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Preface

Preface to Pfeiffer Applied Probability

The course

This is a "first course" in the sense that it presumes no previous course in probability. The units are modules taken from the
unpublished text: Paul E. Pfeiffer, ELEMENTS OF APPLIED PROBABILITY, USING MATLAB. The units are numbered as they
appear in the text, although of course they may be used in any desired order. For those who wish to use the order of the text, an
outline is provided, with indication of which modules contain the material.

The mathematical prerequisites are ordinary calculus and the elements of matrix algebra. A few standard series and integrals are
used, and double integrals are evaluated as iterated integrals. The reader who can evaluate simple integrals can learn quickly from
the examples how to deal with the iterated integrals used in the theory of expectation and conditional expectation. Appendix B
provides a convenient compendium of mathematical facts used frequently in this work. And the symbolic toolbox, implementing
MAPLE, may be used to evaluate integrals, if desired.

In addition to an introduction to the essential features of basic probability in terms of a precise mathematical model, the work
describes and employs user defined MATLAB procedures and functions (which we refer to as m-programs, or simply programs) to
solve many important problems in basic probability. This should make the work useful as a stand alone exposition as well as a
supplement to any of several current textbooks.

Most of the programs developed here were written in earlier versions of MATLAB, but have been revised slightly to make them
quite compatible with MATLAB 7. In a few cases, alternate implementations are available in the Statistics Toolbox, but are
implemented here directly from the basic MATLAB program, so that students need only that program (and the symbolic
mathematics toolbox, if they desire its aid in evaluating integrals).

Since machine methods require precise formulation of problems in appropriate mathematical form, it is necessary to provide some
supplementary analytical material, principally the so-called minterm analysis. This material is not only important for computational
purposes, but is also useful in displaying some of the structure of the relationships among events.

A probability model

Much of "real world" probabilistic thinking is an amalgam of intuitive, plausible reasoning and of statistical knowledge and insight.
Mathematical probability attempts to to lend precision to such probability analysis by employing a suitable mathematical model,
which embodies the central underlying principles and structure. A successful model serves as an aid (and sometimes corrective) to
this type of thinking.

Certain concepts and patterns have emerged from experience and intuition. The mathematical formulation (the mathematical
model) which has most successfully captured these essential ideas is rooted in measure theory, and is known as the Kolmogorov
model, after the brilliant Russian mathematician A.N. Kolmogorov (1903-1987).

One cannot prove that a model is correct. Only experience may show whether it is useful (and not incorrect). The usefulness of the
Kolmogorov model is established by examining its structure and showing that patterns of uncertainty and likelihood in any
practical situation can be represented adequately. Developments, such as in this course, have given ample evidence of such
usefulness.

The most fruitful approach is characterized by an interplay of

A formulation of the problem in precise terms of the model and careful mathematical analysis of the problem so formulated.

A grasp of the problem based on experience and insight. This underlies both problem formulation and interpretation of
analytical results of the model. Often such insight suggests approaches to the analytical solution process.

MATLAB: A tool for learning

In this work, we make extensive use of MATLAB as an aid to analysis. I have tried to write the MATLAB programs in such a way
that they constitute useful, ready-made tools for problem solving. Once the user understands the problems they are designed to
solve, the solution strategies used, and the manner in which these strategies are implemented, the collection of programs should
provide a useful resource.

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10832?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/00%3A_Front_Matter/03%3A_Preface
https://stats.libretexts.org/ch17.html#m23990


2 https://stats.libretexts.org/@go/page/10832

However, my primary aim in exposition and illustration is to aid the learning process and to deepen insight into the structure of the
problems considered and the strategies employed in their solution. Several features contribute to that end.

1. Application of machine methods of solution requires precise formulation. The data available and the fundamental assumptions
must be organized in an appropriate fashion. The requisite discipline for such formulation often contributes to enhanced
understanding of the problem.

2. The development of a MATLAB program for solution requires careful attention to possible solution strategies. One cannot
instruct the machine without a clear grasp of what is to be done.

3. I give attention to the tasks performed by a program, with a general description of how MATLAB carries out the tasks. The
reader is not required to trace out all the programming details. However, it is often the case that available MATLAB resources
suggest alternative solution strategies. Hence, for those so inclined, attention to the details may be fruitful. I have included, as a
separate collection, the m-files written for this work. These may be used as patterns for extensions as well as programs in
MATLAB for computations. Appendix A provides a directory of these m-files.

4. Some of the details in the MATLAB script are presentation details. These are refinements which are not essential to the solution
of the problem. But they make the programs more readily usable. And they provide illustrations of MATLAB techniques for
those who may wish to write their own programs. I hope many will be inclined to go beyond this work, modifying current
programs or writing new ones.

An Invitation to Experiment and Explore

Because the programs provide considerable freedom from the burden of computation and the tyranny of tables (with their limited
ranges and parameter values), standard problems may be approached with a new spirit of experiment and discovery. When a
program is selected (or written), it embodies one method of solution. There may be others which are readily implemented. The
reader is invited, even urged, to explore! The user may experiment to whatever degree he or she finds useful and interesting. The
possibilities are endless.
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1.1: Likelihood

Introduction

Probability models and techniques permeate many important areas of modern life. A variety of types of random processes,
reliability models and techniques, and statistical considerations in experimental work play a significant role in engineering and the
physical sciences. The solutions of management decision problems use as aids decision analysis, waiting line theory, inventory
theory, time series, cost analysis under uncertainty — all rooted in applied probability theory. Methods of statistical analysis
employ probability analysis as an underlying discipline.

Modern probability developments are increasingly sophisticated mathematically. To utilize these, the practitioner needs a sound
conceptual basis which, fortunately, can be attained at a moderate level of mathematical sophistication. There is need to develop a
feel for the structure of the underlying mathematical model, for the role of various types of assumptions, and for the principal
strategies of problem formulation and solution.

Probability has roots that extend far back into antiquity. The notion of “chance” played a central role in the ubiquitous practice of
gambling. But chance acts were often related to magic or religion. For example, there are numerous instances in the Hebrew Bible
in which decisions were made “by lot” or some other chance mechanism, with the understanding that the outcome was determined
by the will of God. In the New Testament, the book of Acts describes the selection of a successor to Judas Iscariot as one of “the
Twelve.” Two names, Joseph Barsabbas and Matthias, were put forward. The group prayed, then drew lots, which fell on Matthias.

Early developments of probability as a mathematical discipline, freeing it from its religious and magical overtones, came as a
response to questions about games of chance played repeatedly. The mathematical formulation owes much to the work of Pierre de
Fermat and Blaise Pascal in the seventeenth century. The game is described in terms of a well defined trial (a play); the result of
any trial is one of a specific set of distinguishable outcomes. Although the result of any play is not predictable, certain “statistical
regularities” of results are observed. The possible results are described in ways that make each result seem equally likely. If there
are N such possible “equally likely” results, each is assigned a probability 1/N.

The developers of mathematical probability also took cues from early work on the analysis of statistical data. The pioneering work
of John Graunt in the seventeenth century was directed to the study of “vital statistics,” such as records of births, deaths, and
various diseases. Graunt determined the fractions of people in London who died from various diseases during a period in the early
seventeenth century. Some thirty years later, in 1693, Edmond Halley (for whom the comet is named) published the first life
insurance tables. To apply these results, one considers the selection of a member of the population on a chance basis. One then
assigns the probability that such a person will have a given disease. The trial here is the selection of a person, but the interest is in
certain characteristics. We may speak of the event that the person selected will die of a certain disease– say “consumption.”
Although it is a person who is selected, it is death from consumption which is of interest. Out of this statistical formulation came an
interest not only in probabilities as fractions or relative frequencies but also in averages or expectatons. These averages play an
essential role in modern probability.

We do not attempt to trace this history, which was long and halting, though marked by flashes of brilliance. Certain concepts and
patterns which emerged from experience and intuition called for clarification. We move rather directly to the mathematical
formulation (the “mathematical model”) which has most successfully captured these essential ideas. This is the model, rooted in the
mathematical system known as measure theory, is called the Kolmogorov model, after the brilliant Russian mathematician A.N.
Kolmogorov (1903-1987). Kolmogorov succeeded in bringing together various developments begun at the turn of the century,
principally in the work of E. Borel and H. Lebesgue on measure theory. Kolmogorov published his epochal work in German in
1933. It was translated into English and published in 1956 by Chelsea Publishing Company.

Outcomes and events
Probability applies to situations in which there is a well defined trial whose possible outcomes are found among those in a given
basic set. The following are typical.

A pair of dice is rolled; the outcome is viewed in terms of the numbers of spots appearing on the top faces of the two dice. If the
outcome is viewed as an ordered pair, there are thirty six equally likely outcomes. If the outcome is characterized by the total
number of spots on the two die, then there are eleven possible outcomes (not equally likely).
A poll of a voting population is taken. Outcomes are characterized by responses to a question. For example, the responses may
be categorized as positive (or favorable), negative (or unfavorable), or uncertain (or no opinion).

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10853?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/01%3A_Probability_Systems/1.01%3A_Likelihood


1.1.2 https://stats.libretexts.org/@go/page/10853

A measurement is made. The outcome is described by a number representing the magnitude of the quantity in appropriate units.
In some cases, the possible values fall among a finite set of integers. In other cases, the possible values may be any real number
(usually in some specified interval).
Much more sophisticated notions of outcomes are encountered in modern theory. For example, in communication or control
theory, a communication system experiences only one signal stream in its life. But a communication system is not designed for
a single signal stream. It is designed for one of an infinite set of possible signals. The likelihood of encountering a certain kind
of signal is important in the design. Such signals constitute a subset of the larger set of all possible signals.

These considerations show that our probability model must deal with

A trial which results in (selects) an outcome from a set of conceptually possible outcomes. The trial is not successfully
completed until one of the outcomes is realized.
Associated with each outcome is a certain characteristic (or combination of characteristics) pertinent to the problem at hand. In
polling for political opinions, it is a person who is selected. That person has many features and characteristics (race, age, gender,
occupation, religious preference, preferences for food, etc.). But the primary feature, which characterizes the outcome, is the
political opinion on the question asked. Of course, some of the other features may be of interest for analysis of the poll.

Inherent in informal thought, as well as in precise analysis, is the notion of an event to which a probability may be assigned as a
measure of the likelihood the event will occur on any trial. A successful mathematical model must formulate these notions with
precision. An event is identified in terms of the characteristic of the outcome observed. The event “a favorable response” to a
polling question occurs if the outcome observed has that characteristic; i.e., iff (if and only if) the respondent replies in the
affirmative. A hand of five cards is drawn. The event “one or more aces” occurs iff the hand actually drawn has at least one ace. If
that same hand has two cards of the suit of clubs, then the event “two clubs” has occurred. These considerations lead to the
following definition.

Definition. The event determined by some characteristic of the possible outcomes is the set of those outcomes having this
characteristic. The event occurs iff the outcome of the trial is a member of that set (i.e., has the characteristic determining the
event).

The event of throwing a “seven” with a pair of dice (which we call the event SEVEN) consists of the set of those possible
outcomes with a total of seven spots turned up. The event SEVEN occurs iff the outcome is one of those combinations with a
total of seven spots (i.e., belongs to the event SEVEN). This could be represented as follows. Suppose the two dice are
distinguished (say by color) and a picture is taken of each of the thirty six possible combinations. On the back of each picture,
write the number of spots. Now the event SEVEN consists of the set of all those pictures with seven on the back. Throwing the
dice is equivalent to selecting randomly one of the thirty six pictures. The event SEVEN occurs iff the picture selected is one of
the set of those pictures with seven on the back.
Observing for a very long (theoretically infinite) time the signal passing through a communication channel is equivalent to
selecting one of the conceptually possible signals. Now such signals have many characteristics: the maximum peak value, the
frequency spectrum, the degree of differentibility, the average value over a given time period, etc. If the signal has a peak
absolute value less than ten volts, a frequency spectrum essentially limited from 60 herz to 10,000 herz, with peak rate of
change 10,000 volts per second, then it is one of the set of signals with those characteristics. The event "the signal has these
characteristics" has occured. This set (event) consists of an uncountable infinity of such signals.

One of the advantages of this formulation of an event as a subset of the basic set of possible outcomes is that we can use
elementary set theory as an aid to formulation. And tools, such as Venn diagrams and indicator functions for studying event
combinations, provide powerful aids to establishing and visualizing relationships between events. We formalize these ideas as
follows:

Let  be the set of all possible outcomes of the basic trial or experiment. We call this the basic space or the sure event, since if
the trial is carried out successfully the outcome will be in ; hence, the event  is sure to occur on any trial. We must specify
unambiguously what outcomes are “possible.” In flipping a coin, the only accepted outcomes are “heads” and “tails.” Should
the coin stand on its edge, say by leaning against a wall, we would ordinarily consider that to be the result of an improper trial.
As we note above, each outcome may have several characteristics which are the basis for describing events. Suppose we are
drawing a single card from an ordinary deck of playing cards. Each card is characterized by a “face value” (two through ten,
jack, queen, king, ace) and a “suit” (clubs, hearts, diamonds, spades). An ace is drawn (the event ACE occurs) iff the outcome
(card) belongs to the set (event) of four cards with ace as face value. A heart is drawn iff the card belongs to the set of thirteen
cards with heart as suit. Now it may be desirable to specify events which involve various logical combinations of the

Ω
Ω Ω
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characteristics. Thus, we may be interested in the event the face value is jack or king and the suit is heart or spade. The set for
jack or king is represented by the union  and the set for heart or spade is the union . The occurrence of both
conditions means the outcome is in the intersection (common part) designated by . Thus the event referred to is

The notation of set theory thus makes possible a precise formulation of the event .

Sometimes we are interested in the situation in which the outcome does not have one of the characteristics. Thus the set of cards
which does not have suit heart is the set of all those outcomes not in event H . In set theory, this is the complementary set (event) 

.
Events are mutually exclusive iff not more than one can occur on any trial. This is the condition that the sets representing the

events are disjoint (i.e., have no members in common).
The notion of the impossible event is useful. The impossible event is, in set terminology, the empty set . Event  cannot occur,

since it has no members (contains no outcomes). One use of  is to provide a simple way of indicating that two sets are mutually
exclusive. To say  (here we use the alternate  for ) is to assert that events  and  have no outcome in common,
hence cannot both occur on any given trial.

The language and notaton of sets provide a precise language and notation for events and their combinations. We collect below
some useful facts about logical (often called Boolean) combinations of events (as sets). The notion of Boolean combinations may
be applied to arbitrary classes of sets. For this reason, it is sometimes useful to use an index set to designate membership. We say
the index J is countable if it is finite or countably infinite; otherwise it is uncountable. In the following it may be arbitrary.

 is the class of sets , one for each index  in the index set 

For example, if  then  is the class , and

, ,

If  then  is the sequence , and

, 

If event E is the union of a class of events, then event E occurs iff at least one event in the class occurs. If F is the intersection of a
class of events, then event F occurs iff all events in the class occur on the trial.

The role of disjoint unions is so important in probability that it is useful to have a symbol indicating the union of a disjoint class.
We use the big V to indicate that the sets combined in the union are disjoint. Thus, for example, we write

 to signify  with the proviso that the  form a disjoint class

Consider the class  of events. Let  be the event that exactly  occur on a trial and  be the event that  or more
occur on a trial. Then

, , , 

The unions are disjoint since each pair of terms has  in one and  in the other, for at least one . Now the  can be
expressed in terms of the \(A_k\. For example

The union in this expression for  is disjoint since we cannot have exactly two of the  occur and exactly three of them
occur on the same trial. We may express  directly in terms of the  as follows:

Here the union is not disjoint, in general. However, if one pair, say  is disjoint, then  and the pair 
 is disjoint (draw a Venn diagram). Suppose  is the event the first two occur or the last two occur but no other

combination. Then

Let  be the event that one or three of the events occur,
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∩

E = (J ∪ K) ∩ (H ∪ S)
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The important patterns in set theory known as DeMorgan's rules are useful in the handing of events. For an arbitrary class 
 of events,

 and 

An outcome is not in the union (i.e., not in at least one) of the  iff it fails to be in all , and it is not in the intersection (i.e. not
in all) iff it fails to be in at least one of the .

Express the event of no more than one occurrence of the events in  as .

The last expression shows that not more than one of the  occurs iff at least two of them fail to occur.

This page titled 1.1: Likelihood is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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1.2: Probability Systems

Probability measures 

In the module "Likelihood" we introduce the notion of a basic space ΩΩ of all possible outcomes of a trial or experiment, events as
subsets of the basic space determined by appropriate characteristics of the outcomes, and logical or Boolean combinations of the
events (unions, intersections, and complements) corresponding to logical combinations of the defining characteristics.

Occurrence or nonoccurrence of an event is determined by characteristics or attributes of the outcome observed on a trial.
Performing the trial is visualized as selecting an outcome from the basic set. An event occurs whenever the selected outcome is a
member of the subset representing the event. As described so far, the selection process could be quite deliberate, with a prescribed
outcome, or it could involve the uncertainties associated with “chance.” Probability enters the picture only in the latter situation.
Before the trial is performed, there is uncertainty about which of these latent possibilities will be realized. Probability traditionally
is a number assigned to an event indicating the likelihood of the occurrence of that event on any trial.

We begin by looking at the classical model which first successfully formulated probability ideas in mathematical form. We use
modern terminology and notation to describe it.

Classical probability

1. The basic space  consists of a finite number N of possible outcomes. 
 
-There are thirty six possible outcomes of throwing two dice. 

-There are  different hands of five cards (order not important). 

-There are  results (sequences of heads or tails) of flipping five coins.
2. Each possible outcome is assigned a probability 1/
3. If event (subset)  has  elements, then the probability assigned event  is

 (i.e., the fraction favorable to )

With this definition of probability, each event  is assigned a unique probability, which may be determined by counting , the
number of elements in  (in the classical language, the number of outcomes "favorable" to the event) and  the total number of
possible outcomes in the sure event .

Consider the experiment of drawing a hand of five cards from an ordinary deck of 52 playing cards. The number of outcomes,
as noted above, is . What is the probability of drawing a hand with
exactly two aces? What is the probability of drawing a hand with two or more aces? What is the probability of not more than
one ace?

Solution

Let  be the event of exactly two aces,  be the event of exactly three aces, and  be the event of exactly four aces. In the
first problem, we must count the number  of ways of drawing a hand with two aces. We select two aces from the four, and
select the other three cards from the 48 non aces. Thus

, so that 

There are two or more aces iff there are exactly two or exactly three or exactly four. Thus the event  of two or more is 
, since  are mutually exclusive,

so that . There is one ace or none iff there are not two or more aces. We thus want . Now the number in 
 is the number not in  which is , so that

Ω

C(52, 5) = = 2598960
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5!47!
= 3225

N

A NA A

P (A) = /NNA A
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A N
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This example illustrates several important properties of the classical probability.

 is a nonnegative quantity. 
 

If  are mutually exclusive, then the number in the disjoint union is the sum of the numbers in the individual events, so that

Several other elementary properties of the classical probability may be identified. It turns out that they can be derived from these
three. Although the classical model is highly useful, and an extensive theory has been developed, it is not really satisfactory for
many applications (the communications problem, for example). We seek a more general model which includes classical probability
as a special case and is thus an extension of it. We adopt the Kolmogorov model (introduced by the Russian mathematician A. N.
Kolmogorov) which captures the essential ideas in a remarkably successful way. Of course, no model is ever completely
successful. Reality always seems to escape our logical nets.

The Kolmogorov model is grounded in abstract measure theory. A full explication requires a level of mathematical sophistication
inappropriate for a treatment such as this. But most of the concepts and many of the results are elementary and easily grasped. And
many technical mathematical considerations are not important for applications at the level of this introductory treatment and may
be disregarded. We borrow from measure theory a few key facts which are either very plausible or which can be understood at a
practical level. This enables us to utilize a very powerful mathematical system for representing practical problems in a manner that
leads to both insight and useful strategies of solution.

Our approach is to begin with the notion of events as sets introduced above, then to introduce probability as a number assigned to
events subject to certain conditions which become definitive properties. Gradually we introduce and utilize additional concepts to
build progressively a powerful and useful discipline. The fundamental properties needed are just those illustrated in Example for
the classical case.

Definition

A probability system consists of a basic set  of elementary outcomes of a trial or experiment, a class of events as subsets of the
basic space, and a probability measure  which assigns values to the events in accordance with the following rules

(P1): For any event , the probability . 
(P2): The probability of the sure event . 
(P3): Countable additivity. If  is a mutually exclusive, countable class of events, then the probability of the
disjoint union is the sum of the individual probabilities.

The necessity of the mutual exclusiveness (disjointedness) is illustrated in Example. If the sets were not disjoint, probability would
be counted more than once in the sum. A probability, as defined, is abstract—simply a number assigned to each set representing an
event. But we can give it an interpretation which helps to visualize the various patterns and relationships encountered. We may
think of probability as mass assigned to an event. The total unit mass is assigned to the basic set . The additivity property for
disjoint sets makes the mass interpretation consistent. We can use this interpretation as a precise representation. Repeatedly we
refer to the probability mass assigned a given set. The mass is proportional to the weight, so sometimes we speak informally of the
weight rather than the mass. Now a mass assignment with three properties does not seem a very promising beginning. But we soon
expand this rudimentary list of properties. We use the mass interpretation to help visualize the properties, but are primarily
concerned to interpret them in terms of likelihoods.

(P4): . The follows from additivity and the fact that

(P5): . The empty set represents an impossible event. It has no members, hence cannot occur. It seems reasonable
that it should be assigned zero probability (mass). Since , this follows logically from P(4) and (P2).

P (A) = /NNA

P (Ω) = N/N = 1
A, B, C

P (A ⋁ B ⋁ C) = P (A) +P (B) +P (C)

Ω
P (⋅)

A P (A) ≥ 0
P (Ω) = 1

: 1 ∈ JAi

Ω

P ( ) = 1 −P (A)A
c

1 = P (Ω) = P (A ⋁ ) = P (A) +P ( )A
c

A
c
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Figure 1.2.1: Partitions of the union 

(P6): If , then . From the mass point of view, every point in  is also in , so that  must have at
least as much mass as . Now the relationship  means that if  occurs,  must also. Hence  is at least as likely to
occur as . From a purely formal point of view, we have

 so that  since 

(P7):

The first three expressions follow from additivity and partitioning of  as follows (see Figure 1.2.1).

If we add the first two expressions and subtract the third, we get the last expression. In terms of probability mass, the first
expression says the probability in  is the probability mass in  plus the additional probability mass in the part of 
which is not in . A similar interpretation holds for the second expression. The third is the probability in the common part
plus the extra in  and the extra in . If we add the mass in  and  we have counted the mass in the common part twice.
The last expression shows that we correct this by taking away the extra common mass.

(P8): If  is a countable, disjoint class and  is contained in the union, then

 so that 

(P9): Subadditivity. If , then . This follows from countable additivity, property (P6), and
the fact

(Partitions)

, where 

This includes as a special case the union of a finite number of events.

Some of these properties, such as (P4), (P5), and (P6), are so elementary that it seems they should be included in the defining
statement. This would not be incorrect, but would be inefficient. If we have an assignment of numbers to the events, we need only
establish (P1), (P2), and (P3) to be able to assert that the assignment constitutes a probability measure. And the other properties
follow as logical consequences.

Flexibility at a price

In moving beyond the classical model, we have gained great flexibility and adaptability of the model. It may be used for systems in
which the number of outcomes is infinite (countably or uncountably). It does not require a uniform distribution of the probability
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mass among the outcomes. For example, the dice problem may be handled directly by assigning the appropriate probabilities to the
various numbers of total spots, 2 through 12. As we see in the treatment of conditional probability, we make new probability
assignments (i.e., introduce new probability measures) when partial information about the outcome is obtained.

But this freedom is obtained at a price. In the classical case, the probability value to be assigned an event is clearly defined
(although it may be very difficult to perform the required counting). In the general case, we must resort to experience, structure of
the system studied, experiment, or statistical studies to assign probabilities.

The existence of uncertainty due to “chance” or “randomness” does not necessarily imply that the act of performing the trial is
haphazard. The trial may be quite carefully planned; the contingency may be the result of factors beyond the control or knowledge
of the experimenter. The mechanism of chance (i.e., the source of the uncertainty) may depend upon the nature of the actual
process or system observed. For example, in taking an hourly temperature profile on a given day at a weather station, the principal
variations are not due to experimental error but rather to unknown factors which converge to provide the specific weather pattern
experienced. In the case of an uncorrected digital transmission error, the cause of uncertainty lies in the intricacies of the correction
mechanisms and the perturbations produced by a very complex environment. A patient at a clinic may be self selected. Before his
or her appearance and the result of a test, the physician may not know which patient with which condition will appear. In each case,
from the point of view of the experimenter, the cause is simply attributed to “chance.” Whether one sees this as an “act of the gods”
or simply the result of a configuration of physical or behavioral causes too complex to analyze, the situation is one of uncertainty,
before the trial, about which outcome will present itself.

If there were complete uncertainty, the situation would be chaotic. But this is not usually the case. While there is an extremely large
number of possible hourly temperature profiles, a substantial subset of these has very little likelihood of occurring. For example,
profiles in which successive hourly temperatures alternate between very high then very low values throughout the day constitute an
unlikely subset (event). One normally expects trends in temperatures over the 24 hour period. Although a traffic engineer does not
know exactly how many vehicles will be observed in a given time period, experience provides some idea what range of values to
expect. While there is uncertainty about which patient, with which symptoms, will appear at a clinic, a physician certainly knows
approximately what fraction of the clinic's patients have the disease in question. In a game of chance, analyzed into “equally likely”
outcomes, the assumption of equal likelihood is based on knowledge of symmetries and structural regularities in the mechanism by
which the game is carried out. And the number of outcomes associated with a given event is known, or may be determined.

In each case, there is some basis in statistical data on past experience or knowledge of structure, regularity, and symmetry in the
system under observation which makes it possible to assign likelihoods to the occurrence of various events. It is this ability to
assign likelihoods to the various events which characterizes applied probability. However determined, probability is a number
assigned to events to indicate their likelihood of occurrence. The assignments must be consistent with the defining properties (P1),
(P2), (P3) along with derived properties (P4) through (P9) (plus others which may also be derived from these). Since the
probabilities are not “built in,” as in the classical case, a prime role of probability theory is to derive other probabilities from a set
of given probabilites.
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1.3: Interpretations

What is Probability? 

The formal probability system is a model whose usefulness can only be established by examining its structure and determining
whether patterns of uncertainty and likelihood in any practical situation can be represented adequately. With the exception of the
sure event and the impossible event, the model does not tell us how to assign probability to any given event. The formal system is
consistent with many probability assignments, just as the notion of mass is consistent with many different mass assignments to sets
in the basic space.

The defining properties (P1), (P2), (P3) and derived properties provide consistency rules for making probability assignments. One
cannot assign negative probabilities or probabilities greater than one. The sure event is assigned probability one. If two or more
events are mutually exclusive, the total probability assigned to the union must equal the sum of the probabilities of the separate
events. Any assignment of probability consistent with these conditions is allowed.

One may not know the probability assignment to every event. Just as the defining conditions put constraints on allowable
probability assignments, they also provide important structure. A typical applied problem provides the probabilities of members of
a class of events (perhaps only a few) from which to determine the probabilities of other events of interest. We consider an
important class of such problems in the next chapter.

There is a variety of points of view as to how probability should be interpreted. These impact the manner in which probabilities are
assigned (or assumed). One important dichotomy among practitioners.

One group believes probability is objective in the sense that it is something inherent in the nature of things. It is to be
discovered, if possible, by analysis and experiment. Whether we can determine it or not, “it is there.”
Another group insists that probability is a condition of the mind of the person making the probability assessment. From this
point of view, the laws of probability simply impose rational consistency upon the way one assigns probabilities to events.
Various attempts have been made to find objective ways to measure the strength of one's belief or degree of certainty that an
event will occur. The probability  expresses the degree of certainty one feels that event A will occur. One approach to
characterizing an individual's degree of certainty is to equate his assessment of  with the amount a he is willing to pay to
play a game which returns one unit of money if A occurs, for a gain of , and returns zero if A does not occur, for a gain
of . Behind this formulation is the notion of a fair game, in which the “expected” or “average” gain is zero.

The early work on probability began with a study of relative frequencies of occurrence of an event under repeated but independent
trials. This idea is so imbedded in much intuitive thought about probability that some probabilists have insisted that it must be built
into the definition of probability. This approach has not been entirely successful mathematically and has not attracted much of a
following among either theoretical or applied probabilists. In the model we adopt, there is a fundamental limit theorem, known as
Borel's theorem, which may be interpreted “if a trial is performed a large number of times in an independent manner, the fraction of
times that event  occurs approaches as a limit the value . Establishing this result (which we do not do in this treatment)
provides a formal validation of the intuitive notion that lay behind the early attempts to formulate probabilities. Inveterate gamblers
had noted long-run statistical regularities, and sought explanations from their mathematically gifted friends. From this point of
view, probability is meaningful only in repeatable situations. Those who hold this view usually assume an objective view of
probability. It is a number determined by the nature of reality, to be discovered by repeated experiment.

There are many applications of probability in which the relative frequency point of view is not feasible. Examples include
predictions of the weather, the outcome of a game or a horse race, the performance of an individual on a particular job, the success
of a newly designed computer. These are unique, nonrepeatable trials. As the popular expression has it, “You only go around once.”
Sometimes, probabilities in these situations may be quite subjective. As a matter of fact, those who take a subjective view tend to
think in terms of such problems, whereas those who take an objective view usually emphasize the frequency interpretation.

The probability that one's favorite football team will win the next Superbowl Game may well be only a subjective probability
of the bettor. This is certainly not a probability that can be determined by a large number of repeated trials. The game is only
played once. However, the subjective assessment of probabilities may be based on intimate knowledge of relative strengths and
weaknesses of the teams involved, as well as factors such as weather, injuries, and experience. There may be a considerable
objective basis for the subjective assignment of probability. In fact, there is often a hidden “frequentist” element in the

P (A)

P (A)

(1 −a)

−a

A P (A)

Subjective probability and a football game
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subjective evaluation. There is an assessment (perhaps unrealized) that in similar situations the frequencies tend to coincide
with the value subjectively assigned.

Newscasts often report that the probability of rain of is 20 percent or 60 percent or some other figure. There are several
difficulties here.

To use the formal mathematical model, there must be precision in determining an event. An event either occurs or it does
not. How do we determine whether it has rained or not? Must there be a measurable amount? Where must this rain fall to
be counted? During what time period? Even if there is agreement on the area, the amount, and the time period, there
remains ambiguity: one cannot say with logical certainty the event did occur or it did not occur. Nevertheless, in this and
other similar situations, use of the concept of an event may be helpful even if the description is not definitive. There is
usually enough practical agreement for the concept to be useful.
What does a 30 percent probability of rain mean? Does it mean that if the prediction is correct, 30 percent of the area
indicated will get rain (in an agreed amount) during the specified time period? Or does it mean that 30 percent of the
occasions on which such a prediction is made there will be significant rainfall in the area during the specified time period?
Again, the latter alternative may well hide a frequency interpretation. Does the statement mean that it rains 30 percent of
the times when conditions are similar to current conditions?

Regardless of the interpretation, there is some ambiguity about the event and whether it has occurred. And there is some
difficulty with knowing how to interpret the probability figure. While the precise meaning of a 30 percent probability of rain
may be difficult to determine, it is generally useful to know whether the conditions lead to a 20 percent or a 30 percent or a 40
percent probability assignment. And there is no doubt that as weather forecasting technology and methodology continue to
improve the weather probability assessments will become increasingly useful.

Another common type of probability situation involves determining the distribution of some characteristic over a population—
usually by a survey. These data are used to answer the question: What is the probability (likelihood) that a member of the
population, chosen “at random” (i.e., on an equally likely basis) will have a certain characteristic?

A survey asks two questions of 300 students: Do you live on campus? Are you satisfied with the recreational facilities in the
student center? Answers to the latter question were categorized “reasonably satisfied,” “unsatisfied,” or “no definite opinion.”
Let  be the event “on campus;”  be the event “off campus;”  be the event “reasonably satisfied;”  be the event
”unsatisfied;” and  be the event “no definite opinion.” Data are shown in the following table.

Survey Data

S U N

C 127 31 42

O 46 43 11

If an individual is selected on an equally likely basis from this group of 300, the probability of any of the events is taken to be
the relative frequency of respondents in each category corresponding to an event. There are 200 on campus members in the
population, so  and . The probability that a student selected is on campus and satisfied is
taken to be . The probability a student is either on campus and satisfied or off campus and not satisfied is

If there is reason to believe that the population sampled is representative of the entire student body, then the same probabilities
would be applied to any student selected at random from the entire student body.

It is fortunate that we do not have to declare a single position to be the “correct” viewpoint and interpretation. The formal model is
consistent with any of the views set forth. We are free in any situation to make the interpretation most meaningful and natural to
the problem at hand. It is not necessary to fit all problems into one conceptual mold; nor is it necessary to change mathematical
model each time a different point of view seems appropriate.

The probabilty of rain

Empirical probability based on survey data

C O S U

N

P (C) = 200/300 P (O) = 100/300

P (CS) = 127/300

P (CS ⋁ OU) = P (CS) +P (OU) = 127/300 +43/300 = 170/300
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Probability and odds 

Often we find it convenient to work with a ratio of probabilities. If  and  are events with positive probability the odds favoring 
 over  is the probability ratio . If not otherwise specified,  is taken to be  and we speak of the odds favoring 

This expression may be solved algebraically to determine the probability from the odds

In particular, if  then .

. If the odds favoring  is 5/3, then .

Partitions and Boolean combinations of events 

The countable additivity property (P3) places a premium on appropriate partitioning of events.

A partition is a mutually exclusive class

 such that 

A partition of event  is a mutually exclusive class

 such that 

Remarks.

A partition is a mutually exclusive class of events such that one (and only one) must occur on each trial.
A partition of event  is a mutually exclusive class of events such that  occurs iff one (and only one) of the  occurs.
A partition (no qualifier) is taken to be a partition of the sure event .
If class  is mutually exclusive and , then the class  is a partition of  and 

.

We may begin with a sequence  and determine a mutually exclusive (disjoint) sequence  as follows:

, and for any , 

Thus each  is the set of those elements of  not in any of the previous members of the sequence.

This representation is used to show that subadditivity (P9) follows from countable additivity and property (P6). Since each 
, by (P6) . Now

The representation of a union as a disjoint union points to an important strategy in the solution of probability problems. If an event
can be expressed as a countable disjoint union of events, each of whose probabilities is known, then the probability of the
combination is the sum of the individual probailities. In in the module on Partitions and Minterms, we show that any Boolean
combination of a finiteclass of events can be expressed as a disjoint union in a manner that often facilitates systematic
determination of the probabilities.

The indicator function 

One of the most useful tools for dealing with set combinations (and hence with event combinations) is the indicator function  for
a set . It is defined very simply as follows:

Remark. Indicator fuctions may be defined on any domain. We have occasion in various cases to define them on the real line and on
higher dimensional Euclidean spaces. For example, if  is the interval [ ] on the real line then  for each  in the
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interval (and is zero otherwise). Thus we have a step function with unit value over the interval . In the abstract basic space  we
cannot draw a graph so easily. However, with the representation of sets on a Venn diagram, we can give a schematic representation,
as in Figure 1.3.1.

 
Figure 1.3.1. Representation of the indicator function  for event .

Much of the usefulness of the indicator function comes from the following properties.

(IF1):  iff . If , then  implies , so , then  implies 
implies  implies . 
(IF2):  iff 

 iff both  and  iff  and  iff 

(IF3):  This follows from the fact  iff . 
(IF4):  (extends to any class) An element ω belongs to the intersection iff it belongs to all iff the
indicator function for each event is one iff the product of the indicator functions is one. 
(IF5):  (the maximum rule extends to any class) The maximum rule follows from
the fact that  is in the union iff it is in any one or more of the events in the union iff any one or more of the individual
indicator function has value one iff the maximum is one. The sum rule for two events is established by DeMorgan's rule and
properties (IF2), (IF3), and (IF4).

(IF6): If the pair  is disjoint,  (extends to any disjoint class)

The following example illustrates the use of indicator functions in establishing relationships between set combinations. Other uses
and techniques are established in the module on Partitions and Minterms.

Suppose  is a partition.

If , then 

Proof

Utilizing properties of the indicator function established above, we have

Note that since the  form a partition, we have , so that the indicator function for the complementary event is

The last sum is the indicator function for 

A technical comment on the class of events 

The class of events plays a central role in the intuitive background, the application, and the formal mathematical structure. Events
have been modeled as subsets of the basic space of all possible outcomes of the trial or experiment. In the case of a finite number of
outcomes, any subset can be taken as an event. In the general theory, involving infinite possibilities, there are some technical
mathematical reasons for limiting the class of subsets to be considered as events. The practical needs are these:

1. If  is an event, its complementary set must also be an event.
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2. If  is a finite or countable class of events, the union and the intersection of members of the class need to be events.

A simple argument based on DeMorgan's rules shows that if the class contains complements of all its sets and countable unions,
then it contains countable intersections. Likewise, if it contains complements of all its sets and countable intersections, then it
contains countable unions. A class of sets closed under complements and countable unions is known as a sigma algebra of sets. In
a formal, measure-theoretic treatment, a basic assumption is that the class of events is a sigma algebra and the probability measure
assigns probabilities to members of that class. Such a class is so general that it takes very sophisticated arguments to establish the
fact that such a class does not contain all subsets. But precisely because the class is so general and inclusive in ordinary
applications we need not be concerned about which sets are permissible as events

A primary task in formulating a probability problem is identifying the appropriate events and the relationships between them. The
theoretical treatment shows that we may work with great freedom in forming events, with the assurrance that in most applications a
set so produced is a mathematically valid event. The so called measurability question only comes into play in dealing with random
processes with continuous parameters. Even there, under reasonable assumptions, the sets produced will be events.

This page titled 1.3: Interpretations is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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1.4: Problems on Probability Systems

Let  consist of the set of positive integers. Consider the subsets

  

 

Describe in terms of  and their complements the following sets:

a. {1, 3, 5, 7} 
b. {3, 6, 9} 
c. {8, 10} 
d. The even integers greater than 12 
e. The positive integers which are multiples of six. 
f. The integers which are even and no greater than 6 or which are odd and greater than 12.

Answer

 
 

 
 

 

Let  be the set of integers 0 through 10. Let ,  the odd integers in , and  the integers in  which
are even or less than three. Describe the following sets by listing their elements.

a.  
b.  
c.  
d.  
e.  
f.  
g.  
h. 

Answer

a.  
b.  
c.  
d.  
e.  
f.  
g. 

Consider fifteen-word messages in English. Let  the set of such messages which contain the word “bank” and let  the
set of messages which contain the word “bank” and the word “credit.” Which event has the greater probability? Why?

Exercise 1.4.1

Ω

A = {ω : ω ≤ 12} B = {ω : ω < 8} C = {ω : ω is even}

D = {ω : ω is a multiple of 3} E = {ω : ω is a multiple of 4}

A,B,C,D,E

a = BC c

b = DAEc

c = CABcDc

d = CAc

e = CD

f = BC⋁AcC c

Exercise 1.4.2

Ω A = {5, 6, 7, 8} B = Ω C = Ω

AB

AC

A ∪CBc

ABC c

A∪Bc

A∪BC c

ABC

BAc C c

AB = 5, 7
AC = 6, 8
A ∪C = CBc

AB = ABC c

A∪ = 0, 2, 4, 5, 6, 7, 8, 10Bc

ABC = ∅
B = 3, 9Ac C c

Exercise 1.4.3

A = B =
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Answer

 implies .

A group of five persons consists of two men and three women. They are selected one-by-one in a random manner. Let  be
the event a man is selected on the th selection. Write an expression for the event that both men have been selected by the third
selection.

Answer

Two persons play a game consecutively until one of them is successful or there are ten unsuccessful plays. Let  be the event
of a success on the th play of the game. Let  be the respective events that player one, player two, or neither wins.
Write an expression for each of these events in terms of the events , .

Answer

Suppose the game in Exercise 1.4.5 could, in principle, be played an unlimited number of times. Write an expression for the
event  that the game will be terminated with a success in a finite number of times. Write an expression for the event  that
the game will never terminate.

Answer

Let  and  for . Then

 and 

Find the (classical) probability that among three random digits, with each digit (0 through 9) being equally likely and each
triple equally likely:

a. All three are alike. 
b. No two are alike. 
c. The first digit is 0. 
d. Exactly two are alike.

Answer

Each triple has probability 

a. Ten triples, all alike: . 
b.  triples all different: . 
c. 100 triples with first one zero:  
d.  ways to pick two positions alike; 10 ways to pick the common value; 9 ways to pick the other. 

.

B ⊂ A P (B) ≤ P (A)

Exercise 1.4.4

Ei

i

A = ⋁ ⋁E1E2 E1E
c
2E3 Ec

1E2E3

Exercise 1.4.5

Ei

i A,B,C
Ei 1 ≤ i ≤ 10
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c
4E

c
5E

c
6E

c
7E

c
8E

c
9E10

C =⋂10
i=1 E

c
i

Exercise 1.4.6

D F

= ΩF0 =Fk ⋂
k

i=1 E
c
i k ≥ 1

D =⋁∞
n=1 Fn−1En F = =Dc ⋂∞

i=1 E
c
i

Exercise 1.4.7

1/ = 1/1000103

P = 10/1000
10 ×9 ×8 P = 720/1000

P = 100/1000
C(3, 2) = 3

P = 270/1000
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The classical probability model is based on the assumption of equally likely outcomes. Some care must be shown in analysis to
be certain that this assumption is good. A well known example is the following. Two coins are tossed. One of three outcomes is
observed: Let  be the outcome both are “heads,”  the outcome that both are “tails,” and  be the outcome that they are
different. Is it reasonable to suppose these three outcomes are equally likely? What probabilities would you assign?

Answer

, 

A committee of five is chosen from a group of 20 people. What is the probability that a specified member of the group will be
on the committee?

Answer

 committees;  have a designated member.

Ten employees of a company drive their cars to the city each day and park randomly in ten spots. What is the (classical)
probability that on a given day Jim will be in place three? There are  equally likely ways to arrange  items (order
important).

Answer

10! permutations,  permutations with Jim in place 3. .

An extension of the classical model involves the use of areas. A certain region  (say of land) is taken as a reference. For any
subregion , define . Show that  is a probability measure on the subregions of .

Answer

Additivity follows from additivity of areas of disjoint regions.

John thinks the probability the Houston Texans will win next Sunday is 0.3 and the probability the Dallas Cowboys will win is
0.7 (they are not playing each other). He thinks the probability both will win is somewhere between—say, 0.5. Is that a
reasonable assumption? Justify your answer.

Answer

 is not reasonable. It must no greater than the minimum of  and .

Suppose  and . What is the largest possible value of ? Using the maximum value of ,
dertermine , ,  and . Are these values determined uniquely?

Exercise 1.4.8

ω1 ω2 ω3

P ({ }) = P ({ }) = 1/4ω1 ω2 P ({ }) = 1/2ω3

Exercise 1.4.9

C(20, 5) C(19, 4)

P = ⋅ = 5/20 = 1/4
19!

4!15!

5!15!

20!

Exercise 1.4.10

n! n

1 ×9! P = 9!/10! = 1/10

Exercise 1.4.11

L

A P (A) = area(A)/area(L) P (⋅) L

Exercise 1.4.12

P (AB) = 0.5 P (A) = 0.3 P (B) = 0.7

Exercise 1.4.13

P (A) = 0.5 P (B) = 0.3 P (AB) P (AB)
P (A )Bc P ( B)Ac P ( )AcBc P (A∪B)
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Answer

Draw a Venn diagram, or use algebraic expressions 

  

For each of the following probability “assignments”, fill out the table. Which assignments are not permissible? Explain why, in
each case.

0.3 0.7 0.4

0.2 0.1 0.4

0.3 0.7 0.2

0.3 0.5 0

0.3 0.8 0

Answer

0.3 0.7 0.4 0.6 -0.1 0.3 1.0

0.2 0.1 0.4 -0.1 -0.2 -0.3 0.3

0.3 0.7 0.2 0.8 0.1 0.5 1.0

0.3 0.5 0 0.8 0.3 0.5 0.8

0.3 0.8 0 1.1 0.3 0.8 1.1

Only the third and fourth assignments are permissible.

The class  of events is a partition. Event  is twice as likely as  and event  is as likely as the combination  or 
. Determine the probabilities , , .

Answer

, , and , which implies

, , 

Determione the probability  in terms of the probabilities of the events  and their intersections.

Answer

 

P (A ) = P (A) −P (AB) = 0.2Bc

P ( B) = P (B) −P (AB) = 0Ac P ( ) = P ( ) −P ( B) = 0.5AcBc Ac Ac P (A∪B) = 0.5

Exercise 1.4.14

P(A) P(B) P(AB) P(A ∪ B) P(A )Bc P( B)Ac P(A) +P(B)

P(A) P(B) P(AB) P(A ∪ B) P(A )Bc P( B)Ac P(A) +P(B)

Exercise 1.4.15

{A,B,C} A C B A

C P (A) P (B) P (C)

P (A) +P (B) +P (C) = 1 P (A) = 2P (C) P (B) = P (A) +P (C) = 3P (C)

P (C) = 1/6 P (A) = 1/3 P (B) = 1/2

Exercise 1.4.16

P (A∪B∪C) A,B,C

P (A∪B∪C) = P (A∪B) +P (C) −P (AC ∪BC)
= P (A) +P (B) −P (AB) +P (C) −P (AC) −P (BC) +P (ABC)
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If occurrence of event  implies occurrence of , show that .

Answer

 and  implies .

Show that .

Answer

Follows from .

The set combination  is known as the disjunctive union or the symetric difference of  and . This is
the event that only one of the events  or  occurs on a trial. Determine  in terms of , , and 

Answer

A Venn diagram shows .

Use fundamental properties of probability to show

a. 

b. 

Answer

 implies . The general
case follows similarly, with the last inequality determined by subadditivity.

Suppose  are probability measures and  are positive numbers such that . Show that the assignment 
 to the class of events is a probability measure. Such a combination of probability measures is

known as a mixture. Extend this to

, where the  are probabilities measures, , and 

Answer

Clearly . .

 implies 

The pattern is the same for the general case, except that the sum of two terms is replaced by the sum of  terms .

Suppose  is a partition and  is a class of positive constants. For each event , let

Show that  us a probability measure.

Exercise 1.4.17

A B P ( B) = P (B) −P (A)Ac

P (AB) = P (A) P (AB) +P ( B) = P (B)Ac P ( B) = P (B) −P (A)Ac

Exercise 1.4.18

P (AB) ≥ P (A) +P (B) −1

P (A) +P (B) −P (AB) = P (A∪B) ≤ 1

Exercise 1.4.19

A⊕B = A ⋁ BBc Ac A B

A B P (A⊕B) P (A) P (B) P (AB)

P (A⊕B) = P (A ) +P (A ) = P (A) +P (B) −2P (AB)Bc Bc

Exercise 1.4.20

P (AB) ≤ P (A) ≤ P (A∪B) ≤ P (A) +P (B)

P ( ) ≤ P ( ) ≤ P ( ) ≤ P ( )⋂∞
j=1 Ej Ei ⋃∞

j=1 Ej ∑∞
j=1 Ej

AB ⊂ A ⊂ A∪B P (AB) ≤ P (A) ≤ P (A∪B) = P (A) +P (B) −P (AB) ≤ P (A) +P (B)

Exercise 1.4.21

,P1 P2 ,c1 c2 + = 1c1 c2

P (E) = (E) + (E)c1P1 c2P2

P (E) = (E)∑n
i=1 ciPi Pi > 0ci = 1∑n

i=1 ci

P (E) ≥ 0 P (Ω) = (Ω) + (Ω) = 1c1P1 c2P2

E =⋁∞
i=1 Ei P (E) = ( ) + ( ) = P ( )c1∑

∞
i=1 P1 Ei c2∑

∞
i=1 P2 Ei ∑∞

i=1 Ei

n (E)ciPi

Exercise 1.4.22

{ , , ⋅ ⋅ ⋅, }A1 A2 An { , , ⋅ ⋅ ⋅, }c1 c2 cn E

Q(E) = P (E )/ P ( )∑n
i=1 ci Ai ∑n

i=1 ci Ai

Q(⋅)
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Answer

Clearly  and since  we have . If

, then  

Interchanging the order of summation shows that  is countably additive.

This page titled 1.4: Problems on Probability Systems is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

Q(E) ≥ 0 Ω =Ai Ai Q(Ω) = 1

E =⋁
∞
k=1 Ek P (E ) = P ( )Ai ∑

∞
k=1 EkAi ∀i

Q
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1

CHAPTER OVERVIEW

2: Minterm Analysis
 

A fundamental problem in elementary probability is to find the probability of a logical (Boolean) combination of a finite class of
events, when the probabilities of certain other combinations are known. If we partition an event  into component events whose
probabilities can be determined, then the additivity property implies the probability of  is the sum of these component
probabilities. Frequently, the event  is a Boolean combination of members of a finite class– say,  or . For
each such finite class, there is a fundamental partition determined by the class. The members of this partition are called minterms.
Any Boolean combination of members of the class can be expressed as the disjoint union of a unique subclass of the minterms. If
the probability of every minterm in this subclass can be determined, then by additivity the probability of the Boolean combination
is determined. We examine these ideas in more detail.

2.1: Minterms
2.2: Minterms and MATLAB Calculations
2.3: Problems on Minterm Analysis

This page titled 2: Minterm Analysis is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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2.1: Minterms

Partitions and minterms 

To see how the fundamental partition arises naturally, consider first the partition of the basic space produced by a single event .

Now if  is a second event, then

and

so that

The pair  has partitioned  into . Continuation is this way leads systematically to a partition by
three events , four events , etc.

We illustrate the fundamental patterns in the case of four events . We form the minterms as intersections of members
of the class, with various patterns of complementation. For a class of four events, there are  such patterns, hence 16
minterms. These are, in a systematic arrangement,

No element can be in more than one minterm, because each differs from the others by complementation of at least one member
event. Each element  is assigned to exactly one of the minterms by determining the answers to four questions:

Is it in ? Is it in ? Is it in ? Is it in ?

Suppose, for example, the answers are: Yes, No, No, Yes. Then ω is in the minterm . In a similar way, we can determine
the membership of each  in the basic space. Thus, the minterms form a partition. That is, the minterms represent mutually
exclusive events, one of which is sure to occur on each trial. The membership of any minterm depends upon the membership of
each generating set  or , and the relationships between them. For some classes, one or more of the minterms are empty
(impossible events). As we see below, this causes no problems.

An examination of the development above shows that if we begin with a class of n events, there are  minterms. To aid in
systematic handling, we introduce a simple numbering system for the minterms, which we illustrate by considering again the four
events , in that order. The answers to the four questions above can be represented numerically by the scheme

No  and Yes 

Thus, if  is in , the answers are tabulated as 0 0 0 0. If  is in , then this is designated 1 0 0 1. With this
scheme, the minterm arrangement above becomes

0000  0 0100  4 1000  8 1100  12

0001  1 0101  5 1001  9 1101  13

0010  2 0110  6 1010  10 1110  14

0011  3 0111  7 1011  11 1111  15

A

Ω = A⋁Ac (2.1.1)

B

A = AB⋁ABc (2.1.2)

= B⋁Ac Ac AcBc (2.1.3)

Ω = ⋁ B⋁A ⋁ABAcBc Ac Bc (2.1.4)

{A, B} Ω { , B, A , AB}AcBc Ac Bc

{A, B, C} {A, B, C, D}

{A, B, C, D}

= 1624

AcBcC cDc BAc C cDc ABcC cDc ABC cDc

DAcBcC c B DAc C c A DBcC c AB DC c

CAcBc Dc BCAc Dc A CBc Dc ABCDc

CDAcBc BCDAc A CDBc ABCD

ω

A B C D

A DBcC c

ω

A, B, C D

2n

A, B, C, D

∼ 0 ∼ 1

ω AcBcC cDc ω A DBcC c

∼ ∼ ∼ ∼

∼ ∼ ∼ ∼

∼ ∼ ∼ ∼

∼ ∼ ∼ ∼
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We may view these quadruples of zeros and ones as binary representations of integers, which may also be represented by their
decimal equivalents, as shown in the table. Frequently, it is useful to refer to the minterms by number. If the members of the
generating class are treated in a fixed order, then each minterm number arrived at in the manner above specifies a minterm
uniquely. Thus, for the generating class , in that order, we may designate

 (minterm 0)  (minterm 9), etc.

We utilize this numbering scheme on special Venn diagrams called minterm maps. These are illustrated in Figure, for the cases of
three, four, and five generating events. Since the actual content of any minterm depends upon the sets , and  in the
generating class, it is customary to refer to these sets as variables. In the three-variable case, set  is the right half of the diagram
and set  is the lower half; but set B is split, so that it is the union of the second and fourth columns. Similar splits occur in the
other cases.

Remark. Other useful arrangements of minterm maps are employed in the analysis of switching circuits.

 
Three variables 

 
Four variables 

 
Five variables

Figure 2.1.1. Minterm maps for three, four, or five variables

Minterm maps and the minterm expansion 

The significance of the minterm partition of the basic space rests in large measure on the following fact.

Minterm expansion

Each Boolean combination of the elements in a generating class may be expressed as the disjoint union of an appropriate subclass
of the minterms. This representation is known as the minterm expansion for the combination.

In deriving an expression for a given Boolean combination which holds for any class  of four events, we include all
possible minterms, whether empty or not. If a minterm is empty for a given class, its presence does not modify the set content or
probability assignment for the Boolean combination.

The existence and uniqueness of the expansion is made plausible by simple examples utilizing minterm maps to determine
graphically the minterm content of various Boolean combinations. Using the arrangement and numbering system introduced above,

{A, B, C, D}

=AcBcC cDc M0 A D =BcC c M9

A, B, C D

A

C

{A, B, C, D}
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we let  represent the th minterm (numbering from zero) and let  represent the probability of that minterm. When we deal
with a union of minterms in a minterm expansion, it is convenient to utilize the shorthand illustrated in the following.

 and 

 
Figure 2.1.2.  Minterm expansion for Example 2.1.1

Consider the following simple example.

Suppose . Examination of the minterm map in Figure 2.1.2 show that  consists of the union of
minterms , , which we designate . The combination , so that its complement 

. This leaves the comon part , Hence, . Similarly, 
.

 A key to establishing the expansion is to note that each minterm is either a subset of the combination or is disjoint from it. The
expansion is thus the union of those minterms included in the combination. A general verification using indicator functions is
sketched in the last section of this module.

Use of minterm maps 
A typical problem seeks the probability of certain Boolean combinations of a class of events when the probabilities of various other
combinations is given. We consider several simple examples and illustrate the use of minterm maps in formulation and solution.

Statistical data are taken for a certain student population with personal computers. An individual is selected at random. Let 
 the event the person selected has word processing,  the event he or she has a spread sheet program, and  the

event the person has a data base program. The data imply

The probability is 0.80 that the person has a word processing program: 
The probability is 0.65 that the person has a spread sheet program: 
The probability is 0.30 that the person has a data base program: 
The probability is 0.10 that the person has all three: 
The probability is 0.05 that the person has neither word processing nor spread sheet: 
The probability is 0.65 that the person has at least two: 
The probability of word processor and data base, but no spread sheet is twice the probabilty of spread sheet and data base,
but no word processor:  
 
a. What is the probability that the person has exactly two of the programs? 
b. What is the probability that the person has only the data base program?

Several questions arise:

Are these data consistent?
Are the data sufficient to answer the questions?
How may the data be utilized to anwer the questions?

Solution

Mi i p(i)

M(1, 3, 7) = ⋁ ⋁M1 M3 M7 p(1, 3, 7) = p(1) +p(3) +p(7)

E = AB ∪ (B ∪ = M(1 : 6, 7)Ac C c)c

Example  Minterm expansion2.1.1

E = AB ∪ (B ∪Ac C c)c AB

M6 M7 M(6, 7) B ∪ = M(0, 2, 3, 4, 6, 7)C c

(B ∪ = M(1, 5)C c)c (B ∪ =Ac C c)c M1 E = M(1, 6, 7)

F = A ∪ C = M(1, 4, 5, 6, 7)Bc

Example  Survey on software2.1.2

A = B = C =

P (A) = 0.8

P (B) = 0.65

P (C) = 0.3

P (ABC) = 0.1

P ( = 0.05AcBc

P (AB ∪ AC ∪ BC) = 0.65

P (A C) = 2P ( BC)Bc Ac
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The data, expressed in terms of minterm probabilities, are:

; hence 

; hence 

; hence 

 

These data are shown on the minterm map in Figure 2.1.3 a. We use the patterns displayed in the minterm map to aid in an
algebraic solution for the various minterm probabilities.

,

Thus, all minterm probabilities are determined. They are displayed in Figure 2.1.3 b. From these we get

 and 

 
a. Data for software survey, Example 2.3.1 

 
b. Minterm probabilities for software survey. Example 3.3.1

Figure 2.1.3. Minterm maps for software survey.

P (A) = p(4, 5, 6, 7) = 0.80 P ( ) = p(0, 1, 2, 3) = 0.20Ac

P (B) = p(2, 3, 6, 7) = 0.65 P ( ) = p(0, 1, 4, 5) = 0.35Bc

P (C) = p(1, 3, 5, 7) = 0.30 P ( ) = p(0, 2, 4, 6) = 0.70C c

P (ABC) = p(7) = 0.10 P ( ) = p(0, 1) = 0.05AcBc

P (AB ∪ AC ∪ BC) = p(3, 5, 6, 7) = 0.65

P (A C) = p(5) = 2p(3) = 2P ( BC)Bc Ac

p(2, 3) = p(0, 1, 2, 3) −p(0, 1) = 0.20 −0.05 = 0.15

p(6, 7) = p(2, 3, 6, 7) −p(2, 3) = 0.65 −0.15 = 0.50

p(6) = p(6, 7) −p(7) = 0.50 −0.10 = 0.40

p(3, 5) = p(3, 5, 6, 7) −p(6, 7) = 0.65 −0.50 = 0.15 ⇒ p(3) = 0.05

p(5) = 0.10 ⇒ p(2) = 0.10

p(1) = p(1, 3, 5, 7) −p(3, 5) −p(7) = 0.30 −0.15 −0.10 = 0.05 ⇒ p(0) = 0

p(4) = p(4, 5, 6, 7) −p(5) −p(6, 7) = 0.80 −0.10 −0.50 = 0.20

P ( BC ⋁A C ⋁AB ) = p(3, 5, 6) = 0.05 +0.10 +0.40 = 0.55Ac Bc C c P ( C) = p(1) = 0.05AcBc
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A survey of 1000 students shows that 565 have PC compatible desktop computers, 515 have Macintosh desktop computers,
and 151 have laptop computers. 51 have all three, 124 have both PC and laptop computers, 212 have at least two of the three,
and twice as many own both PC and laptop as those who have both Macintosh desktop and laptop. A person is selected at
random from this population. What is the probability he or she has at least one of these types of computer? What is the
probability the person selected has only a laptop?

 
Figure 2.1.4. Minterm probabilities for computer survey. Example 2.1.3

Solution

Let  the event of owning a PC desktop,  the event of owning a Macintosh desktop, and  the event of owning a
laptop. We utilize a minterm map for three variables to help determine minterm patterns. For example, the event 

 so that .

The data, expressed in terms of minterm probabilities, are:

, hence 

, hence 

, hence 

 

We use the patterns displayed in the minterm map to aid in an algebraic solution for the various minterm probabilities.

 

We have determined the minterm probabilities, which are displayed on the minterm map Figure 2.1.4. We may now compute
the probability of any Boolean combination of the generating events . Thus,

 and 

Example  Survey on personal computers2.1.3

A = B = C =

AC = ⋁M5 M7 P (AC) = p(5) +p(7) = p(5, 7)

P (A) = p(4, 5, 6, 7) = 0.565 P ( ) = p(0, 1, 2, 3) = 0.435Ac

P (B) = p(2, 3, 6, 7) = 0.515 P ( ) = p(0, 1, 4, 5) = 0.485Bc

P (C) = p(1, 3, 5, 7) = 0.151 P ( ) = p(0, 2, 4, 6) = 0.849C c

P (ABC) = p(7) = 0.051 P (AC) = p(5, 7) = 0.124

P (AB ∪ AC ∪ BC) = p(3, 5, 6, 7) = 0.212

P (AC) = p(5, 7) = 2p(3, 7) = 2P (BC)

p(5) = p(5, 7) −p(7) = 0.124 −0.051 = 0.073

p(1, 3) = P ( C) = 0.151 −0.124 = 0.027Ac P (A ) = p(4, 6) = 0.565 −0.124 = 0.441C c

p(3, 7) = P (BC) = 0.124/2 = 0.062

p(3) = 0.062 −0.051 = 0.011

p(6) = p(3, 4, 6, 7) −p(3) −p(5, 7) = 0.212 −0.011 −0.124 = 0.077

p(4) = P (A) −p(6) −p(5, 7) = 0.565 −0.077 −0.1124 = 0.364

p(1) = p(1, 3) −p(3) = 0.027 −0.11 = 0.016

p(2) = P (B) −p(3, 7) −p(6) = 0.515 −0.062 −0.077 = 0.376

p(0) = P ( ) −p(4, 6) −p(2) = 0.8490.441 −0.376 = 0.032C c

A, B, C

P (A ∪ B ∪ C) = 1 −P ( ) −1 −p(0) = 0.968AcBcC c P ( C) = p(1) = 0.016AcBc
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Figure 2.1.5. Minterm probabilities for opinion survey. Example 2.1.4

A survey of 1000 persons is made to determine their opinions on four propositions. Let  be the events a person
selected agrees with the respective propositions. Survey results show the following probabilities for various combinations:

, , , , 

, , , 

, , , 

, 

Determine the probabilities for each minterm and for each of the following combinations

 - that is, not  and (  or , but not both)

 - that is,  or (  and not )

Solution

At the outset, it is not clear that the data are consistent or sufficient to determine the minterm probabilities. However, an
examination of the data shows that there are sixteen items (including the fact that the sum of all minterm probabilities is one).
Thus, there is hope, but no assurance, that a solution exists. A step elimination procedure, as in the previous examples, shows
that all minterms can in fact be calculated. The results are displayed on the minterm map in Figure 2.1.5. It would be desirable
to be able to analyze the problem systematically. The formulation above suggests a more systematic algebraic formulation
which should make possible machine aided solution.

Systematic formulation 
Use of a minterm map has the advantage of visualizing the minterm expansion in direct relation to the Boolean combination. The
algebraic solutions of the previous problems involved ad hoc manipulations of the data minterm probability combinations to find
the probability of the desired target combination. We seek a systematic formulation of the data as a set of linear algebraic equations
with the minterm probabilities as unknowns, so that standard methods of solution may be employed. Consider again the software
survey of Example 2.1.1.

The data, expressed in terms of minterm probabilities, are:

Example  Opinion survey2.1.4

A, B, C, D

P (A) = 0.200 P (B) = 0.500 P (C) = 0.300 P (D) = 0.700 P (A(B ∪ ) ) = 0.055C c Dc

P (A ∪ BC ∪ ) = 0.520Dc P ( B D) = 0.120Ac C c P (ABCD) = 0.015 P (A C) = 0.030Bc

P ( D) = 0.195AcBcC c P ( BC) = 0.120Ac P ( ) = 0.120AcBcDc P (A ) = 0.140C c

P (AC ) = 0.025Dc P (AB ) = 0.020C cDc

(B ∪ C)Ac C c Bc A B C

A ∪ BC c A B C

Example  The softerware survey problem reformulated2.1.5

P (A) = p(4, 5, 6, 7) = 0.80

P (B) = p(2, 3, 6, 7) = 0.65

P (C) = p(1, 3, 5, 7) = 0.30

P (ABC) = p(7) = 0.10

P ( ) = p(0, 1) = 0.05AcBc
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, so that 

We also have in any case

to complete the eight items of data needed for determining all eight minterm probabilities. The first datum can be expressed as
an equation in minterm probabilities:

This is an algebraic equation in  with a matrix of coefficients

[0 0 0 0 1 1 1 1]

The others may be written out accordingly, giving eight linear algebraic equations in eight variables  through . Each
equation has a matrix or vector of zero-one coefficients indicating which minterms are included. These may be written in
matrix form as follows:

The patterns in the coefficient matrix are determined by logical operations. We obtained these with the aid of a minterm
map.
The solution utilizes an algebraic procedure, which could be carried out in a variety of ways, including several standard
computer packages for matrix operations.

We show in the module Minterm Vectors and MATLAB how we may use MATLAB for both aspects.

Indicator functions and the minterm expansion 

Previous discussion of the indicator function shows that the indicator function for a Boolean combination of sets is a numerical
valued function of the indicator functions for the individual sets.

As an indicator function, it takes on only the values zero and one.
The value of the indicator function for any Boolean combination must be constant on each minterm. For example, for each ω in
the minterm , we must have , , , and . Thus, any function of , , , 

 must be constant over the minterm.
Consider a Boolean combination  of the generating sets. If  is in , then  for all , so that .
Since each  or some  must be the union of those minterms sharing an  with .
Let  be the subclass of those minterms on which  has the value one. Then

which is the minterm expansion of .

This page titled 2.1: Minterms is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via source content
that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

P (AB ∪ AC ∪ BC) = p(3, 5, 6, 7) = 0.65

P (A C) = p(5) = 2p(3) = 2P ( BC)Bc Ac p(5) −2p(3) = 0

P (Ω) = P (A ∪ ) = p(0, 1, 2, 3, 4, 5, 6, 7) = 1Ac

0 ⋅ p(0) +0 ⋅ p(1) +0 ⋅ p(2) +0 ⋅ p(3) +1 ⋅ p(4) +1 ⋅ p(5) +1 ⋅ p(6) +1 ⋅ p(7) = 0.80

p(0), ⋅ ⋅ ⋅, p(7)
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2.2: Minterms and MATLAB Calculations
The concepts and procedures in this unit play a significant role in many aspects of the analysis of probability topics and in the use
of MATLAB throughout this work.

Minterm vectors and MATLAB 
The systematic formulation in the previous module Minterms shows that each Boolean combination, as a union of minterms, can be
designated by a vector of zero-one coefficients. A coefficient one in the th position (numbering from zero) indicates the inclusion
of minterm  in the union. We formulate this pattern carefully below and show how MATLAB logical operations may be utilized
in problem setup and solution.

Suppose  is a Boolean combination of . Then, by the minterm expansion,

where  is the th minterm and  is the set of indices for those  included in . For example, consider

We may designate each set by a pattern of zeros and ones ( ). The ones indicate which minterms are present in the set.
In the pattern for set , minterm  is included in  iff . This is, in effect, another arrangement of the minterm map. In this
form, it is convenient to view the pattern as a minterm vector, which may be represented by a row matrix or row vector [

]. We find it convenient to use the same symbol for the name of the event and for the minterm vector or matrix
representing it. Thus, for the examples above,

 [0 1 0 0 1 0 1 1] and  [1 1 0 0 0 1 0 1]

It should be apparent that this formalization can be extended to sets generated by any finite class.

Minterm vectors for Boolean combinations

If  and  are combinations of  generating sets, then each is represented by a unique minterm vector of length . In the
treatment in the module Minterms, we determine the minterm vector with the aid of a minterm map. We wish to develop a
systematic way to determine these vectors.

As a first step, we suppose we have minterm vectors for  and  and want to obtain the minterm vector of Boolean combinations
of these.

1. The minterm expansion for  has all the minterms in either set. This means the th element of the vector for  is the
maximum of the th elements for the two vectors.

2. The minterm expansion for  has only those minterms in both sets. This means the th element of the vector for  is
the minimum of the th elements for the two vectors.

3. The minterm expansion for  has only those minterms not in the expansion for . This means the vector for  has zeros and
ones interchanged. The th element of  is one iff the corresponding element of  is zero.

We illustrate for the case of the two combinations  and  of three generating sets, considered above

 [0 1 0 0 1 0 1 1] and  [1 1 0 0 0 1 0 1]

Then

 [1 1 0 0 1 1 1 1],  [0 1 0 0 0 0 0 1], and  [1 0 1 1 0 1 0 0]

MATLAB logical operations

MATLAB logical operations on zero-one matrices provide a convenient way of handling Boolean combinations of minterm vectors
represented as matrices. For two zero-one matrices  of the same size

 is the matrix obtained by taking the maximum element in each place.
 is the matrix obtained by taking the minimum element in each place.

 is the matrix obtained by interchanging one and zero in each place in .

i

Mi

E A,B,C

E = ⋁JE
Mi

Mi i JE Mi E

E = A(B∪ ) ∪ (B∪ = ⋁ ⋁ ⋁ = M(1, 4, 6, 7)C c Ac C c)c M1 M4 M6 M7

F = ∪AC = ⋁ ⋁ ⋁ = M(0, 1, 5, 7)AcBc M0 M1 M5 M7

, , ⋅ ⋅ ⋅,e0 e1 e7

E Mi E = 1ei

, , ⋅ ⋅ ⋅,e0 e1 e7

E ∼ F ∼

E F n 2n

E F

E∪F j E∪F

j

E∩F j E∩F

j

Ec E Ec

j Ec E

E F

E = A(B∪ ) ∪ (B∪ ∪ (B∪ ∼C c Ac C c)c Ac C c)c F = ∪AC ∼AcBc

E∪F ∼ E∩F ∼ ∼Ec

E,F

E|F

E&F

Ec E
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Thus, if  are minterm vectors for sets by the same name, then  is the minterm vector for ,  is the minterm
vector for , and  is the minterm vector for .

This suggests a general approach to determining minterm vectors for Boolean combinations.

Start with minterm vectors for the generating sets. 
Use MATLAB logical operations to obtain the minterm vector for any Boolean combination.

Suppose, for example, the class of generating sets is . Then the minterm vectors for , , and , respectively, are

 [0 0 0 0 1 1 1 1]  [0 0 1 1 0 0 1 1]  [0 1 0 1 0 1 0 1]

If , then the logical combination  of the matrices yields  [1 0 1 0 1 0 1 1].

MATLAB implementation

A key step in the procedure just outlined is to obtain the minterm vectors for the generating elements . We have an m-
function to provide such fundamental vectors. For example to produce the second minterm vector for the family (i.e., the minterm
vector for ), the basic zero-one pattern  is replicated twice to give

 0     0     1     1     0     0     1     1 

The function minterm(n,k) generates the kth minterm vector for a class of n generating sets.

>> A = minterm(3,1) 

A =  0     0     0     0     1     1     1     1 

>> B = minterm(3,2) 

B =  0     0     1     1     0     0     1     1 

>> C = minterm(3,3) 

C =  0     1     0     1     0     1     0     1

 

F = (A&B)|(~B&C) 

F =  0     1     0     0     0     1     1     1 

>> G = A|(~A&C) 

G =  0     1     0     1     1     1     1     1 

>> JF = find(F)-1           % Use of find to determine index set for F 

JF =   1     5     6     7  % Shows F = M(1, 5, 6, 7)

These basic minterm patterns are useful not only for Boolean combinations of events but also for many aspects of the analysis of
those random variables which take on only a finite number of values.

Zero-one arrays in MATLAB

The treatment above hides the fact that a rectangular array of zeros and ones can have two quite different meanings and functions in
MATLAB.

A numerical matrix (or vector) subject to the usual operations on matrices.. 
A logical array whose elements are combined by a. Logical operators to give new logical arrays; b. Array operations
(element by element) to give numerical matrices; c. Array operations with numerical matrices to give numerical results.

Some simple examples will illustrate the principal properties.

E,F E|F E∪F E&F

E∩F E = 1 −E Ec

{A,B,C} A B C

A = B = C =

E = AB∪C c E = (A&B) | C E =

{A,B,C}

B

minterms for the class {a, b, c}.

minterm patterns for the boolean combinations

F = AB∪ CBc G= A∪ CAc
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>>> A = minterm(3,1); 

>> B = minterm(3,2); 

>> C = minterm(3,3); 

>> F = (A&B)|(~B&C) 

F =  0     1     0     0     0     1     1     1 

>> G = A|(~A&C) 

G =  0     1     0     1     1     1     1     1 

>> islogical(A)       % Test for logical array 

ans =    0 

>> islogical(F) 

ans =   1 

>> m = max(A,B)       % A matrix operation 

m =   0     0     1     1     1     1     1     1 

>> islogical(m) 

ans =   0 

>> m1 = A|B           % A logical operation 

m1 =   0     0     1     1     1     1     1     1 

>> islogical(m1) 

ans = 1 

>> a = logical(A)      % Converts 0-1 matrix into logical array 

a =   0     0     0     0     1     1     1     1 

>> b = logical(B) 

>> m2 = a|b 

m2 =   0     0     1     1     1     1     1     1 

>> p = dot(A,B)        % Equivalently, p = A*B' 

p =  2 

>> p1 = total(A.*b) 

p1 =  2 

>> p3 = total(A.*B) 

p3 =  2 

>> p4 = a*b'           % Cannot use matrix operations on logical arrays 

??? Error using ==> mtimes   % MATLAB error signal 

Logical inputs must be scalar.

Often it is desirable to have a table of the generating minterm vectors. Use of the function minterm in a simple “for loop” yields the
following m-function.

The function mintable(n) Generates a table of minterm vectors for  generating sets.

>> M3 = mintable(3) 

M3 = 0     0     0     0     1     1     1     1 

     0     0     1     1     0     0     1     1 

     0     1     0     1     0     1     0     1

As an application of mintable, consider the problem of determining the probability of  of  events. If  is any
finite class of events, the event that exactly  of these events occur on a trial can be characterized simply in terms of the minterm

n

mintable for three variables

k n { : 1 ≤ i ≤ n}Ai

k
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expansion. The event  that exactly  occur is given by

In the matrix these are the minterms corresponding to columns with exactly  ones. The event BknBkn that  or
more occur is given by

If we have the minterm probabilities, it is easy to pick out the appropriate minterms and combine the probabilities. The following
example in the case of three variables illustrates the procedure.

In the software survey problem, the minterm probabilities are

 [0 0.05 0.10 0.05 0.20 0.10 0.40 0.10]

where  event has word processor,  event has spread sheet,  event has a data base program. It is desired to get the
probability an individual selected has  of these, .

Solution

We form a mintable for three variables. We count the number of “successes” corresponding to each minterm by using the
MATLAB function sum, which gives the sum of each column. In this case, it would be easy to determine each distinct value
and add the probabilities on the minterms which yield this value. For more complicated cases, we have an m-function called
csort (for sort and consolidate) to perform this operation.

>> pm = 0.01*[0 5 10 5 20 10 40 10]; 

>> M = mintable(3) 

M = 

0     0     0     0     1     1     1     1 

0     0     1     1     0     0     1     1 

0     1     0     1     0     1     0     1 

>> T = sum(M)                                    % Column sums give number 

T =  0     1     1     2     1     2     2     3 % of successes on each 

>> [k,pk] = csort(T,pm);                         % minterm, determines 

                                                 % distinct values in T and 

>> disp([k;pk]')                                 % consolidates probabilities 

0         0 

1.0000    0.3500 

2.0000    0.5500 

3.0000    0.1000

For three variables, it is easy enough to identify the various combinations “by eye” and make the combinations. For a larger
number of variables, however, this may become tedious. The approach is much more useful in the case of Independent Events,
because of the ease of determining the minterm probabilities.

Minvec procedures

Use of the tilde  to indicate the complement of an event is often awkward. It is customary to indicate the complement of an event 
 by . In MATLAB, we cannot indicate the superscript, so we indicate the complement by  instead of . To facilitate

writing combinations, we have a family of minvec procedures (minvec3, minvec4, ..., minvec10) to expedite expressing Boolean
combinations of  sets. These generate and name the minterm vector for each generating set and its complement.

Akn k

= the disjoint union of  those minterms with exactly k positions uncomplementedAkn

k k

=Bkn ⋁
n
r=k Arn

the software survey (continued)

pm =

A = B = C =

k k = 0, 1, 2, 3

∼

E Ec Ec ∼ E

n = 3, 4, 5, ⋅ ⋅ ⋅, 10
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We wish to generate a matrix whose rows are the minterm vectors for  and , respectively.

>> minvec3                               % Call for the setup procedure 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired 

>> V = [A|Ac; A; A&B; A&B&C; C; Ac&Cc];  % Logical combinations (one per 

                                       % row) yield logical vectors 

>> disp(V) 

1     1     1     1     1     1     1     1   % Mixed logical and 

0     0     0     0     1     1     1     1   % numerical vectors 

0     0     0     0     0     0     1     1 

0     0     0     0     0     0     0     1 

0     1     0     1     0     1     0     1 

1     0     1     0     0     0     0     0

Minterm probabilities and Boolean combination

If we have the probability of every minterm generated by a finite class, we can determine the probability of any Boolean
combination of the members of the class. When we know the minterm expansion or, equivalently, the minterm vector, we simply
pick out the probabilities corresponding to the minterms in the expansion and add them. In the following example, we do this “by
hand” then show how to do it with MATLAB .

Consider  and  of the example above, and suppose the respective minterm
probabilites are

, , , , , , , 

Use of a minterm map shows  and . so that

 and 

This is easily handled in MATLAB.

Use minvec3 to set the generating minterm vectors.
Use logical matrix operations 
 

 and  
 
to obtain the (logical) minterm vectors for  and 
If  is the matrix of minterm probabilities, perform the algebraic dot product or scalar product of the pmpm matrix and
the minterm vector for the combination. This can be called for by the MATLAB commands PE = E*pm' and PF = F*pm'.

The following is a transcript of the MATLAB operations.

>> minvec3                 % Call for the setup procedure 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

>> E  = (A&(B|Cc))|(Ac&~(B|Cc)); 

>> F  = (Ac&Bc)|(A&C); 

>> pm = 0.01*[21 6 29 11 9 3 14 7]; 

>> PE = E*pm'              % Picks out and adds the minterm probabilities 

PE =  0.3600 

boolean combinations using minvec3

Ω = A∪ ,A,AB,ABC,C,Ac AcC c

E = A(B∪ ) ∪ (B∪C c Ac C c)c F = ∪ACAcBc

= 0.21p0 = 0.06p1 = 0.29p2 = 0.11p3 = 0.09p4 = 0.03p5 = 0.14p6 = 0.07p7

E = M(1, 4, 6, 7) F = M(0, 1, 5, 7)

P (E) = + + + = p(1, 4, 6, 7) = 0.36p1 p4 p6 p7 P (F ) = p(0, 1, 5, 7) = 0.37

E = (A&(B|Cc))|(Ac&((B|Cc))) F = (Ac&Bc)|(A&C)

E F

pm
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>> PF = F*pm' 

PF =  0.3700

We set up the matrix equations with the use of MATLAB and solve for the minterm probabilities. From these, we may solve
for the desired “target” probabilities.

>> minvec3 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

Data vector combinations are: 

>> DV = [A|Ac; A; B; C; A&B&C; Ac&Bc; (A&B)|(A&C)|(B&C); (A&Bc&C) - 2*(Ac&B&C)] 

DV = 

1     1     1     1     1     1     1     1    % Data mixed numerical 

0     0     0     0     1     1     1     1    % and logical vectors 

0     0     1     1     0     0     1     1 

0     1     0     1     0     1     0     1 

0     0     0     0     0     0     0     1 

1     1     0     0     0     0     0     0 

0     0     0     1     0     1     1     1 

0     0     0    -2     0     1     0     0 

>> DP = [1 0.8 0.65 0.3 0.1 0.05 0.65 0];  % Corresponding data probabilities 

>> pm = DV\DP'                             % Solution for minterm probabilities 

pm = 

-0.0000                                          % Roundoff -3.5 x 10-17 

0.0500 

0.1000 

0.0500 

0.2000 

0.1000 

0.4000 

0.1000 

>> TV = [(A&B&Cc)|(A&Bc&C)|(Ac&B&C); Ac&Bc&C]       % Target combinations 

TV = 

0     0     0     1     0     1     1     0    % Target vectors 

0     1     0     0     0     0     0     0 

>> PV = TV*pm                          % Solution for target probabilities 

PV = 

0.5500                             % Target probabilities 

0.0500

The previous procedure first obtained all minterm probabilities, then used these to determine probabilities for the target
combinations. The following procedure does not require calculation of the minterm probabilities. Sometimes the data are not
sufficient to calculate all minterm probabilities, yet are sufficient to allow determination of the target probabilities.

solution of the software survey problem

An alternate approach
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Suppose the data minterm vectors are linearly independent, and the target minterm vectors are linearly dependent upon the data
vectors (i.e., the target vectors can be expressed as linear combinations of the data vectors). Now each target probability is the
same linear combination of the data probabilities. To determine the linear combinations, solve the matrix equation

Then the matrix  of target probabilites is given by . Continuing the MATLAB procedures above, we have:

>> CT = TV/DV; 

>> tp = CT*DP' 

tp = 0.5500 

         0.0500

The procedure mincalc 

The procedure mincalc performs calculations as in the preceding examples. The refinements consist of determining consistency and
computability of various individual minterm probabilities and target probilities. The consistency check is principally for negative
minterm probabilities. The computability tests are tests for linear independence by means of calculation of ranks of various
matrices. The procedure picks out the computable minterm probabilities and the computable target probabilities and calculates
them.

To utilize the procedure, the problem must be formulated appropriately and precisely, as follows:

Use the MATLAB program minvecq to set minterm vectors for each of q basic events. 
Data consist of Boolean combinations of the basic events and the respective probabilities of these combinations. These are
organized into two matrices:

The data vector matrix  has the data Boolean combinations– one on each row. MATLAB translates each row
into the minterm vector for the corresponding Boolean combination. The first entry (on the first row) is A | Ac (for 

), which is the whole space. Its minterm vector consists of a row of ones.
The data probability matrix  is a row matrix of the data probabilities. The first entry is one, the probability of
the whole space.

The objective is to determine the probability of various target Boolean combinations. These are put into the target vector
matrix , one on each row. MATLAB produces the minterm vector for each corresponding target Boolean combination.

Computational note. In mincalc, it is necessary to turn the arrays DV and TV consisting of zero-one patterns into zero-one
matrices. This is accomplished for DV by the operation . and similarly for TV. Both the original and the
transformed matrices have the same zero-one pattern, but MATLAB interprets them differently.

Usual case

Ṡuppose the data minterm vectors are linearly independent and the target vectors are each linearly dependent on the data minterm
vectors. Then each target minterm vector is expressible as a linear combination of data minterm vectors. Thus, there is a matrix 
such that . MATLAB solves this with the command  The target probabilities are the same linear
combinations of the data probabilities. These are obtained by the MATLAB operation .

Cautionary notes

The program mincalc depends upon the provision in MATLAB for solving equations when less than full data are available (based
on the singular value decomposition). There are several situations which should be dealt with as special cases. It is usually a good
idea to check results by hand to determine whether they are consistent with data. The checking by hand is usually much easier than
obtaining the solution unaided, so that use of MATLAB is advantageous even in questionable cases.

The Zero Problem. If the total probability of a group of minterms is zero, then it follows that the probability of each minterm
in the group is zero. However, if mincalc does not have enough information to calculate the separate minterm probabilities in

TV = CT ∗DV  which has the MATLAB solution CT = TV /DV

tp tp = CT ∗DP ′

DV

A⋁Ac

DP

TV

CT

TV = CT ∗DV CT = TV /DV

tp = DP ∗CT ′
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the case they are not zero, it will not pick up in the zero case the fact that the separate minterm probabilities are zero. It
simply considers these minterm probabilities not computable. 
Linear dependence. In the case of linear dependence, the operation called for by the command CT = TV/DV may not be able
to solve the equations. The matrix may be singular, or it may not be able to decide which of the redundant data equations to
use. Should it provide a solution, the result should be checked with the aid of a minterm map. 
Consistency check. Since the consistency check is for negative minterms, if there are not enough data to calculate the
minterm probabilities, there is no simple check on the consistency. Sometimes the probability of a target vector included in
another vector will actually exceed what should be the larger probability. Without considerable checking, it may be difficult
to determine consistency. 
In a few unusual cases, the command CT = TV/DV does not operate appropriately, even though the data should be adequate
for the problem at hand. Apparently the approximation process does not converge.

MATLAB Solutions for examples using mincalc

% file mcalc01   Data for software survey 

minvec3;

DV = [A|Ac; A; B; C; A&B&C; Ac&Bc; (A&B)|(A&C)|(B&C); (A&Bc&C)  - 2*(Ac&B&C)]; 

DP = [1 0.8 0.65 0.3 0.1 0.05 0.65 0]; 

TV = [(A&B&Cc)|(A&Bc&C)|(Ac&B&C); Ac&Bc&C]; 

disp('Call for mincalc') 

>> mcalc01         % Call for data 

Call for mincalc   % Prompt supplied in the data file 

>> mincalc 

Data vectors are linearly independent 

Computable target probabilities 

1.0000    0.5500 

2.0000    0.0500 

The number of minterms is 8 

The number of available minterms is 8 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA 

>> disp(PMA)       % Optional call for minterm probabilities 

0         0 

1.0000    0.0500 

2.0000    0.1000 

3.0000    0.0500 

4.0000    0.2000 

5.0000    0.1000 

6.0000    0.4000 

7.0000    0.1000

% file mcalc02.m    Data for computer survey 

minvec3 

DV =   [A|Ac; A; B; C; A&B&C; A&C; (A&B)|(A&C)|(B&C); ... 

2*(B&C) - (A&C)]; 

software survey

computer survey
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DP = 0.001*[1000 565 515 151 51 124 212 0];   TV = [A|B|C; Ac&Bc&C]; 

disp('Call for mincalc') 

>> mcalc02 

Call for mincalc 

>> mincalc 

Data vectors are linearly independent 

Computable target probabilities 

1.0000    0.9680 

2.0000    0.0160 

The number of minterms is 8 

The number of available minterms is 8 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA 

>> disp(PMA) 

0         0.0320 

1.0000    0.0160 

2.0000    0.3760 

3.0000    0.0110 

4.0000    0.3640 

5.0000    0.0730 

6.0000    0.0770 

7.0000    0.0510

% file mcalc03.m    Data for opinion survey 

minvec4 

DV = [A|Ac; A; B; C; D; A&(B|Cc)&Dc; A|((B&C)|Dc) ; Ac&B&Cc&D; ... 

A&B&C&D; A&Bc&C; Ac&Bc&Cc&D; Ac&B&C; Ac&Bc&Dc; A&Cc; A&C&Dc; A&B&Cc&Dc]; 

DP =  0.001*[1000 200 500 300 700 55 520 200 15 30 195 120 120 ... 

              140 25 20]; 

TV = [Ac&((B&Cc)|(Bc&C)); A|(B&Cc)]; 

disp('Call for mincalc') 

>> mincalc03 

Call for mincalc 

>> mincalc 

Data vectors are linearly independent 

Computable target probabilities 

1.0000    0.4000 

2.0000    0.4800 

The number of minterms is 16 

The number of available minterms is 16 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA 

>> disp(minmap(pma))    % Display arranged as on minterm map 

0.0850    0.0800    0.0200    0.0200 

0.1950    0.2000    0.0500    0.0500 

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10865?pdf


2.2.10 https://stats.libretexts.org/@go/page/10865

0.0350    0.0350    0.0100    0.0150 

0.0850    0.0850    0.0200    0.0150

The procedure mincalct

A useful modification, which we call mincalct, computes the available target probabilities, without checking and computing the
minterm probabilities. This procedure assumes a data file similar to that for mincalc, except that it does not need the target matrix 

, since it prompts for target Boolean combination inputs. The procedure mincalct may be used after mincalc has performed its
operations to calculate probabilities for additional target combinations.

Suppose mincalc has been applied to the data for the opinion survey and that it is desired to determine . It is
not necessary to recalculate all the other quantities. We may simply use the procedure mincalct and input the desired Boolean
combination at the prompt.

>> mincalct 

Enter matrix of target Boolean combinations  (A&D)|(B&Dc) 

Computable target probabilities 

    1.0000    0.2850

Repeated calls for mcalct may be used to compute other target probabilities.

This page titled 2.2: Minterms and MATLAB Calculations is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

TV

(continued) Additional target datum for the opinion survey

P (AD∪B )Dc
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2.3: Problems on Minterm Analysis

Consider the class  of events. Suppose the probability that at least one of the events  or  occurs is 0.75 and
the probability that at least one of the four events occurs is 0.90. Determine the probability that neither of the events  or 
but at least one of the events  or  occurs.

Answer

Use the pattern  and .

, so that 

1. Use minterm maps to show which of the following statements are true for any class : 
 
a.  
b.  
c. 

2. Repeat part (1) using indicator functions (evaluated on minterms).
3. Repeat part (1) using the m-procedure minvec3 and MATLAB logical operations.

Answer

We use the MATLAB procedure, which displays the essential patterns.

minvec3 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

E = A|~(B&C); 

F = A|B|(Bc&Cc); 

disp([E;F]) 

     1     1     1     0     1     1     1     1   % Not equal 

     1     0     1     1     1     1     1     1 

G = ~(A|B); 

H = (Ac&C)|(Bc&C); 

disp([G;H]) 

     1     1     0     0     0     0     0     0   % Not equal 

     0     1     0     1     0     1     0     0 

K = (A&B)|(A&C)|(B&C); 

disp([A;K]) 

     0     0     0     0     1     1     1     1   % A not contained in K 

     0     0     0     1     0     1     1     1

Use (1) minterm maps, (2) indicator functions (evaluated on minterms), (3) the m-procedure minvec3 and MATLAB logical
operations to show that

a.  
b. 

Exercise 2.3.1

{A,B,C,D} A C

A C

B D

P (E∪F ) = P (E) +P ( F )E
c (A∪C =)c A

c
C
c

P (A∪C ∪B∪D) = P (A∪C) +P ( (B∪D))AcC c P ( (B∪D)) = 0.90 −0.75 = 0.15AcC c

Exercise 2.3.2

{A,B,C}

A∪ (BC =A∪B∪)c BcC c

(A∪B = C ∪ C)c Ac Bc

A ⊂AB∪AC ∪BC

Exercise 2.3.3

A(B∪ ) ∪ BC ⊂A(BC ∪ ) ∪ BC c Ac C c Ac

A∪ BC =AB∪BC ∪AC ∪AAc BcC c
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Answer

We use the MATLAB procedure, which displays the essential patterns.

minvec3 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

E = (A&(B|Cc))|(Ac&B&C); 

F = (A&((B&C)|Cc))|(Ac&B); 

disp([E;F]) 

     0     0     0     1     1     0     1     1   % E subset of F 

     0     0     1     1     1     0     1     1 

G = A|(Ac&B&C); 

H = (A&B)|(B&C)|(A&C)|(A&Bc&Cc); 

disp([G;H]) 

     0     0     0     1     1     1     1     1    % G = H 

     0     0     0     1     1     1     1     1

Minterms for the events , arranged as on a minterm map are

                     0.0168    0.0072    0.0252    0.0108 

                     0.0392    0.0168    0.0588    0.0252 

                     0.0672    0.0288    0.1008    0.0432 

                     0.1568    0.0672    0.2352    0.1008

What is the probability that three or more of the events occur on a trial? Of exactly two? Of two or fewer?

Answer

We use mintable(4) and determine positions with correct number(s) of ones (number of occurrences). An alternate is to use
minvec4 and express the Boolean combinations which give the correct number(s) of ones.

npr02_04 

Minterm probabilities are in pm.  Use mintable(4) 

a = mintable(4); 

s = sum(a);         % Number of ones in each minterm position 

P1 = (s>=3)*pm'   % Select and add minterm probabilities 

P1 =  0.4716 

P2 = (s==2)*pm' 

P2 =  0.3728 

P3 = (s<=2)*pm' 

P3 =  0.5284

Minterms for the events , arranged as on a minterm map are

Exercise 2.3.4

{A,B,C,D}

Exercise 2.3.5

{A,B,C,D,E}
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       0.0216  0.0324  0.0216  0.0324  0.0144  0.0216  0.0144  0.0216 

       0.0144  0.0216  0.0144  0.0216  0.0096  0.0144  0.0096  0.0144 

       0.0504  0.0756  0.0504  0.0756  0.0336  0.0504  0.0336  0.0504 

       0.0336  0.0504  0.0336  0.0504  0.0224  0.0336  0.0224  0.0336

What is the probability that three or more of the events occur on a trial? Of exactly four? Of three or fewer? Of either two or
four?

Answer

We use mintable(5) and determine positions with correct number(s) of ones (number of occurrences).

npr02_05 

Minterm probabilities are in pm.  Use mintable(5) 

a = mintable(5); 

s = sum(a);         % Number of ones in each minterm position 

P1 = (s>=3)*pm'   % Select and add minterm probabilities 

P1 =  0.5380 

P2 = (s==4)*pm' 

P2 =  0.1712 

P3 = (s<=3)*pm' 

P3 =  0.7952 

P4 = ((s==2)|(s==4))*pm' 

P4 =  0.4784

Suppose , , 

, . Determine .

Then determine  and , if possible.

Answer

% file npr02_06.m       % Data file 

% Data for Exercise 2.3.6. 

minvec3 

DV = [A|Ac; A|(Bc&C); A&C; Ac&B; Ac&Cc; B&Cc]; 

DP = [1      0.65     0.20 0.25  0.25   0.30]; 

TV = [((A&Cc)|(Ac&C))&Bc; ((A&Bc)|Ac)&Cc; Ac&(B|Cc)]; 

disp('Call for mincalc') 

npr02_06             % Call for data 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

Call for mincalc 

mincalc 

Data vectors are linearly independent 

  

 Computable target probabilities 

Exercise 2.3.6

P (A∪ C) = 0.65Bc P (AC) = 0.2 P ( B) = 0.25Ac

P ( ) = 0.25A
c
C
c

P (BC) = 0.30 P ((A ∪ C) )C
c

A
c

B
c

P ((A ∪ ) )B
c

A
c
C
c

P ( (B∪ ))A
c

C
c
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    1.0000    0.3000     % The first and third target probability 

    3.0000    0.3500     % is calculated. Check with minterm map. 

The number of minterms is 8 

The number of available minterms is 4 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA

Suppose , , , , , and .
Determine , , and , if possible.

Answer

% file npr02_07.m 

% Data for Exercise 2.3.7. 

minvec3 

DV = [A|Ac; ((A&Bc)|(Ac&B))&C; A&B; Ac&Cc;  A;  C; A&Bc&Cc]; 

DP = [ 1        0.4            0.2   0.3   0.6 0.5   0.1]; 

TV = [(Ac&Cc)|(A&C); ((A&Bc)|Ac)&Cc; Ac&(B|Cc)]; 

disp('Call for mincalc') 

npr02_07             % Call for data 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

Call for mincalc 

mincalc 

Data vectors are linearly independent 

 Computable target probabilities 

    1.0000    0.7000    % All target probabilities calculable 

    2.0000    0.4000    % even though not all minterms are available 

    3.0000    0.4000 

The number of minterms is 8 

The number of available minterms is 6 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA

Suppose , , ,  and .

Determine , , and , if possible.

Answer

% file npr02_08.m 

% Data for Exercise 2.3.8. 

minvec3 

DV = [A|Ac; A;  C;  A&C; Ac&B; Ac&Bc&Cc]; 

DP = [ 1   0.6 0.4  0.3  0.2     0.1]; 

Exercise 2.3.7

P ((A ∪ B)C) = 0.4B
c

A
c

P (AB) = 0.2 P ( ) = 0.3A
c
C
c

P (A) = 0.6 P (C) = 0.5 P (A ) = 0.1B
c
C
c

P ( ∪AC)A
c
C
c

P (A ∪ ) )B
c

A
c
C
c

P ( (B∪ ))A
c

C
c

Exercise 2.3.8

P (A) = 0.6 P (C) = 0.4 P (AC) = 0.3 P ( B) = 0.2A
c

P ( ) = 0.1A
c
B
c
C
c

P ((A∪B)C c
P (A ∪ C)C

c
A
c

P (A ∪ B)C
c

A
c
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TV = [(A|B)&Cc; (A&Cc)|(Ac&C); (A&Cc)|(Ac&B)]; 

disp('Call for mincalc') 

  

  

npr02_08             % Call for data 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

Call for mincalc 

mincalc 

Data vectors are linearly independent 

 Computable target probabilities 

    1.0000    0.5000    % All target probabilities calculable 

    2.0000    0.4000    % even though not all minterms are available 

    3.0000    0.5000 

The number of minterms is 8 

The number of available minterms is 4 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA

Suppose , , and .

Determine  and .

Then repeat with additional data  and 

Answer

% file npr02_09.m 

% Data for Exercise 2.3.9. 

minvec3 

DV = [A|Ac;  A; A&B; A&C; A&B&Cc]; 

DP = [ 1    0.5 0.3  0.3   0.1]; 

TV = [A&(~(B&Cc)); (A&B)|(A&C)|(B&C)]; 

disp('Call for mincalc') 

  

% Modification for part 2 

% DV = [DV; Ac&Bc&Cc; Ac&B&C]; 

% DP = [DP 0.1 0.05]; 

npr02_09             % Call for data 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

Call for mincalc 

mincalc 

Data vectors are linearly independent 

 Computable target probabilities 

    1.0000    0.4000    % Only the first target probability calculable 

The number of minterms is 8 

Exercise 2.3.9

P (A) = 0.5 P (AB) = P (AC) = 0.3 P (AB ) = 0.1C
c

P (A(BC c)c P (AB∪AC ∪BC)

P ( ) = 0.1A
c
B
c
C
c

P ( BC) = 0.05A
c
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The number of available minterms is 4 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA 

DV = [DV; Ac&Bc&Cc; Ac&B&C];  % Modification of data 

DP = [DP 0.1 0.05]; 

mincalc 

Data vectors are linearly independent 

 Computable target probabilities 

    1.0000    0.4000             % Both target probabilities calculable 

    2.0000    0.4500             % even though not all minterms are available 

The number of minterms is 8 

The number of available minterms is 6 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA

Given , , , and .

Determine .

Answer

% file npr02_10.m 

% Data for Exercise 2.3.10. 

minvec4 

DV = [A|Ac;  A;  Ac&Bc; A&Cc; A&C&Dc]; 

DP = [1     0.6  0.2    0.4    0.1]; 

TV = [(Ac&B)|(A&(Cc|D))]; 

disp('Call for mincalc') 

npr02_10 

Variables are A, B, C, D, Ac, Bc, Cc, Dc 

They may be renamed, if desired. 

Call for mincalc 

mincalc 

Data vectors are linearly independent 

 Computable target probabilities 

    1.0000    0.7000             % Checks with minterm map solution

The number of minterms is 16 

The number of available minterms is 0 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA

A survey of a represenative group of students yields the following information:

52 percent are male
85 percent live on campus

Exercise 2.3.10

P (A) = 0.6 P ( ) = 0.2A
c
B
c

P (A ) = 0.4C
c

P (AC ) = 0.1D
c

P ( B∪A( ∪D))Ac C c

Exercise 2.3.11
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78 percent are male or are active in intramural sports (or both)
30 percent live on campus but are not active in sports
32 percent are male, live on campus, and are active in sports
8 percent are male and live off campus
17 percent are male students inactive in sports

a. What is the probability that a randomly chosen student is male and lives on campus?
b. What is the probability of a male, on campus student who is not active in sports?
c. What is the probability of a female student active in sports?

Answer

% file npr02_11.m 

% Data for Exercise 2.3.11. 

% A = male;  B = on campus;  C = active in sports 

minvec3 

DV = [A|Ac;  A;   B;  A|C; B&Cc; A&B&C; A&Bc; A&Cc]; 

DP = [ 1    0.52 0.85 0.78 0.30  0.32   0.08 0.17]; 

TV = [A&B; A&B&Cc; Ac&C]; 

disp('Call for mincalc') 

  

npr02_11 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

Call for mincalc 

mincalc 

Data vectors are linearly independent 

 Computable target probabilities 

    1.0000    0.4400 

    2.0000    0.1200 

    3.0000    0.2600 

The number of minterms is 8 

The number of available minterms is 8 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA

A survey of 100 persons of voting age reveals that 60 are male, 30 of whom do not identify with a political party; 50 are
members of a political party; 20 nonmembers of a party voted in the last election, 10 of whom are female. How many
nonmembers of a political party did not vote? Suggestion Express the numbers as a fraction, and treat as probabilities.

Answer

% file npr02_12.m 

% Data for Exercise 2.3.12. 

% A = male;  B = party member; C = voted last election 

minvec3 

DV = [A|Ac;  A;  A&Bc;  B;  Bc&C; Ac&Bc&C]; 

DP = [  1   0.60 0.30  0.50 0.20  0.10]; 

Exercise 2.3.12
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TV = [Bc&Cc]; 

disp('Call for mincalc') 

npr02_12 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

Call for mincalc 

mincalc 

Data vectors are linearly independent 

 Computable target probabilities 

    1.0000    0.3000 

The number of minterms is 8 

The number of available minterms is 4 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA

During a period of unsettled weather, let A be the event of rain in Austin, B be the event of rain in Houston, and C be the event
of rain in San Antonio. Suppose:

, , , 

  

a. What is the probability of rain in all three cities?
b. What is the probability of rain in exactly two of the three cities?
c. What is the probability of rain in exactly one of the cities?

Answer

% file npr02_13.m 

% Data for Exercise 2.3.13. 

% A = rain in Austin;  B = rain in Houston; 

% C = rain in San Antonio 

minvec3 

DV = [A|Ac; A&B; A&Bc; A&C; (A&Bc)|(Ac&B); B&C; Bc&C; Ac&Bc&Cc]; 

DP = [  1   0.35 0.15  0.20    0.45        0.30 0.05   0.15]; 

TV = [A&B&C; (A&B&Cc)|(A&Bc&C)|(Ac&B&C); (A&Bc&Cc)|(Ac&B&Cc)|(Ac&Bc&C)]; 

disp('Call for mincalc') 

npr02_13 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

Call for mincalc 

mincalc 

Data vectors are linearly independent 

 Computable target probabilities 

    1.0000    0.2000 

    2.0000    0.2500 

    3.0000    0.4000 

The number of minterms is 8 

Exercise 2.3.13

P (AB) = 0.35 P (A ) = 0.15Bc P (AC) = 0.20 P (A ∪ B) = 0.45Bc Ac

P (BC) = 0.30 P ( C) = 0.05B
c

P ( ) = 0.15A
c
B
c
C
c
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The number of available minterms is 8 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA

One hundred students are questioned about their course of study and plans for graduate study. Let  the event the student is
male;  the event the student is studying engineering;  the event the student plans at least one year of foreign language;

 the event the student is planning graduate study (including professional school). The results of the survey are:

There are 55 men students; 23 engineering students, 10 of whom are women; 75 students will take foreign language classes,
including all of the women; 26 men and 19 women plan graduate study; 13 male engineering students and 8 women
engineering students plan graduate study; 20 engineering students will take a foreign language and plan graduate study; 5 non
engineering students plan graduate study but no foreign language courses; 11 non engineering, women students plan foreign
language study and graduate study.

a. What is the probability of selecting a student who plans foreign language classes and graduate study?
b. What is the probability of selecting a women engineer who does not plan graduate study?
c. What is the probability of selecting a male student who either studies a foreign language but does not intend graduate study

or will not study a foreign language but plans graduate study?

Answer

% file npr02_14.m 

% Data for Exercise 2.3.14. 

% A = male;  B = engineering; 

% C = foreign language; D = graduate study 

minvec4 

DV = [A|Ac; A; B; Ac&B; C; Ac&C; A&D; Ac&D; A&B&D; ... 

      Ac&B&D; B&C&D; Bc&Cc&D; Ac&Bc&C&D]; 

DP = [1 0.55 0.23 0.10 0.75 0.45 0.26 0.19 0.13 0.08 0.20 0.05 0.11]; 

TV = [C&D; Ac&Dc; A&((C&Dc)|(Cc&D))]; 

disp('Call for mincalc') 

npr02_14 

Variables are A, B, C, D, Ac, Bc, Cc, Dc 

They may be renamed, if desired. 

Call for mincalc 

mincalc 

Data vectors are linearly independent 

 Computable target probabilities 

    1.0000    0.3900 

    2.0000    0.2600          % Third target probability not calculable 

The number of minterms is 16 

The number of available minterms is 4 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA

Exercise 2.3.14

A =

B= C =

D =
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A survey of 100 students shows that: 60 are men students; 55 students live on campus, 25 of whom are women; 40 read the
student newspaper regularly, 25 of whom are women; 70 consider themselves reasonably active in student affairs—50 of these
live on campus; 35 of the reasonably active students read the newspaper regularly; All women who live on campus and 5 who
live off campus consider themselves to be active; 10 of the on-campus women readers consider themselves active, as do 5 of
the off campus women; 5 men are active, off-campus, non readers of the newspaper.

a. How many active men are either not readers or off campus?
b. How many inactive men are not regular readers?

Answer

% file npr02_15.m 

% Data for Exercise 2.3.15. 

% A = men; B = on campus; C = readers; D = active 

minvec4 

DV = [A|Ac; A;  B;  Ac&B;  C;  Ac&C;  D;  B&D; C&D; ... 

     Ac&B&D; Ac&Bc&D; Ac&B&C&D; Ac&Bc&C&D; A&Bc&Cc&D]; 

DP = [1  0.6 0.55 0.25 0.40 0.25 0.70 0.50 0.35 0.25 0.05 0.10 0.05 0.05]; 

TV = [A&D&(Cc|Bc); A&Dc&Cc]; 

disp('Call for mincalc') 

npr02_15 

Variables are A, B, C, D, Ac, Bc, Cc, Dc 

They may be renamed, if desired. 

Call for mincalc 

mincalc 

Data vectors are linearly independent 

 Computable target probabilities 

    1.0000    0.3000 

    2.0000    0.2500 

The number of minterms is 16 

The number of available minterms is 8 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA

A television station runs a telephone survey to determine how many persons in its primary viewing area have watched three
recent special programs, which we call a, b, and c. Of the 1000 persons surveyed, the results are:

221 have seen at least a; 209 have seen at least b; 112 have seen at least c; 197 have seen at least two of the programs; 45 have
seen all three; 62 have seen at least a and c; the number having seen at least a and b is twice as large as the number who have
seen at least b and c.

(a) How many have seen at least one special?
(b) How many have seen only one special program?

Answer

Exercise 2.3.15

Exercise 2.3.16
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% file npr02_16.m 

% Data for Exercise 2.3.16. 

minvec3 

DV = [A|Ac; A;    B;    C; (A&B)|(A&C)|(B&C); A&B&C; A&C; (A&B)-2*(B&C)]; 

DP = [ 1  0.221 0.209 0.112   0.197           0.045  0.062      0];

TV = [A|B|C; (A&Bc&Cc)|(Ac&B&Cc)|(Ac&Bc&C)]; 

npr02_16 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

Call for mincalc 

mincalc 

Data vectors are linearly independent 

 Computable target probabilities 

    1.0000    0.3000 

    2.0000    0.1030 

The number of minterms is 8 

The number of available minterms is 8 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA

An automobile safety inspection station found that in 1000 cars tested:

100 needed wheel alignment, brake repair, and headlight adjustment
325 needed at least two of these three items
125 needed headlight and brake work
550 needed at wheel alignment

a. How many needed only wheel alignment?
b. How many who do not need wheel alignment need one or none of the other items?

Answer

% file npr02_17.m 

% Data for Exercise 2.3.17. 

% A = alignment;  B = brake work;  C = headlight 

minvec3 

DV = [A|Ac; A&B&C; (A&B)|(A&C)|(B&C); B&C;    A  ]; 

DP = [ 1    0.100      0.325          0.125 0.550]; 

TV = [A&Bc&Cc; Ac&(~(B&C))]; 

disp('Call for mincalc') 

npr02_17 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

Call for mincalc 

mincalc 

Data vectors are linearly independent 

 Computable target probabilities 

Exercise 2.3.17
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    1.0000    0.2500 

    2.0000    0.4250 

The number of minterms is 8 

The number of available minterms is 3 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA

Suppose , , and .

Determine , , and , if possible.

Repeat the problem with he additional data  and .

Answer

% file npr02_18.m 

% Date for Exercise 2.3.18. 

minvec3 

DV = [A|Ac; A&(B|C); Ac; Ac&Bc&Cc]; 

DP = [ 1     0.3     0.6    0.1]; 

TV = [B|C; (((A&B)|(Ac&Bc))&Cc)|(A&C); Ac&(B|Cc)]; 

disp('Call for mincalc') 

% Modification 

% DV = [DV; Ac&B&C; Ac&B]; 

% DP = [DP   0.2     0.3]; 

npr02_18 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

Call for mincalc 

mincalc 

Data vectors are linearly independent 

 Computable target probabilities 

    1.0000    0.8000 

    2.0000    0.4000 

The number of minterms is 8 

The number of available minterms is 2 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA 

DV = [DV; Ac&B&C; Ac&B];      % Modified data 

DP = [DP   0.2     0.3]; 

mincalc                       % New calculation 

Data vectors are linearly independent 

 Computable target probabilities 

    1.0000    0.8000 

    2.0000    0.4000 

    3.0000    0.4000 

The number of minterms is 8 

Exercise 2.3.18

P (A(B∪C)) = 0.3 P ( ) = 0.6A
c

P ( ) = 0.1A
c
B
c
C
c

P (B∪C) P ((AB∪ ) ∪AC)AcBc C c P ( (B∪ ))Ac C c

P ( BC) = 0.2A
c

P ( B) = 0.3A
c
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The number of available minterms is 5 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA

A computer store sells computers, monitors, printers. A customer enters the store. Let A, B, C be the respective events the
customer buys a computer, a monitor, a printer. Assume the following probabilities:

The probability  of buying both a computer and a monitor is 0.49.
The probability  of buying both a computer and a monitor but not a printer is 0.17.
The probability  of buying both a computer and a printer is 0.45.
The probability  of buying both a monitor and a printer is 0.39
The probability  of buying a computer or a printer, but not both is 0.50.
The probability  of buying a computer or a monitor, but not both is 0.43.
The probability  of buying a monitor or a printer, but not both is 0.43.

a. What is the probability , , or  of buying each?
b. What is the probability of buying exactly two of the three items?
c. What is the probability of buying at least two?
d. What is the probability of buying all three?

Answer

% file npr02_19.m 

% Data for Exercise 2.3.19. 

% A = computer;  B = monitor;  C = printer 

minvec3 

DV = [A|Ac; A&B; A&B&Cc; A&C; B&C; (A&Cc)|(Ac&C); ... 

          (A&Bc)|(Ac&B); (B&Cc)|(Bc&C)]; 

DP = [1 0.49 0.17 0.45 0.39 0.50 0.43 0.43]; 

TV = [A; B; C; (A&B&Cc)|(A&Bc&C)|(Ac&B&C); (A&B)|(A&C)|(B&C); A&B&C]; 

disp('Call for mincalc') 

npr02_19 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

Call for mincalc 

mincalc 

Data vectors are linearly independent 

 Computable target probabilities 

    1.0000    0.8000 

    2.0000    0.6100 

    3.0000    0.6000 

    4.0000    0.3700 

    5.0000    0.6900 

    6.0000    0.3200 

The number of minterms is 8 

The number of available minterms is 8 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA

Exercise 2.3.19

P (AB)

P (AB )C c

P (AC)

P (BC)

P (A ⋁ C)C c Ac

P (A ⋁ B)Bc Ac

P (B ⋁ C)C c Bc

P (A) P (B) P (C)
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Data are , , , ,  and 
.

Determine  and , if possible.

Repeat, with the additional data .

Answer

% file npr02_20.m 

% Data for Exercise 2.3.20. 

minvec3 

DV = [A|Ac; A;     B;  A&B&C; A&C; (A&B)|(A&C)|(B&C); B&C - 2*(A&C)]; 

DP = [  1  0.232 0.228 0.045 0.062      0.197            0]; 

TV = [A|B|C; Ac&Bc&Cc]; 

disp('Call for mincalc') 

% Modification 

% DV = [DV; C]; 

% DP = [DP  0.230 ]; 

  

npr02_20 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

mincalc 

Data vectors are linearly independent 

Data probabilities are INCONSISTENT 

The number of minterms is 8 

The number of available minterms is 6 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA 

disp(PMA) 

    2.0000    0.0480 

    3.0000   -0.0450    % Negative minterm probabilities indicate 

    4.0000   -0.0100    % inconsistency of data 

    5.0000    0.0170 

    6.0000    0.1800 

    7.0000    0.0450 

DV = [DV; C]; 

DP = [DP 0.230]; 

mincalc 

Data vectors are linearly independent 

Data probabilities are INCONSISTENT 

The number of minterms is 8 

The number of available minterms is 8 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA

Exercise 2.3.20

P (A) = 0.232 P (B) = 0.228 P (ABC) = 0.045 P (AC) = 0.062 P (AB∪AC ∪BC) = 0.197

P (BC0 = 2P (AC)

P (A∪B∪C) P ( C)AcBc

P (C) = 0.230
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Data are: , , , , . Determine available minterm
probabilities and the following,

if computable:

, , , 

With only six items of data (including , not all minterms are available. Try the additional data 
 and . Are these consistent and linearly independent? Are all minterm probabilities

available?

Answer

% file npr02_21.m 

% Data for Exercise 2.3.21. 

minvec3 

DV = [A|Ac; A;  A&B; A&B&C;  C;  Ac&Cc]; 

DP = [ 1   0.4  0.3  0.25   0.65  0.3 ]; 

TV = [(A&Cc)|(Ac&C); Ac&Bc; A|B; A&Bc]; 

disp('Call for mincalc') 

% Modification 

% DV = [DV; Ac&B&Cc; Ac&Bc]; 

% DP = [DP   0.1      0.3 ]; 

npr02_21 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

Call for mincalc 

mincalc 

Data vectors are linearly independent 

 Computable target probabilities 

    1.0000    0.3500 

    4.0000    0.1000 

The number of minterms is 8 

The number of available minterms is 4 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA 

DV = [DV; Ac&B&Cc; Ac&Bc]; 

DP = [DP   0.1      0.3 ]; 

mincalc 

Data vectors are linearly independent 

 Computable target probabilities 

    1.0000    0.3500 

    2.0000    0.3000 

    3.0000    0.7000 

    4.0000    0.1000 

The number of minterms is 8 

Exercise 2.3.21

P (A) = 0.4 P (AB) = 0.3 P (ABC) = 0.25 P (C) = 0.65 P ( ) = 0.3A
c
C
c

P (A ∪ C)C
c

A
c

P ( )A
c
B
c
P (A∪B) P (A )B

c

P (Ω) = P (A⋁ ) = 1A
c

P ( B ) = 0.1A
c
C
c

P ( ) = 0.3A
c
B
c
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The number of available minterms is 8 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA

Repeat Exercise with  changed from 0.3 to 0.5. What is the result? Explain the reason for this result.

Answer

% file npr02_22.m 

% Data for Exercise 2.3.22. 

minvec3 

DV = [A|Ac; A;  A&B; A&B&C;  C;  Ac&Cc]; 

DP = [ 1   0.4  0.5  0.25   0.65  0.3 ]; 

TV = [(A&Cc)|(Ac&C); Ac&Bc; A|B; A&Bc]; 

disp('Call for mincalc') 

% Modification 

% DV = [DV; Ac&B&Cc; Ac&Bc]; 

% DP = [DP   0.1      0.3 ]; 

npr02_22 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

Call for mincalc 

mincalc 

Data vectors are linearly independent 

Data probabilities are INCONSISTENT 

The number of minterms is 8 

The number of available minterms is 4 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA 

disp(PMA) 

    4.0000   -0.2000 

    5.0000    0.1000 

    6.0000    0.2500 

    7.0000    0.2500 

DV = [DV; Ac&B&Cc; Ac&Bc]; 

DP = [DP   0.1      0.3 ]; 

mincalc 

Data vectors are linearly independent 

Data probabilities are INCONSISTENT 

The number of minterms is 8 

The number of available minterms is 8 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA 

disp(PMA) 

Exercise 2.3.22

P (AB)
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         0    0.2000 

    1.0000    0.1000 

    2.0000    0.1000 

    3.0000    0.2000 

    4.0000   -0.2000 

    5.0000    0.1000 

    6.0000    0.2500 

    7.0000    0.2500

Repeat Exercise with the original data probability matrix, but with  replaced by  in the data vector matrix. What is the
result? Does mincalc work in this case? Check results on a minterm map.

Answer

% file npr02_23.m 

% Data for Exercise 2.3.23. 

minvec3 

DV = [A|Ac; A;  A&C; A&B&C;  C;  Ac&Cc]; 

DP = [ 1   0.4  0.3  0.25   0.65  0.3 ]; 

TV = [(A&Cc)|(Ac&C); Ac&Bc; A|B; A&Bc]; 

disp('Call for mincalc') 

% Modification 

% DV = [DV; Ac&B&Cc; Ac&Bc]; 

% DP = [DP   0.1      0.3 ]; 

npr02_23 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

Call for mincalc 

mincalc 

Data vectors are NOT linearly independent 

Warning: Rank deficient, rank = 5  tol =    5.0243e-15 

 Computable target probabilities 

    1.0000    0.4500 

The number of minterms is 8 

The number of available minterms is 2 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA 

DV = [DV; Ac&B&Cc; Ac&Bc]; 

DP = [DP   0.1      0.3 ]; 

mincalc 

Data vectors are NOT linearly independent 

Warning: Matrix is singular to working precision. 

 Computable target probabilities 

     1   Inf             % Note that p(4) and p(7) are given in data 

     2   Inf 

Exercise 2.3.23

AB AC
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     3   Inf 

The number of minterms is 8 

The number of available minterms is 6 

Available minterm probabilities are in vector pma 

To view available minterm probabilities, call for PMA
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CHAPTER OVERVIEW

3: Conditional Probability
The probability P(A) of an event A is a measure of the likelihood that the event will occur on any trial. Sometimes partial
information determines that an event C has occurred. Given this information, it may be necessary to reassign the likelihood for each
event A. This leads to the notion of conditional probability. For a fixed conditioning event C, this assignment to all events
constitutes a new probability measure which has all the properties of the original probability measure. In addition, because of the
way it is derived from the original, the conditional probability measure has a number of special properties which are important in
applications.

3.1: Conditional Probability
3.2: Problems on Conditional Probability
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3.1: Conditional Probability
The original or prior probability measure utilizes all available information to make probability assignments , , etc.,
subject to the defining conditions (P1), (P2), and (P3). The probability  indicates the likelihood that event A will occur on any
trial.

Frequently, new information is received which leads to a reassessment of the likelihood of event A. For example

An applicant for a job as a manager of a service department is being interviewed. His résumé shows adequate experience and
other qualifications. He conducts himself with ease and is quite articulate in his interview. He is considered a prospect highly
likely to succeed. The interview is followed by an extensive background check. His credit rating, because of bad debts, is found
to be quite low. With this information, the likelihood that he is a satisfactory candidate changes radically.
A young woman is seeking to purchase a used car. She finds one that appears to be an excellent buy. It looks “clean,” has
reasonable mileage, and is a dependable model of a well known make. Before buying, she has a mechanic friend look at it. He
finds evidence that the car has been wrecked with possible frame damage that has been repaired. The likelihood the car will be
satisfactory is thus reduced considerably.
A physician is conducting a routine physical examination on a patient in her seventies. She is somewhat overweight. He
suspects that she may be prone to heart problems. Then he discovers that she exercises regularly, eats a low fat, high fiber,
variagated diet, and comes from a family in which survival well into their nineties is common. On the basis of this new
information, he reassesses the likelihood of heart problems.

New, but partial, information determines a conditioning event , which may call for reassessing the likelihood of event . For one
thing, this means that  occurs iff the event  occurs. Effectively, this makes  a new basic space. The new unit of probability
mass is . How should the new probability assignments be made? One possibility is to make the new assignment to 

 proportional to the probability . These considerations and experience with the classical case suggests the following
procedure for reassignment. Although such a reassignment is not logically necessary, subsequent developments give substantial
evidence that this is the appropriate procedure.

If  is an even having prositive probabilty, the conditional probability of , given  is

For a fixed conditioning event , we have a new likelihood assignment to the event . Now

, , and 

Thus, the new function  satisfies the three defining properties (P1), (P2), and (P3) for probability, so that for fixed C, we
have a new probability measure, with all the properties of an ordinary probability measure.

Remark. When we write  we are evaluating the likelihood of event  when it is known that event  has occurred. This is
not the probability of a conditional event . Conditional events have no meaning in the model we are developing.

A survey of student opinion on a proposed national health care program included 250 students, of whom 150 were
undergraduates and 100 were graduate students. Their responses were categorized Y (affirmative), N (negative), and D
(uncertain or no opinion). Results are tabulated below.

 Y N D

U 60 40 50

G 70 20 10

Suppose the sample is representative, so the results can be taken as typical of the student body. A student is picked at random.
Let Y be the event he or she is favorable to the plan, N be the event he or she is unfavorable, and D is the event of no opinion

P (A) P (B)

P (A)

C A

A AC C

P (C)

A P (AC)

Definition

C A C

P (A|C) =
P (AC)

P (C)

C A

P (A|C) ≥ 0 P (Ω|C) = 1 P ( |C) = = P ( C)/P (C) = P ( |C)⋁j Aj

P ( C⋁j Aj

P (C)
∑j Aj ∑j Aj

P (⋅|C)

P (A|C) A C

A|C

Example  Conditional probabilities from joint frequency data3.1.1
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(or uncertain). Let U be the event the student is an undergraduate and G be the event he or she is a graduate student. The data
may reasonably be interpreted

, , , , etc.

Then

Similarly, we can calculate

, , , , 

We may also calculate directly

, , etc.

Conditional probability often provides a natural way to deal with compound trials carried out in several steps.

An aircraft has two jet engines. It will fly with only one engine operating. Let  be the event one engine fails on a long
distance flight, and  the event the second fails. Experience indicates that . Once the first engine fails, added
load is placed on the second, so that . Now the second engine can fail only if the other has already failed.
Thus  so that

Thus reliability of any one engine may be less than satisfactory, yet the overall reliability may be quite high.

The following example is taken from the UMAP Module 576, by Paul Mullenix, reprinted in UMAP Journal, vol 2, no. 4. More
extensive treatment of the problem is given there.

In a survey, if answering “yes” to a question may tend to incriminate or otherwise embarrass the subject, the response given
may be incorrect or misleading. Nonetheless, it may be desirable to obtain correct responses for purposes of social analysis.
The following device for dealing with this problem is attributed to B. G. Greenberg. By a chance process, each subject is
instructed to do one of three things:

1. Respond with an honest answer to the question.
2. Respond “yes” to the question, regardless of the truth in the matter.
3. Respond “no” regardless of the true answer.

Let A be the event the subject is told to reply honestly, B be the event the subject is instructed to reply “yes,” and C be the event the
answer is to be “no.” The probabilities , , and  are determined by a chance mechanism (i.e., a fractio 
selected randomly are told to answer honestly, etc.). Let  be the event the reply is “yes.” We wish to calculate , the
probability the answer is “yes” given the response is honest.

Solution

Since , we have

which may be solved algebraically to give

Suppose there are 250 subjects. The chance mechanism is such that ,  and . There are 62
responses “yes,” which we take to mean . According to the pattern above

P (G) = 100/250 P (U) = 150/250 P (Y ) = (60 +70)/250 P (Y U) = 60/250

P (Y |U) = = =
P (Y U)

P (U)

60/250

150/250

60

150

P (N |U) = 40/150 P (D|U) = 50/150 P (Y |G) = 70/100 P (N |G) = 20/100 P (D|G) = 10/100

P (U|Y ) = 60/130 P (G|N) = 20/60

Example  Jet aircraft with two engines3.1.2

F1

F2 P ( ) = 0.0003F1

P ( | ) = 0.001F2 F1

⊂F2 F1

P ( ) = P ( ) = P ( )P ( | ) = 3 ×F2 F1F2 F1 F2 F1 10−7

Example  Responses to a sensitive question on a survey3.1.3

P (A) P (B) P (C) P (A)

E P (E|A)

E = EA⋁B

P (E) = P (EA) +P (B) = P (E|A)P (A) +P (B)

P (E|A) =
P (E) −P (B)

P (A)

P (A) = 0.7 P (B) = 0.4 P (C) = 0.16

P (E) = 62/250

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10874?pdf


3.1.3 https://stats.libretexts.org/@go/page/10874

The formulation of conditional probability assumes the conditioning event C is well defined. Sometimes there are subtle
difficulties. It may not be entirely clear from the problem description what the conditioning event is. This is usually due to some
ambiguity or misunderstanding of the information provided.

Five equally qualified candidates for a job, Jim, Paul, Richard, Barry, and Evan, are identified on the basis of interviews and
told that they are finalists. Three of these are to be selected at random, with results to be posted the next day. One of them, Jim,
has a friend in the personnel office. Jim asks the friend to tell him the name of one of those selected (other than himself). The
friend tells Jim that Richard has been selected. Jim analyzes the problem as follows.

Analysis

Let ,  be the event the th of these is hired (  is the event Jim is hired,  is the event Richard is hired, etc.).
Now  (for each ) is the probability that finalist  is in one of the combinations of three from five. Thus, Jim's probability
of being hired, before receiving the information about Richard, is

, 

The information that Richard is one of those hired is information that the event  has occurred. Also, for any pair  the
number of combinations of three from five including these two is just the number of ways of picking one from the remaining
three. Hence,

The conditional probability

This is consistent with the fact that if Jim knows that Richard is hired, then there are two to be selected from the four remaining
finalists, so that

Discussion

Although this solution seems straightforward, it has been challenged as being incomplete. Many feel that there must be
information about how the friend chose to name Richard. Many would make an assumption somewhat as follows. The friend
took the three names selected: if Jim was one of them, Jim's name was removed and an equally likely choice among the other
two was made; otherwise, the friend selected on an equally likely basis one of the three to be hired. Under this assumption, the
information assumed is an event B  which is not the same as A . In fact, computation (see Example 5, below) shows

Both results are mathematically correct. The difference is in the conditioning event, which corresponds to the difference in the
information given (or assumed).

Some properties 
In addition to its properties as a probability measure, conditional probability has special properties which are consequences of the
way it is related to the original probability measure . The following are easily derived from the definition of conditional
probability and basic properties of the prior probability measure, and prove useful in a variety of problem situations.

(CP1) Product rule If , then 

P (E|A) = = ≈ 0.154
62/250 −14/100

70/100

27

175

Example  What is the conditioning event?3.1.4

Ai 1 ≤ i ≤ 5 i A1 A3

P ( )Ai i i

P ( ) = = = P ( )A1

1 ×C(4, 2)

C(5, 3)

6

10
Ai 1 ≤ i ≤ 5

A3 i ≠ j

P ( ) = = = P ( ), i ≠ jA1A3

C(3, 1)

C(5, 3)

3

10
AiAj

P ( | ) = = = 1/2A1 A3
P ( )A1A3

P ( )A3

3/10

6/10

P ( | ) = = = 1/2A1 A3
1 ×C(3, 1)

C(4, 2)

3

6

3 3

P ( | ) = = P ( ) ≠ P ( | )A1 B3
6

10
A1 A1 A3

P (⋅)

P (ABCD) > 0 P (ABCD) = P (A)P (B|A)P (C|AB)P (D|ABC).
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Derivation

The defining expression may be written in product form: . Likewise

and

This pattern may be extended to the intersection of any finite number of events. Also, the events may be taken in any order.

— □

An electronics store has ten items of a given type in stock. One is defective. Four successive customers purchase one of the
items. Each time, the selection is on an equally likely basis from those remaining. What is the probability that all four customes
get good items?

Solution

Let  be the event the th customer receives a good item. Then the first chooses one of the nine out of ten good ones, the
second chooses one of the eight out of nine goood ones, etc., so that

Note that this result could be determined by a combinatorial argument: under the assumptions, each combination of four of ten
is equally likely; the number of combinations of four good ones is the number of combinations of four of the nine. Hence

Three items are to be selected (on an equally likely basis at each step) from ten, two of which are defective. Determine the
probability that the first and third selected are good.

Solution

Let ,  be the even the th unit selected is good. Then . By the product rule

(CP2) Law of total probability Suppose the class  of events is mutually exclusive and every outcome in E is in
one of these events. Thus, , a disjoint union. Then

Five cards are numbered one through five. A two-step selection procedure is carried out as follows.

1. Three cards are selected without replacement, on an equally likely basis.
If card 1 is drawn, the other two are put in a box
If card 1 is not drawn, all three are put in a box

2. One of cards in the box is drawn on an equally likely basis (from either two or three)

Let  be the event the th card is drawn on the first selection and let  be the event the card numbered  is drawn on the
second selection (from the box). Determine , , and .

P (AB) = P (A)P (B|A)

P (ABC) = P (A) ⋅ = P (A)P (B|A)P (C|AB)
P (AB)

P (A)

P (ABC)

P (AB)

P (ABCD) = P (A) ⋅ ⋅ = P (A)P (B|A)P (C|AB)P (D|ABC)
P (AB)

P (A)

P (ABC)

P (AB)

P (ABCD)

P (ABC)

Example  Selection of items from a lot3.1.5

Ei i

P ( ) = P ( )P ( | )P ( | )P ( | ) = ⋅ ⋅ ⋅ =E1E2E3E4 E1 E2 E1 E3 E1E2 E4 E1E2E3
9

10

8

9

7

8

6

7

6

10

P ( ) = = = 3/5E1E2E3E4
C(9, 4)

C(10, 4)

126

210

Example  A selection problem3.1.6

Gi 1 ≤ i ≤ 3 i = ⋁G1G3 G1G2G3 G1Gc
2G3

P ( ) = P ( )P ( | )P ( | ) +P ( )P ( | )P ( | ) = ⋅ ⋅ + ⋅ ⋅ =G1G3 G1 G2 G1 G3 G1G2 G1 Gc
2 G1 G3 G1Gc

2

8

10

7

9

6

8

8

10

2

9

7

8

28

45
≈ 0.6

{ : 1 ≤ i ≤ n}Ai

E = E⋁ E⋁ ⋅ ⋅ ⋅⋁ EA1 A2 An

P (E) = P (E| )P ( ) +P (E| )P ( ) +⋅ ⋅ ⋅ +P (E| )P ( )A1 A1 A2 A2 An An

Example  a compound experiment3.1.7

Ai i Bi i

P ( )B5 P ( )A1B5 P ( | )A1 B5
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Solution

From Example 3.1.4, we have  and . This implies

Now we can draw card five on the second selection only if it is selected on the first drawing, so that . Also 
. We therefore have . By the law of total probability (CP2),

Also, since ,

We thus have

Occurrence of event  has no affect on the likelihood of the occurrence of . This condition is examined more thoroughly
in the chapter on "Independence of Events".

Often in applications data lead to conditioning with respect to an event but the problem calls for “conditioning in the opposite
direction.”

Students in a freshman mathematics class come from three different high schools. Their mathematical preparation varies. In
order to group them appropriately in class sections, they are given a diagnostic test. Let  be the event that a student tested is
from high school , . Let F be the event the student fails the test. Suppose data indicate

, , , , , 

A student passes the exam. Determine for each  the conditional probability  that the student is from high school .

Solution

Then

Similarly,

 and 

The basic pattern utilized in the reversal is the following.

(CP3) Bayes' rule If  (as in the law of total probability), then

  The law of total probabilty yields 

Such reversals are desirable in a variety of practical situations.

Begin with items in two lots:

1. Three items, one defective.
2. Four items, one defective.

P ( ) = 6/10Ai P ( ) = 3/10AiAj

P ( ) = P ( ) −P ( ) = 3/10AiA
c
j Ai AiAj

⊂B5 A5

= ⋁A5 A1A5 Ac
1A5 = = ⋁B5 B5A5 B5A1A5 B5Ac

1A5

P ( ) = P ( | )P ( ) +P ( | )P ( ) = ⋅ + ⋅ =B5 B5 A1A5 A1A5 B5 Ac
1A5 Ac

1A5
1

2

3

10

1

3

3

10

1

4

=A1B5 A1A5B5

P ( ) = P ( 0 = P ( )P ( | ) = ⋅ =A1B5 A1A5B5 A1A5 B5 A1A5
3

10

1

2

3

20

P ( | ) = = = P ( )A1 B5

3/20

5/20

6

10
A1

B1 A1

Example  Reversal of conditioning3.1.8

Hi

i 1 ≤ i ≤ 3

P ( ) = 0.2H1 P ( ) = 0.5H2 P ( ) = 0.3H3 P (F | ) = 0.10H1 P (F | ) = 0.02H2 P (F | ) = 0.06H3

i P ( | )Hi F c i

P ( ) = P ( | )P ( ) +P ( | )P ( ) +P ( | )P ( ) = 0.90 ⋅ 0.2 +0.98 ⋅ 0.5 +0.94 ⋅ 0.3 = 0.952F c F c H1 H1 F c H2 H2 F c H3 H3

P ( | ) = = = = 0.1891H1 F c
P ( )F cH1

P ( )F c

P ( | )P ( )F c H1 H1

P ( )F c

180

952

P ( | ) = = = 0.5147H2 F c
P ( | )P ( )F c H2 H2

P ( )F c

590

952
P ( | ) = = = 0.2962H3 F c

P ( | )P ( )F c H3 H3

P ( )F c

282

952

E ⊂⋁n
i=1 Ai

P ( |E) = =Ai

P ( E)Ai

P (E)

P (E| )P ( )Ai Ai

P (E)
1 ≤ i ≤ n P (E)

Example  A compound selection and reversal3.1.9
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One item is selected from lot 1 (on an equally likely basis); this item is added to lot 2; a selection is then made from lot 2 (also
on an equally likely basis). This second item is good. What is the probability the item selected from lot 1 was good?

Solution

Let  be the event the first item (from lot 1) was good, and  be the event the second item (from the augmented lot 2) is
good. We want to determine . Now the data are interpreted as

, , 

By the law of total probability (CP2),

By Bayes' rule (CP3),

Medical tests. Suppose D is the event a patient has a certain disease and T is the event a test for the disease is positive. Data
are usually of the form: prior probability  (or prior odds ), probability  of a false positive, and
probability  of a false negative. The desired probabilities are  and .
Safety alarm. If D is the event a dangerous condition exists (say a steam pressure is too high) and T is the event the safety
alarm operates, then data are usually of the form , , and , or equivalently (e.g.,  and 

). Again, the desired probabilities are that the safety alarms signals correctly,  and .
Job success. If H is the event of success on a job, and E is the event that an individual interviewed has certain desirable
characteristics, the data are usually prior  and reliability of the characteristics as predictors in the form  and 

. The desired probability is .
Presence of oil. If H is the event of the presence of oil at a proposed well site, and E is the event of certain geological
structure (salt dome or fault), the data are usually  (or the odds), , and . The desired probability is 

.
Market condition. Before launching a new product on the national market, a firm usually examines the condition of a test
market as an indicator of the national market. If H is the event the national market is favorable and E is the event the test
market is favorable, data are a prior estimate  of the likelihood the national market is sound, and data  and 

 indicating the reliability of the test market. What is desired is , the likelihood the national market is
favorable, given the test market is favorable.

The calculations, as in Example 3.8, are simple but can be tedious. We have an m-procedure called bayes to perform the
calculations easily. The probabilities  are put into a matrix PA and the conditional probabilities  are put into matrix
PEA. The desired probabilities  and  are calculated and displayed

>> PEA = [0.10 0.02 0.06]; 

>> PA =  [0.2 0.5 0.3]; 

>> bayes

Requires input PEA = [P(E|A1) P(E|A2) ... P(E|An)] 

and PA = [P(A1) P(A2) ... P(An)] 

Determines PAE  = [P(A1|E) P(A2|E) ... P(An|E)] 

       and PAEc = [P(A1|Ec) P(A2|Ec) ... P(An|Ec)] 

Enter matrix PEA of conditional probabilities  PEA 

Enter matrix  PA of probabilities  PA 

P(E) = 0.048 

G1 G2

P ( | )G1 G2

P ( ) = 2/3G1 P ( | ) = 4/5G2 G1 P ( | ) = 3/5G2 Gc
1

P ( ) = P ( )P ( | ) +P ( )P ( | ) = ⋅ + ⋅ =G2 G1 G2 G1 Gc
1 G2 Gc

1

2

3

4

5

1

3

3

5

11

15

P ( | ) = = = ≈ 0.73G1 G2

P ( | )P ( )G2 G1 G1

P ( )G2

4/5 ×2/3

11/15

8

11

Example  Additional problems requiring reversals3.1.10

P (D) P (D)/P ( )Dc P (T | )Dc

P ( |D)T c P (D|T ) P ( | )Dc T c

P (D) P (T | )Dc P ( |D)T c P ( | )T c Dc

P (T |D) P (D|T ) P ( | )Dc T c

P (H) P (H)

P (E| )H c P (H|E)

P (H) P (E|H) P (E| )H c

P (H|E)

P (H) P (E|H)

P (E| )H c P (H|E)

P ( )Ai P (E| )Ai

P ( |E)Ai P | )Ai Ec

Example  matlab calculations for3.1.11
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P(E|Ai)   P(Ai)     P(Ai|E)   P(Ai|Ec) 

0.1000    0.2000    0.4167    0.1891 

0.0200    0.5000    0.2083    0.5147 

0.0600    0.3000    0.3750    0.2962 

Various quantities are in the matrices PEA, PA, PAE, PAEc, named above

The procedure displays the results in tabular form, as shown. In addition, the various quantities are in the workspace in the
matrices named, so that they may be used in further calculations without recopying.

The following variation of Bayes' rule is applicable in many practical situations.

(CP3*) Ratio form of Bayes' rule 

The left hand member is called the posterior odds, which is the odds after knowledge of the occurrence of the conditioning event.
The second fraction in the right hand member is the prior odds, which is the odds before knowledge of the occurrence of the
conditioning event . The first fraction in the right hand member is known as the likelihood ratio. It is the ratio of the probabilities
(or likelihoods) of  for the two different probability measures  and .

As a part of a routine maintenance procedure, a computer is given a performance test. The machine seems to be operating so
well that the prior odds it is satisfactory are taken to be ten to one. The test has probability 0.05 of a false positive and 0.01 of a
false negative. A test is performed. The result is positive. What are the posterior odds the device is operating properly?

Solution

Let  be the event the computer is operating satisfactorily and let  be the event the test is favorable. The data are 
, , and .Then by the ratio form of Bayes' rule

 so that 

The following property serves to establish in the chapters on "Independence of Events" and "Conditional Independence" a number
of important properties for the concept of independence and of conditional independence of events.

(CP4) Some equivalent conditions If  and , then

 iff  iff  and

 iff  iff 

where * is  or  and  is  or , respectively.

Because of the role of this property in the theory of independence and conditional independence, we examine the derivation of
these results.

VERIFICATION of (CP4)

 iff  (divide by  - may exchange  and  
 iff  (divide by  - may exchange  and  
 iff  iff  iff 

 
we may use c to get  iff  iff 

— □

A number of important and useful propositons may be derived from these.

, but, in general, . 
 iff . 

= = ⋅
P (A|C)

P (B|C)

P (AC)

P (BC)

P (C|A)

P (C|B)

P (A)

P (B)

C

C P (⋅|A) P (⋅|B)

Example  A performance test3.1.12

S T

P (S)/P ( ) = 10Sc P (T | ) = 0.05Sc P ( |S) = 0.01T c

= ⋅ = ⋅ 10 = 198
P (S|T )

P ( |T )Sc

P (T |S)

P (T |Sc

P (S)

P ( )Sc

0.99

0.05
P (S|T ) = = 0.9950

198

199

0 < P (A) < 1 0 < P (B) < 1

P (A|B) ∗ P (A) P (B|A) ∗ P (B) P (AB) ∗ P (A)P (B)

P (AB) ∗ P (A)P (B) P ( ) ∗ P ( )P ( )AcBc Ac Bc P (A ) ⋄ P (A)P ( )Bc Bc

<, ≤, =, ≥, > ⋄ >, ≥, =, ≤, <

P (AB) ∗ P (A)P (B) P (A|B) ∗ P (A) P (B) A Ac

P (AB) ∗ P (A)P (B) P (B|A) ∗ P (B) P (A) B Bc

P (AB) ∗ P (A)P (B) [P (A) −P (A )] ∗ P (A)[1 −P ( )]Bc Bc −P (A ) ∗ −P (A)P ( )Bc Bc

P (A ) ⋄ P (A)P ( )Bc Bc

P (AB) ∗ P (A)P (B) P (A ) ⋄ P (A)P ( )BC Bc P ( ) ∗ P ( )P ( )AcBc Ac Bc

P (A|B) +P ( |B) = 1Ac P (A|B) +P (A| ) ≠ 1Bc

P (A|B) > P (A) P (A| ) < P (A)Bc
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 iff . 
 iff .

VERIFICATION — Exercises (see problem set)

— □

Repeated conditioning
Suppose conditioning by the event  has occurred. Additional information is then received that event D has occurred. We have a
new conditioning event . There are two possibilities:

Reassign the conditional probabilities.  becomes

Reassign the total probabilities:  becomes

Basic result: . Thus repeated conditioning by two events may be done in any order, or may be
done in one step. This result extends easily to repeated conditioning by any finite number of events. This result is important in
extending the concept of "Independence of Events" to "Conditional Independence". These conditions are important for many
problems of probable inference.

This page titled 3.1: Conditional Probability is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

P ( |B) > P ( )Ac Ac P (A|B) < P (A)

P (A|B) > P (A) P ( | ) > P ( )Ac Bc Ac

C

CD

(A)PC

(A|D) = =PC

(AD)PC

(D)PC

P (ACD)

P (CD)

P (A)

(A) = P (A|CD) =PCD

P (ACD)

P (CD)

(A|D) = P (A|CD) = (A|C)PC PD
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3.2: Problems on Conditional Probability

Given the following data:

, , , , 

Determine, if possible, the conditional probability .

Answer

% file npr03_01.m 

% Data for Exercise 3.2.1. 

minvec3 

DV = [A|Ac; A;  A&B; B&C; Ac|(B&C); Ac&B&Cc]; 

DP = [ 1   0.55 0.30 0.20   0.55     0.15  ]; 

TV = [Ac&B; B]; 

disp('Call for mincalc') 

npr03_01 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

Call for mincalc 

mincalc 

Data vectors are linearly independent 

 Computable target probabilities 

    1.0000    0.2500 

    2.0000    0.5500 

The number of minterms is 8 

The number of available minterms is 4 

- - - - - - - - - - - - 

P = 0.25/0.55 

P =  0.4545

In Exercise 11 from "Problems on Minterm Analysis," we have the following data: A survey of a represenative group of
students yields the following information:

52 percent are male
85 percent live on campus
78 percent are male or are active in intramural sports (or both)
30 percent live on campus but are not active in sports
32 percent are male, live on campus, and are active in sports
8 percent are male and live off campus
17 percent are male students inactive in sports

Let A = male, B = on campus, C = active in sports.

a. A student is selected at random. He is male and lives on campus. What is the (conditional) probability that he is active in
sports?

b. A student selected is active in sports. What is the(conditional) probability that she is a female who lives on campus?

Exercise 3.2.1

P (A) = 0.55 P (AB) = 0.30 P (BC) = 0.20 P ( ∪ BC) = 0.55Ac P ( B ) = 0.15Ac C c

P ( |B) = P ( B)/P (B)Ac Ac

Exercise 3.2.2
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Answer

npr02_11 

- - - - - - - - - - - - 

mincalc 

- - - - - - - - - - - - 

mincalct 

Enter matrix of target Boolean combinations  [A&B&C; A&B; Ac&B&C; C] 

 Computable target probabilities 

    1.0000    0.3200 

    2.0000    0.4400 

    3.0000    0.2300 

    4.0000    0.6100 

PC_AB = 0.32/0.44 

PC_AB =  0.7273 

PAcB_C = 0.23/0.61 

PAcB_C = 0.3770 

In a certain population, the probability a woman lives to at least seventy years is 0.70 and is 0.55 that she will live to at least
eighty years. If a woman is seventy years old, what is the conditional probability she will survive to eighty years? Note that if 

 then .

Answer

Let  event she lives to seventy and  event she lives to eighty. Since , 
.

From 100 cards numbered 00, 01, 02, , 99, one card is drawn. Suppose A  is the event the sum of the two digits on a card is 
, , and  is the event the product of the two digits is . Determine  for each possible .

Answer

 is the event one of the first ten is draw.  is the event that the card with numbers  is drawn. 
 for each , 0 through 9.

Two fair dice are rolled.

a. What is the (conditional) probability that one turns up two spots, given they show different numbers?
b. What is the (conditional) probability that the first turns up six, given that the sum is , for each  from two through 12?
c. What is the (conditional) probability that at least one turns up six, given that the sum is , for each  from two through 12?

Answer

a. There are  ways to choose all different. There are  ways that they are different and one turns up two spots. The
conditional probability is 2/6.

Exercise 3.2.3

A ⊂ B P (AB) = P (A)

A = B = B ⊂ A

P (B|A) = P (AB)/P (A) = P (B)/P (A) = 55/70

Exercise 3.2.4

⋅ ⋅ ⋅ i
i 0 ≤ i ≤ 18 Bj j P ( | )Ai B0 i

B0 AiB0 0i

P ( | ) = (1/100)/(1/10) = 1/10ai B0 i

Exercise 3.2.5

k k

k k

6 ×5 2 ×5
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b. Let  = event first is a six and  event the sum is . Now  for . A table of sums shows 
 and  for  through 12, respectively. Hence 

, respectively.

c. If  is the event at least one is a six, then  for  through 11 and . Thus, the
conditional probabilities are 2/6, 2/5, 2/4, 2/3, 1, 1, respectively.

Four persons are to be selected from a group of 12 people, 7 of whom are women.

a. What is the probability that the first and third selected are women?
b. What is the probability that three of those selected are women?
c. What is the (conditional) probability that the first and third selected are women, given that three of those selected are

women?

Answer

Twenty percent of the paintings in a gallery are not originals. A collector buys a painting. He has probability 0.10 of buying a
fake for an original but never rejects an original as a fake, What is the (conditional) probability the painting he purchases is an
original?

Answer

Let  the event the collector buys, and  the event the painting is original. Assume  and 
. If , then

Five percent of the units of a certain type of equipment brought in for service have a common defect. Experience shows that 93
percent of the units with this defect exhibit a certain behavioral characteristic, while only two percent of the units which do not
have this defect exhibit that characteristic. A unit is examined and found to have the characteristic symptom. What is the
conditional probability that the unit has the defect, given this behavior?

Answer

Let  the event the unit is defective and  the event it has the characteristic. Then , ,
and .

A shipment of 1000 electronic units is received. There is an equally likely probability that there are 0, 1, 2, or 3 defective units
in the lot. If one is selected at random and found to be good, what is the probability of no defective units in the lot?

Answer

Let  the event of  defective and  be the event a good one is chosen.

A6 =Sk k = ∅A6Sk k ≤ 6
P ( ) = 1/36A6Sk P ( ) = 6/36, 5/36, 4/36, 3/36, 2/36, 1/36Sk k = 7
P ( | ) = 1/6, 1/5.1/4, 1/3.1/2, 1A6 Sk

AB6 A ) = 2/36B6Sk k = 7 P (A 2) = 1/36B6S1

Exercise 3.2.6

P ( ) = P ( ) +P ( ) = ⋅ ⋅ + ⋅ ⋅ =W1W3 W1W2W3 W1W c
2

W3
7

12

6

11

5

10

7

12

5

11

6

10

7

22

Exercise 3.2.7

B = G = P (B|G) = 1
P (B| ) = 0.1Gc P (G) = 0.8

P (G|B) = = = =
P (GB)

P (B)

P (B|G)P (G)

P (B|G)P (G) +P (B| )P ( )Gc Gc

0.8

0.8 +0.1 ⋅ 0.2

40

41

Exercise 3.2.8

D = C = P (D) = 0.05 P (C|D) = 0.93
P (C| ) = 0.02Dc

P (D|C) = = =
P (C|D)P (D)

P (C|D)P (D) +P (C| )P ( )Dc Dc

0.93 ⋅ 0.05

0.93 ⋅ 0.05 +0.02 ⋅ 0.95

93

131

Exercise 3.2.9

=Dk k G
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Data on incomes and salary ranges for a certain population are analyzed as follows. = event annual income is less than
$25,000; = event annual income is between $25,000 and $100,000; = event annual income is greater than $100,000. =
event did not complete college education; = event of completion of bachelor's degree; = event of completion of graduate
or professional degree program. Data may be tabulated as follows: ,  and .

0.85 0.10 0.05

0.10 0.80 0.10

0.05 0.50 0.45

0.50 0.40 0.10

a. Determine .
b. Suppose a person has a university education (no graduate study). What is the (conditional) probability that he or she will

make $25,000 or more?
c. Find the total probability that a person's income category is at least as high as his or her educational level.

Answer

a. 

b. 

c. 

In a survey, 85 percent of the employees say they favor a certain company policy. Previous experience indicates that 20 percent
of those who do not favor the policy say that they do, out of fear of reprisal. What is the probability that an employee picked at
random really does favor the company policy? It is reasonable to assume that all who favor say so.

Answer

, . Also, reasonable to assume .

 implies 

A quality control group is designing an automatic test procedure for compact disk players coming from a production line.
Experience shows that one percent of the units produced are defective. The automatic test procedure has probability 0.05 of
giving a false positive indication and probability 0.02 of giving a false negative. That is, if  is the event a unit tested is
defective, and  is the event that it tests satisfactory, then  and . Determine the probability 

 that a unit which tests good is, in fact, free of defects.

Answer

P ( |G) =D0
P (G| )P ( )D0 D0

P (G| )P ( ) +P (G| )P ( ) +P (G| )P ( ) +P (G| )P ( )D0 D0 D1 D1 D2 D2 D3 D3

= =
1 ⋅ 1/4

(1/4)(1 +999/1000 +998/1000 +997/1000)

1000

3994

Exercise 3.2.10

S1

S2 S3 E1

E2 E3

P ( ) = 0.65E1 P ( ) = 0.30E2 P ( ) = 0.05E3

P ( | )Si Ej

S1 S2 S3

E1

E2

E3

P( )Si

P ( )E3S3

P ( ) = P ( | )P ( ) = 0.45 ⋅ 0.05 = 0.0225E3S3 S3 E3 E3

P ( ∨ | ) = 0.80 +0.10 = 0.90S2 S3 E2

p = (0.85 +0.10 +0.05) ⋅ 0.65 +(0.80 +0.10) ⋅ 0.30 +0.45 ⋅ 0.05 = 0.9425

Exercise 3.2.11

P (S) = 0.85 P (S| ) = 0.20F c P (S|F ) = 1

P (S) = P (S|F )P (F ) +P (S| )[1 −P (F )]F c P (F ) = =
P (S) −P (S| )F c

1 −P (S| )F c

13

16

Exercise 3.2.12

D

T P (T |D) = 0.05 P ( | ) = 0.02T c Dc

P ( |T )Dc
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Five boxes of random access memory chips have 100 units per box. They have respectively one, two, three, four, and five
defective units. A box is selected at random, on an equally likely basis, and a unit is selected at random therefrom. It is
defective. What are the (conditional) probabilities the unit was selected from each of the boxes?

Answer

 the event from box .  and .

, 

Two percent of the units received at a warehouse are defective. A nondestructive test procedure gives two percent false positive
indications and five percent false negative. Units which fail to pass the inspection are sold to a salvage firm. This firm applies a
corrective procedure which does not affect any good unit and which corrects 90 percent of the defective units. A customer buys
a unit from the salvage firm. It is good. What is the (conditional) probability the unit was originally defective?

Answer

Let  = event test indicates defective,  = event initially defective, and  event unit purchased is good. Data are

, , , ,

, 

, 

At a certain stage in a trial, the judge feels the odds are two to one the defendent is guilty. It is determined that the defendent is
left handed. An investigator convinces the judge this is six times more likely if the defendent is guilty than if he were not.
What is the likelihood, given this evidence, that the defendent is guilty?

Answer

Let  = event the defendent is guilty,  = the event the defendent is left handed. Prior odds: . Result of
testimony: .

