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7.1: Distribution and Density Functions
In the unit on Random Variables and Probability we introduce real random variables as mappings from the basic space  to the real
line. The mapping induces a transfer of the probability mass on the basic space to subsets of the real line in such a way that the
probability that  takes a value in a set  is exactly the mass assigned to that set by the transfer. To perform probability
calculations, we need to describe analytically the distribution on the line. For simple random variables this is easy. We have at each
possible value of  a point mass equal to the probability  takes that value. For more general cases, we need a more useful
description than that provided by the induced probability measure .

The Distribution Function
In the theoretical discussion on Random Variables and Probability, we note that the probability distribution induced by a random
variable  is determined uniquely by a consistent assignment of mass to semi-infinite intervals of the form  for each real .
This suggests that a natural description is provided by the following.

Definition

The distribution function  for random variable  is given by

 

In terms of the mass distribution on the line, this is the probability mass at or to the left of the point t. As a consequence,  has
the following properties:

(F1) :  must be a nondecreasing function, for if  there must be at least as much probability mass at or to the left of  as
there is for .
(F2) :  is continuous from the right, with a jump in the amount  at  iff . If the point  approaches 
from the left, the interval does not include the probability mass at  until  reaches that value, at which point the amount at or
to the left of t increases ("jumps") by amount ; on the other hand, if  approaches  from the right, the interval includes the
mass  all the way to and including , but drops immediately as  moves to the left of .
(F3) : Except in very unusual cases involving random variables which may take “infinite” values, the probability mass included
in  must increase to one as t moves to the right; as  moves to the left, the probability mass included must decrease to
zero, so that

and

A distribution function determines the probability mass in each semiinfinite interval . According to the discussion referred to
above, this determines uniquely the induced distribution.

The distribution function  for a simple random variable is easily visualized. The distribution consists of point mass  at each
point  in the range. To the left of the smallest value in the range, ; as t increases to the smallest value , 
remains constant at zero until it jumps by the amount  ...  remains constant at  until  increases to , where it jumps by
an amount p  to the value . This continues until the value of  reaches 1 at the largest value . The graph of  is
thus a step function, continuous from the right, with a jump in the amount  at the corresponding point  in the range. A similar
situation exists for a discrete-valued random variable which may take on an infinity of values (e.g., the geometric distribution or the
Poisson distribution considered below). In this case, there is always some probability at points to the right of any , but this must
become vanishingly small as  increases, since the total probability mass is one.

The procedure ddbn may be used to plot the distribution function for a simple random variable from a matrix X of values and a
corresponding matrix PX of probabilities.
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>> c = [10 18 10 3];             % Distribution for X in Example 6.5.1 

>> pm = minprob(0.1*[6 3 5]); 

>> canonic 

 Enter row vector of coefficients  c 

 Enter row vector of minterm probabilities  pm 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

>> ddbn                          % Circles show values at jumps 

Enter row matrix of VALUES  X 

Enter row matrix of PROBABILITIES  PX 

%  Printing details   See Figure 7.1

Figure 7.1.1. Distribution function for Example 7.1.1

Description of some common discrete distributions

We make repeated use of a number of common distributions which are used in many practical situations. This collection includes
several distributions which are studied in the chapter "Random Variables and Probabilities".

Indicator function. . The distribution function has a jump in the amount 
 at  and an additional jump of  to the value 1 at .

Simple random variable  (canonical form)

The distribution function is a step function, continuous from the right, with jump of  at  (See Figure 7.1.1 for Example
7.1.1)

Binomial ( ). This random variable appears as the number of successes in a sequence of  Bernoulli trials with probability  of
success. In its simplest form

 with  independent

 

As pointed out in the study of Bernoulli sequences in the unit on Composite Trials, two m-functions ibinom andcbinom are
available for computing the individual and cumulative binomial probabilities.

