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12.1: Variance

In the treatment of the mathematical expection of a real random variable X, we note that the mean value locates the center of the
probability mass distribution induced by X on the real line. In this unit, we examine how expectation may be used for further
characterization of the distribution for X. In particular, we deal with the concept of variance and its square root the standard
deviation. In subsequent units, we show how it may be used to characterize the distribution for a pair { X, Y} considered jointly
with the concepts covariance, and linear regression

Variance

Location of the center of mass for a distribution is important, but provides limited information. Two markedly different random
variables may have the same mean value. It would be helpful to have a measure of the spread of the probability mass about the
mean. Among the possibilities, the variance and its square root, the standard deviation, have been found particularly useful.

Definition: Variance & Standard Deviation

The variance of a random variable X is the mean square of its variation about the mean value:
Var [X] = 0% = E[(X — ux)?] where ux = E[X]

The standard deviation for X is the positive square root o x of the variance.

Remarks

e If X(w) is the observed value of X, its variation from the mean is X (w) — px . The variance is the probability weighted
average of the square of these variances.

e The square of the error treats positive and negative variations alike, and it weights large variations more heavily than smaller
ones.

¢ As in the case of mean value, the variance is a property of the distribution, rather than of the random variable.

e We show below that the standard deviation is a “natural” measure of the variation from the mean.

o In the treatment of mathematical expectation, we show that

E[(X —¢)?] is a minimum off ¢ = E[X], in which case E[(X — E[X])?] = E[X?] — E?[X]
This shows that the mean value is the constant which best approximates the random variable, in the mean square sense.
Basic patterns for variance

Since variance is the expectation of a function of the random variable X, we utilize properties of expectation in computations. In
addition, we find it expedient to identify several patterns for variance which are frequently useful in performing calculations. For
one thing, while the variance is defined as E[(X — px)?], this is usually not the most convenient form for computation. The result
quoted above gives an alternate expression.

(V1): Calculating formula. Var [X] = E[X?] — E?[X]

(V2): Shift property. Var [X +b] = Var [ X] . Adding a constant b to X shifts the distribution (hence its center of mass) by

that amount. The variation of the shifted distribution about the shifted center of mass is the same as the variation of the

original, unshifted distribution about the original center of mass.

(V3): Change of scale. Var [aX] = a®>Var [X]. Multiplication of X by constant a changes the scale by a factor [a]. The

squares of the variations are multiplied by a2. So also is the mean of the squares of the variations.

(V4): Linear combinations.

a. Var [aX £bY| = a?Var [X] +b?Var [Y] £2ab(E[XY] — E[X]E[Y])

b. More generally,

Var [, apXi] = >0, aiVar [Xi] +2 3, aia; (B[ X X;] — E[X,] E[X;])
The terme;; = E[X; X;] — E[X;]E[X;] is the covariance of the pair {X;, X}, whose role we study in the unit on that
topic. If the c;; are all zero, we say the class is uncorrelated.

Remarks

o If the pair { X, Y} is independent, it is uncorrelated. The converse is not true, as examples in the next section show.
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o If the a; = &1 and all pairs are uncorrelated, then
Var 300, a;X;] =3}, Var [X;]
The variance add even if the coefficients are negative.

We calculate variances for some common distributions. Some details are omitted—usually details of algebraic manipulation or the
straightforward evaluation of integrals. In some cases we use well known sums of infinite series or values of definite integrals. A
number of pertinent facts are summarized in Appendix B. Some Mathematical Aids. The results below are included in the table in
Appendix C.

Variances of some discrete distributions

Indicator function X = IgP(E)=p,q=1-p E[X|=p

E[X?]| - E*[X] = E[I}] —p* = E[Ig] -p* =p—p* =p(1—-p) —pgq
Simple random variable X =" | t;I4, (primitive form) P(A4;) =p; .

Var [X] =371, t2pig; —2 ), titjpip; , since E[I4,I4] =014 #j
Binomial(n,p). X =>""" ; Iy, with {Ig, :1 <i <n} iid P(E;) =p
Var [X] =31, Var [Ig] = > 1, pg=npq

Geometric(p). P(X = k) =pq* Vk>0 E[X] =q/p
We use a trick: E[X?] = E[X(X —1)] + E[X]

E[X?| =pY o k(k—1)d" +a/p=pg® 337, k(k—1)¢* 2 +q/p =pg* —— +q/p= 2;—2 +a/p

(1-q)

