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16.1: Conditional Independence, Given a Random Vector
In the unit on Conditional Independence , the concept of conditional independence of events is examined and used to model a
variety of common situations. In this unit, we investigate a more general concept of conditional independence, based on the theory
of conditional expectation. This concept lies at the foundations of Bayesian statistics, of many topics in decision theory, and of the
theory of Markov systems. We examine in this unit, very briefly, the first of these. In the unit on Markov Sequences, we provide an
introduction to the third.

The concept
The definition of conditional independence of events is based on a product rule which may be expressed in terms of conditional
expectation, given an event. The pair  is conditionally independent, given , iff

If we let  and , then  and . It would be reasonable to consider the pair 
 conditionally independent, given event , iff the product rule

holds for all reasonable  and  (technically, all Borel  and ). This suggests a possible extension to conditional expectation,
given a random vector. We examine the following concept.

The pair  is conditionally independent, givenZ, designated  ci , iff

 for all Borel . 

Remark. Since it is not necessary that , , or  be real valued, we understand that the sets  and  are on the codomains for 
and , respectively. For example, if  is a three dimensional random vector, then  is a subset of .

As in the case of other concepts, it is useful to identify some key properties, which we refer to by the numbers used in the table in
Appendix G. We note two kinds of equivalences. For example, the following are equivalent.

(CI1)  a.s. for all Borel sets 

(CI5)  a.s. for all Borel functions 

Because the indicator functions are special Borel functions, (CI1) is a special case of (CI5). To show that (CI1) implies (CI5), we
need to use linearity, monotonicity, and monotone convergence in a manner similar to that used in extending properties (CE1) to
(CE6) for conditional expectation. A second kind of equivalence involves various patterns. The properties (CI1), (CI2), (CI3), and
(CI4) are equivalent, with (CI1) being the defining condition for  ci .

(CI1)  a.s. for all Borel sets 

(CI2)  a.s. for all Borel sets 

(CI3)  a.s. for all Borel sets 

(CI4)  a.s. for all Borel sets 

As an example of the kinds of argument needed to verify these equivalences, we show the equivalence of (CI1) and (CI2).

(CI1) implies (CI2). Set  and . If we show

 for all Borel 

then by the uniqueness property (E5b) for expectation we may assert  a.s. Using the defining property
(CE1) for conditional expectation, we have

On the other hand, use of (CE1), (CE8), (CI1), and (CE1) yields

{A,B} C

E[ |C] = P (AB|C) = P (A|C)P (B|C) = E[ |C]E[ |C]IAIB IA IB

A = (M)X−1 B = (N)Y −1 = (X)IA IM = (Y )IB IN
{X,Y } C

E[ (X) (Y )|C] = E[ (X)|C]E[ (Y )|C]IM IN IM IN

M N M N

Definition

{X,Y } {X,Y } |Z

E[ (X) (Y )|Z] = E[ (X)|Z]E[ (Y )|Z]IM IN IM IN M N

X Y Z M N X

Y X M R3

E[ (X) (Y )|Z] = E[ (X)|Z][E[ (Y )|Z]IM IN IM IN M ,N

E[g(X,Z)h(Y ,Z)|Z] = E[g(X,Z)|Z]E[h(Y ,Z)|Z] g,h

{X,Y } |Z

E[ (X) (Y )|Z] = E[ (X)|Z][E[ (Y )|Z]IM IN IM IN M ,N

E[ (X)|Z,Y ] = E[ (X)|Z]IM IM M

E[ (X) (Z)|Z,Y ] = E[ (X) (Z)|Z]IM IQ IM IQ M ,Q

E[ (X) (Z)|Y ] = E{E[ (X) (Z)|Z]|Y }IM IQ IM IQ M ,Q

(Y ,Z) = E[ (X)|Z,Y ]e1 IM (Y ,Z) = E[ (X)|Z]e2 IM

E[ (Y ) (Z) (Y ,Z) = E[ (Y ) (Z) (Y ,Z)]IN IQ e1 IN IQ e2 N ,Q

(Y ,Z) = (Y ,Z)e1 e2

E{ (Y ) (Z)E[ (X)|Z,Y ]} = E[ (Y ) (Z) (X)]IN IQ IM IN IQ IM

E{ (Y ) (Z)E[ (X)|Z]} = E{ (Z)E[ (Y )E[ (X)|Z]|Z]}IN IQ IM IQ IN IM
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which establishes the desired equality.

