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7.2: Distribution Approximations

Binomial, Poisson, gamma, and Gaussian distributions

The Poisson approximation to the binomial distribution

The following approximation is a classical one. We wish to show that for small  and sufficiently large 

Suppose  with  large and . Then,

The first factor in the last expression is the ratio of polynomials in  of the same degree , which must approach one as  becomes
large. The second factor approaches one as  becomes large. According to a well known property of the exponential

as .

The result is that for large , , where .

The Poisson and Gamma Distributions

Suppose  Poisson ( ). Now  gamma ( ) iff

A well known definite integral, obtained by integration by parts, is

with .

Noting that  we find after some simple algebra that

For  and , we have the following equality iff  gamma ( )

Now

iff  Poisson ( .

The Gaussian (normal) approximation

The central limit theorem, referred to in the discussion of the Gaussian or normal distribution above, suggests that the binomial and
Poisson distributions should be approximated by the Gaussian. The number of successes in n trials has the binomial (n,p)
distribution. This random variable may be expressed
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Since the mean value of  is  and the variance is , the distribution should be approximately .

Figure 7.2.8. Gaussian approximation to the binomial.

Use of the generating function shows that the sum of independent Poisson random variables is Poisson. Now if ),
then  may be considered the sum of  independent random variables, each Poisson ( ). Since the mean value and the variance
are both , it is reasonable to suppose that suppose that  is approximately .

It is generally best to compare distribution functions. Since the binomial and Poisson distributions are integer-valued, it turns out
that the best Gaussian approximation is obtained by making a “continuity correction.” To get an approximation to a density for an
integer-valued random variable, the probability at  is represented by a rectangle of height  and unit width, with  as the
midpoint. Figure 1 shows a plot of the “density” and the corresponding Gaussian density for , . It is apparent that
the Gaussian density is offset by approximately 1/2. To approximate the probability , take the area under the curve from  +
1/2; this is called the continuity correction.

Use of m-procedures to compare

We have two m-procedures to make the comparisons. First, we consider approximation of the

Figure 7.2.9. Gaussian approximation to the Poisson distribution function  = 10.

X =∑
i=1

n

IEi (7.2.9)

X np npq N(np,npq)

X )Poisson(\(μ
X n μ/n

μ X N(μ,μ)

t = k pk k

n = 300 p = 0.1
X ≤ k k

μ

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10862?pdf


7.2.3 https://stats.libretexts.org/@go/page/10862

Figure 7.2.10. Gaussian approximation to the Poisson distribution function  = 100.

Poisson ( ) distribution. The m-procedure poissapp calls for a value of , selects a suitable range about  and plots the
distribution function for the Poisson distribution (stairs) and the normal (Gaussian) distribution (dash dot) for . In addition,
the continuity correction is applied to the gaussian distribution at integer values (circles). Figure 7.2.10 shows plots for  = 10. It is
clear that the continuity correction provides a much better approximation. The plots in Figure 7.2.11 are for  = 100. Here the
continuity correction provides the better approximation, but not by as much as for the smaller .

Figure 7.2.11. Poisson and Gaussian approximation to the binomial:  = 1000,  = 0.03.

Figure 7.2.12. Poisson and Gaussian approximation to the binomial:  = 50,  = 0.6.

The m-procedure bincomp compares the binomial, gaussian, and Poisson distributions. It calls for values of  and , selects
suitable  values, and plots the distribution function for the binomial, a continuous approximation to the distribution function for
the Poisson, and continuity adjusted values of the gaussian distribution function at the integer values. Figure 7.2.11 shows plots for 

, . The good agreement of all three distribution functions is evident. Figure 7.2.12 shows plots for 
. There is still good agreement of the binomial and adjusted gaussian. However, the Poisson distribution does not

track very well. The difficulty, as we see in the unit Variance, is the difference in variances--  for the binomial as compared with 
 for the Poisson.
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Approximation of a real random variable by simple random variables
Simple random variables play a significant role, both in theory and applications. In the unit Random Variables, we show how a
simple random variable is determined by the set of points on the real line representing the possible values and the corresponding set
of probabilities that each of these values is taken on. This describes the distribution of the random variable and makes possible
calculations of event probabilities and parameters for the distribution.

A continuous random variable is characterized by a set of possible values spread continuously over an interval or collection of
intervals. In this case, the probability is also spread smoothly. The distribution is described by a probability density function, whose
value at any point indicates "the probability per unit length" near the point. A simple approximation is obtained by subdividing an
interval which includes the range (the set of possible values) into small enough subintervals that the density is approximately
constant over each subinterval. A point in each subinterval is selected and is assigned the probability mass in its subinterval. The
combination of the selected points and the corresponding probabilities describes the distribution of an approximating simple
random variable. Calculations based on this distribution approximate corresponding calculations on the continuous distribution.

Before examining a general approximation procedure which has significant consequences for later treatments, we consider some
illustrative examples.

A random variable with the Poisson distribution is unbounded. However, for a given parameter value μ, the probability for 
,  sufficiently large, is negligible. Experiment indicates  (i.e., six standard deviations beyond the mean)

is a reasonable value for .

Solution

>> mu = [5 10 20 30 40 50 70 100 150 200]; 

>> K = zeros(1,length(mu)); 

>> p = zeros(1,length(mu)); 

>> for i = 1:length(mu) 

     K(i) = floor(mu(i)+ 6*sqrt(mu(i))); 

     p(i) = cpoisson(mu(i),K(i)); 

end 

>> disp([mu;K;p*1e6]') 

    5.0000   18.0000    5.4163  % Residual probabilities are 0.000001 

   10.0000   28.0000    2.2535  % times the numbers in the last column. 

