ +2u)du =Toy(t) 3t° +1u2(8) 33— 1)

fr (u) = Ip (v ) 5 Juya 6+ 2u)dt + T1 5 (u ) 5 Sz (t+2u)dt =

4 8 9 9 6 21,
Ijo,1)(u X13 TR %)+ I 2)(u X13 13u—52u)

P1= [y [, (t+2u)dudt =4/13 P2= [ [, (¢t +2u)dudt =5/13

p3= [} [“?

(t+2u)dudt =4/13

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 400

Enter number of Y approximation points 400

Enter expression for joint density (2/13)*(t+2*u).*(u<=min(2*t,3-t))
Use array operations on X, Y, PX, PY, t, u, and P

P1 = total((t<1l).*P)

P1 = 0.3076 % Theoretical = 4/13 = 0.3077
M2 = (t>=1)&(u<=1);

P2 = total(M2.*P)

P2 = 0.3844 % Theoretical = 5/13 = 0.3846
P3 = total((u<=t/2).*P)

P3 = 0.3076 % Theoretical = 4/13 = 0.3077
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9
fxy (¢, u) =1Ijo1)(t) = (¢ +2u) +I(1,2](t)ﬁt2u2 for0 <u<1.

oo| w

P(1/2<X<3/2,Y <1/2)

Answer

Region is rectangle bounded by t =0,t =2, u =0,u =1

3 9
fxv(t,u)= I[O,l](t)g(t2 +2u) +I(172](t)ﬁt2u2 ,0<u <1

3 9 3 3
fXU):Imu@)gf§@2+2UﬁhV+QLm@)TZJEt%ﬁdU::ﬁmu@)§@2+1)+1hzﬂﬂizﬁ

3 1 9 . 1 3 3
fy(u):§f0 (t2+2u0dt+ﬁf1 t2u2dt: §+ZU+§U2 0§u§1

9
P1:§ o Jy (@ 2u)dude + = [ [§7 P dudt = 55/448

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 400

Enter number of Y approximation points 200

Enter expression for joint density (3/8)*(t.A2+2*u).*(t<=1)
+ (9/14)*(t.A2.%u.A2).*(t > 1)

Use array operations on X, Y, PX, PY, t, u, and P

M = (1/2<=t)&(t<=3/2)&(u<=1/2);
P = total(M.*P)
P = 0.1228 % Theoretical = 55/448 = 0.1228

This page titled 8.3: Problems on Random Vectors and Joint Distributions is shared under a CC BY 3.0 license and was authored, remixed, and/or
curated by Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.
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9.1: Independent Classes of Random Variables

The concept of independence for classes of events is developed in terms of a product rule. In this unit, we extend the concept to
classes of random variables.

Independent pairs

Recall that for a random variable X, the inverse image X ! (M) (i.e., the set of all outcomes w € 2 which are mapped into M by
X) is an event for each reasonable subset M on the real line. Similarly, the inverse image ¥ ~!(IV) is an event determined by
random variable Y for each reasonable set N. We extend the notion of independence to a pair of random variables by requiring
independence of the events they determine. More precisely,

A pair {X,Y} of random variables is (stochastically) independent iff each pair of events {X~'(M),Y }(N)} is
independent.

This condition may be stated in terms of the product rule
P(XeM,Y<N)=P(XeM)P(Y €N) forall (Borel) sets M, N

Independence implies
Fxy(t,u) =P(X € (—00,t],Y € (—o0, u])
=P(X € (—00,t])P(Y € (—o0,ul)
=Fx(t)Fy(u) Vt,u

Note that the product rule on the distribution function is equivalent to the condition the product rule holds for the inverse images of
a special class of sets { M, N'} of the form M = (—o0,t] and N = (—o0, u]. An important theorem from measure theory ensures
that if the product rule holds for this special class it holds for the general class of { M, N'}. Thus we may assert

The pair { X, Y'} is independent iff the following product rule holds
Fxy(t,u) =Fx(t)Fy(u) Vt,u (9.1.1)
Suppose Fxy (t,u) = (1 —e *)(1 —e ) 0 <t, 0 < u. Taking limits shows

Fx(t) = lim ny(t, u) =1—e™
U—00
and

Fy(u) = Jim Py (t,u) =1 e~

so that the product rule Fixy (¢, u) = Fx(t)Fy (u) holds. The pair { X, Y} is therefore independent.

If there is a joint density function, then the relationship to the joint distribution function makes it clear that the pair is independent
iff the product rule holds for the density. That is, the pair is independent iff

fxy(t,u) = fx(t) fr(uv) Vi, u

example 9.1.2: joint uniform distributin on a rectangle

suppose the joint probability mass distributions induced by the pair {X,Y} is uniform on a rectangle with sides I} = [a, b]
and I, = [e, d]. Since the area is (b — a)(d —¢) , the constant value of fxy is1/(b—a)(d —c) . Simple integration gives

d
_f)((t)zm/C du = bia a<t<b

and
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1 b 1
= dt = —— <u<d
) =G=a@=o / d—c ‘U=

Thus it follows that X is uniform on [a, b]. Y is uniform on [¢, d], and fxy (¢, u) = fx(¢)fy(u) for all ¢,w, so that the pair
{X,Y} is independent. The converse is also true: if the pair is independent with X uniform on [a, b] and Y is uniform on
[¢, d], the pair has uniform joint distribution on I3 x I .

The Joint Mass Distribution

It should be apparent that the independence condition puts restrictions on the character of the joint mass distribution on the plane.
In order to describe this more succinctly, we employ the following terminology.

Definition
If M is a subset of the horizontal axis and N is a subset of the vertical axis, then the cartesian product M x N is the (generalized)
rectangle consisting of those points (¢, w) on the plane such thatt € M and u € N.

example 9.1.3: Rectangle with interval sides

The rectangle in Example 9.1.2 is the artesian product I; x I, consisting of all those points (¢, «) such that a <t <b and
c<u<d (ie.t €l andu € I,).

Mass in vertical
strip is P(X in M)

Mass in rectangle
N M XN
POX In MIP{Y 10 M

Mass in horizontal
strip is P(Y in M)

M

t
Figure 9.1.1. Joint distribution for an independent pair of random variables.

We restate the product rule for independence in terms of cartesian product sets.
P(XeM,YeN)=P((X,Y)e MxN)=P(Xe M)P(Y €N) (9.1.2)

Reference to Figure 9.1.1 illustrates the basic pattern. If M, N are intervals on the horizontal and vertical axes, respectively, then
the rectangle M x N is the intersection of the vertical strip meeting the horizontal axis in M with the horizontal strip meeting the
vertical axis in V. The probability X € M is the portion of the joint probability mass in the vertical strip; the probability Y € N is
the part of the joint probability in the horizontal strip. The probability in the rectangle is the product of these marginal probabilities.

This suggests a useful test for nonindependence which we call the rectangle test. We illustrate with a simple example.

u

P{Xin MY in N} = 0
PEY i M) > 0 -/

: X ’

x

P{X in My > D
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Figure 9.1.2. Rectangle test for nonindependence of a pair of random variables.

example 9.1.4: The rectangle test for nonindependence

Supose probability mass is uniformly distributed over the square with vertices at (1,0), (2,1), (1,2), (0,1). It is evident from
Figure 9.1.2 that a value of X determines the possible values of Y and vice versa, so that we would not expect independence of
the pair. To establish this, consider the small rectangle M x N shown on the figure. There is no probability mass in the region.
Yet P(X € M) >0 and P(Y € N) >0, so that

P(Xe M)P(Y € N)>0, but P((X,Y) € M xN)=0 . The product rule fails; hence the pair cannot be stochastically
independent.

Remark. There are nonindependent cases for which this test does not work. And it does not provide a test for independence. In spite
of these limitations, it is frequently useful. Because of the information contained in the independence condition, in many cases the
complete joint and marginal distributions may be obtained with appropriate partial information. The following is a simple example.

example 9.1.5: Joint and marginal probabilities from partial information

Suppose the pair {X,Y} is independent and each has three possible values. The following four items of information are
available.

P(X:tl) :02,P(Y:U1) :0.3,P(X:t1,Y:’IL2) =0.08

P(X =S t2,Y :ul) =0.15

These values are shown in bold type on Figure 9.1.3. A combination of the product rule and the fact that the total probability
mass is one are used to calculate each of the marginal and joint probabilities. For example P(X =¢;)=0.2 and
P(X=t,Y =up) =P(X =t)P(Y =uy)=0.8 implies P(Y =u3) =0.4. Then P(Y =u_3)=1-P(Y=u_1)-P(Y =
u_2) = 0.3\). Others are calculated similarly. There is no unique procedure for solution. And it has not seemed useful to
develop MATLAB procedures to accomplish this.

639 O e @

.06 0.15 0.0%

9.3 @ - 9
& & *—

0.2 0¥ a.3

Qriginals in bold, calculated in itafic.

Figure 9.1.3. Joint and marginal probabilities from partial information.

example 9.1.6: The joint normal distribution

A pair { X, Y'} has the joint normal distribution iff the joint density is
1

—Q(tw)/2
2noxoy (1l —p?)1/2 ¢

fxv(t,u) =

where

Qltyu) = (B2 (B (B (B
1 P ox ox oy o

The marginal densities are obtained with the aid of some algebraic tricks to integrate the joint density. The result is that
X N(px,0%)andY N(uy,o%). If the parameter p is set to zero, the result is

fxv (t,u) = fx(8) fr (v)
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so that the pair is independent iff p = 0. The details are left as an exercise for the interested reader.

Remark. While it is true that every independent pair of normally distributed random variables is joint normal, not every pair of
normally distributed random variables has the joint normal distribution.

Example 9.1.7: a normal pair not joint normally distributed

We start with the distribution for a joint normal pair and derive a joint distribution for a normal pair which is not joint normal.
The function

is the joint normal density for an independent pair (p = 0) of standardized normal random variables. Now define the joint density
for a pair { X, Y} by

fxy(t,u) =2¢p(t, u) in the first and third quadrants, and zero elsewhere

Both X ~ N(0,1) and Y ~ N(0, 1). However, they cannot be joint normal, since the joint normal distribution is positive for all (
t, w).

Independent classes

Since independence of random variables is independence of the events determined by the random variables, extension to general
classes is simple and immediate.

Definition

A class {X; : i € J} of random variables is (stochastically) independent iff the product rule holds for every finite subclass of
two or more.

Remark. The index set J in the definition may be finite or infinite.
For a finite class {X; : 1 <¢ <n}, independence is equivalent to the product rule
FX1X2~-~X"(t1, to, -, tn) = ?:1 Fy, (tz) for all (tl, to, - -,tn)
Since we may obtain the joint distribution function for any finite subclass by letting the arguments for the others be o (i.e., by
taking the limits as the appropriate ¢; increase without bound), the single product rule suffices to account for all finite subclasses.

Absolutely continuous random variables

If a class { X : ¢ € J} is independent and the individual variables are absolutely continuous (i.e., have densities), then any finite
subclass is jointly absolutely continuous and the product rule holds for the densities of such subclasses

fXﬂXiTnXim(til, tio, e, tim) = HZLZI le,k (tzk) for all (tl, to, -, tn)
Similarly, if each finite subclass is jointly absolutely continuous, then each individual variable is absolutely continuous and the
product rule holds for the densities. Frequently we deal with independent classes in which each random variable has the same
marginal distribution. Such classes are referred to as iid classes (an acronym for independent,identically distributed). Examples are
simple random samples from a given population, or the results of repetitive trials with the same distribution on the outcome of each
component trial. A Bernoulli sequence is a simple example.

Simple random variables

Consider a pair { X, Y’} of simple random variables in canonical form
X = Z:-L:l tiIAi Y= E;nzl ujIBj

Since A; = {X =t;} and B; ={Y =u;} the pair { X, Y} is independent iff each of the pairs { 4;, B;} is independent. The joint
distribution has probability mass at each point (¢;, u;) in the range of W = (X, Y’). Thus at every point on the grid,

P(X =t;,Y =u;) = P(X =t;)P(Y =u;)

According to the rectangle test, no gridpoint having one of the ¢; or u; as a coordinate has zero probability mass . The marginal
distributions determine the joint distributions. If X has n distinct values and Y has m distinct values, then the n+m marginal

https://stats.libretexts.org/@go/page/10859
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probabilities suffice to determine the m'n joint probabilities. Since the marginal probabilities for each variable must add to one,
onlyn—1)+(m—1)=m+n—2 values are needed.

Suppose X and Y are in affine form. That is,
X=ao+X0 ailg, Y =by+ 37, bl

Since A, ={X =t,} is the union of minterms generated by the F; and B; = {Y =wu,} is the union of minterms generated by
the Fj, the pair {X,Y} is independent iff each pair of minterms {M,, N} generated by the two classes, respectivly, is
independent. Independence of the minterm pairs is implied by independence of the combined class

Calculations in the joint simple case are readily handled by appropriate m-functions and m-procedures.
MATLAB and independent simple random variables

In the general case of pairs of joint simple random variables we have the m-procedure jcalc, which uses information in matrices
X,Y and P to determine the marginal probabilities and the calculation matrices ¢ and u. In the independent case, we need only the
marginal distributions in matrices X, PX, Y and PY to determine the joint probability matrix (hence the joint distribution) and the
calculation matrices ¢ and u. If the random variables are given in canonical form, we have the marginal distributions. If they are in
affine form, we may use canonic (or the function form canonicf) to obtain the marginal distributions.

Once we have both marginal distributions, we use an m-procedure we call icalc. Formation of the joint probability matrix is simply
a matter of determining all the joint probabilities

p(i,)) =P(X =t,Y =u;) =P(X =t;,)P(Y = u)

Once these are calculated, formation of the calculation matrices ¢ and u is achieved exactly as in jcalc.

