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1.2: Probability Systems

Probability measures

In the module "Likelihood" we introduce the notion of a basic space ΩΩ of all possible outcomes of a trial or experiment, events as
subsets of the basic space determined by appropriate characteristics of the outcomes, and logical or Boolean combinations of the
events (unions, intersections, and complements) corresponding to logical combinations of the defining characteristics.

Occurrence or nonoccurrence of an event is determined by characteristics or attributes of the outcome observed on a trial.
Performing the trial is visualized as selecting an outcome from the basic set. An event occurs whenever the selected outcome is a
member of the subset representing the event. As described so far, the selection process could be quite deliberate, with a prescribed
outcome, or it could involve the uncertainties associated with “chance.” Probability enters the picture only in the latter situation.
Before the trial is performed, there is uncertainty about which of these latent possibilities will be realized. Probability traditionally
is a number assigned to an event indicating the likelihood of the occurrence of that event on any trial.

We begin by looking at the classical model which first successfully formulated probability ideas in mathematical form. We use
modern terminology and notation to describe it.

Classical probability

1. The basic space  consists of a finite number N of possible outcomes. 
 
-There are thirty six possible outcomes of throwing two dice. 

-There are  different hands of five cards (order not important). 

-There are  results (sequences of heads or tails) of flipping five coins.
2. Each possible outcome is assigned a probability 1/
3. If event (subset)  has  elements, then the probability assigned event  is

 (i.e., the fraction favorable to )

With this definition of probability, each event  is assigned a unique probability, which may be determined by counting , the
number of elements in  (in the classical language, the number of outcomes "favorable" to the event) and  the total number of
possible outcomes in the sure event .

Consider the experiment of drawing a hand of five cards from an ordinary deck of 52 playing cards. The number of outcomes,
as noted above, is . What is the probability of drawing a hand with
exactly two aces? What is the probability of drawing a hand with two or more aces? What is the probability of not more than
one ace?

Solution

Let  be the event of exactly two aces,  be the event of exactly three aces, and  be the event of exactly four aces. In the
first problem, we must count the number  of ways of drawing a hand with two aces. We select two aces from the four, and
select the other three cards from the 48 non aces. Thus

, so that 

There are two or more aces iff there are exactly two or exactly three or exactly four. Thus the event  of two or more is 
, since  are mutually exclusive,

so that . There is one ace or none iff there are not two or more aces. We thus want . Now the number in 
 is the number not in  which is , so that
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This example illustrates several important properties of the classical probability.

 is a nonnegative quantity. 
 

If  are mutually exclusive, then the number in the disjoint union is the sum of the numbers in the individual events, so that

Several other elementary properties of the classical probability may be identified. It turns out that they can be derived from these
three. Although the classical model is highly useful, and an extensive theory has been developed, it is not really satisfactory for
many applications (the communications problem, for example). We seek a more general model which includes classical probability
as a special case and is thus an extension of it. We adopt the Kolmogorov model (introduced by the Russian mathematician A. N.
Kolmogorov) which captures the essential ideas in a remarkably successful way. Of course, no model is ever completely
successful. Reality always seems to escape our logical nets.

The Kolmogorov model is grounded in abstract measure theory. A full explication requires a level of mathematical sophistication
inappropriate for a treatment such as this. But most of the concepts and many of the results are elementary and easily grasped. And
many technical mathematical considerations are not important for applications at the level of this introductory treatment and may
be disregarded. We borrow from measure theory a few key facts which are either very plausible or which can be understood at a
practical level. This enables us to utilize a very powerful mathematical system for representing practical problems in a manner that
leads to both insight and useful strategies of solution.

Our approach is to begin with the notion of events as sets introduced above, then to introduce probability as a number assigned to
events subject to certain conditions which become definitive properties. Gradually we introduce and utilize additional concepts to
build progressively a powerful and useful discipline. The fundamental properties needed are just those illustrated in Example for
the classical case.

Definition

A probability system consists of a basic set  of elementary outcomes of a trial or experiment, a class of events as subsets of the
basic space, and a probability measure  which assigns values to the events in accordance with the following rules

(P1): For any event , the probability . 
(P2): The probability of the sure event . 
(P3): Countable additivity. If  is a mutually exclusive, countable class of events, then the probability of the
disjoint union is the sum of the individual probabilities.

The necessity of the mutual exclusiveness (disjointedness) is illustrated in Example. If the sets were not disjoint, probability would
be counted more than once in the sum. A probability, as defined, is abstract—simply a number assigned to each set representing an
event. But we can give it an interpretation which helps to visualize the various patterns and relationships encountered. We may
think of probability as mass assigned to an event. The total unit mass is assigned to the basic set . The additivity property for
disjoint sets makes the mass interpretation consistent. We can use this interpretation as a precise representation. Repeatedly we
refer to the probability mass assigned a given set. The mass is proportional to the weight, so sometimes we speak informally of the
weight rather than the mass. Now a mass assignment with three properties does not seem a very promising beginning. But we soon
expand this rudimentary list of properties. We use the mass interpretation to help visualize the properties, but are primarily
concerned to interpret them in terms of likelihoods.