= = =
|TDc

P (D|T )

P (T | )P ( )Dc Dc

P (T |D)P (D)

0.98 ⋅ 0.99

0.05 ⋅ 0.01

9702

5

P ( |T ) = = 1 −Dc 9702

9707

5

9707

Exercise 3.2.13

=Hi i P ( ) = 1/5Hi P (D| ) = i/100Hi

P ( |D) = = i/15Hi

P (D| )P ( )Hi Hi

∑P (D| )P ( )Hi Hj

1 ≤ i ≤ 5

Exercise 3.2.14

T D G =

P (D) = 0.02 P ( |D) = 0.02T c P (T | ) = 0.05Dc P (G ) = 0T c

P (G|DT ) = 0.90 P (G| T ) = 1Dc

P (D|G) =
P (GD)

P (G)
P (GD) = P (GT D) = P (D)P (T |D)P (G|T D)

P (G) = P (GT ) = P (GDT ) +P (G T ) = P (D)P (T |D)P (G|T D) +P ( )P (T | )P (G|T )Dc Dc Dc Dc

P (D|G) = =
0.02 ⋅ 0.98 ⋅ 0.90

0.02 ⋅ 0.98 ⋅ 0.90 +0.98 ⋅ 0.05 ⋅ 1.00

441

1666

Exercise 3.2.15

G L P (G)/P ( ) = 2Gc

P (L|G)/P (L| ) = 6Gc

= ⋅ = 2 ⋅ 6 = 12
P (G|L)

P ( |L)Gc

P (G)

P ( )Gc

P (L|G)

P (L| )Gc

P (G|L) = 12/13
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Show that if  and , then . Is the converse true? Prove or give a
counterexample.

Answer

.

The converse is not true. Consider , .

, , and . Then

But .

Since  is a probability measure for a given , we must have . Construct an example to show
that in general .

Answer

Suppose  with . Then  and  so the sum is less than one.

Use property (CP4) to show

a.  iff 

b.  iff 

c.  iff 

Answer

a.  iff  iff  iff 

b.  iff  iff  iff 

c.  iff  iff  iff 

Show that .

Answer

. Simple algebra gives the desired result.

Show that .

Answer

Exercise 3.2.16

P (A|C) > P (B|C) P (A| ) > P (B| )C c C c P (A) > P (B)

P (A) = P (A|C)P (C) +P (A| )P ( ) > P (B|C)P (C) +P (B| )P ( ) = P (B)C c C c C c C c

P (C) = P ( ) = 0.5C c P (A|C) = 1/4

P (A| ) = 3/4C c P (B|C) = 1/2 P (B| ) = 1/4C c

1/2 = P (A) = (1/4 +3/4) > (1/2 +1/4) = P (B) = 3/8
1

2

1

2

P (A|C) < P (B|C)

Exercise 3.2.17

P (⋅|B) B P (A|B) +P ( |B) = 1Ac

P (A|B) +P (A| ) ≠ 1Bc

A ⊂ B P (A) < P (B) P (A|B) = P (A)/P (B) < 1 P (A| ) = 0Bc

Exercise 3.2.18

P (A|B) > P (A) P (A| ) < P (A)Bc

P ( |B) > P ( )Ac Ac P (A|B) < P (A)

P (A|B) > P (A) P ( | ) > P ( )Ac Bc Ac

P (A|B) > P (A) P (AB) > P (A)P (B) P (A ) < P (A)P ( )Bc Bc P (A| ) < P (A)Bc

P ( |B) > P ( )Ac Ac P ( B) > P ( )P (B)Ac Ac P (AB) < P (A)P (B) P (A|B) < P (A)

P (A|B) > P (A) P (AB) > P (A)P (B) P ( ) > P ( )P ( )AcBc Ac Bc P ( | ) > P ( )Ac Bc Ac

Exercise 3.2.19

P (A|B) ≥ (P (A) +P (B) −1)/P (B)

1 ≥ P (A ∪ B) = P (A) +P (B) −P (AB) = P (A) +P (B) −P (A|B)P (B)

Exercise 3.2.20

P (A|B) = P (A|BC)P (C|B) +P (A|B )P ( |B)C c C c

P (A|B) = =
P (AB)

P (B)

P (ABC) +P (AB )C c

P (B)
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An individual is to select from among  alternatives in an attempt to obtain a particular one. This might be selection from
answers on a multiple choice question, when only one is correct. Let  be the event he makes a correct selection, and  be the
event he knows which is correct before making the selection. We suppose  and . Determine 

; show that  and  increases with  for fixed .

Answer

, , 

 increases from 1 to  as 

Polya's urn scheme for a contagious disease. An urn contains initially  black balls and  red balls . A ball is
drawn on an equally likely basis from among those in the urn, then replaced along with  additional balls of the same color.
The process is repeated. There are  balls on the first choice,  balls on the second choice, etc. Let  be the event of a
black ball on the th draw and  be the event of a red ball on the th draw. Determine

a.  
b.  
c.  
d. 

Answer

a. 

b. 

c. 

d.  with . Using (c), we have

This page titled 3.2: Problems on Conditional Probability is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

= = P (A|BC)P (C|B) +P (A|B )P ( |B)
P (A|BC)P (BC) +P (A|B )P (B )C c C c

P (B)
C c C c

Exercise 3.2.21

n

A B

P (B) = p P (A| ) = 1/nBc

P (B|A) P (B|A) ≥ P (B) P (B|A) n p

P (A|B) = 1 P (A| ) = 1/nBc P (B) = p

P (B|A) = = =
P (A|B)P (B)

P (A|B)P (B) +P (A| )P ( )Bc Bc

p

p + (1 −p)
1

n

np

(n −1)p +1

=
P (B|A)

P (B)

n

np +1 −p
1/p n → ∞

Exercise 3.2.22

b r (r +b = n)
c

n n +c Bk

k Rk k

P ( | )B2 R1

P ( )B1B2

P ( )R2

P ( | )B1 R2

P ( | ) =B2 R1
b

n +c

P ( ) = P ( )P ( | ) = ⋅B1B2 B2 B2 B1
b

n

b +c

n +c

P ( )P ( | )P ( ) +P ( | )P ( )R2 R2 R1 R1 R2 B1 B1

= ⋅ + ⋅ =
r +c

n +c

r

n

r

n +c

b

n

r(r +c +b)

n(n +c)

P ( | ) =B1 R2
P ( | )P ( )R2 B1 B1

P ( )R2
P ( | )P ( ) = ⋅R2 B1 B1

r

n +c

b

n

P ( | ) = =B1 R2
b

r +b +c

b

n +c
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4.1: Independence of Events
Historically, the notion of independence has played a prominent role in probability. If events form an independent class, much less
information is required to determine probabilities of Boolean combinations and calculations are correspondingly easier. In this unit,
we give a precise formulation of the concept of independence in the probability sense. As in the case of all concepts which attempt
to incorporate intuitive notions, the consequences must be evaluated for evidence that these ideas have been captured successfully.

Independence as lack of conditioning
There are many situations in which we have an “operational independence.”

Supose a deck of playing cards is shuffled and a card is selected at random then replaced with reshuffling. A second card picked
on a repeated try should not be affected by the first choice.
If customers come into a well stocked shop at different times, each unaware of the choice made by the others, the the item
purchased by one should not be affected by the choice made by the other.
If two students are taking exams in different courses, the grade one makes should not affect the grade made by the other.

The list of examples could be extended indefinitely. In each case, we should expect to model the events as independent in some
way. How should we incorporate the concept in our developing model of probability?

We take our clue from the examples above. Pairs of events are considered. The “operational independence” described indicates that
knowledge that one of the events has occured does not affect the likelihood that the other will occur. For a pair of events { , },
this is the condition

Occurrence of the event  is not “conditioned by” occurrence of the event . Our basic interpretation is that  indicates of the
likelihood of the occurrence of event . The development of conditional probability in the module Conditional Probability, leads to
the interpretation of  as the likelihood that  will occur on a trial, given knowledge that  as occurred. If such knowledge
of the occurrence of  does not affect the likelihood of the occurrence of , we should be inclined to think of the events  and 
as being independent in a probability sense.

Independent pairs
We take our clue from the condition . Property (CP4) for conditional probability (in the case of equality) yields
sixteen equivalent conditions as follows.

 
 

These conditions are equivalent in the sense that if any one holds, then all hold. We may chose any one of these as the defining
condition and consider the others as equivalents for the defining condition. Because of its simplicity and symmetry with respect to
the two events, we adopt the product rule in the upper right hand corner of the table.

Definition. The pair { , } of events is said to be (stochastically) independent iff the following product rule holds:

Remark. Although the product rule is adopted as the basis for definition, in many applications the assumptions leading to
independence may be formulated more naturally in terms of one or another of the equivalent expressions. We are free to do this, for
the effect of assuming any one condition is to assume them all.

A B

P (A|B) = P (A)

A B P (A)
A

P (A|B) A B

B A A B

P (A|B) = P (A)

P(A|B) = P(A) P(B|A) = P(B) P(AB) = P(A)P(B)

P(A| ) = P(A)Bc P( |A) = P( )Bc Bc P(A ) = P(A)P( )Bc Bc

P( |B) = P( )Ac Ac P(B| ) = P(B)Ac P( B) = P( )P(B)Ac Ac

P( | ) = P( )Ac Bc Ac P( | ) = P( )Bc Ac Bc P( ) = P( )P( )AcBc Ac Bc

P(A|B) = P(A| )Bc P( |B) = P( | )Ac Ac Bc P(B|A) = P(B| )Ac P( |A) = P( | )Bc Bc Ac

A B

P (AB) = P (A)P (B)
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The equivalences in the right-hand column of the upper portion of the table may be expressed as a replacement rule, which we
augment and extend below:

If the pair { , } independent, so is any pair obtained by taking the complement of either or both of the events.

We note two relevant facts

Suppose event  has probability zero (is a null event). Then for any event , we have 
, so that the product rule holds. Thus { , } is an independent pair for any event .

If event  has probability one (is an almost sure event), then its complement  is a null event. By the replacement rule and the
fact just established, \({S^c\), } is independent, so { , } is independent.

The replacement rule may thus be extended to:

Replacement Rule

If the pair { , } independent, so is any pair obtained by replacing either or both of the events by their complements or by a null
event or by an almost sure event.

CAUTION
1. Unless at least one of the events has probability one or zero, a pair cannot be both independent and mutually exclusive.

Intuitively, if the pair is mutually exclusive, then the occurrence of one requires that the other does not occur. Formally:
Suppose  and . { , } mutually exclusive implies . { , }
independent implies 

2. Independence is not a property of events. Two non mutually exclusive events may be independent under one probability
measure, but may not be independent for another. This can be seen by considering various probability distributions on a Venn
diagram or minterm map.

Independent classes
Extension of the concept of independence to an arbitrary class of events utilizes the product rule.

Definition. A class of events is said to be (stochastically) independent iff the product rule holds for every finite subclass of two or
more events in the class.

A class { , , } is independent iff all four of the following product rules hold

   

If any one or more of these product expressions fail, the class is not independent. A similar situation holds for a class of four
events: the product rule must hold for every pair, for every triple, and for the whole class. Note that we say “not independent” or
“nonindependent” rather than dependent. The reason for this becomes clearer in dealing with independent random variables.

We consider some classical exmples of nonindependent classes

1. Suppose { , , , } is a partition, with each . Let 
 

 
 
Then the class { , , } has  and is pairwise independent, but not independent, since 

 and similarly for the other pairs, but 

2. Consider the class { , , , } with , , , , and 
. Use of a minterm maps shows these assignments are consistent. Elementary calculations show the product

rule applies to the class { , , } but no two of these three events forms an independent pair.

As noted above, the replacement rule holds for any pair of events. It is easy to show, although somewhat cumbersome to write out,
that if the rule holds for any finite number  of events in an independent class, it holds for any  of them. By the principle of
mathematical induction, the rule must hold for any finite subclass. We may extend the replacement rule as follows.

A B

N A

0 ≤ P (AN) ≤ P (N) = 0 = P (A)P (N) N A A

S S
c

A S A

A B

0 < P (A) < 1 0 < P (B) < 1 A B P (AB) = P (∅) = 0 ≠ P (A)P (B) A B

P (AB) = P (A)P (B) > 0 = P (∅)

A B C

P (AB) = P (A)P (B) P (AC) = P (A)P (C) P (BC) = P (B)P (C) P (ABC) = P (A)P (B)P (C)

SOME NONINDEPENDENT CLASSES

A1 A2 A3 A4 P ( ) = 1/4Ai

A = ⋁ B = ⋁ C = ⋁A1 A2 A1 A3 A1 A4

A B C P (A) = P (B) = P (C) = 1/2
P (AB) = P ( ) = 1/4 = P (A)P (B)A1

P (ABC) = P ( ) = 1/4 ≠ P (A)P (B)P (C)A1

A B C D AD = BD = ∅ C = AB⋁D P (A) = P (B) = 1/4 P (AB) = 1/64
P (D) = 15/64

A B C

k k+1
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General Replacement Rule

If a class is independent, we may replace any of the sets by its complement, by a null event, or by an almost sure event, and the
resulting class is also independent. Such replacements may be made for any number of the sets in the class. One immediate and
important consequence is the following.

Minterm Probabilities

If { } is an independent class and the the class { } of individual probabilities is known, then the
probability of every minterm may be calculated.

Suppose the class { , , } is independent with respective probabilities , , and . Then

{ , , } is independent and 

{ , , } is independent and 

Similarly, the probabilities of the other six minterms, in order, are 0.21, 0.21, 0.06, 0.06, 0.09, and 0.09. With these minterm
probabilities, the probability of any Boolean combination of , , and  may be calculated

In general, eight appropriate probabilities must be specified to determine the minterm probabilities for a class of three events. In the
independent case, three appropriate probabilities are sufficient.

Suppose { , , } is independent with , , and . Then 
 and

 so that 

With each of the basic probabilities determined, we may calculate the minterm probabilities, hence the probability of any
Boolean combination of the events.

Frequently we have a large enough independent class { , , , } that it is desirable to use MATLAB (or some
other computational aid) to calculate the probabilities of various “and” combinations (intersections) of the events or their
complements. Suppose the independent class { , , , } has respective probabilities

0.13 0.37 0.12 0.56 0.33 0.71 0.22 0.43 0.57 0.31

It is desired to calculate (a) , and (b) .

We may use the MATLAB function prod and the scheme for indexing a matrix.

>> p = 0.01*[13 37 12 56 33 71 22 43 57 31]; 

>> q = 1-p; 

>> % First case 

>> e = [1 2 4 7];                  % Uncomplemented positions 

>> f = [3 5 6];                    % Complemented positions 

>> P = prod(p(e))*prod(q(f))       % p(e) probs of uncomplemented factors 

P = 0.0010                         % q(f) probs of complemented factors 

>> % Case of uncomplemented in even positions; complemented in odd positions 

>> g = find(rem(1:10,2) == 0);     % The even positions 

>> h = find(rem(1:10,2) ~= 0);     % The odd positions 

>> P = prod(p(g))*prod(q(h)) 

P = 0.0034 

: 1 ≤ i ≤ nAi P ( ) : 1 ≤ i ≤ nAi

Minterm probabilities for an independent class

A B C P (A) = 0.3 P (B) = 0.6 P (C) = 0.5

A
c
B

c
C

c
P ( � = P ( )P ( )P ( ) = 0.14M0 A

c
B

c
C

c

A
c
B

c
C P ( ) = P ( )P ( )P (C) = 0.14M1 A

c
B

c

A B C

Three probabilities yield the minterm probabilities

A B C P (A∪BC) = 0.51 P (A ) = 0.15C
c

P (A) = 0.30
P ( ) = 0.15/0.3 = 0.5 = P (C)C

c

P (A) +P ( )P (B)P (C) = 0.51A
c

P (B) = = 0.6
0.51 −0.30

0.7 ×0.5

MATLAB and the product rule

E1 E2 ⋅ ⋅  cdot En

E1 E2 ⋅ ⋅  cdot E10

P ( )E1E2E
c

3E4E
c

5E
c

6E7 P ( )E
c

1E2E
c

3E4E
c

5E
c

6E7E8E
c

9E10
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In the unit on MATLAB and Independent Classes, we extend the use of MATLAB in the calculations for such classes.
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source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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4.2: MATLAB and Independent Classes

MATLAB and Independent Classes

In the unit on Minterms, we show how to use minterm probabilities and minterm vectors to calculate probabilities of Boolean
combinations of events. In Independence of Events we show that in the independent case, we may calculate all minterm
probabilities from the probabilities of the basic events. While these calculations are straightforward, they may be tedious and
subject to errors. Fortunately, in this case we have an m-function minprob which calculates all minterm probabilities from the
probabilities of the basic or generating sets. This function uses the m-function mintable to set up the patterns of 's and 's for the
various minterms and then takes the products to obtain the set of minterm probabilities.

>> pm = minprob(0.1*[4 7 6]) 

   pm = 0.0720  0.1080  0.1680  0.2520  0.0480  0.0720  0.1120  0.1680 

It may be desirable to arrange these as on a minterm map. For this we have an m-function minmap which reshapes the row
matrix , as follows:

>> t = minmap(pm) 

t = 0.0720    0.1680    0.0480    0.1120 

    0.1080    0.2520    0.0720    0.1680

Probability of occurrence of k of n independent events

In Example 2, we show how to use the m-functions mintable and csort to obtain the probability of the occurrence of  of  events,
when minterm probabilities are available. In the case of an independent class, the minterm probabilities are calculated easily by
minprob, It is only necessary to specify the probabilities for the  basic events and the numbers  of events. The size of the class,
hence the mintable, is determined, and the minterm probabilities are calculated by minprob. We have two useful m-functions. If 
is a matrix of the  individual event probabilities, and  is a matrix of integers less than or equal to , then

function  calculates individual probabilities that  of  occur

function  calculates the probabilities that  or more occur

>> p = 0.01*[13 37 12 56 33 71 22 43 57 31]; 

>> k = [2 5 7]; 

>> P = ikn(p,k) 

P =    0.1401    0.1845    0.0225       % individual probabilities 

>> Pc = ckn(p,k) 

Pc =   0.9516    0.2921    0.0266       % cumulative probabilities

Reliability of systems with independent components

Suppose a system has  components which fail independently. Let  be the event the th component survives the designated time
period. Then  is defined to be the reliability of that component. The reliability  of the complete system is a function
of the component reliabilities. There are three basic configurations. General systems may be decomposed into subsystems of these
types. The subsystems become components in the larger configuration. The three fundamental configurations are:

Series. The system operates iff all n components operate: 

p q

Example 4.2.1

pm

k n

n k

P

n k n

y = ikn(P , k) k n

y = ckn(P , k) k

Example 4.2.2

n Ei i

= P ( )Ri Ei R

R =∏n
i=1 Ri
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Parallel. The system operates iff not all components fail: 

k of n. The system operates iff  or more components operate.  may be calculated with the m-function ckn. If the
component probabilities are all the same, it is more efficient to use the m-function cbinom (see Bernoulli trials and the
binomial distribution, below).

MATLAB solution. Put the component reliabilities in matrix 

Series Configuration

  >> R = prod(RC)     % prod is a built in MATLAB function 

Parallel Configuration

  >> R = parallel(RC) % parallel is a user defined function 

k of n Configuration

  >> R = ckn(RC,k)    % ckn is a user defined function (in file ckn.m). 

There are eight components, numbered 1 through 8. Component 1 is in series with a parallel combination of components 2 and
3, followed by a 3 of 5 combination of components 4 through 8 (see Figure 1 for a schematic representation). Probabilities of
the components in order are

0.95 0.90 0.92 0.80 0.83 0.91 0.85 0.85

The second and third probabilities are for the parallel pair, and the last five probabilities are for the 3 of 5 combination.

>> RC = 0.01*[95 90 92 80 83 91 85 85];        % Component reliabilities 

>> Ra = RC(1)*parallel(RC(2:3))*ckn(RC(4:8),3) % Solution 

Ra = 0.9172

Figure 4.2.1. Schematic representation of the system in Example

>> RC = 0.01*[95 90 92 80 83 91 85 85];    % Component reliabilities 1--8 

>> Rb = prod(RC(1:2))*parallel([RC(3),ckn(RC(4:8),3)])     % Solution 

Rb = 0.8532

R = 1 − (1 − )∏n
i=1 Ri

k R

RC = [     ⋅ ⋅ ⋅   ]R1 R2 Rn

Example 4.2.3

Example 4.2.4
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Figure 4.2.2. Schematic representation of the system in Example

A test for independence

It is difficult to look at a list of minterm probabilities and determine whether or not the generating events form an independent
class. The m-function imintest has as argument a vector of minterm probabilities. It checks for feasible size, determines the number
of variables, and performs a check for independence.

>> pm = 0.01*[15 5 2 18 25 5 18 12];   % An arbitrary class 

>> disp(imintest(pm)) 

The class is NOT independent 

Minterms for which the product rule fails 

     1     1     1     0 

     1     1     1     0

>> pm = [0.10 0.15 0.20 0.25 0.30]: %An improper number of probabilities 

>> disp(imintest(pm)) 

The number of minterm probabilities incorrect

>> pm = minprob([0.5 0.3 0.7]); 

>> disp(imintest(pm)) 

The class is independent 

Probabilities of Boolean combinations

As in the nonindependent case, we may utilize the minterm expansion and the minterm probabilities to calculate the probabilities of
Boolean combinations of events. However, it is frequently more efficient to manipulate the expressions for the Boolean
combination to be a disjoint union of intersections.

Example 4.2.5

Example 4.2.6

Example 4.2.7
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Suppose the class { , , } is independent, with respective probabilities 0.4, 0.6, 0.8. Determine . The minterm
expansion is

, so that 

It is not difficult to use the product rule and the replacement theorem to calculate the needed minterm probabilities. Thus 
. Similarly , , , 

. The desired probability is the sum of these, 0.6880.

As an alternate approach, we write

, so that 

Considerbly fewer arithmetic operations are required in this calculation.

In larger problems, or in situations where probabilities of several Boolean combinations are to be determined, it may be desirable to
calculate all minterm probabilities then use the minterm vector techniques introduced earlier to calculate probabilities for various
Boolean combinations. As a larger example for which computational aid is highly desirable, consider again the class and the
probabilities utilized in Example 4.2.2, above.

Consider again the independent class { } with respective probabilities [0.13 0.37 0.12 0.56 0.33 0.71 0.22 0.43
0.57 0.31]. We wish to calculate

There are  minterm probabilities to be calculated. Each requires the multiplication of ten numbers. The solution with
MATLAB is easy, as follows:

>> P = 0.01*[13 37 12 56 33 71 22 43 57 31]; 

>> minvec10 

Vectors are A1 thru A10 and A1c thru A10c 

They may be renamed, if desired. 

>> F = (A1|(A3&(A4|A7c)))|(A2&(A5c|(A6&A8)))|(A9&A10c); 

>> pm = minprob(P); 

>> PF = F*pm' 

PF =  0.6636 

Writing out the expression for  is tedious and error prone. We could simplify as follows:

>> A = A1|(A3&(A4|A7c)); 

>> B = A2&(A5c|(A6&A8)); 

>> C = A9&A10c; 

>> F = A|B|C;               % This minterm vector is the same as for F above 

This decomposition of the problem indicates that it may be solved as a series of smaller problems. First, we need some central facts
about independence of Boolean combinations.

Independent Boolean combinations

Suppose we have a Boolean combination of the events in the class { } and a second combination the events in the
class { }. If the combined class { } is independent, we would expect the
combinations of the subclasses to be independent. It is important to see that this is in fact a consequence of the product rule, for it is

Example  A simple Boolean combination4.2.8

A B C P (A ∪ BC)

A ∪ BC = M(3, 4, 5, 6, 7) P (A ∪ BC) = p(3, 4, 5, 6, 7)

p(3) = P ( )P (B) = P (C) = 0.6 ⋅ 0.6 ⋅ 0.8 = 0.2280Ac p(4) = 0.0320 p(5) = 0.1280 p(6) = 0.0480

p(7) = 0.1920

A ∪ BC = A⋁ BCAc P (A ∪ BC) = 0.4 +0.6 ⋅ 0.6 ⋅ 0.8 = 0.6880

Example 4.2.9

, , ⋅ ⋅ ⋅E1 E2 E10

P (F ) = P ( ∪ ( ∪ ) ∪ ( ∪ ) ∪ )E1 E3 E4 Ec
7

E2 Ec
5

E6E8 E9Ec
10

= 1024210

F

: 1 ≤ i ≤ nAi

: 1 ≤ j ≤ mBj , : 1 ≤ i ≤ n, 1 ≤ j ≤ mAi Bj
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further evidence that the product rule has captured the essence of the intuitive notion of independence. In the following discussion,
we exhibit the essential structure which provides the basis for the following general proposition.

Proposition. Consider  distinct subclasses of an independent class of events. If for each  the event 
th subclass, then the class {\(A_1, A_2, \cdot\cdot\cdot, A_n} is an

independent class.

Verification of this far reaching result rests on the minterm expansion and two elementary facts about the disjoint subclasses of an
independent class. We state these facts and consider in each case an example which exhibits the essential structure. Formulation of
the general result, in each case, is simply a matter of careful use of notation.

A class each of whose members is a minterm formed by members of a distinct subclass of an independent class is itself an
independent class.

Consider the independent class { }, with respective probabilities 0.4, 0.7, 0.3, 0.5, 0.8, 0.3, 0.6.
Consider , minterm three for the class { }, and , minterm five for the class { , , , }. Then

 and 

Also

The product rule shows the desired independence.

Again, it should be apparent that the result holds for any number of  and ; and it can be extended to any number of distinct
subclasses of an independent class.

Suppose each member of a class can be expressed as a disjoint union. If each auxiliary class formed by taking one member from
each of the disjoint unions is an independent class, then the original class is independent.

Suppose  and , with { , } independent for each pair . Suppose

, , , , 

We wish to show that the pair { , } is independent; i.e., the product rule  holds.

COMPUTATION

 and 

Now

By additivity and pairwise independence, we have

 

The product rule can also be established algebraically from the expression for , as follows:

 

It should be clear that the pattern just illustrated can be extended to the general case. If

 and , with each pair { } independent

then the pair { } is independent. Also, we may extend this rule to the triple { }

, , and , with each class { } independent

n i

)isaBoolean(logical)combinationofmembersofthe\(iAi

Example 4.2.10

, , , , , ,A1 A2 A3 B1 B2 B3 B4

M3 , ,A1 A2 A3 N5 B1 B2 B3 B4

P ( ) = P ( ) = 0.6 ⋅ 0.7 ⋅ 0.3 = 0.126M3 Ac
1A2A3 P ( ) = P ( ) = 0.5 ⋅ 0.8 ⋅ 0.7 ⋅ 0.6 = 0.168N5 Bc

1B2Bc
3B4

P ( ) = P ( 0 = 0.6 ⋅ 0.7 ⋅ 0.3 ⋅ 0.5 ⋅ 0.8 ⋅ 0.7 ⋅ 0.6M3N5 Ac
1A2A3Bc

1B2Bc
3B4

= (0.6 ⋅ 0.7 ⋅ 0.3) ⋅ (0.5 ⋅ 0.8 ⋅ 0.7 ⋅ 0.6) = P ( )P ( ) = 0.0212M3 N5

Ai Bj

Example 4.2.11

A = ⋁ ⋁A1 A2 A3 B = ⋁B1 B2 Ai Aj i, j

P ( ) = 0.3A1 P ( ) = 0.4A2 P ( ) = 0.1A3 P ( ) = 0.2B1 P ( ) = 0.5B2

A B P (AB) = P (A)P (B)

P (A) = P ( ) +P ( ) +P ( ) = 0.3 +0.4 +0.1 = 0.8A1 A2 A3 P (B) = P ( ) +P ( ) = 0.2 +0.5 = 0.7B1 B2

AB = ( ⋁ ⋁ )( ⋁ ) = ⋁ ⋁ ⋁ ⋁ ⋁A1 A2 A3 B1 B2 A1B1 A1B2 A2B1 A2B2 A3B1 A3B2

P (AB) = P ( )P ( ) +P ( )P ( ) +P ( )P ( ) +P ( )P ( ) +P ( )P ( ) +P ( )P ( )A1 B1 A1 B2 A2 B1 A2 B2 A3 B1 A3 B2

= 0.3 ⋅ 0.2 +0.3 ⋅ 0.5 +0.4 ⋅ 0.2 +0.4 ⋅ 0.5 +0.1 ⋅ 0.2 +0.1 ⋅ 0.5 = 0.56 = P (A)P (B)

P (AB)

P (AB) = P ( )[P ( ) +P ( )] +P ( )[P ( ) +P ( )] +P ( )[P ( ) +P ( )]A1 B1 B2 A2 B1 B2 A3 B1 B2

= [P ( ) +P ( ) +P ( )][P ( ) +P ( )] = P (A)P (B)A1 A2 A3 B1 B2

A =⋁n
i=1 Ai B =⋁m

j=1 Bj ,Ai Bj

A, B A, B, C

A =⋁
n
i=1 Ai B =⋁

m
j=1 Bj C =⋁

r
k=1 Ck , ,Ai Bj Ck
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and similarly for any finite number of such combinations, so that the second proposition holds.

Begin with an independent class  of  events. Select  distinct subclasses and form Boolean combinations for each of these. Use
of the minterm expansion for each of these Boolean combinations and the two propositions just illustrated shows that the class of
Boolean combinations is independent

To illustrate, we return to Example 4.2.9, which involves an independent class of ten events.

Consider again the independent class { } with respective probabilities {0.13 0.37 0.12 0.56 0.33 0.71 0.22 0.43
0.57 0.31}. We wish to calculate

In the previous solution, we use minprob to calculate the  minterms for all ten of the  and determine the minterm
vector for . As we note in the alternate expansion of ,

, when   

We may calculate directly . Now  is a Boolean combination of { } and B is a
combination of { }. By the result on independence of Boolean combinations, the class { } is independent. We
use the m-procedures to calculate  and . Then we deal with the independent class { } to obtain the probability of

.

>> p  = 0.01*[13 37 12 56 33 71 22 43 57 31]; 

>> pa = p([1 3 4 7]);     % Selection of probabilities for A 

>> pb = p([2 5 6 8]);     % Selection of probabilities for B 

>> pma = minprob(pa);     % Minterm probabilities for calculating P(A) 

>> pmb = minprob(pb);     % Minterm probabilities for calculating P(B) 

>> minvec4; 

>> a = A|(B&(C|Dc));      % A corresponds to E1, B to E3, C to E4, D to E7 

>> PA = a*pma' 

PA = 0.2243 

>> b = A&(Bc|(C&D));      % A corresponds to E2, B to E5, C to E6, D to E8 

>> PB = b*pmb' 

PB = 0.2852 

>> PC = p(9)*(1 - p(10)) 

PC = 0.3933 

>> pm = minprob([PA PB PC]); 

>> minvec3                % The problem becomes a three variable problem 

>> F = A|B|C;             % with {A,B,C} an independent class 

>> PF = F*pm' 

PF = 0.6636               % Agrees with the result of Example 4.2.7 

This page titled 4.2: MATLAB and Independent Classes is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

n m

Example  A hybrid approach4.2.12

, , ⋅ ⋅ ⋅,E1 E2 E10

P (F ) = P ( ∪ ( ∪ ) ∪ ( ∪ ) ∪ )E1 E3 E4 Ec
7 E2 Ec

5 E6E8 E9E10c

= 1024210 Ei

F F

F = A ∪ B ∪ C A = ∪ ( ∪ )E1 E3 E4 Ec
7 B = ( ∪ )E2 Ec

5 E6E8 C = E9Ec
10

P (C) = 0.57 ⋅ 0.69 = 0.3933 A , , ,E1 E3 E4 E7

, ,E2 E5 E6E8 A, B, C

P (A) P (B) A, B, C

F
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4.3: Composite Trials

Composite trials and component events

Often a trial is a composite one. That is, the fundamental trial is completed by performing several steps. In some cases, the steps are
carried out sequentially in time. In other situations, the order of performance plays no significant role. Some of the examples in the
unit on Conditional Probability involve such multistep trials. We examine more systematically how to model composite trials in
terms of events determined by the components of the trials. In the subsequent section, we illustrate this approach in the important
special case of Bernoulli trials, in which each outcome results in a success or failure to achieve a specified condition.

We call the individual steps in the composite trial component trials. For example, in the experiment of flipping a coin ten times, we
refer the th toss as the th component trial. In many cases, the component trials will be performed sequentially in time. But we
may have an experiment in which ten coins are flipped simultaneously. For purposes of analysis, we impose an ordering— usually
by assigning indices. The question is how to model these repetitions. Should they be considered as ten trials of a single simple
experiment? It turns out that this is not a useful formulation. We need to consider the composite trial as a single outcome— i.e.,
represented by a single point in the basic space .

Some authors give considerable attention the the nature of the basic space, describing it as a Cartesian product space, with each
coordinate corresponding to one of the component outcomes. We find that unnecessary, and often confusing, in setting up the basic
model. We simply suppose the basic space has enough elements to consider each possible outcome. For the experiment of flipping
a coin ten times, there must be at least  elements, one for each possible sequence of heads and tails.

Of more importance is describing the various events associated with the experiment. We begin by identifying the appropriate
component events. A component event is determined by propositions about the outcomes of the corresponding component trial.

In the coin flipping experiment, consider the event  that the third toss results in a head. Each outcome  of the
experiment may be represented by a sequence of 's and 's, representing heads and tails. The event  consists of those
outcomes represented by sequences with  in the third position. Suppose  is the event of a head on the third toss and a
tail on the ninth toss. This consists of those outcomes corresponding to sequences with  in the third position and  in the
ninth. Note that this event is the intersection .
A somewhat more complex example is as follows. Suppose there are two boxes, each containing some red and some blue
balls. The experiment consists of selecting at random a ball from the first box, placing it in the second box, then making a
random selection from the modified contents of the second box. The composite trial is made up of two component
selections. We may let  be the event of selecting a red ball on the first component trial (from the first box), and  be the
event of selecting a red ball on the second component trial. Clearly  and  are component events.

In the first example, it is reasonable to assume that the class { } is independent, and each component probability is
usually taken to be 0.5. In the second case, the assignment of probabilities is somewhat more involved. For one thing, it is
necessary to know the numbers of red and blue balls in each box before the composite trial begins. When these are known, the
usual assumptions and the properties of conditional probability suffice to assign probabilities. This approach of utilizing component
events is used tacitly in some of the examples in the unit on Conditional Probability.

When appropriate component events are determined, various Boolean combinations of these can be expressed as minterm
expansions.

Four persons take one shot each at a target. Let  be the event the th shooter hits the target center. Let  be the event exacty
three hit the target. Then  is the union of those minterms generated by the  which have three places uncomplemented.

Usually we would be able to assume the  form an independent class. If each  is known, then all minterm probabilities
can be calculated easily.

i i

ω

= 1024210

Example  Component events4.3.1

H3 ω

H T H3

H A

H T

H3H c
9

R1 R2

R1 R2

: 1 ≤ i ≤ 10Hi

Example 4.3.2

Ei i A3

A3 Ei

= ⋁ ⋁ ⋁A3 E1E2E3Ec
4 E1E2Ec

3 E4 E1Ec
2 E3E4 Ec

1 E2E3Ec
4

Ei P ( )Ei
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The following is a somewhat more complicated example of this type.

Ten race cars are involved in time trials to determine pole positions for an upcoming race. To qualify, they must post an
average speed of 125 mph or more on a trial run. Let  be the event the th car makes qualifying speed. It seems reasonable to
suppose the class { } is independent. If the respective probabilities for success are 0.90, 0.88, 0.93, 0.77, 0.85,
0.96, 0.72, 0.83, 0.91, 0.84, what is the probability that  or more will qualify ( )?

Solution

Let  be the event exactly  qualify. The class { } generates  minterms. The event  is the union
of those minterms which have exactly  places uncomplemented. The event  that  or more qualify is given by

The task of computing and adding the minterm probabilities by hand would be tedious, to say the least. However, we may use
the function ckn, introduced in the unit on MATLAB and Independent Classes and illustrated in Example 4.4.2, to determine
the desired probabilities quickly and easily.

>> P = [0.90, 0.88, 0.93, 0.77, 0.85, 0.96,0.72, 0.83, 0.91, 0.84]; 

>> k = 6:10; 

>> PB = ckn(P,k) 

PB =   0.9938    0.9628    0.8472    0.5756    0.2114

An alternate approach is considered in the treatment of random variables.

Bernoulli trials and the binomial distribution

Many composite trials may be described as a sequence of success-failure trials. For each component trial in the sequence, the
outcome is one of two kinds. One we designate a success and the other a failure. Examples abound: heads or tails in a sequence of
coin flips, favor or disapprove of a proposition in a survey sample, and items from a production line meet or fail to meet
specifications in a sequence of quality control checks. To represent the situation, we let  be the event of a success on the th
component trial in the sequence. The event of a failure on the th component trial is thus .

In many cases, we model the sequence as a Bernoulli sequence, in which the results on the successive component trials are
independent and have the same probabilities. Thus, formally, a sequence of success-failure trials is Bernoulli iff

The class { } is independent. 
The probability , invariant with .

Simulation of Bernoulli trials

It is frequently desirable to simulate Bernoulli trials. By flipping coins, rolling a die with various numbers of sides (as used in
certain games), or using spinners, it is relatively easy to carry this out physically. However, if the number of trials is large—say
several hundred—the process may be time consuming. Also, there are limitations on the values of , the probability of success. We
have a convenient two-part m-procedure for simulating Bernoulli sequences. The first part, called btdata, sets the parameters. The
second, called , uses the random number generator in MATLAB to produce a sequence of zeros and ones (for failures and
successes). Repeated calls for bt produce new sequences.

>> btdata 

Enter n, the number of trials  10 

Enter p, the probability of success on each trial  0.37 

 Call for bt 

 >> bt 

Example 4.3.3

Ei i

: 1 ≤ i ≤ 10Ei

k k = 6, 7, 8, 9, 10

Ak k : 1 ≤ i ≤ 10Ei = 1024210 Ak

k Bk k

=Bk ⋁n
r=k Ar

Ei i

i Ec
i

: 1 ≤ iEi

P ( ) = pEi i

p

bt

Example 4.3.4
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n = 10   p = 0.37     % n is kept small to save printout space 

Frequency = 0.4 

To view the sequence, call for SEQ 

>> disp(SEQ)          % optional call for the sequence 

     1     1                

     2     1                

     3     0                

     4     0                

     5     0               

     6     0 

     7     0 

     8     0 

     9     1 

    10     1

Repeated calls for bt yield new sequences with the same parameters.

To illustrate the power of the program, it was used to take a run of 100,000 component trials, with probability  of success 0.37, as
above. Successive runs gave relative frequencies 0.37001 and 0.36999. Unless the random number generator is “seeded” to make
the same starting point each time, successive runs will give different sequences and usually different relative frequencies.

The binomial distribution

A basic problem in Bernoulli sequences is to determine the probability of  successes in  component trials. We let  be the
number of successes in  trials. This is a special case of a simple random variable, which we study in more detail in the chapter on
"Random Variables and Probabilities".

Let us characterize the events , . As noted above, the event  of exactly  successes is the union of
the minterms generated by { } in which there are  successes (represented by  uncomplemented ) and  failures
(represented by  complemented ). Simple combinatorics show there are  ways to choose the  places to be

uncomplemented. Hence, among the  minterms, there are  which have  places uncomplemented. Each

such minterm has probability . Since the minterms are mutually exclusive, their probabilities add. We conclude that

 where  for 

These probabilities and the corresponding values form the distribution for . This distribution is known as the binomial
distribution, with parameters ( ). We shorten this to binomial ( ), and often writ  ~ binomial ( ). A related set of
probabilities is , . If the number  of component trials is small, direct computation of the
probabilities is easy with hand calculators.

A remote device has five similar components which fail independently, with equal probabilities. The system remains operable
if three or more of the components are operative. Suppose each unit remains active for one year with probability 0.8. What is
the probability the system will remain operative for that long?

Solution

Because Bernoulli sequences are used in so many practical situations as models for success-failure trials, the probabilities 
 and  have been calculated and tabulated for a variety of combinations of the parameters ( ). Such tables

are found in most mathematical handbooks. Tables of  are usually given a title such as binomial distribution, individual
terms. Tables of  have a designation such as binomial distribution, cumulative terms. Note, however, some tables for
cumulative terms give . Care should be taken to note which convention is used.

p

k n Sn

n

= { = k}Akn Sn 0 ≤ k ≤ n Akn k

: 1 ≤ iEi k k Ei n −k

n −k Ec
i C(n, k) k

2n C(n, k) =
n!

k!(n −k)!
k

(1 −ppk )n−k

P ( = k) = C(n, k) (1 −p = C(n, k)Sn pk )n−k pkqn−k q = 1 −p 0 ≤ k ≤ n

Sn

n, p n, p Sn n, p

P ( ≥ k) = P ( )Sn Bkn 0 ≤ k ≤ n n

Example  A reliability problem4.3.5

P = C(5, 3) ⋅ +C(5, 4) ⋅ 0.2 +C(5, 5) = 10 ⋅ ⋅ +5 ⋅ ⋅ 0.2 + = 0.94210.83 0.22 0.84 0.85 0.83 0.22 0.84 0.85

P ( = k)Sn P ( ≥ k)Sn n, p

P ( = k)Sn

P ( ≥ k)Sn

P ( ≤ k)Sn
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Consider again the system of Example 5, above. Suppose we attempt to enter a table of Cumulative Terms, Binomial
Distribution at , , and . Most tables will not have probabilities greater than 0.5. In this case, we may work
with failures. We just interchange the role of  and . Thus, the number of failures has the binomial ( ) distribution. Now
there are three or more successes iff there are not three or more failures. We go the the table of cumulative terms at , 

, and . The probability entry is 0.0579. The desired probability is 1 - 0.0579 = 0.9421.

In general, there are  or more successes in  trials iff there are not  or more failures.

m-functions for binomial probabilities

Although tables are convenient for calculation, they impose serious limitations on the available parameter values, and when the
values are found in a table, they must still be entered into the problem. Fortunately, we have convenient m-functions for these
distributions. When MATLAB is available, it is much easier to generate the needed probabilities than to look them up in a table,
and the numbers are entered directly into the MATLAB workspace. And we have great freedom in selection of parameter values.
For example we may use  of a thousand or more, while tables are usually limited to  of 20, or at most 30. The two m-functions
for calculating  and  are

 is calculated by y = ibinom(n,p,k) , where  is a row or column vector of integers between 0 and . The result  is a row vector
of the same size as .

 is calculated by y = cbinom(n,p,k) , where  is a row or column vector of integers between 0 and . The result  is a row vector
of the same size as .

If  and , determine  and  for .

>> p = 0.39; 

>> k = [3 5 6 8]; 

>> Pi = ibinom(10,p,k)  % individual probabilities 

Pi = 0.2237    0.1920    0.1023    0.0090 

>> Pc = cbinom(10,p,k)  % cumulative probabilities 

Pc = 0.8160    0.3420    0.1500    0.0103

Note that we have used probability . It is quite unlikely that a table will have this probability. Although we use only 
, frequently it is desirable to use values of several hundred. The m-functions work well for  up to 1000 (and even higher

for small values of p or for values very near to one). Hence, there is great freedom from the limitations of tables. If a table with a
specific range of values is desired, an m-procedure called binomial produces such a table. The use of large  raises the question of
cumulation of errors in sums or products. The level of precision in MATLAB calculations is sufficient that such roundoff errors are
well below pratical concerns.

>> binomial                              % call for procedure 

Enter n, the number of trials  13 

Enter p, the probability of success  0.413 

Enter row vector k of success numbers  0:4 

    n            p 

   13.0000    0.4130 

       k      P(X=k)    P(X>=k) 

         0    0.0010    1.0000 

Example  A reliability problem4.3.6

n = 5 k = 3 p = 0.8

Ei Ec
i n, p

n = 5

k = 3 p = 0.2

k n n −k +1

n n

P (Akn P (Bkn

P( )Akn k n y

k

P( )Bkn k n y

k

Example  Use of m-functions ibinom and cbinom4.3.7

n = 10 p = 0.39 P ( )Akn P ( )Bkn k = 3, 5, 6, 8

p = 0.39

n = 10 n

n

Example 4.3.8
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    1.0000    0.0090    0.9990 

    2.0000    0.0379    0.9900 

    3.0000    0.0979    0.9521 

    4.0000    0.1721    0.8542

Remark. While the m-procedure binomial is useful for constructing a table, it is usually not as convenient for problems as the m-
functions ibinom or cbinom. The latter calculate the desired values and put them directly into the MATLAB workspace.

Joint Bernoulli trials

Bernoulli trials may be used to model a variety of practical problems. One such is to compare the results of two sequences of
Bernoulli trials carried out independently. The following simple example illustrates the use of MATLAB for this.

Bill and Mary take ten basketball free throws each. We assume the two seqences of trials are independent of each other, and
each is a Bernoulli sequence.

Mary: Has probability 0.80 of success on each trial.

Bill: Has probability 0.85 of success on each trial.

What is the probability Mary makes more free throws than Bill?

Solution

We have two Bernoulli sequences, operating independently.

Mary: , 

Bill: , 

Let

 be the event Mary wins

 be the event Mary makes  or more freethrows.

 be the event Bill makes exactly  reethrows

Then Mary wins if Bill makes none and Mary makes one or more, or Bill makes one and Mary makes two or more, etc. Thus

and

We use cbinom to calculate the cumulative probabilities for Mary and ibinom to obtain the individual probabilities for Bill.

>> pm = cbinom(10,0.8,1:10);     % cumulative probabilities for Mary 

>> pb = ibinom(10,0.85,0:9);     % individual probabilities for Bill 

>> D = [pm; pb]'                 % display: pm in the first column 

   D =                           % pb in the second column 

    1.0000    0.0000 

    1.0000    0.0000 

    0.9999    0.0000              

    0.9991    0.0001 

    0.9936    0.0012 

    0.9672    0.0085 

    0.8791    0.0401 

Example  A joint Bernoulli trial4.3.9

n = 10 p = 0.80

n = 10 p = 0.85

M

Mk k

Bj j

M = ⋁ ⋁ ⋅ ⋅ ⋅⋁B0M1 B1M2 B9M10

P (M) = P ( )P ( ) +P ( )P ( ) +⋅ ⋅ ⋅ +P ( )P ( )B0 M1 B1 M2 B9 M10
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    0.6778    0.1298 

    0.3758    0.2759 

    0.1074    0.3474 

To find the probability  that Mary wins, we need to multiply each of these pairs together, then sum. This is just the dot or
scalar product, which MATLAB calculates with the command . We may combine the generation of the probabilities
and the multiplication in one command:

>> P = cbinom(10,0.8,1:10)*ibinom(10,0.85,0:9)' 

   P = 0.273 

The ease and simplicity of calculation with MATLAB make it feasible to consider the effect of different values of n. Is there an
optimum number of throws for Mary? Why should there be an optimum?

An alternate treatment of this problem in the unit on Independent Random Variables utilizes techniques for independent simple
random variables.

Alternate MATLAB implementations

Alternate implementations of the functions for probability calculations are found in the Statistical Package available as a
supplementary package. We have utilized our formulation, so that only the basic MATLAB package is needed.

This page titled 4.3: Composite Trials is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

P (M)

pm ∗ pb′

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10869?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/04%3A_Independence_of_Events/4.03%3A_Composite_Trials
https://creativecommons.org/licenses/by/3.0
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/04%3A_Independence_of_Events/4.03%3A_Composite_Trials?no-cache
https://cnx.org/contents/HLT_qvJK@6.2:wsOQ6HtH@8/Preface-to-Pfeiffer-Applied-Pr


4.4.1 https://stats.libretexts.org/@go/page/10870

4.4: Problems on Independence of Events

The minterms generated by the class  have minterm probabilities

Show that the product rule holds for all three, but the class is not independent.

Answer

pm = [0.15 0.05 0.02 0.18 0.25 0.05 0.18 0.12]; 

y = imintest(pm) 

The class is NOT independent 

Minterms for which the product rule fails 

y = 

     1     1     1     0 

     1     1     1     0   % The product rule hold for M7 = ABC

The class { }is independent, with respective probabilities 0.65, 0.37, 0.48, 0.63. Use the m-function minprob to
obtain the minterm probabilities. Use the m-function minmap to put them in a 4 by 4 table corresponding to the minterm map
convention we use.

Answer

P = [0.65 0.37 0.48 0.63]; 

p = minmap(minprob(P)) 

p = 

    0.0424    0.0249    0.0788    0.0463 

    0.0722    0.0424    0.1342    0.0788 

    0.0392    0.0230    0.0727    0.0427 

    0.0667    0.0392    0.1238    0.0727

The minterm probabilities for the software survey in Example 2 from "Minterms" are

Show whether or not the class { } is independent: (1) by hand calculation, and (2) by use of the m-function imintest.

Answer

pm = [0 0.05 0.10 0.05 0.20 0.10 0.40 0.10]; 

y = imintest(pm) 

The class is NOT independent 

Minterms for which the product rule fails 

y = 

Exercise 4.4.1

{A, B, C}

pm = [0.15 0.05 0.02 0.18 0.25 0.05 0.18 0.12]

Exercise 4.4.2

A, B, C, D

Exercise 4.4.3

pm = [0 0.05 0.10 0.05 0.20 0.10 0.40 0.10]

A, B, C
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     1     1     1     1    % By hand check product rule for any minterm 

     1     1     1     1

The minterm probabilities for the computer survey in Example 3 from "Minterms" are

Show whether or not the class { } is independent: (1) by hand calculation, and (2) by use of the m-function imintest.

Answer

npr04_04 

Minterm probabilities for Exercise 4.4.4. are in pm 

y = imintest(pm) 

The class is NOT independent 

Minterms for which the product rule fails 

y = 

     1     1     1     1 

     1     1     1     1

Minterm probabilities  through  for the class { } are, in order,

Use the m-function imintest to show whether or not the class { } is independent.

Answer

npr04_05 

Minterm probabilities for Exercise 4.4.5. are in pm 

imintest(pm) 

The class is NOT independent 

Minterms for which the product rule fails 

ans = 

     0     1     0     1 

     0     0     0     0 

     0     1     0     1 

     0     0     0     0

Minterm probabilities  through  for the opinion survey in Example 4 from "Minterms" are

show whether or not the class { } is independent.

Answer

Exercise 4.4.4

pm = [0.032 0.016 0.376 0.011 0.364 0.073 0.077 0.051]

A, B, C

Exercise 4.4.5

p(0) p(15) A, B, C, D

pm = [0.084 0.196 0.036 0.084 0.085 0.196 0.035 0.084 0.021 0.049 0.009 0.021 0.020 0.049 0.010 0.021]

A, B, C, D

Exercise 4.4.6

p(0) p(15)

pm = [0.085 0.195 0.035 0.085 0.080 0.200 0.035 0.085 0.020 0.050 0.010 0.020 0.020 0.050 0.015 0.015]

A, B, C, D
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npr04_06 

Minterm probabilities for Exercise 4.4.6. are in pm 

y = imintest(pm) 

The class is NOT independent 

Minterms for which the product rule fails 

y = 

     1     1     1     1 

     1     1     1     1 

     1     1     1     1 

     1     1     1     1

The class { } is independent, with , , and . Determine the minterm
probabilities.

Answer

 AND .

pm = minprob([0.3 0.2 0.4]) 

pm =  0.3360  0.2240  0.0840  0.0560  0.1440  0.0960  0.0360  0.0240

The class { } is independent, with , , and . Determine the probability of
each minterm.

Answer

 implies .

 implies  implies 

P = [0.5 0.2 0.4]; 

pm = minprob(P) 

pm =  0.2400  0.1600  0.0600  0.0400  0.2400  0.1600  0.0600  0.0400

A pair of dice is rolled five times. What is the probability the first two results are “sevens” and the others are not?

Answer

David, Mary, Joan, Hal, Sharon, and Wayne take an exam in their probability course. Their probabilities of making 90 percent
or more are

0.72 0.83 0.75 0.92 0.65 0.79

Exercise 4.4.7

A, B, C P (A) = 0.30 P ( C) = 0.32Bc P (AC) = 0.12

P (C) = P (AC)/P (A) = 0.40 P (B) = 1 −P ( C)/P (C) = 0.20Bc

Exercise 4.4.8

A, B, C P (A ∪ B) = 0.6 P (A ∪ C) = 0.7 P (C) = 0.4

P ( ) = P ( )P ( ) = 0.3AcC c Ac C c P ( ) = 0.3/0.6 = 0.5 = P (A)Ac

P ( ) = P ( )P ( ) = 0.4AcBc Ac Bc P ( ) = 0.4/0.5 = 0.8Bc P (B) = 0.2

Exercise 4.4.9

P = (1/6 (5/6 = 0.0161.)2 )3

Exercise 4.4.10
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respectively. Assume these are independent events. What is the probability three or more, four or more, five or more make
grades of at least 90 percent?

Answer

P = 0.01*[72 83 75 92 65 79]; 

y = ckn(P,[3 4 5]) 

y =   0.9780    0.8756    0.5967

Two independent random numbers between 0 and 1 are selected (say by a random number generator on a calculator). What is
the probability the first is no greater than 0.33 and the other is at least 57?

Answer

Helen is wondering how to plan for the weekend. She will get a letter from home (with money) with probability 0.05. There is
a probability of 0.85 that she will get a call from Jim at SMU in Dallas. There is also a probability of 0.5 that William will ask
for a date. What is the probability she will get money and Jim will not call or that both Jim will call and William will ask for a
date?

Answer

 ~ letter with money,  ~ call from Jim,  ~ William ask for date

P = 0.01*[5 85 50]; 

minvec3 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

pm = minprob(P); 

p = ((A&Bc)|(B&C))*pm' 

p =  0.4325

A basketball player takes ten free throws in a contest. On her first shot she is nervous and has probability 0.3 of making the
shot. She begins to settle down and probabilities on the next seven shots are 0.5, 0.6 0.7 0.8 0.8, 0.8 and 0.85, respectively.
Then she realizes her opponent is doing well, and becomes tense as she takes the last two shots, with probabilities reduced to
0.75, 0.65. Assuming independence between the shots, what is the probability she will make  or more for ?

Answer

P = 0.01*[30 50 60 70 80 80 80 85 75 65]; 

k = 2:10; 

p = ckn(P,k) 

p = 

  Columns 1 through 7 

    0.9999    0.9984    0.9882    0.9441    0.8192    0.5859    0.3043 

Exercise 4.4.11

P = 0.33 ⋅ (1 −0.57) = 0.1419

Exercise 4.4.12

A B C

Exercise 4.4.13

k k = 2, 3, ⋅ ⋅ ⋅10
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  Columns 8 through 9 

    0.0966    0.0134

In a group there are  men and  women; m of the men and  of the women are college graduates. An individual is picked
at random. Let  be the event the individual is a woman and  be the event he or she is a college graduate. Under what
condition is the pair { } independent?

Answer

Consider the pair { } of events. Let , , , and . Under what
condition is the pair { } independent?

Answer

 (see table of equivalent conditions).

Show that if event  is independent of itself, then  or . (This fact is key to an important "zero-one law".)

Answer

.  iff  or .

Does { } independent and { } independent imply { } is independent? Justify your answer.

Answer

% No. Consider for example the following minterm probabilities: 

pm = [0.2 0.05 0.125 0.125 0.05 0.2 0.125 0.125]; 

minvec3 

Variables are A, B, C, Ac, Bc, Cc 

They may be renamed, if desired. 

PA = A*pm' 

PA =  0.5000 

PB = B*pm' 

PB =  0.5000 

PC = C*pm' 

PC =  0.5000 

PAB = (A&B)*pm'  % Product rule holds 

PAB =  0.2500 

PBC = (B&C)*pm' % Product rule holds 

PBC =  0.2500 

Exercise 4.4.14

M W w

A B

A, B

P (A|B) = w/(m +w) = W /(W +M) = P (A)

Exercise 4.4.15

A, B P (A) = p P ( ) = q = 1 −pAc P (B|A) = p1 P (B| ) =Ac p2

A, B

= P (B|A) = P (B| ) =p1 Ac p2

Exercise 4.4.16

A P (A) = 0 P (A) = 1

P (A) = P (A ∩ A) = P (A)P (A) = xx2 x = 0 x = 1

Exercise 4.4.17

A, B B, C A, C
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PAC = (A&C)*pm'  % Product rule fails 

PAC =  0.3250

Suppose event  implies  (i.e. ). Show that if the pair { } is independent, then either  or .

Answer

 implies ; independence implies .  only if 
or .

A company has three task forces trying to meet a deadline for a new device. The groups work independently, with respective
probabilities 0.8, 0.9, 0.75 of completing on time. What is the probability at least one group completes on time? (Think. Then
solve “by hand.”)

Answer

At least one completes iff not all fail. 

Two salesmen work differently. Roland spends more time with his customers than does Betty, hence tends to see fewer
customers. On a given day Roland sees five customers and Betty sees six. The customers make decisions independently. If the
probabilities for success on Roland's customers are 0.7, 0.8, 0.8, 0.6, 0.7 and for Betty's customers are 0.6, 0.5, 0.4, 0.6, 0.6,
0.4, what is the probability Roland makes more sales than Betty? What is the probability that Roland will make three or more
sales? What is the probability that Betty will make three or more sales?

Answer

PR = 0.1*[7 8 8 6 7]; 

PB = 0.1*[6 5 4 6 6 4]; 

PR3 = ckn(PR,3) 

PR3 =  0.8662 

PB3 = ckn(PB,3) 

PB3 =  0.6906 

PRgB = ikn(PB,0:4)*ckn(PR,1:5)' 

PRgB = 0.5065

Two teams of students take a probability exam. The entire group performs individually and independently. Team 1 has five
members and Team 2 has six members. They have the following indivudal probabilities of making an `”A” on the exam.

Team 1: 0.83 0.87 0.92 0.77 0.86 Team 2: 0.68 0.91 0.74 0.68 0.73 0.83

a. What is the probability team 1 will make at least as many A's as team 2?
b. What is the probability team 1 will make more A's than team 2?

Answer

Exercise 4.4.18

A B A ⊂ B A, B P (A) = 0 P (B) = 1

A ⊂ B P (AB) = P (A) P (AB) = P (A)P (B) P (A) = P (A)P (B) P (B) = 1

P (A) = 0

Exercise 4.4.19

P = 1 −0.2 ⋅ 0.1 ⋅ 0.25 = 0.9950

Exercise 4.4.20

Exercise 4.4.21
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P1 = 0.01*[83 87 92 77 86]; 

P2 = 0.01*[68 91 74 68 73 83]; 

P1geq = ikn(P2,0:5)*ckn(P1,0:5)' 

P1geq =  0.5527 

P1g = ikn(P2,0:4)*ckn(P1,1:5)' 

P1g =    0.2561

A system has five components which fail independently. Their respective reliabilities are 0.93, 0.91, 0.78, 0.88, 0.92. Units 1
and 2 operate as a “series” combination. Units 3, 4, 5 operate as a two of three subsytem. The two subsystems operate as a
parallel combination to make the complete system. What is reliability of the complete system?

Answer

R = 0.01*[93 91 78 88 92]; 

Ra = prod(R(1:2)) 

Ra =  0.8463 

Rb = ckn(R(3:5),2) 

Rb =  0.9506 

Rs = parallel([Ra Rb]) 

Rs =  0.9924

A system has eight components with respective probabilities

0.96 0.90 0.93 0.82 0.85 0.97 0.88 0.80

Units 1 and 2 form a parallel subsytem in series with unit 3 and a three of five combination of units 4 through 8. What is the
reliability of the complete system?

Answer

R = 0.01*[96 90 93 82 85 97 88 80]; 

Ra = parallel(R(1:2)) 

Ra =  0.9960 

Rb = ckn(R(4:8),3) 

Rb =  0.9821 

Rs = prod([Ra R(3) Rb]) 

Rs =  0.9097

How would the reliability of the system in Exercise 4.4.23. change if units 1, 2, and 3 formed a parallel combination in series
with the three of five combination?

Answer

Exercise 4.4.22

Exercise 4.4.23

Exercise 4.4.24
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Rc = parallel(R(1:3)) 

Rc =  0.9997 

Rss = prod([Rb Rc]) 

Rss = 0.9818

How would the reliability of the system in Exercise 4.4.23. change if the reliability of unit 3 were changed from 0.93 to 0.96?
What change if the reliability of unit 2 were changed from 0.90 to 0.95 (with unit 3 unchanged)?

Answer

R1 = R; 

R1(3) =0.96; 

Ra = parallel(R1(1:2)) 

Ra =  0.9960 

Rb = ckn(R1(4:8),3) 

Rb =  0.9821 

Rs3 = prod([Ra R1(3) Rb]) 

Rs3 = 0.9390 

R2 = R; 

R2(2) = 0.95; 

Ra = parallel(R2(1:2)) 

Ra =  0.9980 

Rb = ckn(R2(4:8),3) 

Rb =  0.9821 

Rs4 = prod([Ra R2(3) Rb]) 

Rs4 = 0.9115

Three fair dice are rolled. What is the probability at least one will show a six?

Answer

A hobby shop finds that 35 percent of its customers buy an electronic game. If customers buy independently, what is the
probability that at least one of the next five customers will buy an electronic game?

Answer

Exercise 4.4.25

Exercise 4.4.26

P = 1 −(5/6 = 0.4213)3

Exercise 4.4.27

P = 1 − = 0.88400.655
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Under extreme noise conditions, the probability that a certain message will be transmitted correctly is 0.1. Successive messages
are acted upon independently by the noise. Suppose the message is transmitted ten times. What is the probability it is
transmitted correctly at least once?

Answer

Suppose the class  is independent, with , . What is the probability that at least one of
the events occurs? What is the probability that none occurs?

Answer

, 

In one hundred random digits, 0 through 9, with each possible digit equally likely on each choice, what is the probility 8 or
more are sevens?

Answer

 = cbinom(100, 0.1, 8) = 0.7939

Ten customers come into a store. If the probability is 0.15 that each customer will buy a television set, what is the probability
the store will sell three or more?

Answer

 = cbinom(10, 0.15, 3) = 0.1798

Seven similar units are put into service at time . The units fail independently. The probability of failure of any unit in the
first 400 hours is 0.18. What is the probability that three or more units are still in operation at the end of 400 hours?

Answer

 = cbinom(7, 0.82, 3) = 0.9971

A computer system has ten similar modules. The circuit has redundancy which ensures the system operates if any eight or
more of the units are operative. Units fail independently, and the probability is 0.93 that any unit will survive between
maintenance periods. What is the probability of no system failure due to these units?

Answer

 = cbinom(10,0.93,8) = 0.9717

Exercise 4.4.28

P = 1 − = 0.65130.910

Exercise 4.4.29

{ : 1 ≤ i ≤ n}Ai P ( ) =Ai pi 1 ≤ i ≤ n

P 1 = 1 −P 0 P 0 = (1 − )∏
n
i=1 pi

Exercise 4.4.30

P

Exercise 4.4.31

P

Exercise 4.4.32

t = 0

P

Exercise 4.4.33

P
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Only thirty percent of the items from a production line meet stringent requirements for a special job. Units from the line are
tested in succession. Under the usual assumptions for Bernoulli trials, what is the probability that three satisfactory units will
be found in eight or fewer trials?

Answer

 = cbinom(8, 0.3, 3) = 0.4482

The probability is 0.02 that a virus will survive application of a certain vaccine. What is the probability that in a batch of 500
viruses, fifteen or more will survive treatment?

Answer

 = cbinom(500, 0.02, 15) = 0.0814

In a shipment of 20,000 items, 400 are defective. These are scattered randomly throughout the entire lot. Assume the
probability of a defective is the same on each choice. What is the probability that

1. Two or more will appear in a random sample of 35?
2. At most five will appear in a random sample of 50?

Answer

1 = cbinom(35, 0.02, 2) = 0.1547.

2 = 1 – cbinom(35, 0.02, 6) = 0.9999

A device has probability  of operating successfully on any trial in a sequence. What probability  is necessary to ensure the
probability of successes on all of the first four trials is 0.85? With that value of , what is the probability of four or more
successes in five trials?

Answer

 cbinom(5, , 4) = 0.9854.

A survey form is sent to 100 persons. If they decide independently whether or not to reply, and each has probability 1/4 of
replying, what is the probability of  or more replies, where ?

Answer

P = cbinom(100,1/4,15:5:40) 

P =  0.9946    0.9005    0.5383    0.1495    0.0164    0.0007

Exercise 4.4.34

P

Exercise 4.4.35

P

Exercise 4.4.36

P

P

Exercise 4.4.37

p p

p

p = \0, \(P0.851/4 p

Exercise 4.4.38

k k = 15, 20, 25, 30, 35, 40
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Ten numbers are produced by a random number generator. What is the probability four or more are less than or equal to 0.63?

Answer

1 = cbinom(10, 0.63, 4) = 0.9644

A player rolls a pair of dice five times. She scores a “hit” on any throw if she gets a 6 or 7. She wins iff she scores an odd
number of hits in the five throws. What is the probability a player wins on any sequence of five throws? Suppose she plays the
game 20 successive times. What is the probability she wins at least 10 times? What is the probability she wins more than half
the time?

Answer

Each roll yields a hit with probability .

PW = sum(ibinom(5,11/36,[1 3 5])) 

PW =  0.4956 

P2 = cbinom(20,PW,10) 

P2 =  0.5724 

P3 = cbinom(20,PW,11) 

P3 =  0.3963

Erica and John spin a wheel which turns up the integers 0 through 9 with equal probability. Results on various trials are
independent. Each spins the wheel 10 times. What is the probability Erica turns up a seven more times than does John?

Answer

 = ibinom(10, 0.1, 0:9) * cbinom(10, 0.1, 1:10)' = 0.3437

Erica and John play a different game with the wheel, above. Erica scores a point each time she gets an integer 0, 2, 4, 6, or 8.
John scores a point each time he turns up a 1, 2, 5, or 7. If Erica spins eight times; John spins 10 times. What is the probability
John makes more points than Erica?

Answer

 = ibinom(8, 0.5, 0:8) * cbinom(10, 0.4, 1:9)' = 0.4030

A box contains 100 balls; 30 are red, 40 are blue, and 30 are green. Martha and Alex select at random, with replacement and
mixing after each selection. Alex has a success if he selects a red ball; Martha has a success if she selects a blue ball. Alex
selects seven times and Martha selects five times. What is the probability Martha has more successes than Alex?

Answer

 = ibinom(7, 0.3, 0:4) * cbinom(5, 0.4, 1:5)' = 0.3613

Exercise 4.4.39

P

Exercise 4.4.40

p = + =
6

36

5

36

11

36

Exercise 4.4.41

P

Exercise 4.4.42

P

Exercise 4.4.43

P
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Two players roll a fair die 30 times each. What is the probability that each rolls the same number of sixes?

Answer

 = sum(ibinom(30, 1/6, 0:30).^2) = 0.1386

A warehouse has a stock of  items of a certain kind,  of which are defective. Two of the items are chosen at random, without
replacement. What is the probability that at least one is defective? Show that for large  the number is very close to that for
selection with replacement, which corresponds to two Bernoulli trials with pobability  of success on any trial.

Answer

A coin is flipped repeatedly, until a head appears. Show that with probability one the game will terminate.

The probability of not terminating in  trials is .

Answer

Let  event never terminates and  event does not terminate in  plays. Then  for all  implies 
 for all , we conclude .

Two persons play a game consecutively until one of them is successful or there are ten unsuccesful plays. Let  be the event
of a success on the th play of the game. Suppose { } is an independent class with  for i odd and 

 for  even. Let  be the event the first player wins,  be the event the second player wins, and  be the event
that neither wins.

a. Express , , and  in terms of the .
b. Determine , , and  in terms of , , , and . Obtain numerical values for the case

 and .
c. Use appropriate facts about the geometric series to show that  iff .
d. Suppose . Use the result of part (c) to find the value of  to make  and then determine , 

, and .

Answer

a. .

Exercise 4.4.44

P

Exercise 4.4.45

n r

n

p = r/n

P 1 = ⋅ + ⋅ + ⋅ =
r

n

r −1

n −1

r

n

n −r

n −1

n −r

n

r

n −1

(2n −1)r −r2

n(n −1)

P 2 = 1 −( =
r

n
)2 2nr −r2

n2

Exercise 4.4.46

tip:

n qn

N = =Nk k N ⊂ Nk k

0 ≤ P (N) ≤ P ( ) = 1/Nk 2k k P (N) = 0

Exercise 4.4.47

Ei

i : 1 ≤ iEi P ( ) =Ei p1

P ( ) =Ei p2 i A B C

A B C Ei

P (A) P (B) P (C) p1 p2 = 1 −q1 p1 = 1 −q2 p2

= 1/4p1 = 1/3p2

P (A) = P (B) = /(1 + )p1 p2 p2

= 0.5p2 p1 P (A) = P (B) P (A)

P (B) P (C)

C =⋂10
i=1 Ec

i

A = ⋁ ⋁ ⋁ ⋁E1 Ec
1 Ec

2 E3 Ec
1 Ec

2 Ec
3 Ec

4 E5 Ec
1 Ec

2 Ec
3 Ec

4 Ec
5 Ec

6 E7 Ec
1 Ec

2 Ec
3 Ec

4 Ec
5 Ec

6 Ec
7 Ec

8 E9

B = ⋁ ⋁ ⋁ ⋁Ec
1 E2 Ec

1 Ec
2 Ec

3 E4 Ec
1 Ec

2 Ec
3 Ec

4
Ec

5 E6 Ec
1 Ec

2 Ec
3 Ec

4
Ec

5 Ec
6 Ec

7
E8 Ec

1 Ec
2 Ec

3 Ec
4
Ec

5 Ec
6 Ec

7
Ec

8 Ec
9 E10

P (A) = [1 + +( +( +( ] = p1p1 q1q2 q1q2)2 q1q2)3 q1q2)4
1 −(q1q2)5

1 −q1q2
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For , , we have  and . In this case

Note that .

c.  iff  iff .

d. 

Three persons play a game consecutively until one achieves his objective. Let  be the event of a success on the th trial, and
suppose  is an independent class, with  for  for , and 

 for . Let  be the respective events the first, second, and third player wins.

a. Express , and  in terms of the .

b. Determine the probabilities in terms of , then obtain numerical values in the case , , and 
.

Answer

a. 

b. 

For , . , .

What is the probability of a success on the th trial in a Bernoulli sequence of  component trials, given there are  successes?

Answer

 and .

Hence .

A device has  similar components which may fail independently, with probability  of failure of any component. The device
fails if one or more of the components fails. In the event of failure of the device, the components are tested sequentially.

a. What is the probability the first defective unit tested is the th, given one or more components have failed?
b. What is the probability the defective unit is the th, given that exactly one has failed?
c. What is the probability that more than one unit has failed, given that the first defective unit is the th?

Answer

P (B) = P (C) = (q1p2

1 −(q1q2)5

1 −q1q2
q1q2)5

= 1/4p1 = 1/3p2 = 1/2q1q2 = 1/4q1p2

P (A) = ⋅ = 31/64 = 0.4844 = P (B), P (C) = 1/32
1

4

31

16

P (A) +P (B) +P (C) = 1

P (A) = P (B) = = (1 − )p1 q1p2 p1 p2 = /(1 + )p1 p2 p2

= 0.5/1.5 = 1/3p1

Exercise 4.4.48

Ei i

{ : 1 ≤ i}Ei P ( ) =Ei p1 i = 1, 4, 7, ⋅ ⋅ ⋅, P ( ) =Ei p2 i = 2, 5, 8, ⋅ ⋅ ⋅

P ( ) =Ei p3 i = 3, 6, 9, ⋅ ⋅ ⋅ A, B, C

A, B C Ei

, ,p1 p2 p3 = 1/4p1 = 1/3p2

= 1/2p3

A = ⋁E1 ⋁
∞
k=1⋂

3k
i=1 Ec

i E3k+1

B = ⋁Ec
1 E2 ⋁

∞
k=1⋂

3k+1
i=1 Ec

i E3k+2

C = ⋁Ec
1 Ec

2 E3 ⋁∞
k=1⋂

3k+2
i=1 Ec

i E3k+3

P (A) = ( =p1∑
∞
k=0 q1q2q3)k

p1

1 −q1q2q3

P (B) =
q1p2

1 −q1q2q3

P (C) =
q1q2p3

1 −q1q2q3

= 1/4p1 = 1/3p2 = 1/2p3 P (A) = P (B) = P (C) = 1/3

Exercise 4.4.49

i n r

P ( = pC(n −1, r −1)ArnEi pr−1 qn−r P ( ) = C(n, r)Arn prqn−r

P ( | rn) = C(n −1, r −1)/C(n, r) = r/nEi AA

Exercise 4.4.50

N p

n

n

n
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Let  = event one failure,  = event of one or more failures,  = event of two or more failures, and  = the event the first
defective unit found is the th.

a.  implies 

(see Exercise)

b. Since probability not all from th are good is .

This page titled 4.4: Problems on Independence of Events is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

A1 B1 B2 Fn

n

⊂Fn B1 P ( | ) = P ( )/P ( ) =Fn B1 Fn B1

pqn−1

1 −qN

P ( | ) = = =Fn A1

P (FnA1

P ( )A1

pqn−1 qN−n

NpqN−1

1

N

n 1 −qN−n

P ( | ) = = = 1 −B2 Fn

P (B2Fn

P ( )Fn

p(1 −qn−1 QN−1

pqn−1
qN−n
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5.1: Conditional Independence

5.1. Conditional Independence

The idea of stochastic (probabilistic) independence is explored in the unit Independence of Events. The concept is approached as
lack of conditioning: . This is equivalent to the product rule . We consider an extension to
conditional independence.

The concept

Examination of the independence concept reveals two important mathematical facts:

Independence of a class of non mutually exclusive events depends upon the probability measure, and not on the relationship
between the events. Independence cannot be displayed on a Venn diagram, unless probabilities are indicated. For one
probability measure a pair may be independent while for another probability measure the pair may not be independent.
Conditional probability is a probability measure, since it has the three defining properties and all those properties derived
therefrom.

This raises the question: is there a useful conditional independence—i.e., independence with respect to a conditional probability
measure? In this chapter we explore that question in a fruitful way.

Among the simple examples of “operational independence" in the unit on independence of events, which lead naturally to an
assumption of “probabilistic independence” are the following:

If customers come into a well stocked shop at different times, each unaware of the choice made by the other, the the item
purchased by one should not be affected by the choice made by the other.
If two students are taking exams in different courses, the grade one makes should not affect the grade made by the other.

A department store has a nice stock of umbrellas. Two customers come into the store “independently.” Let A be the event the
first buys an umbrella and B the event the second buys an umbrella. Normally, we should think the events { } form an
independent pair. But consider the effect of weather on the purchases. Let C be the event the weather is rainy (i.e., is raining or
threatening to rain). Now we should think  and . The weather has a decided effect
on the likelihood of buying an umbrella. But given the fact the weather is rainy (event C has occurred), it would seem
reasonable that purchase of an umbrella by one should not affect the likelihood of such a purchase by the other. Thus, it may be
reasonable to suppose

 or, in another notation, 

An examination of the sixteen equivalent conditions for independence, with probability measure  replaced by probability measure
, shows that we have independence of the pair { } with respect to the conditional probability measure .

Thus, . For this example, we should also expect that , so that there is independence
with respect to the conditional probability measure . Does this make the pair { } independent (with respect to the prior
probability measure )? Some numerical examples make it plain that only in the most unusual cases would the pair be
independent. Without calculations, we can see why this should be so. If the first customer buys an umbrella, this indicates a higher
than normal likelihood that the weather is rainy, in which case the second customer is likely to buy. The condition leads to 

. Consider the following numerical case. Suppose  and 
 and

, , , , with .

Then

 

As a result,

*

P (A|B) = P (A) P (AB) = P (A)P (B)

Example  Buying umbrellas and the weather5.1.1

A, B

P (A|C) > P (A| )C c P (B|C) > P (B| )C c

P (A|C) = P (A|BC) (A) = (A|B)PC PC

P

PC A, B (⋅) = P (⋅|C)PC

P (A| ) = P (A|B )C c C c P (A| = P (A|B )C c C c

P (⋅| )C c A, B

P

P (B|A) > P (B) P (AB|C) = P (A|C)P (B|C)

P (AB| ) = P (A| )P (B| )C c C c C c

P (A|C) = 0.60 P (A| ) = 0.20C c P (B|C) = 0.50 P (B| ) = 0.15C c P (C) = 0.30

P (A) = P (A|C)P (C) +P (A| )P ( ) = 0.3200C c C c P (B) = P (B|C)P (C) +P (B| )P ( ) = 0.2550C c C c

P (AB) = P (AB|C)P (C) +P (AB| )P ( ) = P (A|C)P (B|C)P (C) +P (A| )P ( ) = 0.1110C c C c C c C c

P (A)P (B) = 0.0816 ≠ 0.1110 = P (AB)
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The product rule fails, so that the pair is not independent. An examination of the pattern of computation shows that independence
would require very special probabilities which are not likely to be encountered.

Two students take exams in different courses, Under normal circumstances, one would suppose their performances form an
independent pair. Let A be the event the first student makes grade 80 or better and B be the event the second has a grade of 80
or better. The exam is given on Monday morning. It is the fall semester. There is a probability 0.30 that there was a football
game on Saturday, and both students are enthusiastic fans. Let C be the event of a game on the previous Saturday. Now it is
reasonable to suppose

 and 

If we know that there was a Saturday game, additional knowledge that B has occurred does not affect the lielihood that A occurs.
Again, use of equivalent conditions shows that the situation may be expressed

 and 

Under these conditions, we should suppose that  and . If we knew that one did poorly
on the exam, this would increase the likelihoood there was a Saturday game and hence increase the likelihood that the other did
poorly. The failure to be independent arises from a common chance factor that affects both. Although their performances are
“operationally” independent, they are not independent in the probability sense. As a numerical example, suppose

    

Straightforward calculations show , , . Note that  as
would be expected.

Sixteen equivalent conditions

Using the facts on repeated conditioning and the equivalent conditions for independence, we may produce a similar table of
equivalent conditions for conditional independence. In the hybrid notation we use for repeated conditioning, we write

 or 

This translates into

 or 

If it is known that  has occurred, then additional knowledge of the occurrence of  does not change the likelihood of .

If we write the sixteen equivalent conditions for independence in terms of the conditional probability measure , then translate
as above, we have the following equivalent conditions.

Table 5.1. Sixteen equivalent conditions

 = P(A|C)\)

 

Table 5.2.

The patterns of conditioning in the examples above belong to this set. In a given problem, one or the other of these conditions may
seem a reasonable assumption. As soon as one of these patterns is recognized, then all are equally valid assumptions. Because of its
simplicity and symmetry, we take as the defining condition the product rule .

Example  Students and exams5.1.2

P (A|C) = P (A|BC) P (A| ) = P (A|B )C c C c

P (AB|C) = P (A|C)P (B|C) P (AB| ) = P (A| )P (B| )C c C c C c

P (A|C) < P (A| )C c P (B|C) < P (B| )C c

P (A|C) = 0.7 P (A| ) = 0.9C c P (B|C) = 0.6 P (B| ) = 0.8C c P (C) = 0.3

P (A) = 0.8400 P (B) = 0.7400 P (AB) = 0.6300 P (A|B) = 0.8514 > P (A)

(A|B) = (A)PC PC (AB) = (A) (B)PC PC PC

P (A|BC) = P (A|C) P (AB|C) = P (A|C)P (B|C)

C B A

(⋅)PC

P(A|BC) = P(A|C) P(B|AC) = P(B|C) P(AB|C) = P(A|C)P(B|C)

P(A| C)Bc P( |AC) = P( |C)Bc Bc P(A |C) = P(A|C)P( |C)Bc Bc

P( |BC) = P( |C)Ac Ac P(B| C) = P(B|C)Ac P( B|C) = P( |C)P(B|C)Ac Ac

P( | C) = P( |C)Ac Bc ac P( | C) = P( |C)Bc Ac Bc P( |C) = P( |C)P( |C)AcBc Ac Bc

P(A|BC) = P(A| C)Bc P( | C) = P( | C)Ac Bc Ac Bc P(B|AC) = P(B| C)Ac P( |AC) = P( | C)Bc Bc Ac

P (AB|C) = P (A|C) = P (B|C)
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A pair of events { } is said to be conditionally independent, given C, designated { } iff the following product rule
holds: .

The equivalence of the four entries in the right hand column of the upper part of the table, establish

The replacement rule

If any of the pairs { }, { }, { } or { } is conditionally independent, given C, then so are the others.

— □

This may be expressed by saying that if a pair is conditionally independent, we may replace either or both by their complements
and still have a conditionally independent pair.

To illustrate further the usefulness of this concept, we note some other common examples in which similar conditions hold: there is
operational independence, but some chance factor which affects both.

Two contractors work quite independently on jobs in the same city. The operational independence suggests probabilistic
independence. However, both jobs are outside and subject to delays due to bad weather. Suppose A is the event the first
contracter completes his job on time and B is the event the second completes on time. If C is the event of “good” weather, then
arguments similar to those in Examples 1 and 2 make it seem reasonable to suppose { } ci  and { } ci . Remark.
In formal probability theory, an event must be sharply defined: on any trial it occurs or it does not. The event of “good weather”
is not so clearly defined. Did a trace of rain or thunder in the area constitute bad weather? Did rain delay on one day in a month
long project constitute bad weather? Even with this ambiguity, the pattern of probabilistic analysis may be useful.
A patient goes to a doctor. A preliminary examination leads the doctor to think there is a thirty percent chance the patient has a
certain disease. The doctor orders two independent tests for conditions that indicate the disease. Are results of these tests really
independent? There is certainly operational independence—the tests may be done by different laboratories, neither aware of the
testing by the others. Yet, if the tests are meaningful, they must both be affected by the actual condition of the patient. Suppose
D is the event the patient has the disease, A is the event the first test is positive (indicates the conditions associated with the
disease) and B is the event the second test is positive. Then it would seem reasonable to suppose { } ci  and { } ci 

.

In the examples considered so far, it has been reasonable to assume conditional independence, given an event C, and conditional
independence, given the complementary event. But there are cases in which the effect of the conditioning event is asymmetric. We
consider several examples.

Two students are working on a term paper. They work quite separately. They both need to borrow a certain book from the
library. Let C be the event the library has two copies available. If A is the event the first completes on time and B the event the
second is successful, then it seems reasonable to assume { } ci . However, if only one book is available, then the two
conditions would not be conditionally independent. In general , since if the first student completes on
time, then he or she must have been successful in getting the book, to the detriment of the second.
If the two contractors of the example above both need material which may be in scarce supply, then successful completion
would be conditionally independent, give an adequate supply, whereas they would not be conditionally independent, given a
short supply.
Two students in the same course take an exam. If they prepared separately, the event of both getting good grades should be
conditionally independent. If they study together, then the likelihoods of good grades would not be independent. With neither
cheating or collaborating on the test itself, if one does well, the other should also.

Since conditional independence is ordinary independence with respect to a conditional probability measure, it should be clear how
to extend the concept to larger classes of sets.

A class , where  is an arbitrary index set, is conditionally independent, given event , denoted  ci 
, iff the product rule holds for every finite subclass of two or more.

As in the case of simple independence, the replacement rule extends.

Definition

A, B A, B

P (AB|C) = P (A|C)P (B|C)

A, B A, Bc , BAc ,Ac Bc

A, B |C A, B |C c

A, B |D A, B

|Dc

A, B |C

P (B|A ) < P (B| )C c C c

Definition

{ : i ∈ J}Ai J C { : i ∈ J}Ai

|C
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The replacement rule

If the class  ci , then any or all of the events A  may be replaced by their complements and still have a conditionally
independent class.

The use of independence techniques

Since conditional independence is independence, we may use independence techniques in the solution of problems. We consider
two types of problems: an inference problem and a conditional Bernoulli sequence.

Sharon is investigating a business venture which she thinks has probability 0.7 of being successful. She checks with five
“independent” advisers. If the prospects are sound, the probabilities are 0.8, 0.75, 0.6, 0.9, and 0.8 that the advisers will advise
her to proceed; if the venture is not sound, the respective probabilities are 0.75, 0.85, 0.7, 0.9, and 0.7 that the advice will be
negative. Given the quality of the project, the advisers are independent of one another in the sense that no one is affected by the
others. Of course, they are not independent, for they are all related to the soundness of the venture. We may reasonably assume
conditional independence of the advice, given that the venture is sound and also given that the venture is not sound. If Sharon
goes with the majority of advisers, what is the probability she will make the right decision?

Solution

If the project is sound, Sharon makes the right choice if three or more of the five advisors are positive. If the venture is
unsound, she makes the right choice if three or more of the five advisers are negative. Let  the event the project is sound, 

 the event three or more advisers are positive,  the event three or more are negative, and  the event of the
correct decision. Then

Let  be the event the th adviser is positive. Then  the sum of probabilities of the form , where  are
minterms generated by the class . Because of the assumed conditional independence,

with similar expressions for each  and . This means that if we want the probability of three or more
successes, given , we can use ckn with the matrix of conditional probabilities. The following MATLAB solution of the
investment problem is indicated.

P1 = 0.01*[80 75 60 90 80]; 

P2 = 0.01*[75 85 70 90 70]; 

PH = 0.7; 

PE = ckn(P1,3)*PH + ckn(P2,3)*(1 - PH) 

PE =    0.9255 

Often a Bernoulli sequence is related to some conditioning event H. In this case it is reasonable to assume the sequence 
 ci  and ci . We consider a simple example.

A race track regular claims he can pick the winning horse in any race 90 percent of the time. In order to test his claim, he picks
a horse to win in each of ten races. There are five horses in each race. If he is simply guessing, the probability of success on
each race is 0.2. Consider the trials to constitute a Bernoulli sequence. Let  be the event he is correct in his claim. If  is the
number of successes in picking the winners in the ten races, determine  for various numbers  of correct picks.
Suppose it is equally likely that his claim is valid or that he is merely guessing. We assume two conditional Bernoulli trials:

claim is valid: Ten trials, probability .

Guessing at random: Ten trials, probability .

Let  number of correct picks in ten trials. Then

{ : i ∈ J}Ai |C i

Example  Use of independence techniques5.1.3

H =

F = G = =F c E =

P (E) = P (F H) +P (G ) = P (F |H)P (H) +P (G| )P ( )H c H c H c

Ei i P (F |H) = P ( |H)Mk Mk

{ : 1 ≤ i ≤ 5}Ei

P ( |H) = P ( |H)P ( |H)P ( |H)P ( |H)P ( |H)E1Ec
2 Ec

3 E4E5 E1 Ec
2 Ec

3 E4 E5

P ( |H)Mk P ( | )Mk H c

H

{ : 1 ≤ i ≤ n}Ei |H |H c

Example  Test of a claim5.1.4

H S

P (H|S = k) k

p = P ( |H) = 0.9Ei

p = P ( | ) = 0.2Ei H c

S =
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, 

Giving him the benefit of the doubt, we suppose  and calculate the conditional odds.

k = 0:10; 

Pk1 = ibinom(10,0.9,k);    % Probability of k successes, given H 

Pk2 = ibinom(10,0.2,k);    % Probability of k successes, given H^c 

OH  = Pk1./Pk2;            % Conditional odds-- Assumes P(H)/P(H^c) = 1 

e   = OH > 1;              % Selects favorable odds 

disp(round([k(e);OH(e)]')) 

           6           2      % Needs at least six to have creditability 

           7          73      % Seven would be creditable, 

           8        2627      % even if P(H)/P(H^c) = 0.1 

           9       94585 

          10     3405063

Under these assumptions, he would have to pick at least seven correctly to give reasonable validation of his claim.

This page titled 5.1: Conditional Independence is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

= ⋅
P (H|S = k

P ( |S = k)H c

P (H)

P ( )H c

P (S = k|H)

P (S = k| )H c
0 ≤ k ≤ 10

P (H)/P ( ) = 1H c
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5.2: Patterns of Probable Inference
 

Some Patterns of Probable Inference
We are concerned with the likelihood of some hypothesized condition. In general, we have evidence for the condition which can
never be absolutely certain. We are forced to assess probabilities (likelihoods) on the basis of the evidence. Some typical examples:

Table 5.3.
HYPOTHESIS EVIDENCE

Job success Personal traits

Presence of oil Geological structures

Operation of a device Physical condition

Market condition Test market condition

Presence of a disease Tests for symptoms

If  is the event the hypothetical condition exists and  is the event the evidence occurs, the probabilities available are usually 
 (or an odds value), , and . What is desired is  or, equivalently, the odds . We simply

use Bayes' rule to reverse the direction of conditioning.

No conditional independence is involved in this case.

Independent evidence for the hypothesized condition

Suppose there are two “independent” bits of evidence. Now obtaining this evidence may be “operationally” independent, but if the
items both relate to the hypothesized condition, then they cannot be really independent. The condition assumed is usually of the
form  —if  occurs, then knowledge of  does not affect the likelihood of . Similarly, we usually
have . Thus  ci  and  ci .

Suppose a doctor thinks the odds are 2/1 that a patient has a certain disease. She orders two independent tests. Let  be the
event the patient has the disease and  and  be the events the tests are positive. Suppose the first test has probability 0.1 of
a false positive and probability 0.05 of a false negative. The second test has probabilities 0.05 and 0.08 of false positive and
false negative, respectively. If both tests are positive, what is the posterior probability the patient has the disease?

Solution

Assuming  ci  and ci , we work first in terms of the odds, then convert to probability.

The data are

, , , , 

Substituting values, we get

 so that 

Evidence for a symptom

Sometimes the evidence dealt with is not evidence for the hypothesized condition, but for some condition which is stochastically
related. For purposes of exposition, we refer to this intermediary condition as a symptom. Consider again the examples above.

H E

P (H) P (E|H) P (H|E) P (H|E)/P ( |E)H c

= ⋅
P (H|E)

P ( |E)H c

P (E|H)

P (E| )H c

P (H)

P ( )H c

P ( |H) = P ( |H )E1 E1 E2 H E2 E1

P ( | ) = P ( | )E1 H c E1 H cE2 { , }E1 E2 |H { , }E1 E2 |H c

Example  Independent medical tests5.2.1

H

E1 E2

{ , }E1 E2 |H |H c

= ⋅ = ⋅
P (H| )E1E2

P ( | )H c E1E2

P (H)

P ( )H c

P ( |H)E1E2

P ( | )E1E2 H c

P (H)

P ( )H c

P ( |H)P ( |H)E1 E2

P ( | )P ( | )E1 H c E2 H c

P (H)/P ( ) = 2H c P ( |H) = 0.95E1 P ( | ) = 0.1E1 H c P ( |H) = 0.92E2 P ( | ) = 0.05E2 H c

= 2 ⋅ =
P (H| )E1E2

P ( |H c E1E2

0.95 ⋅ 0.92

0.10 ⋅ 0.05

1748

5
P (H| ) = = 1 − = 1 −0.0029E1E2

1748

1753

5

1753
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Table 5.4.
HYPOTHESIS SYMPTOM EVIDENCE

Job success Personal traits Diagnostic test results

Presence of oil Geological structures Geophysical survey results

Operation of a device Physical condition Monitoring report

Market condition Test market condition Market survey result

Presence of a disease Physical symptom Test for symptom

We let  be the event the symptom is present. The usual case is that the evidence is directly related to the symptom and not the
hypothesized condition. The diagnostic test results can say something about an applicant's personal traits, but cannot deal directly
with the hypothesized condition. The test results would be the same whether or not the candidate is successful in the job (he or she
does not have the job yet). A geophysical survey deals with certain structural features beneath the surface. If a fault or a salt dome
is present, the geophysical results are the same whether or not there is oil present. The physical monitoring report deals with certain
physical characteristics. Its reading is the same whether or not the device will fail. A market survey treats only the condition in the
test market. The results depend upon the test market, not the national market. A blood test may be for certain physical conditions
which frequently are related (at least statistically) to the disease. But the result of the blood test for the physical condition is not
directly affected by the presence or absence of the disease.

Under conditions of this type, we may assume

 and 

These imply  ci  and ci . Now

It is worth noting that each term in the denominator differs from the corresponding term in the numerator by having  in place of 
. Before completing the analysis, it is necessary to consider how  and  are related stochastically in the data. Four cases may

be considered.

 
Data are , , and .
Data are , , and .
Data are , , and .
Data are , , and .

 
Case a:

 
\dfrac{P(H|S)}{P(H^c|S)} = \dfrac{P(H) P(S|H) P(E|S) + P(H) P(S^c|H) P(E|S^c)}{P(H^c) P(S|H^c) P(E|S) + P(H^c) P(S^c|H^c)

P(E|S^c)}\)
 

Let  be the event of a successful oil well,  be the event there is a geophysical structure favorable to the presence of oil, and 
 be the event the geophysical survey indicates a favorable structure. We suppose  ci  and ci . Data are

, , , , 

Then

so that 

S

P (E|SH) = P (E|S )H c P (E| H) = P (E| )Sc ScH c

{E, H} |S |Sc

= = =
P (H|E)

P ( |E)H c

P (HE)

P ( E)H c

P (HES) +P (HE )Sc

P ( ES) +P ( E )H c H c Sc

P (HS)P (E|HS) +P (H )P (E|H )Sc Sc

P ( S)P (E| S) +P ( )P (E| )H c H c H cSc H cSc

=
P (HS)P (E|S)P (H )P (E| )Sc Sc

P ( S)P (E|S) +P ( )P (E| )H c H cSc Sc

H c

H H S

P (S|H) P (S| )H c P (H)
P (S|H) P (S| )H c P (S)
P (H|S) P (H| )Sc P (S)
P (H|S) P (H| )Sc P (H)

Example  Geophysical survey5.2.2

H S

E {H, E} |S |Sc

P (H)/P ( ) = 3H c P (S|H) = 0.92 P (S| ) = 0.20H c P (E|S) = 0.95 P (E| ) = 0.15Sc

= 3 ⋅ = = 8.5742
P (H|E)

P ( |E)H c

0.92 ⋅ 0.95 +0.08 ⋅ 0.15

0.20 ⋅ 0.95 +0.80 ⋅ 0.15

1329

155

P (H|E) = 1 − = 0.8956
155

1484
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The geophysical result moved the prior odds of 3/1 to posterior odds of 8.6/1, with a corresponding change of probabilities
from 0.75 to 0.90.

 
Case b: Data are , , , and . If we can determine , we can proceed as in case a. Now
by the law of total probability

which may be solved algebraically to give

In many cases a better estimate of  or the odds  can be made on the basis of previous geophysical data.
Suppose the prior odds for  are 3/1, so that . Using the other data in Example, we have

, so that 

Using the pattern of case a, we have

so that 

Usually data relating test results to symptom are of the form  and , or equivalent. Data relating the symptom and
the hypothesized condition may go either way. In cases a and b, the data are in the form  and , or equivalent,
derived from data showing the fraction of times the symptom is noted when the hypothesized condition is identified. But these data
may go in the opposite direction, yielding  and , or equivalent. This is the situation in cases c and d.

Data c: Data are , , ,  and .

When a certain blood syndrome is observed, a given disease is indicated 93 percent of the time. The disease is found without
this syndrome only three percent of the time. A test for the syndrome has probability 0.03 of a false positive and 0.05 of a false
negative. A preliminary examination indicates a probability 0.30 that a patient has the syndrome. A test is performed; the result
is negative. What is the probability the patient has the disease?

Solution

In terms of the notation above, the data are

, , 

, and 

We suppose  ci  and ci .

which implies 

Case d: This differs from case c only in the fact that a prior probability for  is assumed. In this case, we determine the
corresponding probability for  by

P (S)P (S|H) P (S| )H c P (E|S) P (E| )Sc P (H)

P (S) = P (S|H)P (H) +P (S| )[1 −P (H)]H c

P (H) =
P (S) −P (S| )H c

P (S|H) −P (S| )H c

Example  Geophysical survey revisited5.2.3

P (S) P (S)/P ( )Sc

S P (S) = 0.75

P (H) = = = 55/72
P (S) −P (S| )H c

P (S|H) −P (S| )H c

0.75 −0.20

0.92 −0.20
= 55/17

\(P (H)

P ( )H c

= ⋅ = = 9.2467
P (H|E)

P ( |E)H c

55

17

0.92 ⋅ 0.95 +0.08 ⋅ 0.15

0.20 ⋅ 0.95 +0.80 ⋅ 0.15

4873

527

P (H|E) = 1 − = 0.9024
527

5400

P (E|S) P (E| )Sc

P (S|H) P (S| )H c

P (H|S) P (H| )Sc

P (E|S) P (E| )Sc P (H|S) P (H| )Sc P (S)

Example  Evidence for a disease symptom with prior P(S)5.2.4

P (S) = 0.30 P (E| ) = 0.03Sc P ( |S) = 0.05Ec

P (H|S) = 0.93 P (H| ) = 0.03Sc

{H, E} |S |Sc

=
P (H| )Ec

P ( | )H c Ec

P (S)P (H|S)P ( |S) +P ( )P (H| )P ( | )Ec Sc Sc Ec Sc

P (S)P ( |S)P ( |s) +P ( )P ( | )P ( | )H c Ec Sc H c Sc Ec Sc

= =
0.30 ⋅ 0.93 ⋅ 0.05 +0.07 ⋅ 0.03 ⋅ 0.97

0.30 ⋅ 0.07 ⋅ 0.05 +0.70 ⋅ 0.97 ⋅ 0.97

429

8246

P (H| ) = 429/8675 ≈ 0.05Ec

H

S
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and use the pattern of case c.

Suppose for the patient in Example the physician estimates the odds favoring the presence of the disease are 1/3, so that 
. Again, the test result is negative. Determine the posterior odds, given .

Solution

First we determine

Then

The result of the test drops the prior odds of 1/3 to approximately 1/21.

Independent evidence for a symptom

In the previous cases, we consider only a single item of evidence for a symptom. But it may be desirable to have a “second
opinion.” We suppose the tests are for the symptom and are not directly related to the hypothetical condition. If the tests are
operationally independent, we could reasonably assume

  ci  
  ci  
  ci  

  ci 

This implies  ci . A similar condition holds for . As for a single test, there are four cases, depending on the tie
between  and . We consider a "case a" example.

A food company is planning to market nationally a new breakfast cereal. Its executives feel confident that the odds are at least
3 to 1 the product would be successful. Before launching the new product, the company decides to investigate a test market.
Previous experience indicates that the reliability of the test market is such that if the national market is favorable, there is
probability 0.9 that the test market is also. On the other hand, if the national market is unfavorable, there is a probability of
only 0.2 that the test market will be favorable. These facts lead to the following analysis. Let

 be the event the national market is favorable (hypothesis)

 be the event the test market is favorable (symptom)

The initial data are the following probabilities, based on past experience:

(a) Prior odds: 
(b) Reliability of the test market:  

If it were known that the test market is favorable, we should have

Unfortunately, it is not feasible to know with certainty the state of the test market. The company decision makers engage two
market survey companies to make independent surveys of the test market. The reliability of the companies may be expressed as
follows. Let

P (S) =
P (H) −P (H| )Sc

P (H|S) −P (H| )Sc

Example  Evidence for a disease symptom with prior P(h)5.2.5

P (H) = 0.25 Ec

P (S) = = = 11/45
P (H) −P (H| )Sc

P (H|S) −P (H| )Sc

0.25 −0.03

0.93 −0.03

= = = 0.047
P (H| )Ec

P ( | )H c Ec

(11/45) ⋅ 0.93 ⋅ 0.05 +(34/45) ⋅ 0.03 ⋅ 0.97

(11/45) ⋅ 0.07 ⋅ 0.05 +(34/45) ⋅ 0.97 ⋅ 0.97

15009

320291

P ( |S ) = P ( |S )E1 E2 E1 Ec
2 { , }E1 E2 |S

P ( |SH) = P ( |S )E1 E1 H c { , H}E1 |S

P ( |SH) = P ( |S )E2 E2 H c { , H}E2 |S

P ( |SH) = P ( |S )E1E2 E1E2 H c { , , H}E1 E2 |S

{ , , H}E1 E2 |S Sc

S H

Example  A market survey problem5.2.6

H

S

P (H)/P ( ) = 3H c

P (S|H) = 0.9 P (S| ) = 0.2H c

= = ⋅ 3 = 13.5
P (H|S)

P ( |S)H c

P (S|H)P (H)

P (S| )P ( )H c H c

0.9

0.2
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 be the event the first company reports a favorable test market. 
 be the event the second company reports a favorable test market.

On the basis of previous experience, the reliability of the evidence about the test market (the symptom) is expressed in the
following conditional probabilities.

   

Both survey companies report that the test market is favorable. What is the probability the national market is favorable, given
this result?

Solution

The two survey firms work in an “operationally independent” manner. The report of either company is unaffected by the work
of the other. Also, each report is affected only by the condition of the test market— regardless of what the national market may
be. According to the discussion above, we should be able to assume

 ci  and  ci 

We may use a pattern similar to that in Example 2, as follows:

in terms of the posterior probability, we have

We note that the odds favoring , given positive indications from both survey companies, is 10.2 as compared with the odds
favoring H, given a favorable test market, of 13.5. The difference reflects the residual uncertainty about the test market after
the market surveys. Nevertheless, the results of the market surveys increase the odds favoring a satisfactory market from the
prior 3 to 1 to a posterior 10.2 to 1. In terms of probabilities, the market surveys increase the likelihood of a favorable market
from the original  to the posterior . The conditional independence of the results of the survey makes
possible direct use of the data.

A classification problem

A population consists of members of two subgroups. It is desired to formulate a battery of questions to aid in identifying the
subclass membership of randomly selected individuals in the population. The questions are designed so that for each individual the
answers are independent, in the sense that the answers to any subset of these questions are not affected by and do not affect the
answers to any other subset of the questions. The answers are, however, affected by the subgroup membership. Thus, our treatment
of conditional idependence suggests that it is reasonable to supose the answers are conditionally independent, given the subgroup
membership. Consider the following numerical example.

A sample of 125 subjects is taken from a population which has two subgroups. The subgroup membership of each subject in
the sample is known. Each individual is asked a battery of ten questions designed to be independent, in the sense that the
answer to any one is not affected by the answer to any other. The subjects answer independently. Data on the results are
summarized in the following table:

Table 5.5.
GROUP 1 (69 members) GROUP 2 (56 members)

Q Yes No Unc. Yes No Unc.

1 42 22 5 20 31 5

2 34 27 8 16 37 3

3 15 45 9 33 19 4

E1

E2

P ( |S) = 0.9E1 P ( | ) = 0.3E1 Sc P ( |S) = 0.8E2 B( | ) = 0.2E2 Sc

{ , , H}E1 E2 |S { , , H}E1 E2 Sc

\dfrascP (H| )P ( | ) = ⋅E1E2 H c E1E2

P (H)

P ( )H c

P (S|H)P ( |S)P ( |S) +P ( |H)P ( | )P ( | )E1 E2 Sc E1 Sc E2 S2

P (S| )P ( |S)P ( |S) +P ( | )P ( | )P ( | )H c E1 E2 Sc H c E1 Sc E2 Sc

= 3 ⋅ = ≈ 10.22
0.9 ⋅ 0.9 ⋅ 0.8 +0.1 ⋅ 0.3 ⋅ 0.2

0.2 ⋅ 0.9 ⋅ 0.8 +0.8 ⋅ 0.3 ⋅ 0.2

327

32

P (H| ) = = = 1 − ≈ 0.91E1E2

327/32

1 +327/32

327

359

32

359

H

P (H) = 0.75 P (H| )E1E2

Example  A classification problem5.2.7
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GROUP 1 (69 members) GROUP 2 (56 members)

4 19 44 6 31 18 7

5 22 43 4 23 28 5

6 41 13 15 14 37 5

7 9 52 8 31 17 8

8 40 26 3 13 38 5

9 48 12 9 27 24 5

10 20 37 12 35 16 5

Assume the data represent the general population consisting of these two groups, so that the data may be used to calculate
probabilities and conditional probabilities.

Several persons are interviewed. The result of each interview is a “profile” of answers to the questions. The goal is to classify
the person in one of the two subgroups on the basis of the profile of answers.

The following profiles were taken.

Y, N, Y, N, Y, U, N, U, Y. U
N, N, U, N, Y, Y, U, N, N, Y
Y, Y, N, Y, U, U, N, N, Y, Y

Classify each individual in one of the subgroups.

Solution

Let  the event the person selected is from group 1, and  the event the person selected is from group 2. Let

 = the event the answer to the th question is “Yes”

 = the event the answer to the th question is “No”

 = the event the answer to the th question is “Uncertain”

The data are taken to mean , , etc. The profile

Y, N, Y, N, Y, U, N, U, Y. U corresponds to the event 

We utilize the ratio form of Bayes' rule to calculate the posterior odds

If the ratio is greater than one, classify in group 1; otherwise classify in group 2 (we assume that a ratio exactly one is so
unlikely that we can neglect it). Because of conditional independence, we are able to determine the conditional probabilities

 and

The odds . We find the posterior odds to be

The factor  comes from multiplying  by the odds . Since the resulting posterior
odds favoring Group 1 is greater than one, we classify the respondent in group 1.

While the calculations are simple and straightforward, they are tedious and error prone. To make possible rapid and easy
solution, say in a situation where successive interviews are underway, we have several m-procedures for performing the
calculations. Answers to the questions would normally be designated by some such designation as Y for yes, N for no, and U
for uncertain. In order for the m-procedure to work, these answers must be represented by numbers indicating the appropriate

=G1 = =G2 Gc
1

Ai i

Bi i

Ci i

P ( | ) = 42/69A1 G1 P ( | ) = 19/56B3 G2

E = A1B2A3B4A5C6B7C8A9C10

= ⋅
P ( |E)G1

P ( |E)G2

P (E| )G1

P (E| )G2

P ( )G1

P ( )G2

P (E| ) =G1
42 ⋅ 27 ⋅ 15 ⋅ 44 ⋅ 22 ⋅ 15 ⋅ 52 ⋅ 3 ⋅ 48 ⋅ 12

6910

P (E| ) =G2
29 ⋅ 37 ⋅ 33 ⋅ 18 ⋅ 23 ⋅ 5 ⋅ 17 ⋅ 5 ⋅ 24 ⋅ 5

5610

P ( )/P ( ) = 69/56G2 G2

= ⋅ = 5.85
P ( |E)G1

P ( |E)G2

42 ⋅ 27 ⋅ 15 ⋅ 44 ⋅ 22 ⋅ 15 ⋅ 52 ⋅ 3 ⋅ 48 ⋅ 12

29 ⋅ 37 ⋅ 33 ⋅ 18 ⋅ 23 ⋅ 5 ⋅ 17 ⋅ 5 ⋅ 24 ⋅ 5

569

699

/569 699 /5610 6910 P ( )/P ( ) = 69/56G1 G2
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columns in matrices A and B. Thus, in the example under consideration, each Y must be translated into a 1, each N into a 2,
and each U into a 3. The task is not particularly difficult, but it is much easier to have MATLAB make the translation as well as
do the calculations. The following two-stage approach for solving the problem works well.

The first m-procedure oddsdf sets up the frequency information. The next m-procedure odds calculates the odds for a given
profile. The advantage of splitting into two m-procedures is that we can set up the data once, then call repeatedly for the
calculations for different profiles. As always, it is necessary to have the data in an appropriate form. The following is an
example in which the data are entered in terms of actual frequencies of response.

% file oddsf4.m 

% Frequency data for classification 

A = [42 22 5; 34 27 8; 15 45 9; 19 44 6; 22 43 4; 

     41 13 15; 9 52 8; 40 26 3; 48 12 9; 20 37 12]; 

B = [20 31 5; 16 37 3; 33 19 4; 31 18 7; 23 28 5; 

     14 37 5; 31 17 8; 13 38 5; 27 24 5; 35 16 5]; 

disp('Call for oddsdf') 

oddsf4              % Call for data in file oddsf4.m 

Call for oddsdf     % Prompt built into data file 

oddsdf              % Call for m-procedure oddsdf 

Enter matrix A of frequencies for calibration group 1  A 

Enter matrix B of frequencies for calibration group 2  B 

Number of questions = 10 

Answers per question = 3 

 Enter code for answers and call for procedure "odds" 

y = 1;              % Use of lower case for easier writing 

n = 2; 

u = 3; 

odds                % Call for calculating procedure 

Enter profile matrix E  [y n y n y u n u y u]   % First profile 

Odds favoring Group 1:   5.845 

Classify in Group 1 

odds                % Second call for calculating procedure 

Enter profile matrix E  [n n u n y y u n n y]   % Second profile 

Odds favoring Group 1:   0.2383 

Classify in Group 2 

odds                % Third call for calculating procedure 

Enter profile matrix E  [y y n y u u n n y y]   % Third profile 

Odds favoring Group 1:   5.05 

Classify in Group 1 

The principal feature of the m-procedure odds is the scheme for selecting the numbers from the  and  matrices. If  = [
] , then the coding translates this into the actual numerical matrix

[1 1 2 1 3 3 2 2 1 1] used internally. Then  is a matrix with columns corresponding to elements of . Thus

Example  Classification using frequency data5.2.8

A B E

yynyuunnyy

A(:, E) E
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e = A(:,E) 

e =   42    42    22    42     5     5    22    22    42    42 

      34    34    27    34     8     8    27    27    34    34 

      15    15    45    15     9     9    45    45    15    15 

      19    19    44    19     6     6    44    44    19    19 

      22    22    43    22     4     4    43    43    22    22 

      41    41    13    41    15    15    13    13    41    41 

       9     9    52     9     8     8    52    52     9     9 

      40    40    26    40     3     3    26    26    40    40 

      48    48    12    48     9     9    12    12    48    48 

      20    20    37    20    12    12    37    37    20    20 

The th entry on the th column is the count corresponding to the answer to the th question. For example, the answer to the
third question is N (no), and the corresponding count is the third entry in the N (second) column of . The element on the
diagonal in the third column of  is the third element in that column, and hence the desired third entry of the N column.
By picking out the elements on the diagonal by the command diag(A(:,E)), we have the desired set of counts corresponding to
the profile. The same is true for diag(B(:,E)).

Sometimes the data are given in terms of conditional probabilities and probabilities. A slight modification of the procedure
handles this case. For purposes of comparison, we convert the problem above to this form by converting the counts in matrices 

 and  to conditional probabilities. We do this by dividing by the total count in each group (69 and 56 in this case). Also, 
 and .

Table 5.6.
GROUP 1 GROUP 2 

Q Yes No Unc. Yes No Unc.

1 0.6087 0.3188 0.0725 0.3571 0.5536 0.0893

2 0.4928 0.3913 0.1159 0.2857 0.6607 0.0536

3 0.2174 0.6522 0.1304 0.5893 0.3393 0.0714

4 0.2754 0.6376 0.0870 0.5536 0.3214 0.1250

5 0.3188 0.6232 0.0580 0.4107 0.5000 0.0893

6 0.5942 0.1884 0.2174 0.2500 0.6607 0.0893

7 0.1304 0.7536 0.1160 0.5536 0.3036 0.1428

8 0.5797 0.3768 0.0435 0.2321 0.6786 0.0893

9 0.6957 0.1739 0.1304 0.4821 0.4286 0.0893

10 0.2899 0.5362 0.1739 0.6250 0.2857 0.0893

These data are in an m-file oddsp4.m. The modified setup m-procedure oddsdp uses the conditional probabilities, then calls for
the m-procedure odds.

oddsp4                 % Call for converted data (probabilities) 

oddsdp                 % Setup m-procedure for probabilities 

Enter conditional probabilities for Group 1  A 

Enter conditional probabilities for Group 2  B 

Probability p1 individual is from Group 1  0.552 

 Number of questions = 10 

i i i

A

A(:, E)

A B

P ( ) = 69/125 = 0.552G1 P ( ) = 56/125 = 0.448G2

P( ) = 69/125G1 P( ) = 56/125G2

Example  Calculation using conditional probability data5.2.9
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 Answers per question = 3 

 Enter code for answers and call for procedure "odds" 

y = 1; 

n = 2; 

u = 3; 

odds 

Enter profile matrix E  [y n y n y u n u y u] 

Odds favoring Group 1:  5.845 

Classify in Group 1 

The slight discrepancy in the odds favoring Group 1 (5.8454 compared with 5.8452) can be attributed to rounding of the
conditional probabilities to four places. The presentation above rounds the results to 5.845 in each case, so the discrepancy is
not apparent. This is quite acceptable, since the discrepancy has no effect on the results.

This page titled 5.2: Patterns of Probable Inference is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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5.3: Problems on Conditional Independence

Suppose  ci  and  ci , , and

, , , 

Show whether or not the pair  is independent.

Answer

,  + P(B|C^c) P(C^c)\), and

PA = 0.4*0.7 + 0.3*0.3 

PA =  0.3700 

PB = 0.6*0.7 + 0.2*0.3 

PB =  0.4800 

PA*PB 

ans = 0.1776 

PAB = 0.4*0.6*0.7 + 0.3*0.2*0.3 

PAB = 0.1860       % PAB not equal PA*PB;  not independent

Suppose  ci  and ci , with , and

  for , respectively

Determine the posterior odds .

Answer

Five world class sprinters are entered in a 200 meter dash. Each has a good chance to break the current track record. There is a
thirty percent chance a late cold front will move in, bringing conditions that adversely affect the runners. Otherwise, conditions
are expected to be favorable for an outstanding race. Their respective probabilities of breaking the record are:

Good weather (no front): 0.75, 0.80, 0.65, 0.70, 0.85
Poor weather (front in): 0.60, 0.65, 0.50, 0.55, 0.70

The performances are (conditionally) independent, given good weather, and also, given poor weather. What is the probability
that three or more will break the track record?

Hint. If  is the event of three or more, .

Answer

Exercise 5.3.1

{A. , B} |C {A, B} |C c
P (C) = 0.7

P (A|C) = 0.4 P (B|C) = 0.6 P (A| ) = 0.3C
c

P (B| ) = 0.2C
c

{A. , B}

P (A) = P (A|C)P (C) +P (A| )P ( )C
c

C
c

P (B) = P (B|C)P (C)

P (AB) = P (A|C)P (B|C)P (C) +P (A| )P (B| )P (B| )P ( )C
c

C
c

C
c

C
c

Exercise 5.3.2

{ , , }A1 A2 A3 |C |C c
P (C) = 0.4

P ( |C) = 0.90, 0.85, 0.80Ai P ( | ) = 0.20, 0.15, 0.20Ai C
c

i = 1, 2, 3

P (C| )/P ( | )A1Ac
2A3 C

c
A1Ac

2A3

= ⋅
P (C| )A1Ac

2A3

P ( | )C c A1Ac
2A3

P (C)

P ( )C c

P ( C)P ( |C)P ( |C)A1 Ac
2 A3

P ( | )P ( | )P ( | )A1 C c Ac
2 C c A3 C c

= ⋅ = = 2.12
0.4

0.6

0.9 ⋅ 0.15 ⋅ 0.80

0.20 ⋅ 0.85 ⋅ 0.20

108

51

Exercise 5.3.3

B3 P ( ) = P ( |W )P (W ) +P ( | )P ( )B3 B3 B3 W c W c
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PW = 0.01*[75 80 65 70 85]; 

PWc = 0.01*[60 65 50 55 70]; 

P = ckn(PW,3)*0.7 + ckn(PWc,3)*0.3 

P =  0.8353

A device has five sensors connected to an alarm system. The alarm is given if three or more of the sensors trigger a switch. If a
dangerous condition is present, each of the switches has high (but not unit) probability of activating; if the dangerous condition
does not exist, each of the switches has low (but not zero) probability of activating (falsely). Suppose  the event of the
dangerous condition and  the event the alarm is activated. Proper operation consists of . Suppose  the
event the th unit is activated. Since the switches operate independently, we suppose

 ci  and ci 

Assume the conditional probabilities of the , given , are 0.91, 0.93, 0.96, 0.87, 0.97, and given , are 0.03, 0.02, 0.07, 0.04,
0.01, respectively. If , what is the probability the alarm system acts properly? Suggestion. Use the conditional
independence and the procedure ckn.

Answer

P1 = 0.01*[91 93 96 87 97]; 

P2 = 0.01*[3 2 7 4 1]; 

P  = ckn(P1,3)*0.02 + (1 - ckn(P2,3))*0.98 

P =  0.9997

Seven students plan to complete a term paper over the Thanksgiving recess. They work independently; however, the likelihood
of completion depends upon the weather. If the weather is very pleasant, they are more likely to engage in outdoor activities
and put off work on the paper. Let  be the event the th student completes his or her paper,  be the event that  or more
complete during the recess, and W be the event the weather is highly conducive to outdoor activity. It is reasonable to suppose 

 and ci . Suppose

respectively, and . Determine the probability  that four our more complete their papers and  that five
or more finish.

Answer

PW = 0.1*[4 5 3 7 5 6 2]; 

PWc = 0.1*[7 8 5 9 7 8 5]; 

PA4 = ckn(PW,4)*0.8 + ckn(PWc,4)*0.2 

PA4 =  0.4993 

PA5 = ckn(PW,5)*0.8 + ckn(PWc,5)*0.2 

PA5 =  0.2482

Exercise 5.3.4

D =

A = AD⋁A
c
D

c =Ei

i

{ , , , , }E1 E2 E3 E4 E5 |D |Dc

E1 D D
c

P (D) = 0.02

Exercise 5.3.5

Ei i Ak k

{ : 1 ≤ i ≤ 7}Ei |W c

P ( |W ) = 0.4, 0.5, 0.3, 0.7, 0.5, 0.6, 0.2Ei

P ( | ) = 0.7, 0.8, 0.5, 0.9, 0.7, 0.8, 0.5Ei W c

P (W ) = 0.8 P ( )A4 P ( )A5
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A manufacturer claims to have improved the reliability of his product. Formerly, the product had probability 0.65 of operating
1000 hours without failure. The manufacturer claims this probability is now 0.80. A sample of size 20 is tested. Determine the
odds favoring the new probability for various numbers of surviving units under the assumption the prior odds are 1 to 1. How
many survivors would be required to make the claim creditable?

Answer

Let  be the event the probability is 0.80 and  be the event the probability is 0.65. Assume .

k = 1:20; 

odds = ibinom(20,0.80,k)./ibinom(20,0.65,k); 

disp([k;odds]') 

- - - - - - - - - - - - 

   13.0000    0.2958 

   14.0000    0.6372 

   15.0000    1.3723   % Need at least 15 or 16 successes 

   16.0000    2.9558 

   17.0000    6.3663 

   18.0000   13.7121 

   19.0000   29.5337 

   20.0000   63.6111

A real estate agent in a neighborhood heavily populated by affluent professional persons is working with a customer. The agent
is trying to assess the likelihood the customer will actually buy. His experience indicates the following: if H is the event the
customer buys, S is the event the customer is a professional with good income, and E is the event the customer drives a
prestigious car, then

    

Since buying a house and owning a prestigious car are not related for a given owner, it seems reasonable to suppose 
 and . The customer drives a Cadillac. What are the odds he will buy a

house?

Answer

Assumptions amount to  ci  and ci .

 which implies

 so that 

Exercise 5.3.6

E1 E2 P ( )/P ( ) = 1E1 E2

= ⋅
P ( | = k)E1 Sn

P ( | = k)E2 Sn

P ( )E1

P ( )E2

P ( = k| )Sn E1

P ( = k| )Sn E2

Exercise 5.3.7

P (S) = 0.7 P (S|H) = 0.90 P (S| ) = 0.2H
c

P (E|S) = 0.95 P (E| ) = 0.25S
c

P (E|HS) = P (E| S)H
c

P (E|H ) = P (E| )S
c

H
c
S

c

{H, E} |S |Sc

=
P (H|S)

P ( |S)H c

P (H)P (S|H)

P ( )P (S| )H c H c

P (S) = P (H)P (S|H) +[1 −P (H)]P (S| )H
c

P (H) = = 5/7
P (S) −P (S| )H

c

P (S|H) −P (S| )H c
= ⋅ =

P (H|S)

P ( |S)H c

5

2

0.9

0.2

45

4
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In deciding whether or not to drill an oil well in a certain location, a company undertakes a geophysical survey. On the basis of
past experience, the decision makers feel the odds are about four to one favoring success. Various other probabilities can be
assigned on the basis of past experience. Let

 be the event that a well would be successful
 be the event the geological conditions are favorable
 be the event the results of the geophysical survey are positive

The initial, or prior, odds are . Previous experience indicates

   

Make reasonable assumptions based on the fact that the result of the geophysical survey depends upon the geological formations
and not on the presence or absence of oil. The result of the survey is favorable. Determine the posterior odds .

Answer

A software firm is planning to deliver a custom package. Past experience indicates the odds are at least four to one that it will
pass customer acceptance tests. As a check, the program is subjected to two different benchmark runs. Both are successful.
Given the following data, what are the odds favoring successful operation in practice? Let

 be the event the performance is satisfactory
 be the event the system satisfies customer acceptance tests
 be the event the first benchmark tests are satisfactory.
 be the event the second benchmark test is ok.

Under the usual conditions, we may assume  ci  and ci . Reliability data show

, 

   

Determine the posterior odds .

Answer

A research group is contemplating purchase of a new software package to perform some specialized calculations. The systems
manager decides to do two sets of diagnostic tests for significant bugs that might hamper operation in the intended application.
The tests are carried out in an operationally independent manner. The following analysis of the results is made.

 = the event the program is satisfactory for the intended application

Exercise 5.3.8

H

S

E

P (H)/P ( ) = 4H
c

P (S|H) = 0.9 P (S| ) = 0.20H
c

P (E|S) = 0.95 P (E| ) = 0.10S
c

P (H|E)/P ( |E)H
c

= ⋅
P (H|E)

P ( |E)H c

P (H)

P ( )H c

P (S|H)P (E|S) +P ( |H)P (E| )S
c

S
c

P (S| )P (E|S) +P ( | )P (E| )H c Sc H c Sc

= 4 ⋅ = 12.8148
0.90 ⋅ 0.95 +0.10 ⋅ 0.10

0.20 ⋅ 0.95 +0.80 ⋅ 0.10

Exercise 5.3.9

H

S

E1

E2

{H, , }E1 E2 |S |Sc

P (H|S) = 0.95 P (H| ) = 0.45S
c

P ( |S) = 0.90E1 P ( | ) = 0.25E1 S
c

P ( |S) = 0.95E2 P ( | ) = 0.20E2 S
c

P (H| )/P ( | )E1E2 H
c

E1E2

=
P (H| )E1E2

P ( | )H c E1E2

P (H S) +P (H )E1E2 E1E2S
c

P ( S) +P ( )H cE1E2 H cE1E2Sc

=
P (S)P (H|S)P ( |S)P ( |S) +P ( )P (H| )P ( | )P ( | )E1 E2 S

c
S

c
E1 S

c
E2 S

c

P (S)P ( |S)P ( |S)P ( |S) +P ( )P ( | )P ( | )P ( | )H c E1 E2 Sc H c Sc E1 Sc E2 Sc

= = 16.64811
0.80 ⋅ 0.95 ⋅ 0.90 ⋅ 0.95 +0.20 ⋅ 0.45 ⋅ 0.25 ⋅ 0.20

0.80 ⋅ 0.05 ⋅ 0.90 ⋅ 0.95 +0.20 ⋅ 0.55 ⋅ 0.25 ⋅ 0.20

Exercise 5.3.10

H

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10873?pdf


5.3.5 https://stats.libretexts.org/@go/page/10873

 = the event the program is free of significant bugs
 = the event the first diagnostic tests are satisfactory
 = the event the second diagnostic tests are satisfactory

Since the tests are for the presence of bugs, and are operationally independent, it seems reasonable to assume  ci 
 and  ci . Because of the reliability of the software company, the manager thinks . Also,

experience suggests

Determine the posterior odds favoring  if results of both diagnostic tests are satisfactory.

Answer

with similar expressions for the other terms.

A company is considering a new product now undergoing field testing. Let

 be the event the product is introduced and successful
 be the event the R&D group produces a product with the desired characteristics.
 be the event the testing program indicates the product is satisfactory

The company assumes  and the conditional probabilities

   

Since the testing of the merchandise is not affected by market success or failure, it seems reasonable to suppose  ci  and
ci . The field tests are favorable. Determine .

Answer

Martha is wondering if she will get a five percent annual raise at the end of the fiscal year. She understands this is more likely
if the company's net profits increase by ten percent or more. These will be influenced by company sales volume. Let

 = the event she will get the raise
 = the event company profits increase by ten percent or more
 = the event sales volume is up by fifteen percent or more

Since the prospect of a raise depends upon profits, not directly on sales, she supposes  ci  and  ci . She
thinks the prior odds favoring suitable profit increase is about three to one. Also, it seems reasonable to suppose

   

S

E1

E2

{H, , }E1 E2

|S {H, , }E1 E2 |Sc P (S) = 0.85

P(H|S) = 0.95 P( |S) = 0.90E1 P( |S) = 0.95E2

P(H| ) = 0.30Sc P( | ) = 0.20E1 Sc P( | ) = 0.25E2 Sc

H

=
P (H| )E1E2

P ( | )H c E1E2

P (H S) +P (H )E1E2 E1E2Sc

P ( S) +P ( )H cE1E2 H cE1E2Sc

P (H S) = P (S)P (H|S)P ( |SH)P ( |SH ) = P (S)P (H|S)P ( |S)P ( |S)E1E2 E1 E2 E1 E1 E2

= = 16.6555
P (H| )E1E2

P ( | )H c E1E2

0.85 ⋅ 0.95 ⋅ 0.90 ⋅ 0.95 +0.15 ⋅ 0.30 ⋅ 0.25 ⋅ 0.20

0.85 ⋅ 0.05 ⋅ 0.90 ⋅ 0.95 +0.15 ⋅ 0.70 ⋅ 0.25 ⋅ 0.20

Exercise 5.3.11

H

S

E

P (S) = 0.9

P (H|S) = 0.90 P (H| ) = 0.10S
c

P (E|S) = 0.95 P (E| ) = 0.15S
c

{H, E} |S

|Sc P (H|E)/P ( |E)H c

=
P (H|E)

P ( |E)H c

P (S)P (H|S)P (E|S) +P ( )P (H| )P (E| )Sc Sc Sc

P (S)P ( |S)P (E|S) +P ( )P ( | )P (E| )H c Sc H c Sc Sc

= = 7.7879
0.90 ⋅ 0.90 ⋅ 0.95 +0.10 ⋅ 0.10 ⋅ 0.15

0.90 ⋅ 0.10 ⋅ 0.95 +0.10 ⋅ 0.90 ⋅ 0.15

Exercise 5.3.12

H

S

E

{H, E} |S {H, E} |Sc

P (H|S) = 0.80 P (H| ) = 0.10Sc P (E|S) = 0.95 P (E| ) = 0.10Sc
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End of the year records show that sales increased by eighteen percent. What is the probability Martha will get her raise?

Answer

A physician thinks the odds are about 2 to 1 that a patient has a certain disease. He seeks the “independent” advice of three
specialists. Let  be the event the disease is present, and be the events the respective consultants agree this is the case.
The physician decides to go with the majority. Since the advisers act in an operationally independent manner, it seems
reasonable to suppose  ci  and ci . Experience indicates

, , 

, , 

What is the probability of the right decision (i.e., he treats the disease if two or more think it is present, and does not if two or
more think the disease is not present)?

Answer

PH = 0.01*[80 70 75]; 

PHc = 0.01*[85 80 70]; 

pH = 2/3; 

P  = ckn(PH,2)*pH + ckn(PHc,2)*(1 - pH) 

P =  0.8577

A software company has developed a new computer game designed to appeal to teenagers and young adults. It is felt that there
is good probability it will appeal to college students, and that if it appeals to college students it will appeal to a general youth
market. To check the likelihood of appeal to college students, it is decided to test first by a sales campaign at Rice and
University of Texas, Austin. The following analysis of the situation is made.

 = the event the sales to the general market will be good
 = the event the game appeals to college students

= the event the sales are good at Rice
 = the event the sales are good at UT, Austin

Since the tests are for the reception are at two separate universities and are operationally independent, it seems reasonable to
assume  ci  and  ci . Because of its previous experience in game sales, the managers think 

. Also, experience suggests

Determine the posterior odds favoring  if sales results are satisfactory at both schools.

Answer

=
P (H|E)

P ( |E)H c

P (S)P (H|S)P (E|S) +P ( )P (H| )P (E| )S
c

S
c

S
c

P (S)P ( |S)P (E|S) +P ( )P ( | )P (E| )H c Sc H c Sc Sc

= = 3.4697
0.75 ⋅ 0.80 ⋅ 0.95 +0.25 ⋅ 0.10 ⋅ 0.10

0.75 ⋅ 0.20 ⋅ 0.95 +0.25 ⋅ 0.90 ⋅ 0.10

Exercise 5.3.13

H A, B, C

{A, B, C} |H |H c

P (A|H) = 0.8 P (B|H) = 0.7 P (C|H) −0.75

P ( | ) = 0.85A
c

H
c

P ( | ) = 0.8B
c

H
c

P ( | ) = 0.7C
c

H
c

Exercise 5.3.14

H

s

E1

E2

{H, , }E1 E2 |S {H, , }E1 E2 |Sc

P (S) = 0.80

P(H|S) = 0.95 P( |S) = 0.90E1 P( |S) = 0.95E2

P(H| ) = 0.30Sc P( | ) = 0.20E1 Sc P( | ) = 0.25E2 Sc

H

=
P (H| )E1E2

P ( | )H c E1E2

P (H S) +P (H )E1E2 E1E2S
c

P ( S) +P ( )H cE1E2 H cE1E2Sc
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In a region in the Gulf Coast area, oil deposits are highly likely to be associated with underground salt domes. If  is the event
that an oil deposit is present in an area, and  is the event of a salt dome in the area, experience indicates  and 

. Company executives believe the odds favoring oil in the area is at least 1 in 10. It decides to conduct two
independent geophysical surveys for the presence of a salt dome. Let  be the events the surveys indicate a salt dome.
Because the surveys are tests for the geological structure, not the presence of oil, and the tests are carried out in an
operationally independent manner, it seems reasonable to assume  ci  and ci . Data on the reliability of the
surveys yield the following probabilities

   

Determine the posterior odds . Should the well be drilled?

Answer

with similar expressions for the other terms.

A sample of 150 subjects is taken from a population which has two subgroups. The subgroup membership of each subject in
the sample is known. Each individual is asked a battery of ten questions designed to be independent, in the sense that the
answer to any one is not affected by the answer to any other. The subjects answer independently. Data on the results are
summarized in the following table:

GROUP 1 (84 members) GROUP 2 (66 members)

Q Yes No Unc Yes No Unc

1 51 26 7 27 34 5

2 42 32 10 19 43 4

3 19 54 11 39 22 5

4 24 53 7 38 19 9

5 27 52 5 28 33 5

6 49 19 16 19 41 6

7 16 59 9 37 21 8

8 47 32 5 19 42 5

9 55 17 12 27 33 6

10 24 53 7 39 21 6

=
P (S)P (H|S)P ( |S)P ( |S) +P ( )P (H| )P ( | )P ( | )E1 E2 S

c
S

c
E1 S

c
E2 S

c

P (S)P ( |S)P ( |S)P ( |S) +P ( )P ( | )P ( | )P ( | )H c E1 E2 Sc H c Sc E1 Sc E2 Sc

= = 15.8447
0.80 ⋅ 0.95 ⋅ 0.90 ⋅ 0.95 +0.20 ⋅ 0.30 ⋅ 0.20 ⋅ 0.25

0.80 ⋅ 0.05 ⋅ 0.90 ⋅ 0.95 +0.20 ⋅ 0.70 ⋅ 0.20 ⋅ 0.25

Exercise 5.3.15

H

S P (S|H) = 0.9

P (S| ) = 1H
c

E −1, E2

{H, , }E1 E2 |S |Sc

P ( |S) = 0.95E1 P ( | ) = 0.05E1 S
c

P ( |S) = 0.90E2 P ( | ) = 0.10E2 S
c

P (H| )E1E2

P ( | )H c E1E2

=
P (H| )E1E2

P ( | )H c E1E2

P (H S) +P (H )E1E2 E1E2S
c

P ( S) +P ( )H cE1E2 H cE1E2Sc

P (H S) = P (H)P (S|H)P ( |SH)P ( |SH ) = P (H)P (S|H)P ( |S)P ( |S)E1E2 E1 E2 E1 E1 E2

= ⋅ = 0.8556
P (H| )E1E2

P ( | )H c E1E2

1

10

0.9 ⋅ 0.95 ⋅ 0.90 +0.10 ⋅ 0.05 ⋅ 0.10

0.1 ⋅ 0.95 ⋅ 0.90 +0.90 ⋅ 0.05 ⋅ 0.10

Exercise 5.3.16
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Assume the data represent the general population consisting of these two groups, so that the data may be used to calculate
probabilities and conditional probabilities.

Several persons are interviewed. The result of each interview is a “profile” of answers to the questions. The goal is to classify
the person in one of the two subgroups

For the following profiles, classify each individual in one of the subgroups

i. y, n, y, n, y, u, n, u, y. u
ii. n, n, u, n, y, y, u, n, n, y

iii. y, y, n, y, u, u, n, n, y, y

Answer

% file npr05_16.m 

% Data for Exercise 5.3.16. 

A = [51 26  7; 42 32 10; 19 54 11; 24 53  7; 27 52  5; 

     49 19 16; 16 59  9; 47 32  5; 55 17 12; 24 53  7]; 

B = [27 34  5; 19 43  4; 39 22  5; 38 19  9; 28 33  5; 

     19 41  6; 37 21  8; 19 42  5; 27 33  6; 39 21  6]; 

disp('Call for oddsdf') 

npr05_16 

Call for oddsdf 

oddsdf 

Enter matrix A of frequencies for calibration group 1  A 

Enter matrix B of frequencies for calibration group 2  B 

Number of questions = 10 

Answers per question = 3 

 Enter code for answers and call for procedure "odds" 

y = 1; 

n = 2; 

u = 3; 

odds 

Enter profile matrix E  [y n y n y u n u y u] 

Odds favoring Group 1:   3.743 

Classify in Group 1 

odds 

Enter profile matrix E  [n n u n y y u n n y] 

Odds favoring Group 1:   0.2693 

Classify in Group 2 

odds 

Enter profile matrix E  [y y n y u u n n y y] 

Odds favoring Group 1:   5.286 

Classify in Group 1

The data of Exercise 5.3.16., above, are converted to conditional probabilities and probabilities, as follows (probabilities are
rounded to two decimal places).

GROUP 1 GROUP 2 

Exercise 5.3.17

P( ) = 0.56G1 P( ) = 0.44G2
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Q Yes No Unc Yes No Unc

1 0.61 0.31 0.08 0.41 0.51 0.08

2 0.50 0.38 0.12 0.29 0.65 0.06

3 0.23 0.64 0.13 0.59 0.33 0.08

4 0.29 0.63 0.08 0.57 0.29 0.14

5 0.32 0.62 0.06 0.42 0.50 0.08

6 0.58 0.23 0.19 0.29 0.62 0.09

7 0.19 0.70 0.11 0.56 0.32 0.12

8 0.56 0.38 0.06 0.29 0.63 0.08

9 0.65 0.20 0.15 0.41 0.50 0.09

10 0.29 0.63 0.08 0.59 0.32 0.09

For the following profiles classify each individual in one of the subgroups.

i. y, n, y, n, y, u, n, u, y, u
ii. n, n, u, n, y, y, u, n, n, y

iii. y, y, n, y, u, u, n, n, y, y

Answer

npr05_17 

% file npr05_17.m 

% Data for Exercise 5.3.17. 

PG1 = 84/150; 

PG2 = 66/125; 

A = [0.61 0.31 0.08 

     0.50 0.38 0.12 

     0.23 0.64 0.13 

     0.29 0.63 0.08 

     0.32 0.62 0.06 

     0.58 0.23 0.19 

     0.19 0.70 0.11 

     0.56 0.38 0.06 

     0.65 0.20 0.15 

     0.29 0.63 0.08]; 

  

B = [0.41 0.51 0.08 

     0.29 0.65 0.06 

     0.59 0.33 0.08 

     0.57 0.29 0.14 

     0.42 0.50 0.08 

     0.29 0.62 0.09 

     0.56 0.32 0.12 

     0.29 0.64 0.08 

     0.41 0.50 0.09 

     0.59 0.32 0.09]; 

disp('Call for oddsdp') 
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Call for oddsdp 

oddsdp 

Enter matrix A of conditional probabilities for Group 1  A 

Enter matrix B of conditional probabilities for Group 2  B 

Probability p1 an individual is from Group 1  PG1 

Number of questions = 10 

Answers per question = 3 

 Enter code for answers and call for procedure "odds" 

y = 1; 

n = 2; 

u = 3; 

odds 

Enter profile matrix E  [y n y n y u n u y u] 

Odds favoring Group 1:   3.486 

Classify in Group 1 

odds 

Enter profile matrix E  [n n u n y y u n n y] 

Odds favoring Group 1:   0.2603 

Classify in Group 2 

odds 

Enter profile matrix E  [y y n y u u n n y y] 

Odds favoring Group 1:   5.162 

Classify in Group 1 
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6.1: Random Variables and Probabilities
Probability associates with an event a number which indicates the likelihood of the occurrence of that event on any trial. An event
is modeled as the set of those possible outcomes of an experiment which satisfy a property or proposition characterizing the event.

Often, each outcome is characterized by a number. The experiment is performed. If the outcome is observed as a physical quantity,
the size of that quantity (in prescribed units) is the entity actually observed. In many nonnumerical cases, it is convenient to assign
a number to each outcome. For example, in a coin flipping experiment, a “head” may be represented by a 1 and a “tail” by a 0. In a
Bernoulli trial, a success may be represented by a 1 and a failure by a 0. In a sequence of trials, we may be interested in the number
of successes in a sequence of  component trials. One could assign a distinct number to each card in a deck of playing cards.
Observations of the result of selecting a card could be recorded in terms of individual numbers. In each case, the associated number
becomes a property of the outcome.

Random variables as functions 

We consider in this chapter real random variables (i.e., real-valued random variables). In the chapter on Random Vectors and Joint
Distributions, we extend the notion to vector-valued random quantites. The fundamental idea of a real random variable is the
assignment of a real number to each elementary outcome  in the basic space . Such an assignment amounts to determining a
function , whose domain is  and whose range is a subset of the real line R. Recall that a real-valued function on a domain (say
an interval  on the real line) is characterized by the assignment of a real number  to each element  (argument) in the domain.
For a real-valued function of a real variable, it is often possible to write a formula or otherwise state a rule describing the
assignment of the value to each argument. Except in special cases, we cannot write a formula for a random variable . However,
random variables share some important general properties of functions which play an essential role in determining their usefulness.

Mappings and inverse mappings

There are various ways of characterizing a function. Probably the most useful for our purposes is as a mapping from the domain 
to the codomain R. We find the mapping diagram of Figure 1 extremely useful in visualizing the essential patterns. Random
variable , as a mapping from basic space  to the real line R, assigns to each element  a value . The object point  is
mapped, or carried, into the image point . Each  is mapped into exactly one , although several  may have the same image
point.

Figure 6.1.1. The basic mapping diagram .

Associated with a function  as a mapping are the inverse mapping  and the inverse images it produces. Let  be a set of
numbers on the real line. By the inverse image of  under the mapping , we mean the set of all those  which are mapped
into  by  (see Figure 2). If  does not take a value in , the inverse image is the empty set (impossible event). If  includes
the range of , (the set of all possible values of ), the inverse image is the entire basic space . Formally we write

Now we assume the set , a subset of , is an event for each . A detailed examination of that assertion is a topic in
measure theory. Fortunately, the results of measure theory ensure that we may make the assumption for any  and any subset  of
the real line likely to be encountered in practice. The set  is the event that  takes a value in . As an event, it may be
assigned a probability.

n

ω Ω
X Ω

I y x

X

Ω

X Ω ω t = X(ω) ω

t ω t ω

t = X(ω)

X X−1 M

M X ω ∈ Ω
M X X M M

X X Ω

(M) = {ω : X(ω) ∈ M}X−1

(M)X−1 Ω M

X M

(M)X−1 X M

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10857?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/06%3A_Random_Variables_and_Probabilities/6.01%3A_Random_Variables_and_Probabilities
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/08%3A_Random_Vectors_and_Joint_Distributions/8.01%3A_Random_Vectors_and_Joint_Distributions


6.1.2 https://stats.libretexts.org/@go/page/10857

Figure 6.1.2. E is the inverse image .

1.  where  is an event with probability . Now  takes on only two values, 0 and 1. The event that  take on the value 1
is the set

 
 

so that . This rather ungainly notation is shortened to . Similarly, . Consider any set
. If neither 1 nor 0 is in , then  If 0 is in , but 1 is not, then  If 1 is in , but 0 is not,

then  If both 1 and 0 are in , then  In this case the class of all events  consists of
event , its complement , the impossible event , and the sure event .

2. Consider a sequence of  Bernoulli trials, with probability  of success. Let  be the random variable whose value is the
number of successes in the sequence of  component trials. Then, according to the analysis in the section "Bernoulli Trials
and the Binomial Distribution"

 

 

Before considering further examples, we note a general property of inverse images. We state it in terms of a random variable,
which maps  to the real line (see Figure 3).

Preservation of set operations

Let  be a mapping from  to the real line R. If  are sets of real numbers, with respective inverse images , , then

,  and 

Examination of simple graphical examples exhibits the plausibility of these patterns. Formal proofs amount to careful reading of
the notation. Central to the structure are the facts that each element ω is mapped into only one image point t and that the inverse
image of  is the set of all those  which are mapped into image points in .

Figure 6.1.3. Preservation of set operations by inverse images.

An easy, but important, consequence of the general patterns is that the inverse images of disjoint  are also disjoint. This
implies that the inverse of a disjoint union of  is a disjoint union of the separate inverse images.

Consider, again, the random variable  which counts the number of successes in a sequence of  Bernoulli trials. Let 
and . Suppose we want to determine the probability . Let , which we usually

(M)X−1

Example  Some illustrative examples6.1.1

IE E p X X

{ω : X(ω) = 1} = ({1}) = EX−1

P ({ω : X(ω) = 1}) = p P (X = 1) = p

M M (M) = ∅X−1 M (M) =X−1 Ec M

(M) = EX−1 M (M) = ΩX−1 (M)X−1

E Ec ∅ Ω

n p Sn

n

P ( = k) = C(n, k) (1 −pSn pk )n−k 0 ≤ k ≤ n

Ω

X Ω M , , i ∈ JMi E Ei

( ) =X−1 M c Ec ( ) =X−1 ⋃i∈J Mi ⋃i∈J Ei ( ) =X−1 ⋂i∈J Mi ⋂i∈J Ei

M ω M

M , N

Mi

Example  Events determined by a random variable6.1.2

Sn n n = 10
p = 0.33 P (2 < ≤ 8)S10 = {ω : (ω) = k}Ak S10
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shorten to . Now the  form a partition, since we cannot have  and   (i.e., for any ,
we cannot have two values for ). Now,

since  takes on a value greater than 2 but no greater than 8 iff it takes one of the integer values from 3 to 8. By the additivity of
probability,

Mass transfer and induced probability distribution

Because of the abstract nature of the basic space and the class of events, we are limited in the kinds of calculations that can be
performed meaningfully with the probabilities on the basic space. We represent probability as mass distributed on the basic space
and visualize this with the aid of general Venn diagrams and minterm maps. We now think of the mapping from  to R as a
producing a point-by-point transfer of the probability mass to the real line. This may be done as follows:

To any set  on the real line assign probability mass 

It is apparent that  and (R) . And because of the preservation of set operations by the inverse mapping

This means that  has the properties of a probability measure defined on the subsets of the real line. Some results of measure
theory show that this probability is defined uniquely on a class of subsets of R that includes any set normally encountered in
applications. We have achieved a point-by-point transfer of the probability apparatus to the real line in such a manner that we can
make calculations about the random variable . We call  the probability measure induced by X. Its importance lies in the fact
that . Thus, to determine the likelihood that random quantity X will take on a value in set M, we determine
how much induced probability mass is in the set M. This transfer produces what is called the probability distribution for X. In the
chapter "Distribution and Density Functions", we consider useful ways to describe the probability distribution induced by a random
variable. We turn first to a special class of random variables.

Simple random variables

We consider, in some detail, random variables which have only a finite set of possible values. These are called simple random
variables. Thus the term “simple” is used in a special, technical sense. The importance of simple random variables rests on two
facts. For one thing, in practice we can distinguish only a finite set of possible values for any random variable. In addition, any
random variable may be approximated as closely as pleased by a simple random variable. When the structure and properties of
simple random variables have been examined, we turn to more general cases. Many properties of simple random variables extend
to the general case via the approximation procedure.

Representation with the aid of indicator functions

In order to deal with simple random variables clearly and precisely, we must find suitable ways to express them analytically. We do
this with the aid of indicator functions. Three basic forms of representation are encountered. These are not mutually exclusive
representatons.

Standard or canonical form, which displays the possible values and the corresponding events. If X takes on distinct values

 with respective probabilities 

and if , for , then  is a partition (i.e., on any trial, exactly one of these events occurs).
We call this the partition determined by (or, generated by) X. We may write

If , then , so that  and all the other indicator functions have value zero. The summation expression
thus picks out the correct value . This is true for any , so the expression represents for all . The distinct set  of
the values and the corresponding probabilities  constitute the distribution for X. Probability calculations for X are
made in terms of its distribution. One of the advantages of the canonical form is that it displays the range (set of values), and if the
probabilities  are known, the distribution is determined. Note that in canonical form, if one of the  has value zero,
we include that term. For some probability distributions it may be that  for one or more of the . In that case, we call
these values null values, for they can only occur with probability zero, and hence are practically impossible. In the general
formulation, we include possible null values, since they do not affect any probabilitiy calculations.

= { = k}Ak S10 Ak ω ∈ Ak ω ∈ Ak j ≠ k ω

(ω)Sn

{2 < ≤ 8} = ⋁ ⋁ ⋁ ⋁ ⋁S10 A3 A4 A5 A6 A7 A8

S10

Ω

M (M) = P ( (M))PX X−1

(M) ≥ 0PX PX = P (Ω) = 1

( ) = P ( ( )) = P ( ( )) = P ( ( )) = ( )PX ⋁
∞
i=1 Mi X−1 ⋁∞

i=1 Mi ⋁∞
i=1 X−1 Mi ∑∞

i=1 X−1 Mi ∑∞
i=1 PX Mi

PX

X PX

P (X ∈ M) = (M)PX

{ , , ⋅ ⋅ ⋅, }t1 t2 tn { , , ⋅ ⋅ ⋅, }p1 p2 pn

= {X = }Ai ti 1 ≤ i ≤ n { , , ⋅ ⋅ ⋅, }A1 A2 An

X = + +⋅ ⋅ ⋅ + =t1IA1 t2IA2 tnIAn ∑
n
i=1 tiIAi

X(ω) = ti ω ∈ Ai (ω) = 1IAi

ti ti X(ω) ω {A, B, C}
{ , , ⋅ ⋅ ⋅, }p1 p2 pn

{A, B, C, D} ti

P ( ) = 0Ai ti
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As the analysis of Bernoulli trials and the binomial distribution shows (see Section 4.8), canonical form must be

 with , 

For many purposes, both theoretical and practical, canonical form is desirable. For one thing, it displays directly the range (i.e., set
of values) of the random variable. The distribution consists of the set of values  paired with the corresponding set
of probabilities , where .

Simple random variable X may be represented by a primitive form

, where  is a partition

Remarks

If  is a disjoint class, but , we may append the event  and assign value zero
to it.
We say a primitive form, since the representation is not unique. Any of the C  may be partitioned, with the same value 
associated with each subset formed.
Canonical form is a special primitive form. Canonical form is unique, and in many ways normative.

A wheel is spun yielding, on a equally likely basis, the integers 1 through 10. Let  be the event the wheel stops at , 
. Each . If the numbers 1, 4, or 7 turn up, the player loses ten dollars; if the numbers 2, 5, or 8 turn

up, the player gains nothing; if the numbers 3, 6, or 9 turn up, the player gains ten dollars; if the number 10 turns up, the
player loses one dollar. The random variable expressing the results may be expressed in primitive form as

A store has eight items for sale. The prices are $3.50, $5.00, $3.50, $7.50, $5.00, $5.00, $3.50, and $7.50, respectively. A
customer comes in. She purchases one of the items with probabilities 0.10, 0.15, 0.15, 0.20, 0.10 0.05, 0.10 0.15. The

random variable expressing the amount of her purchase may be written

We commonly have X represented in affine form, in which the random variable is represented as an affine combination of indicator
functions (i.e., a linear combination of the indicator functions plus a constant, which may be zero).

In this form, the class  is not necessarily mutually exclusive, and the coefficients do not display directly the set
of possible values. In fact, the  often form an independent class. Remark. Any primitive form is a special affine form in which 

 and the  form a partition.

Consider, again, the random variable  which counts the number of successes in a sequence of  Bernoulli trials. If  is the
event of a success on the th trial, then one natural way to express the count is

, with  

This is affine form, with  and  for . In this case, the  cannot form a mutually exclusive class, since
they form an independent class.

Events generated by a simple random variable: canonical form 
We may characterize the class of all inverse images formed by a simple random  in terms of the partition it determines. Consider
any set  of real numbers. If  in the range of  is in , then every point  maps into , hence into . If the set  is the
set of indices  such that , then

Only those points  in  map into .

Example  Successes in Bernoulli trials6.1.3

= kSn ∑n
k=0 IAk P ( ) = C(n, k) (1 −pAk pk )n−k 0 ≤ k ≤ n

{ : 1 ≤ k ≤ n}tk

{ : 1 ≤ k ≤ n}pk = P ( ) = P (X = )pk Ak tk

X = + +⋅ ⋅ ⋅,c1IC1
c2IC2

cmICm
{ : 1 ≤ j ≤ m}Cj

{ : 1 ≤ j ≤ m}Cj ≠ Ω⋃m
j=1 Cj = [Cm+1 ⋃m

j=1 Cj]c

i ci

Example  Simple random variables in primitive form6.1.4

Ci i

1 ≤ i ≤ 10 P ( ) = 0.1Ci

X = −10 +0 +10 −10 +0 +10 −10 +0 +10 −IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10

X = 3.5 +5.0 +3.5 +7.5 +5.0 +5.0 +3.5 +7.5IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8

X = + + +⋅ ⋅ ⋅ + = +c0 c1IE1
c2IE2

cmIEm
c0 ∑m

j=1 cjIEj

{ , , ⋅ ⋅ ⋅, }E1 E2 Em

Ei

= 0c0 Ei

Example 6.1.5

Sn n Ei

i

=Sn ∑n
i=1 IEi

P ( ) = pEi 1 ≤ i ≤ n

= 0c0 = 1ci 1 ≤ i ≤ n Ei

X

M ti X M ω ∈ Ai ti M J

i ∈ Mti

ω =AM ⋁i∈J Ai M
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Hence, the class of events (i.e., inverse images) determined by  consists of the impossible event , the sure event , and the
union of any subclass of the  in the partition determined by .

Suppose simple random variable  is represented in canonical form by

Then the class  is the partition determined by  and the range of  is .

1. If  is the interval [-2, 1], the the values -2, -1, and 0 are in  and .
2. If  is the set (-2, -1]  [1, 5], then the values -1, 3 are in  and .
3. The event , where . Since values -2, -1, 0 are in , the event 

.

Determination of the distribution

Determining the partition generated by a simple random variable amounts to determining the canonical form. The distribution is
then completed by determining the probabilities of each event .

From a primitive form

Before writing down the general pattern, we consider an illustrative example.

Suppose one item is selected at random from a group of ten items. The values (in dollars) and respective probabilities are

 
2.00 1.50 2.00 2.50 1.50 1.50 1.00 2.50 2.00 1.50

0.08 0.11 0.07 0.15 0.10 0.09 0.14 0.08 0.08 0.10

By inspection, we find four distinct values: , , , and . The value 1.00 is taken on for 
, so that  and . Value 1.50 is taken on for  so that

 and 

Similarly

 and 

The distribution for X is thus

 
1.00 1.50 2.00 2.50

0.14 0.40 0.23 0.23

The general procedure may be formulated as follows:

If , we identify the set of distinct values in the set . Suppose these are . For
any possible value  in the range, identify the index set  of those  such that  Then the terms

, where ,

and

Examination of this procedure shows that there are two phases:

Select and sort the distinct values 
Add all probabilities associated with each value  to determine 

We use the m-function csort which performs these two operations (see Example 4 from "Minterms and MATLAB Calculations").

