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13.3: Simple Random Samples and Statistics

Simple Random Samples and Statistics

We formulate the notion of a (simple) random sample, which is basic to much of classical statistics. Once formulated, we may
apply probability theory to exhibit several basic ideas of statistical analysis.

We begin with the notion of a population distribution. A population may be most any collection of individuals or entities.
Associated with each member is a quantity or a feature that can be assigned a number. The quantity varies throughout the
population. The population distribution is the distribution of that quantity among the members of the population.

If each member could be observed, the population distribution could be determined completely. However, that is not always
feasible. In order to obtain information about the population distribution, we select “at random” a subset of the population and
observe how the quantity varies over the sample. Hopefully, the sample distribution will give a useful approximation to the
population distribution.

The sampling process

We take a sample of size , which means we select n members of the population and observe the quantity associated with each.
The selection is done in such a manner that on any trial each member is equally likely to be selected. Also, the sampling is done in
such a way that the result of any one selection does not affect, and is not affected by, the others. It appears that we are describing a
composite trial. We model the sampling process as follows:

Let ,  be the random variable for the ith component trial. Then the class  is iid, with each
member having the population distribution.

This provides a model for sampling either from a very large population (often referred to as an infinite population) or sampling
with replacement from a small population.

The goal is to determine as much as possible about the character of the population. Two important parameters are the mean and the
variance. We want the population mean and the population variance. If the sample is representative of the population, then the
sample mean and the sample variance should approximate the population quantities.

The sampling process is the iid class .
A random sample is an observation, or realization,  of the sampling process.

The sample average and the population mean

Consider the numerical average of the values in the sample . This is an observation of the sample average

The sample sum  and the sample average  are random variables. If another observation were made (another sample taken),
the observed value of these quantities would probably be different. Now  and  are functions of the random variables 

 in the sampling process. As such, they have distributions related to the population distribution (the common
distribution of the ). According to the central limit theorem, for any reasonable sized sample they should be approximately
normally distributed. As the examples demonstrating the central limit theorem show, the sample size need not be large in many
cases. Now if the population mean  is  and the population variance  is , then

 and 

so that

 and 

Herein lies the key to the usefulness of a large sample. The mean of the sample average  is the same as the population mean, but
the variance of the sample average is  times the population variance. Thus, for large enough sample, the probability is high that
the observed value of the sample average will be close to the population mean. The population standard deviation, as a measure of
the variation is reduced by a factor .
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Suppose a population has mean  and variance . A sample of size  is to be taken. There are complementary questions:

1. If  is given, what is the probability the sample average lies within distance a from the population mean?
2. What value of  is required to ensure a probability of at least p that the sample average lies within distance a from the

population mean?

Solution

Suppose the sample variance is known or can be approximated reasonably. If the sample size  is reasonably large, depending
on the population distribution (as seen in the previous demonstrations), then  is approximately .

1. Sample size given, probability to be determined.

2. Sample size to be determined, probability specified.

 iff 

Find from a table or by use of the inverse normal function the value of  required to make  at least .
Then

We may use the MATLAB function norminv to calculate values of  for various .

p = [0.8 0.9 0.95 0.98 0.99]; 

x = norminv(0,1,(1+p)/2); 

disp([p;x;x.^2]') 

    0.8000    1.2816    1.6424 

    0.9000    1.6449    2.7055 

    0.9500    1.9600    3.8415 

    0.9800    2.3263    5.4119 

    0.9900    2.5758    6.6349 

For , , , . Use at least 385 or perhaps 400 because of uncertainty about
the actual 

The idea of a statistic

As a function of the random variables in the sampling process, the sample average is an example of a statistic.

A statistic is a function of the class  which uses explicitly no unknown parameters of the population.

The random variable

, where 

is not a statistic, since it uses the unknown parameter . However, the following is a statistic.
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It would appear that  might be a reasonable estimate of the population variance. However, the following result shows that a
slight modification is desirable.

The statistic

is an estimator for the population variance.

VERIFICATION

Consider the statistic

Noting that , we use the last expression to show

The quantity has a bias in the average. If we consider

, then 

The quantity  with  rather than  is often called the sample variance to distinguish it from the population
variance. If the set of numbers

represent the complete set of values in a population of  members, the variance for the population would be given by

Here we use  rather than .

Since the statistic  has mean value , it seems a reasonable candidate for an estimator of the population variance. If we ask how
good is it, we need to consider its variance. As a random variable, it has a variance. An evaluation similar to that for the mean, but
more complicated in detail, shows that

 where 

For large ,  is small, so that  is a good large-sample estimator for .

Consider a population random variable  ~ uniform [-1, 1]. Then  and . We take 100 samples of size
100, and determine the sample sums. This gives a sample of size 100 of the sample sum random variable , which has mean
zero and variance 100/3. For each observed value of the sample sum random variable, we plot the fraction of observed sums
less than or equal to that value. This yields an experimental distribution function for , which is compared with the
distribution function for a random variable  ~ .

rand('seed',0)    % Seeds random number generator for later comparison 

tappr                                         % Approximation setup 

Enter matrix [a b] of x-range endpoints  [-1 1] 

Enter number of x approximation points  100 

Enter density as a function of t  0.5*(t<=1) 

Use row matrices X and PX as in the simple case 

V ∗
n

Example  An estimator for the population variance13.3.3
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Example  A sampling demonstration of the CLT13.3.4

X E[X] = 0 Var[X] = 1/3
S100

S100

Y N(0, 100/3)
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qsample                                 % Creates sample 

Enter row matrix of VALUES  X 

Enter row matrix of PROBABILITIES  PX 

Sample size n =  10000                  % Master sample size 10,000 

Sample average ex = 0.003746 

Approximate population mean E(X) = 1.561e-17 

Sample variance vx = 0.3344 

Approximate population variance V(X) = 0.3333 

m = 100;

a = reshape(T,m,m);                     % Forms 100 samples of size 100 

A = sum(a);                             % Matrix A of sample sums 

[t,f] = csort(A,ones(1,m));             % Sorts A and determines cumulative 

p = cumsum(f)/m;                        % fraction of elements <= each value 

pg = gaussian(0,100/3,t);               % Gaussian dbn for sample sum values 

plot(t,p,'k-',t,pg,'k-.')               % Comparative plot 

% Plotting details                      (see Figure 13.3.1)

Figure one is a graph of two plots, titled, Central limit theorem for sample sums. The horizontal axis is labeled, sample sum values, and the vertical axis is labeled, cumulative fraction. The values on the horizontal
axis range from -15 to 20 in increments of 5. The values on the vertical axis range from 0 to 1 in increments of 0.1. There are two captions inside the graph. The first reads, X uniform on [-1 1], and the second reads,
E[X] = 0 Var[X] = 1/3. The first plot is a smooth, dashed line, labeled gaussian. The second plot is a wavering, jagged solid line labeled experimental. Both plots follow generally the same shape. They begin in the

bottom right at approximately (-12, 0) with a positive slope, and they move to the right, increasing at an increasing rate. At nearly the midpoint in the graph, approximately (0, 0.5), the graphs adjust and begin increasing
at a decreasing rate, approaching the top-right corner of the graph while tapering off to a horizontal line. The gaussian, dashed line follows this path's description more accurately, while the solid experimental line seems

to be closely fitted to the gaussian line's path with some imperfections causing it to waver jaggedly at a couple spots along the path.  
Figure 13.3.1. The central limit theorem for sample sums.
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