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12.3: Linear Regression

Linear Regression

Suppose that a pair  of random variables has a joint distribution. A value  is observed. It is desired to estimate the
corresponding value . Obvious there is no rule for determining  unless  is a function of . The best that can be hoped
for is some estimate based on an average of the errors, or on the average of some function of the errors.

Suppose  is observed, and by some rule an estimate  is returned. The error of the estimate is . The most
common measure of error is the mean of the square of the error

The choice of the mean square has two important properties: it treats positive and negative errors alike, and it weights large errors
more heavily than smaller ones. In general, we seek a rule (function)  such that the estimate  is . That is, we seek a
function  such that

 is a minimum.

The problem of determining such a function is known as the regression problem. In the unit on Regression, we show that this
problem is solved by the conditional expectation of , given . At this point, we seek an important partial solution.

The regression line of  on 

We seek the best straight line function for minimizing the mean squared error. That is, we seek a function  of the form 
. The problem is to determine the coefficients  such that

 is a minimum

We write the error in a special form, then square and take the expectation.

Standard procedures for determining a minimum (with respect to a) show that this occurs for

 

Thus the optimum line, called the regression line of  on , is

The second form is commonly used to define the regression line. For certain theoretical purposes, this is the preferred form. But for
calculation, the first form is usually the more convenient. Only the covariance (which requres both means) and the variance of 
are needed. There is no need to determine  or .
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Enter JOINT PROBABILITIES (as on the plane)  P 

Enter row matrix of VALUES of X  X 

Enter row matrix of VALUES of Y  Y 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

EX = total(t.*P) 

EX =   0.6420 
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Example  The simple air of Example 3 from "Variance"12.3.1

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10836?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/12%3A_Variance_Covariance_and_Linear_Regression/12.03%3A_Linear_Regression
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/14%3A_Conditional_Expectation_Regression/14.02%3A_Problems_on_Conditional_Expectation_Regression
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/12%3A_Variance_Covariance_and_Linear_Regression/12.01%3A_Variance


12.3.2 https://stats.libretexts.org/@go/page/10836

EY = total(u.*P) 

EY =   0.0783 

VX = total(t.^2.*P) - EX^2 

VX =   3.3016 

CV = total(t.*u.*P) - EX*EY 

CV =  -0.1633 

a = CV/VX 

a  =  -0.0495 

b = EY - a*EX 

b  =   0.1100           % The regression line is u = -0.0495t + 0.11

Suppose the pair  has joint density  on the triangular region bounded by , , .
Determine the regression line of  on .

Analytic Solution

By symmetry, , so . The regression curve is

Note that the pair is uncorrelated, but by the rectangle test is not independent. With zero values of  and , the
approximation procedure is not very satisfactory unless a very large number of approximation points are employed.

The pair  has joint density  on the region ,  (see Figure 12.3.1).

Determine the regression line of  on . If the value  is observed, what is the best mean-square linear estimate of 
?

Figure one contains two lines in the first quadrant of a cartesian graph. The horizontal axis is labeled t, and the vertical axis is labeled u. The title caption reads f_xy (t, u) = (6/37)(t + 2u). The first line crosses
the vertical axis one quarter of the way up the graph. It has a positive slope, and is labeled u = 0.3382t + 0.4011. It continues as a linear plot from one side of the graph to the other. The second line begins

horizontally as one segment from the left to point (1, 1). The segment is labeled u = 1. After point (1, 1), the line moves upward with a positive, constant slope to point (2, 2). This segment is labeled u = t. At (2, 2)
there is a vertical line continuing downward to point (2, 0).  

Figure 12.3.1. Regression line for Example 12.3.3

Analytic Solution

The other quantities involve integrals over the same regions with appropriate integrands, as follows:

Quantity Integrand Value

779/370

127/148

232/185

Then

 

and

Example  The pair in Example 6 from "Variance"12.3.2

{X,Y } (t, u) = 3ufXY u = 0 u = 1 + t u = 1 − t

Y X

E[X] = E[XY ] = 0 Cov[X,Y ] = 0

u = E[Y ] = 3  dtdu = 6 (1 −u) du = 1/2∫ 1

0
u2 ∫ 1−u

u−1
∫ 1

0
u2

E[X] E[XY ]

Example  Distribution of Example 5 from "Random Vectors and MATLAB" and Example 12 from "Function
of Random Vectors"

12.3.3

{X,Y } (t, u) = (t+2u)fXY

6

37
0 ≤ t ≤ 2 0 ≤ u ≤ max{1, t}

Y X X(ω) = 1.7

Y (ω)
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6
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0
∫ 1

0
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, 

The regression line is . If , the best linear estimate (in the mean square sense) is 
 (see Figure 12.3.1 for an approximate plot).

APPROXIMATION

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 2] 

Enter number of X approximation points  400 

Enter number of Y approximation points  400 

Enter expression for joint density  (6/37)*(t+2*u).*(u<=max(t,1)) 

Use array operations on X, Y, PX, PY, t, u, and P 

EX = total(t.*P) 

EX =  1.3517                   % Theoretical = 1.3514 

EY = total(u.*P) 

EY =  0.8594                   % Theoretical = 0.8581 

VX = total(t.^2.*P) - EX^2 

VX =  0.2790                   % Theoretical = 0.2793 

CV = total(t.*u.*P) - EX*EY 

CV =  0.0947                   % Theoretical = 0.0944 

a = CV/VX 

a  =  0.3394                   % Theoretical = 0.3382 

b = EY - a*EX 

b  =  0.4006                   % Theoretical = 0.4011 

y = 1.7*a + b 

y  =  0.9776                   % Theoretical = 0.9760

An interpretation of 

The analysis above shows the minimum mean squared error is given by

If , then , the mean squared error in the case of zero linear correlation. Then,  is interpreted as the
fraction of uncertainty removed by the linear rule and X. This interpretation should not be pushed too far, but is a common
interpretation, often found in the discussion of observations or experimental results.

