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15.1: Random Selection

Introduction

The usual treatments deal with a single random variable or a fixed, finite number of random variables, considered jointly. However,
there are many common applications in which we select at random a member of a class of random variables and observe its value,
or select a random number of random variables and obtain some function of those selected. This is formulated with the aid of a
countingor selecting random variable N, which is nonegative, integer valued. It may be independent of the class selected, or may
be related in some sequential way to members of the class. We consider only the independent case. Many important problems
require optionalrandom variables, sometimes called Markov times. These involve more theory than we develop in this treatment.

Some common examples:

Total demand of N customers— NN independent of the individual demands.

Total service time for IV units— N independent of the individual service times.

Net gain in IV plays of a game— N independent of the individual gains.

Extreme values of N random variables— N independent of the individual values.

Random sample of size N— N is usually determined by propereties of the sample observed.
Decide when to play on the basis of past results— N dependent on past

A useful model—random sums

As a basic model, we consider the sum of a random number of members of an iid class. In order to have a concrete interpretation to
help visualize the formal patterns, we think of the demand of a random number of customers. We suppose the number of customers
Nis independent of the individual demands. We formulate a model to be used for a variety of applications.

A basic sequence {X,, : 0 <n} [Demand of n customers]
An incremental sequence {Y;, : 0 <n} [Individual demands]
These are related as follows:

X, =Y oY forn>0and X, =0 forn<0Y, =X, - X, ; foralln

A counting random variable N . If N =n then n of the Y}, are added to give the compound demand D (the random sum)

N [e's) 00
D=3 o Yir=2>"0 TN Xr = > ko Iy (N) Xk

Note. In some applications the counting random variable may take on the idealized value co. For example, in a game that is played
until some specified result occurs, this may never happen, so that no finite value can be assigned to N. In such a case, it is
necessary to decide what value X, is to be assigned. For IV independent of the Y,, (hence of the X,,), we rarely need to consider
this possibility.

Independent selection from an iid incremental sequence

We assume throughout, unless specifically stated otherwise, that:
Xo=Yy=0

{Y;,: 1 <k} isiid

{N,Y},: 0 <k} is an independent class

We utilize repeatedly two important propositions:
E[h(D)|N =n] =E[h(X,)],n>0
Mp(s) = gn[My(s)] . If the Y;, are nonnegative integer valued, then so is D and gp(s) = gn[gy ()]

DERIVATION

We utilize properties of generating functions, moment generating functions, and conditional expectation.

E[I;)(N)h(D)] = E[h(D)|N =n]P(N =mn) by definition of conditional expectation, given an event, Now,

Iy (N)R(D) = Iy (N)R(Xy) and E[If,(N)h(X,)] = P(N =n)E[h(X,)] . Hence

E[h(D)|N =n]P(N =n) = P(N =n)E[h(X,)] . Division by P(N = n) gives the desired result.

By the law of total probability (CE1b), Mp(s) = E[e*’] = E{E[e*?|N]}. By proposition 1 and the product rule for moment
generating functions,
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Hence

E[e?|N =n] = Ble] = T._, Ble™] = My(s)

Mp(s) = 335 My (s) P(N =n) = gy [My (5)
A parallel argument holds for gp
—0O
Remark. The result on Mp and gp may be developed without use of conditional expectation.
in the integer-valued case.
Mp(s) = E[e’”] = X5y Ellin-ne™] = 5 PV = n)E[e*™]
= Ykeo P(N =n)Mg(s) = gn[My (s)]
—0O

Example 15.1.1 A service shop

Suppose the number NV of jobs brought to a service shop in a day is Poisson (8). One fourth of these are items under warranty
for which no charge is made. Others fall in one of two categories. One half of the arriving jobs are charged for one hour of
shop time; the remaining one fourth are charged for two hours of shop time. Thus, the individual shop hour charges Y; have
the common distribution

Y = [0 1 2] with probabilities PY = [1/4 1/2 1/4]
Make the basic assumptions of our model. Determine P(D < 4).

