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12.2: Covariance and the Correlation Coefficient
The mean value  and the variance  give important information about the distribution for real
random variable . Can the expectation of an appropriate function of  give useful information about the joint distribution?
A clue to one possibility is given in the expression

The expression  vanishes if the pair is independent (and in some other cases). We note also that for 
 and 

To see this, expand the expression  and use linearity to get

which reduces directly to the desired expression. Now for given ,  is the variation of  from its mean and 
 is the variation of  from its mean. For this reason, the following terminology is used.

The quantity  is called the covariance of  and .

If we let  and  be the ventered random variables, then

Note that the variance of  is the covariance of  with itself.

If we standardize, with  and , we have

The correlation coefficient  is the quantity

Thus . We examine these concepts for information on the joint distribution. By Schwarz' inequality (E15),
we have

 with equality iff 

Now equality holds iff

 which implies  and 

We conclude , with  iff 

Relationship between  and the joint distribution

We consider first the distribution for the standardized pair 

Since 

we obtain the results for the distribution for  by the mapping

 

Joint distribution for the standardized variables , 

 iff  iff all probability mass is on the line . 
 iff  iff all probability mass is on the line .

= E[X]μX = E[(X− ]σ2
X μX)2

X (X,Y )

Var[X±Y ] = Var[X] +Var[Y ] ±2(E[XY ] −E[X]E[Y ])

E[XY ] −E[X]E[Y ]
= E[X]μX = E[Y ]μY

E[(X− )(Y − )] = E[XY ] −μX μY μXμY

(X− )(Y − )μX μY

E[(X− )(Y − )] = E[XY − X− Y + ] = E[XY ] − E[X] − E[Y ] +μX μY μY μX μXμY μY μX μXμY

ω X(ω) −μX X

Y (ω) −μY Y

Definition: Covariance

Cov[X,Y ] = E[(X− )(Y − )]μX μY X Y

= X−X ′ μX = Y −Y ′ μY

Cov[X,Y ] = E[ ]X ′Y ′

X X

= (X− )/X∗ μX σX = (Y − )/Y ∗ μY σY

Definition: Correlation Coefficient

ρ = ρ[X,Y ]

ρ[X,Y ] = E[ ] =X∗Y ∗
E[(X− )(Y − )]μX μY

σXσY

ρ = Cov[X,Y ]/σXσY

= [ ] ≤ E[( ]E[( ] = 1ρ2 E2 X∗Y ∗ X∗)2 Y ∗)2 = cY ∗ X∗

1 = [( ] =c2E2 X∗)2 c2 c = ±1 ρ = ±1

−1 ≤ ρ ≤ 1 ρ = ±1 = ±Y ∗ X∗

ρ

( , )X∗ Y ∗

P ( ≤ r, ≤ s) = P ( ≤ r, ≤ s)X∗ Y ∗
X−μX

σX

Y −μY

σY

= P (X ≤ t = r+ ,Y ≤ u = s+ )σX μX σY μY

(X,Y )

t = r+σX μX

u = s+σY μY

( , )X∗ Y ∗ (r, s) = ( , )(ω)X∗ Y ∗

ρ = 1 =X∗ Y ∗ s = r

ρ = −1 = −X∗ Y ∗ s = −r
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If , then at least some of the mass must fail to be on these lines.
Figure one is comprised of a diagonal line with a right triangle. A portion of the line is the base of the triangle. The line is labeled, s = r. One point of the triangle located on the diagonal line is labeled (r, r). The point

of the triangle that is not located on the line is labeled, (r, s). The side of the triangle in between these two labeled points is labeled as the absolute value of s - r. The side of the triangle on the line is not labeled. The third
side is labeled as the absolute value of s - r divided by the square root of two.  

Figure 12.2.1. Distance from point  to the line .

The  lines for the  distribution are:

 or 

Consider . Then . Reference to Figure 12.2.1 shows this is the average of the square

of the distances of the points  from the line  (i.e. the variance about the line ). Similarly for 
.  is the variance about . Now

Thus

 is the variance about  (the  line) 
 is the variance about  (the  line)

Now since

 iff 

the condition  is the condition for equality of the two variances.

Transformation to the  plane

   

The  line is:

 or 

The  line is:

 or 

 is proportional to the variance abut the  line and  is proportional to the variance about the  line.  iff
the variances about both are the same.

