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15.2: Some Random Selection Problems
In the unit on Random Selection, we develop some general theoretical results and computational procedures using MATLAB. In
this unit, we extend the treatment to a variety of problems. We establish some useful theoretical results and in some cases use
MATLAB procedures, including those in the unit on random selection.

The Poisson Decomposition
In many problems, the individual demands may be categorized in one of m types. If the random variable  is the type of the th
arrival and the class  is iid, we have multinomial trials. For  we have the Bernoulli or binomial case, in which
one type is called a success and the other a failure.

Multinomial trials

We analyze such a sequence of trials as follows. Suppose there are m types, which we number 1 through . Let  be the event
that type  occurs on the th component trial. For each , the class  is a partition, since on each component trial
exactly one of the types will occur. The type on the th trial may be represented by the type random variable

we assume

 is iid, with  invariant with 

In a sequence of  trials, we let  be the number of occurrences of type . Then

 with 

Now each  ~ binomial ( ). The class  cannot be independent, since it sums to . If the values of 
 of them are known, the value of the other is determined. If . the event

is one of the

ways of arranging  of the ,  of the , ,  of the . Each such arrangement has probability , so that

This set of joint probabilities constitutes the multinomial distribution. For , and type 1 a success, this is the binomial
distribution with parameter .

A random number of multinomial trials

We consider, in particular, the case of a random number  of multinomial trials, where  ~ Poisson . Let  be the number of
results of type  in a random number  of multinomial trials.

 with 

Poisson decomposition

Suppose

 ~ Poisson ( ) 
 is iid with ,  

 is independent

Then

Each  ~ Poisson ( ) 
 is independent.

— □
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The usefulness of this remarkable result is enhanced by the fact that the sum of independent Poisson random variables is also
Poisson, with  for the sum the sum of the  for the variables added. This is readily established with the aid of the generating
function. Before verifying the propositions above, we consider some examples.

The number  of orders per day received by a mail order house is Poisson (300). Orders are shipped by next day express, by
second day priority, or by regular parcel mail. Suppose 4/10 of the customers want next day express, 5/10 want second day
priority, and 1/10 require regular mail. Make the usual assumptions on compound demand. What is the probability that fewer
than 150 want next day express? What is the probability that fewer than 300 want one or the other of the two faster deliveries?

Solution

Model as a random number of multinomial trials, with three outcome types: Type 1 is next day express, Type 2 is second day
priority, and Type 3 is regular mail, with respective probabilities , , and . The  ~ Poisson 

,  ~ Poisson , and  ~ Poisson . Also  ~ Poisson (120 + 150
= 270).

P1 = 1 - cpoisson(120,150) 

P1  =  0.9954 

P12 = 1 - cpoisson(270,300) 

P12 =  0.9620

A junction point in a network has two incoming lines and two outgoing lines. The number of incoming messages  on line
one in one hour is Poisson (50); on line 2 the number is  ~ Poisson (45). On incoming line 1 the messages have probability 

 of leaving on outgoing line a and  of leaving on line b. The messages coming in on line 2 have probability 
 of leaving on line a. Under the usual independence assumptions, what is the distribution of outgoing messages on

line a? What are the probabilities of at least 30, 35, 40 outgoing messages on line a?

Solution

By the Poisson decomposition,  ~ Poisson .

ma = 50*0.33 + 45*0.47 

ma =  37.6500 

Pa = cpoisson(ma,30:5:40) 

Pa =   0.9119    0.6890    0.3722

VERIFICATION of the Poisson decomposition

. 
This is composite demand with , so that . Therefore,

which is the generating function for  ~ Poisson . 
For any , , , , let , and consider

Since  is independent of the class of , the class

is independent. By the product rule and the multinomial distribution

μ μi

Example  A shipping problem15.2.1
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N1

N2

= 0.33P1a 1 −p1a

= 0.47P2a

Na (50 ⋅ 0.33 +45 ⋅ 0.47 = 37.65)