Var [X] = 22—2 +q/p—(q/p)* =a/p’

k
Poisson(\mu) P(X = k) = e’”% Vk >0

Using E[X?] = E[X(X —1)] + E[X] , we have

k k-2
— oo lu' — o0 /—lf
E[X*=e Y5, k(k—1)77 +p=e TED Py = +p=p 4 p

Thus, Var [X] = u? +pu— p? = p . Note that both the mean and the variance have common value

Some absolutely continuous distributions

Uniform on (a, b) fx(t) = bia a<t<b E[X]= a—;—b
I b —a? ¥—a®  (a+b)? (b—a)?
21 _ 2 — — — =
E[X? = — [t dt 36 _a) so Var [X] 36 _a) 1 T

Symmetric triangular (a,b) Because of the shift property (V2), we may center the distribution at the origin. Then the
distribution is symmetric triangular (—c, ¢), where ¢ = (b —a)/2 . Because of the symmetry

Var [X]| = E[X?] = [ £ fx(t) dt =2 [y t* fx(t) dt
Now, in this case,

_c—t o 2 e, o g (b—a)
fx(t)— =2 OStSCSOIhatE[X]—c—ZIO(Ct 7t)dt—F—T

Exponential (\lambda) fx(t) = Xe™ ,t>0 E[X] =1/\

. 2
E[X?] = [ AtPe ™ dt = 2 % that Var [X] = 1/lambda?

1
Gamma(a, \) fx(t) = =—A*t*le™ t >0 E[X] =

I'(a) A
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E[X?] = ﬁ f0°° Aepotle=M J¢ —

MNa+2) ala+1)
AT(a)  lambda?

Hence Var [X] = a/\2.
Normal(u, 0*) E[X] = p

Consider Y ~ N(0,1), E[Y] =0, Var [Y 22t =1,

2
=— t
] V2 fo
X = oY +p implies Var [Y] = o2
Extensions of some previous examples

In the unit on expectations, we calculate the mean for a variety of cases. We revisit some of those examples and calculate the
variances.

Example 12.1.1 Expected winnings (Example 8 from "

A bettor places three bets at $2.00 each. The first pays $10.00 with probability 0.15, the second $8.00 with probability 0.20,
and the third $20.00 with probability 0.10.

Solution

The net gain may be expressed
X =1014+8Ip+20Ic —6 , with P(A) =0.15, P(B) =0.20, P(C) =0.10

We may reasonbly suppose the class { A, B, C'} is independent (this assumption is not necessary in computing the mean). Then
Var [X] =10?P(A)[1 — P(A)] +82P(B)[1 — P(B)] +20*P(C)[1 — P(C)]

Calculation is straightforward. We may use MATLAB to perform the arithmetic.

= [10 8 20];
p=0.01*[15 20 10];
q=1-p;

VX = sum(c.n2.*p.*q)
VX = 58.9900

Example 12.1.2 A function of X (Example 9 from "

Suppose X in a primitive form is

X =3I, —Ig, +2Ig, — 31, +41c, — I, + Ic, +2Ig, +31¢, +21¢,
with probabilities P(C;) =0.08,0.11,0.06,0.13,0.05,0.08,0.12,0.07,0.14,0.16
Let g(t) = t* +2t . Determine E[g(X)] and Var[g(X)]

c=[-3-12-34-11232]; % Original coefficients

pc = 0.01*[8 11 6 13 5 8 12 7 14 16]; % Probabilities for c_j

G = c.N2 + 2% % g(c_3j)

EG = G*pc' % Direct calculation E[g(X)]
EG = 6.4200

VG = (G.N2)*pc' - EGN2; % Direct calculation Var[g(X)]
VG = 40.8036

[z,PZ] = csort(G,pc); % Distribution for Z = g(X)

EZ = Z*PZ' % E[Z]

EZ = 6.4200
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vz
vz

Example 12.1.3 Z = ¢g(X,Y) (Example 10 from "

(Z.72)*PZ' - EZA2 % Var[Z]
40.8036

We use the same joint distribution as for Example 10 from "Mathematical Expectation: Simple Random Variables" and let
g(t,u) = 1> +2tu — 3u . To set up for calculations, we use jcalc.

jdemo1l % Call for data

jcalc % Set up

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P

G = t.A2 + 2*t.*u - 3*u; % calcculation of matrix of [g(t_i, u_j)]
EG = total(G.*P) % Direct calculation of E[g(X,Y)]

EG = 3.2529

VG = total(G.A.*P) - EGA2 % Direct calculation of Var[g(X,Y)]

