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10.2: Function of Random Vectors
Introduction

The general mapping approach for a single random variable and the discrete alternative extends to functions of more than one
variable. It is convenient to consider the case of two random variables, considered jointly. Extensions to more than two random
variables are made similarly, although the details are more complicated.

The general approach extended to a pair
Consider a pair  having joint distribution on the plane. The approach is analogous to that for a single random variable with
distribution on the line.

To find .

1. Mapping approach. Simply find the amount of probability mass mapped into the set  on the plane by the random vector 
.

In the absolutely continuous case, calculate .
In the discrete case, identify those vector values  of  which are in the set  and add the associated
probabilities.

2. Discrete alternative. Consider each vector value  of . Select those which meet the defining conditions for  and
add the associated probabilities. This is the approach we use in the MATLAB calculations. It does not require that we describe
geometrically the region .

To find .  is real valued and  is a subset the real line.

1. Mapping approach. Determine the set  of all those  which are mapped into  by the function . Now

 iff  Hence 
 

Since these are the same event, they must have the same probability. Once  is identified on the plane, determine 
in the usual manner (see part a, above).

Discrete alternative. For each possible vector value  of , determine whether  meets the defining
condition for . Select those  which do and add the associated probabilities.

We illustrate the mapping approach in the absolutely continuous case. A key element in the approach is finding the set  on the
plane such that  iff . The desired probability is obtained by integrating  over .

Figure 10.2.1. Distribution for Example 10.2.15.
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The pair  has joint density  on the region bounded by , , , 

(see Figure 1). Determine . Here  and . Now 
 which is the region on the plane on or below the line . Examination of the

figure shows that for this region,  is different from zero on the triangle bounded by , , and . The desired
probability is

Suppose the pair  has joint density . Determine the density for

Solution

 where 

For any fixed , the region  is the portion of the plane on or below the line  (see Figure 10.2.2). Thus

Differentiating with the aid of the fundamental theorem of calculus, we get

This integral expresssion is known as a convolution integral.

Figure 10.2.2. Region  for .

Suppose the pair  has joint uniform density on the unit square .. Determine the density for 
.

Solution

 is the probability in the region . Now , where the complementary set  is
the set of points above the line. As Figure 3 shows, for , the part of  which has probability mass is the lower shaded
triangular region on the figure, which has area (and hence probability) /2. For  > 1, the complementary region  is the
upper shaded region. It has area . so that in this case, . Thus,

 for  and  for 

Differentiation shows that  has the symmetric triangular distribution on [0, 2], since

Example 10.2.15 . A numerical example

{X,Y } (t, u) = (t+2u)fXY

6

37
t = 0 t = 2 u = 0 u = max{1, t}

P (Y ≤ X) = P (X−Y ≥ 0) g(t, u) = t−u M = [0, ∞)

Q = {(t, u) : t−u ≥ 0} = {(t, u) : u ≤ t} u = t

fXY t = 2 u = 0 u = t

P (Y ≤ X) = (t+2u)du dt = 32/37 ≈ 0.8649∫ 2

0
∫ t

0

6

37

Example 10.2.16 X Y . The density for the sum +

{X,Y } fXY

Z = X+Y

(v) = P (X+Y ≤ v) = P ((X,Y ) ∈ )FZ Qv = {(t, u) : t+u ≤ v} = {(t, u) : u ≤ v− t}Qv

v Qv u = v− t

(v) = ∫ = (t, u)du dtFZ ∫
Q
fXY ∫ ∞

−∞
∫ v−t

−∞
fXY

(v) = (t, v− t) dtfZ ∫ ∞

∞
fXY

Qv X+Y ≤ v

Example 10.2.17 . Sum of joint uniform random variables

{X,Y } 0 ≤ t ≤ 1, 0 ≤ u ≤ 1

Z = X+Y

(v)FZ : u ≤ v− tQv ( ) = 1 − ( )PXY Qv PXY Qc
v Qc

v

v≤ 1 Qv

v2 v Qc
v

(2 −v /2)2 ( ) = 1 −(2 −v /2PXY Qv )2

(v) =FZ

v2

2
0 ≤ v≤ 1 (v) = 1 −FZ

(2 −v)2

2
1 ≤ v≤ 2

Z
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 for  and  for 

With the use of indicator functions, these may be combined into a single expression

Figure 10.2.3. Geometry for sum of joint uniform random variables.