(CI2) implies (CI1). Using (CE9), (CE8), (CI2), and (CE8), we have

Use of property (CE8) shows that (CI2) and (CI3) are equivalent. Now just as (CI1) extends to (CI5), so also (CI3) is equivalent to

(CI6)  a.s. for all Borel functions 

Property (CI6) provides an important interpretation of conditional independence:

 is the best mean-square estimator for , given knowledge of . The conditon  ci  implies that
additional knowledge about Y does not modify that best estimate. This interpretation is often the most useful as a modeling
assumption.

Similarly, property (CI4) is equivalent to

(CI8)  a.s. for all Borel functions 

The additional properties in Appendix G are useful in a variety of contexts, particularly in establishing properties of Markov
systems. We refer to them as needed.

The Bayesian approach to statistics
In the classical approach to statistics, a fundamental problem is to obtain information about the population distribution from the
distribution in a simple random sample. There is an inherent difficulty with this approach. Suppose it is desired to determine the
population mean . Now  is an unknown quantity about which there is uncertainty. However, since it is a constant, we cannot
assign a probability such as . This has no meaning.

The Bayesian approach makes a fundamental change of viewpoint. Since the population mean is a quantity about which there is
uncertainty, it is modeled as a random variable whose value is to be determined by experiment. In this view, the population
distribution is conceived as randomly selected from a class of such distributions. One way of expressing this idea is to refer to a
state of nature. The population distribution has been “selected by nature” from a class of distributions. The mean value is thus a
random variable whose value is determined by this selection. To implement this point of view, we assume

The value of the parameter (say  in the discussion above) is a “realization” of a parameter random variable . If two or
more parameters are sought (say the mean and variance), they may be considered components of a parameter random vector. 
The population distribution is a conditional distribution, given the value of .

The Bayesian model

If  is a random variable whose distribution is the population distribution and  is the parameter random variable, then 
have a joint distribution.

For each  in the range of , we have a conditional distribution for , given . 
We assume a prior distribution for . This is based on previous experience. 
We have a random sampling process, given : i.e.,  is conditionally iid, given . Let 

 and consider the joint conditional distribution function

If  has conditional density, given H, then a similar product rule holds.

Population proportion

= E{ (Z)E[ (X)|Z]E[ (Y )|Z]} = E{ (Z0E[ (X) (Y )|Z]}IQ IM IN IQ IM IN

= E[ (Y ) (Z0 (X)IN IQ IM

E[ (X) (Y )|Z] = E{E[ (X) (Y )|Z,Y ]|Z}IM IN IM IN

= E[ (Y )E[ (X)|Z,Y ]|Z} = E{ (Y )E[ (X)|Z]|Z}IN IM IN IM

= E[ (X)|Z]E[ (Y )|Z]IM IN

E[g(X,Z)|Z,Y ] = E[g(X,Z)|Z] g

E[g(X,Z)|Z] g(X,Z) Z {X,Y } |Z

E[g(X,Z)|Y ] = E{E[g(X,Z)|Z]|Y } g

μ μ

P (a < μ ≤ b)

μ H

H

X H {X,H}

u H X H = u

H

H { : 1 ≤ i ≤ n}Xi H

W = ( , , ⋅ ⋅ ⋅, )X1 X2 Xn

( , , ⋅ ⋅ ⋅, |u) = P ( ≤ , ≤ , ⋅ ⋅ ⋅, ≤ |H = u)FW |H t1 t2 tn X1 t1 X2 t2 Xn tn

= E[ ( )|H = u]] = E[ ( )|H = u] = ( |u)∏n

i=1 I(−∞, ]ti Xi ∏n

i=1 I(−∞, ]ti Xi ∏n

i=1 FX|H ti

X
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We illustrate these ideas with one of the simplest, but most important, statistical problems: that of determining the proportion of a
population which has a particular characteristic. Examples abound. We mention only a few to indicate the importance.

