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13.1: Transform Methods
As pointed out in the units on Expectation and Variance, the mathematical expectation  of a random variable  locates
the center of mass for the induced distribution, and the expectation

measures the spread of the distribution about its center of mass. These quantities are also known, respectively, as the mean
(moment) of  and the second moment of  about the mean. Other moments give added information. For example, the third
moment about the mean  gives information about the skew, or asymetry, of the distribution about the mean. We
investigate further along these lines by examining the expectation of certain functions of . Each of these functions involves a
parameter, in a manner that completely determines the distribution. For reasons noted below, we refer to these as transforms. We
consider three of the most useful of these.

Three basic transforms

We define each of three transforms, determine some key properties, and use them to study various probability distributions
associated with random variables. In the section on integral transforms, we show their relationship to well known integral
transforms. These have been studied extensively and used in many other applications, which makes it possible to utilize the
considerable literature on these transforms.

The moment generating function  for random variable  (i.e., for its distribution) is the function

 (  is a real or complex parameter)

The characteristic function  for random variable  is

 ( ,  is a real parameter)

The generating function  for a nonnegative, integer-valued random variable  is

The generating function  has meaning for more general random variables, but its usefulness is greatest for nonnegative,
integer-valued variables, and we limit our consideration to that case.

The defining expressions display similarities which show useful relationships. We note two which are particularly useful.

 and 

Because of the latter relationship, we ordinarily use the moment generating function instead of the characteristic function to avoid
writing the complex unit i. When desirable, we convert easily by the change of variable.

The integral transform character of these entities implies that there is essentially a one-to-one relationship between the transform
and the distribution.

Moments
The name and some of the importance of the moment generating function arise from the fact that the derivatives of  evaluateed
at  are the moments about the origin. Specifically

, provided the th moment exists

Since expectation is an integral and because of the regularity of the integrand, we may differentiate inside the integral with respect
to the parameter.

Upon setting , we have . Repeated differentiation gives the general result. The corresponding result for the
characteristic function is .
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The density function is  for .

 

 

From this we obtain .

The generating function does not lend itself readily to computing moments, except that

 so that 

For higher order moments, we may convert the generating function to the moment generating function by replacing  with , then
work with  and its derivatives.

, , so that

We convert to  by replacing  with  to get . Then

 

so that

, , and 

These results agree, of course, with those found by direct computation with the distribution.

Operational properties
We refer to the following as operational properties.

(T1): If , then

, , 

For the moment generating function, this pattern follows from

Similar arguments hold for the other two.

(T2): If the pair  is independent, then

, , 

For the moment generating function,  and  form an independent pair for each value of the parameter . By the product rule
for expectation

Similar arguments are used for the other two transforms.

A partial converse for (T2) is as follows:

(T3): If , then the pair  is uncorrelated. To show this, we obtain two expressions for 
, one by direct expansion and use of linearity, and the other by taking the second derivative of the moment generating
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function.

On setting  and using the fact that , we have

which implies the equality .

Note that we have not shown that being uncorrelated implies the product rule.

We utilize these properties in determining the moment generating and generating functions for several of our common distributions.

Some discrete distributions
Indicator function  

 

Simple random variable  (primitive form) 

Binomial ( , ).  with  iid 

We use the product rule for sums of independent random variables and the generating function for the indicator function.

 

Geometric ( ).    We use the formula for the geometric series to get

Negative binomial ( ) If  is the number of the trial in a Bernoulli sequence on which the th success occurs, and 
 is the number of failures before the th success, then

where 

The power series expansion about  shows that

 for 

Hence,

Comparison with the moment generating function for the geometric distribution shows that  has the same
distribution as the sum of  iid random variables, each geometric ( ). This suggests that the sequence is characterized by
independent, successive waiting times to success. This also shows that the expectation and variance of  are  times the
expectation and variance for the geometric. Thus

 and 

Poisson ( )   In Example 13.1.2, above, we establish  and . If 

 is an independent pair, with  ~ Poisson ( ) and  ~ Poission ( ), then  ~ Poisson . Follows from
(T1) and product of exponentials.
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Symmetric triangular 

where  is the moment generating function for  ~ uniform  and similarly for . Thus,  has the same distribution as
the difference of two independent random variables, each uniform on .

Exponential ( ) , 

In example 1, above, we show that .

Gamma( )  

For , a positive integer,

which shows that in this case  has the distribution of the sum of  independent random variables each exponential .