ALTERNATE Solution

Since , we have . Now  iff , so that

Integration with respect to  gives the result above.

Independence of functions of independent random variables

Suppose  is an independent pair. Let . Since

 and 

the pair  is independent for each pair . Thus, the pair  is independent.

If  is an independent pair and , , then the pair  is independent. However, if  and
, then in general  is not independent. This is illustrated for simple random variables with the aid of the m-

procedure jointzw at the end of the next section.

Suppose  is an independent pair with simple approximations  and  as described in Distribution Approximations.

 and 

As functions of  and , respectively, the pair  is independent. Also each pair  is independent.

Use of MATLAB on pairs of simple random variables
In the single-variable case, we use array operations on the values of  to determine a matrix of values of . In the two-variable
case, we must use array operations on the calculating matrices  and  to obtain a matrix  whose elements are . To obtain
the distribution for , we may use the m-function csort on  and the joint probability matrix . A first step, then, is
the use of jcalc or icalc to set up the joint distribution and the calculating matrices. This is illustrated in the following example.

% file jdemo3.m 

% data for joint simple distribution 

X = [-4 -2 0 1 3]; 

Y = [0 1 2 4]; 

P = [0.0132    0.0198    0.0297    0.0209    0.0264; 

(v) = vfZ 0 ≤ v≤ 1 (v) = (2 −v)fZ 1 ≤ v≤ 2

(v) = (v)v+ (2 −v)fZ I[0,1] I(1,2]

(t, u) = (t) (u)fXY I[0,1] I[0,1] (t, v− t) = (t) (v− t)fXY I[0,1] I[0,1] 0 ≤ v− t ≤ 1 v−1 ≤ t ≤ v

(t, v− t) = (v) (t) + (v) (t)fXY I[0,1] I[0,v] I(1,2] I[v−1,1]

t

{X,Y } Z = g(X),W = h(Y )

(M) = [ (M)]Z−1 X−1 g−1 (N) = [ (N)]W −1 Y −1 h−1

{ (M), (N)}Z−1 W −1 {M ,N} {Z,W}

{X,Y } Z = g(X) W = g(X) {Z,W} Z = g(X,Y )

W = h(X,Y ) {Z,W}

Example 10.2.18 . Independence of simple approximations to an independent pair

{X,Y } Xs Ys

= = (X)Xs ∑n
i=1 tiIEi

∑n
i=1 tiIMi

= = (Y )Ys ∑m
j=1 ujIFj

∑m
j=1 ujINj

X Y { , }Xs Ys { (X), (Y )}IMi
INj

X g(X)

t u G g( , )ti uj
Z = g(X,Y ) G P

Example 10.2.19 .
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     0.0372    0.0558    0.0837    0.0589    0.0744; 

     0.0516    0.0774    0.1161    0.0817    0.1032; 

     0.0180    0.0270    0.0405    0.0285    0.0360]; 

jdemo3                % Call for data 

jcalc                 % Set up of calculating matrices t, u. 