Solution
1
gn(s) = e Dgy(s) = Z(l +25+5%)

According to the formula developed above,

g0 (s) = gnlgy (s)] = exp((8/4)(1 +25+5°) —8) = e*e’e™
Expand the exponentials in power series about the origin, multiply out to get enough terms. The result of straightforward but
somewhat tedious calculations is

56 86
gp(s) =eb(1+4s+10s%+ ?33 + ?54 +--4)
Taking the coefficients of the generating function, we get
1
P(D<4)~e %1 +4+10+% +%) :e‘G%'? ~0.1545

Example 15.1.2 A result on Bernoulli trials

Suppose the counting random variable N ~ binomial (n, p) and Y; = Ig, , with P(E;) = py . Then
gn = (g+ps)" and gy (s) =qo +pos
By the basic result on random selection, we have
9p(s) = gnlgy (5)] = [g+p(qo0 +pos)]" = [(1 —ppo) +ppos]”
so that D ~ binomial (n, ppy).

In the next section we establish useful m-procedures for determining the generating function g, and the moment generating
function Mp for the compound demand for simple random variables, hence for determining the complete distribution. Obviously,
these will not work for all problems. It may helpful, if not entirely sufficient, in such cases to be able to determine the mean value
E[D] and variance Var[D]. To this end, we establish the following expressions for the mean and variance.
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Example 15.1.3 Mean and variance of the compound demand

E[D] = E|N]E[Y] and Var[D] = E[N|Var|Y| + Var[N|E?[Y]
DERIVATION
(D) = B[22 Iy Xn] = X220 PN = n) B[ X,
= E[Y] Y2, nP(N =n) = E[Y]E[N]

B[D?] = Y2 P(N = n)B[X3] = Y22 P(N = n){Var[X,] + B[X,]}

=Y"% ,P(N =n){nVar[Y] =n’E?[Y]} = E[N|Var[Y]| + E[N?|E?[Y]
Hence

Var[D] = E[N]|Var[Y] + E[N?|E2[Y] — E[N|?E[Y] = E[N]Var[Y] + Var|N] E*[Y]

Example 15.1.4 Mean and variance for Example 15.1.1

E[N] = Var[N] = 9. By symmetry E[Y] = 1. Var[Y] = 0.25(0+2+4) —1 =0.5 . Hence,
E[D]=8-1=8,Var[D] =8-0.5+8-1=12

Calculations for the compound demand

We have m-procedures for performing the calculations necessary to determine the distribution for a composite demand D when the
counting random variable N and the individual demands Y}, are simple random variables with not too many values. In some cases,
such as for a Poisson counting random variable, we are able to approximate by a simple random variable.

The procedure gend

If the Y; are nonnegative, integer valued, then so is D, and there is a generating function. We examine a strategy for computation
which is implemented in the m-procedure gend. Suppose

gn(s) =po+p1s+pas® +- - ps”
gy (8) =mo +m1s+mas? + -+ -y s™

The coefficients of gy and gy are the probabilities of the values of IV and Y, respectively. We enter these and calculate the
coefficients for powers of gy :

gN =[pop1 - Pn] 1x(n+1)  Coefficients of gx
y=[mom - 7y 1x(m+1)  Coefficients of gy
y2 = conv(y,y) 1x(2m+1) Coefficients of g&
y3 = conv(y, y2) 1x(3m+1) Coefficients of g3

yn=conv(y,y(n—1)) 1x(nm+1) Coefficients of g

We wish to generate a matrix P whose rows contain the joint probabilities. The probabilities in the ith row consist of the
coefficients for the appropriate power of gy multiplied by the probability IV has that value. To achieve this, we need a matrix, each
of whose n+1 rows has nm +1 elements, the length of yn. We begin by “preallocating” zeros to the rows. That is, we set
P =zeros(n+1,n* m+1) . We then replace the appropriate elements of the successive rows. The replacement probabilities for
the 4th row are obtained by the convolution of gy and the power of gy for the previous row. When the matrix P is completed, we
remove zero rows and columns, corresponding to missing values of N and D (i.e., values with zero probability). To orient the joint
probabilities as on the plane, we rotate P ninety degrees counterclockwise. With the joint distribution, we may then calculate any
desired quantities.
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Example 15.1.5 A compound demand