Suppose the joint density for  is constant on the unit circle about the origin. By the rectangle test, the pair cannot be
independent. By symmetry, the  line is  and the  line is . By symmetry, also, the variance about each
of these lines is the same. Thus , which is true iff . This fact can be verified by calculation, if desired.

Figure two is comprised of three graphs of multiple shaded squares. All three are standard cartesian graphs, with all four quadrants equal in size, t as the horizontal axis, and u as the vertical axis. The first graph
shows one large square centered at the origin with a length of two units on a side. As the square is centered about the origin, the square is divided equally into four smaller squares by the vertical and horizontal
axes. A caption below the first graph reads, rho = 0. The second graph contains two smaller squares, one unit to a side, one sitting with two sides along the axes of the graph in the first quadrant, and one sitting
with two sides along the axes of the graph in the third quadrant. The caption reads rho = 3/4. The third graph contains two squares of the same size as the second graph, this time with one sitting with two sides

along the axes in the second quadrant, and one sitting with two sides along the axes in the fourth quadrant. The caption reads rho = -3/4.  
Figure 12.2.2. Uniform marginals but different correlation coefficients.

Consider the three distributions in Figure 12.2.2. In case (a), the distribution is uniform over the square centered at the origin
with vertices at (1,1), (-1,1), (-1,-1), (1,-1). In case (b), the distribution is uniform over two squares, in the first and third
quadrants with vertices (0,0), (1,0), (1,1), (0,1) and (0,0),

(-1,0), (-1,-1), (0,-1). In case (c) the two squares are in the second and fourth quadrants. The marginals are uniform on (-1,1) in
each case, so that in each case

−1 < ρ < 1

(r, s) s = r

ρ = ±1 (X,Y )

= ±
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μX μY
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2
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W = +Y ∗ X∗ E[ /2]W 2 s = −r

E[( ± ] = {E[( ] +E[( ] ±2E[ ]} = 1 ±ρ
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2
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2
Y ∗)2 X∗)2 X∗Y ∗
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t = r+σX μX u = s+σY μY r =
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σX
s =
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σY

ρ = 1

=
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σY
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σX
u = (t− ) +
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σX
μX μY
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σX
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1 −ρ ρ = 1 1 +ρ ρ = −1 ρ = 0

Example  Uncorrelated but not independent12.2.1

{X,Y }
ρ = 1 u = t ρ = −1 u = −t

ρ = 0 Cov[X,Y ] = 0

Example  Uniform marginal distributions12.2.2
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 and 

This means the  line is  and the  line is .

a. By symmetry,  (in fact the pair is independent) and . 
b. For every pair of possible values, the two signs must be the same, so  which implies . The actual value
may be calculated to give . Since , the variance about the  line is less than that about the 
line. This is evident from the figure. 
c.  and . Since , the variance about the  line is less than that about the  line.
Again, examination of the figure confirms this.

With the aid of m-functions and MATLAB we can easily caluclate the covariance and the correlation coefficient. We use the
joint distribution for Example 9 in "Variance." In that example calculations show

,  and 

so that .

The pair  has joint density function  on the triangular region bounded by , , and 

. By the usual integration techniques, we have

,  and , 

From this we obtain , , , and . To complete the picture we need

Then

 and 

APPROXIMATION

tuappr 

Enter matrix [a b] of X-range endpoints  [0 1] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  200 

Enter number of Y approximation points  200 

Enter expression for joint density  (6/5)*(t + 2*u).*(u>=t) 

Use array operations on X, Y, PX, PY, t, u, and P 

EX = total(t.*P) 

EX =   0.4012                    % Theoretical = 0.4 

EY = total(u.*P) 