The proportion of a population of voters who plan to vote for a certain candidate. 
The proportion of a given population which has a certain disease. 
The fraction of items from a production line which meet specifications. 
The fraction of women between the ages eighteen and fifty five who hold full time jobs.

The parameter in this case is the proportion  who meet the criterion. If sampling is at random, then the sampling process is
equivalent to a sequence of Bernoulli trials. If  is the parameter random variable and  is the number of “successes” in a sample
of size , then the conditional distribution for , given , is binomial . To see this, consider

, with 

Anaysis is carried out for each fixed  as in the ordinary Bernoulli case. If

We have the result

 and 

The objective

We seek to determine the best mean-square estimate of , given .  
If , we know . Sampling gives . We make a Bayesian reversal to get an exression for . 
To complete the task, we must assume a prior distribution for  on the basis of prior knowledge, if any.

The Bayesian reversal

Since  is an event with positive probability, we use the definition of the conditional expectation, given an event, and the
law of total probability (CE1b) to obtain

A prior distribution for 

The beta  distribution (see Appendix G), proves to be a “natural” choice for this purpose. Its range is the unit interval, and by
proper choice of parameters , the density function can be given a variety of forms (see Figures 16.1.1 and 16.2.2).

Figure one is a graph labeled Beta (r, s) density -- r = 2. The horizontal axis is labeled as t, and the vertical axis as Density. The values on the horizontal axis range from 0 to 1 in increments of 0.1, and the values on
the vertical axis range from 0 to 4.5 in increments of 0.5. There are three plotted shapes on this graph. The most simple is a linear path beginning at the origin in the bottom-left corner of the graph that continues with a

constant positive slope across the graph and halfway up the vertical axis, terminating at (1, 2). It is labeled as s = 1. The second is a curve that begins at the origin with a positive, decreasing slope. It continues increasing
across the page until it flattens at (0.5, 1.5), where it begins decreasing at an increasing rate. It meets the bottom-right corner. The shape is symmetrical, and looks more like a small portion of a circle than a bell curve.
This plot is labeled as s = 2.The third is a distribution, again beginning at the origin, that starts out with a sharply positive slope. The distribution increases at a decreasing rate very quickly, where at (0.1, 4.25) it peaks,

and begins decreasing at an increasing rate until approximately (0.25, 2), where it begins decreasing at a decreasing rate until it tails off to a horizontal line at approximately (0.6, 0) where it is essentially a horizontal line
that continues to the bottom-right edge of the graph. This plot is labeled as s = 10.  

Figure 16.1.1. The Beta(r,s) density for , .
Figure two is a graph labeled Beta (r, s) density -- r = 5. The horizontal axis is labeled as t, and the vertical axis as Density. The values on the horizontal axis range from 0 to 1 in increments of 0.1, and the values on

the vertical axis range from 0 to 3.5 in increments of 0.5. There are three plotted distributions on the graph. All three maintain some sort of shape that resembles a distorted bell curve, with tapering tails on both sides and
a large peak. One plot, labeled s = 5, resembles a symmetrical bell curve, with tails leading to both the bottom-right and bottom-left of the graph, and a peak at approximately (0.5, 2.5) in the middle of the figure. A

second plot, labeled s = 10, is not as centered as the previously described plot, as its peak is located at approximately (0.3, 3.25). This distribution is slightly skewed right as a result, and its bell is more slender in shape
than the standard normal distribution. The third plot, labeled s = 2, is strongly skewed left, with its peak located at approximately (0.8, 2.5)  

Figure 16.1.2. The Beta(r,s) density for , .

Its analysis is based on the integrals

 with 

For  ~ beta ( ), the density is given by

 

p

H Sn

n Sn H = u (n, u)

=Xi IEi
P ( |H = u) = E[ |H = u] = e(u) = uEi Xi

u

= =Sn ∑n
i=1 Xi ∑n

i=1 IEi

E[ ( )|H = u] = P ( = k|H = u) = C(n, k) (1 −uI{k} Si Sn uk )n−k E[ |H = u] = nuSn