X ∅ Ω
Ai X

Example  Events determined by a simple random variable6.1.6

X

X = −2 − +0 +3IA IB IC ID

{A, B, C, D} X X {−2, −1, 0, 3}

M M (M) = A⋁B⋁CX−1

M ∪ M (M) = B⋁DX−1

{X ≤ 1} = {X ∈ (−∞, 1]} = (M)X−1 M = (−∞, 1] M

{X ≤ 1} = A⋁B⋁C

= {X = }Ak tk

Example  The distribution from a primitive form6.1.7

cj

P( )Cj

= 1.00t1 = 1.50t2 = 2.00t3 = 2.50t4

ω ∈ C7 =A1 C7 P ( ) = P ( ) = 0.14A1 C7 ω ∈ , , ,C2 C5 C6 C10

= ⋁ ⋁ ⋁A2 C2 C5 C6 C10 P ( ) = P ( ) +P ( ) +P ( ) +P ( ) = 0.40A2 C2 C5 C6 C10

P ( ) = P ( ) +P ( ) +P ( ) = 0.23A3 C1 C3 C9 P ( ) = P ( ) +P ( ) = 0.25A4 C4 C8

k

P(X = k)

X =∑m
j=1 cjIcj

{ : 1 ≤ j ≤ m}cj < < ⋅ ⋅ ⋅ <t1 t2 tn

ti Ji j =cj ti

= =∑Ji
cjIcj ti∑Ji

Icj tiIAi
= ∈Ai ⋁j JiCj

P ( ) = P (X = ) = P ( )Ai ti ∑j∈J Cj

, , ⋅ ⋅ ⋅,t1 t2 tn

ti P (X = )ti
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>> C = [2.00 1.50 2.00 2.50 1.50 1.50 1.00 2.50 2.00 1.50];  % Matrix of c_j 

>> pc = [0.08 0.11 0.07 0.15 0.10 0.09 0.14 0.08 0.08 0.10]; % Matrix of P(C_j) 

>> [X,PX] = csort(C,pc);     % The sorting and consolidating operation 

>> disp([X;PX]')             % Display of results 

    1.0000    0.1400 

    1.5000    0.4000 

    2.0000    0.2300 

    2.5000    0.2300 

For a problem this small, use of a tool such as csort is not really needed. But in many problems with large sets of data the m-
function csort is very useful.

From affine form

Suppose  is in affine form,

We determine a particular primitive form by determining the value of  on each minterm generated by the class 
. We do this in a systematic way by utilizing minterm vectors and properties of indicator functions.

 is constant on each minterm generated by the class  since, as noted in the treatment of the minterm expansion,
each indicator function  is constant on each minterm. We determine the value  of  on each minterm . This describes  in
a special primitive form

, with , 

We apply the csort operation to the matrices of values and minterm probabilities to determine the distribution for .

We illustrate with a simple example. Extension to the general case should be quite evident. First, we do the problem “by hand” in
tabular form. Then we use the m-procedures to carry out the desired operations.

A mail order house is featuring three items (limit one of each kind per customer). Let

 = the event the customer orders item 1, at a price of 10 dollars.
 = the event the customer orders item 2, at a price of 18 dollars.
 = the event the customer orders item 3, at a price of 10 dollars.

There is a mailing charge of 3 dollars per order.

We suppose  is independent with probabilities 0.6, 0.3, 0.5, respectively. Let  be the amount a customer who
orders the special items spends on them plus mailing cost. Then, in affine form,

We seek first the primitive form, using the minterm probabilities, which may calculated in this case by using the m-function
minprob.

1. To obtain the value of  on each minterm we
Multiply the minterm vector for each generating event by the coefficient for that event
Sum the values on each minterm and add the constant

To complete the table, list the corresponding minterm probabilities.

10 18 10 c

0 0 0 0 3 3 0.14

Example  Use of csort on Example 6.1.76.1.8

X

X = + + +⋅ ⋅ ⋅ + = +c0 c1IE1 c2IE2 cmIEm c0 ∑m
j=1 cjIEj

X

{ : 1 ≤ j ≤ m}Ej

X { , , ⋅ ⋅ ⋅, }E1 E2 Em

IEi
si X Mi X

X =∑ −12m

k=0 siIMi
P ( ) =Mi pi 0 ≤ i ≤ −12m

X

Example  Finding the distribution from affine form6.1.9

E1

E2

E3

{ , , }E1 E2 E3 X

X = 10 +18 +10 +3IE1
IE2

IE3

X

i IE1 IE2 IE3 s − i pmi
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1 0 0 10 3 13 0.14

2 0 18 0 3 21 0.06

3 0 18 10 3 31 0.06

4 10 0 0 3 13 0.21

5 10 0 10 3 23 0.21

6 10 18 0 3 31 0.09

7 10 18 10 3 41 0.09

We then sort on the , the values on the various , to expose more clearly the primitive form for .

“Primitive form” Values

0 3 0.14

1 13 0.14

4 13 0.21

2 21 0.06

5 23 0.21

3 31 0.06

6 31 0.09

7 41 0.09

The primitive form of  is thus

\(X = 3I_{M_0} + 12I_{M_1} + 13I_{M_4} + 21I_{M_2} + 23I_{M_5} + 31I_{M_3} + 31I_{M_6} + 41I_{M_7}

We note that the value 13 is taken on on minterms  and . The probability  has the value 13 is thus .
Similarly,  has value 31 on minterms  and .

To complete the process of determining the distribution, we list the sorted values and consolidate by adding together the
probabilities of the minterms on which each value is taken, as follows:

1 3 0.14

2 13 0.14 + 0.21 = 0.35

3 21 0.06

4 23 0.21

5 31 0.06 + 0.09 = 0.15

6 41 0.09

The results may be put in a matrix  of possible values and a corresponding matrix PX of probabilities that  takes on
each of these values. Examination of the table shows that

 [3 13 21 23 31 41] and  [0.14 0.35 0.06 0.21 0.15 0.09]

Matrices  and PX describe the distribution for .

An m-procedure for determining the distribution from affine form 

We now consider suitable MATLAB steps in determining the distribution from affine form, then incorporate these in the m-
procedure canonic for carrying out the transformation. We start with the random variable in affine form, and suppose we have
available, or can calculate, the minterm probabilities.

si Mi X

i si pmi

X

M1 M4 X p(1) +p(4)
X M3 M6

k tk pk

X X

X = P X =

X X
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The procedure uses mintable to set the basic minterm vector patterns, then uses a matrix of coefficients, including the
constant term (set to zero if absent), to obtain the values on each minterm. The minterm probabilities are included in a row
matrix. 
Having obtained the values on each minterm, the procedure performs the desired consolidation by using the m-function csort.

>> disp([CM;const;s;pm]')            % Display of primitive form 

     0     0     0   3    3    0.14  % MATLAB gives four decimals 

     0     0    10   3   13    0.14 

     0    18     0   3   21    0.06 

     0    18    10   3   31    0.06 

    10     0     0   3   13    0.21 

    10     0    10   3   23    0.21 

    10    18     0   3   31    0.09 

    10    18    10   3   41    0.09 

>> [X,PX] = csort(s,pm);              % Sorting on s, consolidation of  pm 

>> disp([X;PX]')                      % Display of final result 

     3    0.14 

>> c = [10 18 10 3];                 % Constant term is listed last 

>> pm = minprob(0.1*[6 3 5]); 

>> M  = mintable(3)                  % Minterm vector pattern 

M = 

     0     0     0     0     1     1     1     1 

     0     0     1     1     0     0     1     1 

     0     1     0     1     0     1     0     1 

% - - - - - - - - - - - - - -        % An approach mimicking ``hand'' calculation 

>> C = colcopy(c(1:3),8)             % Coefficients in position 

C = 

    10    10    10    10    10    10    10    10 

    18    18    18    18    18    18    18    18 

    10    10    10    10    10    10    10    10 

>> CM = C.*M                         % Minterm vector values 

CM = 

     0     0     0     0    10    10    10    10 

     0     0    18    18     0     0    18    18 

     0    10     0    10     0    10     0    10 

>> cM = sum(CM) + c(4)               % Values on minterms 

cM = 

     3    13    21    31    13    23    31    41 

% - - - - - - - - - - - -  -         % Practical MATLAB procedure 

>> s = c(1:3)*M + c(4) 

s = 

     3    13    21    31    13    23    31    41 

>> pm = 0.14  0.14  0.06  0.06  0.21  0.21  0.09  0.09   % Extra zeros deleted 

>> const = c(4)*ones(1,8);} 

Example  Steps in determining the distribution for X in Example 6.1.96.1.10
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    13    0.35 

    21    0.06 

    23    0.21 

    31    0.15 

    41    0.09

The two basic steps are combined in the m-procedure canonic, which we use to solve the previous problem.

>> c = [10 18 10 3]; % Note that the constant term 3 must be included last 

>> pm = minprob([0.6 0.3 0.5]); 

>> canonic 

 Enter row vector of coefficients  c 

 Enter row vector of minterm probabilities  pm 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

>> disp(XDBN) 

    3.0000    0.1400 

   13.0000    0.3500 

   21.0000    0.0600 

   23.0000    0.2100 

   31.0000    0.1500 

   41.0000    0.0900

With the distribution available in the matrices  (set of values) and PX (set of probabilities), we may calculate a wide variety of
quantities associated with the random variable.

We use two key devices:

1. Use relational and logical operations on the matrix of values  to determine a matrix  which has ones for those values which
meet a prescribed condition. : PM = M*PX'

2. Determine  by using array operations on matrix . We have two alternatives:
a. Use the matrix , which has values  for each possible value  for , or,
b. Apply csort to the pair  to get the distribution for . This distribution (in value and probability matrices)

may be used in exactly the same manner as that for the original random variable .

Suppose for the random variable  in Example 6.11 it is desired to determine the probabilities

, , and 

>> M = (X>=15)&(X<=35); 

M = 0   0    1    1    1    0    % Ones for minterms on which 15 <= X <= 35 

>> PM = M*PX'                    % Picks out and sums those minterm probs 

PM =  0.4200 

>> N = abs(X-20)<=7; 

N = 0    1    1    1    0    0   % Ones for minterms on which |X - 20| <= 7 

>> PN = N*PX'                    % Picks out and sums those minterm probs 

Example  Use of canonic on the variables of Example 6.1.106.1.11

X

X M

P (X ∈ M)
G = g(X) = [g( )g( ) ⋅ ⋅ ⋅ g( )]X1 X2 Xn X

G g( )ti ti X

(G, P X) Z = g(X)
X

Example  Continuation of Example 6.1.116.1.12

X

P (15 ≤ X ≤ 35) P (|X −20| ≤ 7) (X −10)(X −25) > 0)
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PN =  0.6200 

>> G = (X - 10).*(X - 25) 

G = 154 -36 -44 -26 126 496      % Value of g(t_i) for each possible value 

>> P1 = (G>0)*PX'                % Total probability for those t_i such that 

P1 =  0.3800                     % g(t_i) > 0 

>> [Z,PZ] = csort(G,PX)          % Distribution for Z = g(X) 

Z =  -44   -36   -26   126   154   496 

PZ =  0.0600    0.3500    0.2100    0.1500    0.1400    0.0900 

>> P2 = (Z>0)*PZ'                % Calculation using distribution for Z 

P2 =  0.3800

Ten race cars are involved in time trials to determine pole positions for an upcoming race. To qualify, they must post an
average speed of 125 mph or more on a trial run. Let  be the event the th car makes qualifying speed. It seems reasonable to
suppose the class  is independent. If the respective probabilities for success are 0.90, 0.88, 0.93, 0.77, 0.85,
0.96, 0.72, 0.83, 0.91, 0.84, what is the probability that  or more will qualify (  = 6,7,8,9,10)?

Solution

Let 

>> c = [ones(1,10) 0]; 

>> P = [0.90, 0.88, 0.93, 0.77, 0.85, 0.96, 0.72, 0.83, 0.91, 0.84]; 

>> canonic 

 Enter row vector of coefficients  c 

 Enter row vector of minterm probabilities  minprob(P) 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

>> k = 6:10; 

>> for i = 1:length(k) 

    Pk(i) = (X>=k(i))*PX'; 

end 

>> disp(Pk) 

    0.9938    0.9628    0.8472    0.5756    0.2114

This solution is not as convenient to write out. However, with the distribution for  as defined, a great many other probabilities can
be determined. This is particularly the case when it is desired to compare the results of two independent races or “heats.” We
consider such problems in the study of Independent Classes of Random Variables.

A function form for canonic

One disadvantage of the procedure canonic is that it always names the output  and PX. While these can easily be renamed,
frequently it is desirable to use some other name for the random variable from the start. A function form, which we call canonicf, is
useful in this case.

Example  Alternate formulation of Example 4.3.3 from "Composite Trials"  
 

6.1.13

Ei i

{ : 1 ≤ i ≤ 10}Ei

k k

X =∑10
i=1 IEi

X

X

Example  Alternate solution of Example 6.1.13, using canonicf6.1.14
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>> c = [10 18 10 3]; 

>> pm = minprob(0.1*[6 3 5]); 

>> [Z,PZ] = canonicf(c,pm); 

>> disp([Z;PZ]')                % Numbers as before, but the distribution 

    3.0000    0.1400            % matrices are now named Z and PZ 

   13.0000    0.3500 

   21.0000    0.0600 

   23.0000    0.2100 

   31.0000    0.1500 

   41.0000    0.0900

General random variables

The distribution for a simple random variable is easily visualized as point mass concentrations at the various values in the range,
and the class of events determined by a simple random variable is described in terms of the partition generated by  (i.e., the class
of those events of the form  for each  in the range). The situation is conceptually the same for the general case, but
the details are more complicated. If the random variable takes on a continuum of values, then the probability mass distribution may
be spread smoothly on the line. Or, the distribution may be a mixture of point mass concentrations and smooth distributions on
some intervals. The class of events determined by  is the set of all inverse images  for  any member of a general class
of subsets of subsets of the real line known in the mathematical literature as the Borel sets. There are technical mathematical
reasons for not saying M is any subset, but the class of Borel sets is general enough to include any set likely to be encountered in
applications—certainly at the level of this treatment. The Borel sets include any interval and any set that can be formed by
complements, countable unions, and countable intersections of Borel sets. This is a type of class known as a sigma algebra of
events. Because of the preservation of set operations by the inverse image, the class of events determined by random variable  is
also a sigma algebra, and is often designated . There are some technical questions concerning the probability measure 
induced by , hence the distribution. These also are settled in such a manner that there is no need for concern at this level of
analysis. However, some of these questions become important in dealing with random processes and other advanced notions
increasingly used in applications. Two facts provide the freedom we need to proceed with little concern for the technical details.

 is an event for every Borel set  iff for every semi-infinite interval  on the real line 
 is an event. 

The induced probability distribution is determined uniquely by its assignment to all intervals of the form 
.

These facts point to the importance of the distribution function introduced in the next chapter.

Another fact, alluded to above and discussed in some detail in the next chapter, is that any general random variable can be
approximated as closely as pleased by a simple random variable. We turn in the next chapter to a description of certain commonly
encountered probability distributions and ways to describe them analytically.

This page titled 6.1: Random Variables and Probabilities is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

X

= [X = ]Ai ti ti
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6.2: Problems on Random Variables and Probabilities

The following simple random variable is in canonical form:

.

Express the events , , , and { } in terms of , , , and .

Answer

Random variable , in canonical form, is given by .

Express the events , , , , and , in terms of .

Answer

The class  is a partition. Random variable  has values {1, 3, 2, 3, 4, 2, 1, 3, 5, 2} on  through ,
respectively. Express X\) in canonical form.

Answer

T = [1 3 2 3 4 2 1 3 5 2]; 

[X,I] = sort(T) 

X =   1   1   2   2   2   3   3   3   4   5 

I =   1   7   3   6  10   2   4   8   5   9

, , , , 

The class  in Exercise has respective probabilities 0.08, 0.13, 0.06, 0.09, 0.14, 0.11, 0.12, 0.07, 0.11, 0.09.
Determine the distribution for 

Answer

Exercise 6.2.1

X = −3.75 −1.13 +0 +2.6IA IB IC ID

{X ∈ (−4, 2]} {X ∈ (0, 3]} {X ∈ (−∞, 1]} X ≥ 0 A B C D

A⋁B⋁C

D

A⋁B⋁C

C

C⋁D

Exercise 6.2.2

X X = −2 − + +2 +5IA IB IC ID IE

{X ∈ [2, 3)} {X ≤ 0} {X < 0} {|X−2| ≤ 3} { ≥ 4}X2 A,B,C,D, andE

D

A⋁B

A⋁B

B⋁C⋁D⋁E

A⋁D⋁E

Exercise 6.2.3

{ : 1 ≤ j≤ 10}Cj X C1 C10

X = +2 +3 +4 +5IA IB IC ID IE

A = ⋁C1 C7 B = ⋁ ⋁C3 C6 C10 C = ⋁ ⋁C2 C4 C8 D = C5 E = C9

Exercise 6.2.4

{ : 1 ≤ j≤ 10}Cj

X
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T = [1 3 2 3 4 2 1 3 5 2]; 

pc = 0.01*[8 13 6 9 14 11 12 7 11 9]; 

[X,PX] = csort(T,pc); 

disp([X;PX]') 

    1.0000    0.2000 

    2.0000    0.2600 

    3.0000    0.2900 

    4.0000    0.1400 

    5.0000    0.1100

A wheel is spun yielding on an equally likely basis the integers 1 through 10. Let C  be the event the wheel stops at , 
. Each . If the numbers 1, 4, or 7 turn up, the player loses ten dollars; if the numbers 2, 5, or 8 turn up,

the player gains nothing; if the numbers 3, 6, or 9 turn up, the player gains ten dollars; if the number 10 turns up, the player
loses one dollar. The random variable expressing the results may be expressed in primitive form as

Determine the distribution for , (a) by hand, (b) using MATLAB.
Determine , .

Answer

p = 0.1*ones(1,10); 

c = [-10 0 10 -10 0 10 -10 0 10 -1]; 

[X,PX] = csort(c,p); 

disp([X;PX]') 

  -10.0000    0.3000 

   -1.0000    0.1000 

         0    0.3000 

   10.0000    0.3000 

Pneg = (X<0)*PX' 

Pneg =  0.4000 

Ppos = (X>0)*PX' 

Ppos =  0.300

A store has eight items for sale. The prices are $3.50, $5.00, $3.50, $7.50, $5.00, $5.00, $3.50, and $7.50, respectively. A
customer comes in. She purchases one of the items with probabilities 0.10, 0.15, 0.15, 0.20, 0.10 0.05, 0.10 0.15. The random
variable expressing the amount of her purchase may be written

Determine the distribution for  (a) by hand, (b) using MATLAB.

Answer

Exercise 6.2.5

i i

1 ≤ i ≤ 10 P ( ) = 0.1Ci

X = −10 +0 +10 −10 +0 +10 −10 +0 +10 −IC1
IC2

IC3
IC4

IC5
IC6

IC7
IC8

IC9
IC10

X

P (X < 0) P (X > 0)

Exercise 6.2.6

X = 3.5 +5.0 +3.5 +7.5 +5.0 +5.0 +3.5 +7.5IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8

X
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p = 0.01*[10 15 15 20 10  5 10 15]; 

c = [3.5 5 3.5 7.5 5 5 3.5 7.5]; 

[X,PX] = csort(c,p); 

disp([X;PX]') 

    3.5000    0.3500 

    5.0000    0.3000 

    7.5000    0.3500

Suppose ,  in canonical form are

 

The  are 0.3, 0.6, 0.1, respectively, and the  are 0.2 0.6 0.2. Each pair { } is independent. Consider the
random variable . Then  on ,  on , etc. Determine the value of  on each 
and determine the corresponding . From this, determine the distribution for .

Answer

A = [2 3 5]; 

B = [1 2 3]; 

a = rowcopy(A,3); 

b = colcopy(B,3); 

Z =a + b               % Possible values of sum Z = X + Y 

Z = 3     4     6 

    4     5     7 

    5     6     8 

PA = [0.3 0.6 0.1]; 

PB = [0.2 0.6 0.2]; 

 pa= rowcopy(PA,3); 

 pb = colcopy(PB,3); 

 P = pa.*pb            % Probabilities for various values 

P =  0.0600    0.1200    0.0200 

     0.1800    0.3600    0.0600 

     0.0600    0.1200    0.0200 

[Z,PZ] = csort(Z,P); 

 disp([Z;PZ]')         % Distribution for Z = X + Y 

    3.0000    0.0600 

    4.0000    0.3000 

    5.0000    0.4200 

    6.0000    0.1400 

    7.0000    0.0600 

    8.0000    0.0200

Exercise 6.2.7

X Y

X = 2 +3 +5IA1 IA2 IA3 Y = +2 +3IB1 IB2 IB3

P ( )Ai P ( )Bj ,Ai Bj

Z = X+Y Z = 2 +1 A1B1 Z = 3 +3 A2B3 Z AiBj

P ( )AiBj Z
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For the random variables in Exercise, let . Determine the value of  on each  and determine the distribution of
.

Answer

XY = a.*b 

XY = 2     3     5               % XY values 

     4     6    10 

     6     9    15 

  

  

       W        PW               % Distribution for W = XY 

    2.0000    0.0600 

    3.0000    0.1200 

    4.0000    0.1800 

    5.0000    0.0200 

    6.0000    0.4200 

    9.0000    0.1200 

   10.0000    0.0600 

   15.0000    0.0200

A pair of dice is rolled.

a. Let  be the minimum of the two numbers which turn up. Determine the distribution for 
b. Let  be the maximum of the two numbers. Determine the distribution for .
c. Let  be the sum of the two numbers. Determine the distribution for .
d. Let  be the absolute value of the difference. Determine its distribution.

Answer

t = 1:6; 

c = ones(6,6); 

[x,y] = meshgrid(t,t) 

x =  1     2     3     4     5     6     % x-values in each position 

     1     2     3     4     5     6 

     1     2     3     4     5     6 

     1     2     3     4     5     6 

     1     2     3     4     5     6 

     1     2     3     4     5     6 

y =  1     1     1     1     1     1     % y-values in each position 

     2     2     2     2     2     2 

     3     3     3     3     3     3 

     4     4     4     4     4     4 

     5     5     5     5     5     5 

     6     6     6     6     6     6 

Exercise 6.2.8

W = XY W AiBj

W

Exercise 6.2.9

X X

Y Y

Z Z

W
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m = min(x,y);                         % min in each position 

M = max(x,y);                         % max in each position 

s = x + y;                            % sum x+y in each position 

d = abs(x - y);                       % |x - y| in each position 

[X,fX] = csort(m,c)                   % sorts values and counts occurrences 

X =   1     2     3     4     5     6 

fX = 11     9     7     5     3     1    % PX = fX/36 

[Y,fY] = csort(M,c) 

Y =   1     2     3     4     5     6 

fY =  1     3     5     7     9    11    % PY = fY/36 

[Z,fZ] = csort(s,c) 

Z =   2     3     4     5     6     7     8     9    10    11    12

fZ =  1     2     3     4     5     6     5     4     3     2     1  %PZ = fZ/36 

[W,fW] = csort(d,c) 

W =   0     1     2     3     4     5 

fW =  6    10     8     6     4     2    % PW = fW/36

Minterm probabilities  through  for the class  are, in order,

0.072 0.048 0.018 0.012 0.168 0.112 0.042 0.028 0.062 0.048 0.028 0.010 0.170 0.110 0.040 0.

Determine the distribution for random variable

Answer

% file npr06_10.m 

% Data for Exercise 6.2.10. 

pm = [ 0.072 0.048 0.018 0.012 0.168 0.112 0.042 0.028 ... 

       0.062 0.048 0.028 0.010 0.170 0.110 0.040 0.032]; 

c  = [-5.3 -2.5 2.3 4.2 -3.7]; 

disp('Minterm probabilities are in pm, coefficients in c') 

npr06_10 

Minterm probabilities are in pm, coefficients in c 

canonic 

 Enter row vector of coefficients  c 

 Enter row vector of minterm probabilities  pm 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

XDBN 

XDBN = 

  -11.5000    0.1700 

   -9.2000    0.0400 

   -9.0000    0.0620 

   -7.3000    0.1100 

   -6.7000    0.0280 

   -6.2000    0.1680 

Exercise 6.2.10

p(0) p(15) {A,B,C,D}

X = −5.3 −2.5 +2.3 +4.2 −3.7IA IB IC ID
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   -5.0000    0.0320 

   -4.8000    0.0480 

   -3.9000    0.0420 

   -3.7000    0.0720 

   -2.5000    0.0100 

   -2.0000    0.1120 

   -1.4000    0.0180 

    0.3000    0.0280 

    0.5000    0.0480 

    2.8000    0.0120

On a Tuesday evening, the Houston Rockets, the Orlando Magic, and the Chicago Bulls all have games (but not with one
another). Let A be the event the Rockets win,  be the event the Magic win, and  be the event the Bulls win. Suppose the
class { } is independent, with respective probabilities 0.75, 0.70 0.8. Ellen's boyfriend is a rabid Rockets fan, who does
not like the Magic. He wants to bet on the games. She decides to take him up on his bets as follows:

$10 to 5 on the Rockets --- i.e. She loses five if the Rockets win and gains ten if they lose
$10 to 5 against the Magic
even $5 to 5 on the Bulls.

Ellen's winning may be expressed as the random variable

Determine the distribution for . What are the probabilities Ellen loses money, breaks even, or comes out ahead?

Answer

P = 0.01*[75 70 80]; 

c = [-15 15 -10 10]; 

canonic 

 Enter row vector of coefficients  c 

 Enter row vector of minterm probabilities  minprob(P) 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

disp(XDBN) 

  -15.0000    0.1800 

   -5.0000    0.0450 

         0    0.4800 

   10.0000    0.1200 

   15.0000    0.1400 

   25.0000    0.0350 

PXneg = (X<0)*PX' 

PXneg =  0.2250 

PX0 = (X==0)*PX' 

PX0 =    0.4800 

PXpos = (X>0)*PX' 

PXpos =  0.2950

Exercise 6.2.11

B C

A,B,C

X = −5 +10 +10 −5 −5 +5 = −15 +15 −10 +10IA IAc IB IBc IC IC c IA IB IC

X
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The class { } has minterm probabilities

 [5 7 6 8 9 14 22 33 21 32 50 75 86 129 201 302]

Determine whether or not the class is independent.
The random variable counts the number of the events which occur on a trial. Find the distribution for
X and determine the probability that two or more occur on a trial. Find the probability that one or three of these occur on a trial.

Answer

npr06_12 

Minterm probabilities in pm, coefficients in c 

a = imintest(pm) 

The class is NOT independent 

Minterms for which the product rule fails 

a = 

     1     1     1     1 

     1     1     1     1 

     1     1     1     1 

     1     1     1     1 

canonic 

 Enter row vector of coefficients  c 

 Enter row vector of minterm probabilities  pm 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

XDBN = 

         0    0.0050 

    1.0000    0.0430 

    2.0000    0.2120 

    3.0000    0.4380 

    4.0000    0.3020 

P2 = (X>=2)*PX' 

P2 =  0.9520 

P13 = ((X==1)|(X==3))*PX' 

P13 =  0.4810

James is expecting three checks in the mail, for $20, $26, and $33 dollars. Their arrivals are the events . Assume the
class is independent, with respective probabilities 0.90, 0.75, 0.80. Then

represents the total amount received. Determine the distribution for . What is the probability he receives at least $50? Less than
$30?

Answer

Exercise 6.2.12

A,B,C,D

pm = 0.001∗

X = + + +IA IB IC ID

Exercise 6.2.13

A,B,C

X = 20 +26 +33IA IB IC

X
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c = [20 26 33 0]; 

P = 0.01*[90 75 80]; 

canonic 

 Enter row vector of coefficients  c 

 Enter row vector of minterm probabilities  minprob(P) 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

disp(XDBN) 

         0    0.0050 

   20.0000    0.0450 

   26.0000    0.0150 

   33.0000    0.0200 

   46.0000    0.1350 

   53.0000    0.1800 

   59.0000    0.0600 

   79.0000    0.5400 

P50 = (X>=50)*PX' 

P50 =  0.7800 

P30 = (X <30)*PX' 

P30 =  0.0650

A gambler places three bets. He puts down two dollars for each bet. He picks up three dollars (his original bet plus one dollar)
if he wins the first bet, four dollars if he wins the second bet, and six dollars if he wins the third. His net winning can be
represented by the random variable

, with , , 

Assume the results of the games are independent. Determine the distribution for .

Answer

c = [3 4 6 -6]; 

P = 0.1*[5 4 3]; 

canonic 

 Enter row vector of coefficients  c 

 Enter row vector of minterm probabilities  minprob(P) 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

dsp(XDBN) 

   -6.0000    0.2100 

   -3.0000    0.2100 

   -2.0000    0.1400 

         0    0.0900 

    1.0000    0.1400 

    3.0000    0.0900 

    4.0000    0.0600 

    7.0000    0.0600

Exercise 6.2.14

X = 3 +4 +6 −6IA IB IC P (A) = 0.5 P (B) = 0.4 P (C) = 0.3

X
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Henry goes to a hardware store. He considers a power drill at $35, a socket wrench set at $56, a set of screwdrivers at $18, a
vise at $24, and hammer at $8. He decides independently on the purchases of the individual items, with respective probabilities
0.5, 0.6, 0.7, 0.4, 0.9. Let  be the amount of his total purchases. Determine the distribution for .

Answer

c = [35 56 18 24 8 0]; 

P = 0.1*[5 6 7 4 9]; 

canonic 

 Enter row vector of coefficients  c 

 Enter row vector of minterm probabilities  minprob(P) 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

disp(XDBN) 

         0    0.0036 

    8.0000    0.0324 

   18.0000    0.0084 

   24.0000    0.0024 

   26.0000    0.0756 

   32.0000    0.0216 

   35.0000    0.0036 

   42.0000    0.0056 

   43.0000    0.0324 

   50.0000    0.0504 

   53.0000    0.0084 

   56.0000    0.0054 

   59.0000    0.0024 

   61.0000    0.0756 

   64.0000    0.0486 

   67.0000    0.0216 

   74.0000    0.0126 

   77.0000    0.0056 

   80.0000    0.0036 

   82.0000    0.1134 

   85.0000    0.0504 

   88.0000    0.0324 

   91.0000    0.0054 

   98.0000    0.0084 

   99.0000    0.0486 

  106.0000    0.0756 

  109.0000    0.0126 

  115.0000    0.0036 

  117.0000    0.1134 

  123.0000    0.0324 

Exercise 6.2.15

X X
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  133.0000    0.0084 

  141.0000    0.0756

A sequence of trials (not necessarily independent) is performed. Let  be the event of success on the th component trial. We
associate with each trial a "payoff function" . Thus, an amount  is earned if there is a success on the trial
and an amount  (usually negative) if there is a failure. Let  be the number of successes in the  trials and  be the net
payoff. Show that .

Answer

A marker is placed at a reference position on a line (taken to be the origin); a coin is tossed repeatedly. If a head turns up, the
marker is moved one unit to the right; if a tail turns up, the marker is moved one unit to the left.

a. Show that the position at the end of ten tosses is given by the random variable

where  is the event of a head on the th toss and  is the number of heads in ten trials.

After ten tosses, what are the possible positions and the probabilities of being in each?

Answer

S = 0:10; 

PS = ibinom(10,0.5,0:10); 

X = 2*S - 10; 

disp([X;PS]') 

  -10.0000    0.0010 

   -8.0000    0.0098 

   -6.0000    0.0439 

   -4.0000    0.1172 

   -2.0000    0.2051 

         0    0.2461 

    2.0000    0.2051 

    4.0000    0.1172 

    6.0000    0.0439 

    8.0000    0.0098 

   10.0000    0.0010

Exercise 6.2.16

Ei i

= a +bXi IEi IE c
i

a

b Sn n W

W = (a−b) +bnSn

= a +b(1 − ) = (a−b) +bXi IEi IEi IEi

W = = (a−b) +bn = (a−b) +bn∑n
i=1 Xi ∑n

i=1 IEi Sn

Exercise 6.2.17

X = − = 2 −10 = 2 −10∑
10
i=1 IEi ∑

10
i=1 IE c

i
∑

10
i=1 IEi S10

Ei i S10

= − = −(1 − ) = 2 −1Xi IEi IE c
i

IEi IEi IEi

X = = 2 −10∑10
i=1 Xi ∑n

i=1 IEi
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Margaret considers five purchases in the amounts 5, 17, 21, 8, 15 dollars with respective probabilities 0.37, 0.22, 0.38, 0.81,
0.63. Anne contemplates six purchases in the amounts 8, 15, 12, 18, 15, 12 dollars, with respective probabilities 0.77, 0.52,
0.23, 0.41, 0.83, 0.58. Assume that all eleven possible purchases form an independent class.

a. Determine the distribution for , the amount purchased by Margaret.
b. Determine the distribution for , the amount purchased by Anne.
c. Determine the distribution for , the total amount the two purchase.

Suggestion for part (c). Let MATLAB perform the calculations.

Answer

[r,s] = ndgrid(X,Y); 

[t,u] = ndgrid(PX,PY); 

z = r + s; 

pz = t.*u; 

[Z,PZ] = csort(z,pz); 

% file npr06_18.m 

cx = [5 17 21 8 15 0]; 

cy = [8 15 12 18 15 12 0]; 

pmx = minprob(0.01*[37 22 38 81 63]); 

pmy = minprob(0.01*[77 52 23 41 83 58]); 

npr06_18 

[X,PX] = canonicf(cx,pmx);  [Y,PY] = canonicf(cy,pmy); 

[r,s] = ndgrid(X,Y);   [t,u] = ndgrid(PX,PY); 

z = r + s;   pz = t.*u; 

[Z,PZ] = csort(z,pz); 

a = length(Z) 

a  =  125              % 125 different values 

plot(Z,cumsum(PZ))  % See figure     Plotting details omitted

This page titled 6.2: Problems on Random Variables and Probabilities is shared under a CC BY 3.0 license and was authored, remixed, and/or
curated by Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

Exercise 6.2.18

X

Y

Z = X+Y
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7.1: Distribution and Density Functions
In the unit on Random Variables and Probability we introduce real random variables as mappings from the basic space  to the real
line. The mapping induces a transfer of the probability mass on the basic space to subsets of the real line in such a way that the
probability that  takes a value in a set  is exactly the mass assigned to that set by the transfer. To perform probability
calculations, we need to describe analytically the distribution on the line. For simple random variables this is easy. We have at each
possible value of  a point mass equal to the probability  takes that value. For more general cases, we need a more useful
description than that provided by the induced probability measure .

The Distribution Function 
In the theoretical discussion on Random Variables and Probability, we note that the probability distribution induced by a random
variable  is determined uniquely by a consistent assignment of mass to semi-infinite intervals of the form  for each real .
This suggests that a natural description is provided by the following.

Definition

The distribution function  for random variable  is given by

 

In terms of the mass distribution on the line, this is the probability mass at or to the left of the point t. As a consequence,  has
the following properties:

(F1) :  must be a nondecreasing function, for if  there must be at least as much probability mass at or to the left of  as
there is for .
(F2) :  is continuous from the right, with a jump in the amount  at  iff . If the point  approaches 
from the left, the interval does not include the probability mass at  until  reaches that value, at which point the amount at or
to the left of t increases ("jumps") by amount ; on the other hand, if  approaches  from the right, the interval includes the
mass  all the way to and including , but drops immediately as  moves to the left of .
(F3) : Except in very unusual cases involving random variables which may take “infinite” values, the probability mass included
in  must increase to one as t moves to the right; as  moves to the left, the probability mass included must decrease to
zero, so that

and

A distribution function determines the probability mass in each semiinfinite interval . According to the discussion referred to
above, this determines uniquely the induced distribution.

The distribution function  for a simple random variable is easily visualized. The distribution consists of point mass  at each
point  in the range. To the left of the smallest value in the range, ; as t increases to the smallest value , 
remains constant at zero until it jumps by the amount  ...  remains constant at  until  increases to , where it jumps by
an amount p  to the value . This continues until the value of  reaches 1 at the largest value . The graph of  is
thus a step function, continuous from the right, with a jump in the amount  at the corresponding point  in the range. A similar
situation exists for a discrete-valued random variable which may take on an infinity of values (e.g., the geometric distribution or the
Poisson distribution considered below). In this case, there is always some probability at points to the right of any , but this must
become vanishingly small as  increases, since the total probability mass is one.

The procedure ddbn may be used to plot the distribution function for a simple random variable from a matrix X of values and a
corresponding matrix PX of probabilities.

Ω

X M

X X

PX

X (−∞, t] t

FX X

(t)P (X ≤ t) = P (X ∈ (−∞, t])FX ∀t ∈ R

FX

FX t > s t

s

FX p0 t0 P (X = ) =t0 p0 t t0

t0 t

p0 t t0

p0 t0 t t0

(−∞, t] t

(−∞) = (t) = 0FX lim
t→−∞

FX (7.1.1)

(∞) = (t) = 1FX lim
t→∞

FX (7.1.2)

(∞, t]

FX pi
ti (t) = 0FX t1 (t)FX

p1 (t)FX p1 t t2

2 +p1 p2 (t)FX tn FX

pi ti

ti
t
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>> c = [10 18 10 3];             % Distribution for X in Example 6.5.1 

>> pm = minprob(0.1*[6 3 5]); 

>> canonic 

 Enter row vector of coefficients  c 

 Enter row vector of minterm probabilities  pm 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

>> ddbn                          % Circles show values at jumps 

Enter row matrix of VALUES  X 

Enter row matrix of PROBABILITIES  PX 

%  Printing details   See Figure 7.1

Figure 7.1.1. Distribution function for Example 7.1.1

Description of some common discrete distributions

We make repeated use of a number of common distributions which are used in many practical situations. This collection includes
several distributions which are studied in the chapter "Random Variables and Probabilities".

Indicator function. . The distribution function has a jump in the amount 
 at  and an additional jump of  to the value 1 at .

Simple random variable  (canonical form)

The distribution function is a step function, continuous from the right, with jump of  at  (See Figure 7.1.1 for Example
7.1.1)

Binomial ( ). This random variable appears as the number of successes in a sequence of  Bernoulli trials with probability  of
success. In its simplest form

 with  independent

 

As pointed out in the study of Bernoulli sequences in the unit on Composite Trials, two m-functions ibinom andcbinom are
available for computing the individual and cumulative binomial probabilities.

Geometric ( ) There are two related distributions, both arising in the study of continuing Bernoulli sequences. The first counts the
number of failures before the first success. This is sometimes called the “waiting time.” The event { } consists of a sequence
of  failures, then a success. Thus

Example : Graph of FX for a simple random variable7.1.1

X = P (X = 1) = P (E) = pP (X = 0) = q = 1 −pIE
q t = 0 p t = 1

X =∑ti
IAi

P (X = ) = P ( ) =ti Ai p1

pi t = ti

n, p n p

X =∑n
i=1 IEi { : 1 ≤ i ≤ n}Ei

P ( ) = pEi P (X = k) = C(n, k)pkqn−k

p

X = k

k
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, 

The second designates the component trial on which the first success occurs. The event { } consists of  failures, then a
success on the th component trial. We have

, 

We say  has the geometric distribution with parameter ( ), which we often designate by  geometric ( ). Now  or 
. For this reason, it is customary to refer to the distribution for the number of the trial for the first success by saying 

 geometric ( ). The probability of  or more failures before the first success is . Also

This suggests that a Bernoulli sequence essentially "starts over" on each trial. If it has failed  times, the probability of failing an
additional  or more times before the next success is the same as the initial probability of failing  or more times before the first
success.

A statistician is taking a random sample from a population in which two percent of the members own a BMW automobile. She
takes a sample of size 100. What is the probability of finding no BMW owners in the sample?

Solution

The sampling process may be viewed as a sequence of Bernoulli trials with probability  of success. The probability of
100 or more failures before the first success is  or about 1/7.5.

Negative binomial ( ).  is the number of failures before the th success. It is generally more convenient to work with 
, the number of the trial on which the th success occurs. An examination of the possible patterns and elementary

combinatorics show that

, 

There are m–1 successes in the first  trials, then a success. Each combination has probability . We have an m-
function nbinom to calculate these probabilities.

A player throws a single six-sided die repeatedly. He scores if he throws a 1 or a 6. What is the probability he scores five times
in ten or fewer throws?

>> p = sum(nbinom(5,1/3,5:10)) 

p  =  0.2131 

An alternate solution is possible with the use of the binomial distribution. The th success comes not later than the kth trial iff
the number of successes in  trials is greater than or equal to .

>> P = cbinom(10,1/3,5) 

P  =  0.2131 

Poisson ( ). This distribution is assumed in a wide variety of applications. It appears as a counting variable for items arriving with
exponential interarrival times (see the relationship to the gamma distribution below). For large  and small  (which may not be a
value found in a table), the binomial distribution is approximately Poisson ( ). Use of the generating function (see Transform
Methods) shows the sum of independent Poisson random variables is Poisson. The Poisson distribution is integer valued, with

 (0 \le k\)

P (X = k) = pqk 0 ≤ k

Y = k k−1
k

P (Y = k) = pqk−1 1 ≤ k

X p X  p Y = X+1
Y −1 = X

Y −1  p k P (X ≥ k) = qk

P (X ≥ n+k|X ≥ n) = = / = = P (X ≥ k)
P (X ≥ n+k)

P (X ≥ n)
qn+k qn qk

n

k k

Example : The geometric distribution7.1.2

p = 0.02
= 0.13260.98100

m, p X m

Y = X+m m

P (Y = k) = C(k−1,m−1)pmqk−m m ≤ k

k−1 pmqk−m

Example : A game of chance7.1.3

m

k m

μ

n p

np

P (X = k) = e−μ
μk

k!
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Although Poisson probabilities are usually easier to calculate with scientific calculators than binomial probabilities, the use of
tables is often quite helpful. As in the case of the binomial distribution, we have two m-functions for calculating Poisson
probabilities. These have advantages of speed and parameter range similar to those for ibinom and cbinom.

 is calculated by P = ipoisson(mu,k) , where  is a row or column vector of integers and the result  is a
row matrix of the probabilities. 

 is calculated by P = cpoisson(mu,k) , where  is a row or column vector of integers and the result  is a
row matrix of the probabilities.

The number of messages arriving in a one minute period at a communications network junction is a random variable N∼
Poisson (130). What is the probability the number of arrivals is greater than equal to 110, 120, 130, 140, 150, 160 ?

>> p = cpoisson(130,110:10:160) 

p  =  0.9666  0.8209  0.5117  0.2011  0.0461  0.0060 

The descriptions of these distributions, along with a number of other facts, are summarized in the table DATA ON SOME
COMMON DISTRIBUTIONS in Appendix C.

The Density Function
If the probability mass in the induced distribution is spread smoothly along the real line, with no point mass concentrations, there is
a probability density function  which satisfies

 (are under the graph of  over )

At each ,  is the mass per unit length in the probability distribution. The density function has three characteristic properties:

(f1)  (f2)  (f3) 

A random variable (or distribution) which has a density is called absolutely continuous. This term comes from measure theory. We
often simply abbreviate as continuous distribution.

Remarks
1. There is a technical mathematical description of the condition “spread smoothly with no point mass concentrations.” And

strictly speaking the integrals are Lebesgue integrals rather than the ordinary Riemann kind. But for practical cases, the two
agree, so that we are free to use ordinary integration techniques.

2. By the fundamental theorem of calculus

 at every point of continuity of 

Any integrable, nonnegative function  with  determines a distribution function , which in turn determines a
probability distribution. If , multiplication by the appropriate positive constant gives a suitable . An argument based
on the Quantile Function shows the existence of a random variable with that distribution.
In the literature on probability, it is customary to omit the indication of the region of integration when integrating over the
whole line. Thus

The first expression is not an indefinite integral. In many situations,  will be zero outside an interval. Thus, the integrand
effectively determines the region of integration.

P (X = k) k P

P (X ≥ k) k P

Example : Poisson counting random variable7.1.4

fX

P (X ∈ M) = (M) = (t) dtPX ∫M fX fX M

t (t)fX

≥ 0fX = 1∫
R
fX (t) =FX ∫ t

−∞
fX

(t) = (t)fX F
′

X fX

f ∫ f = 1 F

∫ f ≠ 1 f

∫ g(t) (t)dt = g(t) (t)dtfX ∫R fX

fX
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Figure 7.1.2. The Weibull density for , .

Figure 7.1.3. The Weibull density for , .

Some common absolutely continuous distributions
Uniform . 
Mass is spread uniformly on the interval . It is immaterial whether or not the end points are included, since probability
associated with each individual point is zero. The probability of any subinterval is proportional to the length of the subinterval. The
probability of being in any two subintervals of the same length is the same. This distribution is used to model situations in which it
is known that  takes on values in  but is equally likely to be in any subinterval of a given length. The density must be
constant over the interval (zero outside), and the distribution function increases linearly with  in the interval. Thus,

 ( ) (zero outside the interval)

The graph of  rises linearly, with slope 1/( ) from zero at  to one at .

Symmetric triangular , . 

This distribution is used frequently in instructional numerical examples because probabilities can be obtained geometrically. It can
be shifted, with a shift of the graph, to different sets of values. It appears naturally (in shifted form) as the distribution for the sum
or difference of two independent random variables uniformly distributed on intervals of the same length. This fact is established
with the use of the moment generating function (see Transform Methods). More generally, the density may have a triangular graph
which is not symmetric.

Suppose  symmetric triangular (100, 300). Determine .

Remark. Note that in the continuous case, it is immaterial whether the end point of the intervals are included or not.

Solution

α = 2 λ = 0.25, 1, 4

α = 10 λ = 0.001, 1, 1000

(a, b)
[a, b]

X [a, b]
t

(t) =fX
1

b−a
a < t < b

FX b−a t = a t = b

(−a, a) (t) = {fX
(a+ t)/a2

(a− t)/a2
−a ≤ t < 0
0 ≤ t ≤ a

Example : Use of a triangular distribution7.1.5

X  P (120 < X ≤ 250)
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To get the area under the triangle between 120 and 250, we take one minus the area of the right triangles between 100 and 120
and between 250 and 300. Using the fact that areas of similar triangles are proportional to the square of any side, we have

Exponential ( )   (zero elsewhere). 
Integration shows  (t \ge 0\) (zero elsewhere). We note that  . This leads
to an extremely important property of the exponential distribution. Since ,  implies , we have

Because of this property, the exponential distribution is often used in reliability problems. Suppose  represents the time to failure
(i.e., the life duration) of a device put into service at . If the distribution is exponential, this property says that if the device
survives to time  (i.e., ) then the (conditional) probability it will survive  more units of time is the same as the original
probability of surviving for  units of time. Many devices have the property that they do not wear out. Failure is due to some stress
of external origin. Many solid state electronic devices behave essentially in this way, once initial “burn in” tests have removed
defective units. Use of Cauchy's equation (Appendix B) shows that the exponential distribution is the only continuous distribution
with this property.

Gamma distribution    (zero elsewhere) 

We have an m-function gammadbn to determine values of the distribution function for  gamma . Use of moment
generating functions shows that for , a random variable  gamma  has the same distribution as the sum of 
independent random variables, each exponential ( ). A relation to the Poisson distribution is described in Sec 7.5.

On a Saturday night, the times (in hours) between arrivals in a hospital emergency unit may be represented by a random
quantity which is exponential ( ). As we show in the chapter Mathematical Expectation, this means that the average
interarrival time is 1/3 hour or 20 minutes. What is the probability of ten or more arrivals in four hours? In six hours?

Solution

The time for ten arrivals is the sum of ten interarrival times. If we suppose these are independent, as is usually the case, then
the time for ten arrivals is gamma (10, 3).

>> p = gammadbn(10,3,[4 6]) 

p  =  0.7576    0.9846 

Normal, or Gaussian   exp   

We generally indicate that a random variable  has the normal or gaussian distribution by writing , putting in the
actual values for the parameters. The gaussian distribution plays a central role in many aspects of applied probability theory,
particularly in the area of statistics. Much of its importance comes from the central limit theorem (CLT), which is a term applied to
a number of theorems in analysis. Essentially, the CLT shows that the distribution for the sum of a sufficiently large number of
independent random variables has approximately the gaussian distribution. Thus, the gaussian distribution appears naturally in such
topics as theory of errors or theory of noise, where the quantity observed is an additive combination of a large number of
essentially independent quantities. Examination of the expression shows that the graph for  is symmetric about its maximum
at .. The greater the parameter , the smaller the maximum value and the more slowly the curve decreases with distance
from .. Thus parameter . locates the center of the mass distribution and  is a measure of the spread of mass about . The
parameter  is called the mean value and  is the variance. The parameter , the positive square root of the variance, is called the
standard deviation. While we have an explicit formula for the density function, it is known that the distribution function, as the
integral of the density function, cannot be expressed in terms of elementary functions. The usual procedure is to use tables obtained
by numerical integration. 
Since there are two parameters, this raises the question whether a separate table is needed for each pair of parameters. It is a

P = 1 − ((20/100 +(50/100 ) = 0.855
1

2
)2 )2

λ (t) = λfX e−λt t ≥ 0
(t) = 1 −FX e−λt P (X > 0) = 1 − (t) =FX e−λt t ≥ 0

X > t+h h > 0 X > t

P (X > t+h|X > t) = P (X > t+h)/P (X > t) = / = = P (X > h)e−λ(t+h) e−λt e−λh

X

t = 0
t X > t h

h

(α,λ) (t) =fX
λαtα−1e−λt

Γ(α)
t ≥ 0

X  (α,λ)
α = n X  (n,λ) n

lambda

Example : An arrival problem7.1.6

λ = 3

(μ, )σ2 (t) =fX
1

σ 2π
−−

√
(− ( )

1

2

t−μ

σ
)2 ∀t

X X N(μ, )σ2

(t)fX
t = μ σ2

μ μ σ2 μ

μ σ2 σ
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remarkable fact that this is not the case. We need only have a table of the distribution function for . This is refered to as
the standardized normal distribution. We use  and  for the standardized normal density and distribution functions, respectively.

Standardized normal  so that the distribution function is .

The graph of the density function is the well known bell shaped curve, symmetrical about the origin (see Figure 7.1.4). The
symmetry about the origin contributes to its usefulness.

 = area under the curve to the left of 

Note that the area to the left of  is the same as the area to the right of , so that . The same is
true for any , so that we have

 

This indicates that we need only a table of values of  for  to be able to determine  for any . We may use the
symmetry for any case. Note that ,

Figure 7.1.4. The standardized normal distribution.

Suppose . Determine  and 

Solution

1. 
2. 

From a table of standardized normal distribution function (see Appendix D), we find

 and  which gives  and 

General gaussian distribution 
For , the density maintains the bell shape, but is shifted with different spread and height. Figure 7.1.5 shows the
distribution function and density function for . The density is centered about . It has height 1.2616 as compared
with 0.3989 for the standardized normal density. Inspection shows that the graph is narrower than that for the standardized normal.
The distribution function reaches 0.5 at the mean value 2.

X N(0, 1)
φ ϕ

varphi(t) =
1

2π
−−

√
e− /2t2

ϕ(t) = φ(u)du∫ t

−∞

P (X ≤ t) = ϕ(t) t

t = −1.5 t = 1.5 ϕ(−2) = 1 −ϕ(2)
t

ϕ(−t) = 1 −ϕ(t) ∀t

ϕ(t) t > 0 ϕ(t) t

ϕ(0) = 1/2

Example : Standardized normal calculations7.1.7

X N(0, 1) P (−1 ≤ X ≤ 2) P (|X| > 1)

P (−1 ≤ X ≤ 2) = ϕ(2) −ϕ(−1) = ϕ(2) −[1 −ϕ(1)] = ϕ(2) +ϕ(1) −1
P (|X| > 1) = P (X > 1) +P (X < −1) = 1 −ϕ(1) +ϕ(−1) = 2[1 −ϕ(1)]

ϕ(2) = 0.9772 ϕ(1) = 0.8413 P (−1 ≤ X ≤ 2) = 0.8185 P (|X| > 1) = 0.3174

X N(μ, )σ2

X N(2, 0.1) t = 2
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Figure 7.1.5. The normal density and distribution functions for .

A change of variables in the integral shows that the table for standardized normal distribution function can be used for any case.

Make the change of variable and corresponding formal changes

  

to get

Suppose (3,16) (i.e.,  and ). Determine  and .

Solution

1. 

2. 

In each case the problem reduces to that in Example.

We have m-functions gaussian and gaussdensity to calculate values of the distribution and density function for any reasonable
value of the parameters. 
The following are solutions of example 7.1.7 and example 7.1.8, using the m-function gaussian.

>> P1 = gaussian(0,1,2) - gaussian(0,1,-1) 

P1 =  0.8186 

>> P2 = 2*(1 - gaussian(0,1,1)) 

P2 =  0.3173 

>> P1 = gaussian(3,16,11) - gaussian(3,16,-1) 

P2 =  0.8186 

>> P2 = gaussian(3,16,-1)) + 1 - (gaussian(3,16,7) 

P2 =  0.3173 

The differences in these results and those above (which used tables) are due to the roundoff to four places in the tables.

X N(2, 0.1)

(t) = exp(− ( )dx = φ( ) dxFX

1

σ 2π
−−

√
∫ t

−∞

1

2

x−μ

σ
)2 ∫ t

−infty

x−μ

σ

1

σ

u =
x−μ

σ
du = dx

1

σ
x = t u =

t−μ

σ

(t) = φ(u)du = ϕ( )FX ∫ (t−μ)/σ
−∞

t−μ

σ

Example : General gaussian calculation7.1.8

X N μ = 3 = 16σ2 P (−1 ≤ X ≤ 11) P (|X−3| > 4)

(11) − (−1) = ϕ( ) −ϕ( ) = ϕ(2) −ϕ(−1) = 0.8185FX FX

11 −3

4

−1 −3

4
P (X−3 < −4) +P (X−3 > 4) = (−1) +[1 − (7)] = ϕ(−1) +1 −ϕ(1) = 0.3174FX FX

Example : Example 7.1.7 and Example 7.1.8 (continued)7.1.9
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Beta , , .  

Analysis is based on the integrals

 with 

Figure 7.6 and Figure 7.7 show graphs of the densities for various values of . The usefulness comes in approximating densities
on the unit interval. By using scaling and shifting, these can be extended to other intervals. The special case  gives the
uniform distribution on the unit interval. The Beta distribution is quite useful in developing the Bayesian statistics for the problem
of sampling to determine a population proportion. If  are integers, the density function is a polynomial. For the general case we
have two m-functions, beta and betadbn to perform the calculatons.

Figure 7.6. The Beta  density for .

Figure 7.7. The Beta  density for .

Weibull   , , ,  
The parameter  is a shift parameter. Usually we assume . Examination shows that for α=1 the distribution is exponential ( ).
The parameter α provides a distortion of the time scale for the exponential distribution. Figure 7.6 and Figure 7.7 show graphs of
the Weibull density for some representative values of  and  ( ). The distribution is used in reliability theory. We do not
make much use of it. However, we have m-functions weibull (density) and weibulld (distribution function) for shift parameter 

 only. The shift can be obtained by subtracting a constant from the  values.

This page titled 7.1: Distribution and Density Functions is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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7.2: Distribution Approximations

Binomial, Poisson, gamma, and Gaussian distributions

The Poisson approximation to the binomial distribution 

The following approximation is a classical one. We wish to show that for small  and sufficiently large 

Suppose  with  large and . Then,

The first factor in the last expression is the ratio of polynomials in  of the same degree , which must approach one as  becomes
large. The second factor approaches one as  becomes large. According to a well known property of the exponential

as .

The result is that for large , , where .

The Poisson and Gamma Distributions 

Suppose  Poisson ( ). Now  gamma ( ) iff

A well known definite integral, obtained by integration by parts, is

with .

Noting that  we find after some simple algebra that

For  and , we have the following equality iff  gamma ( )

Now

iff  Poisson ( .

The Gaussian (normal) approximation 

The central limit theorem, referred to in the discussion of the Gaussian or normal distribution above, suggests that the binomial and
Poisson distributions should be approximated by the Gaussian. The number of successes in n trials has the binomial (n,p)
distribution. This random variable may be expressed

p n

P (X = k) = C(n, k) (1 −p ≈pk )n−k e−np np

k!
(7.2.1)

p = μ/n n μ/n < 1

P (X = k) = C(n, k)(μ/n (1 −μ/n = (1 − (1 −)k )n−k n(n−1) ⋅ ⋅ ⋅ (n−k+1)

nk

μ

n
)−k μ

n
)n

μk

k!
(7.2.2)

n k n

n

(1 − →
μ

n
)n e−μ (7.2.3)

n → ∞

n P (X = k) ≈ e−μ
μk

k!
μ = np

Y   λt X  α,λ

P (X ≤ t) =  dx = (λx d(λx) =  du
λα

Γ(α)
∫

1

0
xα−1e−λx 1

Γ(α)
∫

t

0
)α−1eλx

1

Γ(α)
∫

λt

0
uα−1e−μ (7.2.4)

in dt = Γ(n)t∞
α tn−1e−t e−a∑

k=1

n−1 ak

k!
(7.2.5)

Γ(n) = (n−1)!

1 = =e−aea e−a ∑∞
k=0

ak

k!

 dt =
1

Γ(n)
∫

a

0
tn−1e−t e−a∑

k=n

∞
ak

k!
(7.2.6)

a = λt α = n X  α,λ

P (X ≤ t) =  du =
1

Γ(n)
∫

λt

0
un−1d−u e−λt ∑

k=n

∞ (λt)k

k!
(7.2.7)

P (Y ≥ n) = e−λt ∑
k=n

∞ (λt)k

k!
(7.2.8)
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Since the mean value of  is  and the variance is , the distribution should be approximately .

Figure 7.2.8. Gaussian approximation to the binomial.

Use of the generating function shows that the sum of independent Poisson random variables is Poisson. Now if ),
then  may be considered the sum of  independent random variables, each Poisson ( ). Since the mean value and the variance
are both , it is reasonable to suppose that suppose that  is approximately .

It is generally best to compare distribution functions. Since the binomial and Poisson distributions are integer-valued, it turns out
that the best Gaussian approximation is obtained by making a “continuity correction.” To get an approximation to a density for an
integer-valued random variable, the probability at  is represented by a rectangle of height  and unit width, with  as the
midpoint. Figure 1 shows a plot of the “density” and the corresponding Gaussian density for , . It is apparent that
the Gaussian density is offset by approximately 1/2. To approximate the probability , take the area under the curve from  +
1/2; this is called the continuity correction.

Use of m-procedures to compare 

We have two m-procedures to make the comparisons. First, we consider approximation of the

Figure 7.2.9. Gaussian approximation to the Poisson distribution function  = 10.

X =∑
i=1

n

IEi (7.2.9)

X np npq N(np,npq)

X )Poisson(\(μ
X n μ/n

μ X N(μ,μ)

t = k pk k

n = 300 p = 0.1
X ≤ k k

μ
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Figure 7.2.10. Gaussian approximation to the Poisson distribution function  = 100.

Poisson ( ) distribution. The m-procedure poissapp calls for a value of , selects a suitable range about  and plots the
distribution function for the Poisson distribution (stairs) and the normal (Gaussian) distribution (dash dot) for . In addition,
the continuity correction is applied to the gaussian distribution at integer values (circles). Figure 7.2.10 shows plots for  = 10. It is
clear that the continuity correction provides a much better approximation. The plots in Figure 7.2.11 are for  = 100. Here the
continuity correction provides the better approximation, but not by as much as for the smaller .

Figure 7.2.11. Poisson and Gaussian approximation to the binomial:  = 1000,  = 0.03.

Figure 7.2.12. Poisson and Gaussian approximation to the binomial:  = 50,  = 0.6.

The m-procedure bincomp compares the binomial, gaussian, and Poisson distributions. It calls for values of  and , selects
suitable  values, and plots the distribution function for the binomial, a continuous approximation to the distribution function for
the Poisson, and continuity adjusted values of the gaussian distribution function at the integer values. Figure 7.2.11 shows plots for 

, . The good agreement of all three distribution functions is evident. Figure 7.2.12 shows plots for 
. There is still good agreement of the binomial and adjusted gaussian. However, the Poisson distribution does not

track very well. The difficulty, as we see in the unit Variance, is the difference in variances--  for the binomial as compared with 
 for the Poisson.

μ

μ μ k = μ

N(μ,μ)
μ

μ

μ

n p

n p

n p

k

n = 1000 p = 0.03
n = 50, p = 0.6

npq

np
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Approximation of a real random variable by simple random variables
Simple random variables play a significant role, both in theory and applications. In the unit Random Variables, we show how a
simple random variable is determined by the set of points on the real line representing the possible values and the corresponding set
of probabilities that each of these values is taken on. This describes the distribution of the random variable and makes possible
calculations of event probabilities and parameters for the distribution.

A continuous random variable is characterized by a set of possible values spread continuously over an interval or collection of
intervals. In this case, the probability is also spread smoothly. The distribution is described by a probability density function, whose
value at any point indicates "the probability per unit length" near the point. A simple approximation is obtained by subdividing an
interval which includes the range (the set of possible values) into small enough subintervals that the density is approximately
constant over each subinterval. A point in each subinterval is selected and is assigned the probability mass in its subinterval. The
combination of the selected points and the corresponding probabilities describes the distribution of an approximating simple
random variable. Calculations based on this distribution approximate corresponding calculations on the continuous distribution.

Before examining a general approximation procedure which has significant consequences for later treatments, we consider some
illustrative examples.

A random variable with the Poisson distribution is unbounded. However, for a given parameter value μ, the probability for 
,  sufficiently large, is negligible. Experiment indicates  (i.e., six standard deviations beyond the mean)

is a reasonable value for .

Solution

>> mu = [5 10 20 30 40 50 70 100 150 200]; 

>> K = zeros(1,length(mu)); 

>> p = zeros(1,length(mu)); 

>> for i = 1:length(mu) 

     K(i) = floor(mu(i)+ 6*sqrt(mu(i))); 

     p(i) = cpoisson(mu(i),K(i)); 

end 

>> disp([mu;K;p*1e6]') 

    5.0000   18.0000    5.4163  % Residual probabilities are 0.000001 

   10.0000   28.0000    2.2535  % times the numbers in the last column. 

   20.0000   46.0000    0.4540  % K is the value of k needed to achieve 

   30.0000   62.0000    0.2140  % the residual shown. 

   40.0000   77.0000    0.1354   

   50.0000   92.0000    0.0668 

   70.0000  120.0000    0.0359 

  100.0000  160.0000    0.0205 

  150.0000  223.0000    0.0159 

  200.0000  284.0000    0.0133

An m-procedure for discrete approximation 

If  is bounded, absolutely continuous with density functon , the m-procedure tappr sets up the distribution for an
approximating simple random variable. An interval containing the range of  is divided into a specified number of equal
subdivisions. The probability mass for each subinterval is assigned to the midpoint. If  is the length of the subintervals, then the
integral of the density function over the subinterval is approximated by . where  is the midpoint. In effect, the graph of
the density over the subinterval is approximated by a rectangle of length  and height . Once the approximating simple
distribution is established, calculations are carried out as for simple random variables.

Example : Simple approximation to Poisson7.2.10

k ≥ n n n = μ+6 μ−−√
5 ≤ μ ≤ 200

X fX
X

dx

( )dxfX ti ti
dx ( )fX ti
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Suppose , . Determine .

Solution

In this case, an analytical solution is easy.  on the interval [0, 1], so

. We use tappr as follows.

>> tappr

Enter matrix [a b] of x-range endpoints  [0 1] 

Enter number of x approximation points  200 

Enter density as a function of t  3*t.^2 

Use row matrices X and PX as in the simple case 

>> M = (X >= 0.2)&(X <= 0.9); 

>> p = M*PX' 

p  =  0.7210

Because of the regularity of the density and the number of approximation points, the result agrees quite well with the theoretical
value.

The next example is a more complex one. In particular, the distribution is not bounded. However, it is easy to determine a bound
beyond which the probability is negligible.

Figure 7.2.13. Distribution function for Example 7.2.12.

The life (in miles) of a certain brand of radial tires may be represented by a random variable  with density

where , , and . Determine .

>> a = 40000; 

>> b = 20/3; 

>> k = 1/4000; 

>> % Test shows cutoff point of 80000 should be satisfactory 

>> tappr

Enter matrix [a b] of x-range endpoints  [0 80000] 

Example : a numerical example7.2.11

(t) = 3fX t2 0 ≤ t ≤ 1 P (0.2 ≤ X ≤ 0.9)

(t) =FX t3

P = − = 0.72100.93 0.23

Example : Radial tire mileage7.2.12

X

(t) = {fX
/t2 a3

(b/a) for  a ≤ te−k(t−a)

for  0 ≤ t < a

a = 40, 000 b = 20/3 k = 1/4000 P (X ≥ 45, 000
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Enter number of x approximation points  80000/20 

Enter density as a function of t  (t.^2/a^3).*(t < 40000) + ... 

(b/a)*exp(k*(a-t)).*(t >= 40000) 

Use row matrices X and PX as in the simple case 

>> P = (X >= 45000)*PX' 

P   =  0.1910             % Theoretical value = (2/3)exp(-5/4) = 0.191003 

>> cdbn 

Enter row matrix of VALUES  X 

Enter row matrix of PROBABILITIES  PX  % See Figure 7.2.14 for plot 

In this case, we use a rather large number of approximation points. As a consequence, the results are quite accurate. In the
single-variable case, designating a large number of approximating points usually causes no computer memory problem.

The general approximation procedure 

We show now that any bounded real random variable may be approximated as closely as desired by a simple random variable (i.e.,
one having a finite set of possible values). For the unbounded case, the approximation is close except in a portion of the range
having arbitrarily small total probability.

We limit our discussion to the bounded case, in which the range of  is limited to a bounded interval . Suppose  is
partitioned into  subintervals by points , , with  and . Let  be the th subinterval, 

 and  (see Figure 7.14). Now random variable  may map into any point in the interval, and hence
into any point in each subinterval . Let  be the set of points mapped into  by . Then the  form a partition of
the basic space . For the given subdivision, we form a simple random variable  as follows. In each subinterval, pick a point , 

. Consider the simple random variable .

Figure 7.2.14. Partition of the interval  including the range of 

Figure 7.2.15. Refinement of the partition by additional subdividion points.

This random variable is in canonical form. If , then  and . Now the absolute value of the difference
satisfies

 the length of subinterval 

Since this is true for each  and the corresponding subinterval, we have the important fact

 maximum length of the 

By making the subintervals small enough by increasing the number of subdivision points, we can make the difference as small as
we please.

While the choice of the  is arbitrary in each , the selection of  (the left-hand endpoint) leads to the property 
. In this case, if we add subdivision points to decrease the size of some or all of the , the new simple

approximation  satisfies

 

To see this, consider (see Figure 7.15).  is partitioned into  and  is partitioned into .  maps 
into  and  into .  maps  into  and maps  into  > t_i\).  maps both  and  into . Thus, the asserted
inequality must hold for each  By taking a sequence of partitions in which each succeeding partition refines the previous (i.e. adds
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subdivision points) in such a way that the maximum length of subinterval goes to zero, we may form a nondecreasing sequence of
simple random variables  which increase to  for each .

The latter result may be extended to random variables unbounded above. Simply let  th set of subdivision points extend from 
to , making the last subinterval . Subintervals from  to  are made increasingly shorter. The result is a nondecreasing
sequence  of simple random variables, with  as , for each .

For probability calculations, we simply select an interval  large enough that the probability outside  is negligible and use a
simple approximation over .

This page titled 7.2: Distribution Approximations is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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7.3: Problems on Distribution and Density Functions

(See Exercises 3 and 4 from "Problems on Random Variables and Probabilities"). The class  is a partition.
Random variable  has values {1, 3, 2, 3, 4, 2, 1, 3, 5, 2} on  through , respectively, with probabilities 0.08, 0.13, 0.06,
0.09, 0.14, 0.11, 0.12, 0.07, 0.11, 0.09. Determine and plot the distribution function .

Answer

T = [1 3 2 3 4 2 1 3 5 2]; 

pc = 0.01*[8 13 6 9 14 11 12 7 11 9]; 

[X,PX] = csort(T,pc); 

ddbn 

Enter row matrix of VALUES  X 

Enter row matrix of PROBABILITIES  PX    % See MATLAB plot

(See Exercise 6 from "Problems on Random Variables and Probabilities"). A store has eight items for sale. The prices are
$3.50, $5.00, $3.50, $7.50, $5.00, $5.00, $3.50, and $7.50, respectively. A customer comes in. She purchases one of the items
with probabilities 0.10, 0.15, 0.15, 0.20, 0.10 0.05, 0.10 0.15. The random variable expressing the amount of her purchase may
be written

Determine and plot the distribution function for .

Answer

T = [3.5 5 3.5 7.5 5 5 3.5 7.5]; 

pc = 0.01*[10 15 15 20 10 5 10 15]; 

[X,PX] = csort(T,pc); 

ddbn 

Enter row matrix of VALUES  X 

Enter row matrix of PROBABILITIES  PX    % See MATLAB plot

(See Exercise 12 from "Problems on Random Variables and Probabilities"). The class  has minterm probabilities

 [5 7 6 8 9 14 22 33 21 32 50 75 86 129 201 302]

Determine and plot the distribution function for the random variable , which counts the number of
the events which occur on a trial.

Answer

npr06_12 

Minterm probabilities in pm, coefficients in c 

T = sum(mintable(4)); % Alternate solution.  See Exercise 6.2.12 from "Problems 

[X,PX] = csort(T,pm); 

Exercise 7.3.1

{ : 1 ≤ j ≤ 10}Cj

X C1 C10

FX

Exercise 7.3.2

X = 3.5 +5.0 +3.5 +7.5 +5.0 +5.0 +3.5 +7.5IC1
IC2

IC3
IC4

IC5
IC6

IC7
IC8

X

Exercise 7.3.3

{A, B, C, D}

pm = 0.001∗

X = + + +IA IB IC ID
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Suppose a is a ten digit number. A wheel turns up the digits 0 through 9 with equal probability on each spin. On ten spins what
is the probability of matching, in order, k or more of the ten digits in , ? Assume the initial digit may be zero.

Answer

 cbinom(10, 0.1, 0 : 10).

In a thunderstorm in a national park there are 127 lightning strikes. Experience shows that the probability of of a lightning
strike starting a fire is about 0.0083. What is the probability that  fires are started,  0,1,2,3?

Answer

P = ibinom(127,0.0083,0:3) P = 0.3470 0.3688 0.1945 0.0678

A manufacturing plant has 350 special lamps on its production lines. On any day, each lamp could fail with probability 
0.0017. These lamps are critical, and must be replaced as quickly as possible. It takes about one hour to replace a lamp, once it
has failed. What is the probability that on any day the loss of production time due to lamp failaures is  or fewer hours, 

?

Answer

P = 1 - chinom(350, 0.0017, 1:6)

=  0.5513    0.8799    0.9775    0.9968    0.9996    1.0000

Two hundred persons buy tickets for a drawing. Each ticket has probability 0.008 of winning. What is the probability of  or
fewer winners, ?

Answer

P = 1 - cbinom(200,0.008,3:5) = 0.7838 0.9220 0.9768

Two coins are flipped twenty times. What is the probability the results match (both heads or both tails)  times, ?

Answer

P = ibinom(20,1/2,0:20)

ddbn 

Enter row matrix of VALUES  X 

Enter row matrix of PROBABILITIES  PX    % See MATLAB plot 

Exercise 7.3.4

a 0 ≤ k ≤ 10

P =

Exercise 7.3.5

k k =

Exercise 7.3.6

p =

k

k = 0, 1, 2, 3, 4, 5

Exercise 7.3.7

k

k = 2, 3, 4

Exercise 7.3.8

k 0 ≤ k ≤ 20
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Thirty members of a class each flip a coin ten times. What is the probability that at least five of them get seven or more heads?

Answer

p = cbinom(10,0.5,7) = 0.1719

P = cbinom(30,p,5) = 0.6052

For the system in Exercise 6, call a day in which one or more failures occur among the 350 lamps a “service day.” Since a
Bernoulli sequence “starts over” at any time, the sequence of service/nonservice days may be considered a Bernoulli sequence
with probability p , the probability of one or more lamp failures in a day.

a. Beginning on a Monday morning, what is the probability the first service day is the first, second, third, fourth, fifth day of
the week?

b. What is the probability of no service days in a seven day week?

Answer

p1 = 1 - (1 - 0.0017)^350 = 0.4487 k = 1:5; (prob given day is a service day)

a. P = p1*(1 - p1).^(k-1) = 0.4487  0.2474  0.1364  0.0752  0.0414 

b. P0 = (1 - p1)^7 = 0.0155

For the system in Exercise 6 and Exercise 10 assume the plant works seven days a week. What is the probability the third
service day occurs by the end of 10 days? Solve using the negative binomial distribution; repeat using the binomial
distribution.

Answer

p1 = 1 - (1 - 0.0017)^350 = 0.4487

P = sum(nbinom(3,p1,3:10)) = 0.8990
Pa = cbinom(10,p1,3) = 0.8990

A residential College plans to raise money by selling “chances” on a board. Fifty chances are sold. A player pays $10 to play;
he or she wins $30 with probability  0.2. The profit to the College is

, where  is the number of winners

Determine the distribution for  and calculate , , and 

Answer

N = 0:50; 

PN = ibinom(50,0.2,0:50); 

X = 500 - 30*N; 

Ppos = (X>0)*PN' 

Exercise 7.3.9

Exercise 7.3.10

1

Exercise 7.3.11

Exercise 7.3.12

p =

X = 50 ⋅ 10 −30N N

X P (X > 0) P (X ≥ 200) P (X ≥ 300)
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Ppos =  0.9856 

P200 = (X>=200)*PN' 

P200 =  0.5836 

P300 = (X>=300)*PN' 

P300 =  0.1034 

A single six-sided die is rolled repeatedly until either a one or a six turns up. What is the probability that the first appearance of
either of these numbers is achieved by the fifth trial or sooner?

Answer

P = 1 - (2/3)^5 = 0.8683

Consider a Bernoulli sequence with probability  0.53 of success on any component trial.

a. The probability the fourth success will occur no later than the tenth trial is determined by the negative binomial
distribution. Use the procedure nbinom to calculate this probability .

b. Calculate this probability using the binomial distribution.

Answer
a. P = sum(nbinom(4,0.53,4:10)) = 0.8729
b. Pa = cbinom(10,0.53,4) = 0.8729

Fifty percent of the components coming off an assembly line fail to meet specifications for a special job. It is desired to select
three units which meet the stringent specifications. Items are selected and tested in succession. Under the usual assumptions for
Bernoulli trials, what is the probability the third satisfactory unit will be found on six or fewer trials?

Answer

P = cbinom(6,0.5,3) = 0.6562

The number of cars passing a certain traffic count position in an hour has Poisson (53) distribution. What is the probability the
number of cars passing in an hour lies between 45 and 55 (inclusive)? What is the probability of more than 55?

Answer

P1 = cpoisson(53,45) - cpoisson(53,56) = 0.5224

P2 = cpoisson(53,56) = 0.3581

Compare  and  for  binomial(5000, 0.001) and  Poisson (5), for . Do this directly with
ibinom and ipoisson. Then use the m-procedure bincomp to obtain graphical results (including a comparison with the normal
distribution).

Exercise 7.3.13

Exercise 7.3.14

p =

Exercise 7.3.15

Exercise 7.3.16

Exercise 7.3.17

P (X ≤ k) P (Y ≤ k) X  Y   0 ≤ k ≤ 10
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Answer

k = 0:10; 

Pb = 1 - cbinom(5000,0.001,k+1); 

Pp = 1 - cpoisson(5,k+1); 

disp([k;Pb;Pp]') 

         0    0.0067    0.0067 

    1.0000    0.0404    0.0404 

    2.0000    0.1245    0.1247 

    3.0000    0.2649    0.2650 

    4.0000    0.4404    0.4405 

    5.0000    0.6160    0.6160 

    6.0000    0.7623    0.7622 

    7.0000    0.8667    0.8666 

    8.0000    0.9320    0.9319 

    9.0000    0.9682    0.9682 

   10.0000    0.9864    0.9863 

bincomp 

Enter the parameter n  5000 

Enter the parameter p  0.001 

Binomial-- stairs 

Poisson--  -.-. 

Adjusted Gaussian-- o o o 

gtext('Exercise 17')

Suppose  binomial (12, 0.375),  Poisson (4.5), and  exponential (1/4.5). For each random variable, calculate and
tabulate the probability of a value at least , for integer values .

Answer

k = 3:8; 

Px = cbinom(12,0.375,k); 

Py = cpoisson(4.5,k); 

Pz = exp(-k/4.5); 

disp([k;Px;Py;Pz]') 

    3.0000    0.8865    0.8264    0.5134 

    4.0000    0.7176    0.6577    0.4111 

    5.0000    0.4897    0.4679    0.3292 

    6.0000    0.2709    0.2971    0.2636 

    7.0000    0.1178    0.1689    0.2111 

    8.0000    0.0390    0.0866    0.1690

Exercise 7.3.18

X  Y   Z 
k 3 ≤ k ≤ 8
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The number of noise pulses arriving on a power circuit in an hour is a random quantity having Poisson (7) distribution. What is
the probability of having at least 10 pulses in an hour? What is the probability of having at most 15 pulses in an hour?

Answer

P1 = cpoisson(7,10) = 0.1695 P2 = 1 - cpoisson(7,16) = 0.9976

The number of customers arriving in a small specialty store in an hour is a random quantity having Poisson (5) distribution.
What is the probability the number arriving in an hour will be between three and seven, inclusive? What is the probability of
no more than ten?

Answer

P1 = cpoisson(5,3) - cpoisson(5,8) = 0.7420

P2 = 1 - cpoisson(5,11) = 0.9863

Random variable  binomial (1000, 0.1).

a. Determine , , 
b. Use the appropriate Poisson distribution to approximate these values.

Answer

k = [80 100 120]; 

P = cbinom(1000,0.1,k) 

P  =  0.9867    0.5154    0.0220 

P1 = cpoisson(100,k) 

P1 =  0.9825    0.5133    0.0282

The time to failure, in hours of operating time, of a televesion set subject to random voltage surges has the exponential (0.002)
distribution. Suppose the unit has operated successfully for 500 hours. What is the (conditional) probability it will operate for
another 500 hours?

Answer

For  exponential ( ), determine , .

Answer

Exercise 7.3.19

Exercise 7.3.20

Exercise 7.3.21

X 

P (X ≥ 80) P (X ≥ 100) P (X ≥ 120)

Exercise 7.3.22

P (X > 500 +500|X > 500) = P (X > 500) = = 0.3679e−0.002⋅500

Exercise 7.3.23

X  λ P (X ≥ 1/λ) P (X ≥ 2/λ)

P (X > kλ) = =e−λk/λ e−k
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Twenty “identical” units are put into operation. They fail independently. The times to failure (in hours) form an iid class,
exponential (0.0002). This means the “expected” life is 5000 hours. Determine the probabilities that at least , for  =
5,8,10,12,15, will survive for 5000 hours.

Answer

p = exp(-0.0002*5000) 

p = 0.3679 

k = [5 8 10 12 15]; 

P = cbinom(20,p,k) 

P = 0.9110  0.4655  0.1601  0.0294  0.0006

Let  gamma (20, 0.0002) be the total operating time for the units described in Exercise 24.

a. Use the m-function for the gamma distribution to determine .
b. Use the Poisson distribution to determine .

Answer

P1 = gammadbn(20,0.0002,100000) = 0.5297 P2 = cpoisson(0.0002*100000,20) = 0.5297

The sum of the times to failure for five independent units is a random variable  gamma (5, 0.15). Without using tables or m-
programs, determine .

Answer

,  Poisson 

Interarrival times (in minutes) for fax messages on a terminal are independent, exponential (  0.1). This means the time 
for the arrival of the fourth message is gamma(4, 0.1). Without using tables or m-programs, utilize the relation of the gamma to
the Poisson distribution to determine .

Answer

,  poisson ( )

Customers arrive at a service center with independent interarrival times in hours, which have exponential (3) distribution. The
time  for the third arrival is thus gamma (3, 3). Without using tables or m-programs, determine .

Answer

Exercise 7.3.24

k k

Exercise 7.3.25

T  

P (T ≤ 100, 000)
P (T ≤ 100, 000)

Exercise 7.3.26

X 
P (Xle25)

P (X ≤ 25) = P (Y ≥ 5) Y   (0.15 ⋅ 25 = 3.75)

P (Y ≥ 5) = 1 −P (Y ≤ 4) = 1 − (1 +3.75 + + + ) = 0.3225e−3.35 3.752

2

3.753

3!

3.754

24

Exercise 7.3.27

λ = X

P ≤ 30

P (X ≤ 30) = P (Y ≥ 4) Y   0.2 ⋅ 30 = 3

P (Y ≥ 4) = 1 −P (Y ≤ 3) = 1 − (1 +3 + + ) = 0.3528e−3 32

2

33

3!

Exercise 7.3.28

X P (X ≤ 2)
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,  poisson ( )

Five people wait to use a telephone, currently in use by a sixth person. Suppose time for the six calls (in minutes) are iid,
exponential (1/3). What is the distribution for the total time  from the present for the six calls? Use an appropriate Poisson
distribution to determine .

Answer

 gamma (6, 1/3).

,  poisson

 = cpoisson(20/3, 6) = 0.6547

A random number generator produces a sequence of numbers between 0 and 1. Each of these can be considered an observed
value of a random variable uniformly distributed on the interval [0, 1]. They assume their values independently. A sequence of
35 numbers is generated. What is the probability 25 or more are less than or equal to 0.71? (Assume continuity. Do not make a
discrete adjustment.)

Answer

p = cbinom(35,0.71,25) = 0.5620

Five “identical” electronic devices are installed at one time. The units fail independently, and the time to failure, in days, of
each is a random variable exponential (1/30). A maintenance check is made each fifteen days. What is the probability that at
least four are still operating at the maintenance check?

Answer

p = exp(-15/30) = 0.6065 P = cbinom(5,p,4) = 0.3483

Suppose (4, 81). That is,  has gaussian distribution with mean  = 4 and variance  = 81.

a. Use a table of standardized normal distribution to determine  and .
b. Calculate the probabilities in part (a) with the m-function gaussian.

Answer

a.

 =

b.

P1 = gaussian(4,81,8) - gaussian(4,81,2) 

P1 = 0.2596 

P (X ≤ 2) = P (Y ≥ 3) Y   3 ⋅ 2 = 6

P (Y ≥ 3) = 1 −P (Y ≤ 2) = 1 − (1 +6 +36/2) = 0.9380e−6

Exercise 7.3.29

Z

P (Z ≤ 20)

Z 

P (Z ≤ 20) = P (Y ≥ 6) Y   (1/3 ⋅ 20)

P (Y ≥ 6)

Exercise 7.3.30

Exercise 7.3.31

Exercise 7.3.32

X N X μ σ2

P (2 < X < 8) P (|X −4| ≤ 5)

P (2 < X < 8) = ϕ((8 −4)/9) −ϕ((2 −4)/9)

ϕ(4/9) +ϕ(2/9) −1 = 0.6712 +0.5875 −1 = 0.2587

P (|X −4| ≤ 5) = 2ϕ(5/9) −1 = 1.4212 −1 = 0.4212
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P2 = gaussian(4,81,9) - gaussian(4,84,-1) 

P2 = 0.4181

Suppose . That is,  has gaussian distribution with  = 5 and  = 81. Use a table of standardized normal
distribution to determine  and . Check your results using the m-function gaussian.

Answer

P1 = gaussian(5,81,9) - gaussian(5,81,3) 

P1 = 0.2596 

P2 = gaussian(5,81,10) - gaussian(5,84,0) 

P2 = 0.4181

Suppose . That is,  has gaussian distribution with  = 3 and  = 64. Use a table of standardized normal
distribution to determine  and . Check your results with the m-function gaussian.

Answer

P1 = gaussian(3,64,9) - gaussian(3,64,1) 

P1 = 0.3721 

P2 = gaussian(3,64,7) - gaussian(3,64,-1) 

P2 = 0.3829

Items coming off an assembly line have a critical dimension which is represented by a random variable  (10, 0.01). Ten
items are selected at random. What is the probability that three or more are within 0.05 of the mean value .

Answer

p = gaussian(10,0.01,10.05) - gaussian(10,0.01,9.95) 

p =  0.3829 

P = cbinom(10,p,3) 

P =  0.8036

Exercise 7.3.33

X N(5, 81) X μ σ2

P (3 < X < 9) P (|X −5|le5)

P (3 < X < 9) = ϕ((9 −5)/9) −ϕ((3 −5)/9) = ϕ(4/9) +ϕ(2/9) −1 = 0.6712 +0.5875 −1 = 0.2587

P (|X −5| ≤ 5) = 2ϕ(5/9) −1 = 1.4212 −1 = 0.4212

Exercise 7.3.34

X N(3, 64) X μ σ2

P (1 < X < 9) P (|X −3|le4)

P (1 < X < 9) = ϕ((9 −3)/8) −ϕ(1 −3)/9) =

ϕ(0.75) +ϕ(0.25) −1 = 0.7734 +0.5987 −1 = 0.3721

P (|X −3| ≤ 4) = 2ϕ(4/8) −1 = 1.3829 −1 = 0.3829

Exercise 7.3.35

 N
μ

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10863?pdf


7.3.10 https://stats.libretexts.org/@go/page/10863

The result of extensive quality control sampling shows that a certain model of digital watches coming off a production line
have accuracy, in seconds per month, that is normally distributed with  = 5 and  = 300. To achieve a top grade, a watch
must have an accuracy within the range of -5 to +10 seconds per month. What is the probability a watch taken from the
production line to be tested will achieve top grade? Calculate, using a standardized normal table. Check with the m-function
gaussian.

Answer

 gaussian(5, 300, 10) - gaussian(5, 300, -5) = 0.3317

Use the m-procedure bincomp with various values of  from 10 to 500 and  from 0.01 to 0.7, to observe the approximation of
the binomial distribution by the Poisson.

Answer

Experiment with the m-procedure bincomp.

Use the m-procedure poissapp to compare the Poisson and gaussian distributions. Use various values of  from 10 to 500.

Answer

Experiment with the m-procedure poissapp.

Random variable  has density ,  (and zero elsewhere).

a. Determine , , .
b. Determine an expression for the distribution function.
c. Use the m-procedures tappr and cdbn to plot an approximation to the distribution function.

Answer

a.  

 

  

 

b. 

c. tappr 

Enter matrix [a b] of x-range endpoints  [-1 1] 

Enter number of x approximation points  200 

Enter density as a function of t  1.5*t.^2 

Exercise 7.3.36

μ σ2

P (−5 ≤ X ≤ 10) = ϕ(5/ ) +ϕ(10/ ) −1 = ϕ(0.289) +ϕ(0.577) −1 = 0.614 +0.717 −1 = 0.331300
−−−

√ 300
−−−

√

P =

Exercise 7.3.37

n p

Exercise 7.3.38

μ

Exercise 7.3.39

X (t) =fX

3

2
t2 −1 ≤ t ≤ 1

P (−0.5 ≤ X < 0.8) P (|X| > 0.5) P (|X −0.25) ≤ 0.5)

∫ = /2
3

2
t2 t3

P 1 = 0.5 ∗ ( −(−0.5 ) = 0.31850.83 )3 P 2 = 2 = (1 −(−0.5 ) = 7/8∫
1

0.5

3

2
t2 )3

P 3 = P (|X −0.25| ≤ 0.5) = P (−0.25 ≤ X ≤ 0.75) = [(3/4 −(−1/4 ] = 7/32
1

2
)3 )3

(t) = = ( +1)FX ∫ 1
−1

fX

1

2
t3
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Use row matrices X and PX as in the simple case 

cdbn 

Enter row matrix of VALUES  X 

Enter row matrix of PROBABILITIES  PX    % See MATLAB plot

Random variable  has density function ,  (and zero elsewhere).

a. Determine , , .
b. Determine an expression for the distribution function.
c. Use the m-procedures tappr and cdbn to plot an approximation to the distribution function.

Answer

a.  

 
  

b. , 

c. tappr 

Enter matrix [a b] of x-range endpoints  [0 2] 

Enter number of x approximation points  200 

Enter density as a function of t  t - (3/8)*t.^2

Use row matrices X and PX as in the simple case 

cdbn 

Enter row matrix of VALUES  X 

Enter row matrix of PROBABILITIES  PX    % See MATLAB plot

Random variable  has density function

a. Determine , , .
b. Determine an expression for the distribution function.
c. Use the m-procedures tappr and cdbn to plot an approximation to the distribution function.

Answer

a.   

 

b. 

Exercise 7.3.40

X (t) = t −fX

3

8
t3 0 ≤ t ≤ 2

P (X ≤ 0.5) P (0.5 ≤ X < 1.5) P (|X −1| < 1/4)

∫(t − ) = −
3

8
t2 t2

2

t3

8

P 1 = /2 − /8 = 7/640.52 0.53 P 2 = /2 − /8 −7/64 = 19/321.52 1.53 P 3 = 79/256)

(t) = −FX

t2

2

t3

8
0 ≤ t ≤ 2

Exercise 7.3.41

X

(t) = { = I[0, 1](t) + (t) (2 − t)fX
(6/5)t2

(6/5)(2 − t)
for 0 ≤ t ≤ 1
for 1 < t ≤ 2

6

5
t2 I(1,2]

6

5

P (X ≤ 0.5) P (0.5 ≤ X < 1.5) P (|X −1| < 1/4)

P 1 = = 1/20
6

5
∫ 1/2

0
t2 P 2 = + (2 − t) = 4/5

6

5
∫ 1

1/2
t2 6

5
∫ 3/2

1

P 3) = + (2 − t) = 79/160
6

5
∫ 1

3/4
t2 6

5
∫ 5/4

1

(t) = = (t) + (t)[− + (2t − )]FX ∫ 1
0 fX I[0,1]

2

5
t3 I(1,2]

7

5

6

5

t2

2
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c. tappr 

Enter matrix [a b] of x-range endpoints  [0 2] 

Enter number of x approximation points  400 

Enter density as a function of t  (6/5)*(t<=1).*t.^2 + ... 

      (6/5)*(t>1).*(2 - t) 

Use row matrices X and PX as in the simple case 

cdbn 

Enter row matrix of VALUES  X 

Enter row matrix of PROBABILITIES  PX    % See MATLAB plot 
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8.1: Random Vectors and Joint Distributions
A single, real-valued random variable is a function (mapping) from the basic space  to the real line. That is, to each possible
outcome  of an experiment there corresponds a real value . The mapping induces a probability mass distribution on the
real line, which provides a means of making probability calculations. The distribution is described by a distribution function . In
the absolutely continuous case, with no point mass concentrations, the distribution may also be described by a probability density
function . The probability density is the linear density of the probability mass along the real line (i.e., mass per unit length). The
density is thus the derivative of the distribution function. For a simple random variable, the probability distribution consists of a
point mass  at each possible value  of the random variable. Various m-procedures and m-functions aid calculations for simple
distributions. In the absolutely continuous case, a simple approximation may be set up, so that calculations for the random variable
are approximated by calculations on this simple distribution.

Often we have more than one random variable. Each can be considered separately, but usually they have some probabilistic ties
which must be taken into account when they are considered jointly. We treat the joint case by considering the individual random
variables as coordinates of a random vector. We extend the techniques for a single random variable to the multidimensional case.
To simplify exposition and to keep calculations manageable, we consider a pair of random variables as coordinates of a two-
dimensional random vector. The concepts and results extend directly to any finite number of random variables considered jointly.

Random variables considered jointly; random vectors 

As a starting point, consider a simple example in which the probabilistic interaction between two random quantities is evident.

Two campus jobs are open. Two juniors and three seniors apply. They seem equally qualified, so it is decided to select them by
chance. Each combination of two is equally likely. Let  be the number of juniors selected (possible values 0, 1, 2) and  be
the number of seniors selected (possible values 0, 1, 2). However there are only three possible pairs of values for : (0,
2), (1, 1), or (2, 0). Others have zero probability, since they are impossible. Determine the probability for each of the possible
pairs.

Solution

There are  equally likely pairs. Only one pair can be both juniors. Six pairs can be one of each. There are 
 ways to select pairs of seniors. Thus

, , 

These probabilities add to one, as they must, since this exhausts the mutually exclusive possibilities. The probability of any
other combination must be zero. We also have the distributions for the random variables conisidered individually.

 [0 1 2]  [3/10 6/10 1/10]  [0 1 2]  [1/10 6/10 3/10]

We thus have a joint distribution and two individual or marginal distributions.

We formalize as follows:

A pair  of random variables considered jointly is treated as the pair of coordinate functions for a two-dimensional random
vector . To each ,  assigns the pair of real numbers , where  and . If we represent
the pair of values  as the point  on the plane, then , so that

 R

is a mapping from the basic space  to the plane . Since  is a function, all mapping ideas extend. The inverse mapping 
plays a role analogous to that of the inverse mapping  for a real random variable. A two-dimensional vector W is a random
vector iff  is an event for each reasonable set (technically, each Borel set) on the plane.

A fundamental result from measure theory ensures

 is a random vector iff each of the coordinate functions  and  is a random variable.

In the selection example above, we model  (the number of juniors selected) and  (the number of seniors selected) as random
variables. Hence the vector-valued function

Ω

ω t = X(ω)

FX

fX

pi ti

Example 8.1.1: A selection problem

X Y

(X, Y )

C(5, 2) = 10

C(3, 2) = 3

P (X = 0, Y = 2) = 3/10 P (X = 1, Y = 1) = 6/10 P (X = 2, Y = 0) = 1/10

X = P X = Y = P Y =

{X, Y }

W = (X, Y ) ω ∈ Ω W (t, u) X(ω) = t Y (ω) = u

{t, u} (t, u) W (ω) = (t, u)

W = (X, Y ) : Ω → 2

Ω R2 W W −1

X−1

(Q)W −1

W = (X, Y ) X Y

X Y
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Induced distribution and the joint distribution function
In a manner parallel to that for the single-variable case, we obtain a mapping of probability mass from the basic space to the plane.
Since  is an event for each reasonable set  on the plane, we may assign to  the probability mass

Because of the preservation of set operations by inverse mappings as in the single-variable case, the mass assignment determines 
 as a probability measure on the subsets of the plane . The argument parallels that for the single-variable case. The result is

the probability distribution induced by . To determine the probability that the vector-valued function 
takes on a (vector) value in region , we simply determine how much induced probability mass is in that region.

To determine , we determine the region for which the first coordinate value (which we call ) is between
one and three and the second coordinate value (which we call ) is greater than zero. This corresponds to the set  of points on
the plane with  and . Geometrically, this is the strip on the plane bounded by (but not including) the horizontal
axis and by the vertical lines  and (included). The problem is to determine how much probability mass lies in that
strip. How this is achieved depends upon the nature of the distribution and how it is described.

As in the single-variable case, we have a distribution function.

The joint distribution function  for  is given by

This means that  is equal to the probability mass in the region  on the plane such that the first coordinate is less than
or equal to  and the second coordinate is less than or equal to . Formally, we may write

, where \Q_{tu} = \{(r, s) : r \le t, s \le u\}\)

Now for a given point ( ), the region  is the set of points ( ) on the plane which are on or to the left of the vertical line
through ( , 0)and on or below the horizontal line through (0, ) (see Figure 1 for specific point ). We refer to such
regions as semiinfinite intervals on the plane.

The theoretical result quoted in the real variable case extends to ensure that a distribution on the plane is determined uniquely by
consistent assignments to the semiinfinite intervals . Thus, the induced distribution is determined completely by the joint
distribution function.

Figure 8.1.1. The region  for the value .

Distribution function for a discrete random vector

The induced distribution consists of point masses. At point (  in the range of  there is probability mass 
. As in the general case, to determine  we determine how much

probability mass is in the region. In the discrete case (or in any case where there are point mass concentrations) one must be careful
to note whether or not the boundaries are included in the region, should there be mass concentrations on the boundary.

(Q)W −1 Q Q

(Q) = P [ (Q)] = P [(X, Y (Q)]PXY W −1 )−1

PXY R2

W = (X, Y ) W = (X, Y )

Q

Example 8.1.2: Induced distribution and probability calculations

P (1 ≤ X ≤, Y > 0) t

u Q

1 ≤ t ≤ 3 u > 0

t = 1 t = 3

Definition: Joint Distribution Function

FXY W = (X, Y )

(t, u) = P (X ≤ t, Y ≤ u) ∀(t, u) ∈FXY R2 (8.1.1)

(t, u)FXY Qtu

t u

(t, u) = P [(X, Y ) ∈ ]FXY Qtu

a, b Qab t, u

t u t = a, u = b

Qtu

Qab (a, b)FXY

, )ti uj W = (X, Y )

= P [W = (t, )] = P (X = , Y = )Pij uj ti uj [P (X, Y ) ∈ Q]
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Figure 8.1.2. The joint distribution for Example 8.1.3.

The probability distribution is quite simple. Mass 3/10 at (0,2), 6/10 at (1,1), and 1/10 at (2,0). This distribution is plotted in
Figure 8.2. To determine (and visualize) the joint distribution function, think of moving the point  on the plane. The
region \Q_{tu}\) is a giant “sheet” with corner at . The value of  is the amount of probability covered by the
sheet. This value is constant over any grid cell, including the left-hand and lower boundariies, and is the value taken on at the
lower left-hand corner of the cell. Thus, if  is in any of the three squares on the lower left hand part of the diagram, no
probability mass is covered by the sheet with corner in the cell. If  is on or in the square having probability 6/10 at the
lower left-hand corner, then the sheet covers that probability, and the value of . The situation in the other
cells may be checked out by this procedure.

Distribution function for a mixed distribution 

The pair  produces a mixed distribution as follows (see Figure 8.3)

Point masses 1/10 at points (0,0), (1,0), (1,1), (0,1)

Mass 6/10 spread uniformly over the unit square with these vertices

The joint distribution function is zero in the second, third, and fourth quadrants.

If the point  is in the square or on the left and lower boundaries, the sheet covers the point mass at (0,0) plus 0.6 times
the area covered within the square. Thus in this region

If the pont  is above the square (including its upper boundary) but to the left of the line , the sheet covers two
point masses plus the portion of the mass in the square to the left of the vertical line through . In this case

If the point  is to the right of the square (including its boundary) with , the sheet covers two point masses
and the portion of the mass in the square below the horizontal line through , to give

F_{XY} (t, u) = \dfrac{1}{10} (2 + 6u)\)

If  is above and to the right of the square (i.e., both  and ). then all probability mass is covered and 
 in this region.

Figure 8.3. Mixed joint distribution for Example 8.4.

Example 8.1.3: distribution function for the selection problem in Example 8.1.1

(t, u)

t, u) (t, u)FXY

(t, u)

(t, u)

(t, u) = 6/10FXY

Example 8.1.4: A Mixed Distribution

{X, Y }

(t, u)

(t, u) = (1 +6tu)FXY

1

10

(t, u) t = 1

(t, u)

(t, u) = (2 +6t)FXY

1

10

(t, u) 0 ≤ u < 1

(t, u)

(t, u) 1 ≤ t 1 ≤ u

(t, u) = 1FXY
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Marginal Distributions

If the joint distribution for a random vector is known, then the distribution for each of the component random variables may be
determined. These are known as marginal distributions. In general, the converse is not true. However, if the component random
variables form an independent pair, the treatment in that case shows that the marginals determine the joint distribution.

To begin the investigation, note that

 i.e.  can take any of its possible values.

Thus

This may be interpreted with the aid of Figure 8.1.4. Consider the sheet for point .

Figure 8.1.4. Construction for obtaining the marginal distribution for .

If we push the point up vertically, the upper boundary of  is pushed up until eventually all probability mass on or to the left of
the vertical line through  is included. This is the total probability that . Now  describes probability mass on the
line. The probability mass described by  is the same as the total joint probability mass on or to the left of the vertical line
through . We may think of the mass in the half plane being projected onto the horizontal line to give the marginal distribution
for . A parallel argument holds for the marginal for .

 mass on or below horizontal line through ( )

This mass is projected onto the vertical axis to give the marginal distribution for .

(t) = P (X ≤ t) = P (X ≤ t, Y < ∞)FX Y

(t) = (t, ∞) = (t, u)FX FXY limu→∞ FXY

(t, u)

X

Qtu

(t, u) X ≤ t (t)FX

(t)FX

(t, u)

X Y

(u) = P (Y ≤ u) = (∞, u) =FY FXY t, u

Y
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Marginals for a joint discrete distribution

Consider a joint simple distribution.

 and 

Thus, all the probability mass on the vertical line through ( ) is projected onto the point  on a horizontal line to give 
. Similarly, all the probability mass on a horizontal line through  is projected onto the point  on a vertical line

to give .

The pair  produces a joint distribution that places mass 2/10 at each of the five points

(0, 0), (1, 1), (2, 0), (2, 2), (3, 1) (See Figure 8.1.5)

The marginal distribution for  has masses 2/10, 2/10, 4/10, 2/10 at points  0, 1, 2, 3, respectively. Similarly, the marginal
distribution for Y has masses 4/10, 4/10, 2/10 at points  0, 1, 2, respectively.

Figure 8.1.5. Marginal distribution for Example 8.1.1.

Consider again the joint distribution in Example 8.4. The pair  produces a mixed distribution as follows:

Point masses 1/10 at points (0,0), (1,0), (1,1), (0,1)

Mass 6/10 spread uniformly over the unit square with these vertices

The construction in Figure 8.1.6 shows the graph of the marginal distribution function . There is a jump in the amount of
0.2 at , corresponding to the two point masses on the vertical line. Then the mass increases linearly with , slope 0.6, until
a final jump at  in the amount of 0.2 produced by the two point masses on the vertical line. At , the total mass is
“covered” and  is constant at one for . By symmetry, the marginal distribution for  is the same.

P (X = ) = P (X = , Y = )ti ∑
m

j=1 ti uj P (Y = ) = P (X = , Y = )uj ∑
n

i=1 ti uj

, 0ti ti

P (X = )ti (0, )uj uj

P (Y = )uj

Example 8.1.5: Marginals for a discrete distribution

{X, Y }

X t =

u =

{X, Y }

FX

t = 0 t

t = 1 t = 1

(t)FX t ≥ 1 Y
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Figure 8.1.6. Marginal distribution for Example 8.1.6
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8.2: Random Vectors and MATLAB

m-procedures for a pair of simple random variables

We examine, first, calculations on a pair of simple random variables  considered jointly. These are, in effect, two components
of a random vector , which maps from the basic space  to the plane. The induced distribution is on the -plane.
Values on the horizontal axis ( -axis) correspond to values of the first coordinate random variable  and values on the vertical axis
(u-axis) correspond to values of . We extend the computational strategy used for a single random variable.

First, let us review the one-variable strategy. In this case, data consist of values  and corresponding probabilities arranged in
matrices

 and 

To perform calculations on , we we use array operations on  to form a matrix

which has  in a position corresponding to  in matrix .

Basic problem. Determine , where  is some prescribed set of values.

Use relational operations to determine the positions for which . These will be in a zero-one matrix , with ones in
the desired positions.
Select the  in the corresponding positions and sum. This is accomplished by one of the MATLAB operations to
determine the inner product of  and 

We extend these techniques and strategies to a pair of simple random variables, considered jointly.

The data for a pair  of random variables are the values of  and , which we may put in row matrices

 and 

and the joint probabilities  in a matrix . We usually represent the distribution graphically by putting
probability mass  at the point  on the plane. This joint probability may is represented by the matrix 
with elements arranged corresponding to the mass points on the plane. Thus

 has elememt  at the  position

To perform calculations, we form computational matrices  and  such that —  has element  at each  position (i.e., at
each point on the th column from the left) —  has element  at each  position (i.e., at each point on the th row from the
bottom) MATLAB array and logical operations on  perform the specified operations on , and  at
each  position, in a manner analogous to the operations in the single-variable case.

Formation of the t and u matrices is achieved by a basic setup m-procedure called jcalc. The data for this procedure are in three
matrices:  is the set of values for random variable   is the set of values for random
variable , and , where . We arrange the joint probabilities as on the plane, with -values
increasing to the right and Y-values increasing upward. This is different from the usual arrangement in a matrix, in which values of
the second variable increase downward. The m-procedure takes care of this inversion. The m-procedure forms the matrices  and ,
utilizing the MATLAB function meshgrid, and computes the marginal distributions for  and . In the following example, we
display the various steps utilized in the setup procedure. Ordinarily, these intermediate steps would not be displayed.

>> jdemo4                         % Call for data in file jdemo4.m 

>> jcalc                          % Call for setup procedure 

Enter JOINT PROBABILITIES (as on the plane)  P 

Enter row matrix of VALUES of X  X 

Enter row matrix of VALUES of Y  Y 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

>> disp(P)                        % Optional call for display of P 

X,Y

W = (X,Y ) Ω (t, u)

t X

Y

ti

X = [ , , ⋅ ⋅ ⋅, ]t1 t2 tn PX = [P (X = ),P (X = ), ⋅ ⋅ ⋅,P (X = )]t1 t2 tn

Z = g(X) X

G= [g( )g( ) ⋅ ⋅ ⋅ g( )]t1 t2 tn

g( )ti P (X = )ti PX

P (g(X) ∈ M) M

g( ) ∈ Mti N

P (X = )ti
N PX

{X,Y } X Y

X = [ ⋅ ⋅ ⋅ ]t1t2 tn Y = [ ⋅ ⋅ ⋅ ]u1u2 um

P (X = ,Y = )ti uj P

P (X = ,Y = )ti uj ( , )ti uj P

P P (X = ,Y = )ti uj ( , )ti uj

t u t ti ( , )ti uj
i u uj ( , )ti uj j

t, u,P ,ti uj P (X = ,Y = )ti uj
( , )ti uj

X = [ , , ⋅ ⋅ ⋅, ]t1 t2 tn X Y = [ , , ⋅ ⋅ ⋅, ]u1 u2 um
Y P = [ ]pij = P (X = ,Y = )pij ti uj X

t u

X Y

Example 8.2.7: Setup and basic calculations
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    0.0360    0.0198    0.0297    0.0209    0.0180 

    0.0372    0.0558    0.0837    0.0589    0.0744 

    0.0516    0.0774    0.1161    0.0817    0.1032 

    0.0264    0.0270    0.0405    0.0285    0.0132 

>> PX                             % Optional call for display of PX 

PX =  0.1512    0.1800    0.2700    0.1900    0.2088 

>> PY                             % Optional call for display of PY 

PY =  0.1356    0.4300    0.3100    0.1244 

- - - - - - - - - -               % Steps performed by jcalc 

>> PX = sum(P)                    % Calculation of PX as performed by jcalc 

PX =  0.1512    0.1800    0.2700    0.1900    0.2088 

>> PY = fliplr(sum(P'))           % Calculation of PY (note reversal) 

PY = 0.1356    0.4300    0.3100    0.1244 

>> [t,u] = meshgrid(X,fliplr(Y)); % Formation of t, u matrices (note reversal) 

>> disp(t)                        % Display of calculating matrix t 

    -3     0     1     3     5    % A row of X-values for each value of Y 

    -3     0     1     3     5 

    -3     0     1     3     5 

    -3     0     1     3     5 

>> disp(u)                        % Display of calculating matrix u 

     2     2     2     2     2    % A column of Y-values (increasing 

     1     1     1     1     1    % upward) for each value of X 

     0     0     0     0     0 

    -2    -2    -2    -2    -2 

Suppose we wish to determine the probability . Using array operations on  and , we obtain the matrix 
.

>> G = t.^2 - 3*u                 % Formation of G = [g(t_i,u_j)] matrix 

G  = 3    -6    -5     3    19 

     6    -3    -2     6    22 

     9     0     1     9    25 

    15     6     7    15    31 

>> M = G >=  1                    % Positions where G >= 1 

M =  1     0     0     1     1 

     1     0     0     1     1 

     1     0     1     1     1 

     1     1     1     1     1 

>> pM = M.*P                    % Selection of probabilities 

pM = 

    0.0360         0         0    0.0209    0.0180 

    0.0372         0         0    0.0589    0.0744 

    0.0516         0    0.1161    0.0817    0.1032 

    0.0264    0.0270    0.0405    0.0285    0.0132 

>> PM = total(pM)               % Total of selected probabilities 

PM =  0.7336                    % P(g(X,Y) >= 1) 

P ( −3Y ≥ 1)X2 t u

G= [g( , )]ti uj
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In Example 8.1.3 from "Random Vectors and Joint Distributions" we note that the joint distribution function  is constant over
any grid cell, including the left-hand and lower boundaries, at the value taken on at the lower left-hand corner of the cell. These
lower left-hand corner values may be obtained systematically from the joint probability matrix P by a two step operation.

Take cumulative sums upward of the columns of .
Take cumulative sums of the rows of the resultant matrix.

This can be done with the MATLAB function cumsum, which takes column cumulative sums downward. By flipping the matrix
and transposing, we can achieve the desired results.

>> P = 0.1*[3 0 0; 0 6 0; 0 0 1]; 

>> FXY = flipud(cumsum(flipud(P)))  % Cumulative column sums upward 

FXY = 

    0.3000    0.6000    0.1000 

         0    0.6000    0.1000 

         0         0    0.1000 

>> FXY = cumsum(FXY')'              % Cumulative row sums 

FXY = 

    0.3000    0.9000    1.0000 

         0    0.6000    0.7000 

         0         0    0.1000 

Figure 8.2.7. The joint distribution for Example 8.1.3 in "Random Vectors and Joint Distributions'.

Comparison with Example 8.3 from "Random Vectors and Joint Distributions" shows agreement with values obtained by hand. 
The two step procedure has been incorprated into an m-procedure jddbn. As an example, return to the distribution in Example
Example 8.7

>> jddbn

Enter joint probability matrix (as on the plane)  P 

To view joint distribution function, call for FXY 

>> disp(FXY) 

    0.1512    0.3312    0.6012    0.7912    1.0000 

    0.1152    0.2754    0.5157    0.6848    0.8756 

    0.0780    0.1824    0.3390    0.4492    0.5656 

    0.0264    0.0534    0.0939    0.1224    0.1356 

These values may be put on a grid, in the same manner as in Figure 8.1.2 for Example 8.1.3 in "Random Vectors and Joint
Distributions".

FXY

P

Example 8.2.8: F Calculation of  values for Example 8.3 from "Random Vectors and Joint Distributions"XY

Example 8.2.9: Joint distribution function for example 8.7
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As in the case of canonic for a single random variable, it is often useful to have a function version of the procedure jcalc to provide
the freedom to name the outputs conveniently. function [x,y,t,u,px,py,p] = jcalcf(X,Y,P)  The quantities 

, and  may be given any desired names.

Joint absolutely continuous random variables
In the single-variable case, the condition that there are no point mass concentrations on the line ensures the existence of a
probability density function, useful in probability calculations. A similar situation exists for a joint distribution for two (or more)
variables. For any joint mapping to the plane which assigns zero probability to each set with zero area (discrete points, line or curve
segments, and countable unions of these) there is a density function.

Definition

If the joint probability distribution for the pair  assigns zero probability to every set of points with zero area, then there
exists a joint density function  with the property

We have three properties analogous to those for the single-variable case:

(f1)  (f2)  (f3) 

At every continuity point for , the density is the second partial

Now

A similar expression holds for . Use of the fundamental theorem of calculus to obtain the derivatives gives the result

 and 

Marginal densities. Thus, to obtain the marginal density for the first variable, integrate out the second variable in the joint density,
and similarly for the marginal for the second variable.

Let  . This region is the triangle bounded by , and (see Figure 8.2.8)

, 

, 

 where  is the common part of the triangle with the strip between 
and  and above the line . This is the small triangle bounded by , , and . Thus

x, y, t, u, px, py p

{X,Y }

fXY

P [(X,Y ) ∈ Q] = ∫ ∫Q fXY

≥ 0fXY ∫ = 1∫R2 fXY (t, u) =FXY ∫
1

−∞ ∫
u

−∞ fXY

fXY

(t, u) =fXY

(t, u)∂2FXY

∂t∂u

(t) = (t, ∞) = (r, s)dsdrFX FXY ∫
t

−∞ ∫
∞

−∞ fXY

(u)FY

(t) = (t, s)dsfX ∫ ∞

−∞
fXY (u) = (r, u)dufY ∫ ∞

−∞
fXY

Example 8.2.10: Marginal density functions

(t, u) = 8tufXY 0 ≤ u ≤ t ≤ 1 u = 0, u = t t = 1

(t) = ∫ (t, u)du = 8t udu = 4fX fXY ∫ 1
0 t3 0 ≤ t ≤ 1

(u) = ∫ (t, u)dt = 8u tdt = 4u(1 − )fY fXY ∫ 1
u u2 0 ≤ u ≤ 1

P (0.5 ≤ X ≤ 0.75,Y > 0.5) = P [(X,Y ) ∈ Q] Q t = 0.5

t = 0.75 u = 0.5 u = 0.5 u = t t = 0.75

p = 8 tududt = 25/256 ≈ 0.0977∫ 3/4

1/2
∫ t

1/2
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Figure 8.2.8. Distribution for Example 8.2.10

The pair  has joint density \f_{XY}(t, u) = \dfrac{6}{37} (t + 2u)\) on the region bounded by  and 
 (see Figure 8.9). Determine the marginal density .

Solution

Examination of the figure shows that we have different limits for the integral with respect to  for  and for 
.

For 

For 

We may combine these into a single expression in a manner used extensively in subsequent treatments. Suppose  and 
. Then  for  (i.e., ) and zero elsewhere. Likewise,  for  and zero elsewhere.

We can, therefore express  by

Figure 8.2.9. Marginal distribution for Example 8.2.11

Discrete approximation in the continuous case
For a pair  with joint density , we approximate the distribution in a manner similar to that for a single random variable.
We then utilize the techniques developed for a pair of simple random variables. If we have  approximating values  for  and 
approximating values  for , we then have  pairs , corresponding to points on the plane. If we subdivide the

Example 8.2.11: Marginal distribution with compound expression

{X,Y } t = 0, t = 2, u = 0

u = max{1, t} fX

u 0 ≤ t ≤ 1

1 < t ≤ 2

0 ≤ t ≤ 1

(t) = (t+2u)du = (t+1)fx
6

37
∫

1

0

6

37

1 < t ≤ 2

(t) = (t+2u)du =fX
6

37
∫ 1

0

12

37
t2

M = [0, 1]

N = (1, 2] (t) = 1IM t ∈ M 0 ≤ t ≤ 1 (t) = 1IN t ∈ N

fX

{X,Y } fXY

n ti X m

uj Y n ⋅m ( , )ti uj
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horizontal axis for values of , with constant increments , as in the single-variable case, and the vertical axis for values of ,
with constant increments , we have a grid structure consisting of rectangles of size . We select  and  at the midpoint
of its increment, so that the point  is at the midpoint of the rectangle. If we let the approximating pair be , we
assign

As in the one-variable case, if the increments are small enough,

The m-procedure tuappr calls for endpoints of intervals which include the ranges of  and  and for the numbers of subintervals
on each. It then prompts for an expression for , from which it determines the joint probability distribution. It calculates
the marginal approximate distributions and sets up the calculating matrices  and  as does the m-process jcalc for simple random
variables. Calculations are then carried out as for any joint simple pair.

 on 

Determine .

>> tuappr 

Enter matrix [a b] of X-range endpoints  [0 1] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  200 

Enter number of Y approximation points  200 

Enter expression for joint density  3*(u <= t.^2) 

Use array operations on X, Y, PX, PY, t, u, and P 

>> M = (t <= 0.8)&(u > 0.1); 

>> p = total(M.*P)          % Evaluation of the integral with 

p =   0.3355                % Maple gives 0.3352455531

The discrete approximation may be used to obtain approximate plots of marginal distribution and density functions.

Figure 8.2.10. Marginal density and distribution function for Example 8.2.13

 on the triangle bounded by , , and .

>> tuappr 

Enter matrix [a b] of X-range endpoints  [-1 1] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

X dx Y

dy dx ⋅ dy ti uj
( , )ti uj { , }X∗ Y ∗

= P (( , ) = ( , )) = P ( = , = ) = P ((X,Y ) in ijth rectangle)pij X∗ Y ∗ ti uj X∗ ti Y ∗ uj

P ((X,Y ) ∈ ijth rectangle) ≈ dx ⋅ dy ⋅ ( , )fXY ti uj

X Y

(t, u)fXY

t u

Example 8.2.12: Approximation to a joint continuous distribution

(t, u) = 3fXY 0 ≤ u ≤ ≤ 1t2

P (X ≤ 0.8,Y > 0.1)

Example 8.2.13: Approximate plots of marginal density and distribution functions

(t, u) = 3ufXY u = 0 u ≤ 1 + t u ≤ 1 − t
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Enter number of X approximation points  400 

Enter number of Y approximation points  200 

Enter expression for joint density  3*u.*(u<=min(1+t,1-t)) 

Use array operations on X, Y, PX, PY, t, u, and P 

>> fx = PX/dx;                % Density for X  (see Figure 8.2.10) 

                              % Theoretical (3/2)(1 - |t|)^2 

>> fy = PY/dy;                % Density for Y 

>> FX = cumsum(PX);           % Distribution function for X (Figure 8.2.10) 

>> FY = cumsum(PY);           % Distribution function for Y 

>> plot(X,fx,X,FX)            % Plotting details omitted

These approximation techniques useful in dealing with functions of random variables, expectations, and conditional expectation
and regression.

This page titled 8.2: Random Vectors and MATLAB is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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8.3: Problems on Random Vectors and Joint Distributions

Two cards are selected at random, without replacement, from a standard deck. Let  be the number of aces and  be the
number of spades. Under the usual assumptions, determine the joint distribution and the marginals.

Answer

Let  be the number of aces and  be the number of spades. Define the events , , , and ,  of drawing
ace of spades, other ace, spade (other than the ace), and neither on the i selection. Let .

% type npr08_01 

% file npr08_01.m 

% Solution for Exercise 8.3.1. 

X = 0:2; 

Y = 0:2; 

Pn = [132  24   0; 864 144  6; 1260 216 6]; 

P = Pn/(52*51); 

disp('Data in Pn, P, X, Y') 

  

npr08_01         % Call for mfile 

Data in Pn, P, X, Y    % Result 

PX = sum(P) 

PX =  0.8507    0.1448    0.0045 

PY = fliplr(sum(P')) 

PY =  0.5588    0.3824    0.0588

Two positions for campus jobs are open. Two sophomores, three juniors, and three seniors apply. It is decided to select two at
random (each possible pair equally likely). Let  be the number of sophomores and  be the number of juniors who are
selected. Determine the joint distribution for the pair  and from this determine the marginals for each.

Exercise 8.3.1

X Y

X Y ASi Ai Si Ni i = 1, 2
P (i, k) = P (X = i,Y = k)

P (0, 0) = P ( ) = ⋅ =N1N2
36

52

35

51

1260

2652

P (0, 1) = P ( ⋁ ) = ⋅ + ⋅ =N1S2 S1N2
36

52

12

51

12

52

36

51

864

2652

P (0, 2) = P ( ) = ⋅ =S1S2
12

52

11

51

132

2652

P(1, 0) = P(A_N_2 \bigvee N_1 S_2) = \dfrac{3}{52} \cdot \dfrac{36}{51} + \dfrac{36}{52} \cdot \dfrac{3}{51} = \dfrac{216}{2652}

P (1, 1) = P ( ⋁ ⋁A ⋁ A ) = ⋅ + ⋅ + ⋅ + ⋅ =A1S2 S1A2 S1N2 N1 S2
3

52

12

51

12

52

3

51

1

52

36

51

36

52

1

51

144

2652

P (1, 2) = P (A ⋁ A ) = ⋅ + ⋅ =S1S2 S1 S2
1

52

12

51

12

52

1

51

24

2652

P (2, 0) = P ( ) = ⋅ =A1A2
3

52

2

51

6

2652

P (2, 1) = P (A ⋁ A ) = ⋅ + ⋅ =S1A2 A1 S2
1

52

3

51

3

52

1

51

6

2652

P (2, 2) = P (∅) = 0

Exercise 8.3.2

X Y

{X,Y }
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Answer

Let  be the events of selecting a sophomore, junior, or senior, respectively, on the th trial. Let  be the number
of sophomores and  be the number of juniors selected.

Set 

 [30/56 24/56 2/56]  [20/56 30/56 6/56]

% file npr08_02.m 

% Solution for Exercise 8.3.2. 

X = 0:2; 

Y = 0:2; 

Pn = [6 0 0; 18 12 0; 6 12 2]; 

P = Pn/56; 

disp('Data are in X, Y,Pn, P') 

npr08_02 

Data are in X, Y,Pn, P 

PX = sum(P) 

PX =  0.5357    0.4286    0.0357 

PY = fliplr(sum(P')) 

PY =  0.3571    0.5357    0.1071

A die is rolled. Let  be the number that turns up. A coin is flipped  times. Let  be the number of heads that turn up.
Determine the joint distribution for the pair . Assume  for  and for each , 

 has the binomial ( , 1/2) distribution. Arrange the joint matrix as on the plane, with values of  increasing
upward. Determine the marginal distribution for . (For a MATLAB based way to determine the joint distribution see
Example 14.1.7 from "Conditional Expectation, Regression")

Answer

.

% file npr08_03.m 

% Solution for Exercise 8.3.3. 

X = 1:6; 

Y = 0:6; 

, ,Ai Bi Ci i X

Y

P (i, k) = P (X = i,Y = k)

P (0, 0) = P ( ) = ⋅ =C1C2
3

8

2

7

6

56

P (0, 1) = P ( ) +P ( ) = ⋅ + ⋅ =B1C2 C1B2
3

8

3

7

3

8

3

7

18

56

P (0, 2) = P ( ) = ⋅ =B1B2
3

8

2

7

6

56

P (1, 0) = P ( ) +P ( ) = ⋅ + ⋅ =A1C2 C1A2
2

8

3

7

3

8

2

7

12

56

P (1, 1) = P ( ) +P ( ) = ⋅ + ⋅ =A1B2 B1A2
2

8

3

7

3

8

2

7

12

56

P (2, 0) = P ( ) = ⋅ =A1A2
2

8

1

7

2

56

P (1, 2) = P (2, 1) = P (2, 2) = 0

PX = PY =

Exercise 8.3.3

X X Y

{X,Y } P (X = k) = 1/6 1 ≤ k ≤ 6 k

P (Y = j|X = k) k Y

Y

P (X = i,Y = k) = P (X = i)P (Y = k|X = i) = (1/6)P (Y = k|X = i)
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P0 = zeros(6,7);       % Initialize 

for i = 1:6            % Calculate rows of Y probabilities 

    P0(i,1:i+1) = (1/6)*ibinom(i,1/2,0:i); 

end 

P = rot90(P0);         % Rotate to orient as on the plane 

PY = fliplr(sum(P'));  % Reverse to put in normal order 

disp('Answers are in X, Y, P, PY') 

npr08_03            % Call for solution m-file 

Answers are in X, Y, P, PY 

disp(P) 

         0         0         0         0         0    0.0026 

         0         0         0         0    0.0052    0.0156 

         0         0         0    0.0104    0.0260    0.0391 

         0         0    0.0208    0.0417    0.0521    0.0521 

         0    0.0417    0.0625    0.0625    0.0521    0.0391 

    0.0833    0.0833    0.0625    0.0417    0.0260    0.0156 

    0.0833    0.0417    0.0208    0.0104    0.0052    0.0026 

disp(PY) 

     0.1641  0.3125  0.2578  0.1667  0.0755  0.0208  0.0026

As a variation of Exercise 8.3.3., Suppose a pair of dice is rolled instead of a single die. Determine the joint distribution for the
pair  and from this determine the marginal distribution for .

Answer

% file npr08_04.m 

% Solution for Exercise 8.3.4. 

X = 2:12; 

Y = 0:12; 

PX = (1/36)*[1 2 3 4 5 6 5 4 3 2 1]; 

P0 = zeros(11,13); 

for i = 1:11 

    P0(i,1:i+2) = PX(i)*ibinom(i+1,1/2,0:i+1); 

end 

P = rot90(P0); 

PY = fliplr(sum(P')); 

disp('Answers are in X, Y, PY, P') 

npr08_04 

Answers are in X, Y, PY, P 

disp(P) 

  Columns 1 through 7 

         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0 

Exercise 8.3.4

{X,Y } Y
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         0         0         0         0         0         0    0.0005 

         0         0         0         0         0    0.0013    0.0043 

         0         0         0         0    0.0022    0.0091    0.0152 

         0         0         0    0.0035    0.0130    0.0273    0.0304 

         0         0    0.0052    0.0174    0.0326    0.0456    0.0380 

         0    0.0069    0.0208    0.0347    0.0434    0.0456    0.0304 

    0.0069    0.0208    0.0312    0.0347    0.0326    0.0273    0.0152 

    0.0139    0.0208    0.0208    0.0174    0.0130    0.0091    0.0043 

    0.0069    0.0069    0.0052    0.0035    0.0022    0.0013    0.0005 

  Columns 8 through 11 

         0         0         0    0.0000 

         0         0    0.0000    0.0001 

         0    0.0001    0.0003    0.0004 

    0.0002    0.0008    0.0015    0.0015 

    0.0020    0.0037    0.0045    0.0034 

    0.0078    0.0098    0.0090    0.0054 

    0.0182    0.0171    0.0125    0.0063 

    0.0273    0.0205    0.0125    0.0054 

    0.0273    0.0171    0.0090    0.0034 

    0.0182    0.0098    0.0045    0.0015 

    0.0078    0.0037    0.0015    0.0004 

    0.0020    0.0008    0.0003    0.0001 

    0.0002    0.0001    0.0000    0.0000 

disp(PY) 

  Columns 1 through 7 

    0.0269    0.1025    0.1823    0.2158    0.1954    0.1400    0.0806 

  Columns 8 through 13 

    0.0375    0.0140    0.0040    0.0008    0.0001    0.0000

Suppose a pair of dice is rolled. Let  be the total number of spots which turn up. Roll the pair an additional  times. Let 
be the number of sevens that are thrown on the  rolls. Determine the joint distribution for the pair  and from this
determine the marginal distribution for . What is the probability of three or more sevens?

Answer

% file npr08_05.m 

% Data and basic calculations for Exercise 8.3.5. 

PX = (1/36)*[1 2 3 4 5 6 5 4 3 2 1]; 

X = 2:12; 

Y = 0:12; 

P0 = zeros(11,13); 

for i = 1:11 

  P0(i,1:i+2) = PX(i)*ibinom(i+1,1/6,0:i+1); 

end 

P = rot90(P0); 

Exercise 8.3.5

X X Y

X {X,Y }
Y

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10882?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/08%3A_Random_Vectors_and_Joint_Distributions/Bookshelves/Probability_Theory/Book:_Applied_Probability_(Pfeiffer)/17:_Appendices/17.8_Matlab_files_for_%22Problems%22_in_%22Applied_Probability%22


8.3.5 https://stats.libretexts.org/@go/page/10882

PY = fliplr(sum(P')); 

disp('Answers are in X, Y, P, PY') 

npr08_05 

Answers are in X, Y, P, PY 

disp(PY) 

  Columns 1 through 7 

    0.3072    0.3660    0.2152    0.0828    0.0230    0.0048    0.0008 

  Columns 8 through 13 

    0.0001    0.0000    0.0000    0.0000    0.0000    0.0000

The pair  has the joint distribution (in m-file npr08_06.m):

 [-2.3 -0.7 1.1 3.9 5.1]  = [1.3 2.5 4.1 5.3]

Determine the marginal distribution and the corner values for . Determine  and .

Answer

npr08_06 

Data are in X, Y, P 

jcalc 

Enter JOINT PROBABILITIES (as on the plane)  P 

Enter row matrix of VALUES of X  X 

Enter row matrix of VALUES of Y  Y 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

disp([X;PX]') 

   -2.3000    0.2300 

   -0.7000    0.1700 

    1.1000    0.2000 

    3.9000    0.2020 

    5.1000    0.1980 

  

disp([Y;PY]') 

    1.3000    0.2980 

    2.5000    0.3020 

    4.1000    0.1900 

    5.3000    0.2100 

jddbn 

Enter joint probability matrix (as on the plane)  P 

To view joint distribution function, call for FXY 

disp(FXY) 

    0.2300    0.4000    0.6000    0.8020    1.0000 

Exercise 8.3.6

{X,Y }

X = Y =

FXY P (X+Y > 2) P (X ≥ Y )
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    0.1817    0.3160    0.4740    0.6361    0.7900 

    0.1380    0.2400    0.3600    0.4860    0.6000 

    0.0667    0.1160    0.1740    0.2391    0.2980 

P1 = total((t+u>2).*P) 

P1 =  0.7163 

P2 = total((t>=u).*P) 

P2 =  0.2799

The pair  has the joint distribution (in m-file npr08_07.m):

t = -3.1 -0.5 1.2 2.4 3.7 4.9

u = 7.5 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203

4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231

-2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189

-3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

Determine the marginal distributions and the corner values for . Determine  and .

Answer

npr08_07 

Data are in X, Y, P 

jcalc 

Enter JOINT PROBABILITIES (as on the plane)  P 

Enter row matrix of VALUES of X  X 

Enter row matrix of VALUES of Y  Y 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

disp([X;PX]') 

   -3.1000    0.1500 

   -0.5000    0.2200 

    1.2000    0.3300 

    2.4000    0.1200 

    3.7000    0.1100 

    4.9000    0.0700 

disp([Y;PY]') 

   -3.8000    0.1929 

   -2.0000    0.3426 

    4.1000    0.2706 

    7.5000    0.1939 

jddbn 

Enter joint probability matrix (as on the plane)  P 

To view joint distribution function, call for FXY 

disp(FXY) 

    0.1500    0.3700    0.7000    0.8200    0.9300    1.0000 

Exercise 8.3.7

{X,Y }

P (X = i,Y = u)

FXY P (1 ≤ X ≤ 4,Y > 4) P (|X−Y | ≤ 2)
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    0.1410    0.3214    0.5920    0.6904    0.7564    0.8061 

    0.0915    0.2719    0.4336    0.4792    0.5089    0.5355 

    0.0510    0.0994    0.1720    0.1852    0.1852    0.1929 

M = (1<=t)&(t<=4)&(u>4); 

P1 = total(M.*P) 

P1 =  0.3230 

P2 = total((abs(t-u)<=2).*P) 

P2 =  0.3357

The pair  has the joint distribution (in m-file npr08_08.m):

t = 1 3 5 7 9 11 13 15 17 19

u = 12 0.0156 0.0191 0.0081 0.0035 0.0091 0.0070 0.0098 0.0056 0.0091 0.0049

10 0.0064 0.0204 0.0108 0.0040 0.0054 0.0080 0.0112 0.0064 0.0104 0.0056

9 0.0196 0.0256 0.0126 0.0060 0.0156 0.0120 0.0168 0.0096 0.0056 0.0084

5 0.0112 0.0182 0.0108 0.0070 0.0182 0.0140 0.0196 0.0012 0.0182 0.0038

3 0.0060 0.0260 0.0162 0.0050 0.0160 0.0200 0.0280 0.0060 0.0160 0.0040

-1 0.0096 0.0056 0.0072 0.0060 0.0256 0.0120 0.0268 0.0096 0.0256 0.0084

-3 0.0044 0.0134 0.0180 0.0140 0.0234 0.0180 0.0252 0.0244 0.0234 0.0126

-5 0.0072 0.0017 0.0063 0.0045 0.0167 0.0090 0.0026 0.0172 0.0217 0.0223

Determine the marginal distributions. Determine  and .

Answer

npr08_08 

Data are in X, Y, P 

jcalc 

- - - - - - - - - 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

disp([X;PX]') 

    1.0000    0.0800 

    3.0000    0.1300 

    5.0000    0.0900 

    7.0000    0.0500 

    9.0000    0.1300 

   11.0000    0.1000 

   13.0000    0.1400 

   15.0000    0.0800 

   17.0000    0.1300 

   19.0000    0.0700 

disp([Y;PY]') 

   -5.0000    0.1092 

   -3.0000    0.1768 

Exercise 8.3.8

{X,Y }

P (X = t,Y = u)

(10, 6)FXY P (X > Y )
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   -1.0000    0.1364 

    3.0000    0.1432 

    5.0000    0.1222 

    9.0000    0.1318 

   10.0000    0.0886 

   12.0000    0.0918 

F = total(((t<=10)&(u<=6)).*P) 

F =   0.2982 

P = total((t>u).*P) 

P =   0.7390

Data were kept on the effect of training time on the time to perform a job on a production line.  is the amount of training, in
hours, and  is the time to perform the task, in minutes. The data are as follows (in m-file npr08_09.m):

t = 1 1.5 2 2.5 3

u = 5 0.039 0.011 0.005 0.001 0.001

4 0.065 0.070 0.050 0.015 0.010

3 0.031 0.061 0.137 0.051 0.033

2 0.012 0.049 0.163 0.058 0.039

1 0.003 0.009 0.045 0.025 0.017

Determine the marginal distributions. Determine  and .

Answer

npr08_09 

Data are in X, Y, P 

jcalc 

- - - - - - - - - - - - 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

disp([X;PX]') 

    1.0000    0.1500 

    1.5000    0.2000 

    2.0000    0.4000 

    2.5000    0.1500 

    3.0000    0.1000 

disp([Y;PY]') 

    1.0000    0.0990 

    2.0000    0.3210 

    3.0000    0.3130 

    4.0000    0.2100 

    5.0000    0.0570 

F = total(((t<=2)&(u<=3)).*P) 

F =   0.5100 

Exercise 8.3.9

X

Y

P (X = t,Y = u)

(2, 3)FXY P (Y /X ≥ 1.25)
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P = total((u./t>=1.25).*P) 

P =   0.5570 

For the joint densities in Exercises 10-22 below

a. Sketch the region of definition and determine analytically the marginal density functions  and .
b. Use a discrete approximation to plot the marginal density  and the marginal distribution function .
c. Calculate analytically the indicated probabilities.
d. Determine by discrete approximation the indicated probabilities.

 for , .

Answer

Region is triangle with vertices (0, 0), (1, 0), (0, 2).

, 

, 

 lies outside the trianlge 

 has area in the triangle = 1/2

 = the region in the triangle under , which has area 1/3

tuappr 

Enter matrix [a b] of X-range endpoints  [0 1] 

Enter matrix [c d] of Y-range endpoints  [0 2] 

Enter number of X approximation points  200 

Enter number of Y approximation points  400 

Enter expression for joint density  (t<=1)&(u<=2*(1-t)) 

Use array operations on X, Y, PX, PY, t, u, and P 

fx = PX/dx; 

FX = cumsum(PX); 

plot(X,fx,X,FX)          % Figure not reproduced 

M1 = (t>0.5)&(u>1); 

P1 = total(M1.*P) 

P1 =  0                  % Theoretical = 0 

M2 = (t<=0.5)&(u>0.5); 

P2 = total(M2.*P) 

P2 =  0.5000             % Theoretical = 1/2 

P3 = total((u<=t).*P) 

P3 =  0.3350             % Theoretical = 1/3

 on the square with vertices at (1, 0), (2, 1), (1, 2), (0, 1).

fX fY
fX FX

Exercise 8.3.10

(t, u) = 1fXY 0 ≤ t ≤ 1 0 ≤ u ≤ 2(1 − t)

P (X > 1/2,Y > 1),P (0 ≤ X ≤ 1/2,Y > 1/2),P (Y ≤ X)

(t) = du = 2(1 − t)fX ∫ 2(1−t)
0 0 ≤ t ≤ 1

(u) = dt = 1 −u/2fY ∫ 1−u/2
0 0 ≤ u ≤ 2

M1 = {(t, u) : t > 1/2, u > 1} P ((X,Y ) ∈ M1) = 0

M2 = {(t, u) : 0 ≤ t ≤ 1/2, u > 1/2}

M3 u = t

Exercise 8.3.11

(t, u) = 1/2fXY

P (X > 1,Y > 1),P (X ≤ 1/2, 1 < Y ),P (Y ≤ X)
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Answer

The region is bounded by lines , , , and 

 by symmetry

 has area in the trangle = 1/2, so 

 has area in the trangle = 1/8\), so 

 has area in the trangle = 1, so 

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 2] 

Enter number of X approximation points  200 

Enter number of Y approximation points  200 

Enter expression for joint density  0.5*(u<=min(1+t,3-t))& ... 

  (u>=max(1-t,t-1)) 

Use array operations on X, Y, PX, PY, t, u, and P 

fx = PX/dx; 

FX = cumsum(PX); 

plot(X,fx,X,FX)          % Plot not shown 

M1 = (t>1)&(u>1); 

PM1 = total(M1.*P) 

PM1 =  0.2501            % Theoretical = 1/4 

M2 = (t<=1/2)&(u>1); 

PM2 = total(M2.*P) 

PM2 =  0.0631            % Theoretical = 1/16 = 0.0625 

M3 = u<=t; 

PM3 = total(M3.*P) 

PM3 =  0.5023            % Theoretical = 1/2

 for , .

, , 

Answer

Region is the unit square,

, 

, 

 

tuappr 

Enter matrix [a b] of X-range endpoints  [0 1] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  200 

u = 1 + t u = 1 − t u = 3 − t u = t−1

(t) = (t)0.5 du+ (t)0.5 du = (t)(2 − t) = (t)fX I[0,1] ∫ 1+t

1−t
I(1,2] ∫ 3−t

t−1
I(1,2] fY

M1 = {(t, u) : t > 1, u > 1} PM1 = 1/4

M2 = {(t, u) : t ≤ 1/2, u > 1} PM2 = 1/16

M3 = {(t, u) : u ≤ t} PM3 = 1/2

Exercise 8.3.12

(t, u) = 4t(1 −u)fXY 0 ≤ t ≤ 1 0 ≤ u ≤ 1

P (1/2 < X < 3/4,Y > 1/2) P (X ≤ 1/2,Y > 1/2) P (Y ≤ X)

(t) = 4t(1 −u)du = 2tfX ∫ 1
0 0 ≤ t ≤ 1

(u) = 4t(1 −u)dt = 2(1 −u)fY ∫ 1
0

0 ≤ u ≤ 1

P1 = 4t(1 −u)dudt = 5/64∫ 3/4
1/2

∫ 1
1/2

P2 = 4t(1 −u)dudt = 1/16∫ 1/2
0

∫ 1
1/2

P3 = 4t(1 −u)dudt = 5/6∫ 1
0 ∫ t

0
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Enter number of Y approximation points  200 

Enter expression for joint density  4*t.*(1 - u) 

Use array operations on X, Y, PX, PY, t, u, and P 

fx = PX/dx; 

FX = cumsum(PX); 

plot(X,fx,X,FX)           % Plot not shown 

M1 = (1/2<t)&(t<3/4)&(u>1/2); 

P1 = total(M1.*P) 

P1 =  0.0781              % Theoretical = 5/64 = 0.0781 

M2 = (t<=1/2)&(u>1/2); 

P2 = total(M2.*P) 

P2 =  0.0625              % Theoretical = 1/16 = 0.0625 

M3 = (u<=t); 

P3 = total(M3.*P) 

P3 =  0.8350              % Theoretical = 5/6 = 0.8333

 for , .

Answer

Region is the square , 

, 

 

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 2] 

Enter number of X approximation points  200 

Enter number of Y approximation points  200 

Enter expression for joint density  (1/8)*(t+u) 

Use array operations on X, Y, PX, PY, t, u, and P 

fx = PX/dx; 

FX = cumsum(PX); 

plot(X,fx,X,FX) 

M1 = (t>1/2)&(u>1/2); 

P1 = total(M1.*P) 

P1 =  0.7031              % Theoretical = 45/64 = 0.7031 

M2 = (t<=1)&(u>1); 

P2 = total(M2.*P) 

P2 =  0.2500              % Theoretical = 1/4 

M3 = u<=t; 

Exercise 8.3.13

(t, u) = (t+u)fXY

1

8
0 ≤ t ≤ 2 0 ≤ u ≤ 2

P (X > 1/2,Y > 1/2),P (0 ≤ X ≤ 1,Y > 1),P (Y ≤ X)

0 ≤ t ≤ 2 0 ≤ u ≤ 2

(t) = (t+u) = (t+1) = (t)fX
1

8
∫

2
0

1

4
fY 0 ≤ t ≤ 2

P1 = (t+u)dudt = 45/64∫ 2
1/2

∫ 2
1/2

P2 = (t+u)dudt = 1/4∫ 1
0
∫ 2

1

P3 = (t+u)dudt = 1/2∫ 2
0 ∫ 1

0
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P3 = total(M3.*P) 

P3 =  0.5025              % Theoretical = 1/2

 for 

Answer

Region is strip by 

, , , , 

, 

tuappr 

Enter matrix [a b] of X-range endpoints  [0 3] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  400 

Enter number of Y approximation points  200 

Enter expression for joint density  4*u.*exp(-2*t) 

Use array operations on X, Y, PX, PY, t, u, and P 

M2 = (t > 0.5)&(u > 0.5)&(u<3/4); 

p2 = total(M2.*P) 

p2 =  0.1139            % Theoretical = (5/16)exp(-1) = 0.1150 

p3 = total((t<u).*P) 

p3 =  0.7047            % Theoretical = 0.7030

 for , .

, , 

Answer

Region bounded by , , , 

, 

 

Exercise 8.3.14

(t, u) = 4ufXY e−2t 0 ≤ t, 0 ≤ u ≤ 1

P (X ≤ 1,Y > 1),P (X > 0, 1/2 < Y < 3/4),P (X < Y )

t = 0, u = 0, u = 1

(t) = 2fX e−2t 0 ≤ t (u) = 2ufY 0 ≤ u ≤ 1 =fXY fXfY

P1 = 0 P2 = 2 dt 2udu = 5/16∫ ∞
0.5

e−2t ∫ 3/4
1/2

e−1

P3 = 4 u dudt = + = 0.7030∫
1

0 ∫
1
t e−2t 3

2
e−2 1

2

Exercise 8.3.15

(t, u) = (2t+3 )fXY

3

88
u2 0 ≤ t ≤ 2 0 ≤ u ≤ 1 + t

(1, 1)FXY P (X ≤ 1,Y > 1) P (|X−Y | < 1)

t = 0 t = 2 u = 0 u = 1 + t

(t) = (2t+3 )du = (1 + t)(1 +4t+ ) = (1 +5t+5 + )fX
3

88
∫ 1+t

0
u2

3

88
t2

3

88
t2 t3 0 ≤ t ≤ 2

(u) = (u) (2t+3 )dt+ (u) (2t+3 )dt =fY I[0,1]
3

88
∫ 2

0 u2 I(1,3]
3

88
∫ 2
u−1 u2

(u) (6 +4) + (t) (3 +2u+8 −3 )I[0,1]
3

88
u2 I(1,3]

3

88
u2 u3

(1, 1) = (t, u)dudt = 3/44FXY ∫ 1
0
∫ 1

0
fXY

P1 = (t, u)dudt = 41/352∫ 1
0
∫ 1+t

1
fXY P2 = (t, u)dudt = 329/352∫ 1

0
∫ 1+t

1
fXY
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tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 3] 

Enter number of X approximation points  200 

Enter number of Y approximation points  300 

Enter expression for joint density  (3/88)*(2*t+3*u.^2).*(u<=1+t) 

Use array operations on X, Y, PX, PY, t, u, and P 

fx = PX/dx; 

FX = cumsum(PX); 

plot(X,fx,X,FX) 

MF = (t<=1)&(u<=1); 

F = total(MF.*P) 

F =   0.0681            % Theoretical = 3/44 = 0.0682 

M1 = (t<=1)&(u>1); 

P1 = total(M1.*P) 

P1 =  0.1172            % Theoretical = 41/352 = 0.1165 

M2 = abs(t-u)<1; 

P2 = total(M2.*P) 

P2 =  0.9297           % Theoretical = 329/352 = 0.9347

 on the parallelogram with vertices (-1, 0), (0, 0), (1, 1), (0, 1).

Answer

Region bounded by , , , 

, 

, 

tuappr 

Enter matrix [a b] of X-range endpoints  [-1 1] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  400 

Enter number of Y approximation points  200 

Enter expression for joint density  12*u.*t.^2.*((u<=t+1)&(u>=t)) 

Use array operations on X, Y, PX, PY, t, u, and P 

p1 = total((t<=1/2).*P) 

p1 =  0.4098                % Theoretical = 33/80 = 0.4125 

M2 = (t<1/2)&(u<=1/2); 

p2 = total(M2.*P) 

p2 =  0.1856                % Theoretical = 3/16  = 0.1875 

Exercise 8.3.16

(t, u) = 12 ufXY t2

P (X ≤ 1/2,Y > 0),P (X < 1/2,Y ≤ 1/2),P (Y ≥ 1/2)

u = 0 u = t u = 1 u = t+1

(t) = (t)12 udu+ (t)12 udu = (t)6 (t+1 + (t)6 (1 − )fX I[−1,0] ∫ t+1
0 t2 I(0,1] ∫ 1

t t2 I[−1,0] t2 )2 I(0,1] t2 t2

(u) = 12 udu+12 −12 +4ufY ∫ t

u−1 t
2 u3 u2 0 ≤ u ≤ 1

P1 = 1 −12 ududt = 33/80∫
1

1/2 ∫
1
t t2 P2 = 12 udtdu = 3/16∫

1/2
0 ∫

u

u−1 t
2

P3 = 1 −P2 = 13/16
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P3 = total((u>=1/2).*P) 

P3 =  0.8144                % Theoretical = 13/16 = 0.8125

 for , 

Answer

Region is bounded by 

, 

 

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  400 

Enter number of Y approximation points  200 

Enter expression for joint density  (24/11)*t.*u.*(u<=2-t) 

Use array operations on X, Y, PX, PY, t, u, and P 

M1 = (t<=1)&(u<=1); 

P1 = total(M1.*P) 

P1 = 0.5447             % Theoretical = 6/11 = 0.5455 

P2 = total((t>1).*P) 

P2 =  0.4553            % Theoretical = 5/11 = 0.4545 

P3 = total((t<u).*P) 

P3 =  0.2705            % Theoretical = 3/11 = 0.2727

 for , 

Answer

Region is bounded by  , 

Exercise 8.3.17

(t, u) = tufXY

24

11
0 ≤ t ≤ 2 0 ≤ u ≤ min {1, 2 − t}

P (X ≤ 1,Y ≤ 1),P (X > 1),P (X < Y )

t = 0, u = 0, u = 2, u = 2 − t

(t) = (t) tudu+ (t) tudu =fX I[0,1]
24

11
∫

1
0 I(1,2]

24

11
∫

2−t

0

(t) t+ (t) t(2 − tI[0,1]
12

11
I(1,2]

12

11
)2

(u) = tudt = u(u−2fY
24

11
∫ 2−u

0

12

11
)2 0 ≤ u ≤ 1

P1 = tududt = 6/11
24

11
∫ 1

0
∫ 1

0
P2 = tududt = 5/11

24

11
∫ 2

1
∫ 2−t

0

P3 = tududt = 3/11
24

11
∫ 1

0 ∫ 1
t

Exercise 8.3.18

(t, u) = (t+2u)fXY

3

23
0 ≤ t ≤ 2 0 ≤ u ≤ max {2 − t, t}

P (X ≥ 1,Y ≥ 1),P (Y ≤ 1),P (Y ≤ X)

t = 0, t = 2, u = 0, u = 2 − t (0 ≤ t ≤ 1) u = t(1 < t ≤ 2)

(t) = (t) (t+2u)du+ (t) (t+2u)du = (t) (2 − t) + (t)fX I[0,1]
3

23
∫ 2−t

0
I(1,2]

3

23
∫ t

0
I[0,1]

6

23
I(1,2]

6

23
t2
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, 

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 2] 

Enter number of X approximation points  200 

Enter number of Y approximation points  200 

Enter expression for joint density  (3/23)*(t+2*u).*(u<=max(2-t,t))

Use array operations on X, Y, PX, PY, t, u, and P 

M1 = (t>=1)&(u>=1); 

P1 = total(M1.*P) 

P1 =  0.2841 

13/46                 % Theoretical = 13/46 = 0.2826 

P2 = total((u<=1).*P) 

P2 =  0.5190             % Theoretical = 12/23 = 0.5217 

P3 = total((u<=t).*P) 

P3 =  0.6959             % Theoretical = 16/23 = 0.6957

, for , 

Answer

Region has two parts: (1)  (2) 

 

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 2] 

(u) = (u) (t+2u)du+ (u)[ (t+2u)dt+ (t+2u)dt] =fY I[0,1]
3

23
∫ 2

0 I(1,2]
3

23
∫ 2−u

0

3

23
∫ 2
u

(u) (2u+1) + (u) (4 +6u−4 )I[0,1]
6

23
I(1,2]

3

23
u2

P1 = (t+2u)dudt = 13/46
3

23
∫ 2

1 ∫ t

1 P2 = (t+2u)dudt = 12/23
3

23
∫ 2

0 ∫ 1
0

P3 = (t+2u)dudt = 16/23
3

23
∫ 2

0
∫ t

0

Exercise 8.3.19

(t, u) = (3 +u)fXY

12

179
t2 0 ≤ t ≤ 2 0 ≤ u ≤ min {1 + t, 2}

P (X ≥ 1,Y ≥ 1),P (X ≤ 1,Y ≤ 1),P (Y < X)

0 ≤ t ≤ 1, 0 ≤ u ≤ 2 1 < t ≤ 2, 0 ≤ u ≤ 3 − t

(t) = (t) (3 +u)du+ (t) (3 +u)du =fX I[0,1]
12

179
∫ 2

0
t2 I(1,2]

12

179
∫ 3−t

0
t2

(t) (3 +1) + (t) (9 −6t+19 −6 )I[0,1]
24

179
t2 I(1,2]

6

179
t2 t3

(u) = (u) (3 +u)dt+ (u) (3 +u)dt =fY I[0,1]
12

179
∫ 2

0
t2 I(1,2]

12

179
∫ 3−u

0
t2

(u) (4 +u) + (u) (27 −24u+8 − )I[0,1]
24

179
I(1,2]

12

179
u2 u3

P1 = ∫ (3 +u)dudt = 41/179
12

179
12 ∫ 3−t

1
t2 P2 = (3 +u)dudt = 18/179

12

179
∫ 1

0
∫ 1

0
t2

P3 = (3 +u)dudt+ (3 +u)dudt = 1001/1432
12

179
∫ 3/2

0 ∫ t

0 t2 12

179
∫ 2

3/2 ∫
3−t

0 t2
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Enter number of X approximation points  200 

Enter number of Y approximation points  200 

Enter expression for joint density  (12/179)*(3*t.^2+u).* ... 

     (u<=min(2,3-t)) 

Use array operations on X, Y, PX, PY, t, u, and P 

fx = PX/dx; 

FX = cumsum(PX); 

plot(X,fx,X,FX) 

M1 = (t>=1)&(u>=1); 

P1 = total(M1.*P) 

P1 =  2312            % Theoretical = 41/179 = 0.2291 

M2 = (t<=1)&(u<=1); 

P2 = total(M2.*P) 

P2 =  0.1003           % Theoretical = 18/179 = 0.1006 

M3 = u<=min(t,3-t); 

P3 = total(M3.*P) 

P3 =  0.7003            % Theoretical = 1001/1432 = 0.6990

 for , 

Answer

Region is in two parts:

1. , 
2. , 

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 2] 

Enter number of X approximation points  200 

Exercise 8.3.20

(t, u) = (3t+2tu)fXY

12

227
0 ≤ t ≤ 2 0 ≤ u ≤ min{1 + t, 2}

P (X ≤ 1/2,Y ≤ 3/2),P (X ≤ 1.5,Y > 1),P (Y < X)

0 ≤ t ≤ 1 0 ≤ u ≤ 1 + t

1 < t ≤ 2 0 ≤ u ≤ 2

(t) = (t) (t, u)du+ (t) (t, u)du =fX I[0,1] ∫ 1+t

0
fXY I(1,2] ∫ 2

0
fXY

(t) ( +5 +4t) + (t) tI[0,1]
12

227
t3 t2 I(1,2]

120

227

(u) = (u) (t, u)dt+ (u) (t, u)dt =fY I[0,1] ∫ 2
0
fXY I(1,2] ∫ 2

u−1
fXY

(u) (2u+3) + (u) (2u+3)(3 +2u− )I[0,1]
24

227
I(1,2]

6

227
u2

= (u) (2u+3) + (u) (9 +12u+ −2 )I[0,1]
24

227
I(1,2]

6

227
u2 u3

P1 = (3t+2tu)dudt = 139/3632
12

227
∫ 1/2

0 ∫ 1+t

0

P2 = (3t+2tu)dudt+ (3t+2tu)dudt = 68/227
12

227
∫ 1

0
∫ 1+t

1

12

227
∫ 3/2

1
∫ 2

1

P3 = (3t+2tu)dudt = 144/227
12

227
∫ 2

0 ∫ t

1
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Enter number of Y approximation points  200 

Enter expression for joint density  (12/227)*(3*t+2*t.*u).* ... 