S EN ][RR Use of icalc to set up for joint calculations

X =1[-4-20123];
Y =[012 4];
PX = 0.01*[12 18 27 19 24];
PY = 0.01*[15 43 31 11];
icalc
Enter row matrix of X-values X
Enter row matrix of Y-values Y
Enter X probabilities PX
Enter Y probabilities PY
Use array operations on matrices X, Y, PX, PY, t, u, and P
disp(P) % Optional display of the joint matrix
0.0132 0.0198 0.0297 0.0209 0.0264
0.0372 0.0558 0.0837 0.0589 0.0744
0.0516 0.0774 0.1161 0.0817 0.1032
0.0180 0.0270 0.0405 0.0285 0.0360

disp(t) % Calculation matrix t
-4 -2 (C] 1 3
-4 -2 0 1 3
-4 -2 (C] 1 3
-4 -2 (C] 1 3
disp(u) % Calculation matrix u
4 4 4 4
2 2 2 2
1 1 1 1 1
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(C] (C] (C] (C] (C]
M = (t>=-3)&(t<=2); % M= [-3, 2]
PM = total(M.*P) % P(X in M)
PM = 0.6400
N = (u>0)&(u.n2<=15); % N = {u: u>0, ur2 <= 15}
PN = total(N.*P) % P(Y in N)
PN = 0.7400
Q = M&N; % Rectangle MxN
PQ = total(Q.*P) % P((X,Y) in MxN)
PQ = ©0.4736
p = PM*PN
p = 0.4736 % P((X,Y) in MxN) = P(X in M)P(Y in N)

As an example, consider again the problem of joint Bernoulli trials described in the treatment of 4.3 Composite trials.

SEN[ERMMC N The joint Bernoulli trial of Example 4.9

1 Bill and Mary take ten basketball free throws each. We assume the two seqences of trials are independent of each other, and
each is a Bernoulli sequence.

Mary: Has probability 0.80 of success on each trial.

Bill: Has probability 0.85 of success on each trial.
What is the probability Mary makes more free throws than Bill?
Solution

Let X be the number of goals that Mary makes and Y be the number that Bill makes. Then X ~ binomial (10, 0.8) and Y ~
binomial (10, 0.85).

X = 0:10;

Y = 0:10;

PX = ibinom(10,0.8,X);
PY = ibinom(10,0.85,Y);
icalc

Enter row matrix of X-values X % Could enter 0:10

Enter row matrix of Y-values Y % Could enter 0:10

Enter X probabilities PX % Could enter ibinom(10,0.8,X)
Enter Y probabilities PY % Could enter ibinom(10,0.85,Y)
Use array operations on matrices X, Y, PX, PY, t, u, and P

PM = total((t>u).*P)

PM = 0.2738 % Agrees with solution in Example 9 from "Composidi
Pe = total((u==t).*P) % Additional information is more easily

Pe = 0.2276 % obtained than in the event formulation

Pm = total((t>=u).*P) % of Example 9 from "Composite Trials".

Pm = 0.5014
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SE o] ER BN Sprinters time trials

Twelve world class sprinters in a meet are running in two heats of six persons each. Each runner has a reasonable chance of
breaking the track record. We suppose results for individuals are independent.

First heat probabilities: 0.61 0.73 0.55 0.81 0.66 0.43

Second heat probabilities: 0.75 0.48 0.62 0.58 0.77 0.51
Compare the two heats for numbers who break the track record.
Solution

Let X be the number of successes in the first heat and Y be the number who are successful in the second heat. Then the pair
{X,Y} is independent. We use the m-function canonicf to determine the distributions for X and for Y, then icalc to get the
joint distribution.

cl = [ones(1,6) 0O];

c2 = [ones(1,6) 0O];

P1 = [0.61 0.73 0.55 0.81 0.66 0.43];
P2 = [0.75 0.48 0.62 0.58 0.77 0.51];
[X,PX] = canonicf(cl,minprob(P1));
[Y,PY] = canonicf(c2,minprob(P2));
icalc

Enter row matrix of X-values X
Enter row matrix of Y-values Y
Enter X probabilities PX
Enter Y probabilities PY
Use array operations on matrices X, Y, PX, PY, t, u, and P

Pm1 = total((t>u).*P) % Prob first heat has most
Pm1 = 0.3986

Pm2 = total((u>t).*P) % Prob second heat has most
Pm2 = 0.3606

Peq = total((t==u).*P) % Prob both have the same
Peq = 0.2408

Px3 = (X>=3)*PX' % Prob first has 3 or more
Px3 = 0.8708

Py3 = (Y>=3)*PY' % Prob second has 3 or more
Py3 = 0.8525

As in the case of jcalc, we have an m-function version icalcf
[x, v, t, u, px, py, p] = icalcf(X, Y, PX, PY)\)

We have a related m-function idbn for obtaining the joint probability matrix from the marginal probabilities. Its formation of the
joint matrix utilizes the same operations as icalc.

S ECRMBMERN A numerical example

PX = 0.1*[3 5 2];
PY = 0.01*[20 15 40 25];
P = idbn(PX,PY)
P =
0.0750 0.1250 0.0500
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0.1200 0.2000 0.0800
0.0450 0.0750 0.0300
0.0600 0.1000 0.0400

An m- procedure itest checks a joint distribution for independence. It does this by calculating the marginals, then forming an
independent joint test matrix, which is compared with the original. We do not ordinarily exhibit the matrix P to be tested.
However, this is a case in which the product rule holds for most of the minterms, and it would be very difficult to pick out
those for which it fails. The m-procedure simply checks all of them.

idemo1l % Joint matrix in datafile idemo1l

P= 0.0091 0.0147 0.0035 0.0049 0.0105 0.0161 0.0112
0.0117 0.0189 0.0045 0.0063 0.0135 0.0207 0.0144
0.0104 0.0168 0.0040 0.0056 0.0120 0.0184 0.0128
0.0169 0.0273 0.0065 0.0091 0.0095 0.0299 0.0208
0.0052 0.0084 0.0020 0.0028 0.0060 0.0092 0.0064
0.0169 0.0273 0.0065 0.0091 0.0195 0.0299 0.0208
0.0104 0.0168 0.0040 0.0056 0.0120 0.0184 0.0128
0.0078 0.0126 0.0030 0.0042 0.0190 0.0138 0.0096
0.0117 0.0189 0.0045 0.0063 0.0135 0.0207 0.0144
0.0091 0.0147 0.0035 0.0049 0.0105 0.0161 0.0112
0.0065 0.0105 0.0025 0.0035 0.0075 0.0115 0.0080
0.0143 0.0231 0.0055 0.0077 0.0165 0.0253 0.0176

itest

Enter matrix of joint probabilities P
The pair {X,Y} is NOT independent % Result of test

To see where the product rule fails, call for D
disp(D) % Optional call for D
(¢} (¢} (¢}

© 0 06 Ok &0 0o r oo
© 0 &6 Ok OO0 O r O o
© 0 &6 Ok OO0 60 r O o
© 0 &6 Ok OO0 O r O o
© 0 &6 Ok OO0 O r O o
© 0 06 Ok 60 0o r oo
© 0 O Ok OO0 0 r 00

Next, we consider an example in which the pair is known to be independent.

\

jdemo3 % call for data in m-file
disp(P) % call to display P
0.0132 0.0198 0.0297 0.0209 0.0264
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0.0372 0.0558 0.0837 0.0589 0.0744
0.0516 0.0774 0.1161 0.0817 0.1032
0.0180 0.0270 0.0405 0.0285 0.0360

itest
Enter matrix of joint probabilities P
The pair {X,Y} is independent % Result of test

The procedure icalc can be extended to deal with an independent class of three random variables. We call the m-procedure icalc3.
The following is a simple example of its use.

S Eo]ERR PR Calculations for three independent random variables

X = 0:4,;

Y = 1:2:7;

Z = 0:3:12;

PX = 0.1*[1 3 2 3 1];
PY = 0.1*[2 2 3 3];
Pz = 0.1*[2 2 1 3 2];

icalc3

Enter row matrix of X-values
Enter row matrix of Y-values
Enter row matrix of Z-values Z

Enter X probabilities PX

Enter Y probabilities PY

Enter Z probabilities PZ

Use array operations on matrices X, Y, Z,
PX, PY, PZ, t, u, v, and P

< X

G = 3*t + 2*u - 4*v; % W = 3X + 2Y -47
[W,PW] = csort(G,P); % Distribution for W
PG = total((G>0).*P) % P(g(X,Y,Z) > 0)

PG = 0.3370

Pg = (W>0)*PW' % P(Z > 0)

Pg = 0.3370

An m-procedure icalc4 to handle an independent class of four variables is also available. Also several variations of the m-function
mgsum and the m-function diidsum are used for obtaining distributions for sums of independent random variables. We consider
them in various contexts in other units.

Approximation for the absolutely continuous case

In the study of functions of random variables, we show that an approximating simple random variable X of the type we use is a
function of the random variable X which is approximated. Also, we show that if {X,Y} is an independent pair, so is
{g(X), h(Y)} for any reasonable functions g and k. Thus if { X, Y’} is an independent pair, so is any pair of approximating simple
functions { X, Y} of the type considered. Now it is theoretically possible for the approximating pair { X, Y;} to be independent,
yet have the approximated pair { X, Y} not independent. But this is highly unlikely. For all practical purposes, we may consider
{X,Y} to be independent iff { X, Y;} is independent. When in doubt, consider a second pair of approximating simple functions
with more subdivision points. This decreases even further the likelihood of a false indication of independence by the approximating
random variables.
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S E[ o] ERBBESH An independent pair

Suppose X ~ exponential (3) and Y ~ exponential (2) with

fxv(t,u) =6e3te 2t = 6e~(3t+2u) ¢ > 0,4 >0

Since e 12 ~ 6 x 1075 , we approximate X for values up to 4 and Y for values up to 6.

tuappr

Enter matrix [a b] of X-range endpoints [0 4]

Enter matrix [c d] of Y-range endpoints [0 6]

Enter number of X approximation points 200

Enter number of Y approximation points 300

Enter expression for joint density 6*exp(-(3*t + 2*u))
Use array operations on X, Y, PX, PY, t, u, and P

itest

Enter matrix of joint probabilities P

The pair {X,Y} is independent

S ET ol CRMBIE Test for independence

The pair { X, Y} has joint density fxy (¢,u) =4tu 0 <t <1,0 <wu <1.Itis easy enough to determine the marginals in this
case. By symmetry, they are the same.

Fx(t)=4t [l udu=2¢,0<t <1

so that fxy = fx fy which ensures the pair is independent. Consider the solution using tuappr and itest.

tuappr

Enter matrix [a b] of X-range endpoints [0 1]
Enter matrix [c d] of Y-range endpoints [0 1]
Enter number of X approximation points 100

Enter number of Y approximation points 100

Enter expression for joint density 4*t.*u

Use array operations on X, Y, PX, PY, t, u, and P
itest

Enter matrix of joint probabilities P

The pair {X,Y} is independent

This page titled 9.1: Independent Classes of Random Variables is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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9.2: Problems on Independent Classes of Random Variables

Exercise 9.2.1

The pair { X, Y} has the joint distribution (in m-file npr08_06.m):
X=1[-23-0.7113.95.1]Y =[1.32.54.15.3]

The pair {X,Y} is NOT independent

disp(D)
0 0 0 0 0
0 1 1 0 0

To see where the product rule fails, call for D

0.0483 0.0357 0.0420 0.0399 0.0441
_10.0437 0.0323 0.0380 0.0361 0.0399 9.2.1)
0.0713 0.0527 0.0620 0.0609 0.0551 o
0.0667 0.0493 0.0580 0.0651 0.0589
Determine whether or not the pair { X, Y’} is independent.
Answer
npro8_06
Data are in X, Y, P
itest
Enter matrix of joint probabilities P
The pair {X,Y} is NOT independent
To see where the product rule fails, call for D
disp(D)
0 0 0 1 1
(0] (0] (0] 1 1
1 1 1 1 1
1 1 1 1 1
Exercise 9.2.2
The pair { X, Y} has the joint distribution (in m-file npr09_02.m):
X=1[39-1.7152841]Y =[-212.65.1]
0.0589 0.0342 0.0304 0.0456 0.0209
0.0961 0.0556 0.0498 0.0744 0.0341 9.2.2)
0.0682 0.0398 0.0350 0.0528 0.0242 o
0.0868 0.0504 0.0448 0.0672 0.0308
Determine whether or not the pair { X, Y'} is independent.
Answer
npro9_02
Data are in X, Y, P
itest
Enter matrix of joint probabilities P
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Exercise 9.2.3

The pair { X, Y} has the joint distribution (in m-file npr08_07.m):

P(X=tY =u)
t= -3.1 -0.5 1.2 2.4 3.7 4.9
u=75 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203
4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231
-2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189
-3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

Determine whether or not the pair { X, Y} is independent.

Answer

npres_o7
Data are in X, Y, P

itest

Enter matrix of joint probabilities P

The pair {X,Y} is NOT independent

To see where the product rule fails, call for D

disp(D)
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

For the distributions in Exercises 4-10 below

a. Determine whether or not the pair is independent.
b. Use a discrete approximation and an independence test to verify results in part (a).

Exercise 9.2.4
fxy(t,u) =1/ on the circle with radius one, center at (0,0).

Answer

Not independent by the rectangle test.

tuappr

Enter matrix [a b] of X-range endpoints [-1 1]

Enter matrix [c d] of Y-range endpoints [-1 1]

Enter number of X approximation points 100

Enter number of Y approximation points 100

Enter expression for joint density (1/pi)*(t.A2 + u.n2<=1)
Use array operations on X, Y, PX, PY, t, u, and P
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itest

Enter matrix of joint probabilities P

The pair {X,Y} is NOT independent

To see where the product rule fails, call for D % Not practical-- too large

Exercise 9.2.5

fxy (t,u) =1/2 on the square with vertices at (1, 0), (2, 1), (1, 2), (0, 1) (see Exercise 11 from "Problems on Random Vectors
and Joint Distributions").

Answer

Not independent, by the rectangle test.

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density (1/2)*(u<=min(1+t,3-t)).*
(u>=max(1-t,t-1))

Use array operations on X, Y, PX, PY, t, u, and P

itest

Enter matrix of joint probabilities P

The pair {X,Y} is NOT independent

To see where the product rule fails, call for D

Exercise 9.2.6

fxy(t,u)=4t(1—u) for 0<t<1, 0<u<1 (see Exercise 12 from "Problems on Random Vectors and Joint
Distributions").
From the solution for Exercise 12 from "Problems on Random Vectors and Joint Distributions" we have

fx(®)=2t,0<t<1, fy(u)=2(1-u),0<u<l1, fxy = fxfv

so the pair is independent.

Answer

tuappr

Enter matrix [a b] of X-range endpoints [0 1]
Enter matrix [c d] of Y-range endpoints [0 1]
Enter number of X approximation points 100

Enter number of Y approximation points 100

Enter expression for joint density 4*t.*(1-u)
Use array operations on X, Y, PX, PY, t, u, and P

itest
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Enter matrix of joint probabilities P
The pair {X,Y} is independent

Exercise 9.2.7

1
fxy = g(t +u) for0 <t <2,0 <wu <2 (see Exercise 13 from "Problems on Random Vectors and Joint Distributions").