(P4): . The follows from additivity and the fact that

(P5): . The empty set represents an impossible event. It has no members, hence cannot occur. It seems reasonable
that it should be assigned zero probability (mass). Since , this follows logically from P(4) and (P2).

P (A) = /NNA

P (Ω) = N/N = 1
A, B, C

P (A ⋁ B ⋁ C) = P (A) +P (B) +P (C)

Ω
P (⋅)

A P (A) ≥ 0
P (Ω) = 1

: 1 ∈ JAi

Ω

P ( ) = 1 −P (A)A
c

1 = P (Ω) = P (A ⋁ ) = P (A) +P ( )A
c

A
c
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Figure 1.2.1: Partitions of the union 

(P6): If , then . From the mass point of view, every point in  is also in , so that  must have at
least as much mass as . Now the relationship  means that if  occurs,  must also. Hence  is at least as likely to
occur as . From a purely formal point of view, we have

 so that  since 

(P7):

The first three expressions follow from additivity and partitioning of  as follows (see Figure 1.2.1).

If we add the first two expressions and subtract the third, we get the last expression. In terms of probability mass, the first
expression says the probability in  is the probability mass in  plus the additional probability mass in the part of 
which is not in . A similar interpretation holds for the second expression. The third is the probability in the common part
plus the extra in  and the extra in . If we add the mass in  and  we have counted the mass in the common part twice.
The last expression shows that we correct this by taking away the extra common mass.

(P8): If  is a countable, disjoint class and  is contained in the union, then

 so that 

(P9): Subadditivity. If , then . This follows from countable additivity, property (P6), and
the fact

(Partitions)

, where 

This includes as a special case the union of a finite number of events.

Some of these properties, such as (P4), (P5), and (P6), are so elementary that it seems they should be included in the defining
statement. This would not be incorrect, but would be inefficient. If we have an assignment of numbers to the events, we need only
establish (P1), (P2), and (P3) to be able to assert that the assignment constitutes a probability measure. And the other properties
follow as logical consequences.

Flexibility at a price

In moving beyond the classical model, we have gained great flexibility and adaptability of the model. It may be used for systems in
which the number of outcomes is infinite (countably or uncountably). It does not require a uniform distribution of the probability
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mass among the outcomes. For example, the dice problem may be handled directly by assigning the appropriate probabilities to the
various numbers of total spots, 2 through 12. As we see in the treatment of conditional probability, we make new probability
assignments (i.e., introduce new probability measures) when partial information about the outcome is obtained.

But this freedom is obtained at a price. In the classical case, the probability value to be assigned an event is clearly defined
(although it may be very difficult to perform the required counting). In the general case, we must resort to experience, structure of
the system studied, experiment, or statistical studies to assign probabilities.

The existence of uncertainty due to “chance” or “randomness” does not necessarily imply that the act of performing the trial is
haphazard. The trial may be quite carefully planned; the contingency may be the result of factors beyond the control or knowledge
of the experimenter. The mechanism of chance (i.e., the source of the uncertainty) may depend upon the nature of the actual
process or system observed. For example, in taking an hourly temperature profile on a given day at a weather station, the principal
variations are not due to experimental error but rather to unknown factors which converge to provide the specific weather pattern
experienced. In the case of an uncorrected digital transmission error, the cause of uncertainty lies in the intricacies of the correction
mechanisms and the perturbations produced by a very complex environment. A patient at a clinic may be self selected. Before his
or her appearance and the result of a test, the physician may not know which patient with which condition will appear. In each case,
from the point of view of the experimenter, the cause is simply attributed to “chance.” Whether one sees this as an “act of the gods”
or simply the result of a configuration of physical or behavioral causes too complex to analyze, the situation is one of uncertainty,
before the trial, about which outcome will present itself.

If there were complete uncertainty, the situation would be chaotic. But this is not usually the case. While there is an extremely large
number of possible hourly temperature profiles, a substantial subset of these has very little likelihood of occurring. For example,
profiles in which successive hourly temperatures alternate between very high then very low values throughout the day constitute an
unlikely subset (event). One normally expects trends in temperatures over the 24 hour period. Although a traffic engineer does not
know exactly how many vehicles will be observed in a given time period, experience provides some idea what range of values to
expect. While there is uncertainty about which patient, with which symptoms, will appear at a clinic, a physician certainly knows
approximately what fraction of the clinic's patients have the disease in question. In a game of chance, analyzed into “equally likely”
outcomes, the assumption of equal likelihood is based on knowledge of symmetries and structural regularities in the mechanism by
which the game is carried out. And the number of outcomes associated with a given event is known, or may be determined.

In each case, there is some basis in statistical data on past experience or knowledge of structure, regularity, and symmetry in the
system under observation which makes it possible to assign likelihoods to the occurrence of various events. It is this ability to
assign likelihoods to the various events which characterizes applied probability. However determined, probability is a number
assigned to events to indicate their likelihood of occurrence. The assignments must be consistent with the defining properties (P1),
(P2), (P3) along with derived properties (P4) through (P9) (plus others which may also be derived from these). Since the
probabilities are not “built in,” as in the classical case, a prime role of probability theory is to derive other probabilities from a set
of given probabilites.
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