H = kSn

H = u E[ |H] = nuSn = kSn E[H| = k]Sn

H

{ = k}Sn

E[H| = k] = = =Sn

E[H ( )]I{k} Sn

E[ ( )]I{k} Sn

E{HE[ ( )|H]}I{k} Sn

E{E[ ( )|H]}I{k} Sn

∫ uE[ ( )|H = u] (u) duI{k} Sn fH

∫ E[ ( )|H = u] (u) duI{k} Sn fH

=
C(n, k)∫ (1 −u (u) duuk+1 )n−kfH

C(n, k)∫ (1 −u (u) duuk )n−kfH

H

(r, s)

r, s

r = 2 s = 1, 2, 10

r = 5 s = 2, 5, 10

(1 −u  du =∫ 1
0 ur−1 )s−1

Γ(r)Γ(s)

Γ(r+s)
Γ(a+1) = aΓ(a)

H r, s

(t) = (1 − t = A(r, s) (1 − tfH
Γ(r+s)

Γ(r)Γ(s)
tr−1 )s−1 tr−1 )s−1 0 < t < 1
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For , ,  has a maximum at . For  positive integers,  is a polynomial on [0, 1], so that
determination of the distribution function is easy. In any case, straightforward integration, using the integral formula above, shows

 and 

If the prior distribution for  is beta , we may complete the determination of  as follows.

We may adapt the analysis above to show that  is conditionally beta , given .

 where 

The analysis goes through exactly as for , except that  is replaced by . In the integral expression for the
numerator, one factor  is replaced by . For  ~ beta , we get

The integrand is the density for beta .

Any prior information on the distribution for  can be utilized to select suitable . If there is no prior information, we simply
take , , which corresponds to

 ~ uniform on (0, 1). The value is as likely to be in any subinterval of a given length as in any other of the same length. The
information in the sample serves to modify the distribution for , conditional upon that information.

It is desired to estimate the portion of the student body which favors a proposed increase in the student blanket tax to fund the
campus radio station. A sample of size  is taken. Fourteen respond in favor of the increase. Assuming prior ignorance
(i.e., that  beta (1,1)), what is the conditional distribution given ? After the first sample is taken, a second sample of
size  is taken, with thirteen favorable responses. Analysis is made using the conditional distribution for the first sample
as the prior for the second. Make a new estimate of .

Figure three is a graph labeled, Condition densities beta (15, 7) and beta (28, 14). The horizontal axis is labeled as t, and the vertical axis is labeled, conditional density. The values on the horizontal axis range
from 0 to 1 in increments of 0.1, and the values on the vertical axis range from 0 to 6 in increments of one. There are two plots in this figure. Both are similar in shape, reflecting two beta distributions, with long
tails, relatively symmetric in structure, and reaching only one peak of distribution. The first distribution, labeled beta (15, 7), is centered horizontally at 0.7, and reaches a vertical value of conditional density of

four. It is slightly skewed to the left, but there is no visible vertical significance further to the left on the horizontal axis past the value 0.3. Likewise, there is no vertical significance past approximately 0.92 in the
tail on the right. The second plot, labeled beta (28, 14), is a stronger distribution, centered at approximately 0.68, but reaching a conditional density in respect to the vertical axis of approximately 5.5. The plot

again is slightly skewed left, and no significant portion of the graph can be seen in the tails past 0.4 to the left and 0.88 to the right.  
Figure 16.1.3. Conditional densities for repeated sampling, Example 16.1.1.

Solution

For the first sample the parameters are . According the treatment above,  is conditionally beta 
. The density has a maximum at . The conditional

expectation, however, is .

For the second sample, with the conditional distribution as the new prior, we should expect more sharpening of the density
about the new mean-square estimate. For the new sample, , , and the prior  ~ beta (15, 7). The new conditional
distribution has parameters . The best estimate of  is 28/(28 + 14) = 2/3.
The conditonal densities in the two cases may be plotted with MATLAB (see Figure 16.1.1).

t = 0:0.01:1; 

plot(t,beta(15,7,t),'k-',t,beta(28,14,t),'k--') 

r ≥ 2 s ≥ 2 fH (r−1)/(r+s−2) r, s fH

E[H] =
r

r+s
Var[H] =

rs

(r+s (r+s+1))2

H (r, s) E[H| = k]Sn

E[H| = k] = =Sn

A(r, s) (1 −u (1 −u  du∫ 1
0 uk+1 )n−kur−1 )s−1

A(r, s) (1 −u (1 −u  du∫ 1
0 uk )n−kur−1 )s−1

(1 −u  du∫ 1
0 uk+r )n+s−k−1

(1 −u  du∫ 1
0 uk+r−1 )n+s−k−1

= ⋅ =
Γ(r+k+1)Γ(n+s−k)

