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12.2: Covariance and the Correlation Coefficient

The mean value ux = E[X] and the variance 0% = E[(X —px)?] give important information about the distribution for real
random variable X. Can the expectation of an appropriate function of (X,Y") give useful information about the joint distribution?
A clue to one possibility is given in the expression

Var[X +Y] = Var[X]| + Var[Y]| £ 2(E[XY] — E[X|E[Y])
The expression E[XY]— E[X]E[Y] vanishes if the pair is independent (and in some other cases). We note also that for
px = E[X] and py = E[Y]
El(X —px)(Y — py)] = BIXY] - pxpy
To see this, expand the expression (X — px)(Y — py) and use linearity to get
B(X —px)(Y —py)] = EIXY — py X — pxY + pxpy] = E[XY] — py BE[X] — px E[Y] + pxpy

which reduces directly to the desired expression. Now for given w, X(w)—pux is the variation of X from its mean and
Y (w) — py is the variation of Y from its mean. For this reason, the following terminology is used.

Definition: Covariance

The quantity Cov([X,Y] = E[(X — ux)(Y —py)] is called the covariance of X and Y.

Ifwelet X' =X —pux andY' =Y — uy be the ventered random variables, then
Cov[X,Y]=E[X'Y']
Note that the variance of X is the covariance of X with itself.

If we standardize, with X* = (X —px)/ox andY* = (Y — uy)/oy , we have

Definition: Correlation Coefficient

The correlation coefficient p = p[X, Y] is the quantity

E[(X —px)(Y —py)]

plX, Y] = E[X"Y"] =

Thus p = Cov[X,Y]/oxoy. We examine these concepts for information on the joint distribution. By Schwarz' inequality (E15),
we have

P =E?[X*Y*] < E[(X*)?]E[(Y*)?] =1 with equality iff Y* = cX*
Now equality holds iff
1=c2E?[(X*)?] = ¢ which implies c=+1 and p = +1
We conclude -1 < p <1,withp==+1iff Y* =+X*
Relationship between p and the joint distribution
o We consider first the distribution for the standardized pair (X*,Y*)
<s

X - Y —
e Since P(X* <r,Y* <s)=P( £X <r, By )
ox

oy
=P(X<t=oxr+ux,Y <u=oys+puy)
we obtain the results for the distribution for (X, Y") by the mapping

t=oxr+pux
U=0yS+ U1y
Joint distribution for the standardized variables (X*,Y ™), (r, s) = (X*,Y*)(w)

p =1 iff X* =Y * iff all probability mass is on the line s =17.
p = —1iff X* = —Y* iff all probability mass is on the line s = —r.

12.2.1 https://stats.libretexts.org/@go/page/10835



https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10835?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/12%3A_Variance_Covariance_and_Linear_Regression/12.02%3A_Covariance_and_the_Correlation_Coefficient

LibreTextsm

If —1 < p <1, then at least some of the mass must fail to be on these lines.

['j Figure one is comprised of a diagonal line with a right triangle. A portion of the line is the base of the triangle. The line is labeled, s = r. One point of the triangle located on the diagonal line is labeled (t, r). The point
of the triangle that is not located on the line is labeled, (r, s). The side of the triangle in between these two labeled points is labeled as the absolute value of s - r. The side of the triangle on the line is not labeled. The third
side is labeled as the absolute value of s - r divided by the square root of two.

Figure 12.2.1. Distance from point (7, s) to the line s =7.

The p = +1 lines for the (X, Y") distribution are:

U — t— o
By _ ik oru=+—2(t—px)+py
oy ox Ox

1
Consider Z=Y* — X* . Then E[§Z2] =

of the distances of the points (r, s) = (X*,Y*)(w) from the line s =r (i.e. the variance about the line s =r). Similarly for
W =Y*+X*. E[W?/2]is the variance about s = —r. Now

E[(Y* — X*)?] . Reference to Figure 12.2.1 shows this is the average of the square

|~

S BV £ X)) = {B[(V*)?] + B[(X*)?) 4 2B[X"Y "]} = 14

Thus
1 — p is the variance about s =7 (the p =1 line)
1+ p is the variance about s = —r (the p = —1 line)
Now since

E[(Y*-X*)Y =E[Y*+X*)?} iff p=E[X*Y*] =0
the condition p = 0 is the condition for equality of the two variances.

Transformation to the (X,Y") plane

t— —
t=oxr+pux u=oys+puy r= Bx s:u Hy
ox oy
The p =1 line is:
u— Uy t— X oy
BY = 2 BX oru= 25 (¢ px) + py
oy ox X
The p = —1 line is:
U — Wy t—ux oy
B P oru= =2 () oy
oy ox ox
1 — p is proportional to the variance abut the p =1 line and 1 + p is proportional to the variance about the p = —1 line. p = 0 iff

the variances about both are the same.

Example 12.2.1 Uncorrelated but not independent

Suppose the joint density for { X, Y} is constant on the unit circle about the origin. By the rectangle test, the pair cannot be
independent. By symmetry, the p =1 line is w =t and the p = —1 line is u = —t. By symmetry, also, the variance about each
of these lines is the same. Thus p = 0, which is true iff Cov[X, Y] = 0. This fact can be verified by calculation, if desired.