(u<=min(1+t,2)) 

Use array operations on X, Y, PX, PY, t, u, and P 

M1 = (t<=1/2)&(u<=3/2); 

P1 = total(M1.*P) 

P1 =  0.0384             % Theoretical = 139/3632 = 0.0383 

M2 = (t<=3/2)&(u>1); 

P2 = total(M2.*P) 

P2 =  0.3001             % Theoretical = 68/227 = 0.2996 

M3 = u<t; 

P3 = total(M3.*P) 

P3 =  0.6308             % Theoretical = 144/227 = 0.6344

 for , 

Answer

Region bounded by  ,  

 

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 2] 

Enter number of X approximation points  400 

Enter number of Y approximation points  400 

Enter expression for joint density  (2/13)*(t+2*u).*(u<=min(2*t,3-t)) 

Use array operations on X, Y, PX, PY, t, u, and P 

P1 = total((t<1).*P) 

P1 = 0.3076             % Theoretical = 4/13 = 0.3077 

M2 = (t>=1)&(u<=1); 

P2 = total(M2.*P) 

P2 =  0.3844            % Theoretical = 5/13 = 0.3846 

P3 = total((u<=t/2).*P) 

P3 =  0.3076             % Theoretical = 4/13 = 0.3077

Exercise 8.3.21

(t, u) = (t+2u)fXY

2

13
0 ≤ t ≤ 2 0 ≤ u ≤ min {2t, 3 − t}

P (X < 1),P (X ≥ 1,Y ≤ 1),P (Y ≤ X/2)

t = 2, u = 2t (0 ≤ t ≤ 1) 3 − t (1 ≤ t ≤ 2)

(t) = (t) (t+2u)du+ (t) (t+2u)du = (t) + (t) (3 − t)fX I[0,1]
2

13
∫

2t
0 I(1,2]

2

13
∫

3−t

0 I[0,1]
12

13
t2 I(1,2]

6

13

(u) = (u) (t+2u)dt+ (u) (t+2u)dt =fY I[0,1]
2

13
∫ 2
u/2

I(1,2]
2

13
∫ 3−u

u/2

(u)( + u− ) + (u)( + u− )I[0,1]
4

13

8

13

9

52
u2 I(1,2]

9

13

6

13

21

52
u2

P1 = (t+2u)dudt = 4/13∫
1

0 ∫
2t

0 P2 = (t+2u)dudt = 5/13∫
2

1 ∫
1

0

P3 = (t+2u)dudt = 4/13∫ 2
0 ∫ u/2

0
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 for .

Answer

Region is rectangle bounded by , , , 

, 

 

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  400 

Enter number of Y approximation points  200 

Enter expression for joint density  (3/8)*(t.^2+2*u).*(t<=1) ... 

       + (9/14)*(t.^2.*u.^2).*(t > 1) 

Use array operations on X, Y, PX, PY, t, u, and P 

M = (1/2<=t)&(t<=3/2)&(u<=1/2); 

P = total(M.*P) 

P =  0.1228          % Theoretical = 55/448 = 0.1228 

This page titled 8.3: Problems on Random Vectors and Joint Distributions is shared under a CC BY 3.0 license and was authored, remixed, and/or
curated by Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

Exercise 8.3.22

(t, u) = (t) ( +2u) + (t)fXY I[0,1]
3

8
t2 I(1,2]

9

14
t2u2 0 ≤ u ≤ 1

P (1/2 ≤ X ≤ 3/2,Y ≤ 1/2)

t = 0 t = 2 u = 0 u = 1

(t, u) = (t) ( +2u) + (t)fXY I[0,1]
3

8
t2 I(1,2]

9

14
t2u2 0 ≤ u ≤ 1

(t) = (t) ( +2u)du+ (t) du = (t) ( +1) + (t)fX I[0,1]
3

8
∫ 1

0
t2 I(1,2]

9

14
∫ 1

0
t2u2 I[0,1]

3

8
t2 I(1,2]

3

14
t2

(u) = ( +2u0dt+ dt = + u+fY
3

8
∫ 1

0 t2 9

14
∫ 2

1 t2u2 1

8

3

4

3

2
u2 0 ≤ u ≤ 1

P1 = ( +2u)dudt+ dudt = 55/448
3

8
∫ 1

1/2
∫ 1/2

0
t2 9

14
∫ 3/2

1
∫ 1/2

0
t2u2
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9.1: Independent Classes of Random Variables
The concept of independence for classes of events is developed in terms of a product rule. In this unit, we extend the concept to
classes of random variables.

Independent pairs
Recall that for a random variable , the inverse image  (i.e., the set of all outcomes  which are mapped into  by 

) is an event for each reasonable subset  on the real line. Similarly, the inverse image  is an event determined by
random variable  for each reasonable set . We extend the notion of independence to a pair of random variables by requiring
independence of the events they determine. More precisely,

A pair  of random variables is (stochastically) independent iff each pair of events  is
independent.

This condition may be stated in terms of the product rule

 for all (Borel) sets 

Independence implies

Note that the product rule on the distribution function is equivalent to the condition the product rule holds for the inverse images of
a special class of sets  of the form  and . An important theorem from measure theory ensures
that if the product rule holds for this special class it holds for the general class of . Thus we may assert

The pair  is independent iff the following product rule holds

Suppose  , . Taking limits shows

and

so that the product rule  holds. The pair  is therefore independent.

If there is a joint density function, then the relationship to the joint distribution function makes it clear that the pair is independent
iff the product rule holds for the density. That is, the pair is independent iff

 

suppose the joint probability mass distributions induced by the pair  is uniform on a rectangle with sides 
and . Since the area is , the constant value of  is . Simple integration gives

and

X (M)X−1 ω ∈ Ω M

X M (N)Y −1

Y N

Definition

{X,Y } { (M), (N)}X−1 Y −1

P (X ∈ M ,Y ≤ N) = P (X ∈ M)P (Y ∈ N) M ,N

(t, u)FXY = P (X ∈ (−∞, t],Y ∈ (−∞, u])

= P (X ∈ (−∞, t])P (Y ∈ (−∞, u])

= (t) (u) ∀t, uFX FY

{M ,N} M = (−∞, t] N = (−∞, u]

{M ,N}

{X,Y }

(t, u) = (t) (u) ∀t, uFXY FX FY (9.1.1)

Example 9.1.1: an independent pair

(t, u) = (1 − )(1 − )FXY e−∞ e−βu 0 ≤ t 0 ≤ u

(t) = (t, u) = 1 −FX lim
u→∞

FXY e−αt

(u) = (t, u) = 1 −FY lim
t→∞

FXY e−βu

(t, u) = (t) (u)FXY FX FY {X,Y }

(t, u) = (t) (u)fXY fX fY ∀t, u

example 9.1.2: joint uniform distributin on a rectangle

{X,Y } = [a, b]I1

= [c, d]I2 (b−a)(d−c) fXY 1/(b−a)(d−c)

(t) = du = a ≤ t ≤ bfX
1

(b−a)(d−c)
∫

d

c

1

b−a

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10859?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/09%3A_Independent_Classes_of_Random_Variables/9.01%3A_Independent_Classes_of_Random_Variables


9.1.2 https://stats.libretexts.org/@go/page/10859

Thus it follows that  is uniform on .  is uniform on , and  for all , so that the pair 
 is independent. The converse is also true: if the pair is independent with  uniform on  and  is uniform on 

, the pair has uniform joint distribution on .

The Joint Mass Distribution
It should be apparent that the independence condition puts restrictions on the character of the joint mass distribution on the plane.
In order to describe this more succinctly, we employ the following terminology.

Definition

If  is a subset of the horizontal axis and  is a subset of the vertical axis, then the cartesian product  is the (generalized)
rectangle consisting of those points  on the plane such that  and .

The rectangle in Example 9.1.2 is the artesian product , consisting of all those points  such that  and 
 (i.e.  and ).

Figure 9.1.1. Joint distribution for an independent pair of random variables.

We restate the product rule for independence in terms of cartesian product sets.

Reference to Figure 9.1.1 illustrates the basic pattern. If  are intervals on the horizontal and vertical axes, respectively, then
the rectangle  is the intersection of the vertical strip meeting the horizontal axis in  with the horizontal strip meeting the
vertical axis in . The probability  is the portion of the joint probability mass in the vertical strip; the probability  is
the part of the joint probability in the horizontal strip. The probability in the rectangle is the product of these marginal probabilities.

This suggests a useful test for nonindependence which we call the rectangle test. We illustrate with a simple example.

(u) = dt = c ≤ u ≤ dfY
1

(b−a)(d−c)
∫

b

a

1

d−c

X [a, b] Y [c, d] (t, u) = (t) (u)fXY fX fY t, u

{X,Y } X [a, b] Y

[c, d] ×I1 I2

M N M ×N

(t, u) t ∈ M u ∈ N

example 9.1.3: Rectangle with interval sides

×I1 I2 (t, u) a ≤ t ≤ b

c ≤ u ≤ d t ∈ I1 u ∈ I2

P (X ∈ M ,Y ∈ N) = P ((X,Y ) ∈ M ×N) = P (X ∈ M)P (Y ∈ N) (9.1.2)

M ,N

M ×N M

N X ∈ M Y ∈ N
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Figure 9.1.2. Rectangle test for nonindependence of a pair of random variables.

Supose probability mass is uniformly distributed over the square with vertices at (1,0), (2,1), (1,2), (0,1). It is evident from
Figure 9.1.2 that a value of  determines the possible values of  and vice versa, so that we would not expect independence of
the pair. To establish this, consider the small rectangle  shown on the figure. There is no probability mass in the region.
Yet  and , so that

, but . The product rule fails; hence the pair cannot be stochastically
independent.

Remark. There are nonindependent cases for which this test does not work. And it does not provide a test for independence. In spite
of these limitations, it is frequently useful. Because of the information contained in the independence condition, in many cases the
complete joint and marginal distributions may be obtained with appropriate partial information. The following is a simple example.

Suppose the pair  is independent and each has three possible values. The following four items of information are
available.

, , 

These values are shown in bold type on Figure 9.1.3. A combination of the product rule and the fact that the total probability
mass is one are used to calculate each of the marginal and joint probabilities. For example  and 

 implies . Then P(Y = u_3) = 1 - P(Y = u_1) - P(Y =
u_2) = 0.3\). Others are calculated similarly. There is no unique procedure for solution. And it has not seemed useful to
develop MATLAB procedures to accomplish this.

Figure 9.1.3. Joint and marginal probabilities from partial information.

A pair  has the joint normal distribution iff the joint density is

where

The marginal densities are obtained with the aid of some algebraic tricks to integrate the joint density. The result is that 
 and . If the parameter  is set to zero, the result is

example 9.1.4: The rectangle test for nonindependence

X Y

M ×N

P (X ∈ M) > 0 P (Y ∈ N) > 0

P (X ∈ M)P (Y ∈ N) > 0 P ((X,Y ) ∈ M ×N) = 0

example 9.1.5: Joint and marginal probabilities from partial information

{X,Y }

P (X = ) = 0.2t1 P (Y = ) = 0.3u1 P (X = ,Y = ) = 0.08t1 u2

P (X = ,Y = ) = 0.15t2 u1

P (X = ) = 0.2t1

P (X = ,Y = ) = P (X = )P (Y = ) = 0.8t1 u2 t1 u2 P (Y = ) = 0.4u2

example 9.1.6: The joint normal distribution

{X,Y }

(t, u) =fXY

1

2π (1 −σXσY ρ2)1/2
e−Q(t,u)/2

Q(t, u) = [( −2ρ( )( ) +( ]
1

1 −ρ2

t−μX

σX
)2 t−μX

σX

t−μY

σY

t−μY

σY
)2

X N( , )μX σ2
X Y  N( , )μY σ2

Y ρ

(t, u) = (t) (u)fXY fX fY
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so that the pair is independent iff . The details are left as an exercise for the interested reader.

Remark. While it is true that every independent pair of normally distributed random variables is joint normal, not every pair of
normally distributed random variables has the joint normal distribution.

We start with the distribution for a joint normal pair and derive a joint distribution for a normal pair which is not joint normal.
The function

is the joint normal density for an independent pair ( ) of standardized normal random variables. Now define the joint density
for a pair  by

 in the first and third quadrants, and zero elsewhere

Both  ~  and  ~ . However, they cannot be joint normal, since the joint normal distribution is positive for all (
).

Independent classes

Since independence of random variables is independence of the events determined by the random variables, extension to general
classes is simple and immediate.

A class  of random variables is (stochastically) independent iff the product rule holds for every finite subclass of
two or more.

Remark. The index set  in the definition may be finite or infinite.

For a finite class , independence is equivalent to the product rule

 for all 

Since we may obtain the joint distribution function for any finite subclass by letting the arguments for the others be ∞ (i.e., by
taking the limits as the appropriate  increase without bound), the single product rule suffices to account for all finite subclasses.

Absolutely continuous random variables

If a class  is independent and the individual variables are absolutely continuous (i.e., have densities), then any finite
subclass is jointly absolutely continuous and the product rule holds for the densities of such subclasses

 for all 

Similarly, if each finite subclass is jointly absolutely continuous, then each individual variable is absolutely continuous and the
product rule holds for the densities. Frequently we deal with independent classes in which each random variable has the same
marginal distribution. Such classes are referred to as iid classes (an acronym for independent,identically distributed). Examples are
simple random samples from a given population, or the results of repetitive trials with the same distribution on the outcome of each
component trial. A Bernoulli sequence is a simple example.

Simple random variables

Consider a pair  of simple random variables in canonical form

 

Since  and  the pair  is independent iff each of the pairs  is independent. The joint
distribution has probability mass at each point  in the range of . Thus at every point on the grid,

According to the rectangle test, no gridpoint having one of the  or  as a coordinate has zero probability mass . The marginal
distributions determine the joint distributions. If  has  distinct values and  has  distinct values, then the n+m marginal

ρ = 0

Example 9.1.7: a normal pair not joint normally distributed

φ(t, u) = exp (− − )
1

2π

t2

2

u2

2

ρ = 0

{X,Y }

(t, u) = 2φ(t, u)fXY

X N(0, 1) Y N(0, 1)

t, u

Definition

{ : i ∈ J}Xi

J

{ : 1 ≤ i ≤ n}Xi

( , , ⋅ ⋅ ⋅, ) = ( )F ⋅⋅⋅X1X2 Xn t1 t2 tn ∏n
i=1 FXi ti ( , , ⋅ ⋅ ⋅, )t1 t2 tn

ti

{ : i ∈ J}Xi

( , , ⋅ ⋅ ⋅, ) = ( )f ⋅⋅⋅Xi1Xi2 Xim
ti1 ti2 tim ∏m

k=1 fXik
tik ( , , ⋅ ⋅ ⋅, )t1 t2 tn

{X,Y }

X =∑n
i=1 tiIAi

Y =∑m
j=1 ujIBj

= {X = }Ai ti = {Y = }Bj uj {X,Y } { , }Ai Bj

( , )ti uj W = (X,Y )

P (X = ,Y = ) = P (X = )P (Y = )ti uj ti uj

ti uj
X n Y m
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probabilities suffice to determine the m·n joint probabilities. Since the marginal probabilities for each variable must add to one,
only  values are needed.

Suppose  and  are in affine form. That is,

 

Since  is the union of minterms generated by the  and  is the union of minterms generated by
the , the pair  is independent iff each pair of minterms  generated by the two classes, respectivly, is
independent. Independence of the minterm pairs is implied by independence of the combined class

Calculations in the joint simple case are readily handled by appropriate m-functions and m-procedures.

MATLAB and independent simple random variables

In the general case of pairs of joint simple random variables we have the m-procedure jcalc, which uses information in matrices 
 and  to determine the marginal probabilities and the calculation matrices  and . In the independent case, we need only the

marginal distributions in matrices , ,  and  to determine the joint probability matrix (hence the joint distribution) and the
calculation matrices  and . If the random variables are given in canonical form, we have the marginal distributions. If they are in
affine form, we may use canonic (or the function form canonicf) to obtain the marginal distributions.

Once we have both marginal distributions, we use an m-procedure we call icalc. Formation of the joint probability matrix is simply
a matter of determining all the joint probabilities

Once these are calculated, formation of the calculation matrices  and  is achieved exactly as in jcalc.

X = [-4 -2 0 1 3]; 

Y = [0 1 2 4]; 

PX = 0.01*[12 18 27 19 24]; 

PY = 0.01*[15 43 31 11]; 

icalc 

Enter row matrix of X-values  X 

Enter row matrix of Y-values  Y 

Enter X probabilities  PX 

Enter Y probabilities  PY 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

disp(P)                        % Optional display of the joint matrix 

    0.0132    0.0198    0.0297    0.0209    0.0264 

    0.0372    0.0558    0.0837    0.0589    0.0744 

    0.0516    0.0774    0.1161    0.0817    0.1032 

    0.0180    0.0270    0.0405    0.0285    0.0360 

disp(t)                        % Calculation matrix t 

    -4    -2     0     1     3 

    -4    -2     0     1     3 

    -4    -2     0     1     3 

    -4    -2     0     1     3 

disp(u)                        % Calculation matrix u 

     4     4     4     4     4 

     2     2     2     2     2 

     1     1     1     1     1 

n−1) +(m−1) = m+n−2

X Y

X = +a0 ∑n

i=1 aiIEi Y = +b0 ∑m

j=1 bjIEj

= {X = }Ar tr Ei = {Y = }Bj us
Fj {X,Y } { , }Ma Nb

{ , : 1 ≤ i ≤ n, 1 ≤ j≤ m}Ei Fj

X,Y P t u

X PX Y PY

t u

p(i, j) = P (X = ,Y = ) = P (X = )P (Y = )ti uj ti uj

t u

Example 9.1.8: Use of icalc to set up for joint calculations
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     0     0     0     0     0 

M = (t>=-3)&(t<=2);            % M = [-3, 2] 

PM = total(M.*P)               % P(X in M) 

PM =   0.6400 

N = (u>0)&(u.^2<=15);          % N = {u: u > 0, u^2 <= 15} 

PN = total(N.*P)               % P(Y in N) 

PN =   0.7400 

Q = M&N;                       % Rectangle MxN 

PQ = total(Q.*P)               % P((X,Y) in MxN) 

PQ =   0.4736 

p = PM*PN 

p  =   0.4736                  % P((X,Y) in MxN) = P(X in M)P(Y in N)

As an example, consider again the problem of joint Bernoulli trials described in the treatment of 4.3 Composite trials.

1 Bill and Mary take ten basketball free throws each. We assume the two seqences of trials are independent of each other, and
each is a Bernoulli sequence.

Mary: Has probability 0.80 of success on each trial.

Bill: Has probability 0.85 of success on each trial.

What is the probability Mary makes more free throws than Bill?

Solution

Let  be the number of goals that Mary makes and  be the number that Bill makes. Then  ~ binomial (10, 0.8) and  ~
binomial (10, 0.85).

X = 0:10; 

Y = 0:10; 

PX = ibinom(10,0.8,X); 

PY = ibinom(10,0.85,Y); 

icalc 

Enter row matrix of X-values  X  % Could enter 0:10 

Enter row matrix of Y-values  Y  % Could enter 0:10 

Enter X probabilities  PX        % Could enter ibinom(10,0.8,X) 

Enter Y probabilities  PY        % Could enter ibinom(10,0.85,Y) 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

PM = total((t>u).*P) 

PM =  0.2738                     % Agrees with solution in Example 9 from "Composit

Pe = total((u==t).*P)            % Additional information is more easily 

Pe =  0.2276                     % obtained than in the event formulation 

Pm = total((t>=u).*P)            % of Example 9 from "Composite Trials". 

Pm =  0.5014

Example 9.1.9: The joint Bernoulli trial of Example 4.9

X Y X Y
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Twelve world class sprinters in a meet are running in two heats of six persons each. Each runner has a reasonable chance of
breaking the track record. We suppose results for individuals are independent.

First heat probabilities: 0.61 0.73 0.55 0.81 0.66 0.43

Second heat probabilities: 0.75 0.48 0.62 0.58 0.77 0.51

Compare the two heats for numbers who break the track record.

Solution

Let  be the number of successes in the first heat and  be the number who are successful in the second heat. Then the pair 
 is independent. We use the m-function canonicf to determine the distributions for  and for , then icalc to get the

joint distribution.

c1 = [ones(1,6) 0]; 

c2 = [ones(1,6) 0]; 

P1 = [0.61 0.73 0.55 0.81 0.66 0.43]; 

P2 = [0.75 0.48 0.62 0.58 0.77 0.51]; 

[X,PX] = canonicf(c1,minprob(P1)); 

[Y,PY] = canonicf(c2,minprob(P2)); 

icalc 

Enter row matrix of X-values  X 

Enter row matrix of Y-values  Y 

Enter X probabilities  PX 

Enter Y probabilities  PY 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

Pm1 = total((t>u).*P)   % Prob first heat has most 

Pm1 =  0.3986 

Pm2 = total((u>t).*P)   % Prob second heat has most 

Pm2 =  0.3606 

Peq = total((t==u).*P)  % Prob both have the same 

Peq =  0.2408 

Px3 = (X>=3)*PX'        % Prob first has 3 or more 

Px3 =  0.8708 

Py3 = (Y>=3)*PY'        % Prob second has 3 or more 

Py3 =  0.8525

As in the case of jcalc, we have an m-function version icalcf

[x, y, t, u, px, py, p] = icalcf(X, Y, PX, PY)\)

We have a related m-function idbn for obtaining the joint probability matrix from the marginal probabilities. Its formation of the
joint matrix utilizes the same operations as icalc.

PX = 0.1*[3 5 2]; 

PY = 0.01*[20 15 40 25]; 

P  = idbn(PX,PY) 

P = 

    0.0750    0.1250    0.0500 

Example 9.1.10: Sprinters time trials

X Y

{X,Y } X Y

Example 9.1.11: A numerical example

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10859?pdf


9.1.8 https://stats.libretexts.org/@go/page/10859

    0.1200    0.2000    0.0800 

    0.0450    0.0750    0.0300 

    0.0600    0.1000    0.0400 

An m- procedure itest checks a joint distribution for independence. It does this by calculating the marginals, then forming an
independent joint test matrix, which is compared with the original. We do not ordinarily exhibit the matrix  to be tested.
However, this is a case in which the product rule holds for most of the minterms, and it would be very difficult to pick out
those for which it fails. The m-procedure simply checks all of them.

idemo1                           % Joint matrix in datafile idemo1 

P =  0.0091  0.0147  0.0035  0.0049  0.0105  0.0161  0.0112 

     0.0117  0.0189  0.0045  0.0063  0.0135  0.0207  0.0144 

     0.0104  0.0168  0.0040  0.0056  0.0120  0.0184  0.0128 

     0.0169  0.0273  0.0065  0.0091  0.0095  0.0299  0.0208 

     0.0052  0.0084  0.0020  0.0028  0.0060  0.0092  0.0064 

     0.0169  0.0273  0.0065  0.0091  0.0195  0.0299  0.0208 

     0.0104  0.0168  0.0040  0.0056  0.0120  0.0184  0.0128 

     0.0078  0.0126  0.0030  0.0042  0.0190  0.0138  0.0096 

     0.0117  0.0189  0.0045  0.0063  0.0135  0.0207  0.0144 

     0.0091  0.0147  0.0035  0.0049  0.0105  0.0161  0.0112 

     0.0065  0.0105  0.0025  0.0035  0.0075  0.0115  0.0080 

     0.0143  0.0231  0.0055  0.0077  0.0165  0.0253  0.0176 

itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is NOT independent   % Result of test 

To see where the product rule fails, call for D 

disp(D)                          % Optional call for D 

     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1 

     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1 

     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0 

Next, we consider an example in which the pair is known to be independent.

jdemo3      % call for data in m-file 

disp(P)     % call to display P 

     0.0132    0.0198    0.0297    0.0209    0.0264 

P
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     0.0372    0.0558    0.0837    0.0589    0.0744 

     0.0516    0.0774    0.1161    0.0817    0.1032 

     0.0180    0.0270    0.0405    0.0285    0.0360 

  

itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is independent       % Result of test 

The procedure icalc can be extended to deal with an independent class of three random variables. We call the m-procedure icalc3.
The following is a simple example of its use.

X = 0:4;

Y = 1:2:7; 

Z = 0:3:12; 

PX = 0.1*[1 3 2 3 1]; 

PY = 0.1*[2 2 3 3]; 

PZ = 0.1*[2 2 1 3 2]; 

icalc3 

Enter row matrix of X-values  X 

Enter row matrix of Y-values  Y 

Enter row matrix of Z-values  Z 

Enter X probabilities  PX 

Enter Y probabilities  PY 

Enter Z probabilities  PZ 

Use array operations on matrices X, Y, Z, 

PX, PY, PZ, t, u, v, and P 

G = 3*t + 2*u - 4*v;        % W = 3X + 2Y -4Z 

[W,PW] = csort(G,P);        % Distribution for W 

PG = total((G>0).*P)        % P(g(X,Y,Z) > 0) 

PG =  0.3370 

Pg = (W>0)*PW'            % P(Z > 0) 

Pg =  0.3370

An m-procedure icalc4 to handle an independent class of four variables is also available. Also several variations of the m-function
mgsum and the m-function diidsum are used for obtaining distributions for sums of independent random variables. We consider
them in various contexts in other units.

Approximation for the absolutely continuous case

In the study of functions of random variables, we show that an approximating simple random variable  of the type we use is a
function of the random variable  which is approximated. Also, we show that if  is an independent pair, so is 

 for any reasonable functions  and . Thus if  is an independent pair, so is any pair of approximating simple
functions  of the type considered. Now it is theoretically possible for the approximating pair  to be independent,
yet have the approximated pair  not independent. But this is highly unlikely. For all practical purposes, we may consider 

 to be independent iff  is independent. When in doubt, consider a second pair of approximating simple functions
with more subdivision points. This decreases even further the likelihood of a false indication of independence by the approximating
random variables.

Example 9.1.14: Calculations for three independent random variables

Xs

X {X,Y }

{g(X),h(Y )} g h {X,Y }

{ , }Xs Ys { , }Xs Ys
{X,Y }

{X,Y } { , }Xs Ys
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Suppose  ~ exponential (3) and  ~ exponential (2) with

 

Since , we approximate  for values up to 4 and  for values up to 6.

tuappr 

Enter matrix [a b] of X-range endpoints  [0 4] 

Enter matrix [c d] of Y-range endpoints  [0 6] 

Enter number of X approximation points  200 

Enter number of Y approximation points  300 

Enter expression for joint density  6*exp(-(3*t + 2*u)) 

Use array operations on X, Y, PX, PY, t, u, and P 

itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is independent 

The pair  has joint density  , . It is easy enough to determine the marginals in this
case. By symmetry, they are the same.

, 

so that  which ensures the pair is independent. Consider the solution using tuappr and itest.

tuappr 

Enter matrix [a b] of X-range endpoints  [0 1] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  100 

Enter number of Y approximation points  100 

Enter expression for joint density  4*t.*u 

Use array operations on X, Y, PX, PY, t, u, and P 

itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is independent

This page titled 9.1: Independent Classes of Random Variables is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

Example 9.1.15: An independent pair

X Y

(t, u) = 6 = 6fXY e−3te−2u e−(3t+2u) t ≥ 0, u ≥ 0

≈ 6 ×e−12 10−6 X Y

Example 9.1.16: Test for independence

{X,Y } (t, u) = 4tufXY 0 ≤ t ≤ 1 0 ≤ u ≤ 1

(t) = 4t udu = 2tfX ∫ 1

0
0 ≤ t ≤ 1

=fXY fXfY
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9.2: Problems on Independent Classes of Random Variables

The pair  has the joint distribution (in m-file npr08_06.m):

 [-2.3 -0.7 1.1 3.9 5.1]  [1.3 2.5 4.1 5.3]

Determine whether or not the pair  is independent.

Answer

npr08_06 

Data are in X, Y, P 

itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is NOT independent 

To see where the product rule fails, call for D 

disp(D) 

     0     0     0     1     1 

     0     0     0     1     1 

     1     1     1     1     1 

     1     1     1     1     1

The pair  has the joint distribution (in m-file npr09_02.m):

 [-3.9 -1.7 1.5 2.8 4.1]  [-2 1 2.6 5.1]

Determine whether or not the pair  is independent.

Answer

npr09_02 

Data are in X, Y, P 

itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is NOT independent 

To see where the product rule fails, call for D 

disp(D) 

     0     0     0     0     0 

     0     1     1     0     0 

Exercise 9.2.1

{X, Y }

X = Y =

P =

⎡

⎣

⎢
⎢⎢

0.0483

0.0437

0.0713

0.0667

0.0357

0.0323

0.0527

0.0493

0.0420

0.0380

0.0620

0.0580

0.0399

0.0361

0.0609

0.0651

0.0441

0.0399

0.0551

0.0589

⎤

⎦

⎥
⎥⎥

(9.2.1)

{X, Y }

Exercise 9.2.2

{X, Y }

X = Y =

P =

⎡

⎣

⎢⎢⎢

0.0589

0.0961

0.0682

0.0868

0.0342

0.0556

0.0398

0.0504

0.0304

0.0498

0.0350

0.0448

0.0456

0.0744

0.0528

0.0672

0.0209

0.0341

0.0242

0.0308

⎤

⎦

⎥⎥⎥
(9.2.2)

{X, Y }
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     0     1     1     0     0 

     0     0     0     0     0

The pair  has the joint distribution (in m-file npr08_07.m):

t = -3.1 -0.5 1.2 2.4 3.7 4.9

u = 7.5 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203

4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231

-2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189

-3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

Determine whether or not the pair  is independent.

Answer

npr08_07 

Data are in X, Y, P 

itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is NOT independent 

To see where the product rule fails, call for D 

disp(D) 

     1     1     1     1     1     1 

     1     1     1     1     1     1 

     1     1     1     1     1     1 

     1     1     1     1     1     1 

For the distributions in Exercises 4-10 below

a. Determine whether or not the pair is independent.
b. Use a discrete approximation and an independence test to verify results in part (a).

 on the circle with radius one, center at (0,0).

Answer

Not independent by the rectangle test.

tuappr 

Enter matrix [a b] of X-range endpoints  [-1 1] 

Enter matrix [c d] of Y-range endpoints  [-1 1] 

Enter number of X approximation points  100 

Enter number of Y approximation points  100 

Enter expression for joint density  (1/pi)*(t.^2 + u.^2<=1) 

Use array operations on X, Y, PX, PY, t, u, and P 

Exercise 9.2.3

{X, Y }

P (X = t, Y = u)

{X, Y }

Exercise 9.2.4

(t, u) = 1/πfXY
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itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is NOT independent 

To see where the product rule fails, call for D  % Not practical-- too large

 on the square with vertices at (1, 0), (2, 1), (1, 2), (0, 1) (see Exercise 11 from "Problems on Random Vectors
and Joint Distributions").

Answer

Not independent, by the rectangle test.

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 2] 

Enter number of X approximation points  200 

Enter number of Y approximation points  200 

Enter expression for joint density  (1/2)*(u<=min(1+t,3-t)).* ... 

   (u>=max(1-t,t-1)) 

Use array operations on X, Y, PX, PY, t, u, and P 

itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is NOT independent 

To see where the product rule fails, call for D

 for ,  (see Exercise 12 from "Problems on Random Vectors and Joint
Distributions").

From the solution for Exercise 12 from "Problems on Random Vectors and Joint Distributions" we have

, , , , 

so the pair is independent.

Answer

tuappr 

Enter matrix [a b] of X-range endpoints  [0 1] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  100 

Enter number of Y approximation points  100 

Enter expression for joint density  4*t.*(1-u) 

Use array operations on X, Y, PX, PY, t, u, and P 

  

  

  

itest 

Exercise 9.2.5

(t, u) = 1/2fXY

Exercise 9.2.6

(t, u) = 4t(1 −u)fXY 0 ≤ t ≤ 1 0 ≤ u ≤ 1

(t) = 2tfX 0 ≤ t ≤ 1 (u) = 2(1 −u)fY 0 ≤ u ≤ 1 =fXY fXfY
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Enter matrix of joint probabilities  P 

The pair {X,Y} is independent 

 for ,  (see Exercise 13 from "Problems on Random Vectors and Joint Distributions").

From the solution of Exercise 13 from "Problems on Random Vectors and Joint Distributions" we have

, 

so  which implies the pair is not independent.

Answer

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 2] 

Enter number of X approximation points  100 

Enter number of Y approximation points  100 

Enter expression for joint density  (1/8)*(t+u) 

Use array operations on X, Y, PX, PY, t, u, and P 

itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is NOT independent 

To see where the product rule fails, call for D 

 for  (see Exercise 14 from "Problems on Random Vectors and Joint Distributions").

From the solution for Exercise 14 from "Problems on Random Vectors and Joint Distribution" we have

, , , 

so that  and the pair is independent.

Answer

tuappr 

Enter matrix [a b] of X-range endpoints  [0 5] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  500 

Enter number of Y approximation points  100 

Enter expression for joint density  4*u.*exp(-2*t) 

Use array operations on X, Y, PX, PY, t, u, and P 

itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is independent       % Product rule holds to within 10^{-9} 

Exercise 9.2.7

= (t +u)fXY

1

8
0 ≤ t ≤ 2 0 ≤ u ≤ 2

(t) = (t) = (t +1)fX fY

1

4
0 ≤ t ≤ 2

≠fXY fXfY

Exercise 9.2.8

(t, u) = 4ufXY e−2t 0 ≤ t, 0 ≤ u ≤ 1

(t) = 2fX e−2t 0 ≤ t (u) = 2ufY 0 ≤ u ≤ 1

=fXY fXfY
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 on the parallelogram with vertices (-1, 0), (0, 0), (1, 1), (0, 1)

(see Exercise 16 from "Problems on Random Vectors and Joint Distributions").

Answer

Not independent by the rectangle test.

tuappr 

Enter matrix [a b] of X-range endpoints  [-1 1] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  200 

Enter number of Y approximation points  100 

Enter expression for joint density  12*t.^2.*u.*(u<=min(t+1,1)).* ... 

          (u>=max(0,t)) 

Use array operations on X, Y, PX, PY, t, u, and P 

itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is NOT independent 

To see where the product rule fails, call for D

 for ,  (see Exercise 17 from "Problems on Random Vectors and Joint

Distributions").

Answer

By the rectangle test, the pair is not independent.

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  200 

Enter number of Y approximation points  100 

Enter expression for joint density  (24/11)*t.*u.*(u<=min(1,2-t)) 

Use array operations on X, Y, PX, PY, t, u, and P 

itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is NOT independent 

To see where the product rule fails, call for D

Two software companies, MicroWare and BusiCorp, are preparing a new business package in time for a computer trade show
180 days in the future. They work independently. MicroWare has anticipated completion time, in days, exponential (1/150).
BusiCorp has time to completion, in days, exponential (1/130). What is the probability both will complete on time; that at least
one will complete on time; that neither will complete on time?

Exercise 9.2.9

(t, u) = 12 ufXY t2

Exercise 9.2.10

= tufXY

24

11
0 ≤ t ≤ 2 0 ≤ u ≤ min{1, 2 − t}

Exercise 9.2.11
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Answer

p1 = 1 - exp(-180/150) 

p1 =  0.6988 

p2 = 1 - exp(-180/130) 

p2 =  0.7496 

Pboth = p1*p2 

Pboth =  0.5238 

Poneormore = 1 - (1 - p1)*(1 - p2) % 1 - Pneither 

Poneormore =  0.9246 

Pneither = (1 - p1)*(1 - p2) 

Pneither =    0.0754

Eight similar units are put into operation at a given time. The time to failure (in hours) of each unit is exponential (1/750). If
the units fail independently, what is the probability that five or more units will be operating at the end of 500 hours?

Answer

p = exp(-500/750);  % Probability any one will survive 

P = cbinom(8,p,5)   % Probability five or more will survive 

P =  0.3930

The location of ten points along a line may be considered iid random variables with symmytric triangular distribution on [1,3].
What is the probability that three or more will lie within distance 1/2 of the point ?

Answer

Geometrically, , so that P = cbinom(10,p,3) = 0.9996 .

A Christmas display has 200 lights. The times to failure are iid, exponential (1/10000). The display is on continuously for 750
hours (approximately one month). Determine the probability the number of lights which survive the entire period is at least
175, 180, 185, 190.

Answer

p = exp(-750/10000) 

p =  0.9277 

k = 175:5:190; 

P = cbinom(200,p,k); 

disp([k;P]') 

  175.0000    0.9973 

  180.0000    0.9449 

  185.0000    0.6263 

  190.0000    0.1381

Exercise 9.2.12

Exercise 9.2.13

t = 2

p = 3/4

Exercise 9.2.14

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10860?pdf


9.2.7 https://stats.libretexts.org/@go/page/10860

A critical module in a network server has time to failure (in hours of machine time) exponential (1/3000). The machine
operates continuously, except for brief times for maintenance or repair. The module is replaced routinely every 30 days (720
hours), unless failure occurs. If successive units fail independently, what is the probability of no breakdown due to the module
for one year?

Answer

p = exp(-720/3000) 

p = 0.7866     % Probability any unit survives 

P = p^12    % Probability all twelve survive (assuming 12 periods) 

P = 0.056

Joan is trying to decide which of two sales opportunities to take.

In the first, she makes three independent calls. Payoffs are $570, $525, and $465, with respective probabilities of 0.57, 0.41,
and 0.35.
In the second, she makes eight independent calls, with probability of success on each call  0.57. She realizes $150 profit
on each successful sale.

Let  be the net profit on the first alternative and  be the net gain on the second. Assume the pair  is independent.

a. Which alternative offers the maximum possible gain?
b. Compare probabilities in the two schemes that total sales are at least $600, $900, $1000, $1100.
c. What is the probability the second exceeds the first— i.e., what is ?

Answer

 with  = [0.57 0.41 0.35]. . where  binomial (8, 0.57).

c = [570 525 465 0]; 

pm = minprob([0.57 0.41 0.35]); 

canonic                              % Distribution for X 

 Enter row vector of coefficients  c 

 Enter row vector of minterm probabilities  pm 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

Y = 150*[0:8];                       % Distribution for Y 

PY = ibinom(8,0.57,0:8); 

icalc                                % Joint distribution 

Enter row matrix of X-values  X 

Enter row matrix of Y-values  Y 

Enter X probabilities  PX 

Enter Y probabilities  PY 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

xmax = max(X) 

xmax =   1560 

ymax = max(Y) 

Exercise 9.2.15

Exercise 9.2.16

p =

X Y {X, Y }

P (Y > X)

X = 570 +525 +465IA IB IC [P (A)P (B)P (C)] Y = 150S S 
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ymax =   1200 

k = [600 900 1000 1100]; 

px = zeros(1,4); 

  

  

  

for i = 1:4 

    px(i) = (X>=k(i))*PX'; 

end 

py = zeros(1,4); 

for i = 1:4 

  py(i) = (Y>=k(i))*PY'; 

end 

disp([px;py]') 

    0.4131    0.7765 

    0.4131    0.2560 

    0.3514    0.0784 

    0.0818    0.0111 

M = u > t; 

PM = total(M.*P) 

PM = 0.5081          % P(Y>X)

Margaret considers five purchases in the amounts 5, 17, 21, 8, 15 dollars with respective probabilities 0.37, 0.22, 0.38, 0.81,
0.63. Anne contemplates six purchases in the amounts 8, 15, 12, 18, 15, 12 dollars. with respective probabilities 0.77, 0.52,
0.23, 0.41, 0.83, 0.58. Assume that all eleven possible purchases form an independent class.

a. What is the probability Anne spends at least twice as much as Margaret?
b. What is the probability Anne spends at least $30 more than Margaret?

Answer

cx = [5 17 21 8 15 0]; 

pmx = minprob(0.01*[37 22 38 81 63]); 

cy = [8 15 12 18 15 12 0]; 

pmy = minprob(0.01*[77 52 23 41 83 58]); 

[X,PX] = canonicf(cx,pmx); 

[Y,PY] = canonicf(cy,pmy); 

icalc 

Enter row matrix of X-values  X 

Enter row matrix of Y-values  Y 

Enter X probabilities  PX 

Enter Y probabilities  PY 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

M1 = u >= 2*t; 

PM1 = total(M1.*P) 

PM1 =  0.3448 

M2 = u - t >=30; 

Exercise 9.2.17

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10860?pdf


9.2.9 https://stats.libretexts.org/@go/page/10860

PM2 = total(M2.*P) 

PM2 =  0.2431

James is trying to decide which of two sales opportunities to take.

In the first, he makes three independent calls. Payoffs are $310, $380, and $350, with respective probabilities of 0.35, 0.41,
and 0.57.
In the second, he makes eight independent calls, with probability of success on each call p=0.57. He realizes $100 profit on
each successful sale.

Let  be the net profit on the first alternative and  be the net gain on the second. Assume the pair  is independent.

Which alternative offers the maximum possible gain?
What is the probability the second exceeds the first— i.e., what is ?
Compare probabilities in the two schemes that total sales are at least $600, $700, $750.

Answer

cx = [310 380 350 0]; 

pmx = minprob(0.01*[35 41 57]); 

Y  = 100*[0:8]; 

PY = ibinom(8,0.57,0:8); 

canonic 

 Enter row vector of coefficients  cx 

 Enter row vector of minterm probabilities  pmx 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

icalc 

Enter row matrix of X-values  X 

Enter row matrix of Y-values  Y 

Enter X probabilities  PX 

Enter Y probabilities  PY 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

xmax = max(X) 

xmax =  1040 

ymax = max(Y) 

ymax =   800 

PYgX = total((u>t).*P) 

PYgX =  0.5081 

k = [600 700 750]; 

px = zeros(1,3); 

py = zeros(1,3); 

for i = 1:3 

    px(i) = (X>=k(i))*PX'; 

end 

for i = 1:3 

    py(i) = (Y>=k(i))*PY'; 

end 

disp([px;py]') 

Exercise 9.2.18

X Y {X, Y }

P (Y > X)
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    0.4131    0.2560 

    0.2337    0.0784 

    0.0818    0.0111

A residential College plans to raise money by selling “chances” on a board. There are two games:

Game 1: Pay $5 to play; win $20 with probability  =0.05 (one in twenty)

Game 2: Pay $10 to play; win $30 with probability  =0.2 (one in five)

Thirty chances are sold on Game 1 and fifty chances are sold on Game 2. If  and  are the profits on the respective games,
then

 and 

where  are the numbers of winners on the respective games. It is reasonable to suppose  binomial (30, 0.05) and 
binomial (50, 0.2). It is reasonable to suppose the pair  is independent, so that  is independent. Determine the
marginal distributions for  and  then use icalc to obtain the joint distribution and the calculating matrices. The total profit for
the College is . What is the probability the College will lose money? What is the probability the profit will be $400 or
more, less than $200, between $200 and $450?

Answer

N1 = 0:30; 

PN1 = ibinom(30,0.05,0:30); 

x  = 150 - 20*N1; 

[X,PX] = csort(x,PN1); 

N2 = 0:50; 

PN2 = ibinom(50,0.2,0:50); 

y  = 500 - 30*N2; 

[Y,PY] = csort(y,PN2); 

icalc 

Enter row matrix of X-values  X 

Enter row matrix of Y-values  Y 

Enter X probabilities  PX 

Enter Y probabilities  PY 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

G = t + u; 

Mlose = G < 0; 

Mm400  = G >= 400; 

Ml200  = G < 200; 

M200_450  = (G>=200)&(G<=450); 

Plose = total(Mlose.*P) 

Plose =   3.5249e-04 

Pm400 = total(Mm400.*P) 

Pm400 =   0.1957 

Pl200 = total(Ml200.*P) 

Pl200 = 

    0.0828 

Exercise 9.2.19

p1

p2

X Y

X = 30 ⋅ 5 −20N1 Y = 50 ⋅ 10 −30N2

,N1 N2  N1  N2

{ , }N1 N2 {X, Y }

X Y

Z = X +Y
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P200_450 = total(M200_450.*P) 

P200_450 =  0.8636

The class  of random variables is iid (independent, identically distributed) with common distribution

 [-5 -1 3 4 7]  0.01 * [15 20 30 25 10]

Let . Determine the distribution for  and from this determine  and . Do this
with icalc, then repeat with icalc3 and compare results.

Answer

Since icalc uses  and  in its output, we avoid a renaming problem by using  and  for data vectors  and .

x = [-5 -1 3 4 7]; 

px = 0.01*[15 20 30 25 10]; 

icalc 

Enter row matrix of X-values  3*x 

Enter row matrix of Y-values  -4*x 

Enter X probabilities  px 

Enter Y probabilities  px 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

a = t + u; 

[V,PV] = csort(a,P); 

icalc 

Enter row matrix of X-values  V 

Enter row matrix of Y-values  2*x 

Enter X probabilities  PV 

Enter Y probabilities  px 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

b = t + u; 

[W,PW] = csort(b,P); 

P1 = (W>0)*PW' 

P1 =  0.5300 

P2 = ((-20<=W)&(W<=10))*PW' 

P2 =  0.5514 

icalc3                           % Alternate using icalc3 

Enter row matrix of X-values  x 

Enter row matrix of Y-values  x 

Enter row matrix of Z-values  x 

Enter X probabilities  px 

Enter Y probabilities  px 

Enter Z probabilities  px 

Use array operations on matrices X, Y, Z, 

PX, PY, PZ, t, u, v, and P 

a = 3*t - 4*u + 2*v; 

[W,PW] = csort(a,P); 

P1 = (W>0)*PW' 

Exercise 9.2.20

{X, Y , Z}

X = P X =

W = 3X −4Y +2Z W P (W > 0) P (−20 ≤ W ≤ 10)

X P X x px X P X
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P1 = 0.5300 

P2 = ((-20<=W)&(W<=10))*PW' 

P2 = 0.5514

The class  is independent; the respective probabilities for these events are 
. Consider the simple random variables

, , and 

Determine , , .

Answer

cx = [3 -9 4 0]; 

pmx = minprob(0.01*[42 27 33]); 

cy = [-2 6 2 -3]; 

pmy = minprob(0.01*[47 37 41]); 

[X,PX] = canonicf(cx,pmx); 

[Y,PY] = canonicf(cy,pmy); 

icalc 

Enter row matrix of X-values  X 

Enter row matrix of Y-values  Y 

Enter X probabilities  PX 

Enter Y probabilities  PY 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

G = 2*t - 3*u; 

[Z,PZ] = csort(G,P); 

PYgX = total((u>t).*P) 

PYgX =  0.3752 

PZpos = (Z>0)*PZ' 

PZpos = 0.5654 

P5Z25 = ((5<=Z)&(Z<=25))*PZ' 

P5Z25 = 0.4745

Two players, Ronald and Mike, throw a pair of dice 30 times each. What is the probability Mike throws more “sevens” than
does Ronald?

Answer

P = (ibinom(30,1/6,0:29))*(cbinom(30,1/6,1:30))' = 0.4307

A class has fifteen boys and fifteen girls. They pair up and each tosses a coin 20 times. What is the probability that at least
eight girls throw more heads than their partners?

Answer

Exercise 9.2.21

{A, B, C, D, E, F }

{0.46, 0.27, 0.33, 0.47, 0.37, 0.41}

X = 3 −9 +4IA IB IC Y = −2 +6 +2 −3ID IE IF Z = 2X −3Y

P (Y > X) P (Z > 0) P (5 ≤ Z ≤ 25)

Exercise 9.2.22

Exercise 9.2.23
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pg = (ibinom(20,1/2,0:19))*(cbinom(20,1/2,1:20))' 

pg =  0.4373             % Probability each girl throws more 

P = cbinom(15,pg,8) 

P =   0.3100             % Probability eight or more girls throw more

Glenn makes five sales calls, with probabilities 0.37, 0.52, 0.48, 0.71, 0.63, of success on the respective calls. Margaret makes
four sales calls with probabilities 0.77, 0.82, 0.75, 0.91, of success on the respective calls. Assume that all nine events form an
independent class. If Glenn realizes a profit of $18.00 on each sale and Margaret earns $20.00 on each sale, what is the
probability Margaret's gain is at least $10.00 more than Glenn's?

Answer

cg = [18*ones(1,5) 0]; 

cm = [20*ones(1,4) 0]; 

pmg = minprob(0.01*[37 52 48 71 63]); 

pmm = minprob(0.01*[77 82 75 91]); 

[G,PG] = canonicf(cg,pmg); 

[M,PM] = canonicf(cm,pmm); 

icalc 

Enter row matrix of X-values  G 

Enter row matrix of Y-values  M 

Enter X probabilities  PG 

Enter Y probabilities  PM 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

H = u-t>=10; 

p1 = total(H.*P) 

p1 =  0.5197

Mike and Harry have a basketball shooting contest.

Mike shoots 10 ordinary free throws, worth two points each, with probability 0.75 of success on each shot.
Harry shoots 12 “three point” shots, with probability 0.40 of success on each shot.

Let  be the number of points scored by Mike and Harry, respectively. Determine , and , 
.

Answer

X = 2*[0:10]; 

PX = ibinom(10,0.75,0:10); 

Y = 3*[0:12]; 

PY = ibinom(12,0.40,0:12); 

icalc 

Enter row matrix of X-values  X 

Enter row matrix of Y-values  Y 

Exercise 9.2.24

Exercise 9.2.25

X, Y P (X ≥ 15) P (Y ≥ 15)

P (X ≥ Y )

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10860?pdf


9.2.14 https://stats.libretexts.org/@go/page/10860

Enter X probabilities  PX 

Enter Y probabilities  PY 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

PX15 = (X>=15)*PX' 

PX15 = 0.5256 

PY15 = (Y>=15)*PY' 

PY15 = 0.5618 

G = t>=u; 

PG = total(G.*P) 

PG =   0.5811

Martha has the choice of two games.

Game 1: Pay ten dollars for each “play.” If she wins, she receives $20, for a net gain of $10 on the play; otherwise, she loses her $10. The
probability of a win is 1/2, so the game is “fair.”

Game 2: Pay five dollars to play; receive $15 for a win. The probability of a win on any play is 1/3.

Martha has $100 to bet. She is trying to decide whether to play Game 1 ten times or Game 2 twenty times. Let  and  be
the respective net winnings (payoff minus fee to play).

Determine 
Compare the two games further by calculating  and 

Which game seems preferable?

Answer

W1 = 20*[0:10] - 100; 

PW1 = ibinom(10,1/2,0:10); 

W2 = 15*[0:20] - 100; 

PW2 = ibinom(20,1/3,0:20); 

P1pos = (W1>0)*PW1' 

P1pos = 0.3770 

P2pos = (W2>0)*PW2' 

P2pos = 0.5207 

icalc 

Enter row matrix of X-values  W1 

Enter row matrix of Y-values  W2 

Enter X probabilities  PW1 

Enter Y probabilities  PW2 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

G = u >= t; 

PG = total(G.*P) 

PG =  0.5182

Exercise 9.2.26

W 1 W 2

P (W 2 ≥ W 1)

P (W 1 > 0) P (W 2 > 0)
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Jim and Bill of the men's basketball team challenge women players Mary and Ellen to a free throw contest. Each takes five free
throws. Make the usual independence assumptions. Jim, Bill, Mary, and Ellen have respective probabilities  0.82, 0.87,
0.80, and 0.85 of making each shot tried. What is the probability Mary and Ellen make a total number of free throws at least as
great as the total made by the guys?

Answer

x = 0:5; 

PJ = ibinom(5,0.82,x); 

PB = ibinom(5,0.87,x); 

PM = ibinom(5,0.80,x); 

PE = ibinom(5,0.85,x); 

  

icalc 

Enter row matrix of X-values  x 

Enter row matrix of Y-values  x 

Enter X probabilities  PJ 

Enter Y probabilities  PB 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

H = t+u; 

[Tm,Pm] = csort(H,P); 

icalc 

Enter row matrix of X-values  x 

Enter row matrix of Y-values  x 

Enter X probabilities  PM 

Enter Y probabilities  PE 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

G = t+u; 

[Tw,Pw] = csort(G,P); 

icalc 

Enter row matrix of X-values  Tm 

Enter row matrix of Y-values  Tw 

Enter X probabilities  Pm 

Enter Y probabilities  Pw 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

Gw = u>=t; 

PGw = total(Gw.*P) 

PGw = 0.5746 

  

icalc4               % Alternate using icalc4 

Enter row matrix of X-values  x 

Enter row matrix of Y-values  x 

Enter row matrix of Z-values  x 

Enter row matrix of W-values  x 

Enter X probabilities  PJ 

Enter Y probabilities  PB 

Exercise 9.2.27

p =
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Enter Z probabilities  PM 

Enter W probabilities  PE 

Use array operations on matrices X, Y, Z,W 

PX, PY, PZ, PW t, u, v, w, and P 

H = v+w >= t+u; 

PH = total(H.*P) 

PH =  0.5746 
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10.1: Functions of a Random Variable
Introduction

Frequently, we observe a value of some random variable, but are really interested in a value derived from this by a function rule. If 
 is a random variable and  is a reasonable function (technically, a Borel function), then  is a new random variable

which has the value  for any  such that . Thus .

The problem; an approach
We consider, first, functions of a single random variable. A wide variety of functions are utilized in practice.

In a quality control check on a production line for ball bearings it may be easier to weigh the balls than measure the diameters.
If we can assume true spherical shape and  is the weight, then diameter is , where  is a factor depending upon the
formula for the volume of a sphere, the units of measurement, and the density of the steel. Thus, if  is the weight of the
sampled ball, the desired random variable is .

The cultural committee of a student organization has arranged a special deal for tickets to a concert. The agreement is that the
organization will purchase ten tickets at $20 each (regardless of the number of individual buyers). Additional tickets are
available according to the following schedule:

11-20, $18 each
21-30, $16 each
31-50, $15 each
51-100, $13 each

If the number of purchasers is a random variable , the total cost (in dollars) is a random quantity  described by

where , , , 

The function rule is more complicated than in Example 10.1.1, but the essential problem is the same.

The problem

If  is a random variable, then  is a new random variable. Suppose we have the distribution for . How can we
determine , the probability  takes a value in the set ?

An approach to a solution

We consider two equivalent approaches

To find .

1. Mapping approach. Simply find the amount of probability mass mapped into the set  by the random variable .
In the absolutely continuous case, calculate .
In the discrete case, identify those values  of  which are in the set  and add the associated probabilities.

2. Discrete alternative. Consider each value  of . Select those which meet the defining conditions for  and add the associated
probabilities. This is the approach we use in the MATLAB calculations. Note that it is not necessary to describe geometrically
the set ; merely use the defining conditions.

To find .

1. Mapping approach. Determine the set  of all those t which are mapped into  by the function . Now if , then 
, and if , then . Hence

X g Z = g(X)
g(t) ω X(ω) = t Z(ω) = g(X(ω))

Example 10.1 .1: A quality control problem

w kw1/3 k

X

D = kX1/3

Example 10.1.2: Price breaks

X Z = g(X)

g(X) = 200 +18 (X)(X −10) +(16 −18) (X)(X −20)IM1 IM2

+(15 −16) (X)(X −30) +(13 −15) (X)(X −50)IM3 IM4

M1 = [10, ∞) M2 = [20, ∞) M3 = [30, ∞) M4 = [50, ∞)

X Z = g(X) X

P (Z ∈ M) Z M

P (X ∈ M)

M X

∫
M

fX

ti X M

ti X M

M

P (g(X) ∈ M)

N M g X(ω) ∈ N

g(X(ω)) ∈ M g(X(ω)) ∈ M X(ω) ∈ N
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Since these are the same event, they must have the same probability. Once  is identified, determine  in the usual
manner (see part a, above).

Discrete alternative. For each possible value  of , determine whether  meets the defining condition for . Select those 
 which do and add the associated probabilities.

— □

Remark. The set  in the mapping approach is called the inverse image 

Suppose  has values -2, 0, 1, 3, 6, with respective probabilities 0.2, 0.1, 0.2, 0.3 0.2.

Consider . Determine .

Solution

First solution. The mapping approach

.  is the set of points to the left of –1 or to the right of 4. The -values –2 and 6 lie
in this set. Hence

Second solution. The discrete alternative

X = -2 0 1 3 6

P X = 0.2 0.1 0.2 0.3 0.2

Z = 6 -4 -6 -4 14

Z > 0 1 0 0 0 1

Picking out and adding the indicated probabilities, we have

In this case (and often for “hand calculations”) the mapping approach requires less calculation. However, for MATLAB
calculations (as we show below), the discrete alternative is more readily implemented.

Suppose  ~ uniform [–3,7]. Then ,  (and zero elsewhere). Let

Determine .

Solution

First we determine . As in Example 10.1.3,  for  or . Because of the
uniform distribution, the integral of the density over any subinterval of  is 0.1 times the length of that subinterval. Thus, the
desired probability is

We consider, next, some important examples.

To show that if  ~  then

{ω : g(X(ω)) ∈ M} = {ω : X(ω) ∈ N}

N P (X ∈ N)

ti X g( )ti M

ti

N N = (M)g−1

Example 10.1.3: A discrete example

X

Z = g(X) = (X +1)(X −4) P (Z > 0)

g(t) = (t +1)(t −4) N = {t : g(t) > 0} X

P (g(X) > 0) = P (X = −2) +P (X = 6) = 0.2 +0.2 = 0.4

P (Z > 0) = 0.2 +0.2 = 0.4

Example 10.1.4 . An absolutely continuous example

X (t) = 0.1fX −3 ≤ t ≤ 7

Z = g(X) = (X +1)(X −4)

P (Z > 0)

N = {t : g(t) > 0} g(t) = (t +1)(t −4) > 0 t < −1 t > 4)
{X, Y }

P (g(X) > 0) = 0.1[(−1 −(−3)) +(7 −4)] = 0.5

Example 10.1.5: The normal distribution and standardized normal distribution

X N(μ, )σ2

Z = g(X) =  N(0, 1)
X −μ

σ
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VERIFICATION

We wish to show the denity function for  is

Now

 iff 

Hence, for given  the inverse image is , so that

Since the density is the derivative of the distribution function,

Thus

We conclude that  ~ .

Suppose  has distribution function . If it is absolutely continuous, the corresponding density is . Consider 
. Here , an affine function (linear plus a constant). Determine the distribution function for  (and

the density in the absolutely continuous case).

Solution

There are two cases

 > 0:

 < 0

So that

For the absolutely continuous case, , and by differentiation

for  

for  

Since for , , the two cases may be combined into one formula.

Z

φ(t) =
1

2π
−−

√
e− /2t2

g(t) = ≤ v
t −μ

σ
t ≤ σv+μ

M = (−∞, v] N = (−∞, σv+μ]

(v) = P (Z ≤ v) = P (Z ∈ M) = P (X ∈ N) = P (X ≤ σv+μ) = (σv+μ)FZ FX

(v) = (v) = (v) = (σv+μ)σ = σ (σv+μ)fZ F
′

Z
F

′

X
F

′

X
fX

(v) = exp[− ( ] = = φ(v)fZ

σ

σ 2π
−−

√

1

2

σv+μ −μ

σ
)2 1

2π
−−

√
e− /2v2

Z N(0, 1)

Example 10.1.1

X FX fX

Z = aX +b g(t) = at +b Z

(v) = P (Z ≤ v) = P (aX +b ≤ v)FZ

a

(v) = P (X ≤ ) = ( )FZ

v−b

a
FX

v−b

a

a

(v) = P (X ≥ ) = P (X > ) +P (X = )FZ

v−b

a

v−b

a

v−b

a

(v) = 1 − ( ) +P (X = )FZ FX

v−b

a

v−b

a

P (X = ) = 0
v−b

a

a > 0 (v) = ( )fZ

1

a
fX

v−b

a

a < 0 (v) = − ( )fZ

1

a
fX

v−b

a

a < 0 −a = |a|

(v) = ( )fZ

1

|a|
fX

v−b

a
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Suppose  ~ . show that  ( ) is .

VERIFICATION

Use of the result of Example 10.1.6 on affine functions shows that

Suppose  and  for . Since for ,  is increasing, we have  iff .
Thus

In the absolutely continuous case

Suppose  ~ exponential ( ). Then  ~ Weibull .

According to the result of Example 10.1.8,

which is the distribution function for  ~ Weibull .

If  is a random variable, a simple function approximation may be constructed (see Distribution Approximations). We limit
our discussion to the bounded case, in which the range of  is limited to a bounded interval . Suppose  is
partitioned into  subintervals by points , , with  and . Let  be the th subinterval,

 and . Let  be the set of points mapped into  by . Then the  form a
partition of the basic space . For the given subdivision, we form a simple random variable  as follows. In each subinterval,
pick a point . The simple random variable

approximates  to within the length of the largest subinterval . Now , since  iff  iff 
. We may thus write

, a function of 

Use of MATLAB on simple random variables

For simple random variables, we use the discrete alternative approach, since this may be implemented easily with MATLAB.
Suppose the distribution for  is expressed in the row vectors  and .

We perform array operations on vector  to obtain

We use relational and logical operations on  to obtain a matrix  which has ones for those  (values of ) such that 
satisfies the desired condition (and zeros elsewhere).
The zero-one matrix  is used to select the the corresponding  and sum them by the taking the dot product of 

 and .

Example 10.1.7: Completion of normal and standardized normal relationship

Z N(0, 1) X = σZ +μ σ > 0 N(μ, )σ2

(t) = φ( ) = exp[− ( ]fX

1

σ

t −μ

σ

1

σ 2π
−−

√

1

2

t −μ

σ
)2

Example 10.1.8: Fractional power of a nonnegative random variable

X ≥ 0 Z = g(X) = X1/a a > 1 t ≥ 0 t1/a 0 ≤ ≤ vt1/a 0 ≤ t ≤ va

(v) = P (Z ≤ v) = P (X ≤ ) = ( )FZ va FX va

(v) = (v) = ( )afZ F
′

Z fX va va−1

Example 10.1.9: Fractional power of an exponentially distributed random variable

X λ Z = X1/a (a, λ, 0)

(t) = ( ) = 1 −FZ FX ta e−λta

Z (a, λ, 0)

Example 10.1.10: A simple approximation as a function of X

X

X I = [a, b] I

n ti 1 ≤ i ≤ n −1 a = t0 b = tn = [ , )Mi ti−1 ti i

1 ≤ i ≤ n −1 = [ , ]Mn tn−1 tn = ( )Ei X−1 Mi Mi X Ei

Ω Xs

, ≤ <si ti−1 si ti

=Xs ∑n
i=1 siIEi

X Mi = (X)IEi IMi (ω) = 1IEi X(ω) ∈ Mi

(X(ω)) = 1IMi

= (X)Xs ∑n
i=1 siIMi

X

X X P X

X

G = [g( )g( ) ⋅ ⋅ ⋅ g( )]t1 t2 tn

G M ti X g( )ti

M = P (X = )pi ti

M P X
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X = -5:10;                     % Values of X 

PX = ibinom(15,0.6,0:15);      % Probabilities for X 

G = (X + 6).*(X - 1).*(X - 8); % Array operations on X matrix to get G = g(X) 

M = (G > - 100)&(G < 130);     % Relational and logical operations on G 

PM = M*PX'                     % Sum of probabilities for selected values 

PM =  0.4800 

disp([X;G;M;PX]')              % Display of various matrices (as columns) 

   -5.0000   78.0000    1.0000    0.0000 

   -4.0000  120.0000    1.0000    0.0000 

   -3.0000  132.0000         0    0.0003 

   -2.0000  120.0000    1.0000    0.0016 

   -1.0000   90.0000    1.0000    0.0074 

         0   48.0000    1.0000    0.0245 

    1.0000         0    1.0000    0.0612 

    2.0000  -48.0000    1.0000    0.1181 

    3.0000  -90.0000    1.0000    0.1771 

    4.0000 -120.0000         0    0.2066 

    5.0000 -132.0000         0    0.1859 

    6.0000 -120.0000         0    0.1268 

    7.0000  -78.0000    1.0000    0.0634 

    8.0000         0    1.0000    0.0219 

    9.0000  120.0000    1.0000    0.0047 

   10.0000  288.0000         0    0.0005 

[Z,PZ] = csort(G,PX);          % Sorting and consolidating to obtain 

disp([Z;PZ]')                  % the distribution for Z = g(X) 

 -132.0000    0.1859 

 -120.0000    0.3334 

  -90.0000    0.1771 

  -78.0000    0.0634 

  -48.0000    0.1181 

         0    0.0832 

   48.0000    0.0245 

   78.0000    0.0000 

   90.0000    0.0074 

  120.0000    0.0064 

  132.0000    0.0003 

  288.0000    0.0005 

P1 = (G<-120)*PX '           % Further calculation using G, PX 

P1 =  0.1859 

p1 = (Z<-120)*PZ'            % Alternate using Z, PZ 

p1 =  0.1859

Example 10.1.11: Basic calculations for a function of a simple random variable
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 with  independent and  [0.60.30.5].

We calculate the distribution for , then determine the distribution for

c = [10 18 10 0]; 

pm = minprob(0.1*[6 3 5]); 

canonic 

 Enter row vector of coefficients  c 

 Enter row vector of minterm probabilities  pm 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

disp(XDBN) 

         0    0.1400 

   10.0000    0.3500 

   18.0000    0.0600 

   20.0000    0.2100 

   28.0000    0.1500 

   38.0000    0.0900 

G = sqrt(X) - X + 50;       % Formation of G matrix 

[Z,PZ] = csort(G,PX);       % Sorts distinct values of g(X) 

disp([Z;PZ]')               % consolidates probabilities 

   18.1644    0.0900 

   27.2915    0.1500 

   34.4721    0.2100 

   36.2426    0.0600 

   43.1623    0.3500 

   50.0000    0.1400 

M = (Z < 20)|(Z >= 40)      % Direct use of Z distribution 

M =    1     0     0     0     1     1 

PZM = M*PZ' 

PZM =  0.5800

Remark. Note that with the m-function csort, we may name the output as desired.

H = 2*X.^2 - 3*X + 1; 

[W,PW] = csort(H,PX) 

W  =     1      171     595     741    1485    2775 

PW =  0.1400  0.3500  0.0600  0.2100  0.1500  0.0900

Suppose  has density function  for . Then . Let . We may use

the approximation m-procedure tappr to obtain an approximate discrete distribution. Then we work with the approximating

Example 10.1.12

X = 10 +18 +10IA IB IC {A, B, C} P =

X

Z = −X +50X1/2

Example 10.1.13: Continuation of example 10.1.12, above.

Example 10.1.14: A discrete approximation

X (t) = (3 +2t)fX

1

2
t2 0 ≤ t ≤ 1 (t) = ( + )FX

1

2
t3 t2 Z = X1/2
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random variable as a simple random variable. Suppose we want . Now  iff . The desired
probability may be calculated to be

Using the approximation procedure, we have

tappr 

Enter matrix [a b] of x-range endpoints  [0 1] 

Enter number of x approximation points  200 

Enter density as a function of t  (3*t.^2 + 2*t)/2 

Use row matrices X and PX as in the simple case 

G = X.^(1/2); 

M = G <= 0.8; 

PM = M*PX' 

PM =   0.3359       % Agrees quite closely with the theoretical

This page titled 10.1: Functions of a Random Variable is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

P (Z ≤ 0.8) Z ≤ 0.8 X ≤ = 0.640.82

P (Z ≤ 0.8) = (0.64) = ( + )/2 = 0.3359FX 0.643 0.642
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10.2: Function of Random Vectors
Introduction

The general mapping approach for a single random variable and the discrete alternative extends to functions of more than one
variable. It is convenient to consider the case of two random variables, considered jointly. Extensions to more than two random
variables are made similarly, although the details are more complicated.

The general approach extended to a pair
Consider a pair  having joint distribution on the plane. The approach is analogous to that for a single random variable with
distribution on the line.

To find .

1. Mapping approach. Simply find the amount of probability mass mapped into the set  on the plane by the random vector 
.

In the absolutely continuous case, calculate .
In the discrete case, identify those vector values  of  which are in the set  and add the associated
probabilities.

2. Discrete alternative. Consider each vector value  of . Select those which meet the defining conditions for  and
add the associated probabilities. This is the approach we use in the MATLAB calculations. It does not require that we describe
geometrically the region .

To find .  is real valued and  is a subset the real line.

1. Mapping approach. Determine the set  of all those  which are mapped into  by the function . Now

 iff  Hence 
 

Since these are the same event, they must have the same probability. Once  is identified on the plane, determine 
in the usual manner (see part a, above).

Discrete alternative. For each possible vector value  of , determine whether  meets the defining
condition for . Select those  which do and add the associated probabilities.

We illustrate the mapping approach in the absolutely continuous case. A key element in the approach is finding the set  on the
plane such that  iff . The desired probability is obtained by integrating  over .

Figure 10.2.1. Distribution for Example 10.2.15.

{X,Y }

P ((X,Y ) ∈ Q)

Q

W = (X,Y )

∫ ∫
Q
fXY

( , )ti uj (X,Y ) Q

( , )ti uj (X,Y ) Q

Q

P (g(X,Y ) ∈ M) g M

Q (t, u) M g

W (ω) = (X(ω),Y (ω)) ∈ Q g((X(ω),Y (ω)) ∈ M

{ω : g(X(ω),Y (ω)) ∈ M} = {ω : (X(ω),Y (ω)) ∈ Q}

Q P ((X,Y ) ∈ Q)

( , )ti uj (X,Y ) g( , )ti uj
M ( , )ti uj

Q

g(X,Y ) ∈ M (X,Y ) ∈ Q fXY Q
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The pair  has joint density  on the region bounded by , , , 

(see Figure 1). Determine . Here  and . Now 
 which is the region on the plane on or below the line . Examination of the

figure shows that for this region,  is different from zero on the triangle bounded by , , and . The desired
probability is

Suppose the pair  has joint density . Determine the density for

Solution

 where 

For any fixed , the region  is the portion of the plane on or below the line  (see Figure 10.2.2). Thus

Differentiating with the aid of the fundamental theorem of calculus, we get

This integral expresssion is known as a convolution integral.

Figure 10.2.2. Region  for .

Suppose the pair  has joint uniform density on the unit square .. Determine the density for 
.

Solution

 is the probability in the region . Now , where the complementary set  is
the set of points above the line. As Figure 3 shows, for , the part of  which has probability mass is the lower shaded
triangular region on the figure, which has area (and hence probability) /2. For  > 1, the complementary region  is the
upper shaded region. It has area . so that in this case, . Thus,

 for  and  for 

Differentiation shows that  has the symmetric triangular distribution on [0, 2], since

Example 10.2.15 . A numerical example

{X,Y } (t, u) = (t+2u)fXY

6

37
t = 0 t = 2 u = 0 u = max{1, t}

P (Y ≤ X) = P (X−Y ≥ 0) g(t, u) = t−u M = [0, ∞)

Q = {(t, u) : t−u ≥ 0} = {(t, u) : u ≤ t} u = t

fXY t = 2 u = 0 u = t

P (Y ≤ X) = (t+2u)du dt = 32/37 ≈ 0.8649∫ 2

0
∫ t

0

6

37

Example 10.2.16 X Y . The density for the sum +

{X,Y } fXY

Z = X+Y

(v) = P (X+Y ≤ v) = P ((X,Y ) ∈ )FZ Qv = {(t, u) : t+u ≤ v} = {(t, u) : u ≤ v− t}Qv

v Qv u = v− t

(v) = ∫ = (t, u)du dtFZ ∫
Q
fXY ∫ ∞

−∞
∫ v−t

−∞
fXY

(v) = (t, v− t) dtfZ ∫ ∞

∞
fXY

Qv X+Y ≤ v

Example 10.2.17 . Sum of joint uniform random variables

{X,Y } 0 ≤ t ≤ 1, 0 ≤ u ≤ 1

Z = X+Y

(v)FZ : u ≤ v− tQv ( ) = 1 − ( )PXY Qv PXY Qc
v Qc

v

v≤ 1 Qv

v2 v Qc
v

(2 −v /2)2 ( ) = 1 −(2 −v /2PXY Qv )2

(v) =FZ

v2

2
0 ≤ v≤ 1 (v) = 1 −FZ

(2 −v)2

2
1 ≤ v≤ 2

Z
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 for  and  for 

With the use of indicator functions, these may be combined into a single expression

Figure 10.2.3. Geometry for sum of joint uniform random variables.

ALTERNATE Solution

Since , we have . Now  iff , so that

Integration with respect to  gives the result above.

Independence of functions of independent random variables

Suppose  is an independent pair. Let . Since

 and 

the pair  is independent for each pair . Thus, the pair  is independent.

If  is an independent pair and , , then the pair  is independent. However, if  and
, then in general  is not independent. This is illustrated for simple random variables with the aid of the m-

procedure jointzw at the end of the next section.

Suppose  is an independent pair with simple approximations  and  as described in Distribution Approximations.

 and 

As functions of  and , respectively, the pair  is independent. Also each pair  is independent.

Use of MATLAB on pairs of simple random variables
In the single-variable case, we use array operations on the values of  to determine a matrix of values of . In the two-variable
case, we must use array operations on the calculating matrices  and  to obtain a matrix  whose elements are . To obtain
the distribution for , we may use the m-function csort on  and the joint probability matrix . A first step, then, is
the use of jcalc or icalc to set up the joint distribution and the calculating matrices. This is illustrated in the following example.

% file jdemo3.m 

% data for joint simple distribution 

X = [-4 -2 0 1 3]; 

Y = [0 1 2 4]; 

P = [0.0132    0.0198    0.0297    0.0209    0.0264; 

(v) = vfZ 0 ≤ v≤ 1 (v) = (2 −v)fZ 1 ≤ v≤ 2

(v) = (v)v+ (2 −v)fZ I[0,1] I(1,2]

(t, u) = (t) (u)fXY I[0,1] I[0,1] (t, v− t) = (t) (v− t)fXY I[0,1] I[0,1] 0 ≤ v− t ≤ 1 v−1 ≤ t ≤ v

(t, v− t) = (v) (t) + (v) (t)fXY I[0,1] I[0,v] I(1,2] I[v−1,1]

t

{X,Y } Z = g(X),W = h(Y )

(M) = [ (M)]Z−1 X−1 g−1 (N) = [ (N)]W −1 Y −1 h−1

{ (M), (N)}Z−1 W −1 {M ,N} {Z,W}

{X,Y } Z = g(X) W = g(X) {Z,W} Z = g(X,Y )

W = h(X,Y ) {Z,W}

Example 10.2.18 . Independence of simple approximations to an independent pair

{X,Y } Xs Ys

= = (X)Xs ∑n
i=1 tiIEi

∑n
i=1 tiIMi

= = (Y )Ys ∑m
j=1 ujIFj

∑m
j=1 ujINj

X Y { , }Xs Ys { (X), (Y )}IMi
INj

X g(X)

t u G g( , )ti uj
Z = g(X,Y ) G P

Example 10.2.19 .

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10877?pdf


10.2.4 https://stats.libretexts.org/@go/page/10877

     0.0372    0.0558    0.0837    0.0589    0.0744; 

     0.0516    0.0774    0.1161    0.0817    0.1032; 

     0.0180    0.0270    0.0405    0.0285    0.0360]; 

jdemo3                % Call for data 

jcalc                 % Set up of calculating matrices t, u. 

Enter JOINT PROBABILITIES (as on the plane)  P 

Enter row matrix of VALUES of X  X 

Enter row matrix of VALUES of Y  Y 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

G = t.^2 -3*u;        % Formation of G = [g(ti,uj)] 

M = G >= 1;           % Calculation using the XY distribution 

PM = total(M.*P)      % Alternately, use total((G>=1).*P) 

PM =  0.4665 

[Z,PZ] = csort(G,P); 

PM = (Z>=1)*PZ'     % Calculation using the Z distribution 

PM =  0.4665 

disp([Z;PZ]')         % Display of the Z distribution 

  -12.0000    0.0297 

  -11.0000    0.0209 

   -8.0000    0.0198 

   -6.0000    0.0837 

   -5.0000    0.0589 

   -3.0000    0.1425 

   -2.0000    0.1375 

         0    0.0405 

    1.0000    0.1059 

    3.0000    0.0744 

    4.0000    0.0402 

    6.0000    0.1032 

    9.0000    0.0360 

   10.0000    0.0372 

   13.0000    0.0516 

   16.0000    0.0180

We extend the example above by considering a function  which has a composite definition.

Let

 Determine the distribution for 

H = t.*(t+u>=1) + (t.^2 + u.^2).*(t+u<1);  % Specification of h(t,u) 

  

  

  

[W,PW] = csort(H,P);                       % Distribution for W = h(X,Y) 

disp([W;PW]') 

W = h(X,Y )

Example 10.2.20 . Continuation of example 10.2.19

W = {
X

+X2 Y 2

 for X+Y ≥ 1
 for X+Y < 1

W
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   -2.0000    0.0198 

         0    0.2700 

    1.0000    0.1900 

    3.0000    0.2400 

    4.0000    0.0270 

    5.0000    0.0774 

    8.0000    0.0558 

   16.0000    0.0180 

   17.0000    0.0516 

   20.0000    0.0372 

   32.0000    0.0132 

ddbn                                        % Plot of distribution function 

Enter row matrix of values  W 

Enter row matrix of probabilities  PW 

print                                       % See Figure 10.2.4 

Figure 10.2.4. Distribution for random variable  in Example 10.2.20.

Joint distributions for two functions of 

In previous treatments, we use csort to obtain the marginal distribution for a single function . It is often desirable to
have the joint distribution for a pair  and . As special cases, we may have  or . Suppose

 has values [    ] and  has calues [    ]

The joint distribution requires the probability of each pair, . Each such pair of values corresponds to a set of
pairs of  and  values. To determine the joint probability matrix  for  arranged as on the plane, we assign to each
position  the probability , with values of  increasing upward. Each pair of ( ) values corresponds
to one or more pairs of ( ) values. If we select and add the probabilities corresponding to the latter pairs, we have 

. This may be accomplished as follows:

Set up calculation matrices  and  as with jcalc. 
Use array arithmetic to determine the matrices of values  and . 
Use csort to determine the  and  value matrices and the  and  marginal probability matrices. 
For each pair , use the MATLAB function find to determine the positions a for which

(H==W(i))&(G==Z(j))

Assign to the ( ) position in the joint probability matrix  for ( ) the probability

PZW(i, j) = total (P(a))

W

(X,Y )

Z = g(X,Y )

Z = g(X,Y ) W = h(X,Y ) Z = X W = Y

Z z1 z2 ⋅ ⋅ ⋅ zc W w1 w2 ⋅ ⋅ ⋅ wc

P (W = ,Z = )wi zj
X Y PZW (Z,W )

(i, j) P (W = ,Z = )wi zj W W ,Z

Y ,X

P (W = ,Z = )wi zj

t u

G= [g(t, u)] H = [h(t, u)]

Z W PZ PW

( , )wi zj

i, j PZW Z,W
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We first examine the basic calculations, which are then implemented in the m-procedure jointzw.

% file jdemo7.m 

P = [0.061  0.030  0.060  0.027  0.009; 

       0.015  0.001  0.048  0.058  0.013; 

       0.040  0.054  0.012  0.004  0.013; 

       0.032  0.029  0.026  0.023  0.039; 

       0.058  0.040  0.061  0.053  0.018; 

       0.050  0.052  0.060  0.001  0.013]; 

X = -2:2; 

Y = -2:3; 

jdemo7                      % Call for data in jdemo7.m 

jcalc                       % Used to set up calculation matrices t, u 

- - - - - - - - - - 

H = u.^2                    % Matrix of values for W = h(X,Y) 

H = 

     9     9     9     9     9 

     4     4     4     4     4 

     1     1     1     1     1 

     0     0     0     0     0 

     1     1     1     1     1 

     4     4     4     4     4 

G = abs(t)                  % Matrix of values for Z = g(X,Y) 

  

G = 

     2     1     0     1     2 

     2     1     0     1     2 

     2     1     0     1     2 

     2     1     0     1     2 

     2     1     0     1     2 

     2     1     0     1     2 

[W,PW] = csort(H,P)         % Determination of marginal for W 

W =     0     1     4     9 

PW =    0.1490    0.3530    0.3110    0.1870 

[Z,PZ] = csort(G,P)         % Determination of marginal for Z 

Z =     0     1     2 

PZ =    0.2670    0.3720    0.3610 

r = W(3)                    % Third value for W 

r =   4 

s = Z(2)                    % Second value for Z 

s =   1 

To determine , we need to determine the ( ) positions for which this pair of ( ) values is taken on. By
inspection, we find these to be (2,2), (6,2), (2,4), and (6,4). Then  is the total probability at these positions.
This is 0.001 + 0.052 + 0.058 + 0.001 = 0.112. We put this probability in the joint probability matrix  at the 

 position. This may be achieved by MATLAB with the following operations.

Example 10.2.21 . Illustration of the basic joint calculations

P (W = 4,Z = 1) t, u W ,Z

P (W = 4,Z = 1)

PZW

W = 4,Z = 1
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[i,j] = find((H==W(3))&(G==Z(2)));  % Location of (t,u) positions 

disp([i j])                         % Optional display of positions 

     2     2 

     6     2 

     2     4 

     6     4 

a = find((H==W(3))&(G==Z(2)));      % Location in more convenient form 

P0 = zeros(size(P));                % Setup of zero matrix 

P0(a) = P(a)                        % Display of designated probabilities in P 

P0 = 

         0         0         0         0         0 

         0    0.0010         0    0.0580         0 

         0         0         0         0         0 

         0         0         0         0         0 

         0         0         0         0         0 

         0    0.0520         0    0.0010         0 

PZW = zeros(length(W),length(Z))    % Initialization of PZW matrix 

PZW(3,2) = total(P(a))              % Assignment to PZW matrix with 

PZW =    0         0         0      % W increasing downward 

         0         0         0 

         0    0.1120         0 

         0         0         0 

PZW = flipud(PZW)                   % Assignment with W increasing upward 

PZW = 

         0         0         0 

         0    0.1120         0 

         0         0         0 

         0         0         0 

The procedure jointzw carries out this operation for each possible pair of  and  values (with the flipud  operation
coming only after all individual assignments are made).

% file jdemo3.m   data for joint simple distribution 

X = [-4 -2 0 1 3]; 

Y = [0 1 2 4]; 

P = [0.0132    0.0198    0.0297    0.0209    0.0264; 

     0.0372    0.0558    0.0837    0.0589    0.0744; 

     0.0516    0.0774    0.1161    0.0817    0.1032; 

     0.0180    0.0270    0.0405    0.0285    0.0360]; 

jdemo3          % Call for data 

jointzw         % Call for m-program 

Enter joint prob for (X,Y): P 

Enter values for X: X 

Enter values for Y: Y 

W Z

example 10.2.22. joint distribution for z = g(x,y) = ||x| - y| and w = h(x, y) = |xy|
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Enter expression for g(t,u): abs(abs(t)-u) 

Enter expression for h(t,u): abs(t.*u) 

Use array operations on Z, W, PZ, PW, v, w, PZW 

disp(PZW) 

    0.0132         0         0         0         0 

         0    0.0264         0         0         0 

         0         0    0.0570         0         0 

         0    0.0744         0         0         0 

    0.0558         0         0    0.0725         0 

         0         0    0.1032         0         0 

         0    0.1363         0         0         0 

    0.0817         0         0         0         0 

    0.0405    0.1446    0.1107    0.0360    0.0477 

EZ = total(v.*PZW) 

EZ =   1.4398 

  

ez = Z*PZ'       % Alternate, using marginal dbn 

ez =   1.4398 

EW = total(w.*PZW) 

EW =   2.6075 

ew = W*PW'       % Alternate, using marginal dbn 

ew =   2.6075 

M = v > w;           % P(Z>W) 

PM = total(M.*PZW) 

PM =   0.3390

At noted in the previous section, if  is an independent pair and ,

, then the pair { } is independent. However, if  and

, then in general the pair { } is not independent. We may illustrate this with the aid of the m-procedure jointzw

jdemo3 

itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is independent           % The pair {X,Y} is independent 

jointzw 

Enter joint prob for (X,Y): P 

Enter values for X: X 

Enter values for Y: Y 

Enter expression for g(t,u): t.^2 - 3*t  % Z = g(X) 

Enter expression for h(t,u): abs(u) + 3  % W = h(Y) 

Use array operations on Z, W, PZ, PW, v, w, PZW 

itest 

Enter matrix of joint probabilities  PZW 

The pair {X,Y} is independent           % The pair {g(X),h(Y)} is independent 

{X,Y } Z = g(X)

W = h(Y ) Z,W Z = g(X,Y )

W = h(X,Y ) Z,W

Example 10.2.23 . Functions of independent random variables
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jdemo3                                  % Refresh data 

jointzw 

Enter joint prob for (X,Y): P 

Enter values for X: X 

Enter values for Y: Y 

Enter expression for g(t,u): t+u         % Z = g(X,Y) 

Enter expression for h(t,u): t.*u        % W = h(X,Y) 

Use array operations on Z, W, PZ, PW, v, w, PZW 

itest 

Enter matrix of joint probabilities  PZW 

The pair {X,Y} is NOT independent  % The pair {g(X,Y),h(X,Y)} is not indep 

To see where the product rule fails, call for D  % Fails for all pairs

Absolutely continuous case: analysis and approximation

As in the analysis Joint Distributions, we may set up a simple approximation to the joint distribution and proceed as for simple
random variables. In this section, we solve several examples analytically, then obtain simple approximations.

Suppose the pair  has joint density . Let . Determine  such that .

Figure 10.2.5

Solution

Example 10.2.24 . Distribution for a product

{X,Y } fXY Z = XY Qv P (Z ≤ v) = P ((X,Y ) ∈ )Qv

= {(t, u) : tu ≤ v} = {(t, u) : t > 0, u ≤ v/t}⋁{(t, u) : t < 0, u ≥ v/t}}Qv
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Figure 10.2.6. Product of  with uniform joint distribution on the unit square.

 ~ uniform on unit square

. Then (see Figure 10.2.6)

 where 

Integration shows

 so that , 

For , .

% Note that although f = 1, it must be expressed in terms of t, u. 

tuappr 

Enter matrix [a b] of X-range endpoints  [0 1] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  200 

Enter number of Y approximation points  200 

Enter expression for joint density  (u>=0)&(t>=0) 

Use array operations on X, Y, PX, PY, t, u, and P 

G = t.*u; 

[Z,PZ] = csort(G,P); 

p = (Z<=0.5)*PZ' 

p =  0.8465                 % Theoretical value 0.8466, above

The pair  has joint density  on the region bounded by ,  and (see

Figure 7). Let . Determine .

X,Y

Example 10.2.25 .

{X,Y }

(t, u) = 1fXY

P (XY ≤ v) = ∫ 1du dt∫
Qv

= {(t, u) : 0 ≤ t ≤ 1, 0 ≤ u ≤ min {1, v/t}}Qv

(v) = P (XY ≤ v) = v(1 −ln (v))FZ (v) = −ln (v) = ln (1/v)fZ 0 < v≤ 1

v= 0.5 (0.5) = 0.8466FZ

Example 10.2.26 . Continuation of example 5 from "Random Vectors and Joint Distributions"

{X,Y } (t, u) = (t+2u)fXY

6

37
t = 0 t = 2 u = max {1, t}

Z = XY P (Z ≤ 1)
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Figure 10.2.7. Area of integration for Example 10.2.26 .

Analytic Solution

 where 

Reference to Figure 10.2.7 shows that

APPROXIMATE Solution

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 2] 

Enter number of X approximation points  300 

Enter number of Y approximation points  300 

Enter expression for joint density  (6/37)*(t + 2*u).*(u<=max(t,1)) 

Use array operations on X, Y, PX, PY, t, u, and P 

Q = t.*u<=1; 

PQ = total(Q.*P) 

PQ =  0.4853             % Theoretical value 0.4865, above 

G = t.*u;                % Alternate, using the distribution for Z 

[Z,PZ] = csort(G,P); 

PZ1 = (Z<=1)*PZ' 

PZ1 = 0.4853

In the following example, the function  has a compound definition. That is, it has a different rule for different parts of the plane.

P (Z ≤ 1) = P ((X,Y ) ∈ Q) Q = {(t, u) : u ≤ 1/t}

P ((X,Y ) ∈ Q = (t+2u)du dt+ (t+2u)du dt = 9/37 +9/37 = 18/37 ≈ 0.4865
6

37
∫ 1

0
∫ 1

0

6

37
∫ 2

1
∫ 1/t

0

g
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Figure 10.2.8. Regions for  in Example 10.2.27.

The pair  has joint density  on the unit square , .

for . Determine .

Analytical Solution

where  and . Reference to Figure 10.2.8 shows that this
is the part of the unit square for which . We may break up the integral into three parts. Let 

 and . Then

APPROXIMATE Solution

tuappr 

Enter matrix [a b] of X-range endpoints  [0 1] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  200 

Enter number of Y approximation points  200 

Enter expression for joint density  (2/3)*(t + 2*u) 

Use array operations on X, Y, PX, PY, t, u, and P 

Q = u <= t.^2; 

G = u.*Q + (t + u).*(1-Q); 

prob = total((G<=1/2).*P) 

prob =  0.2328          % Theoretical is 0.2322, above

The setup of the integrals involves careful attention to the geometry of the system. Once set up, the evaluation is elementary but
tedious. On the other hand, the approximation proceeds in a straightforward manner from the normal description of the problem.
The numerical result compares quite closely with the theoretical value and accuracy could be improved by taking more subdivision
points.

P (Z ≤ 1/2)

Example 10.2.27 . A compound function

{X,Y } (t, u) = (t+2u)fXY

2

3
0 ≤ t ≤ 1 0 ≤ u ≤ 1

Z = { = (X,Y )Y + (X,Y )(X+Y )
X

X+Y

for  −Y ≥ 0X2

for  −Y < 0X2 IQ IQc

Q = {(t, u) : u ≤ }t2 P (Z <= 0.5)

P (Z ≤ 1/2) = P (Y ≤ 1/2,Y ≤ ) +P (X+Y ≤ 1/2,Y > ) = P ((X,Y ) ∈ ⋁ )X2 X2 QA QB

= {(t, u) : u ≤ 1/2, u ≤ }QA t2 = {(t, u) : t+u ≤ 1/2, u > }QB t2

u ≤ min (max (1/2 − t, ), 1/2)t2

1/2 − =t1 t2
1 = 1/2t2

2

P (Z ≤ 1/2) = (t+2u)du dt+ (t+2u)du dt+ (t+2u)du dt = 0.2322
2

3
∫ t1

0 ∫ 1/2−t

0

2

3
∫ t2

t1
∫ t2

0

2

3
∫ 1
t2
∫ 1/2

0
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10.3: The Quantile Function

The Quantile Function

The quantile function for a probability distribution has many uses in both the theory and application of probability. If  is a
probability distribution function, the quantile function may be used to “construct” a random variable having  as its distributions
function. This fact serves as the basis of a method of simulating the “sampling” from an arbitrary distribution with the aid of a
random number generator. Also, given any finite class

 of random variables, an independent class  may be constructed, with each  and associated 
having the same (marginal) distribution. Quantile functions for simple random variables may be used to obtain an important
Poisson approximation theorem (which we do not develop in this work). The quantile function is used to derive a number of useful
special forms for mathematical expectation.

General concept—properties, and examples

If  is a probability distribution function, the associated quantile function  is essentially an inverse of . The quantile function is
defined on the unit interval (0, 1). For  continuous and strictly increasing at , then  iff . Thus, if  is a
probability value,  is the value of  for which .

   

The m-function norminv, based on the MATLAB function erfinv (inverse error function), calculates values of  for the normal
distribution.

The restriction to the continuous case is not essential. We consider a general definition which applies to any probability distribution
function.

Definition: If  is a function having the properties of a probability distribution function, then the quantile function for  is given
by

 

We note

If , then 
If , then 

Hence, we have the important property:

(Q1)  iff  

The property (Q1) implies the following important property:

(Q2)If ~ uniform (0, 1), then  has distribution function . To see this, note that 
.

Property (Q2) implies that if  is any distribution function, with quantile function , then the random variable , with 
uniformly distributed on (0, 1), has distribution function .

Suppose  is an arbitrary class of random variables with corresponding distribution functions 
. Let  be the respective quantile functions. There is always an independent class 
 iid uniform (0, 1) (marginals for the joint uniform distribution on the unit hypercube with sides (0, 1)). Then

the random variables , , form an independent class with the same marginals as the .

Several other important properties of the quantile function may be established.

F

F

{ : 1 ≤ i ≤ n}Xi { : 1 ≤ i ≤ n}Yi Xi Yi

F Q F

F t Q(u) = t F (t) = u u

t = Q(u) t P (X ≤ t) = u

Example 10.3.28: The Weibull distribution (3, 2, 0)

u = F (t) = 1 −e−3t2
t ≥ 0 ⇒ t = Q(u) = −ln (1 −u)/3

− −−−−−−−−−−
√

Example 10.3.29:  The Normal Distribution

Q

F F

Q(u) = inf {t : F (t) ≥ u} ∀u ∈ (0, 1)

F ( ) ≥t∗ u∗ ≥ inf {t : F (t) ≥ } = Q( )t∗ u∗ u∗

F ( ) <t∗ u∗ < inf {t : F (t) ≥ } = Q( )t∗ u∗ u∗

Q(u) ≤ t u ≤ F (t) ∀u ∈ (0, 1)

U X = Q(U) = FFX

(t) = P (Q(U) ≤ t] = P [U ≤ F (t)] = F (t)FX

F Q X = Q(U) U

F

Example 10.3.30:  Independent classes with prescribed distributions

{ : 1 ≤ i ≤ n}Xi

{ : 1 ≤ i ≤ n}Fi { : 1 ≤ i ≤ n}Qi

{ : 1 ≤ i ≤ n}Ui

= ( )Yi Qi Ui 1 ≤ i ≤ n Xi
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Figure 10.3.9. Graph of quantile function from graph of distribution function,

 is left-continuous, whereas  is right-continuous.

If jumps are represented by vertical line segments, construction of the graph of  may be obtained by the following two
step procedure:

Invert the entire figure (including axes), then
Rotate the resulting figure 90 degrees counterclockwise

This is illustrated in Figure 10.3.9. If jumps are represented by vertical line segments, then jumps go into flat segments and flat
segments go into vertical segments.

If  is discrete with probability  at , , then  has jumps in the amount  at each  and is constant between. The
quantile function is a left-continuous step function having value  on the interval , where  and . This
may be stated

If , then  for 

Suppose simple random variable  has distribution

 [-2 0 1 3] \(PX = [0.2 0.1 0.3 0.4]

Figure 1 shows a plot of the distribution function . It is reflected in the horizontal axis then rotated counterclockwise to give
the graph of  versus .

Q F

u = Q(t)

X pi ti 1 ≤ i ≤ n F pi ti

ti ( , ]bi−1 bi = 0b0 =bi ∑i
j=1 pj

F ( ) =ti bi Q(u) = ti F ( ) < u ≤ F ( )ti−1 ti

Example 10.2.31: Quantile function for a simple random variable

X

X =

FX

Q(u u
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Figure 10.3.10. Distribution and quantile functions for Example 10.3.31.

We use the analytic characterization above in developing a number of m-functions and m-procedures.

m-procedures for a simple random variable

The basis for quantile function calculations for a simple random variable is the formula above. This is implemented in the m-
function dquant, which is used as an element of several simulation procedures. To plot the quantile function, we use dquanplot
which employs the stairs function and plots  vs the distribution function . The procedure dsample employs dquant to obtain a
“sample” from a population with simple distribution and to calculate relative frequencies of the various values.

X =  [-2.3 -1.1 3.3 5.4 7.1 9.8]; 

PX = 0.01*[18 15 23 19 13 12]; 

dquanplot 

Enter VALUES for X  X 

Enter PROBABILITIES for X  PX     % See Figure 10.3.11 for plot of results 

rand('seed',0)                 % Reset random number generator for reference 

dsample 

Enter row matrix of values  X 

Enter row matrix of probabilities  PX 

Sample size n  10000 

    Value      Prob    Rel freq 

   -2.3000    0.1800    0.1805 

   -1.1000    0.1500    0.1466 

    3.3000    0.2300    0.2320 

    5.4000    0.1900    0.1875 

    7.1000    0.1300    0.1333 

    9.8000    0.1200    0.1201 

X F X

Example 10.3.32: Simple Random Variable
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Sample average ex = 3.325 

Population mean E[X] = 3.305 

Sample variance = 16.32 

Population variance Var[X] = 16.33 

Figure 10.3.11. Quantile function for Example 10.3.32.

Sometimes it is desirable to know how many trials are required to reach a certain value, or one of a set of values. A pair of m-
procedures are available for simulation of that problem. The first is called targetset. It calls for the population distribution and then
for the designation of a “target set” of possible values. The second procedure, targetrun, calls for the number of repetitions of the
experiment, and asks for the number of members of the target set to be reached. After the runs are made, various statistics on the
runs are calculated and displayed.

X = [-1.3 0.2 3.7 5.5 7.3];     % Population values 

PX = [0.2 0.1 0.3 0.3 0.1];     % Population probabilities 

E = [-1.3 3.7];                 % Set of target states 

targetset 

Enter population VALUES  X 

Enter population PROBABILITIES  PX 

The set of population values is 

   -1.3000    0.2000    3.7000    5.5000    7.3000 

Enter the set of target values  E 

Call for targetrun 

rand('seed',0)                  % Seed set for possible comparison 

targetrun 

Enter the number of repetitions  1000 

The target set is 

   -1.3000    3.7000 

Enter the number of target values to visit  2 

The average completion time is 6.32 

The standard deviation is 4.089 

The minimum completion time is 2 

The maximum completion time is 30 

To view a detailed count, call for D. 

Example 10.3.33
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The first column shows the various completion times; 

the second column shows the numbers of trials yielding those times 

% Figure 10.6.4 shows the fraction of runs requiring t steps or less

Figure 10.3.12. Fraction of runs requiring  steps or less.

m-procedures for distribution functions

A procedure dfsetup utilizes the distribution function to set up an approximate simple distribution. The m-procedure quanplot is
used to plot the quantile function. This procedure is essentially the same as dquanplot, except the ordinary plot function is used in
the continuous case whereas the plotting function stairs is used in the discrete case. The m-procedure qsample is used to obtain a
sample from the population. Since there are so many possible values, these are not displayed as in the discrete case.

F = '0.4*(t + 1).*(t < 0) + (0.6 + 0.4*t).*(t >= 0)';  % String 

dfsetup 

Distribution function F is entered as a string 

variable, either defined previously or upon call 

Enter matrix [a b] of X-range endpoints  [-1 1] 

Enter number of X approximation points  1000 

Enter distribution function F as function of t  F 

Distribution is in row matrices X and PX 

quanplot

Enter row matrix of values  X 

Enter row matrix of probabilities  PX 

Probability increment h  0.01          % See Figure 10.3.13 for plot 

qsample 

Enter row matrix of X values  X 

Enter row matrix of X probabilities  PX 

Sample size n  1000 

Sample average ex = -0.004146 

Approximate population mean E(X) = -0.0004002     % Theoretical = 0 

Sample variance vx = 0.25 

Approximate population variance V(X) = 0.2664 

t

Example 10.3.34: Quantile function associated with a distribution function

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10878?pdf


10.3.6 https://stats.libretexts.org/@go/page/10878

Figure 10.3.13. Quantile function for Example 10.3.34.

 

m-procedures for density functions

An m- procedure acsetup is used to obtain the simple approximate distribution. This is essentially the same as the procedure tuappr,
except that the density function is entered as a string variable. Then the procedures quanplot and qsample are used as in the case of
distribution functions.

acsetup 

Density f is entered as a string variable. 

either defined previously or upon call. 

Enter matrix [a b] of x-range endpoints  [0 3] 

Enter number of x approximation points  1000 

Enter density as a function of t  '(t.^2).*(t<1) + (1- t/3).*(1<=t)' 

Distribution is in row matrices X and PX 

quanplot

Enter row matrix of values  X 

Enter row matrix of probabilities  PX 

Probability increment h  0.01               % See Figure 10.3.14 for plot 

rand('seed',0) 

qsample 

Enter row matrix of values  X 

Enter row matrix of probabilities  PX 

Sample size n  1000 

Sample average ex = 1.352 

Approximate population mean E(X) = 1.361  % Theoretical = 49/36 = 1.3622 

Sample variance vx = 0.3242 

Approximate population variance V(X) = 0.3474    % Theoretical = 0.3474 

Example 10.3.35:  Quantile function associated with a density function
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Figure 10.3.14. Quantile function for Example 10.3.35.
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10.4: Problems on Functions of Random Variables

Suppose  is a nonnegative, absolutely continuous random variable. Let , where , . Then 
. Use properties of the exponential and natural log function to show that

 for 

Answer

 iff  iff  iff , so that

Use the result of Exercise 10.4.1 to show that if  ~ exponential , then

 

Answer

Present value of future costs. Suppose money may be invested at an annual rate a, compounded continually. Then one dollar in
hand now, has a value  at the end of  years. Hence, one dollar spent  years in the future has a present valuee . Suppose
a device put into operation has time to failure (in years)  ~ exponential ( ). If the cost of replacement at failure is  dollars,
then the present value of the replacement is . Suppose , , and  $1000.

a. Use the result of Exercise 10.4.2. to determine the probability .
b. Use a discrete approximation for the exponential density to approximate the probabilities in part (a). Truncate  at 1000

and use 10,000 approximation points.

Answer

v = [700 500 200]; 

P = (v/1000).^(10/7) 

P =  0.6008    0.3715    0.1003 

tappr 

Enter matrix [a b] of x-range endpoints  [0 1000] 

Enter number of x approximation points  10000 

Enter density as a function of t  0.1*exp(-t/10) 

Use row matrices X and PX as in the simple case 

G = 1000*exp(-0.07*t); 

PM1 = (G<=700)*PX' 

PM1 =  0.6005 

PM2 = (G<=500)*PX' 

Exercise 10.4.1

X Z = g(X) = Ce−aX a > 0 C > 0

0 < Z ≤ C

(v) = 1 − (− )FZ FX

In (v/C)

a
0 < v≤ C

Z = C ≤ ve−aX ≤ v/Ce−aX −aX ≤ In (v/C) X ≥ −In (v/C)/a

(v) = P (Z ≤ v) = P (X ≥ −In (v/C)/a) = 1 − (− )FZ FX

In (v/C)

a

Exercise 10.4.2

X (λ)

(v) = (FZ

v

C
)λ/a 0 < v≤ C

(v) = 1 −[1 −exp(− ⋅ In (v/C))] = (FZ

λ

a

v

C
)λ/a

Exercise 10.4.3

eax x x −ax

X λ C

Z = Ce−aX λ = 1/10 a = 0.07 C =

Z ≤ 700, 500, 200

X

P (Z ≤ v) = (
v

1000
)10/7
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PM2 =  0.3716 

PM3 = (G<=200)*PX' 

PM3 =  0.1003

Optimal stocking of merchandise. A merchant is planning for the Christmas season. He intends to stock m units of a certain
item at a cost of c per unit. Experience indicates demand can be represented by a random variable  ~ Poisson ( ). If units
remain in stock at the end of the season, they may be returned with recovery of  per unit. If demand exceeds the number
originally ordered, extra units may be ordered at a cost of s each. Units are sold at a price  per unit. If  is the gain
from the sales, then

For , 
For , 

Let . Then

Suppose      .

Approximate the Poisson random variable  by truncating at 100. Determine .

Answer

mu = 50; 

D = 0:100; 

c = 30; 

p = 50; 

r = 20; 

s = 40; 

m = 50; 

PD = ipoisson(mu,D); 

G = (p - s)*D + (s - c)*m +(s - r)*(D - m).*(D <= m); 

M = (500<=G)&(G<=1100); 

PM = M*PD' 

PM =  0.9209 

  

[Z,PZ] = csort(G,PD);         % Alternate: use dbn for Z 

m = (500<=Z)&(Z<=1100); 

pm = m*PZ' 

pm =  0.9209 

(See Example 2 from "Functions of a Random Variable") The cultural committee of a student organization has arranged a
special deal for tickets to a concert. The agreement is that the organization will purchase ten tickets at $20 each (regardless of
the number of individual buyers). Additional tickets are available according to the following schedule:

11-20, $18 each
21-30, $16 each
31-50, $15 each
51-100, $13 each

Exercise 10.4.4

D μ

r

p Z = g(D)

t ≤ m g(t) = (p−c)t−(c−r)(m− t) = (p−r)t+(r−c)m

t > m g(t) = (p−c)m+(t−m)(p−s) = (p−s)t+(s−c)m

M = (−∞,m]

g(t) = (t)[(p−r)t+(r−c)m] + (t)[(p−s)t+(s−c)m]IM IM

μ = 50 m = 50 c = 30 p = 50 r = 20 s = 40

D P (500 ≤ Z ≤ 1100)

Exercise 10.4.5
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If the number of purchasers is a random variable , the total cost (in dollars) is a random quantity  described by

where , , , 

Suppose ~ Poisson (75). Approximate the Poisson distribution by truncating at 150. Determine , 
 and .

Answer

X = 0:150; 

PX = ipoisson(75,X); 

G = 200 + 18*(X - 10).*(X>=10) + (16 - 18)*(X - 20).*(X>=20) + ... 

     (15 - 16)*(X- 30).*(X>=30) + (13 - 15)*(X - 50).*(X>=50); 

P1 = (G>=1000)*PX' 

P1 =  0.9288 

P2 = (G>=1300)*PX' 

P2 =  0.1142 

P3 = ((900<=G)&(G<=1400))*PX' 

P3 =  0.9742 

[Z,PZ] = csort(G,PX);         % Alternate: use dbn for Z 

p1 = (Z>=1000)*PZ' 

p1 =  0.9288

(See Exercise 6 from "Problems on Random Vectors and Joint Distributions", and Exercise 1 from "Problems on Independent
Classes of Random Variables")) The pair  has the joint distribution

(in m-file npr08_06.m):

 [-2.3 -0.7 1.1 3.9 5.1]  [1.3 2.5 4.1 5.3]

Determine . Let .

Determine  and .

Answer

npr08_06 

Data are in X, Y, P 

jcalc 

Enter JOINT PROBABILITIES (as on the plane)  P 

Enter row matrix of VALUES of X  X 

Enter row matrix of VALUES of Y  Y 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

P1 = total((max(t,u)<=4).*P) 

X Z = g(X)

g(X) = 200 +18 (X)(X−10) +(16 −18) (X)(X−20)+IM1 IM2

(15 −16) (X)(X−30) +(13 −15) (X)(X−50)IM3 IM4

M1 = [10, ∞) M2 = [20, ∞) M3 = [30, ∞) M4 = [50, ∞)

X P (Z ≥ 1000)

P (Z ≥ 1300) P (900 ≤ Z ≤ 1400)

Exercise 10.4.6

{X,Y }

X = Y =

P =

⎡

⎣

⎢⎢
⎢

0.0483

0.0437

0.0713

0.0667

0.0357

0.0323

0.0527

0.0493

0.0420

0.0380

0.0620

0.0580

0.0399

0.0361

0.0609

0.0651

0.0441

0.0399

0.0551

0.0589

⎤

⎦

⎥⎥
⎥

P (max {X,Y } ≤ 4) Z = 3 +3 Y −X3 X2 Y 3

P (Z < 0) P (−5 < Z ≤ 300)
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P1 =  0.4860 

P2 = total((abs(t-u)>3).*P) 

P2 =  0.4516 

G = 3*t.^3 + 3*t.^2.*u - u.^3; 

P3 = total((G<0).*P) 

P3 =  0.5420 

P4 = total(((-5<G)&(G<=300)).*P) 

P4 =  0.3713 

[Z,PZ] = csort(G,P);          % Alternate: use dbn for Z 

p4 = ((-5<Z)&(Z<=300))*PZ' 

p4 =  0.3713

(See Exercise 2 from "Problems on Independent Classes of Random Variables") The pair  has the joint distribution (in
m-file npr09_02.m):

 [-3.9 -1.7 1.5 2 8 4.1]  [-2 1 2.6 5.1]

Determine , .

Answer

npr09_02 

Data are in X, Y, P 

jcalc 

Enter JOINT PROBABILITIES (as on the plane)  P 

Enter row matrix of VALUES of X  X 

Enter row matrix of VALUES of Y  Y 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

M1 = (t+u>=5)|(u<=2); 

P1 = total(M1.*P) 

P1 =  0.7054 

M2 = t.^2 + u.^2 <= 10; 

P2 = total(M2.*P) 

P2 =  0.3282

(See Exercsie 7 from "Problems on Random Vectors and Joint Distributions", and Exercise 3 from "Problems on Independent
Classes of Random Variables") The pair  has the joint distribution

(in m-file npr08_07.m):

t = -3.1 -0.5 1.2 2.4 3.7 4.9

Exercise 10.4.7

{X,Y }

X = Y =

P =

⎡

⎣

⎢⎢
⎢

0.0589

0.0962

0.0682

0.0868

0.0342

0.056

0.0398

0.0504

0.0304

0.0498

0.0350

0.0448

0.0456

0.0744

0.0528

0.0672

0.0209

0.0341

0.0242

0.0308

⎤

⎦

⎥⎥
⎥

P ({X+Y ≥ 5} ∪ {Y ≤ 2}) P ( + ≤ 10)X2 Y 2

Exercise 10.4.8

P (X = t,Y = u)
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u = 7.5 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203

4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231

-2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189

-3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

Determine , .

Answer

npr08_07 

Data are in X, Y, P 

jcalc 

Enter JOINT PROBABILITIES (as on the plane)  P 

Enter row matrix of VALUES of X  X 

Enter row matrix of VALUES of Y  Y 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

M1 = t.^2 - 3*t <=0; 

P1 = total(M1.*P) 

P1 =  0.4500 

M2 = t.^3 - 3*abs(u) < 3; 

P2 = total(M2.*P) 

P2 =  0.7876

For the pair  in Exercise 10.4.8, let . Determine and plot the distribution function
for .

Answer

G = 3*t.^2 + 2*t.*u - u.^2;  % Determine g(X,Y) 

[Z,PZ] = csort(G,P);         % Obtain dbn for Z = g(X,Y) 

ddbn                         % Call for plotting m-procedure 

Enter row matrix of VALUES  Z 

Enter row matrix of PROBABILITIES  PZ   % Plot not reproduced here

For the pair  in Exercise 8, let

Determine and plot the distribution function for .

Answer

H = t.*(t+u<=4) + 2*u.*(t+u>4); 

[W,PW] = csort(H,P); 

ddbn 

P ( −3X ≤ 0)X2 P ( −3|Y | < 3)X3

Exercise 10.4.9

{X,Y } Z = g(X,Y ) = 3 +2XY −X2 Y 2

Z

Exercise 10.4.10

{X,Y }

W = g(X,Y ) = { = (X,Y )X+ (X,Y )2Y
X

2Y
for X+Y ≤ 4
for X+Y > 4

IM IM c

W
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Enter row matrix of VALUES  W 

Enter row matrix of PROBABILITIES  PW   % Plot not reproduced here

For the distributions in Exercises 10-15 below

a. Determine analytically the indicated probabilities.
b. Use a discrete approximation to calculate the same probablities.'

 for ,  (see Exercise 15 from "Problems on Random Vectors and Joint

Distributions").

Determine 

Answer

, where 

,  (see figure)

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 3] 

Enter number of X approximation points  200 

Enter number of Y approximation points  300 

Enter expression for joint density  (3/88)*(2*t + 3*u.^2).*(u<=1+t)

Use array operations on X, Y, PX, PY, t, u, and P 

G = 4*t.*(t<=1) + (t+u).*(t>1); 

[Z,PZ] = csort(G,P); 

PZ2 = (Z<=2)*PZ' 

PZ2 =  0.1010                       % Theoretical = 563/5632 = 0.1000

Figure 10.4.1

 for , (see Exercise 17 from "Problems on Random Vectors and Joint

Distributions").

, 

Determine .

Answer

, 

Exercise 10.4.11

(t, u) = (2t+3 )fXY

3

88
u2 0 ≤ t ≤ 2 0 ≤ u ≤ 1 + t

Z = (X)4X+ (X)(X+Y )I[0,1] I(1,2]

P (Z ≤ 2)

P (Z ≤ 2) = P (Z ∈ Q = Q1M1⋁Q2M2) M1 = {(t, u) : 0 ≤ t ≤ 1, 0 ≤ u ≤ 1 + t}

M2 = {(t, u) : 1 < t ≤ 2, 0 ≤ u ≤ 1 + t}

Q1 = {(t, u) : 0 ≤ t ≤ 1/2} Q2 = {(t, u) : u ≤ 2 − t}

P = (2t+3 )du dt+ (2t+3 )du dt =
3

88
∫ 1/2

0
∫ 1+t

0
u2 3

88
∫ 2

1
∫ 2−t

0
u2 563

5632

Exercise 10.4.12

(t, u) =fXY

24

11
0 ≤ t ≤ 2 0 ≤ u ≤ min {1, 2 − t}

Z = (X,Y ) X+ (X,Y )IM
1

2
IM c Y 2 M = {(t, u) : u > t}

P (Z ≤ 1/4)

P (Z ≤ 1/4) = P ((X,Y ) ∈ ⋁ )M1Q1 M2Q2 = {(t, u) : 0 ≤ t ≤ u ≤ 1}M1
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  (see figure)

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  400 

Enter number of Y approximation points  200 

Enter expression for joint density  (24/11)*t.*u.*(u<=min(1,2-t)) 

Use array operations on X, Y, PX, PY, t, u, and P 

G = 0.5*t.*(u>t) + u.^2.*(u<t); 

[Z,PZ] = csort(G,P); 

pp = (Z<=1/4)*PZ' 

pp =  0.4844                        % Theoretical = 85/176 = 0.4830

 for ,  (see Exercise 18 from "Problems on Random Vectors and

Joint Distributions").

, 

Determine 

Answer

, 

  (see figure)

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 2] 

Enter number of X approximation points  300 

Enter number of Y approximation points  300 

Enter expression for joint density  (3/23)*(t + 2*u).*(u<=max(2-t,t)) 

Use array operations on X, Y, PX, PY, t, u, and P 

M = max(t,u) <= 1; 

G = M.*(t + u) + (1 - M)*2.*u; 

p = total((G<=1).*P) 

p =  0.1960                         % Theoretical = 9/46 = 0.1957

= {(t, u) : 0 ≤ t ≤ 2, 0 ≤ t ≤ min (t, 2 − t)}M2

= {(t, u) : t ≤ 1/2}Q1 = {(t, u) : u ≤ 1/2}Q2

P = tu du dt+ tu du dt+ tu du dt =
24

11
∫ 1/2

0 ∫ 1
0

24

11
∫ 3/2

1/2 ∫ 1/2
0

24

11
∫ 2

3/2 ∫
2−t

0

85

176

Exercise 10.4.13

(t, u) = (t+2u)fXY

3

23
0 ≤ t ≤ 2 0 ≤ u ≤ max {2 − t, t}

Z = (X,Y )(X+Y ) + (X,Y )2YIM IM c M = {(t, u) : max (t, u) ≤ 1}

P (Z ≤ 1)

P (Z ≤ 1) = P ((X,Y ) ∈ ⋁ )M1Q1 M2Q2 = {(t, u) : 0 ≤ t ≤ 1, 0 ≤ u ≤ 1 − t}M1

= {(t, u) : 1 ≤ t ≤ 2, 0 ≤ u ≤ t}M2

= {(t, u) : u ≤ 1 − t}Q1 = {(t, u) : u ≤ 1/2}Q2

P = (t+2u) du dt+ (t+2u) du dt =
3

23
∫ 1

0 ∫ 1−t

0

3

23
∫ 2

1 ∫ 1/2
0

9

46
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Figure 10.4.2

, for ,  (see Exercise 19 from "Problems on Random Vectors and

Joint Distributions").

, 

Determine .

Answer

, 

 

  (see figure)

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 2] 

Enter number of X approximation points  300 

Enter number of Y approximation points  300 

Enter expression for joint density  (12/179)*(3*t.^2 + u).*(u<=min(2,3-t)) 

Use array operations on X, Y, PX, PY, t, u, and P 

M = (t<=1)&(u>=1); 

Z = M.*(t + u) + (1 - M)*2.*u.^2; 

G = M.*(t + u) + (1 - M)*2.*u.^2; 

p = total((G<=2).*P) 

p =  0.6662                          % Theoretical = 119/179 = 0.6648

, for ,  (see Exercise 20 from "Problems on Random Variables

and joint Distributions")

, 

Determine .

Exercise 10.4.14

(t, u) = (3 +u)fXY

12

179
t2 0 ≤ t ≤ 2 0 ≤ u ≤ min {2, 3 − t}

Z = (X,Y )(X+Y ) + (X,Y )2IM IM c Y 2 M = {(t, u) : t ≤ 1, u ≥ 1}

P (Z ≤ 2)

P (Z ≤ 2) = P ((X,Y ) ∈ ⋁( ⋁ ) )M1Q1 M2 M3 Q2 = {(t, u) : 0 ≤ t ≤ 1, 1 ≤ u ≤ 2}M1

= {(t, u) : 0 ≤ t ≤ 1, 0 ≤ u ≤ 1}M2 = {(t, u) : 1 ≤ t ≤ 2, 0 ≤ u ≤ 3 − t}M3

= {(t, u) : u ≤ 1 − t}Q1 = {(t, u) : u ≤ 1/2}Q2

P = (3 +u)du dt+ (3 +u)du dt =
12

179
∫ 1

0
∫ 2−t

0
t2 12

179
∫ 2

1
∫ 1

0
t2 119

179

Exercise 10.4.15

(t, u) = (3t+2tu)fXY

12

227
0 ≤ t ≤ 2 0 ≤ u ≤ min {1 + t, 2}

Z = (X,Y )X+ (X,Y )IM IM c
Y

X
M = {(t, u) : u ≤ min (1, 2 − t)}

P (Z ≤ 1)
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Figure 10.4.3

Answer

, , 

  (see figure)

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 2] 

Enter number of X approximation points  400 

Enter number of Y approximation points  400 

Enter expression for joint density  (12/227)*(3*t+2*t.*u).*(u<=min(1+t,2)) 

Use array operations on X, Y, PX, PY, t, u, and P 

Q = (u<=1).*(t<=1) + (t>1).*(u>=2-t).*(u<=t); 

P = total(Q.*P) 

P =  0.5478                        % Theoretical = 124/227 = 0.5463

The class  is independent.

. Minterm probabilities are (in the usual order)

0.255 0.025 0.375 0.045 0.108 0.012 0.162 0.018

. The class  is independent with

  

 has distribution

Value -1.3 1.2 2.7 3.4 5.8

Probability 0.12 0.24 0.43 0.13 0.08

Determine .

Answer

% file npr10_16.m  Data for Exercise 16. 

cx = [-2 1 3 0]; 

pmx = 0.001*[255  25 375  45 108  12 162  18]; 

cy = [1 3 1 -3]; 

pmy = minprob(0.01*[32 56 40]); 

P (Z ≤ 1) = P ((X,Y ) ∈ ⋁ )M1Q1 V2Q2 = MM1 =M2 M c

= {(t, u) : 0 ≤ t ≤}Q1 = {(t, u) : u ≤ t}Q2

P = (3t+2tu)du dt+ (3t+2tu)du dt =
12

227
∫ 1

0
∫ 1

0

12

227
∫ 2

1
∫ t

2−t

124

227

Exercise 10.4.16

{X,Y ,Z}

X = −2 + +3IA IB IC

Y = +3 + −3ID IE IF {D,E,F}

P (D) = 0.32 P (E) = 0.56 P (F ) = 0.40

Z

P ( +3X > 3Z)X2 Y 2
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Z = [-1.3 1.2 2.7 3.4 5.8]; 

PZ = 0.01*[12 24 43 13  8]; 

disp('Data are in cx, pmx, cy, pmy, Z, PZ') 

npr10_16                % Call for data 

Data are in cx, pmx, cy, pmy, Z, PZ 

[X,PX] = canonicf(cx,pmx); 

[Y,PY] = canonicf(cy,pmy); 

icalc3 

Enter row matrix of X-values  X 

Enter row matrix of Y-values  Y 

Enter row matrix of Z-values  Z 

Enter X probabilities  PX 

Enter Y probabilities  PY 

Enter Z probabilities  PZ 

Use array operations on matrices X, Y, Z, 

PX, PY, PZ, t, u, v, and P 

M = t.^2 + 3*t.*u.^2 > 3*v; 

PM = total(M.*P) 

PM =  0.3587

The simple random variable X has distribution

 [-3.1 -0.5 1.2 2.4 3.7 4.9]  [0.15 0.22 0.33 0.12 0.11 0.07]
a. Plot the distribution function  and the quantile function .
b. Take a random sample of size  10,000. Compare the relative frequency for each value with the probability that value is

taken on.

Answer

X = [-3.1 -0.5 1.2 2.4 3.7 4.9]; 

PX = 0.01*[15 22 33 12 11  7]; 

ddbn 

Enter row matrix of VALUES  X 

Enter row matrix of PROBABILITIES  PX  % Plot not reproduced here 

dquanplot 

Enter VALUES for X  X 

Enter PROBABILITIES for X  PX          % Plot not reproduced here 

rand('seed',0)                      % Reset random number generator

dsample                             % for comparison purposes 

Enter row matrix of VALUES  X 

Enter row matrix of PROBABILITIES  PX 

Sample size n  10000 

    Value      Prob    Rel freq 

   -3.1000    0.1500    0.1490 

   -0.5000    0.2200    0.2164 

    1.2000    0.3300    0.3340 

Exercise 10.4.17

X = PX =

FX QX

n =
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    2.4000    0.1200    0.1184 

    3.7000    0.1100    0.1070 

    4.9000    0.0700    0.0752 

Sample average ex = 0.8792 

Population mean E[X] = 0.859 

Sample variance vx = 5.146 

Population variance Var[X] = 5.112 
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11.1: Mathematical Expectation- Simple Random Variables

Introduction 

The probability that real random variable  takes a value in a set  of real numbers is interpreted as the likelihood that the
observed value  on any trial will lie in . Historically, this idea of likelihood is rooted in the intuitive notion that if the
experiment is repeated enough times the probability is approximately the fraction of times the value of  will fall in .
Associated with this interpretation is the notion of the average of the values taken on. We incorporate the concept of mathematical
expectation into the mathematical model as an appropriate form of such averages. We begin by studying the mathematical
expectation of simple random variables, then extend the definition and properties to the general case. In the process, we note the
relationship of mathematical expectation to the Lebesque integral, which is developed in abstract measure theory. Although we do
not develop this theory, which lies beyond the scope of this study, identification of this relationship provides access to a rich and
powerful set of properties which have far reaching consequences in both application and theory.

Expectation for simple random variables 
The notion of mathematical expectation is closely related to the idea of a weighted mean, used extensively in the handling of
numerical data. Consider the arithmetic average  of the following ten numbers: 1, 2, 2, 2, 4, 5, 5, 8, 8, 8, which is given by

Examination of the ten numbers to be added shows that five distinct values are included. One of the ten, or the fraction 1/10 of
them, has the value 1, three of the ten, or the fraction 3/10 of them, have the value 2, 1/10 has the value 4, 2/10 have the value 5,
and 3/10 have the value 8. Thus, we could write

The pattern in this last expression can be stated in words: Multiply each possible value by the fraction of the numbers having that
value and then sum these products. The fractions are often referred to as the relative frequencies. A sum of this sort is known as a
weighted average.

In general, suppose there are  numbers  to be averaged, with m≤nm≤n distinct values . Suppose 
have value ,  have value , ,  have value . The  must add to . If we set , then the fraction  is called the
relative frequency of those numbers in the set which have the value , . The average  of the  numbers may be written

In probability theory, we have a similar averaging process in which the relative frequencies of the various possible values of are
replaced by the probabilities that those values are observed on any trial.

Definition. For a simple random variable  with values  and corresponding probabilities 
mathematical expectation, designated , is the probability weighted average of the values taken on by . In symbols

Note that the expectation is determined by the distribution. Two quite different random variables may have the same distribution,
hence the same expectation. Traditionally, this average has been called the mean, or the mean value, of the random variable .

1. Since , we have .
2. For  a constant , , so that .
3. If  then , so that

X M

X(ω) M

X M

x̄

= (1 +2 +2 +2 +4 +5 +5 +8 +8 +8)x̄
1

10

= (0.1 ⋅ 1 +0.3 ⋅ 2 +0.1 ⋅ 4 +0.2 ⋅ 5 +0.3 ⋅ 8)x̄

n { , , ⋅ ⋅ ⋅ }x1 x2 xn { , ⋅ ⋅ ⋅ }t1 t2 tm f1

t1 f2 t2 ⋅ ⋅ ⋅ fm tm fi n = /npi fi pi

ti 1 ≤ i ≤ m x̄ n

= =x̄
1

n
∑n

i=1 xi ∑m
j=1 tjpj

X { , , ⋅ ⋅ ⋅ }t1 t2 tn = P (X = )pi ti

E[X] X

E[X] = P (X = ) =∑n
i=1 ti ti ∑n

i=1 tipi

X

Example 11.1.1. Some special cases

X = a = 0 +aIE IE c IE E[a ] = aP (E)IE

X c X = cIΩ E[c] = cP (Ω) = c

X =∑n
i=1 tiIAi

aX = a∑n
i=1 tiIAi

E[aX] = a P ( ) = a P ( ) = aE[X]∑n
i=1 ti Ai ∑n

i=1 ti Ai
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Figure 1 is a drawing of the moment of a probability distribution about the origin. The expected value of X, E[X], is equal to the sum of the moments, which is equal to the center of mass. The drawing shows one
major horizontal line split in half by one major vertical line. As a title, the top of the drawing reads Negative Moments to the left of the vertical line, and Positive Moments to the right, which are meant to distinguish the
arrows and labels in the drawing. On the horizontal line are five black dots, two to the left of the vertical line and three to the right. Below the corresponding dots are the corresponding labels: t_1, t_2, t_3, t_4, and t_5.
Above the black dots are the following labels: p_1, p_2, p_3, p_4, and p_5. Above the horizontal line is another smaller horizontal line with arrows pointing in both directions. The label for the arrow pointing to the left
is t_2 p_2, and the label for the arrow on the left is t_3 p_3. A longer horizontal line sits further up on the drawing, which also has arrows pointing in both directions. and intersects the same vertical line. The arrows are
approximately twice as long as the two arrows below. The label for the arrow pointing to the left is t_1 p_1, and the label for the arrow to the left is t_4 p_4. finally, there is one horizontal line extending only to the right

of the vertical line, with an arrow pointing to the right. This line is longer in this direction than any of the arrows that sit below it pointing to the right. The arrow is labeled t_5 p_5.

Figure 1. Moment of a probability distribution about the origin.

Mechanical interpretation

In order to aid in visualizing an essentially abstract system, we have employed the notion of probability as mass. The distribution
induced by a real random variable on the line is visualized as a unit of probability mass actually distributed along the line. We
utilize the mass distribution to give an important and helpful mechanical interpretation of the expectation or mean value. In
Example 6 in "Mathematical Expectation: General Random Variables", we give an alternate interpretation in terms of mean-square
estimation.

Suppose the random variable  has values , with . This produces a probability mass distribution,
as shown in Figure 1, with point mass concentration in the amount of  at the point . The expectation is

Now |ti||ti| is the distance of point mass  from the origin, with  to the left of the origin iff  is negative. Mechanically, the sum
of the products tipitipi is the moment of the probability mass distribution about the origin on the real line. From physical theory, this
moment is known to be the same as the product of the total mass times the number which locates the center of mass. Since the total
mass is one, the mean value is the location of the center of mass. If the real line is viewed as a stiff, weightless rod with point mass 

 attached at each value  of , then the mean value  is the point of balance. Often there are symmetries in the distribution
which make it possible to determine the expectation without detailed calculation.

Let  be the number of spots which turn up on a throw of a simple six-sided die. We suppose each number is equally likely.
Thus the values are the integers one through six, and each probability is 1/6. By definition

Although the calculation is very simple in this case, it is really not necessary. The probability distribution places equal mass at
each of the integer values one through six. The center of mass is at the midpoint.

A child is told she may have one of four toys. The prices are $2.50. $3.00, $2.00, and $3.50, respectively. She choses one, with
respective probabilities 0.2, 0.3, 0.2, and 0.3 of choosing the first, second, third or fourth. What is the expected cost of her
selection?

For a simple random variable, the mathematical expectation is determined as the dot product of the value matrix with the
probability matrix. This is easily calculated using MATLAB.

X = [2 2.5 3 3.5];  % Matrix of values (ordered) 

PX = 0.1*[2 2 3 3]; % Matrix of probabilities 

EX = dot(X,PX)      % The usual MATLAB operation 

EX = 2.8500 

Ex = sum(X.*PX)     % An alternate calculation 

Ex = 2.8500 

ex = X*PX'          % Another alternate 

ex = 2.8500 

X { ; 1 ≤ i ≤ n}ti P (X = ) =ti pi

pi ti

∑i tipi

pi pi ti

pi ti X μX

Example 11.1.2. the number of spots on a die

X

E[X] = ⋅ 1 + ⋅ 2 + ⋅ 3 + ⋅ 4 + ⋅ 5 + ⋅ 6 = (1 +2 +3 +4 +5 +6) =
1

6

1

6

1

6

1

6

1

6

1

6

1

6

7

2

Example 11.1.3. a simple choice

E[X] = 2.00 ⋅ 0.2 +2.50 ⋅ 0.2 +3.00 ⋅ 0.3 +3.50 ⋅ 0.3 +2.85

matlab calculation for example 11.1.3
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Expectation and primitive form

The definition and treatment above assumes  is in canonical form, in which case

, where , implies 

We wish to ease this restriction to canonical form.

Suppose simple random variable  is in a primitive form

, where  is a partition

We show that

Before a formal verification, we begin with an example which exhibits the essential pattern. Establishing the general case is simply
a matter of appropriate use of notation.

, with  a partition

inspection shows the distinct possible values of  to be 1, 2, or 3. Also

,  and 

so that

, , and 

Now

To establish the general pattern, consider . We identify the distinct set of values contained in the set 
. Suppose these are . For any value  in the range, identify the index set  of those  such

that . Then the terms

, where 

By the additivity of probability

Since for each  we have , we have

— □

Thus, the defining expression for expectation thus holds for X in a primitive form.

An alternate approach to obtaining the expectation from a primitive form is to use the csort operation to determine the distribution
of  from the coefficients and probabilities of the primitive form.

Suppose  in a primitive form is

with respective probabilities

X

X =∑n
i=1 tiIAi

= {X = }Ai ti E[X] = P ( )∑n
i=1 ti Ai

X

X =∑
m
j=1 cjICj { : 1 ≤ j ≤ m}Cj

E[X] = P ( )∑
m

j=1 cj Cj

Example 11.1.4. simple random variable x in primitive form

X = +2 + +3 +2 +2IC1
IC2

IC3
IC4

IC5
IC6

{ , , , , , }C1 C2 C3 C4 C5 C6

X

= {X = 1} = ⋁A1 C1 C3 = {X = 2} = ⋁ ⋁A2 C2 C5 C6 = {X = 3} =A3 C4

P (A −1) = P ( ) +P ( )C1 C3 P ( ) = P ( ) +P ( ) +P ( )A2 C2 C5 C6 P ( ) = P ( )A3 C4

E[X] = P ( ) +2P ( ) +3P ( ) = P ( ) +P ( ) +2[P ( ) +P ( ) +P ( )] +3P ( )A1 A2 A3 C1 C3 C2 C5 C6 C4

= P ( ) +2P ( ) +P ( ) +3P ( ) +2P ( ) +2P ( )C1 C2 C3 C4 C5 C6

X =∑
m
j=1 cjICj

{ : 1 ≤ j ≤ m}cj < < ⋅ ⋅ ⋅ <t1 t2 tn ti Ji j

=cj ti

= =∑Ji
cjICj

ti ∑Ji
ICj

tiIAi
=Ai ⋁j∈Ji

Cj

P ( ) = P (X = ) = P ( )Ai ti ∑j∈Ji
Cj

j ∈ Ji =cj ti

E[X] = P ( ) = P ( ) = P ( ) = P ( )∑n
i=1 ti Ai ∑n

i=1 ti ∑j∈Ji
Cj ∑n

i=1 ∑j∈Ji
cj Cj ∑m

j=1 cj Cj

X

Example 11.1.5. Alternate determinations of E[x]

X

X = +2 + +3 +2 +2 + +3 +2 +IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10

P ( ) = 0.08, 0.11, 0.06, 0.13, 0.05, 0.08, 0.12, 0.07, 0.14, 0.16Ci
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c = [1 2 1 3 2 2 1 3 2 1];             % Matrix of coefficients 

pc = 0.01*[8 11 6 13 5 8 12 7 14 16];  % Matrix of probabilities 

EX = c*pc' 

EX = 1.7800                            % Direct solution 

[X,PX] = csort(c,pc);                  % Determinatin of dbn for X 

disp([X;PX]') 

    1.0000    0.4200 

    2.0000    0.3800 

    3.0000    0.2000 

Ex = X*PX'                             % E[X] from distribution 

Ex = 1.7800 

Linearity

The result on primitive forms may be used to establish the linearity of mathematical expectation for simple random variables.
Because of its fundamental importance, we work through the verification in some detail.

Suppose  and  (both in canonical form). Since

we have

Note that  and . The class of these sets for all possible pairs  forms a partition.
Thus, the last summation expresses  in a primitive form. Because of the result on primitive forms, above, we have

We note that for each  and for each 

 and 

Hence, we may write

Now  and  are simple if  and  are, so that with the aide of Example 11.1.1 we have

If  are simple, then so are , and . It follows that

By an inductive argument, this pattern may be extended to a linear combination of any finite number of simple random variables.
Thus we may assert

Linearity. The expectation of a linear combination of a finite number of simple random variables is that linear combination of the
expectations of the individual random variables.

— □

Expectation of a simple random variable in affine form

As a direct consequence of linearity, whenever simple random variable  is in affine form, then

Thus, the defining expression holds for any affine combination of indicator functions, whether in canonical form or not.

X =∑n
i=1 tiIAi Y =∑m

j=1 ujIBj

= = 1∑
n

i=1 IAi ∑
m

j=1 IBj

X +Y = ( ) + ( ) = ( + )∑n
i=1 tiIAi

∑m
j=1 IBj ∑m

j=1 ujIBj ∑
n
i=1 IAi

∑n
i=1 ∑

m
j=1 ti uj IAi

IBj

=IAi IBj IAiBj = {X = , Y = }AiBj ti uj (i, j)

Z = X +Y

E[X +Y ] = ( + )P ( ) = P ( ) + P ( )∑
n

i=1 ∑
m

j=1 ti uj AiBj ∑
n

i=1 ∑
m

j=1 ti AiBj ∑
n

i=1 ∑
m

j=1 uj AiBj

= P ( ) + P ( )∑
n
i=1 ti ∑

m
j=1 AiBj ∑

m
j=1 uj ∑

n
i=1 AiBj

i j

P ( ) = P ( )Ai ∑m
j=1 AiBj P ( ) = P ( )Bj ∑n

i=1 AiBj

E[X +Y ] = P ( ) + P ( ) = E[X] +E[Y ]∑n
i=1 ti Ai ∑m

j=1 uj Bj

aX bY X Y

E[aX +bY ] = E[aX] +E[bY ] = aE[X] +bE[Y ]

X, Y , Z aX +bY cZ

E[aX +bY +cZ] = E[aX +bY ] +cE[Z] = aE[X] +bE[Y ] +cE[Z]

X

E[X] = E[ + ] = + P ( )c0 ∑n
i=1 ciIEi

c0 ∑n
i=1 ci Ei
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This random variable appears as the number of successes in  Bernoulli trials with probability p of success on each component
trial. It is naturally expressed in affine form

 so that 

Alternately, in canonical form

, with , 

so that

, 

Some algebraic tricks may be used to show that the second form sums to , but there is no need of that. The computation for
the affine form is much simpler.

A bettor places three bets at $2.00 each. The first bet pays $10.00 with probability 0.15, the second pays $8.00 with probability
0.20, and the third pays $20.00 with probability 0.10. What is the expected gain?

Solution

The net gain may be expressed

, with , , 

Then

These calculations may be done in MATLAB as follows:

c = [10 8 20 -6]; 

p = [0.15 0.20 0.10 1.00]; % Constant a = aI_(Omega), with P(Omega) = 1 

E = c*p'

E = -0.9000 

Functions of simple random variables

If  is in a primitive form (including canonical form) and  is a real function defined on the range of , then

 a primitive form

so that

Alternately, we may use csort to determine the distribution for  and work with that distribution.

Caution. If  is in affine form (but not a primitive form)

 then 

so that

Suppose  in a primitive form is

with probabilities .

Example 11.1.6. binomial distribution (n,p)

n

X =∑
n

i=1 IEi E[X] = p = np∑
n

i=1

X = k∑
n
k=0 IAkn = P ( ) = P (X = k) = C(n, k)pk Akn pkqn−k q = 1 −p

E[X] = kC(n, k)∑
n
k=0 pkqn−k q = 1 −p

np

Example 11.1.7. Expected winnings

X = 10 +8 +20 −6IA IB IC P (A) = 0.15 P (B) = 0.20 P (C) = 0.10

E[X] = 10 ⋅ 0.15 +8 ⋅ 0.20 +20 ⋅ 0.10 −6 = −0.90

X g X

Z = g(X) = g( )∑
m

j=1 cj ICj

E[Z] = E[g(X)] = g( )P ( )∑m
j=1 cj Cj

Z

X

X = +c0 ∑
m
j=1 cjIEj g(X) ≠ g( ) + g( )c0 ∑

m
j=1 cj IEj

E[g(X)] ≠ g( ) + g( )P ( )c0 ∑
m

j=1 cj Ej

Example 11.1.8. expectation of a function of x

X

X = −3 − +2 −3 +4 − + +2 +3 +2IC1
IC2

IC3
IC4

IC5
IC6

IC7
IC8

IC9
IC10

P ( ) = 0.08, 0.11, 0.06, 0.13, 0.05, 0.08, 0.12, 0.07, 0.14, 0.16Ci
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Let . Determine .

c = [-3 -1 2 -3 4 -1 1 2 3 2];            % Original coefficients 

pc = 0.01*[0 11 6 13 5 8 12 7 14 16];     % Probabilities for C_j 

G = c.^2 + 2*c                            % g(c_j) 

G = 3  -1  8  3  24  -1  3  8  15  8 

EG = G*pc'                                % Direct computation 

EG = 6.4200 

[Z,PZ] = csort(G,pc);                     % Distribution for Z = g(X) 

disp([Z; PZ]') 

    -1.0000    0.1900 

     3.0000    0.3300 

     8.0000    0.2900 

    15.0000    0.1400 

    24.0000    0.0500 

EZ = Z*PZ'                                % E[Z] from distribution for Z 

EZ = 6.4200 

A similar approach can be made to a function of a pair of simple random variables, provided the joint distribution is available.
Suppose  and  (both in canonical form). Then

The  form a partition, so  is in a primitive form. We have the same two alternative possibilities: (1) direct calculation from
values of  and corresponding probabilities , or (2) use of csort to obtain the distribution
for .

We use the joint distribution in file jdemo1.m and let . To set up for calculations, we use jcalc.

% file jdemo1.m 

X = [-2.37 -1.93 -0.47 -0.11 0 0.57 1.22 2.15 2.97 3.74]; 

Y = [-3.06 -1.44 -1.21 0.07 0.88 1.77 2.01 2.84]; 

P = 0.0001*[ 53   8 167 170 184  18  67 122  18  12; 

             11  13 143 221 241 153  87 125 122 185; 

            165 129 226 185  89 215  40  77  93 187; 

            165 163 205  64  60  66 118 239  67 201; 

            227   2 128  12 238 106 218 120 222  30; 

             93  93  22 179 175 186 221  65 129   4; 

            126  16 159  80 183 116  15  22 113 167; 

            198 101 101 154 158  58 220 230 228 211]; 

jdemo1                   % Call for data 

jcalc                    % Set up 

Enter JOINT PROBABILITIES (as on the plane)   P 

Enter row matrix of VALUES of X  X 

Enter row matrix of VALUES of Y  Y 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

g(t) = +2tt2 E(g(X)]

X =∑
n

i=1 tiIAi Y =∑
m

j=1 ujIBj

Z = g(X, Y ) = g( , )∑
n
i=1 ∑

m
j=1 ti uj IAiBj

AiBj Z

g( , )ti uj P ( ) = P (X = , Y = )AiBj ti uj

Z

Example 11.1.9. expectation for z = g(x,y)

g(t, u) = +2tu −3ut2
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G = t.^2 + 2*t.*u - 3*u; % Calculation of matrix of [g(t_i, u_j)] 

EG = total(G.*P)         % Direct claculation of expectation 

EG = 3.2529 

[Z,PZ] = csort(G,P);     % Determination of distribution for Z 

EZ = Z*PZ'               % E[Z] from distribution 

EZ = 3.2529 

This page titled 11.1: Mathematical Expectation- Simple Random Variables is shared under a CC BY 3.0 license and was authored, remixed,
and/or curated by Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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11.2: Mathematical Expectation and General Random Variables
In this unit, we extend the definition and properties of mathematical expectation to the general case. In the process, we note the
relationship of mathematical expectation to the Lebesque integral, which is developed in abstract measure theory. Although we do
not develop this theory, which lies beyond the scope of this study, identification of this relationship provides access to a rich and
powerful set of properties which have far reaching consequences in both application and theory.

Extension to the General Case 
In the unit on Distribution Approximations, we show that a bounded random variable  can be represented as the limit of a
nondecreasing sequence of simple random variables. Also, a real random variable can be expressed as the difference 

 of two nonnegative random variables. The extension of mathematical expectation to the general case is based on
these facts and certain basic properties of simple random variables, some of which are established in the unit on expectation for
simple random variables. We list these properties and sketch how the extension is accomplished.

A condition on a random variable or on a relationship between random variables is said to hold almost surely, abbreviated
“a.s.” iff the condition or relationship holds for all  except possibly a set with probability zero.

Basic properties of simple random variables

(E0) : If  a.s. then . 
(E1): . 
(E2): Linearity.  implies | 
(E3): Positivity: monotonicity 
a. If  a.s. , then , with equality iff  a.s. . 
b. If  a.s. , then , with equality iff  a.s. . 
(E4): Fundamental lemma If  is bounded and  is an a.s. nonnegative, nondecreasing sequence with 

 for almost every , then . 
(E4a): If for all ,  a.s. and  a.s. , then  (i.e. , the expectation of the limit is the
limit of the expectations).

Ideas of the proofs of the fundamental properties

Modifying the random variable  on a set of probability zero simply modifies one or more of the  without changing 
Properties (E1) and (E2) are established in the unit on expectation of simple random variables..
Positivity (E3a) is a simple property of sums of real numbers. Modification of sets of probability zero cannot affect the
expectation.
Monotonicity (E3b) is a consequence of positivity and linearity.

 iff  a.s. and  iff 

The fundamental lemma (E4) plays an essential role in extending the concept of expectation. It involves elementary, but
somewhat sophisticated, use of linearity and monotonicity, limited to nonnegative random variables and positive coefficients.
We forgo a proof.
Monotonicity and the fundamental lemma provide a very simple proof of the monotone convergence theoem, often designated
MC. Its role is essential in the extension.

Nonnegative random variables

There is a nondecreasing sequence of nonnegative simple random variables converging to . Monotonicity implies the integrals of
the nondecreasing sequence is a nondecreasing sequence of real numbers, which must have a limit or increase without bound (in
which case we say the limit is infinite). We define .

Two questions arise.

Is the limit unique? The approximating sequences for a simple random variable are not unique, although their limit is the
same. 

X

X = −X+ X−

Definition: almost surely

ω

X = Y E[X] = E[Y ]

E(a ) = aP (E)IE
X =∑n

i=1 aiXi E[X] = E[ ]∑n
i=1 ai Xi

X ≥ 0 E[X] ≥ 0 X = 0

X ≥ Y E[X] ≥ E[Y ] X = Y

X ≥ 0 { : 1 ≤ n}Xn

  (ω) ≥ X(ω)limn Xn ω  E[ ] ≥ E[X]limn Xn

n 0 ≤ ≤Xn Xn+1 → XXn E[ ] → E[X]Xn

X Ai P ( )Ai

X ≥ Y X−Y ≥ 0 E[X] ≥ E[Y ] E[X] −E[Y ] = E[X−Y ] ≥ 0

X

E[X] = lim E[ ]Xn
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Is the definition consistent? If the limit random variable  is simple, does the new definition coincide with the old?

The fundamental lemma and monotone convergence may be used to show that the answer to both questions is affirmative, so that
the definition is reasonable. Also, the six fundamental properties survive the passage to the limit.

As a simple applications of these ideas, consider discrete random variables such as the geometric ( ) or Poisson ( ), which are
integer-valued but unbounded.

The random variable  may be expressed

, where  with 

Let

, where 

Then each  is a simple random variable with . If , then  for all .
Hence,  for all . By monotone convergence, . Now

If , then

 as 

Hence

We may use this result to establish the expectation for the geometric and Poisson distributions.

We have . . By the result of Example 11.2.1.

For  ~ geometric ( ),  so that 

We have . By the result of Example 11.2.1.

The general case

We make use of the fact that  , where both  and  are nonnegative. Then

 provided at least one of ,  is finite

Definition. If both  and  are finite,  is said to be integrable.

The term integrable comes from the relation of expectation to the abstract Lebesgue integral of measure theory.

Again, the basic properties survive the extension. The property (E0) is subsumed in a more general uniqueness property noted in
the list of properties discussed below.

X

p μ

Example 11.2.1: Unbounded, nonnegative, integer-valued random variables

X

X = k∑∞
k=0 IEk = {X = k}Ek P ( ) =Ek pk

= k +nXn ∑n−1
k=0 IEk IBn = {X ≥ n}Bn

Xn ≤Xn Xn+1 X(ω) = k (ω) = k = X(ω)Xn n ≥ k+1

(ω) → X(ω)Xn ω E[ ] → E[X]Xn

E[ ] = kP ( ) +nP ( )Xn ∑n−1
k=1 Ek Bn

kP ( ) < ∞∑∞
k=0 Ek

0 ≤ nP ( ) = n P ( ) ≤ kP ( ) → 0Bn ∑∞
k=n Ek ∑∞

k=n Ek n → ∞

E[X] =  E[ ] = kP ( )limn Xn ∑∞
k=0 Ak

Example 11.2.2: X~geometric ( )p

= P (X = k) = ppk qk 0 ≤ k

E[X] = kp = pq k = = q/p∑∞
k=0 qk ∑∞

k=1 qk−1 pq

(1 −q)2

Y −1 p = ppk qk−1 E[Y ] = E[X] = 1/p
1

q

Example 11.2.3: X~poisson ( )μ

=pk e−μ
μk

k!

E[X] = k = μ = μ = μe−μ∑∞
k=0

μk

k!
e−μ∑∞

k=1

μk−1

(k−1)!
e−μeμ

X = −X+ X− X+ X−

E[X] = E[ ] −E[ ]X+ X− E[ ]X+ E[ ]X−

E[ ]X+ E[ ]X− X

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10851?pdf


11.2.3 https://stats.libretexts.org/@go/page/10851

The development of expectation sketched above is exactly the development of the Lebesgue integral of the random variable 
as a measurable function on the basic probability space ( , , ), so that

As a consequence, we may utilize the properties of the general Lebesgue integral. In its abstract form, it is not particularly
useful for actual calculations. A careful use of the mapping of probability mass to the real line by random variable  produces
a corresponding mapping of the integral on the basic space to an integral on the real line. Although this integral is also a
Lebesgue integral it agrees with the ordinary Riemann integral of calculus when the latter exists, so that ordinary integrals may
be used to compute expectations.

Additional properties

The fundamental properties of simple random variables which survive the extension serve as the basis of an extensive and powerful
list of properties of expectation of real random variables and real functions of random vectors. Some of the more important of these
are listed in the table in Appendix E. We often refer to these properties by the numbers used in that table.

Some basic forms

The mapping theorems provide a number of basic integral (or summation) forms for computation.

In general, if  with distribution functions  and , we have the expectation as a Stieltjes integral.

If  and  are absolutely continuous, the Stieltjes integrals are replaced by

where limits of integration are determined by  or . Justification for use of the density function is provided by the
Radon-Nikodym theorem—property (E19).

If  is simple, in a primitive form (including canonical form), then

If the distribution for  is determined by a csort operation, then

The extension to unbounded, nonnegative, integer-valued random variables is shown in Example 11.2.1, above. The finite
sums are replaced by infinite series (provided they converge).

For ,

In the absolutely continuous case

For joint simple  (Section on Expectation for Simple Random Variables)

Mechanical interpretation and approximation procedures 

In elementary mechanics, since the total mass is one, the quantity  is the location of the center of mass. This
theoretically rigorous fact may be derived heuristically from an examination of the expectation for a simple approximating random
variable. Recall the discussion of the m-procedure for discrete approximation in the unit on Distribution Approximations The range
of  is divided into equal subintervals. The values of the approximating random variable are at the midpoints of the subintervals.
The associated probability is the probability mass in the subinterval, which is approximately , where  is the length of

Theoretical note

X

Ω F P

E[X] = X dP∫
Ω

(11.2.1)

X

Z = g(X) FX FZ

E[Z] = E[g(X)] = ∫ g(t) (dt) = ∫ u (du)FX FZ

X g(X)

E[Z] = ∫ g(t) (t) dt = ∫ u (du)fX FZ

fX fY

X

E[Z] = E[g(X)] = g( )P ( )∑m

j=1 cj Cj

Z = g(X)

E[Z] = P (Z = )∑n
k=1 vk vk

Z = g(X,Y )

E[Z] = E[g(X,Y )] = ∫ ∫ g(t, u) (dtdu) = ∫ v (dv)FXY FZ

E[Z] = E[g(X,Y )] = ∫ ∫ g(t, u) (t, u)dudt = ∫ v (v)dvfXY fZ

X,Y

E[Z] = E[g(X,Y )] = g( , )P (X = ,Y = )∑n

i=1 ∑
m

j=1 ti uj ti uj

E[X] = ∫ t (t) dtfX

X

( )dxfX ti dx
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the subinterval. This approximation improves with an increasing number of subdivisions, with corresponding decrease in dxdx 
is

The approximation improves with increasingly fine subdivisions. The center of mass of the approximating distribution approaches
the center of mass of the smooth distribution.

It should be clear that a similar argument for  leads to the integral expression

This argument shows that we should be able to use tappr to set up for approximating the expectation  as well as for
approximating , etc. We return to this in Section.

Mean values for some absolutely continuous distributions

Uniform on ,  The center of mass is at . To calculate the value formally, we write

Symmetric triangular on[ ] The graph of the density is an isoceles triangle with base on the interval . By symmetry,
the center of mass, hence the expectation, is at the midpoint .

Exponential( ) ,  Using a well known definite integral (see Appendix B), we have

Gamma( ) ,  Again we use one of the integrals in Appendix B to obtain

The last equality comes from the fact that .

Beta( ). ,  We use the fact that

, , .

Weibull( ).  , , , . Differentiation shows

, 

First, consider  ~ exponential . For this random variable

If  is exponential (1), then techniques for functions of random variables show that  ~ Weibull ( ).

Hence,

Normal( ) The symmetry of the distribution about  shows that . This, of course, may be verified by
integration. A standard trick simplifies the work.

We have used the fact that . If we make the change of variable  in the last integral, the integrand
becomes an odd function, so that the integral is zero. Thus, .