Normal ( ).

The standardized normal,  ~ 

Now  so that

since the integrand (including the constant  is the density for .

 implies by property (T1)

Suppose  is an independent pair with  ~  and  ~ . Let . The  is normal,
for by properties of expectation and variance

 and 

and by the operational properties for the moment generating function

This form of  shows that  is normally distributed.
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Example  Affine combination of independent normal random variables13.1.3
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Moment generating function and simple random variables
Suppose  in canonical form. That is,  is the event  for each of the distinct values in the range of 
with . Then the moment generating function for  is

The moment generating function  is thus related directly and simply to the distribution for random variable .

Consider the problem of determining the sum of an independent pair  of simple random variables. The moment generating

function for the sum is the product of the moment generating functions. Now if , with , we have

The various values are sums  of pairs  of values. Each of these sums has probability  for the values
corresponding to . Since more than one pair sum may have the same value, we need to sort the values, consolidate like values
and add the probabilties for like values to achieve the distribution for the sum. We have an m-function mgsum for achieving this
directly. It produces the pair-products for the probabilities and the pair-sums for the values, then performs a csort operation.
Although not directly dependent upon the moment generating function analysis, it produces the same result as that produced by
multiplying moment generating functions.

Suppose the pair  is independent with distributions

 [1 3 5 7]  [2 3 4]  [0.2 0.4 0.3 0.1]  [0.3 0.5 0.2]

Determine the distribution for .

X = [1 3 5 7]; 

Y = 2:4;

PX = 0.1*[2 4 3 1]; 

PY = 0.1*[3 5 2]; 

[Z,PZ] = mgsum(X,Y,PX,PY); 

disp([Z;PZ]') 

    3.0000    0.0600 

    4.0000    0.1000 

    5.0000    0.1600 

    6.0000    0.2000 

    7.0000    0.1700 

    8.0000    0.1500 

    9.0000    0.0900 

   10.0000    0.0500 

   11.0000    0.0200

This could, of course, have been achieved by using icalc and csort, which has the advantage that other functions of  and  may
be handled. Also, since the random variables are nonnegative, integer-valued, the MATLAB convolution function may be used (see
Example 13.1.7). By repeated use of the function mgsum, we may obtain the distribution for the sum of more than two simple
random variables. The m-functions mgsum3 and mgsum4 utilize this strategy.

The techniques for simple random variables may be used with the simple approximations to absolutely continuous random
variables.
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Example  Distribution for a sum of independent simple random variables13.1.4
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The moment generating functions for the uniform and the symmetric triangular show that the latter appears naturally as the
difference of two uniformly distributed random variables. We consider  and  iid, uniform on [0,1].

tappr 

Enter matrix [a b] of x-range endpoints  [0 1] 

Enter number of x approximation points  200 

Enter density as a function of t  t<=1 

Use row matrices X and PX as in the simple case 

[Z,PZ] = mgsum(X,-X,PX,PX); 

plot(Z,PZ/d)               % Divide by d to recover f(t) 

%  plotting details   ---  see Figure 13.1.1

Figure one is a density graph. It is titled, Density for difference two variables, each uniform (0, 1). The horizontal axis of the graph is labeled, t, and the vertical graph is labeled fZ(t). The plot of the density is
triangular, beginning at (-1, 0), and increasing at a constant slope to point (0, 1). The graph continues after this point downward with a constant negative slope to point (1, 0).  

Figure 13.1.1. Density for the difference of an independent pair, uniform (0,1).

The generating function
The form of the generating function for a nonnegative, integer-valued random variable exhibits a number of important properties.

 (canonical form)  

As a power series in  with nonegative coefficients whose partial sums converge to one, the series converges at least for .

The coefficients of the power series display the distribution: for value  the probability  is the coefficient of .

The power series expansion about the origin of an analytic function is unique. If the generating function is known in closed form,
the unique power series expansion about the origin determines the distribution. If the power series converges to a known closed
form, that form characterizes the distribution.

For a simple random variable (i.e.  for ),  is a polynomial.

In Example 13.1.2, above, we establish the generating function for  ~ Poisson  from the distribution. Suppose, however,
we simply encounter the generating function

From the known power series for the exponential, we get

We conclude that

, 

which is the Poisson distribution with parameter .