=Nk ∑N
i=1 IEki

=Yk IEki (s) = +s = 1 + (s−1)gYk qk pk pk

(s) = [ (s)] = =gNk
gN gYk e e

Nk (μ )pk
n1 n2 ⋅ ⋅ ⋅ nm n = + +⋅ ⋅ ⋅ +n1 n2 nm

A = { = , = , ⋅ ⋅ ⋅, = } = {N = n} ∩ { = , = , ⋅ ⋅ ⋅, = }N1 n1 N2 n2 Nm nm N1n N1 N2n n2 Nmn nm

N IEki

{{N = n}, { = , = , ⋅ ⋅ ⋅, = }}N1n n1 N2n n2 Nmn nm

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10845?pdf


15.2.3 https://stats.libretexts.org/@go/page/10845

The second product uses the fact that

Thus, the product rule holds for the class

Extreme values

Consider an iid class  of nonnegative random variables. For any positive integer  we let

 and 

Then

 and 

Now consider a random number  of the . The minimum and maximum random variables are

 and 

— □

Computational formulas

If we set , then

 

These results are easily established as follows. . By additivity and independence of 
 for each 

, since 

If we add into the last sum the term  then subtract it, we have

A similar argument holds for proposition (b). In this case, we do not have the extra term for , since .

Special case. In some cases,  does not correspond to an admissible outcome (see Example 14.2.4, below, on lowest bidder
and Example 14.2.6). In that case

Add  to each of the sums to get

— □

The number  of jobs coming into a service center in a week is a random quantity having a Poisson (20) distribution. Suppose
the service times (in hours) for individual units are iid, with common distribution exponential (1/3). What is the probability the
maximum service time for the units is no greater than 6, 9, 12, 15, 18 hours?

Solution

t = 6:3:18; 

PW = exp(-20*exp(-t/3)); 

disp([t;PW]') 
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    6.0000    0.0668 

    9.0000    0.3694 

   12.0000    0.6933 

   15.0000    0.8739 

   18.0000    0.9516

A manufacturer seeks bids on a modification of one of his processing units. Twenty contractors are invited to bid. They bid
with probability 0.3, so that the number of bids  ~ binomial (20,0.3). Assume the bids Y  (in thousands of dollars) form an iid
class. The market is such that the bids have a common distribution symmetric triangular on (150,250). What is the probability
of at least one bid no greater than 170, 180, 190, 200, 210? Note that no bid is not a low bid of zero, hence we must use the
special case.

Solution

 where 

Solving graphically for , we get

 [23/25 41/50 17/25 1/2 8/25] for  [170 180 190 200 210]

Now . We use MATLAB to obtain

t = [170 180 190 200 210]; 

p = [23/25 41/50 17/25 1/2 8/25]; 

PV = 1 - (0.7 + 0.3*p).^20;  

disp([t;p;PV]') 

170.0000    0.9200    0.3848 

180.0000    0.8200    0.6705 

190.0000    0.6800    0.8671 

200.0000    0.5000    0.9612 

210.0000    0.3200    0.9896

Suppose the number of bids is 1, 2 or 3 with probabilities 0.3, 0.5, 0.2, respectively.

Determine  in each case.

Solution

The minimum of the selected 's is no greater than  if and only if there is at least one  less than or equal to . We determine
in each case probabilities for the number of bids satisfying . For each , we are interested in the probability of one or
more occurrences of the event . This is essentially the problem in Example 7 from "Random Selection", with probability 

.

t = [170 180 190 200 210]; 

p = [23/25 41/50 17/25 1/2 8/25]; % Probabilities Y <= t are 1 - p 

gN = [0 0.3 0.5 0.2];             % Zero for missing value 

PV = zeros(1,length(t)); 

for i=1:length(t) 

gY = [p(i),1 - p(i)]; 

[d,pd] = gendf(gN,gY); 