EY =   0.7496                    % Theoretical = 0.75 

VX = total(t.^2.*P) - EX^2 

VX =   0.0603                    % Theoretical = 0.06 

VY = total(u.^2.*P) - EY^2 

VY =   0.0376                    % Theoretical = 0.0375 

CV = total(t.*u.*P) - EX*EY 

CV =   0.0201                    % Theoretical = 0.02 

E[X] = E[Y ] = 0 Var[X] = Var[Y ] = 1/3

ρ = 1 u = t ρ = −1 u = −t

E[XY ] = 0 ρ = 0
E[XY ] > 0 ρ > 0

ρ = 3/4 1 −ρ < 1 +ρ ρ = 1 ρ = −1

E[XY ] < 0 ρ < 0 1 +ρ < 1 −ρ ρ = −1 ρ = 1

Example  A pair of simple random variables12.2.3

E[XY ] −E[X]E[Y ] = −0.1633 = Cov[X,Y ] = 1.8170σX = 1.9122σY

ρ = −0.04699

Example  An absolutely continuous pair12.2.4

{X,Y } (t, u) = (t+2u)fXY

6

5
t = 0 u = t

u = 1

(t) = (1 + t−2 )fX
6

5
t2 0 ≤ t ≤ 1 (u) = 3fY u2 0 ≤ u ≤ 1

E[X] = 2/5 Var[X] = 3/50 E[Y ] = 3/4 Var[Y ] = 3/80

E[XY ] = ( u+2t ) dudt = 8/25
6

5
∫ 1

0 ∫ 1
t t2 u2

Cov[X,Y ] = E[XY ] −E[X]E[Y ] = 2/100 ρ = = ≈ 0.4216
Cov[X,Y ]

σXσY

4

30
10
−−

√

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10835?pdf


12.2.4 https://stats.libretexts.org/@go/page/10835

rho = CV/sqrt(VX*VY) 

rho =  0.4212                    % Theoretical = 0.4216

Coefficient of linear correlation

The parameter  is usually called the correlation coefficient. A more descriptive name would be coefficient of linear correlation.
The following example shows that all probability mass may be on a curve, so that  (i.e., the value of Y is completely
determined by the value of ), yet .

Suppose  ~ uniform (-1, 1), so that ,  and . Let . Then

Thus . Note that  could be any even function defined on (-1,1). In this case the integrand  is odd, so that the value
of the integral is zero.

Variance and covariance for linear combinations

We generalize the property (V4) on linear combinations. Consider the linear combinations

 and 

We wish to determine  and . It is convenient to work with the centered random variables  and 
. Since by linearity of expectation,

 and 

we have

and similarly for . By definition

In particular

Using the fact that , we have

Note that  does not depend upon the sign of . If the  form an independent class, or are otherwise uncorrelated, the
expression for variance reduces to

This page titled 12.2: Covariance and the Correlation Coefficient is shared under a CC BY 3.0 license and was authored, remixed, and/or curated
by Paul Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform.

ρ

Y = g(X)
X ρ = 0

Example   but 12.2.5 Y = g(X) ρ = 0

X (t) = 1/2fX −1 < t < 1 E[X] = 0 Y = g(X) = cosX

Cov[X,Y ] = E[XY ] = t cos t dt = 0
1

2
∫

1
−1

ρ = 0 g tg(t)

X =∑n
i=1 aiXi Y =∑m

j=1 bjYj

Cov[X,Y ] Var[X] = X−X ′ μX

= Y −Y ′ μY

=μX ∑n
i=1 aiμXi

=μY ∑m
j=1 bjμYj

= − = ( − ) =X ′ ∑n
i=1 aiXi ∑n

i=1 aiμXi ∑n
i=1 ai Xi μXi ∑n

i=1 aiX
′
i

Y ′

Cov(X,Y ) = E[ ] = E[ ] = E[ ] = Cov( , )X ′Y ′ ∑i,j aibjX
′
iY

′
j ∑i,j aibj X ′

iE
′
j ∑i,j aibj Xi Yj

Var(X) = Cov(X,X) = Cov( , ) = Cov( , ) + Cov( , )∑i,j aiaj Xi Xj ∑n
i=1 a

2
i Xi Xi ∑i≠j aiaj Xi Xj

Cov( , ) = Cov( , )aiaj Xi Xj ajai Xj Xi

Var[X] = Var[ ] +2 Cov( , )∑n
i=1 a

2
i Xi ∑i<j aiaj Xi Xj

a2
i ai Xi

Var[X] = Var[ ]∑n
i=1 a

2
i Xi

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10835?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/12%3A_Variance_Covariance_and_Linear_Regression/12.02%3A_Covariance_and_the_Correlation_Coefficient
https://creativecommons.org/licenses/by/3.0
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/12%3A_Variance_Covariance_and_Linear_Regression/12.02%3A_Covariance_and_the_Correlation_Coefficient?no-cache
https://cnx.org/contents/HLT_qvJK@6.2:wsOQ6HtH@8/Preface-to-Pfeiffer-Applied-Pr