Geometric ( ) There are two related distributions, both arising in the study of continuing Bernoulli sequences. The first counts the
number of failures before the first success. This is sometimes called the “waiting time.” The event { } consists of a sequence
of  failures, then a success. Thus

Example : Graph of FX for a simple random variable7.1.1
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, 

The second designates the component trial on which the first success occurs. The event { } consists of  failures, then a
success on the th component trial. We have

, 

We say  has the geometric distribution with parameter ( ), which we often designate by  geometric ( ). Now  or 
. For this reason, it is customary to refer to the distribution for the number of the trial for the first success by saying 

 geometric ( ). The probability of  or more failures before the first success is . Also

This suggests that a Bernoulli sequence essentially "starts over" on each trial. If it has failed  times, the probability of failing an
additional  or more times before the next success is the same as the initial probability of failing  or more times before the first
success.

A statistician is taking a random sample from a population in which two percent of the members own a BMW automobile. She
takes a sample of size 100. What is the probability of finding no BMW owners in the sample?

Solution

The sampling process may be viewed as a sequence of Bernoulli trials with probability  of success. The probability of
100 or more failures before the first success is  or about 1/7.5.

Negative binomial ( ).  is the number of failures before the th success. It is generally more convenient to work with 
, the number of the trial on which the th success occurs. An examination of the possible patterns and elementary

combinatorics show that

, 

There are m–1 successes in the first  trials, then a success. Each combination has probability . We have an m-
function nbinom to calculate these probabilities.

A player throws a single six-sided die repeatedly. He scores if he throws a 1 or a 6. What is the probability he scores five times
in ten or fewer throws?

>> p = sum(nbinom(5,1/3,5:10)) 

p  =  0.2131 

An alternate solution is possible with the use of the binomial distribution. The th success comes not later than the kth trial iff
the number of successes in  trials is greater than or equal to .

>> P = cbinom(10,1/3,5) 

P  =  0.2131 

Poisson ( ). This distribution is assumed in a wide variety of applications. It appears as a counting variable for items arriving with
exponential interarrival times (see the relationship to the gamma distribution below). For large  and small  (which may not be a
value found in a table), the binomial distribution is approximately Poisson ( ). Use of the generating function (see Transform
Methods) shows the sum of independent Poisson random variables is Poisson. The Poisson distribution is integer valued, with

 (0 \le k\)

P (X = k) = pqk 0 ≤ k

Y = k k−1
k

P (Y = k) = pqk−1 1 ≤ k

X p X  p Y = X+1
Y −1 = X

Y −1  p k P (X ≥ k) = qk

P (X ≥ n+k|X ≥ n) = = / = = P (X ≥ k)
P (X ≥ n+k)

P (X ≥ n)
qn+k qn qk

n

k k

Example : The geometric distribution7.1.2

p = 0.02
= 0.13260.98100

m, p X m

Y = X+m m

P (Y = k) = C(k−1,m−1)pmqk−m m ≤ k

k−1 pmqk−m

Example : A game of chance7.1.3
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Although Poisson probabilities are usually easier to calculate with scientific calculators than binomial probabilities, the use of
tables is often quite helpful. As in the case of the binomial distribution, we have two m-functions for calculating Poisson
probabilities. These have advantages of speed and parameter range similar to those for ibinom and cbinom.

 is calculated by P = ipoisson(mu,k) , where  is a row or column vector of integers and the result  is a
row matrix of the probabilities. 

 is calculated by P = cpoisson(mu,k) , where  is a row or column vector of integers and the result  is a
row matrix of the probabilities.

The number of messages arriving in a one minute period at a communications network junction is a random variable N∼
Poisson (130). What is the probability the number of arrivals is greater than equal to 110, 120, 130, 140, 150, 160 ?

>> p = cpoisson(130,110:10:160) 

p  =  0.9666  0.8209  0.5117  0.2011  0.0461  0.0060 

The descriptions of these distributions, along with a number of other facts, are summarized in the table DATA ON SOME
COMMON DISTRIBUTIONS in Appendix C.

The Density Function
If the probability mass in the induced distribution is spread smoothly along the real line, with no point mass concentrations, there is
a probability density function  which satisfies

 (are under the graph of  over )

At each ,  is the mass per unit length in the probability distribution. The density function has three characteristic properties:

(f1)  (f2)  (f3) 

A random variable (or distribution) which has a density is called absolutely continuous. This term comes from measure theory. We
often simply abbreviate as continuous distribution.