VG = 80.2133

[z,PZ] = csort(G,P); % Determination of distribution for z

EZ = Z*PZ' % E[Z] from distribution

Ez = 3.2529

VZ = (Z.7h2)*PZ' - EZAN2 % Var[zZ] from distribution

VZ = 80.2133

Example 12.1.4 A function with compound definition (Example 12 from

Suppose \(X) ~ exponential (0.3). Let

7 X2 forX<4
16 forX >4

=I5 (X) X2 + I 4, (X)16
Determine E[Z] and Var|[Z].
Analytic Solution
E[g(X)] = [g(t)fx(t) dt = [ Tjo,4)(¢)t?0.3e~% dt + 16 B[ (4,00)(X)]
= [1120.3¢ 73 dt + 16 P(X > 4) ~ 7.4972 (by Maple)
Z% — T0,4)(X) X* + I 14,0 (X)256
E[Z?) = [ I0,4(t)t'0.3¢ 703" dt +- 256 B[] 4 o (X)] = Ji 140.3e70% dt 4 256e 12 ~ 100.0562
Var [Z] = E[Z?] — E?|Z)] ~ 43.8486 (by Maple)
APPROXIMATION

To obtain a simple aproximation, we must approximate by a bounded random variable. Since P(X >50) =e 1 ~3-1077
we may safely truncate X at 50.

tuappr
Enter matrix [a b] of x-range endpoints [0 50]
Enter number of x approximation points 1000
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Enter density as a function of t 0.3*exp(-0.3*t)
Use row matrices X and PX as in the simple case

M =X <= 4,

G = M.*X.A2 + 16*(1 - M); % g(X)

EG = G*PX' % E[9(X)]

EG = 7.4972

VG = (G.A2)*PX' - EGA2 % Var[g(X)]

VG = 43.8472 % Theoretical = 43.8486
[Zz,PZ] = csort(G,PX); % Distribution for Z = g(X)
EZ = Z*PZ' % E[Z] from distribution
EZ = 7.4972

VZ = (Z.M2)*PZ' - EZA2 % Var[Z]

VZ = 43.8472

Example :52.1.5 Stocking for random demand (Example 13 from "

The manager of a department store is planning for the holiday season. A certain item costs ¢ dollars per unit and sells for p
dollars per unit. If the demand exceeds the amount m ordered, additional units can be special ordered for s dollars per unit (
s > ¢). If demand is less than the amount ordered, the remaining stock can be returned (or otherwise disposed of) at 7 dollars
per unit (r < ¢). Demand D for the season is assumed to be a random variable with Poisson (1) distribution. Suppose p = 50,
¢ =30, p =50, s =40, » = 20. What amount m should the manager order to maximize the expected profit?

Problem Formulation
Suppose D is the demand and X is the profit. Then

ForD<m,X=D(p—c)—(m—D)(c—r)=D(p—r)+m(r—c)
ForD>m,X=m(p—c)—(D—m)(p—s)=D(p—s)+m(s—c)

It is convenient to write the expression for X in terms of Iy, where M = (—oo0, M| . Thus
X =Iu(D)[D(p —7)+m(r—c)] +[1 = Iu(D)][D(p — 5) +m(s —c)]
=D(p—s)+m(s—c)+In(D)Dp—r)+m(r—c)—D(p—s)—m(s—c)]
D(p—3s)+m(s—c)+Iy(D)(s—7)[D—m]
Then
E[X] = (p—s)E[D]+m(s—c) + (s =) E[In(D)D] — (s — r)mE[In(D)]

We use the discrete approximation.

APPROXIMATION
>> mu = 50,
>> n = 100;
>> t = 0:n;
>> pD = ipoisson(mu,t); % Approximate distribution for D
>> ¢ = 30;
>> p = 50;
>> s = 40;
>> r = 20;
>> m = 45:55;
>> for 1 = 1:length(m) % Step by step calculation for various m
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M = t<=m(i);
G(i,:) = (p-s)*t + m(i)*(s-c) + (s-r)*M.*(t - m(i));
end
>> EG = G*pD';
>> VG = (G.N2)*pD' - EG.N2;
>> SG = sqrt(VG);
>> disp([EG';VG';SG']")
1.0e+04 *
0.0931 1.1561 0.0108
0.0936 1.3117 0.0115
0.0939 1.4869 0.0122
0.0942 1.6799 0.0130
0.0943 1.8880 0.0137
0.0944 2.1075 0.0145
0.0943 2.3343 0.0153
0.0941 2.5637 0.0160
0.0938 2.7908 0.0167
0.0934 3.0112 0.0174
0.0929 3.2206 0.0179