More general linear regression

Consider a jointly distributed class. . We wish to deterimine a function  of the form

, with , such that  is a minimum

If  satisfies this minimum condition, then , or, equivalently

 for all  of the form 

To see this, set  and let . Now, for any 

If we select the special

a = Cov[X,Y ]/Var[X] = ≈ 0.3382
1293

3823
b = E[Y ] −aE[X] = ≈ 0.4011

6133

15292

u = at+b X(ω) = 1.7

(ω) = 1.7a+b = 0.9760Ŷ

ρ2

E[(Y − ] = E[(Y −ρ (X− ) − ] = E[( −ρ ]Ŷ )2 σY

σX
μX μY )2 σ2

Y Y ∗ X∗)2

= E[( −2ρ + ( ] = (1 −2 + ) = (1 − )σ2
Y Y ∗)2 X∗Y ∗ ρ2 X∗)2 σ2

Y ρ2 ρ2 σ2
Y ρ2

ρ = 0 E[(Y − ] =Ŷ )2 σ2
Y ρ2

{Y , , , ⋅ ⋅ ⋅, }X1 X2 Xn U

U =∑n

i=0 aiXi = 1X0 E[(Y −U ])2

U E[(Y −U)V ] = 0

E[Y V ] = E[UV ] V V =∑n
i=0 ciXi

W = Y −U = E[ ]d2 W 2 α

≤ E[(W +αV ] = +2αE[WV ] + E[ ]d2 )2 d2 α2 V 2
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 then 

This implies , which can only be satisfied by , so that

On the other hand, if  for all  of the form above, then  is a minimum. Consider

See  is of the same form as , the last term is zero. The first term is fixed. The second term is nonnegative, with zero value
iff  a.s. Hence,  is a minimum when .

If we take  to be 1, , successively, we obtain  linear equations in the  unknowns , as
follows.

 
 for 

For each , we take (2) -  and use the calculating expressions for variance and covariance to get

These  equations plus equation (1) may be solved alagebraically for the .

In the important special case that the  are uncorrelated (i.e.  for ), we have

 

and

In particular, this condition holds if the class  is iid as in the case of a simple random sample (see the section on
"Simple Random Samples and Statistics").

Examination shows that for , with , , and , the result agrees with that obtained in the treatment of the
regression line, above.

Suppose , , , , , , , and 
. Then the three equations are

Solution of these simultaneous linear equations with MATLAB gives the results

, , and .

This page titled 12.3: Linear Regression is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via
source content that was edited to the style and standards of the LibreTexts platform.

α = −
E[WV ]

E[ ]V 2
0 ≤ − + E[ ]

2E[WV ]2

E[ ]V 2

E[WV ]2

E[V 2]2
V 2

E[WV ≤ 0]2 E[WV ] = 0

E[Y V ] = E[UV ]

E[(Y −U)V ] = 0 V E[(Y −U ])2

E[(Y −V ] = E[(Y −U +U −V ] = E[(Y −U ] +E[(U −V ] +2E[(Y −U)(U −V )])2 )2 )2 )2

U −V V

U −V = 0 E[(Y −V ])2 V = U

V , , ⋅ ⋅ ⋅,X1 X2 Xn n+1 n+1 , , ⋅ ⋅ ⋅,a0 a1 an

E[Y ] = + E[ ] + ⋅ ⋅ ⋅ + E[ ]a0 a1 X1 an Xn

E[Y ] = E[ ] + E[ ] + ⋅ ⋅ ⋅ + E[ ]X1 a0 Xi a1 X1Xi an XnXi 1 ≤ i ≤ n

i = 1, 2, ⋅ ⋅ ⋅,n E[ ] ⋅ (1)Xi

Cov[Y , ] = Cov[ , ] + Cov[ , ] + ⋅ ⋅ ⋅ + Cov[ , ]Xi a1 X1 Xi a2 X2 Xi an Xn Xi

n ai

Xi Cov[ , ] = 0Xi Xj i ≠ j

=ai
Cov[Y , ]Xi

Var[ ]Xi

1 ≤ i ≤ n

= E[Y ] − E[ ] − E[ ] − ⋅ ⋅ ⋅ − E[ ]a0 a1 X1 a2 X2 an Xn

{ : 1 ≤ i ≤ n}Xi

n = 1 = XX1 = ba0 = aa1

Example  Linear regression with two variables.12.3.4

E[Y ] = 3 E[ ] = 2X1 E[ ] = 3X2 Var[ ] = 3X1 Var[ ] = 8X2 Cov[Y , ] = 5X1 Cov[Y , ] = 7X2

Cov[ , ] = 1X1 X2

+2 +3 = 3a0 a2 a3

0 +3 +1 = 5a1 a2

0 +1 +8 = 7a1 a2

= −1.9565a0 = 1.4348a1 = 0.6957a2
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