Remarks
1. There is a technical mathematical description of the condition “spread smoothly with no point mass concentrations.” And

strictly speaking the integrals are Lebesgue integrals rather than the ordinary Riemann kind. But for practical cases, the two
agree, so that we are free to use ordinary integration techniques.

2. By the fundamental theorem of calculus

 at every point of continuity of 

Any integrable, nonnegative function  with  determines a distribution function , which in turn determines a
probability distribution. If , multiplication by the appropriate positive constant gives a suitable . An argument based
on the Quantile Function shows the existence of a random variable with that distribution.
In the literature on probability, it is customary to omit the indication of the region of integration when integrating over the
whole line. Thus

The first expression is not an indefinite integral. In many situations,  will be zero outside an interval. Thus, the integrand
effectively determines the region of integration.

P (X = k) k P

P (X ≥ k) k P

Example : Poisson counting random variable7.1.4
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Figure 7.1.2. The Weibull density for , .

Figure 7.1.3. The Weibull density for , .

Some common absolutely continuous distributions
Uniform . 
Mass is spread uniformly on the interval . It is immaterial whether or not the end points are included, since probability
associated with each individual point is zero. The probability of any subinterval is proportional to the length of the subinterval. The
probability of being in any two subintervals of the same length is the same. This distribution is used to model situations in which it
is known that  takes on values in  but is equally likely to be in any subinterval of a given length. The density must be
constant over the interval (zero outside), and the distribution function increases linearly with  in the interval. Thus,

 ( ) (zero outside the interval)

The graph of  rises linearly, with slope 1/( ) from zero at  to one at .

Symmetric triangular , . 

This distribution is used frequently in instructional numerical examples because probabilities can be obtained geometrically. It can
be shifted, with a shift of the graph, to different sets of values. It appears naturally (in shifted form) as the distribution for the sum
or difference of two independent random variables uniformly distributed on intervals of the same length. This fact is established
with the use of the moment generating function (see Transform Methods). More generally, the density may have a triangular graph
which is not symmetric.

Suppose  symmetric triangular (100, 300). Determine .

Remark. Note that in the continuous case, it is immaterial whether the end point of the intervals are included or not.

Solution

α = 2 λ = 0.25, 1, 4

α = 10 λ = 0.001, 1, 1000

(a, b)
[a, b]

X [a, b]
t

(t) =fX
1

b−a
a < t < b

FX b−a t = a t = b

(−a, a) (t) = {fX
(a+ t)/a2

(a− t)/a2
−a ≤ t < 0
0 ≤ t ≤ a

Example : Use of a triangular distribution7.1.5

X  P (120 < X ≤ 250)
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To get the area under the triangle between 120 and 250, we take one minus the area of the right triangles between 100 and 120
and between 250 and 300. Using the fact that areas of similar triangles are proportional to the square of any side, we have

Exponential ( )   (zero elsewhere). 
Integration shows  (t \ge 0\) (zero elsewhere). We note that  . This leads
to an extremely important property of the exponential distribution. Since ,  implies , we have

Because of this property, the exponential distribution is often used in reliability problems. Suppose  represents the time to failure
(i.e., the life duration) of a device put into service at . If the distribution is exponential, this property says that if the device
survives to time  (i.e., ) then the (conditional) probability it will survive  more units of time is the same as the original
probability of surviving for  units of time. Many devices have the property that they do not wear out. Failure is due to some stress
of external origin. Many solid state electronic devices behave essentially in this way, once initial “burn in” tests have removed
defective units. Use of Cauchy's equation (Appendix B) shows that the exponential distribution is the only continuous distribution
with this property.

Gamma distribution    (zero elsewhere) 

We have an m-function gammadbn to determine values of the distribution function for  gamma . Use of moment
generating functions shows that for , a random variable  gamma  has the same distribution as the sum of 
independent random variables, each exponential ( ). A relation to the Poisson distribution is described in Sec 7.5.

On a Saturday night, the times (in hours) between arrivals in a hospital emergency unit may be represented by a random
quantity which is exponential ( ). As we show in the chapter Mathematical Expectation, this means that the average
interarrival time is 1/3 hour or 20 minutes. What is the probability of ten or more arrivals in four hours? In six hours?