The number of customers in a major appliance store is equally likely to be 1, 2, or 3. Each customer buys 0, 1, or 2 items with
respective probabilities 0.5, 0.4, 0.1. Customers buy independently, regardless of the number of customers. First we determine
the matrices representing gn and gy. The coefficients are the probabilities that each integer value is observed. Note that the
zero coefficients for any missing powers must be included.

gN = (1/3)*[60 1 1 17; % Note zero coefficient for missing zero power
gy = 0.1*[5 4 1]; % All powers @ thru 2 have positive coefficients
gend

Do not forget zero coefficients for missing powers

Enter the gen fn COEFFICIENTS for gN gN % Coefficient matrix named gN
Enter the gen fn COEFFICIENTS for gY gY % Coefficient matrix named gY
Results are in N, PN, Y, PY, D, PD, P

May use jcalc or jcalcf on N, D, P
To view distribution for D, call for gD

disp(gD) % Optional display of complete distribution
(C] 0.2917
1.0000 0.3667
2.0000 0.2250
3.0000 0.0880
4.0000 0.0243
5.0000 0.0040
6.0000 0.0003
EN = N*PN'
EN = 2
EY = Y*PY'
EY = 0.6000
ED = D*PD'
ED = 1.2000 % Agrees with theoretical EN*EY
P3 = (D>=3)*PD'

P3 = 0.1167
[N,D,t,u,PN,PD,PL] = jcalcf(N,D,P);
EDn = sum(u.*P)./sum(P);
disp([N;EDn]")
1.0000 0.6000 % Agrees with theoretical E[D|N=n] = n*EY
2.0000 1.2000
3.0000 1.8000
(D.A2)*PD' - EDA2
VD = 1.1200 % Agrees with theoretical EN*VY + VN*EYA2

Example 15.1.6 A numerical example

1
gn(s) = g(l +s+s>+83+s') gy(s)=0.1(5s+3s% +25°

<
o
1

Note that the zero power is missing from gY". corresponding to the fact that P(Y =0) =0.
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gN = 0.2*[1 111 1];

gy 0.1*[0 5 3 2]; % Note the zero coefficient in the zero position
gend

Do not forget zero coefficients for missing powers

Enter the gen fn COEFFICIENTS for gN gN

Enter the gen fn COEFFICIENTS for gY gY

Results are in N, PN, Y, PY, D, PD, P

May use jcalc or jcalcf on N, D, P

To view distribution for D, call for gD

disp(gD) % Optional display of complete distribution
0 0.2000
1.0000 0.1000
2.0000 0.1100
3.0000 0.1250
4.0000 0.1155
5.0000 0.1110
6.0000 0.0964
7.0000 0.0696
8.0000 0.0424
9.0000 0.0203
10.0000 0.0075
11.0000 0.0019
12.0000 0.0003
p3 = (D == 3)*PD' % P(D=3)

P3 = 0.1250
P4_12 = ((D >= 4)&(D <= 12))*PD'
0.4650 % P(4 <= D <= 12)

Example 15.1.7 Number of successes for random number N of trials.