   20.0000   46.0000    0.4540  % K is the value of k needed to achieve 

   30.0000   62.0000    0.2140  % the residual shown. 

   40.0000   77.0000    0.1354   

   50.0000   92.0000    0.0668 

   70.0000  120.0000    0.0359 

  100.0000  160.0000    0.0205 

  150.0000  223.0000    0.0159 

  200.0000  284.0000    0.0133

An m-procedure for discrete approximation

If  is bounded, absolutely continuous with density functon , the m-procedure tappr sets up the distribution for an
approximating simple random variable. An interval containing the range of  is divided into a specified number of equal
subdivisions. The probability mass for each subinterval is assigned to the midpoint. If  is the length of the subintervals, then the
integral of the density function over the subinterval is approximated by . where  is the midpoint. In effect, the graph of
the density over the subinterval is approximated by a rectangle of length  and height . Once the approximating simple
distribution is established, calculations are carried out as for simple random variables.

Example : Simple approximation to Poisson7.2.10

k ≥ n n n = μ+6 μ−−√
5 ≤ μ ≤ 200

X fX
X
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Suppose , . Determine .

Solution

In this case, an analytical solution is easy.  on the interval [0, 1], so

. We use tappr as follows.

>> tappr

Enter matrix [a b] of x-range endpoints  [0 1] 

Enter number of x approximation points  200 

Enter density as a function of t  3*t.^2 

Use row matrices X and PX as in the simple case 

>> M = (X >= 0.2)&(X <= 0.9); 

>> p = M*PX' 

p  =  0.7210

Because of the regularity of the density and the number of approximation points, the result agrees quite well with the theoretical
value.

The next example is a more complex one. In particular, the distribution is not bounded. However, it is easy to determine a bound
beyond which the probability is negligible.

Figure 7.2.13. Distribution function for Example 7.2.12.

The life (in miles) of a certain brand of radial tires may be represented by a random variable  with density

where , , and . Determine .

>> a = 40000; 

>> b = 20/3; 

>> k = 1/4000; 

>> % Test shows cutoff point of 80000 should be satisfactory 

>> tappr

Enter matrix [a b] of x-range endpoints  [0 80000] 

Example : a numerical example7.2.11

(t) = 3fX t2 0 ≤ t ≤ 1 P (0.2 ≤ X ≤ 0.9)

(t) =FX t3

P = − = 0.72100.93 0.23

Example : Radial tire mileage7.2.12

X

(t) = {fX
/t2 a3

(b/a) for  a ≤ te−k(t−a)

for  0 ≤ t < a

a = 40, 000 b = 20/3 k = 1/4000 P (X ≥ 45, 000
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Enter number of x approximation points  80000/20 

Enter density as a function of t  (t.^2/a^3).*(t < 40000) + ... 

(b/a)*exp(k*(a-t)).*(t >= 40000) 

Use row matrices X and PX as in the simple case 

>> P = (X >= 45000)*PX' 

P   =  0.1910             % Theoretical value = (2/3)exp(-5/4) = 0.191003 

>> cdbn 

Enter row matrix of VALUES  X 

Enter row matrix of PROBABILITIES  PX  % See Figure 7.2.14 for plot 

In this case, we use a rather large number of approximation points. As a consequence, the results are quite accurate. In the
single-variable case, designating a large number of approximating points usually causes no computer memory problem.

The general approximation procedure

We show now that any bounded real random variable may be approximated as closely as desired by a simple random variable (i.e.,
one having a finite set of possible values). For the unbounded case, the approximation is close except in a portion of the range
having arbitrarily small total probability.

We limit our discussion to the bounded case, in which the range of  is limited to a bounded interval . Suppose  is
partitioned into  subintervals by points , , with  and . Let  be the th subinterval, 

 and  (see Figure 7.14). Now random variable  may map into any point in the interval, and hence
into any point in each subinterval . Let  be the set of points mapped into  by . Then the  form a partition of
the basic space . For the given subdivision, we form a simple random variable  as follows. In each subinterval, pick a point , 

. Consider the simple random variable .

Figure 7.2.14. Partition of the interval  including the range of 

Figure 7.2.15. Refinement of the partition by additional subdividion points.

This random variable is in canonical form. If , then  and . Now the absolute value of the difference
satisfies

 the length of subinterval 

Since this is true for each  and the corresponding subinterval, we have the important fact

 maximum length of the 

By making the subintervals small enough by increasing the number of subdivision points, we can make the difference as small as
we please.

While the choice of the  is arbitrary in each , the selection of  (the left-hand endpoint) leads to the property 
. In this case, if we add subdivision points to decrease the size of some or all of the , the new simple

approximation  satisfies

 

To see this, consider (see Figure 7.15).  is partitioned into  and  is partitioned into .  maps 
into  and  into .  maps  into  and maps  into  > t_i\).  maps both  and  into . Thus, the asserted
inequality must hold for each  By taking a sequence of partitions in which each succeeding partition refines the previous (i.e. adds
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subdivision points) in such a way that the maximum length of subinterval goes to zero, we may form a nondecreasing sequence of
simple random variables  which increase to  for each .

The latter result may be extended to random variables unbounded above. Simply let  th set of subdivision points extend from 
to , making the last subinterval . Subintervals from  to  are made increasingly shorter. The result is a nondecreasing
sequence  of simple random variables, with  as , for each .

For probability calculations, we simply select an interval  large enough that the probability outside  is negligible and use a
simple approximation over .

This page titled 7.2: Distribution Approximations is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer
via source content that was edited to the style and standards of the LibreTexts platform.
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