Enter JOINT PROBABILITIES (as on the plane)  P 

Enter row matrix of VALUES of X  X 

Enter row matrix of VALUES of Y  Y 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

G = t.^2 -3*u;        % Formation of G = [g(ti,uj)] 

M = G >= 1;           % Calculation using the XY distribution 

PM = total(M.*P)      % Alternately, use total((G>=1).*P) 

PM =  0.4665 

[Z,PZ] = csort(G,P); 

PM = (Z>=1)*PZ'     % Calculation using the Z distribution 

PM =  0.4665 

disp([Z;PZ]')         % Display of the Z distribution 

  -12.0000    0.0297 

  -11.0000    0.0209 

   -8.0000    0.0198 

   -6.0000    0.0837 

   -5.0000    0.0589 

   -3.0000    0.1425 

   -2.0000    0.1375 

         0    0.0405 

    1.0000    0.1059 

    3.0000    0.0744 

    4.0000    0.0402 

    6.0000    0.1032 

    9.0000    0.0360 

   10.0000    0.0372 

   13.0000    0.0516 

   16.0000    0.0180

We extend the example above by considering a function  which has a composite definition.

Let

 Determine the distribution for 

H = t.*(t+u>=1) + (t.^2 + u.^2).*(t+u<1);  % Specification of h(t,u) 

  

  

  

[W,PW] = csort(H,P);                       % Distribution for W = h(X,Y) 

disp([W;PW]') 

W = h(X,Y )

Example 10.2.20 . Continuation of example 10.2.19

W = {
X

+X2 Y 2

 for X+Y ≥ 1
 for X+Y < 1

W
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   -2.0000    0.0198 

         0    0.2700 

    1.0000    0.1900 

    3.0000    0.2400 

    4.0000    0.0270 

    5.0000    0.0774 

    8.0000    0.0558 

   16.0000    0.0180 

   17.0000    0.0516 

   20.0000    0.0372 

   32.0000    0.0132 

ddbn                                        % Plot of distribution function 

Enter row matrix of values  W 

Enter row matrix of probabilities  PW 

print                                       % See Figure 10.2.4 

Figure 10.2.4. Distribution for random variable  in Example 10.2.20.

Joint distributions for two functions of 

In previous treatments, we use csort to obtain the marginal distribution for a single function . It is often desirable to
have the joint distribution for a pair  and . As special cases, we may have  or . Suppose

 has values [    ] and  has calues [    ]

The joint distribution requires the probability of each pair, . Each such pair of values corresponds to a set of
pairs of  and  values. To determine the joint probability matrix  for  arranged as on the plane, we assign to each
position  the probability , with values of  increasing upward. Each pair of ( ) values corresponds
to one or more pairs of ( ) values. If we select and add the probabilities corresponding to the latter pairs, we have 

. This may be accomplished as follows:

Set up calculation matrices  and  as with jcalc. 
Use array arithmetic to determine the matrices of values  and . 
Use csort to determine the  and  value matrices and the  and  marginal probability matrices. 
For each pair , use the MATLAB function find to determine the positions a for which

(H==W(i))&(G==Z(j))

Assign to the ( ) position in the joint probability matrix  for ( ) the probability

PZW(i, j) = total (P(a))

W

(X,Y )

Z = g(X,Y )

Z = g(X,Y ) W = h(X,Y ) Z = X W = Y

Z z1 z2 ⋅ ⋅ ⋅ zc W w1 w2 ⋅ ⋅ ⋅ wc

P (W = ,Z = )wi zj
X Y PZW (Z,W )

(i, j) P (W = ,Z = )wi zj W W ,Z

Y ,X

P (W = ,Z = )wi zj

t u

G= [g(t, u)] H = [h(t, u)]

Z W PZ PW

( , )wi zj

i, j PZW Z,W
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We first examine the basic calculations, which are then implemented in the m-procedure jointzw.