Example 12.2.2 Uniform marginal distributions

| Figure two is comprised of three graphs of multiple shaded squares. All three are standard cartesian graphs, with all four quadrants equal in size, t as the horizontal axis, and u as the vertical axis. The first graph
shows one large square centered at the origin with a length of two units on a side. As the square is centered about the origin, the square is divided equally into four smaller squares by the vertical and horizontal
axes. A caption below the first graph reads, rho = 0. The second graph contains two smaller squares, one unit to a side, one sitting with two sides along the axes of the graph in the first quadrant, and one sitting
with two sides along the axes of the graph in the third quadrant. The caption reads rho = 3/4. The third graph contains two squares of the same size as the second graph, this time with one sitting with two sides
along the axes in the second quadrant, and one sitting with two sides along the axes in the fourth quadrant. The caption reads rho = -3/4.

Figure 12.2.2. Uniform marginals but different correlation coefficients.

Consider the three distributions in Figure 12.2.2. In case (a), the distribution is uniform over the square centered at the origin
with vertices at (1,1), (-1,1), (-1,-1), (1,-1). In case (b), the distribution is uniform over two squares, in the first and third
quadrants with vertices (0,0), (1,0), (1,1), (0,1) and (0,0),

(-1,0), (-1,-1), (0,-1). In case (c) the two squares are in the second and fourth quadrants. The marginals are uniform on (-1,1) in
each case, so that in each case
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E[X]=E[Y] =0 and Var[X] = Var[Y] =1/3

This means the p =1 line is u =t and the p = —1 line is u = —t.

a. By symmetry, E[XY] = 0 (in fact the pair is independent) and p = 0.

b. For every pair of possible values, the two signs must be the same, so E[XY] > 0 which implies p > 0. The actual value
may be calculated to give p = 3/4. Since 1 — p < 1+ p , the variance about the p =1 line is less than that about the p = —1
line. This is evident from the figure.

c. E[XY] <0 and p <0. Since 1 +p <1—p, the variance about the p = —1 line is less than that about the p =1 line.
Again, examination of the figure confirms this.

Example 12.2.3 A pair of simple random variables

With the aid of m-functions and MATLAB we can easily caluclate the covariance and the correlation coefficient. We use the
joint distribution for Example 9 in "Variance." In that example calculations show

E[XY]—-E[X]E[Y]=-0.1633 =Cov[X,Y],0x =1.8170 and oy =1.9122
so that p = —0.04699.

Example 12.2.4 An absolutely continuous pair

6
The pair . as joint density function fxy(¢,u)= 5 t+2u) on the triangular region bounded by ¢ =0, ©u =¢, an
he pair { X, Y} has joint density function f 2 the tri 1 ion bounded b 0 d

u = 1. By the usual integration techniques, we have
6
fx(t) = g(1+t—21t2) ,0<t<1 and fy(u)=3u?,0<u<1
From this we obtain E[X] =2/5, Var[X] = 3/50, E[Y] = 3/4, and Var[Y] = 3/80. To complete the picture we need

E[XY] = g J) [ (Pu+2tu?) dudt =8/25

Then
CovlX,Y] 4
Cov[X, Y] = E[XY] - E[X|E[Y] = 2/100and p = =212 Y _ 4 16.00.4216
ox0oy 30
APPROXIMATION
tuappr

Enter matrix [a b] of X-range endpoints [0 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density (6/5)*(t + 2*u).*(u>=t)
Use array operations on X, Y, PX, PY, t, u, and P

EX = total(t.*P)

EX = 0.4012 % Theoretical = 0.4

EY = total(u.*P)

EY = 0.7496 % Theoretical = 0.75
VX = total(t.A2.*P) - EXA2

VX = 0.0603 % Theoretical = 0.06
VY = total(u.A2.*P) - EYA2

VY = 0.0376 % Theoretical = 0.0375
CV = total(t.*u.*P) - EX*EY

CV = 0.0201 % Theoretical = 0.02
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Coefficient of linear correlation

CV/sqrt (VX*VY)
0.4212 % Theoretical = 0.4216

The parameter p is usually called the correlation coefficient. A more descriptive name would be coefficient of linear correlation.
The following example shows that all probability mass may be on a curve, so that Y = g(X) (i.e., the value of Y is completely
determined by the value of X), yet p =0.

Example 12.2.5Y = g(X) but p=0
Suppose X ~ uniform (-1, 1), so that fx(¢) =1/2, -1 <t <1 and E[X] =0.LetY = g(X) =cos X . Then
1
Cov[X,Y] = E[XY] = 5 [} teostdt =0

Thus p = 0. Note that g could be any even function defined on (-1,1). In this case the integrand tg(t) is odd, so that the value
of the integral is zero.

Variance and covariance for linear combinations
We generalize the property (V4) on linear combinations. Consider the linear combinations
X=>1,aX;andY =370, bY;

We wish to determine Cov[X, Y] and Var[X]. It is convenient to work with the centered random variables X' = X — ux and
Y’ =Y — py . Since by linearity of expectation,

px =2 aipx, and py =377, bipy,
we have
=3 ailXi = Y aipx, = 2 ai(X — px,) = Y aiX]
and similarly for Y. By definition
Cov(X,¥) = BIX'Y'] = B[S, by X[¥{] = 5, by ELX{I] = 3, aib,Cov(Xi, )
In particular
Var(X) = Cov(X, X) = 3=, ; a;a;Cov(X;, X;) = Y1 afCov(Xi, X;) + 2, aia;Cov(Xi, X))
Using the fact that a;a;Cov(X;, X;) = aja;Cov(X}, X;), we have
Var[X] =371 afVar[X;] +237,_; a;a;Cov(X;, X;)

Note that af does not depend upon the sign of a;. If the X; form an independent class, or are otherwise uncorrelated, the
expression for variance reduces to

Var[X] =37, a?Var[X;]
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