Solution

The time for ten arrivals is the sum of ten interarrival times. If we suppose these are independent, as is usually the case, then
the time for ten arrivals is gamma (10, 3).

>> p = gammadbn(10,3,[4 6]) 

p  =  0.7576    0.9846 

Normal, or Gaussian   exp   

We generally indicate that a random variable  has the normal or gaussian distribution by writing , putting in the
actual values for the parameters. The gaussian distribution plays a central role in many aspects of applied probability theory,
particularly in the area of statistics. Much of its importance comes from the central limit theorem (CLT), which is a term applied to
a number of theorems in analysis. Essentially, the CLT shows that the distribution for the sum of a sufficiently large number of
independent random variables has approximately the gaussian distribution. Thus, the gaussian distribution appears naturally in such
topics as theory of errors or theory of noise, where the quantity observed is an additive combination of a large number of
essentially independent quantities. Examination of the expression shows that the graph for  is symmetric about its maximum
at .. The greater the parameter , the smaller the maximum value and the more slowly the curve decreases with distance
from .. Thus parameter . locates the center of the mass distribution and  is a measure of the spread of mass about . The
parameter  is called the mean value and  is the variance. The parameter , the positive square root of the variance, is called the
standard deviation. While we have an explicit formula for the density function, it is known that the distribution function, as the
integral of the density function, cannot be expressed in terms of elementary functions. The usual procedure is to use tables obtained
by numerical integration. 
Since there are two parameters, this raises the question whether a separate table is needed for each pair of parameters. It is a

P = 1 − ((20/100 +(50/100 ) = 0.855
1

2
)2 )2

λ (t) = λfX e−λt t ≥ 0
(t) = 1 −FX e−λt P (X > 0) = 1 − (t) =FX e−λt t ≥ 0

X > t+h h > 0 X > t

P (X > t+h|X > t) = P (X > t+h)/P (X > t) = / = = P (X > h)e−λ(t+h) e−λt e−λh

X

t = 0
t X > t h

h

(α,λ) (t) =fX
λαtα−1e−λt

Γ(α)
t ≥ 0

X  (α,λ)
α = n X  (n,λ) n
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Example : An arrival problem7.1.6

λ = 3

(μ, )σ2 (t) =fX
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σ 2π
−−

√
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σ
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μ μ σ2 μ

μ σ2 σ

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10861?pdf
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)/11%3A_Mathematical_Expectation/11.01%3A_Mathematical_Expectation-_Simple_Random_Variables


7.1.7 https://stats.libretexts.org/@go/page/10861

remarkable fact that this is not the case. We need only have a table of the distribution function for . This is refered to as
the standardized normal distribution. We use  and  for the standardized normal density and distribution functions, respectively.

Standardized normal  so that the distribution function is .

The graph of the density function is the well known bell shaped curve, symmetrical about the origin (see Figure 7.1.4). The
symmetry about the origin contributes to its usefulness.

 = area under the curve to the left of 

Note that the area to the left of  is the same as the area to the right of , so that . The same is
true for any , so that we have

 

This indicates that we need only a table of values of  for  to be able to determine  for any . We may use the
symmetry for any case. Note that ,

Figure 7.1.4. The standardized normal distribution.

Suppose . Determine  and 

Solution

1. 
2. 

From a table of standardized normal distribution function (see Appendix D), we find

 and  which gives  and 

General gaussian distribution 
For , the density maintains the bell shape, but is shifted with different spread and height. Figure 7.1.5 shows the
distribution function and density function for . The density is centered about . It has height 1.2616 as compared
with 0.3989 for the standardized normal density. Inspection shows that the graph is narrower than that for the standardized normal.
The distribution function reaches 0.5 at the mean value 2.