% file jdemo7.m 

P = [0.061  0.030  0.060  0.027  0.009; 

       0.015  0.001  0.048  0.058  0.013; 

       0.040  0.054  0.012  0.004  0.013; 

       0.032  0.029  0.026  0.023  0.039; 

       0.058  0.040  0.061  0.053  0.018; 

       0.050  0.052  0.060  0.001  0.013]; 

X = -2:2; 

Y = -2:3; 

jdemo7                      % Call for data in jdemo7.m 

jcalc                       % Used to set up calculation matrices t, u 

- - - - - - - - - - 

H = u.^2                    % Matrix of values for W = h(X,Y) 

H = 

     9     9     9     9     9 

     4     4     4     4     4 

     1     1     1     1     1 

     0     0     0     0     0 

     1     1     1     1     1 

     4     4     4     4     4 

G = abs(t)                  % Matrix of values for Z = g(X,Y) 

  

G = 

     2     1     0     1     2 

     2     1     0     1     2 

     2     1     0     1     2 

     2     1     0     1     2 

     2     1     0     1     2 

     2     1     0     1     2 

[W,PW] = csort(H,P)         % Determination of marginal for W 

W =     0     1     4     9 

PW =    0.1490    0.3530    0.3110    0.1870 

[Z,PZ] = csort(G,P)         % Determination of marginal for Z 

Z =     0     1     2 

PZ =    0.2670    0.3720    0.3610 

r = W(3)                    % Third value for W 

r =   4 

s = Z(2)                    % Second value for Z 

s =   1 

To determine , we need to determine the ( ) positions for which this pair of ( ) values is taken on. By
inspection, we find these to be (2,2), (6,2), (2,4), and (6,4). Then  is the total probability at these positions.
This is 0.001 + 0.052 + 0.058 + 0.001 = 0.112. We put this probability in the joint probability matrix  at the 

 position. This may be achieved by MATLAB with the following operations.

Example 10.2.21 . Illustration of the basic joint calculations

P (W = 4,Z = 1) t, u W ,Z

P (W = 4,Z = 1)

PZW

W = 4,Z = 1
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[i,j] = find((H==W(3))&(G==Z(2)));  % Location of (t,u) positions 

disp([i j])                         % Optional display of positions 

     2     2 

     6     2 

     2     4 

     6     4 

a = find((H==W(3))&(G==Z(2)));      % Location in more convenient form 

P0 = zeros(size(P));                % Setup of zero matrix 

P0(a) = P(a)                        % Display of designated probabilities in P 

P0 = 

         0         0         0         0         0 

         0    0.0010         0    0.0580         0 

         0         0         0         0         0 

         0         0         0         0         0 

         0         0         0         0         0 

         0    0.0520         0    0.0010         0 

PZW = zeros(length(W),length(Z))    % Initialization of PZW matrix 

PZW(3,2) = total(P(a))              % Assignment to PZW matrix with 

PZW =    0         0         0      % W increasing downward 

         0         0         0 

         0    0.1120         0 

         0         0         0 

PZW = flipud(PZW)                   % Assignment with W increasing upward 

PZW = 

         0         0         0 

         0    0.1120         0 

         0         0         0 

         0         0         0 

The procedure jointzw carries out this operation for each possible pair of  and  values (with the flipud  operation
coming only after all individual assignments are made).

% file jdemo3.m   data for joint simple distribution 

X = [-4 -2 0 1 3]; 

Y = [0 1 2 4]; 

P = [0.0132    0.0198    0.0297    0.0209    0.0264; 

     0.0372    0.0558    0.0837    0.0589    0.0744; 

     0.0516    0.0774    0.1161    0.0817    0.1032; 

     0.0180    0.0270    0.0405    0.0285    0.0360]; 

jdemo3          % Call for data 

jointzw         % Call for m-program 

Enter joint prob for (X,Y): P 

Enter values for X: X 

Enter values for Y: Y 

W Z

example 10.2.22. joint distribution for z = g(x,y) = ||x| - y| and w = h(x, y) = |xy|
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Enter expression for g(t,u): abs(abs(t)-u) 

Enter expression for h(t,u): abs(t.*u) 

Use array operations on Z, W, PZ, PW, v, w, PZW 

disp(PZW) 

    0.0132         0         0         0         0 

         0    0.0264         0         0         0 

         0         0    0.0570         0         0 

         0    0.0744         0         0         0 

    0.0558         0         0    0.0725         0 

         0         0    0.1032         0         0 

         0    0.1363         0         0         0 

    0.0817         0         0         0         0 

    0.0405    0.1446    0.1107    0.0360    0.0477 

EZ = total(v.*PZW) 