We are interested in the number of successes in N trials for a general counting random variable. This is a generalization of the
Bernoulli case in Example 15.1.2. Suppose, as in Example 15.1.2, the number of customers in a major appliance store is
equally likely to be 1, 2, or 3, and each buys at least one item with probability p = 0.6. Determine the distribution for the
number D of buying customers.

o
l-b
[N
N
1l

Solution

We use gV, gY, and gend.

gN = (1/3)*[0 1 1 1]; % Note zero coefficient for missing zero power
gy = [0.4 0.6]; % Generating function for the indicator function
gend

Do not forget zero coefficients for missing powers
Enter gen fn COEFFICIENTS for gN gN

Enter gen fn COEFFICIENTS for gY gY

Results are in N, PN, Y, PY, D, PD, P

May use jcalc or jcalcf on N, D, P
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To view distribution for D, call for gD
disp(gD)
0 0.2080
1.0000 0.4560
2.0000 0.2640
3.0000 0.0720

The procedure gend is limited to simple N and Y}, with nonnegative integer values. Sometimes, a random variable with
unbounded range may be approximated by a simple random variable. The solution in the following example utilizes such an
approximation procedure for the counting random variable V.

Example 15.1.8 Solution of the shop time Example 15.1.1

The number N of jobs brought to a service shop in a day is Poisson (8). The individual shop hour charges Y; have the
common distribution Y = [0 1 2] with probabilities PY = [1/4 1/2 1/4].

Under the basic assumptions of our model, determine P (D < 4).
Solution

Since Poisson IV is unbounded, we need to check for a sufficient number of terms in a simple approximation. Then we proceed
as in the simple case.

pa = cpoisson(8,10:5:30) % Check for sufficient number of terms
pa = 0.2834 0.0173 0.0003 0.0000 0.0000

p25 = cpoisson(8, 25) % Check on choice of n = 25

p25 = 1.1722e-06

gN = ipoisson(8,0:25); % Approximate gN

gY = 0.25*[1 2 1];

gend

Do not forget zero coefficients for missing powers
Enter gen fn COEFFICIENTS for gN gN

Enter gen fn COEFFICIENTS for gY gY

Results are in N, PN, Y, PY, D, PD, P

May use jcalc or jcalcf on N, D, P

To view distribution for D, call for gD

disp(gD(D<=20,:)) % Calculated values to D = 50
0 0.0025 % Display for D <= 20
1.0000 0.0099
2.0000 0.0248
3.0000 0.0463
4.0000 0.0711
5.0000 0.0939
6.0000 0.1099
7.0000 0.1165
8.0000 0.1132
9.0000 0.1021
10.0000 0.0861
11.0000 0.0684
12.0000 0.0515
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13.0000 0.0369
14.0000 0.0253
15.0000 0.0166
16.0000 0.0105
17.0000 0.0064
18.0000 0.0037
19.0000 0.0021
20.0000 0.0012
sum(PD) % Check on sufficiency of approximation
ans = 1.0000
P4 = (D<=4)*PD'
P4 = 0.1545 % Theoretical value (4 places) = 0.1545
ED = D*PD'
ED = 8.0000 % Theoretical = 8 (Example 15.1.4)
VD = (D.A2)*PD' - EDA2
VD = 11.9999 % Theoretical = 12 (Example 15.1.4)

The m-procedures mgd and jmgd

The next example shows a fundamental limitation of the gend procedure. The values for the individual demands are not limited to
integers, and there are considerable gaps between the values. In this case, we need to implement the moment generating function
Mp rather than the generating function gp.

In the generating function case, it is as easy to develop the joint distribution for { IV, D} as to develop the marginal distribution for
D. For the moment generating function, the joint distribution requires considerably more computation. As a consequence, we find
it convenient to have two m-procedures: mgd for the marginal distribution and jmgd for the joint distribution.

Instead of the convolution procedure used in gend to determine the distribution for the sums of the individual demands, the m-
procedure mgd utilizes the m-function mgsum to obtain these distributions. The distributions for the various sums are concatenated
into two row vectors, to which csort is applied to obtain the distribution for the compound demand. The procedure requires as input
the generating function for N and the actual distribution, Y and PY, for the individual demands. For gV, it is necessary to treat
the coefficients as in gend. However, the actual values and probabilities in the distribution for Y are put into a pair of row matrices.
If'Y is integer valued, there are no zeros in the probability matrix for missing values.