Example  Lowest Bidder15.2.4

N i

P (V ≤ t) = 1 − [P (Y > t)] = 1 −(0.7 +0.3pgN )20 p = P (Y > t)

p = P (V > t)

p = t =

(s) = (0.7 +0.3sgN )20

Example  Example 15.2.4 with a general counting variable15.2.5
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PV(i) = (d>0)*pd';                 % Selects positions for d > 0 and 

end                                % adds corresponding probabilities 

disp([t;PV]') 

  170.0000    0.1451 

  180.0000    0.3075 

  190.0000    0.5019 

  200.0000    0.7000 

  210.0000    0.8462 

Example 15.2.4 may be worked in this manner by using gN = ibinom(20,0.3,0:20) . The results, of course, are the
same as in the previous solution. The fact that the probabilities in this example are lower for each t than in Example 15.2.4
reflects the fact that there are probably fewer bids in each case.

Electrical units from a production line are first inspected for operability. However, experience indicates that a fraction  of
those passing the initial operability test are defective. All operable units are subsequenly tested in a batch under continuous
operation ( a “burn in” test). Statistical data indicate the defective units have times to failure  iid, exponential ( , whereas
good units have very long life (infinite from the point of view of the test). A batch of  units is tested. Let  be the time of the
first failure and  be the number of defective units in the batch. If the test goes  units of time with no failure (i.e., ),
what is the probability of no defective units?

Solution

Since no defective units implies no failures in any reasonable test time, we have

 so that 

Since  does not yield a minimum value, we have . Now under the condition above, the
number of defective units  ~ binomial ( ), so that . If  is large and  is reasonably small,  is
approximately Poisson  with  and . Now ; for large 

For , , , and , MATLAB calculations give

t = 1:5;

n = 5000; 

p = 0.001; 

lambda = 2; 

P = exp(-n*p*exp(-lambda*t)); 

disp([t;P]') 

    1.0000    0.5083 

    2.0000    0.9125 

    3.0000    0.9877 

    4.0000    0.9983 

    5.0000    0.9998 

It appears that a test of three to five hours should give reliable results. In actually designing the test, one should probably make
calculations with a number of different assumptions on the fraction of defective units and the life duration of defective units.
These calculations are relatively easy to make with MATLAB.

Example  Batch testing15.2.6
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Bernoulli trials with random execution times or costs
Consider a Bernoulli sequence with probability  of success on any component trial. Let  be the number of the trial on which the
first success occurs. Let  be the time (or cost) to execute the th trial. Then the total time (or cost) from the beginning to the
completion of the first success is

 (composite "demand" with  ~ geometric )

We suppose the  form an iid class, independent of . Now  ~ geometric ( ) implies , so that

There are two useful special cases:

 ~ exponential , so that .

which implies  ~ exponential ( ).

 ~ geometric , so that 

so that  ~ geometric .

Suppose a prospective employer is interviewing candidates for a job from a pool in which twenty percent are qualified.
Interview times (in hours)  are presumed to form an iid class, each exponential (3). Thus, the average interview time is 1/3
hour (twenty minutes). We take the probability for success on any interview to be . What is the probability a
satisfactory candidate will be found in four hours or less? What is the probability the maximum interview time will be no
greater than 0.5, 0.75, 1, 1.25, 1.5 hours?

Solution

 ~ exponential ( ), so that .

MATLAB computations give

t = 0.5:0.25:1.5; 

PWt = (1 - exp(-3*t))./(1 + 4*exp(-3*t)); 

disp([t;PWt]') 

    0.5000    0.4105 

    0.7500    0.6293 

    1.0000    0.7924 

    1.2500    0.8925 

    1.5000    0.9468 

The average interview time is 1/3 hour; with probability 0.63 the maximum is 3/4 hour or less; with probability 0.79 the
maximum is one hour or less; etc.

In the general case, solving for the distribution of  requires transform theory, and may be handled best by a program such as
Maple or Mathematica.
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Example  Job interviews15.2.7

Yi
p = 0.2

T 0.2 ⋅ 3 = 0.6 P (T ≤ 4) = 1 − = 0.9093e−0.6⋅4

P (W ≤ t) = [P (Y ≤ t)] = =gN
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For the case of simple  we may use approximation procedures based on properties of the geometric series. Since  ~
geometric .

