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17.2: Appendix B to Applied Probability- some mathematical aids

Series

1. Geometric series From the expression , we obtain

 for 

For , these sums converge to the geometric series 

Differentiation yields the following two useful series:

 for  and  for 

For the finite sum, differentiation and algebraic manipulation yields

 which converges to  for 

2. Exponential series.  and  for any 

Simple algebraic manipulation yields the following equalities useful for the Poisson distribution:

 and 

3. Sums of powers of integers  

Some useful integrals

1. The gamma function  for 

Integration by parts shows  for  
By induction  for  
For a positive integer ,  with 

2. By a change of variable in the gamma integral, we obtain

 , 

3. A well known indefinite integral gives

4. The following integrals are important for the Beta distribution.

 , 

For nonnegative integers  

Some basic counting problems
We consider three basic counting problems, which are used repeatedly as components of more complex problems. The first two,
arrangements and occupancy are equivalent. The third is a basic matching problem.

Arrangements of  objects selected from among  distinguishable objects. 
a. The order is significant. 
b. The order is irrelevant. 
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For each of these, we consider two additional alternative conditions. 
1. No element may be selected more than once. 
2. Repitition is allowed. 
Occupancy of  distinct cells by  objects. These objects are 
a. Distinguishable. 
b. Indistinguishable. 
The occupancy may be 
1. Exclusive. 
2. Nonexclusive (i.e., more than one object per cell)

The results in the four cases may be summarized as follows: 
a. 1. Ordered arrangements, without repetition (permutations). Distinguishable objects, exclusive occupancy.

2. Ordered arrangements, with repitition allowed. Distinguishable objects, nonexclusive occupancy.

b. 1. Arrangements without repetition, order irrelevant (combinations). Indistinguishable objects, exclusive occupancy.

2. Unordered arrangements, with repetition. Indistinguishable objects, nonexclusive occupancy.

Matching  distinguishable elements to a fixed order. Let  be the number of permutations which give  matches.

Natural order 1 2 3 4 5

Permutation 3 2 5 4 1 (Two matches– positions 2, 4)

We reduce the problem to determining , as follows:

Select  places for matches in  ways.
Order the  remaining elements so that no matches in the other  places.

Some algebraic trickery shows that  is the integer nearest . These are easily calculated by the MATLAB
command M = round(gamma(n+1)/exp(1))  For example 
>> M = round(gamma([3:10]+1)/exp(1)); >> disp([3:6;M(1:4);7:10;M(5:8)]') 3 2 7
1854 4 9 8 14833 5 44 9 133496 6 265 10 1334961

Extended binomial coefficients and the binomial series

The ordinary binomial coefficient is  for integers , 

For any real , any integer , we extend the definition by

,  for , and  for a positive integer 

and

 otherwise

The Pascal's relation holds:  
The power series expansion about  shows
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 , 

For , a positive integer, the series becomes a polynomial of degree 

Cauchy's equation

Let  be a real-valued function defined on , such that 
a.  for , and 
b. There is an open interval  on which  is bounded above (or is bounded below). 
Then   
Let  be a real-valued function defined on ( ) such that 
a.  , and 
b. There is an interval on which  is bounded above. 
Then, either  for , or there is a constant  such that \f(t) = e^{at}\) for 

[For a proof, see Billingsley, Probability and Measure, second edition, appendix A20]

Countable and uncountable sets

A set (or class) is countable iff either it is finite or its members can be put into a one-to-one correspondence with the natural
numbers.

Examples

The set of odd integers is countable.
Thee finite set  is countable.
The set of all rational numbers is countable. (This is established by an argument known as diagonalization).
The set of pairs of elements from two countable sets is countable.
The union of a countable class of countable sets is countable.

A set is uncountable iff it is neither finite nor can be put into a one-to-one correspondence with the natural numbers.

Examples

The class of positive real numbers is uncountable. A well known operation shows that the assumption of countability leads to a
contradiction.
The set of real numbers in any finite interval is uncountable, since these can be put into a one-to-one correspondence of the
class of all positive reals.
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{n : 1 ≤ n ≤ 1000}
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