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8.1: Random Vectors and Joint Distributions
A single, real-valued random variable is a function (mapping) from the basic space  to the real line. That is, to each possible
outcome  of an experiment there corresponds a real value . The mapping induces a probability mass distribution on the
real line, which provides a means of making probability calculations. The distribution is described by a distribution function . In
the absolutely continuous case, with no point mass concentrations, the distribution may also be described by a probability density
function . The probability density is the linear density of the probability mass along the real line (i.e., mass per unit length). The
density is thus the derivative of the distribution function. For a simple random variable, the probability distribution consists of a
point mass  at each possible value  of the random variable. Various m-procedures and m-functions aid calculations for simple
distributions. In the absolutely continuous case, a simple approximation may be set up, so that calculations for the random variable
are approximated by calculations on this simple distribution.

Often we have more than one random variable. Each can be considered separately, but usually they have some probabilistic ties
which must be taken into account when they are considered jointly. We treat the joint case by considering the individual random
variables as coordinates of a random vector. We extend the techniques for a single random variable to the multidimensional case.
To simplify exposition and to keep calculations manageable, we consider a pair of random variables as coordinates of a two-
dimensional random vector. The concepts and results extend directly to any finite number of random variables considered jointly.

Random variables considered jointly; random vectors
As a starting point, consider a simple example in which the probabilistic interaction between two random quantities is evident.

Two campus jobs are open. Two juniors and three seniors apply. They seem equally qualified, so it is decided to select them by
chance. Each combination of two is equally likely. Let  be the number of juniors selected (possible values 0, 1, 2) and  be
the number of seniors selected (possible values 0, 1, 2). However there are only three possible pairs of values for : (0,
2), (1, 1), or (2, 0). Others have zero probability, since they are impossible. Determine the probability for each of the possible
pairs.

Solution

There are  equally likely pairs. Only one pair can be both juniors. Six pairs can be one of each. There are 
 ways to select pairs of seniors. Thus

, , 

These probabilities add to one, as they must, since this exhausts the mutually exclusive possibilities. The probability of any
other combination must be zero. We also have the distributions for the random variables conisidered individually.

 [0 1 2]  [3/10 6/10 1/10]  [0 1 2]  [1/10 6/10 3/10]

We thus have a joint distribution and two individual or marginal distributions.

We formalize as follows:

A pair  of random variables considered jointly is treated as the pair of coordinate functions for a two-dimensional random
vector . To each ,  assigns the pair of real numbers , where  and . If we represent
the pair of values  as the point  on the plane, then , so that

 R

is a mapping from the basic space  to the plane . Since  is a function, all mapping ideas extend. The inverse mapping 
plays a role analogous to that of the inverse mapping  for a real random variable. A two-dimensional vector W is a random
vector iff  is an event for each reasonable set (technically, each Borel set) on the plane.

A fundamental result from measure theory ensures

 is a random vector iff each of the coordinate functions  and  is a random variable.

In the selection example above, we model  (the number of juniors selected) and  (the number of seniors selected) as random
variables. Hence the vector-valued function
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Example 8.1.1: A selection problem

X Y

(X, Y )

C(5, 2) = 10

C(3, 2) = 3

P (X = 0, Y = 2) = 3/10 P (X = 1, Y = 1) = 6/10 P (X = 2, Y = 0) = 1/10

X = P X = Y = P Y =

{X, Y }

W = (X, Y ) ω ∈ Ω W (t, u) X(ω) = t Y (ω) = u

{t, u} (t, u) W (ω) = (t, u)

W = (X, Y ) : Ω → 2

Ω R2 W W −1

X−1

(Q)W −1

W = (X, Y ) X Y

X Y
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Induced distribution and the joint distribution function
In a manner parallel to that for the single-variable case, we obtain a mapping of probability mass from the basic space to the plane.
Since  is an event for each reasonable set  on the plane, we may assign to  the probability mass

Because of the preservation of set operations by inverse mappings as in the single-variable case, the mass assignment determines 
 as a probability measure on the subsets of the plane . The argument parallels that for the single-variable case. The result is

the probability distribution induced by . To determine the probability that the vector-valued function 
takes on a (vector) value in region , we simply determine how much induced probability mass is in that region.