EZ =   1.4398 

  

ez = Z*PZ'       % Alternate, using marginal dbn 

ez =   1.4398 

EW = total(w.*PZW) 

EW =   2.6075 

ew = W*PW'       % Alternate, using marginal dbn 

ew =   2.6075 

M = v > w;           % P(Z>W) 

PM = total(M.*PZW) 

PM =   0.3390

At noted in the previous section, if  is an independent pair and ,

, then the pair { } is independent. However, if  and

, then in general the pair { } is not independent. We may illustrate this with the aid of the m-procedure jointzw

jdemo3 

itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is independent           % The pair {X,Y} is independent 

jointzw 

Enter joint prob for (X,Y): P 

Enter values for X: X 

Enter values for Y: Y 

Enter expression for g(t,u): t.^2 - 3*t  % Z = g(X) 

Enter expression for h(t,u): abs(u) + 3  % W = h(Y) 

Use array operations on Z, W, PZ, PW, v, w, PZW 

itest 

Enter matrix of joint probabilities  PZW 

The pair {X,Y} is independent           % The pair {g(X),h(Y)} is independent 

{X,Y } Z = g(X)

W = h(Y ) Z,W Z = g(X,Y )

W = h(X,Y ) Z,W

Example 10.2.23 . Functions of independent random variables
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jdemo3                                  % Refresh data 

jointzw 

Enter joint prob for (X,Y): P 

Enter values for X: X 

Enter values for Y: Y 

Enter expression for g(t,u): t+u         % Z = g(X,Y) 

Enter expression for h(t,u): t.*u        % W = h(X,Y) 

Use array operations on Z, W, PZ, PW, v, w, PZW 

itest 

Enter matrix of joint probabilities  PZW 

The pair {X,Y} is NOT independent  % The pair {g(X,Y),h(X,Y)} is not indep 

To see where the product rule fails, call for D  % Fails for all pairs

Absolutely continuous case: analysis and approximation

As in the analysis Joint Distributions, we may set up a simple approximation to the joint distribution and proceed as for simple
random variables. In this section, we solve several examples analytically, then obtain simple approximations.

Suppose the pair  has joint density . Let . Determine  such that .

Figure 10.2.5

Solution

Example 10.2.24 . Distribution for a product

{X,Y } fXY Z = XY Qv P (Z ≤ v) = P ((X,Y ) ∈ )Qv

= {(t, u) : tu ≤ v} = {(t, u) : t > 0, u ≤ v/t}⋁{(t, u) : t < 0, u ≥ v/t}}Qv
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Figure 10.2.6. Product of  with uniform joint distribution on the unit square.

 ~ uniform on unit square

. Then (see Figure 10.2.6)

 where 

Integration shows

 so that , 

For , .

% Note that although f = 1, it must be expressed in terms of t, u. 

tuappr 

Enter matrix [a b] of X-range endpoints  [0 1] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  200 

Enter number of Y approximation points  200 

Enter expression for joint density  (u>=0)&(t>=0) 

Use array operations on X, Y, PX, PY, t, u, and P 

G = t.*u; 

[Z,PZ] = csort(G,P); 

p = (Z<=0.5)*PZ' 

p =  0.8465                 % Theoretical value 0.8466, above

The pair  has joint density  on the region bounded by ,  and (see

Figure 7). Let . Determine .

X,Y

Example 10.2.25 .

{X,Y }

(t, u) = 1fXY

P (XY ≤ v) = ∫ 1du dt∫
Qv

= {(t, u) : 0 ≤ t ≤ 1, 0 ≤ u ≤ min {1, v/t}}Qv

(v) = P (XY ≤ v) = v(1 −ln (v))FZ (v) = −ln (v) = ln (1/v)fZ 0 < v≤ 1

v= 0.5 (0.5) = 0.8466FZ

Example 10.2.26 . Continuation of example 5 from "Random Vectors and Joint Distributions"

{X,Y } (t, u) = (t+2u)fXY

6

37
t = 0 t = 2 u = max {1, t}

Z = XY P (Z ≤ 1)
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Figure 10.2.7. Area of integration for Example 10.2.26 .