Note that  has the form of the generating function for a simple approximation  which matches values and probabilities
with  up to . Now

The evaluation involves convolution of coefficients which effectively sets . Since .

 for  reduces to 

which is negligible if  is large enough. Suitable  may be determined in each case. With such an , if the  are nonnegative,
integer-valued, we may use the gend procedure on , where

For the integer-valued case, as in the general case of simple , we could use mgd. However, gend is usually faster and more
efficient for the integer-valued case. Unless  is small, the number of terms needed to approximate  is likely to be too great.

Let  and  be uniformly distributed on . Determine the distribution for

Solution

p = 0.3;

q = 1 - p; 

a = [30 35 40];          % Check for suitable n 

b = q.^a

b =  1.0e-04 *           % Use n = 40 

     0.2254    0.0379    0.0064 

n = 40; 

k = 1:n;

gY = 0.1*[0 ones(1,10)]; 

gN = p*[0 q.^(k-1)];     % Probabilities, 0 <= k <= 40 

gend 

Do not forget zero coefficients for missing powers 

Enter gen fn COEFFICIENTS for gN  gN 

Enter gen fn COEFFICIENTS for gY  gY 

Values are in row matrix D; probabilities are in PD. 

To view the distribution, call for gD. 

sum(PD)                % Check sum of probabilities 

ans =  1.0000 

FD = cumsum(PD);       % Distribution function for D 

plot(0:100,FD(1:101))  % See Figure 15.2.1 

P50 = (D<=50)*PD' 

P50 =  0.9497 

P30 = (D<=30)*PD' 

P30 =  0.8263

Yi N −1

(p)

9s) = = ps (qs = ps[ (qs + (qs ] = ps[ (qs +(qs (qs ]gN
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Example  Approximating the generating function15.2.8
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Figure one is a graph labeled, execution time distribution function. The horizontal axis is labeled, Time, and the vertical axis is labeled, probability. The values on the horizontal axis range from 0 to 100 in increments
of 10. The values on the vertical axis range from 0 to 1 in increments of 0.1. There is one plotted distribution function on this graph. It begins in the bottom-left corner, at the point (0, 0), and moves right at a strong
positive slope. As the plot moves from left to right, the slope decreases as the function increases. About midway across the graph horizontally, the plot is nearly at the top, at a probability value above 0.9. The plot

continues to increase at a decreasing rate until it tapers off to a horizontal line by the point (80, 1), at which it continues and terminates at the top-right corner.  
Figure 15.2.1. Execution Time Distribution Function .

The same results may be achieved with mgd, although at the cost of more computing time. In that case, use  as in Example
15.2.8, but use the actual distribution for .

Arrival times and counting processes
Suppose we have phenomena which take place at discrete instants of time, separated by random waiting or interarrival times. These
may be arrivals of customers in a store, of noise pulses on a communications line, vehicles passing a position on a road, the failures
of a system, etc. We refer to these occurrences as arrivals and designate the times of occurrence as arrival times. A stream of
arrivals may be described in three equivalent ways.

Arrival times: , with  a.s. (basic sequence)
Interarrival times: , with each  a.s. (incremental sequence)

The strict inequalities imply that with probability one there are no simultaneous arrivals. The relations between the two sequences
are simply

,  and  for all 

The formulation indicates the essential equivalence of the problem with that of the compound demand. The notation and
terminology are changed to correspond to that customarily used in the treatment of arrival and counting processes.

The stream of arrivals may be described in a third way.

Counting processes:  is the number of arrivals in time period . It should be clear that this is a random quantity
for each nonnegative . For a given  the value is . Such a family of random variables constitutes a random process.
In this case the random process is a counting process.

We thus have three equivalent descriptions for the stream of arrivals.

  

Several properties of the counting process  should be noted: 
 counts the arrivals in the interval , , so that  for . 

 and for  we have

For any given ,  is a nondecreasing, right-continuous, integer-valued function defined on , with .