From the solution of Exercise 13 from "Problems on Random Vectors and Joint Distributions" we have
1
fx@)=fr(®)=7(+1),0<t<2
so fxy # fx fy which implies the pair is not independent.

Answer

tuappr

Enter matrix [a b] of X-range endpoints [0 2]
Enter matrix [c d] of Y-range endpoints [0 2]
Enter number of X approximation points 100
Enter number of Y approximation points 100
Enter expression for joint density (1/8)*(t+u)
Use array operations on X, Y, PX, PY, t, u, and P
itest

Enter matrix of joint probabilities P

The pair {X,Y} is NOT independent

To see where the product rule fails, call for D

Exercise 9.2.8

fxy(t,u) = due? for 0 < t,0 <u <1 (see Exercise 14 from "Problems on Random Vectors and Joint Distributions™).
From the solution for Exercise 14 from "Problems on Random Vectors and Joint Distribution" we have
fx(t)=2e"2,0<t, fy(u)=2u,0<u<1

so that fxy = fx fy and the pair is independent.

Answer

tuappr

Enter matrix [a b] of X-range endpoints [0 5]
Enter matrix [c d] of Y-range endpoints [0 1]
Enter number of X approximation points 500

Enter number of Y approximation points 100

Enter expression for joint density 4*u.*exp(-2*t)
Use array operations on X, Y, PX, PY, t, u, and P

itest
Enter matrix of joint probabilities P
The pair {X,Y} is independent % Product rule holds to within 10/A{-9}
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Fxy(t,w) = 12¢%u on the parallelogram with vertices (-1, 0), (0, 0), (1, 1), (0, 1)

(see Exercise 16 from "Problems on Random Vectors and Joint Distributions").

Answer

Not independent by the rectangle test.

tuappr

Enter matrix [a b] of X-range endpoints [-1 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 200

Enter number of Y approximation points 100

Enter expression for joint density 12*t.A2.*u.*(u<=min(t+1,1)).*
(u>=max(0,t))

Use array operations on X, Y, PX, PY, t, u, and P

itest

Enter matrix of joint probabilities P

The pair {X,Y} is NOT independent

To see where the product rule fails, call for D

Exercise 9.2.10

24
fxy = ﬁtu for 0<¢t<2, 0<u<min{l,2—¢} (see Exercise 17 from "Problems on Random Vectors and Joint

Distributions").

Answer

By the rectangle test, the pair is not independent.

tuappr

Enter matrix [a b] of X-range endpoints [0 2]
Enter matrix [c d] of Y-range endpoints [0 1]
Enter number of X approximation points 200

Enter number of Y approximation points 100

Enter expression for joint density (24/11)*t.*u.*(u<=min(1,2-t))
Use array operations on X, Y, PX, PY, t, u, and P
itest

Enter matrix of joint probabilities P

The pair {X,Y} is NOT independent

To see where the product rule fails, call for D

Exercise 9.2.11

Two software companies, MicroWare and BusiCorp, are preparing a new business package in time for a computer trade show
180 days in the future. They work independently. MicroWare has anticipated completion time, in days, exponential (1/150).
BusiCorp has time to completion, in days, exponential (1/130). What is the probability both will complete on time; that at least
one will complete on time; that neither will complete on time?

https://stats.libretexts.org/@go/page/10860



https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10860?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/08%3A_Random_Vectors_and_Joint_Distributions/8.03%3A_Problems_on_Random_Vectors_and_Joint_Distributions
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/08%3A_Random_Vectors_and_Joint_Distributions/8.03%3A_Problems_on_Random_Vectors_and_Joint_Distributions

LibreTextsw

Answer
pl1 = 1 - exp(-180/150)
pl1 = 0.6988
p2 = 1 - exp(-180/130)

p2 = 0.7496
Pboth = p1*p2

Pboth = 0.5238

Poneormore = 1 - (1 - p1)*(1 - p2) % 1 - Pneither
Poneormore = 0.9246

Pneither = (1 - p1)*(1 - p2)

Pneither = 0.0754

Exercise 9.2.12

Eight similar units are put into operation at a given time. The time to failure (in hours) of each unit is exponential (1/750). If
the units fail independently, what is the probability that five or more units will be operating at the end of 500 hours?

Answer
p = exp(-500/750); % Probability any one will survive
P = cbinom(8,p,5) % Probability five or more will survive
P = 0.3930

Exercise 9.2.13

The location of ten points along a line may be considered iid random variables with symmytric triangular distribution on [1,3].
What is the probability that three or more will lie within distance 1/2 of the point £ = 27?
Answer

Geometrically, p=3/4,sothat P = chinom(10,p,3) = 0.9996 .

Exercise 9.2.14

A Christmas display has 200 lights. The times to failure are iid, exponential (1/10000). The display is on continuously for 750
hours (approximately one month). Determine the probability the number of lights which survive the entire period is at least
175, 180, 185, 190.

Answer
p = eXp(-?SO/lOOOO)
p = 0.9277
k = 175:5:190;
P = cbinom(200,p,k);

disp([k;P]")
175.0000  0.9973
180.0000  0.9449
185.0000  0.6263
190.0000  0.1381
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Exercise 9.2.15

A critical module in a network server has time to failure (in hours of machine time) exponential (1/3000). The machine
operates continuously, except for brief times for maintenance or repair. The module is replaced routinely every 30 days (720
hours), unless failure occurs. If successive units fail independently, what is the probability of no breakdown due to the module
for one year?

Answer
p = exp(-720/3000)
p = 0.7866 % Probability any unit survives
P = pnrl2 % Probability all twelve survive (assuming 12 periods)
P = 0.056

Exercise 9.2.16

Joan is trying to decide which of two sales opportunities to take.

o In the first, she makes three independent calls. Payoffs are $570, $525, and $465, with respective probabilities of 0.57, 0.41,
and 0.35.

e In the second, she makes eight independent calls, with probability of success on each call p = 0.57. She realizes $150 profit
on each successful sale.

Let X be the net profit on the first alternative and Y be the net gain on the second. Assume the pair { X, Y’} is independent.

a. Which alternative offers the maximum possible gain?
b. Compare probabilities in the two schemes that total sales are at least $600, $900, $1000, $1100.
c. What is the probability the second exceeds the first— i.e., what is P(Y > X)?

Answer

X =57014 452515 +4651¢ with [P(A)P(B)P(C)] =[0.57 0.41 0.35]. Y = 150S5. where S binomial (8, 0.57).

c = [570 525 465 0];

pm = minprob([0.57 0.41 0.35]);

canonic % Distribution for X
Enter row vector of coefficients <c
Enter row vector of minterm probabilities pm

Use row matrices X and PX for calculations

Call for XDBN to view the distribution

Y = 150*[0:8]; % Distribution for Y
PY = ibinom(8,0.57,0:8);
icalc % Joint distribution

Enter row matrix of X-values X

Enter row matrix of Y-values Y

Enter X probabilities PX

Enter Y probabilities PY

Use array operations on matrices X, Y, PX, PY, t, u, and P

xmax = max(X)

xmax = 1560

ymax max(Y)
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ymax = 1200
k = [600 900 1000 1100];
px = zeros(1,4);

for 1 = 1:4
px(1) = (X>=k(i))*PX"';
end
py = zeros(1,4);
for i = 1:4
py(1) = (Y>=k(1))*PY";
end
disp([px;pyl")
0.4131 0.7765
0.4131 0.2560
0.3514 0.0784
0.0818 0.0111
M=u> t;
PM = total(M.*P)
PM = 0.5081 % P(Y>X)

Exercise 9.2.17

0.23, 0.41, 0.83, 0.58. Assume that all eleven possible purchases form an independent class.

a. What is the probability Anne spends at least twice as much as Margaret?
b. What is the probability Anne spends at least $30 more than Margaret?

Answer

Margaret considers five purchases in the amounts 5, 17, 21, 8, 15 dollars with respective probabilities 0.37, 0.22, 0.38, 0.81,
0.63. Anne contemplates six purchases in the amounts 8, 15, 12, 18, 15, 12 dollars. with respective probabilities 0.77, 0.52,

cx = [5 17 21 8 15 0];

pmx = minprob(0.01*[37
cy = [8 15 12 18 15 12
pmy = minprob(0.01*[77

22 38 81 63]);
0];
52 23 41 83 58]);

[X,PX] = canonicf(cx, pmx);
[Y,PY] = canonicf(cy, pmy);

icalc

Enter row matrix of X-values X
Enter row matrix of Y-values Y
Enter X probabilities PX

Enter Y probabilities PY

Use array operations on matrices X, Y, PX, PY, t, u, and P
M1 = u >= 2*t;
PM1 = total(M1.*P)
PM1 = 0.3448
M2 = u - t >=30;
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PM2
PM2

total(M2.*P)
0.2431

Exercise 9.2.18

James is trying to decide which of two sales opportunities to take.

e In the first, he makes three independent calls. Payoffs are $310, $380, and $350, with respective probabilities of 0.35, 0.41,
and 0.57.

o In the second, he makes eight independent calls, with probability of success on each call p=0.57. He realizes $100 profit on
each successful sale.

Let X be the net profit on the first alternative and Y be the net gain on the second. Assume the pair { X, Y} is independent.

o Which alternative offers the maximum possible gain?
o What is the probability the second exceeds the first— i.e., what is P(Y > X)?
o Compare probabilities in the two schemes that total sales are at least $600, $700, $750.

Answer

cx = [310 380 350 0];

pmx = minprob(0.01*[35 41 57]);
Y = 100*[0:8];

PY = ibinom(8,0.57,0:8);

canonic

Enter row vector of coefficients cx

Enter row vector of minterm probabilities pmx
Use row matrices X and PX for calculations

Call for XDBN to view the distribution

icalc

Enter row matrix of X-values X

Enter row matrix of Y-values Y

Enter X probabilities PX

Enter Y probabilities PY

Use array operations on matrices X, Y, PX, PY, t, u, and P
xmax = max(X)

xXmax = 1040

ymax = max(Y)

ymax = 800

PYgX = total((u>t).*P)

PYgX = 0.5081

k = [600 700 750];

px = zeros(1,3);

py = zeros(1,3);

for 1 = 1:3

px(1)

(X>=k(1))*PX';
end
for i = 1:3

py (1)

(Y>=k(1))*PY';

end
disp([px;pyl")
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0.4131 0.2560
0.2337 0.0784
0.0818 0.0111

Exercise 9.2.19

A residential College plans to raise money by selling “chances” on a board. There are two games:

Game 1: Pay $5 to play; win $20 with probability p; =0.05 (one in twenty)
Game 2: Pay $10 to play; win $30 with probability ps =0.2 (one in five)

Thirty chances are sold on Game 1 and fifty chances are sold on Game 2. If X and Y are the profits on the respective games,
then

X=30-5—-20N; andY =50-10—-30N,

where N7, N5 are the numbers of winners on the respective games. It is reasonable to suppose N; binomial (30, 0.05) and N,
binomial (50, 0.2). It is reasonable to suppose the pair { N1, N>} is independent, so that {X,Y} is independent. Determine the
marginal distributions for X and Y then use icalc to obtain the joint distribution and the calculating matrices. The total profit for
the College is Z = X +Y . What is the probability the College will lose money? What is the probability the profit will be $400 or
more, less than $200, between $200 and $4507?

Answer

N1 = 0:30;
PN1 = ibinom(30,0.05,0:30);
X = 150 - 20*N1;
[X,PX] = csort(x,PN1);
N2 = 0:50;
PN2 = ibinom(50,0.2,0:50);
y = 500 - 30*N2;
[Y,PY] = csort(y,PN2);
icalc
Enter row matrix of X-values X
Enter row matrix of Y-values Y
Enter X probabilities PX
Enter Y probabilities PY
Use array operations on matrices X, Y, PX, PY, t, u, and P
G =1t + u,
Mlose = G < O;
Mm400 = G >= 400,
M1200 = G < 200;
M200_450 = (G>=200)&(G6<=450);
Plose = total(Mlose.*P)

Plose = 3.5249e-04
Pm400 = total(Mm400.*P)
Pm400 = 0.1957
P1200 = total(M1200.*P)
P1200 =

0.0828
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P200_450
P200_450

total(M200_450.*P)
0.8636

Exercise 9.2.20

The class { X, Y, Z} of random variables is iid (independent, identically distributed) with common distribution

X=[-5-1347] PX = 0.01 *[1520 30 25 10]

Let W =3X —4Y +2Z . Determine the distribution for W and from this determine P(W > 0) and P(—20 < W < 10). Do this
with icalc, then repeat with icalc3 and compare results.

Answer

Since icalc uses X and P X in its output, we avoid a renaming problem by using « and px for data vectors X and PX.

X =1[-5-134T17];
px = 0.01*[15 20 30 25 10];
icalc
Enter row matrix of X-values 3*x
Enter row matrix of Y-values -4*x
Enter X probabilities px
Enter Y probabilities px
Use array operations on matrices X, Y, PX, PY, t, u, and P
a=+t+ u;
[V,PV] = csort(a,P);
icalc
Enter row matrix of X-values V
Enter row matrix of Y-values 2*x
Enter X probabilities PV
Enter Y probabilities px
Use array operations on matrices X, Y, PX, PY, t, u, and P
b=t + uj;
[W,PW] = csort(b,P);
P1L = (W>0)*PW'

P1 = 0.5300

P2 = ((-20<=W)&(W<=10))*PW'

P2 = 0.5514

icalc3 % Alternate using icalc3

Enter row matrix of X-values X
Enter row matrix of Y-values x
Enter row matrix of Z-values x
Enter X probabilities px

Enter Y probabilities px

Enter Z probabilities px

Use array operations on matrices X, Y, Z,
PX, PY, PZ, t, u, v, and P

a = 3*t - 4*u + 2*v;

[W,PW] = csort(a,P);

P1 = (W>0)*PW'
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P1 = 0.5300
P2 = ((-20<=W)&(W<=10))*PW'
P2 = 0.5514

Exercise 9.2.21

The class {A4,B,C,D,E,F} is independent; the respective probabilities for these events are
{0.46,0.27,0.33,0.47,0.37,0.41 Eonsider the simple random variables

X=314—9Ig+4Ic,Y =—-2Ip+6Ig+2Ir—3 ,and Z=2X —-3Y
Determine P(Y>X),P(Z>0),P(5 §Z§25).