To determine , we determine the region for which the first coordinate value (which we call ) is between
one and three and the second coordinate value (which we call ) is greater than zero. This corresponds to the set  of points on
the plane with  and . Geometrically, this is the strip on the plane bounded by (but not including) the horizontal
axis and by the vertical lines  and (included). The problem is to determine how much probability mass lies in that
strip. How this is achieved depends upon the nature of the distribution and how it is described.

As in the single-variable case, we have a distribution function.

The joint distribution function  for  is given by

This means that  is equal to the probability mass in the region  on the plane such that the first coordinate is less than
or equal to  and the second coordinate is less than or equal to . Formally, we may write

, where \Q_{tu} = \{(r, s) : r \le t, s \le u\}\)

Now for a given point ( ), the region  is the set of points ( ) on the plane which are on or to the left of the vertical line
through ( , 0)and on or below the horizontal line through (0, ) (see Figure 1 for specific point ). We refer to such
regions as semiinfinite intervals on the plane.

The theoretical result quoted in the real variable case extends to ensure that a distribution on the plane is determined uniquely by
consistent assignments to the semiinfinite intervals . Thus, the induced distribution is determined completely by the joint
distribution function.

Figure 8.1.1. The region  for the value .

Distribution function for a discrete random vector

The induced distribution consists of point masses. At point (  in the range of  there is probability mass 
. As in the general case, to determine  we determine how much

probability mass is in the region. In the discrete case (or in any case where there are point mass concentrations) one must be careful
to note whether or not the boundaries are included in the region, should there be mass concentrations on the boundary.

(Q)W −1 Q Q

(Q) = P [ (Q)] = P [(X, Y (Q)]PXY W −1 )−1

PXY R2

W = (X, Y ) W = (X, Y )

Q

Example 8.1.2: Induced distribution and probability calculations

P (1 ≤ X ≤, Y > 0) t

u Q

1 ≤ t ≤ 3 u > 0

t = 1 t = 3

Definition: Joint Distribution Function

FXY W = (X, Y )

(t, u) = P (X ≤ t, Y ≤ u) ∀(t, u) ∈FXY R2 (8.1.1)

(t, u)FXY Qtu

t u

(t, u) = P [(X, Y ) ∈ ]FXY Qtu

a, b Qab t, u

t u t = a, u = b

Qtu

Qab (a, b)FXY

, )ti uj W = (X, Y )

= P [W = (t, )] = P (X = , Y = )Pij uj ti uj [P (X, Y ) ∈ Q]
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Figure 8.1.2. The joint distribution for Example 8.1.3.

The probability distribution is quite simple. Mass 3/10 at (0,2), 6/10 at (1,1), and 1/10 at (2,0). This distribution is plotted in
Figure 8.2. To determine (and visualize) the joint distribution function, think of moving the point  on the plane. The
region \Q_{tu}\) is a giant “sheet” with corner at . The value of  is the amount of probability covered by the
sheet. This value is constant over any grid cell, including the left-hand and lower boundariies, and is the value taken on at the
lower left-hand corner of the cell. Thus, if  is in any of the three squares on the lower left hand part of the diagram, no
probability mass is covered by the sheet with corner in the cell. If  is on or in the square having probability 6/10 at the
lower left-hand corner, then the sheet covers that probability, and the value of . The situation in the other
cells may be checked out by this procedure.

Distribution function for a mixed distribution

The pair  produces a mixed distribution as follows (see Figure 8.3)

Point masses 1/10 at points (0,0), (1,0), (1,1), (0,1)

Mass 6/10 spread uniformly over the unit square with these vertices

The joint distribution function is zero in the second, third, and fourth quadrants.

If the point  is in the square or on the left and lower boundaries, the sheet covers the point mass at (0,0) plus 0.6 times
the area covered within the square. Thus in this region

If the pont  is above the square (including its upper boundary) but to the left of the line , the sheet covers two
point masses plus the portion of the mass in the square to the left of the vertical line through . In this case

If the point  is to the right of the square (including its boundary) with , the sheet covers two point masses
and the portion of the mass in the square below the horizontal line through , to give

F_{XY} (t, u) = \dfrac{1}{10} (2 + 6u)\)

If  is above and to the right of the square (i.e., both  and ). then all probability mass is covered and 
 in this region.