X N(0, 1)
φ ϕ

varphi(t) =
1

2π
−−

√
e− /2t2

ϕ(t) = φ(u)du∫ t

−∞

P (X ≤ t) = ϕ(t) t

t = −1.5 t = 1.5 ϕ(−2) = 1 −ϕ(2)
t

ϕ(−t) = 1 −ϕ(t) ∀t

ϕ(t) t > 0 ϕ(t) t

ϕ(0) = 1/2

Example : Standardized normal calculations7.1.7

X N(0, 1) P (−1 ≤ X ≤ 2) P (|X| > 1)

P (−1 ≤ X ≤ 2) = ϕ(2) −ϕ(−1) = ϕ(2) −[1 −ϕ(1)] = ϕ(2) +ϕ(1) −1
P (|X| > 1) = P (X > 1) +P (X < −1) = 1 −ϕ(1) +ϕ(−1) = 2[1 −ϕ(1)]

ϕ(2) = 0.9772 ϕ(1) = 0.8413 P (−1 ≤ X ≤ 2) = 0.8185 P (|X| > 1) = 0.3174

X N(μ, )σ2

X N(2, 0.1) t = 2
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Figure 7.1.5. The normal density and distribution functions for .

A change of variables in the integral shows that the table for standardized normal distribution function can be used for any case.

Make the change of variable and corresponding formal changes

  

to get

Suppose (3,16) (i.e.,  and ). Determine  and .

Solution

1. 

2. 

In each case the problem reduces to that in Example.

We have m-functions gaussian and gaussdensity to calculate values of the distribution and density function for any reasonable
value of the parameters. 
The following are solutions of example 7.1.7 and example 7.1.8, using the m-function gaussian.

>> P1 = gaussian(0,1,2) - gaussian(0,1,-1) 

P1 =  0.8186 

>> P2 = 2*(1 - gaussian(0,1,1)) 

P2 =  0.3173 

>> P1 = gaussian(3,16,11) - gaussian(3,16,-1) 

P2 =  0.8186 

>> P2 = gaussian(3,16,-1)) + 1 - (gaussian(3,16,7) 

P2 =  0.3173 

The differences in these results and those above (which used tables) are due to the roundoff to four places in the tables.

X N(2, 0.1)

(t) = exp(− ( )dx = φ( ) dxFX

1

σ 2π
−−

√
∫ t

−∞

1

2

x−μ

σ
)2 ∫ t

−infty

x−μ

σ

1

σ

u =
x−μ

σ
du = dx

1

σ
x = t u =

t−μ

σ

(t) = φ(u)du = ϕ( )FX ∫ (t−μ)/σ
−∞

t−μ

σ

Example : General gaussian calculation7.1.8

X N μ = 3 = 16σ2 P (−1 ≤ X ≤ 11) P (|X−3| > 4)

(11) − (−1) = ϕ( ) −ϕ( ) = ϕ(2) −ϕ(−1) = 0.8185FX FX

11 −3

4

−1 −3

4
P (X−3 < −4) +P (X−3 > 4) = (−1) +[1 − (7)] = ϕ(−1) +1 −ϕ(1) = 0.3174FX FX

Example : Example 7.1.7 and Example 7.1.8 (continued)7.1.9
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Beta , , .  

Analysis is based on the integrals

 with 

Figure 7.6 and Figure 7.7 show graphs of the densities for various values of . The usefulness comes in approximating densities
on the unit interval. By using scaling and shifting, these can be extended to other intervals. The special case  gives the
uniform distribution on the unit interval. The Beta distribution is quite useful in developing the Bayesian statistics for the problem
of sampling to determine a population proportion. If  are integers, the density function is a polynomial. For the general case we
have two m-functions, beta and betadbn to perform the calculatons.

Figure 7.6. The Beta  density for .

Figure 7.7. The Beta  density for .

Weibull   , , ,  
The parameter  is a shift parameter. Usually we assume . Examination shows that for α=1 the distribution is exponential ( ).
The parameter α provides a distortion of the time scale for the exponential distribution. Figure 7.6 and Figure 7.7 show graphs of
the Weibull density for some representative values of  and  ( ). The distribution is used in reliability theory. We do not
make much use of it. However, we have m-functions weibull (density) and weibulld (distribution function) for shift parameter 

 only. The shift can be obtained by subtracting a constant from the  values.

This page titled 7.1: Distribution and Density Functions is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform.
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r, s

(r, s) r = 2, s = 1, 2, 10

(r, s) r = 5, s = 2, 5, 10
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