Answer

cx = [3 -9 4 0];

pmx = minprob(0.01*[42 27 33]);
cy = [-2 6 2 -3];

pmy = minprob(0.01*[47 37 41]);
[X,PX] = canonicf(cx, pmx);
[Y,PY] = canonicf(cy, pmy);
icalc

Enter row matrix of X-values X
Enter row matrix of Y-values Y
Enter X probabilities PX

Enter Y probabilities PY

Use array operations on matrices X, Y, PX, PY, t, u, and P
G = 2*t - 3*u;

[Z,PZ] = csort(G,P);

PYgX = total((u>t).*P)

PYgX = 0.3752

PZpos = (Z>0)*PZ'
PZpos = 0.5654
P5225 = ((5<=2)&(Z<=25))*PZ'

P5725 = 0.4745

Exercise 9.2.22

Two players, Ronald and Mike, throw a pair of dice 30 times each. What is the probability Mike throws more “sevens” than
does Ronald?

Answer

P = (ibinom(30,1/6,0:29))*(cbinom(30,1/6,1:30))"' = 0.4307

Exercise 9.2.23

A class has fifteen boys and fifteen girls. They pair up and each tosses a coin 20 times. What is the probability that at least
eight girls throw more heads than their partners?

Answer
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pg = (ibinom(20,1/2,0:19))*(cbinom(20,1/2,1:20))"'

pg = 0.4373 % Probability each girl throws more
P = cbinom(15, pg, 8)
P = 0.3100 % Probability eight or more girls throw more

Exercise 9.2.24

Glenn makes five sales calls, with probabilities 0.37, 0.52, 0.48, 0.71, 0.63, of success on the respective calls. Margaret makes
four sales calls with probabilities 0.77, 0.82, 0.75, 0.91, of success on the respective calls. Assume that all nine events form an
independent class. If Glenn realizes a profit of $18.00 on each sale and Margaret earns $20.00 on each sale, what is the
probability Margaret's gain is at least $10.00 more than Glenn's?

Answer

cg [18*ones(1,5) 0];

cm = [20*ones(1,4) 0];

pmg = minprob(0.01*[37 52 48 71 63]);
pmm = minprob(0.01*[77 82 75 91]);

[G,PG] = canonicf(cg, pmg);
[M,PM] = canonicf(cm, pmm);
icalc

Enter row matrix of X-values G

Enter row matrix of Y-values M

Enter X probabilities PG

Enter Y probabilities PM

Use array operations on matrices X, Y, PX, PY, t, u, and P
H = u-t>=10;

pl = total(H.*P)

pl1 = 0.5197

Exercise 9.2.25

Mike and Harry have a basketball shooting contest.

o Mike shoots 10 ordinary free throws, worth two points each, with probability 0.75 of success on each shot.
e Harry shoots 12 “three point” shots, with probability 0.40 of success on each shot.

Let X,Y be the number of points scored by Mike and Harry, respectively. Determine P(X >15), and P(Y > 15),
P(X>Y).

Answer

X = 2*[0:10];

PX = ibinom(10,0.75,0:10);

Y = 3*[0:12];

PY = ibinom(12,0.40,0:12);
icalc

Enter row matrix of X-values X
Enter row matrix of Y-values Y
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Enter X probabilities PX
Enter Y probabilities PY
Use array operations on matrices X, Y, PX, PY, t, u, and P
PX15 = (X>=15)*PX'
PX15 = 0.5256
PY15 = (Y>=15)*PY'
PY15 = 0.5618
G = t>=u;
PG = total(G.*P)
PG = 0.5811

Exercise 9.2.26

Martha has the choice of two games.

Game 1: Pay ten dollars for each “play.” If she wins, she receives $20, for a net gain of $10 on the play; otherwise, she loses her $10. The
probability of a win is 1/2, so the game is “fair.”

Game 2: Pay five dollars to play; receive $15 for a win. The probability of a win on any play is 1/3.

Martha has $100 to bet. She is trying to decide whether to play Game 1 ten times or Game 2 twenty times. Let W1 and W2 be
the respective net winnings (payoff minus fee to play).

o Determine P(W2 > W1)
o Compare the two games further by calculating P(W1 > 0) and P(W2 > 0)

Which game seems preferable?

Answer

Wl = 20*[0:10] - 100;
PWl1 = ibinom(10,1/2,0:10);
W2 = 15*[0:20] - 100;
PW2 = ibinom(20,1/3,0:20);

P1pos = (W1>0)*Pwi'
Plpos = 0.3770
P2pos = (W2>0)*Pw2'
P2pos = 0.5207
icalc

Enter row matrix of X-values W1
Enter row matrix of Y-values W2
Enter X probabilities PW1
Enter Y probabilities PWw2
Use array operations on matrices X, Y, PX, PY, t, u, and P
G =u>=t,
PG = total(G.*P)
PG = 0.5182
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Jim and Bill of the men's basketball team challenge women players Mary and Ellen to a free throw contest. Each takes five free
throws. Make the usual independence assumptions. Jim, Bill, Mary, and Ellen have respective probabilities p = 0.82, 0.87,
0.80, and 0.85 of making each shot tried. What is the probability Mary and Ellen make a total number of free throws at least as
great as the total made by the guys?

Answer
X = 0:5;
PJ = ibinom(5,0.82,x);
PB = ibinom(5,0.87,x);
PM = ibinom(5,0.80,x);
PE = ibinom(5,0.85,x);
icalc

Enter row matrix of X-values x
Enter row matrix of Y-values x
Enter X probabilities PJ
Enter Y probabilities PB

Use array operations on matrices X, Y, PX, PY, t, u, and P
H = t+u;

[Tm,Pm] = csort(H,P);
icalc
Enter row matrix of X-values x
Enter row matrix of Y-values x
Enter X probabilities PM
Enter Y probabilities PE

Use array operations on matrices X, Y, PX, PY, t, u, and P
G = t+u;

[Tw,Pw] = csort(G,P);

icalc

Enter row matrix of X-values Tm

Enter row matrix of Y-values Tw

Enter X probabilities Pm

Enter Y probabilities Pw

Use array operations on matrices X, Y, PX, PY, t, u, and P
Gw = u>=t;

PGw = total(Gw.*P)

PGw = 0.5746

Enter X probabilities PJ
Enter Y probabilities PB

icalc4 % Alternate using icalc4
Enter row matrix of X-values x
Enter row matrix of Y-values x
Enter row matrix of Z-values x
Enter row matrix of W-values x
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Enter Z probabilities PM

Enter W probabilities PE

Use array operations on matrices X, Y, Z,W
PX, PY, PZ, PW t, u, v, w, and P

H = v+tw >= t+u;

PH = total(H.*P)

PH 0.5746

This page titled 9.2: Problems on Independent Classes of Random Variables is shared under a CC BY 3.0 license and was authored, remixed,
and/or curated by Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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10.1: Functions of a Random Variable

Introduction

Frequently, we observe a value of some random variable, but are really interested in a value derived from this by a function rule. If
X is a random variable and g is a reasonable function (technically, a Borel function), then Z = g(X) is a new random variable
which has the value g(t) for any w such that X (w) =¢. Thus Z(w) = g(X(w)) .

The problem; an approach

We consider, first, functions of a single random variable. A wide variety of functions are utilized in practice.

SE[o]EHEONMN 1: A quality control problem

In a quality control check on a production line for ball bearings it may be easier to weigh the balls than measure the diameters.
If we can assume true spherical shape and w is the weight, then diameter is kw'/3, where k is a factor depending upon the
formula for the volume of a sphere, the units of measurement, and the density of the steel. Thus, if X is the weight of the
sampled ball, the desired random variable is D = kX'/3 .

Example 10.1.2: |3ydRiElS

The cultural committee of a student organization has arranged a special deal for tickets to a concert. The agreement is that the
organization will purchase ten tickets at $20 each (regardless of the number of individual buyers). Additional tickets are
available according to the following schedule:

e 11-20, $18 each
e 21-30, $16 each
e 31-50, $15 each
e 51-100, $13 each

If the number of purchasers is a random variable X, the total cost (in dollars) is a random quantity Z = g(X) described by
9(X) =200+ 18I (X)(X —10) + (16 — 18) I3 (X)(X —20)
+(15 — 16) I3 (X) (X — 30) + (13 — 15) I 14 (X) (X — 50)
where M1 = [10, 00), M2 = [20, c0), M3 = [30, 00), M4 =[50, o)

The function rule is more complicated than in Example 10.1.1, but the essential problem is the same.

The problem
If X is a random variable, then Z = g(X) is a new random variable. Suppose we have the distribution for X. How can we
determine P(Z € M), the probability Z takes a value in the set M?
An approach to a solution
We consider two equivalent approaches
To find P(X € M).
1. Mapping approach. Simply find the amount of probability mass mapped into the set M by the random variable X.

o In the absolutely continuous case, calculate f u fx
o In the discrete case, identify those values ¢; of X which are in the set M and add the associated probabilities.

2. Discrete alternative. Consider each value ¢; of X. Select those which meet the defining conditions for M and add the associated
probabilities. This is the approach we use in the MATLAB calculations. Note that it is not necessary to describe geometrically
the set M; merely use the defining conditions.

To find P(g(X) € M).

1. Mapping approach. Determine the set N of all those ¢ which are mapped into M by the function g. Now if X(w) € N, then
g9(X(w)) € M, and if g(X(w)) € M, then X(w) € N. Hence
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{w:g(X(w) e M} ={w: X(w) € N}

Since these are the same event, they must have the same probability. Once N is identified, determine P(X € N) in the usual
manner (see part a, above).

« Discrete alternative. For each possible value ¢; of X, determine whether g(t;) meets the defining condition for M. Select those
t; which do and add the associated probabilities.

—0O

Remark. The set N in the mapping approach is called the inverse image N = g1 (M)

A discrete example

Suppose X has values -2, 0, 1, 3, 6, with respective probabilities 0.2, 0.1, 0.2, 0.3 0.2.
Consider Z = g(X) = (X+1)(X —4) . Determine P(Z > 0).

Solution

First solution. The mapping approach

gt)=(t+1)(t—4) . N={t:g(t) >0} is the set of points to the left of —1 or to the right of 4. The X-values -2 and 6 lie
in this set. Hence

P(g(X)>0)=P(X=-2)+P(X=6)=0.2+0.2=0.4

Second solution. The discrete alternative

X= -2 0 1 3 6
PX= 0.2 0.1 0.2 0.3 0.2
zZ= 6 -4 -6 -4 14
Z>0 1 0 0 0 1

Picking out and adding the indicated probabilities, we have

P(Z>0)=0.240.2=0.4

In this case (and often for “hand calculations”) the mapping approach requires less calculation. However, for MATLAB
calculations (as we show below), the discrete alternative is more readily implemented.

S E[ZMIONIN An absolutely continuous example

Suppose X ~ uniform [-3,7]. Then fx(¢t) = 0.1, —3 <t <7 (and zero elsewhere). Let
Z=g(X) = (X+1)(X—4)

Determine P(Z > 0).
Solution

First we determine N = {¢: g(¢) >0} . As in Example 10.1.3, g(t) = (¢t +1)(t —4) >0 fort < —1 or ¢ >4). Because of the
uniform distribution, the integral of the density over any subinterval of {X,Y} is 0.1 times the length of that subinterval. Thus, the
desired probability is

P(g(X)>0)=0.1[(-1—(-3))+(7—4)] =0.5

We consider, next, some important examples.

S E1 o] EREONMSHE The normal distribution and standardized normal distribution

To show that if X ~ N (u, %) then
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VERIFICATION

We wish to show the denity function for Z is

1
o(t) = ——=e /2

V27

Now
t—
g(t):—'u <wv ifft <ov+p
o

Hence, for given M = (—oo, v] the inverse image is N = (—o0, ov+ p] , so that
Fz(v)=P(Z<v)=P(ZeM)=P(X € N)=P(X <ov+pu)=Fx(ov+p)
Since the density is the derivative of the distribution function,
fz(v) = Fé(v) = F)’((v) = F)'((Uv—i—p)a =ofx(ov+p)
Thus
o 1 ovtp—p 1

2(0) = ——eml-5 (T ) = <=

We conclude that Z ~ N (0, 1).

Example 10.1.1

Suppose X has distribution function Fx. If it is absolutely continuous, the corresponding density is fx. Consider
Z =aX+b . Here g(t) =at +b, an affine function (linear plus a constant). Determine the distribution function for Z (and
the density in the absolutely continuous case).

Solution
Fz(v)=P(Z <v)=P(aX+b <)

There are two cases

e a>0:
v—>b b
Fz(v) = P(X < Z=2) = Fx (=)

e a<0

Fy0)=P(X > %y~ px > =0 4 px = =0
a a a
So that
v—>b v—>b
P(X =

—)+P(X = =)

Fz(’l)):].—Fx(
v—b

For the absolutely continuous case, P(X = ) =0, and by differentiation

v—>b

o fora>0 fz(v) = %fx(

—)
o fora <0 fz(v) :—%fx(v_b

)

Since for a < 0, —a = |a|, the two cases may be combined into one formula.

f20) = (=2

|al a

a
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S EN o] EHENBAR Completion of normal and standardized normal relationship
Suppose Z ~ N (0, 1). show that X =aZ +u (o > 0) is N(u, 0?).
VERIFICATION

Use of the result of Example 10.1.6 on affine functions shows that

x(t)= o) = el

t—p .\,
L)
S ET o) CHEON M Fractional power of a nonnegative random variable

Suppose X >0 and Z = g(X) = X1/% fora > 1. Since for ¢ >0, ti/a js increasing, we have 0 < the <oy iff 0 <t <o,
Thus

Fz(v)=P(Z <v)=P(X <v*) =Fx(v*)

In the absolutely continuous case
f2(v) = Fy(v) = fx (v")av**

eyl CHINM N Fractional power of an exponentially distributed random variable

Suppose X ~ exponential (A). Then Z = X'/% ~ Weibull (a, A, 0).
According to the result of Example 10.1.8,
Fz(t) = FX(ta) =1- 6_’\1'“1

which is the distribution function for Z ~ Weibull (a, A, 0).