Figure 8.3. Mixed joint distribution for Example 8.4.

Example 8.1.3: distribution function for the selection problem in Example 8.1.1

(t, u)

t, u) (t, u)FXY

(t, u)

(t, u)

(t, u) = 6/10FXY

Example 8.1.4: A Mixed Distribution

{X, Y }

(t, u)

(t, u) = (1 +6tu)FXY

1

10

(t, u) t = 1

(t, u)

(t, u) = (2 +6t)FXY

1

10

(t, u) 0 ≤ u < 1

(t, u)

(t, u) 1 ≤ t 1 ≤ u

(t, u) = 1FXY
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Marginal Distributions

If the joint distribution for a random vector is known, then the distribution for each of the component random variables may be
determined. These are known as marginal distributions. In general, the converse is not true. However, if the component random
variables form an independent pair, the treatment in that case shows that the marginals determine the joint distribution.

To begin the investigation, note that

 i.e.  can take any of its possible values.

Thus

This may be interpreted with the aid of Figure 8.1.4. Consider the sheet for point .

Figure 8.1.4. Construction for obtaining the marginal distribution for .

If we push the point up vertically, the upper boundary of  is pushed up until eventually all probability mass on or to the left of
the vertical line through  is included. This is the total probability that . Now  describes probability mass on the
line. The probability mass described by  is the same as the total joint probability mass on or to the left of the vertical line
through . We may think of the mass in the half plane being projected onto the horizontal line to give the marginal distribution
for . A parallel argument holds for the marginal for .

 mass on or below horizontal line through ( )

This mass is projected onto the vertical axis to give the marginal distribution for .

(t) = P (X ≤ t) = P (X ≤ t, Y < ∞)FX Y

(t) = (t, ∞) = (t, u)FX FXY limu→∞ FXY

(t, u)

X

Qtu

(t, u) X ≤ t (t)FX

(t)FX

(t, u)

X Y

(u) = P (Y ≤ u) = (∞, u) =FY FXY t, u

Y
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Marginals for a joint discrete distribution

Consider a joint simple distribution.

 and 

Thus, all the probability mass on the vertical line through ( ) is projected onto the point  on a horizontal line to give 
. Similarly, all the probability mass on a horizontal line through  is projected onto the point  on a vertical line

to give .

The pair  produces a joint distribution that places mass 2/10 at each of the five points

(0, 0), (1, 1), (2, 0), (2, 2), (3, 1) (See Figure 8.1.5)

The marginal distribution for  has masses 2/10, 2/10, 4/10, 2/10 at points  0, 1, 2, 3, respectively. Similarly, the marginal
distribution for Y has masses 4/10, 4/10, 2/10 at points  0, 1, 2, respectively.

Figure 8.1.5. Marginal distribution for Example 8.1.1.

Consider again the joint distribution in Example 8.4. The pair  produces a mixed distribution as follows:

Point masses 1/10 at points (0,0), (1,0), (1,1), (0,1)

Mass 6/10 spread uniformly over the unit square with these vertices

The construction in Figure 8.1.6 shows the graph of the marginal distribution function . There is a jump in the amount of
0.2 at , corresponding to the two point masses on the vertical line. Then the mass increases linearly with , slope 0.6, until
a final jump at  in the amount of 0.2 produced by the two point masses on the vertical line. At , the total mass is
“covered” and  is constant at one for . By symmetry, the marginal distribution for  is the same.

P (X = ) = P (X = , Y = )ti ∑
m

j=1 ti uj P (Y = ) = P (X = , Y = )uj ∑
n

i=1 ti uj

, 0ti ti

P (X = )ti (0, )uj uj

P (Y = )uj

Example 8.1.5: Marginals for a discrete distribution

{X, Y }

X t =

u =

{X, Y }

FX

t = 0 t

t = 1 t = 1

(t)FX t ≥ 1 Y
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Figure 8.1.6. Marginal distribution for Example 8.1.6
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