Xs

E[ ] = ( )dx ≈ ∫ t (t) dtXs ∑i tifX ti fX

g(X)

E[g(X)] = ∫ g(t) (t) dtfX

E[g(X)]

P (g(X) ∈ M)

[a, b] (t) =fX
1

b−a
a ≤ t ≤ b (a+b)/2

E[X] = ∫ t (t)dt = tdt = =fX
1

b−a
∫
b

a

−b2 a2

2(b−a)

b+a

2

a, b [a, b]

(a+b)/2

λ (t) = λfX e−λt 0 ≤ t

E[X] = ∫ t (t) dt = λt dt = 1/λfX ∫
∞

0 e−λt

α,λ (t) = (α)fX
1

Γ
tα−1λαe−λt 0 ≤ t

E[X] = ∫ t (t) dt = dt = = a/lambdafX
1

Γ
∫ ∞

0 λαtαe−λt
Γ(α+1)

λΓ(α)

Γ(α+1) = αΓ(α)

r, s (t) = (1 − tfX
Γ(r+s)

Γ(r)Γ(s)
tr−1 )s−1 0 < t < 1

(1 −u  du =∫ 1

0
ur−1 )s−1

Γ(r)Γ(s)

Γ(r+s)
r > 0 s > 0

E[X] = ∫ t (t) dt = (1 − t dt = ⋅ =fX
Γ(r+s)

Γ(r)Γ(s)
∫

1

0 tr )s−1
Γ(r+s)

Γ(r)Γ(s)

Γ(r+1)Γ(s)

Γ(r+s+1)

r

r+s

α,λ, v (t) = 1 −FX e−λ(t−v)
α

α > 0 λ > 0 v≥ 0 t ≥ v

(t) = αλ(t−vfX )α−1e−λ(t−v)α t ≥ v

Y (λ)

E[ ] = λ  dt =Y r ∫ ∞

0
tr e−λt Γ(r+1)

λr

Y [ Y +v
1

λ
]1/α α, lambda, v

E[X] = E[ ] +v= Γ( +1) +v
1

λ1/α
Y 1/α 1

λ1/α

1

α

μ, σ2 t = μ E[X] = μ

E[X] = t (t) dt = (t−μ) (t) dt+μ∫ ∞

−∞
fX ∫ ∞

−∞
fX

(t) dt = 1∫ ∞
−∞ fX x = t−μ

E[X] = μ
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Properties and Computation 

The properties in the table in Appendix E constitute a powerful and convenient resource for the use of mathematical expectation.
These are properties of the abstract Lebesgue integral, expressed in the notation for mathematical expectation.

In the development of additional properties, the four basic properties: (E1) Expectation of indicator functions, (E2) Linearity, (E3)
Positivity; monotonicity, and (E4a) Monotone convergence play a foundational role. We utilize the properties in the table, as
needed, often referring to them by the numbers assigned in the table.

In this section, we include a number of examples which illustrate the use of various properties. Some are theoretical examples,
deriving additional properties or displaying the basis and structure of some in the table. Others apply these properties to facilitate
computation

Probability may be expressed entirely in terms of expectation.

By properties (E1) and positivity (E3a), .
As a special cases of (E1), we have 
By the countable sums property (E8),

 implies 

Thus, the three defining properties for a probability measure are satisfied.

Remark. There are treatments of probability which characterize mathematical expectation with properties (E0) through (E4a), then
define . Although such a development is quite feasible, it has not been widely adopted.

Suppose  is a real random variable and . Then

To see this, note that  iff , so that  iff .

Similarly, if , then . We thus have, by (E1).

 and 

 is a minimum iff , in which case 

INTERPRETATION. If we approximate the random variable  by a constant , then for any ω the error of approximation is 
. The probability weighted average of the square of the error (often called the mean squared error) is .

This average squared error is smallest iff the approximating constant  is the mean value.

verification

We expand  and apply linearity to obtain

The last expression is a quadratic in  (since  and  are constants). The usual calculus treatment shows the
expression has a minimum for . Substitution of this value for  shows the expression reduces to .

A number of inequalities are listed among the properties in the table. The basis for these inequalities is usually some standard
analytical inequality on random variables to which the monotonicity property is applied. We illustrate with a derivation of the
important Jensen's inequality.

E[g(X)] = ∫ g(X) dP (11.2.2)

Example 11.2.4: Probability as expectation

P (A) = E[ ] ≥ 0IA
P (Ω) = E[ ] = 1IΩ

A =⋁i Ai P (A) = E[ ] = E[ ] = E[ ] = P ( )IA ∑i IAi
∑i IAi

∑i Ai

P (A) = E[ ]IA

Example 11.2.5: An indicator function pattern

X E = (M) = {ω : X(ω) ∈ M}X−1

= (X)IE IM

X(ω) ∈ M ω ∈ E (ω) = 1IE (X(ω)) = 1IM

E = (M) ∩ (N)X−1 Y −1 = (X) (Y )IE IM IN

P (X ∈ M) = E[ (X)]IM P (X ∈ M ,Y ∈ N) = E[ (X) (Y )]IM IN

Example 11.2.6: Alternate interpretation of the mean value

E[(X−c ])2 c = E[X] E[(X−E[X] ] = E[ ] − [X])2 X2 E2

X c

X(ω) −c E[(X−c ])2

c

(X−c)2

E[(X−c = E[ −2cX+ ] = E[ ] −2E[X]c+)2 X2 c2 X2 c2

c E[ ]X2 E[X]

c = E[X] c E[ ] − [X]X2 E2
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If  is a real random variable and  is a convex function on an interval  which includes the range of , then

verification

The function  is convex on  iff for each  there is a number  such that

This means there is a line through ( ) such that the graph of  lies on or above it. If , then by monotonicity 
 (this is the mean value property (E11)). We may choose . If we designate the

constant  by , we have

Recalling that  is a constant, we take expectation of both sides, using linearity and monotonicity, to get

Remark. It is easy to show that the function  is nondecreasing. This fact is used in establishing Jensen's inequality for
conditional expectation.

The product rule for expectations of independent random variables

Consider an independent pair  of simple random variables

  (both in canonical form)

We know that each pair  is independent, so that . Consider the product . According to
the pattern described after Example 9 from "Mathematical Expectation: Simple Random Variables."

The latter double sum is a primitive form, so that

Thus the product rule holds for independent simple random variables.

Suppose  is an independent pair, with an approximating simple pair . As functions of  and , respectively,
the pair  is independent. According to Example, above, the product rule  must hold.

For , , there exist nondecreasing sequences  and  of simple random variables
increasing to  and , respectively. The sequence  is also a nondecreasing sequence of simple random
variables, increasing to . By the monotone convergence theorem (MC)

, , and 

Since  for each , we conclude 

In the general case,

Application of the product rule to each nonnegative pair and the use of linearity gives the product rule for the pair 

Remark. It should be apparent that the product rule can be extended to any finite independent class.

Example 11.2.7: Jensen's inequality

X g I X

g I ∈ [a, b]t0 λ( )t0

g(t) ≥ g( ) +λ( )(t− )t0 t0 t0

, g( )t0 t0 g a ≤ X ≤ b

E(a) = a ≤ E[X] ≤ E[b] = b = E[X] ∈ It0

λ(E[X]) c

g(X) ≥ g(E[X]) +c(X−E[X])

E[X]

E[g(X)] ≥ g(E[X]) +c(E[X] −E[X]) = g(E[X])

λ(⋅)

Example 11.2.8: product rule for simple random variables

{X,Y }

X =∑n
i=1 tiIAi

Y =∑m
j=1 ujIBj

{ , }Ai Bj P ( ) = P ( )P ( )AiBj Ai Bj XY

XY = =∑n
i=1 tiIAi

∑m
j=1 ujIBj

∑n
i=1 ∑

m
j=1 tiujIAiBj

E[XY ] = P ( ) = P ( )P ( ) = ( P ( ))( P ( ))∑n
i=1 ∑

m
j=1 tiuj AiBj ∑n

i=1 ∑
m
j=1 tiuj Ai Bj ∑n

i=1 ti Ai ∑m
j=1 uj Bj

= E[X]E[Y ]

Example 11.2.9: approximating simple functions for an independent pair

{X,Y } { , }Xs Ys X Y

{ , }Xs Ys E[ ] = E[ ]E[ ]XsYs Xs Ys

Example 11.2.10. product rule for an independent pair

X ≥ 0 Y ≥ 0 { : 1 ≤ n}Xn { : 1 ≤ n}Yn
X Y { : 1 ≤ n}XnYn

XY

E[ ] ↗ E[X]Xn E[ ] ↗ E[Y ]Yn E[ ] ↗ E[XY ]XnYn

E[ ] = E[ ]E[ ]XnYn Xn Yn n E[XY ] = E[X]E[Y ]

XY = ( − )( − ) = − − +X+ X− Y + Y − X+Y + X+Y − X−Y + X−Y −

{X,Y }

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10851?pdf


11.2.7 https://stats.libretexts.org/@go/page/10851

The class  is independent, with the marginal distributions shown below. Let

. Determine .

X = 0:4;

Y = 1:2:7; 

Z = 0:3:12; 

PX = 0.1*[1 3 2 3 1]; 

PY = 0.1*[2 2 3 3]; 

PZ = 0.1*[2 2 1 3 2]; 

icalc3                                        % Setup for joint dbn for {X,Y,Z} 

Enter row matrix of X-values   X 

Enter row matrix of Y-values   Y 

Enter row matrix of Z-values   Z 

Enter X probabilities  PX 

Enter Y probabilities  PY 

Enter Z probabilities  PZ 

Use array operations on matrices  X, Y, Z, 

PX, PY, PZ, t, u, v, and P 

EX = X*PX'                                    % E[X] 

EX =    2 

EX2 = (X.^2)*PX'                              % E[X^2] 

EX2 = 5.4000 

EY = Y*PY'                                    % E[Y] 

EY =  4.4000 

EZ = Z*PZ'                                    % E[Z] 

EZ =  6.3000 

G = 3*t.^2 + 2*t.*u - 3*t.*u.*v;              % W = g(X,Y,Z) = 3X^2 + 2XY - 2XYZ 

Suppose  ~ exponential (0, 3). Let

Determine .

Analytic Solution

 (by Maple)

APPROXIMATION

To obtain a simple aproximation, we must approximate the exponential by a bounded random variable. Since 
 we may safety truncate  at 50.

Example 11.2.11: the joint distribution of three random variables

{X,Y ,Z}

W = g(X,Y ,Z) = 3 +2XY −3XYZX2 E[W ]

Example 11.2.12. a function with a compound definition: truncated exponential

X

Z = { = (X) + (X)16
X2

16
for X ≤ 4
for X > 4

I[0,4] X2 I(4,∞]

E(Z)

E[g(X)] = ∫ g(t) (t) dt = (t) 0.3  dt+16E[ (X)]fX ∫ ∞
0 I[0,4] t2 e−0.3t I(4,∞]

= 0.3  dt+16P (X > 4) ≈ 7.4972∫ 4
0 t2 e−0.3t

P (X > 50) = ≈ 3 ⋅e−15 10−7 X
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tappr 

Enter matrix [a b] of x-range endpoints [0 50] 

Enter number of x approximation points 1000 

Enter density as a function of t 0.3*exp(-0.3*t) 

Use row matrices X and PX as in the simple case 

M = X <= 4 

G = M.*X.^2 + 16*(1 - M); % g(X) 

EG = G*PX'                % E[g(X)] 

EG = 7.4972 

[Z,PZ] = csort(G,PX);     % Distribution for Z = g(X) 

EZ = Z*PZ'                % E[Z] from distribution 

EZ = 7.4972 

Because of the large number of approximation points, the results agree quite closely with the theoretical value.

The manager of a department store is planning for the holiday season. A certain item costs  dollars per unit and sells for 
dollars per unit. If the demand exceeds the amount  ordered, additional units can be special ordered for  dollars per unit 

. If demand is less than amount ordered, the remaining stock can be returned (or otherwise disposed of) at  dollars per
unit ( ). Demand  for the season is asumed to be a random variable with Poisson ( ) distribution. Suppose , 

, , , . What about  should the manager order to maximize the expected profit?

PROBLEM FORMULATION

Suppose  is the demand and  is the profit. Then

For ,  
For , 

It is convenient to write the expression for  in terms of , where . Thus

Then \(E[X] = (p - c) E[D] + m(s - c) + (s - r) E[I_M(D) D] - (s - r) m E[I_M (D)].

Analytic Solution

For  ~ Poisson ( ),  and 

Hence,

Because of the discrete nature of the problem, we cannot solve for the optimum  by ordinary calculus. We may solve for
various  about  and determine the optimum. We do so with the aid of MATLAB and the m-function cpoisson.

mu = 50;

c  = 30;

p  = 50;

Example 11.2.13. stocking for random demand (see exercise 4 from "Problems on functions of random
variables")

c p

m s

(s > c) r

r < c D μ μ = 50

c = 30 p = 50 s = 40 r = 20 m

D X

D ≤ m X = D(p−c) −(m−D)(c−r) = D(p−r) +m(r−c)

D > m X = m(p−c) +(D−m)(p−s) = D(p−s) +m(s−c)

X IM M = (−∞,m]

X = (D)[D(p−r) +m(r−c)] +[1 − (D)][D(p−s) +m(s−c)]IM IM

= D(p−s) +m(s−c) + (D)[D(p−r) +m(r−c) −D(p−s) −m(s−c)]IM

= D(p−s) +m(s−c) + (D)(s−r)(D−m)IM

D μ E[D] = μ E[ (D)] = P (D ≤ m)IM

E[ (D)D] = k = μ = μP (D ≤ m−1)IM e−μ∑m
k=1

μk

k!
e−μ∑m

k=1

μk−1

(k−1)!

E[X] = (p−s)E[D] +m(s−c) +(s−r)E[ (D)D] −(s−r)mE[ (D)]IM IM

= (p−s)μ+m(s−c) +(s−r)μP (D ≤ m−1) −(s−r)mP (D ≤ m)

m

m m = μ
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s  = 40;

r  = 20;

m  = 45:55; 

EX = (p - s)*mu + m*(s - c) + (s - r)*mu*(1 - cpoisson(mu, m))... 

-(s - r)*m.*(1 - cpoisson(mu,m+1)); 

disp([m;EX]') 

    45.0000    930.8604 

    46.0000    935.5231 

    47.0000    939.1895 

    48.0000    941.7962 

    49.0000    943.2988 

    50.0000    943.6750            % Optimum m = 50 

    51.0000    942.9247 

    52.0000    941.0699 

    53.0000    938.1532 

    54.0000    934.2347 

    55.0000    929.3886 

A direct, solution may be obtained by MATLAB, using finite approximation for the Poisson distribution.

APPROXIMATION

An advantage of the second solution, based on simple approximation to D, is that the distribution of gain for each  could be
studied — e.g., the maximum and minimum gains.

— □

Suppose the pair  has joint density  on the triangular region bounded by , , 
(see Figure 11.2.1). Let . Determine .

Figure 1 is a density drawing, with a horizontal axis labeled as t, and a vertical axis labeled as u. A triangle of width 2, with a base sitting on the horizontal axis, from t=-1 to t=1. The third point of the triangle
(the one not on the horizontal axis) is directly above, on the vertical axis. The drawing of the triangle is thus divided in equal halves by the vertical axis. The side of the triangle on the horizontal axis has no direct

label. The side of the triangle on the left is labeled u = 1 + t, and the side of the triangle on the right is labeled u = 1- t. A caption below the triangle reads f_xy (t, u) - 3u on the triangle.

Figure 11.2.1. The density for Example 11.2.14.

Analytic Solution

ptest = cpoisson(mu,100)            %Check for suitable value of n 

ptest = 3.2001e-10 

n = 100;

t = 0:n;

pD = ipoisson(mu,t); 

for i = 1:length(m)                 % Step by step calculation for various m 

    M = t > m(i); 

    G(i,:) = t*(p - r) - M.*(t - m(i))*(s - r) - m(i)*(c - r); 

end 

EG = G*pD';                         % Value agree with theoretical to four decimals

m

Example 11.2.14. a jointly distributed pair

{X,Y } (t, u) = 3ufXY u = 0 u = 1 + t u = 1 − t

Z = g(X,Y ) = +2XYX2 E[Z]

E[Z] = ∫ ∫( +2tu) (t, u) dudtt2 fXY

= 3 ( u+2t ) dudt+3 ( u+2t ) dudt = 1/10∫ 0

−1
∫ 1+t

0
t2 u2 ∫ 1

0
∫ 1−t

0
t2 u2
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APPROXIMATION

tuappr 

Enter matrix [a b] of X-range endpoints [-1 1] 

Enter matrix [c d] of Y-range endpoints [0 1] 

Enter number of X approximation points 400 

Enter number of Y approximation points 200 

Enter expression for joint density 3*u.*(u<=min(1+t,1-t)) 

Use array operations on X, Y, PX, PY, t, u, and P 

G = t.^2 + 2*t.*u;                % g(X,Y) = X^2 + 2XY 

EG = total(G.*P)                  % E[g(X,Y)] 

EG = 0.1006                       % Theoretical value = 1/10 

[Z, PZ] = csort(G,P);             % Distribution for Z 

EZ = Z*PZ'                        % E[Z] from distribution 

EZ = 0.1006 

The pair  has joint density  on the square region bounded to , and 
 (see Figure 11.2.2).

where . Determine .
Figure 2 is a density drawing, with a horizontal axis labeled as t, and a vertical axis labeled u. The drawing is a shaded square rotated 45 degrees to be sitting with one point on the horizontal axis. The point sits

on (1, 0) and a second point sits against the vertical axis, at (0, 1). In looking at the drawing it can be deduced that the third vertex is at (1, 2), and that the fourth vertex is at (2, 1). Each side of the square is labeled
with an equation. Starting with the side between the vertices that are sitting on the axes, an reading them clockwise, the equations are listed as u= 1 - t, u = 1 + t, u= 3 - t, and u = t - 1. There is also an equation

inside the shaded square, reading f_xy (t, u) = 1/2.

Figure 11.2.2. The density for Example 11.2.15

Analytic Solution

The intersection of the region  and the square is the set for which  and . Reference to the figure
shows three regions of integration.

APPROXIMATION

tuappr 

Enter matrix [a b] of X-range endpoints [0 2] 

Enter matrix [c d] of Y-range endpoints [0 2] 

Enter number of X approximation points 200 

Enter number of Y approximation points 200 

Enter expression for joint density ((u<=min(t+1,3-t))& ... 

        (u>=max(1-t,t-1))/2 

Use array operation on X, Y, PX, PY, t, u, and P 

M = max(t,u)<=1; 

G = t.*M + 2*u.*(1 - M);    % Z = g(X,Y) 

EG = total(G.*P)            % E[g(X,Y)] 

EG = 1.8340                 % Theoretical 11/6 = 1.8333 

[Z,PZ] = csort(G,P);        % Distribution for Z 

Example 11.2.15. Afunction with a compound definition

{X,Y } (t, u) = 1/2fXY u = 1 + t, u = 1 − t, u = 3 − t

u = t−1

W = { = (X,Y )X+ (X,Y )2Y
X

2Y
for max {X,Y } ≤ 1
for max {X,Y } > 1

IQ IQc

Q = {(t, u) : max {t, u} ≤ 1} = {(t, u) : t ≤ 1, u ≤ 1} E[W ]

Q 0 ≤ t ≤ 1 1 − t ≤ u ≤ 1

E[W ] = t dudt+ 2u dudt+ 2u dudt = 11/6 ≈ 1.8333
1

2
∫ 1

0 ∫
1

1−t

1

2
∫ 1

0 ∫
1+t

1

1

2
∫ 2

1 ∫
3−t

t−1
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EZ = dot(Z,PZ)              % E[Z] from distribution 

EZ = 1.8340 

Special forms for expectation

The various special forms related to property (E20a) are often useful. The general result, which we do not need, is usually derived
by an argument which employs a general form of what is known as Fubini's theorem. The special form (E20b)

may be derived from (E20a) by use of integration by parts for Stieltjes integrals. However, we use the relationship between the
graph of the distribution function and the graph of the quantile function to show the equivalence of (E20b) and (E20f). The latter
property is readily established by elementary arguments.

If  is the quantile function for the distribution function , then

VERIFICATION

If , where  ~ uniform on (0, 1), then  has the same distribution as . Hence,

In reliability, if  is the life duration (time to failure) for a device, the reliability function is the probability at any time  the
device is still operative. Thus

According to property (E20b)

Suppose , , . Then , .

The same result could be obtained by using  and evaluating .

For the special case . Figure 3(a) shows \int_{0}^{1} Q(u) \ du\) is the difference in the shaded areas

The corresponding graph of the distribution function F is shown in Figure 11.2.3(b). Because of the construction, the areas of
the regions marked  and  are the same in the two figures. As may be seen,

 and 

Use of the unit step function  for  and 0 for  (defined arbitrarily at ) enables us to combine the two
expressions to get

E[X] = [u(t) − (t)] dt∫ ∞

−∞
FX

Example 11.2.16. The property (e20f)

Q FX

E[g(X)] = g[G(u)] du∫ 1
0

Y = Q(U) U Y X

E[g(X)] = E[g(Q(U))] = ∫ g(Q(u)) (u) du = g(Q(u)) dufU ∫
1

0

Example 11.2.17. Reliability and expectation

X t

R(t) = P (X > t) = 1 − (t)FX

E[X] = R(t) dt∫ ∞

0

Example 11.2.18. Use of the quantile function

(t) =FX ta a > 0 0 ≤ t ≤ 1 Q(u) = u1/a 0 ≤ u ≤ a

E[X] =  du = =∫ 1

0
u1/a 1

1 +1/a

a

a+1

(t) = (t)fX F
′

X ∫ t (t) dtfX

Example 11.2.19. Equivalence of (e20b) and (e20f)

g(X) = X

Q(u) du = Area A−Area B∫ 1

0

A B

Area A = [1 −F (t)] dt∫ ∞
0 Area B = F (t) dt∫ 0

−∞

u(t) = 1 t > 0 t < 0 t = 0

Q(u) du = Area A−Area B = [u(t) −F (t)] dt∫
1

0 ∫
∞

−∞
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Figure three contains two graphs. The first graph has a horizontal axis labeled t, and a vertical axis labeled u. The large label of the graph reads, u = Q(t). A dashed vertical line along t = 1 bounds an increasing
curved plot. The curve starts with a vertical asymptote along the vertical axis below the horizontal axis, and as it approaches the horizontal axis, the slope becomes more shallow. The curve's slope shallows until it

is midway in horizontal distance between the vertical axis and the dashed vertical line. At this point, the slope begins to increase again, until it reaches a vertical asymptote along the dashed line at t = 1. The
horizontal and vertical axes, along with the curve itself, create a bounded shape. A small right triangle loosely fits this bounded shape, and is labeled as B. The dashed line, horizontal axis, and the segment of the
curve above the horizontal axis create a larger bounded shape, and a larger right triangle loosely fits this bounded shape, labeled A. The second graph is roughly similar. The axes are in the same place, but with

this figure, s dashed line is now drawn horizontally along u = 1. A curve of the same shape now begins as a horizontal asymptote along the t - axis. It increases in slope at an increasing rate for half of the vertical
distance and then decreases in slope back to a horizontal asymptote at u = 1. The same triangles fitting the same bounded regions as in the first figure are used in the second figures, only because of the rotated

nature of the new curve, these triangles are rotated in the same fashion.

Figure 11.2.3. Equivalence of properties (E20b) and (E20f).

Property (E20c) is a direct result of linearity and (E20b), with the unit step functions cancelling out.

Suppose . Then

, for all 

VERIFICATION

For , by (E20b)

Since  can have only a countable number of jumps on any interval and  and  differ only at jump points,
we may assert

For each nonnegative integer , let . By the countable additivity of expectation

Since  is decreasing with  and each  has unit length, we have by the mean value theorem

The third inequality follows from the fact that

Remark. Property (E20d) is used primarily for theoretical purposes. The special case (E20e) is more frequently used.

If  is nonnegative, integer valued, then

VERIFICATION

The result follows as a special case of (E20d). For integer valued random variables,

 on  and  on 

An elementary derivation of (E20e) can be constructed as follows.

By definition

Now for each finite ,

Taking limits as  yields the desired result.

Example 11.2.20. Property (e20d) useful inequalities

X ≥ 0

P (X ≥ n+1) ≤ E[X] ≤ P (X ≥ n) ≤ N P (X ≥ kN)∑∞
n=0 ∑∞

n=0 ∑∞
k=0 N ≥ 1

X ≥ 0

E[X] = [1 −F (t)] dt = P (X > t) dt∫ ∞

0
∫ ∞

0

F P (X > t P (X ≥ t)

P (X > t) dt = P (X ≥ t) dt∫ b

a ∫ b

a

n = [n,n+1]En

E[X] = E[ X] = P (X ≥ t) dt∑∞
n=0 IEn ∑∞

n=0 ∫En

P (X ≥ t) t En

P (X ≥ n+1) ≤ E[ X] ≤ P (X ≥ n)IEn

P (X ≥ t) dt ≤ N P (X ≥ t) dt ≤ NP (X ≥ kN)∫ (k+1)N

kN
∫
EkN

Example 11.2.21. Property (e20e)

X

E[X] = P (X ≥ k) = P (X > k)∑∞
k=1 ∑∞

k=0

P (X ≥ t) = P (X ≥ n) En P (X ≥ t) = P (X > n) = P (X ≥ n+1) En+1

Example 11.2.22. (e20e) for integer-valued random variables

E[X] = kP (X = k) = kP (X = k)∑∞
k=1 limn∑

n
k=1

n

kP (X = k) = P (X = k) = P (X = k) = P (X ≥ j)∑n
k=1 ∑n

k=1 ∑
k
j=1 ∑n

j=1 ∑
n
k=j ∑n

j=1

n → ∞
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Suppose  ~ geometric ( ). Then . Use of (E20e) gives

This page titled 11.2: Mathematical Expectation and General Random Variables is shared under a CC BY 3.0 license and was authored, remixed,
and/or curated by Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.

Example 11.2.23. the geometric distribution

X p P (X ≥ k) = qk

E[X] = = q = = q/p∑∞
k=1 q

k ∑∞
k=0 q

k
q

1 −q
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11.3: Problems on Mathematical Expectation

(See Exercise 1 from "Problems on Distribution and Density Functions", m-file npr07_01.m). The class  is a
partition. Random variable  has values {1, 3, 2, 3, 4, 2, 1, 3, 5, 2} on  through , respectively, with probabilities 0.08,
0.13, 0.06, 0.09, 0.14, 0.11, 0.12, 0.07, 0.11, 0.09. Determine 

Answer

% file npr07_01.m 

% Data for Exercise 1 from "Problems on Distribution and Density Functions" 

T = [1 3 2 3 4 2 1 3 5 2]; 

pc = 0.01*[8 13 6 9 14 11 12 7 11 9]; 

disp('Data are in T and pc') 

npr07_01 

Data are in T and pc 

EX = T*pc' 

EX = 2.7000 

[X,PX] csort(T,pc): % Alternate using X, PX 

ex = X*PX' 

ex = 2.7000 

(See Exercise 2 from "Problems on Distribution and Density Functions", m-file npr07_02.m ). A store has eight items for sale.
The prices are $3.50, $5.00, $3.50, $7.50, $5.00, $5.00, $3.50, and $7.50, respectively. A customer comes in. She purchases one
of the items with probabilities 0.10, 0.15, 0.15, 0.20, 0.10 0.05, 0.10 0.15. The random variable expressing the amount of her
purchase may be written

Determine the expection  of the value of her purchase.

Answer

% file npr07_02.m 

% Data for Exercise 2 from "Problems on Distribution and Density Functions" 

T = [3.5 5.0 3.5 7.5 5.0 5.0 3.5 7.5]; 

pc = 0.01*[10 15 15 20 10 5 10 15]; 

disp('Data are in T and pc') 

npr07_02 

Data are in T and pc 

EX = T*pc' 

EX = 5.3500 

[X,PX] csort(T,pc) 

ex = X*PX' 

ex = 5.3500

Exercise 11.3.1

{ : 1 ≤ j≤ 10}Cj

X C1 C10

E[X]

Exercise 11.3.2

X = 3.5 +5.0 +3.5 +7.5 +5.0 +5.0 +3.5 +7.5IC1
IC2

IC3
IC4

IC5
IC6

IC7
IC8

E[X]
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See Exercise 12 from "Problems on Random Variables and Probabilities", and Exercise 3 from "Problems on Distribution and
Density Functions," m-file npr06_12.m). The class  has minterm probabilities

 0.001 * [5 7 6 8 9 14 22 33 21 32 50 75 86 129 201 302]

Determine the mathematical expection for the random variable , which counts the number of the
events which occur on a trial.

Answer

% file npr06_12.m 

% Data for Exercise 12 from "Problems on Random Variables and Probabilities" 

pm = 0.001*[5 7 6 8 9 14 22 33 21 32 50 75 86 129 201 302]; 

c = [1 1 1 1 0]; 

disp('Minterm probabilities in pm, coefficients in c') 

npr06_12 

Minterm probabilities in pm, coefficients in c 

canonic 

 Enter row vector of coefficients c 

 Enter row vector of minterm probabilities pm 

Use row matrices X and PX for calculations 

call for XDBN to view the distribution 

EX = X*PX' 

EX = 2.9890 

T = sum(mintable(4)); 

[x,px] = csort(T,pm); 

ex = x*px 

ex = 2.9890 

(See Exercise 5 from "Problems on Distribution and Density Functions"). In a thunderstorm in a national park there are 127
lightning strikes. Experience shows that the probability of of a lightning strike starting a fire is about 0.0083. Determine the
expected number of fires.

Answer

 ~ binomial (127, 0.0083), 

(See Exercise 8 from "Problems on Distribution and Density Functions"). Two coins are flipped twenty times. Let  be the
number of matches (both heads or both tails). Determine 

Answer

 ~ binomial (20, 1/2). 

Exercise 11.3.3

{A,B,C,D}

pm =

X = + + +IA IB IC ID

Exercise 11.3.4

X E[X] = 127 ⋅ 0.0083 = 1.0541

Exercise 11.3.5

X

E[X]

X E[X] = 20 ⋅ 0.5 = 10
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(See Exercise 12 from "Problems on Distribution and Density Functions"). A residential College plans to raise money by selling
“chances” on a board. Fifty chances are sold. A player pays $10 to play; he or she wins $30 with probability . The profit
to the College is

, where  is the numbe of winners

Determine the expected profit .

Answer

 ~ binomial (50, 0.2). . .

(See Exercise 19 from "Problems on Distribution and Density Functions"). The number of noise pulses arriving on a power
circuit in an hour is a random quantity having Poisson (7) distribution. What is the expected number of pulses in an hour?

Answer

 ~ Poisson (7). .

(See Exercise 24 and Exercise 25 from "Problems on Distribution and Density Functions"). The total operating time for the units
in Exercise 24 is a random variable  ~ gamma (20, 0.0002). What is the expected operating time?

Answer

 ~ gamma (20, 0.0002). .

(See Exercise 41 from "Problems on Distribution and Density Functions"). Random variable  has density function

.

What is the expected value ?

Answer

Truncated exponential. Suppose  ~ exponential ( ) and .

a. Use the fact that

 and 

to determine an expression for .

b. Use the approximation method, with , . Approximate the exponential at 10,000 points for .
Compare the approximate result with the theoretical result of part (a).

Answer

Exercise 11.3.6

p = 0.2

X = 50 ⋅ 10 −30N N

E[X]

N E[N ] = 50 ⋅ 0.2 = 10 E[X] = 500 −30E[N ] = 200

Exercise 11.3.7

X E[X] = 7

Exercise 11.3.8

T

X E[X] = 20/0.0002 = 100, 000

Exercise 11.3.9

X

(t) = { = (t) + (t) (2 − t)fX
(6/5)t2

(6/5)(2 − t)
for 0 ≤ t ≤ 1
for 1 ≤ t ≤ 2

I[0,1]

6

5
t2 I(1,2]

6

5

E[X]

E[X] = ∫ t (t) dt =  dt+ (2t− ) dt =fX
6

5
∫ 1

0
t3 6

5
∫ 2

1
t2 11

10

Exercise 11.3.10

X λ Y = (X)X+ (X)aI[0,a] Ia,∞

t  dt =∫ ∞
0 e−λt 1

λ2
t  dt = (1 +λa)∫ ∞

a e−λt 1

λ2
e−λt

E[Y ]

λ = 1/50 a = 30 0 ≤ t ≤ 1000

E[Y ] = ∫ g(t) (t) dt = tλ  dt+aP (X > a) =fX ∫ a

0 e−λt

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10852?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/07%3A_Distribution_and_Density_Functions/7.03%3A_Problems_on_Distribution_and_Density_Functions
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/07%3A_Distribution_and_Density_Functions/7.03%3A_Problems_on_Distribution_and_Density_Functions
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/07%3A_Distribution_and_Density_Functions/7.03%3A_Problems_on_Distribution_and_Density_Functions
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/07%3A_Distribution_and_Density_Functions/7.03%3A_Problems_on_Distribution_and_Density_Functions


11.3.4 https://stats.libretexts.org/@go/page/10852

tappr 

Enter matrix [a b] of x-range endpoints [0 1000] 

Enter number of x approximation points 10000 

Enter density as a function of t (1/50)*exp(-t/50) 

Use row matrices X and PX as in the simple case 

G = X.*(X<=30) + 30*(X>30); 

EZ = G8PX' 

EZ = 22.5594 

ez = 50*(1-exp(-30/50))     %Theoretical value 

ez = 22.5594 

(See Exercise 1 from "Problems On Random Vectors and Joint Distributions", m-file npr08_01.m). Two cards are selected at
random, without replacement, from a standard deck. Let  be the number of aces and  be the number of spades. Under the
usual assumptions, determine the joint distribution. Determine , , , , and .

Answer

npr08_01 

Data in Pn, P, X, Y 

jcalc 

Enter JOINT PROBABILITIES (as on the plane) P 

Enter row marix of VALUES of X    X 

Enter row marix of VALUES of Y    Y 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

EX = X*PX' 

EX = 0.1538 

 

ex = total(t.*P)            % Alternate 

ex = 0.1538 

EY = Y*PY' 

EY = 0.5000 

EX2 = (X.^2)*PX' 

EX2 = 0.1629 

EY2 = (Y.^2)*PY' 

EY2 = 0.6176 

EXY = total(t.*u.*P) 

EXY = 0.0769

(See Exercise 2 from "Problems On Random Vectors and Joint Distributions", m-file npr08_02.m ). Two positions for campus
jobs are open. Two sophomores, three juniors, and three seniors apply. It is decided to select two at random (each possible pair
equally likely). Let  be the number of sophomores and  be the number of juniors who are selected. Determine the joint
distribution for  and , , , , and .

[1 − (1 +λa)] +a = (1 − )
λ

λ2
e−λa e−λa 1

λ
e−λa

Exercise 11.3.11

X Y

E[X] E[Y ] E[ ]X2 E[ ]Y 2 E[XY ]

Exercise 11.3.12

X Y

{X,Y } E[X] E[Y ] E[ ]X2 E[ ]Y 2 E[XY ]
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Answer

npr08_02 

Data are in X, Y, Pn, P 

jcalc 

----------------------- 

EX = X*PX' 

EX = 0.5000 

EY = Y*PY' 

EY = 0.7500 

EX2 = (X.^2)*PX' 

EX2 = 0.5714 

EY2 = (Y.^2)*PY' 

EY2 = 0.9643 

EXY = total(t.*u.*P) 

EXY = 0.2143 

(See Exercise 3 from "Problems On Random Vectors and Joint Distributions", m-file npr08_03.m ). A die is rolled. Let X be the
number of spots that turn up. A coin is flipped  times. Let  be the number of heads that turn up. Determine the joint
distribution for the pair . Assume  for  and for each ,  has the binomial 

 distribution. Arrange the joint matrix as on the plane, with values of  increasing upward. Determine the expected
value 

Answer

npr08_03 

Data are in X, Y, P, PY 

jcalc 

----------------------- 

EX = X*PX' 

EX = 3.5000 

EY = Y*PY' 

EY = 1.7500 

EX2 = (X.^2)*PX' 

EX2 = 15.1667 

EY2 = (Y.^2)*PY' 

EY2 = 4.6667 

EXY = total(t.*u.*P) 

EXY = 7.5833

(See Exercise 4 from "Problems On Random Vectors and Joint Distributions", m-file npr08_04.m ). As a variation of Exercise,
suppose a pair of dice is rolled instead of a single die. Determine the joint distribution for  and determine .

Answer

Exercise 11.3.13

X Y

{X,Y } P (X = k) = 1/6 1 ≤ k ≤ 6 k P (Y = j|X = k)

(k, 1/2) Y

E[Y ]

Exercise 11.3.14

{X,Y } E[Y ]
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npr08_04 

Data are in X, Y, P 

jcalc 

----------------------- 

EX = X*PX' 

EX = 7 

EY = Y*PY' 

EY = 3.5000 

EX2 = (X.^2)*PX' 

EX2 = 54.8333 

EY2 = (Y.^2)*PY' 

EY2 = 15.4583

(See Exercise 5 from "Problems On Random Vectors and Joint Distributions", m-file npr08_05.m). Suppose a pair of dice is
rolled. Let  be the total number of spots which turn up. Roll the pair an additional  times. Let  be the number of sevens that
are thrown on the  rolls. Determine the joint distribution for  and determine 

Answer

npr08_05 

Data are in X, Y, P, PY 

jcalc 

----------------------- 

EX = X*PX' 

EX = 7.0000 

EY = Y*PY' 

EY = 1.1667

(See Exercise 6 from "Problems On Random Vectors and Joint Distributions", m-file npr08_06.m). The pair  has the
joint distribution:

 [-2.3 -0.7 1.1 3.9 5.1]  [1.3 2.5 4.1 5.3]

Determine , , ,  and .

Answer

npr08_06 

Data are in X, Y, P 

jcalc 

--------------------- 

EX = X*PX' 

Exercise 11.3.15

X X Y

X {X,Y } E[Y ]

Exercise 11.3.16

{X,Y }

X = Y =

P =

⎡

⎣

⎢⎢⎢

0.0483

0.0437

0.0713

0.0667

0.0357

0.0323

0.0527

0.0493

0.0420

0.0380

0.0620

0.0580

0.0399

0.0361

0.0609

0.0651

0.0441

0.0399

0.0551

0.0589

⎤

⎦

⎥⎥⎥

E[X] E[Y ] E[ ]X2 E[ ]Y 2 E[XY ]
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EX = 1.3696 

EY = Y*PY' 

EY = 3.0344 

EX2 = (X.^2)*PX' 

EX2 = 9.7644 

EY2 = (Y.^2)*PY' 

EY2 = 11.4839 

EXY = total(t.*u.*P) 

EXY = 4.1423 

(See Exercise 7 from "Problems On Random Vectors and Joint Distributions", m-file npr08_07.m). The pair  has the
joint distribution:

t = -3.1 -0.5 1.2 2.4 3.7 4.9

u = 7.5 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203

4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231

-2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189

-3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

Determine , , ,  and .

Answer

npr08_07 

Data are in X, Y, P 

jcalc 

--------------------- 

EX = X*PX' 

EX = 0.8590 

EY = Y*PY' 

EY = 1.1455 

EX2 = (X.^2)*PX' 

EX2 = 5.8495 

EY2 = (Y.^2)*PY' 

EY2 = 19.6115 

EXY = total(t.*u.*P) 

EXY = 3.6803

(See Exercise 8 from "Problems On Random Vectors and Joint Distributions", m-file npr08_08.m). The pair  has the
joint distribution:

t= 1 3 5 7 9 11 13 15 17 19

Exercise 11.3.17

{X,Y }

P (X = t,Y = u)

E[X] E[Y ] E[ ]X2 E[ ]Y 2 E[XY ]

Exercise 11.3.18

{X,Y }

P (X = t,Y = u)
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u = 
12

0.0156 0.0191 0.0081 0.0035 0.0091 0.0070 0.0098 0.0056 0.0091 0.0049

10 0.0064 0.0204 0.0108 0.0040 0.0054 0.0080 0.0112 0.0064 0.0104 0.0056

9 0.0196 0.0256 0.0126 0.0060 0.0156 0.0120 0.0168 0.0096 0.0056 0.0084

5 0.0112 0.0182 0.0108 0.0070 0.0182 0.0140 0.0196 0.0012 0.0182 0.0038

3 0.0060 0.0260 0.0162 0.0050 0.0160 0.0200 0.0280 0.0060 0.0160 0.0040

-1 0.0096 0.0056 0.0072 0.0060 0.0256 0.0120 0.0268 0.0096 0.0256 0.0084

-3 0.0044 0.0134 0.0180 0.0140 0.0234 0.0180 0.0252 0.0244 0.0234 0.0126

-5 0.0072 0.0017 0.0063 0.0045 0.0167 0.0090 0.0026 0.0172 0.0217 0.0223

Determine , , ,  and .

Answer

npr08_08 

Data are in X, Y, P 

jcalc 

--------------------- 

EX = X*PX' 

EX = 10.1000 

EY = Y*PY' 

EY = 3.0016 

EX2 = (X.^2)*PX' 

EX2 = 133.0800 

EY2 = (Y.^2)*PY' 

EY2 = 41.5564 

EXY = total(t.*u.*P) 

EXY = 22.2890

(See Exercise 9 from "Problems On Random Vectors and Joint Distributions", m-file npr08_09.m). Data were kept on the effect
of training time on the time to perform a job on a production line.  is the amount of training, in hours, and  is the time to
perform the task, in minutes. The data are as follows:

t = 1 1.5 2 2.5 3

u = 5 0.039 0.011 0.005 0.001 0.001

4 0.065 0.070 0.050 0.015 0.010

3 0.031 0.061 0.137 0.051 0.033

2 0.012 0.049 0.163 0.058 0.039

1 0.003 0.009 0.045 0.025 0.017

Determine , , ,  and .

Answer

E[X] E[Y ] E[ ]X2 E[ ]Y 2 E[XY ]

Exercise 11.3.19

X Y

P (X = t,Y = u)

E[X] E[Y ] E[ ]X2 E[ ]Y 2 E[XY ]
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npr08_09 

Data are in X, Y, P 

jcalc 

--------------------- 

EX = X*PX' 

EX = 1.9250 

EY = Y*PY' 

EY = 2.8050 

EX2 = (X.^2)*PX' 

EX2 = 4.0375 

EY2 = (Y.^2)*PY'           EXY = total(t.*u.*P) 

EY2 = 8.9850               EXY = 5.1410

For the joint densities in Exercise 20-32 below

a. Determine analytically , , ,  and .

b. Use a discrete approximation for , , ,  and .

(See Exercise 10 from "Problems On Random Vectors and Joint Distributions").  for . 
.

, , , 

Answer

, , , 

tuappr: [0 1] [0 2] 200 400  u<=2*(1-t) 

EX = 0.3333    EY = 0.6667    EX2 = 0.1667    EY2 = 0.6667 

EXY = 0.1667 (use t, u, P) 

(See Exercise 11 from "Problems On Random Vectors and Joint Distribution").  on the square with vertices at
(1, 0), (2, 1) (1, 2), (0, 1).

Answer

, 

tuappr: [0 2] [0 2] 200 200  0.5*(u<=min(t+1,3-t))&(u>=max(1-t,t-1)) 

EX = 1.0000    EY = 1.0002    EX2 = 1.1684    EY2 = 1.1687    EXY = 1.0002

E[X] E[Y ] E[ ]X2 E[ ]Y 2 E[XY ]

E[X] E[Y ] E[ ]X2 E[ ]Y 2 E[XY ]

Exercise 11.3.20

(t, u) = 1fXY 0 ≤ t ≤ 1

0 ≤ u ≤ 2(1 − t)

(t) = 2(1 − t)fX 0 ≤ t ≤ 1 (u) = 1 −u/2fY 0 ≤ u ≤ 2

E[X] = 2t(1 − t) dt = 1/3∫
1

0 E[Y ] = 2/3 E[ ] = 1/6X2 E[ ] = 2/3Y 2

E[XY ] = tu dudt = 1/6∫ 1
0 ∫ 2(1−t)

0

Exercise 11.3.21

(t, u) = 1/2fXY

(t) = (t) = (t)t+ (t)(2 − t)fX fY I[0,1] I(1,2]

E[X] = E[Y ] =  dt+ (2t− ) dt = 1∫ 1
0 t2 ∫ t

1 t2 E[ ] = E[ ] = 7/6X2 Y 2

E[XY ] = (1/2) dtdt+(1/2) dudt = 1∫ 1

0
∫ 1+t

1−t
∫ 2

1
∫ 3−t

t−1
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(See Exercise 12 from "Problems On Random Vectors and Joint Distribution").  for . 

, , , 

Answer

, , , , 

tuappr: [0 1] [0 1] 200 200  4*t.*(1-u) 

EX = 0.6667    EY = 0.3333    EX2 = 0.5000    EY2 = 0.1667    EXY = 0.2222

(See Exercise 13 from "Problems On Random Vectors and Joint Distribution").  for , 

, 

Answer

, 

tuappr: [0 1] [0 1] 200 200  4*t.*(1-u) 

EX = 1.1667    EY = 1.1667    EX2 = 1.6667    EY2 = 1.6667    EXY = 1.3333

(See Exercise 14 from "Problems On Random Vectors and Joint Distribution").  for 

, , , 

Answer

, , , , 

tuappr: [0 6] [0 1] 600 200  4*u.*exp(-2*t) 

EX = 0.5000    EY = 0.6667    EX2 = 0.4998    EY2 = 0.5000    EXY = 0.3333

(See Exercise 15 from "Problems On Random Vectors and Joint Distribution").  for , 

.

, 

Answer

Exercise 11.3.22

(t, u) = 4t(1 −u)fXY 0 ≤ t ≤ 1

0 ≤ u ≤ 1

(t) = 2tfX 0 ≤ t ≤ 1 (u) = 2(1 −u)fY 0 ≤ u ≤ 1

E[X] = 2/3 E[Y ] = 1/3 E[ ] = 1/2X2 E[ ] = 1/6Y 2 E[XY ] = 2/9

Exercise 11.3.23

(t, u) = (t+u)fXY

1

8
0 ≤ t ≤ 2

0 ≤ u ≤ 2

(t) = (t) = (t+1)fX fY
1

4
0 ≤ t ≤ 2

E[X] = E[Y] = \dfrac{1}[4} \int_{0}^{2} (t^2 + t) \ dt = \dfrac{7}{6} E[ ] = E[ ] = 5/3X2 Y 2

E[XY ] = ( u+ t ) dudt =
1

8
∫ 2

0
∫ 2

0
t2 u2

4

3

Exercise 11.3.24

(t, u) = 4ufXY e−2t 0 ≤ t, 0 ≤ u ≤ 1

(t) = 2fX e−2t 0 ≤ t (u) = 2ufY 0 ≤ u ≤ 1

E[X] = 2t  dt =∫ ∞

0
e−2t 1

2
E[Y ] =

2

3
E[ ] =X2 1

2
E[ ] =Y 2 1

2
E[XY ] =

1

3

Exercise 11.3.25

(t, u) = (2t+3 )fXY

3

88
u2 0 ≤ t ≤ 2

0 ≤ u ≤ 1 + t

(t) = (1 + t)(1 +4t+ ) = (1 +5t+5 + )fX
3

88
t2 3

88
t2 t3 0 ≤ t ≤ 2

(t) = (u) (6 +4) + (u) (3 +2u+8 −3 )fY I[0,1]
3

88
u2 I(1,3]

3

88
u2 u3
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, , , , 

tuappr: [0 2] [0 3] 200 300  (3/88)*(2*t + 3*u.^2).*(u<1+t) 

EX = 1.4229    EY = 1.6202    EX2 = 2.2277    EY2 = 3.1141    EXY = 2.4415

(See Exercise 16 from "Problems On Random Vectors and Joint Distribution").  on the parallelogram with
vertices

(-1, 0), (0, 0), (1, 1), (0, 1)

, , 

Answer

, , , , 

tuappr: [-1 1] [0 1] 400 300  12*t.^2.*u.*(u>=max(0,t)).*(u<=min(1+t,1)) 

EX = 0.4035    EY = 0.7342    EX2 = 0.4016    EY2 = 0.6009    EXY = 0.4021

(See Exercise 17 from "Problems On Random Vectors and Joint Distribution").  for , 

.

, , 

Answer

, , , , 

tuappr: [0 2] [0 1] 400 200  (24/11)*t.*u.*(u<=min(1,2-t)) 

EX = 0.9458    EY = 0.5822    EX2 = 1.0368    EY2 = 0.4004    EXY = 0.5098

(See Exercise 18 from "Problems On Random Vectors and Joint Distribution").  for , 

.

, 

Answer

, , , , 

tuappr: [0 2] [0 2] 200 200  (3/23)*(t + 2*u).*(u<=max(2-t,t)) 

EX = 1.1518    EY = 0.9596    EX2 = 1.7251    EY2 = 1.1417    EXY = 1.0944

E[X] =
313

220
E[Y ] =

1429

880
E[ ] =X2 49

22
E[ ] =Y 2 172

55
E[XY ] =

2153

880

Exercise 11.3.26

(t, u) = 12 ufXY t2

(t) = (t)6 (t+1 + (t)6 (1 − )fX I[−1,0] t2 )2 I(0,1] t2 t2 (u)12 −12 +4ufY u3 u2 0 ≤ u ≤ 1

E[X] =
2

5
E[Y ] =

11

15
E[ ] =X2 2

5
E[ ] =Y 2 3

5
E[XY ] =

2

5

Exercise 11.3.27

(t, u) = tufXY

24

11
0 ≤ t ≤ 2

0 ≤ u ≤ min {1, 2 − t}

(t) = (t) t+ (t) t(2 − tfX I[0,1]

12

11
I(1,2]

12

11
)2 (u) = u(u−2fY

12

11
)2 0 ≤ u ≤ 1

E[X] =
52

55
E[Y ] =

32

55
E[ ] =X2 57

55
E[ ] =Y 2 2

5
E[XY ] =

28

55

Exercise 11.3.28

(t, u) = (t+2u)fXY

3

23
0 ≤ t ≤ 2

0 ≤ u ≤ max {2 − t, t}

(t) = (t) (2 − t) + (t)fX I[0,1]

6

23
I(1,2]

6

23
t2 (u) = (u) (2u+1) + (u) (4 +6u−4 )fY I[0,1]

6

23
I(1,2]

3

23
u2

E[X] =
53

46
E[Y ] =

22

23
E[ ] =X2 397

230
E[ ] =Y 2 261

230
E[XY ] =

251

230
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(See Exercise 19 from "Problems On Random Vectors and Joint Distribution"). , for , 

.

Answer

, , , , 

tuappr: [0 2] [0 2] 400 400  (12/179)*(3*t.^2 + u).*(u<=min(2,3-t))

EX = 1.2923    EY = 0.8695    EX2 = 1.9119    EY2 = 1.0239    EXY = 1.0122

(See Exercise 20 from "Problems On Random Vectors and Joint Distribution"). , for , 

.

Answer

, , , , 

tuappr: [0 2] [0 2] 400 400  (12/227)*(3*t + 2*t.*u).*(u<=min(1+t,2)) 

EX = 1.3805    EY = 1.0974    EX2 = 2.0967    EY2 = 1.5120    EXY = 1.5450

(See Exercise 21 from "Problems On Random Vectors and Joint Distribution"). , for , 

.

Answer

, , , , 

tuappr: [0 2] [0 2] 400 400  (2/13)*(t + 2*u).*(u<=min(2*t,3-t)) 

EX = 1.2309    EY = 0.9169    EX2 = 1.6849    EY2 = 1.0647    EXY = 1.1056

Exercise 11.3.29

(t, u) = (3 +u)fXY

12

179
t2 0 ≤ t ≤ 2

0 ≤ u ≤ min {2, 3 − t}

(t) = (t) (3 +1) + (t) (9 −6t+19 −6 )fX I[0,1]

24

179
t2 I(1,2]

6

179
t2 t3

(u) = (t) (4 +u) + (t) (27 −24u+8 − )fY I[0,1]
24

179
I(1,2]

12

179
u2 u3

E[X] =
2313

1790
E[Y ] =

778

895
E[ ] =X2 1711

895
E[ ] =Y 2 916

895
E[XY ] =

1811

1790

Exercise 11.3.30

(t, u) = (3t+2tu)fXY

12

227
0 ≤ t ≤ 2

0 ≤ u ≤ min {1 + t, 2}

(t) = (t) ( +5 +4t) + (t) tfX I[0,1]

12

227
t3 t2 I(1,2]

120

227

(u) = (t) (2u+3) + (u) (2u+3)(3 +2u− )fY I[0,1]

24

227
I(1,2]

6

227
u2

= (u) (2u+3) + (u) (9 +12u+ −2 )I[0,1]
24

227
I(1,2]

6

227
u2 u3

E[X] =
1567

1135
E[Y ] =

2491

2270
E[ ] =X2 476

227
E[ ] =Y 2 1716

1135
E[XY ] =

5261

3405

Exercise 11.3.31

(t, u) = (t+2u)fXY

2

13
0 ≤ t ≤ 2

0 ≤ u ≤ min {2t, 3 − t}

(t) = (t) + (t) (3 − t)fX I[0,1]

12

13
t2 I(1,2]

6

13

(u) = (u)( + u− ) + (u)( + u− )fY I[0,1]
4

13

8

13

9

52
u2 I(1,2]

9

13

6

13

51

52
u2

E[X] =
16

13
E[Y ] =

11

12
E[ ] =X2 219

130
E[ ] =Y 2 83

78
E[XY ] =

431

390
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(See Exercise 22 from "Problems On Random Vectors and Joint Distribution").

, for .

,  (0 \le u \le 1\)

Answer

, , , , 

The class  of random variables is iid(independent, identically distributed) with common distribution

 [-5 -1 3 4 7]  0.01 * [15 20 30 25 10]

Let . Determine . Do this using icalc, then repeat with icalc3 and compare results.

Answer

Use  and  to prevent renaming.

x = [-5 -1 3 4 7]; 

px = 0.01*[15 20 30 25 10]; 

icalc 

Enter row matrix of X-values  x 

Enter row matrix of Y-values  x 

Enter X probabilities px 

Enter Y probabilities px 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

 G = 3*t - 4*u 

 [R,PR] = csort(G,P); 

 icalc 

Enter row matrix of X-values  R 

Enter row matrix of Y-values  x 

Enter X probabilities  PR 

Enter Y probabilities  px 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

H = t + 2*u; 

EH = total(H.*P) 

EH = 1.6500 

[W,PW] = csort(H,P);  % Alternate 

EW = W*PW' 

EW = 1.6500 

icalc3                % Solution with icalc3 

Enter row matrix of X-values  x 

tuappr: [0 2] [0 1] 400 200  (3/8)*(t.^2 + 2*u).*(t<=1) + (9/14)*(t.^2.*u.^2).*(t 

EX = 1.0848    EY = 0.6875    EX2 = 1.5286    EY2 = 0.5292    EXY = 0.7745

Exercise 11.3.32

(t, u) = (t) ( +2u) + (t)fXY I[0,1]

3

8
t2 I(1,2]

9

14
t2u2 0 ≤ u ≤ 1

(t) = (t) ( +1) + (t)fX I[0,1]
3

8
t2 I(1,2]

3

14
t2 (u) = + u+fY

1

8

3

4

3

2
u2

E[X] =
243

224
E[Y ] =

11

16
E[ ] =X2 107

70
E[ ] =Y 2 127

240
E[XY ] =

347

448

Exercise 11.3.33

{X,Y ,Z}

X = PX =

W = 3X−4Y +2Z E[W ]

x px
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Enter row matrix of Y-values  x 

Enter row matrix of Z-values  x 

Enter X probabilities  px 

Enter Y probabilities  px 

Enter Z probabilities  px 

Use array operations on matrices X, Y, Z, 

PX, PY, PZ, t, u, v, and P 

K = 3*t - 4*u + 2*v; 

EK = total(K.*P) 

EK = 1.6500 

(See Exercise 5 from "Problems on Functions of Random Variables") The cultural committee of a student organization has
arranged a special deal for tickets to a concert. The agreement is that the organization will purchase ten tickets at $20 each
(regardless of the number of individual buyers). Additional tickets are available according to the following schedule:

11-20, $18 each; 21-30 $16 each; 31-50, $15 each; 51-100, $13 each

If the number of purchasers is a random variable , the total cost (in dollars) is a random quantity  described by

where , , , 

Suppose  ~ Poisson (75). Approximate the Poisson distribution by truncating at 150. Determine  and .

Answer

X = 0:150; 

PX = ipoisson(75, X); 

G = 200 + 18*(X - 10).*(X>=10) + (16 - 18)*(X - 20).*(X>=20) + ... 

      (15 - 16)*(X - 30).*(X>=30) + (13 - 15)*(X>=50); 

[Z,PZ] = csort(G,PX); 

EZ = Z*PZ' 

EZ = 1.1650e+03 

EZ2 = (Z.^2)*PZ' 

EZ2 = 1/3699e+06 

The pair  has the joint distribution (in m-file npr08_07.m):

t = -3.1 -0.5 1.2 2.4 3.7 4.9

u = 7.5 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203

4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231

-2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189

-3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

Exercise 11.3.34

X Z = g(X)

g(X) = 200 +18 (X)(X−10) +(16 −18) (X)(X−20)+IM1 IM2

(15 −16) (X)(X−30) +(13 −15) (X)(X−50)IM3 IM4

M1 = [10, ∞) M2 = [20, ∞) M3 = [30, ∞) M4 = [50, ∞)

X E[Z] E[ ]Z2

Exercise 11.3.35

{X,Y }

P (X = t,Y = u)
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Let . Determine  and .

Answer

npr08_07 

Data are in X, Y, P 

jcalc 

------------------ 

G = 3*t.^2 + 2*t.*u - u.^2; 

EG = total(G.*P) 

EG = 5.2975 

ez2 = total(G.^2.*P) 

EG2 = 1.0868e+03 

[Z,PZ] = csort(G,P);        % Alternate 

EZ = Z*PZ' 

EZ = 5.2975 

EZ2 = (Z.^2)*PZ' 

EZ2 = 1.0868e+03 

For the pair  in Exercise 11.3.35, let

Determine  and .

Answer

H = t.*(t+u<=4) + 2*u.*(t+u>4); 

EH = total(H.*P) 

EH = 4.7379 

EH2 = total(H.^2.*P) 

EH2 = 61.4351 

[W,PW] = csort(H,P);    %Alternate 

EW = W*PW' 

EW = 4.7379 

EW2 = (W.^2)*PW' 

EW2 = 61.4351 

For the distribution in Exercises 37-41 below

a. Determine analytically  and  
b. Use a discrete approximation to calculate the same quantities.

 for ,  (see Exercise 25).

Z = g(X,Y ) = 3 +2XY − )X2 Y 2 E[Z] E[ ]Z2

Exercise 11.3.36

{X,Y }

W = g(X,Y ) = { = (X,Y )X+ (X,Y )2Y
X

2Y
for X+Y ≤ 4
for X+Y > 4

IM IM c

E[W ] E[ ]W 2

E[Z] E[ ]Z2

Exercise 11.3.37

(t, u) = (2t+3 )fXY

3

88
u2 0 ≤ t ≤ 2 0 ≤ u ≤ 1 + t

Z = (X)4X+ (X)(X+Y )I[0,1] I(1,2]
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Answer

 

 

tuappr: [0 2] [0 3] 200 300 (3/88)*(2*t+3*u.^2).*(u<=1+t) 

G = 4*t.*(t<=1) + (t + u).*(t>1); 

EG = total(G.*P) 

EG = 3.2086 

EG2 = total(G.^2.*P) 

EG2 = 11.0872 

 for ,  (see Exercise 27)

, 

Answer

 

 

tuappr: [0 2] [0 1] 400 200  (24/11)*t.*u.*(u<=min(1,2-t)) 

G = (1/2)*t.*(u>t) + u.^2.*(u<=t); 

EZ = 0.2920 EZ2 = 0.1278 

 for ,  (see Exercise 28)

, 

Answer

 

 

tuappr: [0 2] [0 2] 400 400  (3/23)*(t+2*u).*(u<=max(2-t,t)) 

M = max(t,u)<=1; 

G = (t+u).*M + 2*u.*(1-M); 

EZ = total(G.*P) 

EZ = 1.9048 

EZ2 = total(G.^2.*P) 

EZ2 = 4.4963 

E[Z] = 4t(2t+3 ) dudt+ (t+u)(2t+3 ) dudt =
3

88
∫ 1

0
∫ 1+t

0
u2 3

88
∫ 2

1
∫ 1+t

0
u2 5649

1760

E[ ] = (4t (2t+3 ) dudt+ (t+u (2t+3 ) dudt =Z2 3

88
∫ 1

0
∫ 1+t

0
)2 u2 3

88
∫ 2

1
∫ 1+t

0
)2 u2 4881

440

Exercise 11.3.38

(t, u) = tufXY

24

11
0 ≤ t ≤ 2 0 ≤ u ≤ min {1, 2 − t}

Z = (X,Y ) X+ (X,Y )IM
1

2
IM c Y 2 M = {(t, u) : u > t}

E[Z] = u dudt+ t  dudt+ t  dudt =
12

11
∫ 1

0
∫ 1

t
t2 24

11
∫ 1

0
∫ t

0
u3 24

11
∫ 2

1
∫ 2−t

0
u3 16

55

E[ ] = u dudt+ t  dudt+ t  dudt =Z2
6

11
∫

1

0 ∫
1

t t3
24

11
∫

1

0 ∫
t

0 u5
24

11
∫

2

1 ∫
2−t

0 u5
39

308

Exercise 11.3.39

(t, u) = (t+2u)fXY

3

23
0 ≤ t ≤ 2 0 ≤ u ≤ max {2 − t, t}

Z = (X,Y )(X+Y ) + (X,Y )2YIM IM c M = {(t, u) : max (t, u) ≤ 1}

E[Z] = (t+u)(t+2u) dudt+ 2u(1 +2u) dudt+ 2u(t+2u) dudt =
3

23
∫ 1

0
∫ 1

0

3

23
∫ 1

0
∫ 2−t

1

3

23
∫ 2

1
∫ t

1

175

92

E[ ] = (t+u (t+2u) dudt+ 4 (1 +2u) dudt+ 4 (t+2u) dudt =Z2 3

23
∫ 1

0
∫ 1

0
)2 3

23
∫ 1

0
∫ 2−t

1
u2 3

23
∫ 2

1
∫ t

1
u2
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, for ,  (see Exercise 19)

, 

Answer

 

tuappr: [0 2] [0 2] 400 400  (12/179)*(3*t.^2 + u).*(u <= min(2,3-t)) 

M = (t<=1)&(u>=1); 

G = (t + u).*M + 2*u.^2.*(1 - M); 

EZ = total(G.*P) 

EZ = 1.5898 

EZ2 = total(G.^2.*P) 

EZ2 = 4.5224 

, for ,  (see Exercise 30).

, 

Answer

 

 

 

 

tuappr: [0 2] [0 2] 400 400  (12/227)*(3*t + 2*t.*u).*(u <= min(1+t,2)) 

M = u <= min(1,2-t); 

G = t.*M + t.*u.*(1 - M); 

EZ = total(G.*P) 

EZ = 1.6955 

EZ2 = total(G.^2.*P) 

EZ2 = 3.5659

The class  is independent. (See Exercise 16 from "Problems on Functions of Random Variables", m-file npr10_16.m)

. Minterm probabilities are (in the usual order)

0.255 0.025 0.375 0.045 0.108 0.012 0.162 0.018

Exercise 11.3.40

(t, u) = (3 +u)fXY

12

179
t2 0 ≤ t ≤ 2 0 ≤ u ≤ min {2, 3 − t}

Z = (X,Y )(X+Y ) + (X,Y )2IM IM c Y 2 M = {(t, u) : t ≤ 1, u ≥ 1}

E[Z] = (t+u)(3 +u) dudt+ 2 (3 +u) dudt+ 2 (3 +u) dudt =
12

179
∫ 1

0 ∫ 2
1 t2 12

179
∫ 1

0 ∫ 1
0 u2 t2 12

179
∫ 2

1 ∫ 3−t

0 u2 t2 1422

895

E[ ] = (t+u (3 +u) dudt+ 4 (3 +u) dudt+ 4 (3 +u) dudt =Z2 12

179
∫ 1

0 ∫ 2
1 )2 t2 12

179
∫ 1

0 ∫ 1
0 u4 t2 12

179
∫ 2

1 ∫ 3−t

0 u4 t2 28296

6265

Exercise 11.3.41

(t, u) = (2t+2tu)fXY

12

227
0 ≤ t ≤ 2 0 ≤ u ≤ min {1 + t, 2}

Z = (X,Y )X+ (X,Y )XYIM IM c M = {(t, u) : u ≤ min (1, 2 − t)}

E[Z] = t(3t+2tu) dudt+ t(3t+2tu) dudt+
12

227
∫ 1

0
∫ 1

0

12

227
∫ 2

1
∫ 2−t

0

tu(3t+2tu) dudt+ tu(3t+2tu) dudt =
12

227
∫ 1

0 ∫ 1+t

1

12

227
∫ 2

1 ∫ 2
2−t

5774

3405

E[ ] =Z2 56673

15890

Exercise 11.3.42

{X,Y ,Z}

X = −2 + +3IA IB IC
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. The class  is independent with

  

 has distribution

Value -1.3 1.2 2.7 3.4 5.8

Probability 0.12 0.24 0.43 0.13 0.08

. Determine  and .

Answer

npr10_16 

Data are in cx, pmx, cy, pmy, Z, PZ 

[X,PX] = canonicf(cx,pmx); 

[Y,PY] - canonicf(cy,pmy); 

icalc3 

input: X, Y, Z, PX, PY, PZ 

------------- 

Use array operations on matrices X, Y, Z. 

PX, PY, PZ, t, u, v, and P 

G = t.^2 + 3*t.*u.^2 - 3*v; 

[W,PW] = csort(G,P); 

EW = W*PW' 

EW = -1.8673 

EW2 = (W.^2)*PW' 

EW2 = 426.8529 

This page titled 11.3: Problems on Mathematical Expectation is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

Y = +3 + −3ID IE IF {D,E,F}

P (D) = 0.32 P (E) = 0.56 P (F ) = 0.40

Z

W = +3X −3ZX2 Y 2 E[W ] E[ ]W 2
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12.1: Variance
In the treatment of the mathematical expection of a real random variable , we note that the mean value locates the center of the
probability mass distribution induced by  on the real line. In this unit, we examine how expectation may be used for further
characterization of the distribution for . In particular, we deal with the concept of variance and its square root the standard
deviation. In subsequent units, we show how it may be used to characterize the distribution for a pair  considered jointly
with the concepts covariance, and linear regression

Variance 
Location of the center of mass for a distribution is important, but provides limited information. Two markedly different random
variables may have the same mean value. It would be helpful to have a measure of the spread of the probability mass about the
mean. Among the possibilities, the variance and its square root, the standard deviation, have been found particularly useful.

The variance of a random variable  is the mean square of its variation about the mean value:

 where 

The standard deviation for X is the positive square root  of the variance.

Remarks

If  is the observed value of , its variation from the mean is . The variance is the probability weighted
average of the square of these variances.
The square of the error treats positive and negative variations alike, and it weights large variations more heavily than smaller
ones.
As in the case of mean value, the variance is a property of the distribution, rather than of the random variable.
We show below that the standard deviation is a “natural” measure of the variation from the mean.
In the treatment of mathematical expectation, we show that

 is a minimum off , in which case 

This shows that the mean value is the constant which best approximates the random variable, in the mean square sense.

Basic patterns for variance

Since variance is the expectation of a function of the random variable X, we utilize properties of expectation in computations. In
addition, we find it expedient to identify several patterns for variance which are frequently useful in performing calculations. For
one thing, while the variance is defined as , this is usually not the most convenient form for computation. The result
quoted above gives an alternate expression.

(V1): Calculating formula.  
(V2): Shift property. . Adding a constant  to  shifts the distribution (hence its center of mass) by
that amount. The variation of the shifted distribution about the shifted center of mass is the same as the variation of the
original, unshifted distribution about the original center of mass. 
(V3): Change of scale. . Multiplication of  by constant a changes the scale by a factor . The
squares of the variations are multiplied by . So also is the mean of the squares of the variations. 
(V4): Linear combinations. 
a.  
b. More generally,

The term  is the covariance of the pair , whose role we study in the unit on that
topic. If the  are all zero, we say the class is uncorrelated.

Remarks

If the pair  is independent, it is uncorrelated. The converse is not true, as examples in the next section show.

X

X

X

{X,Y }

Definition: Variance & Standard Deviation

X

Var [X] = = E[(X− ]σ2
X μX)2 = E[X]μX

σX

X(ω) X X(ω) −μX

E[(X−c ])2 c = E[X] E[(X−E[X] ] = E[ ] − [X])2 X2 E2

E[(X− ]μX)2

Var [X] = E[ ] − [X]X2 E2

Var [X+b] = Var [X] b X

Var [aX] = Var [X]a2 X [a]
a2

Var [aX±bY ] = Var [X] + Var [Y ] ±2ab(E[XY ] −E[X]E[Y ])a2 b2

Var [ ] = Var [ ] +2 (E[ ] −E[ ]E[ ])∑n
k=1 akXk ∑n

k=1 a
2
k Xk ∑i<j aiaj XiXj Xi Xj

= E[ ] −E[ ]E[ ]cij XiXj Xi Xj { , }Xi Xj

cij

{X,Y }
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If the  and all pairs are uncorrelated, then

The variance add even if the coefficients are negative.

We calculate variances for some common distributions. Some details are omitted—usually details of algebraic manipulation or the
straightforward evaluation of integrals. In some cases we use well known sums of infinite series or values of definite integrals. A
number of pertinent facts are summarized in Appendix B. Some Mathematical Aids. The results below are included in the table in
Appendix C.

Variances of some discrete distributions

Indicator function  

Simple random variable  (primitive form) .

, since  

Binomial( ).  with  iid 

Geometric( ).   

We use a trick: 

Poisson(\mu)  

Using , we have

Thus, . Note that both the mean and the variance have common value 

Some absolutely continuous distributions

Uniform on   

 so 

Symmetric triangular  Because of the shift property (V2), we may center the distribution at the origin. Then the
distribution is symmetric triangular , where . Because of the symmetry

Now, in this case,

  so that 

Exponential (\lambda) ,  

 so that 

Gamma( )   

= ±1ai

Var [ ] = Var [ ]∑n
k=1 aiXi ∑n

k=1 Xi

X = P (E) = p, q = 1 −pIE E[X] = p

E[ ] − [X] = E[ ] − = E[ ] − = p− = p(1 −p) −pqX2 E2 I 2
E

p2 IE p2 p2

X =∑n

i=1 tiIAi P ( ) =Ai pi

Var [X] = −2∑n
i=1 t

2
i piqi ∑i<j titjpipj E[ ] = 0IAi

IAj
i ≠ j

n, p X =∑n
i=1 IEi { : 1 ≤ i ≤ n}IEi P ( ) = pEi

Var [X] = Var [ ] = pq = npq∑n
i=1 IEi

∑n
i=1

p P (X = k) = pqk ∀k ≥ 0 E[X] = q/p

E[ ] = E[X(X−1)] +E[X]X2

E[ ] = p k(k−1) +q/p = p k(k−1) +q/p = p +q/p = 2 +q/pX2 ∑∞
k=0 qk q2 ∑∞

k=2 qk−2 q2
2

(1 −q)3

q2

p2

Var [X] = 2 +q/p−(q/p = q/
q2

p2
)2 p2

P (X = k) = e−μ μ
k

k!
∀k ≥ 0

E[ ] = E[X(X−1)] +E[X]X2

E[ ] = k(k−1) +μ = +μ = +μX2 e−μ ∑∞
k=2

μk

k!
e−μμ2 ∑∞

k=2

μk−2

(k−2)!
μ2

Var [X] = +μ− = μμ2 μ2 μ

(a, b) (t) =fX
1

b−a
a < t < b E[X] =

a+b

2

E[ ] =  dt =X2 1

b−a
∫ b

a
t2 −b3 a3

3(b−a)
Var [X] = − =

−b3 a3

3(b−a)

(a+b)2

4

(b−a)2

12

(a, b)
(−c, c) c = (b−a)/2

Var [X] = E[ ] = (t) dt = 2 (t) dtX2 ∫ c

−c t
2fX ∫ c

0 t2fX

(t) =fX
c− t

c2
0 ≤ t ≤ c E[ ] = (c − ) dt = =X2 2

c2
∫ c

0
t2 t3 c3

6

(b−a)2

24

(t) = λfX e−λt t ≥ 0 E[X] = 1/λ

E[ ] = λ  dt =X2 ∫ ∞
0

t2e−λt 2

λ2
Var [X] = 1/lambda2

α,λ (t) =fX
1

Γ(α)
λαtα=1e−λt t ≥ 0 E[X] =

α

λ
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Hence .

Normal( ) 

Consider  ~ , , .

 implies 

Extensions of some previous examples

In the unit on expectations, we calculate the mean for a variety of cases. We revisit some of those examples and calculate the
variances.

A bettor places three bets at $2.00 each. The first pays $10.00 with probability 0.15, the second $8.00 with probability 0.20,
and the third $20.00 with probability 0.10.

Solution

The net gain may be expressed

, with 

We may reasonbly suppose the class  is independent (this assumption is not necessary in computing the mean). Then

Calculation is straightforward. We may use MATLAB to perform the arithmetic.

c = [10 8 20]; 

p = 0.01*[15 20 10]; 

q = 1 - p; 

VX = sum(c.^2.*p.*q) 

VX = 58.9900 

Suppose  in a primitive form is

with probabilities .

Let . Determine  and 

c = [-3 -1 2 -3 4 -1 1 2 3 2];            % Original coefficients 

pc = 0.01*[8 11 6 13 5 8 12 7 14 16];     % Probabilities for c_j 

G = c.^2 + 2*c                            % g(c_j) 

EG = G*pc'                                % Direct calculation E[g(X)] 

EG = 6.4200 

VG = (G.^2)*pc' - EG^2;                   % Direct calculation Var[g(X)] 

VG = 40.8036 

[Z,PZ] = csort(G,pc);                     % Distribution for Z = g(X) 

EZ = Z*PZ'                                % E[Z] 

EZ = 6.4200 

E[ ] =  dt = =X2
1

Γ(α)
∫ ∞

0
λαtα+1e−λt

Γ(α+2)

Γ(α)λ2

α(α+1)

lambda2

Var [X] = α/λ2

μ, σ2 E[X] = μ

Y N(0, 1) E[Y ] = 0 Var [Y ] =  dt = 1
2

2π
−−

√
∫ ∞

0
t2e− /2t2

X = σY +μ Var [Y ] = σ2

Example  Expected winnings (Example 8 from "Mathematical Expectation: Simple Random Variables")12.1.1

X = 10 +8 +20 −6IA IB IC P (A) = 0.15,P (B) = 0.20,P (C) = 0.10

{A,B,C}

Var [X] = P (A)[1 −P (A)] + P (B)[1 −P (B)] + P (C)[1 −P (C)]102 82 202

Example  A function of  (Example 9 from "Mathematical Expectation: Simple Random Variables")12.1.2 X

X

X = −3 − +2 −3 +4 − + +2 +3 +2IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10

P ( ) = 0.08, 0.11, 0.06, 0.13, 0.05, 0.08, 0.12, 0.07, 0.14, 0.16Ci

g(t) = +2tt2 E[g(X)] Var[g(X)]
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VZ = (Z.^2)*PZ' - EZ^2                    % Var[Z] 

VZ = 40.8036 

We use the same joint distribution as for Example 10 from "Mathematical Expectation: Simple Random Variables" and let 
. To set up for calculations, we use jcalc.

jdemo1                        % Call for data 

jcalc                         % Set up 

Enter JOINT PROBABILITIES (as on the plane)    P 

Enter row matrix of VALUES of X    X 

Enter row matrix of VALUES of Y    Y 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

G = t.^2 + 2*t.*u - 3*u;      % calcculation of matrix of [g(t_i, u_j)] 

EG = total(G.*P)              % Direct calculation of E[g(X,Y)] 

EG = 3.2529 

VG = total(G.^.*P) - EG^2     % Direct calculation of Var[g(X,Y)] 

VG = 80.2133 

[Z,PZ] = csort(G,P);          % Determination of distribution for Z 

EZ = Z*PZ'                    % E[Z] from distribution 

EZ = 3.2529 

VZ = (Z.^2)*PZ' - EZ^2        % Var[Z] from distribution 

VZ = 80.2133 

Suppose \(X) ~ exponential (0.3). Let

Determine  and .

Analytic Solution

 (by Maple)

 (by Maple)

APPROXIMATION

To obtain a simple aproximation, we must approximate by a bounded random variable. Since 
we may safely truncate  at 50.

tuappr 

Enter matrix [a b] of x-range endpoints  [0 50] 

Enter number of x approximation points  1000 

Example   (Example 10 from "Mathematical Expectation: Simple Random Variables")12.1.3 Z = g(X,Y )

g(t, u) = +2tu−3ut2

Example  A function with compound definition (Example 12 from "Mathematical Expectation: Simple
Random Variables")

12.1.4

Z = { = (X) + (X)16
X2

16
for X ≤ 4
for X > 4

I[0,4] X2 I(4,∞]

E[Z] V ar[Z]

E[g(X)] = ∫ g(t) (t) dt = (t) 0.3  dt+16E[ (X)]fX ∫ ∞
0

I[0,4] t2 e−0.3t I(4,∞]

= 0.3  dt+16P (X > 4) ≈ 7.4972∫ 4
0
t2 e−0.3t

− (X) + (X)256Z2 I[0,4] X4 I(4,∞]

E[ ] = (t) 0.3  dt+256E[ (X)] = 0.3  dt+256 ≈ 100.0562Z2 ∫ ∞
0

I[0,4] t4 e−0.3t I(4,∞] ∫ 4
0
t4 e−0.3t e−1.2

Var [Z] = E[ ] − [Z] ≈ 43.8486Z2 E2

P (X > 50) = ≈ 3 ⋅e−15 10−7

X
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Enter density as a function of t  0.3*exp(-0.3*t) 

Use row matrices X and PX as in the simple case 

M = X <= 4; 

G = M.*X.^2 + 16*(1 - M);   % g(X) 

EG = G*PX'                  % E[g(X)] 

EG = 7.4972 

VG = (G.^2)*PX' - EG^2      % Var[g(X)] 

VG = 43.8472                % Theoretical = 43.8486 

[Z,PZ] = csort(G,PX);       % Distribution for Z = g(X) 

EZ = Z*PZ'                  % E[Z] from distribution 

EZ = 7.4972 

VZ = (Z.^2)*PZ' - EZ^2      % Var[Z] 

VZ = 43.8472 

The manager of a department store is planning for the holiday season. A certain item costs  dollars per unit and sells for 
dollars per unit. If the demand exceeds the amount  ordered, additional units can be special ordered for  dollars per unit (

). If demand is less than the amount ordered, the remaining stock can be returned (or otherwise disposed of) at  dollars
per unit ( ). Demand  for the season is assumed to be a random variable with Poisson ( ) distribution. Suppose , 

, , , . What amount  should the manager order to maximize the expected profit?

Problem Formulation

Suppose  is the demand and  is the profit. Then

For ,  
For , 

It is convenient to write the expression for  in terms of , where . Thus

Then

We use the discrete approximation.

APPROXIMATION

>> mu = 50; 

>> n = 100; 

>> t = 0:n; 

>> pD = ipoisson(mu,t);            % Approximate distribution for D 

>> c = 30; 

>> p = 50; 

>> s = 40; 

>> r = 20; 

>> m = 45:55; 

>> for i = 1:length(m)             % Step by step calculation for various m 

Example  Stocking for random demand (Example 13 from "Mathematical Expectation: Simple Random
Variables")

12.1.5

c p

m s

s > c r

r < c D μ μ = 50
c = 30 p = 50 s = 40 r = 20 m

D X

D ≤ m X = D(p−c) −(m−D)(c−r) = D(p−r) +m(r−c)
D > m X = m(p−c) −(D−m)(p−s) = D(p−s) +m(s−c)

X IM M = (−∞,M ]

X = (D)[D(p−r) +m(r−c)] +[1 − (D)][D(p−s) +m(s−c)]IM IM

= D(p−s) +m(s−c) + (D)[D(p−r) +m(r−c) −D(p−s) −m(s−c)]IM

D(p−s) +m(s−c) + (D)(s−r)[D−m]IM

E[X] = (p−s)E[D] +m(s−c) +(s−r)E[ (D)D] −(s−r)mE[ (D)]IM IM
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    M = t<=m(i); 

    G(i,:) = (p-s)*t + m(i)*(s-c) + (s-r)*M.*(t - m(i)); 

end 

>> EG = G*pD'; 

>> VG = (G.^2)*pD' - EG.^2; 

>> SG = sqrt(VG); 

>> disp([EG';VG';SG']') 

   1.0e+04 * 

    0.0931    1.1561    0.0108 

    0.0936    1.3117    0.0115 

    0.0939    1.4869    0.0122 

    0.0942    1.6799    0.0130 

    0.0943    1.8880    0.0137 

    0.0944    2.1075    0.0145 

    0.0943    2.3343    0.0153 

    0.0941    2.5637    0.0160 

    0.0938    2.7908    0.0167 

    0.0934    3.0112    0.0174 

    0.0929    3.2206    0.0179 

Suppose the pair  has joint density  on the triangular region bounded by , , .
Let .

Determine  and .

Analytic Solution

APPROXIMATION

tuappr 

Enter matrix [a b] of x-range endpoints  [-1 1] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  400 

Enter number of Y approximation points  200 

Enter expression for joint density 3*u.*(u<=min(1+t,1-t)) 

Use array operations on X, Y, PX, PY, t, u, and P 

G = t.^2 + 2*t.*u;            % g(X,Y) = X^2 + 2XY 

EG = total(G.*P)              % E[g(X,Y)] 

EG = 0.1006                   % Theoretical value = 1/10 

VG = total(G.^2.*P) - EG^2 

VG = 0.0765                   % Theoretical value 53/700 = 0.757 

[Z,PZ] = csort(G,P);          % Distribution for Z 

EZ = Z*PZ'                    % E[Z] from distribution 

Example  A jointly distributed pair (Example 14 from "Mathematical Expectation: Simple Random
Variables")

12.1.6

{X,Y } (t, u) = 3ufXY u = 0 u = 1 + t u = 1 − t

Z = g(X,Y ) = +2XYX2

E[Z] Var [Z]

E[Z] = ∫ ∫( +2tu) (t, u) dudt = 3 u( +2tu) dudt+3 u( +2tu) dudt = 1/10t2 fXY ∫ 0
−1
∫ 1+t

0
t2 ∫ 1

0
∫ 1−t

0
t2

E[ ] = 3 u( +2tu  dudt+3 u( +2tu  dudt = 3/35Z2 ∫ 0
−1 ∫

1+t

0 t2 )2 ∫ 1
0 ∫ 1−t

0 t2 )2

Var [Z] = E[ ] − [Z] = 53/700 ≈ 0.0757Z2 E2
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EZ = 0.1006 

VZ = (Z.^2)*PZ' - EZ^2 

VZ = 0.0765

The pair  has joint density  on the square region bounded by , , , and 
.

where .

Determine  and .

Solution

The intersection of the region  and the square is the set for which  and . Reference to Figure 11.3.2
shows three regions of integration.

tuappr 

Enter matrix [a b] of x-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 2] 

Enter number of X approximation points  200 

Enter number of Y approximation points  200 

Enter expression for joint density ((u<=min(t+1,3-t))& ... 

        (u$gt;=max(1-t,t-1))/2 

Use array operations on X, Y, PX, PY, t, u, and P 

M = max(t,u)<=1; 

G = t.^M + 2*u.*(1 - M);        %Z = g(X,Y) 

EG = total(G.*P)                % E[g(X,Y)] 

EG = 1.8349=0                   % Theoretical 11/6 = 1.8333 

VG = total(G.^2.*P) - EG^2 

VG = 0.9368                     % Theoretical 67/72 = 0.9306 

[Z,PZ] = csort(G,P);            % Distribution for Z 

EZ = Z*PZ'                      % E[Z] from distribution 

EZ = 1.8340 

VZ = (Z.^2)*PZ' - EZ^2 

VZ = 0.9368

 on 

 for 

Example  A function with compound definition (Example 15 from "Mathematical Expectation: Simple
Random Variables")

12.1.7

{X,Y } (t, u) = 1/2fXY u = 1 + t u = 1 − t u = 3 − t

u = t−1

W = { = (X,Y )X+ (X,Y )2Y
X

2Y
for max {X,Y } ≤ 1
for max {X,Y } > 1

IQ IQc

Q = {(t, u) : max {t, u} ≤ 1} = {(t, u) : t ≤ 1, u ≤ 1}

E[W ] Var [W ]

Q 0 ≤ t ≤ 1 1 − t ≤ u ≤ 1

E[W ] = t dudt+ 2u dudt+ 2u dudt = 11/6 ≈ 1.8333
1

2
∫ 1

0
∫ 1

1−t

1

2
∫ 1

0
∫ 1+t

1

1

2
∫ 2

1
∫ 3−t

t−1

E[ ] =  dudt+ 4  dudt+ 4  dudt = 103/24W 2 1

2
∫ 1

0
∫ 1

1−t
t2 1

2
∫ 1

0
∫ 1+t

1
u2 1

2
∫ 2

1
∫ 3−t

t−1
u2

Var [W ] = 103/24 −(11/6 = 67/72 ≈ 0.9306)2

Example  A function with compound definition12.1.8

(t, u) = 3fXY 0 ≤ u ≤ ≤ 1t2

Z = (X,Y )X+ (X,Y )IQ IQc Q = {(t, u) : u+ t ≤ 1}
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The value  where the line  and the curve  meet satisfies .

For  replace  by  in the integrands to get .

Using , we get .

APPROXIMATION

% Theoretical values 

t0 = (sqrt(5) - 1)/2 

t0 = 0.6180 

EZ = (3/4)*(5*t0 - 2) 

EZ = 0.8176 

EZ2 = (25*t0 - 1)/20 

EZ2 = 0.7225 

VZ = (2125*T0 - 1309)/80 

VZ = 0.0540 

tuappr 

Enter matrix [a b] of x-range endpoints  [0 1] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  200 

Enter number of Y approximation points  200 

Enter expression for joint density 3*(u <= t.^2) 

Use array operations on X, Y, t, u, and P 

G = (t+u <= 1).*t + (t+u > 1); 

EG = total(G.*P) 

EG = 0.8169                    % Theoretical = 0.8176 

VG = total(G.^2.*P) - EG^2 

VG = 0.0540                    % Theoretical = 0.0540 

[Z,PZ] = csort(G,P); 

EZ = Z*PZ'  

EZ = 0.8169 

VZ = (Z.^2)*PZ' - EZ^2 

VZ = 0.0540 

Standard deviation and the Chebyshev inequality

In Example 5 from "Functions of a Random Variable," we show that if  ~ , then  ~ . Also, 

 and . Thus

For the normal distribution, the standard deviation  seems to be a natural measure of the variation away from the mean.

For a general distribution with mean  and variance , we have the

Chebyshev inequality

 or 

t0 u = 1 − t u = t2 = 1 −t2
0 t0

E[Z] = 3 t  dudt+3 t  dudt+3  dudt = (5 −2)∫ t0

0
∫ t2

0
∫ 1
t0

∫ 1−t

0
∫ 1
t0
∫ t2

1−t

3

4
t0

E[ ]Z2 t t2 E[ ] = (25 −1)/20Z2 t0

= ( −1)/2 ≈ 0.6180t0 5
–

√ Var [Z] = (2125 −1309)/80 ≈ 0.0540t0

X N(μ, )σ2 Z =
X−μ

σ
N(0, 1)

E[X] = μ Var [X] = σ2

P ( ≤ t) = P (|X−μ| ≤ tσ) = 2ϕ(t) −1
|X−μ|

σ

σ

μ σ2

P ( ≥ a) ≤
|X−μ|

σ

1

a2
P (|X−μ| ≥ aσ) ≤

1

a2
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In this general case, the standard deviation appears as a measure of the variation from the mean value. This inequality is useful in
many theoretical applications as well as some practical ones. However, since it must hold for any distribution which has a variance,
the bound is not a particularly tight. It may be instructive to compare the bound on the probability given by the Chebyshev
inequality with the actual probability for the normal distribution.

t = 1:0.5:3; 

p = 2*(1 - gaussion(0.1,t)); 

c = ones(1,length(t))./(t.^2); 

r = c./p; 

h = ['    t    Chebyshev    Prob    Ratio']; 

m = [t;c;p;r]'; 

disp(h) 

        t    Chebyshev    Prob    Ratio 

disp(m) 

    1.0000    1.0000    0.3173    3.1515 

    1.5000    0.4444    0.1336    3.3263 

    2.0000    0.2500    0.0455    5.4945 

    2.5000    0.1600    0.0124   12.8831 

    3.0000    0.1111    0.0027   41.1554 

— □

DERIVATION OF THE CHEBYSHEV INEQUALITY

Let . Then .

Upon taking expectations of both sides and using monotonicity, we have

from which the Chebyshev inequality follows immediately.

— □

We consider three concepts which are useful in many situations.

A random variable  is centered iff .

 is always centered.

A random variable  is standardized iff  and .

 is standardized

A pair  of random variables is uncorrelated iff

It is always possible to derive an uncorrelated pair as a function of a pair , both of which have finite variances. Consider

 , where , 

A = {|X−μ| ≥ aσ} = {(X−μ ≥ })2 a2σ2 ≤ (X−μa2σ2IA )2

P (A) ≤ E[(X−μ ] =a2σ2 )2 σ2

Definition

X E[X] = 0

= X−μX ′

Definition

X E[X] = 0 Var[X] = 1

= =X∗
X−μ

σ

X ′

σ

Definition

{X,Y }

E[XY ] −E[X]E[Y ] = 0

{X,Y }

U = ( + )X∗ Y ∗ V = ( − )X∗ Y ∗ =X∗ X−μX

σX
=Y ∗ Y −μY

σY
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Now  and

so the pair is uncorrelated.

We use the distribution for Examples Example 10 from "Mathematical Expectation: Simple Random Variables" and Example,
for which

jdemo1 

jcalc 

Enter JOINT PROBABILITIES (as on the plane)  P 

Enter row matrix of VALUES of X  X 

Enter row matrix of VALUES of Y  Y 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

EX = total(t.*P) 

EX = 0.6420 

EY = total(u.*P) 

EY = 0.0783 

EXY = total(t.*u.*P) 

EXY = -0.1130 

c = EXY - EX*EY 

c = -0.1633                % {X, Y} not uncorrelated

VX = total(t.^2.*P) - EX^2 

VX = 3.3016 

VY = total(u.^2.*P) - EY^2 

VY = 3.6566 

SX = sqrt(VX) 

SX = 1.8170 

SY = sqrt(VY) 

SY = 1.9122 

x = (t - EX)/SX;           % Standardized random variables 

y = (u - EY)/SY; 

uu = x + y;                % Uncorrelated random variables 

vv = x - y; 

EUV = total(uu.*vv.*P)     % Check for uncorrelated condition 

EUV = 9.9755e-06           % Differs from zero because of roundoff 

This page titled 12.1: Variance is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via source content
that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

E[U] = E[V ] = 0

E[UV ] = E( + )( − )] = E[( ] −E[( ] = 1 −1 = 0X∗ Y ∗ X∗ Y ∗ X∗)2 Y ∗)2

Example  Determining an unvorrelated pair12.1.9

E[XY ] −E[X]E[Y ] ≠ 0
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12.2: Covariance and the Correlation Coefficient
The mean value  and the variance  give important information about the distribution for real
random variable . Can the expectation of an appropriate function of  give useful information about the joint distribution?
A clue to one possibility is given in the expression

The expression  vanishes if the pair is independent (and in some other cases). We note also that for 
 and 

To see this, expand the expression  and use linearity to get

which reduces directly to the desired expression. Now for given ,  is the variation of  from its mean and 
 is the variation of  from its mean. For this reason, the following terminology is used.

The quantity  is called the covariance of  and .

If we let  and  be the ventered random variables, then

Note that the variance of  is the covariance of  with itself.

If we standardize, with  and , we have

The correlation coefficient  is the quantity

Thus . We examine these concepts for information on the joint distribution. By Schwarz' inequality (E15),
we have

 with equality iff 

Now equality holds iff

 which implies  and 

We conclude , with  iff 

Relationship between  and the joint distribution

We consider first the distribution for the standardized pair 

Since 

we obtain the results for the distribution for  by the mapping

 

Joint distribution for the standardized variables , 

 iff  iff all probability mass is on the line . 
 iff  iff all probability mass is on the line .

= E[X]μX = E[(X− ]σ2
X μX)2

X (X,Y )

Var[X±Y ] = Var[X] +Var[Y ] ±2(E[XY ] −E[X]E[Y ])

E[XY ] −E[X]E[Y ]
= E[X]μX = E[Y ]μY

E[(X− )(Y − )] = E[XY ] −μX μY μXμY

(X− )(Y − )μX μY

E[(X− )(Y − )] = E[XY − X− Y + ] = E[XY ] − E[X] − E[Y ] +μX μY μY μX μXμY μY μX μXμY

ω X(ω) −μX X

Y (ω) −μY Y

Definition: Covariance

Cov[X,Y ] = E[(X− )(Y − )]μX μY X Y

= X−X ′ μX = Y −Y ′ μY

Cov[X,Y ] = E[ ]X ′Y ′

X X

= (X− )/X∗ μX σX = (Y − )/Y ∗ μY σY

Definition: Correlation Coefficient

ρ = ρ[X,Y ]

ρ[X,Y ] = E[ ] =X∗Y ∗
E[(X− )(Y − )]μX μY

σXσY

ρ = Cov[X,Y ]/σXσY

= [ ] ≤ E[( ]E[( ] = 1ρ2 E2 X∗Y ∗ X∗)2 Y ∗)2 = cY ∗ X∗

1 = [( ] =c2E2 X∗)2 c2 c = ±1 ρ = ±1

−1 ≤ ρ ≤ 1 ρ = ±1 = ±Y ∗ X∗

ρ

( , )X∗ Y ∗

P ( ≤ r, ≤ s) = P ( ≤ r, ≤ s)X∗ Y ∗
X−μX

σX

Y −μY

σY

= P (X ≤ t = r+ ,Y ≤ u = s+ )σX μX σY μY

(X,Y )

t = r+σX μX

u = s+σY μY

( , )X∗ Y ∗ (r, s) = ( , )(ω)X∗ Y ∗

ρ = 1 =X∗ Y ∗ s = r

ρ = −1 = −X∗ Y ∗ s = −r
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If , then at least some of the mass must fail to be on these lines.
Figure one is comprised of a diagonal line with a right triangle. A portion of the line is the base of the triangle. The line is labeled, s = r. One point of the triangle located on the diagonal line is labeled (r, r). The point

of the triangle that is not located on the line is labeled, (r, s). The side of the triangle in between these two labeled points is labeled as the absolute value of s - r. The side of the triangle on the line is not labeled. The third
side is labeled as the absolute value of s - r divided by the square root of two.  

Figure 12.2.1. Distance from point  to the line .

The  lines for the  distribution are:

 or 

Consider . Then . Reference to Figure 12.2.1 shows this is the average of the square

of the distances of the points  from the line  (i.e. the variance about the line ). Similarly for 
.  is the variance about . Now

Thus

 is the variance about  (the  line) 
 is the variance about  (the  line)

Now since

 iff 

the condition  is the condition for equality of the two variances.

Transformation to the  plane

   

The  line is:

 or 

The  line is:

 or 

 is proportional to the variance abut the  line and  is proportional to the variance about the  line.  iff
the variances about both are the same.

Suppose the joint density for  is constant on the unit circle about the origin. By the rectangle test, the pair cannot be
independent. By symmetry, the  line is  and the  line is . By symmetry, also, the variance about each
of these lines is the same. Thus , which is true iff . This fact can be verified by calculation, if desired.

Figure two is comprised of three graphs of multiple shaded squares. All three are standard cartesian graphs, with all four quadrants equal in size, t as the horizontal axis, and u as the vertical axis. The first graph
shows one large square centered at the origin with a length of two units on a side. As the square is centered about the origin, the square is divided equally into four smaller squares by the vertical and horizontal
axes. A caption below the first graph reads, rho = 0. The second graph contains two smaller squares, one unit to a side, one sitting with two sides along the axes of the graph in the first quadrant, and one sitting
with two sides along the axes of the graph in the third quadrant. The caption reads rho = 3/4. The third graph contains two squares of the same size as the second graph, this time with one sitting with two sides

along the axes in the second quadrant, and one sitting with two sides along the axes in the fourth quadrant. The caption reads rho = -3/4.  
Figure 12.2.2. Uniform marginals but different correlation coefficients.

Consider the three distributions in Figure 12.2.2. In case (a), the distribution is uniform over the square centered at the origin
with vertices at (1,1), (-1,1), (-1,-1), (1,-1). In case (b), the distribution is uniform over two squares, in the first and third
quadrants with vertices (0,0), (1,0), (1,1), (0,1) and (0,0),

(-1,0), (-1,-1), (0,-1). In case (c) the two squares are in the second and fourth quadrants. The marginals are uniform on (-1,1) in
each case, so that in each case

−1 < ρ < 1

(r, s) s = r

ρ = ±1 (X,Y )

= ±
u−μY

σY

t−μX

σX
u = ± (t− ) +

σY

σX
μX μY

Z = −Y ∗ X∗ E[ ] = E[( − ]
1

2
Z2 1

2
Y ∗ X∗)2

(r, s) = ( , )(ω)X∗ Y ∗ s = r s = r

W = +Y ∗ X∗ E[ /2]W 2 s = −r

E[( ± ] = {E[( ] +E[( ] ±2E[ ]} = 1 ±ρ
1

2
Y ∗ X∗)2 1

2
Y ∗)2 X∗)2 X∗Y ∗

1 −ρ s = r ρ = 1
1 +ρ s = −r ρ = −1

E[( − ] = E[( + ]Y ∗ X∗)2 Y ∗ X∗)2 ρ = E[ ] = 0X∗Y ∗

ρ = 0

(X,Y )

t = r+σX μX u = s+σY μY r =
t−μX

σX
s =

u−μY

σY

ρ = 1

=
u−μY

σY

t−μX

σX
u = (t− ) +

σY

σX
μX μY

ρ = −1

=
u−μY

σY

t−μX

σX
u = − (t− ) +

σY

σX
μX μY

1 −ρ ρ = 1 1 +ρ ρ = −1 ρ = 0

Example  Uncorrelated but not independent12.2.1

{X,Y }
ρ = 1 u = t ρ = −1 u = −t

ρ = 0 Cov[X,Y ] = 0

Example  Uniform marginal distributions12.2.2
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 and 

This means the  line is  and the  line is .

a. By symmetry,  (in fact the pair is independent) and . 
b. For every pair of possible values, the two signs must be the same, so  which implies . The actual value
may be calculated to give . Since , the variance about the  line is less than that about the 
line. This is evident from the figure. 
c.  and . Since , the variance about the  line is less than that about the  line.
Again, examination of the figure confirms this.

With the aid of m-functions and MATLAB we can easily caluclate the covariance and the correlation coefficient. We use the
joint distribution for Example 9 in "Variance." In that example calculations show

,  and 

so that .

The pair  has joint density function  on the triangular region bounded by , , and 

. By the usual integration techniques, we have

,  and , 

From this we obtain , , , and . To complete the picture we need

Then

 and 

APPROXIMATION

tuappr 

Enter matrix [a b] of X-range endpoints  [0 1] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  200 

Enter number of Y approximation points  200 

Enter expression for joint density  (6/5)*(t + 2*u).*(u>=t) 

Use array operations on X, Y, PX, PY, t, u, and P 

EX = total(t.*P) 

EX =   0.4012                    % Theoretical = 0.4 

EY = total(u.*P) 

EY =   0.7496                    % Theoretical = 0.75 

VX = total(t.^2.*P) - EX^2 

VX =   0.0603                    % Theoretical = 0.06 

VY = total(u.^2.*P) - EY^2 

VY =   0.0376                    % Theoretical = 0.0375 

CV = total(t.*u.*P) - EX*EY 

CV =   0.0201                    % Theoretical = 0.02 

E[X] = E[Y ] = 0 Var[X] = Var[Y ] = 1/3

ρ = 1 u = t ρ = −1 u = −t

E[XY ] = 0 ρ = 0
E[XY ] > 0 ρ > 0

ρ = 3/4 1 −ρ < 1 +ρ ρ = 1 ρ = −1

E[XY ] < 0 ρ < 0 1 +ρ < 1 −ρ ρ = −1 ρ = 1

Example  A pair of simple random variables12.2.3

E[XY ] −E[X]E[Y ] = −0.1633 = Cov[X,Y ] = 1.8170σX = 1.9122σY

ρ = −0.04699

Example  An absolutely continuous pair12.2.4

{X,Y } (t, u) = (t+2u)fXY

6

5
t = 0 u = t

u = 1

(t) = (1 + t−2 )fX
6

5
t2 0 ≤ t ≤ 1 (u) = 3fY u2 0 ≤ u ≤ 1

E[X] = 2/5 Var[X] = 3/50 E[Y ] = 3/4 Var[Y ] = 3/80

E[XY ] = ( u+2t ) dudt = 8/25
6

5
∫ 1

0 ∫ 1
t t2 u2

Cov[X,Y ] = E[XY ] −E[X]E[Y ] = 2/100 ρ = = ≈ 0.4216
Cov[X,Y ]

σXσY

4

30
10
−−

√
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rho = CV/sqrt(VX*VY) 

rho =  0.4212                    % Theoretical = 0.4216

Coefficient of linear correlation

The parameter  is usually called the correlation coefficient. A more descriptive name would be coefficient of linear correlation.
The following example shows that all probability mass may be on a curve, so that  (i.e., the value of Y is completely
determined by the value of ), yet .

Suppose  ~ uniform (-1, 1), so that ,  and . Let . Then

Thus . Note that  could be any even function defined on (-1,1). In this case the integrand  is odd, so that the value
of the integral is zero.

Variance and covariance for linear combinations

We generalize the property (V4) on linear combinations. Consider the linear combinations

 and 

We wish to determine  and . It is convenient to work with the centered random variables  and 
. Since by linearity of expectation,

 and 

we have

and similarly for . By definition

In particular

Using the fact that , we have

Note that  does not depend upon the sign of . If the  form an independent class, or are otherwise uncorrelated, the
expression for variance reduces to

This page titled 12.2: Covariance and the Correlation Coefficient is shared under a CC BY 3.0 license and was authored, remixed, and/or curated
by Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

ρ

Y = g(X)
X ρ = 0

Example   but 12.2.5 Y = g(X) ρ = 0

X (t) = 1/2fX −1 < t < 1 E[X] = 0 Y = g(X) = cosX

Cov[X,Y ] = E[XY ] = t cos t dt = 0
1

2
∫

1
−1

ρ = 0 g tg(t)

X =∑n
i=1 aiXi Y =∑m

j=1 bjYj

Cov[X,Y ] Var[X] = X−X ′ μX

= Y −Y ′ μY

=μX ∑n
i=1 aiμXi

=μY ∑m
j=1 bjμYj

= − = ( − ) =X ′ ∑n
i=1 aiXi ∑n

i=1 aiμXi ∑n
i=1 ai Xi μXi ∑n

i=1 aiX
′
i

Y ′

Cov(X,Y ) = E[ ] = E[ ] = E[ ] = Cov( , )X ′Y ′ ∑i,j aibjX
′
iY

′
j ∑i,j aibj X ′

iE
′
j ∑i,j aibj Xi Yj

Var(X) = Cov(X,X) = Cov( , ) = Cov( , ) + Cov( , )∑i,j aiaj Xi Xj ∑n
i=1 a

2
i Xi Xi ∑i≠j aiaj Xi Xj

Cov( , ) = Cov( , )aiaj Xi Xj ajai Xj Xi

Var[X] = Var[ ] +2 Cov( , )∑n
i=1 a

2
i Xi ∑i<j aiaj Xi Xj

a2
i ai Xi

Var[X] = Var[ ]∑n
i=1 a

2
i Xi
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12.3: Linear Regression

Linear Regression 

Suppose that a pair  of random variables has a joint distribution. A value  is observed. It is desired to estimate the
corresponding value . Obvious there is no rule for determining  unless  is a function of . The best that can be hoped
for is some estimate based on an average of the errors, or on the average of some function of the errors.

Suppose  is observed, and by some rule an estimate  is returned. The error of the estimate is . The most
common measure of error is the mean of the square of the error

The choice of the mean square has two important properties: it treats positive and negative errors alike, and it weights large errors
more heavily than smaller ones. In general, we seek a rule (function)  such that the estimate  is . That is, we seek a
function  such that

 is a minimum.

The problem of determining such a function is known as the regression problem. In the unit on Regression, we show that this
problem is solved by the conditional expectation of , given . At this point, we seek an important partial solution.

The regression line of  on 

We seek the best straight line function for minimizing the mean squared error. That is, we seek a function  of the form 
. The problem is to determine the coefficients  such that

 is a minimum

We write the error in a special form, then square and take the expectation.

Standard procedures for determining a minimum (with respect to a) show that this occurs for

 

Thus the optimum line, called the regression line of  on , is

The second form is commonly used to define the regression line. For certain theoretical purposes, this is the preferred form. But for
calculation, the first form is usually the more convenient. Only the covariance (which requres both means) and the variance of 
are needed. There is no need to determine  or .

jdemo1 

jcalc 

Enter JOINT PROBABILITIES (as on the plane)  P 

Enter row matrix of VALUES of X  X 

Enter row matrix of VALUES of Y  Y 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

EX = total(t.*P) 

EX =   0.6420 

{X,Y } X(ω)

Y (ω) Y (ω) Y X

X(ω) (ω)Ŷ Y (ω) − (ω)Ŷ

E[(Y − ]Ŷ )2

r (ω)Ŷ r(X(ω))

r

E[(Y −r(X) ])2

Y X

Y X

r

u = r(t0 = at+b a, b

E[(Y −aX−b ])2

Error = Y −aX−b = (Y − ) −a(X− ) + −a −b = (Y − ) −a(X− ) −βμY μX μY μX μY μX

Error squared = (Y − + (X− + −2β(Y − ) +2αβ(X− ) −2a(Y − )(X− )μY )2 a2 μX)2 β2 μY μX μY μX

E[(Y −aX−b ] = + + −2aCov[X,Y ])2 σ2
Y a2σ2

X β2

a =
Cov[X,Y ]

Var[X]
b = −aμY μX

Y X

u = (t− ) + = ρ (t− ) + = α(t)
Cov[X,Y ]

Var[X]
μX μY

σY

σX
μX μY

X

Var[Y ] ρ

Example  The simple air of Example 3 from "Variance"12.3.1
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EY = total(u.*P) 

EY =   0.0783 

VX = total(t.^2.*P) - EX^2 

VX =   3.3016 

CV = total(t.*u.*P) - EX*EY 

CV =  -0.1633 

a = CV/VX 

a  =  -0.0495 

b = EY - a*EX 

b  =   0.1100           % The regression line is u = -0.0495t + 0.11

Suppose the pair  has joint density  on the triangular region bounded by , , .
Determine the regression line of  on .

Analytic Solution

By symmetry, , so . The regression curve is

Note that the pair is uncorrelated, but by the rectangle test is not independent. With zero values of  and , the
approximation procedure is not very satisfactory unless a very large number of approximation points are employed.

The pair  has joint density  on the region ,  (see Figure 12.3.1).

Determine the regression line of  on . If the value  is observed, what is the best mean-square linear estimate of 
?

Figure one contains two lines in the first quadrant of a cartesian graph. The horizontal axis is labeled t, and the vertical axis is labeled u. The title caption reads f_xy (t, u) = (6/37)(t + 2u). The first line crosses
the vertical axis one quarter of the way up the graph. It has a positive slope, and is labeled u = 0.3382t + 0.4011. It continues as a linear plot from one side of the graph to the other. The second line begins

horizontally as one segment from the left to point (1, 1). The segment is labeled u = 1. After point (1, 1), the line moves upward with a positive, constant slope to point (2, 2). This segment is labeled u = t. At (2, 2)
there is a vertical line continuing downward to point (2, 0).  

Figure 12.3.1. Regression line for Example 12.3.3

Analytic Solution

The other quantities involve integrals over the same regions with appropriate integrands, as follows:

Quantity Integrand Value

779/370

127/148

232/185

Then

 

and

, 

Example  The pair in Example 6 from "Variance"12.3.2

{X,Y } (t, u) = 3ufXY u = 0 u = 1 + t u = 1 − t

Y X

E[X] = E[XY ] = 0 Cov[X,Y ] = 0

u = E[Y ] = 3  dtdu = 6 (1 −u) du = 1/2∫ 1

0
u2 ∫ 1−u

u−1
∫ 1

0
u2

E[X] E[XY ]

Example  Distribution of Example 5 from "Random Vectors and MATLAB" and Example 12 from "Function
of Random Vectors"

12.3.3

{X,Y } (t, u) = (t+2u)fXY

6

37
0 ≤ t ≤ 2 0 ≤ u ≤ max{1, t}

Y X X(ω) = 1.7

Y (ω)

E[X] = ( +2tu) dudt+dfrac637 ( +2tu) dudt = 50/37
6

37
∫ 1

0
∫ 1

0
t2 ∫ 2

1
∫ t

0
t2

E[ ]X2 + 2 ut3 t2

E[Y ] tu + 2u2

E[XY ] u + 2tt2 u2

Var[X] = −( =
779

370

50

37
)2 3823

13690
textCov[X,Y ] = − ⋅ =

232

185

50

37

127

148

1293

13690

a = Cov[X,Y ]/Var[X] = ≈ 0.3382
1293

3823
b = E[Y ] −aE[X] = ≈ 0.4011

6133

15292
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The regression line is . If , the best linear estimate (in the mean square sense) is 
 (see Figure 12.3.1 for an approximate plot).

APPROXIMATION

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 2] 

Enter number of X approximation points  400 

Enter number of Y approximation points  400 

Enter expression for joint density  (6/37)*(t+2*u).*(u<=max(t,1)) 

Use array operations on X, Y, PX, PY, t, u, and P 

EX = total(t.*P) 

EX =  1.3517                   % Theoretical = 1.3514 

EY = total(u.*P) 

EY =  0.8594                   % Theoretical = 0.8581 

VX = total(t.^2.*P) - EX^2 

VX =  0.2790                   % Theoretical = 0.2793 

CV = total(t.*u.*P) - EX*EY 

CV =  0.0947                   % Theoretical = 0.0944 

a = CV/VX 

a  =  0.3394                   % Theoretical = 0.3382 

b = EY - a*EX 

b  =  0.4006                   % Theoretical = 0.4011 

y = 1.7*a + b 

y  =  0.9776                   % Theoretical = 0.9760

An interpretation of 

The analysis above shows the minimum mean squared error is given by

If , then , the mean squared error in the case of zero linear correlation. Then,  is interpreted as the
fraction of uncertainty removed by the linear rule and X. This interpretation should not be pushed too far, but is a common
interpretation, often found in the discussion of observations or experimental results.

More general linear regression

Consider a jointly distributed class. . We wish to deterimine a function  of the form

, with , such that  is a minimum

If  satisfies this minimum condition, then , or, equivalently

 for all  of the form 

To see this, set  and let . Now, for any 

If we select the special

 then 

u = at+b X(ω) = 1.7

(ω) = 1.7a+b = 0.9760Ŷ

ρ2

E[(Y − ] = E[(Y −ρ (X− ) − ] = E[( −ρ ]Ŷ )2 σY

σX
μX μY )2 σ2

Y Y ∗ X∗)2

= E[( −2ρ + ( ] = (1 −2 + ) = (1 − )σ2
Y Y ∗)2 X∗Y ∗ ρ2 X∗)2 σ2

Y ρ2 ρ2 σ2
Y ρ2

ρ = 0 E[(Y − ] =Ŷ )2 σ2
Y

ρ2

{Y , , , ⋅ ⋅ ⋅, }X1 X2 Xn U

U =∑n
i=0 aiXi = 1X0 E[(Y −U ])2

U E[(Y −U)V ] = 0

E[Y V ] = E[UV ] V V =∑n
i=0 ciXi

W = Y −U = E[ ]d2 W 2 α

≤ E[(W +αV ] = +2αE[WV ] + E[ ]d2 )2 d2 α2 V 2

α = −
E[WV ]

E[ ]V 2
0 ≤ − + E[ ]

2E[WV ]2

E[ ]V 2

E[WV ]2

E[V 2]2
V 2
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This implies , which can only be satisfied by , so that

On the other hand, if  for all  of the form above, then  is a minimum. Consider

See  is of the same form as , the last term is zero. The first term is fixed. The second term is nonnegative, with zero value
iff  a.s. Hence,  is a minimum when .

If we take  to be 1, , successively, we obtain  linear equations in the  unknowns , as
follows.

 
 for 

For each , we take (2) -  and use the calculating expressions for variance and covariance to get

These  equations plus equation (1) may be solved alagebraically for the .

In the important special case that the  are uncorrelated (i.e.  for ), we have

 

and

In particular, this condition holds if the class  is iid as in the case of a simple random sample (see the section on
"Simple Random Samples and Statistics").

Examination shows that for , with , , and , the result agrees with that obtained in the treatment of the
regression line, above.

Suppose , , , , , , , and 
. Then the three equations are

Solution of these simultaneous linear equations with MATLAB gives the results

, , and .

This page titled 12.3: Linear Regression is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

E[WV ≤ 0]2 E[WV ] = 0

E[Y V ] = E[UV ]

E[(Y −U)V ] = 0 V E[(Y −U ])2

E[(Y −V ] = E[(Y −U +U −V ] = E[(Y −U ] +E[(U −V ] +2E[(Y −U)(U −V )])2 )2 )2 )2

U −V V

U −V = 0 E[(Y −V ])2 V = U

V , , ⋅ ⋅ ⋅,X1 X2 Xn n+1 n+1 , , ⋅ ⋅ ⋅,a0 a1 an

E[Y ] = + E[ ] + ⋅ ⋅ ⋅ + E[ ]a0 a1 X1 an Xn

E[Y ] = E[ ] + E[ ] + ⋅ ⋅ ⋅ + E[ ]X1 a0 Xi a1 X1Xi an XnXi 1 ≤ i ≤ n

i = 1, 2, ⋅ ⋅ ⋅,n E[ ] ⋅ (1)Xi

Cov[Y , ] = Cov[ , ] + Cov[ , ] + ⋅ ⋅ ⋅ + Cov[ , ]Xi a1 X1 Xi a2 X2 Xi an Xn Xi

n ai

Xi Cov[ , ] = 0Xi Xj i ≠ j

=ai
Cov[Y , ]Xi

Var[ ]Xi

1 ≤ i ≤ n

= E[Y ] − E[ ] − E[ ] − ⋅ ⋅ ⋅ − E[ ]a0 a1 X1 a2 X2 an Xn

{ : 1 ≤ i ≤ n}Xi

n = 1 = XX1 = ba0 = aa1

Example  Linear regression with two variables.12.3.4

E[Y ] = 3 E[ ] = 2X1 E[ ] = 3X2 Var[ ] = 3X1 Var[ ] = 8X2 Cov[Y , ] = 5X1 Cov[Y , ] = 7X2

Cov[ , ] = 1X1 X2

+2 +3 = 3a0 a2 a3

0 +3 +1 = 5a1 a2

0 +1 +8 = 7a1 a2

= −1.9565a0 = 1.4348a1 = 0.6957a2
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12.4: Problems on Variance, Covariance, Linear Regression

(See Exercise 1 from "Problems on Distribution and Density Functions ", and Exercise 1 from "Problems on Mathematical
Expectation", m-file npr07_01.m). The class  is a partition. Random variable  has values {1, 3, 2, 3, 4, 2,
1, 3, 5, 2} on  through , respectively, with probabilities 0.08, 0.13, 0.06, 0.09, 0.14, 0.11, 0.12, 0.07, 0.11, 0.09.
Determine .

Answer

npr07_01 

Data are in T and pc 

EX = T*pc' 

EX =  2.7000 

VX = (T.^2)*pc' - EX^2 

VX =  1.5500 

[X,PX] = csort(T,pc);    % Alternate 

Ex = X*PX' 

Ex =  2.7000 

Vx = (X.^2)*PX' - EX^2 

Vx =  1.5500

(See Exercise 2 from "Problems on Distribution and Density Functions ", and Exercise 2 from "Problems on Mathematical
Expectation", m-file npr07_02.m). A store has eight items for sale. The prices are $3.50, $5.00, $3.50, $7.50, $5.00, $5.00,
$3.50, and $7.50, respectively. A customer comes in. She purchases one of the items with probabilities 0.10, 0.15, 0.15, 0.20,
0.10 0.05, 0.10 0.15. The random variable expressing the amount of her purchase may be written

Determine .

Answer

npr07_02 

Data are in T, pc 

EX = T*pc'; 

VX = (T.^2)*pc' - EX^2 

VX =  2.8525

(See Exercise 12 from "Problems on Random Variables and Probabilities", Exercise 3 from "Problems on Mathematical
Expectation", m-file npr06_12.m). The class  has minterm probabilities

 0.001 * [5 7 6 8 9 14 22 33 21 32 50 75 86 129 201 302]

Consider , which counts the number of these events which occur on a trial. Determine .

Answer

Exercise 12.4.1

{ : 1 ≤ j≤ 10}Cj X

C1 C10

Var[X]

Exercise 12.4.2

X = 3.5 +5.0 +3.5 +7.5 +5.0 +5.0 +3.5 +7.5IC1
IC2

IC3
IC4

IC5
IC6

IC7
IC8

Var[X]

Exercise 12.4.3

{A,B,C,D}

pm =

X = + + +IA IB IC ID Var[X]
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npr06_12 

Minterm probabilities in pm, coefficients in c 

canonic 

 Enter row vector of coefficients  c 

 Enter row vector of minterm probabilities  pm 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

VX = (X.^2)*PX' - (X*PX')^2 

VX =  0.7309

(See Exercise 4 from "Problems on Mathematical Expectation"). In a thunderstorm in a national park there are 127 lightning
strikes. Experience shows that the probability of each lightning strike starting a fire is about 0.0083. Determine .

Answer

 ~ binomial (127, 0.0083). .

(See Exercise 5 from "Problems on Mathematical Expectation"). Two coins are flipped twenty times. Let  be the number of
matches (both heads or both tails). Determine .

Answer

 ~ binomial (20, 1/2). .

(See Exercise 6 from "Problems on Mathematical Expectation"). A residential College plans to raise money by selling
“chances” on a board. Fifty chances are sold. A player pays $10 to play; he or she wins $30 with probability . The
profit to the College is

, where  is the number of winners

Determine .

Answer

 ~ binomial (50, 0.2). . .

(See Exercise 7 from "Problems on Mathematical Expectation"). The number of noise pulses arriving on a power circuit in an
hour is a random quantity  having Poisson (7) distribution. Determine .

Answer

 ~ Poisson (7). .

Exercise 12.4.4

Var[X]

X Var[X] = 127 ⋅ 0.0083 ⋅ (1 −0.0083) = 1.0454

Exercise 12.4.5

X

Var[X]

X Var[X] = 20 ⋅ (1/2 = 5)2

Exercise 12.4.6

p = 0.2

X = 50 ⋅ 10 −30N N

Var[X]

N Var[N ] = 50 ⋅ 0.2 ⋅ 0.8 = 8 Var[X] =  Var[N ] = 7200302

Exercise 12.4.7

X Var[X]

X Var[X] = μ = 7
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(See Exercise 24 from "Problems on Distribution and Density Functions", and Exercise 8 from "Problems on Mathematical
Expectation"). The total operating time for the units in Exercise 24 from "Problems on Distribution and Density Functions" is a
random variable  ~ gamma (20, 0.0002). Determine .

Answer

 ~ gamma (20, 0.0002). .

The class  is independent, with respective probabilities

0.43, 0.53, 0.46, 0.37, 0.45, 0.39. Let

, 

a. Use properties of expectation and variance to obtain , , , and . Note that it is not necessary to
obtain the distributions for  or .

b. Let .

Determine , and .

Answer

cx = [6 13 -8 0]; 

cy = [-3 4 1 -7]; 

px = 0.01*[43 53 46 100]; 

py = 0.01*[37 45 39 100]; 

EX = dot(cx,px) 

EX =   5.7900 

EY = dot(cy,py) 

EY =  -5.9200 

VX = sum(cx.^2.*px.*(1-px)) 

VX =  66.8191 

VY = sum(cy.^2.*py.*(1-py)) 

VY =   6.2958 

EZ = 3*EY - 2*EX 

EZ = -29.3400 

VZ = 9*VY + 4*VX 

VZ = 323.9386

Consider . The class  has minterm probabilities (data are in m-file
npr12_10.m)

 [0.0475 0.0725 0.0120 0.0180 0.1125 0.1675 0.0280 0.0420 

0.0480 0.0720 0.0130 0.0170 0.1120 0.1680 0.0270 0.0430]

a. Calculate  and .

b. Let . 
Calculate  and 

Exercise 12.4.8

T Var[T ]

T Var[T ] = 20/ = 500, 000, 0000.00022

Exercise 12.4.9

{A,B,C,D,E,F}

X = 6 +13 −8IA IB IC Y = −3 +4 + −7ID IE IF

E[X] Var[X] E[Y ] Var[Y ]

X Y

Z = 3Y −2X

E[Z] Var[Z]

Exercise 12.4.10

X = −3.3 −1.7 +2.3 +7.6 −3.4IA IB IC ID {A,B,C,D}

pmx = ⋅ ⋅ ⋅

E[X] Var[X]

W = 2 −3X+2X2

E[W ] Var[W ]
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Answer

npr12_10 

Data are in cx, cy, pmx and pmy 

canonic 

 Enter row vector of coefficients  cx 

 Enter row vector of minterm probabilities  pmx 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

EX = dot(X,PX) 

EX =  -1.2200 

VX = dot(X.^2,PX) - EX^2 

VX =  18.0253 

G = 2*X.^2 - 3*X + 2; 

[W,PW] = csort(G,PX); 

EW = dot(W,PW) 

EW =  44.6874 

VW = dot(W.^2,PW) - EW^2 

VW =  2.8659e+03

Consider a second random variable  in addition to that in Exercise 12.4.10. The class 
 has minterm probabilities (in mfile npr12_10.m)

 [0.06 0.14 0.09 0.21 0.06 0.14 0.09 0.21]

The pair  is independent.

a. Calculate  and .

b. Let . 
Calculate  and .

Answer

(Continuation of Exercise 12.4.10)

[Y,PY] = canonicf(cy,pmy); 

EY = dot(Y,PY) 

EY =  19.2000 

VY = dot(Y.^2,PY) - EY^2 

VY = 178.3600 

icalc 

Enter row matrix of X-values  X 

Enter row matrix of Y-values  Y 

Enter X probabilities  PX 

Enter Y probabilities  PY 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

H = t.^2 + 2*t.*u - u; 

[Z,PZ] = csort(H,P); 

EZ = dot(Z,PZ) 

Exercise 12.4.11

Y = 10 +17 +20 −10IE IF IG
{E,F ,G}

pmy =

{X,Y }

E[Y ] Var[Y ]

Z = +2XY −YX2

E[Z] Var[Z]
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EZ = -46.5343 

VZ = dot(Z.^2,PZ) - EZ^2 

VZ =  3.7165e+04

Suppose the pair  is independent, with  ~ gamma (3, 0.1) and

 ~ Poisson (13). Let . Determine  and .

Answer

 ~ gamma (3, 0.1) implies  and   ~ Poisson (13) implies . Then

, .

The pair  is jointly distributed with the following parameters:

, , , , 

Determine .

Answer

EX = 3; 

EY = 4; 

EXY = 15; 

EX2 = 11; 

VY = 5; 

VX = EX2 - EX^2 

VX =  2 

CV = EXY - EX*EY 

CV =  3 

VZ = 9*VX + 4*VY - 6*2*CV 

VZ =  2

The class  is independent, with respective probabilities

0.47, 0.33, 0.46, 0.27, 0.41, 0.37

Let

, , and 

a. Use properties of expectation and variance to obtain , , , and .

b. Determine , and .

c. Use appropriate m-programs to obtain , , , , , and . Compare with results of parts (a)
and (b).

Answer

Exercise 12.4.12

{X,Y } X

Y Z = 2X−5Y E[Z] Var[Z]

X E[X] = 30 Var[X] = 300.Y E[Y ] = Var[Y ] = 13

E[Z] = 2 ⋅ 30 −5 ⋅ 13 = −5 Var[Z] = 4 ⋅ 300 +25 ⋅ 13 = 1525

Exercise 12.4.13

{X,Y }

E[X] = 3 E[Y ] = 4 E[XY ] = 15 E[ ] = 11X2 Var[Y ] = 5

Var[3X−2Y ]

Exercise 12.4.14

{A,B,C,D,E,F}

X = 8 +11 −7IA IB IC Y = −3 +5 + −3ID IE IF Z = 3Y −2X

E[X] Var[X] E[Y ] Var[Y ]

E[Z] Var[Z]

E[X] Var[X] E[Y ] Var[Y ] E[Z] Var[Z]
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px = 0.01*[47 33 46 100]; 

py = 0.01*[27 41 37 100]; 

cx = [8 11 -7 0]; 

cy = [-3 5 1 -3]; 

ex = dot(cx,px) 

ex =   4.1700 

ey = dot(cy,py) 

ey =  -1.3900 

vx = sum(cx.^2.*px.*(1 - px)) 

vx =  54.8671 

vy = sum(cy.^2.*py.*(1-py)) 

vy =   8.0545 

[X,PX] = canonicf(cx,minprob(px(1:3))); 

[Y,PY] = canonicf(cy,minprob(py(1:3))); 

icalc 

Enter row matrix of X-values  X 

Enter row matrix of Y-values  Y 

Enter X probabilities  PX 

Enter Y probabilities  PY 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

EX = dot(X,PX) 

EX =   4.1700 

EY = dot(Y,PY) 

EY =  -1.3900 

VX = dot(X.^2,PX) - EX^2 

VX =  54.8671 

VY = dot(Y.^2,PY) - EY^2 

VY =   8.0545 

EZ = 3*EY - 2*EX 

EZ = -12.5100 

VZ = 9*VY + 4*VX 

VZ = 291.9589

For the Beta ( ) distribution.

a. Determine , where  is a positive integer.

b. Use the result of part (a) to determine  and .

Answer

Using  we have

Exercise 12.4.15

r, s

E[ ]Xn n

E[X] Var[X]

E[ ] = dt = ⋅ =Xn
Γ(r+s)

Γ(r)Γ(s)
∫ 1

0 tr+n−1
Γ(r+s)

Γ(r)Γ(s)

Γ(r+n)Γ(s)

Γ(r+s+n)

Γ(r+n)Γ(r+s)

Γ(r+s+n)Γ(r)

Γ(x+1) = xΓ(x)
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, 

Some algebraic manipulations show that

The pair  has joint distribution. Suppose

, , , , 

Determine .

Answer

EX = 3; 

EX2 = 11; 

EY = 10; 

EY2 = 101; 

EXY = 30; 

VX = EX2 - EX^2 

VX =    2 

VY = EY2 - EY^2 

VY =    1 

CV = EXY - EX*EY 

CV =    0 

VZ = 15^2*VX + 2^2*VY 

VZ =  454

The pair  has joint distribution. Suppose

, , , , 

Determine .

Answer

EX = 2; 

EX2 = 5; 

EY = 1; 

EY2 = 2; 

EXY = 1; 

VX = EX2 - EX^2 

VX =    1 

VY = EY2 - EY^2 

VY =    1 

CV = EXY - EX*EY 

CV =   -1 

E[X] =
r

r+s
E[ ] =X2

r(r+1)

(r+s)(r+s+1)

Var[X] = E[ ] − [X] =X2 E2 rs

(r+s (r+s+1))2

Exercise 12.4.16

{X,Y }

E[X] = 3 E[ ] = 11X2 E[Y ] = 10 E[ ] = 101Y 2 E[XY ] = 30

Var[15X−2Y ]

Exercise 12.4.17

{X,Y }

E[X] = 2 E[ ] = 5X2 E[Y ] = 1 E[ ] = 2Y 2 E[XY ] = 1

Var[3X+2Y ]
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VZ = 9*VX + 4*VY + 2*6*CV 

VZ =    1

The pair  is independent, with

, , , 

Let .

Determine .

Answer

EX = 2; 

EY = 1; 

VX = 6; 

VY = 4; 

EX2 = VX + EX^2 

EX2 =  10 

EY2 = VY + EY^2 

EY2 =   5 

EZ = 2*EX2 + EX*EY2 - 3*EY + 4 

EZ =   31

(See Exercise 9 from "Problems on Mathematical Expectation"). Random variable X has density function

. Determine .

Answer

For the distributions in Exercises 20-22

Determine , , and the regression line of  on .

(See Exercise 7 from "Problems On Random Vectors and Joint Distributions", and Exercise 17 from "Problems on
Mathematical Expectation"). The pair  has the joint distribution (in file npr08_07.m):

t = -3.1 -0.5 1.2 2.4 3.7 4.9

u = 7.5 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203

Exercise 12.4.18

{X,Y }

E[X] = 2 E[Y ] = 1 Var[X] = 6 Var[Y ] = 4

Z = 2 +X −3Y +4X2 Y 2

E[Z]

Exercise 12.4.19

(t) = { = (t) + (t) (2 − t)fX
(6/5)t2

(6/5)(2 − t)

for 0 ≤ t ≤ 1

for 1 < t ≤ 2
I[0,1]

6

5
t2 I(1,2]

6

5

E[X] = 11/10 Var[X]

E[ ] = ∫ (t) dt =  dt+ (2 − ) dt =X2 t2fX
6

5
∫ 1

0 t4 6

5
∫ 2

1 t2 t3 67

50

Var[X] = E[ ] − [X] =X2 E2 13

100

Var[X] Cov[X,Y ] Y X

Exercise 12.4.20

{X,Y }

P (X = t,Y = u)
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4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231

-2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189

-3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

Answer

npr08_07 

Data are in X, Y, P 

jcalc 

- - - - - - - - - - - 

EX = dot(X,PX); 

EY = dot(Y,PY); 

VX = dot(X.^2,PX) - EX^2 

VX =   5.1116 

CV = total(t.*u.*P) - EX*EY 

CV =   2.6963 

a = CV/VX 

a =    0.5275 

b = EY - a*EX 

b =    0.6924       % Regression line: u = at + b

(See Exercise 8 from "Problems On Random Vectors and Joint Distributions", and Exercise 18 from "Problems on
Mathematical Expectation"). The pair  has the joint distribution (in file npr08_08.m):

t = 1 3 5 7 9 11 13 15 17 19

u = 12 0.0156 0.0191 0.0081 0.0035 0.0091 0.0070 0.0098 0.0056 0.0091 0.0049

10 0.0064 0.0204 0.0108 0.0040 0.0054 0.0080 0.0112 0.0064 0.0104 0.0056

9 0.0196 0.0256 0.0126 0.0060 0.0156 0.0120 0.0168 0.0096 0.0056 0.0084

5 0.0112 0.0182 0.0108 0.0070 0.0182 0.0140 0.0196 0.0012 0.0182 0.0038

3 0.0060 0.0260 0.0162 0.0050 0.0160 0.0200 0.0280 0.0060 0.0160 0.0040

-1 0.0096 0.0056 0.0072 0.0060 0.0256 0.0120 0.0268 0.0096 0.0256 0.0084

-3 0.0044 0.0134 0.0180 0.0140 0.0234 0.0180 0.0252 0.0244 0.0234 0.0126

-5 0.0072 0.0017 0.0063 0.0045 0.0167 0.0090 0.0026 0.0172 0.0217 0.0223

Answer

npr08_08 

Data are in X, Y, P 

jcalc 

- - - - - - - - - - - - 

EX = dot(X,PX); 

EY = dot(Y,PY); 

VX = dot(X.^2,PX) - EX^2 

Exercise 12.4.21

{X,Y }

P (X = t,Y = u)
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VX =  31.0700 

CV = total(t.*u.*P) - EX*EY 

CV =  -8.0272 

a  = CV/VX 

a  =  -0.2584 

b = EY - a*EX 

b  =   5.6110       % Regression line: u = at + b

(See Exercise 9 from "Problems On Random Vectors and Joint Distributions", and Exercise 19 from "Problems on
Mathematical Expectation"). Data were kept on the effect of training time on the time to perform a job on a production line. 
is the amount of training, in hours, and  is the time to perform the task, in minutes. The data are as follows (in file
npr08_09.m):

t = 1 1.5 2 2.5 3

u = 5 0.039 0.011 0.005 0.001 0.001

4 0.065 0.070 0.050 0.015 0.010

3 0.031 0.061 0.137 0.051 0.033

2 0.012 0.049 0.163 0.058 0.039

1 0.003 0.009 0.045 0.025 0.017

Answer

npr08_09 

Data are in X, Y, P 

jcalc 

- - - - - - - - - - - - 

EX = dot(X,PX); 

EY = dot(Y,PY); 

VX = dot(X.^2,PX) - EX^2 

VX =   0.3319 

CV = total(t.*u.*P) - EX*EY 

CV =  -0.2586 

a  = CV/VX 

a  =  -0.77937/6; 

b = EY - a*EX 

b  =   4.3051       % Regression line: u = at + b

For the joint densities in Exercises 23-30 below

a. Determine analytically  , and the regression line of  on .
b. Check these with a discrete approximation.

Exercise 12.4.22

X

Y

P (X = t,Y = u)

Var[X] Cov[X,Y ] Y X
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(See Exercise 10 from "Problems On Random Vectors and Joint Distributions", and Exercise 20 from "Problems on
Mathematical Expectation").  for , .

, , 

Answer

 

 

tuappr: [0 1] [0 2] 200 400  u<=2*(1-t) 

EX = dot(X,PX); 

EY = dot(Y,PY); 

VX = dot(X.^2,PX) - EX^2 

VX =   0.0556 

CV = total(t.*u.*P) - EX*EY 

CV =  -0.0556 

a = CV/VX 

a =   -1.0000 

b = EY - a*EX 

b =    1.0000

(See Exercise 13 from "Problems On Random Vectors and Joint Distributions", and Exercise 23 from "Problems on

Mathematical Expectation").  for , .

, 

Answer

, , 

, 

tuappr:  [0 2] [0 2] 200 200 (1/8)*(t+u) 

VX =  0.3055  CV = -0.0278  a = -0.0909  b =  1.2727

(See Exercise 15 from "Problems On Random Vectors and Joint Distributions", and Exercise 25 from "Problems on

Mathematical Expectation").  for , .

, , 

Answer

Exercise 12.4.23

(t, u) = 1fXY 0 ≤ t ≤ 1 0 ≤ u ≤ 2(1 − t)

E[X] =
1

3
E[ ] =X2

1

6
E[Y ] =

2

3

E[XY ] = tu dudt = 1/6∫ 1
0 ∫ 2(1−t)

0

Cov[X,Y ] = − ⋅ = −1/18
1

6

1

3

2

3
Var[X] = 1/6 −(1/3 = 1/18)2

a = Cov[X,Y ]/Var[X] = −1 b = E[Y ] −aE[X] = 1

Exercise 12.4.24

(t, u) = (t+u)fXY

1

8
0 ≤ t ≤ 2 0 ≤ u ≤ 2

E[X] = E[Y ] =
7

6
E[ ] =X2

5

3

E[XY ] = tu(t+u) dudt = 4/3
1

8
∫ 2

0
∫ 2

0
Cov[X,Y ] = −1/36 Var[X] = 11/36

a = Cov[X,Y ]/Var[X] = −1/11 b = E[Y ] −aE[X] = 14/11

Exercise 12.4.25

(t, u) = (2t+3 )fXY

3

88
u2 0 ≤ t ≤ 2 0 ≤ u ≤ 1 + t

E[X] =
313

220
E[Y ] =

1429

880
E[ ] =X2

49

22
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, , 

, 

tuappr:  [0 2] [0 3] 200 300  (3/88)*(2*t + 3*u.^2).*(u<=1+t) 

VX =  0.2036  CV = 0.1364 a = 0.6700  b = 0.6736 

(See Exercise 16 from "Problems On Random Vectors and Joint Distributions", and Exercise 26 from "Problems on
Mathematical Expectation").  on the parallelogram with vertices

(-1, 0), (0, 0), (1, 1), (0, 1)

, , 

Answer

, 

, 

tuappr: [-1 1] [0 1] 400 200  12*t.^2.*u.*(u>= max(0,t)).*(u<= min(1+t,1)) 

VX = 0.2383  CV = 0.1056  a = 0.4432  b = 0.5553

(See Exercise 17 from "Problems On Random Vectors and Joint Distributions", and Exercise 27 from "Problems on

Mathematical Expectation").  for , .

, , 

Answer

, 

, 

tuappr: [0 2] [0 1] 400 200 (24/11)*t.*u.*(u<=min(1,2-t)) 

VX = 0.1425  CV =-0.0409  a = -0.2867 b = 0.8535

(See Exercise 18 from "Problems On Random Vectors and Joint Distributions", and Exercise 28 from "Problems on

Mathematical Expectation"). , for , .

E[XY ] = tu(2t+3 ) dudt = 2153/880
3

88
∫ 2

0 ∫ 1+t

0 u2 Cov[X,Y ] = 26383/1933600Var[X] = 9831/48400

a = Cov[X,Y ]/Var[X] = 26383/39324b = E[Y ] −aE[X] = 26321/39324

Exercise 12.4.26

(t, u) = 12 ufXY t2

E[X] =
2

5
E[Y ] =

11

15
E[ ] =X2 2

5

E[XY ] = 12  dudt+12  dudt =∫ 0

−1
∫ t+1

0
t3u2 ∫ 1

0
∫ 1

t
t3u2 2

5

Cov[X,Y ] =
8

75
Var[X] =

6

25

a = Cov[X,Y ]/Var[X] = 4/9 b = E[Y ] −aE[X] = 5/9

Exercise 12.4.27

(t, u) = tufXY

24

11
0 ≤ t ≤ 2 0 ≤ u ≤ min {1, 2 − t}

E[X] =
52

55
E[Y ] =

32

55
E[ ] =X2

627

605

E[XY ] =  dudt+  dudt =
24

11
∫ 1

0 ∫ 1
0 t2u2 24

11
∫ 2

1 ∫ 2−t

0 t2u2 28

55

Cov[X,Y ] = −
124

3025
Var[X] =

431

3025

a = Cov[X,Y ]/Var[X] = −
124

431
b = E[Y ] −aE[X] =

368

431

Exercise 12.4.28

(t, u) = (t+2u)fXY

3

23
0 ≤ t ≤ 2 0 ≤ u ≤ max {2 − t, t}
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, , 

Answer

, 

, 

tuappr: [0 2] [0 2] 200 200 (3/23)*(t + 2*u).*(u<=max(2-t,t)) 

VX = 0.3984 CV = -0.0108  a = -0.0272  b = 0.9909

(See Exercise 21 from "Problems On Random Vectors and Joint Distributions", and Exercise 31 from "Problems on

Mathematical Expectation"). , for , .

, , 

Answer

, 

, 

tuappr: [0 2] [0 2] 400 400 (2/13)*(t + 2*u).*(u<=min(2*t,3-t)) 

VX = 0.1698  CV = -0.0229  a = -0.1350  b = 1.0839

(See Exercise 22 from "Problems On Random Vectors and Joint Distributions", and Exercise 32 from "Problems on

Mathematical Expectation"). , for .

, , 

Answer

, 

, 

tuappr: [0 2] [0 1] 400 200 (3/8)*(t.^2 + 2*u).*(t<=1) + (9/14)*t.^2.*u.^2.*(t>1

VX = 0.3517  CV = 0.0287 a = 0.0817  b = 0.5989

E[X] =
53

46
E[Y ] =

22

23
E[ ] =X2 9131

5290

E[XY ] = tu(t+2u) dudt+ tu(t+2u) dudt =
3

23
∫ 1

0 ∫ 2−t

0

3

23
∫ 2

1 ∫ t

0

251

230

Cov[X,Y ] = −
57

5290
Var[X] =

4217

10580

a = Cov[X,Y ]/Var[X] = −
114

4217
b = E[Y ] −aE[X] =

4165

4217

Exercise 12.4.29

(t, u) = (t+2u)fXY

2

13
0 ≤ t ≤ 2 0 ≤ u ≤ min {2t, 3 − t}

E[X] =
16

13
E[Y ] =

11

12
E[ ] =X2

2847

1690

E[XY ] = tu(t+2u) dudt+ tu(t+2u) dudt =
2

13
∫ 1

0 ∫ 3−t

0

2

13
∫ 2

1 ∫ 2t
0

431

390

Cov[X,Y ] = −
3

130
Var[X] =

287

1690

a = Cov[X,Y ]/Var[X] = −
39

297
b = E[Y ] −aE[X] =

3733

3444

Exercise 12.4.30

(t, u) = (t) ( +2u) + (t)fXY I[0,1]

3

8
t2 I(1,2]

9

14
t2u2 0 ≤ u ≤ 1

E[X] =
243

224
E[Y ] =

11

16
E[ ] =X2

107

70

E[XY ] = tu( +2u) dudt+  dudt =
3

8
∫

1

0 ∫
1

0 t2 9

14
∫

2

1 ∫
1

0 t3u3 347

448

Cov[X,Y ] = −
103

3584
Var[X] =

88243

250880

a = Cov[X,Y ]/Var[X] = −
7210

88243
b = E[Y ] −aE[X] =

105691

176486

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10837?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/08%3A_Random_Vectors_and_Joint_Distributions/8.03%3A_Problems_on_Random_Vectors_and_Joint_Distributions
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/11%3A_Mathematical_Expectation/11.03%3A_Problems_on_Mathematical_Expectation
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/08%3A_Random_Vectors_and_Joint_Distributions/8.03%3A_Problems_on_Random_Vectors_and_Joint_Distributions
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/11%3A_Mathematical_Expectation/11.03%3A_Problems_on_Mathematical_Expectation


12.4.14 https://stats.libretexts.org/@go/page/10837

The class  of random variables is iid (independent, identically distributed) with common distribution

 [-5 -1 3 4 7]  0.01 * [15 20 30 25 10]

Let . Determine  and . Do this using icalc, then repeat with icalc3 and compare results.

Answer

x = [-5 -1 3 4 7]; 

px = 0.01*[15 20 30 25 10]; 

EX = dot(x,px)                % Use of properties 

EX =   1.6500 

VX = dot(x.^2,px) - EX^2 

VX =  12.8275 

EW = (3 - 4+ 2)*EX 

EW =   1.6500 

VW = (3^2 + 4^2 + 2^2)*VX 

VW = 371.9975 

icalc                         % Iterated use of icalc 

Enter row matrix of X-values  x 

Enter row matrix of Y-values  x 

Enter X probabilities  px 

Enter Y probabilities  px 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

G = 3*t - 4*u; 

[R,PR] = csort(G,P); 

icalc 

Enter row matrix of X-values  R 

Enter row matrix of Y-values  x 

Enter X probabilities  PR 

Enter Y probabilities  px 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

H = t + 2*u; 

[W,PW] = csort(H,P); 

EW = dot(W,PW) 

EW =   1.6500 

VW = dot(W.^2,PW) - EW^2 

VW = 371.9975 

icalc3                        % Use of icalc3 

Enter row matrix of X-values  x 

Enter row matrix of Y-values  x 

Enter row matrix of Z-values  x 

Enter X probabilities  px 

Enter Y probabilities  px 

Enter Z probabilities  px 

Use array operations on matrices X, Y, Z, 

PX, PY, PZ, t, u, v, and P 

Exercise 12.4.31

{X,Y ,Z}

X = PX =

W = 3X−4Y +2Z E[W ] Var[W ]
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S = 3*t - 4*u + 2*v; 

[w,pw] = csort(S,P); 

Ew = dot(w,pw) 

Ew =   1.6500 

Vw = dot(w.^2,pw) - Ew^2 

Vw = 371.9975

 for ,  (see Exercise 25 and Exercise 37 from "Problems on Mathematical

Expectation").

, , 

Determine  and . Check with discrete approximation.

Answer

 

tuappr: [0 2] [0 3] 200 300 (3/88)*(2*t+3*u.^2).*(u<=1+t) 

G = 4*t.*(t<=1) + (t+u).*(t>1); 

EZ = total(G.*P) 

EZ = 3.2110 

EX = dot(X,PX) 

EX = 1.4220 

CV = total(G.*t.*P) - EX*EZ 

CV = 0.2445                       % Theoretical 0.2435 

VZ = total(G.^2.*P) - EZ^2 

VZ = 0.7934                       % Theoretical 0.7913

 for ,  (see Exercise 27 and Exercise 38 from "Problems on

Mathematical Expectation").

, 

, , 

Determine  and . Check with discrete approximation.

Answer

Exercise 12.4.32

(t, u) = (2t+3 )fXY

3

88
u2 0 ≤ t ≤ 2 0 ≤ u ≤ 1 + t

Z = (X)4X+ (X)(X+Y )I[0,1] I(1,2]

E[X] =
313

220
E[Z] =

5649

1760
E[ ] =Z2 4881

440

Var[Z] Cov[X,Z]

E[XZ] = 4 (2t+2 ) dudt+ t(t+u)(2t+3 ) dudt =
3

88
∫ 1

0
∫ 1+t

0
t2 u2

3

88
∫ 2

1
∫ 1+t

0
u2

16931

3520

Var[Z] = E[ ] − [Z] =Z2 E2 2451039

3097600
Cov[X,Z] = E[XZ] −E[X]E[Z] =

94273

387200

Exercise 12.4.33

(t, u) = tufXY

24

11
0 ≤ t ≤ 2 0 ≤ u ≤ min {1, 2 − t}

Z = (X,Y )(X+Y ) + (X,Y )2YIM IM c M = {(t, u) : max (t, u) ≤ 1}

E[X] =
52

55
E[Z] =

16

55
E[ ] =Z2 39

308

Var[Z] Cov[X,Z]

E[XZ] = t(t/2)tu dudt+ t tu dudt tt tu dudt =
24

11
∫ 1

0
∫ 1

t

24

11
∫ 1

0
∫ t

0
u2 24

11
∫ 2

1
∫ 2−t

0
u2 211

770
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tuappr:  [0 2] [0 1] 400 200 (24/11)*t.*u.*(u<=min(1,2-t)) 

G = (t/2).*(u>t) + u.^2.*(u<=t); 

VZ = total(G.^2.*P) - EZ^2 

VZ =   0.0425 

CV = total(t.*G.*P) - EZ*dot(X,PX) 

CV = -9.2940e-04

 for ,  (see Exercise 28 and Exercise 39 from "Problems on

Mathematical Expectation").

, 

, , 

Determine  and . Check with discrete approximation.

Answer

 

tuappr:  [0 2] [0 2] 400 400 (3/23)*(t+2*u).*(u<=max(2-t,t)) 

M = max(t,u)<=1; 

G = (t+u).*M + 2*u.*(1-M); 

EZ = total(G.*P); 

EX = dot(X,PX); 

CV = total(t.*G.*P) - EX*EZ 

CV =  0.0017

, for ,  (see Exercise 29 and Exercise 40 from "Problems on

Mathematical Expectation").

, 

, , 

Determine  and . Check with discrete approximation.

Answer

Var[Z] = E[ ] − [Z] =Z2 E2 3557

84700
Cov[Z,X] = E[XZ] −E[X]E[Z] = −

43

42350

Exercise 12.4.34

(t, u) = (t+2u)fXY

3

23
0 ≤ t ≤ 2 0 ≤ u ≤ max {2 − t, t}

Z = (X,Y )(X+Y ) + (X,Y )2YIM IM c M = {(t, u) : max (t, u) ≤ 1}

E[X] =
53

46
E[Z] =

175

92
E[ ] =Z2 2063

460

Var[Z] Cov[Z]

E[ZX] = t(t+u)(t+2u) dudt+ 2tu(t+2u) dudt+
3

23
∫ 1

0
∫ 1

0

3

23
∫ 1

0
∫ 2−t

1

2tu(t+2u) dudt =
3

23
∫ 2

1 ∫ t

1

1009

460

Var[Z] = E[ ] − [Z] =Z2 E2 36671

42320
Cov[Z,X] = E[ZX] −E[Z]E[X] =

39

21160

Exercise 12.4.35

(t, u) = (3 +u)fXY

12

179
t2 0 ≤ t ≤ 2 0 ≤ u ≤ min {2, 3 − t}

Z = (X,Y )(X+Y ) + (X,Y )2IM IM c Y 2 M = {(t, u) : t ≤ 1, u ≥ 1}

E[X] =
2313

1790
E[Z] =

1422

895
E[ ] =Z2 28296

6265

Var[Z] Cov[X,Z]

E[ZX] = t(t+u)(3 +u) dudt+ 2t (3 +u) dudt+
12

179
∫ 1

0 ∫ 2
1 t2 12

179
∫ 1

0 ∫ 1
0 u2 t2
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tuappr:  [0 2] [0 2] 400 400 (12/179)*(3*t.^2 + u).*(u <= min(2,3-t)) 

M = (t<=1)&(u>=1); 

G = (t + u).*M + 2*u.^2.*(1 - M); 

EZ = total(G.*P); 

EX = dot(X,PX); 

CV = total(t.*G.*P) - EZ*EX 

CV = -0.1347

, for ,  (see Exercise 30 and Exercise 41 from "Problems on

Mathematical Expectation").

, 

, , 

Determine  and . Check with discrete approximation.

Answer

 

tuappr: [0 2] [0 2] 400 400 (12/227)*(3*t + 2*t.*u).*(u <= min(1+t,2)) 

EX = dot(X,PX); 

M = u <= min(1,2-t); 

G = t.*M + t.*u.*(1 - M); 

EZ = total(G.*P); 

EZX = total(t.*G.*P) 

EZX =  2.5597 

CV = EZX - EX*EZ 

CV =   0.2188 

VZ = total(G.^2.*P) - EZ^2 

VZ =   0.6907

(See Exercise 12.4.20, and Exercises 9 and 10 from "Problems on Functions of Random Variables"). For the pair  in
Exercise 12.4.20, let

2t (3 +u) dudt =
12

179
∫ 2

1 ∫ 3−t

0 u2 t2 24029

12530

Var[Z] = E[ ] − [Z] =Z2 E2 11170332

5607175
Cov[Z,X] = E[ZX] −E[Z]E[X] = −

1517647

11214350

Exercise 12.4.36

(t, u) = (3t+2tu)fXY

12

227
0 ≤ t ≤ 2 0 ≤ u ≤ min {1 + t, 2}

Z = (X,Y )X+ (X,Y )XYIM IM c M = {(t, u) : u ≤ min (1, 2 − t)}

E[X] =
1567

1135
E[Z] =

5774

3405
E[ ] =Z2

56673

15890

Var[Z] Cov[X,Z]

E[ZX] = (3t+2tu) dudt+ (3t+2tu) dudt+
12

227
∫ 1

0 ∫ 1
0 t2 12

227
∫ 2

1 ∫ 2−t

0 t2

u(3t+2tu) dudt+ u(3t+2tu) dudt =
12

227
∫ 1

0
∫ 1+t

1
t2

12

227
∫ 2

1
∫ 2

2−t
t2

20338

7945

Var[Z] = E[ ] − [Z] =Z2 E2 112167631

162316350
Cov[Z,X] = E[ZX] −E[Z]E[X] =

5915884

27052725

Exercise 12.4.37

{X,Y }

Z = g(X,Y ) = 3 +2XY −X2 Y 2
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Determine the joint distribution for the pair  and determine the regression line of  on .

Answer

npr08_07 

Data are in X, Y, P 

jointzw 

Enter joint prob for (X,Y) P 

Enter values for X X 

Enter values for Y Y 

Enter expression for g(t,u) 3*t.^2 + 2*t.*u - u.^2 

Enter expression for h(t,u) t.*(t+u<=4) + 2*u.*(t+u>4) 

Use array operations on Z, W, PZ, PW, v, w, PZW 

EZ = dot(Z,PZ) 

EZ =    5.2975 

EW = dot(W,PW) 

EW =    4.7379 

VZ = dot(Z.^2,PZ) - EZ^2 

VZ =    1.0588e+03 

CZW = total(v.*w.*PZW) - EZ*EW 

CZW = -12.1697 

a = CZW/VZ 

a =   -0.0115 

b = EW - a*EZ 

b =    4.7988                 % Regression line: w = av + b 

This page titled 12.4: Problems on Variance, Covariance, Linear Regression is shared under a CC BY 3.0 license and was authored, remixed,
and/or curated by Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.