SE o] EHEONBNEVMA simple approximation as a function of X

If X is a random variable, a simple function approximation may be constructed (see Distribution Approximations). We limit
our discussion to the bounded case, in which the range of X is limited to a bounded interval I = [a,b]. Suppose I is
partitioned into n subintervals by points ¢;, 1 <4 <n—1,witha =t and b =1¢,. Let M; = [t;_1,¢;) be the ith subinterval,
1<i<n-1 and M, = [t,_1,t,]. Let E; = X 1(M;) be the set of points mapped into M; by X. Then the E; form a
partition of the basic space 2. For the given subdivision, we form a simple random variable X as follows. In each subinterval,
pick a point s;,t;_1 < s; <t; . The simple random variable

XS = E?:l SiIEi

approximates X to within the length of the largest subinterval M;. Now Ig, = Ij;(X), since Ig (w) =1 iff X(w) € M; iff
Iy, (X(w)) = 1. We may thus write

X, =1, siIp, (X), a function of X

Use of MATLAB on simple random variables

For simple random variables, we use the discrete alternative approach, since this may be implemented easily with MATLAB.
Suppose the distribution for X is expressed in the row vectors X and PX.

e We perform array operations on vector X to obtain

G =[g(t1)g(t2) - - - g(tn)]

o We use relational and logical operations on G to obtain a matrix M which has ones for those ¢; (values of X) such that g(¢;)
satisfies the desired condition (and zeros elsewhere).

« The zero-one matrix M is used to select the the corresponding p; = P(X =t;) and sum them by the taking the dot product of
M and PX.
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S E o] RN EENBasic calculations for a function of a simple random variable

X = -5:10; % Values of X
PX = ibinom(15,0.6,0:15); % Probabilities for X
G = (X+6).*(X-1).*(X - 8); % Array operations on X matrix to get G = g(X)
M= (G > - 100)&(G < 130); % Relational and logical operations on G
PM = M*PX' % Sum of probabilities for selected values
PM = 0.4800
disp([X;G;M;PX]") % Display of various matrices (as columns)
-5.0000 78.0000 1.0000 0.0000
-4.0000 120.0000 1.0000 0.0000
-3.0000 132.0000 (0] 0.0003
-2.0000 120.0000 1.0000 0.0016
-1.0000 90.0000 1.0000 0.0074
(C] 48.0000 1.0000 0.0245
1.0000 0 1.0000 0.0612
2.0000 -48.0000 1.0000 0.1181
3.0000 -90.0000 1.0000 0.1771
4.0000 -120.0000 0 0.2066
5.0000 -132.0000 (0] 0.1859
6.0000 -120.0000 (C] 0.1268
7.0000 -78.0000 1.0000 0.0634
8.0000 (C] 1.0000 0.0219
9.0000 120.0000 1.0000 0.0047
10.0000 288.0000 0 0.0005
[Z,PZ] = csort(G,PX); % Sorting and consolidating to obtain
disp([Z;PZ]") % the distribution for Z = g(X)
-132.0000 0.1859
-120.0000 0.3334
-90.0000 0.1771
-78.0000 0.0634
-48.0000 0.1181
0 0.0832
48.0000 0.0245
78.0000 0.0000
90.0000 0.0074
120.0000 0.0064
132.0000 0.0003
288.0000 0.0005
P1 = (G<-120)*PX ' % Further calculation using G, PX
P1 = 0.1859
pl = (Z<-120)*PZ' % Alternate using Z, PZ
pl = 0.1859
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Example 10.1.12

X =101, +18I5+10I¢c with {A, B, C} independent and P = [0.60.30.5].
We calculate the distribution for X, then determine the distribution for

Z=X"Y2_X+50

c = [10 18 10 0];
pm = minprob(0.1*[6 3 5]);
canonic
Enter row vector of coefficients c
Enter row vector of minterm probabilities pm
Use row matrices X and PX for calculations
Call for XDBN to view the distribution
disp(XDBN)
0 0.1400
10.0000 0.3500
18.0000 0.0600
20.0000 0.2100
28.0000 0.1500
38.0000 0.0900
G = sqrt(X) - X + 50; % Formation of G matrix
[Zz,PZ] = csort(G,PX); % Sorts distinct values of g(X)
disp([Z;PZ]"') % consolidates probabilities
18.1644 0.0900
27.2915 0.1500
34.4721 0.2100
36.2426 0.0600
43.1623 0.3500
50.0000 0.1400
M= (Z < 20)|(Z >= 40) % Direct use of Z distribution
M = 1 (C] (C] (C] 1 1
PZM = M*PZ'
PZM = 0.5800

Remark. Note that with the m-function csort, we may name the output as desired.

=S E[o]EREONBNEINC ontinuation of example 10.1.12, above.

H = 2*X.A2 - 3*X + 1;
[W,PW] = csort(H,PX)
W = 1 171 595 741 1485 2775
PWw = 0.1400 0.3500 0.0600 0.2100 0.1500 0.0900

SE ] CHINBFEA discrete approximation

. : L LR 1/2

Suppose X has density function fx (¢) = 5(3t +2¢) for0 <t <1.Then Fx(t) = E(t +1%) . Let Z = X'/2. We may use
the approximation m-procedure tappr to obtain an approximate discrete distribution. Then we work with the approximating
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random variable as a simple random variable. Suppose we want P(Z < 0.8). Now Z < 0.8 iff X < 0.8% = 0.64. The desired
probability may be calculated to be

P(Z <0.8) = Fx(0.64) = (0.64° +0.642) /2 = 0.3359

Using the approximation procedure, we have

tappr

Enter matrix [a b] of x-range endpoints [0 1]
Enter number of x approximation points 200

Enter density as a function of t (3*t.A2 + 2*t)/2
Use row matrices X and PX as in the simple case

G = X.N1/2);

M =G <= 0.8;

PM = M*PX'

PM = 0.3359 % Agrees quite closely with the theoretical

This page titled 10.1: Functions of a Random Variable is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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10.2: Function of Random Vectors
Introduction

The general mapping approach for a single random variable and the discrete alternative extends to functions of more than one
variable. It is convenient to consider the case of two random variables, considered jointly. Extensions to more than two random
variables are made similarly, although the details are more complicated.

The general approach extended to a pair

Consider a pair { X, Y} having joint distribution on the plane. The approach is analogous to that for a single random variable with
distribution on the line.

To find P((X,Y) € Q).
1. Mapping approach. Simply find the amount of probability mass mapped into the set @ on the plane by the random vector
W =(X,Y).
o In the absolutely continuous case, calculate f f 0 fxv.

o In the discrete case, identify those vector values (t;, u;) of (X, Y") which are in the set @ and add the associated
probabilities.

2. Discrete alternative. Consider each vector value (¢;, u;) of (X, Y"). Select those which meet the defining conditions for ) and
add the associated probabilities. This is the approach we use in the MATLAB calculations. It does not require that we describe
geometrically the region Q.

To find P(g(X,Y) € M). g is real valued and M is a subset the real line.
1. Mapping approach. Determine the set @ of all those (¢, u) which are mapped into M by the function g. Now
W(w) = (X(w),Y(w)) € Q iff g((X(w),Y (w)) € M Hence

{w:g(X(w),Y(w) € M} ={w: (X(w),Y(w)) € @}

Since these are the same event, they must have the same probability. Once @ is identified on the plane, determine P((X,Y) € Q)
in the usual manner (see part a, above).

o Discrete alternative. For each possible vector value (¢;, u;) of (X,Y), determine whether g(¢;, u;) meets the defining
condition for M. Select those (;, u;) which do and add the associated probabilities.

We illustrate the mapping approach in the absolutely continuous case. A key element in the approach is finding the set @) on the
plane such that g(X,Y) € M iff (X,Y) € Q. The desired probability is obtained by integrating fxy over Q.

{2,2)
. =

1
0 1 2
Py (1,0} = (B/37)(t + 20}

Figure 10.2.1. Distribution for Example 10.2.15.
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SE o] CHEOZAEN. A numerical example

The pair { X, Y'} has joint density fxy(t,u t+2u) on the region bounded by t =0, ¢t =2, u =0, v =max{1,t
T 37

(see Figure 1). Determine P(Y <X)=P(X-Y >0). Here g(t,u)=t—u and M =][0,00). Now
Q={(t,u):t—u>0} ={(t,u): w <t} which is the region on the plane on or below the line « =t¢. Examination of the
figure shows that for this region, fxy is different from zero on the triangle bounded by t =2, w =0, and u = ¢. The desired
probability is

PY<X)= fo (t+2u)du dt =32/37 =~ 0.8649

fO 37

S E ) CHEPRIEDENE. The density for the sum +

Suppose the pair { X, Y} has joint density fxy . Determine the density for
Z=X+Y
Solution

Fz(v)=P(X+Y <v)=P((X,Y)€Q,) where@Q,={(t,u):t+u<v}={(t,u):u<v—t}

For any fixed v, the region @, is the portion of the plane on or below the line w =v—t (see Figure 10.2.2). Thus
oo v—t
’U) = fo fXY = f—oo f—oo fxy(t, u)du dt
Differentiating with the aid of the fundamental theorem of calculus, we get

fz f fXY t v— t) dt

This integral expresssion is known as a convolution lntegral.

u

\ 0, ={tuu<=v-ty

(0]

Figure 10.2.2. Region @, for X +Y <w.

SENEHERNA. Sum of joint uniform random variables

Suppose the pair {X,Y} has joint uniform density on the unit square 0 <t <1,0 <wu <1 .. Determine the density for
Z=X+Y .

Solution

F7(v) is the probability in the region @, : u <v—t . Now Pxy(Q,) =1 — Pxy(Q5) , where the complementary set Q5 is
the set of points above the line. As Figure 3 shows, for v < 1, the part of @), which has probability mass is the lower shaded
triangular region on the figure, which has area (and hence probability) v?/2. For v > 1, the complementary region Q5 is the
upper shaded region. It has area (2 —v)?/2. so that in this case, Pxy (Q,) =1 — (2 —v)?/2 . Thus,
v? (2 —v)?
2

Fz(v):?forogvgl and Fz(v) =1— forl <v<2

Differentiation shows that Z has the symmetric triangular distribution on [0, 2], since
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With the use of indicator functions, these may be combined into a single expression

fz(v) = Ijp 1)(v)v+I(1,2)(2 —v)

\v—t,for\.wvl
27V

Q.

fz(v)=v for0 <v<1 and fz(v) =(2—v) forl <v<2

2-v

AN
\

W

Qy

4
0 v \
u=vw-1fary==1

Figure 10.2.3. Geometry for sum of joint uniform random variables.

ALTERNATE Solution
Since fxy (t,u) = Ijg 1)(t)Ij1)(u), we have fxy (t,v—t) = I ;g 1)(t)Ijg1(v—1t) .Now 0 <v—t<1 iffv—1<t<w,so that
fxy (6, v—1) = Tjg 1 (0)g,0)(t) + L(1,2) (V) 1,1 (2)
Integration with respect to ¢ gives the result above.
Independence of functions of independent random variables
Suppose { X, Y'} is an independent pair. Let Z = g(X), W = h(Y') . Since
2 (M) = X [g~ (M)] and W (N) =Y~ A~ (V)]
the pair { Z (M), W ~1(N)} is independent for each pair { M, N'}. Thus, the pair { Z, W} is independent.

If {X,Y} is an independent pair and Z = g(X), W = g(X), then the pair {Z, W} is independent. However, if Z = g(X,Y’) and
W =h(X,Y), then in general {Z, W} is not independent. This is illustrated for simple random variables with the aid of the m-
procedure jointzw at the end of the next section.

S o] RN Independence of simple approximations to an independent pair

Suppose { X, Y} is an independent pair with simple approximations X and Y, as described in Distribution Approximations.

Xs = Z?:l tiIEi = ?:1 tiIM (X) and Y; = Z;n:l u]'IFj = Zq;l:l ujINj (Y)
As functions of X and Y, respectively, the pair { X, Y;} is independent. Also each pair { I, (X), In,(Y)} is independent.

Use of MATLAB on pairs of simple random variables

In the single-variable case, we use array operations on the values of X to determine a matrix of values of g(X). In the two-variable
case, we must use array operations on the calculating matrices ¢ and  to obtain a matrix G whose elements are g(¢;, u;). To obtain
the distribution for Z = g(X,Y) , we may use the m-function csort on G and the joint probability matrix P. A first step, then, is
the use of jcalc or icalc to set up the joint distribution and the calculating matrices. This is illustrated in the following example.

Example 10.2.19 &

% file jdemo3.m
% data for joint simple distribution

X =1[-4 -2013];
Y =[0124];
P = [0.0132 0.0198 0.0297 0.0209 0.0264;
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0.0372 0.0558 0.0837 0.0589 0.0744,
0.0516 0.0774 0.1161 0.0817 0.1032;
0.0180 0.0270 0.0405 0.0285 0.0360];
jdemo3 % Call for data
jcalc % Set up of calculating matrices t, u.
Enter JOINT PROBABILITIES (as on the plane) P
Enter row matrix of VALUES of X X
Enter row matrix of VALUES of Y Y
Use array operations on matrices X, Y, PX, PY, t, u, and P

G = t.A2 -3*u; % Formation of G = [g(ti,uj)]
M =G > 1, % Calculation using the XY distribution
PM = total(M.*P) % Alternately, use total((G>=1).*P)

PM = 0.4665
[z,PZ] = csort(G,P);

PM = (Z>=1)*PZ' % Calculation using the Z distribution
PM = 0.4665
disp([Z;PZ]") % Display of the Z distribution
-12.0000 0.0297
-11.0000 0.0209
-8.0000 0.0198
-6.0000 0.0837
-5.0000 0.0589
-3.0000 0.1425
-2.0000 0.1375
(C] 0.0405
1.0000 0.1059
3.0000 0.0744
4.0000 0.0402
6.0000 0.1032
9.0000 0.0360
10.0000 0.0372
13.0000 0.0516
16.0000 0.0180

We extend the example above by considering a function W = h(X,Y") which has a composite definition.

SEN o) CHE2I0B. Continuation of example 10.2.19

Let

W= X forX+Y >1
Tl X24Y2 forX+Y <1

Determine the distribution for W

H = t.*(t+u>=1) + (t.A2 + u.”r2).*(t+u<l); % Specification of h(t,u)

[W,PW] = csort(H,P); % Distribution for W = h(X,Y)

disp([W;PW]")
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-2.0000 0.0198
0 0.2700

1.0000 0.1900

3.0000 0.2400

4.0000 0.0270

5.0000 0.0774

8.0000 0.0558

16.0000 0.0180

17.0000 0.0516

20.0000 0.0372

32.0000 0.0132
ddbn % Plot of distribution function
Enter row matrix of values W
Enter row matrix of probabilities PW
print % See Figure 10.2.4

Listriaulior | urslon

[ | | = | Qj
vaf ﬁ

07F

1k o

=Fin

u

-8 o & 10 < =) 23 30 25 <0
|

Figure 10.2.4. Distribution for random variable W in Example 10.2.20.