Example 15.1.9 Noninteger values

A service shop has three standard charges for a certain class of warranty services it performs: $10, $12.50, and $15. The
number of jobs received in a normal work day can be considered a random variable N which takes on values 0, 1, 2, 3, 4 with
equal probabilities 0.2. The job types for arrivals may be represented by an iid class {Y; : 1 <7 <4}, independent of the
arrival process. The Y; take on values 10, 12.5, 15 with respective probabilities 0.5, 0.3, 0.2. Let C be the total amount of
services rendered in a day. Determine the distribution for C.

Solution

gN = 0.2*[1 111 1]; % Enter data

Y = [10 12.5 15];

PY = 0.1*[5 3 2];

mgd % Call for procedure
Enter gen fn COEFFICIENTS for gN gN

Enter VALUES for Y Y

Enter PROBABILITIES for Y PY

Values are in row matrix D; probabilities are in PD.
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To view the distribution, call for mD.
disp(mD) % Optional display of distribution

0 0.2000
10.0000 0.1000
12.5000 0.0600
15.0000 0.0400
20.0000 0.0500
22.5000 0.0600
25.0000 0.0580
27.5000 0.0240
30.0000 0.0330
32.5000 0.0450
35.0000 0.0570
37.5000 0.0414
40.0000 0.0353
42.5000 0.0372
45.0000 0.0486
47 .5000 0.0468
50.0000 0.0352
52.5000 0.0187
55.0000 0.0075
57.5000 0.0019
60.0000 0.0003

We next recalculate Example 15.1.6, above, using mgd rather than gend.

Example 15.1.10 Recalculation of Example 15.1.6

In Example 15.1.6, we have
1
gn(s) = g(l +s+s2+83+5') gy(s)=0.1(55+3s% +25%)

The means that the distribution for Y isY = [1 2 3] and PY = 0.1 *[5 3 2].

We use the same expression for gV as in Example 15.1.6.

gN = 0.2*ones(1,5);

Y = 1:3;
PY = 0.1*[5 3 2];
mgd

Enter gen fn COEFFICIENTS for gN gN
Enter VALUES for Y Y
Enter PROBABILITIES for Y PY
Values are in row matrix D; probabilities are in PD.
To view the distribution, call for mD.
disp(mD)
0 0.2000
1.0000 0.1000
2.0000 0.1100
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3.0000 0.1250
4.0000 0.1155
5.0000 0.1110
6.0000 0.0964
7.0000 0.0696
8.0000 0.0424
9.0000 0.0203
10.0000 0.0075
11.0000 0.0019
12.0000 0.0003
P3 = (D==3)*PD'
P3 = 0.1250
ED = D*PD'
ED =  3.4000
P_4_12 = ((D>=4)&(D<=12))*PD'
P_4 12 = 0.4650
P7 = (D>=7)*PD'
P7 = 0.1421
As expected, the results are the same as those obtained with gend.

If it is desired to obtain the joint distribution for { N, D}, we use a modification of mgd called jmgd. The complications come in
placing the probabilities in the P matrix in the desired positions. This requires some calculations to determine the appropriate size
of the matrices used as well as a procedure to put each probability in the position corresponding to its D value. Actual operation is
quite similar to the operation of mgd, and requires the same data format.

A principle use of the joint distribution is to demonstrate features of the model, such as E[D|N =n] =nE[Y], etc. This, of
course, is utilized in obtaining the expressions for Mp(s) in terms of gy (s) and My (s). This result guides the development of the
computational procedures, but these do not depend upon this result. However, it is usually helpful to demonstrate the validity of the
assumptions in typical examples.

Remark. In general, if the use of gend is appropriate, it is faster and more efficient than mgd (or jmgd). And it will handle
somewhat larger problems. But both m-procedures work quite well for problems of moderate size, and are convenient tools for
solving various “compound demand” type problems.

This page titled 15.1: Random Selection is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via
source content that was edited to the style and standards of the LibreTexts platform.
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