W = h(X,Y ) = { = (X,Y )X+ (X,Y )2Y
X

2Y
for X+Y ≤ 4
for X+Y > 4

IM IM c

{Z,W} W Z
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13.1: Transform Methods
As pointed out in the units on Expectation and Variance, the mathematical expectation  of a random variable  locates
the center of mass for the induced distribution, and the expectation

measures the spread of the distribution about its center of mass. These quantities are also known, respectively, as the mean
(moment) of  and the second moment of  about the mean. Other moments give added information. For example, the third
moment about the mean  gives information about the skew, or asymetry, of the distribution about the mean. We
investigate further along these lines by examining the expectation of certain functions of . Each of these functions involves a
parameter, in a manner that completely determines the distribution. For reasons noted below, we refer to these as transforms. We
consider three of the most useful of these.

Three basic transforms 
We define each of three transforms, determine some key properties, and use them to study various probability distributions
associated with random variables. In the section on integral transforms, we show their relationship to well known integral
transforms. These have been studied extensively and used in many other applications, which makes it possible to utilize the
considerable literature on these transforms.

The moment generating function  for random variable  (i.e., for its distribution) is the function

 (  is a real or complex parameter)

The characteristic function  for random variable  is

 ( ,  is a real parameter)

The generating function  for a nonnegative, integer-valued random variable  is

The generating function  has meaning for more general random variables, but its usefulness is greatest for nonnegative,
integer-valued variables, and we limit our consideration to that case.

The defining expressions display similarities which show useful relationships. We note two which are particularly useful.

 and 

Because of the latter relationship, we ordinarily use the moment generating function instead of the characteristic function to avoid
writing the complex unit i. When desirable, we convert easily by the change of variable.

The integral transform character of these entities implies that there is essentially a one-to-one relationship between the transform
and the distribution.

Moments 

The name and some of the importance of the moment generating function arise from the fact that the derivatives of  evaluateed
at  are the moments about the origin. Specifically

, provided the th moment exists

Since expectation is an integral and because of the regularity of the integrand, we may differentiate inside the integral with respect
to the parameter.

Upon setting , we have . Repeated differentiation gives the general result. The corresponding result for the
characteristic function is .

E[X] = μX X

E[g(X)] = E[(X−E[X] ] = Var[X] =)2 σ2
X

X X

E[(X− ]μX)3

X

Definition

MX X

(s) = E[ ]MX esX s

ϕX X

(u) = E[ ]φX eiuX = −1i2 u

(s)gX X

(s) = E[ ] = P (X = k)gX sX ∑k s
k

E[ ]sX

(s) = E[ ] = E[( ] = ( )MX esX es)X gX es (u) = E[ ] = (iu)φX eiuX MX

MX

s = 0

(0) = E[ ]M
(k)
X Xk k

(s) = E[ ] = E[ ] = E[X ]M ′
X

d

ds
esX

d

ds
esX esX

s = 0 (0) = E[X]M ′
X

(0) = E[ ]φ(k) ik Xk
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The density function is  for .

 

 

From this we obtain .

The generating function does not lend itself readily to computing moments, except that

 so that 

For higher order moments, we may convert the generating function to the moment generating function by replacing  with , then
work with  and its derivatives.

, , so that

We convert to  by replacing  with  to get . Then

 

so that

, , and 

These results agree, of course, with those found by direct computation with the distribution.

Operational properties 

We refer to the following as operational properties.

(T1): If , then

, , 

For the moment generating function, this pattern follows from

Similar arguments hold for the other two.

(T2): If the pair  is independent, then

, , 

For the moment generating function,  and  form an independent pair for each value of the parameter . By the product rule
for expectation

Similar arguments are used for the other two transforms.

A partial converse for (T2) is as follows:

(T3): If , then the pair  is uncorrelated. To show this, we obtain two expressions for 
, one by direct expansion and use of linearity, and the other by taking the second derivative of the moment generating

Example  The exponential distribution13.1.1

(t) = λfX e−λt t ≥ 0

(s) = E[ ] = λ  dt =MX esX ∫ ∞
0 e−(λ−s)t λ

λ−s

(s) =M ′
X

λ

(λ−s)2
(s0 =M ′′

X

2λ

(λ−s)3

E[X] = (0) = =M ′
X

λ

λ2

1

λ
E[ ] = (0) = =X2 M ′′

X

2λ

λ3

2

λ2

Var[X] = 2/ −1/ = 1/λ2 λ2 λ2

(s) = k P (X = k)g′
X ∑∞

k=1 sk−1 (1) = kP (X = k) = E[X]g′
X ∑∞

k=1

s es

MX

Example  The Poisson ( ) distribution13.1.2 μ

P (X = k) = e−μ
μk

k!
k ≥ 0

(s) = = = =gX e−μ∑∞
k=0 s

k
μk

k!
e−μ∑∞

k=0

(sμ)k

k!
e−μeμs eμ(s−1)

MX s es (s) =MX eu( −1)es

(s) = μM ′
X eu( −1)es es (s) = [ +μ ]M ′′

X eu( −1)es μ2e2s es

E[X] = (0) = μM ′
X E[ ] = (0) = +μX2 M ′′

X μ2 Var[X] = +μ− = μμ2 μ2

Z = aX+b

(s) = (as)MZ ebsMX (u) = (au)φZ eiubφX (s) = ( )gZ sbgX sa

E[ ] = E[ ]e(aX+b)s sbs e(as)X

{X,Y }

(s) = (s) (s)MX+Y MX MY (u) = (u) (u)φX+Y φX φY (s) = (s) (s)gX+Y gX gY

esX esY s

E[ ] = E[ ] = E[ ]E[ ]es(X+Y) esXesY esX esY

(s) = (s) (s)MX+Y MX MY {X+Y }
E[(X+Y ])2
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function.

On setting  and using the fact that , we have

which implies the equality .

Note that we have not shown that being uncorrelated implies the product rule.

We utilize these properties in determining the moment generating and generating functions for several of our common distributions.

Some discrete distributions 

Indicator function  

 

Simple random variable  (primitive form) 

Binomial ( , ).  with  iid 

We use the product rule for sums of independent random variables and the generating function for the indicator function.

 

Geometric ( ).    We use the formula for the geometric series to get

Negative binomial ( ) If  is the number of the trial in a Bernoulli sequence on which the th success occurs, and 
 is the number of failures before the th success, then

where 

The power series expansion about  shows that

 for 

Hence,

Comparison with the moment generating function for the geometric distribution shows that  has the same
distribution as the sum of  iid random variables, each geometric ( ). This suggests that the sequence is characterized by
independent, successive waiting times to success. This also shows that the expectation and variance of  are  times the
expectation and variance for the geometric. Thus

 and 

Poisson ( )   In Example 13.1.2, above, we establish  and . If 

 is an independent pair, with  ~ Poisson ( ) and  ~ Poission ( ), then  ~ Poisson . Follows from
(T1) and product of exponentials.

Some absolutely continuous distributions 

Uniform on  

E[(X+Y ] = E[ ] +E[ ] +2E[XY ])2 X2 Y 2

(s) = [ (s) (s) = (s) (s) + (s) (s) +2 (s) (s)M ′′
X+Y MX MY ]′′ M ′′

X MY MX M ′′
Y M ′

X M ′
Y

s = 0 (0) = (0) = 1MX MY

E[(X+Y ] = E[ ] +E[ ] +2E[X]E[Y ])2 X2 Y 2

E[XY ] = E[X]E[Y ]

X = IE P (E) = p

(s) = q+ p = q+psgX s0 s1 (s) = ( ) = q+pMX gX es es

X =∑n
i=1 tiIAi

P ( ) =Ai pi

(s) =MX ∑n

i=1 e
sti pi

n p X =∑n
i=1 IEi

{ : 1 ≤ i ≤ n}IEi
P ( ) = pEi

(s) = (q+ps) = (q+psgX ∏n
i=1 )n (s) = (q+pMX es)n

p P (X = k) = pqk ∀k ≥ 0 E[X] = q/p

(s) = p = p (qs = (s) =gX ∑∞
k=0 qksk ∑∞

k=0 )k
p

1 −qs
MX

p

1 −qes

m, p Ym m

= −mXm Ym m

P ( = k) = P ( −m = k) = C(−m, k)(−qXm Ym )kpm

C(−m, k) =
−m(−m−1)(−m−2) ⋅ ⋅ ⋅ (−m−k+1)

k!

t = 0

(1 + t = 1 +C(−m, 1)t+C(−m, 2) +⋅ ⋅ ⋅)−m t2 −1 < t < 1

(s) = C(−m, k)(−q = [MXm pm∑∞
k=0 )kesk

p

1 −qes
]m

= −mXm Ym
m p

Xm m

E[ ] = mq/pXm Var[ ] = mq/Xm p2

μ P (X = k) = e−μ
μk

k!
∀k ≥ 0 (s) =gX eμ(s−1) (s) =MX eμ( −1)es

{X,Y } X λ Y μ Z = X+Y (λ+μ)

(a, b) (t) =fX
1

b−a
a < t < b
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Symmetric triangular 

where  is the moment generating function for  ~ uniform  and similarly for . Thus,  has the same distribution as
the difference of two independent random variables, each uniform on .

Exponential ( ) , 

In example 1, above, we show that .

Gamma( )  

For , a positive integer,

which shows that in this case  has the distribution of the sum of  independent random variables each exponential .

Normal ( ).

The standardized normal,  ~ 

Now  so that

since the integrand (including the constant  is the density for .

 implies by property (T1)

Suppose  is an independent pair with  ~  and  ~ . Let . The  is normal,
for by properties of expectation and variance

 and 

and by the operational properties for the moment generating function

This form of  shows that  is normally distributed.

(s) = ∫ (t) dt =  dt =MX estfX
1

b−a
∫ b

a
est

−esb esa

s(b−a)

(−c, c)

(t) = (t) + (t)fX I[−c,0)
c+ t

c2
I[0,c]

c− t

c2

(s) = (c+ t)  dt+ (c− t)  dt =MX

1

c2
∫ 0

−c est
1

c2
∫ c

0 est
+ −2ecs e−cs

c2s2

= ⋅ = (s) (−s) = (s) (s)
−1ecs

cs

1 −e−cs

cs
MY MZ MY M−Z

MY Y (0, c) MZ X

(0, c)

λ (t) = λfX e−λt t ≥ 0

(s) =MX

λ

λ−s

α,λ (t) =fX
1

Γ(α)
λαtα−1e−λt t ≥ 0

(s) =  dt = [MX

λα

Γ(α)
∫ ∞

0
tα−1e−(λ−s)t λ

λ−s
]α

α = n

(s) = [MX

λ

λ−s
]n

X n (λ)

μ, σ2

Z N(0, 1)

(s) =  dtMZ

1

2π
−−

√
∫ ∞

−∞ este− /2t2

st− = − (t−s
t2

2

s2

2

1

2
)2

(s) =  dt =MZ e /2s2 1

2π
−−

√
∫ ∞

−∞ e−(t−s /2)
2

e /2s2

(1/ )2π
−−

√ N(s, 1)

X = σZ+μ

(s) = = exp( +sμ)MX esμe /2σ2s2 σ2s2

2

Example  Affine combination of independent normal random variables13.1.3

{X,Y } X N( , )μX σ2
X Y N( , )μY σ2

Y Z = aX+bY +c Z

= a +b +cμZ μX μY = +σ2
Z

a2σ2
X

b2σ2
Y

(s) = (as) (bs) = exp( +s(a +b +c))MZ escMX MY

( + )a2σ2
X b2σ2

Y s2

2
μX μY

= exp( +s )
σ2
Zs

2

2
μZ

MZ Z
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Moment generating function and simple random variables 
Suppose  in canonical form. That is,  is the event  for each of the distinct values in the range of 
with . Then the moment generating function for  is

The moment generating function  is thus related directly and simply to the distribution for random variable .

Consider the problem of determining the sum of an independent pair  of simple random variables. The moment generating

function for the sum is the product of the moment generating functions. Now if , with , we have

The various values are sums  of pairs  of values. Each of these sums has probability  for the values
corresponding to . Since more than one pair sum may have the same value, we need to sort the values, consolidate like values
and add the probabilties for like values to achieve the distribution for the sum. We have an m-function mgsum for achieving this
directly. It produces the pair-products for the probabilities and the pair-sums for the values, then performs a csort operation.
Although not directly dependent upon the moment generating function analysis, it produces the same result as that produced by
multiplying moment generating functions.

Suppose the pair  is independent with distributions

 [1 3 5 7]  [2 3 4]  [0.2 0.4 0.3 0.1]  [0.3 0.5 0.2]

Determine the distribution for .

X = [1 3 5 7]; 

Y = 2:4;

PX = 0.1*[2 4 3 1]; 

PY = 0.1*[3 5 2]; 

[Z,PZ] = mgsum(X,Y,PX,PY); 

disp([Z;PZ]') 

    3.0000    0.0600 

    4.0000    0.1000 

    5.0000    0.1600 

    6.0000    0.2000 

    7.0000    0.1700 

    8.0000    0.1500 

    9.0000    0.0900 

   10.0000    0.0500 

   11.0000    0.0200

This could, of course, have been achieved by using icalc and csort, which has the advantage that other functions of  and  may
be handled. Also, since the random variables are nonnegative, integer-valued, the MATLAB convolution function may be used (see
Example 13.1.7). By repeated use of the function mgsum, we may obtain the distribution for the sum of more than two simple
random variables. The m-functions mgsum3 and mgsum4 utilize this strategy.

The techniques for simple random variables may be used with the simple approximations to absolutely continuous random
variables.

X =∑n
i=1 tiIAi

Ai {X = }ti Xi

= P ( ) = P (X = )pi Ai ti X

(s) =MX ∑n
i=1 pie

sti

MX X

{X,Y }

Y =∑m
j=1 ujIBj P (Y = ) =uj πj

(s) (s) = ( )( ) =MX MY ∑n
i=1 pie

sti ∑m
j=1 πje

suj ∑i,j piπje
s( + )ti uj

+ti uj ( , )ti uj piπj
,ti uj

Example  Distribution for a sum of independent simple random variables13.1.4

{X,Y }

X = Y = PX = PY =

Z = X+Y

X Y
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The moment generating functions for the uniform and the symmetric triangular show that the latter appears naturally as the
difference of two uniformly distributed random variables. We consider  and  iid, uniform on [0,1].

tappr 

Enter matrix [a b] of x-range endpoints  [0 1] 

Enter number of x approximation points  200 

Enter density as a function of t  t<=1 

Use row matrices X and PX as in the simple case 

[Z,PZ] = mgsum(X,-X,PX,PX); 

plot(Z,PZ/d)               % Divide by d to recover f(t) 

%  plotting details   ---  see Figure 13.1.1

Figure one is a density graph. It is titled, Density for difference two variables, each uniform (0, 1). The horizontal axis of the graph is labeled, t, and the vertical graph is labeled fZ(t). The plot of the density is
triangular, beginning at (-1, 0), and increasing at a constant slope to point (0, 1). The graph continues after this point downward with a constant negative slope to point (1, 0).  

Figure 13.1.1. Density for the difference of an independent pair, uniform (0,1).

The generating function 
The form of the generating function for a nonnegative, integer-valued random variable exhibits a number of important properties.

 (canonical form)  

As a power series in  with nonegative coefficients whose partial sums converge to one, the series converges at least for .

The coefficients of the power series display the distribution: for value  the probability  is the coefficient of .

The power series expansion about the origin of an analytic function is unique. If the generating function is known in closed form,
the unique power series expansion about the origin determines the distribution. If the power series converges to a known closed
form, that form characterizes the distribution.

For a simple random variable (i.e.  for ),  is a polynomial.

In Example 13.1.2, above, we establish the generating function for  ~ Poisson  from the distribution. Suppose, however,
we simply encounter the generating function

From the known power series for the exponential, we get

We conclude that

, 

which is the Poisson distribution with parameter .

For simple, nonnegative, integer-valued random variables, the generating functions are polynomials. Because of the product rule
(T2), the problem of determining the distribution for the sum of independent random variables may be handled by the process of
multiplying polynomials. This may be done quickly and easily with the MATLAB convolution function.

Example  Difference of uniform distribution13.1.5

X Y

X = k∑∞
k=0 IAi

= P ( ) = P (X = k)pk Ak (s) =gX ∑∞
k=0 s

kpk

s |s| ≤ 1

k = P (X = k)pk sk

= 0pk k > n gX

Example  The Poisson distribution13.1.6

X (μ)

(s) = =gX em(s−1) e−mems

(s) = =gX e−m∑∞
k=0

(ms)k

k!
e−m∑∞

k=0 s
k m

k

k!

P (X = k) = e−m mk

k!
0 ≤ k

μ = m
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Suppose the pair  is independent, with

 

In the MATLAB function convolution, all powers of s must be accounted for by including zeros for the missing powers.

gx = 0.1*[2 3 3 0 0 2];      % Zeros for missing powers 3, 4 

gy = 0.1*[0 2 4 4];          % Zero  for missing power 0 

gz = conv(gx,gy); 

a = ['       Z         PZ']; 

b = [0:8;gz]'; 

disp(a) 

       Z         PZ          % Distribution for Z = X + Y 

disp(b) 

         0         0 

    1.0000    0.0400 

    2.0000    0.1400 

    3.0000    0.2600 

    4.0000    0.2400 

    5.0000    0.1200 

    6.0000    0.0400 

    7.0000    0.0800 

    8.0000    0.0800 

If mgsum were used, it would not be necessary to be concerned about missing powers and the corresponding zero coefficients.

Integral transforms 
We consider briefly the relationship of the moment generating function and the characteristic function with well known integral
transforms (hence the name of this chapter).

Moment generating function and the Laplace transform

When we examine the integral forms of the moment generating function, we see that they represent forms of the Laplace transform,
widely used in engineering and applied mathematics. Suppose  is a probability distribution function with . The
bilateral Laplace transform for  is given by

The Laplace-Stieltjes transform for  is

Thus, if  is the moment generating function for , then  is the Laplace-Stieltjes transform for  (or, equivalently, for 
).

The theory of Laplace-Stieltjes transforms shows that under conditions sufficiently general to include all practical distribution
functions

Hence

Example  Sum of independent simple random variables13.1.7

{X,Y }

(s) = (2 +3s+3 +2 )gX
1

10
s2 s5 (s) = (2s+4 +4 )gY

1

10
s2 s3

FX (−∞) = 0FX

FX

(t) dt∫ ∞
−∞ e−stFX

FX

(dt)∫ ∞
−∞

e−stFX

MX X (−s)MX X

FX

(−s) = (dt) = s (t) dtMX ∫ ∞
−∞ e−stFX ∫ ∞

−∞ e−stFX

(−s) = (t) dt
1

s
MX ∫ ∞

−∞
e−stFX
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The right hand expression is the bilateral Laplace transform of . We may use tables of Laplace transforms to recover  when 
 is known. This is particularly useful when the random variable  is nonnegative, so that  for .

If  is absolutely continuous, then

In this case,  is the bilateral Laplace transform of . For nonnegative random variable , we may use ordinary tables of
the Laplace transform to recover .

Suppose nonnegative  has moment generating function

We know that this is the moment generating function for the exponential (1) distribution. Now,

From a table of Laplace transforms, we find  is the transform for the constant 1 (for ) and  is the transform
for , , so that , as expected.

Suppose the moment generating function for a nonnegative random variable is

From a table of Laplace transforms, we find that for .

 is the Laplace transform of  

If we put , we find after some algebraic manipulations

, 

Thus,  ~ gamma , in keeping with the determination, above, of the moment generating function for that distribution.

The characteristic function

Since this function differs from the moment generating function by the interchange of parameter  and , where  is the imaginary
unit, , the integral expressions make that change of parameter. The result is that Laplace transforms become Fourier
transforms. The theoretical and applied literature is even more extensive for the characteristic function.

Not only do we have the operational properties (T1) and (T2) and the result on moments as derivatives at the origin, but there is an
important expansion for the characteristic function.

An expansion theorem

If , then

, for  and  as 

We note one limit theorem which has very important consequences.

A fundamental limit theorem

Suppose  is a sequence of probability distribution functions and  is the corresponding sequence of
characteristic functions.

FX FX

MX X (t) = 0FX t < 0

X

(−s) = (t) dtMX ∫ ∞
−∞ e−stfX

(−s)MX fX X

fX

Example  Use of Laplace transform13.1.8

X

(s) =MX

1

(1 −s)

(−s) = = −
1

s
MX

1

s(1 +s)

1

s

1

1 +s

1/s t ≥ 0 1/(1 +s)
e−t t ≥ 0 (t) = 1 − t ≥ 0FX e−t

Example  Laplace transform and the density13.1.9

(s) = [MX

λ

λ−s
]α

α > 0

Γ(α)

(s−a)α
tα−1eat t ≥ 0

a = −λ

(t) =fX
λαtα−1e−λt

Γ(α)
t ≥ 0

X (α,λ)

s iu i

= −1i2

E[[X ] < ∞]n

(0) = E[ ]φ(k) ik Xk 0 ≤ k ≤ n φ(u) = E[ ] +o( )∑n
k=0

(iu)k

k!
Xk un u → 0

{ : 1 ≤ n}Fn { : 1 ≤ n}φn
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If  is a distribution function such that  at every point continuity for , and  is the characteristic function for
, then

 

If  for all  and  is continuous at 0, then  is the characteristic function for distribution function  such that

 at each point of continuity of 

— □

This page titled 13.1: Transform Methods is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

F (t) → F (t)Fn F ϕ

F
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13.2: Convergence and the Central Limit Theorem

The Central Limit Theorem 

The central limit theorem (CLT) asserts that if random variable  is the sum of a large class of independent random variables, each
with reasonable distributions, then  is approximately normally distributed. This celebrated theorem has been the object of
extensive theoretical research directed toward the discovery of the most general conditions under which it is valid. On the other
hand, this theorem serves as the basis of an extraordinary amount of applied work. In the statistics of large samples, the sample
average is a constant times the sum of the random variables in the sampling process . Thus, for large samples, the sample average is
approximately normal—whether or not the population distribution is normal. In much of the theory of errors of measurement, the
observed error is the sum of a large number of independent random quantities which contribute additively to the result. Similarly, in
the theory of noise, the noise signal is the sum of a large number of random components, independently produced. In such
situations, the assumption of a normal population distribution is frequently quite appropriate.

We consider a form of the CLT under hypotheses which are reasonable assumptions in many practical situations. We sketch a proof
of this version of the CLT, known as the Lindeberg-Lévy theorem, which utilizes the limit theorem on characteristic functions,
above, along with certain elementary facts from analysis. It illustrates the kind of argument used in more sophisticated proofs
required for more general cases.

Consider an independent sequence  of random variables. Form the sequence of partial sums

  with  and 

Let  be the standardized sum and let  be the distribution function for . The CLT asserts that under appropriate conditions, 
 as  for all . We sketch a proof of the theorem under the condition the  form an iid class.

Central Limit Theorem (Lindeberg-Lévy form)

If  is iid, with

, , and 

then

 as , for all 

IDEAS OF A PROOF

There is no loss of generality in assuming . Let  be the common characteristic function for the , and for each  let  be
the characteristic function for . We have

 and 

Using the power series expansion of  about the origin noted above, we have

 where  as 

This implies

so that

 as 

A standard lemma of analysis ensures

 as 

so that

 as  for all 

By the convergence theorem on characteristic functions, above, .

X

X

{ : 1 ≤ n}Xn

=Sn ∑n
i=1 Xi ∀n ≥ 1 E[ ] = E[ ]Sn ∑n

i=1 Xi Var[ ] = Var[ ]Sn ∑n
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n Fn S∗
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(t) → ϕ(t)Fn n → ∞ t Xi
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E[ ] = μXi Var[ ] =Xi σ2 =S∗
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−nμSn

σ n−−√

(t) → ϕ(t)Fn n → ∞ t

μ = 0 ϕ Xi n ϕn
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φ(t) = E[ ]eitX (t) = E[ ] = (t/σ )φn eitS
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n φn n−−√

φ

φ(t) = 1 − +β(t)
σ2t2

2
β(t) = o( )t2 t → 0
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— □

The theorem says that the distribution functions for sums of increasing numbers of the X  converge to the normal distribution
function, but it does not tell how fast. It is instructive to consider some examples, which are easily worked out with the aid of our
m-functions.

Demonstration of the central limit theorem

Discrete examples

We first examine the gaussian approximation in two cases. We take the sum of five iid simple random variables in each case. The
first variable has six distinct values; the second has only three. The discrete character of the sum is more evident in the second case.
Here we use not only the gaussian approximation, but the gaussian approximation shifted one half unit (the so called continuity
correction for integer-values random variables). The fit is remarkably good in either case with only five terms.

A principal tool is the m-function diidsum (sum of discrete iid random variables). It uses a designated number of iterations of
mgsum.

X = [-3.2 -1.05 2.1 4.6 5.3 7.2]; 

PX = 0.1*[2 2 1 3 1 1]; 

EX = X*PX' 

EX =  1.9900 

VX = dot(X.^2,PX) - EX^2 

VX = 13.0904 

[x,px] = diidsum(X,PX,5);            % Distribution for the sum of 5 iid rv 

F = cumsum(px);                      % Distribution function for the sum 

stairs(x,F)                          % Stair step plot 

hold on 

plot(x,gaussian(5*EX,5*VX,x),'-.')   % Plot of gaussian distribution function 

% Plotting details                   (see Figure 13.2.1)

Figure one is a distribution graph. It is titled, distribution for the sum of five iid random variables. The horizontal axis is labeled, X values, and the vertical axis is labeled PX. The values on the horizontal axis
range from -20 in increments of 10 to 40. The values on the vertical axis begin at 0 and increase in increments of 0.2 to 1.4. There are two captions inside the graph. The first reads, X = [-3.2 -1.05 2.1 4.6 5.3 7.2].

The second reads, PX = 0.1*[2 2 1 3 1 1]. There are two graphs, one, a solid blue line, listed as a sum and the other a dashed and dotted line, listed as gaussian, but they both follow the same path and are nearly
indistinguishable as they lay on top of one another. The path begins at the bottom-right corner of the graph. It begins completely flat, but increases in slope at an increasing rate until it is halfway across the graph,
at approximately the point (10, 0). At this point, it begins decreasing its positive slope until by the far right side of the graph, approximately the point (35, 1), it has again reduced in slope enough to be a horizontal

line.  
Figure 13.2.1. Distribution for the sum of five iid random variables.

X = 1:3;

PX = [0.3 0.5 0.2]; 

EX = X*PX' 

EX = 1.9000 

EX2 = X.^2*PX' 

EX2 =  4.1000 

VX = EX2 - EX^2 

VX =  0.4900 

[x,px] = diidsum(X,PX,5);            % Distribution for the sum of 5 iid rv 

F = cumsum(px);                      % Distribution function for the sum 

stairs(x,F)                          % Stair step plot 

i

Example  First random variable13.2.1

Example  Second random variable13.2.2
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hold on 

plot(x,gaussian(5*EX,5*VX,x),'-.')   % Plot of gaussian distribution function 

plot(x,gaussian(5*EX,5*VX,x+0.5),'o')  % Plot with continuity correction 

% Plotting details                   (see Figure 13.2.2)

Figure two is a distribution graph. It is titled, distribution for the sum of five iid random variables. The horizontal axis is labeled, X values, and the vertical axis is labeled PX. The values on the horizontal axis
range from 5 in increments of 1 to 15. The values on the vertical axis begin at 0 and increase in increments of 0.2 to 1.2. There are two captions inside the graph. The first reads, X = [1 2 3]. The second reads, PX
= [0.3 0.5 0.2]. There are two graphs, one, a solid blue line, labeled step dbn fn, and the other a dashed and dotted line, labeled gaussian, but they both follow the same path. The step dbn fn is a series of horizontal
line segments followed by vertical line segments in varying sizes that fit the shape of the smoother curve, the gaussian curve. A third labeled item is a series of small blue circles that sit at the upper corners of the

steps of the solid lined curve, labeled, shifted gaussian. The path begins at the bottom-right corner of the graph. It begins completely flat, but increases in slope at an increasing rate until it is halfway across the
graph, at approximately the point (5, 0). At this point, it begins decreasing its positive slope until by the far right side of the graph, approximately the point (14, 1), it has again reduced in slope enough to be a

horizontal line.  
Figure 13.2.2. Distribution for the sum of five iid random variables.

As another example, we take the sum of twenty one iid simple random variables with integer values. We examine only part of the
distribution function where most of the probability is concentrated. This effectively enlarges the x-scale, so that the nature of the
approximation is more readily apparent.

X = [0 1 3 5 6]; 

PX = 0.1*[1 2 3 2 2]; 

EX = dot(X,PX) 

EX =  3.3000 

VX = dot(X.^2,PX) - EX^2 

VX =  4.2100 

[x,px] = diidsum(X,PX,21); 

F = cumsum(px); 

FG = gaussian(21*EX,21*VX,x); 

stairs(40:90,F(40:90)) 

hold on 

plot(40:90,FG(40:90)) 

% Plotting details               (see Figure 13.2.3)

Figure three is a distribution graph. It is titled, partial distribution for sum of 21 iid random variables. The horizontal axis is labeled, x-values, and the vertical axis is labeled PX. The values on the horizontal
axis range in value from 40 to 90 at increments of 5, and the vertical axis ranges from 0 to 1 in increments of .1. There are two labeled equations. The first reads, X = [0 1 3 5 6]. The second reads, PX = 0.1*[1 2 3
2 2]. There are two graphs, one a smooth curve, labeled gaussian dbn, and the other a series of steps closely following the smooth curve, labeled Dbn for sum. Both graphs begin at the point (40, 0) at the bottom-

left of the graph. The slope of the smooth curve is flat, and increases until approximately (70, 0.5). At this point, the graph continues increasing, but its slope begins decreasing until at approximately (90, 0.99), the
path is again nearly flat. The steps follow the smooth curve along the same path.  

Figure 13.2.3. Distribution for the sum of twenty one iid random variables.

Absolutely continuous examples

By use of the discrete approximation, we may get approximations to the sums of absolutely continuous random variables. The
results on discrete variables indicate that the more values the more quickly the conversion seems to occur. In our next example, we
start with a random variable uniform on (0, 1).

Suppose  ~ uniform (0, 1). Then  and .

tappr 

Enter matrix [a b] of x-range endpoints  [0 1] 

Enter number of x approximation points  100 

Enter density as a function of t  t<=1 

Use row matrices X and PX as in the simple case 

Example  Sum of twenty-one iid random variables13.2.3

Example  Sum of three iid, uniform random variables.13.2.4

X E[X] = 0.5 Var[X] = 1/12
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EX = 0.5; 

VX = 1/12; 

[z,pz] = diidsum(X,PX,3); 

F = cumsum(pz); 

FG = gaussian(3*EX,3*VX,z); 

length(z) 

ans = 298 

a = 1:5:296;                     % Plot every fifth point 

plot(z(a),F(a),z(a),FG(a),'o') 

% Plotting details               (see Figure 13.2.4)

Figure four is a distribution graph. It is titled, distribution for the sum of three iid uniform random variables. The horizontal axis is labeled, x-values, and the vertical axis is labeled PX. The values on the
horizontal axis range from 0 to 3, in increments of 0.5. The values on the vertical axis range from 0 to 1, in increments of 0.1. There is one labeled statement inside the graph, that reads, X uniform on (0,1). There
is one smooth curve in the graph, labeled sum, and one set of many small circles, labeled Gaussian. They follow the same path, which begins at the bottom-left at the point (0, 0). The graph begins increasing at an

increasing rate until approximately the point (1.5, 0.5), where it begins increasing at a decreasing rate until it has become a flat line at the top-right of the graph, at approximately point (3, 1).  
Figure 13.2.4. Distribution for the sum of three iid uniform random variables.

For the sum of only three random variables, the fit is remarkably good. This is not entirely surprising, since the sum of two gives a
symmetric triangular distribution on (0, 2). Other distributions may take many more terms to get a good fit. Consider the following
example.

Suppose the density is one on the intervals (-1, -0.5) and (0.5, 1). Although the density is symmetric, it has two separate
regions of probability. From symmetry. . Calculations show . The MATLAB computations
are:

tappr 

Enter matrix [a b] of x-range endpoints  [-1 1] 

Enter number of x approximation points  200 

Enter density as a function of t  (t<=-0.5)|(t>=0.5) 

Use row matrices X and PX as in the simple case 

[z,pz] = diidsum(X,PX,8); 

VX = 7/12; 

F = cumsum(pz); 

FG = gaussian(0,8*VX,z); 

plot(z,F,z,FG) 

% Plottting details                (see Figure 13.2.5)

Figure five is a distribution graph. It is titled, distribution for sum of eight iid random variables. The horizontal axis is labeled, x-values, and the vertical axis is unlabeled. The values on the horizontal axis
range from -8 to 8 in increments of 2, and the values on the vertical axis range from 0 to 1 in increments of 0.1. The figure contains a second title inside the graph, which reads, Density = 1 on (-1, -0.5) and (0.5,

1). There are two plots in this figure. The first is a solid line, labeled sum. the second is a dashed, smooth line, labeled gaussian. Both follow the same general shape, except that the solid line is not as smooth, with
multiple places along its plot where it is wiggly, as if it is attempting to follow the same path as the gaussian plot but does so only with some imperfection. The gaussian pot is smooth and consistent. The shape of

both plots can be described as the following. The plots begin at the bottom-left corner of the graph, at point (-8, 0) and continue to the right horizontally with negligible slope, until point (-6, 0), where the plot
begins increasing at an increasing rate. It does so until the midpoint in the graph, approximately (0, 0.5), where it begins to increase at a decreasing rate as it approaches the top-right corner of the graph. By

approximately (6, 1) the plot continues horizontally to the top-right corner, (8, 1).  
Figure 13.2.5. Distribution for the sum of eight iid uniform random variables.

Although the sum of eight random variables is used, the fit to the gaussian is not as good as that for the sum of three in Example
13.2.4. In either case, the convergence is remarkable fast—only a few terms are needed for good approximation.

Convergence phenomena in probability theory 
The central limit theorem exhibits one of several kinds of convergence important in probability theory, namely convergence in
distribution (sometimes called weak convergence). The increasing concentration of values of the sample average random variable

Example  Sum of eight iid random variables13.2.5

E[X] = 0 Var[X] = E[ ] = 7/12X2

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10839?pdf


13.2.5 https://stats.libretexts.org/@go/page/10839

A with increasing  illustrates convergence in probability. The convergence of the sample average is a form of the so-called weak
law of large numbers. For large enough n the probability that  lies within a given distance of the population mean can be made
as near one as desired. The fact that the variance of  becomes small for large n illustrates convergence in the mean (of order 2).

 as 

In the calculus, we deal with sequences of numbers. If  s a sequence of real numbers, we say the sequence converges
iff for  sufficiently large  approximates arbitrarily closely some number  for all . This unique number  is called the
limit of the sequence. Convergent sequences are characterized by the fact that for large enough , the distance  between
any two terms is arbitrarily small for all , . Such a sequence is said to be fundamental (or Cauchy). To be precise, if we let

 be the error of approximation, then the sequence is

Convergent iff there exists a number  such that for any  there is an  such that

 for all 

Fundamental iff for any  there is an  such that

 for all 

As a result of the completeness of the real numbers, it is true that any fundamental sequence converges (i.e., has a limit). And such
convergence has certain desirable properties. For example the limit of a linear combination of sequences is that linear combination
of the separate limits; and limits of products are the products of the limits.

The notion of convergent and fundamental sequences applies to sequences of real-valued functions with a common domain. For
each  in the domain, we have a sequence

 of real numbers. The sequence may converge for some  and fail to converge for others.

A somewhat more restrictive condition (and often a more desirable one) for sequences of functions is uniform convergence. Here
the uniformity is over values of the argument . In this case, for any  there exists an  which works for all  (or for some
suitable prescribed set of ).

These concepts may be applied to a sequence of random variables, which are real-valued functions with domain  and argument 
. Suppose  is is a sequence of real random variables. For each argument  we have a sequence  of

real numbers. It is quite possible that such a sequence converges for some ω and diverges (fails to converge) for others. As a matter
of fact, in many important cases the sequence converges for all  except possibly a set (event) of probability zero. In this case, we
say the seqeunce converges almost surely (abbreviated a.s.). The notion of uniform convergence also applies. In probability theory
we have the notion of almost uniform convergence. This is the case that the sequence converges uniformly for all  except for a set
of arbitrarily small probability.

The notion of convergence in probability noted above is a quite different kind of convergence. Rather than deal with the sequence
on a pointwise basis, it deals with the random variables as such. In the case of sample average, the “closeness” to a limit is
expressed in terms of the probability that the observed value  should lie close the the value  of the limiting random
variable. We may state this precisely as follows:

A sequence  converges to Xin probability, designated  iff for any .

There is a corresponding notion of a sequence fundamental in probability.

The following schematic representation may help to visualize the difference between almost-sure convergence and convergence in
probability. In setting up the basic probability model, we think in terms of “balls” drawn from a jar or box. Instead of balls,
consider for each possible outcome  a “tape” on which there is the sequence of values , , , .

If the sequence of random variable converges a.s. to a random variable , then there is an set of “exceptional tapes” which has
zero probability. For all other tapes, . This means that by going far enough out on any such tape, the values 

 beyond that point all lie within a prescribed distance of the value  of the limit random variable.
If the sequence converges in probability, the situation may be quite different. A tape is selected. For  sufficiently large, the
probability is arbitrarily near one that the observed value  lies within a prescribed distance of . This says nothing
about the values  on the selected tape for any larger . In fact, the sequence on the selected tape may very well diverge.
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It is not difficult to construct examples for which there is convergence in probability but pointwise convergence for no . It is easy
to confuse these two types of convergence. The kind of convergence noted for the sample average is convergence in probability (a
“weak” law of large numbers). What is really desired in most cases is a.s. convergence (a “strong” law of large numbers). It turns
out that for a sampling process of the kind used in simple statistics, the convergence of the sample average is almost sure (i.e., the
strong law holds). To establish this requires much more detailed and sophisticated analysis than we are prepared to make in this
treatment.

The notion of mean convergence illustrated by the reduction of  with increasing  may be expressed more generally and
more precisely as follows. A sequence  converges in the mean of order  to  iff

 as  designated ; as 

If the order  is one, we simply say the sequence converges in the mean. For , we speak of mean-square convergence.

The introduction of a new type of convergence raises a number of questions.

1. There is the question of fundamental (or Cauchy) sequences and convergent sequences.
2. Do the various types of limits have the usual properties of limits? Is the limit of a linear combination of sequences the linear

combination of the limits? Is the limit of products the product of the limits?
3. What conditions imply the various kinds of convergence?
4. What is the relation between the various kinds of convergence?

Before sketching briefly some of the relationships between convergence types, we consider one important condition known as
uniform integrability. According to the property (E9b) for integrals

 is integrable iff  as 

Roughly speaking, to be integrable a random variable cannot be too large on too large a set. We use this characterization of the
integrability of a single random variable to define the notion of the uniform integrability of a class.

An arbitray class  is uniformly integrable (abbreviated u.i.) with respect to probability measure  iff

 as 

This condition plays a key role in many aspects of theoretical probability.

The relationships between types of convergence are important. Sometimes only one kind can be established. Also, it may be easier
to establish one type which implies another of more immediate interest. We simply state informally some of the important
relationships. A somewhat more detailed summary is given in PA, Chapter 17. But for a complete treatment it is necessary to
consult more advanced treatments of probability and measure.

Relationships between types of convergence for probability measures

Consider a sequence  of random variables.

It converges almost surely iff it converges almost uniformly. 
If it converges almost surely, then it converges in probability. 
It converges in mean, order , iff it is uniformly integrable and converges in probability. 
If it converges in probability, then it converges in distribution (i.e. weakly).

Various chains of implication can be traced. For example

Almost sure convergence implies convergence in probability implies convergence in distribution.
Almost sure convergence and uniform integrability implies convergence in mean .

We do not develop the underlying theory. While much of it could be treated with elementary ideas, a complete treatment requires
considerable development of the underlying measure theory. However, it is important to be aware of these various types of
convergence, since they are frequently utilized in advanced treatments of applied probability and of statistics.

This page titled 13.2: Convergence and the Central Limit Theorem is shared under a CC BY 3.0 license and was authored, remixed, and/or
curated by Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
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13.3: Simple Random Samples and Statistics

Simple Random Samples and Statistics 

We formulate the notion of a (simple) random sample, which is basic to much of classical statistics. Once formulated, we may
apply probability theory to exhibit several basic ideas of statistical analysis.

We begin with the notion of a population distribution. A population may be most any collection of individuals or entities.
Associated with each member is a quantity or a feature that can be assigned a number. The quantity varies throughout the
population. The population distribution is the distribution of that quantity among the members of the population.

If each member could be observed, the population distribution could be determined completely. However, that is not always
feasible. In order to obtain information about the population distribution, we select “at random” a subset of the population and
observe how the quantity varies over the sample. Hopefully, the sample distribution will give a useful approximation to the
population distribution.

The sampling process

We take a sample of size , which means we select n members of the population and observe the quantity associated with each.
The selection is done in such a manner that on any trial each member is equally likely to be selected. Also, the sampling is done in
such a way that the result of any one selection does not affect, and is not affected by, the others. It appears that we are describing a
composite trial. We model the sampling process as follows:

Let ,  be the random variable for the ith component trial. Then the class  is iid, with each
member having the population distribution.

This provides a model for sampling either from a very large population (often referred to as an infinite population) or sampling
with replacement from a small population.

The goal is to determine as much as possible about the character of the population. Two important parameters are the mean and the
variance. We want the population mean and the population variance. If the sample is representative of the population, then the
sample mean and the sample variance should approximate the population quantities.

The sampling process is the iid class .
A random sample is an observation, or realization,  of the sampling process.

The sample average and the population mean

Consider the numerical average of the values in the sample . This is an observation of the sample average

The sample sum  and the sample average  are random variables. If another observation were made (another sample taken),
the observed value of these quantities would probably be different. Now  and  are functions of the random variables 

 in the sampling process. As such, they have distributions related to the population distribution (the common
distribution of the ). According to the central limit theorem, for any reasonable sized sample they should be approximately
normally distributed. As the examples demonstrating the central limit theorem show, the sample size need not be large in many
cases. Now if the population mean  is  and the population variance  is , then

 and 

so that

 and 

Herein lies the key to the usefulness of a large sample. The mean of the sample average  is the same as the population mean, but
the variance of the sample average is  times the population variance. Thus, for large enough sample, the probability is high that
the observed value of the sample average will be close to the population mean. The population standard deviation, as a measure of
the variation is reduced by a factor .
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Suppose a population has mean  and variance . A sample of size  is to be taken. There are complementary questions:

1. If  is given, what is the probability the sample average lies within distance a from the population mean?
2. What value of  is required to ensure a probability of at least p that the sample average lies within distance a from the

population mean?

Solution

Suppose the sample variance is known or can be approximated reasonably. If the sample size  is reasonably large, depending
on the population distribution (as seen in the previous demonstrations), then  is approximately .

1. Sample size given, probability to be determined.

2. Sample size to be determined, probability specified.

 iff 

Find from a table or by use of the inverse normal function the value of  required to make  at least .
Then

We may use the MATLAB function norminv to calculate values of  for various .

p = [0.8 0.9 0.95 0.98 0.99]; 

x = norminv(0,1,(1+p)/2); 

disp([p;x;x.^2]') 

    0.8000    1.2816    1.6424 

    0.9000    1.6449    2.7055 

    0.9500    1.9600    3.8415 

    0.9800    2.3263    5.4119 

    0.9900    2.5758    6.6349 

For , , , . Use at least 385 or perhaps 400 because of uncertainty about
the actual 

The idea of a statistic

As a function of the random variables in the sampling process, the sample average is an example of a statistic.

A statistic is a function of the class  which uses explicitly no unknown parameters of the population.

The random variable

, where 

is not a statistic, since it uses the unknown parameter . However, the following is a statistic.

Example  Sample size13.3.1
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Example  Statistics as functions of the sampling progress13.3.2
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It would appear that  might be a reasonable estimate of the population variance. However, the following result shows that a
slight modification is desirable.

The statistic

is an estimator for the population variance.

VERIFICATION

Consider the statistic

Noting that , we use the last expression to show

The quantity has a bias in the average. If we consider

, then 

The quantity  with  rather than  is often called the sample variance to distinguish it from the population
variance. If the set of numbers

represent the complete set of values in a population of  members, the variance for the population would be given by

Here we use  rather than .

Since the statistic  has mean value , it seems a reasonable candidate for an estimator of the population variance. If we ask how
good is it, we need to consider its variance. As a random variable, it has a variance. An evaluation similar to that for the mean, but
more complicated in detail, shows that

 where 

For large ,  is small, so that  is a good large-sample estimator for .

Consider a population random variable  ~ uniform [-1, 1]. Then  and . We take 100 samples of size
100, and determine the sample sums. This gives a sample of size 100 of the sample sum random variable , which has mean
zero and variance 100/3. For each observed value of the sample sum random variable, we plot the fraction of observed sums
less than or equal to that value. This yields an experimental distribution function for , which is compared with the
distribution function for a random variable  ~ .

rand('seed',0)    % Seeds random number generator for later comparison 

tappr                                         % Approximation setup 

Enter matrix [a b] of x-range endpoints  [-1 1] 

Enter number of x approximation points  100 

Enter density as a function of t  0.5*(t<=1) 

Use row matrices X and PX as in the simple case 

V ∗
n

Example  An estimator for the population variance13.3.3
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Example  A sampling demonstration of the CLT13.3.4

X E[X] = 0 Var[X] = 1/3
S100

S100

Y N(0, 100/3)
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qsample                                 % Creates sample 

Enter row matrix of VALUES  X 

Enter row matrix of PROBABILITIES  PX 

Sample size n =  10000                  % Master sample size 10,000 

Sample average ex = 0.003746 

Approximate population mean E(X) = 1.561e-17 

Sample variance vx = 0.3344 

Approximate population variance V(X) = 0.3333 

m = 100;

a = reshape(T,m,m);                     % Forms 100 samples of size 100 

A = sum(a);                             % Matrix A of sample sums 

[t,f] = csort(A,ones(1,m));             % Sorts A and determines cumulative 

p = cumsum(f)/m;                        % fraction of elements <= each value 

pg = gaussian(0,100/3,t);               % Gaussian dbn for sample sum values 

plot(t,p,'k-',t,pg,'k-.')               % Comparative plot 

% Plotting details                      (see Figure 13.3.1)

Figure one is a graph of two plots, titled, Central limit theorem for sample sums. The horizontal axis is labeled, sample sum values, and the vertical axis is labeled, cumulative fraction. The values on the horizontal
axis range from -15 to 20 in increments of 5. The values on the vertical axis range from 0 to 1 in increments of 0.1. There are two captions inside the graph. The first reads, X uniform on [-1 1], and the second reads,
E[X] = 0 Var[X] = 1/3. The first plot is a smooth, dashed line, labeled gaussian. The second plot is a wavering, jagged solid line labeled experimental. Both plots follow generally the same shape. They begin in the

bottom right at approximately (-12, 0) with a positive slope, and they move to the right, increasing at an increasing rate. At nearly the midpoint in the graph, approximately (0, 0.5), the graphs adjust and begin increasing
at a decreasing rate, approaching the top-right corner of the graph while tapering off to a horizontal line. The gaussian, dashed line follows this path's description more accurately, while the solid experimental line seems

to be closely fitted to the gaussian line's path with some imperfections causing it to waver jaggedly at a couple spots along the path.  
Figure 13.3.1. The central limit theorem for sample sums.

This page titled 13.3: Simple Random Samples and Statistics is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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13.4: Problems on Transform Methods

Calculate directly the generating function  for the geometric  distribution.

Answer

 (geometric series)

Calculate directly the generating function  for the Poisson  distribution.

Answer

A projection bulb has life (in hours) represented by  ~ exponential (1/50). The unit will be replaced immediately upon failure
or at 60 hours, whichever comes first. Determine the moment generating function for the time  to replacement.

Answer

 \(e^{sY} = I_{[0, a)} (X) e^{sX} + I_{(a, \infty) (X) e^{as}\)

Simple random variable  has distribution

 [-3 -2 0 1 4]  [0.15 0.20 0.30 0.25 0.10]

a. Determine the moment generating function for  
b. Show by direct calculation the  and .

Answer

Setting  and using  give the desired results.

Use the moment generating function to obtain the variances for the following distributions

EXponential  Gamma ( ) Normal ( )

Answer

a. Exponential:

Exercise 13.4.1

(s)gX (p)
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Exercise 13.4.2

(s)gX (μ)

(s) = E[ ] = = = =gX sX ∑∞
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k=0

μksk

k!
e−μeμs eμ(s−1)

Exercise 13.4.3

X

Y

Y = (X)X+ (X)aI[0,a] I(a,∞)

(s) = λ  dt+ λ  dtMY ∫ a

0 est e−λt ssa ∫ ∞
a e−λt

= [1 − ] +
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λ−s
e(λ−s)a e−(λ−s)a

Exercise 13.4.4

X

X = PX =

X

(0) = E[X]M ′
X

(0) = E[ ]M ′′
X

X2

(s) = 0.15 +0.20 +0.30 +0.25 +0.10MX e−3s e−2s es e4s

(s) = −3 ⋅ 0.15 −2 ⋅ 0.20 +0 +0.25 +4 ⋅ 0.10M ′
X e−3s e−2s es e4s

(s) = (−3 ⋅ 0.15 +(−2 ⋅ 0.20 +0 +0.25 + ⋅ 0.10M ′′
X )2 e−3s )2 e−2s es 42 e4s

s = 0 = 1e0
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b. Gamma ( ):

  

  

c. Normal( ):

 

  

The pair  is iid with common moment generating function . Determine the moment generating function for 

.

Answer

The pair  is iid with common moment generating function . Determine the moment generating
function for .

Answer

\(M_Z (s) = (0.6 + 0.4e^{5s})(0.6 + 0.4e^{2s})

Use the moment generating function for the symmetric triangular distribution on  as derived in the section "Three Basic
Transforms".

a. Obtain an expression for the symmetric triangular distribution on  for any .
b. Use the result of part (a) to show that the sum of two independent random variables uniform on  has symmetric

triangular distribution on .

Answer

Let  and . If  ~ symetric triangular on , then  is symmetric triangular
on  and
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Exercise 13.4.6
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Exercise 13.4.7

{X,Y } (s) = (0.6 +0.4 )MX es

Z = 5X+2Y

Exercise 13.4.8

(−c, c)

(a, b) a < b

(a, b)
(2a, 2b)

m = (a+b)/2 c = (b−a)/2 Y (−c, c) X = Y +m

(m−c,m+c) = (a, b)
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Random variable  has moment generating function .

a. Use derivatives to determine  and .

b. Recognize the distribution from the form and compare  and  with the result of part (a).

Answer

 so that 

 so that 

 ~ negative binomial , which has  and .

The pair  is independent.  ~ Poisson (4) and  ~ geometric (0, 3). Determine the generating function  for 
.

Answer

Random variable  has moment generating function

By recognizing forms and using rules of combinations, determine  and .

Answer

 with  ~ exponential (1/3)  ~ (3, 16)

 

Random variable  has moment generating function

(s) = (s) = = =MX emsMY

+ −2ecs e−cs

c2s2
ems + −2e(m+c)s e(m−c)s ems

c2s2

+ −2ehs eas e
s

a+b

2

(
b−a

2
)2s2

(s) = [ =MX+Y

−esb esa

s(b−a)
]2

+ −2es2b es2a es(b+a)

(b−as2 )2

Exercise 13.4.9

X
p2

(1 −qes)2

E[X] Var[X]

E[X] Var[X]

[ (1 −q =p2 es)−2 ]′
2 qp2 es

(1 −qes)3
E[X] = 2q/p

[ (1 −q = +p2 es)−2 ]′′
6p2q2es

(1 −qes)4

2 qp2 es

(1 −qes)3
E[ ] = +X2 6q2

p2

2q

p

Var[X] = + = =
2q2

p2

2q

p

2( +pq)q2

p2

2q

p2

X (2, p) E[X] = 2q/p Var[X] = 2q/p2

Exercise 13.4.10

{X,Y } X Y gZ
Z = 3X+2Y

(s) = ( ) ( ) = ⋅gZ gX s3 gY s2 e4( −1)s3 0.3

1 −qs2

Exercise 13.4.11

X

(s) = ⋅ exp(16 /2 +3s)MX

1

1 −3s
s2

E[X] Var[X]

X = +X1 X2 X1 X2 N

E[X] = 3 +3 = 6 Var[X] = 9 +16 = 25

Exercise 13.4.12

X

(s) = ⋅ exp(16 /2 +3s)MX

exp(3( −1))es

1 −5s
s2
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By recognizing forms and using rules of combinations, determine  and .

Answer

, with  ~ Poisson (3),  ~ exponential (1/5),  (3, 16)

 

Suppose the class  of events is independent, with respective probabilities 0.3, 0.5, 0.2. Consider

a. Determine the moment generating functions for and use properties of moment generating functions to determine the
moment generating function for . 
b. Use the moment generating function to determine the distribution for . 
c. Use canonic to determine the distribution. Compare with result (b). 
d. Use distributions for the separate terms; determine the distribution for the sum with mgsum3. Compare with result (b).

Answer

The distribution is

 [-3 -1 0 1 2 3 4 6]  [0.12 0.12 0.28 0.03 0.28 0.03 0.07 0.07]

c = [-3 2 4 0]; 

P = 0.1*[3 5 2]; 

canonic 

 Enter row vector of coefficients  c 

 Enter row vector of minterm probabilities  minprob(P) 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

P1 = [0.7 0.3]; 

P2 = [0.5 0.5]; 

P3 = [0.8 0.2]; 

X1 = [0 -3]; 

X2 = [0 2]; 

X3 = [0 4]; 

[x,px] = mgsum3(X1,X2,X3,P1,P2,P3); 

disp([X;PX;x;px]') 

   -3.0000    0.1200   -3.0000    0.1200 

   -1.0000    0.1200   -1.0000    0.1200 

         0    0.2800         0    0.2800 

    1.0000    0.0300    1.0000    0.0300 

    2.0000    0.2800    2.0000    0.2800 

    3.0000    0.0300    3.0000    0.0300 

    4.0000    0.0700    4.0000    0.0700 

    6.0000    0.0700    6.0000    0.0700 

E[X] Var[X]

X = + +X1 X2 X3 X1 X2 \0 \(NX3

E[X] = 3 +5 +3 = 11 Var[X] = 3 +25 +16 = 44

Exercise 13.4.13

{A,B,C}

X = −3 +2 +4IA IB IC

X

X

(s) = (0.7 +0.3 )(0.5 +0.5 )(0.8 +0.2 ) =MX e−3s e2s e4s

0.12 +0.12 +0.28 +0.03 +0.28 +0.03 +0.07 +0.07e−3s e−s es e2s e3s e4s e6s

X = PX =
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Suppose the pair  is independent, with both  and  binomial. Use generating functions to show under what
condition, if any,  is binomial.

Answer

Binomial iff both have same , as shown below.

 iff 

Suppose the pair  is independent, with both  and  Poisson.

a. Use generating functions to show under what condition  is Poisson. 
b. What about ? Justify your answer.

Answer

Always Poisson, as the argument below shows.

However,  ~  could have negative values.

Suppose the pair  is independent,  is nonnegative integer-valued,  is Poisson and  is Poisson. Use the
generating functions to show that  is Poisson.

Answer

, where ,  and \(g_{X + Y} (s) = g_X (s) g_Y (s) = e^{(\mu + s) (s -
1)\). Division by  gives .

Suppose the pair  is iid, binomial (6, 0.51). By the result of Exercise 13.4.14

 is binomial. Use mgsum to obtain the distribution for . Does  have the binomial distribution? Is the
result surprising? Examine the first few possible values for . Write the generating function for ; does it have the form for
the binomial distribution?

Answer

x  = 0:6; 

px = ibinom(6,0.51,x); 

[Z,PZ] = mgsum(2*x,4*x,px,px); 

disp([Z(1:5);PZ(1:5)]') 

         0    0.0002       % Cannot be binomial, since odd values missing 

    2.0000    0.0012 

    4.0000    0.0043 

    6.0000    0.0118 

    8.0000    0.0259 

    - - - - - - - -

Exercise 13.4.14

{X,Y } X Y

X+Y

p

(s) = ( + s ( + s = (q+psgX+Y q1 p1 )n q2 p2 )m )n+m =p1 p2

Exercise 13.4.15

{X,Y } X Y

X+Y

X−Y

(s) = =gX+Y eμ(s−1)ev(s−1) e(μ+v)(s−1)

Y X

Exercise 13.4.16

{X,Y } Y X X+Y

Y

E[X+Y ] = μ+v v= E[Y ] > 0 (s) =gX eμ(s−1)

(s)gX (s) =gY ev(s−1)

Exercise 13.4.17

{X,Y }

X+Y Z = 2X+4Y Z

Z Z
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Suppose the pair  is independent, with  ~ binomial (5, 0.33) and  ~ binomial (7, 0.47).

Let  and .

a. Use the mgsum to obtain the distribution for . 
b. Use icalc and csort to obtain the distribution for  and compare with the result of part (a).

Answer

X = 0:5; 

Y = 0:7; 

PX = ibinom(5,0.33,X); 

PY = ibinom(7,0.47,Y); 

G = 3*X.^2 - 2*X; 

H = 2*Y.^2 + Y + 3; 

[Z,PZ] = mgsum(G,H,PX,PY); 

  

  

icalc 

Enter row matrix of X-values  X 

Enter row matrix of Y-values  Y 

Enter X probabilities  PX 

Enter Y probabilities  PY 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

M = 3*t.^2 - 2*t + 2*u.^2 + u + 3; 

[z,pz] = csort(M,P); 

e = max(abs(pz - PZ))  % Comparison of p values 

e =  0

Suppose the pair  is independent, with  ~ binomial (8, 0.39) and  ~ uniform on {-1.3, -0.5, 1.3, 2.2, 3.5}. Let

 and 

a. Use mgsum to obtain the distribution for . 
b. Use icalc and csort to obtain the distribution for  and compare with the result of part (a).

Answer

X = 0:8; 

Y = [-1.3 -0.5 1.3 2.2 3.5]; 

PX = ibinom(8,0.39,X); 

PY = (1/5)*ones(1,5); 

U  = 3*X.^2 - 2*X + 1; 

V  = Y.^3 + 2*Y - 3; 

[Z,PZ] = mgsum(U,V,PX,PY); 

(s) = (s) = (0.49 +0.51sgX gY )6 (s) = (0.49 +0.51 (0.49 +0.51gZ s2)6 s4)6

Exercise 13.4.18

{X,Y } X Y

G= g(X) = 3 −2XX2 H = h(Y ) = 2 +Y +3Y 2

G+H

G+H

Exercise 13.4.19

{X,Y } X Y

U = 3 −2X+1X2 V = +2Y −3Y 3

U +V

U +V
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icalc 

Enter row matrix of X-values  X 

Enter row matrix of Y-values  Y 

Enter X probabilities  PX 

Enter Y probabilities  PY 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

M = 3*t.^2 - 2*t + 1 + u.^3 + 2*u - 3; 

[z,pz] = csort(M,P); 

e = max(abs(pz - PZ)) 

e = 0

If  is a nonnegative integer-valued random variable, express the generating function as a power series.

a. Show that the th derivative at  is

b. Use this to show the .

Answer

Since power series may be differentiated term by term

 so that

Let  be the moment generating function for .

a. Show that  is the second derivative of  evaluated at . 
b. Use this fact to show that  ~ , then .

Answer

 

Setting  and using the result on moments gives

Use derivatives of  to obtain the mean and variance of the negative binomial ( ) distribution.

Answer

To simplify writing use  for .

  

 

Exercise 13.4.20

X

k s = 1

(1) = E[X(X−1)(X−2) ⋅ ⋅ ⋅ (X−k+1)]g
(k)
X

Var[X] = (1) + (1) −[ (1)g′′
X g′

X g′
X ]2

(s) = k(k−1) ⋅ (k−n+1)g
(n)
X

∑∞
k=0 pksk−n

(1) = k(k−1) ⋅ (k−n+1) = E[X(X−1) ⋅ ⋅ ⋅ (X−n+1)]g
(n)
X ∑∞

k=0 pk

Var[X] = E[ ] − [X] = E[X(X−1)] +E[X] − [X] = (1) + (1) −[ (1)X2 E2 E2 g′′
X

g′
X

g′
X

]2

Exercise 13.4.21

(⋅)MX X

Var[X] (s)e−sμMX s = 0
X N(μ, )σ2 Var[X] = σ2

f(s) = (s)e−sμMX (s) = [−μ (s) + (s) + (s) −μ (s)]f ′′ e−sμ M ′
X

μ2MX M ′′
X

M ′
X

s = 0

(0) = − + +E[ ] − = Var[X]f ′′ μ2 μ2 X2 μ2

Exercise 13.4.22

(s)MMm m, p

f(s) (S)MX

f(s) =
pm

(1 −qes)m
(s) =f ′

m qpm es

(1 −qes)m+1
(s) = +f ′′

m qpm es

1 −qes)m+1

m(m+1)pmq2e2s

1 −qes)m+2

E[X] = =
m qpm

(1 −q)m+1

mq

p
E[ ] = +X2 mq

p

m(m+1)pmq2

(1 −q)m+2
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Use moment generating functions to show that variances add for the sum or difference of independent random variables.

Answer

To simplify writing, set , , and 

 

Setting  yields

 

Taking the difference gives . A similar treatment with  replaced by  shows 
.

The pair  is iid (3,5). Use the moment generating function to show that  is normal (see Example
3 from "Transform Methods" for general result).

Answer

 

Use the central limit theorem to show that for large enough sample size (usually 20 or more), the sample average

is approximately  for any reasonable population distribution having mean value  and variance .

Answer

 

By the central limit theorem,  is approximately normal, with the mean and variance above.

A population has standard deviation approximately three. It is desired to determine the sample size n needed to ensure that with
probability 0.95 the sample average will be within 0.5 of the mean value.

a. Use the Chebyshev inequality to estimate the needed sample size.
b. Use the normal approximation to estimate  (see Example 1 from "Simple Random Samples and Statistics").

Answer

Chevyshev inequality:

Var[X] = + − =
mq

p

m(m+1)q2

p2

m2q2

p2

mq

p2

Exercise 13.4.23

f(s) = (s)MX g(s) = (s)MY h(s) = (s) (s)MX MY

(s) = (s)g(s) +f(s) (s)h′ f ′ g′ (s) = (s)g(s) + (s) (s) + (s) (s) +f(s) (s)h′′ f ′′ f ′ g′ f ′ g′ g′′

s = 0

E[X+Y ] = E[X] +E[Y ] E[(X+Y ] = E[ ] +2E[X]E[Y ] +E[ ])2 X2 Y 2

[X+Y ] = [X] +2E[X]E[Y ] + [Y ]E2 E2 E2

Var[X+Y ] = Var[X] +Var[Y ] g(s) g(−s)
Var[X−Y ] = Var[X] +Var[Y ]

Exercise 13.4.24

{X,Y } N Z = 2X−2Y +3

(s) = (3s) = exp( +3 ⋅ 3s)M3X MX

9 ⋅ 5s2

2
(s) = (−2s) = exp( −2 ⋅ 3s)M−2Y MY

4 ⋅ 5s2

2

(s) = exp( +(9 −6)s) = exp( +6s)MZ e3s
(45 +20)s2

2

65s2

2

Exercise 13.4.25

=An

1

n
∑n

i=1 Xi

N(μ, /n)σ2 μ σ2

E[ ] = μ = μAn

1

n
∑n

i=1 Var[ ] = =An

1

n2
∑n

i=1 σ
2 σ2

n

An

Exercise 13.4.26

n
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 implies 

Normal approximation: Use of the table in Example 1 from "Simple Random Samples and Statistics" shows

This page titled 13.4: Problems on Transform Methods is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

P ( ≥ ) ≤ ≤ 0.05
| −μ|An

σ/ n−−√

0.5 n−−√

3

32

n0.52
n ≥ 720

n ≥ (3/0.5 3.84 = 128)2
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14.1: Conditional Expectation, Regression
Conditional expectation, given a random vector, plays a fundamental role in much of modern probability theory. Various types of
“conditioning” characterize some of the more important random sequences and processes. The notion of conditional independence
is expressed in terms of conditional expectation. Conditional independence plays an essential role in the theory of Markov
processes and in much of decision theory.

We first consider an elementary form of conditional expectation with respect to an event. Then we consider two highly intuitive
special cases of conditional expectation, given a random variable. In examining these, we identify a fundamental property which
provides the basis for a very general extension. We discover that conditional expectation is a random quantity. The basic property
for conditional expectation and properties of ordinary expectation are used to obtain four fundamental properties which imply the
“expectationlike” character of conditional expectation. An extension of the fundamental property leads directly to the solution of
the regression problem which, in turn, gives an alternate interpretation of conditional expectation.

Conditioning by an event
If a conditioning event  occurs, we modify the original probabilities by introducing the conditional probability measure .
In making the change form

 to 

we effectively do two things:

We limit the possible outcomes to event 
We “normalize” the probability mass by taking  as the new unit

It seems reasonable to make a corresponding modification of mathematical expectation when the occurrence of event  is known.
The expectation  is the probability weighted average of the values taken on by . Two possibilities for making the
modification are suggested.

We could replace the prior probability measure  with the conditional probability measure  and take the weighted
average with respect to these new weights.
We could continue to use the prior probability measure  and modify the averaging process as follows:

Consider the values  for only those . This may be done by using the random variable  which has value 
 for  and zero elsewhere. The expectation  is the probability weighted sum of those values taken on in 

.
The weighted average is obtained by dividing by .

These two approaches are equivalent. For a simple random variable  in canonical form

The final sum is expectation with respect to the conditional probability measure. Arguments using basic theorems on expectation
and the approximation of general random variables by simple random variables allow an extension to a general random variable .
The notion of a conditional distribution, given , and taking weighted averages with respect to the conditional probability is
intuitive and natural in this case. However, this point of view is limited. In order to display a natural relationship with more the
general concept of conditioning with repspect to a random vector, we adopt the following

The conditional expectation of , given event  with positive probability, is the quantity

Remark. The product form  is often useful.

C P (⋅|C)

P (A) P (A|C) =
P (AC)

P (C)

C

P (C)

C

E[X] X

P (⋅) P (⋅|C)

P (⋅)

P (ω) ω ∈ C XIC
X(ω) ω ∈ C E[ X]IC
C

P (C)

X = sumn
k=1tkIAk

E[ X]/P (C) = E[ ]/P (C) = P (C )/P (C) = P ( |C)IC ∑n
k=1 tkICIAk ∑n

k=1 tk Ak ∑n
k=1 tk Ak

X

C

Definition

X C

E[X|C] = =
E[ X]IC

P (C)

E[ X]IC

E[ ]IC

E[X|C]P (C) = E[ X]IC
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Suppose  ~ exponential ( ) and . Now  where .

 and

Thus

Conditioning by a random vector—discrete case
Suppose  and  in canonical form. We suppose  and 

, for each permissible . Now

We take the expectation relative to the conditional probability  to get

Since we have a value for each  in the range of , the function  is defined on the range of . Now consider any reasonable
set  on the real line and determine the expectation

We have the pattern

  where 

for all  in the range of .

We return to examine this property later. But first, consider an example to display the nature of the concept.

Suppose the pair  has the joint distribution

0 1 4 9

0.05 0.04 0.21 0.15

0 0.05 0.01 0.09 0.10

-1 0.10 0.05 0.10 0.05

0.20 0.10 0.40 0.30

Calculate  for each possible value  taken on by 

 

 
 
 

Example  A numerical example14.1.1

X λ C = {1/λ ≤ X ≤ 2/λ} = (X)IC IM M = [1/λ, 2/λ]

P (C) = P (X ≥ 1/λ) −P (X > 2/λ) = e−1e−2

E[ X] = ∫ (t)tλ  dt = tλ  dt = (2 −3 )IC IM e−λt ∫ 2/λ
1/λ e−λt 1

λ
e−1 e−2

E[X|C] = ≈
2 −3e−1 e−2

λ( − )e−1 e−2

1.418

λ

X =∑n
i=1 tiIAi

Y =∑m
j=1 ujIBj P ( ) = P (X = ) > 0Ai ti

P ( ) = P (Y = ) > 0Bj uj i, j

P (Y = |X = ) =uj ti
P (X = ,Y = )ti uj

P (X = )ti

P (⋅|X = )ti

E[g(Y )|X = ] = g( )P (Y = |X = ) = e( )ti ∑m
j=1 uj uj ti ti

ti X e(⋅) X

M

E[ (X)g(Y )] = ( )g( )P (X = ,Y = )IM ∑n
i=1 ∑

m
j=1 IM ti uj ti uj

= ( )[ g( )P (Y = |X = )]P (X = )∑n
i=1 IM ti ∑m

j=1 uj uj ti ti

= ( )e( )P (X = ) = E[ (X)e(X)]∑n
i=1 IM ti ti ti IM

(A) E[ (X)g(Y )] = E[ (X)e(X)]IM IM e( ) = E[g(Y )|X = ]ti ti

ti X

Example  Basic calculations and interpretation14.1.2

{X,Y }

P (X = ,Y = )ti uj

X =

Y = 2

PX

E[Y |X = ]ti ti X

E[Y |X = 0] = −1 +0 +2
0.10

0.20

0.05

0.20

0.05

0.20
= (−1 ⋅ 0.10 +0 ⋅ 0.05 +2 ⋅ 0.05)/0.20 = 0

E[Y |X = 1] = (−1 ⋅ 0.05 +0 ⋅ 0.01 +2 ⋅ 0.04)/0.10 = 0.30

E[Y |X = 4] = (−1 ⋅ 0.10 +0 ⋅ 0.09 +2 ⋅ 0.21)/0.40 = 0.80

E[Y |X = 9] = (−1 ⋅ 0.05 +0 ⋅ 0.10 +2 ⋅ 0.15)/0.10 = 0.83
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The pattern of operation in each case can be described as follows:

For the  th column, multiply each value  by , sum, then divide by .

The following interpretation helps visualize the conditional expectation and points to an important result in the general case.

For each  we use the mass distributed “above” it. This mass is distributed along a vertical line at values  taken on by .
The result of the computation is to determine the center of mass for the conditional distribution above . As in the case
of ordinary expectations, this should be the best estimate, in the mean-square sense, of  when . We examine that
possibility in the treatment of the regression problem in Section: The regression problem.

Although the calculations are not difficult for a problem of this size, the basic pattern can be implemented simply with
MATLAB, making the handling of much larger problems quite easy. This is particularly useful in dealing with the simple
approximation to an absolutely continuous pair.

X = [0 1 4 9];             % Data for the joint distribution 

Y = [-1 0 2]; 

P = 0.01*[ 5  4 21 15; 5  1  9 10; 10  5 10  5]; 

jcalc                      % Setup for calculations 

Enter JOINT PROBABILITIES (as on the plane)  P 

Enter row matrix of VALUES of X  X 

Enter row matrix of VALUES of Y  Y 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

EYX = sum(u.*P)./sum(P);   % sum(P) = PX  (operation sum yields column sums) 

disp([X;EYX]')             % u.*P = u_j P(X = t_i, Y = u_j) for all i, j 

         0         0 

    1.0000    0.3000 

    4.0000    0.8000 

    9.0000    0.8333 

The calculations extend to . Instead of values of  we use values of  in the calculations. Suppose 
.

G = u.^2 - 2*t.*u;         % Z = g(X,Y) = Y^2 - 2XY 

EZX = sum(G.*P)./sum(P);   % E[Z|X=x] 

disp([X;EZX]') 

         0    1.5000 

    1.0000    1.5000 

    4.0000   -4.0500 

    9.0000  -12.8333

Conditioning by a random vector — absolutely continuous case
Suppose the pair  has joint density function . We seek to use the concept of a conditional distribution, given .
The fact that  for each  requires a modification of the approach adopted in the discrete case. Intuitively, we
consider the conditional density

, 

We define, in this case,

The function  is defined for , hence effectively on the range of . For any reasonable set  on the real line,

i uj P (X = ,Y = )ti uj P (X = )ti

ti uj Y

t = ti
Y X = ti

E[g(X,Y )|X = ]ti uj g( , )ti uj
Z = g(X,Y ) = −2XYY 2

{X,Y } fXY X = t

P (X = t) = 0 t

(u|t) ≥ 0fY|X ∫ (u|t) du = ∫ (t, u) du = (t)/ (t) = 1fY|X
1

(t)fX
fXY fX fX

E[g(Y )|X = t] = ∫ g(u) (u|t) du = e(t)fY|X

e(⋅) (t) > 0fX X M
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, where 

Thus we have, as in the discrete case, for each  in the range of .

( )  where 

Again, we postpone examination of this pattern until we consider a more general case.

Suppose the pair  has joint density  on the triangular region bounded by , , and 

 (see Figure 14.1.1). Then

, 

By definition, then,

 on the triangle (zero elsewhere)

We thus have

 

Theoretically, we must rule out  since the denominator is zero for that value of . This causes no problem in practice.

Figure one is a cartesian graph in the first quadrant of a labeled, shaded right triangle. The horizontal axis is labeled, t, and the vertical axis is labeled, u. The right triangle appears to have two sides of equal length.
Two points, and therefore one side of the triangle sits on the vertical axis, with one point at the origin, and the other further up the graph. This side is labeled, t = 0. The second side of equal length, which begins with one

point in the positive region of the vertical axis, and ends in the first quadrant of the graph at the point (1, 1), is labeled u = 1. The hypotenuse of the triangle, which contains one point at the origin and one in the first
quadrant of the graph at point (1, 1), is labeled, u = t. There is also a larger caption inside the graph that reads, f_XY (t, u) = (6/5)*(t + 2u).  

Figure 14.1.1. The density function for Example 14.1.3

We are able to make an interpretation quite analogous to that for the discrete case. This also points the way to practical MATLAB
calculations.

For any  in the range of  (between 0 and 1 in this case), consider a narrow vertical strip of width  with the vertical line
through  at its center. If the strip is narrow enough, then  does not vary appreciably with  for any .
The mass in the strip is approximately

The moment of the mass in the strip about the line  is approximately

The center of mass in the strip is

This interpretation points the way to the use of MATLAB in approximating the conditional expectation. The success of the discrete
approach in approximating the theoretical value in turns supports the validity of the interpretation. Also, this points to the general
result on regression in the section, "The Regression Problem".

In the MATLAB handling of joint absolutely continuous random variables, we divide the region into narrow vertical strips. Then
we deal with each of these by dividing the vertical strips to form the grid structure. The center of mass of the discrete distribution
over one of the t chosen for the approximation must lie close to the actual center of mass of the probability in the strip. Consider the
MATLAB treatment of the example under consideration.

f = '(6/5)*(t + 2*u).*(u>=t)';                  % Density as string variable 

tuappr 

Enter matrix [a b] of X-range endpoints  [0 1] 

E[ (X)g(Y )] = ∫ ∫ (t)g(u) (t, u) dudt = ∫ (t)[∫ g(u) (u|t) du] (u) dtIM IM fXY IM fY|X fX

= ∫ (t)e(t) (t) dtIM fX e(t) = E[g(Y )|X = t]

t X

A E[ (X)g(Y )] = E[ (X)e(X)]IM IM e(t) = E[g(Y )|X = t]

Example  Basic calculation and interpretation14.1.3

{X,Y } (t, u) = (t+2u)fXY

6

5
t = 0 u = 1

u = t

(t) = (t+2u) du = (1 + t−2 )fX
6

5
∫ 1

t

6

5
t2 0 ≤ t ≤ 1

(u|t) =fY|X
t+2u

1 + t−2t2

E[Y |X = t] = ∫ u (u|t) du = (tu+2 ) du =fY|X

1

1 + t−2t2
∫ 1

t
u2 4 +3t−7t3

6(1 + t−2 )t2
(0 ≤ t < 1)

t = 1 t

t X Δt

t (t, u)fXY t u

Mass ≈ Δt ∫ (t, u) du = Δt (t)fXY fX

u = 0

Momemt ≈ Δt ∫ u (t, u) dufXY

Center of mass = ≈ = ∫ u (u|t) du = e(t)
Moment

Mass

Δ ∫ u (t, u) dufXY

Δt (t)fX
fY|X
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Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  200 

Enter number of Y approximation points  200 

Enter expression for joint density  eval(f)     % Evaluation of string variable 

Use array operations on X, Y, PX, PY, t, u, and P 

EYx = sum(u.*P)./sum(P);                        % Approximate values 

eYx = (4 + 3*X - 7*X.^3)./(6*(1 + X - 2*X.^2)); % Theoretical expression 

plot(X,EYx,X,eYx) 

% Plotting details             (see Figure 14.1.2) 

— □
Figure two is a graph titled, theoretical and approximate conditional expectation. The horizontal axis is labeled, t, and the vertical axis is labeled E[X | Y = t]. The values on the horizontal axis are from 0 to 1 in

increments of 0.1. The values on the vertical axis range from 0.65 to 1 in increments of 0.05. There is a caption inside the graph that reads fXY (t, u) = (6/5)*(t + 2u), for 0 ≤ t ≤ u ≤ 1. There are two plots on this graph.
The first is a solid, smooth line labeled Approximate. the second is a smooth, dashed line, labeled theoretical. Both lines follow the same path on the graph, and are so closely fitted that they are nearly indistinguishable.

They begin on the lower left side, at approximately (0, 0.67), and continue towards the right with a slightly negative slope for a very small segment, until approximately (0.08, 0.66), where the plots begin gradually
increasing at an increasing rate. By midway across the graph, at approximately (0.4, 0.74), the slope of the graph remains positive and constant, and continues in a linear fashion from this point to the top-right corner of

the graph, at (1, 1).  
Figure 14.1.2. Theoretical and approximate conditional expectation for above.

The agreement of the theoretical and approximate values is quite good enough for practical purposes. It also indicates that the
interpretation is reasonable, since the approximation determines the center of mass of the discretized mass which approximates the
center of the actual mass in each vertical strip.

Extension to the general case
Most examples for which we make numerical calculations will be one of the types above. Analysis of these cases is built upon the
intuitive notion of conditional distributions. However, these cases and this interpretation are rather limited and do not provide the
basis for the range of applications—theoretical and practical—which characterize modern probability theory. We seek a basis for
extension (which includes the special cases). In each case examined above, we have the property

  where 

for all  in the range of .

We have a tie to the simple case of conditioning with respect to an event. If  has positive probability, then using 
 we have

 

wo properties of expectation are crucial here:

By the uniqueness property (E5), since (A) holds for all reasonable (Borel) sets, then  is unique a.s. (i.e., except for a set
of  of probability zero). 
By the special case of the Radon Nikodym theorem (E19), the function  always exists and is such that random variable 

 is unique a.s.

We make a definition based on these facts.

The conditional expectation  is the a.s. unique function defined on the range of  such that

  for all Borel sets 

Note that  is a random variable and  is a function. Expectation  is always a constant. The concept is abstract. At
this point it has little apparent significance, except that it must include the two special cases studied in the previous sections. Also,
it is not clear why the term conditional expectation should be used. The justification rests in certain formal properties which are
based on the defining condition (A) and other properties of expectation.

In Appendix F we tabulate a number of key properties of conditional expectation. The condition (A) is called property (CE1). We
examine several of these properties. For a detailed treatment and proofs, any of a number of books on measure-theoretic probability

(A) E[ (X)g(Y )] = E[ (X)e(X)]IM IM e(t) = E[g(Y )|X = t]

t X

C = {X ∈ M}

= (X)IC IM

(B) E[ (X)g(Y )] = E[g(Y )|X ∈ M ]P (X ∈ M)IM

e(X)

ω

e(⋅)

e(X)

Definition

E[g(Y )|Y = t] = e(t) X

(A) E[ (X)g(Y )] = E[ (X)e(X)]IM IM M

e(X) e(⋅) E[g(Y )]
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may be consulted.

(CE1) Defining condition.  a.s. iff

 for each Borel set  on the codomain of 

Note that  and  do not need to be real valued, although  is real valued. This extension to possible vector valued  and  is
extremely important. The next condition is just the property (B) noted above.

(CE1a) If , then 

The special case which is obtained by setting  to include the entire range of  so that  for all  is useful in many
theoretical and applied problems.

(CE1b) Law of total probability. 

It may seem strange that we should complicate the problem of determining  by first getting the conditional expectation 
 then taking expectation of that function. Frequently, the data supplied in a problem makes this the expedient

procedure.

Suppose the time to failure of a device is a random quantity  ~ exponential ( ), where the parameter  is the value of a
parameter random variable . Thus

 for 

If the parameter random variable  ~ uniform , determine the expected life  of the device.

Solution

We use the law of total probability:

Now by assumption

 and , 

Thus

For , , .

The next three properties, linearity, positivity/monotonicity, and monotone convergence, along with the defining condition provide
the “expectation like” character. These properties for expectation yield most of the other essential properties for expectation. A
similar development holds for conditional expectation, with some reservation for the fact that  is a random variable, unique
a.s. This restriction causes little problem for applications at the level of this treatment.

In order to get some sense of how these properties root in basic properties of expectation, we examine one of them.

(CE2) Linearity. For any constants 

 a.s.

VERIFICATION

Let , , and  a.s.

e(X) = E[g(Y )|X]

E[ (X)g(Y )] = E[ (X)e(X)]IM IM M X

X Y g(Y ) X Y

P (X ∈ M) > 0 E[ (X)e(X)] = E[g(Y )|X ∈ M ]P (X ∈ M)IM

M X (X(ω)) = 1IM ω

E[g(Y )] = E{E[g(Y )|X]}

E[g(Y )]

e(X) = E[g(Y )|X]

Exercise  Use of the law of total probability14.1.4

X μ u

H

(t|u) = ufX|H e−ut t ≥ 0

H (a, b) E[X]

E[X] = E{E[X|H]} = ∫ E[X|H = u] (u) dufH

E[X|H = u] = 1/u (u) =fH
1

b−a
a < u < b

E[X] = du =
1

b−a
∫ b

a

1

u

ln(b/a)

b−a

a = 1/100 b = 2/100 E[X] = 100ln(2) ≈ 69.31

e(X)

a, b

E[ag(Y ) +bh(Z)|X] = aE[g(Y )|X] +bE[h(Z)|X]

(X) = E[g(Y )|X]e1 [X] = E[h(Z)|X]e2 e(X) = E[ag(Y ) +bh(Z)|X]

E[ (X)e(X)]IM =

=

=

=

E{ (X)[ag(Y ) +bh(Z)]} a.s.IM

aE[ (X)g(Y )] +bE[ (X)h(Z)] a.s.IM IM

aE[ (X) (X)] +bE[ (X) (X)] a.s.IM e1 IM e2

E{ (X)[a (X) +b (X)]} a.s.IM e1 e2

by(CE1)

by linearity of expectation

by (CE1)

by linearity of expectation
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Since the equalities hold for any Borel , the uniqueness property (E5) for expectation implies

 a.s.

This is property (CE2). An extension to any finite linear combination is easily established by mathematical induction.

— □

Property (CE5) provides another condition for independence.

(CE5) Independence.  is an independent pair

iff  a.s. for all Borel functions  
iff  a.s. for all Borel sets  on the codomain of 

Since knowledge of  does not affect the likelihood that  will take on any set of values, then conditional expectation should not
be affected by the value of . The resulting constant value of the conditional expectation must be  in order for the law of
total probability to hold. A formal proof utilizes uniqueness (E5) and the product rule (E18) for expectation.

Property (CE6) forms the basis for the solution of the regresson problem in the next section.

(CE6)  a.s. iff  a.s. for any Borel function 

Examination shows this to be the result of replacing  in (CE1) with arbitrary . Again, Again, to get some insight into
how the various properties arise, we sketch the ideas of a proof of (CE6).

IDEAS OF A PROOF OF (CE6)

For , this is (CE1).

For , the result follows by linearity.

For , , there is a seqence of nonnegative, simple . Now by positivity, . By monotone
convergence (CE4),

 and 

Since corresponding terms in the sequences are equal, the limits are equal. 
For , , the result follows by linearity (CE2). 
For , the result again follows by linearity.

— □

Properties (CE8) and (CE9) are peculiar to conditional expectation. They play an essential role in many theoretical developments.
They are essential in the study of Markov sequences and of a class of random sequences known as submartingales. We list them
here (as well as in Appendix F) for reference.

(CE8)  a.s. for any Borel function 

This property says that any function of the conditioning random vector may be treated as a constant factor. This combined with
(CE10) below provide useful aids to computation.

(CE9) Repeated conditioning

If , then  a.s.

This somewhat formal property is highly useful in many theoretical developments. We provide an interpretation after the
development of regression theory in the next section.

The next property is highly intuitive and very useful. It is easy to establish in the two elementary cases developed in previous
sections. Its proof in the general case is quite sophisticated.

(CE10) Under conditions on  that are nearly always met in practice

 a.s.  
If  is independent, then  a.s. 

It certainly seem reasonable to suppose that if , then we should be able to replace  by  in  to get 
. Property (CE10) assures this. If  is an independent pair, then the value of  should not affect the value

M

e(X) = a (X) = b (X)e1 e2

{X,Y }

E[g(Y )|X] = E[g(Y )] g

E[ (Y )|X] = E[ (Y )]IN IN N Y

X Y

X E[g(Y )]

e(X) = E[g(Y )|X] E[h(X)g(Y )] = E[h(X)e(X)] h

(X)IM h(X)

h(X) = (X)IM

h(X) = (X)∑n
i=1 aiIMi

h ≥ 0 g ≥ 0 nearrowhhn e(X) ≥ 0

E[ (X)g(Y )] ↗ E[h(X)g(Y )]hn E[ (X)e(X)] ↗ E[h(X)e(X)]hn

h = −h+ h− g ≥ 0

g = −g+ g−

E[h(X)g(Y )|X] = h(X)E[g(Y )|X] h

X = h(W ) E{E[g(Y )|X|W} = E{E[g(Y )|W |X} = E[g(Y )|X]

g

E[g(X,Y )|X = t] = E[g(t,Y )|X = t] [ ]PX

{X,Y } E[g(X,Y )|X = t] = E[g(t,Y )] [ ]PX

X = t X t E[g(X,Y )|X = t]

E[g(t,Y )|X = t] {X,Y } X
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of , so that  a.s.

Consider again the distribution for Example 14.1.3. The pair  has density

 on the triangular region bounded by , , and 

We show in Example 14.1.3 that

 

Let . Determine .

Solution

By linearity, (CE8), and (CE10)

Conditional probability

In the treatment of mathematical expectation, we note that probability may be expressed as an expectation

For conditional probability, given an event, we have

In this manner, we extend the concept conditional expectation.

The conditional probability of event , given , is

Thus, there is no need for a separate theory of conditional probability. We may define the conditional distribution function

Then, by the law of total probability (CE1b),

If there is a conditional density  such that

then

 so that 

A careful, measure-theoretic treatment shows that it may not be true that  is a distribution function for all  in the range of
. However, in applications, this is seldom a problem. Modeling assumptions often start with such a family of distribution

functions or density functions.

As in Example 14.1.4, suppose  ~ exponential , where the parameter  is the value of a parameter random variable . If
the parameter random variable  ~ uniform , determine the distribution fuction .

Y E[g(t,Y )|X = t] = E[g(t,Y )]

Example  Use of property (CE10)14.1.5

{X,Y }

(t, u) = (t+2u)fXY

6

5
t = 0 u = 1 u = t

E[Y |X = t] =
4 +3t−7t3

6(1 + t−2 )t2
0 ≤ t < 1

Z = 3 +2XYX2 E[Z|X = t]

E[Z|X = t] = 3 +2tE[Y |X = t] = 3 +t2 t2 4t+3 −7t2 t4

3(1 + t−2 )t2

P (E) = E[ ]IE

E[ |C] = = = P (E|C)IE
E[ ]IEIC

P (C)

P (EC)

P (C)

Definition

E X

P (E|X) = E[ |X]IE

(u|X) = P (Y ≤ u|X) = E[ (Y )|X]FY|X I(−∞,u]

(u) = E[ (u|X)] = ∫ (u|t) (dt)FY FY|X FY|X FX

fY|X

P (Y ∈ M |X = t) = (r|t) dr∫
M
fY|X

(u|t) = (r|t) drFY|X ∫ u

−∞
fY|X (u|t) = (u|t)fY|X

∂

∂u
FY|X

(⋅|t)FY|X t

X

Example  The conditional distribution function14.1.6

X (u) u H

H (a, b) FX
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Solution

As in Example 14.1.4, take the assumption on the conditional distribution to mean

 

Then

 

By the law of total probability

Differentiation with respect to  yields the expression for 

 

The following example uses a discrete conditional distribution and marginal distribution to obtain the joint distribution for the pair.

A number  is chosen by a random selection from the integers from 1 through 20 (say by drawing a card from a box). A pair
of dice is thrown  times. Let  be the number of “matches” (i.e., both ones, both twos, etc.). Determine the joint distribution
for .

Solution

 ~ uniform on the integers 1 through 20.  for . Since there are 36 pairs of numbers for the two
dice and six possible matches, the probability of a match on any throw is 1/6. Since the  throws of the dice constitute a
Bernoulli sequence with probability 1/6 of a success (a match), we have  conditionally binomial ( , 1/6), given . For
any pair , ,

Now , so that

The following MATLAB procedure calculates the joint probabilities and arranges them “as on the plane.”

% file randbern.m 

p  = input('Enter the probability of success  '); 

N  = input('Enter VALUES of N  '); 

PN = input('Enter PROBABILITIES for N  '); 

n  = length(N); 

m  = max(N); 

S  = 0:m; 

P  = zeros(n,m+1); 

for i = 1:n 

  P(i,1:N(i)+1) = PN(i)*ibinom(N(i),p,0:N(i)); 

end 

PS = sum(P); 

P  = rot90(P); 

disp('Joint distribution N, S, P, and marginal PS') 

(t|u) = ufX|H e−ut t ≥ 0

(t|u) = u  ds = 1 −FX|H ∫ 1

0
e−us e−ut 0 ≤ t

(t) = ∫ (t|u) (u) du = (1 − ) du = 1 −  duFX FX|H fH
1

b−a
∫ b

a
e−ut 1

b−a
∫ b

a
e−ut

= 1 − [ − ]
1

t(b−a)
e−bt e−at

t (t)fX

(t) = [( + ) −( + ) ]fX
1

b−a

1

t2

b

t
e−bt 1

t2

a

t
e−at t > 0

Example  A random number  of Bernoulli trials14.1.7 N

N

N S

[N ,S]

N P (N = i) = 1/20 1 ≤ i ≤ 20

i

S i N = i

(i, j) 0 ≤ j≤ i

P (N = i,S = j) = P (S = j|N = i)P (N = i)

E[S|N = i) = i/6

E[S] = ⋅ i = = = 1.75
1

6

1

20
∑20

i=1

20 ⋅ 21

6 ⋅ 20 ⋅ 2

7

4
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randbern                           % Call for the procedure 

Enter the probability of success  1/6 

Enter VALUES of N  1:20 

Enter PROBABILITIES for N  0.05*ones(1,20) 

Joint distribution N, S, P, and marginal PS 

ES = S*PS' 

ES =  1.7500                          % Agrees with the theoretical value

The regression problem

We introduce the regression problem in the treatment of linear regression. Here we are concerned with more general regression. A
pair  of real random variables has a joint distribution. A value  is observed. We desire a rule for obtaining the “best”
estimate of the corresponding value . If  is the actual value and  is the estimate, then  is the
error of estimate. The best estimation rule (function)  is taken to be that for which the average square of the error is a minimum.
That is, we seek a function  such that

 is a minimum

In the treatment of linear regression, we determine the best affine function, . The optimum function of this form defines
the regression line of  on . We now turn to the problem of finding the best function , which may in some cases be an affine
function, but more often is not.

We have some hints of possibilities. In the treatment of expectation, we find that the best constant to approximate a random
variable in the mean square sense is the mean value, which is the center of mass for the distribution. In the interpretive Example
14.2.1 for the discrete case, we find the conditional expectation  is the center of mass for the conditional distribution
at . A similar result, considering thin vertical strips, is found in Example 14.1.3 for the absolutely continuous case. This
suggests the possibility that  might be the best estimate for  when the value  is observed. We
investigate this possibility. The property (CE6) proves to be key to obtaining the result.

Let . We may write (CE6) in the form  for any reasonable function . Consider

Now  is fixed (a.s.) and for any choice of  we may take  to assert that

Thus

The first term on the right hand side is fixed; the second term is nonnegative, with a minimum at zero iff  a.s. Thus, 
 is the best rule. For a given value  the best mean square esitmate of  is

The graph of  vs  is known as the regression curve of Y on X. This is defined for argument  in the range of , and is
unique except possibly on a set  such that . Determination of the regression curve is thus determination of the
conditional expectation.

If the pair  is independent, then , so that the regression curve of  on  is the horizontal
line through . This, of course, agrees with the regression line, since  and the regression line is 

.

The result extends to functions of  and . Suppose . Then the pair  has a joint distribution, and the best
mean square estimate of  given  is .

{X,Y } X(ω)

Y (ω) Y (ω) r(X(ω)) Y (ω) −r(X(ω))

r(⋅)

r

E[(Y −r(X) ])2

u = at+b

Y X r

E[Y |X = ]ti
X = ti

e(t) = E[Y |X = t] Y X(ω) = t

e(X) = E[Y |X] E[h(X)(Y −e(X))] = 0 h

E[(Y −r(X) ] = E[(Y −e(X) +e(X) −r(X) ])2 )2

= E[(Y −e(X) ] +E[(e(X) −r(X) ] +2E[(Y −e(X))(r(X) −e(X))])2 )2

e(X) r h(X) = r(X) −e(X)

E[Y −e(X))(r(X) −e(X))] = E[(Y −e(X))h(X)] = 0

E[(Y −r(X) ] = E[(Y −e(X) ] +E[(e(X) −r(X) ])2 )2 )2

r(X) = e(X)

r = e X(ω) = t Y

u = e(t) = E[Y |X = t]

u = e(t) t t X

N P (X ∈ N) = 0

Example  Regression curve for an independent pair14.1.8

{X,Y } u = E[Y |X = t] = E[Y ] Y X

u = E[Y ] Cov[X,Y ] = 0

u = 0 = E[Y ]

X Y Z = g(X,Y ) {X,Z}

Z X = t E[Z|X = t]
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Suppose the pair  has joint density  for , . This is the triangular region
bounded by , , and  (see Figure 14.1.3). Integration shows that

,  and  on the triangle

Consider

where  [0, 1/2] and  = (1/2, 1]. Determine .
Figure three is a cartesian graph in the first quadrant containing a large, shaded right triangle. The horizontal axis is labeled, t, and the vertical axis is labeled, u. It is labeled appropriately that both shorter sides

of the triangle sit on the vertical and horizontal axes and are both of length one, with the vertex of the triangle containing the right angle sitting at the origin. The hypotenuse of the triangle, which is along a line
from the point (0, 1) to the point (1, 0), is the only labeled side of the triangle, and its label reads, u = 1 - t. Inside the triangle is an equation that reads, f_xy (t, u) = 60t^2 u.  

Figure 14.1.3. The density function for Example 14.1.9.

Solution By linearity and (CE8).

Now

, 

so that

Note that the indicator functions separate the two expressions. The first holds on the interval  [0, 1/2] and the second
holds on the interval  (1/2, 1]. The two expressions  must not be added, for this would give an
expression incorrect for all t in the range of .

APPROXIMATION

tuappr 

Enter matrix [a b] of X-range endpoints  [0 1] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  100 

Enter number of Y approximation points  100 

Enter expression for joint density  60*t.^2.*u.*(u<=1-t) 

Use array operations on X, Y, PX, PY, t, u, and P 

G = (t<=0.5).*t.^2 + 2*(t>0.5).*u; 

EZx = sum(G.*P)./sum(P);                       % Approximation 

eZx = (X<=0.5).*X.^2 + (4/3)*(X>0.5).*(1-X);   % Theoretical 

plot(X,EZx,'k-',X,eZx,'k-.') 

% Plotting details                             % See Figure 14.1.4

The fit is quite sufficient for practical purposes, in spite of the moderate number of approximation points. The difference in
expressions for the two intervals of  values is quite clear.

Figure four is a graph labeled, theoretical and approximate regression curves. The horizontal axis is labeled t, and the vertical axis is labeled E[Z | X = t]. The values on the horizontal axis range from 0 to 1 in
increments of 0.1, and the vertical axis ranges in value from 0 to 0.7, in increments of 1. There are two plots on this graph. The first is a dashed line labeled Theoretical, and the second is a solid line labeled approximate.

Both lines follow the same path and shape on the graph, except that the solid line is sometimes a little less smooth, wavering but still closely following the more consistent dashed line. The shape of the plot appears in
three major connected sections. The first section begins at the bottom-left corner of the graph, and starts to the right with a shallow but increasing slope. The plot increases at an increasing rate until midway across the
graph, at approximately (0.5, 0.25). The second section begins at this point, as the path continues vertically from (0.5, 0.25) to (0.5, 0.65). At this point, the third section begins, and is roughly linear, with a constant

negative slope moving towards the bottom-right corner of the graph, where it terminates at point (1, 0).  
Figure 14.1.4. Theoretical and approximate regression curves for Example 14.1.9

Example  Estimate of a function of 14.1.9 {X,Y }

{X,Y } (t, u) = 60 ufXY t2 0 ≤ t ≤ 1 0 ≤ u ≤ 1 − t

t = 0 u = 0 u = 1 − t

(t) = 30 (1 − tfX t2 )2 0 ≤ t ≤ 1 (u|t) =fY|X

2u

(1 − t)2

Z = { = (X) + (X)2Y
X2

2Y

for X ≤ 1/2

for X > 1/2
IM X2 IN

M = N E[Z|X = t]

E[Z|X = t] = E[ (X) ||X = t] +E[ (X)2Y ||X = t] = (t) + (t)2E[Y |X = t]IM X2 IN IM t2 IN

E[Y |X = t] = ∫ u (u|t) du = 2  du = ⋅ = (1 − t)fY|X

1

(1 − t)2
∫ 1−t

0
u2 2

3

(1 − t)3

(1 − t)2

2

3
0 ≤ t < 1

E[Z|X = t] = (t) + (t) (1 − t)IM t2 IN
4

3

M =

N = \0and(4/3)\((1 − t)t2

X

X
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Suppose the pair  has joint density , on the unit square ,  (see Figure

14.1.5). The usual integration shows

, , and  on the square

Consider

, where 

Determine .

Solution

, 

Figure five is a cartesian graph containing two equal right triangles that put together at their hypotenuse create a large square. The horizontal axis is labeled, t, and the vertical axis is labeled, u. Each axis
marked only with the value 1. The points (0, 0), (0, 1), (1, 1), and (1, 0) are vertices of the square. A diagonal dashed line from point (0, 0) through point (1, 1) is labeled u = t and divides the square into two

triangles. The two sides of the triangle not sitting on an axis are labeled, with the horizontal side from (0, 1) to (1, 1) labeled, u = 1, and the vertical side from (1, 0) to (1, 1) labeled, t = 1. The triangle above the
diagonal line is labeled, Q, and the triangle below is labeled Q^C. A large equation is printed below the graph that reads, f_XY (t, u) = (6/5)*(t^2 + u).  

Figure 14.1.5. The density and regions for Example 14.1.10

Note the different role of the indicator functions than in Example 14.1.9. There they provide a separation of two parts of the
result. Here they serve to set the effective limits of integration, but sum of the two parts is needed for each .

Figure six is a graph labeled, theoretical and approximate regression curves. The horizontal axis is labeled, t, and the vertical axis is labeled, E[Z | X = t]. The values on the horizontal axis range from 0 to 1 in
increments of 0.1. The values on the vertical axis range from 0 to 1.8 in increments of 0.2. There are two plots on the graph, but both follow the same shape so closely that they are indistinguishable. One is a solid

line, labeled Approximate, and the other is a dashed line, labeled Theoretical. The shape begins at the bottom-right corner of the graph at (0, 0). It initially moves to the right at a shallow positive slope. As it
continues to move to the right, it begins increasing at an increasing rate until approximately (0.6, 0.7) where it maintains a constant positive slope. The plot continues this slope up to the upper-right corner of the

graph, where it terminates at approximately (1, 1.65).  
Figure 14.1.6. Theoretical and approximate regression curves for Example 14.1.10

APPROXIMATION

tuappr 

Enter matrix [a b] of X-range endpoints  [0 1] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  200 

Enter number of Y approximation points  200 

Enter expression for joint density  (6/5)*(t.^2 + u) 

Use array operations on X, Y, PX, PY, t, u, and P 

G = 2*t.^2.*(u>=t) + 3*t.*u.*(u<t); 

EZx = sum(G.*P)./sum(P);                        % Approximate 

eZx = (-X.^5 + 4*X.^4 + 2*X.^2)./(2*X.^2 + 1);  % Theoretical 

plot(X,EZx,'k-',X,eZx,'k-.') 

% Plotting details                              % See Figure 14.1.4 

The theoretical and approximate are barely distinguishable on the plot. Although the same number of approximation points are
use as in Figure 14.1.4 (Example 14.1.9), the fact that the entire region is included in the grid means a larger number of
effective points in this example.

Given our approach to conditional expectation, the fact that it solves the regression problem is a matter that requires proof using
properties of of conditional expectation. An alternate approach is simply to define the conditional expectation to be the solution to
the regression problem, then determine its properties. This yields, in particular, our defining condition (CE1). Once that is
established, properties of expectation (including the uniqueness property (E5)) show the essential equivalence of the two concepts.

Example  Estimate of a function of 14.1.10 {X,Y }

{X,Y } (t, u) = ( +u)fXY

6

5
t2 0 ≤ t ≤ 1 0 ≤ u ≤ 1

(t) = (2 +1)fX
3

5
t2 0 ≤ t ≤ 1 (u|t) = 2fY|X

+ut2

2 +1t2

Z = { (X,Y )2 + (X,Y )3XY
2X2

3XY

for X ≤ Y

for X > Y
IQ X2 IQc Q = {(t, u) : u ≥ t}

E[Z|X = t]

E[Z|X = t] = 2 ∫ (t, u) (u|t) +3t ∫ (t, u)u (u|t) dut2 IQ fY|X IQc fY|X

= ( +u) du+ ( u+ ) du =
4t2

2 +1t2
∫ 1

t
t2 6t

2 +1t2
∫ t

0
t2 u2 − +4 +2t5 t4 t2

2 +1t2
0 ≤ t ≤ 1

t
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There are some technical differences which do not affect most applications. The alternate approach assumes the second moment 
 is finite. Not all random variables have this property. However, those ordinarily used in applications at the level of this

treatment will have a variance, hence a finite second moment.

We use the interpretation of  as the best mean square estimator of , given , to interpret the formal
property (CE9). We examine the special form

(CE9a) 

Put , the best mean square estimator of , given . Then (CE9b) can be expressed

 a.s. and  a.s.

In words, if we take the best estimate of , given , then take the best mean sqare estimate of that, given , we do not
change the estimate of . On the other hand if we first get the best mean sqare estimate of , given , and then take
the best mean square estimate of that, given , we get the best mean square estimate of , given .

This page titled 14.1: Conditional Expectation, Regression is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

E[ ]X2

e(X) = E[g(Y )|X] g(Y ) X

E{E[g(Y )|X]|X,Z} = E{E|g(Y )|X,Z]|X} = E[g(Y )|X]

(X,Z) = E[g(Y )|X,Z]e1 g(Y ) (X,Z)

E[e(X)|X,Z] = e(X) E[ (X,Z)|X] = e(X)e1

g(Y ) X (X,Z)

g(Y ) g(Y ) (X,Z)

X g(Y ) X
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14.2: Problems on Conditional Expectation, Regression
For the distributions in Exercises 1-3

a. Determine the regression curve of  on  and compare with the regression line of  on .
b. For the function  indicated in each case, determine the regression curve of  on .

(See Exercise 17 from "Problems on Mathematical Expectation"). The pair  has the joint distribution (in file
npr08_07.m):

t = -3.1 -0.5 1.2 2.4 3.7 4.9

u = 7.5 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203

4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231

-2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189

-3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

The regression line of  on  is .

Answer

The regression line of  on  is .

npr08_07 

Data are in X, Y, P 

jcalc 

- - - - - - - - - - - 

EYx = sum(u.*P)./sum(P); 

disp([X;EYx]') 

   -3.1000   -0.0290 

   -0.5000   -0.6860 

    1.2000    1.3270 

    2.4000    2.1960 

    3.7000    3.8130 

    4.9000    2.5700 

G = t.^2.*u + abs(t+u); 

EZx = sum(G.*P)./sum(P); 

disp([X;EZx]') 

   -3.1000    4.0383 

   -0.5000    3.5345 

    1.2000    6.0139 

    2.4000   17.5530 

    3.7000   59.7130 

    4.9000   69.1757

Y X Y X

Z = g(X,Y ) Z X

Exercise 14.2.1

{X,Y }

P (X = t,Y = u)

Y X u = 0.5275t+0.6924

Z = Y +|X+Y |X2

Y X u = 0.5275t+0.6924
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(See Exercise 18 from "Problems on Mathematical Expectation"). The pair  has the joint distribution (in file
npr08_08.m):

t = 1 3 5 7 9 11 13 15 17 19

u = 12 0.0156 0.0191 0.0081 0.0035 0.0091 0.0070 0.0098 0.0056 0.0091 0.0049

10 0.0064 0.0204 0.0108 0.0040 0.0054 0.0080 0.0112 0.0064 0.0104 0.0056

9 0.0196 0.0256 0.0126 0.0060 0.0156 0.0120 0.0168 0.0096 0.0056 0.0084

5 0.0112 0.0182 0.0108 0.0070 0.0182 0.0140 0.0196 0.0012 0.0182 0.0038

3 0.0060 0.0260 0.0162 0.0050 0.0160 0.0200 0.0280 0.0060 0.0160 0.0040

-1 0.0096 0.0056 0.0072 0.0060 0.0256 0.0120 0.0268 0.0096 0.0256 0.0084

-3 0.0044 0.0134 0.0180 0.0140 0.0234 0.0180 0.0252 0.0244 0.0234 0.0126

-5 0.0072 0.0017 0.0063 0.0045 0.0167 0.0090 0.0026 0.0172 0.0217 0.0223

The regression line of  on  is .

 

Answer

The regression line of  on  is .

npr08_08 

Data are in X, Y, P 

jcalc 

- - - - - - - - - - - - 

EYx = sum(u.*P)./sum(P); 

disp([X;EYx]') 

    1.0000    5.5350 

    3.0000    5.9869 

    5.0000    3.6500 

    7.0000    2.3100 

    9.0000    2.0254 

   11.0000    2.9100 

   13.0000    3.1957 

   15.0000    0.9100 

   17.0000    1.5254 

   19.0000    0.9100 

M = u<=t; 

G = (u-4).*sqrt(t).*M + t.*u.^2.*(1-M); 

EZx = sum(G.*P)./sum(P); 

disp([X;EZx]') 

    1.0000   58.3050 

    3.0000  166.7269 

    5.0000  175.9322 

    7.0000  185.7896 

Exercise 14.2.2

{X,Y }

P (X = t,Y = u)

Y X u = −0.2584t+5.6110

Z = (X,Y ) (Y −4) + (X,Y )XIQ X
−−

√ IQc Y 2 Q = {(t, u) : u ≤ t}

Y X u = −0.2584t+5.6110
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    9.0000  119.7531 

   11.0000  105.4076 

   13.0000   -2.8999 

   15.0000  -11.9675 

   17.0000  -10.2031 

   19.0000  -13.4690

(See Exercise 19 from "Problems on Mathematical Expectation"). Data were kept on the effect of training time on the time to
perform a job on a production line.  is the amount of training, in hours, and  is the time to perform the task, in minutes. The
data are as follows (in file npr08_09.m):

t = 1 1.5 2 2.5 3

u = 5 0.039 0.011 0.005 0.001 0.001

4 0.065 0.070 0.050 0.015 0.010

3 0.031 0.061 0.137 0.051 0.033

2 0.012 0.049 0.163 0.058 0.039

1 0.003 0.009 0.045 0.025 0.017

The regression line of  on  is .

Answer

The regression line of  on  is .

npr08_09 

Data are in X, Y, P 

jcalc 

- - - - - - - - - - - - 

EYx = sum(u.*P)./sum(P); 

disp([X;EYx]') 

    1.0000    3.8333 

    1.5000    3.1250 

    2.0000    2.5175 

    2.5000    2.3933 

    3.0000    2.3900 

G = (u - 2.8)./t; 

EZx = sum(G.*P)./sum(P); 

disp([X;EZx]') 

    1.0000    1.0333 

    1.5000    0.2167 

    2.0000   -0.1412 

    2.5000   -0.1627 

    3.0000   -0.1367

Exercise 14.2.3

X Y

P (X = t,Y = u)

Y X u = −0.7793t+4.3051

Z = (Y −2.8)/X

Y X u = −0.7793t+4.3051
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For the joint densities in Exercises 4-11 below

a. Determine analytically the regression curve of  on  and compare with the regression line of  on .
b. Check these with a discrete approximation.

(See Exercise 10 from "Problems On Random Vectors and Joint Distributions", Exercise 20 from "Problems on Mathematical
Expectation", and Exercise 23 from "Problems on Variance, Covariance, Linear Regression").  for . 

.

The regression line of  on  is .

, 

Answer

The regression line of  on  is .

. , 

, 

tuappr: [0 1] [0 2] 200 400 u<=2*(1-t) 

- - - - - - - - - - - - - 

EYx = sum(u.*P)./sum(P); 

plot(X,EYx)   % Straight line thru  (0,1), (1,0)

(See Exercise 13 from " Problems On Random Vectors and Joint Distributions", Exercise 23 from "Problems on Mathematical

Expectation", and Exercise 24 from "Problems on Variance, Covariance, Linear Regression").  for 

, .

The regression line of  on  is .

, 

Answer

The regression line of  on  is .

 , 

 

tuappr: [0 2] [0 2] 200 200 (1/8)*(t+u) 

EYx = sum(u.*P)./sum(P); 

eyx = 1 + 1./(3*X+3); 

plot(X,EYx,X,eyx)            % Plots nearly indistinguishable

Y X Y X

Exercise 14.2.4

(t, u) = 1fXY 0 ≤ t ≤ 1
0 ≤ u ≤ 2(1 − t)

Y X u = 1 − t

(t) = 2(1 − t)fX 0 ≤ t ≤ 1

Y X u = 1 − t

(u|t) =fY|X
1

2(1 − t)
0 ≤ t ≤ 1 0 ≤ u ≤ 2(1 − t)

E[Y |X = t] = udu = 1 − t
1

2(1 − t)
∫ 2(1−t)

0
0 ≤ t ≤ 1

Exercise 14.2.5

(t, u) = (t+u)fXY

1

8
0 ≤ t ≤ 2 0 ≤ u ≤ 2

Y X u = −t/11 +35/33

(t) = (t+1)fX
1

4
0 ≤ t ≤ 2

Y X u = −t/11 +35/33

(u|t) =fY|X

(t+u)

2(t+1)
0 ≤ t ≤ 2 0 ≤ u ≤ 2

E[Y |X = t] = (tu+ ) du = 1 +
1

2(t+1)
∫ 2

0
u2 1

3t+3
0 ≤ t ≤ 2
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(See Exercise 15 from " Problems On Random Vectors and Joint Distributions", Exercise 25 from "Problems on Mathematical

Expectation", and Exercise 25 from "Problems on Variance, Covariance, Linear Regression").  for 

, .

The regression line of  on  is .

, 

Answer

The regression line of  on  is .

 

, 

tuappr:  [0 2] [0 3] 200 300 (3/88)*(2*t + 3*u.^2).*(u<=1+t) 

EYx = sum(u.*P)./sum(P); 

eyx = (X+1).*(X+3).*(3*X+1)./(4*(1 + 4*X + X.^2)); 

plot(X,EYx,X,eyx)            % Plots nearly indistinguishable

(See Exercise 16 from " Problems On Random Vectors and Joint Distributions", Exercise 26 from "Problems on Mathematical
Expectation", and Exercise 26 from "Problems on Variance, Covariance, Linear Regression").  on the
parallelogram with vertices

(-1, 0), (0, 0), (1, 1), (0, 1)

The regression line of  on  is .

Answer

The regression line of  on  is .

 on the parallelogram

tuappr: [-1 1] [0 1] 200 100 12*t.^2.*u.*((u<= min(t+1,1))&(u>=max(0,t))) 

EYx = sum(u.*P)./sum(P); 

M = X<=0; 

eyx = (2/3)*(X+1).*M + (2/3)*(1-M).*(X.^2 + X + 1)./(X + 1); 

plot(X,EYx,X,eyx)            % Plots quite close

Exercise 14.2.6

(t, u) = (2t+3 )fXY

3

88
u2

0 ≤ t ≤ 2 0 ≤ u ≤ 1 + t

Y X u = 0.0958t+1.4876

(t) = (1 + t)(1 +4t+ ) = (1 +5t+5 + )fX
3

88
t2

3

88
t2 t3 0 ≤ t ≤ 2

Y X u = 0.0958t+1.4876

(u|t) =fY|X
2t+3u2

(1 + t)(1 +4t+ )t2
0 ≤ u ≤ 1 + t

E[Y |X = t] = (2tu+3 ) du
1

(1 + t)(1 +4t+ )t2
∫ 1+t

0 u3

=
(t+1)(t+3)(3t+1)

4(1 +4t+ )t2
0 ≤ t ≤ 2

Exercise 14.2.7

(t, u) = 12 ufXY t2

Y X u = (4t+5)/9

(t) = (t)6 (t+1 + (t)6 (1 − )fX I[−1,0] t2 )2 I(0,1] t2 t2

Y X u = (23t+4)/18

(u|t) = (t) + (t)fY|X I[−1,0]
2u

(t+1)2
I(0,1]

2u

(1 − )t2

E[Y |X = t] = (t) 2u du+ (t) 2u duI[−1,0]
1

(t+1)2
∫ t+1

0 I(0,1]
1

(1 − )t2
∫ 1
t

= (t) (t+1) + (t)I[−1,0]
2

3
I(0,1]

2

3

+ t+1t2

t+1
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(See Exercise 17 from " Problems On Random Vectors and Joint Distributions", Exercise 27 from "Problems on Mathematical

Expectation", and Exercise 27 from "Problems on Variance, Covariance, Linear Regression").  for 

, .

The regression line of  on  is 

Answer

The regression line of  on  is 

tuappr: [0 2] [0 1] 200 100 (24/11)*t.*u.*(u<=min(1,2-t)) 

EYx = sum(u.*P)./sum(P); 

M = X <= 1; 

eyx = (2/3)*M + (2/3).*(2 - X).*(1-M); 

plot(X,EYx,X,eyx)            % Plots quite close

(See Exercise 18 from " Problems On Random Vectors and Joint Distributions", Exercise 28 from "Problems on Mathematical

Expectation", and Exercise 28 from "Problems on Variance, Covariance, Linear Regression").  for 

, .

The regression line of  on  is .

Answer

The regression line of  on  is .

 

tuappr:  [0 2] [0 2] 200 200 (3/23)*(t+2*u).*(u<=max(2-t,t)) 

EYx = sum(u.*P)./sum(P); 

M = X<=1; 

Exercise 14.2.8

(t, u) = tufXY

24

11
0 ≤ t ≤ 2 0 ≤ u ≤ min {1, 2 − t}

Y X u = (−124t+368)/431

(t) = (t) t+ (t) t(2 − tfX I[0,1]
12

11
I(1,2]

12

11
)2

Y X u = (−124t+368)/431

(u|t) = (t)2u+ (t)fY|X I[0,1] I(1,2]
2u

(2 − t)2

E[Y |X = t] = (t) 2  du+ (t) 2  duI[0,1] ∫ 1
0 u2 I(1,2]

1

(2 − t)2
∫ 2−t

0 u2

= (t) + (t) (2 − t)I[0,1]
2

3
I(1,2]

2

3

Exercise 14.2.9

(t, u) = (t+2u)fXY

3

23
0 ≤ t ≤ 2 0 ≤ u ≤ max {2 − t, t}

Y X u = 1.0561t−0.2603

(t) = (t) (2 − t) + (t)fX I[0,1]
6

23
I(1,2]

6

23
t2

Y X u = 1.0561t−0.2603

(u|t) = (t) + (t)fY|X I[0,1]
t+2u

2(2 − t)
I(1,2]

t+2u

2t2
0 ≤ u ≤ max (2 − t, t)

E[Y |X = t] = (t) (tu+2 ) du+ (t) (tu+2 ) duI[0,1]
1

2(2 − t)
∫ 2−t

0
u2 I(1,2]

1

2t2
∫ t

0
u2

= (t) (t−2)(t−8) + (t) tI[0,1]
1

12
I(1,2]

7

12

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10843?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/08%3A_Random_Vectors_and_Joint_Distributions/8.03%3A_Problems_on_Random_Vectors_and_Joint_Distributions
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/11%3A_Mathematical_Expectation/11.03%3A_Problems_on_Mathematical_Expectation
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/12%3A_Variance_Covariance_and_Linear_Regression/12.04%3A_Problems_on_Variance_Covariance_Linear_Regression
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/08%3A_Random_Vectors_and_Joint_Distributions/8.03%3A_Problems_on_Random_Vectors_and_Joint_Distributions
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/11%3A_Mathematical_Expectation/11.03%3A_Problems_on_Mathematical_Expectation
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/12%3A_Variance_Covariance_and_Linear_Regression/12.04%3A_Problems_on_Variance_Covariance_Linear_Regression


14.2.7 https://stats.libretexts.org/@go/page/10843

eyx = (1/12)*(X-2).*(X-8).*M + (7/12)*X.*(1-M); 

plot(X,EYx,X,eyx)             % Plots quite close

(See Exercise 21 from " Problems On Random Vectors and Joint Distributions", Exercise 31 from "Problems on Mathematical

Expectation", and Exercise 29 from "Problems on Variance, Covariance, Linear Regression").  for 

, .

The regression line of  on  is .

Answer

The regression line of  on  is .

 

tuappr: [0 2] [0 2] 200 200 (2/13)*(t+2*u).*(u<=min(2*t,3-t)) 

EYx = sum(u.*P)./sum(P); 

M = X<=1; 

eyx = (11/9)*X.*M + (1/18)*(X.^2 - 15*X + 36).*(1-M); 

plot(X,EYx,X,eyx)              % Plots quite close

(See Exercise 22 from " Problems On Random Vectors and Joint Distributions", Exercise 32 from "Problems on Mathematical
Expectation", and Exercise 30 from "Problems on Variance, Covariance, Linear Regression"). 

. for .

The regression line of  on  is .

Answer

The regression line of  on  is .

 

Exercise 14.2.10

(t, u) = (t+2u)fXY

2

13
0 ≤ t ≤ 2 0 ≤ u ≤ min {2t, 3 − t}

Y X u = −0.1359t+1.0839

(t) = (t) + (t) (3 − t)fX I[0,1]
12

13
t2 I(1,2]

6

13

Y X u = −0.1359t+1.0839

(t|u) = (t) + (t)fY|X I[0,1]
t+2u

6t2
I(1,2]

t+2u

3(3 − t)
0 ≤ u ≤ max (2t, 3 − t)

E[Y |X = t] = (t) (tu+2 ) du+ (t) (tu+2 ) duI[0,1]
1

6t2
∫ t

0
u2 I(1,2]

1

3(3 − t)
∫ 3−t

0
u2

= (t) t+ (t) ( −15t+36)I[0,1]
11

9
I(1,2]

1

18
t2

Exercise 14.2.11

9t, u) = (t) ( +2u) + (t)fXY I[0,1]
3

8
t2 I(1,2]

9

14
t2u2 0 ≤ u ≤ 1

Y X u = 0.0817t+0.5989

(t) = (t) ( +1) + (t)fX I[0,1]
3

8
t2 I(1,2]

3

14
t2

Y X u = 0.0817t+0.5989

(t|u) = (t) + (t)3fY|X I[0,1]
+2ut2

+1t2
I(1,2] u2 0 ≤ u ≤ 1

E[Y |X = t] = (t) ( u+2 ) du+ (t) 3  duI[0,1]
1

+1t2
∫ 1

0
t2 u2 I(1,2] ∫ 1

0
u3

= (t) + (t)I[0,1]
3 +4t2

6( +1)t2
I(1,2]

3

4
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tuappr: [0 2] [0 1] 200 100 (3/8)*(t.^2 + 2*u).*(t<=1) + ... 

       (9/14)*t.^2.*u.^2.*(t>1) 

EYx = sum(u.*P)./sum(P); 

M = X<=1; 

eyx = M.*(3*X.^2 + 4)./(6*(X.^2 + 1)) + (3/4)*(1 - M); 

plot(X,EYx,X,eyx)              % Plots quite close

For the distributions in Exercises 12-16 below

a. Determine analytically 
b. Use a discrete approximation to calculate the same functions.

 for , , (see Exercise 37 from "Problems on Mathematical Expectation",

and Exercise 14.2.6).

, 

Answer

. Use of linearity, (CE8), and (CE10) gives

% Continuation of Exercise 14.2.6 

G = 4*t.*(t<=1) + (t + u).*(t>1); 

EZx = sum(G.*P)./sum(P); 

M = X<=1; 

ezx = 4*X.*M + (X + (X+1).*(X+3).*(3*X+1)./(4*(1 + 4*X + X.^2))).*(1-M); 

plot(X,EZx,X,ezx)              % Plots nearly indistinguishable

 for ,  (see Exercise 38 from "Problems on Mathematical Expectaton",

Exercise 14.2.8).

, 

Answer

, 

 

E[Z|X = t]

Exercise 14.2.12

(t, u) = (2t+3 )fXY

3

88
u2 0 ≤ t ≤ 2 0 ≤ u ≤ 1 + t

(t) = (1 + t)(1 +4t+ ) = (1 +5t+5 + )fX
3

88
t2 3

88
t2 t3 0 ≤ t ≤ 2

Z = (X)4X+ (X)(X+Y )I[0,1] I(1,2]

Z = (X)4X+ (X)(X+Y )IM IN

E[Z|X = t] = (t)4t+ (t)(t+E[Y |X = t])IM IN

= (t)4t+ (t)(t+ )IM IN
(t+1)(t+3)(3t+1)

4(1 +4t+ )t2

Exercise 14.2.13

(t, u) = tufXY

24

11
0 ≤ t ≤ 2 0 ≤ umin {1, 2 − t}

(t) = (t) t+ (t) t(2 − tfX I[0,1]
12

11
I(1,2]

12

11
)2

Z = (X,Y ) X+ (X,Y )IM
1

2
IM Y 2 M = {(t, u) : u > t}

Z = (X,Y ) X+ (X,Y )IM
1

2
IM Y 2 M = {(t, u) : u > t}

(t, u) = (t) (u)IM I[0,1] I[t,1] (t, u) = (t) (u) + (t) (u)IM c I[0,1] I[0,t] I(1,2] I[0,2−t]
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% Continuation of Exercise 14.2.8 

Q = u>t; 

G = (1/2)*t.*Q + u.^2.*(1-Q); 

EZx = sum(G.*P)./sum(P); 

M = X <= 1; 

ezx = (1/2)*X.*(1-X.^2+X.^3).*M + (1/2)*(2-X).^2.*(1-M); 

plot(X,EZx,X,ezx)              % Plots nearly indistinguishable

 for ,  (see Exercise 39 from "Problems on Mathematical

Expectaton", and Exercise 14.2.9).

, 

Answer

, 

 

% Continuation of Exercise 14.2.9 

M = X <= 1; 

Q = (t<=1)&(u<=1); 

G = (t+u).*Q + 2*u.*(1-Q); 

EZx = sum(G.*P)./sum(P); 

ezx = (1/12)*M.*(2*X.^3 - 30*X.^2 + 69*X -60)./(X-2) + (7/6)*X.*(1-M); 

plot(X,EZx,X,ezx)

, for , . (see Exercise 31 from "Problems on Mathematical

Expectaton", and Exercise 14.2.10).

, 

Answer

E[Z|X = t] = (t)[ 2u du+ ⋅ 2u du] + (t) ⋅  duI[0,1]
t

2
∫ 1
t ∫ t

0 u2 I(1,2] ∫ 2−t

0 u2 2u

(2 − t)2

= (t) t(1 − + ) + (t) (2 − tI[0,1]
1

2
t2 t3 I(1,2]

1

2
)2

Exercise 14.2.14

(t, u) = (t+2u)fXY

3

23
0 ≤ t ≤ 2 0 ≤ u ≤ max {2 − t, t}

(t) = (t) (2 − t) + (t)fX I[0,1]
6

23
I(1,2]

6

23
t2

Z = (X,Y )(X+Y ) + (X,Y )2YIM IM c M = {(t, u) : max (t, u) ≤ 1}

Z = (X,Y )(X+Y ) + (X,Y )2YIM IM c M = {(t, u) : max (t, u) ≤ 1}

(t, u) = (t) (u)IM I[0,1] I[0,1] (t, u) = (t) (u) + (t) (u)IM c I[0,1] I[1,2−t] I(1,2] I[0,1]

E[Z|X = t] = (t) (t+u)(t+2u) du+ u(t+2u) du] + (t)2E[Y |X = t]I[0,1]
1

2(2 − t)
∫ 1

0

1

2 − t
∫ 2−t

1
I(1,2]

= (t) ⋅ + (t) 2tI[0,1]
1

12

2 −30 +69t−60t3 t2

t−2
I(1,2]

7

6

Exercise 14.2.15

(t, u) = (t+2u)fXY

2

13
0 ≤ t ≤ 2 0 ≤ u ≤ min {2t, 3 − t}

(t) = (t) + (t) (3 − t)fX I[0,1]
12

13
t2 I(1,2]

6

13

Z = (X,Y )(X+Y ) + (X,Y )2IM IM c Y 2 M = {(t, u) : t ≤ 1, u ≥ 1}
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, 

 

tuappr:  [0 2] [0 2] 200 200 (2/13)*(t + 2*u).*(u<=min(2*t,3-t)) 

M = (t<=1)&(u>=1); 

Q = (t+u).*M + 2*(1-M).*u.^2; 

EZx = sum(Q.*P)./sum(P); 

N1 = X <= 1/2; 

N2 = (X > 1/2)&(X<=1); 

N3 = X > 1; 

ezx = (32/9)*N1.*X.^2 + (1/36)*N2.*(80*X.^3 - 6*X.^2 - 5*X + 2)./X.^2 ... 

         + (1/9)*N3.*(-X.^3 + 15*X.^2 - 63.*X + 81); 

plot(X,EZx,X,ezx)

, for . (see Exercise 32 from "Problems on Mathematical

Expectaton", and Exercise 14.2.11).

, 

Answer

, 

tuappr:  [0 2] [0 1] 200 100  (t<=1).*(t.^2 + 2*u)./(t.^2 + 1) +3*u.^2.*(t>1) 

M = u<=min(1,2-t); 

G = M.*t + (1-M).*t.*u; 

EZx = sum(G.*P)./sum(P); 

N = X<=1; 

ezx = X.*N + (1-N).*(-(13/4)*X + 12*X.^2 - 12*X.^3 + 5*X.^4 - (3/4)*X.^5); 

plot(X,EZx,X,ezx)

Z = (X,Y )(X+Y ) + (X,Y )2IM IM c Y 2 M = {(t, u) : t ≤ 1, u ≥ 1}

(t, u) = (t0 (u)IM I[0,1] I[1,2] (t, u) = (t) (u) + (t) (u)IM c I[0,1] I[0,1) I(1,2] I[0,3−t]

E[Z|X = t] = (t) 2 (t+2u) du+I[0,1/2]
1

6t2
∫ 2t

0
u2

(t)[ 2 (t+2u) du+ (t+u)(t+2u) du] + (t) 2 (t+2u) duI(1/2,1]
1

6t2
∫ 1

0 u2 1

6t2
∫ 2t

1 I(1,2]
1

3(3 − t)
∫ 3−t

0 u2

= (t) + (t) ⋅ + (t) (− +15 −63t+81)I[0,1/2]
32

9
t2 I(1/2,1]

1

36

80 −6 −5t+2t3 t2

t2
I(1,2]

1

9
t3 t2

Exercise 14.2.16

(t, u) = (t) ( +2u) + (t)fXY I[0,1]
3

8
t2 I(1,2]

9

14
t2u2 0 ≤ u ≤ 1

(t) = (t) ( +1) + (t)fX I[0,1]
3

8
t2 I(1,2]

3

14
t2

Z = (X,Y )X+ (X,Y )XYIM IM c M = {(t, u) : u ≤ min (1, 2 − t)}

Z = (X,Y )X+ (X,Y )XYIM IM c M = {(t, u) : u ≤ min (1, 2 − t)}

E[|X = t] = (t)  du+ (t)[ 3t  du+ 3t  du]I[0,1] ∫ 1
0

+2tut3

+1t2
I(1,2] ∫ 2−t

0 u2 ∫ 1
2−t u3

= (t)t+ (t)(− t+12 −12 +5 − )I[0,1] I(1,2]
13

4
t2 t3 t4 3

4
t5
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Suppose  ~ uniform on 0 through  and  ~ conditionally uniform on 0 through , given .

a. Determine  from . 
b. Determine the joint distribution for  for  (see Example 7 from "Conditional Expectation, Regression"
for a possible approach). Use jcalc to determine ; compare with the theoretical value.

Answer

a. , so

b. , , . ; hence 
, , .

n = 50; X = 0:n; Y = 0:n; P0 = zeros(n+1,n+1); for i = 0:n P0(i+1,1:i+1) =
(1/((n+1)*(i+1)))*ones(1,i+1); end P = rot90(P0); jcalc: X Y P - - - - - - - - -
- - EY = dot(Y,PY) EY = 12.5000 % Comparison with part (a): 50/4 = 12.5

Suppose  ~ uniform on 1 through  and  ~ conditionally uniform on 1 through , given .

a. Determine  from . 
b. Determine the joint distribution for  for  (see Example 7 from "Conditional Expectation, Regression"
for a possible approach). Use jcalc to determine ; compare with the theoretical value.

Answer

a. , so

b. , , . ; hence 
, , .

n = 50; X = 1:n; Y = 1:n; P0 = zeros(n,n); for i = 1:n P0(i,1:i) =
(1/(n*i))*ones(1,i); end P = rot90(P0); jcalc: P X Y - - - - - - - - - - - - EY =
dot(Y,PY) EY = 13.2500 % Comparison with part (a): 53/4 = 13.25

Suppose  ~ uniform on 1 through  and  ~ conditionally binomial , given .

a. Determine  from . 
b. Determine the joint distribution for  for  and . Use jcalc to determine ; compare with the
theoretical value.

Answer

a. , so

b. , ,  = ibinom , .

Exercise 14.2.17

X n Y i X = i

E[Y ] E[Y |X = i]
{X,Y } n = 50

E[Y ]

E[Y |X = i] = i/2

E[Y ] = E[Y |X = i]P (X = i) = i/2 = n/4∑n
i=0

1

n+1
∑n

i=1

P (X = i) = 1/(n+1) 0 ≤ i ≤ n P (Y = k|X = i) = 1/(i+1) 0 ≤ k ≤ i

P (X = i,Y = k) = 1/(n+1)(i+1) 0 ≤ i ≤ n 0 ≤ k ≤ i

Exercise 14.2.18

X n Y i X = i

E[Y ] E[Y |X = i]
{X,Y } n = 50

E[Y ]

E[Y |X = i] = (i+1)/2

E[Y ] = E[Y |X = i]P (X = i) = =∑n
i=0

1

n+1
∑n

i=1

i+1

2

n+3

4

P (X = i) = 1/n 1 ≤ i ≤ n P (Y = k|X = i) = 1/i 1 ≤ k ≤ i

P (X = i,Y = k) = 1/ni 1 ≤ i ≤ n 1 ≤ k ≤ i

Exercise 14.2.19

X n Y (i, p) X = i

E[Y ] E[Y |X = k]
{X,Y } n = 50 p = 0.3 E[Y ]

E[Y |X = i] = ip

E[Y ] = E[Y |X = i]P (X = i) = i =∑n
i=1

p

n
∑n

i=1

p(n+1)

2

P (X = i) = 1/n 1 ≤ i ≤ n P (Y = k|X = i) (i, p, 0 : i) 0 ≤ k ≤ i
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n = 50; p = 0.3; X = 1:n; Y = 0:n; P0 = zeros(n,n+1); % Could use randbern for i
= 1:n P0(i,1:i+1) = (1/n)*ibinom(i,p,0:i); end P = rot90(P0); jcalc: X Y P - - -
- - - - - - - - EY = dot(Y,PY) EY = 7.6500 % Comparison with part (a): 0.3*51/2 =
0.765

A number  is selected randomly from the integers 1 through 100. A pair of dice is thrown  times. Let  be the number of
sevens thrown on the  tosses. Determine the joint distribution for  and then determine .

Answer

a. , , so

b. 
n = 100; p = 1/6; X = 1:n; Y = 0:n; PX = (1/n)*ones(1,n); P0 = zeros(n,n+1); %
Could use randbern for i = 1:n P0(i,1:i+1) = (1/n)*ibinom(i,p,0:i); end P =
rot90(P0); jcalc EY = dot(Y,PY) EY = 8.4167 % Comparison with part (a): 101/12 =
8.4167

A number  is selected randomly from the integers 1 through 100. Each of two people draw  times, independently and
randomly, a number from 1 to 10. Let  be the number of matches (i.e., both draw ones, both draw twos, etc.). Determine the
joint distribution and then determine .

Answer

Same as Exercise 14.2.20, except . 

n = 100; p = 0.1; X = 1:n; Y = 0:n; PX = (1/n)*ones(1,n); 

P0 = zeros(n,n+1);         % Could use randbern 

for i = 1:n 

  P0(i,1:i+1) = (1/n)*ibinom(i,p,0:i); 

end 

P = rot90(P0); 

jcalc 

- - - - - - - - - - 

EY = dot(Y,PY) 

EY =  5.0500                  % Comparison with part (a): EY = 101/20 = 5.05

 and  has density function  for . Determine .

Answer

Exercise 14.2.20

X X Y

X {X,Y } E[Y ]

P (X = i) = 1/n E[Y |X = i] = i/6

E[Y ] = i/n =
1

6
∑n

i=0

(n+1)

12

Exercise 14.2.21

X X

Y

E[Y ]

p = 1/10 E[Y ] = (n+1)/20

Exercise 14.2.22

E[Y |X = t] = 10t X (t) = 4 −2tfX 1 ≤ t ≤ 2 E[Y ]

E[Y ] = ∫ E[Y |X = t] (t) dt = 10t(4 −2t) dt = 40/3fX ∫ 2
1
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 for  and  has density function  for . Determine .

Answer

 and  has density function  . Determine .

Answer

Suppose the pair  is independent, with  ~ Poisson ( ) and  ~ Poisson . Show that  is conditionally binomial 
, given . That is, show that

, , for 

Answer

 ~ Poisson ( ),  ~ Poisson . Use of property (T1) and generating functions shows that  ~ Poisson 

Put  and  to get the desired result.

Use the fact that , where  does not vary with . Extend property (CE10) to show

 a.s. 

Answer

 a.s.  by (CE10)

Use the result of Exercise 14.2.26 and properties (CE9a) and (CE10) to show that

 a.s. 

Answer

By (CE9),  a.s.

Exercise 14.2.23

E[Y |X = t] = (1 − t)
2

3
0 ≤ t < 1 X (t) = 30 (1 − tfX t2 )2 0 ≤ t ≤ 1 E[Y ]

E[Y ] = ∫ E[Y |X = t] (t) dt = 20 (1 − t  dt = 1/3fX ∫
1

0 t2 )3

Exercise 14.2.24

E[Y |X = t] = (2 − t)
2

3
X (t) = (2 − tfX

15

16
t2 )2 0 ≤ t < 2 E[Y ]

E[Y ] = ∫ E[Y |X = t] (t) dt = (2 − t  dt = 2/3fX
5

8
∫ 2

0
t2 )3

Exercise 14.2.25

{X,Y } X μ Y (λ) X

(n,μ/(μ+λ)) X+Y = n

P (X = k|X+Y = n) = C(n, k) (1 −ppk )n−k 0 ≤ k ≤ n p = μ/(μ+λ)

X μ Y (λ) X+Y (μ+λ)

P (X = k|X+Y = n) = =
P (X = k,X+Y = n)

P (X+Y = n)

P (X = k,Y = n−k)

P (X+Y ) = n

= =

e−μ
μk

k!
e−λ λn−k

(n−k)!

e−(μ+λ)
(μ+λ)n

n!

n!

k!(n−k)!

μkλn−k

(μ+λ)n

p = μ/(μ+λ) q = 1 −p = λ/(μ+λ)

Exercise 14.2.26

g(X,Y ) = (X,Y ,Z)g∗ (t, u, v)g∗ v

E[g(X,Y )|X = t,Z = v] = E[g(t,Y )|X = t,Z = v] [ ]PXZ

E[g(X,Y )|X = t,Z = v] = E[ (X,Z,Y )|(X,Z) = (t, v)] = E[ (t, v,Y )|(X,Z) = (t, v)]g∗ g∗

= E[g(t,Y )|X = t,Z = v] [ ]PXZ

Exercise 14.2.27

E[g(X,Y )|Z = v] = ∫ E[g(t,Y )|X = t,Z = v] (dt|v)FX|Z [ ]PZ

E[g(X,Y )|Z] = E{E|g(X,Y )|X,Z]|Z} = E[e(X,Z)|Z]
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By (CE10),

 a.s.

By Exercise 14.2.26,

 a.s. 

A shop which works past closing time to complete jobs on hand tends to speed up service on any job received during the last
hour before closing. Suppose the arrival time of a job in hours before closing time is a random variable  ~ uniform [0, 1].
Service time  for a unit received in that period is conditionally exponential , given . Determine the
distribution unction for .

Answer

, 

Time to failure  of a manufactured unit has an exponential distribution. The parameter is dependent upon the manufacturing
process. Suppose the parameter is the value of random variable  ~ uniform on[0.005, 0.01], and  is conditionally
exponential , given . Determine . Determine  and use this to determine .

Answer

 , 

 

A system has  components. Time to failure of the th component is  and the class

 is iid exponential ( ). The system fails if any one or more of the components fails. Let  be the time to
system failure. What is the probability the failure is due to the th component?

Suggestion. Note that  iff , for all . Thus

, 

Answer

Let . Then

E[e(X,Z)|Z = v] = E[e(X, v)|Z = v] =

∫ e(t, v) (dt|v)FX|Z

∫ E[g(X,Y )|X = t,Z = v] (dt|v) =FX|Z

∫ E[g(t,Y )|X = t,Z = v] (dt|v)FX|Z [ ]PZ

Exercise 14.2.28

T

Y β(2 −u) T = u

Y

(v) = ∫ (v|u) (u) du = (1 − ) du =FY FY|T fT ∫ 1
0 e−β(2−u)v

1 − = 1 − [ ]e−2βv
−1eβv

βv
eβv

1 −e−βv

βv
0 < v

Exercise 14.2.29

X

H X

(u) H = u P (X > 150) E[X|H = u] E[X]

(t|u) = 1 −FX|H eut (u) = = 200fH
1

0.05
0.005 ≤ u ≤ 0.01

(t) = 1 −200  du = 1 − [ − ]FX ∫ 0.01
0.005

e−ut 200

t
e−0.005t e−0.01t

P (X > 150) = [ − ] ≈ 0.3323
200

150
e−0.75 e−1.5

E[X|H = u] = 1/u E[X] = 200 = 200ln 2∫ 0.01
0.005

du

u

Exercise 14.2.30

n i Xi

{ : 1 ≤ i ≤ n}Xi λ W

i

W = Xi >Xj Xi j≠ i

{W = } = {( , , ⋅ ⋅ ⋅, ) ∈ Q}Xi X1 X2 Xn Q = {( , , ⋅ ⋅ ⋅ ) : > , ∀k ≠ i}t1 t2 tn tk ti

P (W = ) = E[ ( , , ⋅ ⋅ ⋅, )] = E{E[ ( , , ⋅ ⋅ ⋅, )| ]}Xi IQ X1 X2 Xn IQ X1 X2 Xn Xi

Q = {( , , ⋅ ⋅ ⋅, ) : > , k ≠ i}t1 t2 tn tk ti

P (W = ) = E[ ( , , ⋅ ⋅ ⋅, )] = E{E[ ( , , ⋅ ⋅ ⋅, )| ]}Xi IQ X1 X2 Xn IQ X1 X2 Xn Xi
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If  is continuous, strictly increasing, zero for , put , ,  ~  ~ .
Then

This page titled 14.2: Problems on Conditional Expectation, Regression is shared under a CC BY 3.0 license and was authored, remixed, and/or
curated by Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

= ∫ E[ ( , , ⋅ ⋅ ⋅, , ⋅ ⋅ ⋅ )] (dt)IQ X1 X2 ti Xn FX

E[ ( , , ⋅ ⋅ ⋅, , ⋅ ⋅ ⋅, )] = P ( > t) = [1 − (t)IQ X1 X2 ti Xn ∏k≠i Xk FX ]n−1

FX t < 0 u = (t)FX du = (t) dtfX t = 0 u = 0, t = ∞ u = 1

P (W = ) = (1 −u  du =  du = 1/nXi ∫ 1
0

)n−1 ∫ 1
0
un−1
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15.1: Random Selection

Introduction 

The usual treatments deal with a single random variable or a fixed, finite number of random variables, considered jointly. However,
there are many common applications in which we select at random a member of a class of random variables and observe its value,
or select a random number of random variables and obtain some function of those selected. This is formulated with the aid of a
countingor selecting random variable , which is nonegative, integer valued. It may be independent of the class selected, or may
be related in some sequential way to members of the class. We consider only the independent case. Many important problems
require optionalrandom variables, sometimes called Markov times. These involve more theory than we develop in this treatment.

Some common examples:

Total demand of  customers—  independent of the individual demands. 
Total service time for  units—  independent of the individual service times. 
Net gain in  plays of a game—  independent of the individual gains. 
Extreme values of  random variables—  independent of the individual values. 
Random sample of size —  is usually determined by propereties of the sample observed. 
Decide when to play on the basis of past results—  dependent on past

A useful model—random sums 
As a basic model, we consider the sum of a random number of members of an iid class. In order to have a concrete interpretation to
help visualize the formal patterns, we think of the demand of a random number of customers. We suppose the number of customers
Nis independent of the individual demands. We formulate a model to be used for a variety of applications.

A basic sequence  [Demand of  customers] 
An incremental sequence  [Individual demands] 
These are related as follows:

 for  and  for   for all 

A counting random variable . If  then  of the  are added to give the compound demand  (the random sum)

Note. In some applications the counting random variable may take on the idealized value . For example, in a game that is played
until some specified result occurs, this may never happen, so that no finite value can be assigned to . In such a case, it is
necessary to decide what value  is to be assigned. For  independent of the  (hence of the ), we rarely need to consider
this possibility.

Independent selection from an iid incremental sequence

We assume throughout, unless specifically stated otherwise, that: 
 
 is iid 

 is an independent class

We utilize repeatedly two important propositions: 
,  

. If the  are nonnegative integer valued, then so is  and 

DERIVATION

We utilize properties of generating functions, moment generating functions, and conditional expectation. 
 by definition of conditional expectation, given an event, Now, 

 and . Hence 
. Division by  gives the desired result. 

By the law of total probability (CE1b), . By proposition 1 and the product rule for moment
generating functions,

N

N N

N N

N N

N N

N N

N

{ : 0 ≤ n}Xn n

{ : 0 ≤ n}Yn

=Xn ∑n
k=0 Yk n ≥ 0 = 0Xn n < 0 = −Yn Xn Xn−1 n

N N = n n Yk D

D = = = (N)∑N
k=0 Yk ∑∞

k=0 I[N=k]Xk ∑∞
k=0 I{k} Xk

∞

N

X∞ N Yn Xn

= = 0X0 Y0

{ : 1 ≤ k}Yk

{N , : 0 ≤ k}Yk

E[h(D)|N = n] = E[h( )]Xn n ≥ 0

(s) = [ (s)]MD gN MY Yn D (s) = [ (s)]gD gN gY

E[ (N)h(D)] = E[h(D)|N = n]P (N = n)I{n}

(N)h(D) = (N)h( )I{n} I{n} Xn E[ (N)h( )] = P (N = n)E[h( )]I{n} Xn Xn

E[h(D)|N = n]P (N = n) = P (N = n)E[h( )]Xn P (N = n)

(s) = E[ ] = E{E[ |N ]}MD esD esD
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Hence

A parallel argument holds for 

— □

Remark. The result on  and  may be developed without use of conditional expectation.

in the integer-valued case.

— □

Suppose the number  of jobs brought to a service shop in a day is Poisson (8). One fourth of these are items under warranty
for which no charge is made. Others fall in one of two categories. One half of the arriving jobs are charged for one hour of
shop time; the remaining one fourth are charged for two hours of shop time. Thus, the individual shop hour charges  have
the common distribution

 [0 1 2] with probabilities  [1/4 1/2 1/4]

Make the basic assumptions of our model. Determine .

Solution

According to the formula developed above,

Expand the exponentials in power series about the origin, multiply out to get enough terms. The result of straightforward but
somewhat tedious calculations is

Taking the coefficients of the generating function, we get

Suppose the counting random variable  ~ binomial  and , with . Then

 and 

By the basic result on random selection, we have

so that  ~ binomial .

In the next section we establish useful m-procedures for determining the generating function g  and the moment generating
function  for the compound demand for simple random variables, hence for determining the complete distribution. Obviously,
these will not work for all problems. It may helpful, if not entirely sufficient, in such cases to be able to determine the mean value 

 and variance . To this end, we establish the following expressions for the mean and variance.

E[ |N = n] = E[ ] = E[ ] = (s)esD esXn ∏n
k=1 esYk M n

Y

(s) = (s)P (N = n) = [ (s)]MD ∑
∞
n=0 M n

Y gN MY

gD

MD gD

(s) = E[ ] = E[ ] = P (N = n)E[ ]MD esD ∑
∞
k=0 I{N=n}esXn ∑

∞
k=0 esXn

= P (N = n) (s) = [ (s)]∑
∞
k=0 M n

Y gN MY

Example  A service shop15.1.1

N

Yk

Y = P Y =

P (D ≤ 4)

(s) = (s) = (1 +2s + )gN e8(s−1)gY

1

4
s2

(s) = [ (s)] = exp((8/4)(1 +2s + ) −8) =gD gN gY s2 e4se2s2
e−6

(s) = (1 +4s +10 + + +⋅ ⋅ ⋅)gD e−6 s2 56

3
s3 86

3
s4

P (D ≤ 4) ≈ (1 +4 +10 + + ) = ≈ 0.1545e−6 56

3

86

3
e−6 187

3

Example  A result on Bernoulli trials15.1.2

N (n, p) =Yi IEi P ( ) =Ei p0

= (q +psgN )n (s) = + sgY q0 p0

(s) = [ (s)] = [q +p( + s) = [(1 −p ) +p sgD gN gY q0 p0 ]n p0 p0 ]n

D (n, p )p0

D
MD

E[D] Var[D]
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 and 

DERIVATION

Hence

. By symmetry . . Hence,

, 

Calculations for the compound demand 
We have m-procedures for performing the calculations necessary to determine the distribution for a composite demand  when the
counting random variable  and the individual demands  are simple random variables with not too many values. In some cases,
such as for a Poisson counting random variable, we are able to approximate by a simple random variable.

The procedure gend

If the  are nonnegative, integer valued, then so is , and there is a generating function. We examine a strategy for computation
which is implemented in the m-procedure gend. Suppose

The coefficients of  and  are the probabilities of the values of  and , respectively. We enter these and calculate the
coefficients for powers of :

We wish to generate a matrix  whose rows contain the joint probabilities. The probabilities in the th row consist of the
coefficients for the appropriate power of  multiplied by the probability  has that value. To achieve this, we need a matrix, each
of whose  rows has  elements, the length of . We begin by “preallocating” zeros to the rows. That is, we set 

. We then replace the appropriate elements of the successive rows. The replacement probabilities for
the th row are obtained by the convolution of  and the power of  for the previous row. When the matrix  is completed, we
remove zero rows and columns, corresponding to missing values of  and  (i.e., values with zero probability). To orient the joint
probabilities as on the plane, we rotate  ninety degrees counterclockwise. With the joint distribution, we may then calculate any
desired quantities.

Example  Mean and variance of the compound demand15.1.3

E[D] = E[N ]E[Y ] Var[D] = E[N ]Var[Y ] +Var[N ] [Y ]E2

E[D] = E[ ] = P (N = n)E[ ]∑∞
n=0 I{N=n}Xn ∑∞

n=0 Xn

= E[Y ] nP (N = n) = E[Y ]E[N ]∑∞
n=0

E[ ] = P (N = n)E[ ] = P (N = n){Var[ ] + [ ]}D2 ∑
∞
n=0 X2

n ∑
∞
n=0 Xn E2 Xn

= P (N = n){nVar[Y ] = [Y ]} = E[N ]Var[Y ] +E[ ] [Y ]∑∞
n=0 n2E2 N 2 E2

Var[D] = E[N ]Var[Y ] +E[ ] [Y ] −E[N [Y ] = E[N ]Var[Y ] +Var[N ] [Y ]N 2 E2 ]2E2 E2

Example  Mean and variance for Example 15.1.115.1.4

E[N ] = Var[N ] = 9 E[Y ] = 1 Var[Y ] = 0.25(0 +2 +4) −1 = 0.5

E[D] = 8 ⋅ 1 = 8 Var[D] = 8 ⋅ 0.5 +8 ⋅ 1 = 12

D

N Yk

Yi D

(s) = + s + +⋅ ⋅ ⋅gN p0 p1 p2s2 pnsn

(s) = + s + +⋅ ⋅ ⋅gY π0 π1 π2s2 πmsm

gN gY N Y

gY

gN = [     ⋅ ⋅ ⋅   ]p0 p1 pn

y = [     ⋅ ⋅ ⋅   ]π0 π1 πn

      ⋅ ⋅⋅

y2 = conv(y, y)

y3 = conv(y, y2)

      ⋅ ⋅⋅

yn = conv(y, y(n −1))

1 ×(n +1)

1 ×(m +1)

1 ×(2m +1)

1 ×(3m +1)

1 ×(nm +1)

Coefficients of gN

Coefficients of gY

Coefficients of g2
Y

Coefficients of g3
Y

Coefficients of gn
Y

P i

gY N

n +1 nm +1 yn

P = zeros(n +1, n  m +1) ∗

i gY gY P

N D

P
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The number of customers in a major appliance store is equally likely to be 1, 2, or 3. Each customer buys 0, 1, or 2 items with
respective probabilities 0.5, 0.4, 0.1. Customers buy independently, regardless of the number of customers. First we determine
the matrices representing  and . The coefficients are the probabilities that each integer value is observed. Note that the
zero coefficients for any missing powers must be included.

gN = (1/3)*[0 1 1 1];    % Note zero coefficient for missing zero power 

gY = 0.1*[5 4 1];        % All powers 0 thru 2 have positive coefficients 

gend 

 Do not forget zero coefficients for missing powers 

Enter the gen fn COEFFICIENTS for gN gN    % Coefficient matrix named gN 

Enter the gen fn COEFFICIENTS for gY gY    % Coefficient matrix named gY 

Results are in N, PN, Y, PY, D, PD, P 

May use jcalc or jcalcf on N, D, P 

To view distribution for D, call for gD 

disp(gD)                  % Optional display of complete distribution 

         0    0.2917 

    1.0000    0.3667 

    2.0000    0.2250 

    3.0000    0.0880 

    4.0000    0.0243 

    5.0000    0.0040 

    6.0000    0.0003 

EN = N*PN' 

EN =   2

EY = Y*PY' 

EY =  0.6000 

ED = D*PD' 

ED =  1.2000                % Agrees with theoretical EN*EY 

P3 = (D>=3)*PD' 

P3  = 0.1167                 

[N,D,t,u,PN,PD,PL] = jcalcf(N,D,P); 

EDn = sum(u.*P)./sum(P); 

disp([N;EDn]') 

    1.0000    0.6000        % Agrees with theoretical E[D|N=n] = n*EY 

    2.0000    1.2000 

    3.0000    1.8000 

VD = (D.^2)*PD' - ED^2 

VD =  1.1200                % Agrees with theoretical EN*VY + VN*EY^2

 

Note that the zero power is missing from . corresponding to the fact that .