Γ(r+s+n+1)

Γ(r+s+n)

Γ(r+k)Γ(n+s−k)

k+r

n+r+s

H (r+k, s+n−k) = kSn

(t|k) =FH|S

E[ (H) ( )It I{k} Sn

E[ ( )I{k} Sn

(H) = (H)It I[0,t]

E[H| = k]Sn H (H)It
u (u)It H (r, s)

(t|k) = (1 −u  du = (u|k) duFH|S

Γ(r+s+n)

Γ(r+k)Γ(n+s−k)
∫ t

0 uk+r−1 )n+s−k−1 ∫ t

0 fH|S

(r+k,n+s−k)

H r, s

r = 1 s = 1

H

H

Example  Population proportion with a beta prior16.1.1

n = 20

H = 14s20

n = 20

H

r = s = 1 H

(k+r,n+s−k) = (15, 7) (r+k−1)/(r+k+n+s−k−2) = k/n

(r+k)/(r+s+n) = 15/22 ≈ 0.6818

n = 20 k = 13 H

= (28 −1)/(28 +14 −2) = 27/40 = 0.6750r∗ H
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As expected, the maximum for the second is somewhat larger and occurs at a slightly smaller , reflecting the smaller . And
the density in the second case shows less spread, resulting from the fact that prior information from the first sample is
incorporated into the analysis of the second sample.

The same result is obtained if the two samples are combined into one sample of size 40.

It may be well to compare the result of Bayesian analysis with that for classical statistics. Since, in the latter, case prior information
is not utilized, we make the comparison with the case of no prior knowledge . For the classical case, the estimator for 

 is the sample average; for the Bayesian case with beta prior, the estimate is the conditional expectation of , given .

If : Classical estimate =  Bayesian estimate = 

For large sample size , these do not differ significantly. For small samples, the difference may be quite important. The Bayesian
estimate is often referred to as the small sample estimate, although there is nothing in the Bayesian procedure which calls for small
samples. In any event, the Bayesian estimate seems preferable for small samples, and it has the advantage that prior information
may be utilized. The sampling procedure upgrades the prior distribution.

The essential idea of the Bayesian approach is the view that an unknown parameter about which there is uncertainty is modeled as
the value of a random variable. The name Bayesian comes from the role of Bayesian reversal in the analysis.

The application of Bayesian analysis to the population proportion required Bayesian reversal in the case of discrete . We
consider, next, this reversal process when all random variables are absolutely continuous.

The Bayesian reversal for a joint absolutely continuous pair

In the treatment above, we utilize the fact that the conditioning random variable  is discrete. Suppose the pair  is jointly
absolutely continuous, and  and  are specified. To determine

we need . This requires a Bayesian reversal of the conditional densities. Now by definition

 and 

Since by the rule for determining the marginal density

we have

 and 

Suppose  ~ exponential  and the  are conditionally iid, exponential ( ), given . A sample of size  is taken. Put 
, and . Determine the best mean-square estimate of , given .

Solution

 so that 

Hence

 where 
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t k

(r = s = 1)

μ H Sn

= kSn k/n (k+1)/(n+2)

n

Sn

Sn {W ,H}

(t|u)fW |H (u)fH

E[H|W = t] = ∫ u (u|t) dufH|W

(u|t)fH|W

(u|t) =fH|W

(t, u)fWH

(t)fW
(t, u) = (t|u) (u)fWH fW |H fH
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(t|u) (u)fW |H fH
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∫ (t|u) (u) dufW |H fH

Example  A Bayesian reversal16.1.2

H (λ) Xi u H = u n

W = ( , , ⋅ ⋅ ⋅, )X1 X2 Xn = + +⋅ ⋅ ⋅ +t∗ t1 t2 tn H W = t

( |u) = ufX|H ti e−uti (t|u) = u =fW |H ∏n
i=1 e−uti une−ut∗
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λ  du∫ ∞
0 un+1e−ut∗
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