Analytic Solution

 where 

Reference to Figure 10.2.7 shows that

APPROXIMATE Solution

tuappr 

Enter matrix [a b] of X-range endpoints  [0 2] 

Enter matrix [c d] of Y-range endpoints  [0 2] 

Enter number of X approximation points  300 

Enter number of Y approximation points  300 

Enter expression for joint density  (6/37)*(t + 2*u).*(u<=max(t,1)) 

Use array operations on X, Y, PX, PY, t, u, and P 

Q = t.*u<=1; 

PQ = total(Q.*P) 

PQ =  0.4853             % Theoretical value 0.4865, above 

G = t.*u;                % Alternate, using the distribution for Z 

[Z,PZ] = csort(G,P); 

PZ1 = (Z<=1)*PZ' 

PZ1 = 0.4853

In the following example, the function  has a compound definition. That is, it has a different rule for different parts of the plane.

P (Z ≤ 1) = P ((X,Y ) ∈ Q) Q = {(t, u) : u ≤ 1/t}

P ((X,Y ) ∈ Q = (t+2u)du dt+ (t+2u)du dt = 9/37 +9/37 = 18/37 ≈ 0.4865
6

37
∫ 1

0
∫ 1

0

6

37
∫ 2

1
∫ 1/t

0

g
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Figure 10.2.8. Regions for  in Example 10.2.27.

The pair  has joint density  on the unit square , .

for . Determine .

Analytical Solution

where  and . Reference to Figure 10.2.8 shows that this
is the part of the unit square for which . We may break up the integral into three parts. Let 

 and . Then

APPROXIMATE Solution

tuappr 

Enter matrix [a b] of X-range endpoints  [0 1] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  200 

Enter number of Y approximation points  200 

Enter expression for joint density  (2/3)*(t + 2*u) 

Use array operations on X, Y, PX, PY, t, u, and P 

Q = u <= t.^2; 

G = u.*Q + (t + u).*(1-Q); 

prob = total((G<=1/2).*P) 

prob =  0.2328          % Theoretical is 0.2322, above

The setup of the integrals involves careful attention to the geometry of the system. Once set up, the evaluation is elementary but
tedious. On the other hand, the approximation proceeds in a straightforward manner from the normal description of the problem.
The numerical result compares quite closely with the theoretical value and accuracy could be improved by taking more subdivision
points.

P (Z ≤ 1/2)

Example 10.2.27 . A compound function

{X,Y } (t, u) = (t+2u)fXY

2

3
0 ≤ t ≤ 1 0 ≤ u ≤ 1

Z = { = (X,Y )Y + (X,Y )(X+Y )
X

X+Y

for  −Y ≥ 0X2

for  −Y < 0X2 IQ IQc

Q = {(t, u) : u ≤ }t2 P (Z <= 0.5)

P (Z ≤ 1/2) = P (Y ≤ 1/2,Y ≤ ) +P (X+Y ≤ 1/2,Y > ) = P ((X,Y ) ∈ ⋁ )X2 X2 QA QB

= {(t, u) : u ≤ 1/2, u ≤ }QA t2 = {(t, u) : t+u ≤ 1/2, u > }QB t2

u ≤ min (max (1/2 − t, ), 1/2)t2

1/2 − =t1 t2
1 = 1/2t2

2

P (Z ≤ 1/2) = (t+2u)du dt+ (t+2u)du dt+ (t+2u)du dt = 0.2322
2

3
∫ t1

0 ∫ 1/2−t

0

2

3
∫ t2

t1
∫ t2

0

2

3
∫ 1
t2
∫ 1/2

0
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