Example  A compound demand15.1.5

gN gY

Example  A numerical example15.1.6

(s) = (1 +s + + + )gN

1

5
s2 s3 s4 (s) = 0.1(5s +3 +2gY s2 s3

gY P (Y = 0) = 0
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gN = 0.2*[1 1 1 1 1]; 

gY = 0.1*[0 5 3 2];      % Note the zero coefficient in the zero position 

gend 

Do not forget zero coefficients for missing powers 

Enter the gen fn COEFFICIENTS for gN  gN 

Enter the gen fn COEFFICIENTS for gY  gY 

Results are in N, PN, Y, PY, D, PD, P 

May use jcalc or jcalcf on N, D, P 

To view distribution for D, call for gD 

disp(gD)                 % Optional display of complete distribution 

         0    0.2000 

    1.0000    0.1000 

    2.0000    0.1100 

    3.0000    0.1250 

    4.0000    0.1155 

    5.0000    0.1110 

    6.0000    0.0964 

    7.0000    0.0696 

    8.0000    0.0424 

    9.0000    0.0203 

   10.0000    0.0075 

   11.0000    0.0019 

   12.0000    0.0003 

p3 = (D == 3)*PD'        % P(D=3) 

P3 =  0.1250 

P4_12 = ((D >= 4)&(D <= 12))*PD' 

P4_12 = 0.4650           % P(4 <= D <= 12)

We are interested in the number of successes in  trials for a general counting random variable. This is a generalization of the
Bernoulli case in Example 15.1.2. Suppose, as in Example 15.1.2, the number of customers in a major appliance store is
equally likely to be 1, 2, or 3, and each buys at least one item with probability . Determine the distribution for the
number  of buying customers.

Solution

We use , , and gend.

gN = (1/3)*[0 1 1 1]; % Note zero coefficient for missing zero power 

gY = [0.4 0.6];       % Generating function for the indicator function 

gend 

Do not forget zero coefficients for missing powers 

Enter gen fn COEFFICIENTS for gN  gN 

Enter gen fn COEFFICIENTS for gY  gY 

Results are in N, PN, Y, PY, D, PD, P 

May use jcalc or jcalcf on N, D, P 

Example  Number of successes for random number  of trials.15.1.7 N

N

p = 0.6

D

gN gY
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To view distribution for D, call for gD 

disp(gD)

         0    0.2080 

    1.0000    0.4560 

    2.0000    0.2640 

    3.0000    0.0720

The procedure gend is limited to simple  and , with nonnegative integer values. Sometimes, a random variable with
unbounded range may be approximated by a simple random variable. The solution in the following example utilizes such an
approximation procedure for the counting random variable .

The number  of jobs brought to a service shop in a day is Poisson (8). The individual shop hour charges  have the
common distribution  [0 1 2] with probabilities  [1/4 1/2 1/4].

Under the basic assumptions of our model, determine .

Solution

Since Poisson  is unbounded, we need to check for a sufficient number of terms in a simple approximation. Then we proceed
as in the simple case.

pa = cpoisson(8,10:5:30)     % Check for sufficient number of terms 

pa =   0.2834    0.0173    0.0003    0.0000    0.0000 

p25 = cpoisson(8,25)         % Check on choice of n = 25 

p25 =  1.1722e-06 

gN = ipoisson(8,0:25);       % Approximate gN 

gY = 0.25*[1 2 1]; 

gend 

Do not forget zero coefficients for missing powers 

Enter gen fn COEFFICIENTS for gN  gN 

Enter gen fn COEFFICIENTS for gY  gY 

Results are in N, PN, Y, PY, D, PD, P 

May use jcalc or jcalcf on N, D, P 

To view distribution for D, call for gD 

disp(gD(D<=20,:))            % Calculated values to D = 50 

         0    0.0025         % Display for D <= 20 

    1.0000    0.0099 

    2.0000    0.0248 

    3.0000    0.0463 

    4.0000    0.0711 

    5.0000    0.0939 

    6.0000    0.1099 

    7.0000    0.1165 

    8.0000    0.1132 

    9.0000    0.1021 

   10.0000    0.0861 

   11.0000    0.0684 

   12.0000    0.0515 

N Yk

N

Example  Solution of the shop time Example 15.1.115.1.8

N Yk

Y = P Y =

P (D ≤ 4)

N

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10844?pdf


15.1.7 https://stats.libretexts.org/@go/page/10844

   13.0000    0.0369 

   14.0000    0.0253 

   15.0000    0.0166 

   16.0000    0.0105 

   17.0000    0.0064 

   18.0000    0.0037 

   19.0000    0.0021 

   20.0000    0.0012 

sum(PD)                       % Check on sufficiency of approximation 

ans =  1.0000 

P4 = (D<=4)*PD' 

P4 =   0.1545                 % Theoretical value (4  places) = 0.1545 

ED = D*PD' 

ED =   8.0000                 % Theoretical = 8  (Example 15.1.4) 

VD = (D.^2)*PD' - ED^2 

VD =  11.9999                 % Theoretical = 12 (Example 15.1.4)

The m-procedures mgd and jmgd

The next example shows a fundamental limitation of the gend procedure. The values for the individual demands are not limited to
integers, and there are considerable gaps between the values. In this case, we need to implement the moment generating function 

 rather than the generating function .

In the generating function case, it is as easy to develop the joint distribution for  as to develop the marginal distribution for 
. For the moment generating function, the joint distribution requires considerably more computation. As a consequence, we find

it convenient to have two m-procedures: mgd for the marginal distribution and jmgd for the joint distribution.

Instead of the convolution procedure used in gend to determine the distribution for the sums of the individual demands, the m-
procedure mgd utilizes the m-function mgsum to obtain these distributions. The distributions for the various sums are concatenated
into two row vectors, to which csort is applied to obtain the distribution for the compound demand. The procedure requires as input
the generating function for  and the actual distribution,  and , for the individual demands. For , it is necessary to treat
the coefficients as in gend. However, the actual values and probabilities in the distribution for Y are put into a pair of row matrices.
If  is integer valued, there are no zeros in the probability matrix for missing values.

A service shop has three standard charges for a certain class of warranty services it performs: $10, $12.50, and $15. The
number of jobs received in a normal work day can be considered a random variable  which takes on values 0, 1, 2, 3, 4 with
equal probabilities 0.2. The job types for arrivals may be represented by an iid class , independent of the
arrival process. The  take on values 10, 12.5, 15 with respective probabilities 0.5, 0.3, 0.2. Let  be the total amount of
services rendered in a day. Determine the distribution for .

Solution

gN = 0.2*[1 1 1 1 1];         % Enter data 

Y = [10 12.5 15]; 

PY = 0.1*[5 3 2]; 

mgd                           % Call for procedure 

Enter gen fn COEFFICIENTS for gN  gN 

Enter VALUES for Y  Y 

Enter PROBABILITIES for Y  PY 

Values are in row matrix D; probabilities are in PD. 

MD gD

{N , D}

D

N Y P Y gN

Y

Example  Noninteger values15.1.9

N

{ : 1 ≤ i ≤ 4}Yi

Yi C

C
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To view the distribution, call for mD. 

disp(mD)                      % Optional display of distribution 

         0    0.2000 

   10.0000    0.1000 

   12.5000    0.0600 

   15.0000    0.0400 

   20.0000    0.0500 

   22.5000    0.0600 

   25.0000    0.0580 

   27.5000    0.0240 

   30.0000    0.0330 

   32.5000    0.0450 

   35.0000    0.0570 

   37.5000    0.0414 

   40.0000    0.0353 

   42.5000    0.0372 

   45.0000    0.0486 

   47.5000    0.0468 

   50.0000    0.0352 

   52.5000    0.0187 

   55.0000    0.0075 

   57.5000    0.0019 

   60.0000    0.0003

We next recalculate Example 15.1.6, above, using mgd rather than gend.

In Example 15.1.6, we have

 

The means that the distribution for  is  [1 2 3] and  0.1 * [5 3 2].

We use the same expression for  as in Example 15.1.6.

gN = 0.2*ones(1,5); 

Y = 1:3;

PY = 0.1*[5 3 2]; 

mgd 

Enter gen fn COEFFICIENTS for gN  gN 

Enter VALUES for Y  Y 

Enter PROBABILITIES for Y  PY 

Values are in row matrix D; probabilities are in PD. 

To view the distribution, call for mD. 

disp(mD)

         0    0.2000 

    1.0000    0.1000 

    2.0000    0.1100 

Example  Recalculation of Example 15.1.615.1.10

(s) = (1 +s + + + )gN

1

5
s2 s3 s4 (s) = 0.1(5s +3 +2 )gY s2 s3

Y Y = P Y =

gN
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    3.0000    0.1250 

    4.0000    0.1155 

    5.0000    0.1110 

    6.0000    0.0964 

    7.0000    0.0696 

    8.0000    0.0424 

    9.0000    0.0203 

   10.0000    0.0075 

   11.0000    0.0019 

   12.0000    0.0003 

P3 = (D==3)*PD' 

P3 =   0.1250 

ED = D*PD' 

ED =   3.4000 

P_4_12 = ((D>=4)&(D<=12))*PD' 

P_4_12 =  0.4650 

P7 = (D>=7)*PD' 

P7 =   0.1421 

As expected, the results are the same as those obtained with gend.

If it is desired to obtain the joint distribution for , we use a modification of mgd called jmgd. The complications come in
placing the probabilities in the  matrix in the desired positions. This requires some calculations to determine the appropriate size
of the matrices used as well as a procedure to put each probability in the position corresponding to its  value. Actual operation is
quite similar to the operation of mgd, and requires the same data format.

A principle use of the joint distribution is to demonstrate features of the model, such as , etc. This, of
course, is utilized in obtaining the expressions for  in terms of  and . This result guides the development of the
computational procedures, but these do not depend upon this result. However, it is usually helpful to demonstrate the validity of the
assumptions in typical examples.

Remark. In general, if the use of gend is appropriate, it is faster and more efficient than mgd (or jmgd). And it will handle
somewhat larger problems. But both m-procedures work quite well for problems of moderate size, and are convenient tools for
solving various “compound demand” type problems.

This page titled 15.1: Random Selection is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

{N , D}

P

D

E[D|N = n] = nE[Y ]

(s)MD (s)gN (s)MY
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15.2: Some Random Selection Problems
In the unit on Random Selection, we develop some general theoretical results and computational procedures using MATLAB. In
this unit, we extend the treatment to a variety of problems. We establish some useful theoretical results and in some cases use
MATLAB procedures, including those in the unit on random selection.

The Poisson Decomposition 
In many problems, the individual demands may be categorized in one of m types. If the random variable  is the type of the th
arrival and the class  is iid, we have multinomial trials. For  we have the Bernoulli or binomial case, in which
one type is called a success and the other a failure.

Multinomial trials

We analyze such a sequence of trials as follows. Suppose there are m types, which we number 1 through . Let  be the event
that type  occurs on the th component trial. For each , the class  is a partition, since on each component trial
exactly one of the types will occur. The type on the th trial may be represented by the type random variable

we assume

 is iid, with  invariant with 

In a sequence of  trials, we let  be the number of occurrences of type . Then

 with 

Now each  ~ binomial ( ). The class  cannot be independent, since it sums to . If the values of 
 of them are known, the value of the other is determined. If . the event

is one of the

ways of arranging  of the ,  of the , ,  of the . Each such arrangement has probability , so that

This set of joint probabilities constitutes the multinomial distribution. For , and type 1 a success, this is the binomial
distribution with parameter .

A random number of multinomial trials

We consider, in particular, the case of a random number  of multinomial trials, where  ~ Poisson . Let  be the number of
results of type  in a random number  of multinomial trials.

 with 

Poisson decomposition

Suppose

 ~ Poisson ( ) 
 is iid with ,  

 is independent

Then

Each  ~ Poisson ( ) 
 is independent.

— □

Ti i

{ : 1 ≤ i}Ti m = 2

m Eki

k i i { : 1 ≤ k ≤ m}Eki

i

= kTi ∑m
k=1 IEki

{ : 1 ≤ i}Tk P ( = k) = P ( ) =Ti Eki pk i

n Nkn k

=Nkn ∑n
i=1 IEki = n∑m

k=1 Nkn

Nkn n, pk { : 1 ≤ k ≤ m}Nkn n

m−1 + +⋅ ⋅ ⋅ = nn1 n2 nm

{ = , = , ⋅ ⋅ ⋅, = }N1n n1 N2n n2 Nmn nm

C(n; , , ⋅ ⋅ ⋅, ) = n!/(n1!n2! ⋅ ⋅ ⋅ !)n1 n2 nm nm

n1 E1i n2 E2i ⋅ ⋅ ⋅ nm Emi ⋅ ⋅ ⋅pn1

1 pn2

2 pnm
m

P ( = , = , ⋅ ⋅ ⋅ = ) = n!N1n n1 N2n n2 Nmn nm ∏m
k=1
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k

!nk

m = 2

(n, )p1

N N (μ) Nk

k N
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i=1 IEki

∑∞
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N μ

{ : 1 ≤ i}Ti P ( = k) =Ti pk 1 ≤ k ≤ m

{N , : 1 ≤ i}Ti
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The usefulness of this remarkable result is enhanced by the fact that the sum of independent Poisson random variables is also
Poisson, with  for the sum the sum of the  for the variables added. This is readily established with the aid of the generating
function. Before verifying the propositions above, we consider some examples.

The number  of orders per day received by a mail order house is Poisson (300). Orders are shipped by next day express, by
second day priority, or by regular parcel mail. Suppose 4/10 of the customers want next day express, 5/10 want second day
priority, and 1/10 require regular mail. Make the usual assumptions on compound demand. What is the probability that fewer
than 150 want next day express? What is the probability that fewer than 300 want one or the other of the two faster deliveries?

Solution

Model as a random number of multinomial trials, with three outcome types: Type 1 is next day express, Type 2 is second day
priority, and Type 3 is regular mail, with respective probabilities , , and . The  ~ Poisson 

,  ~ Poisson , and  ~ Poisson . Also  ~ Poisson (120 + 150
= 270).

P1 = 1 - cpoisson(120,150) 

P1  =  0.9954 

P12 = 1 - cpoisson(270,300) 

P12 =  0.9620

A junction point in a network has two incoming lines and two outgoing lines. The number of incoming messages  on line
one in one hour is Poisson (50); on line 2 the number is  ~ Poisson (45). On incoming line 1 the messages have probability 

 of leaving on outgoing line a and  of leaving on line b. The messages coming in on line 2 have probability 
 of leaving on line a. Under the usual independence assumptions, what is the distribution of outgoing messages on

line a? What are the probabilities of at least 30, 35, 40 outgoing messages on line a?

Solution

By the Poisson decomposition,  ~ Poisson .

ma = 50*0.33 + 45*0.47 

ma =  37.6500 

Pa = cpoisson(ma,30:5:40) 

Pa =   0.9119    0.6890    0.3722

VERIFICATION of the Poisson decomposition

. 
This is composite demand with , so that . Therefore,

which is the generating function for  ~ Poisson . 
For any , , , , let , and consider

Since  is independent of the class of , the class

is independent. By the product rule and the multinomial distribution

μ μi

Example  A shipping problem15.2.1

N

= 0.4p1 = 0.5p2 = 0.1p3 N1

(0.4 ⋅ 300 = 120) N2 (0.5 ⋅ 300 = 150) N3 (0.1 ⋅ 300 = 30) +N1 N2

Example  Message routing15.2.2

N1

N2

= 0.33P1a 1 −p1a

= 0.47P2a

Na (50 ⋅ 0.33 +45 ⋅ 0.47 = 37.65)

=Nk ∑N
i=1 IEki

=Yk IEki (s) = +s = 1 + (s−1)gYk qk pk pk

(s) = [ (s)] = =gNk
gN gYk e e

Nk (μ )pk
n1 n2 ⋅ ⋅ ⋅ nm n = + +⋅ ⋅ ⋅ +n1 n2 nm

A = { = , = , ⋅ ⋅ ⋅, = } = {N = n} ∩ { = , = , ⋅ ⋅ ⋅, = }N1 n1 N2 n2 Nm nm N1n N1 N2n n2 Nmn nm

N IEki

{{N = n}, { = , = , ⋅ ⋅ ⋅, = }}N1n n1 N2n n2 Nmn nm
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The second product uses the fact that

Thus, the product rule holds for the class

Extreme values 
Consider an iid class  of nonnegative random variables. For any positive integer  we let

 and 

Then

 and 

Now consider a random number  of the . The minimum and maximum random variables are

 and 

— □

Computational formulas

If we set , then

 

These results are easily established as follows. . By additivity and independence of 
 for each 

, since 

If we add into the last sum the term  then subtract it, we have

A similar argument holds for proposition (b). In this case, we do not have the extra term for , since .

Special case. In some cases,  does not correspond to an admissible outcome (see Example 14.2.4, below, on lowest bidder
and Example 14.2.6). In that case

Add  to each of the sums to get

— □

The number  of jobs coming into a service center in a week is a random quantity having a Poisson (20) distribution. Suppose
the service times (in hours) for individual units are iid, with common distribution exponential (1/3). What is the probability the
maximum service time for the units is no greater than 6, 9, 12, 15, 18 hours?

Solution

t = 6:3:18; 

PW = exp(-20*exp(-t/3)); 

disp([t;PW]') 

P (A) = ⋅n! = = P ( = )e−μ μ
n

n!
∏m

k=1

pnk

k

( )!nk

∏m

k=1 e
−μpk

pnk

k

!nk

∏m

k=1 Nk nk

= =eμ eμ( + +⋅⋅⋅+ )p1 p2 pm ∏m
k=1 e

μpk

{ : 1 ≤ i}Yi n

= min { , , ⋅ ⋅ ⋅, }Vn Y1 Y2 Yn = max { , , ⋅ ⋅ ⋅, }Wn Y1 Y2 Yn

P ( > t) = (Y > t)Vn P n P ( ≤ t) = (Y ≤ t)Wn P n

N Yi

=VN ∑∞
n=0 I{N=n}Vn =WN ∑∞

n=0 I{N=n}Wn

= = 0V0 W0

(t) = P (V ≤ t) = 1 +P (N = 0) − [P (Y > t)]FV gN
(t) = [P (Y ≤ t)]FW gN

{ > t} = {N = n} { > t}VN ⋁∞
n=0 Vn

{N , }Vn n

P ( > t) = P (N = n)P ( > t) = P (N = n) (Y > t)VN ∑∞
n=0 Vn ∑∞

n=1 P n P ( > t) = 0V0

P (N = 0) (Y > t) = P (N = 0)P 0

P ( > t) = P (N = n) (Y > t) −P (N = 0) = [P (Y > t)] −P (N = 0)VN ∑∞
n=0 P n gN

{N = 0} P ( ≤ t) = 1W0

N = 0

(t) = P ( ≤ t)P (N = n) = [1 − (Y > t)]P (N = n) = P (N = n) −FV ∑∞
n=1 Vn ∑∞

n=1 P n ∑∞
n=1

(Y > t)P (N = n)∑∞
n=1 P

n

P (N = 0) =  (Y > t)P (N = 0)p0

(t) = 1 − (Y > t)P (N = n) = 1 − [P (Y > t)]FV ∑∞
n=0 P

n gN

Example  Maximum service time15.2.3

N

P ( ≤ t) = [P (Y ≤ t)] = = exp(−20 )WN gN e20[ (t)−1]FY e−t/3
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    6.0000    0.0668 

    9.0000    0.3694 

   12.0000    0.6933 

   15.0000    0.8739 

   18.0000    0.9516

A manufacturer seeks bids on a modification of one of his processing units. Twenty contractors are invited to bid. They bid
with probability 0.3, so that the number of bids  ~ binomial (20,0.3). Assume the bids Y  (in thousands of dollars) form an iid
class. The market is such that the bids have a common distribution symmetric triangular on (150,250). What is the probability
of at least one bid no greater than 170, 180, 190, 200, 210? Note that no bid is not a low bid of zero, hence we must use the
special case.

Solution

 where 

Solving graphically for , we get

 [23/25 41/50 17/25 1/2 8/25] for  [170 180 190 200 210]

Now . We use MATLAB to obtain

t = [170 180 190 200 210]; 

p = [23/25 41/50 17/25 1/2 8/25]; 

PV = 1 - (0.7 + 0.3*p).^20;  

disp([t;p;PV]') 

170.0000    0.9200    0.3848 

180.0000    0.8200    0.6705 

190.0000    0.6800    0.8671 

200.0000    0.5000    0.9612 

210.0000    0.3200    0.9896

Suppose the number of bids is 1, 2 or 3 with probabilities 0.3, 0.5, 0.2, respectively.

Determine  in each case.

Solution

The minimum of the selected 's is no greater than  if and only if there is at least one  less than or equal to . We determine
in each case probabilities for the number of bids satisfying . For each , we are interested in the probability of one or
more occurrences of the event . This is essentially the problem in Example 7 from "Random Selection", with probability 

.

t = [170 180 190 200 210]; 

p = [23/25 41/50 17/25 1/2 8/25]; % Probabilities Y <= t are 1 - p 

gN = [0 0.3 0.5 0.2];             % Zero for missing value 

PV = zeros(1,length(t)); 

for i=1:length(t) 

gY = [p(i),1 - p(i)]; 

[d,pd] = gendf(gN,gY); 

Example  Lowest Bidder15.2.4

N i

P (V ≤ t) = 1 − [P (Y > t)] = 1 −(0.7 +0.3pgN )20 p = P (Y > t)

p = P (V > t)

p = t =

(s) = (0.7 +0.3sgN )20

Example  Example 15.2.4 with a general counting variable15.2.5

P (V ≤ t)

Y t Y t

Y ≤ t t

Y ≤ t

p = P (Y ≤ t)
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PV(i) = (d>0)*pd';                 % Selects positions for d > 0 and 

end                                % adds corresponding probabilities 

disp([t;PV]') 

  170.0000    0.1451 

  180.0000    0.3075 

  190.0000    0.5019 

  200.0000    0.7000 

  210.0000    0.8462 

Example 15.2.4 may be worked in this manner by using gN = ibinom(20,0.3,0:20) . The results, of course, are the
same as in the previous solution. The fact that the probabilities in this example are lower for each t than in Example 15.2.4
reflects the fact that there are probably fewer bids in each case.

Electrical units from a production line are first inspected for operability. However, experience indicates that a fraction  of
those passing the initial operability test are defective. All operable units are subsequenly tested in a batch under continuous
operation ( a “burn in” test). Statistical data indicate the defective units have times to failure  iid, exponential ( , whereas
good units have very long life (infinite from the point of view of the test). A batch of  units is tested. Let  be the time of the
first failure and  be the number of defective units in the batch. If the test goes  units of time with no failure (i.e., ),
what is the probability of no defective units?

Solution

Since no defective units implies no failures in any reasonable test time, we have

 so that 

Since  does not yield a minimum value, we have . Now under the condition above, the
number of defective units  ~ binomial ( ), so that . If  is large and  is reasonably small,  is
approximately Poisson  with  and . Now ; for large 

For , , , and , MATLAB calculations give

t = 1:5;

n = 5000; 

p = 0.001; 

lambda = 2; 

P = exp(-n*p*exp(-lambda*t)); 

disp([t;P]') 

    1.0000    0.5083 

    2.0000    0.9125 

    3.0000    0.9877 

    4.0000    0.9983 

    5.0000    0.9998 

It appears that a test of three to five hours should give reliable results. In actually designing the test, one should probably make
calculations with a number of different assumptions on the fraction of defective units and the life duration of defective units.
These calculations are relatively easy to make with MATLAB.

Example  Batch testing15.2.6

p

Yi λ

n V

N t V > t

{N = 0} ⊂ {V > t} P (N = 0|V > t) =
P (N = 0)

P (V > t)

N = 0 P (V > t) = [P (Y > t)]gN
N n, p (s) = (q+psgN )n N p N

(np) (s) =gN enp(s−1) P (N = 0) = e−np P (Y > t) = e−λt n

P (N = 0|V > t) = = =
e−np

enp[P(Y>t)−1]
e−npP(Y>t) e−npe−lambdat

n = 5000 p = 0.001 λ = 2 t = 1, 2, 3, 4, 5

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10845?pdf


15.2.6 https://stats.libretexts.org/@go/page/10845

Bernoulli trials with random execution times or costs 

Consider a Bernoulli sequence with probability  of success on any component trial. Let  be the number of the trial on which the
first success occurs. Let  be the time (or cost) to execute the th trial. Then the total time (or cost) from the beginning to the
completion of the first success is

 (composite "demand" with  ~ geometric )

We suppose the  form an iid class, independent of . Now  ~ geometric ( ) implies , so that

There are two useful special cases:

 ~ exponential , so that .

which implies  ~ exponential ( ).

 ~ geometric , so that 

so that  ~ geometric .

Suppose a prospective employer is interviewing candidates for a job from a pool in which twenty percent are qualified.
Interview times (in hours)  are presumed to form an iid class, each exponential (3). Thus, the average interview time is 1/3
hour (twenty minutes). We take the probability for success on any interview to be . What is the probability a
satisfactory candidate will be found in four hours or less? What is the probability the maximum interview time will be no
greater than 0.5, 0.75, 1, 1.25, 1.5 hours?

Solution

 ~ exponential ( ), so that .

MATLAB computations give

t = 0.5:0.25:1.5; 

PWt = (1 - exp(-3*t))./(1 + 4*exp(-3*t)); 

disp([t;PWt]') 

    0.5000    0.4105 

    0.7500    0.6293 

    1.0000    0.7924 

    1.2500    0.8925 

    1.5000    0.9468 

The average interview time is 1/3 hour; with probability 0.63 the maximum is 3/4 hour or less; with probability 0.79 the
maximum is one hour or less; etc.

In the general case, solving for the distribution of  requires transform theory, and may be handled best by a program such as
Maple or Mathematica.

p N

Yi i

T =∑N
i=1 Yi N −1 p

Yi N N −1 p (s) = ps/(1 −qs)gN

(s) = [ (s)] =MT gN MY

p (s)MY

1 −q (s)MY

Yi (λ) (s) =MY

(s) = =MT

T pλ

−1Yi ( )p0 (s) =gY
λ

λ−s

(s) = =gT
pλ/(λ−s)

1 −qλ/(λ−s)

pλ

pλ−s

T −1 (p )p0

Example  Job interviews15.2.7

Yi
p = 0.2

T 0.2 ⋅ 3 = 0.6 P (T ≤ 4) = 1 − = 0.9093e−0.6⋅4

P (W ≤ t) = [P (Y ≤ t)] = =gN
0.2(1 − )e−3t

1 −0.8(1 − )e−3t

1 −e−3t

1 +4e−3t

T
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For the case of simple  we may use approximation procedures based on properties of the geometric series. Since  ~
geometric .

Note that  has the form of the generating function for a simple approximation  which matches values and probabilities
with  up to . Now

The evaluation involves convolution of coefficients which effectively sets . Since .

 for  reduces to 

which is negligible if  is large enough. Suitable  may be determined in each case. With such an , if the  are nonnegative,
integer-valued, we may use the gend procedure on , where

For the integer-valued case, as in the general case of simple , we could use mgd. However, gend is usually faster and more
efficient for the integer-valued case. Unless  is small, the number of terms needed to approximate  is likely to be too great.

Let  and  be uniformly distributed on . Determine the distribution for

Solution

p = 0.3;

q = 1 - p; 

a = [30 35 40];          % Check for suitable n 

b = q.^a

b =  1.0e-04 *           % Use n = 40 

     0.2254    0.0379    0.0064 

n = 40; 

k = 1:n;

gY = 0.1*[0 ones(1,10)]; 

gN = p*[0 q.^(k-1)];     % Probabilities, 0 <= k <= 40 

gend 

Do not forget zero coefficients for missing powers 

Enter gen fn COEFFICIENTS for gN  gN 

Enter gen fn COEFFICIENTS for gY  gY 

Values are in row matrix D; probabilities are in PD. 

To view the distribution, call for gD. 

sum(PD)                % Check sum of probabilities 

ans =  1.0000 

FD = cumsum(PD);       % Distribution function for D 

plot(0:100,FD(1:101))  % See Figure 15.2.1 

P50 = (D<=50)*PD' 

P50 =  0.9497 

P30 = (D<=30)*PD' 

P30 =  0.8263

Yi N −1

(p)

9s) = = ps (qs = ps[ (qs + (qs ] = ps[ (qs +(qs (qs ]gN
ps

1 −qs
∑∞

k=0 )k ∑n
k=0 )k ∑∞

k=m+1 )k ∑n
k=0 )k )n+1 ∑∞

k=0 )k

= ps[ (qs ] +(qs 9s) = (s) +(qs (s)∑n
k=0 )k )n+1gN gn )n+1gN

(s)gn Nn

N k = n

(s) = [ (s)] +(qs [ (s)]gT gn gY )n+1gN gY

s = 1 (1) = (1) = 1gN gY

(qs [ (s)])n+1gN gY s = 1 = P (N > n)qn+1

n n n Yi
[ (s)]gn gY

(s) = ps+pq +p +⋅ ⋅ ⋅ +pgn s2 q2s3 qnsn+1

Yi
q gn

Example  Approximating the generating function15.2.8

p = 0.3 Y {1, 2, ⋅ ⋅ ⋅, 10}

T =∑N
k=1 Yk
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Figure one is a graph labeled, execution time distribution function. The horizontal axis is labeled, Time, and the vertical axis is labeled, probability. The values on the horizontal axis range from 0 to 100 in increments
of 10. The values on the vertical axis range from 0 to 1 in increments of 0.1. There is one plotted distribution function on this graph. It begins in the bottom-left corner, at the point (0, 0), and moves right at a strong
positive slope. As the plot moves from left to right, the slope decreases as the function increases. About midway across the graph horizontally, the plot is nearly at the top, at a probability value above 0.9. The plot

continues to increase at a decreasing rate until it tapers off to a horizontal line by the point (80, 1), at which it continues and terminates at the top-right corner.  
Figure 15.2.1. Execution Time Distribution Function .

The same results may be achieved with mgd, although at the cost of more computing time. In that case, use  as in Example
15.2.8, but use the actual distribution for .

Arrival times and counting processes 
Suppose we have phenomena which take place at discrete instants of time, separated by random waiting or interarrival times. These
may be arrivals of customers in a store, of noise pulses on a communications line, vehicles passing a position on a road, the failures
of a system, etc. We refer to these occurrences as arrivals and designate the times of occurrence as arrival times. A stream of
arrivals may be described in three equivalent ways.

Arrival times: , with  a.s. (basic sequence)
Interarrival times: , with each  a.s. (incremental sequence)

The strict inequalities imply that with probability one there are no simultaneous arrivals. The relations between the two sequences
are simply

,  and  for all 

The formulation indicates the essential equivalence of the problem with that of the compound demand. The notation and
terminology are changed to correspond to that customarily used in the treatment of arrival and counting processes.

The stream of arrivals may be described in a third way.

Counting processes:  is the number of arrivals in time period . It should be clear that this is a random quantity
for each nonnegative . For a given  the value is . Such a family of random variables constitutes a random process.
In this case the random process is a counting process.

We thus have three equivalent descriptions for the stream of arrivals.

  

Several properties of the counting process  should be noted: 
 counts the arrivals in the interval , , so that  for . 

 and for  we have

For any given ,  is a nondecreasing, right-continuous, integer-valued function defined on , with .

The essential relationships between the three ways of describing the stream of arrivals is displayed in

, , 

This imples

Although there are many possibilities for the interarrival time distributions, we assume

 is iid, with  a.s.

Under such assumptions, the counting process is often referred to as a renewal process and the interrarival times are called renewal
times. In the literature on renewal processes, it is common for the random variable to count an arrival at . This requires an
adjustment of the expressions relating  and the . We use the convention above.

Exponential iid interarrival times

The case of exponential interarrival times is natural in many applications and leads to important mathematical results. We utilize
the following propositions about the arrival times , the interarrival times , and the counting process .

FD

gN

Y

{ : 0 ≤ n}Sn 0 = < < ⋅ ⋅ ⋅S0 S1

{ : 1 ≤ i}Wi > 0Wi

= 0S0 =Sn ∑n
i=1 Wi = −Wn Sn Sn−1 n ≥ 1

= N(t)Nt (0, t]

t t,ω N(t,ω)

{ : 0 ≤ n}Sn { : 1 ≤ n}Wn { : 0 ≤ t}Nt

N

N(t+h) −N(t) (t, t+h] h > 0 N(t+h) ≥ N(t) h > 0

= 0N0 t > 0

= ( ) = max {n : ≤ t} = min {n : > t}Nt ∑∞
i=1 I(0,t] Si Sn Sn+1

ω N(⋅,ω) [0, ∞) N(0,ω) = 0

= −Wn Sn Sn−1 { ≥ n} = { ≤ t}Nt Sn { = n} = { ≤ t < }Nt Sn Sn+1

P ( = n) = P ( ≤ t) −P ( ≤ t) = P ( > t) −P ( > t)Nt Sn Sn+1 Sn+1 Sn

{ : 1 ≤ i}Wi > 0Wi

t = 0

Nt Si

Sn Wi N
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If  is iid exponential ( ), then  ~ gamma  for all . This is worked out in the unit on
TRANSFORM METHODS, in the discussion of the connection between the gamma distribution and the exponential
distribution. 

 ~ gamma  for all , and , iff  ~ Poisson  for all . This follows the result in the unit
DISTRIBUTION APPROXI9MATIONS on the relationship between the Poisson and gamma distributions, along with the
fact that .

Remark. The counting process is a Poisson process in the sense that  ~ Poisson ( ) for all . More advanced treatments
show that the process has independent, stationary increments. That is

 for all , and 
For , the class  is
independent.

In words, the number of arrivals in any time interval depends upon the length of the interval and not its location in time, and the
numbers of arrivals in nonoverlapping time intervals are independent.

Emergency calls arrive at a police switchboard with interarrival times (in hours) exponential (15). Thus, the average
interarrival time is 1/15 hour (four minutes). What is the probability the number of calls in an eight hour shift is no more than
100, 120, 140?

p = 1 - cpoisson(8*15,[101 121 141]) 

p  =  0.0347    0.5243    0.9669

We develop next a simple computational result for arrival processes for which  ~ gamma 

Suppose the arrival times  ~ gamma ( ) and  is such that

 and 

Then

VERIFICATION

We use the countable sums property (E8b) for expectation and the corresponding property for integrals to assert

 where 

We may apply (E8b) to assert

Since

the proposition is established.

A critical unit in a production system has life duration exponential . Upon failure the unit is replaced immediately by a
similar unit. Units fail independently. Cost of replacement of a unit is c dollars. If money is discounted at a rate , then a dollar

{ : 1 ≤ i}Wi λ Sn (n,λ) n ≥ 1

Sn (n,λ) n ≥ 1 = 0S0 Nt (λt) t > 0

{ ≥ n} = { ≤ t}Nt Sn

Nt λt t > 0

N(t+h) −N(t) = N(h) t,h > 0

< ≤ < ≤ ⋅ ⋅ ⋅ ≤ <t1 t2 t3 t4 tm−1 tm {N( ) −N( ),N( ) −N( ), ⋅ ⋅ ⋅,N( ) −N( )}t2 N1 t4 t3 tm tm−1

Example  Emergency calls15.2.9

Sn (n,λ)

Example  Gamma arrival times15.2.10

Sn n,λ g

|g| < ∞∫
∞

0 E[ |g( )|] < ∞∑∞
n=1 Sn

E[ g( )] = λ g∑∞
n=1 Sn ∫ ∞

0

E[ g( )] = E[g( )] = g(t) (t) dt∑∞
n=1 Sn ∑∞

n=1 Sn ∑∞
n=1 ∫

∞

0
fn (t) =fn

λ (λte−λt )n−1

(n−1)!

g = g∑∞
n=1 ∫

∞
0 fn ∫ ∞

0 ∑∞
n=1 fn

(t) = λ = λ = λ∑∞
n=1 fn e−λt ∑∞

n=1

(λt)n−1

(n−1)!
e−λteλt

Example  Discounted replacement costs15.2.11

(λ)

α
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spent tunits of time in the future has a current value . If  is the time of replacement of the th unit, then  ~ gamma 
 and the present value of all future replacements is

The expected replacement cost is

 where 

Hence

Suppose unit replacement cost , average time (in years) to failure , and the discount rate per year 
 (eight percent). Then

Suppose the cost of the th replacement in Example 15.2.11 is a random quantity , with  independent and 
, invariant with . Then

The analysis to this point assumes the process will continue endlessly into the future. Often, it is desirable to plan for a specific,
finite period. The result of Example 15.2.10 may be modified easily to account for a finite period, often referred to as a finite
horizon.

Under the conditions assumed in Example 15.2.10, above, let  be the counting random variable for arrivals in the interval 
.

If , then 

VERIFICATION

Since  iff . . In the result of Example 15.2.10, replace  by  and
note that

Under the condition of Example 15.2.11, consider the replacement costs over a two-year period.

Solution

Thus, the expected cost for the infinite horizon  is reduced by the factor . For  and the number in Example
15.2.11, the reduction factor is  to give .

In the important special case that , the exporession for  may be put into a form which does not
require the interarrival times to be exponential.

eαt Sn n Sn

(n,λ)

C = c∑∞
n=1 e−αSn

E[C] = E[ g( )]∑∞
n=1 Sn g(t) = ce−∞

E[C] = λ c  dt =∫ ∞

0
e−αt λc

α

c = 1200 1/λ = 1/4

α = 0.08

E[C] = = 60, 000
1200 ⋅ 4

0.08

Example  Random costs15.2.12

n Cn { , }Cn Sn

E[ ] = cCn n

E[C] = E[ ] = E[ ]E[ ] = cE[ ] =∑∞
n=1 Cne

−αSn ∑∞
n=1 Cn e−αSn ∑∞

n=1 e−αSn
λc

α

Example  Finite horizon15.2.13

Nt

(0, t]

= g( )Zt ∑Nt

n=1 Sn E[ ] = λ g(u) duZt ∫
t

0

≥ nNt ≤ tSn g( ) = ( )g( )∑Nt

n=1 Sn ∑∞
n=0 I(0,t] Sn Sn g gI(0,t]

(u)g(u) du = g(u) du∫ ∞
0 I(0,t] ∫ t

0

Example  Replacement costs, finite horizon15.2.14

E[C] = λc  du = (1 − )∫ t

0
e−αu λc

α
e−αt

λc/α 1 −e−αt t = 2

1 − = 0.1479e−0.16 E[C] = 60000 ⋅ 0.1479 = 8871.37

g(u) = ce−αu E[ g( )]∑∞
n=1 Sn
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Suppose  and , where  is iid. Let  be a class such that each  and
each pair  is independent. Then for 

where  is the moment generating function for .

DERIVATION

First we note that

Hence, by properties of expectation and the geometric series

, provided 

Since  and , we have , so that 

Suppose each  ~ uniform . Then (see Appendix C),

 so that 

Let , ,  and . Then,

a = 1; 

b = 5; 

c = 100;

A = 0.08; 

MW = (exp(-a*A) - exp(-b*A))/(A*(b - a)) 

MW =    0.7900 

EC = c*MW/(1 - MW) 

EC =  376.1643 

This page titled 15.2: Some Random Selection Problems is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

Example  General interarrival, exponential g15.2.15

= 0S0 =Sn ∑n
i=1 Wi { : 1 ≤ i}Wi { : 1 ≤ n}Vn E[ ] = cVn

{ , }Vn Sn α > 0

E[C] = E[ ] = c ⋅∑∞
n=1 Vne

−αSn
(−α)MW

1 − (−α)MW

MW W

E[ ] = c (−α) = c (−α)Vne
−αSn MSn M n

W

E[C] = c (−α) =∑∞
n=1 M

n
W

(−α)MW

1 − (−α)MW

| (−α)| < 1MW

α > 0 W > 0 0 < < 1e−αW (−α) = E[ ] < 1MW e−αW

Example  Uniformly distributed interarrival times15.2.16

Wi (a, b)

(−α) =MW

−e−aα e−bα

α(b−a)
E[C] = c ⋅

−e−aα e−bα

α(b−a) −[ − ]e−aα e−bα

a = 1 b = 5 c = 100 α = 0
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15.3: Problems on Random Selection

(See Exercise 3 from "Problems on Random Variables and Joint Distributions") A die is rolled. Let  be the number of spots
that turn up. A coin is flipped  times. Let  be the number of heads that turn up. Determine the distribution for .

Answer

PX = [0 (1/6)*ones(1,6)]; 

PY = [0.5 0.5]; 

gend 

Do not forget zero coefficients for missing powers 

Enter gen fn COEFFICIENTS for gN  PX 

Enter gen fn COEFFICIENTS for gY  PY 

Results are in N, PN, Y, PY, D, PD, P 

May use jcalc or jcalcf on N, D, P 

To view the distribution, call for gD. 

disp(gD)             % Compare with P8-3 

         0    0.1641 

    1.0000    0.3125 

    2.0000    0.2578 

    3.0000    0.1667 

    4.0000    0.0755 

    5.0000    0.0208 

    6.0000    0.0026

(See Exercise 4 from "Problems on Random Variables and Joint Distributions") As a variation of Exercise 15.3.1, suppose a
pair of dice is rolled instead of a single die. Determine the distribution for .

Answer

PN = (1/36)*[0 0 1 2 3 4 5 6 5 4 3 2 1]; 

PY = [0.5 0.5]; 

gend 

Do not forget zero coefficients for missing powers 

Enter gen fn COEFFICIENTS for gN  PN 

Enter gen fn COEFFICIENTS for gY  PY 

Results are in N, PN, Y, PY, D, PD, P 

May use jcalc or jcalcf on N, D, P 

To view the distribution, call for gD. 

disp(gD) 

         0    0.0269 

    1.0000    0.1025 

    2.0000    0.1823 

    3.0000    0.2158 

Exercise 15.3.1

X

X Y Y

Exercise 15.3.2

Y
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    4.0000    0.1954 

    5.0000    0.1400 

    6.0000    0.0806 

    7.0000    0.0375 

    8.0000    0.0140     % (Continued next page) 

    9.0000    0.0040 

   10.0000    0.0008 

   11.0000    0.0001 

   12.0000    0.0000

(See Exercise 5 from "Problems on Random Variables and Joint Distributions") Suppose a pair of dice is rolled. Let  be the
total number of spots which turn up. Roll the pair an additional  times. Let  be the number of sevens that are thrown on the 

 rolls. Determine the distribution for . What is the probability of three or more sevens?

Answer

PX = (1/36)*[0 0 1 2 3 4 5 6 5 4 3 2 1]; 

PY = [5/6 1/6]; 

gend 

Do not forget zero coefficients for missing powers 

Enter gen fn COEFFICIENTS for gN  PX 

Enter gen fn COEFFICIENTS for gY  PY 

Results are in N, PN, Y, PY, D, PD, P 

May use jcalc or jcalcf on N, D, P 

To view the distribution, call for gD. 

disp(gD) 

         0    0.3072 

    1.0000    0.3660 

    2.0000    0.2152 

    3.0000    0.0828 

    4.0000    0.0230 

    5.0000    0.0048 

    6.0000    0.0008 

    7.0000    0.0001 

    8.0000    0.0000 

    9.0000    0.0000 

   10.0000    0.0000 

   11.0000    0.0000 

   12.0000    0.0000 

   P = (D>=3)*PD' 

P =  0.1116

Exercise 15.3.3

X

X Y

X Y
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(See Example 7 from "Conditional Expectation, Regression") A number  is chosen by a random selection from the integers 1
through 20 (say by drawing a card from a box). A pair of dice is thrown  times. Let  be the number of “matches” (i.e., both
ones, both twos, etc.). Determine the distribution for .

Answer

gN = (1/20)*[0 ones(1,20)]; 

gY = [5/6 1/6]; 

gend 

Do not forget zero coefficients for missing powers 

Enter gen fn COEFFICIENTS for gN  gN 

Enter gen fn COEFFICIENTS for gY  gY 

Results are in N, PN, Y, PY, D, PD, P 

May use jcalc or jcalcf on N, D, P 

To view the distribution, call for gD. 

  

disp(gD) 

         0    0.2435 

    1.0000    0.2661 

    2.0000    0.2113 

    3.0000    0.1419 

    4.0000    0.0795 

    5.0000    0.0370 

    6.0000    0.0144 

    7.0000    0.0047 

    8.0000    0.0013 

    9.0000    0.0003 

   10.0000    0.0001 

   11.0000    0.0000 

   12.0000    0.0000 

   13.0000    0.0000 

   14.0000    0.0000 

   15.0000    0.0000 

   16.0000    0.0000 

   17.0000    0.0000 

   18.0000    0.0000 

   19.0000    0.0000 

   20.0000    0.0000

(See Exercise 20 from "Problems on Conditional Expectation, Regression") A number  is selected randomly from the
integers 1 through 100. A pair of dice is thrown  times. Let  be the number of sevens thrown on the  tosses. Determine
the distribution for . Determine  and .

Answer

Exercise 15.3.4

X

X Y

Y

Exercise 15.3.5

X

X Y X

Y E[Y ] P (Y ≤ 20)
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gN = 0.01*[0 ones(1,100)]; 

gY = [5/6 1/6]; 

gend 

Do not forget zero coefficients for missing powers 

Enter gen fn COEFFICIENTS for gN  gN 

Enter gen fn COEFFICIENTS for gY  gY 

Results are in N, PN, Y, PY, D, PD, P 

May use jcalc or jcalcf on N, D, P 

To view the distribution, call for gD. 

EY = dot(D,PD) 

EY =   8.4167 

P20 = (D<=20)*PD' 

P20 =  0.9837

(See Exercise 21 from "Problems on Conditional Expectation, Regression") A number  is selected randomly from the
integers 1 through 100. Each of two people draw  times independently and randomly a number from 1 to 10. Let  be the
number of matches (i.e., both draw ones, both draw twos, etc.). Determine the distribution for . Determine  and 

.

Answer

gN = 0.01*[0 ones(1,100)]; 

gY = [0.9 0.1]; 

gend 

Do not forget zero coefficients for missing powers 

Enter gen fn COEFFICIENTS for gN  gN 

Enter gen fn COEFFICIENTS for gY  gY 

Results are in N, PN, Y, PY, D, PD, P 

May use jcalc or jcalcf on N, D, P 

To view the distribution, call for gD. 

EY = dot(D,PD) 

EY =  5.0500 

P10 = (D<=10)*PD' 

P10 = 0.9188

Suppose the number of entries in a contest is  ~ binomial (20, 0.4). There are four questions. Let  be the number of
questions answered correctly by the th contestant. Suppose the  are iid, with common distribution

 [1 2 3 4]  [0.2 0.4 0.3 0.1]

Let  be the total number of correct answers. Determine , , , and .

Answer

Exercise 15.3.6

X

X Y

Y E[Y ]

P (Y ≤ 10)

Exercise 15.3.7

N Yi
i Yi

Y = PY =

D E[D] Var[D] P (15 ≤ D ≤ 25) P (10 ≤ D ≤ 30)
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gN = ibinom(20,0.4,0:20); 

gY = 0.1*[0 2 4 3 1]; 

gend 

Do not forget zero coefficients for missing powers 

Enter gen fn COEFFICIENTS for gN  gN 

Enter gen fn COEFFICIENTS for gY  gY 

Results are in N, PN, Y, PY, D, PD, P 

May use jcalc or jcalcf on N, D, P 

To view the distribution, call for gD. 

ED = dot(D,PD) 

ED =  18.4000 

VD = (D.^2)*PD' - ED^2 

VD =  31.8720 

P1 = ((15<=D)&(D<=25))*PD' 

P1 =   0.6386 

P2 = ((10<=D)&(D<=30))*PD' 

P2 =   0.9290

Game wardens are making an aerial survey of the number of deer in a park. The number of herds to be sighted is assumed to be
a random variable  ~ binomial (20, 0.5). Each herd is assumed to be from 1 to 10 in size, with probabilities

Value 1 2 3 4 5 6 7 8 9 10

Probabilit
y

0.05 0.10 0.15 0.20 0.15 0.10 0.10 0.05 0.05 0.05

Let  be the number of deer sighted under this model. Determine  for  and .

Answer

gN = ibinom(20,0.5,0:20); 

gY = 0.01*[0 5 10 15 20 15 10 10 5 5 5]; 

gend 

Do not forget zero coefficients for missing powers 

Enter gen fn COEFFICIENTS for gN  gN 

Enter gen fn COEFFICIENTS for gY  gY 

Results are in N, PN, Y, PY, D, PD, P 

May use jcalc or jcalcf on N, D, P 

To view the distribution, call for gD. 

k = [25 50 75 100]; 

P = zeros(1,4); 

for i = 1:4 

    P(i) = (D<=k(i))*PD'; 

end 

disp(P) 

    0.0310    0.5578    0.9725    0.9998

Exercise 15.3.8

N

D P (D ≤ t) t = 25, 50, 75, 100 P (D ≥ 90)
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A supply house stocks seven popular items. The table below shows the values of the items and the probability of each being
selected by a customer.

Value 12.50 25.00 30.50 40.00 42.50 50.00 60.00

Probability 0.10 0.15 0.20 0.20 0.15 0.10 0.10

Suppose the purchases of customers are iid, and the number of customers in a day is binomial (10,0.5). Determine the
distribution for the total demand .

a. How many different possible values are there? What is the maximum possible total sales?
b. Determine  and  for . 

Determine .

Answer

gN = ibinom(10,0.5,0:10); 

Y  = [12.5 25 30.5 40 42.5 50 60]; 

PY = 0.01*[10 15 20 20 15 10 10]; 

mgd 

Enter gen fn COEFFICIENTS for gN  gN 

Enter VALUES for Y  Y 

Enter PROBABILITIES for Y  PY 

Values are in row matrix D; probabilities are in PD. 

To view the distribution, call for mD. 

s = size(D) 

s =    1   839 

M = max(D) 

M =    590 

t = [100 150 200 250 300]; 

P = zeros(1,5); 

for i = 1:5 

    P(i) = (D<=t(i))*PD'; 

end 

disp(P) 

    0.1012    0.3184    0.6156    0.8497    0.9614 

P1 = ((100<D)&(D<=200))*PD' 

P1 =   0.5144

A game is played as follows:

1. A wheel is spun, giving one of the integers 0 through 9 on an equally likely basis.
2. A single die is thrown the number of times indicated by the result of the spin of the wheel. The number of points made is

the total of the numbers turned up on the sequence of throws of the die.
3. A player pays sixteen dollars to play; a dollar is returned for each point made.

Let  represent the number of points made and  be the net gain (possibly negative) of the player. Determine the
maximum value of

Exercise 15.3.9

D

E[D] P (D ≤ t) t = 100, 150, 200, 250, 300

P (100 < D ≤ 200)

Exercise 15.3.10

Y X = Y −16
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Answer

gn = 0.1*ones(1,10); 

gy = (1/6)*[0 ones(1,6)]; 

[Y,PY] = gendf(gn,gy); 

[X,PX] = csort(Y-16,PY); 

M = max(X) 

M =  38 

EX = dot(X,PX)               % Check EX = En*Ey - 16 = 4.5*3.5 

EX  =  -0.2500               % 4.5*3.5 - 16 = -0.25 

VX = dot(X.^2,PX) - EX^2 

VX =  114.1875 

Ppos = (X>0)*PX' 

Ppos =  0.4667 

P10 = (X>=10)*PX' 

P10 =   0.2147 

P16 = (X>=16)*PX' 

P16 =   0.0803

Marvin calls on four customers. With probability  he makes a sale in each case. Geraldine calls on five customers,
with probability  of a sale in each case. Customers who buy do so on an iid basis, and order an amount  (in dollars)
with common distribution:

 [200 220 240 260 280 300]  [0.10 0.15 0.25 0.25 0.15 0.10]

Let  be the total sales for Marvin and  the total sales for Geraldine. Let . Determine the distribution and
mean and variance for , , and . Determine  and , , and .

Answer

gnM = ibinom(4,0.6,0:4); 

gnG = ibinom(5,0.5,0:5); 

Y = 200:20:300; 

PY = 0.01*[10 15 25 25 15 10]; 

[D1,PD1] = mgdf(gnM,Y,PY); 

[D2,PD2] = mgdf(gnG,Y,PY); 

ED1 = dot(D1,PD1) 

ED1 =  600.0000              % Check: ED1 = EnM*EY = 2.4*250 

VD1 = dot(D1.^2,PD1) - ED1^2 

VD1 =    6.1968e+04 

ED2 = dot(D2,PD2) 

ED2 =  625.0000              % Check: ED2 = EnG*EY = 2.5*250 

VD2 = dot(D2.^2,PD2) - ED2^2 

VD2 =    8.0175e+04 

[D1,D2,t,u,PD1,PD2,P] = icalcf(D1,D2,PD1,PD2); 

Use array opertions on matrices X, Y, PX, PY, t, u, and P 

X,E[X], Var[X],P (X > 0),P (X ≥ 10),P (X ≥ 16)

Exercise 15.3.11

= 0.6p1

= 0.5p2 Yi

Y = PY =

D1 D2 D = +D1 D2

D1 D2 D P ( ≥ )D1 D2 P (D ≥ 1500) P (D ≥ 1000) P (D ≥ 750)
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[D,PD] = csort(t+u,P); 

ED = dot(D,PD) 

ED =   1.2250e+03 

eD = ED1 + ED2              % Check: ED = ED1 + ED2 

eD =   1.2250e+03           % (Continued next page) 

  

VD = dot(D.^2,PD) - ED^2 

VD =   1.4214e+05 

vD = VD1 + VD2            % Check: VD = VD1 + VD2 

vD =   1.4214e+05 

P1g2 = total((t>u).*P) 

P1g2 = 0.4612 

k = [1500 1000 750]; 

PDk = zeros(1,3); 

for i = 1:3 

   PDk(i) = (D>=k(i))*PD'; 

end 

disp(PDk) 

    0.2556    0.7326    0.8872

A questionnaire is sent to twenty persons. The number who reply is a random number  ~ binomial (20, 0.7). If each
respondent has probability  of favoring a certain proposition, what is the probability of ten or more favorable replies?
Of fifteen or more?

Answer

gN = ibinom(20,0.7,0:20); 

gY = [0.2 0.8]; 

gend 

Do not forget zero coefficients for missing powers 

Enter gen fn COEFFICIENTS for gN  gN 

Enter gen fn COEFFICIENTS for gY  gY 

Results are in N, PN, Y, PY, D, PD, P 

May use jcalc or jcalcf on N, D, P 

To view the distribution, call for gD. 

P10 = (D>=10)*PD' 

P10 =   0.7788 

P15 = (D>=15)*PD' 

P15 =   0.0660 

pD = ibinom(20,0.7*0.8,0:20);  % Alternate: use D binomial (pp0) 

D = 0:20; 

p10 = (D>=10)*pD' 

p10 =  0.7788 

p15 = (D>=15)*pD' 

p15 =  0.0660

Exercise 15.3.12

N

p = 0.8
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A random number  of students take a qualifying exam. A grade of 70 or more earns a pass. Suppose  ~ binomial (20, 0.3).
If each student has probability  of making 70 or more, what is the probability all will pass? Ten or more will pass?

Answer

gN = ibinom(20,0.3,0:20); 

gY = [0.3 0.7]; 

gend 

Do not forget zero coefficients for missing powers 

Enter gen fn COEFFICIENTS for gN  gN 

Enter gen fn COEFFICIENTS for gY  gY 

Results are in N, PN, Y, PY, D, PD, P 

May use jcalc or jcalcf on N, D, P 

To view the distribution, call for gD. 

Pall = (D==20)*PD' 

Pall =  2.7822e-14 

pall = (0.3*0.7)^20    % Alternate: use D binomial (pp0) 

pall =  2.7822e-14 

P10 = (D >= 10)*PD' 

P10 = 0.0038

Five hundred questionnaires are sent out. The probability of a reply is 0.6. The probability that a reply will be favorable is 0.75.
What is the probability of at least 200, 225, 250 favorable replies?

Answer

n = 500; 

p = 0.6; 

p0 = 0.75; 

D = 0:500; 

PD = ibinom(500,p*p0,D); 

k = [200 225 250]; 

P = zeros(1,3); 

for i = 1:3 

   P(i) = (D>=k(i))*PD'; 

end 

disp(P) 

    0.9893    0.5173    0.0140

Suppose the number of Japanese visitors to Florida in a week is  ~ Poisson (500) and the number of German visitors is 
~ Poisson (300). If 25 percent of the Japanese and 20 percent of the Germans visit Disney World, what is the distribution for
the total number  of German and Japanese visitors to the park? Determine  for .

Exercise 15.3.13

N N

p = 0.7

Exercise 15.3.14

Exercise 15.3.15

N1 N2

D P (D ≥ k) k = 150, 155, ⋅ ⋅ ⋅, 245, 250
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Answer

 ~ Poisson (500*0.25 = 125);  ~ Poisson (300*0.20 = 60);  ~ Poisson (185).

k = 150:5:250; 

PD = cpoisson(185,k); 

disp([k;PD]') 

  150.0000    0.9964 

  155.0000    0.9892 

  160.0000    0.9718 

  165.0000    0.9362 

  170.0000    0.8736 

  175.0000    0.7785 

  180.0000    0.6532   

  185.0000    0.5098 

  190.0000    0.3663 

  195.0000    0.2405 

  200.0000    0.1435 

  205.0000    0.0776 

  210.0000    0.0379 

  215.0000    0.0167 

  220.0000    0.0067 

  225.0000    0.0024 

  230.0000    0.0008 

  235.0000    0.0002 

  240.0000    0.0001 

  245.0000    0.0000 

  250.0000    0.0000

A junction point in a network has two incoming lines and two outgoing lines. The number of incoming messages  on line
one in one hour is Poisson (50); on line 2 the number is  ~ Poisson (45). On incoming line 1 the messages have probability 

 of leaving on outgoing line a and  of leaving on line b. The messages coming in on line 2 have probability 
 of leaving on line a. Under the usual independence assumptions, what is the distribution of outgoing messages on

line a? What are the probabilities of at least 30, 35, 40 outgoing messages on line a?

Answer

m1a = 50*0.33;  m2a = 45*0.47; ma = m1a + m2a; 

PNa = cpoisson(ma,[30 35 40]) 

PNa =   0.9119    0.6890    0.3722

A computer store sells Macintosh, HP, and various other IBM compatible personal computers. It has two major sources of
customers:

1. Students and faculty from a nearby university

JD GD D

Exercise 15.3.16

N1

N2

= 0.33P1a 1 −p1a

= 0.47p2a

Exercise 15.3.17
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2. General customers for home and business computing. Suppose the following assumptions are reasonable for monthly
purchases.

The number of university buyers  ~ Poisson (30). The probabilities for Mac, HP, others are 0.4, 0.2, 0.4, respectively.
The number of non-university buyers  ~ Poisson (65). The respective probabilities for Mac, HP, others are 0.2, 0.3, 0.5.
For each group, the composite demand assumptions are reasonable, and the two groups buy independently.

What is the distribution for the number of Mac sales? What is the distribution for the total number of Mac and Dell sales?

Answer

Mac sales Poisson (30*0.4 + 65*0.2 = 25); HP sales Poisson (30*0.2 + 65*0.3 = 25.5); total Mac plus HP sales
Poisson(50.5).

The number  of “hits” in a day on a Web site on the internet is Poisson (80). Suppose the probability is 0.10 that any hit
results in a sale, is 0.30 that the result is a request for information, and is 0.60 that the inquirer just browses but does not
identify an interest. What is the probability of 10 or more sales? What is the probability that the number of sales is at least half
the number of information requests (use suitable simple approximations)?

Answer

X = 0:30; 

Y = 0:80; 

PX = ipoisson(80*0.1,X); 

PY = ipoisson(80*0.3,Y); 

icalc:  X  Y  PX  PY 

- - - - - - - - - - - - 

PX10 = (X>=10)*PX'    % Approximate calculation 

PX10 =  0.2834 

pX10 = cpoisson(8,10)   % Direct calculation 

pX10 =  0.2834 

M = t>=0.5*u; 

PM = total(M.*P) 

PM =    0.1572

The number  of orders sent to the shipping department of a mail order house is Poisson (700). Orders require one of seven
kinds of boxes, which with packing costs have distribution

Cost (dollars) 0.75 1.25 2.00 2.50 3.00 3.50 4.00

Probability 0.10 0.15 0.15 0.25 0.20 0.10 0.05

What is the probability the total cost of the $2.50 boxes is no greater than $475? What is the probability the cost of the $2.50
boxes is greater than the cost of the $3.00 boxes? What is the probability the cost of the $2.50 boxes is not more than $50.00
greater than the cost of the $3.00 boxes? Suggestion. Truncate the Poisson distributions at about twice the mean value.

Answer

N1

N2

Exercise 15.3.18

N

Exercise 15.3.19

N
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X = 0:400; 

Y = 0:300; 

PX = ipoisson(700*0.25,X); 

PY = ipoisson(700*0.20,Y); 

icalc 

Enter row matrix of X-values  X 

Enter row matrix of Y-values  Y 

Enter X probabilities  PX 

Enter Y probabilities  PY 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

P1 = (2.5*X<=475)*PX' 

P1 =   0.8785 

M = 2.5*t<=(3*u + 50); 

PM = total(M.*P) 

PM =   0.7500

One car in 5 in a certain community is a Volvo. If the number of cars passing a traffic check point in an hour is Poisson (130),
what is the expected number of Volvos? What is the probability of at least 30 Volvos? What is the probability the number of
Volvos is between 16 and 40 (inclusive)?

Answer

P1 = cpoisson(130*0.2,30) = 0.2407 

P2 = cpoisson(26,16) - cpoisson(26,41) = 0.9819

A service center on an interstate highway experiences customers in a one-hour period as follows:

Northbound: Total vehicles: Poisson (200). Twenty percent are trucks.
Southbound: Total vehicles: Poisson (180). Twenty five percent are trucks.

Each truck has one or two persons, with respective probabilities 0.7 and 0.3.
Each car has 1, 2, 3, 4, or 5 persons, with probabilities 0.3, 0.3, 0.2, 0.1, 0.1, respectively

Under the usual independence assumptions, let  be the number of persons to be served. Determine , , and the
generating function .

Answer

 ~ Poisson (200*0.2 = 180*0.25 = 85),  ~ Poisson (200*0.8 + 180*0.75 = 295).

a =   85 

b = 200*0.8 + 180*0.75 

b =  295 

YT = [1 2]; 

PYT = [0.7 0.3]; 

EYT = dot(YT,PYT) 

EYT =  1.3000 

Exercise 15.3.20

Exercise 15.3.21

D E[D] Var[D]

(s)gD

T P
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VYT = dot(YT.^2,PYT) - EYT^2 

VYT =  0.2100 

YP = 1:5; 

PYP = 0.1*[3 3 2 1 1]; 

EYP = dot(YP,PYP) 

EYP =  2.4000 

VYP = dot(YP.^2,PYP) - EYP^2 

VYP =   1.6400 

EDT = 85*EYT 

EDT =  110.5000   

EDP = 295*EYP 

EDP =  708.0000 

ED = EDT + EDP 

ED =  818.5000 

VT = 85*(VYT + EYT^2) 

VT =  161.5000 

VP = 295*(VYP + EYP^2) 

VP =    2183 

VD = VT + VP 

VD =   2.2705e+03 

  

NT = 0:180;                   % Possible alternative 

gNT = ipoisson(85,NT); 

gYT = 0.1*[0 7 3]; 

[DT,PDT] = gendf(gNT,gYT); 

EDT = dot(DT,PDT) 

EDT =  110.5000 

VDT = dot(DT.^2,PDT) - EDT^2 

VDT =  161.5000 

NP = 0:500; 

gNP = ipoisson(295,NP); 

gYP = 0.1*[0 3 2 2 1 1]; 

[DP,PDP] = gendf(gNP,gYP);     %  Requires too much memory

 

The number  of customers in a shop in a given day is Poisson (120). Customers pay with cash or by MasterCard or Visa
charge cards, with respective probabilties 0.25, 0.40, 0.35. Make the usual independence assumptions. Let  be the
numbers of cash sales, MasterCard charges, Visa card charges, respectively. Determine , , 

, and .

Answer

(s) = exp(85(0.7s+0.3 −1))gDT s2 (s) = exp(295(0.1(3s+3 2 + + ) −1))gDP s2 s3 s4 s5

(s) = (s) (s)gD gDT gDP

Exercise 15.3.22

N

, ,N1 N2 N3

P ( ≥ 30)N1 P ( ≥ 60)N2

P ( ≥ 50N3 P ( > )N2 N3
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X = 0:120; 

PX = ipoisson(120*0.4,X); 

Y = 0:120; 

PY = ipoisson(120*0.35,Y); 

icalc 

Enter row matrix of X values  X 

Enter row matrix of Y values  Y 

Enter X probabilities  PX 

Enter Y probabilities  PY 

Use array opertions on matrices X, Y, PX, PY, t, u, and P 

M = t > u; 

PM = total(M.*P) 

PM =    0.7190

A discount retail store has two outlets in Houston, with a common warehouse. Customer requests are phoned to the warehouse
for pickup. Two items, a and b, are featured in a special sale. The number of orders in a day from store A is  ~ Poisson (30);
from store B, the nember of orders is  ~ Poisson (40).

For store A, the probability an order for a is 0.3, and for b is 0.7.

For store B, the probability an order for a is 0.4, and for b is 0.6. What is the probability the total order for item b in a day is 50
or more?

Answer

P = cpoisson(30*0.7+40*0.6,50) = 0.2468

The number of bids on a job is a random variable  ~ binomial (7, 0.6). Bids (in thousands of dollars) are iid with  uniform
on [3, 5]. What is the probability of at least one bid of $3,500 or less? Note that “no bid” is not a bid of 0.

Answer

% First solution ---  FY(t) = 1 - gN[P(Y>t)] 

P = 1-(0.4 + 0.6*0.75)^7 

P  =    0.6794 

% Second solution --- Positive number of satisfactory bids, 

% i.e. the outcome is indicator for event E, with P(E) = 0.25 

pN = ibinom(7,0.6,0:7); 

gY = [3/4 1/4];         % Generator function for indicator 

[D,PD] = gendf(pN,gY);  % D is number of successes 

Pa = (D>0)*PD'          % D>0 means at least one successful bid 

Pa =    0.6794

Exercise 15.3.23

NA

NB

Exercise 15.3.24

N Y
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The number of customers during the noon hour at a bank teller's station is a random number  with distribution

 1 : 10,  0.01 * [5 7 10 11 12 13 12 11 10 9]

The amounts they want to withdraw can be represented by an iid class having the common distribution  ~ exponential (0.01).
Determine the probabilities that the maximum withdrawal is less than or equal to  for .

Answer

Use 

gN = 0.01*[0 5 7 10 11 12 13 12 11 10 9]; 

t = 100:100:500; 

PY = 1 - exp(-0.01*t); 

FW = polyval(fliplr(gN),PY)  % fliplr puts coeficients in 

                             % descending order of powers 

FW =    0.1330    0.4598    0.7490    0.8989    0.9615

A job is put out for bids. Experience indicates the number  of bids is a random variable having values 0 through 8, with
respective probabilities

Value 0 1 2 3 4 5 6 7 8

Probability 0.05 0.10 0.15 0.20 0.20 0.10 0.10 0.07 0.03

The market is such that bids (in thousands of dollars) are iid, uniform [100, 200]. Determine the probability of at least one bid
of $125,000 or less.

Answer

Probability of a successful bid 

PY =0.25; 

gN = 0.01*[5 10 15 20 20 10 10 7 3]; 

P = 1 - polyval(fliplr(gN),PY) 

P =  0.9116

A property is offered for sale. Experience indicates the number  of bids is a random variable having values 0 through 10,
with respective probabilities

Value 0 1 2 3 4 5 6 7 8 9 10

Probabili
ty

0.05 0.15 0.15 0.20 0.10 0.10 0.05 0.05 0.05 0.05 0.05

The market is such that bids (in thousands of dollars) are iid, uniform [150, 200] Determine the probability of at least one bid
of $180,000 or more.

Answer

Consider a sequence of  trials with probabilty .

Exercise 15.3.25

N

N = PN =

Y

t t = 100, 200, 300, 400, 500

(t) = [P (Y ≤ T )]FW gN

Exercise 15.3.26

N

PY = (125 −100)/100 = 0.25

Exercise 15.3.27

N

N p = (180 −150)/50 = 0.6
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gN = 0.01*[5 15 15 20 10 10 5 5 5 5 5]; 

gY = [0.4 0.6]; 

[D,PD] = gendf(gN,gY); 

P = (D>0)*PD' 

P =   0.8493

A property is offered for sale. Experience indicates the number  of bids is a random variable having values 0 through 8, with
respective probabilities

Number 0 1 2 3 4 5 6 7 8

Probability 0.05 0.15 0.15 0.20 0.15 0.10 0.10 0.05 0.05

The market is such that bids (in thousands of dollars) are iid symmetric triangular on [150 250]. Determine the probability of at
least one bid of $210,000 or more.

Answer

gN = 0.01*[5 15 15 20 15 10 10 5 5]; 

PY = 0.5 + 0.5*(1 - (4/5)^2) 

PY = 0.6800 

>> PW = 1 - polyval(fliplr(gN),PY) 

PW = 0.6536 

%alternate 

gY = [0.68 0.32]; 

[D,PD] = gendf(gN,gY); 

P = (D>0)*PD' 

P = 0.6536

Suppose  ~ binomial (10, 0.3) and the  are iid, uniform on [10, 20]. Let  be the minimum of the  values of the .
Determine  for integer values from 10 to 20.

Answer

gN = ibinom(10,0.3,0:10); 

t = 10:20; 

p = 0.1*(20 - t); 

P = polyval(fliplr(gN),p) - 0.7^10 

P = 

  Columns 1 through 7 

    0.9718    0.7092    0.5104    0.3612    0.2503    0.1686    0.1092 

  Columns 8 through 11 

    0.0664    0.0360    0.0147         0 

Pa = (0.7 + 0.3*p).^10 - 0.7^10     % Alternate form of gN 

Pa = 

Exercise 15.3.28

N

Exercise 15.3.29

N Yi V N Yi
P (V > t)
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  Columns 1 through 7 

    0.9718    0.7092    0.5104    0.3612    0.2503    0.1686    0.1092 

  Columns 8 through 11 

    0.0664    0.0360    0.0147         0

Suppose a teacher is equally likely to have 0, 1, 2, 3 or 4 students come in during office hours on a given day. If the lengths of
the individual visits, in minutes, are iid exponential (0.1), what is the probability that no visit will last more than 20 minutes.

Answer

gN = 0.2*ones(1,5); 

p = 1 - exp(-2); 

FW = polyval(fliplr(gN),p) 

FW =    0.7635 

gY = [p 1-p];               % Alternate 

[D,PD] = gendf(gN,gY); 

PW = (D==0)*PD' 

PW =    0.7635

Twelve solid-state modules are installed in a control system. If the modules are not defective, they have practically unlimited
life. However, with probability  any unit could have a defect which results in a lifetime (in hours) exponential
(0.0025). Under the usual independence assumptions, what is the probability the unit does not fail because of a defective
module in the first 500 hours after installation?

Answer

p = 1 - exp(-0.0025*500); 

FW = (0.95 + 0.05*p)^12 

FW =   0.8410 

gN = ibinom(12,0.05,0:12); 

gY = [p 1-p]; 

[D,PD] = gendf(gN,gY); 

PW = (D==0)*PD' 

PW =   0.8410

The number  of bids on a painting is binomial (10, 0.3). The bid amounts (in thousands of dollars)  form an iid class, with
common density function . What is the probability that the maximum amount bid is
greater than $5,000?

Answer

Exercise 15.3.30

Exercise 15.3.31

p = 0.05

Exercise 15.3.32

N Yi
(t) = 0.005(37 −2t), 2 ≤ t ≤ 10fY

P (Y ≤ 5) = 0.005 (37 −2t) dt = 0.45∫ 5
2
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p = 0.45; 

P = 1 - (0.7 + 0.3*p)^10 

P =   0.8352 

gN = ibinom(10,0.3,0:10); 

gY = [p 1-p]; 

[D,PD] = gendf(gN,gY);  % D is number of "successes" 

Pa = (D>0)*PD' 

Pa =  0.8352

A computer store offers each customer who makes a purchase of $500 or more a free chance at a drawing for a prize. The
probability of winning on a draw is 0.05. Suppose the times, in hours, between sales qualifying for a drawing is exponential
(4). Under the usual independence assumptions, what is the expected time between a winning draw? What is the probability of
three or more winners in a ten hour day? Of five or more?

Answer

 ~ Poisson ( ),  ~ Poisson ( ),  exponential ( ).

p = 0.05; 

t = 10; 

lambda = 4; 

EW = 1/(lambda*p) 

EW =    5 

PND10 = cpoisson(lambda*p*t,[3 5]) 

PND10 =  0.3233    0.0527

Noise pulses arrrive on a data phone line according to an arrival process such that for each  the number  of arrivals in
time interval , in hours, is Poisson . The th pulse has an “intensity”  such that the class  is iid, with the
common distribution function  for . Determine the probability that in an eight-hour day the intensity
will not exceed two.

Answer

 is Poisson (7*8 = 56) .

t = 2; 

FW2 = exp(56*(1 - exp(-t^2) - 1)) 

FW2 =   0.3586

The number  of noise bursts on a data transmission line in a period  is Poisson ( ). The number of digit errors caused
by the th burst is , with the class  iid,  ~ geometric . An error correcting system is capable or
correcting five or fewer errors in any burst. Suppose  and . What is the probability of no uncorrected error in
two hours of operation?

Exercise 15.3.33

Nt λt NDt λpt WDt λp

Exercise 15.3.34

t > 0 Nt

(0, t] (7t) i Yi { : 1 ≤ i}Yi

(u) = 1 −FY e−2u2

u ≥ 0

N8 (s) =gN e56(s−1)

Exercise 15.3.35

N (0, t] μ

i Yi { : 1 ≤ i}Yi −1Yi (p)

μ = 12 p = 0.35
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Answer

 ~ Poisson (12 )

q = 1 - 0.35; 

k = 5; 

t = 2; 

mu = 12; 

FW = exp(mu*t*(1 - q^(k-1) - 1)) 

FW =  0.0138 
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16.1: Conditional Independence, Given a Random Vector
In the unit on Conditional Independence , the concept of conditional independence of events is examined and used to model a
variety of common situations. In this unit, we investigate a more general concept of conditional independence, based on the theory
of conditional expectation. This concept lies at the foundations of Bayesian statistics, of many topics in decision theory, and of the
theory of Markov systems. We examine in this unit, very briefly, the first of these. In the unit on Markov Sequences, we provide an
introduction to the third.

The concept 
The definition of conditional independence of events is based on a product rule which may be expressed in terms of conditional
expectation, given an event. The pair  is conditionally independent, given , iff

If we let  and , then  and . It would be reasonable to consider the pair 
 conditionally independent, given event , iff the product rule

holds for all reasonable  and  (technically, all Borel  and ). This suggests a possible extension to conditional expectation,
given a random vector. We examine the following concept.

The pair  is conditionally independent, givenZ, designated  ci , iff

 for all Borel . 

Remark. Since it is not necessary that , , or  be real valued, we understand that the sets  and  are on the codomains for 
and , respectively. For example, if  is a three dimensional random vector, then  is a subset of .

As in the case of other concepts, it is useful to identify some key properties, which we refer to by the numbers used in the table in
Appendix G. We note two kinds of equivalences. For example, the following are equivalent.

(CI1)  a.s. for all Borel sets 

(CI5)  a.s. for all Borel functions 

Because the indicator functions are special Borel functions, (CI1) is a special case of (CI5). To show that (CI1) implies (CI5), we
need to use linearity, monotonicity, and monotone convergence in a manner similar to that used in extending properties (CE1) to
(CE6) for conditional expectation. A second kind of equivalence involves various patterns. The properties (CI1), (CI2), (CI3), and
(CI4) are equivalent, with (CI1) being the defining condition for  ci .

(CI1)  a.s. for all Borel sets 

(CI2)  a.s. for all Borel sets 

(CI3)  a.s. for all Borel sets 

(CI4)  a.s. for all Borel sets 

As an example of the kinds of argument needed to verify these equivalences, we show the equivalence of (CI1) and (CI2).

(CI1) implies (CI2). Set  and . If we show

 for all Borel 

then by the uniqueness property (E5b) for expectation we may assert  a.s. Using the defining property
(CE1) for conditional expectation, we have

On the other hand, use of (CE1), (CE8), (CI1), and (CE1) yields

{A,B} C

E[ |C] = P (AB|C) = P (A|C)P (B|C) = E[ |C]E[ |C]IAIB IA IB

A = (M)X−1 B = (N)Y −1 = (X)IA IM = (Y )IB IN
{X,Y } C

E[ (X) (Y )|C] = E[ (X)|C]E[ (Y )|C]IM IN IM IN

M N M N

Definition

{X,Y } {X,Y } |Z

E[ (X) (Y )|Z] = E[ (X)|Z]E[ (Y )|Z]IM IN IM IN M N

X Y Z M N X

Y X M R3

E[ (X) (Y )|Z] = E[ (X)|Z][E[ (Y )|Z]IM IN IM IN M ,N

E[g(X,Z)h(Y ,Z)|Z] = E[g(X,Z)|Z]E[h(Y ,Z)|Z] g,h

{X,Y } |Z

E[ (X) (Y )|Z] = E[ (X)|Z][E[ (Y )|Z]IM IN IM IN M ,N

E[ (X)|Z,Y ] = E[ (X)|Z]IM IM M

E[ (X) (Z)|Z,Y ] = E[ (X) (Z)|Z]IM IQ IM IQ M ,Q

E[ (X) (Z)|Y ] = E{E[ (X) (Z)|Z]|Y }IM IQ IM IQ M ,Q

(Y ,Z) = E[ (X)|Z,Y ]e1 IM (Y ,Z) = E[ (X)|Z]e2 IM

E[ (Y ) (Z) (Y ,Z) = E[ (Y ) (Z) (Y ,Z)]IN IQ e1 IN IQ e2 N ,Q

(Y ,Z) = (Y ,Z)e1 e2

E{ (Y ) (Z)E[ (X)|Z,Y ]} = E[ (Y ) (Z) (X)]IN IQ IM IN IQ IM

E{ (Y ) (Z)E[ (X)|Z]} = E{ (Z)E[ (Y )E[ (X)|Z]|Z]}IN IQ IM IQ IN IM
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which establishes the desired equality.

(CI2) implies (CI1). Using (CE9), (CE8), (CI2), and (CE8), we have

Use of property (CE8) shows that (CI2) and (CI3) are equivalent. Now just as (CI1) extends to (CI5), so also (CI3) is equivalent to

(CI6)  a.s. for all Borel functions 

Property (CI6) provides an important interpretation of conditional independence:

 is the best mean-square estimator for , given knowledge of . The conditon  ci  implies that
additional knowledge about Y does not modify that best estimate. This interpretation is often the most useful as a modeling
assumption.

Similarly, property (CI4) is equivalent to

(CI8)  a.s. for all Borel functions 

The additional properties in Appendix G are useful in a variety of contexts, particularly in establishing properties of Markov
systems. We refer to them as needed.

The Bayesian approach to statistics 

In the classical approach to statistics, a fundamental problem is to obtain information about the population distribution from the
distribution in a simple random sample. There is an inherent difficulty with this approach. Suppose it is desired to determine the
population mean . Now  is an unknown quantity about which there is uncertainty. However, since it is a constant, we cannot
assign a probability such as . This has no meaning.

The Bayesian approach makes a fundamental change of viewpoint. Since the population mean is a quantity about which there is
uncertainty, it is modeled as a random variable whose value is to be determined by experiment. In this view, the population
distribution is conceived as randomly selected from a class of such distributions. One way of expressing this idea is to refer to a
state of nature. The population distribution has been “selected by nature” from a class of distributions. The mean value is thus a
random variable whose value is determined by this selection. To implement this point of view, we assume

The value of the parameter (say  in the discussion above) is a “realization” of a parameter random variable . If two or
more parameters are sought (say the mean and variance), they may be considered components of a parameter random vector. 
The population distribution is a conditional distribution, given the value of .

The Bayesian model

If  is a random variable whose distribution is the population distribution and  is the parameter random variable, then 
have a joint distribution.

For each  in the range of , we have a conditional distribution for , given . 
We assume a prior distribution for . This is based on previous experience. 
We have a random sampling process, given : i.e.,  is conditionally iid, given . Let 

 and consider the joint conditional distribution function

If  has conditional density, given H, then a similar product rule holds.

Population proportion

= E{ (Z)E[ (X)|Z]E[ (Y )|Z]} = E{ (Z0E[ (X) (Y )|Z]}IQ IM IN IQ IM IN

= E[ (Y ) (Z0 (X)IN IQ IM

E[ (X) (Y )|Z] = E{E[ (X) (Y )|Z,Y ]|Z}IM IN IM IN

= E[ (Y )E[ (X)|Z,Y ]|Z} = E{ (Y )E[ (X)|Z]|Z}IN IM IN IM

= E[ (X)|Z]E[ (Y )|Z]IM IN

E[g(X,Z)|Z,Y ] = E[g(X,Z)|Z] g

E[g(X,Z)|Z] g(X,Z) Z {X,Y } |Z

E[g(X,Z)|Y ] = E{E[g(X,Z)|Z]|Y } g

μ μ

P (a < μ ≤ b)

μ H

H

X H {X,H}

u H X H = u

H

H { : 1 ≤ i ≤ n}Xi H

W = ( , , ⋅ ⋅ ⋅, )X1 X2 Xn

( , , ⋅ ⋅ ⋅, |u) = P ( ≤ , ≤ , ⋅ ⋅ ⋅, ≤ |H = u)FW |H t1 t2 tn X1 t1 X2 t2 Xn tn

= E[ ( )|H = u]] = E[ ( )|H = u] = ( |u)∏n
i=1 I(−∞, ]ti Xi ∏n
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We illustrate these ideas with one of the simplest, but most important, statistical problems: that of determining the proportion of a
population which has a particular characteristic. Examples abound. We mention only a few to indicate the importance.

The proportion of a population of voters who plan to vote for a certain candidate. 
The proportion of a given population which has a certain disease. 
The fraction of items from a production line which meet specifications. 
The fraction of women between the ages eighteen and fifty five who hold full time jobs.

The parameter in this case is the proportion  who meet the criterion. If sampling is at random, then the sampling process is
equivalent to a sequence of Bernoulli trials. If  is the parameter random variable and  is the number of “successes” in a sample
of size , then the conditional distribution for , given , is binomial . To see this, consider

, with 

Anaysis is carried out for each fixed  as in the ordinary Bernoulli case. If

We have the result

 and 

The objective

We seek to determine the best mean-square estimate of , given .  
If , we know . Sampling gives . We make a Bayesian reversal to get an exression for . 
To complete the task, we must assume a prior distribution for  on the basis of prior knowledge, if any.

The Bayesian reversal

Since  is an event with positive probability, we use the definition of the conditional expectation, given an event, and the
law of total probability (CE1b) to obtain

A prior distribution for 

The beta  distribution (see Appendix G), proves to be a “natural” choice for this purpose. Its range is the unit interval, and by
proper choice of parameters , the density function can be given a variety of forms (see Figures 16.1.1 and 16.2.2).

Figure one is a graph labeled Beta (r, s) density -- r = 2. The horizontal axis is labeled as t, and the vertical axis as Density. The values on the horizontal axis range from 0 to 1 in increments of 0.1, and the values on
the vertical axis range from 0 to 4.5 in increments of 0.5. There are three plotted shapes on this graph. The most simple is a linear path beginning at the origin in the bottom-left corner of the graph that continues with a

constant positive slope across the graph and halfway up the vertical axis, terminating at (1, 2). It is labeled as s = 1. The second is a curve that begins at the origin with a positive, decreasing slope. It continues increasing
across the page until it flattens at (0.5, 1.5), where it begins decreasing at an increasing rate. It meets the bottom-right corner. The shape is symmetrical, and looks more like a small portion of a circle than a bell curve.
This plot is labeled as s = 2.The third is a distribution, again beginning at the origin, that starts out with a sharply positive slope. The distribution increases at a decreasing rate very quickly, where at (0.1, 4.25) it peaks,

and begins decreasing at an increasing rate until approximately (0.25, 2), where it begins decreasing at a decreasing rate until it tails off to a horizontal line at approximately (0.6, 0) where it is essentially a horizontal line
that continues to the bottom-right edge of the graph. This plot is labeled as s = 10.  

Figure 16.1.1. The Beta(r,s) density for , .
Figure two is a graph labeled Beta (r, s) density -- r = 5. The horizontal axis is labeled as t, and the vertical axis as Density. The values on the horizontal axis range from 0 to 1 in increments of 0.1, and the values on

the vertical axis range from 0 to 3.5 in increments of 0.5. There are three plotted distributions on the graph. All three maintain some sort of shape that resembles a distorted bell curve, with tapering tails on both sides and
a large peak. One plot, labeled s = 5, resembles a symmetrical bell curve, with tails leading to both the bottom-right and bottom-left of the graph, and a peak at approximately (0.5, 2.5) in the middle of the figure. A

second plot, labeled s = 10, is not as centered as the previously described plot, as its peak is located at approximately (0.3, 3.25). This distribution is slightly skewed right as a result, and its bell is more slender in shape
than the standard normal distribution. The third plot, labeled s = 2, is strongly skewed left, with its peak located at approximately (0.8, 2.5)  

Figure 16.1.2. The Beta(r,s) density for , .

Its analysis is based on the integrals

 with 

For  ~ beta ( ), the density is given by

 

p

H Sn

n Sn H = u (n, u)

=Xi IEi
P ( |H = u) = E[ |H = u] = e(u) = uEi Xi

u

= =Sn ∑n
i=1 Xi ∑n

i=1 IEi

E[ ( )|H = u] = P ( = k|H = u) = C(n, k) (1 −uI{k} Si Sn uk )n−k E[ |H = u] = nuSn

H = kSn

H = u E[ |H] = nuSn = kSn E[H| = k]Sn

H

{ = k}Sn

E[H| = k] = = =Sn

E[H ( )]I{k} Sn

E[ ( )]I{k} Sn

E{HE[ ( )|H]}I{k} Sn

E{E[ ( )|H]}I{k} Sn

∫ uE[ ( )|H = u] (u) duI{k} Sn fH

∫ E[ ( )|H = u] (u) duI{k} Sn fH

=
C(n, k)∫ (1 −u (u) duuk+1 )n−kfH

C(n, k)∫ (1 −u (u) duuk )n−kfH

H

(r, s)

r, s

r = 2 s = 1, 2, 10

r = 5 s = 2, 5, 10

(1 −u  du =∫ 1
0 ur−1 )s−1

Γ(r)Γ(s)

Γ(r+s)
Γ(a+1) = aΓ(a)

H r, s

(t) = (1 − t = A(r, s) (1 − tfH
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For , ,  has a maximum at . For  positive integers,  is a polynomial on [0, 1], so that
determination of the distribution function is easy. In any case, straightforward integration, using the integral formula above, shows

 and 

If the prior distribution for  is beta , we may complete the determination of  as follows.

We may adapt the analysis above to show that  is conditionally beta , given .

 where 

The analysis goes through exactly as for , except that  is replaced by . In the integral expression for the
numerator, one factor  is replaced by . For  ~ beta , we get

The integrand is the density for beta .

Any prior information on the distribution for  can be utilized to select suitable . If there is no prior information, we simply
take , , which corresponds to

 ~ uniform on (0, 1). The value is as likely to be in any subinterval of a given length as in any other of the same length. The
information in the sample serves to modify the distribution for , conditional upon that information.

It is desired to estimate the portion of the student body which favors a proposed increase in the student blanket tax to fund the
campus radio station. A sample of size  is taken. Fourteen respond in favor of the increase. Assuming prior ignorance
(i.e., that  beta (1,1)), what is the conditional distribution given ? After the first sample is taken, a second sample of
size  is taken, with thirteen favorable responses. Analysis is made using the conditional distribution for the first sample
as the prior for the second. Make a new estimate of .

Figure three is a graph labeled, Condition densities beta (15, 7) and beta (28, 14). The horizontal axis is labeled as t, and the vertical axis is labeled, conditional density. The values on the horizontal axis range
from 0 to 1 in increments of 0.1, and the values on the vertical axis range from 0 to 6 in increments of one. There are two plots in this figure. Both are similar in shape, reflecting two beta distributions, with long
tails, relatively symmetric in structure, and reaching only one peak of distribution. The first distribution, labeled beta (15, 7), is centered horizontally at 0.7, and reaches a vertical value of conditional density of

four. It is slightly skewed to the left, but there is no visible vertical significance further to the left on the horizontal axis past the value 0.3. Likewise, there is no vertical significance past approximately 0.92 in the
tail on the right. The second plot, labeled beta (28, 14), is a stronger distribution, centered at approximately 0.68, but reaching a conditional density in respect to the vertical axis of approximately 5.5. The plot

again is slightly skewed left, and no significant portion of the graph can be seen in the tails past 0.4 to the left and 0.88 to the right.  
Figure 16.1.3. Conditional densities for repeated sampling, Example 16.1.1.

Solution

For the first sample the parameters are . According the treatment above,  is conditionally beta 
. The density has a maximum at . The conditional

expectation, however, is .

For the second sample, with the conditional distribution as the new prior, we should expect more sharpening of the density
about the new mean-square estimate. For the new sample, , , and the prior  ~ beta (15, 7). The new conditional
distribution has parameters . The best estimate of  is 28/(28 + 14) = 2/3.
The conditonal densities in the two cases may be plotted with MATLAB (see Figure 16.1.1).

t = 0:0.01:1; 

plot(t,beta(15,7,t),'k-',t,beta(28,14,t),'k--') 

r ≥ 2 s ≥ 2 fH (r−1)/(r+s−2) r, s fH
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0 uk+1 )n−kur−1 )s−1
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0 uk )n−kur−1 )s−1

(1 −u  du∫ 1
0 uk+r )n+s−k−1

(1 −u  du∫ 1
0 uk+r−1 )n+s−k−1

= ⋅ =
Γ(r+k+1)Γ(n+s−k)

Γ(r+s+n+1)

Γ(r+s+n)

Γ(r+k)Γ(n+s−k)

k+r

n+r+s

H (r+k, s+n−k) = kSn

(t|k) =FH|S

E[ (H) ( )It I{k} Sn

E[ ( )I{k} Sn

(H) = (H)It I[0,t]

E[H| = k]Sn H (H)It
u (u)It H (r, s)

(t|k) = (1 −u  du = (u|k) duFH|S

Γ(r+s+n)

Γ(r+k)Γ(n+s−k)
∫ t

0 uk+r−1 )n+s−k−1 ∫ t

0 fH|S

(r+k,n+s−k)

H r, s

r = 1 s = 1

H

H

Example  Population proportion with a beta prior16.1.1

n = 20

H = 14s20

n = 20

H

r = s = 1 H

(k+r,n+s−k) = (15, 7) (r+k−1)/(r+k+n+s−k−2) = k/n

(r+k)/(r+s+n) = 15/22 ≈ 0.6818

n = 20 k = 13 H

= (28 −1)/(28 +14 −2) = 27/40 = 0.6750r∗ H
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As expected, the maximum for the second is somewhat larger and occurs at a slightly smaller , reflecting the smaller . And
the density in the second case shows less spread, resulting from the fact that prior information from the first sample is
incorporated into the analysis of the second sample.

The same result is obtained if the two samples are combined into one sample of size 40.

It may be well to compare the result of Bayesian analysis with that for classical statistics. Since, in the latter, case prior information
is not utilized, we make the comparison with the case of no prior knowledge . For the classical case, the estimator for 

 is the sample average; for the Bayesian case with beta prior, the estimate is the conditional expectation of , given .

If : Classical estimate =  Bayesian estimate = 

For large sample size , these do not differ significantly. For small samples, the difference may be quite important. The Bayesian
estimate is often referred to as the small sample estimate, although there is nothing in the Bayesian procedure which calls for small
samples. In any event, the Bayesian estimate seems preferable for small samples, and it has the advantage that prior information
may be utilized. The sampling procedure upgrades the prior distribution.

The essential idea of the Bayesian approach is the view that an unknown parameter about which there is uncertainty is modeled as
the value of a random variable. The name Bayesian comes from the role of Bayesian reversal in the analysis.

The application of Bayesian analysis to the population proportion required Bayesian reversal in the case of discrete . We
consider, next, this reversal process when all random variables are absolutely continuous.

The Bayesian reversal for a joint absolutely continuous pair

In the treatment above, we utilize the fact that the conditioning random variable  is discrete. Suppose the pair  is jointly
absolutely continuous, and  and  are specified. To determine

we need . This requires a Bayesian reversal of the conditional densities. Now by definition

 and 

Since by the rule for determining the marginal density

we have

 and 

Suppose  ~ exponential  and the  are conditionally iid, exponential ( ), given . A sample of size  is taken. Put 
, and . Determine the best mean-square estimate of , given .

Solution

 so that 

Hence

 where 

This page titled 16.1: Conditional Independence, Given a Random Vector is shared under a CC BY 3.0 license and was authored, remixed, and/or
curated by Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
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Example  A Bayesian reversal16.1.2
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16.2: Elements of Markov Sequences

Elements of Markov Sequences 

Markov sequences (Markov chains) are often studied at a very elementary level, utilizing algebraic tools such as matrix analysis. In
this section, we show that the fundamental Markov property is an expression of conditional independence of “past” and “future,"
given the “present.” The essential Chapman-Kolmogorov equation is seen as a consequence of this conditional independence. In
the usual time-homogeneous case with finite state space, the Chapman-Kolmogorov equation leads to the algebraic formulation
that is widely studied at a variety of levels of mathematical sophistication. With the background laid, we only sketch some of the
more common results. This should provide a probabilistic perspective for a more complete study of the algebraic analysis.

Markov sequences

We wish to model a system characterized by a sequence of states taken on at discrete instants which we call transition times. At
each transition time, there is either a change to a new state or a renewal of the state immediately before the transition. Each state is
maintained unchanged during the period or stage between transitions. At any transition time, the move to the next state is
characterized by a conditional transition probability distribution. We suppose that the system is memoryless, in the sense that the
transition probabilities are dependent upon the current state (and perhaps the period number), but not upon the manner in which
that state was reached. The past influences the future only through the present. This is the Markov property, which we model in
terms of conditional independence.

For period , the state is represented by a value of a random variable , whose value is one of the members of a set E, known as
the state space. We consider only a finite state space and identify the states by integers from 1 to . We thus have a sequence

, where 

We view an observation of the system as a composite trial. Each  yields a sequence of states  which is
referred to as a realization of the sequence, or a trajectory. We suppose the system is evolving in time. At discrete instants of time 

 the system makes a transition from one state to the succeeding one (which may be the same).

Initial period: , , state is ; at  the transition is to 

Period one: , , state is ; at  the transition is to 

......

Period : , , state is ; at  move to 

......

The parameter  indicates the period . If the periods are of unit length, then . At , there is a transition
from the state  to the state  for the next period. To simplify writing, we adopt the following convention:

  and 

The random vector  is called the past at  of the sequence  and  is the future at . In order to capture the notion that the
system is without memory, so that the future is affected by the present, but not by how the present is reached, we utilize the notion
of conditional independence, given a random vector, in the following

The sequence  is Markov iff

(M)  ci  for all 

Several conditions equivalent to the Markov condition (M) may be obtained with the aid of properties of conditional independence.
We note first that (M) is equivalent to

 for each , , and 

The state in the next period is conditioned by the past only through the present state, and not by the manner in which the present
state is reached. The statistics of the process are determined by the initial state probabilities and the transition probabilities

i Xi
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k n = k t ∈ [ , )tk tk=1 (ω)Xk tk+1 (ω)Xk+1
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 , 

The following examples exhibit a pattern which implies the Markov condition and which can be exploited to obtain the transition
probabilities.

An object starts at a given initial position. At discrete instants  the object moves a random distance along a line. The
various moves are independent of each other. Let

 be the initial position 
 be the amount the object moves at time   iid 

 be the position after  moves

We note that . Since the position after the transition at  is affected by the past only by the value of
the position  and not by the sequence of positions which led to this position, it is reasonable to suppose that the process 
is Markov. We verify this below.

Each member of a population is able to reproduce. For simplicity, we suppose that at certain discrete instants the entire next
generation is produced. Some mechanism limits each generation to a maximum population of  members. Let

 be the number propagated by the th member of the th generation. 
 indicates death and no offspring,  indicates a net of  propagated by the th member (either death and 

offspring or survival and  offspring).

The population in generation  is given by

We suppose the class  is iid. Let . Thne  is independent. It
seems reasonable to suppose the sequence  is Markov.

A certain item is stocked according to an  inventory policy, as follows:

If stock at the end of a period is less than , order up to .
If stock at the end of a period is  or greater, do not order.

Let  be the initial stock, and  be the stock at the end of the th period (before restocking), and let  be the demand
during the th period. Then for ,

If we suppose  is independent, then  is independent for each , and the Markov condition
seems to be indicated.

Remark. In this case, the actual transition takes place throughout the period. However, for purposes of analysis, we examine the
state only at the end of the period (before restocking). Thus, the transitions are dispersed in time, but the observations are at
discrete instants.

A piece of equipment has a lifetime which is an integral number of units of time. When a unit fails, it is replaced immediately
with another unit of the same type. Suppose

 is the remaining lifetime of the unit in service at time 
 is the lifetime of the unit installed at time , with  iid

P ( = k| = j)Xn+1 Xn ∀j, k ∈ E n ≥ 0

Example  One-dimensional random walk16.2.1

, , ⋅ ⋅ ⋅t1 t2
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=Xn ∑n
k=0 Yk n

= g( , )Xn+1 Xn Yn+1 tn+1

Xn XN

Example  A class of branching processes16.2.2

M
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Example  An inventory problem16.2.3

(m, M)

m M
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X0 Xn n Dn
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Example  Remaining lifetime16.2.4
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Then 

Remark. Each of these four examples exhibits the pattern

 is independent 
, 

We now verify the Markov condition and obtain a method for determining the transition probabilities.

A pattern yielding Markov sequences

Suppose  is independent (call these the driving random variables). Set

 and  

Then

 is Markov 
 for all , and any Borel set .

VERIFICATION

It is apparent that if  are known, then  is known. Thus , which ensures each pair 
 is independent. By property (CI13), with , , and , we have

 ci

Since  and , property (CI9) ensures

 ci  

which is the Markov property.

 a.s.  a.s.  by (CE10b) 
 by (E1a)

— □

The application of this proposition, below, to the previous examples shows that the transition probabilities are invariant with .
This case is important enough to warrant separate classification.

If  is invariant with , for all Borel sets , all , the Markov process  is said to be
homogeneous.

As a matter of fact, this is the only case usually treated in elementary texts. In this regard, we note the following special case of the
proposition above.

Homogenous Markov sequences

If  is iid and  for all , then the process is a homogeneous Markov process, and

, invariant with 

— □

Remark.

In the homogeneous case, the transition probabilities are invariant with . In this case, we write

 or  (invariant with )

These are called the (one-step) transition probabilities.

The transition probabilities may be arranged in a matrix P called the transition probability matrix, usually referred to as the
transition matrix,

= { = g( , )Xn+1
−1Xn

−1Yn+1

if  ≥ 1Xn

if  = 0Xn

Xn Yn+1

{ , : 1 ≤ n}X0 Yn

= ( , )Xn+1 gn+1 Xn Yn+1 n ≥ 0

{ : 0 ≤ n}Yn

= ( )X0 g0 Y0 = ( , )Xn+1 gn+1 Xn Yn+1 ∀n ≥ 0

XN

P ( ∈ Q| = u) = P [ (u, ) ∈ Q]Xn+1 Xn gn+1 Yn+1 n, u Q

, , ⋅ ⋅ ⋅,Y0 Y1 Yn Un = ( , , ⋅ ⋅ ⋅, )Un hn Y0 Y1 Yn

{ , }Yn+1 Un X = Yn+1 Y = Xn Z = Un−1

{ , }Yn+1 Un−1 |Xn

= ( , )Xn+1 gn+1 Yn+1 Xn = ( , )Un hn Xn Un−1

{ , }Xn+1 Un |Xn ∀n ≥ 0

P ( ∈ Q| = u) = E{ [ ( , )]| = u}Xn+1 Xn IQ gn+1 Xn Yn+1 Xn = E{ [ (u, )]}IQ gn+1 Yn+1 [ ]PX

= P [ (u, ) ∈ Q]gn+1 Yn+1

n

Definition

P ( ∈ Q| = u)Xn+1 Xn n Q u ∈ E XN

{ : 1 ≤ n}Yn = ggn+1 n

P ( ∈ Q| = u) = P [g(u, ) ∈ Q]Xn+1 Xn Yn+1 n

n

P ( = j| = i) = p(i, j)Xn+1 Xn pij n
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P = 

The element  on row  and column  is the probability . Thus, the elements on the th row constitute
the conditional distribution for , given . The transition matrix thus has the property that each row sums to one. Such a
matrix is called a stochastic matrix. We return to the examples. From the propositions on transition probabilities, it is apparent that
each is Markov. Since the function  is the same for all  and the driving random variables corresponding to the  form an iid
class, the sequences must be homogeneous. We may utilize part (b) of the propositions to obtain the one-step transition
probabilities.

. so that  is invariant with . Since  is iid,

 where 

 and E = . If  is iid, then

 ensures  is iid for each  E

We thus have

With the aid of moment generating functions, one may determine distributions for

These calculations are implemented in an m-procedure called branchp. We simply need the distribution for the iid .

% file branchp.m 

% Calculates transition matrix for a simple branching 

% process with specified maximum population. 

disp('Do not forget zero probabilities for missing values of Z') 

PZ = input('Enter PROBABILITIES for individuals  '); 

M  = input('Enter maximum allowable population  '); 

mz = length(PZ) - 1; 

EZ = dot(0:mz,PZ); 

disp(['The average individual propagation is ',num2str(EZ),]) 

P  = zeros(M+1,M+1); 

Z  = zeros(M,M*mz+1); 

k  = 0:M*mz; 

a  = min(M,k); 

z  = 1; 

P(1,1) = 1; 

for i = 1:M                 % Operation similar to genD 

  z = conv(PZ,z); 

  Z(i,1:i*mz+1) = z; 

  [t,p] = csort(a,Z(i,:)); 

  P(i+1,:) = p; 

end 

disp('The transition matrix is P') 

disp('To study the evolution of the process, call for branchdbn') 

[p(i, j)]

p(i, j) i j P ( = j| = i)Xn+1 Xn i

Xn+1 = iXn

g n Yi

Example  Random walk continued16.2.5

(u, ) = u +gn Yn+1 Yn+1 gn n { : 1 ≤ n}Yn

P ( = k| = j) = P (j+Y = k) = P (Y = k −j) =Xn+1 Xn pk−j = P (Y = k)pk

Example  Branching process continued16.2.6

g(j, ) = min {M , }Yn+1 ∑
j

i=1 Zin {0, 1, ⋅ ⋅ ⋅, M} { : 1 ≤ i ≤ M}Zin

=Wjn ∑
j

i=1 Zin { : 1 ≤ n}Wjn j ∈

P ( = k| = j) = { 0 ≤ j ≤ MXn+1 Xn

P ( = k)Wjn

P ( ≥ M)Wjn

for 0 ≤ k < M

for k ≥ M

= , = + , ⋅ ⋅ ⋅, = +⋅ ⋅ ⋅ +W1 Z1 W2 Z1 Z2 WM Z1 ZM

Zin
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PZ = 0.01*[15 45 25 10 5];    % Probability distribution for individuals 

branchp                       % Call for procedure 

Do not forget zero probabilities for missing values of Z 

Enter PROBABILITIES for individuals  PZ 

Enter maximum allowable population  10 

The average individual propagation is 1.45 

The transition matrix is P 

To study the evolution of the process, call for branchdbn 

disp(P)                       % Optional display of generated P 

  Columns 1 through 7 

    1.0000         0         0         0         0         0         0 

    0.1500    0.4500    0.2500    0.1000    0.0500         0         0 

    0.0225    0.1350    0.2775    0.2550    0.1675    0.0950    0.0350 

    0.0034    0.0304    0.1080    0.1991    0.2239    0.1879    0.1293 

    0.0005    0.0061    0.0307    0.0864    0.1534    0.1910    0.1852 

    0.0001    0.0011    0.0075    0.0284    0.0702    0.1227    0.1623 

    0.0000    0.0002    0.0017    0.0079    0.0253    0.0579    0.1003 

    0.0000    0.0000    0.0003    0.0020    0.0078    0.0222    0.0483 

    0.0000    0.0000    0.0001    0.0005    0.0021    0.0074    0.0194 

    0.0000    0.0000    0.0000    0.0001    0.0005    0.0022    0.0068 

    0.0000    0.0000    0.0000    0.0000    0.0001    0.0006    0.0022 

  Columns 8 through 11 

         0         0         0         0 

         0         0         0         0 

    0.0100    0.0025         0         0 

    0.0705    0.0315    0.0119    0.0043 

    0.1481    0.0987    0.0559    0.0440 

    0.1730    0.1545    0.1179    0.1625 

    0.1381    0.1574    0.1528    0.3585 

    0.0832    0.1179    0.1412    0.5771 

    0.0406    0.0698    0.1010    0.7591 

    0.0169    0.0345    0.0590    0.8799 

    0.0062    0.0147    0.0294    0.9468 

Note that . If the population ever reaches zero, it is extinct and no more births can occur. Also, if the maximum
population (10 in this case) is reached, there is a high probability of returning to that value and very small probability of
becoming extinct (reaching zero state).

In this case,

Numerical example

   is Poisson (1)

To simplify writing, use  for . Because of the invariance with , set

p(0, 0) = 1

Example  Inventory problem (continued)16.2.7

g(j, ) = {Dn+1
max {M − , 0}Dn+1

max {j− , 0}Dn+1

for 0 ≤ j < m

for m ≤ j ≤ M

m = 1 M = 3 Dn

D Dn n
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The various cases yield

 iff  imples  
 iff  imples  
 iff  imples  
 iff  imples 

 iff  imples  
 iff  imples  

 is impossible

 iff  imples  
 iff  imples  
 iff  imples  
 is impossible

 so that 

The various probabilities for  may be obtained from a table (or may be calculated easily with cpoisson) to give the transition
probability matrix

P = 

The calculations are carried out “by hand” in this case, to exhibit the nature of the calculations. This is a standard problem in
inventory theory, involving costs and rewards. An m-procedure inventory1 has been written to implement the function .

% file inventory1.m 

% Version of 1/27/97 

% Data for transition probability calculations 

% for (m,M) inventory policy 

M  = input('Enter value M of maximum stock  '); 

m  = input('Enter value m of reorder point  '); 

Y  = input('Enter row vector of demand values  '); 

PY = input('Enter demand probabilities  '); 

states = 0:M; 

ms = length(states); 

my = length(Y); 

% Calculations for determining P 

[y,s] = meshgrid(Y,states); 

T  =  max(0,M-y).*(s < m) + max(0,s-y).*(s >= m); 

P  = zeros(ms,ms); 

for i = 1:ms 

   [a,b] = meshgrid(T(i,:),states); 

   P(i,:) = PY*(a==b)'; 

end 

P 

P ( = k| = j) = p(j, k) = P (g(j, ) = k]Xn+1 Xn Dn+1

g(0, D) = max {3 −D, 0}

g(0, D) = 0 D ≥ 3 p(0, 0) = P (D ≥ 3)

g(0, D) = 1 D = 2 p(0, 1) = P (D = 2)

g(0, D) = 2 D = 1 p(0, 2) = P (D = 1)

g(0, D) = 3 D = 0 p(0, 3) = P (D = 0)

g(1, D) = max {1 −D, 0}

g(1, D) = 0 D ≥ 1 p(1, 0) = P (D ≥ 1)

g(1, D) = 1 D = 0 p(1, 1) = P (D = 0)

g(1, D) = 2, 3

g(2, D) = max {2 −D, 0}

g(2, D) = 0 D ≥ 2 p(2, 0) = P (D ≥ 2)

g(2, D) = 1 D = 1 p(2, 1) = P (D = 1)

g(2, D) = 2 D = 0 p(2, 2) = P (D = 0)

g(2, D) = 3

g(3, D) = max {3 −D, 0} = g(0, D) p(3, k) = p(0, k)

D

⎡

⎣

⎢⎢
⎢

0.0803

0.6321

0.2642

0.0803

0.1839

0.3679

0.3679

0.1839

0.3679

0

0.3679

0.3679

0.3679

0

0

0.3679

⎤

⎦

⎥⎥
⎥

g
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We consider the case , the reorder point . and demand is Poisson (3). We approximate the Poisson distribution
with values up to 20.

inventory1 

Enter value M of maximum stock  5             % Maximum stock 

Enter value m of reorder point  3             % Reorder point 

Enter row vector of demand values  0:20       % Truncated set of demand values 

Enter demand probabilities  ipoisson(3,0:20)  % Demand probabilities 

P = 

    0.1847    0.1680    0.2240    0.2240    0.1494    0.0498 

    0.1847    0.1680    0.2240    0.2240    0.1494    0.0498 

    0.1847    0.1680    0.2240    0.2240    0.1494    0.0498 

    0.5768    0.2240    0.1494    0.0498         0         0 

    0.3528    0.2240    0.2240    0.1494    0.0498         0 

    0.1847    0.1680    0.2240    0.2240    0.1494    0.0498 

, so that 

 for , so that  for 

The resulting transition probability matrix is

P = 

The matrix is an infinite matrix, unless  is simple. If the range of  is  then the state space E is 
.

Various properties of conditional independence, particularly (CI9), (CI10), and (CI12), may be used to establish the following. The
immediate future  may be replaced by any finite future  and the present  may be replaced by any extended present 

. Some results of abstract measure theory show that the finite future  may be replaced by the entire future . Thus,
we may assert

Extended Markov property

 is Markov iff

(M*)  ci  

— □

The Chapman-Kolmogorov equation and the transition matrix

As a special case of the extended Markov property, we have

 ci  for all , 

Setting  and  in (CI9), we get

 ci  for all , 

M = 5 m = 3

Example  Remaining lifetime (continued)16.2.8

g(0, Y ) = Y −1 p(0, k) = P (Y −1 = k) = P (Y = k +1)

g(j, Y ) = j−1 j ≥ 1 p(j, k) = δj−1,k j ≥ 1

⎡

⎣

⎢⎢
⎢⎢⎢
⎢⎢
⎢

p1

1

0

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

p2

0

1

p3

0

0

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⎤

⎦

⎥⎥
⎥⎥⎥
⎥⎥
⎥

Y Y {1, 2, ⋅ ⋅ ⋅, M}

{0, 1, ⋅ ⋅ ⋅, M −1}

Xn+1 Un,n+p Xn

Um,n Un,n+p U n

XN

{ , }U n Um |Um,n ∀0 ≤ m ≤ n

{ , }U n+k Un |Xn+k n ≥ 0 k ≥ 1

g( , ) =U n+k Xn+k Xn+k+m h( , ) =Un Xn+k Xn

{ , }Xn+k+m Xn |Xn+k n ≥ 0 k, m ≥ 1
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This is the Chapman-Kolmogorov equation, which plays a central role in the study of Markov sequences. For a discrete state space
E, with

this equation takes the form

( )  

To see that this is so, consider

Homogeneous case

For this case, we may put ( ) in a useful matrix form. The conditional probabilities  of the form

 invariant in 

are known as the m-step transition probabilities. The Chapman-Kolmogorov equation in this case becomes

( )   E

In terms of the m-step transition matrix P , this set of sums is equivalent to the matrix product

( ) P  = P P

Now

P  = P P  = PP = P , P  = P P  = P , etc.

A simple inductive argument based on ( ) establishes

The product rule for transition matrices

The m-step probability matrix P  = P , the th power of the transition matrix P

— □

For the inventory problem in Example 16.2.7, the three-step transition probability matrix P  is obtained by raising P to the
third power to get

P  = P  = 

— □

We consider next the state probabilities for the various stages. That is, we examine the distributions for the various , letting 
 for each  E. To simplify writing, we consider a finite state space E = , We use  for the

rowmatrix

As a consequence of the product rule, we have

Probability distributions for any period

For a homogeneous Markov sequence, the distribution for any  is determined by the initial distribution (i.e., for ) and the
transition probability matrix P

VERIFICATION

P ( = j| = i) = (i, j)Xn Xm pm,n

CK ′ (i, k) = (i, j) (j, k)pm,q ∑j∈E pm,n pn,q 0 ≤ m < n < q

P ( = k| = i) = E[ ( )| = i] = E{E[ ( )| ]| = i}Xq Xm I{k} Xq Xm I{k} Xq Xn Xm

= E[ ( )| = j] (i, j) = (j, k) (i, j)∑j I{k} Xq Xn pm,n ∑j pn,q pm,n

CK ′ pm

(i, k) = P ( = k| = i)pm Xn+m Xn n

CK ′′ (i, k) = (i, j) (j, k)pm+n ∑j∈E pm pn ∀i, j ∈

= [ (i, k)](m) pm

CK ′′ (m+n) (m) (n)

(2) (1) (1) 2 (3) (2) (1) 3

CK ′′

(m) m m

Example  The inventory problem (continued)16.2.9

(3)

(3) 3

⎡

⎣

⎢
⎢⎢

0.2930

0.2619

0.2993

0.2930

0.2917

0.2730

0.2854

0.2917

0.2629

0.2753

0.2504

0.2629

0.1524

0.1898

0.1649

0.1524

⎤

⎦

⎥
⎥⎥

Xn

(n) = P ( = k)pk Xn k ∈ {1, ⋅ ⋅ ⋅, M} π(n)

π(n) = [ (n) (n) ⋅ ⋅ ⋅ (n)]p1 p2 pM

Xn X0
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Suppose the homogeneous sequence  has finite state-space E = . For any , let  for each 
 E. Put

Then

 the initial probability distribution 
P 

...... 
P =  P  P  = the th-period distribution

The last expression is an immediate consequence of the product rule.

In the inventory system for Examples 3, 7 and 9, suppose the initial stock is . This means that

 [0 0 0 1]

The product of  and  is the fourth row of , so that the distribution for  is

Thus, given a stock of  at startup, the probability is 0.2917 that . This is the probability of one unit in stock at
the end of period number three.

Remarks

A similar treatment shows that for the nonhomogeneous case the distribution at any stage is determined by the initial
distribution and the class of one-step transition matrices. In the nonhomogeneous case, transition probabilities 
depend on the stage .
A discrete-parameter Markov process, or Markov sequence, is characterized by the fact that each member  of the
sequence is conditioned by the value of the previous member of the sequence. This one-step stochastic linkage has made it
customary to refer to a Markov sequence as a Markov chain. In the discrete-parameter Markov case, we use the terms process,
sequence, or chain interchangeably.

The transition diagram and the transition matrix

The previous examples suggest that a Markov chain is a dynamic system, evolving in time. On the other hand, the stochastic
behavior of a homogeneous chain is determined completely by the probability distribution for the initial state and the one-step
transition probabilities  as presented in the transition matrix P. The time-invariant transition matrix may convey a static
impression of the system. However, a simple geometric representation, known as the transition diagram, makes it possible to link
the unchanging structure, represented by the transition matrix, with the dynamics of the evolving system behavior.

A transition diagram for a homogeneous Markov chain is a linear graph with one node for each state and one directed edge for
each possible one-step transition between states (nodes).

We ignore, as essentially impossible, any transition which has zero transition probability. Thus, the edges on the diagram
correspond to positive one-step transition probabilities between the nodes connected. Since for some pair  of states, we may
have  but  we may have a connecting edge between two nodes in one direction, but none in the other. The
system can be viewed as an object jumping from state to state (node to node) at the successive transition times. As we follow the
trajectory of this object, we achieve a sense of the evolution of the system.

Consider, again, the transition matrix P for the inventory problem (rounded to three decimals).

XN {1, 2, ⋅ ⋅ ⋅, M} n ≥ 0 (n)P ( = j)pj Xn

j ∈

π(n) = [ (n) (n) ⋅ ⋅ ⋅ (n)]p1 p2 pM

π(0) =

π(1) = π(0)

π(n) = π(n −1) π(0) = π(0)(n) n n

Example  Inventory problem (continued)16.2.10

M = 3

π(0) =

π(0) P 3 P 3 X3

π(3) = [ (3)   (3)   (3)   (3)] = [0.2930  0.2917  0.2629  0.1524]p0 p1 p2 p3

M = 3 = 1X3

(i, j)pn,n+1

n

Xn+1

p(i, j)

Definition

(i, j)

p(i, j) > 0 p(j, i) = 0

Example  Transition diagram for inventory example16.2.11
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P = 

Figure 16.2.1 shows the transition diagram for this system. At each node corresponding to one of the possible states, the state
value is shown. In this example, the state value is one less than the state number. For convenience, we refer to the node for
state . which has state value , as node . If the state value is zero, there are four possibilities: remain in that condition
with probability 0.080; move to node 1 with probability 0.184; move to node 2 with probability 0.368; or move to node 3 with
probability 0.368. These are represented by the “self loop” and a directed edge to each of the nodes representing states. Each of
these directed edges is marked with the (conditional) transition probability. On the other hand, probabilities of reaching state
value 0 from each of the others is represented by directed edges into the node for state value 0. A similar situation holds for
each other node. Note that the probabilities on edges leaving a node (including a self loop) must total to one, since these
correspond to the transition probability distribution from that node. There is no directed edge from the node 2 to node 3, since
the probability of a transition from value 2 to value 3 is zero. Similary, there is no directed edge from node 1 to either node 2 or
node 3.

Figure one is a transition diagram comprised of multiple shapes all labeled with values from the transition matrix P in Example 11. The most central shape in the figure is a symmetric triangle with longest side
horizontal to the figure and two sides of equal length meeting above the horizontal base. There are small circles located on the triangle at four points, three of which at the vertices, and the fourth at the center of the base

of the triangle. From the top vertex of the triangle, and reading them in a clockwise direction, the small circles are labeled 0, 1, 2, and 3. These circles also divide the base of the triangle into two parts, effectively creating
four sections of the triangle. The two sections of the base are labeled 0.368. The side of the triangle on the left is also labeled 0.368. The right side of the triangle is labeled 0.632. On each of these four sections of the
triangle is a small arrow. On the two sections of the base, the arrows are pointing to the right. On the right side of the triangle, the arrow is pointing towards the top-left of the page. On the left side of the triangle, the

arrow is pointing to the bottom-left of the page. Considered together, these four arrows all indicate motion in a counter-clockwise direction. On the outside of the triangle, at each of its vertices, and connected to the small
circles, are larger circles. Additionally, there is a circle below the triangle, connected to the small circle located on the triangle in the middle of its base. The large circle connected to small circle 0 is labeled, 0.080. The
large circle connected to small circle 1 is labeled, 0.368. The large circle connected to small circle 2 is labeled, 0.368. The large circle connected to small circle 3 is labeled, 0.368. All four large circles include a small
arrow indicating movement in the clockwise direction. Inside the triangle are two curved lines, bowed in different directions, and connecting small circle 0 to small circle 2. The bowed line to the left is labeled, 0.264,

and contains a small arrow pointed upward. The bowed line to the right is labeled 0.368, and contains a small arrow pointed downward. There is a curved line connecting small circle 3 to small circle 0. It is bowed
inward, labeled 0.080, and contains a small arrow pointed to the top-right towards small circle 0. There is another curved line connecting small circle 0 to small circle 1. It is bowed inward, labeled 0.184, and it contains
an arrow pointing to the bottom-right towards small circle 1. There is a final curved line connecting circle 3 to circle 1. It is bowed inward, labeled 0.184, and it contains a small arrow pointing to the right towards the

direction of small circle 1.  
Figure 16.2.1. Transition diagram for the inventory system of Example 16.2.11

There is a one-one relation between the transition diagram and the transition matrix P. The transition diagram not only aids in
visualizing the dynamic evolution of a chain, but also displays certain structural properties. Often a chain may be decomposed
usefully into subchains. Questions of communication and recurrence may be answered in terms of the transition diagram. Some
subsets of states are essentially closed, in the sense that if the system arrives at any one state in the subset it can never reach a state
outside the subset. Periodicities can sometimes be seen, although it is usually easier to use the diagram to show that periodicities
cannot occur.

Classification of states

Many important characteristics of a Markov chain can be studied by considering the number of visits to an arbitrarily chosen, but
fixed, state.

For a fixed state , let

 = the time (stage number) of the first visit to state  (after the initial period). 
, the probability of reaching state  for the first time from state  in  steps. 

, the probability of ever reaching state  from state .

A number of important theorems may be developed for  and , although we do not develop them in this treatment. We simply
quote them as needed. An important classification of states is made in terms of .

State  is said to be transient iff ,

and is said to be recurrent iff .

Remark. If the state space E is infinite, recurrent states fall into one of two subclasses: positive or null. Only the positive case is
common in the infinite case, and that is the only possible case for systems with finite state space.

⎡

⎣

⎢⎢
⎢

0.080

0.632

0.264

0.080

0.184

0.368

0.368

0.184

0.368

0

0.368

0.368

0.368

0

0

0.368

⎤

⎦

⎥⎥
⎥

k +1 k k

Definition

j

T1 j

(i, j) = P ( = k| = i)Fk Ti X0 j i k

F (i, j) = P ( < ∞| = i) = (i, j)Ti X0 ∑∞
k=1 Fk j i

Fk F

F

Definition

j F (j, j) < 1

F (j, j) = 1
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Sometimes there is a regularity in the structure of a Markov sequence that results in periodicities.

For state , let

If , then state  is periodic with period ; otherwise, state  is aperiodic.

Usually if there are any self loops in the transition diagram (positive probabilities on the diagonal of the transition matrix P) the
system is aperiodic. Unless stated otherwise, we limit consideration to the aperiodic case.

A state  is called ergodic iff it is positive, recurrent, and aperiodic.

It is called absorbing iff .

A recurrent state is one to which the system eventually returns, hence is visited an infinity of times. If it is absorbing, then once it is
reached it returns each step (i.e., never leaves).

An arrow notation is used to indicate important relations between states.

We say

State  reaches , denoted , iff  for some . 
State  and  communicate, denoted  iff both  reaches  and  reaches .

By including  reaches  in all cases, the relation  is an equivalence relation (i.e., is reflexive, transitive, and idempotent). With
this relationship, we can define important classes.

A class of states is communicating iff every state in the class may be reached from every other state in the class (i.e. every pair
communicates). A class is closed if no state outside the class can be reached from within the class.

The following important conditions are intuitive and may be established rigorously:

 implies  is recurrent iff  is recurrent 
 and  recurrent implies  
 and  recurrent implies  recurrent

Limit theorems for finite state space sequences

The following propositions may be established for Markov sequences with finite state space:

There are no null states, and not all states are transient.
If a class of states is irreducible (i.e.,has no proper closed subsets), then

All states are recurrent
All states are aperiodic or all are periodic with the same period.
If a class C is closed, irreducible, and i is a transient state (necessarily not in ). 
then  for all 

A limit theorem

If the states in a Markov chain are ergodic (i.e., positive, recurrent, aperiodic), then

  

If, as above, we let

Definition

j

δ = greatest common denominatior of {n : (j, j) > 0}pn

δ > 1 j δ j

Definition

j

F (j, j) = 1

Definition

i j i → j (i, j) > 0pn n > 0

i j i ↔ j i j j i

j j ↔

Definition

i ↔ j i j

i → j i i ↔ j

i → j i j

C

F (i, j) = F (i, k) j, k ∈ C

(i, j) = > 0limnpn πj = 1∑M
j=1 πj = p(i, j)πj ∑M

i=1 πi
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 so that  P

the result above may be written

 P    P

where

P  = 

Each row of P  P  is the long run distribution .

A distribution is stationary iff

P

The result above may be stated by saying that the long-run distribution is the stationary distribution. A generating function analysis
shows the convergence is exponential in the following sense

|P  - P |  

where  is the largest absolute value of the eigenvalues for P other than .

We use MATLAB to check the eigenvalues for the transition probability P and to obtain increasing powers of P. The
convergence process is readily evident.

P = 

    0.0803    0.1839    0.3679    0.3679 

    0.6321    0.3679         0         0 

    0.2642    0.3679    0.3679         0 

    0.0803    0.1839    0.3679    0.3679 

E = abs(eig(P)) 

E = 

   1.0000 

   0.2602 

   0.2602 

   0.0000 

   format long 

N = E(2).^[4 8 12] 

N = 0.00458242348096   0.00002099860496   0.00000009622450 

>> P4 = P^4 

P4 = 

   0.28958568915950   0.28593792666752   0.26059678211310   0.16387960205989 

   0.28156644866011   0.28479107531968   0.26746979455342   0.16617268146679 

   0.28385952806702   0.28250048636032   0.26288737107246   0.17075261450021 

   0.28958568915950   0.28593792666752   0.26059678211310   0.16387960205989 

  

>> P8 = P^8 

P8 = 

π(n) = [ (n)  (n) ⋅ ⋅ ⋅ (n)]p1 p2 pM π(n) = π(0) n

π(n) = π(0) n → π(0) 0

0

⎡

⎣

⎢⎢⎢

π1

π1

⋅ ⋅ ⋅

π1

π2

π2

⋅ ⋅ ⋅

π2

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

πm

πm

⋅ ⋅ ⋅

πm

⎤

⎦

⎥⎥⎥

=0 limn
n π = π(n)limn

Definition

π = π

n
0 ≤ α|λ|

n

|λ| λ = 1

Example  The long run distribution for the inventory example16.2.12
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   0.28580046500309   0.28471421248816   0.26315895715219   0.16632636535655 

   0.28577030590344   0.28469190218618   0.26316681807503   0.16637097383535 

   0.28581491438224   0.28471028095839   0.26314057837998   0.16633422627939 

   0.28580046500309   0.28471421248816   0.26315895715219   0.16632636535655 

  

>> P12 = P^12 

P12 = 

   0.28579560683438   0.28470680858266   0.26315641543927   0.16634116914369 

   0.28579574073314   0.28470680714781   0.26315628010643   0.16634117201261 

   0.28579574360207   0.28470687626748   0.26315634631961   0.16634103381085 

   0.28579560683438   0.28470680858266   0.26315641543927   0.16634116914369 

>> error4 = max(max(abs(P^16 - P4)))    % Use P^16 for P_0 

error4 =  0.00441148012334              % Compare with 0.0045824... 

>> error8 = max(max(abs(P^16 - P8))) 

error8 = 2.984007206519035e-05          % Compare with  0.00002099 

>> error12 = max(max(abs(P^16 - P12))) 

error12 = 1.005660185959822e-07         % Compare with 0.00000009622450 

The convergence process is clear, and the agreement with the error is close to the predicted. We have not determined the factor 
, and we have approximated the long run matrix  with . This exhibits a practical criterion for sufficient convergence. If

the rows of  agree within acceptable precision, then  is sufficiently large. For example, if we consider agreement to four
decimal places sufficient, then

P10 = P^10 

P10 = 

    0.2858    0.2847    0.2632    0.1663 

    0.2858    0.2847    0.2632    0.1663 

    0.2858    0.2847    0.2632    0.1663 

    0.2858    0.2847    0.2632    0.1663 

shows that  is quite sufficient.

Simulation of finite homogeneous Markov sequences 

In the section, "The Quantile Function", the quantile function is used with a random number generator to obtain a simple random
sample from a given population distribution. In this section, we adapt that procedure to the problem of simulating a trajectory for a
homogeneous Markov sequences with finite state space.

Elements and terminology

1. States and state numbers. We suppose there are m states, usually carrying a numerical value. For purposes of analysis and
simulation, we number the states 1 through m. Computation is carried out with state numbers; if desired, these can be translated
into the actual state values after computation is completed.

2. Stages, transitions, period numbers, trajectories and time. We use the term stage and period interchangeably. It is customary
to number the periods or stages beginning with zero for the initial stage. The period number is the number of transitions to
reach that stage from the initial one. Zero transitions are required to reach the original stage (period zero), one transition to
reach the next (period one), two transitions to reach period two, etc. We call the sequence of states encountered as the system
evolves a trajectory or a chain. The terms “sample path” or “realization of the process” are also used in the literature. Now if
the periods are of equal time length, the number of transitions is a measure of the elapsed time since the chain originated. We
find it convenient to refer to time in this fashion. At time  the chain has reached the period numbered . The trajectory is 

 stages long, so time or period number is one less than the number of stages.

a P0 P 16

P n n

n = 10

k k

k +1
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3. The transition matrix and the transition distributions. For each state, there is a conditional transition probability distribution
for the next state. These are arranged in a transition matrix. The th row consists of the transition distribution for selecting the
next-period state when the current state number is . The transition matrix  thus has nonnegative elements, with each row
summing to one. Such a matrix is known as a stochastic matrix.

The fundamental simulation strategy

1. A fundamental strategy for sampling from a given population distribution is developed in the unit on the Quantile Function. If 
 is the quantile function for the population distribution and  is a random variable distributed uniformly on the interval [0, 1],

then  has the desired distribution. To obtain a sample from the uniform distribution use a random number generator.
This sample is “transformed” by the quantile function into a sample from the desired distribution.

2. For a homogeneous chain, if we are in state , we have a distribution for selecting the next state. If we use the quantile function
for that distribution and a number produced by a random number generator, we make a selection of the next state based on that
distribution. A succession of these choices, with the selection of the next state made in each case from the distribution for the
current state, constitutes a valid simulation of a trajectory.

Arrival times and recurrence times

The basic simulation produces one or more trajectories of a specified length. Sometimes we are interested in continuing until first
arrival at (or visit to) a specific target state or any one of a set of target states. The time (in transitions) to reach a target state is one
less than the number of stages in the trajectory which begins with the initial state and ends with the target state reached.

If the initial state is not in the target set, we speak of the arrival time.
If the initial state is in the target set, the arrival time would be zero. In this case, we do not stop at zero but continue until the
next visit to a target state (possibly the same as the initial state). We call the number of transitions in this case the recurrence
time.
In some instances, it may be desirable to know the time to complete visits to a prescribed number of the target states. Again
there is a choice of treatment in the case the initial set is in the target set.

Data files

For use of MATLAB in simulation, we find it convenient to organize the appropriate data in an m-file.

In every case, we need the transition matrix . Its size indicates the number of states (say by the length of any row or column).
If the states are to have values other than the state numbers, these may be included in the data file, although they may be added
later, in response to a prompt.
If long trajectories are to be produced, it may be desirable to determine the fraction of times each state is realized. A
comparison with the long-run probabilities for the chain may be of interest. In this case, the data file may contain the long-run
probability distribution. Usually, this is obtained by taking one row of a sufficiently large power of the transition matrix. This
operation may be performed after the data file is called for but before the simulation procedure begins.

An example data file used to illustrate the various procedures is shown below. These data were generated artificially and have no
obvious interpretations in terms of a specific systems to be modeled. However, they are sufficiently complex to provide nontrivial
illustrations of the simulation procedures.

% file markovp1.m 

% Artificial data for a Markov chain, used to 

% illustrate the operation of the simulation procedures. 

P = [0.050 0.011 0.155 0.155 0.213 0.087 0.119 0.190 0.008 0.012 

     0.103 0.131 0.002 0.075 0.013 0.081 0.134 0.115 0.181 0.165 

     0.103 0.018 0.128 0.081 0.137 0.180 0.149 0.051 0.009 0.144 

     0.051 0.098 0.118 0.154 0.057 0.039 0.153 0.112 0.117 0.101 

     0.016 0.143 0.200 0.062 0.099 0.175 0.108 0.054 0.062 0.081 

     0.029 0.085 0.156 0.158 0.011 0.156 0.088 0.090 0.055 0.172 

     0.110 0.059 0.020 0.212 0.016 0.113 0.086 0.062 0.204 0.118 

     0.084 0.171 0.009 0.138 0.140 0.150 0.023 0.003 0.125 0.157 

     0.105 0.123 0.121 0.167 0.149 0.040 0.051 0.059 0.086 0.099 

i

i P

Q U

X = Q(U)

k

P
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     0.192 0.093 0.191 0.061 0.094 0.123 0.106 0.065 0.040 0.035]; 

states = 10:3:37; 

PI = [0.0849 0.0905 0.1125 0.1268 0.0883 0.1141 ... 

      0.1049 0.0806 0.0881 0.1093];         % Long-run distribution 

The largest absolute value of the eigenvalues (other than one) is 0.1716. Since , we take any row of  as
the long-run probabilities. These are included in the matrix PI in the m-file, above. The examples for the various procedures below
use this set of artificial data, since the purpose is to illustrate the operation of the procedures.

The setup and the generating m-procedures

The m-procedure chainset sets up for simulation of Markov chains. It prompts for input of the transition matrix P, the states (if
different from the state numbers), the long-run distribution (if available), and the set of target states if it is desired to obtain arrival
or recurrence times. The procedure determines the number of states from the size of P and calculates the information needed for the
quantile function. It then prompts for a call for one of the generating procedures.

The m-procedure mchain, as do the other generating procedures below, assumes chainset has been run, so that commonly used data
are available in appropriate form. The procedure prompts for the number of stages (length of the trajectory to be formed) and for
the initial state. When the trajectory is produced, the various states in the trajectory and the fraction or relative frequency of each is
displayed. If the long-run distribution has been supplied by chainset, this distribution is included for comparison. In the examples
below, we reset the random number generator (set the “seed” to zero) for purposes of comparison. However, in practice, it may be
desirable to make several runs without resetting the seed, to allow greater effective “randomness.”

markovp1                              % Call for data 

chainset                              % Call for setup procedure 

Enter the transition matrix  P 

Enter the states if not 1:ms  states  % Enter the states 

States are 

     1    10 

     2    13 

     3    16 

     4    19 

     5    22 

     6    25 

     7    28 

     8    31 

     9    34 

    10    37 

Enter the long-run probabilities  PI  % Enter the long-run distribution 

Enter the set of target states [16 22 25]   % Not used with mchain 

Call for for appropriate chain generating procedure 

rand('seed',0) 

mchain                                % Call for generating procedure 

Enter the number n of stages   10000  % Note the trajectory length 

Enter the initial state  16 

     State     Frac       P0          % Statistics on the trajectory 

   10.0000    0.0812    0.0849 

   13.0000    0.0952    0.0905 

   16.0000    0.1106    0.1125 

≈ 5.6 ⋅0.171616 10−13 P 16

Example 16.2.13
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   19.0000    0.1226    0.1268 

   22.0000    0.0880    0.0883 

   25.0000    0.1180    0.1141 

   28.0000    0.1034    0.1049 

   31.0000    0.0814    0.0806 

   34.0000    0.0849    0.0881 

   37.0000    0.1147    0.1093 

To view the first part of the trajectory of states, call for TR 

disp(TR') 

     0     1     2     3     4     5     6     7     8     9    10 

    16    16    10    28    34    37    16    25    37    10    13 

The fact that the fractions or relative frequencies approximate the long-run probabilities is an expression of a fundamental limit
property of probability theory. This limit property, which requires somewhat sophisticated technique to establish, justifies a
relative frequency interpretation of probability.

The procedure arrival assumes the setup provided by chainset, including a set  of target states. The procedure prompts for the
number r of repetitions and the initial state. Then it produces  succesive trajectories, each starting with the prescribed initial
state and ending on one of the target states. The arrival times vary from one run to the next. Various statistics are computed and
displayed or made available. In the single-run case ( ), the trajectory may be displayed. An auxiliary procedure plotdbn
may be used in the multirun case to plot the distribution of arrival times.

rand('seed',0) 

arrival                                  % Assumes chainset has been run, as above 

Enter the number of repetitions  1       % Single run case 

The target state set is: 

    16    22    25 

Enter the initial state  34              % Specified initial state 

 The arrival time is 6                   % Data on trajectory 

The state reached is 16 

To view the trajectory of states, call for TR 

disp(TR')                                % Optional call to view trajectory 

      0     1     2     3     4     5     6 

     34    13    10    28    34    37    16 

rand('seed',0) 

arrival 

Enter the number of repetitions  1000    % Call for 1000 repetitions 

The target state set is: 

    16    22    25 

Enter the initial state  34              % Specified initial state 

 The result of 1000 repetitions is:      % Run data (see optional calls below) 

Term state  Rel Freq   Av time 

   16.0000    0.3310    3.3021 

   22.0000    0.3840    3.2448 

   25.0000    0.2850    4.3895 

The average arrival time is 3.59 

E

r

r = 1

Example  Arrival time to a target set of states16.2.14
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Figure two is a graph labeled, time distribution. Its horizontal axis is labeled time in number of transitions. Its vertical axis is labeled relative frequency. The values on the horizontal axis range from 0 to 25 in
increments of 5. The values on the vertical axis range from 0 to 0.35 in increments of 0.05. The data plotted on the graph are a series of small circles following a consistent curved shape. The shape, or pattern,

created by the small circles, would begin at approximately (1, 0.3), in the top-left side of the graph, and would move to the right with a strong negative slope, but would decrease at a decreasing rate until
approximately (15, 0), where the shape would continue horizontally. Along this general shape, the small circles initially appear to be spread apart very far. There is one small circle for every horizontal value from
1 to 19, so as the slope of the general shape of the plotted circles becomes more horizontal, the circles begin to be plotted more closely. After the circle at approximately (19, 0), there is one final circle furthest to

the right, located at approximately (23, 0).  
Figure 16.2.2. Time distribution for Example 16.2.14

It would be difficult to establish analytically estimates of arrival times. The simulation procedure gives a reasonable “feel” for
these times and how they vary.

The procedure recurrence is similar to the procedure arrival. If the initial state is not in the target set, it behaves as does the
procedure arrival and stops on the first visit to the target set. However, if the initial state is in the target set, the procedures are
different. The procedure arrival stops with zero transitions, since it senses that it has “arrived.” We are usually interested in
having at least one transition– back to the same state or to another state in the target set. We call these times recurrence times.

rand('seed',0) 

recurrence 

Enter the number of repititions  1 

The target state set is: 

     16     22     25 

Enter the initial state  22

Figure three is a graph labeled, time distribution. Its horizontal axis is labeled time in number of transitions. Its vertical axis is labeled relative frequency. The values on the horizontal axis range from 0 to 25 in
increments of 2. The values on the vertical axis range from 0 to 0.35 in increments of 0.05. The data plotted on the graph are a series of small circles following a consistent curved shape. The shape, or pattern,

created by the small circles, would begin at approximately (1, 0.34), in the top-left side of the graph, and would move to the right with a strong negative slope, but would decrease at a decreasing rate until
approximately (12, 0.01), where the shape would continue horizontally. Along this general shape, the small circles initially appear to be spread apart very far. There is one small circle for every horizontal value

from 1 to 18, so as the slope of the general shape of the plotted circles becomes more horizontal, the circles begin to be plotted more closely. After the circle at approximately (18, 0), there is one final circle
furthest to the right, located at approximately (20, 0).  

Figure 16.2.3. Transition time distribution for Example 16.2.15

The recurrence time is 1 

The state reached is 16 

To view the trajectory of state numbers, call for TR 

disp(TR')    0     1 

            22    16 

recurrence 

Enter the number of repititions  1000 

The target state set is: 

     16     22     25 

Enter the initial state  25 

The result of 1000 repetitions is: 

Term state  Rel Freq   Av time 

   16.0000    0.3680    2.8723 

   22.0000    0.2120    4.6745 

   25.0000    0.4200    3.1690 

The standard deviation is 3.207 

The minimum arrival time is 1 

The maximum arrival time is 23 

To view the distribution of arrival times, call for dbn 

To plot the arrival time distribution, call for plotdbn 

plotdbn                                 % See Figure 16.2.2

Example 16.2.15
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   The average recurrence time is 3.379 

The standard deviation is 3.0902 

The minimum recurrence time is 1 

The maximum recurrence time is 20 

To view the distribution of recurrence times, call for dbn 

To plot the recurrence time distribution, call for plotdbn 

% See Figure 16.2.3 

The procedure kvis stops when a designated number  of states are visited. If  is greater than the number of target states, or if no 
is designated, the procedure stops when all have been visited. For , the behavior is the same as arrival. However, that case is
better handled by the procedure arrival, which provides more statistics on the results.

rand('seed',0) 

kvis                % Assumes chainset has been run 

Enter the number of repetitions  1 

The target state set is: 

     16     22     25 

Enter the number of target states to visit  2 

Enter the initial state  34 

The time for completion is 7 

To view the trajectory of states, call for TR 

disp(TR') 

      0     1     2     3     4     5     6     7 

     34    13    10    28    34    37    16    25 

rand('seed',0) 

kvis 

Enter the number of repetitions  100 

The target state set is: 

     16     22     25 

Enter the number of target states to visit    % Default-- visit all three 

Enter the initial state  31 

The average completion time is 17.57 

The standard deviation is 8.783 

The minimum completion time is 5 

The maximum completion time is 42 

To view a detailed count, call for D. 

The first column shows the various completion times; 

the second column shows the numbers of trials yielding those times

The first goal of this somewhat sketchy introduction to Markov processes is to provide a general setting which gives insight into
the essential character and structure of such systems. The important case of homogenous chains is introduced in such a way that
their algebraic structure appears as a logical consequence of the Markov propertiy. The general theory is used to obtain some tools
for formulating homogeneous chains in practical cases. Some MATLAB tools for studying their behavior are applied to an artificial
example, which demonstrates their general usefulness in studying many practical, applied problems.

k k k

k = 1

Example 16.2.16
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16.3: Problems on Conditional Independence, Given a Random Vector

The pair  ci .  ~ exponential ( ), given ;  ~ exponential , given ; and  ~ uniform [1, 2].
Determine a general formula for , then evaluate for , .

Answer

, 

For , , , 

A small random sample of size  is taken to determine the proportion of the student body which favors a proposal to
expand the student Honor Council by adding two additional members “at large.” Prior information indicates that this
proportion is about 0.6 = 3/5. From a Bayesian point of view, the population proportion is taken to be the value of a random
variable . It seems reasonable to assume a prior distribution  ~ beta (4,3), giving a maximum of the density at (4 - 1)/(4 + 3
- 2) = 3/5. Seven of the twelve interviewed favor the proposition. What is the best mean-square estimate of the proportion,
given this result? What is the conditional distribution of , given this result?

Answer

 ~ Beta ( ), , , , 

Let  be a random sample, given . Set . Suppose  conditionally geometric ,
given ; i.e., suppose  for all . If  ~ uniform on [0, 1], determine the best mean
square estimator for , given .

Answer

, 

 

Exercise 16.3.1

{X,Y } |H X u/3 H = u Y (u/5) H = u H

P (X > r,Y > s) r = 3 s = 10

P (X > r,Y > s|H = u) = =e−ur/3eus/5 e−au a = +
r

3

s

5

P (X > r,Y > s) = ∫ (u) du =  du = [ − ]e−aufH ∫ 2

1
e−au 1

a
e−a e−2a

r = 3 s = 10 a = 3 P (X > 3,Y > 10) = ( − ) = 0.0158
1

3
e−3 e−6

Exercise 16.3.2

n = 12

H H

H

H r, s r = 4 s = 3 n = 12 k = 7

E[H|S = k] = = =
k+r

n+r+s

7 +4

12 +4 +3

11

19

Exercise 16.3.3

{ : 1 ≤ i ≤ n}Xi H W = ( , , ⋅ ⋅ ⋅, )X1 X2 Xn X (u)

H = u P (X = k|H = u) = u(1 −u)k k ≥ 0 H

H W

E[H|W = k] = =
E[H (W )]I{k}

E[ (W )I{k}

E[H (W )|H]I{k}

E[ (W )|HI{k}

=
∫ uP (W = k|H = u) (u) dufH

∫ P (W = k|H = u) (u) dufH
k = ( , , ⋅ ⋅ ⋅, )k1 k2 kn

P (W = k|H = u) = u(1 −u = (1 −u∏n

i=1 )ki un )k
∗

=k∗ ∑n

i=1 ki

E[H|W = k] = = ⋅ =
(1 −u  du∫ 1

0
un+1 )k

∗

(1 −u  du∫ 1

0
un )k

∗

Γ(n+2)Γ( +1)k∗

Γ(n+1 + +2)k∗

Γ(n+ +2)k∗

Γ(n+1)Γ( +1)k∗

n+1

n+ +2k∗
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Let  be a random sample, given . Set . Suppose  conditionally Poisson ,
given ; i.e., suppose . If  ~ gamma , determine the best mean square estimator
for , given .

Answer

Suppose  is independent and  ci . Use properties of conditional expectation and conditional independence to
show that

 a.s.

Answer

 a.s. by (CI6) and

 a.s. by (CE5).

Consider the composite demand  introduced in the section on Random Sums in "Random Selecton"

 where , 

Suppose  is independent,  ci  for all , and , invariant with . Show that 
 a.s..

Answer

 a.s.

 a.s.

 a.s.

The transition matrix  for a homogeneous Markov chain is as follows (in m-file npr16_07.m):

Exercise 16.3.4

{ : 1 ≤ i ≤ n}Xi H W = ( , , ⋅ ⋅ ⋅, )X1 X2 Xn X (u)

H = u P (X = k|H = u) = /k!e−uuk H (m,λ)

H W

E[H|W = k] =
∫ uP (W = k|H = u) (u) dufH

∫ P (W = k|H = u) (u) dufH

P (W = k|H = u) = = =∏n
i=1 e

−u u
ki

!ki
e−nu u

k∗

A
k∗ ∑n

i=1 ki

(u) =fH
λmum−1e−λu

Γ(m)

E[H|W = k] = = ⋅ =
 du∫ ∞

0 u +mk∗

e−(λ+n)u

 du∫ ∞
0 u +m−1k∗

e−(λ+n)u

Γ(m+ +1)k∗

(λ+n) +m+1k∗

(λ+n) +mk∗

Γ(m+ )k∗

m+k∗

λ+n

Exercise 16.3.5

{N ,H} {N ,Y } |H

E[g(N)h(Y )|H] = E[g(N)]E[h(Y )|H]

E[g(N)h(H)|H] = E[g(N)|H]E[h(Y )|H]

E[g(N)|H] = E[g(N)]

Exercise 16.3.6

D

D = (N)∑∞
n=0 I{k} Xn =Xn ∑n

k=0 Yk = 0Y0

{N ,H} {N , }Yi |H i E[ |H] = e(H)Yi i

E[D|H] = E[N ]E[Y |H]

E[D|H] = E[ (N) |H]∑∞
n=1 I{n} Xn

E[ (N) |H] = E[ (N) |H] = P (N = n)E[Y |H] = P (N = n)nE[Y |H]I{n} Xn ∑n
k=1 I{n} Yk ∑n

k=1

E[D|H] = nP (N = n)E[Y |H] = E[N ]E[Y |H]∑∞
n=1

Exercise 16.3.7

P

P =

⎡

⎣

⎢⎢⎢⎢⎢⎢

0.23

0.29

0.22

0.32

0.08

0.32

0.41

0.07

0.15

0.23

0.02

0.10

0.31

0.05

0.31

0.22

0.08

0.14

0.33

0.09

0.21

0.12

0.26

0.15

0.29

⎤

⎦

⎥⎥⎥⎥⎥⎥

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10849?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/15%3A_Random_Selection/15.01%3A__Random_Selection
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/17%3A_Appendices/17.08%3A_Matlab_files_for_Problems_in_Applied_Probability


16.3.3 https://stats.libretexts.org/@go/page/10849

a. Obtain the absolute values of the eigenvalues, then consider increasing powers of  to observe the convergence to the long
run distribution.

b. Take an arbitrary initial distribution  (as a row matrix). The product  is the distribution for stage . Note what
happens as  becomes large enough to give convergence to the long run transition matrix. Does the end result change with
change of initial distribution ?

Answer

ev = abs(eig(P))' 

ev = 1.0000    0.0814    0.0814    0.3572    0.2429 

a = ev(4).^[2 4 8 16 24] 

a = 0.1276    0.0163    0.0003    0.0000    0.0000 

% By P^16 the rows agree to four places 

p0 = [0.5 0 0 0.3 0.2];     % An arbitrarily chosen p0 

p4 = p0*P^4 

p4 =    0.2297    0.2622    0.1444    0.1644    0.1992 

p8 = p0*P^8 

p8 =    0.2290    0.2611    0.1462    0.1638    0.2000 

p16 = p0*P^16 

p16 =   0.2289    0.2611    0.1462    0.1638    0.2000 

p0a = [0 0 0 0 1];          % A second choice of p0 

p16a = p0a*P^16 

p16a =  0.2289    0.2611    0.1462    0.1638    0.2000

The transition matrix  for a homogeneous Markov chain is as follows (in m-file npr16_08.m):

a. Note that the chain has two subchains, with states {1, 2, 3} and {4, 5}. Draw a transition diagram to display the two
separate chains. Can any state in one subchain be reached from any state in the other?

b. Check the convergence as in part (a) of Exercise 16.3.7. What happens to the state probabilities for states 6 and 7 in the
long run? What does that signify for these states? Can these states be reached from any state in either of the subchains?
How would you classify these states?

Answer

Increasing power  show the probability of being in states 6, 7 go to zero. These states cannot be reached from any of the
other states.

The transition matrix  for a homogeneous Markov chain is as follows (in m-file npr16_09.m):

P

p0 p0 ∗ pk k

k

p0

Exercise 16.3.8

P

P =

⎡

⎣

⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢

0.2

0.6

0.2

0

0

0.1

0.1

0.5

0.1

0.7

0

0

0.3

0.2

0.3

0.3

0.1

0

0

0

0.1

0

0

0

0.6

0.5

0.2

0.2

0

0

0

0.4

0.5

0.1

0.2

0

0

0

0

0

0.1

0.2

0

0

0

0

0

0.2

0

⎤

⎦

⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥

pn

Exercise 16.3.9

P
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a. Check the transition matrix  for convergence, as in part (a) of Exercise 16.3.7. How many steps does it take to reach
convergence to four or more decimal places? Does this agree with the theoretical result?

b. Examine the long run transition matrix. Identify transient states.
c. The convergence does not make all rows the same. Note, however, that there are two subgroups of similar rows. Rearrange

rows and columns in the long run Matrix so that identical rows are grouped. This suggests subchains. Rearrange the rows
and columns in the transition matrix  and see that this gives a pattern similar to that for the matrix in Exercise 16.7.8.
Raise the rearranged transition matrix to the power for convergence.

Answer

Examination of  suggests set {2, 7} and {3, 4, 6} of states form subchains. Rearrangement of  may be done as follows:

PA = P([2 7 3 4 6 1 5], [2 7 3 4 6 1 5]) 

PA = 

    0.6000    0.4000         0         0         0         0         0 

    0.5000    0.5000         0         0         0         0         0 

         0         0    0.2000    0.5000    0.3000         0         0 

         0         0    0.6000    0.1000    0.3000         0         0 

         0         0    0.2000    0.7000    0.1000         0         0 

    0.2000    0.1000    0.1000    0.3000         0    0.1000    0.2000 

    0.2000    0.2000    0.1000    0.2000    0.1000    0.2000         0 

PA16 = PA^16 

PA16 = 

    0.5556    0.4444         0         0         0         0         0 

    0.5556    0.4444         0         0         0         0         0 

         0         0    0.3571    0.3929    0.2500         0         0 

         0         0    0.3571    0.3929    0.2500         0         0 

         0         0    0.3571    0.3929    0.2500         0         0 

    0.2455    0.1964    0.1993    0.2193    0.1395    0.0000    0.0000 

    0.2713    0.2171    0.1827    0.2010    0.1279    0.0000    0.0000 

It is clear that original states 1 and 5 are transient.

Use the m-procedure inventory1 (in m-file inventory1.m) to obtain the transition matrix for maximum stock , reorder
point , and demand  ~ Poisson(4).

a. Suppose initial stock is six. What will the distribution for ,  (i.e., the stock at the end of periods 1, 3, 5, before
restocking)?

b. What will the long run distribution be?