The essential relationships between the three ways of describing the stream of arrivals is displayed in

, , 

This imples

Although there are many possibilities for the interarrival time distributions, we assume

 is iid, with  a.s.

Under such assumptions, the counting process is often referred to as a renewal process and the interrarival times are called renewal
times. In the literature on renewal processes, it is common for the random variable to count an arrival at . This requires an
adjustment of the expressions relating  and the . We use the convention above.

Exponential iid interarrival times

The case of exponential interarrival times is natural in many applications and leads to important mathematical results. We utilize
the following propositions about the arrival times , the interarrival times , and the counting process .
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If  is iid exponential ( ), then  ~ gamma  for all . This is worked out in the unit on
TRANSFORM METHODS, in the discussion of the connection between the gamma distribution and the exponential
distribution. 

 ~ gamma  for all , and , iff  ~ Poisson  for all . This follows the result in the unit
DISTRIBUTION APPROXI9MATIONS on the relationship between the Poisson and gamma distributions, along with the
fact that .

Remark. The counting process is a Poisson process in the sense that  ~ Poisson ( ) for all . More advanced treatments
show that the process has independent, stationary increments. That is

 for all , and 
For , the class  is
independent.

In words, the number of arrivals in any time interval depends upon the length of the interval and not its location in time, and the
numbers of arrivals in nonoverlapping time intervals are independent.

Emergency calls arrive at a police switchboard with interarrival times (in hours) exponential (15). Thus, the average
interarrival time is 1/15 hour (four minutes). What is the probability the number of calls in an eight hour shift is no more than
100, 120, 140?

p = 1 - cpoisson(8*15,[101 121 141]) 

p  =  0.0347    0.5243    0.9669

We develop next a simple computational result for arrival processes for which  ~ gamma 

Suppose the arrival times  ~ gamma ( ) and  is such that

 and 

Then

VERIFICATION

We use the countable sums property (E8b) for expectation and the corresponding property for integrals to assert

 where 

We may apply (E8b) to assert

Since

the proposition is established.

A critical unit in a production system has life duration exponential . Upon failure the unit is replaced immediately by a
similar unit. Units fail independently. Cost of replacement of a unit is c dollars. If money is discounted at a rate , then a dollar

{ : 1 ≤ i}Wi λ Sn (n,λ) n ≥ 1

Sn (n,λ) n ≥ 1 = 0S0 Nt (λt) t > 0

{ ≥ n} = { ≤ t}Nt Sn

Nt λt t > 0

N(t+h) −N(t) = N(h) t,h > 0

< ≤ < ≤ ⋅ ⋅ ⋅ ≤ <t1 t2 t3 t4 tm−1 tm {N( ) −N( ),N( ) −N( ), ⋅ ⋅ ⋅,N( ) −N( )}t2 N1 t4 t3 tm tm−1

Example  Emergency calls15.2.9

Sn (n,λ)

Example  Gamma arrival times15.2.10

Sn n,λ g

|g| < ∞∫
∞

0 E[ |g( )|] < ∞∑∞
n=1 Sn

E[ g( )] = λ g∑∞
n=1 Sn ∫ ∞

0

E[ g( )] = E[g( )] = g(t) (t) dt∑∞
n=1 Sn ∑∞

n=1 Sn ∑∞
n=1 ∫

∞

0
fn (t) =fn

λ (λte−λt )n−1

(n−1)!

g = g∑∞
n=1 ∫

∞
0 fn ∫ ∞

0 ∑∞
n=1 fn

(t) = λ = λ = λ∑∞
n=1 fn e−λt ∑∞

n=1

(λt)n−1

(n−1)!
e−λteλt

Example  Discounted replacement costs15.2.11

(λ)

α
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spent tunits of time in the future has a current value . If  is the time of replacement of the th unit, then  ~ gamma 
 and the present value of all future replacements is

The expected replacement cost is

 where 

Hence

Suppose unit replacement cost , average time (in years) to failure , and the discount rate per year 
 (eight percent). Then

Suppose the cost of the th replacement in Example 15.2.11 is a random quantity , with  independent and 
, invariant with . Then

The analysis to this point assumes the process will continue endlessly into the future. Often, it is desirable to plan for a specific,
finite period. The result of Example 15.2.10 may be modified easily to account for a finite period, often referred to as a finite
horizon.