Joint distributions for two functions of (X,Y)

In previous treatments, we use csort to obtain the marginal distribution for a single function Z = g(X,Y") . It is often desirable to
have the joint distribution for a pair Z = g(X,Y’) and W = h(X,Y"). As special cases, we may have Z = X or W =Y . Suppose

Z has values [z1 zo - - - z.] and W has calues [w; wy - - - w,]

The joint distribution requires the probability of each pair, P(W = w;, Z = z;) . Each such pair of values corresponds to a set of
pairs of X and Y values. To determine the joint probability matrix PZW for (Z, W) arranged as on the plane, we assign to each
position (%, j) the probability P(W = w;, Z = z;) , with values of W increasing upward. Each pair of (W, Z) values corresponds
to one or more pairs of (Y, X) values. If we select and add the probabilities corresponding to the latter pairs, we have
P(W =w;, Z = z;) . This may be accomplished as follows:

Set up calculation matrices ¢ and u as with jcalc.

Use array arithmetic to determine the matrices of values G = [g(¢, )] and H = [h(¢, u)].

Use csort to determine the Z and W value matrices and the PZ and PW marginal probability matrices.
For each pair (w;, z;), use the MATLAB function find to determine the positions a for which

(H==W(1))&(G==Z(j))
Assign to the (7, 7) position in the joint probability matrix PZW for (Z, W) the probability
PZW(i, j) = total (P(a))
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We first examine the basic calculations, which are then implemented in the m-procedure jointzw.

SEN o) CHERER. Tllustration of the basic joint calculations

% file jdemo7.m
P =[0.061 0.030 0.060 0.027 0.009;
0.015 0.001 0.048 0.058 0.013;
0.040 0.054 0.012 0.004 0.013;
0.032 0.029 0.026 0.023 0.039;
0.058 0.040 0.061 0.053 0.018;
0.050 0.052 0.060 0.001 0.013];
X = -2:2;
Y = -2:3;
jdemo7 % Call for data in jdemo7.m
jcalc % Used to set up calculation matrices t, u
H = u.n2 % Matrix of values for W = h(X,Y)
H =
9 9 9 9 9
4 4 4 4 4
1 1 1 1 1
0 0 0 0 0
1 1 1 1 1
4 4 4 4 4
G = abs(t) % Matrix of values for Z = g(X,Y)
G =
2 1 0 1 2
2 1 0 1 2
2 1 0 1 2
2 1 0 1 2
2 1 0 1 2
2 1 0 1 2
[W,PW] = csort(H,P) % Determination of marginal for W
W = 0 1 4 9
PW = 0.1490 0.3530 0.3110 0.1870
[z,PZ] = csort(G,P) % Determination of marginal for z
zZ = 0 1 2
Pz = 0.2670 0.3720 0.3610
r = W(3) % Third value for W
r= 4
s = Z(2) % Second value for zZ
s = 1
To determine P(W =4, Z = 1), we need to determine the (¢, u) positions for which this pair of (W, Z) values is taken on. By
inspection, we find these to be (2,2), (6,2), (2,4), and (6,4). Then P(W =4, Z =1) is the total probability at these positions.
This is 0.001 + 0.052 + 0.058 + 0.001 = 0.112. We put this probability in the joint probability matrix PZW at the
W =4,7 =1 position. This may be achieved by MATLAB with the following operations.
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[1,7] = find((H==W(3))&(G==Z(2))); % Location of (t,u) positions
disp([i j]) % Optional display of positions
2 2
6 2
2 4
6 4
a = find((H==W(3))&(6==2(2))); % Location in more convenient form
PO = zeros(size(P)); % Setup of zero matrix
Po(a) = P(a) % Display of designated probabilities in P
PO =
0 0 0 0 0
(C] 0.0010 (C] 0.0580 (C]
0 0 0 0 0
(0] (0] (0] (0] (0]
(C] (C] (C] (C] (C]
0 0.0520 0 0.0010 0
PZW = zeros(length(W),length(Z2)) % Initialization of PZW matrix
PzZW(3,2) = total(P(a)) % Assignment to PZW matrix with
PZW = 0 0 0 % W increasing downward
(C] (C] (C]
0 0.1120 0
(0] (0] (0]
PzZw = flipud(PzZW) % Assignment with W increasing upward
PZW =
(C] (C] (C]
0 0.1120 0
(0] (0] (0]
(C] (C] (C]

The procedure jointzw carries out this operation for each possible pair of W and Z values (with the T1lipud operation
coming only after all individual assignments are made).

example 10.2.22. joint distribution for z = g(x,y) = ||X| - y| and w = h(x, y) = |xy]|

% file jdemo3.m data for joint simple distribution

X =1[-4 -2 01 3];

Y = [012 4];

P = [0.0132 0.0198 0.0297 0.0209 0.0264,
0.0372 0.0558 0.0837 0.0589 0.0744,
0.0516 0.0774 0.1161 0.0817 0.1032;
0.0180 0.0270 0.0405 0.0285 0.0360];

jdemo3 % Call for data

jointzw % Call for m-program

Enter joint prob for (X,Y): P

Enter values for X: X

Enter values for Y: Y
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Enter expression for g(t,u): abs(abs(t)-u)
Enter expression for h(t,u): abs(t.*u)
Use array operations on Z, W, PZ, PW, v, w, PZW

disp(Pzw)
0.0132 0 0 0 0
0 0.0264 0 0 0
0 0 0.0570 0 0
0 0.0744 0 0
0.0558 0 0 0.0725 0
0 0 0.1032 0 0
0 0.1363 0 0 0
0.0817 0 0 0 0

0.0405 0.1446 0.1107 0.0360 0.0477

EZ = total(v.*PZW)

Ez = 1.4398

ez = Z*PZ' % Alternate, using marginal dbn
ez = 1.4398

EW = total(w.*PZW)

EW = 2.6075

ew = W*PwW' % Alternate, using marginal dbn
ew = 2.6075

M=V >w; % P(Z>W)

PM = total(M.*PzZWw)

PM = 0.3390

At noted in the previous section, if { X, Y} is an independent pair and Z = g(X),
W = h(Y), then the pair { Z, W} is independent. However, if Z = g(X,Y") and

W =h(X,Y), then in general the pair {Z, W} is not independent. We may illustrate this with the aid of the m-procedure jointzw

S E ol EREOZE2EN. Functions of independent random variables

Enter joint prob for (X,Y): P

Enter values for X: X

Enter values for Y: Y

Enter expression for g(t,u): t.A2 - 3*t % Z
Enter expression for h(t,u): abs(u) + 3 % W
Use array operations on Z, W, PZ, PW, v, w, PZW
itest

Enter matrix of joint probabilities PzZW

g(Xx)
h(Y)

jdemo3

itest

Enter matrix of joint probabilities P

The pair {X,Y} is independent % The pair {X,Y} is independent
jointzw

The pair {X,Y} is independent % The pair {g(X),h(Y)} is independent
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jdemo3 % Refresh data
jointzw

Enter joint prob for (X,Y): P

Enter values for X: X

Enter values for Y: Y

Enter expression for g(t,u): t+u % Z = g(X,Y)
Enter expression for h(t,u): t.*u % W = h(X,Y)
Use array operations on Z, W, PZ, PW, v, w, PZW

itest

Enter matrix of joint probabilities PZW

The pair {X,Y} is NOT independent % The pair {g(X,Y),h(X,Y)} is not indep
To see where the product rule fails, call for D % Fails for all pairs

Absolutely continuous case: analysis and approximation

As in the analysis Joint Distributions, we may set up a simple approximation to the joint distribution and proceed as for simple
random variables. In this section, we solve several examples analytically, then obtain simple approximations.

S Eo][REOZE2N Distribution for a product

Suppose the pair { X, Y} has joint density fxy.Let Z = XY . Determine Q,, such that P(Z <v)=P((X,Y) € Q,) .

u

U=t w=d

;

U=t v=0

27

Figure 10.2.5

Solution

Qy={(t,u) : tu <v}={(t,u): t>0,u <v/t} \V{({t,u):t<0,u >v/t}}
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u =/t
(1,1)

0 v 1
P(XY <= v) = area of shaded
region for 0 <=wv <=1

Figure 10.2.6. Product of X, Y with uniform joint distribution on the unit square.

Example 10.2.25 §
{X,Y} ~ uniform on unit square
fxy(t,u) = 1. Then (see Figure 10.2.6)
P(XY <v)= fo 1du dt where Q, = {(¢t,u):0<t<1,0 <u <min{1,v/t}}

Integration shows
Fz(v) = P(XY <v)=v(1—1In(v)) sothat fz(v)=-Iln(v)=In(1/v) ,0<v<1
Forv=0.5, Fz(0.5) = 0.8466.

% Note that although f = 1, it must be expressed in terms of t, u.
tuappr

Enter matrix [a b] of X-range endpoints [0 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density (u>=0)&(t>=0)

Use array operations on X, Y, PX, PY, t, u, and P

G = t.*u;

[z,PZz] = csort(G,P);
p = (Z<=0.5)*PZ'
p = 0.8465 % Theoretical value 0.8466, above

S Eo]EREZE2N. Continuation of example 5 from "Random Vectors and Joint Distributions"

6
The pair { X, Y'} has joint density fxy(¢,u) = — (¢t +2u) on the region bounded by t =0, ¢ =2 and u = max {1, ¢}(see
y 37 8 N

Figure 7). Let Z = XY . Determine P(Z <1).

@ 0 10.2.10 https://stats.libretexts.org/@go/page/10877


https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10877?pdf

LibreTextsm

Q 1 3
fyttu] = (6/37)(t + 2u)

Figure 10.2.7. Area of integration for Example 10.2.26 .

Analytic Solution
P(Z<1)=P((X,Y) e Q) whereQ ={(t,u):u <1/t}
Reference to Figure 10.2.7 shows that

P((X,Y) e Q:%f(} S} (¢ +2u)du dt+—f1 Yt 4+ 2u)du dt = 9/37 +9/37 = 18/37 ~ 0.4865

APPROXIMATE Solution

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 300

Enter number of Y approximation points 300

Enter expression for joint density (6/37)*(t + 2*u).*(u<=max(t,1))
Use array operations on X, Y, PX, PY, t, u, and P

Q = t.*u<=1;

PQ = total(Q.*P)

PQ = 0.4853 % Theoretical value 0.4865, above

G = t.*u; % Alternate, using the distribution for Z
[z,PZ] = csort(G,P);

PZ1 = (Z<=1)*PZ'

Pz1 = 0.4853

In the following example, the function g has a compound definition. That is, it has a different rule for different parts of the plane.
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0.5

t
1

Figure 10.2.8. Regions for P(Z < 1/2) in Example 10.2.27.

= ellol SRS A compound function

2
The pair { X, Y} has joint density fxy (¢, u) = §(t +2u) on the unit square 0 <¢ <1,0<wu <1.

X4Y forX?_v <o — L&YY +I(X,Y)(X+Y)

for @ = {(t,u) : u <t?}. Determine P(Z <=0.5).

2_y >
Z:{X for X2 -Y >0

Analytical Solution
P(Z<1/2)=P(Y <1/2, Y <X?)+P(X+Y <1/2,Y > X?)=P((X,Y)€Qa\V Q5)

where Q4 = {(t,u) : u <1/2,u <t*} and Qp = {(t,u) : t +u < 1/2,u > t*} . Reference to Figure 10.2.8 shows that this
is the part of the unit square for which 4 < min (max (1/2 —t,¢2),1/2). We may break up the integral into three parts. Let
1/2—t; =12 and t2 = 1/2. Then
2 _ 2 2
P(Z<1/2)=73 L2 (4 2u)du dt + 3 I JE (¢ +2u)du dt + 3 St J 2t + 2u)du dt = 0.2322

APPROXIMATE Solution

tuappr

Enter matrix [a b] of X-range endpoints [0 1]
Enter matrix [c d] of Y-range endpoints [0 1]
Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density (2/3)*(t + 2*u)
Use array operations on X, Y, PX, PY, t, u, and P
Q = u <= t.N2;

G =u."Q + (t +u).*"(1-Q);

prob = total((G<=1/2).*P)

prob = 0.2328 % Theoretical is 0.2322, above

The setup of the integrals involves careful attention to the geometry of the system. Once set up, the evaluation is elementary but
tedious. On the other hand, the approximation proceeds in a straightforward manner from the normal description of the problem.
The numerical result compares quite closely with the theoretical value and accuracy could be improved by taking more subdivision
points.
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This page titled 10.2: Function of Random Vectors is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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10.3: The Quantile Function

The Quantile Function

The quantile function for a probability distribution has many uses in both the theory and application of probability. If F' is a
probability distribution function, the quantile function may be used to “construct” a random variable having F' as its distributions
function. This fact serves as the basis of a method of simulating the “sampling” from an arbitrary distribution with the aid of a
random number generator. Also, given any finite class

{X; :1<i<n} of random variables, an independent class {Y; : 1 <4 < n} may be constructed, with each X; and associated Y;
having the same (marginal) distribution. Quantile functions for simple random variables may be used to obtain an important
Poisson approximation theorem (which we do not develop in this work). The quantile function is used to derive a number of useful
special forms for mathematical expectation.

General concept—properties, and examples

If F' is a probability distribution function, the associated quantile function @ is essentially an inverse of F'. The quantile function is
defined on the unit interval (0, 1). For F' continuous and strictly increasing at ¢, then Q(u) =t iff F(t) =u. Thus, if u is a
probability value, ¢ = Q (u) is the value of ¢ for which P(X <t)=u.

Example 10.3.28: The Weibull distribution (3, 2, 0)

u=F(@t)=1-e3 t>0=>t=Q(u)=+/-In(1—u)/3

Example 10.3.29: The Normal Distribution

The m-function norminv, based on the MATLAB function erfinv (inverse error function), calculates values of @ for the normal
distribution.

The restriction to the continuous case is not essential. We consider a general definition which applies to any probability distribution
function.