Example ")12.1.6 A jointly distributed pair (Example 14 from

Suppose the pair { X, Y} has joint density fxy (t,u) = 3w on the triangular region bounded by u =0, u =1+¢t, u=1—%.
Let Z=g(X,Y) = X% +2XY .
Determine E[Z] and Var [Z].
Analytic Solution
E[Z] = [ [(t +2tu) fxy (t,u) dudt =3 [°| [ u(t® +2tu) dudt +3 [} [ u(t? +2tu) dudt =1/10
E[Z%) =3 [° [ u(®+2tw)? dudt+3 [} [, u(t® +2tu)? dudt = 3/35
Var [Z] = E[Z%] — E?[Z] = 53/700 ~ 0.0757
APPROXIMATION

tuappr

Enter matrix [a b] of x-range endpoints [-1 1]

Enter matrix [c d] of Y-range endpoints [0 1]

Enter number of X approximation points 400

Enter number of Y approximation points 200

Enter expression for joint density 3*u.*(u<=min(1+t,1-t))
Use array operations on X, Y, PX, PY, t, u, and P

G = t.A2 + 2*t.*u; % g(X,Y) = XA2 + 2XY

EG = total(G.*P) % E[g(X,Y)]

EG = 0.1006 % Theoretical value = 1/10

VG = total(G.A2.*P) - EGA2

VG = 0.0765 % Theoretical value 53/700 = 0.757
[z,PZ] = csort(G,P); % Distribution for z

EZ = Z*PZ' % E[Z] from distribution
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EZ = 0.1006
VZ = (Z.7A2)*PZ' - EZA2
VZ = 0.0765

Example 12.1.7 A function with compound definition (Example 15 from

The pair {X, Y} has joint density fxy(¢,u) =1/2 on the square region bounded by u =1+¢,u=1—t,u=3—t¢, and
u=t—1.

X formax{X,Y}<1
W= IS (X, Y)X + I (X, Y)2Y
{2Y formax {X,Y} >1 (X, V)X +1o:(X,Y)

where Q@ = {(¢t,u) : max {¢t,u} <1} ={(¢t,u): ¢t <1,u<1}.

Determine E[W]and Var [W].

Solution

The intersection of the region @) and the square is the set for which 0 <¢ <1 and 1 —¢ <wu < 1. Reference to Figure 11.3.2

shows three regions of integration.

1 11 L1 opige 1 2 3
BW] =3 [y Ji tdudt+5 [y [T 2ududt+ 5 [[ [ 2u dudt =11/6 ~1.8333

LS S L1 p1ge 1 2 3¢
E[W?] =3k [t dudt+ 5 [y J; 4u? dudt +3 [;" [, 4u? dudt =103 /24

Var [W] =103/24 —(11/6)2 = 67/72 ~ 0.9306

tuappr

Enter matrix [a b] of x-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 200

Enter number of Y approximation points 200

Enter expression for joint density ((u<=min(t+1,3-t))& ...
(usgt;=max(1-t,t-1))/2

Use array operations on X, Y, PX, PY, t, u, and P

M = max(t,u)<=1;

G =t.AM + 2%u.*(1 - M); %Z = g(X,Y)

EG = total(G.*P) % E[g(X,Y)]

EG = 1.8349=0 % Theoretical 11/6 = 1.8333
VG = total(G.A2.*P) - EGA2

VG = 0.9368 % Theoretical 67/72 = 0.9306
[z,PZ] = csort(G,P); % Distribution for z

EZ = Z*PZ' % E[Z] from distribution

EzZ = 1.8340

VZ = (Z.Mh2)*PZ' - EZA2

VZ = 0.9368

Example 12.1.8 A function with compound definition

fxy(t,u)=3on0<u<t2<1
Z:IQ(X,Y)X+IQc(X,Y) for Q Z{(t,u):u+t§ 1}
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The value ¢, where the line w =1 —¢ and the curve u = t* meet satisfies t; =1 —t; .
BZ)=3 [t [ dudt+3 [*¢ [ dudt+3 [*[* dudt= > (5t —2)

o YJo t tJo to J1-t 1
For E[Z?] replace t by ¢? in the integrands to get E[Z?] = (25t, — 1)/20.