Answer

P =

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢

0.1

0

0

0

0.2

0

0

0.2

0.6

0

0

0.2

0

0.5

0.1

0

0.2

0.6

0.1

0.2

0

0.3

0

0.5

0.1

0.2

0.7

0

0.2

0

0

0

0

0

0

0

0

0.3

0.3

0.1

0.1

0

0.1

0.4

0

0

0.2

0

0.5

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥

P

P

p16 P

Exercise 16.3.10

M = 8

m = 3 D

Xn n = 1, 3, 5
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inventory1 

Enter value M of maximum stock  8 

Enter value m of reorder point  3 

Enter row vector of demand values  0:20 

Enter demand probabilities  ipoisson(4,0:20) 

Result is in matrix P 

p0 = [0 0 0 0 0 0 1 0 0]; 

p1 = p0*P 

p1 = 

  Columns 1 through 7 

    0.2149    0.1563    0.1954    0.1954    0.1465    0.0733    0.0183 

  Columns 8 through 9 

         0         0 

p3 = p0*P^3 

p3 = 

  Columns 1 through 7 

    0.2494    0.1115    0.1258    0.1338    0.1331    0.1165    0.0812 

  Columns 8 through 9 

    0.0391    0.0096 

p5 = p0*P^5 

p5 = 

  Columns 1 through 7 

    0.2598    0.1124    0.1246    0.1311    0.1300    0.1142    0.0799 

  Columns 8 through 9 

    0.0386    0.0095 

a = abs(eig(P))' 

a = 

  Columns 1 through 7 

    1.0000    0.4427    0.1979    0.0284    0.0058    0.0005    0.0000 

  Columns 8 through 9 

    0.0000    0.0000 

a(2)^16 

ans = 

   2.1759e-06       % Convergence to at least five decimals for P^16 

pinf = p0*P^16      % Use arbitrary p0,  pinf approx p0*P^16 

pinf =  Columns 1 through 7 

    0.2622    0.1132    0.1251    0.1310    0.1292    0.1130    0.0789 

  Columns 8 through 9 

    0.0380    0.0093 

This page titled 16.3: Problems on Conditional Independence, Given a Random Vector is shared under a CC BY 3.0 license and was authored,
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17.1: Appendix A to Applied Probability- Directory of m-functions and m-procedures
We use the term m-function to designate a user-defined function as distinct from the basic MATLAB functions which are part of the
MATLAB package. For example, the m-function minterm produces the specified minterm vector. An m-procedure (or sometimes a
procedure) is an m-file containing a set of MATLAB commands which carry out a prescribed set of operations. Generally, these
will prompt for (or assume) certain data upon which the procedure is carried out. We use the term m-program to refer to either an
m-function or an m-procedure.

In addition to the m-programs there is a collection of m-files with properly formatted data which can be entered into the workspace
by calling the file.

Although the m-programs were written for MATLAB version 4.2, they work for versions 5.1, 5.2, and 7.04. The latter versions
offer some new features which may make more efficient implementation of some of the m-programs, and which make possible
some new ones. With one exception (so noted), these are not explored in this collection.

MATLAB features 
Utilization of MATLAB resources is made possible by a systematic analysis of some features of the basic probability model. In
particular, the minterm analysis of logical (or Boolean) combinations of events and the analysis of the structure of simple random
variables with the aid of indicator functions and minterm analysis are exploited.

A number of standard features of MATLAB are utilized extensively. In addition to standard matrix algebra, we use:

Array arithmetic. This involves element by element calculations. For example, if a, b  are matrices of the same size, then 
a.*b  is the matrix obtained by multiplying corresponding elements in the two matrices to obtain a new matrix of the

same size. 
Relational operations, such as less than, equal, etc. to obtain zero-one matrices with ones at element positions where the
conditions are met. 
Logical operations on zero-one matrices utilizing logical operators and, or, and not, as well as certain related functions such
as any, all, not, find, etc. Note. Relational operations and logical operations produce zero-one arrays, called logical arrays,
which MATLAB treats differently from zero-one numeric arrays. A rectangular array in which some rows are logical arrays
but others are not is treated as a numeric array. Any zero-one rectangular array can be converted to a numeric array (matrix)
by the command A = ones(size(A)).*A , 
Certain MATLAB functions, such as meshgrid, sum, cumsum, prod, cumprod are used repeatedly. The function dot for dot
product does not work if either array is a logical array. If one of the pair is numeric, the command C = A*B' will work.

Auxiliary user-defined building blocks 

Description of Code:

One of the most useful is a special sorting and consolidation operation implemented in the m-function csort. A standard
problem arises when each of a non distinct set of values has an associated probability. To obtain the distribution, it is necessary
to sort the values and add the probabilities associated with each distinct value. The following m-function achieves these
operations: function [t,p] = csort(T,P). T and P are matrices with the same number of elements. Values of T are sorted and
identical values are consolidated; values of P corresponding to identical values of T are added. A number of derivative
functions and procedures utilize csort. The following two are useful.

Answer

function [t,p] = csort(T,P) 

% CSORT  [t,p] = csort(T,P) Sorts T, consolidates P 

% Version of 4/6/97 

% Modified to work with Versions 4.2 and 5.1, 5.2 

% T and P matrices with the same number of elements 

% The vector T(:)' is sorted: 

csort.m
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Description of Code:

distinct.m function y = distinct(T)  determines and sorts the distinct members of matrix .

Answer

function y = distinct(T) 

% DISTINCT y = distinct(T) Disinct* members of T 

% Version of 5/7/96  Rev 4/20/97 for version 4 & 5.1, 5.2 

% Determines distinct members of matrix T. 

% Members which differ by no more than 10^{-13} 

% are considered identical.  y is a row 

% vector of the distinct members. 

TS = sort(T(:)'); 

n  = length(TS); 

d  = [1  abs(TS(2:n) - TS(1:n-1)) >1e-13]; 

y  = TS(find(d));

Description of Code:

freq.m sorts the distinct members of a matrix, counts the number of occurrences of each value, and calculates the cumulative
relative frequencies.

Answer

% FREQ file freq.m Frequencies of members of matrix 

% Version of 5/7/96 

% Sorts the distinct members of a matrix, counts 

% the number of occurrences of each value, and 

% calculates the cumulative relative frequencies. 

T  = input('Enter matrix to be counted  '); 

[m,n] = size(T); 

[t,f] = csort(T,ones(m,n)); 

%   * Identical values in T are consolidated; 

%   * Corresponding values in P are added. 

T = T(:)'; 

n = length(T); 

[TS,I] = sort(T); 

d  = find([1,TS(2:n) - TS(1:n-1) >1e-13]); % Determines distinct values 

t  = TS(d);                                % Selects the distinct values 

m  = length(t) + 1; 

P  = P(I);                                 % Arranges elements of P

F  = [0 cumsum(P(:)')]; 

Fd = F([d length(F)]);                     % Cumulative sums for distinct values 

p  = Fd(2:m) - Fd(1:m-1);                  % Separates the sums for these values

distinct.m

T

freq.m
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p = cumsum(f)/(m*n); 

disp(['The number of entries is  ',num2str(m*n),]) 

disp(['The number of distinct entries is  ',num2str(length(t)),] ) 

disp(' ') 

dis = [t;f;p]'; 

disp('    Values     Count   Cum Frac') 

disp(dis)

Description of Code:

dsum.m function y = dsum(v,w)  determines and sorts the distinct elements among the sums of pairs of elements of
row vectors v and w.

Answer

function y = dsum(v,w) 

% DSUM y = dsum(v,w) Distinct pair sums of elements 

% Version of 5/15/97 

% y is a row vector of distinct 

% values among pair sums of elements 

% of matrices v, w. 

% Uses m-function distinct 

[a,b] = meshgrid(v,w); 

t = a+b; 

y = distinct(t(:)');

Description of Code:

rep.m function y = rep(A,m,n)  replicates matrix A, m times vertically and n times horizontally. Essentially the
same as the function repmat in MATLAB version 5, released December, 1996.

Answer

function y = rep(A,m,n) 

% REP y = rep(A,m,n) Replicates matrix A 

% Version of 4/21/96 

% Replicates A, 

% m times vertically, 

% n times horizontally 

% Essentially the same as repmat in version 5.1, 5.2 

[r,c] = size(A); 

R = [1:r]'; 

C = [1:c]'; 

v = R(:,ones(1,m)); 

w = C(:,ones(1,n)); 

y = A(v,w);

dsum.m

rep.m
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Description of Code:

elrep.m function y = elrep(A,m,n)  replicates each element of A,  times vertically and  times horizontally.

Answer

function y = elrep(A,m,n) 

% ELREP y = elrep(A,m,n) Replicates elements of A 

% Version of 4/21/96 

% Replicates each element, 

% m times vertically, 

% n times horizontally 

[r,c] = size(A); 

R = 1:r; 

C = 1:c; 

v = R(ones(1,m),:); 

w = C(ones(1,n),:); 

y = A(v,w);

Description of Code:

kronf.m function y = kronf(A,B)  determines the Kronecker product of matrices A,B Achieves the same result for
full matrices as the MATLAB function kron.

Answer

function y = kronf(A,B) 

% KRONF y = kronf(A,B) Kronecker product 

% Version of 4/21/96 

% Calculates Kronecker product of full matrices. 

% Uses m-functions elrep and rep 

% Same result for full matrices as kron for version 5.1, 5.2 

[r,c] = size(B); 

[m,n] = size(A); 

y = elrep(A,r,c).*rep(B,m,n);

Description of Code:

colcopy.m function y = colcopy(v,n)  treats row or column vector v as a column vector and makes a matrix with 
 columns of v.

Answer

elrep.m

m n

kronf.m

colcopy.m

n
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function y = colcopy(v,n) 

% COLCOPY y = colcopy(v,n)  n columns of v 

% Version of 6/8/95 (Arguments reversed 5/7/96) 

% v a row or column vector 

% Treats v as column vector 

% and makes n copies 

% Procedure based on "Tony's trick" 

[r,c] = size(v); 

if r == 1 

  v = v'; 

end 

y = v(:,ones(1,n));

Description of Code:

colcopyi.m function y = colcopyi(v,n)  treats row or column vector v as a column vector, reverses the order of
the elements, and makes a matrix with n columns of the reversed vector.

Answer

function y = colcopyi(v,n) 

% COLCOPYI y = colcopyi(v,n) n columns in reverse order 

% Version of 8/22/96 

% v a row or column vector. 

% Treats v as column vector, 

% reverses the order of the 

% elements, and makes n copies. 

% Procedure based on "Tony's trick" 

N = ones(1,n); 

[r,c] = size(v); 

if r == 1 

  v = v(c:-1:1)'; 

else 

  v = v(r:-1:1); 

end 

y = v(:,N);

Description of Code:

rowcopy.m function y = rowcopy(v,n)  treats row or column vector v as a row vector and makes a matrix with 
rows of v.

Answer

colcopyi.m

rowcopy.m

n
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function y = rowcopy(v,n) 

% ROWCOPY y = rowcopy(v,n)  n rows of v 

% Version of 5/7/96 

% v a row or column vector 

% Treats v as row vector 

% and makes n copies 

% Procedure based on "Tony's trick" 

[r,c] = size(v); 

if c == 1 

  v = v'; 

end 

y = v(ones(1,n),:);

Description of Code:

repseq.m function y = repseq(V,n)  replicates vector   times—horizontally if  is a row vector and vertically if
 is a column vector.

Answer

function y = repseq(V,n); 

% REPSEQ y = repseq(V,n) Replicates vector V n times 

% Version of 3/27/97 

% n replications of vector V 

% Horizontally if V a row vector 

% Vertically if V a column vector 

m = length(V); 

s = rem(0:n*m-1,m)+1; 

y = V(s);

Description of Code:

total.m Total of all elements in a matrix, calculated by: total(x) = sum(sum(x)) .

Answer

function y = total(x) 

% TOTAL y = total(x) 

% Version of 8/1/93 

% Total of all elements in matrix x. 

y = sum(sum(x));

repseq.m

V n V

V

total.m
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Description of Code:

dispv.m Matrices  are transposed and displayed side by side.

Answer

function y = dispv(A,B) 

% DISPV y = dispv(A,B) Transpose of A, B side by side 

% Version of 5/3/96 

% A, B are matrices of the same size 

% They are transposed and displayed 

% side by side. 

y  = [A;B]';

Description of Code:

roundn.m function y = roundn(A,n)  rounds matrix A to  decimal places.

Answer

function y = roundn(A,n); 

% ROUNDN y = roundn(A,n) 

% Version of 7/28/97 

% Rounds matrix A to n decimals 

y = round(A*10^n)/10^n;

Description of Code:

arrep.m function y = arrep(n,k)  forms all arrangements, with repetition, of  elements from the sequence .

Answer

function y = arrep(n,k); 

% ARREP  y = arrep(n,k); 

% Version of 7/28/97 

% Computes all arrangements of k elements of 1:n, 

% with repetition allowed. k may be greater than n. 

% If only one input argument n, then k = n. 

% To get arrangements of column vector V, use 

% V(arrep(length(V),k)). 

N = 1:n; 

if nargin == 1 

  k = n; 

end 

y = zeros(k,n^k); 

for i = 1:k 

dispv.m

A,B

roundn.m

n

arrep.m

k 1 : n
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  y(i,:) = rep(elrep(N,1,n^(k-i)),1,n^(i-1)); 

end

Minterm vectors and probabilities 
The analysis of logical combinations of events (as sets) is systematized by the use of the minterm expansion. This leads naturally to
the notion of minterm vectors. These are zero-one vectors which can be combined by logical operations. Production of the basic
minterm patterns is essential to a number of operations. The following m-programs are key elements of various other programs.

Description of Code:

minterm.m function y = minterm(n,k)  generates the th minterm vector in a class of .

Answer

function y = minterm(n,k) 

% MINTERM y = minterm(n,k) kth minterm of class of n 

% Version of 5/5/96 

% Generates the kth minterm vector in a class of n 

% Uses m-function rep 

y = rep([zeros(1,2^(n-k)) ones(1,2^(n-k))],1,2^(k-1));

Description of Code:

mintable.m function y = mintable(n)  generates a table of minterm vectors by repeated use of the m-function
minterm.

Answer

function y = mintable(n) 

% MINTABLE y = mintable(n)  Table of minterms vectors 

% Version of 3/2/93 

% Generates a table of minterm vectors 

% Uses the m-function minterm 

y = zeros(n,2^n); 

for i = 1:n 

    y(i,:) = minterm(n,i); 

end 

Description of Code:

minvec3.m sets basic minterm vectors A, B, C, A , B , C , for the class . (Similarly for minvec4.m, minvec5.m,
etc.)

Answer

minterm.m

k n

mintable.m

minvec3.m

c c c {A,B,C}
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% MINVEC3  file minvec3.m Basic minterm vectors 

% Version of 1/31/95 

A = minterm(3,1); 

B = minterm(3,2); 

C = minterm(3,3); 

Ac = ~A; 

Bc = ~B; 

Cc = ~C; 

disp('Variables are A, B, C, Ac, Bc, Cc') 

disp('They may be renamed, if desired.')

Description of Code:

minmap function y = minmap(pm)  reshapes a row or column vector pm of minterm probabilities into minterm
map format.

Answer

function y = minmap(pm) 

% MINMAP y = minmap(pm) Reshapes vector of minterm probabilities  

% Version of 12/9/93  

% Reshapes a row or column vector pm of minterm  

% probabilities into minterm map format 

m = length(pm); 

n = round(log(m)/log(2)); 

a = fix(n/2); 

if m ~= 2^n 

  disp('The number of minterms is incorrect') 

else 

  y = reshape(pm,2^a,2^(n-a)); 

end

Description of Code:

binary.m function y = binary(d,n)  converts a matrix d of floating point nonnegative integers to a matrix of binary
equivalents, one on each row. Adapted from m-functions written by Hans Olsson and by Simon Cooke. Each matrix row may
be converted to an unspaced string of zeros and ones by the device ys = setstr(y + '0').

Answer

function y = binary(d,n) 

% BINARY y = binary(d,n) Integers to binary equivalents 

% Version of 7/14/95  

% Converts a matrix d of floating point, nonnegative 

% integers to a matrix of binary equivalents. Each row 

% is the binary equivalent (n places) of one number. 

minmap

binary.m
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% Adapted from the programs dec2bin.m, which shared 

% first prize in an April 95 Mathworks contest.  

% Winning authors: Hans Olsson from Lund, Sweden, 

% and Simon Cooke from Glasgow, UK. 

% Each matrix row may be converted to an unspaced string  

% of zeros and ones by the device:  ys = setstr(y + '0'). 

if nargin < 2,  n = 1; end     % Allows omission of argument n 

[f,e] = log2(d);  

n = max(max(max(e)),n);       

y = rem(floor(d(:)*pow2(1-n:0)),2);

Description of Code:

mincalc.m The m-procedure mincalc determines minterm probabilities from suitable data. For a discussion of the data
formatting and certain problems, see 2.6.

Answer

% MINCALC file mincalc.m Determines minterm probabilities 

% Version of 1/22/94 Updated for version 5.1 on  6/6/97 

% Assumes a data file which includes 

%  1. Call for minvecq to set q basic minterm vectors, each (1 x 2^q) 

%  2. Data vectors DV = matrix of md data Boolean combinations of basic sets-- 

%     Matlab produces md minterm vectors-- one on each row. 

%     The first combination is always A|Ac (the whole space) 

%  3. DP = row matrix of md data probabilities. 

%     The first probability is always 1. 

%  4. Target vectors TV = matrix of mt target Boolean combinations.

%     Matlab produces a row minterm vector for each target combination. 

%     If there are no target combinations, set TV = []; 

[md,nd] = size(DV); 

ND = 0:nd-1; 

ID = eye(nd);                 % Row i is minterm vector i-1 

[mt,nt] = size(TV); 

MT = 1:mt; 

rd = rank(DV); 

if rd < md                     

   disp('Data vectors are NOT linearly independent') 

  else 

   disp('Data vectors are linearly independent') 

end 

% Identification of which minterm probabilities can be determined from the data 

% (i.e., which minterm vectors are not linearly independent of data vectors) 

AM = zeros(1,nd); 

for i = 1:nd 

  AM(i) = rd == rank([DV;ID(i,:)]);  % Checks for linear dependence of each 

mincalc.m
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Description of Code:

mincalct.m Modification of mincalc. Assumes mincalc has been run, calls for new target vectors and performs same
calculations as mincalc.

Answer

% MINCALCT file mincalct.m  Aditional target probabilities 

% Version of 9/1/93  Updated for version 5 on 6/6/97 

% Assumes a data file which includes 

%  1. Call for minvecq to set q basic minterm vectors. 

%  2. Data vectors DV.  The first combination is always A|Ac. 

%  3. Row matrix DP of data probabilities. The first entry is always 1. 

TV = input('Enter matrix of target Boolean combinations  '); 

[md,nd] = size(DV); 

[mt,nt] = size(TV); 

MT = 1:mt; 

rd = rank(DV); 

CT = zeros(1,mt);   % Identification of computable target probabilities 

for j = 1:mt 

  CT(j) = rd == rank([DV;TV(j,:)]); 

end 

  end    

am = find(AM);                             % minterm vector 

CAM = ID(am,:)/DV;     % Determination of coefficients for the available minterm

pma = DP*CAM';                % Calculation of probabilities of available minter

PMA = [ND(am);pma]'; 

if sum(pma < -0.001) > 0      % Check for data consistency 

   disp('Data probabilities are INCONSISTENT') 

else 

% Identification of which target probabilities are computable from the data 

CT = zeros(1,mt); 

for j = 1:mt 

  CT(j) = rd == rank([DV;TV(j,:)]); 

  end 

ct  = find(CT); 

CCT = TV(ct,:)/DV;            % Determination of coefficients for computable tar

ctp = DP*CCT';                % Determination of probabilities 

disp(' Computable target probabilities') 

disp([MT(ct); ctp]') 

end                           % end for "if sum(pma < -0.001) > 0" 

disp(['The number of minterms is ',num2str(nd),]) 

disp(['The number of available minterms is ',num2str(length(pma)),]) 

disp('Available minterm probabilities are in vector pma') 

disp('To view available minterm probabilities, call for PMA')

mincalct.m
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ct  = find(CT); 

CCT = TV(ct,:)/DV;  % Determination of coefficients for computable targets 

ctp = DP*CCT';      % Determination of probabilities 

disp(' Computable target probabilities') 

disp([MT(ct); ctp]') 

Independent events 

Description of Code:

minprob.m function y = minprob(p)  calculates minterm probabilities for the basic probabilities in row or column
vector p. Uses the m-functions mintable, colcopy.

Answer

function y = minprob(p) 

% MINPROB y = minprob(p) Minterm probs for independent events 

% Version of 4/7/96 

% p is a vector [P(A1) P(A2) ... P(An)], with 

% {A1,A2, ... An} independent. 

% y is the row vector of minterm probabilities 

% Uses the m-functions mintable, colcopy 

n = length(p); 

M = mintable(n); 

a = colcopy(p,2^n);          % 2^n columns, each the vector p 

m = a.*M + (1 - a).*(1 - M); % Puts probabilities into the minterm 

                             % pattern on its side (n by 2^n) 

y = prod(m);                 % Product of each column of m

Description of Code:

imintest.m function y = imintest(pm)  checks minterm probabilities for independence.

Answer

function y = imintest(pm) 

% IMINTEST y = imintest(pm) Checks minterm probs for independence 

% Version of 1/25//96 

% Checks minterm probabilities for independence 

% Uses the m-functions mintable and minprob 

m = length(pm); 

n = round(log(m)/log(2)); 

if m ~= 2^n 

  y = 'The number of minterm probabilities is incorrect'; 

else 

P = mintable(n)*pm'; 

minprob.m

imintest.m

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/11098?pdf


17.1.13 https://stats.libretexts.org/@go/page/11098

pt = minprob(P'); 

a = fix(n/2); 

s = abs(pm - pt) > 1e-7; 

  if sum(s) > 0 

    disp('The class is NOT independent') 

    disp('Minterms for which the product rule fails') 

    y = reshape(s,2^a,2^(n-a)); 

  else 

    y = 'The class is independent'; 

  end 

end

Description of Code:

ikn.m function y = ikn(P,k)  determines the probability of the occurrence of exactly  of the  independent events
whose probabilities are in row or column vector P 
(k may be a row or column vector of nonnegative integers less than or equal to ).

Answer

function y = ikn(P,k) 

% IKN y = ikn(P,k) Individual probabilities of k of n successes 

% Version of 5/15/95 

% Uses the m-functions mintable, minprob, csort 

n = length(P); 

T = sum(mintable(n));  % The number of successes in each minterm 

pm = minprob(P);       % The probability of each minterm 

[t,p] = csort(T,pm);   % Sorts and consolidates success numbers 

                       % and adds corresponding probabilities 

y = p(k+1); 

Description of Code:

ckn.m function y = ckn(P,k)  determines the probability of the occurrence of  or more of the  independent events
whose probabilities are in row or column vector P (  may be a row or column vector)

Answer

function y = ckn(P,k) 

% CKN y = ckn(P,k) Probability of k or more successes 

% Version of 5/15/95 

% Probabilities of k or more of n independent events 

% Uses the m-functions mintable, minprob, csort 

n = length(P); 

m = length(k); 

T = sum(mintable(n));  % The number of successes in each minterm 

ikn.m

k n

n

ckn.m

k n

k
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pm = minprob(P);       % The probability of each minterm 

[t,p] = csort(T,pm);   % Sorts and consolidates success numbers 

                       % and adds corresponding probabilities 

for i = 1:m            % Sums probabilities for each k value 

  y(i) = sum(p(k(i)+1:n+1)); 

end

Description of Code:

parallel.m function y = parallel(p)  determines the probability of a parallel combination of the independent
events whose probabilities are in row or column vector p.

Answer

function y = parallel(p) 

% PARALLEL y = parallel(p) Probaaability of parallel combination 

% Version of 3/3/93 

% Probability of parallel combination. 

% Individual probabilities in row matrix p. 

y = 1 - prod(1 - p); 

Conditional probability and conditional idependence 

Description of Code:

bayes.m produces a Bayesian reversal of conditional probabilities. The input consists of  and  for a disjoint
class  whose union contains . The procedure calculates  and  for .

Answer

% BAYES file bayes.m Bayesian reversal of conditional probabilities

% Version of 7/6/93  

% Input P(E|Ai) and P(Ai) 

% Calculates P(Ai|E) and P(Ai|Ec) 

disp('Requires input PEA = [P(E|A1) P(E|A2) ... P(E|An)]') 

disp(' and PA = [P(A1) P(A2) ... P(An)]') 

disp('Determines PAE  = [P(A1|E) P(A2|E) ... P(An|E)]') 

disp('       and PAEc = [P(A1|Ec) P(A2|Ec) ... P(An|Ec)]') 

PEA  = input('Enter matrix PEA of conditional probabilities  '); 

PA   = input('Enter matrix  PA of probabilities  '); 

PE   = PEA*PA'; 

PAE  = (PEA.*PA)/PE; 

PAEc = ((1 - PEA).*PA)/(1 -  PE); 

disp(' ') 

disp(['P(E) = ',num2str(PE),]) 

disp(' ') 

parallel.m

bayes.m

P (E| )Ai P ( )Ai

{ : 1 ≤ i ≤ n}Ai E P ( |E)Ai P ( | )Ai E
c 1 ≤ i ≤ n
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disp('    P(E|Ai)   P(Ai)     P(Ai|E)   P(Ai|Ec)') 

disp([PEA; PA; PAE; PAEc]') 

disp('Various quantities are in the matrices PEA, PA, PAE, PAEc, named above')

Description of Code:

odds.m The procedure calculates posterior odds for for a specified profile . Assumes data have been entered by the
procedure oddsf or oddsp.

Answer

% ODDS file odds.m  Posterior odds for profile 

% Version of 12/4/93 

% Calculates posterior odds for profile E 

% Assumes data has been entered by oddsdf or oddsdp 

E = input('Enter profile matrix E  '); 

C =  diag(a(:,E))';       % aa = a(:,E) is an n by n matrix whose ith column 

D =  diag(b(:,E))';       % is the E(i)th column of a.  The elements on the 

                          % diagonal are b(i, E(i)), 1 <= i <= n 

                          % Similarly for b(:,E) 

 

R = prod(C./D)*(p1/p2);   % Calculates posterior odds for profile  

disp(' ') 

disp(['Odds favoring Group 1:   ',num2str(R),]) 

if R > 1 

  disp('Classify in Group 1') 

else 

  disp('Classify in Group 2') 

end

Description of Code:

oddsdf.m Sets up calibrating frequencies for calculating posterior odds.

Answer

% ODDSDF file oddsdf.m Frequencies for calculating odds 

% Version of 12/4/93 

% Sets up calibrating frequencies  

% for calculating posterior odds 

A = input('Enter matrix A of frequencies for calibration group 1  '); 

B = input('Enter matrix B of frequencies for calibration group 2  '); 

n = length(A(:,1));       % Number of questions (rows of A) 

m = length(A(1,:));       % Number of answers to each question 

p1 = sum(A(1,:));         % Number in calibration group 1 

p2 = sum(B(1,:));         % Number in calibration group 2 

odds.m

E

oddsdf.m
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a = A/p1; 

b = B/p2; 

disp(' ')                 % Blank line in presentation 

disp(['Number of questions = ',num2str(n),])  % Size of profile 

disp(['Answers per question = ',num2str(m),]) % Usually 3: yes, no, uncertain 

disp(' Enter code for answers and call for procedure "odds"  ') 

disp(' ')

Description of Code:

oddsdp.m Sets up conditional probabilities for odds calculations.

Answer

  % ODDSDP file oddsdp.m Conditional probs for calculating posterior odds 

% Version of 12/4/93 

% Sets up conditional probabilities  

% for odds calculations 

a  = input('Enter matrix A of conditional probabilities for Group 1  '); 

b  = input('Enter matrix B of conditional probabilities for Group 2  '); 

p1 = input('Probability p1 an individual is from Group 1  '); 

n = length(a(:,1)); 

m = length(a(1,:)); 

p2 = 1 - p1; 

disp(' ')                 % Blank line in presentation 

disp(['Number of questions = ',num2str(n),])  % Size of profile 

disp(['Answers per question = ',num2str(m),]) % Usually 3: yes, no, uncertain 

disp(' Enter code for answers and call for procedure "odds"  ') 

disp(' ')

Bernoulli and multinomial trials 

Description of Code:

btdata.m Sets parameter  and number  of trials for generating Bernoulli sequences. Prompts for bt to generate the trials.

Answer

  % BTDATA file btdata.m Parameters for Bernoulli trials 

% Version of 11/28/92 

% Sets parameters for generating Bernoulli trials 

% Prompts for bt to generate the trials 

n = input('Enter n, the number of trials  '); 

p = input('Enter p, the probability of success on each trial  '); 

disp(' ') 

oddsdp.m

btdata.m

p n
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disp(' Call for bt') 

disp(' ')

Description of Code:

bt.m Generates Bernoulli sequence for parameters set by btdata. Calculates relative frequency of “successes.”

Answer

% BT file bt.m Generates Bernoulli sequence 

% version of 8/11/95  Revised 7/31/97 for version 4.2 and 5.1, 5.2 

% Generates Bernoulli sequence for parameters set by btdata 

% Calculates relative frequency of 'successes' 

clear SEQ; 

B  = rand(n,1) <= p;         %  ones for random numbers <= p 

F  = sum(B)/n;               % relative frequency of ones 

N  = [1:n]';                 % display details 

disp(['n = ',num2str(n),'   p = ',num2str(p),]) 

disp(['Relative frequency = ',num2str(F),]) 

SEQ = [N B]; 

clear N; 

clear B; 

disp('To view the sequence, call for SEQ') 

disp(' ')

Description of Code:

binomial.m Uses ibinom and cbinom to generate tables of the individual and cumulative binomial probabilities for specified
parameters. Note that for calculation in MATLAB it is usually much more convenient and efficient to use ibinom and/or
cbinom.

Answer

bt.m

binomial.m

01 % BINOMIAL file binomial.m Generates binomial tables
02 % Version of 12/10/92  (Display modified 4/28/96)
03 % Calculates a TABLE of binomial probabilities
04 % for specified n, p, and row vector k,
05 % Uses the m-functions ibinom and cbinom.
06 n = input('Enter n, the number of trials ');
07 p = input('Enter p, the probability of success ');
08 k = input('Enter k, a row vector of success numbers ');
09 y = ibinom(n,p,k);
10 z = cbinom(n,p,k);
11 disp(['    n = ',int2str(n),'    p = ' num2str(p)])
12 H = ['    k         P(X = k)  P(X >= k)'];
13 disp(H)
14 disp([k;y;z]')
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Description of Code:

multinom.m Multinomial distribution (small ).

Answer

% MULTINOM file multinom.m  Multinomial distribution 

% Version of 8/24/96 

% Multinomial distribution (small N, m) 

N = input('Enter the number of trials  '); 

m = input('Enter the number of types   '); 

p = input('Enter the type probabilities  '); 

M = 1:m; 

T = zeros(m^N,N); 

for i = 1:N 

  a = rowcopy(M,m^(i-1)); 

  a = a(:); 

  a = colcopy(a,m^(N-i)); 

  T(:,N-i+1) = a(:);        % All possible strings of the types 

end 

MT = zeros(m^N,m); 

for i = 1:m 

 MT(:,i) = sum(T'==i)'; 

end 

clear T                     % To conserve memory 

disp('String frequencies for type k are in column matrix MT(:,k)') 

P = zeros(m^N,N); 

for i = 1:N 

  a = rowcopy(p,m^(i-1)); 

  a = a(:); 

  a = colcopy(a,m^(N-i)); 

  P(:,N-i+1) = a(:);        % Strings of type probabilities 

end 

PS = prod(P');              % Probability of each string 

clear P                     % To conserve memory 

disp('String probabilities are in row matrix PS')

Some matching problems 

Description of Code:

Cardmatch.m Sampling to estimate the probability of one or more matches when one card is drawn from each of  identical
decks of  cards. The number nsns of samples is specified.

Answer

multinom.m

N ,m

Cardmatch.m

nd

c
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% CARDMATCH file cardmatch.m Prob of matches in cards from identical decks 

% Version of 6/27/97 

% Estimates the probability of one or more matches 

% in drawing cards from nd decks of c cards each 

% Produces a supersample of size n = nd*ns, where 

% ns is the number of samples 

% Each sample is sorted, and then tested for differences 

% between adjacent elements.  Matches are indicated by 

% zero differences between adjacent elements in sorted sample 

c  = input('Enter the number c  of cards in a deck '); 

nd = input('Enter the number nd of decks '); 

ns = input('Enter the number ns of sample runs '); 

X  = 1:c;                   % Population values 

PX = (1/c)*ones(1,c);       % Population probabilities  

N  = nd*ns;                 % Length of supersample 

U  = rand(1,N);             % Matrix of n random numbers 

T  = dquant(X,PX,U);        % Supersample obtained with quantile function; 

                            % the function dquant determines quantile 

                            % function values of random number sequence U 

ex = sum(T)/N;              % Sample average 

EX = dot(X,PX);             % Population mean 

vx = sum(T.^2)/N - ex^2;    % Sample variance 

VX = dot(X.^2,PX) - EX^2;   % Population variance 

A  = reshape(T,nd,ns);      % Chops supersample into ns samples of size nd 

DS = diff(sort(A));         % Sorts each sample 

m  = sum(DS==0)>0;          % Differences between elements in each sample 

                            % Zero difference iff there is a match 

pm = sum(m)/ns;             % Fraction of samples with one or more matches 

Pm = 1 - comb(c,nd)*gamma(nd + 1)/c^(nd);  % Theoretical probability of match 

disp('The sample is in column vector T')   % Displays of results 

disp(['Sample average ex = ', num2str(ex),]) 

disp(['Population mean E(X) = ',num2str(EX),]) 

disp(['Sample variance vx = ',num2str(vx),]) 

disp(['Population variance V(X) = ',num2str(VX),]) 

disp(['Fraction of samples with one or more matches   pm = ', num2str(pm),]) 

disp(['Probability of one or more matches in a sample Pm = ', num2str(Pm),]) 

Description of Code:

trialmatch.m Estimates the probability of matches in  independent trials from identical distributions. The sample size and
number of trials must be kept relateively small to avoid exceeding available memory.

Answer

trialmatch.m

n
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% TRIALMATCH file trialmatch.m  Estimates probability of matches  

% in n independent trials from identical distributions 

% Version of 8/20/97 

% Estimates the probability of one or more matches  

% in a random selection from n identical distributions 

% with a small number of possible values 

% Produces a supersample of size N = n*ns, where 

% ns is the number of samples.  Samples are separated. 

% Each sample is sorted, and then tested for differences 

% between adjacent elements.  Matches are indicated by 

% zero differences between adjacent elements in sorted sample. 

X  = input('Enter the VALUES in the distribution '); 

PX = input('Enter the PROBABILITIES  '); 

c  = length(X); 

n  = input('Enter the SAMPLE SIZE n '); 

ns = input('Enter the number ns of sample runs '); 

N  = n*ns;                  % Length of supersample 

U  = rand(1,N);             % Vector of N random numbers 

T  = dquant(X,PX,U);        % Supersample obtained with quantile function; 

                            %   the function dquant determines quantile 

                            %   function values for random number sequence U 

ex = sum(T)/N;              % Sample average 

EX = dot(X,PX);             % Population mean 

vx = sum(T.^2)/N - ex^2;    % Sample variance 

VX = dot(X.^2,PX) - EX^2;   % Population variance 

A  = reshape(T,n,ns);       % Chops supersample into ns samples of size n 

DS = diff(sort(A));         % Sorts each sample 

m  = sum(DS==0)>0;          % Differences between elements in each sample 

                            % -- Zero difference iff there is a match 

pm = sum(m)/ns;             % Fraction of samples with one or more matches 

d  = arrep(c,n); 

p  = PX(d); 

p  = reshape(p,size(d));    % This step not needed in version 5.1 

ds = diff(sort(d))==0; 

mm = sum(ds)>0; 

m0 = find(1-mm); 

pm0 = p(:,m0);              % Probabilities for arrangements with no matches 

P0 = sum(prod(pm0));       

disp('The sample is in column vector T')   % Displays of results 

disp(['Sample average ex = ', num2str(ex),]) 

disp(['Population mean E(X) = ',num2str(EX),]) 

disp(['Sample variance vx = ',num2str(vx),]) 

disp(['Population variance V(X) = ',num2str(VX),]) 

disp(['Fraction of samples with one or more matches   pm = ', num2str(pm),]) 

disp(['Probability of one or more matches in a sample Pm = ', num2str(1-P0),])
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Distributions 

Description of Code:

comb.m function y = comb(n,k)  Calculates binomial coefficients.  may be a matrix of integers between 0 and .
The result  is a matrix of the same dimensions.

Answer

function y = comb(n,k) 

% COMB y = comb(n,k) Binomial coefficients 

% Version of 12/10/92 

% Computes binomial coefficients C(n,k) 

% k may be a matrix of integers between 0 and n 

% result y is a matrix of the same dimensions 

y = round(gamma(n+1)./(gamma(k + 1).*gamma(n + 1 - k)));

Description of Code:

ibinom.m Binomial distribution — individual terms. We have two m-functions ibinom and cbinom for calculating individual
and cumulative terms  and , respectively.

 and  

For these m-functions, we use a modification of a computation strategy employed by S. Weintraub: Tables of the Cumulative
Binomial Probability Distribution for Small Values of p, 1963. The book contains a particularly helpful error analysis, written
by Leo J. Cohen. Experimentation with sums and expectations indicates a precision for ibinom and cbinom calculations that is
better than  for  and  from 0.01 to 0.99. A similar precision holds for values of  up to 5000, provided  or 

 are limited to approximately 500. Above this value for  or , the computations break down. For individual terms, 
function y = ibinom(n,p,k)  calculates the probabilities for  a positive integer,  a matrix of integers between 0

and . The output is a matrix of the corresponding binomial probabilities.

Answer

function y = ibinom(n,p,k) 

% IBINOM  y = ibinom(n,p,k) Individual binomial probabilities 

% Version of 10/5/93 

% n is a positive integer; p is a probability 

% k a matrix of integers between 0 and n 

% y = P(X>=k) (a matrix of probabilities) 

if p > 0.5 

a = [1 ((1-p)/p)*ones(1,n)]; 

b = [1 n:-1:1]; 

c = [1 1:n]; 

br = (p^n)*cumprod(a.*b./c); 

bi = fliplr(br); 

else 

a = [1 (p/(1-p))*ones(1,n)]; 

b = [1 n:-1:1]; 

comb.m

k n

y

ibinom.m

P ( = k)Sn P ( ≥ k)Sn

P ( = k) = C(n, k) (1 −pSn pk )n−k P ( ≥ k) = P ( = r)Sn ∑n
r=k Sn 0 ≤ k ≤ n

10−10 n = 1000 p n np

nq np nq

n k

n
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c = [1 1:n]; 

bi = ((1-p)^n)*cumprod(a.*b./c); 

end 

y = bi(k+1);

Description of Code:

ipoisson.m Poisson distribution — individual terms. As in the case of the binomial distribution, we have an m-function for the
individual terms and one for the cumulative case. The m-functions ipoisson and cpoisson use a computational strategy similar
to that used for the binomial case. Not only does this work for large , but the precision is at least as good as that for the
binomial m-functions. Experience indicates that the m-functions are good for . They breaks down at about 710, largely
because of limitations of the MATLAB exponential function. For individual terms, function y = ipoisson(mu,k)
calculates the probabilities for  a positive integer,  a row or column vector of nonnegative integers. The output is a row
vector of the corresponding Poisson probabilities.

Answer

function y = ipoisson(mu,k) 

% IPOISSON y = ipoisson(mu,k) Individual Poisson probabilities 

% Version of 10/15/93 

% mu = mean value 

% k may be a row or column vector of integer values 

% y = P(X = k) (a row vector of probabilities) 

K = max(k); 

p = exp(-mu)*cumprod([1 mu*ones(1,K)]./[1 1:K]); 

y = p(k+1);

Description of Code:

cpoisson.m Poisson distribution—cumulative terms. function y = cpoisson(mu,k) , calculates , where 
 may be a row or a column vector of nonnegative integers. The output is a row vector of the corresponding probabilities.

Answer

function y = cpoisson(mu,k) 

% CPOISSON y = cpoisson(mu,k) Cumulative Poisson probabilities 

% Version of 10/15/93 

% mu = mean value mu  

% k may be a row or column vector of integer values 

% y = P(X >= k) (a row vector of probabilities) 

K = max(k); 

p = exp(-mu)*cumprod([1 mu*ones(1,K)]./[1 1:K]); 

pc = [1 1 - cumsum(p)]; 

y = pc(k+1); 

ipoisson.m

μ

μ ≤ 700

mu k

cpoisson.m

P (X ≥ k)

k

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/11098?pdf


17.1.23 https://stats.libretexts.org/@go/page/11098

Description of Code:

nbinom.m Negative binomial — function y = nbinom(m, p, k)  calculates the probability that the th success
in a Bernoulli sequence occurs on the th trial.

Answer

function y = nbinom(m, p, k) 

% NBINOM y = nbinom(m, p, k) Negative binomial probabilities 

% Version of 12/10/92 

% Probability the mth success occurs on the kth trial 

% m a positive integer;  p a probability 

% k a matrix of integers greater than or equal to m 

% y = P(X=k) (a matrix of the same dimensions as k) 

q = 1 - p; 

y = ((p^m)/gamma(m)).*(q.^(k - m)).*gamma(k)./gamma(k - m + 1);

Desciption of Code:

gaussian.m function y = gaussian(m, v, t)  calculates the Gaussian (Normal) distribution function for mean
value , variance , and matrix  of values. The result  is a matrix of the same dimensions as .

Answer

function y = gaussian(m,v,t) 

% GAUSSIAN y = gaussian(m,v,t) Gaussian distribution function 

% Version of 11/18/92 

% Distribution function for X ~ N(m, v) 

% m = mean,  v = variance 

% t is a matrix of evaluation points 

% y = P(X<=t) (a matrix of the same dimensions as t) 

u = (t - m)./sqrt(2*v); 

if u >= 0 

        y = 0.5*(erf(u) + 1); 

else 

        y = 0.5*erfc(-u); 

end

Description of Code:

gaussdensity.m function y = gaussdensity(m,v,t)  calculates the Gaussian density function  for mean
value , variance , and matrix  of values.

Answer

nbinom.m

m

k

gaussian.m

m v t y = P (X ≤ t) t

gaussdensity.m

(t)fX
m t t
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function y = gaussdensity(m,v,t) 

% GAUSSDENSITY y = gaussdensity(m,v,t) Gaussian density 

% Version of 2/8/96 

% m = mean,  v = variance 

% t is a matrix of evaluation points 

y = exp(-((t-m).^2)/(2*v))/sqrt(v*2*pi);

Description of Code:

norminv.m function y = norminv(m,v,p)  calculates the inverse (the quantile function) of the Gaussian
distribution function for mean value , variance , and  a matrix of probabilities.

Answer

function y = norminv(m,v,p) 

% NORMINV y = norminv(m,v,p) Inverse gaussian distribution 

% (quantile function for gaussian) 

% Version of 8/17/94 

% m = mean,  v = variance 

% t is a matrix of evaluation points 

if p >= 0 

  u = sqrt(2)*erfinv(2*p - 1); 

else 

  u = -sqrt(2)*erfinv(1 - 2*p); 

end 

y = sqrt(v)*u + m;

Description of Code:

gammadbn.m function y = gammadbn(alpha, lambda, t)  calculates the distribution function for a gamma
distribution with parameters alpha, lambda.  is a matrix of evaluation points. The result is a matrix of the same size.

Answer

function y = gammadbn(alpha, lambda, t) 

% GAMMADBN y = gammadbn(alpha, lambda, t) Gamma distribution 

% Version of 12/10/92 

% Distribution function for X ~ gamma (alpha, lambda) 

% alpha, lambda are positive parameters 

% t may be a matrix of positive numbers 

% y = P(X<= t) (a matrix of the same dimensions as t) 

y = gammainc(lambda*t, alpha);

norminv.m

m v p

gammadbn.m

t
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Description of Code:

beta.m function y = beta(r,s,t)  calculates the density function for the beta distribution with parameters  is
a matrix of numbers between zero and one. The result is a matrix of the same size.

Answer

function y = beta(r,s,t) 

% BETA y = beta(r,s,t) Beta density function 

% Version of 8/5/93 

% Density function for Beta (r,s) distribution 

% t is a matrix of evaluation points between 0 and 1 

% y is a matrix of the same dimensions as t 

y = (gamma(r+s)/(gamma(r)*gamma(s)))*(t.^(r-1).*(1-t).^(s-1));

Description of Code:

betadbn.m function y = betadbn(r,s,t)  calculates the distribution function for the beta distribution with
parameters  is a matrix of evaluation points. The result is a matrix of the same size.

Answer

function y = betadbn(r,s,t) 

% BETADBN y = betadbn(r,s,t) Beta distribution function 

% Version of 7/27/93 

% Distribution function for X  beta(r,s) 

% y = P(X<=t) (a matrix of the same dimensions as t) 

y = betainc(t,r,s);

Description of Code:

weibull.m function y = weibull(alpha,lambda,t)  calculates the density function for the Weibull distribution
with parameters alpha, lambda.  is a matrix of evaluation points. The result is a matrix of the same size.

Answer

function y = weibull(alpha,lambda,t) 

% WEIBULL y = weibull(alpha,lambda,t) Weibull density  

% Version of 1/24/91 

% Density function for X ~ Weibull (alpha, lambda, 0) 

% t is a matrix of positive evaluation points 

% y is a matrix of the same dimensions as t 

y = alpha*lambda*(t.^(alpha - 1)).*exp(-lambda*(t.^alpha));

beta.m

r, s, t

betadbn.m

r, s, t

weibull.m

t
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Description of Code:

weibulld.m function y = weibulld(alpha, lambda, t)  calculates the distribution function for the Weibull
distribution with parameters alpha, lambda.  is a matrix of evaluation points. The result is a matrix of the same size.

Answer

function y = weibulld(alpha, lambda, t) 

% WEIBULLD y = weibulld(alpha, lambda, t) Weibull distribution function 

% Version of 1/24/91 

% Distribution function for X ~ Weibull (alpha, lambda, 0) 

% t is a matrix of positive evaluation points 

% y = P(X<=t) (a matrix of the same dimensions as t) 

y = 1 - exp(-lambda*(t.^alpha));

Binomial, Poisson, and Gaussian dstributions 

Description of Code:

bincomp.m Graphical comparison of the binomial, Poisson, and Gaussian distributions. The procedure calls for binomial
parameters , determines a reasonable range of evaluation points and plots on the same graph the binomial distribution
function, the Poisson distribution function, and the gaussian distribution function with the adjustment called the “continuity
correction.”

Answer

% BINCOMP file bincomp.m  Approx of binomial by Poisson and gaussian 

% Version of 5/24/96 

% Gaussian adjusted for "continuity correction" 

% Plots distribution functions for specified parameters n, p 

n = input('Enter the parameter n  '); 

p = input('Enter the parameter p  '); 

a = floor(n*p-2*sqrt(n*p)); 

a = max(a,1);                         % Prevents zero or negative indices 

b = floor(n*p+2*sqrt(n*p)); 

k = a:b;  

Fb = cumsum(ibinom(n,p,0:n));         % Binomial distribution function 

Fp = cumsum(ipoisson(n*p,0:n));       % Poisson distribution function 

Fg = gaussian(n*p,n*p*(1 - p),k+0.5); % Gaussian distribution function 

stairs(k,Fb(k+1))                     % Plotting details 

hold on 

plot(k,Fp(k+1),'-.',k,Fg,'o')  

hold off 

xlabel('t values')                    % Graph labeling details 

ylabel('Distribution function') 

title('Approximation of Binomial by Poisson and Gaussian') 

grid  

weibulld.m

t

bincomp.m

n, p
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legend('Binomial','Poisson','Adjusted Gaussian') 

disp('See Figure for results')

Desciption of Code:

poissapp.m Graphical comparison of the Poisson and Gaussian distributions. The procedure calls for a value of the Poisson
parameter mu, then calculates and plots the Poisson distribution function, the Gaussian distribution function, and the adjusted
Gaussian distribution function.

Answer

% POISSAPP file poissapp.m  Comparison of Poisson and gaussian 

% Version of 5/24/96 

% Plots distribution functions for specified parameter mu 

mu = input('Enter the parameter mu  '); 

n = floor(1.5*mu); 

k = floor(mu-2*sqrt(mu)):floor(mu+2*sqrt(mu));               

FP = cumsum(ipoisson(mu,0:n)); 

FG = gaussian(mu,mu,k);  

FC = gaussian(mu,mu,k-0.5);       

stairs(k,FP(k))                  

hold on 

plot(k,FG,'-.',k,FC,'o')  

hold off 

grid 

xlabel('t values') 

ylabel('Distribution function') 

title('Gaussian Approximation to Poisson Distribution') 

legend('Poisson','Gaussian','Adjusted Gaussian') 

disp('See Figure for results')

Setup for simple random variables 

If a simple random variable  is in canonical form, the distribution consists of the coefficients of the indicator funtions (the values
of ) and the probabilities of the corresponding events. If  is in a primitive form other than canonical, the csort operation is
applied to the coefficients of the indicator functions and the probabilities of the corresponding events to obtain the distribution. If 

 and  is in a primitive form, then the value of  on the event in the partition associated with  is . The
distribution for Z is obtained by applying csort to the  and the . Similarly, if  and the joint distribution is
available, the value  is associated with . The distribution for  is obtained by applying csort to the
matrix of values and the corresponding matrix of probabilities.

Description of Code:

canonic.m The procedure determines the distribution for a simple random variable in affine form, when the minterm
probabilities are available. Input data are a row vector of coefficients for the indicator functions in the affine form (with the
constant value last) and a row vector of the probabilities of the minterm generated by the events. Results consist of a row
vector of values and a row vector of the corresponding probabilities.

poissapp.m

X

X X

Z = g(X) X Z ti g( )ti
g( )ti pi Z = g(X,Y )

g( , )ti uj P (X = ,Y = )ti uj Z

canonic.m
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Answer

% CANONIC file canonic.m Distribution for simple rv in affine form 

% Version of 6/12/95 

% Determines the distribution for a simple random variable 

% in affine form, when the minterm probabilities are available. 

% Uses the m-functions mintable and csort. 

% The coefficient vector must contain the constant term. 

% If the constant term is zero, enter 0 in the last place. 

c  = input(' Enter row vector of coefficients  '); 

pm = input(' Enter row vector of minterm probabilities  '); 

n  = length(c) - 1; 

if 2^n ~= length(pm) 

   error('Incorrect minterm probability vector length'); 

end 

M  = mintable(n);            % Provides a table of minterm patterns

s  = c(1:n)*M + c(n+1);      % Evaluates X on each minterm 

[X,PX] = csort(s,pm);        % s = values; pm = minterm probabilities 

XDBN = [X;PX]'; 

disp('Use row matrices X and PX for calculations') 

disp('Call for XDBN to view the distribution')

Description of Code:

canonicf.m function [x,px] = canonicf(c,pm)  is a function version of canonic, which allows arbitrary naming
of variables.

Answer

function [x,px] = canonicf(c,pm) 

% CANONICF  [x,px] = canonicf(c,pm)  Function version of canonic 

% Version of 6/12/95 

% Allows arbitrary naming of variables 

n = length(c) - 1; 

if 2^n ~= length(pm) 

   error('Incorrect minterm probability vector length'); 

end 

M  = mintable(n);              % Provides a table of minterm patterns 

s  = c(1:n)*M + c(n+1);        % Evaluates X on each minterm 

[x,px]  = csort(s,pm);         % s = values; pm = minterm probabilities      

Description of Code:

jcalc.m Sets up for calculations for joint simple random variables. The matrix  of  is arranged as on the
plane (i.e., values of  increase upward). The MATLAB function meshgrid is applied to the row matrix  and the reversed

canonicf.m

jcalc.m

P P (X = ,Y = )ti uj
Y X
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row matrix for  to put an appropriate -value and -value at each position. These are in the “calculating matrices”  and ,
respectively, which are used in determining probabilities and expectations of various functions of .

Answer

% JCALC  file jcalc.m  Calculation setup for joint simple rv 

% Version of 4/7/95 (Update of prompt and display 5/1/95) 

% Setup for calculations for joint simple random variables 

% The joint probabilities arranged as on the plane  

% (top row corresponds to largest value of Y)  

P = input('Enter JOINT PROBABILITIES (as on the plane)  '); 

X = input('Enter row matrix of VALUES of X  '); 

Y = input('Enter row matrix of VALUES of Y  '); 

PX = sum(P);            % probabilities for X 

PY = fliplr(sum(P'));   % probabilities for Y 

[t,u] = meshgrid(X,fliplr(Y)); 

disp(' Use array operations on matrices X, Y, PX, PY, t, u, and P')

Description of Code:

jcalcf.m function [x,y,t,u,px,py,p] = jcalcf(X,Y,P)  is a function version of jcalc, which allows arbitrary
naming of variables.

Answer

function [x,y,t,u,px,py,p] = jcalcf(X,Y,P) 

% JCALCF [x,y,t,u,px,py,p] = jcalcf(X,Y,P) Function version of jcalc 

% Version of 5/3/95 

% Allows arbitrary naming of variables 

if sum(size(P) ~= [length(Y) length(X)]) > 0 

  error('     Incompatible vector sizes') 

end 

x = X; 

y = Y; 

p = P; 

px = sum(P); 

py = fliplr(sum(P')); 

[t,u] = meshgrid(X,fliplr(Y)); 

Description of Code:

jointzw.m Sets up joint distribution for  and  and provides calculating matrices as in jcalc. Inputs
are  and  as well as array expressions for  and . Outputs are matrices  for the joint
distribution, marginal probabilities , and the calculating matrices .

Answer

Y X Y t u

t, u

jcalcf.m

jointzw.m

Z = g(X,Y ) W = h(X,Y )

P ,X Y g(t, u) h(t, u) Z,W ,PZW

PZ,PW v,w
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% JOINTZW file jointzw.m Joint dbn for two functions of (X,Y) 

% Version of 4/29/97 

% Obtains joint distribution for 

% Z = g(X,Y) and W = h(X,Y) 

% Inputs P, X, and Y as well as array 

% expressions for g(t,u) and h(t,u) 

P = input('Enter joint prob for (X,Y) '); 

X = input('Enter values for X '); 

Y = input('Enter values for Y '); 

[t,u] = meshgrid(X,fliplr(Y)); 

G = input('Enter expression for g(t,u) '); 

H = input('Enter expression for h(t,u) '); 

[Z,PZ] = csort(G,P); 

[W,PW] = csort(H,P); 

r = length(W); 

c = length(Z); 

PZW = zeros(r,c); 

for i = 1:r 

  for j = 1:c 

   a = find((G==Z(j))&(H==W(i))); 

   if ~isempty(a) 

    PZW(i,j) = total(P(a)); 

   end 

  end 

end 

PZW = flipud(PZW); 

[v,w] = meshgrid(Z,fliplr(W)); 

if (G==t)&(H==u) 

  disp(' ') 

  disp('  Note:  Z = X and W = Y') 

  disp(' ') 

elseif  G==t 

  disp(' ') 

  disp('  Note:  Z = X') 

  disp(' ') 

elseif H==u 

  disp(' ') 

  disp('  Note:  W = Y') 

  disp(' ') 

end 

disp('Use array operations on Z, W, PZ, PW, v, w, PZW')
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Description of Code:

jdtest.m Tests a joint probability matrix  for negative entries and unit total probability..

Answer

function y = jdtest(P) 

% JDTEST y = jdtest(P) Tests P for unit total and negative elements

% Version of 10/8/93 

M = min(min(P)); 

S = sum(sum(P)); 

if M < 0 

  y = 'Negative entries'; 

elseif abs(1 - S) > 1e-7 

  y = 'Probabilities do not sum to one'; 

else 

  y = 'P is a valid distribution'; 

end 

Setup for general random variables 

Description of Code:

tappr.m Uses the density function to set up a discrete approximation to the distribution for absolutely continuous random
variable .

Answer

% TAPPR file tappr.m  Discrete approximation to ac random variable 

% Version of 4/16/94 

% Sets up discrete approximation to distribution for 

% absolutely continuous random variable  X 

% Density is entered as a function of t 

r = input('Enter matrix [a b] of x-range endpoints  '); 

n = input('Enter number of x approximation points  '); 

d = (r(2) - r(1))/n; 

t = (r(1):d:r(2)-d) +d/2; 

PX = input('Enter density as a function of t  '); 

PX = PX*d; 

PX = PX/sum(PX); 

X  = t; 

disp('Use row matrices X and PX as in the simple case')

jdtest.m

P

tappr.m

X
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Description of Code:

tuappr.m Uses the joint density to set up discrete approximations to , and density.

Answer

% TUAPPR file tuappr.m Discrete approximation to joint ac pair 

% Version of 2/20/96 

% Joint density entered as a function of t, u 

% Sets up discrete approximations to X, Y, t, u, and density 

rx = input('Enter matrix [a b] of X-range endpoints  '); 

ry = input('Enter matrix [c d] of Y-range endpoints  '); 

nx = input('Enter number of X approximation points  '); 

ny = input('Enter number of Y approximation points  '); 

dx = (rx(2) - rx(1))/nx; 

dy = (ry(2) - ry(1))/ny; 

X  = (rx(1):dx:rx(2)-dx) + dx/2; 

Y  = (ry(1):dy:ry(2)-dy) + dy/2; 

[t,u] = meshgrid(X,fliplr(Y)); 

P  = input('Enter expression for joint density  '); 

P  = dx*dy*P; 

P  = P/sum(sum(P)); 

PX = sum(P); 

PY = fliplr(sum(P')); 

disp('Use array operations on X, Y, PX, PY, t, u, and P')

dfappr.m Approximate discrete distribution from distribution function entered as a function of .

Answer

% DFAPPR file dfappr.m Discrete approximation from distribution function 

% Version of 10/21/95 

% Approximate discrete distribution from distribution 

% function entered as a function of t 

r = input('Enter matrix [a b] of X-range endpoints  '); 

s = input('Enter number of X approximation points  '); 

d = (r(2) - r(1))/s; 

t = (r(1):d:r(2)-d) +d/2; 

m  = length(t); 

f  = input('Enter distribution function F as function of t  '); 

f  = [0 f]; 

PX = f(2:m+1) - f(1:m); 

PX = PX/sum(PX); 

X  = t - d/2; 

disp('Distribution is in row matrices X and PX')

tuappr.m

X,Y , t, u

dfappr.m

t
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Description of Code:

acsetup.m Approximate distribution for absolutely continuous random variable . Density is entered as a string
variablefunction of .

Answer

% ACSETUP file acsetup.m Discrete approx from density as string variable 

% Version of 10/22/94 

% Approximate distribution for absolutely continuous rv X 

% Density is entered as a string variable function of t 

disp('DENSITY f is entered as a STRING VARIABLE.') 

disp('either defined previously or upon call.') 

r  = input('Enter matrix [a b] of x-range endpoints  '); 

s  = input('Enter number of x approximation points  '); 

d  = (r(2) - r(1))/s; 

t  = (r(1):d:r(2)-d) +d/2; 

m  = length(t); 

f  = input('Enter density as a function of t  '); 

PX = eval(f); 

PX = PX*d; 

PX = PX/sum(PX); 

X  = t; 

disp('Distribution is in row matrices X and PX')

Description of Code:

dfsetup.m Approximate discrete distribution from distribution function entered as a string variable function of .

Answer

% DFSETUP file dfsetup.m  Discrete approx from string dbn function 

% Version of 10/21/95 

% Approximate discrete distribution from distribution 

% function entered as string variable function of t 

disp('DISTRIBUTION FUNCTION F is entered as a STRING') 

disp('VARIABLE, either defined previously or upon call') 

r = input('Enter matrix [a b] of X-range endpoints  '); 

s = input('Enter number of X approximation points  '); 

d = (r(2) - r(1))/s; 

t = (r(1):d:r(2)-d) +d/2; 

m  = length(t); 

F  = input('Enter distribution function F as function of t  '); 

f  = eval(F); 

f  = [0 f]; 

PX = f(2:m+1) - f(1:m); 

PX = PX/sum(PX); 

acsetup.m

X

t

dfsetup.m

t
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X  = t - d/2; 

disp('Distribution is in row matrices X and PX')

Setup for independent simple random variables 
MATLAB version 5.1 has provisions for multidimensional arrays, which make possible more direct implementation of icalc3 and
icalc4.

Description of Code:

icalc.m Calculation setup for an independent pair of simple random variables. Input consists of marginal distributions for 
. Output is joint distribution and calculating matrices .

Answer

% ICALC file icalc.m  Calculation setup for independent pair 

% Version of 5/3/95 

% Joint calculation setup for independent pair 

X  = input('Enter row matrix of X-values  '); 

Y  = input('Enter row matrix of Y-values  '); 

PX = input('Enter X probabilities  '); 

PY = input('Enter Y probabilities  '); 

[a,b] = meshgrid(PX,fliplr(PY)); 

P  = a.*b;                      % Matrix of joint independent probabilities  

[t,u] = meshgrid(X,fliplr(Y));  % t, u matrices for joint calculations 

disp(' Use array operations on matrices X, Y, PX, PY, t, u, and P')

icalcf.m [x,y,t,u,px,py,p] = icalcf(X,Y,PX,PY) is a function version of icalc, which allows arbitrary naming
of variables.

Answer

function [x,y,t,u,px,py,p] = icalcf(X,Y,PX,PY) 

% ICALCF [x,y,t,u,px,py,p] = icalcf(X,Y,PX,PY) Function version of icalc 

% Version of 5/3/95 

% Allows arbitrary naming of variables 

x = X; 

y = Y; 

px = PX; 

py = PY; 

if length(X) ~= length(PX) 

  error('     X and PX of different lengths') 

elseif length(Y) ~= length(PY) 

  error('     Y and PY of different lengths') 

end 

[a,b] = meshgrid(PX,fliplr(PY)); 

icalc.m

X,Y t, u

icalcf.m
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p   = a.*b;                       % Matrix of joint independent probabilities  

[t,u] = meshgrid(X,fliplr(Y));    % t, u matrices for joint calculations

Description of Code:

icalc3.m Calculation setup for an independent class of three simple random variables.

Answer

% ICALC3 file icalc3.m Setup for three independent rv 

% Version of 5/15/96 

% Sets up for calculations for three 

% independent simple random variables 

% Uses m-functions rep, elrep, kronf 

X  = input('Enter row matrix of X-values  '); 

Y  = input('Enter row matrix of Y-values  '); 

Z  = input('Enter row matrix of Z-values  '); 

PX = input('Enter X probabilities  '); 

PY = input('Enter Y probabilities  '); 

PZ = input('Enter Z probabilities  '); 

n  = length(X); 

m  = length(Y); 

s  = length(Z); 

[t,u] = meshgrid(X,Y); 

t  = rep(t,1,s); 

u  = rep(u,1,s); 

v  = elrep(Z,m,n);  % t,u,v matrices for joint calculations 

P  = kronf(PZ,kronf(PX,PY')); 

disp('Use array operations on matrices X, Y, Z,') 

disp('PX, PY, PZ, t, u, v, and P')

Description of Code:

icalc4.m Calculation setup for an independent class of four simple random variables.

Answer

% ICALC4 file icalc4.m Setup for four independent rv 

% Version of 5/15/96 

% Sets up for calculations for four 

% independent simple random variables 

% Uses m-functions rep, elrep, kronf 

X  = input('Enter row matrix of X-values  '); 

Y  = input('Enter row matrix of Y-values  '); 

Z  = input('Enter row matrix of Z-values  '); 

W  = input('Enter row matrix of W-values  '); 

icalc3.m

icalc4.m
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PX = input('Enter X probabilities  '); 

PY = input('Enter Y probabilities  '); 

PZ = input('Enter Z probabilities  '); 

PW = input('Enter W probabilities  '); 

n  = length(X); 

m  = length(Y); 

s  = length(Z); 

r  = length(W); 

[t,u] = meshgrid(X,Y); 

t = rep(t,r,s); 

u = rep(u,r,s); 

[v,w] = meshgrid(Z,W); 

v = elrep(v,m,n);  % t,u,v,w matrices for joint calculations 

w = elrep(w,m,n); 

P = kronf(kronf(PZ,PW'),kronf(PX,PY')); 

disp('Use array operations on matrices X, Y, Z, W') 

disp('PX, PY, PZ, PW, t, u, v, w, and P')

Calculations for random variables 

Description of Code:

ddbn.m Uses the distribution of a simple random variable (or simple approximation) to plot a step graph for the distribution
function 

Answer

% DDBN file ddbn.m Step graph of distribution function 

% Version of 10/25/95 

% Plots step graph of dbn function FX from  

% distribution of simple rv (or simple approximation) 

xc  = input('Enter row matrix of VALUES  '); 

pc = input('Enter row matrix of PROBABILITIES  '); 

m  = length(xc); 

FX = cumsum(pc); 

xt = [xc(1)-1-0.1*abs(xc(1)) xc xc(m)+1+0.1*abs(xc(m))]; 

FX = [0 FX 1];        % Artificial extension of range and domain 

stairs(xt,FX)         % Plot of stairstep graph 

hold on 

plot(xt,FX,'o')       % Marks values at jump 

hold off 

grid                   

xlabel('t') 

ylabel('u = F(t)') 

title('Distribution Function')

ddbn.m

FX
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Description of Code:

cdbn.m Plots a continuous graph of a distribution function of a simple random variable (or simple approximation).

Answer

% CDBN file cdbn.m Continuous graph of distribution function 

% Version of 1/29/97 

% Plots continuous graph of dbn function FX from  

% distribution of simple rv (or simple approximation) 

xc  = input('Enter row matrix of VALUES  '); 

pc = input('Enter row matrix of PROBABILITIES  '); 

m  = length(xc); 

FX = cumsum(pc); 

xt = [xc(1)-0.01 xc xc(m)+0.01]; 

FX = [0 FX FX(m)];    % Artificial extension of range and domain 

plot(xt,FX)           % Plot of continuous graph 

grid                   

xlabel('t') 

ylabel('u = F(t)') 

title('Distribution Function')

Description of Code:

simple.m Calculates basic quantites for simple random variables from the distribution, input as row matrices  and .

Answer

% SIMPLE file simple.m Calculates basic quantites for simple rv 

% Version of 6/18/95 

X  = input('Enter row matrix of X-values  '); 

PX = input('Enter row matrix PX of X probabilities  '); 

n  = length(X);          % dimension of X 

EX = dot(X,PX)           % E[X] 

EX2 = dot(X.^2,PX)       % E[X^2] 

VX = EX2 - EX^2          % Var[X] 

disp(' ') 

disp('Use row matrices X and PX for further calculations')

Description of Code:

jddbn.m Representation of joint distribution function for simple pair by obtaining the value of  at the lower left hand
corners of each grid cell.

Answer

cdbn.m

simple.m

X PX

jddbn.m

FXY
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% JDDBN file jddbn.m  Joint distribution function 

% Version of 10/7/96 

% Joint discrete distribution function for 

% joint  matrix P (arranged as on the plane). 

% Values at lower left hand corners of grid cells 

P = input('Enter joint probability matrix (as on the plane)  '); 

FXY = flipud(cumsum(flipud(P))); 

FXY = cumsum(FXY')'; 

disp('To view corner values for joint dbn function, call for FXY')

Description of Code:

jsimple.m Calculates basic quantities for a joint simple pair  from the joint distrsibution  as in jcalc.
Calculated quantities include means, variances, covariance, regression line, and regression curve (conditional expectation 

Answer

% JSIMPLE file jsimple.m  Calculates basic quantities for joint simple rv 

% Version of 5/25/95 

% The joint probabilities are arranged as on the plane  

% (the top row corresponds to the largest value of Y)  

P = input('Enter JOINT PROBABILITIES (as on the plane)  '); 

X = input('Enter row matrix of VALUES of X  '); 

Y = input('Enter row matrix of VALUES of Y  '); 

disp(' ') 

PX = sum(P);               % marginal distribution for X 

PY = fliplr(sum(P'));      % marginal distribution for Y 

XDBN = [X; PX]'; 

YDBN = [Y; PY]'; 

PT  = idbn(PX,PY); 

D  = total(abs(P - PT));   % test for difference 

if D > 1e-8                % to prevent roundoff error masking zero

  disp('{X,Y} is NOT independent') 

 else 

  disp('{X,Y} is independent') 

end 

disp(' ') 

[t,u] = meshgrid(X,fliplr(Y)); 

EX  = total(t.*P)          % E[X] 

EY  = total(u.*P)          % E[Y] 

EX2 = total((t.^2).*P)     % E[X^2] 

EY2 = total((u.^2).*P)     % E[Y^2] 

EXY = total(t.*u.*P)       % E[XY] 

VX  = EX2 - EX^2           % Var[X] 

VY  = EY2 - EY^2           % Var[Y] 

jsimple.m

{X,Y } X,Y ,P

E[Y |X = t]
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Description of Code:

japprox.m Assumes discrete setup and calculates basic quantities for a pair of random variables as in jsimple. Plots the
regression line and regression curve.

Answer

cv = EXY - EX*EY;          % Cov[X,Y] = E[XY] - E[X]E[Y] 

if abs(cv) > 1e-9          % to prevent roundoff error masking zero

   CV = cv 

 else 

   CV = 0 

end 

a = CV/VX                  % regression line of Y on X is 

b = EY - a*EX              %       u = at + b 

R = CV/sqrt(VX*VY);        % correlation coefficient rho 

disp(['The regression line of Y on X is:  u = ',num2str(a),'t + ',num2str(b),]) 

disp(['The correlation coefficient is:  rho = ',num2str(R),]) 

disp(' ') 

eYx = sum(u.*P)./PX;  

EYX = [X;eYx]'; 

disp('Marginal dbns are in X, PX, Y, PY; to view, call XDBN, YDBN')

disp('E[Y|X = x] is in eYx; to view, call for EYX') 

disp('Use array operations on matrices X, Y, PX, PY, t, u, and P')

% JAPPROX file japprox.m Basic quantities for ac pair {X,Y} 

% Version of 5/7/96 

% Assumes tuappr has set X, Y, PX, PY, t, u, P 

EX  = total(t.*P)          % E[X] 

EY  = total(u.*P)          % E[Y] 

EX2 = total(t.^2.*P)       % E[X^2] 

EY2 = total(u.^2.*P)       % E[Y^2] 

EXY = total(t.*u.*P)       % E[XY] 

VX  = EX2 - EX^2           % Var[X] 

VY  = EY2 - EY^2           % Var[Y] 

cv = EXY - EX*EY;          % Cov[X,Y] = E[XY] - E[X]E[Y] 

if abs(cv) > 1e-9  % to prevent roundoff error masking zero 

   CV = cv 

 else 

   CV = 0 

end 

a = CV/VX                  % regression line of Y on X is 

b = EY - a*EX              % u = at + b 

R = CV/sqrt(VX*VY); 

disp(['The regression line of Y on X is:  u = ',num2str(a),'t + ',num2str(b),]) 

disp(['The correlation coefficient is:  rho = ',num2str(R),]) 

japprox.m
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Calculations and tests for independent random variables 

Description of Code:

mgsum.m function [z,pz] = mgsum(x,y,px,py)  determines the distribution for the sum of an independent pair
of simple random variables from their distributions.

Answer

function [z,pz] = mgsum(x,y,px,py) 

% MGSUM [z,pz] = mgsum(x,y,px,py)  Sum of two independent simple rv

% Version of 5/6/96 

% Distribution for the sum of two independent simple random variables 

% x is a vector (row or column) of X values   

% y is a vector (row or column) of Y values 

% px is a vector (row or column) of X probabilities 

% py is a vector (row or column) of Y probabilities 

% z and pz are row vectors 

[a,b] = meshgrid(x,y); 

t  = a+b; 

[c,d] = meshgrid(px,py); 

p  = c.*d; 

[z,pz]  = csort(t,p);

Description of Code:

mgsum3.m function [w,pw] = mgsum3(x,y,z,px,py,pz)  extends mgsum to three random variables by
repeated application of mgsum. Similarly for mgsum4.m.

Answer

disp(' ') 

eY = sum(u.*P)./sum(P);    % eY(t) = E[Y|X = t] 

RL = a*X + b; 

plot(X,RL,X,eY,'-.') 

grid 

title('Regression line and Regression curve') 

xlabel('X values') 

ylabel('Y values') 

legend('Regression line','Regression curve') 

clear eY                   % To conserve memory 

clear RL 

disp('Calculate with X, Y, t, u, P, as in joint simple case')

mgsum.m

mgsum3.m
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function [w,pw] = mgsum3(x,y,z,px,py,pz) 

% MGSUM3 [w,pw] = mgsum3(x,y,z,px,py,y) Sum of three independent simple rv 

% Version of 5/2/96 

% Distribution for the sum of three independent simple random variables 

% x is a vector (row or column) of X values   

% y is a vector (row or column) of Y values 

% z is a vector (row or column) of Z values 

% px is a vector (row or column) of X probabilities 

% py is a vector (row or column) of Y probabilities 

% pz is a vector (row or column) of Z probabilities 

% W and pW are row vectors 

[a,pa] = mgsum(x,y,px,py); 

[w,pw] = mgsum(a,z,pa,pz);

Description of Code:

mgnsum.m function [z,pz] = mgnsum(X,P)  determines the distribution for a sum of  independent random
variables.  an -row matrix of -values and -row matrix of -values (padded with zeros, if necessary, to make all rows the
same length.

Answer

function [z,pz] = mgnsum(X,P) 

% MGNSUM [z,pz] = mgnsum(X,P)  Sum of n independent simple rv 

% Version of 5/16/96 

% Distribution for the sum of n independent simple random variables

% X an n-row matrix of X-values 

% P an n-row matrix of P-values 

% padded with zeros, if necessary 

% to make all rows the same length 

[n,r] = size(P); 

z  = 0; 

pz = 1; 

for i = 1:n 

  x = X(i,:); 

  p = P(i,:); 

  x = x(find(p>0)); 

  p = p(find(p>0)); 

  [z,pz] = mgsum(z,x,pz,p); 

end

Description of Code:

mgsumn.m function [z,pz] = mgsumn(varargin)  is an alternate to mgnsum, utilizing varargin in MATLAB
version 5.1. The call is of the form [z,pz] = mgsumn([x1;p1],[x2;p2], ..., [xn;pn]) .

mgnsum.m

n

X n X n P

mgsumn.m
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Answer

function [z,pz] = mgsumn(varargin) 

% MGSUMN [z,pz] = mgsumn([x1;p1],[x2;p2], ..., [xn;pn]) 

% Version of 6/2/97 Uses MATLAB version 5.1 

% Sum of n independent simple random variables 

% Utilizes distributions in the form [x;px] (two rows) 

% Iterates mgsum 

n  = length(varargin);   % The number of distributions 

z  = 0;                  % Initialization 

pz = 1; 

for i = 1:n              % Repeated use of mgsum 

  [z,pz] = mgsum(z,varargin{i}(1,:),pz,varargin{i}(2,:)); 

end

Description of Code:

diidsum.m function [x,px] = diidsum(X,PX,n)  determines the sum of  iid simple random variables, with the
common distribution , 

Answer

function [x,px] = diidsum(X,PX,n) 

% DIIDSUM [x,px] = diidsum(X,PX,n) Sum of n iid simple random variables 

% Version of 10/14/95 Input rev 5/13/97 

% Sum of n iid rv with common distribution X, PX 

% Uses m-function mgsum 

x  = X;                       % Initialization 

px = PX; 

for i = 1:n-1 

  [x,px] = mgsum(x,X,px,PX); 

end

Description of Code:

itest.m Tests for independence the matrix  of joint probabilities for a simple pair  of random variables.

Answer

% ITEST file itest.m  Tests P for independence 

% Version of 5/9/95 

% Tests for independence the matrix of joint  

% probabilities for a simple pair {X,Y} 

pt = input('Enter matrix of joint probabilities  '); 

disp(' ') 

px = sum(pt);                  % Marginal probabilities for X 

diidsum.m

n

X PX

itest.m

P {X,Y }
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py = sum(pt');                 % Marginal probabilities for Y (reversed) 

[a,b] = meshgrid(px,py);  

PT = a.*b;                     % Joint independent probabilities 

D  = abs(pt - PT) > 1e-9;      % Threshold set above roundoff 

if total(D) > 0 

  disp('The pair {X,Y} is NOT independent') 

  disp('To see where the product rule fails, call for D') 

else 

  disp('The pair {X,Y} is independent') 

end

Description of Code:

idbn.m function p = idbn(px,py)  uses marginal probabilities to determine the joint probability matrix (arranged as
on the plane) for an independent pair of simple random variables.

Answer

function p = idbn(px,py) 

% IDBN p = idbn(px,py)  Matrix of joint independent probabilities 

% Version of 5/9/95 

% Determines joint probability matrix for two independent 

% simple random variables (arranged as on the plane) 

[a,b] = meshgrid(px,fliplr(py)); 

p = a.*b

Description of Code:

isimple.m Takes as inputs the marginal distributions for an independent pair  of simple random variables. Sets up the
joint distribution probability matrix  as in idbn, and forms the calculating matrices  as in jcalc. Calculates basic quantities
and makes available matrices , , , , , , , for additional calculations.

Answer

% ISIMPLE file isimple.m  Calculations for independent simple rv 

% Version of 5/3/95 

X  = input('Enter row matrix of X-values  '); 

Y  = input('Enter row matrix of Y-values  '); 

PX = input('Enter X probabilities  '); 

PY = input('Enter Y probabilities  '); 

[a,b] = meshgrid(PX,fliplr(PY)); 

P  = a.*b;                      % Matrix of joint independent probabilities  

[t,u] = meshgrid(X,fliplr(Y));  % t, u matrices for joint calculations 

EX  = dot(X,PX)                 % E[X] 

EY  = dot(Y,PY)                 % E[Y] 

VX  = dot(X.^2,PX) - EX^2       % Var[X] 

idbn.m

isimple.m

{X,Y }

P t, u

X Y PX PY P t u
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VY  = dot(Y.^2,PY) - EY^2       % Var[Y] 

disp(' Use array operations on matrices X, Y, PX, PY, t, u, and P')

Quantile functions for bounded distributions 

Description of Code:

dquant.m function t = dquant(X,PX,U)  determines the values of the quantile function for a simple random
variable with distribution ,  at the probability values in row vector . The probability vector  is often determined by a
random number generator.

Answer

function t = dquant(X,PX,U) 

% DQUANT t = dquant(X,PX,U)  Quantile function for a simple random variable 

% Version of 10/14/95 

% U is a vector of probabilities 

m  = length(X); 

n  = length(U); 

F  = [0 cumsum(PX)+1e-12];  

F(m+1) = 1;                     % Makes maximum value exactly one 

if U(n) >= 1                    % Prevents improper values of probability U 

  U(n) = 1; 

end 

if U(1) <= 0 

  U(1) = 1e-9; 

end 

f  = rowcopy(F,n);              % n rows of F 

u  = colcopy(U,m);              % m columns of U 

t  = X*((f(:,1:m) < u)&(u <= f(:,2:m+1)))';

Description of Code:

dquanplot.m Plots as a stairs graph the quantile function for a simple random variable . The plot is the values of  versus
the distribution function .

Answer

% DQUANPLOT file dquanplot.m  Plot of quantile function for a simple rv 

% Version of 7/6/95 

% Uses stairs to plot the inverse of FX 

X  = input('Enter VALUES for X  '); 

PX = input('Enter PROBABILITIES for X  '); 

m  = length(X); 

F  = [0 cumsum(PX)]; 

XP = [X X(m)]; 

dquant.m

X PX U U

dquanplot.m

X X

FX
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stairs(F,XP) 

grid 

title('Plot of Quantile Function') 

xlabel('u') 

ylabel('t = Q(u)') 

hold on 

plot(F(2:m+1),X,'o')          % Marks values at jumps 

hold off

Description of Code:

dsample.m Calculates a sample from a discrete distribution, determines the relative frequencies of values, and compares with
actual probabilities. Input consists of value and probability matrices for  and the sample size . A matrix  is determined by
a random number generator, and the m-function dquant is used to calculate the corresponding sample values. Various data on
the sample are calculated and displayed.

Answer

% DSAMPLE file dsample.m  Simulates sample from discrete population

% Version of 12/31/95 (Display revised 3/24/97) 

% Relative frequencies vs probabilities for 

% sample from discrete population distribution 

X  = input('Enter row matrix of VALUES  '); 

PX = input('Enter row matrix of PROBABILITIES  '); 

n  = input('Sample size n  '); 

U  = rand(1,n); 

T  = dquant(X,PX,U); 

[x,fr] = csort(T,ones(1,length(T))); 

disp('    Value      Prob    Rel freq') 

disp([x; PX; fr/n]') 

ex = sum(T)/n; 

EX = dot(X,PX); 

vx = sum(T.^2)/n - ex^2; 

VX = dot(X.^2,PX) - EX^2; 

disp(['Sample average ex = ',num2str(ex),]) 

disp(['Population mean E[X] = ',num2str(EX),]) 

disp(['Sample variance vx = ',num2str(vx),]) 

disp(['Population variance Var[X] = ',num2str(VX),])

Description of Code:

quanplot.m Plots the quantile function for a distribution function . Assumes the procedure dfsetup or acsetup has been run.
A suitable set  of probability values is determined and the m-function dquant is used to determine corresponding values of
the quantile function. The results are plotted.

Answer

dsample.m

X n U

quanplot.m

FX

U
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% QUANPLOT file quanplot.m  Plots quantile function for dbn function 

% Version of 2/2/96 

% Assumes dfsetup or acsetup has been run 

% Uses m-function dquant 

X  = input('Enter row matrix of values  '); 

PX = input('Enter row matrix of probabilities  '); 

h  = input('Probability increment h  '); 

U  = h:h:1; 

T  = dquant(X,PX,U); 

U  = [0 U 1]; 

Te = X(m) + abs(X(m))/20; 

T  = [X(1) T Te]; 

plot(U,T)             % Plot rather than stairs for general case 

grid 

title('Plot of Quantile Function') 

xlabel('u') 

ylabel('t = Q(u)')

Description of Code:

qsample.m Simulates a sample for a given population density. Determines sample parameters and approximate population
parameters. Assumes dfsetup or acsetup has been run. Takes as input the distribution matrices  and the sample size .
Uses a random number generator to obtain the probability matrix  and uses the m-function dquant to determine the sample.
Assumes dfsetup or acsetup has been run.

Answer

% QSAMPLE file qsample.m  Simulates sample for given population density 

% Version of 1/31/96 

% Determines sample parameters  

% and approximate population parameters. 

% Assumes dfsetup or acsetup has been run 

X  = input('Enter row matrix of VALUES  '); 

PX = input('Enter row matrix of PROBABILITIES  '); 

n  = input('Sample size n =  '); 

m  = length(X); 

U  = rand(1,n); 

T  = dquant(X,PX,U); 

ex = sum(T)/n; 

EX = dot(X,PX); 

vx = sum(T.^2)/n - ex^2; 

VX = dot(X.^2,PX) - EX^2; 

disp('The sample is in column vector T') 

disp(['Sample average ex = ', num2str(ex),]) 

disp(['Approximate population mean E(X) = ',num2str(EX),]) 

qsample.m

X,PX n

U
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disp(['Sample variance vx = ',num2str(vx),]) 

disp(['Approximate population variance V(X) = ',num2str(VX),])

Description of Code:

targetset.m Setup for arrival at a target set of values. Used in conjunction with the m-procedure targetrun to determine the
number of trials needed to visit  of a specified set of target values. Input consists of the distribution matrices  and the
specified set  of target values.

Answer

% TARGETSET file targetset.m  Setup for sample arrival at target set 

% Version of 6/24/95 

X  = input('Enter population VALUES  '); 

PX = input('Enter population PROBABILITIES  '); 

ms = length(X); 

x = 1:ms;                   % Value indices 

disp('The set of population values is') 

disp(X); 

E  = input('Enter the set of target values  '); 

ne = length(E); 

e  = zeros(1,ne); 

for i = 1:ne 

  e(i) = dot(E(i) == X,x);  % Target value indices 

end 

F  = [0 cumsum(PX)]; 

A  = F(1:ms); 

B  = F(2:ms+1); 

disp('Call for targetrun')

Description of Code:

targetrun.m Assumes the m-file targetset has provided the basic data. Input consists of the number  of repetitions and the
number  of the target states to visit. Calculates and displays various results.

Answer

% TARGETRUN file targetrun.m Number of trials to visit k target values 

% Version of 6/24/95  Rev for Version 5.1 1/30/98 

% Assumes the procedure targetset has been run. 

r  = input('Enter the number of repetitions  '); 

disp('The target set is') 

disp(E) 

ks = input('Enter the number of target values to visit  '); 

if isempty(ks) 

  ks = ne; 

targetset.m

k X,PX

E

targetrun.m

r

k
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end 

if ks > ne 

  ks = ne; 

end 

clear T             % Trajectory in value indices (reset) 

R0 = zeros(1,ms);   % Indicator for target value indices 

R0(e) = ones(1,ne); 

S  = zeros(1,r);    % Number of trials for each run (reset) 

for k = 1:r 

  R = R0; 

  i = 1; 

  while sum(R) > ne - ks 

    u = rand(1,1); 

    s = ((A < u)&(u <= B))*x'; 

    if R(s) == 1     % Deletes indices as values reached 

      R(s) = 0; 

    end 

    T(i) = s; 

    i = i+1; 

  end 

  S(k) = i-1; 

end 

if r == 1 

  disp(['The number of trials to completion is ',int2str(i-1),]) 

  disp(['The initial value is ',num2str(X(T(1))),]) 

  disp(['The terminal value is ',num2str(X(T(i-1))),]) 

  N  = 1:i-1; 

  TR = [N;X(T)]'; 

  disp('To view the trajectory, call for TR') 

else 

  [t,f] = csort(S,ones(1,r)); 

  D  = [t;f]'; 

  p  = f/r; 

  AV = dot(t,p); 

  SD = sqrt(dot(t.^2,p) - AV^2); 

  MN = min(t); 

  MX = max(t); 

  disp(['The average completion time is ',num2str(AV),]) 

  disp(['The standard deviation is ',num2str(SD),]) 

  disp(['The minimum completion time is ',int2str(MN),]) 

  disp(['The maximum completion time is ',int2str(MX),]) 

  disp(' ') 

  disp('To view a detailed count, call for D.') 

  disp('The first column shows the various completion times;') 

  disp('the second column shows the numbers of trials yielding those times') 

  plot(t,cumsum(p)) 

  grid 
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  title('Fraction of Runs t Steps or Less') 

  ylabel('Fraction of runs') 

  xlabel('t = number of steps to complete run') 

end

Compound demand 
The following pattern provides a useful model in many situations. Consider

where , and the class  is iid, independent of the counting random variable . One natural interpretation is to
consider  to be the number of customers in a store and  the amount purchased by the th customer. Then  is the total demand
of the actual customers. Hence, we call  the compound demand.

Description of Code:

gend.m Uses coefficients of the generating functions for  and  to calculate, in the integer case, the marginal distribution for
the compound demand  and the joint distribution for 

Answer

% GEND file gend.m   Marginal and joint dbn for integer compound demand 

% Version of 5/21/97 

% Calculates marginal distribution for compound demand D 

% and joint distribution for {N,D} in the integer case 

% Do not forget zero coefficients for missing powers 

% in the generating functions for N, Y 

disp('Do not forget zero coefficients for missing powers') 

gn = input('Enter gen fn COEFFICIENTS for gN  '); 

gy = input('Enter gen fn COEFFICIENTS for gY  '); 

n  = length(gn) - 1;           % Highest power in gN 

m  = length(gy) - 1;           % Highest power in gY 

P  = zeros(n + 1,n*m + 1);     % Base for generating P 

y  = 1;                        % Initialization 

P(1,1) = gn(1);                % First row of P (P(N=0) in the first position) 

for i = 1:n                    % Row by row determination of P 

   y  = conv(y,gy);            % Successive powers of gy 

   P(i+1,1:i*m+1) = y*gn(i+1); % Successive rows of P 

end 

PD = sum(P);                   % Probability for each possible value of D 

a  = find(gn);                 % Location of nonzero N probabilities 

b  = find(PD);                 % Location of nonzero D probabilities 

P  = P(a,b);                   % Removal of zero rows and columns 

P  = rot90(P);                 % Orientation as on the plane 

N  = 0:n; 

N  = N(a);                     % N values with positive probabilites 

PN = gn(a);                    % Positive N probabilities 

Y  = 0:m;                      % All possible values of Y 

D =∑N
k=0 Yk

= 0Y0 { : 1 ≤ k}Yk N

N Yk k D

D

gend.m

N Y

D {N ,D}
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Y  = Y(find(gy));              % Y values with positive probabilities 

PY = gy(find(gy));             % Positive Y proabilities 

D  = 0:n*m;                    % All possible values of D 

PD = PD(b);                    % Positive D probabilities 

D  = D(b);                     % D values with positive probabilities 

gD = [D; PD]';                 % Display combination 

disp('Results are in N, PN, Y, PY, D, PD, P') 

disp('May use jcalc or jcalcf on N, D, P') 

disp('To view distribution for D, call for gD')

Description of Code:

gendf.m function [d,pd] = gendf(gn,gy)  is a function version of gend, which allows arbitrary naming of the
variables. Calculates the distribution for , but not the joint distribution for 

Answer

function [d,pd] = gendf(gn,gy) 

% GENDF [d,pd] = gendf(gN,gY) Function version of gend.m 

% Calculates marginal for D in the integer case  

% Version of 5/21/97 

% Do not forget zero coefficients for missing powers 

% in the generating functions for N, Y 

n  = length(gn) - 1;           % Highest power in gN 

m  = length(gy) - 1;           % Highest power in gY 

P  = zeros(n + 1,n*m + 1);     % Base for generating P 

y  = 1;                        % Initialization 

P(1,1) = gn(1);                % First row of P (P(N=0) in the first position) 

for i = 1:n                    % Row by row determination of P 

   y  = conv(y,gy);            % Successive powers of gy 

   P(i+1,1:i*m+1) = y*gn(i+1); % Successive rows of P 

end 

PD = sum(P);                   % Probability for each possible value of D 

D  = 0:n*m;                    % All possible values of D 

b  = find(PD);                 % Location of nonzero D probabilities 

d  = D(b);                     % D values with positive probabilities 

pd = PD(b);                    % Positive D probabilities

Description of Code:

mgd.m Uses coefficients for the generating function for  and the distribution for simple  to calculate the distribution for
the compound demand.

Answer

gendf.m

D {N ,D}

mgd.m

N Y
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% MGD file mgd.m  Moment generating function for compound demand 

% Version of 5/19/97 

% Uses m-functions csort, mgsum 

disp('Do not forget zeros coefficients for missing') 

disp('powers in the generating function for N') 

disp(' ')  

g  = input('Enter COEFFICIENTS for gN  '); 

y  = input('Enter VALUES for Y  '); 

p  = input('Enter PROBABILITIES for Y  '); 

n  = length(g);               % Initialization 

a  = 0; 

b  = 1; 

D  = a; 

PD = g(1); 

for i = 2:n 

  [a,b] = mgsum(y,a,p,b); 

  D  = [D a]; 

  PD = [PD b*g(i)]; 

  [D,PD] = csort(D,PD); 

end 

r = find(PD>1e-13);  

D = D(r);                     % Values with positive probability 

PD = PD(r);                   % Corresponding probabilities 

mD = [D; PD]';                % Display details 

disp('Values are in row matrix D; probabilities are in PD.') 

disp('To view the distribution, call for mD.')

Description of Code:

mgdf.m function [d,pd] = mgdf(pn,y,py)  is a function version of mgd, which allows arbitrary naming of the
variables. The input matrix  is the coefficient matrix for the counting random variable generating function. Zeros for the
missing powers must be included. The matrices  are the actual values and probabilities of the demand random variable.

Answer

function [d,pd] = mgdf(pn,y,py) 

% MGDF [d,pd] = mgdf(pn,y,py)  Function version of mgD 

% Version of 5/19/97 

% Uses m-functions mgsum and csort 

% Do not forget zeros coefficients for missing 

% powers in the generating function for N  

n  = length(pn);               % Initialization 

a  = 0; 

b  = 1; 

d  = a; 

pd = pn(1); 

Exercise 17.1.1

pn

y, py
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for i = 2:n 

  [a,b] = mgsum(y,a,py,b); 

  d  = [d a]; 

  pd = [pd b*pn(i)]; 

  [d,pd] = csort(d,pd); 

end 

a  = find(pd>1e-13);          % Location of positive probabilities 

pd = pd(a);                   % Positive probabilities 

d  = d(a);                    % D values with positive probability

Description of Code:

randbern.m Let S be the number of successes in a random number  of Bernoulli trials, with probability  of success on each
trial. The procedure randbern takes as inputs the probability  of success and the distribution matrices ,  for the counting
random variable  and calculates the joint distribution for  and the marginal distribution for .

Answer

% RANDBERN file randbern.m   Random number of Bernoulli trials 

% Version of 12/19/96; notation modified 5/20/97 

% Joint and marginal distributions for a random number of Bernoulli trials 

% N is the number of trials 

% S is the number of successes 

p  = input('Enter the probability of success  '); 

N  = input('Enter VALUES of N  '); 

PN = input('Enter PROBABILITIES for N  '); 

n  = length(N); 

m  = max(N); 

S  = 0:m; 

P  = zeros(n,m+1); 

for i = 1:n 

  P(i,1:N(i)+1) = PN(i)*ibinom(N(i),p,0:N(i)); 

end 

PS = sum(P); 

P  = rot90(P); 

disp('Joint distribution N, S, P, and marginal PS')

Simulation of Markov systems 

Description of Code:

inventory1.m Calculates the transition matrix for an  inventory policy. At the end of each period, if the stock is less
than a reorder point , stock is replenished to the level . Demand in each period is an integer valued random variable .
Input consists of the parameters  and the distribution for Y as a simple random variable (or a discrete approximation).

Answer

Exercise 17.1.1

N p

p N PN

N {N ,S} S

Exercise 17.1.1

(m,M)

m M Y

m,M
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% INVENTORY1 file inventory1.m  Generates P for (m,M) inventory policy 

% Version of 1/27/97 

% Data for transition probability calculations 

% for (m,M) inventory policy 

M  = input('Enter value M of maximum stock  '); 

m  = input('Enter value m of reorder point  '); 

Y  = input('Enter row vector of demand values  '); 

PY = input('Enter demand probabilities  '); 

states = 0:M; 

ms = length(states); 

my = length(Y); 

% Calculations for determining P 

[y,s] = meshgrid(Y,states); 

T  =  max(0,M-y).*(s < m) + max(0,s-y).*(s >= m); 

P  = zeros(ms,ms); 

for i = 1:ms 

   [a,b] = meshgrid(T(i,:),states); 

   P(i,:) = PY*(a==b)'; 

end 

disp('Result is in matrix P')

Description of Code:

branchp.m Calculates the transition matrix for a simple branching process with a specified maximum population. Input
consists of the maximum population value  and the coefficient matrix for the generating function for the individual
propagation random variables . The latter matrix must include zero coefficients for missing powers.

Answer

% BRANCHP file branchp.m  Transition P for simple branching process

% Version of 7/25/95 

% Calculates transition matrix for a simple branching  

% process with specified maximum population. 

disp('Do not forget zero probabilities for missing values of Z') 

PZ = input('Enter PROBABILITIES for individuals  '); 

M  = input('Enter maximum allowable population  '); 

mz = length(PZ) - 1; 

EZ = dot(0:mz,PZ); 

disp(['The average individual propagation is ',num2str(EZ),]) 

P  = zeros(M+1,M+1); 

Z  = zeros(M,M*mz+1); 

k  = 0:M*mz; 

a  = min(M,k); 

z  = 1; 

P(1,1) = 1; 

for i = 1:M                 % Operation similar to gend 

branchp.m

M

Zi
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  z = conv(PZ,z); 

  Z(i,1:i*mz+1) = z; 

  [t,p] = csort(a,Z(i,:)); 

  P(i+1,:) = p; 

end   

disp('The transition matrix is P') 

disp('To study the evolution of the process, call for branchdbn')

Description of Code:

chainset.m Sets up for simulation of Markov chains. Inputs are the transition matrix P the set of states, and an optional set of
target states. The chain generating procedures listed below assume this procedure has been run.

Answer

% CHAINSET file chainset.m Setup for simulating Markov chains 

% Version of 1/2/96 Revise 7/31/97 for version 4.2 and 5.1 

P  = input('Enter the transition matrix  '); 

ms = length(P(1,:)); 

MS = 1:ms; 

states = input('Enter the states if not 1:ms  '); 

if isempty(states) 

  states = MS; 

end 

disp('States are') 

disp([MS;states]') 

PI = input('Enter the long-run probabilities  '); 

F  = [zeros(1,ms); cumsum(P')]'; 

A  = F(:,MS); 

B  = F(:,MS+1); 

e  = input('Enter the set of target states  '); 

ne = length(e); 

E  = zeros(1,ne); 

for i = 1:ne 

  E(i) = MS(e(i)==states); 

end 

disp(' ') 

disp('Call for for appropriate chain generating procedure')

Description of Code:

mchain.m Assumes chainset has been run. Generates trajectory of specified length, with specified initial state.

Answer

chainset.m

mchain.m
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% MCHAIN file mchain.m  Simulation of Markov chains 

% Version of 1/2/96  Revised 7/31/97 for version 4.2 and 5.1 

% Assumes the procedure chainset has been run 

n  = input('Enter the number n of stages   '); 

st = input('Enter the initial state  '); 

if ~isempty(st) 

  s  = MS(st==states); 

else 

  s = 1; 

end 

T  = zeros(1,n);           % Trajectory in state numbers 

U  = rand(1,n); 

for i = 1:n 

  T(i) = s; 

  s = ((A(s,:) < U(i))&(U(i) <= B(s,:)))*MS'; 

end 

N  = 0:n-1; 

tr = [N;states(T)]'; 

n10 = min(n,11); 

TR = tr(1:n10,:); 

f  = ones(1,n)/n; 

[sn,p] = csort(T,f); 

if isempty(PI) 

  disp('     State     Frac') 

  disp([states; p]') 

else 

  disp('     State     Frac       PI') 

  disp([states; p; PI]') 

end 

disp('To view the first part of the trajectory of states, call for TR')

Description of Code:

arrival.m Assumes chainset has been run. Calculates repeatedly the arrival time to a prescribed set of states.

Answer

% ARRIVAL file arrival.m  Arrival time to a set of states 

% Version of 1/2/96  Revised 7/31/97 for version 4.2 and 5.1 

% Calculates repeatedly the arrival 

% time to a prescribed set of states. 

% Assumes the procedure chainset has been run. 

r  = input('Enter the number of repetitions  '); 

disp('The target state set is:') 

disp(e) 

st = input('Enter the initial state  '); 

arrival.m
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if ~isempty(st) 

  s1 = MS(st==states); % Initial state number 

else 

  s1 = 1; 

end 

clear T                % Trajectory in state numbers (reset) 

S  = zeros(1,r);       % Arrival time for each rep  (reset) 

TS = zeros(1,r);       % Terminal state number for each rep (reset)

for k = 1:r 

  R  = zeros(1,ms);    % Indicator for target state numbers 

  R(E) = ones(1,ne);   % reset for target state numbers 

  s  = s1; 

  T(1) = s; 

  i  = 1; 

  while R(s) ~= 1      % While s is not a target state number 

    u = rand(1,1); 

    s = ((A(s,:) < u)&(u <= B(s,:)))*MS'; 

    i = i+1; 

    T(i) = s; 

  end 

  S(k) = i-1;          % i is the number of stages; i-1 is time 

  TS(k) = T(i); 

end 

[ts,ft] = csort(TS,ones(1,r));  % ts = terminal state numbers  ft = frequencies 

fts = ft/r;                     % Relative frequency of each ts 

[a,at]  = csort(TS,S);          % at = arrival time for each ts 

w  = at./ft;                    % Average arrival time for each ts 

RES = [states(ts); fts; w]'; 

disp(' ') 

if r == 1 

  disp(['The arrival time is ',int2str(i-1),]) 

  disp(['The state reached is ',num2str(states(ts)),]) 

  N = 0:i-1; 

  TR = [N;states(T)]'; 

  disp('To view the trajectory of states, call for TR') 

else 

  disp(['The result of ',int2str(r),' repetitions is:']) 

  disp('Term state  Rel Freq   Av time') 

  disp(RES) 

  disp(' ') 

  [t,f]  = csort(S,ones(1,r));  % t = arrival times   f = frequencies 

  p  = f/r;                     % Relative frequency of each t 

  dbn = [t; p]'; 

  AV = dot(t,p); 

  SD = sqrt(dot(t.^2,p) - AV^2); 

  MN = min(t); 

  MX = max(t); 
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Description of Code:

recurrence.m Assumes chainset has been run. Calculates repeatedly the recurrence time to a prescribed set of states, if initial
state is in the set; otherwise calculates the arrival time.

Answer

  disp(['The average arrival time is ',num2str(AV),]) 

  disp(['The standard deviation is ',num2str(SD),]) 

  disp(['The minimum arrival time is ',int2str(MN),]) 

  disp(['The maximum arrival time is ',int2str(MX),]) 

  disp('To view the distribution of arrival times, call for dbn') 

  disp('To plot the arrival time distribution, call for plotdbn') 

end

% RECURRENCE file recurrence.m Recurrence time to a set of states 

% Version of 1/2/96  Revised 7/31/97 for version 4.2 and 5.1 

% Calculates repeatedly the recurrence time 

% to a prescribed set of states, if initial 

% state is in the set; otherwise arrival time. 

% Assumes the procedure chainset has been run. 

r  = input('Enter the number of repititions  '); 

disp('The target state set is:') 

disp(e) 

st = input('Enter the initial state  '); 

if ~isempty(st) 

  s1 = MS(st==states); % Initial state number 

else 

  s1 = 1; 

end 

clear T                % Trajectory in state numbers (reset) 

S  = zeros(1,r);       % Recurrence time for each rep  (reset) 

TS = zeros(1,r);       % Terminal state number for each rep (reset)

for k = 1:r 

  R  = zeros(1,ms);    % Indicator for target state numbers 

  R(E) = ones(1,ne);   % reset for target state numbers 

  s  = s1; 

  T(1) = s; 

  i  = 1; 

  if R(s) == 1 

    u = rand(1,1); 

    s = ((A(s,:) < u)&(u <= B(s,:)))*MS'; 

    i = i+1; 

    T(i) = s; 

  end 

  while R(s) ~= 1      % While s is not a target state number 

recurrence.m
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Description of Code:

kvis.m Assumes chainset has been run. Calculates repeatedly the time to complete visits to a specified  of the states in a
prescribed set.

Answer

    u = rand(1,1); 

    s = ((A(s,:) < u)&(u <= B(s,:)))*MS'; 

    i = i+1; 

    T(i) = s; 

  end 

  S(k) = i-1;          % i is the number of stages; i-1 is time 

  TS(k) = T(i); 

end 

[ts,ft]  = csort(TS,ones(1,r)); % ts = terminal state numbers  ft = frequencies 

fts = ft/r;                % Relative frequency of each ts 

[a,tt]  = csort(TS,S);    % tt = total time for each ts 

w  = tt./ft;               % Average time for each ts 

RES = [states(ts); fts; w]'; 

disp(' ') 

if r == 1 

  disp(['The recurrence time is ',int2str(i-1),]) 

  disp(['The state reached is ',num2str(states(ts)),]) 

  N = 0:i-1; 

  TR = [N;states(T)]'; 

  disp('To view the trajectory of state numbers, call for TR') 

else 

  disp(['The result of ',int2str(r),' repetitions is:']) 

  disp('Term state  Rel Freq   Av time') 

  disp(RES) 

  disp(' ') 

  [t,f]  = csort(S,ones(1,r));  % t = recurrence times   f = frequencies 

  p  = f/r;                      % Relative frequency of each t 

  dbn = [t; p]'; 

  AV = dot(t,p); 

  SD = sqrt(dot(t.^2,p) - AV^2); 

  MN = min(t); 

  MX = max(t); 

  disp(['The average recurrence time is ',num2str(AV),]) 

  disp(['The standard deviation is ',num2str(SD),]) 

  disp(['The minimum recurrence time is ',int2str(MN),]) 

  disp(['The maximum recurrence time is ',int2str(MX),]) 

  disp('To view the distribution of recurrence times, call for dbn') 

  disp('To plot the recurrence time distribution, call for plotdbn') 

end

kvis.m

k
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% KVIS file kvis.m  Time to complete k visits to a set of states 

% Version of 1/2/96 Revised 7/31/97 for version 4.2 and 5.1 

% Calculates repeatedly the time to complete 

% visits to k of the states in a prescribed set. 

% Default is visit to all the target states. 

% Assumes the procedure chainset has been run. 

r  = input('Enter the number of repetitions  '); 

disp('The target state set is:') 

disp(e) 

ks = input('Enter the number of target states to visit  '); 

if isempty(ks) 

  ks = ne; 

end 

if ks > ne 

  ks = ne; 

end 

st = input('Enter the initial state  '); 

if ~isempty(st) 

  s1 = MS(st==states); % Initial state number 

else 

  s1 = 1; 

end 

disp(' ') 

clear T                    % Trajectory in state numbers (reset) 

R0 = zeros(1,ms);          % Indicator for target state numbers 

R0(E) = ones(1,ne);        % reset 

S = zeros(1,r);            % Terminal transitions for each rep (reset) 

for k = 1:r 

  R = R0; 

  s  = s1; 

  if R(s) == 1 

    R(s) = 0; 

  end 

  i  = 1; 

  T(1) = s; 

  while sum(R) > ne - ks 

    u = rand(1,1); 

    s = ((A(s,:) < u)&(u <= B(s,:)))*MS'; 

    if R(s) == 1 

      R(s) = 0; 

    end 

    i = i+1; 

    T(i) = s; 

  end 

  S(k) = i-1; 

end 

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/11098?pdf


17.1.60 https://stats.libretexts.org/@go/page/11098

if r == 1 

  disp(['The time for completion is ',int2str(i-1),]) 

  N = 0:i-1; 

  TR = [N;states(T)]'; 

  disp('To view the trajectory of states, call for TR') 

else 

  [t,f]  = csort(S,ones(1,r)); 

  p  = f/r; 

  D  = [t;f]'; 

  AV = dot(t,p); 

  SD = sqrt(dot(t.^2,p) - AV^2); 

  MN = min(t); 

  MX = max(t); 

  disp(['The average completion time is ',num2str(AV),]) 

  disp(['The standard deviation is ',num2str(SD),]) 

  disp(['The minimum completion time is ',int2str(MN),]) 

  disp(['The maximum completion time is ',int2str(MX),]) 

  disp(' ') 

  disp('To view a detailed count, call for D.') 

  disp('The first column shows the various completion times;') 

  disp('the second column shows the numbers of trials yielding those times') 

end

Description of Code:

plotdbn Used after m-procedures arrival or recurrence to plot arrival or recurrence time distribution.

Answer

% PLOTDBN file plotdbn.m  

% Version of 1/23/98 

% Plot arrival or recurrence time dbn 

% Use after procedures arrival or recurrence  

% to plot arrival or recurrence time distribution 

plot(t,p,'-',t,p,'+') 

grid 

title('Time Distribution') 

xlabel('Time in number of transitions') 

ylabel('Relative frequency') 
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17.2: Appendix B to Applied Probability- some mathematical aids

Series 

1. Geometric series From the expression , we obtain

 for 

For , these sums converge to the geometric series 

Differentiation yields the following two useful series:

 for  and  for 

For the finite sum, differentiation and algebraic manipulation yields

 which converges to  for 

2. Exponential series.  and  for any 

Simple algebraic manipulation yields the following equalities useful for the Poisson distribution:

 and 

3. Sums of powers of integers  

Some useful integrals 
1. The gamma function  for 

Integration by parts shows  for  
By induction  for  
For a positive integer ,  with 

2. By a change of variable in the gamma integral, we obtain

 , 

3. A well known indefinite integral gives

4. The following integrals are important for the Beta distribution.

 , 

For nonnegative integers  

Some basic counting problems 

We consider three basic counting problems, which are used repeatedly as components of more complex problems. The first two,
arrangements and occupancy are equivalent. The third is a basic matching problem.

Arrangements of  objects selected from among  distinguishable objects. 
a. The order is significant. 
b. The order is irrelevant. 
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For each of these, we consider two additional alternative conditions. 
1. No element may be selected more than once. 
2. Repitition is allowed. 
Occupancy of  distinct cells by  objects. These objects are 
a. Distinguishable. 
b. Indistinguishable. 
The occupancy may be 
1. Exclusive. 
2. Nonexclusive (i.e., more than one object per cell)

The results in the four cases may be summarized as follows: 
a. 1. Ordered arrangements, without repetition (permutations). Distinguishable objects, exclusive occupancy.

2. Ordered arrangements, with repitition allowed. Distinguishable objects, nonexclusive occupancy.

b. 1. Arrangements without repetition, order irrelevant (combinations). Indistinguishable objects, exclusive occupancy.

2. Unordered arrangements, with repetition. Indistinguishable objects, nonexclusive occupancy.

Matching  distinguishable elements to a fixed order. Let  be the number of permutations which give  matches.

Natural order 1 2 3 4 5

Permutation 3 2 5 4 1 (Two matches– positions 2, 4)

We reduce the problem to determining , as follows:

Select  places for matches in  ways.
Order the  remaining elements so that no matches in the other  places.

Some algebraic trickery shows that  is the integer nearest . These are easily calculated by the MATLAB
command M = round(gamma(n+1)/exp(1))  For example 
>> M = round(gamma([3:10]+1)/exp(1)); >> disp([3:6;M(1:4);7:10;M(5:8)]') 3 2 7
1854 4 9 8 14833 5 44 9 133496 6 265 10 1334961

Extended binomial coefficients and the binomial series 

The ordinary binomial coefficient is  for integers , 

For any real , any integer , we extend the definition by

,  for , and  for a positive integer 

and

 otherwise

The Pascal's relation holds:  
The power series expansion about  shows
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 , 

For , a positive integer, the series becomes a polynomial of degree 

Cauchy's equation 
Let  be a real-valued function defined on , such that 
a.  for , and 
b. There is an open interval  on which  is bounded above (or is bounded below). 
Then   
Let  be a real-valued function defined on ( ) such that 
a.  , and 
b. There is an interval on which  is bounded above. 
Then, either  for , or there is a constant  such that \f(t) = e^{at}\) for 

[For a proof, see Billingsley, Probability and Measure, second edition, appendix A20]

Countable and uncountable sets 
A set (or class) is countable iff either it is finite or its members can be put into a one-to-one correspondence with the natural
numbers.

Examples

The set of odd integers is countable.
Thee finite set  is countable.
The set of all rational numbers is countable. (This is established by an argument known as diagonalization).
The set of pairs of elements from two countable sets is countable.
The union of a countable class of countable sets is countable.

A set is uncountable iff it is neither finite nor can be put into a one-to-one correspondence with the natural numbers.

Examples

The class of positive real numbers is uncountable. A well known operation shows that the assumption of countability leads to a
contradiction.
The set of real numbers in any finite interval is uncountable, since these can be put into a one-to-one correspondence of the
class of all positive reals.

This page titled 17.2: Appendix B to Applied Probability- some mathematical aids is shared under a CC BY 3.0 license and was authored,
remixed, and/or curated by Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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17.3: Appendix C- Data on some common distributions

Discrete distributions 

Indicator function   

   

Simple random variable  (a primitive form) 

  

Binomial  with  iid 

   

MATLAB:  

Geometric( )  

   

If  ~ geometric , so that  , then

   

Negative binomial ,  is the number of failures before the th success.

 

   

For , the number of the trial on which th success occurs. 
.

   

MATLAB: 

Poisson .  

   

MATLAB:  

Absolutely continuous distributions 

Uniform    (zero elsewhere)

  

Symmetric triangular  

  

Exponential  
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i=1 t
2
i piqi ∑i<j titjpipj (s) =MX ∑n

i=1 pie
sti

(n, p)X =∑
n

i=1 IEi { : 1 ≤ i ≤ n}IEi P ( ) = pEi

P (X = k) = C(n, k)pkqn−k

E[X] = np Var[X] = npq (s) = (q+pMX es)n (s) = (q+psgX )n

P (X = k) = ibinom(n, p, k) P (X ≥ k) = cbinom(n, p, k)

p P (X = k) = pqk ∀k ≥ 0

E[X] = q/p Var[X] = q/p2 (s) = dfracp1 −qMX es (s) =gX
p

1 −qs

Y −1 (p) P (Y = k) = pqk−1 ∀k ≥ 1

E[Y ] = 1/p Var[X] = q/p2 (s) =MY

pes

1 −qes
(s) =gY

ps

1 −qs

(m, p) X m

P (X = k) = C(m+k−1,m−1)pmqk ∀k ≥ 0

E[X] = mq/p Var[X] = mq/p2 (s) = (MX

p

1 −qes
)m (s) = (gX

p

1 −qs
)m

= +mYm Xm m P (Y = k) = C(k−1,m−1)pmqk−m

∀k ≥ m

E[Y ] = m/p Var[Y ] = mq/p2 (s) = (MY

pes

1 −qes
)m (s) = (gY

ps

1 −qs
)m

P (Y = k) = nbinom(m, p, k)

(μ) P (X = k) = e−μ
μk

k!
∀k ≥ 0

E[X] = μ Var[X] = μ (s) =MX eμ( −1)es (s) =gX eμ(s−1)

P (X = k) = ipoisson(m, k) P (X ≥ k) = cpoisson(m, k)

(a, b) (t) =fx
1

b−a
a < t < b

E[X] =
b+a

2
Var[X] =

(b−a)2

12
(s) =MX

−esb esa

s(b−a)

(−a, a) (t) = {fX
(a+ t)/a2

(a− t)/a2
−a ≤ t < 0
0 ≤ t ≤ a

E[X] = 0 Var[X] =
a2

6
(s) = = ⋅MX

+ −2eas e−as

a2s2

−1eas

as

1 −e−as

as

(λ) (t) = λfX e−λt t ≥ 0

E[X] =
1

λ
Var[X] =

1

λ2
(s) =MX

λ

λ−s

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/11801?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/17%3A_Appendices/17.03%3A_Appendix_C-_Data_on_some_common_distributions


17.3.2 https://stats.libretexts.org/@go/page/11801

Gamma  

  

MATLAB: 

Normal

  

MATLAB: 

Beta

 , , 

 

MATLAB:  

Weibull( )

, 

 

MATLAB: (  only)

 

Relationship between gamma and Poisson distributions 
If  ~ gamma , then  where  ~ Poisson .
If  ~ Poisson , then  where  ~ gamma .
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(α,λ) (t) =fX
λαtα−1e−λt

Γ(α)
t ≥ 0

E[X] =
α

λ
Var[X] =

α

λ2
(s) = (MX

λ

λ−s
)α

P (X ≤ t) = gammadbn(α,λ, t)

N(μ, ) (t) = exp(− ( )σ2 fX
1

σ 2π
−−

√

1

2

t−μ

σ
)2

E[X] = μ Var[X]σ2 (s) = exp( +μs)MX

σ2s2

2

P (X ≤ t) = gaussian(μ, , t)σ2

(r, s)

(t) = (1 − tfX
Γ(r+s)

Γ(r)Γ(s)
tr−1 )s−1 0 < t < 1 r > 0 s > 0

E[X] =
r

r+s
Var[X] =

rs

(r+s (r+s+1))2

(t) = beta(r, s, t)fX P (X ≤ t) = betadbn(r, s, t)

α,λ, ν

(t) = 1 −FX e−λ(t−ν)
α

α > 0,λ > 0, ν ≥ 0, t ≥ ν

E[X] = Γ(1 +1/α) +ν
1

λ1/α
Var[X] = [Γ(1 +2/λ) − (1 +1/λ)]

1

λ2/α
Γ2

ν = 0

(t) = weibull(a, l, t)fX P (X ≤ t) = weibull(a, l, t)

X (n,λ) P (X ≤ t) = P (Y ≥ n) Y (λt)
Y (λt) P (Y ≥ n) = P (X ≤ t) X (n,λ)
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17.4: Appendix D to Applied Probability- The standard normal distribution

   

t 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.531

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.571

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.610

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.648

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.684

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.719

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.751

0.7 0.7580 0.7611 0.7643 0.7673 0.7704 0.7734 0.7764 0.7794 0.782

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.810

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.836

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.859

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.881

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.899

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.916

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.930

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 9.9406 0.9418 0.942

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.953

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.962

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.969

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.976

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.981

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.985

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.988

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.991

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.993

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.995

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.996

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.997

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.998

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.998

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.999
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ϕ(t) =  dt
1

2π
−−

√
∫ t

−∞
e− /2μ2

ϕ(−t) = 1 −ϕ(t)
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17.5: Appendix E to Applied Probability - Properties of Mathematical Expectation

We suppose, without repeated assertion, that the random variables and Borel functions of random variables or random vectors are
integrable. Use of an expression such as  involves the tacit assumption that  is a Borel set on the codomain of . 
(E1): , any constant , any event  
(E1a):  and  for any Borel sets  (Extends to any finite
product of such indicator functions of random vectors) 
(E2): Linearity. For any constants ,  (Extends to any finite linear combination) 
(E3): Positivity; monotonicity. 
a.  a.s. implies , with equality iff  a.s. 
b.  a.s. implies , with equality iff  a.s. 
(E4): Fundamental lemma. If  is bounded, and  is a.s. nonnegative, nondecreasing, with 

 for a.e. , then  
(E4a): Monotone convergence. If for all ,  a.s. and  a.s.,then  (The theorem also holds
if )

****** 
(E5): Uniqueness. * is to be read as one of the symbols , or  
a.  *  for all  iff  *  a.s. 
b.  for all  iff  a.s. 
(E6): Fatou's lemma. If  a.s., for all , then  
(E7): Dominated convergence. If real or complex  a.s.,  a.s. for all , and  is integrable, then 

 
(E8): Countable additivity and countable sums. 
a. If  is integrable over , and  (disjoint union), then  
b. If , then , a.s. and  
(E9): Some integrability conditions 
a.  is integrable iff both  and  are integrable iff  is integrable. 
b.  is integrable iff  as  
c. If  is integrable, then  is a.s. finite 
d. If  exists and , then  
(E10): Triangle inequality. For integrable , real or complex,  
(E11): Mean-value theorem. If  a.s. on , then  
(E12): For nonnegative, Borel ,  
(E13): Markov's inequality. If  and nondecreasing for  and , then

(E14): Jensen's inequality. If  is convex on an interval which contains the range of random variable , then 
 

(E15): Schwarz' inequality. For  real or complex, , with equality iff there is a constant  such
that  a.s. 

(E16): Hölder's inequality. For , with , and  real or complex.

(E17): Hölder's inequality. For  and  real or complex,

(E18): Independence and expectation. The following conditions are equivalent. 
a. The pair  is independent 
b.  for all Borel  

E[g(X)] = ∫ g(X) dP

(X)IM M X

E[a ] = aP (A)IA a A

E[ (X)] = P (X ∈ M)IM E[ (X) (Y )] −P (X ∈ M ,Y ∈ N)IM IN M ,N

a, b E[aX+bY ) = aE[X] +bE[Y ]

X ≥ 0 E[X] ≥ 0 X = 0

X ≥ Y E[X] ≥ E[Y ] X = Y

X ≥ 0 { : 1 ≤ n}Xn

(ω) ≥ X(ω)limnXn ω E[ ] ≥ E[X]limn Xn

n 0 ≤ ≤Xn Xn+1 → XXn E[ ] → E[X]Xn

E[X] = ∞

≤, = ≥

E[ (X)g(X)]IM E[ (X)h(X)]IM M g(X) h(X)

E[ (X) (Z)g(X,Z)] = E[ (X) (Z)h(X,Z)]IM IN IM IN M ,N g(X,Z) = h(X,Z)

≥ 0Xn n E[lim inf  ] ≤ [lim inf E[ ]Xn Xn

→ XXn | | ≤ YXn n Y

E[ ] = E[X]limn Xn

X E E =⋁∞
i=1 Ei E[ X] = E[ X]IE ∑∞

i=1 IEi

E[| |] < ∞∑∞
n=1 Xn | | < ∞∑∞

n=1 Xn E[ ] = E[ ]∑∞
n=1 Xn ∑∞

n=1 Xn

X X+ X− |X|

X E[ |X|] → 0I{|X|>a} a → ∞

X X

E[X] P (A) = 0 E[ X] = 0IA
X |E[X]| ≤ E[|X|]

a ≤ X ≤ b A aP (A) ≤ E[ X] ≤ bP (A)IA
g E[g(X)] ≥ aP (g(X) ≥ a)

g ≥ 0 t ≥ 0 a ≥ 0

g(a)P (|X| ≥ a) ≤ E[g(|X|)]

g X

g(E[X]) ≤ E[g(X)]

X,Y |E[XY ] ≤ E[|X ]E[|Y ]|2 |2 |2 c

X = cY

1 ≤ p, q + = 1
1

p

1

q
X,Y

E[|XY |] ≤ E[|X E[|Y|p]1/p |q ]1/q

1 < p X,Y

E[|X+Y ≤ E[|X +E[|Y|
p
]1/p |

p
]1/p |

p
]1/p

{X,Y }

E[ (X) (Y )] = E[ (X)]E[ (Y )]IM IN IM IN M ,N
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c.  for all Borel  such that ,  are integrable. 
(E19): Special case of the Radon-Nikodym theorem If  is integrable and  is a random vector, then there exists a real-
valued Borel function , defined on the range of , unique a.s. , such that  for all Borel
sets  on the codomain of . 
(E20): Some special forms of expectation 
a. Suppose  is nondecreasing, right-continuous on , with . Let . Consider  with 

. Then,

(1)  and (2) 

b. If  is integrable, then  
c. If  are integrable, then  
d. if  is integrable, then

, for all 

e. If integrable  is integer-valued, then

f. If  is the quantile function for , then 
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E[g(X)h(Y )] = E[g(X)]E[h(Y )] g,h g(X) h(Y )

g(Y ) X

e(⋅) X [ ]PX E[ (X)g(X)] = E[ (X)e(X)]IM IM
M X

F [0, ∞) F ( ) = 00− (t) = F (t−0)F ∗ X ≥ 0

E[F (X)] < ∞

E[F (X)] = P (X ≥ t)F  (dt)∫ ∞

0
E[ (X)] = P (X > t)F  (dt)F ∗ ∫ ∞

0

X E[X] = [u(t) − (t)] dt∫ ∞

−∞
FX

X,Y E[X−Y ] = [ (t) − (t)] dt∫ ∞

−∞
FY FX

X ≥ 0

P (X ≥ n+1) ≤ E[X] ≤ P (X ≥ n) ≤ N P (X ≥ kN)∑∞
n=0 ∑∞

n=0 ∑∞
k=0 N ≥ 1

X ≥ 0

E[X] = P (X ≥ n) = P (X > n)E[ ] = (2n−1)P (X ≥ n) = (2n+1)P (X > n)∑∞
n=1 ∑∞

n=0 X2 ∑∞
n=1 ∑∞

n=0

Q FX E[g(X)] = g[Q(u)] du∫ 1
0
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17.6: Appendix F to Applied Probability- Properties of conditional expectation, given
a random vector
We suppose, without repeated assertion, that the random variables and functions of random vectors are integrable, as needed. 
(CE1): Defining condition.  a.s. iff  for each Borel set  on the codomain
of . 
(CE1a): If , then  
(CE1b): Law of total probability.  
(CE2): Linearity. For any constants  

 a.s. 
(Extends to any finite linear combination) 
(CE3): positivity; monotonicty. 
a.  a.s. implies  a.s. 
b.  a.s. implies  a.s. 
(CE4): Monotone convergence.  a.s. monotonically implies  a.s. 
(CE5): Independence.  is an independent pair
a. iff  a.s. for all Borel functions  
b. iff  a.s. for all Borel sets  on the codomain of  
(CE6):  a.s. iff  a.s. for any Borel function  
(CE7):  a.s. for any Borel function  
(CE8):  a.s. for any Borel function  
(CE9): If  and , with  Borel functions, then  a.s. 
(CE10): If is a Borel function such that  is finite for all  on the range of  and  is finite, then 
a.  a.s.  
b. If  is independent, then  a.s.  
(CE11): Suppose  is a real-valued measurable random process whose parameter set  is a Borel subset of the real
line and  is a random variable whose range is a subset of , so that  is a random variable. 
If  is finite for all  in  and  is finite, then 
a. \9E[X(S)|S = t] = E[X(t)|S = t]\) a.s  
b. If, in addition,  is independent, then  a.s.  
(CE12): Countable additivity and countable sums. 
a. If  is integrable on  and . 
then  a.s. 
b. If , thne  a.s. 
(CE13): Triangle inequality.  a.s. 
(CE14): Jensen's inequality. If  is a convex function on an interval  which contains the range of a real random variable , then 

 a.s. 
(CE15): Suppose  and  for . Then 
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e(X) = E[g(Y )|X] E[ (X)g(Y )] = E[ (X)e(X)]IM IM M

X

P (X ∈ M) > 0 E[ (X)e(X)] = E[g(Y )|X ∈ M ]P (X ∈ M)IM

E[g(Y )] = E{[g(Y )|X]}

a, b

E[ag(Y ) +bh(Z)|X] = aE[g(Y )|X] +bE[h(Z)|X]

g(Y ) ≥ 0 E[g(Y )|X] ≥ 0

g(Y ) ≥ h(Z) E[g(Y )|X] ≥ E[h(Z)|X]

→ YYn E[ |X] → E[Y |X]Yn

{X, Y }

E[g(Y )|X] = E[g(Y )] g

E[ (Y )|X] = E[ (Y )]IN IN N Y

e(X) = E[g(Y )|X] E[h(X)g(Y )] = E[h(X)e(X)] h

E[h(X)|X] = h(X) h

E[h(X)g(Y )|X] = h(X)E[g(Y )|X] h

X = h(W ) W = k(X) h, k E[g(Y )|X] = E[g(Y )|W ]

g E[g(t, Y )] t X E[g(X, Y )]

E[g(X, Y )|X = t] = E[g(t, Y )|X = t] [ ]PX

{X, Y } E[g(X, Y )|X = t] = E[g(t, Y )] [ ]PX

{X(t) : t ∈ T } T

S T X(S)

E[X(t)] t T E[X(S)]

[ ]PS

{S, }XT E[X(S)|S = t] = E[X(t)] [ ]PS

Y A A =⋁
∞
n=1 An

E[ Y |X] = E[ Y |X]IA ∑
∞
n=1 IA

E[| |] < ∞∑
∞
n=1 Yn E[ |X]∑

∞
n=1 Yn

|E[g(Y )|X]| ≤ E[|g(Y )||X]

g I Y

g{E[Y |X]} ≤ E[g(Y )|X]

E[|Y ] < ∞|
p

E[|Z ] < ∞|
p

1 ≤ p < ∞ E{|E[Y |X] −E[Z|X] } ≤ E[|Y −Z ] < ∞|
p

|
p
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17.7: Appendix G to Applied Probability- Properties of conditional independence,
given a random vector

The pair  is conditionally independent, givenZ, denoted  ci  iff

 a.s. for all Borel sets 

An arbitrary class  of random vectors is conditionally independent, give , iff such a product rule holds for each
finite subclass or two or more members of the class.

Remark. The expression “for all Borel sets , ," here and elsewhere, implies the sets are on the appropriate codomains. Also,
the expressions below “for all Borel functions ,” etc., imply that the functions are real-valued, such that the indicated expectations
are finite.

The following are equivalent. Each is necessary and sufficient that  ci .

(CI1):  a.s. for all Borel sets  
(CI2):  a.s. for all Borel sets  
(CI3):  a.s. for all Borel sets  
(CI4):  a.s. for all Borel sets 

**** 
(CI5):  a.s. for all Borel functions ,  
(CI6):  a.s. for all Borel function  
(CI7): For any Borel function , there exists a Borel function  such that

 a.s.

(CI8):  a.s. for all Borel functions 

**** 
(CI9):  ci , where  and , for any Borel functions .

Additional properties of conditional independence

(CI10):  ci  implies  ci ,  ci , and  ci , where  and 
, with  Borel. 

(CI11):  ci  and  ci  iff  ci . 
(CI12):  ci  and  ci  implies  is independent. 
(CI13):  is independent and  ci  iff  is independent. 
(CI14):  ci  implies  a.s.  
(CI15):  ci  implies 
a.  
b.  
(CI16):  ci  iff  a.s. for all Borel sets 

This page titled 17.7: Appendix G to Applied Probability- Properties of conditional independence, given a random vector is shared under a CC
BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.

Definition

{X, Y } {X, Y } |Z

E[ (X) (Y )|Z] = E[ (X)|Z]E[ (Y )|Z]IM IN IM IN M , N

{ : t ∈ T }Xt Z

M N

g

{X, Y } |Z

E[ (X) (Y )|Z] = E[ (X)|Z]E[ (Y )|Z]IM IN IM IN M , N

E[ (X)|Z, Y ] = E[ (X)|Z]IM IM M

E[ (X) (Z)|Z, Y ] = E[ (X) (Z)|Z]IM IQ IM IQ M , Q

E[ (X) (Z)|Y ] = E{E[ (X) (Z)|Z]|Y }IM IQ IM IQ M , Q

E[g(X, Z)h(Y , Z)|Z] = E[g(X, Z)|Z]E[h(Y , Z)|Z] g h

E[g(X, Z)|Z, Y ] = E[g(X, Z)|Z] g

g eg

E[g(X, Z)|Z, Y ] = (Z)eg

E[g(X, Z)|Y ] = E{E[g(X, Z)|Z]|Y } g

{U, V } |Z U = g(X, Z) V = h(Y , Z) g, h

{X, Y } |Z {X, Y } |(Z, U) {X, Y } |(Z, V ) {X, Y } |(Z, U, V ) U = h(X)

V = k(Y ) h, k

{X, Z} |Y {X, W } |(Y , Z) {X, (Z, W )} |Y

{X, Z} |Y {(X, Y ), W } |Z {X, (Z, W )}

{X, Y } {X, Y } |Y {X, (Y , Z)}

{X, Y } |Z E[g(X, Y )|Y = u, Z = v] = E[g(X, u)|Z = v] [ ]PYZ

{X, Y } |Z

E[g(X, Z)h(Y , Z)] = E{E[g(X, Z)|Z]E[h(Y , Z)|Z]} = E[ (Z) (Z)]e1 e2

E[g(Y )|X ∈ M ]P (X ∈ M) = E{E[ (X)|Z]E[g(Y )|Z]}IM

{(X, Y ), Z} |W E[ (X) (Y ) (Z)|W ] = E[ (X) (Y )|W ]E[ (Z)|W ]IM IN IQ IM IN IQ

M , N , Q
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17.8: Matlab files for "Problems" in "Applied Probability"

npr02_04 

% file npr02_04.m 

% Data for problem P2-4 

pm = [0.0168  0.0392  0.0672  0.1568  0.0072  0.0168  0.0288  0.0672 ... 

      0.0252  0.0588  0.1008  0.2352  0.0108  0.0252  0.0432  0.1008]; 

disp('Minterm probabilities are in pm.  Use mintable(4)')

npr02_05 

% file npr02_05.m 

% Data for problem P2-5 

pm = [0.0216  0.0144  0.0504  0.0336  0.0324  0.0216  0.0756  0.0504  0.0216 ... 

      0.0144  0.0504  0.0336  0.0324  0.0216  0.0756  0.0504  0.0144  0.0096 ... 

      0.0336  0.0224  0.0216  0.0144  0.0504  0.0336  0.0144  0.0096  0.0336 ... 

      0.0224  0.0216  0.0144  0.0504  0.0336]; 

disp('Minterm probabilities are in pm.  Use mintable(5)') 

npr02_06 

% file npr02_06.m 

% Data for problem P2-6 

minvec3 

DV = [A|Ac; A|(Bc&C); A&C; Ac&B; Ac&Cc; B&Cc]; 

DP = [1      0.65     0.20 0.25  0.25   0.30]; 

TV = [((A&Cc)|(Ac&C))&Bc; ((A&Bc)|Ac)&Cc; Ac&(B|Cc)]; 

disp('Call for mincalc') 

npr02_07 

% file npr02_07.m 

% Data for problem P2-7 

minvec3 

DV = [A|Ac; ((A&Bc)|(Ac&B))&C; A&B; Ac&Cc;  A;  C; A&Bc&Cc]; 

DP = [ 1        0.4            0.2   0.3   0.6 0.5   0.1]; 

TV = [(Ac&Cc)|(A&C); ((A&Bc)|Ac)&Cc; Ac&(B|Cc)]; 

disp('Call for mincalc') 

npr02_08 

% file npr02_08.m 

% Data for problem P2-8 

minvec3 

DV = [A|Ac; A;  C;  A&C; Ac&B; Ac&Bc&Cc]; 

DP = [ 1   0.6 0.4  0.3  0.2     0.1]; 
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TV = [(A|B)&Cc; (A&Cc)|(Ac&C); (A&Cc)|(Ac&B)]; 

disp('Call for mincalc') 

npr02_09 

% file npr02_09.m 

% Data for problem P2-9 

minvec3 

DV = [A|Ac;  A; A&B; A&C; A&B&Cc]; 

DP = [ 1    0.5 0.3  0.3   0.1]; 

TV = [A&(~(B&Cc)); (A&B)|(A&C)|(B&C)]; 

disp('Call for mincalc') 

  

% Modification for part 2 

% DV = [DV; Ac&Bc&Cc; Ac&B&C]; 

% DP = [DP 0.1 0.05]; 

npr02_10 

% file npr02_10.m 

% Data for problem P2-10 

minvec4 

DV = [A|Ac;  A;  Ac&Bc; A&Cc; A&C&Dc]; 

DP = [1     0.6  0.2    0.4    0.1]; 

TV = [(Ac&B)|(A&(Cc|D))]; 

disp('Call for mincalc') 

npr02_11 

% file npr02_11.m 

% Data for problem P2-11 

% A = male;  B = on campus;  C = active in sports 

minvec3 

DV = [A|Ac;  A;   B;  A|C; B&Cc; A&B&C; A&Bc; A&Cc]; 

DP = [ 1    0.52 0.85 0.78 0.30  0.32   0.08 0.17]; 

TV = [A&B; A&B&Cc; Ac&C]; 

disp('Call for mincalc') 

npr02_12 

% file npr02_12.m 

% Data for problem P2-12 

% A = male;  B = party member; C = voted last election 

minvec3 

DV = [A|Ac;  A;  A&Bc;  B;  Bc&C; Ac&Bc&C]; 

DP = [  1   0.60 0.30  0.50 0.20  0.10]; 
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TV = [Bc&Cc]; 

disp('Call for mincalc') 

npr02_13 

% file npr02_13.m 

% Data for problem P2-13 

% A = rain in Austin;  B = rain in Houston; 

% C = rain in San Antonio 

minvec3 

DV = [A|Ac; A&B; A&Bc; A&C; (A&Bc)|(Ac&B); B&C; Bc&C; Ac&Bc&Cc]; 

DP = [  1   0.35 0.15  0.20    0.45        0.30 0.05   0.15]; 

TV = [A&B&C; (A&B&Cc)|(A&Bc&C)|(Ac&B&C); (A&Bc&Cc)|(Ac&B&Cc)|(Ac&Bc&C)]; 

disp('Call for mincalc') 

npr02_14 

% file npr02_14.m 

% Data for problem P2-14 

% A = male;  B = engineering; 

% C = foreign language; D = graduate study 

minvec4 

DV = [A|Ac; A; B; Ac&B; C; Ac&C; A&D; Ac&D; A&B&D; ... 

      Ac&B&D; B&C&D; Bc&Cc&D; Ac&Bc&C&D]; 

DP = [1 0.55 0.23 0.10 0.75 0.45 0.26 0.19 0.13 0.08 0.20 0.05 0.11]; 

TV = [C&D; Ac&Dc; A&((C&Dc)|(Cc&D))]; 

disp('Call for mincalc') 

npr02_15 

% file npr02_15.m 

% Data for problem P2-15 

% A = men; B = on campus; C = readers; D = active 

minvec4 

DV = [A|Ac; A;  B;  Ac&B;  C;  Ac&C;  D;  B&D; C&D; ... 

     Ac&B&D; Ac&Bc&D; Ac&B&C&D; Ac&Bc&C&D; A&Bc&Cc&D]; 

DP = [1  0.6 0.55 0.25 0.40 0.25 0.70 0.50 0.35 0.25 0.05 0.10 0.05 0.05]; 

TV = [A&D&(Cc|Bc); A&Dc&Cc]; 

disp('Call for mincalc') 

npr02_16 

% file npr02_16.m 

% Data for problem P2-16 

minvec3 

DV = [A|Ac; A;    B;    C; (A&B)|(A&C)|(B&C); A&B&C; A&C; (A&B)-2*(B&C)]; 

DP = [ 1  0.221 0.209 0.112   0.197           0.045  0.062      0]; 
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TV = [A|B|C; (A&Bc&Cc)|(Ac&B&Cc)|(Ac&Bc&C)]; 

disp('Call for mincalc') 

npr02_17 

% file npr02_17.m 

% Data for problem P2-17 

% A = alignment;  B = brake work;  C = headlight 

minvec3 

DV = [A|Ac; A&B&C; (A&B)|(A&C)|(B&C); B&C;    A  ]; 

DP = [ 1    0.100      0.325          0.125 0.550]; 

TV = [A&Bc&Cc; Ac&(~(B&C))]; 

disp('Call for mincalc') 

npr02_18 

% file npr02_18.m 

% Date for problem P2-18 

minvec3 

DV = [A|Ac; A&(B|C); Ac; Ac&Bc&Cc]; 

DP = [ 1     0.3     0.6    0.1]; 

TV = [B|C; (((A&B)|(Ac&Bc))&Cc)|(A&C); Ac&(B|Cc)]; 

disp('Call for mincalc') 

  

% Modification 

% DV = [DV; Ac&B&C; Ac&B]; 

% DP = [DP   0.2     0.3]; 

npr02_19 

% file npr02_19.m 

% Data for problem P2-19 

% A = computer;  B = monitor;  C = printer 

minvec3 

DV = [A|Ac; A&B; A&B&Cc; A&C; B&C; (A&Cc)|(Ac&C); ... 

          (A&Bc)|(Ac&B); (B&Cc)|(Bc&C)]; 

DP = [1 0.49 0.17 0.45 0.39 0.50 0.43 0.43]; 

TV = [A; B; C; (A&B&Cc)|(A&Bc&C)|(Ac&B&C); (A&B)|(A&C)|(B&C); A&B&C]; 

disp('Call for mincalc') 

npr02_20 

% file npr02_20.m 

% Data for problem P2-20 

minvec3 

DV = [A|Ac; A;     B;  A&B&C; A&C; (A&B)|(A&C)|(B&C); B&C - 2*(A&C)]; 

DP = [  1  0.232 0.228 0.045 0.062      0.197            0]; 
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TV = [A|B|C; Ac&Bc&C]; 

disp('Call for mincalc') 

% Modification 

% DV = [DV; C]; 

% DP = [DP  0.230 ]; 

npr02_21 

% file npr02_21.m 

% Data for problem P2-21 

minvec3 

DV = [A|Ac; A;  A&B; A&B&C;  C;  Ac&Cc]; 

DP = [ 1   0.4 0.3  0.25   0.65  0.3 ]; 

TV = [(A&Cc)|(Ac&C); Ac&Bc; A|B; A&Bc]; 

disp('Call for mincalc') 

% Modification 

% DV = [DV; Ac&B&Cc; Ac&Bc]; 

% DP = [DP   0.1      0.3 ]; 

npr02_22 

% file npr02_22.m 

% Data for problem P2-22 

minvec3 

DV = [A|Ac; A;  A&B; A&B&C;  C;  Ac&Cc]; 

DP = [ 1   0.4 0.5  0.25   0.65  0.3 ]; 

TV = [(A&Cc)|(Ac&C); Ac&Bc; A|B; A&Bc]; 

disp('Call for mincalc') 

% Modification 

% DV = [DV; Ac&B&Cc; Ac&Bc]; 

% DP = [DP   0.1      0.3 ]; 

npr02_23 

% file npr02_23.m 

% Data for problem P2-23 

minvec3 

DV = [A|Ac; A;  A&C; A&B&C;  C;  Ac&Cc]; 

DP = [ 1   0.4 0.3  0.25   0.65  0.3 ]; 

TV = [(A&Cc)|(Ac&C); Ac&Bc; A|B; A&Bc]; 

disp('Call for mincalc') 

% Modification 

% DV = [DV; Ac&B&Cc; Ac&Bc]; 

% DP = [DP   0.1      0.3 ]; 
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npr03_01 

% file npr03_01.m 

% Data for problem P3-1 

minvec3 

DV = [A|Ac; A;  A&B; B&C; Ac|(B&C); Ac&B&Cc]; 

DP = [ 1   0.55 0.30 0.20   0.55     0.15  ]; 

TV = [Ac&B; B]; 

disp('Call for mincalc') 

npr04_04 

% file npr04_04.m 

% Data for problem P4-4 

pm = [0.032 0.016 0.376 0.011 0.364 0.073 0.077 0.051]; 

disp('Minterm probabilities for P4-4 are in pm') 

npr04_05 

% file npr04_05.m 

% Data for problem P4-5 

pm = [0.084 0.196 0.036 0.084 0.085 0.196 0.035 0.084 ... 

          0.021 0.049 0.009 0.021 0.020 0.049 0.010 0.021]; 

disp('Minterm probabilities for P4-5 are in pm') 

npr04_06 

% file npr04_06.m 

% Data for problem P4-6 

pm =  [0.085 0.195 0.035 0.085 0.080 0.200 0.035 0.085 ... 

        0.020 0.050 0.010 0.020 0.020 0.050 0.015 0.015]; 

disp('Minterm probabilities for P4-6 are in pm') 

mpr05_16 

% file mpr05_16.m 

% Data for Problem P5-16 

A = [51 26  7; 42 32 10; 19 54 11; 24 53  7; 27 52  5; 

     49 19 16; 16 59  9; 47 32  5; 55 17 12; 24 53  7]; 

B = [27 34  5; 19 43  4; 39 22  5; 38 19  9; 28 33  5; 

     19 41  6; 37 21  8; 19 42  5; 27 33  6; 39 21  6]; 

disp('Call for oddsdf') 

npr05_17 

% file npr05_17.m 

% Data for problem P5-17 
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PG1 = 84/150; 

PG2 = 66/125; 

A = [0.61 0.31 0.08 

     0.50 0.38 0.12 

     0.23 0.64 0.13 

     0.29 0.63 0.08 

     0.32 0.62 0.06 

     0.58 0.23 0.19 

     0.19 0.70 0.11 

     0.56 0.38 0.06 

     0.65 0.20 0.15 

     0.29 0.63 0.08]; 

B = [0.41 0.51 0.08 

     0.29 0.65 0.06 

     0.59 0.33 0.08 

     0.57 0.29 0.14 

     0.42 0.50 0.08 

     0.29 0.62 0.09 

     0.56 0.32 0.12 

     0.29 0.64 0.08 

     0.41 0.50 0.09 

     0.59 0.32 0.09]; 

disp('Call for oddsdp') 

npr06_10 

% file npr06_10.m 

% Data for problem P6-10 

pm = [ 0.072 0.048 0.018 0.012 0.168 0.112 0.042 0.028 ... 

       0.062 0.048 0.028 0.010 0.170 0.110 0.040 0.032]; 

c  = [-5.3 -2.5 2.3 4.2 -3.7]; 

disp('Minterm probabilities are in pm, coefficients in c') 

npr06_12 

% file npr06_12.m 

% Data for problem P6-12 

pm = 0.001*[5 7 6 8 9 14 22 33 21 32 50 75 86 129 201 302]; 

c = [1 1 1 1 0]; 

disp('Minterm probabilities in pm, coefficients in c') 

npr06_18.m 

% file npr06_18.m 

% Data for problem P6-18 

cx = [5 17 21 8 15 0]; 

cy = [8 15 12 18 15 12 0]; 
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pmx = minprob(0.01*[37 22 38 81 63]); 

pmy = minprob(0.01*[77 52 23 41 83 58]); 

disp('Data in cx, cy, pmx, pmy') 

npr07_01 

\begin{verbatim} 

% file npr07_01.m 

% Data for problem P7-1 

T  = [1 3 2 3 4 2 1 3 5 2]; 

pc = 0.01*[ 8 13  6  9 14 11 12  7 11  9]; 

disp('Data are in T and pc') 

\end{verbatim} 

npr07_02 

% file npr07_02.m 

% Data for problem P7-2 

T = [3.5 5.0 3.5 7.5 5.0 5.0 3.5 7.5]; 

pc = 0.01*[10 15 15 20 10  5 10 15]; 

disp('Data are in T, pc') 

npr08_01 

% file npr08_01.m 

% Solution for problem P8-1 

X = 0:2;

Y = 0:2;

Pn = [132  24   0; 864 144  6; 1260 216 6]; 

P = Pn/(52*51); 

disp('Data in Pn, P, X, Y') 

npr08_02 

% file npr08_02.m 

% Solution for problem P8-2 

X = 0:2;

Y = 0:2;

Pn = [6 0 0; 18 12 0; 6 12 2]; 

P = Pn/56; 

disp('Data are in X, Y,Pn, P') 

npr08_03 

% file npr08_03.m 

% Solution for problem  P8-3 

X = 1:6;
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Y = 0:6;

P0 = zeros(6,7);       % Initialize 

for i = 1:6            % Calculate rows of Y probabilities 

    P0(i,1:i+1) = (1/6)*ibinom(i,1/2,0:i); 

end 

P = rot90(P0);         % Rotate to orient as on the plane 

PY = fliplr(sum(P'));  % Reverse to put in normal order 

disp('Answers are in X, Y, P, PY') 

npr08_04 

% file npr08_04.m 

% Solution for problem P8-4 

X = 2:12; 

Y = 0:12; 

PX = (1/36)*[1 2 3 4 5 6 5 4 3 2 1]; 

P0 = zeros(11,13); 

for i = 1:11 

    P0(i,1:i+2) = PX(i)*ibinom(i+1,1/2,0:i+1); 

end 

P = rot90(P0); 

PY = fliplr(sum(P')); 

disp('Answers are in X, Y, PY, P') 

npr08_05 

% file npr08_05.m 

% Data and basic calculations for P8-5 

PX = (1/36)*[1 2 3 4 5 6 5 4 3 2 1]; 

X = 2:12; 

Y = 0:12; 

P0 = zeros(11,13); 

for i = 1:11 

  P0(i,1:i+2) = PX(i)*ibinom(i+1,1/6,0:i+1); 

end 

P = rot90(P0); 

PY = fliplr(sum(P')); 

disp('Answers are in X, Y, P, PY') 

npr08_06 

% file  Newprobs/pr08_06.m 

% Data for problem P8-6 (from Exam 2, 95f) 

P = [0.0483    0.0357    0.0420    0.0399    0.0441 

     0.0437    0.0323    0.0380    0.0361    0.0399 

     0.0713    0.0527    0.0620    0.0609    0.0551 

     0.0667    0.0493    0.0580    0.0651    0.0589]; 
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X = [-2.3 -0.7 1.1 3.9 5.1]; 

Y = [ 1.3  2.5 4.1 5.3]; 

disp('Data are in X, Y, P') 

npr08_07 

% file pr08_07.m  (from Exam3, 96s) 

% Data for problem P8-7 

X = [-3.1 -0.5  1.2  2.4  3.7 4.9]; 

Y = [-3.8 -2.0  4.1  7.5]; 

P = [ 0.0090    0.0396    0.0594    0.0216    0.0440    0.0203; 

      0.0495         0    0.1089    0.0528    0.0363    0.0231; 

      0.0405    0.1320    0.0891    0.0324    0.0297    0.0189; 

      0.0510    0.0484    0.0726    0.0132         0    0.0077]; 

disp('Data are in X, Y, P') 

npr08_08 

npr08_09 

% file pr08_09.m   (from Exam3 95f) 

% Data for problem P8-9 

P = [0.0390    0.0110    0.0050    0.0010    0.0010; 

     0.0650    0.0700    0.0500    0.0150    0.0100; 

     0.0310    0.0610    0.1370    0.0510    0.0330; 

     0.0120    0.0490    0.1630    0.0580    0.0390; 

     0.0030    0.0090    0.0450    0.0250    0.0170]; 

X = [1 1.5 2 2.5 3]; 

Y = [1 2 3 4 5]; 

disp('Data are in X, Y, P') 

% file Newprobs/pr08_08.m (from Exam 4 96s) 

% Data for problem P8-8 

P = [0.0156  0.0191  0.0081  0.0035  0.0091  0.0070  0.0098  0.0056  0.0091  0.0049; 

     0.0064  0.0204  0.0108  0.0040  0.0054  0.0080  0.0112  0.0064  0.0104  0.0056; 

     0.0196  0.0256  0.0126  0.0060  0.0156  0.0120  0.0168  0.0096  0.0056  0.0084; 

     0.0112  0.0182  0.0108  0.0070  0.0182  0.0140  0.0196  0.0012  0.0182  0.0038; 

     0.0060  0.0260  0.0162  0.0050  0.0160  0.0200  0.0280  0.0060  0.0160  0.0040; 

     0.0096  0.0056  0.0072  0.0060  0.0256  0.0120  0.0268  0.0096  0.0256  0.0084; 

     0.0044  0.0134  0.0180  0.0140  0.0234  0.0180  0.0252  0.0244  0.0234  0.0126; 

     0.0072  0.0017  0.0063  0.0045  0.0167  0.0090  0.0026  0.0172  0.0217  0.0223]; 

  

X = 1:2:19; 

Y = [-5  -3  -1  3  5 9 10 12]; 

disp('Data are in X, Y, P') 
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npr09_02 

\begin{verbatim} 

% file Newprobs/npr09_02.m 

% Data for problem P9-2 

P = [0.0589    0.0342    0.0304    0.0456    0.0209; 

     0.0961    0.0556    0.0498    0.0744    0.0341; 

     0.0682    0.0398    0.0350    0.0528    0.0242; 

     0.0868    0.0504    0.0448    0.0672    0.0308]; 

X = [-3.9 -1.7 1.5 2.8 4.1]; 

Y = [-2 1 2.6 5.1]; 

disp('Data are in X, Y, P') 

\end{verbatim} 

 

npr10_16 

\begin{verbatim} 

% file npr10_16.m 

% Data for problem P10-16 

cx = [-2 1 3 0]; 

pmx = 0.001*[255  25 375  45 108  12 162  18]; 

cy = [1 3 1 -3]; 

pmy = minprob(0.01*[32 56 40]); 

Z = [-1.3 1.2 2.7 3.4 5.8]; 

PZ = 0.01*[12 24 43 13  8]; 

disp('Data are in cx, pmx, cy, pmy, Z, PZ') 

\end{verbatim} 

npr12_10 

npr16_07 

\begin{verbatim} 

% file npr16_07.m 

% Transition matrix for problem P16-7 

 

P = [0.23    0.32    0.02    0.22    0.21; 

     0.29    0.41    0.10    0.08    0.12; 

% file npr12_10.m 

% Data for problems P12-10, P12_11 

cx = [-3.3 -1.7 2.3 7.6 -3.4]; 

pmx = 0.0001*[475 725 120 180 1125 1675  280 420 480 720 130 170 1120 1680 270 430]; 

cy = [10 17 20 -10]; 

pmy = 0.01*[6 14 9 21 6 14 9 21]; 

disp('Data are in cx, cy, pmx and pmy') 
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     0.22    0.07    0.31    0.14    0.26; 

     0.32    0.15    0.05    0.33    0.15; 

     0.08    0.23    0.31    0.09    0.29]; 

 

disp('Transition matrix is P') 

\end{verbatim} 

npr16_09 

% file npr16_09.m 

% Transition matrix for problem P16-9 

P = [0.2 0.5 0.3  0   0   0   0; 

     0.6 0.1 0.3  0   0   0   0; 

     0.2 0.7 0.1  0   0   0   0; 

      0   0   0  0.6 0.4  0   0; 

      0   0   0  0.5 0.5  0   0; 

     0.1 0.3  0  0.2 0.1 0.1 0.2; 

     0.1 0.2 0.1 0.2 0.2 0.2  0 ]; 

disp('Transition matrix is P')
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