Definition: If F is a function having the properties of a probability distribution function, then the quantile function for F' is given

by
Q(u)=inf{t: F(t) >u} Yu € (0,1)
We note
o If F(t*) > u*, thent* >inf{t: F(t) > u*} =Q(u*)
o If F(t*) <wu*,thent* <inf{t: F(¢t) >u*} =Q(u")

Hence, we have the important property:
Q1) Q(u) <tiffu <F(t) Vu e (0,1)
The property (Q1) implies the following important property:

(Q2)if U~ uniform (0, 1), then X =Q(U) has distribution function Fx =F. To see this, note that
Fx(t)=PQU)<t]=P[U<F(t) =F(t) .

Property (Q2) implies that if F is any distribution function, with quantile function @, then the random variable X = Q(U), with U
uniformly distributed on (0, 1), has distribution function F'.

Example 10.3.30: Independent classes with prescribed distributions

Suppose {X;:1<%i<n} is an arbitrary class of random variables with corresponding distribution functions
{F;:1<i<n}. Let {Q;:1<i<mn} be the respective quantile functions. There is always an independent class
{U; : 1 <4 <n} iid uniform (0, 1) (marginals for the joint uniform distribution on the unit hypercube with sides (0, 1)). Then
the random variables ¥; = Q;(U;), 1 < i < n, form an independent class with the same marginals as the Xj;.

Several other important properties of the quantile function may be established.
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Figure 10.3.9. Graph of quantile function from graph of distribution function,
Q is left-continuous, whereas F' is right-continuous.

If jumps are represented by vertical line segments, construction of the graph of v = Q(¢) may be obtained by the following two
step procedure:

o Invert the entire figure (including axes), then
¢ Rotate the resulting figure 90 degrees counterclockwise

This is illustrated in Figure 10.3.9. If jumps are represented by vertical line segments, then jumps go into flat segments and flat
segments go into vertical segments.

If X is discrete with probability p; at t;, 1 <7 <n, then F' has jumps in the amount p; at each ¢; and is constant between. The
quantile function is a left-continuous step function having value ¢; on the interval (b;_1, b;], where by =0 and b; = 23‘:1 p; . This
may be stated

If F(t;) =b;, then Q(u) =¢; for F(t;1) <u < F(t;)

Example 10.2.31: Quantile function for a simple random variable

Suppose simple random variable X has distribution
X =1[-2013]\(PX=[0.20.10.30.4]

Figure 1 shows a plot of the distribution function F'x. It is reflected in the horizontal axis then rotated counterclockwise to give
the graph of Q (u versus u.
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Figure 10.3.10. Distribution and quantile functions for Example 10.3.31.

We use the analytic characterization above in developing a number of m-functions and m-procedures.
m-procedures for a simple random variable

The basis for quantile function calculations for a simple random variable is the formula above. This is implemented in the m-
function dquant, which is used as an element of several simulation procedures. To plot the quantile function, we use dquanplot
which employs the stairs function and plots X vs the distribution function F'X. The procedure dsample employs dquant to obtain a
“sample” from a population with simple distribution and to calculate relative frequencies of the various values.

Example 10.3.32: Simple Random Variable

X = [-2.3 -1.1 3.3 5.4 7.1 9.8];
PX = 0.01*[18 15 23 19 13 12];

dquanplot

Enter VALUES for X X

Enter PROBABILITIES for X PX % See Figure 10.3.11 for plot of results
rand('seed', Q) % Reset random number generator for reference
dsample

Enter row matrix of values X
Enter row matrix of probabilities PX
Sample size n 10000

Value Prob Rel freq
-2.3000 0.1800 0.1805
-1.1000 0.1500 0.1466
3.3000 0.2300 0.2320
5.4000 0.1900 0.1875
7.1000 0.1300 0.1333
9.8000 0.1200 0.1201
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Sample average ex = 3.325
Population mean E[X] = 3.305
Sample variance = 16.32

Population variance Var[X] = 16.33

Flat af {Juatile Funztion

= Cniu}

L

a o 0.2 L3 04 a5 0 Qv 3] 0.8 1
u

Figure 10.3.11. Quantile function for Example 10.3.32.

Sometimes it is desirable to know how many trials are required to reach a certain value, or one of a set of values. A pair of m-
procedures are available for simulation of that problem. The first is called targetset. It calls for the population distribution and then
for the designation of a “target set” of possible values. The second procedure, targetrun, calls for the number of repetitions of the
experiment, and asks for the number of members of the target set to be reached. After the runs are made, various statistics on the
runs are calculated and displayed.

Exampley 10.3.33

X =1[-1.3 0.2 3.7 5.5 7.3];

PX = [0.2 0.1 0.3 0.3 0.1];

E=1[-1.3 3.7];

targetset

Enter population VALUES X

Enter population PROBABILITIES

The set of population values is
-1.3000 0.2000 3.7000

Enter the set of target values E

Call for targetrun

% Population values
% Population probabilities
% Set of target states

PX

5.5000 7.3000

rand('seed',0) % Seed set for possible comparison
targetrun
Enter the number of repetitions
The target set is

-1.3000 3.7000
Enter the number of target values to visit 2

The average completion time is 6.32

1000

The standard deviation
The minimum completion
The maximum completion

is 4.089
time is 2
time is 30

To view a detailed count, call for D.
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The first column shows the various completion times;
the second column shows the numbers of trials yielding those times
% Figure 10.6.4 shows the fraction of runs requiring t steps or less

Fraction of Runst Sieps or Less

[ax:]

07

[xX-1

X

Fraction ol rars

nd)

o3

02

o L L L L
a g ic 15 20 25 a0
T = anmker of 2603 K eemplaces cun

Figure 10.3.12. Fraction of runs requiring ¢ steps or less.
m-procedures for distribution functions

A procedure dfsetup utilizes the distribution function to set up an approximate simple distribution. The m-procedure quanplot is
used to plot the quantile function. This procedure is essentially the same as dquanplot, except the ordinary plot function is used in
the continuous case whereas the plotting function stairs is used in the discrete case. The m-procedure gsample is used to obtain a
sample from the population. Since there are so many possible values, these are not displayed as in the discrete case.

Example 10.3.34: Quantile function associated with a distribution function

F="'0.4*(t + 1).*(t <0) + (0.6 + 0.4*t).*(t >= 0)'; % String
dfsetup

Distribution function F is entered as a string

variable, either defined previously or upon call

Enter matrix [a b] of X-range endpoints [-1 1]

Enter number of X approximation points 1000

Enter distribution function F as function of t F

Distribution is in row matrices X and PX

quanplot

Enter row matrix of values X

Enter row matrix of probabilities PX

Probability increment h 0.01 % See Figure 10.3.13 for plot
gsample

Enter row matrix of X values X

Enter row matrix of X probabilities PX

Sample size n 1000

Sample average ex = -0.004146

Approximate population mean E(X) = -0.0004002 % Theoretical =
Sample variance vx = 0.25

Approximate population variance V(X) = 0.2664
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Figure 10.3.13. Quantile function for Example 10.3.34.

m-procedures for density functions

An m- procedure acsetup is used to obtain the simple approximate distribution. This is essentially the same as the procedure tuappr,
except that the density function is entered as a string variable. Then the procedures quanplot and gsample are used as in the case of
distribution functions.

Example 10.3.35: Quantile function associated with a density function

acsetup

Density f is entered as a string variable.

either defined previously or upon call.

Enter matrix [a b] of x-range endpoints [0 3]

Enter number of x approximation points 1000

Enter density as a function of t '(t.A2).*(t<1) + (1- t/3).*(1<=t)'
Distribution is in row matrices X and PX

quanplot

Enter row matrix of values X

Enter row matrix of probabilities PX

Probability increment h 0.01 % See Figure 10.3.14 for plot
rand('seed',0)
gsample

Enter row matrix of values X

Enter row matrix of probabilities PX

Sample size n 1000

Sample average ex = 1.352

Approximate population mean E(X) = 1.361 % Theoretical = 49/36 = 1.3622
Sample variance vx = 0.3242

Approximate population variance V(X) = 0.3474 % Theoretical = 0.3474
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Figure 10.3.14. Quantile function for Example 10.3.35.
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10.4: Problems on Functions of Random Variables

Exercise 10.4.1

Suppose X is a nonnegative, absolutely continuous random variable. Let Z = g(X) = Ce %% , where a >0, C > 0. Then
0 < Z < C . Use properties of the exponential and natural log function to show that

In (v/C)

Fz(v)=1-—Fx( ) for0<v<C

Answer
Z=Ce ™ < iffe ™ <v/C iff —aX <1In(v/C) iff X > —In (v/C)/a, so that

In (v/C)

Fy(v) = P(Z <v) = P(X > —Tn (4v/C)/a) = 1 - Fx(— )

Exercise 10.4.2

Use the result of Exercise 10.4.1 to show that if X ~ exponential (), then

Fz(v) = (%)*/a 0<v<C

Answer

Fo(0) =1~ 1 -eap(~2 Tn (o/O))] = ()"

Exercise 10.4.3

Present value of future costs. Suppose money may be invested at an annual rate a, compounded continually. Then one dollar in
hand now, has a value e?* at the end of x years. Hence, one dollar spent « years in the future has a present valuee=%*. Suppose
a device put into operation has time to failure (in years) X ~ exponential (). If the cost of replacement at failure is C' dollars,
then the present value of the replacement is Z = Ce~2X . Suppose A =1/10, a = 0.07, and C' = $1000.

a. Use the result of Exercise 10.4.2. to determine the probability Z < 700, 500, 200.
b. Use a discrete approximation for the exponential density to approximate the probabilities in part (a). Truncate X at 1000
and use 10,000 approximation points.

Answer
v
P(Z <) = 10/7
v = [700 500 200];
P = (v/1000)./A(10/7)
P = 0.6008 0.3715 0.1003
tappr

Enter matrix [a b] of x-range endpoints [0 1000]
Enter number of x approximation points 10000
Enter density as a function of t 0.1*exp(-t/10)
Use row matrices X and PX as in the simple case
G = 1000*exp(-0.07*t);

PM1 = (G<=700)*PX'

PM1 = 0.6005

PM2 = (G<=500)*PX'
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PM2 = 0.3716
PM3 = (G<=200)*PX'
PM3 = 0.1003

Exercise 10.4.4

Optimal stocking of merchandise. A merchant is planning for the Christmas season. He intends to stock m units of a certain
item at a cost of ¢ per unit. Experience indicates demand can be represented by a random variable D ~ Poisson (). If units
remain in stock at the end of the season, they may be returned with recovery of r per unit. If demand exceeds the number
originally ordered, extra units may be ordered at a cost of s each. Units are sold at a price p per unit. If Z = g(D) is the gain
from the sales, then

e Fort<m,gt)=(p—c)t—(c—r)(m—t)=(p—r)t+(r—c)m
o Fort>m,gt)=p—cm+(Et—m)(p—s)=(p—s)t+(s—c)m

Let M = (—oo, m]. Then
9(t) = Iu (&) [(p =)t + (r —c)m] + In (8)[(p — 5)t + (s — c)m]

Suppose =50 m =50 ¢ =30 p =50 r =20 s =40.
Approximate the Poisson random variable D by truncating at 100. Determine P(500 < Z < 1100).

Answer
mu = 50;
D = 0:100;
c = 30,
p = 50;
r = 20;
S = 40;
m = 50;

PD = ipoisson(mu,D);

G=(p-s)*D+ (s -c)*m+(s - r)*(D - m).*(D <= m);
M = (500<=G)&(G<=1100);

PM = M*PD'

PM = 0.9209

[Z,PZ] = csort(G,PD); % Alternate: use dbn for zZ
m = (500<=Z)&(Z2<=1100);
pm = m*PZ'

pm = 0.9209

Exercise 10.4.5

(See Example 2 from "Functions of a Random Variable") The cultural committee of a student organization has arranged a
special deal for tickets to a concert. The agreement is that the organization will purchase ten tickets at $20 each (regardless of
the number of individual buyers). Additional tickets are available according to the following schedule:

e 11-20, $18 each
e 21-30, $16 each
e 31-50, $15 each
e 51-100, $13 each
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If the number of purchasers is a random variable X, the total cost (in dollars) is a random quantity Z = g(X) described by
g(X) =200 41811 (X)(X —10) 4 (16 — 18) Inpe (X)(X —20)+
(15 —16)Ins, (X)(X —30) + (13 — 15)Ipz (X) (X —50)
where M1 =[10, 00), M2 = [20, 00), M3 =[30, 00), M4 =[50, 00)

Suppose X~ Poisson (75). Approximate the Poisson distribution by truncating at 150. Determine P(Z >1000),
P(Z >1300) and P(900 < Z < 1400).

Answer
X = 0:150;
PX = ipoisson(75,X);
G = 200 + 18*(X - 10).*(X>=10) + (16 - 18)*(X - 20).*(X>=20) + ...
(15 - 16)*(X- 30).*(X>=30) + (13 - 15)*(X - 50).*(X>=50);
P1 = (G>=1000)*PX'
P1 = 0.9288
P2 = (G>=1300)*PX'
P2 = 0.1142
P3 = ((900<=G)&(G<=1400))*PX'
P3 = 0.9742
[z,PZ] = csort(G,PX); % Alternate: use dbn for Z
pl = (Z>=1000)*PZ'
pl = 0.9288

Exercise 10.4.6

(See Exercise 6 from "Problems on Random Vectors and Joint Distributions", and Exercise 1 from "Problems on Independent
Classes of Random Variables")) The pair { X, Y’} has the joint distribution

(in m-file npr08_06.m):
X =1[-23-0.711395.11Y =[1.32.54.15.3]

0.0483 0.0357 0.0420 0.0399 0.0441
0.0437 0.0323 0.0380 0.0361 0.0399
0.0713 0.0527 0.0620 0.0609 0.0551
0.0667 0.0493 0.0580 0.0651 0.0589
Determine P(max {X,Y} <4).Let Z=3X3+3X?Y -Y? .
Determine P(Z < 0) and P(—5 < Z < 300).