Using tg = (v/5 —1)/2 ~0.6180, we get Var [Z] = (2125t; — 1309)/80 ~ 0.0540.
APPROXIMATION

% Theoretical values

t0 = (sqrt(5) - 1)/2
t0 = 0.6180
EZ = (3/4)*(5*t0 - 2)
EZ = 0.8176

EZ2 = (25*t0 - 1)/20
EZ2 = 0.7225

VZ = (2125*TO - 1309)/80
VZ = 0.0540
tuappr

Enter matrix [a b] of x-range endpoints [0 1]
Enter matrix [c d] of Y-range endpoints [0 1]
Enter number of X approximation points 200
Enter number of Y approximation points 200
Enter expression for joint density 3*(u <= t.A2)
Use array operations on X, Y, t, u, and P

G = (t+u <= 1).*t + (t+u > 1);

EG = total(G.*P)

EG = 0.8169 % Theoretical = 0.8176
VG = total(G.A2.*P) - EGA2

VG = 0.0540 % Theoretical = 0.0540
[Z,PZ] = csort(G,P);

EZz = z*PZ'

EZ = 0.8169

VZ = (Z.M2)*PZ' - EZA2

VZ = 0.0540

Standard deviation and the Chebyshev inequality
—K

In Example 5 from "Functions of a Random Variable," we show that if X ~ N(u,o?), then Z = ~ N(0,1). Also,
E[X] = p and Var [X] = ¢?. Thus

X_
| X — p <
g

P( t)=P(|X —p| <to) =2¢(t) -1

For the normal distribution, the standard deviation o seems to be a natural measure of the variation away from the mean.
For a general distribution with mean y and variance o2, we have the
Chebyshev inequality

X —
&Za)

P( >

1 1
Sg 0rP(|X—,u|2aa)§a—2
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In this general case, the standard deviation appears as a measure of the variation from the mean value. This inequality is useful in
many theoretical applications as well as some practical ones. However, since it must hold for any distribution which has a variance,
the bound is not a particularly tight. It may be instructive to compare the bound on the probability given by the Chebyshev
inequality with the actual probability for the normal distribution.

t =1:0.5:3;

p = 2*(1 - gaussion(0.1,t));

c = ones(1,length(t))./(t.A2);

r =c./p;

h=1[" t Chebyshev Prob Ratio'];

m= [t;c;p;r]";

disp(h)

t Chebyshev Prob Ratio

disp(m)
1.0000 1.0000 0.3173 3.1515
1.5000 0.4444 0.1336 3.3263
2.0000 0.2500 0.0455 5.4945
2.5000 0.1600 0.0124 12.8831
3.0000 0.1111 0.0027 41.1554

—0a

DERIVATION OF THE CHEBYSHEV INEQUALITY
Let A={|X —p| > a0} = {(X —p)? >a’0?} .Thena’c’I4 < (X —p)?.
Upon taking expectations of both sides and using monotonicity, we have
a’0?P(A) < E[(X —p)*] =02
from which the Chebyshev inequality follows immediately.
—0O

We consider three concepts which are useful in many situations.

Definition

A random variable X is centered iff E[X] = 0.

X' = X —p is always centered.

Definition

A random variable X is standardized iff E[X] =0 and Var[X] =1.
!

X —
2Tk _ 2 is standardized
o o

X*

Definition

A pair { X, Y} of random variables is uncorrelated iff

E[XY] - E[X]E[Y] =0

It is always possible to derive an uncorrelated pair as a function of a pair { X, Y}, both of which have finite variances. Consider

X —px y*— Y —py

U=(X*+Y*) V=(X*-Y"*), where X* =
ox oy

12.1.9 https://stats.libretexts.org/@go/page/10834



https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10834?pdf

LibreTextsw

Now E[U] = E[V] =0 and
EUV]|=E(X*+Y*)(X*-Y*)|=E[(X*)?| - E[(Y*)?)]=1-1=0

so the pair is uncorrelated.

Example 12.1.9 Determining an unvorrelated pair

We use the distribution for Examples Example 10 from "Mathematical Expectation: Simple Random Variables" and Example,
for which

E[XY] - E[X|E[Y] #0

jdemo1l

jcalc

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P

EX = total(t.*P)

EX = 0.6420

EY = total(u.*P)

EY = 0.0783

EXY = total(t.*u.*P)

EXY = -0.1130
c = EXY - EX*EY
c = -0.1633 % {X, Y} not uncorrelated

VX = total(t.A2.*P) - EXA2

VX = 3.3016
VY = total(u.”r2.*P) - EYA2
VY = 3.6566
SX = sqrt(VX)
SX = 1.8170
SY = sqrt(Vy)
SY = 1.9122
= (t - EX)/SX; % Standardized random variables
= (u - EY)/SY;
uu = x +vy; % Uncorrelated random variables
VW = X - Y;
EUV = total(uu.*vv.*P) % Check for uncorrelated condition
EUV = 9.9755e-06 % Differs from zero because of roundoff
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