Under the conditions assumed in Example 15.2.10, above, let  be the counting random variable for arrivals in the interval 
.

If , then 

VERIFICATION

Since  iff . . In the result of Example 15.2.10, replace  by  and
note that

Under the condition of Example 15.2.11, consider the replacement costs over a two-year period.

Solution

Thus, the expected cost for the infinite horizon  is reduced by the factor . For  and the number in Example
15.2.11, the reduction factor is  to give .

In the important special case that , the exporession for  may be put into a form which does not
require the interarrival times to be exponential.

eαt Sn n Sn

(n,λ)

C = c∑∞
n=1 e−αSn

E[C] = E[ g( )]∑∞
n=1 Sn g(t) = ce−∞

E[C] = λ c  dt =∫ ∞

0
e−αt λc

α

c = 1200 1/λ = 1/4

α = 0.08

E[C] = = 60, 000
1200 ⋅ 4

0.08

Example  Random costs15.2.12

n Cn { , }Cn Sn

E[ ] = cCn n

E[C] = E[ ] = E[ ]E[ ] = cE[ ] =∑∞
n=1 Cne

−αSn ∑∞
n=1 Cn e−αSn ∑∞

n=1 e−αSn
λc

α

Example  Finite horizon15.2.13

Nt

(0, t]

= g( )Zt ∑Nt

n=1 Sn E[ ] = λ g(u) duZt ∫
t

0

≥ nNt ≤ tSn g( ) = ( )g( )∑Nt

n=1 Sn ∑∞
n=0 I(0,t] Sn Sn g gI(0,t]

(u)g(u) du = g(u) du∫ ∞
0 I(0,t] ∫ t

0

Example  Replacement costs, finite horizon15.2.14

E[C] = λc  du = (1 − )∫ t

0
e−αu λc

α
e−αt

λc/α 1 −e−αt t = 2

1 − = 0.1479e−0.16 E[C] = 60000 ⋅ 0.1479 = 8871.37

g(u) = ce−αu E[ g( )]∑∞
n=1 Sn
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Suppose  and , where  is iid. Let  be a class such that each  and
each pair  is independent. Then for 

where  is the moment generating function for .

DERIVATION

First we note that

Hence, by properties of expectation and the geometric series

, provided 

Since  and , we have , so that 

Suppose each  ~ uniform . Then (see Appendix C),

 so that 

Let , ,  and . Then,

a = 1; 

b = 5; 

c = 100;

A = 0.08; 

MW = (exp(-a*A) - exp(-b*A))/(A*(b - a)) 

MW =    0.7900 

EC = c*MW/(1 - MW) 

EC =  376.1643 

This page titled 15.2: Some Random Selection Problems is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform.

Example  General interarrival, exponential g15.2.15

= 0S0 =Sn ∑n
i=1 Wi { : 1 ≤ i}Wi { : 1 ≤ n}Vn E[ ] = cVn

{ , }Vn Sn α > 0

E[C] = E[ ] = c ⋅∑∞
n=1 Vne

−αSn
(−α)MW

1 − (−α)MW

MW W

E[ ] = c (−α) = c (−α)Vne
−αSn MSn M n

W

E[C] = c (−α) =∑∞
n=1 M

n
W

(−α)MW

1 − (−α)MW

| (−α)| < 1MW

α > 0 W > 0 0 < < 1e−αW (−α) = E[ ] < 1MW e−αW

Example  Uniformly distributed interarrival times15.2.16

Wi (a, b)

(−α) =MW

−e−aα e−bα

α(b−a)
E[C] = c ⋅

−e−aα e−bα

α(b−a) −[ − ]e−aα e−bα

a = 1 b = 5 c = 100 α = 0
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