For simple, nonnegative, integer-valued random variables, the generating functions are polynomials. Because of the product rule
(T2), the problem of determining the distribution for the sum of independent random variables may be handled by the process of
multiplying polynomials. This may be done quickly and easily with the MATLAB convolution function.

Example  Difference of uniform distribution13.1.5
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Example  The Poisson distribution13.1.6
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Suppose the pair  is independent, with

 

In the MATLAB function convolution, all powers of s must be accounted for by including zeros for the missing powers.

gx = 0.1*[2 3 3 0 0 2];      % Zeros for missing powers 3, 4 

gy = 0.1*[0 2 4 4];          % Zero  for missing power 0 

gz = conv(gx,gy); 

a = ['       Z         PZ']; 

b = [0:8;gz]'; 

disp(a) 

       Z         PZ          % Distribution for Z = X + Y 

disp(b) 

         0         0 

    1.0000    0.0400 

    2.0000    0.1400 

    3.0000    0.2600 

    4.0000    0.2400 

    5.0000    0.1200 

    6.0000    0.0400 

    7.0000    0.0800 

    8.0000    0.0800 

If mgsum were used, it would not be necessary to be concerned about missing powers and the corresponding zero coefficients.

Integral transforms
We consider briefly the relationship of the moment generating function and the characteristic function with well known integral
transforms (hence the name of this chapter).

Moment generating function and the Laplace transform

When we examine the integral forms of the moment generating function, we see that they represent forms of the Laplace transform,
widely used in engineering and applied mathematics. Suppose  is a probability distribution function with . The
bilateral Laplace transform for  is given by

The Laplace-Stieltjes transform for  is

Thus, if  is the moment generating function for , then  is the Laplace-Stieltjes transform for  (or, equivalently, for 
).

The theory of Laplace-Stieltjes transforms shows that under conditions sufficiently general to include all practical distribution
functions

Hence

Example  Sum of independent simple random variables13.1.7

{X,Y }

(s) = (2 +3s+3 +2 )gX
1

10
s2 s5 (s) = (2s+4 +4 )gY

1

10
s2 s3

FX (−∞) = 0FX

FX

(t) dt∫ ∞
−∞

e−stFX

FX

(dt)∫ ∞
−∞

e−stFX

MX X (−s)MX X

FX

(−s) = (dt) = s (t) dtMX ∫ ∞
−∞

e−stFX ∫ ∞
−∞

e−stFX

(−s) = (t) dt
1

s
MX ∫ ∞

−∞ e−stFX

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10838?pdf


13.1.8 https://stats.libretexts.org/@go/page/10838

The right hand expression is the bilateral Laplace transform of . We may use tables of Laplace transforms to recover  when 
 is known. This is particularly useful when the random variable  is nonnegative, so that  for .

If  is absolutely continuous, then

In this case,  is the bilateral Laplace transform of . For nonnegative random variable , we may use ordinary tables of
the Laplace transform to recover .

Suppose nonnegative  has moment generating function

We know that this is the moment generating function for the exponential (1) distribution. Now,

From a table of Laplace transforms, we find  is the transform for the constant 1 (for ) and  is the transform
for , , so that , as expected.

Suppose the moment generating function for a nonnegative random variable is

From a table of Laplace transforms, we find that for .

 is the Laplace transform of  

If we put , we find after some algebraic manipulations

, 

Thus,  ~ gamma , in keeping with the determination, above, of the moment generating function for that distribution.

The characteristic function

Since this function differs from the moment generating function by the interchange of parameter  and , where  is the imaginary
unit, , the integral expressions make that change of parameter. The result is that Laplace transforms become Fourier
transforms. The theoretical and applied literature is even more extensive for the characteristic function.

Not only do we have the operational properties (T1) and (T2) and the result on moments as derivatives at the origin, but there is an
important expansion for the characteristic function.

An expansion theorem

If , then

, for  and  as 

We note one limit theorem which has very important consequences.

A fundamental limit theorem

Suppose  is a sequence of probability distribution functions and  is the corresponding sequence of
characteristic functions.

FX FX

MX X (t) = 0FX t < 0

X

(−s) = (t) dtMX ∫ ∞
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(−s)MX fX X

fX

Example  Use of Laplace transform13.1.8
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Example  Laplace transform and the density13.1.9
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If  is a distribution function such that  at every point continuity for , and  is the characteristic function for
, then

 

If  for all  and  is continuous at 0, then  is the characteristic function for distribution function  such that

 at each point of continuity of 

— □
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