Answer

npro8_o06
Data are in X, Y, P

jcalc

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P
P1 = total((max(t,u)<=4).*P)

@ 0 10.4.3 https://stats.libretexts.org/@go/page/10879


https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10879?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/17%3A_Appendices/17.08%3A_Matlab_files_for_Problems_in_Applied_Probability
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/10%3A_Functions_of_Random_Variables/Bookshelves/Probability_Theory/Book:_Applied_Probability_(Pfeiffer)/17:_Appendices/17.8_Matlab_files_for_%22Problems%22_in_%22Applied_Probability%22

LibreTextsm

P1 = 0.4860
P2 = total((abs(t-u)>3).*P)
P2 = 0.4516

G = 3*t.A3 + 3*t.N2.*u - u.N3;

P3 = total((G<0).*P)

P3 = 0.5420

P4 = total(((-5<G)&(G<=300)).*P)

P4 = 0.3713

[z,PZ] = csort(G,P); % Alternate: use dbn for Z
p4 = ((-5<Z)&(Z<=300))*PZ'

p4 = 0.3713

Exercise 10.4.7

(See Exercise 2 from "Problems on Independent Classes of Random Variables") The pair { X, Y} has the joint distribution (in
m-file npr09_02.m):

X=1[-39-17152841]Y =[-212.65.1]

0.0589 0.0342 0.0304 0.0456 0.0209
0.0962 0.056 0.0498 0.0744 0.0341
0.0682 0.0398 0.0350 0.0528 0.0242
0.0868 0.0504 0.0448 0.0672 0.0308

Determine P({X +Y >5}U{Y <2}), P(X*>+Y?<10).

Answer

npre9_02

Data are in X, Y, P

jcalc

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P

M1 = (t+u>=5)]|(u<=2);
P1 = total(M1.*P)

P1 = 0.7054

M2 = t.A2 + u.N2 <= 10;
P2 = total(M2.*P)

P2 = 0.3282

Exercise 10.4.8

(See Exercsie 7 from "Problems on Random Vectors and Joint Distributions", and Exercise 3 from "Problems on Independent
Classes of Random Variables") The pair . has the joint distribution

(in m-file npr08_07.m):
P(X=tY =u)

t= | -3.1 | -0.5 | 1.2 | 24 | 3.7 | 4.9 ‘
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u=7.5 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203
4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231
-2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189
-3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

Determine P(X? —3X <0), P(X3-3|Y| <3).

Answer

npro8_07

Data are in X, Y, P

jcalc

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P
M1 = t.AN2 - 3*t <=0;

P1 = total(M1.*P)

P1 = 0.4500

M2 = t.A3 - 3*abs(u) < 3;
P2 = total(M2.*P)

P2 = 0.7876

Exercise 10.4.9

For the pair { X, Y} in Exercise 10.4.8, let Z = g(X,Y) =3X%+42XY —Y 2 . Determine and plot the distribution function
for Z.

Answer

G = 3*t.A2 + 2*t.*u - u.N2; % Determine g(X,Y)

[Z,PZ] = csort(G,P); % Obtain dbn for Z = g(X,Y)

ddbn % Call for plotting m-procedure

Enter row matrix of VALUES Z

Enter row matrix of PROBABILITIES PZ % Plot not reproduced here

Exercise 10.4.10

For the pair { X, Y'} in Exercise 8, let

X forX4+Y <4

2Y for X+Y >4 =In(X,Y)X + Ine(X,Y)2Y

W=dXJ3={

Determine and plot the distribution function for .

Answer

H = t.*(t+u<=4) + 2*u.*(t+u>4);
[W,PW] = csort(H,P);
ddbn
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Enter row matrix of VALUES W
Enter row matrix of PROBABILITIES PW % Plot not reproduced here

For the distributions in Exercises 10-15 below

a. Determine analytically the indicated probabilities.
b. Use a discrete approximation to calculate the same probablities.'

Exercise 10.4.11

3
fxy(t,u) = §(2t+3u2) for 0<t<2,0<u<1+t (see Exercise 15 from "Problems on Random Vectors and Joint
Distributions").
Z = I[O,l](X)4X+I(172](X)(X+Y)

Determine P(Z < 2)

Answer
P(Z<2)=P(ZeQ=Q1M1\/ Q2M2) ,where M1 ={(t,u):0<t<1,0<u<1+t}
M2={(t,u):1<t<2,0<u<1+t}
Ql={(t,u):0<t<1/2},Q2={(¢t,u) : u <2—t} (seefigure)
3 ,1/2 p1ee 9 3 2 2 9 563
tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 3]

Enter number of X approximation points 200

Enter number of Y approximation points 300

Enter expression for joint density (3/88)*(2*t + 3*u.A2).*(u<=1+t)
Use array operations on X, Y, PX, PY, t, u, and P

G = 4*t.*(t<=1) + (t+u).*(t>1);

[z,PZ] = csort(G,P);

PZ2 = (Z<=2)*PZ'

Pz2 = 0.1010 % Theoretical = 563/5632 = 0.1000

Figure 10.4.1

Exercise 10.4.12

24
fxy(t,u) = 11 for 0 <t <2, 0<wu<min{1,2—t} (see Exercise 17 from "Problems on Random Vectors and Joint

Distributions").

1
Z=In(X,Y) 5 X + Do (X, Y)Y M ={(t,u) :u >}

Determine P(Z < 1/4).

Answer
P(Z<1/4)=P((X,Y) e M1Q:1\ M2Q>) , M1 ={(t,u): 0<t<wu<1}
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My ={(t,u):0<t<2,0<t<min(t,2—t)}
Q1={(t,u):t<1/2} Q2 ={(t,u): u<1/2} (see figure)

1/2 3/2 p1/2 —t
P———f/jhtduﬁ+J—f/ /tduﬁ+llﬂmk tu du dt = T

tuappr
Enter matrix [a b] of X-range endpoints [0 2]
Enter matrix [c d] of Y-range endpoints [0 1]
Enter number of X approximation points 400
Enter number of Y approximation points 200
Enter expression for joint density (24/11)*t.*u.*(u<=min(1,2-t))
Use array operations on X, Y, PX, PY, t, u, and P
G = 0.5*t.*(u>t) + u.n2.*(u<t);
[z,PZ] = csort(G,P);
= (z<=1/4)*PZ'
pp = 0.4844 % Theoretical = 85/176 = 0.4830

Exercise 10.4.13

fxy(t,u) = 23—3(t +2u) for 0<t<2,0<wu<max{2—t,t} (see Exercise 18 from "Problems on Random Vectors and
Joint Distributions").

Z=IyX,Y)(X+Y)+ I (X,Y)2Y , M ={(¢t, u) : max (t,u) <1}
Determine P(Z < 1)

Answer
P(Z<1)=P((X,Y) e MiQ,\/ Ma@s) , My = {(t,u) : 0<¢ <1,0<u<1—t}
My, ={(t,u):1<t<2,0<u<t}
QlZﬂtM1U<1—ﬂ Q2 ={(t,u) : u<1/2} (see figure)
fo 1t+2u)ahuit+—f1 1/2t+2u)dudt=436
tuappr

Enter matrix [a b] of X-range endpoints [0 2]
Enter matrix [c d] of Y-range endpoints [0 2]
Enter number of X approximation points 300
Enter number of Y approximation points 300
Enter expression for joint density (3/23)*(t + 2*u).*(u<=max(2-t,t))
Use array operations on X, Y, PX, PY, t, u, and P
max(t,u) <= 1;
M.*(t +u) + (1 - M)*2.*u;
total((G<=1).*P)
0.1960 % Theoretical = 9/46 = 0.1957

T T O =
1]
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Figure 10.4.2

Exercise 10.4.14

12
fxy(t,u) = 179

Joint Distributions").

(8t +u),for0 <t <2,0 <u <min{2,3 —t} (see Exercise 19 from "Problems on Random Vectors and

Z=InyX,Y)(X+Y)+Iy(X,Y)2Y2 , M ={(t,u): t <1,u>1}
Determine P(Z < 2).

Answer
P(Z<2)=P((X,Y) € MiQ: V(M2 M3)Q2) , M1 ={(t,u):0<t<1,1<u<2}
My ={(t,u):0<t<1,0<u<1} My={(t,u):1<t<2,0<u<3-t}
Q1 ={@u):u<l—t} Q2={(t,u):u <1/2} (see figure)
12 119

12 1 2t 0 2 (10,9
P=—— t du dt + — t du dt = —
T Iy Jo (3t +u)du dt + T I J, 3t +u)du T

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 300

Enter number of Y approximation points 300

Enter expression for joint density (12/179)*(3*t.A2 + u).*(u<=min(2,3-t))
Use array operations on X, Y, PX, PY, t, u, and P

(t<=1)&(u>=1);

M.*(t + u) + (1 - M)*2.*u.n2;

M.*(t + u) + (1 - M)*2.*u.n2;

total((G<=2).*P)

0.6662 % Theoretical = 119/179 = 0.6648

T T O N =
1

Exercise 10.4.15

12
fxy(t,u) = E(3t +2tu), for 0 <t <2,0 <u <min {1+¢,2} (see Exercise 20 from "Problems on Random Variables

and joint Distributions")
Y
Z=Iy(X,Y)X + Iy (X, Y)Y ,M={(t,u): v <min (1,2 —¢)}

Determine P(Z <1).
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Problem P10-15

Figure 10.4.3

Answer
P(Z<1)=P(X,Y)e MiQ:\V V2Q32) , My =M, M, =M°
Q1 ={(t,u): 0<t <} Q> ={( u):u<t} (see figure)
124
227 fo fo (3t +2tu)du dt—l— 597 fl f2 (3t +2tu)du dt = 597
tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 400

Enter number of Y approximation points 400

Enter expression for joint density (12/227)*(3*t+2*t.*u).*(u<=min(1+t,2))
Use array operations on X, Y, PX, PY, t, u, and P

Q = (u<=1).*(t<=1) + (t>1).*(u>=2-t).*(u<=t);
P = total(Q.*P)
P = 0.5478 % Theoretical = 124/227 = 0.5463

Exercise 10.4.16

The class { X, Y, Z} is independent.
X =—2I4+Ip+ 31y . Minterm probabilities are (in the usual order)
0.2550.025 0.375 0.045 0.108 0.012 0.162 0.018
Y =Ip+3Ig+Ir—3 .Theclass {D, E, F} is independent with
P(D) =0.32 P(E) = 0.56 P(F) = 0.40

Z has distribution

Value -1.3 1.2 2.7 3.4 5.8

Probability 0.12 0.24 0.43 0.13 0.08

Determine P(X? +3XY?2 >3Z7).

Answer

% file npri10 16.m Data for Exercise 16.
=[-2130];

pmx = 0.001*[255 25 375 45 108 12 162 18];
=[131 -3];

pmy = minprob(0.01*[32 56 40]);
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Z=1[-1.31.2 2.7 3.4 5.8];

PZ = 0.01*[12 24 43 13 8];

disp('Data are in cx, pmx, cy, pmy, Z, PZ'")
npril0_16 % Call for data
Data are in cx, pmx, cy, pmy, Z, PZ

[X,PX] = canonicf(cx, pmx);
[Y,PY] = canonicf(cy, pmy);
icalc3

Enter row matrix of X-values X
Enter row matrix of Y-values Y
Enter row matrix of Z-values 2Z
Enter X probabilities PX

Enter Y probabilities PY

Enter Z probabilities PZ

Use array operations on matrices X, Y, Z,
PX, PY, PZ, t, u, v, and P

M= t.A2 + 3*t.*u.r2 > 3*y;

PM = total(M.*P)

PM = 0.3587

Exercise 10.4.17

The simple random variable X has distribution
X=1[-31-0512243.749] PX = [0.150.22 0.33 0.12 0.11 0.07]

a. Plot the distribution function F'x and the quantile function @ x.
b. Take a random sample of size n = 10,000. Compare the relative frequency for each value with the probability that value is
taken on.

Answer

X =1]-3.1-0.51.2 2.4 3.7 4.9];

PX = 0.01*[15 22 33 12 11 7];

ddbn

Enter row matrix of VALUES X

Enter row matrix of PROBABILITIES PX % Plot not reproduced here

dquanplot

Enter VALUES for X X

Enter PROBABILITIES for X PX % Plot not reproduced here
rand('seed', 0) % Reset random number generator
dsample % for comparison purposes

Enter row matrix of VALUES X
Enter row matrix of PROBABILITIES PX
Sample size n 10000
Value Prob Rel freq
-3.1000 0.1500 0.1490
-0.5000 0.2200 0.2164
1.2000 0.3300 0.3340

@ 0 10.4.10 https://stats.libretexts.org/@go/page/10879


https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10879?pdf

LibreTextsw

2.4000 0.1200 0.1184

3.7000 0.1100 0.1070

4.9000 0.0700 0.0752
Sample average ex = 0.8792
Population mean E[X] = 0.859
Sample variance vx = 5.146
Population variance Var[X] = 5.112
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11.1: Mathematical Expectation- Simple Random Variables

Introduction

The probability that real random variable X takes a value in a set M of real numbers is interpreted as the likelihood that the
observed value X (w) on any trial will lie in M. Historically, this idea of likelihood is rooted in the intuitive notion that if the
experiment is repeated enough times the probability is approximately the fraction of times the value of X will fall in M.
Associated with this interpretation is the notion of the average of the values taken on. We incorporate the concept of mathematical
expectation into the mathematical model as an appropriate form of such averages. We begin by studying the mathematical
expectation of simple random variables, then extend the definition and properties to the general case. In the process, we note the
relationship of mathematical expectation to the Lebesque integral, which is developed in abstract measure theory. Although we do
not develop this theory, which lies beyond the scope of this study, identification of this relationship provides access to a rich and
powerful set of properties which have far reaching consequences in both application and theory.

Expectation for simple random variables

The notion of mathematical expectation is closely related to the idea of a weighted mean, used extensively in the handling of
numerical data. Consider the arithmetic average Z of the following ten numbers: 1, 2, 2, 2,4, 5, 5, 8, 8, 8, which is given by

1
T=g(1+2+2+2+44545+8+8+8)

Examination of the ten numbers to be added shows that five distinct values are included. One of the ten, or the fraction 1/10 of
them, has the value 1, three of the ten, or the fraction 3/10 of them, have the value 2, 1/10 has the value 4, 2/10 have the value 5,
and 3/10 have the value 8. Thus, we could write

z=(0.1-1+0.3-2+0.1-440.2-5+0.3-8)
The pattern in this last expression can be stated in words: Multiply each possible value by the fraction of the numbers having that

value and then sum these products. The fractions are often referred to as the relative frequencies. A sum of this sort is known as a
weighted average.

In general, suppose there are n numbers {1, 2, - - -@, } to be averaged, with m<nm<n distinct values {t1,% - - - t;, } . Suppose f1
have value ¢y, f have value ty, - - -, f,,, have value t,,. The f; must add to n. If we set p; = f;/n, then the fraction p; is called the
relative frequency of those numbers in the set which have the value ¢;, 1 <4 <m. The average Z of the n numbers may be written

_ 1

T= )T = 2 P
In probability theory, we have a similar averaging process in which the relative frequencie