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6.1: Random Variables and Probabilities
Probability associates with an event a number which indicates the likelihood of the occurrence of that event on any trial. An event
is modeled as the set of those possible outcomes of an experiment which satisfy a property or proposition characterizing the event.

Often, each outcome is characterized by a number. The experiment is performed. If the outcome is observed as a physical quantity,
the size of that quantity (in prescribed units) is the entity actually observed. In many nonnumerical cases, it is convenient to assign
a number to each outcome. For example, in a coin flipping experiment, a “head” may be represented by a 1 and a “tail” by a 0. In a
Bernoulli trial, a success may be represented by a 1 and a failure by a 0. In a sequence of trials, we may be interested in the number
of successes in a sequence of  component trials. One could assign a distinct number to each card in a deck of playing cards.
Observations of the result of selecting a card could be recorded in terms of individual numbers. In each case, the associated number
becomes a property of the outcome.

Random variables as functions
We consider in this chapter real random variables (i.e., real-valued random variables). In the chapter on Random Vectors and Joint
Distributions, we extend the notion to vector-valued random quantites. The fundamental idea of a real random variable is the
assignment of a real number to each elementary outcome  in the basic space . Such an assignment amounts to determining a
function , whose domain is  and whose range is a subset of the real line R. Recall that a real-valued function on a domain (say
an interval  on the real line) is characterized by the assignment of a real number  to each element  (argument) in the domain.
For a real-valued function of a real variable, it is often possible to write a formula or otherwise state a rule describing the
assignment of the value to each argument. Except in special cases, we cannot write a formula for a random variable . However,
random variables share some important general properties of functions which play an essential role in determining their usefulness.

Mappings and inverse mappings

There are various ways of characterizing a function. Probably the most useful for our purposes is as a mapping from the domain 
to the codomain R. We find the mapping diagram of Figure 1 extremely useful in visualizing the essential patterns. Random
variable , as a mapping from basic space  to the real line R, assigns to each element  a value . The object point  is
mapped, or carried, into the image point . Each  is mapped into exactly one , although several  may have the same image
point.

Figure 6.1.1. The basic mapping diagram .

Associated with a function  as a mapping are the inverse mapping  and the inverse images it produces. Let  be a set of
numbers on the real line. By the inverse image of  under the mapping , we mean the set of all those  which are mapped
into  by  (see Figure 2). If  does not take a value in , the inverse image is the empty set (impossible event). If  includes
the range of , (the set of all possible values of ), the inverse image is the entire basic space . Formally we write

Now we assume the set , a subset of , is an event for each . A detailed examination of that assertion is a topic in
measure theory. Fortunately, the results of measure theory ensure that we may make the assumption for any  and any subset  of
the real line likely to be encountered in practice. The set  is the event that  takes a value in . As an event, it may be
assigned a probability.
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Figure 6.1.2. E is the inverse image .

1.  where  is an event with probability . Now  takes on only two values, 0 and 1. The event that  take on the value 1
is the set

 
 

so that . This rather ungainly notation is shortened to . Similarly, . Consider any set
. If neither 1 nor 0 is in , then  If 0 is in , but 1 is not, then  If 1 is in , but 0 is not,

then  If both 1 and 0 are in , then  In this case the class of all events  consists of
event , its complement , the impossible event , and the sure event .

2. Consider a sequence of  Bernoulli trials, with probability  of success. Let  be the random variable whose value is the
number of successes in the sequence of  component trials. Then, according to the analysis in the section "Bernoulli Trials
and the Binomial Distribution"

 

 

Before considering further examples, we note a general property of inverse images. We state it in terms of a random variable,
which maps  to the real line (see Figure 3).

Preservation of set operations

Let  be a mapping from  to the real line R. If  are sets of real numbers, with respective inverse images , , then

,  and 

Examination of simple graphical examples exhibits the plausibility of these patterns. Formal proofs amount to careful reading of
the notation. Central to the structure are the facts that each element ω is mapped into only one image point t and that the inverse
image of  is the set of all those  which are mapped into image points in .

Figure 6.1.3. Preservation of set operations by inverse images.

An easy, but important, consequence of the general patterns is that the inverse images of disjoint  are also disjoint. This
implies that the inverse of a disjoint union of  is a disjoint union of the separate inverse images.

Consider, again, the random variable  which counts the number of successes in a sequence of  Bernoulli trials. Let 
and . Suppose we want to determine the probability . Let , which we usually
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shorten to . Now the  form a partition, since we cannot have  and   (i.e., for any ,
we cannot have two values for ). Now,

since  takes on a value greater than 2 but no greater than 8 iff it takes one of the integer values from 3 to 8. By the additivity of
probability,

Mass transfer and induced probability distribution

Because of the abstract nature of the basic space and the class of events, we are limited in the kinds of calculations that can be
performed meaningfully with the probabilities on the basic space. We represent probability as mass distributed on the basic space
and visualize this with the aid of general Venn diagrams and minterm maps. We now think of the mapping from  to R as a
producing a point-by-point transfer of the probability mass to the real line. This may be done as follows:

To any set  on the real line assign probability mass 

It is apparent that  and (R) . And because of the preservation of set operations by the inverse mapping

This means that  has the properties of a probability measure defined on the subsets of the real line. Some results of measure
theory show that this probability is defined uniquely on a class of subsets of R that includes any set normally encountered in
applications. We have achieved a point-by-point transfer of the probability apparatus to the real line in such a manner that we can
make calculations about the random variable . We call  the probability measure induced by X. Its importance lies in the fact
that . Thus, to determine the likelihood that random quantity X will take on a value in set M, we determine
how much induced probability mass is in the set M. This transfer produces what is called the probability distribution for X. In the
chapter "Distribution and Density Functions", we consider useful ways to describe the probability distribution induced by a random
variable. We turn first to a special class of random variables.

Simple random variables

We consider, in some detail, random variables which have only a finite set of possible values. These are called simple random
variables. Thus the term “simple” is used in a special, technical sense. The importance of simple random variables rests on two
facts. For one thing, in practice we can distinguish only a finite set of possible values for any random variable. In addition, any
random variable may be approximated as closely as pleased by a simple random variable. When the structure and properties of
simple random variables have been examined, we turn to more general cases. Many properties of simple random variables extend
to the general case via the approximation procedure.

Representation with the aid of indicator functions

In order to deal with simple random variables clearly and precisely, we must find suitable ways to express them analytically. We do
this with the aid of indicator functions. Three basic forms of representation are encountered. These are not mutually exclusive
representatons.

Standard or canonical form, which displays the possible values and the corresponding events. If X takes on distinct values

 with respective probabilities 

and if , for , then  is a partition (i.e., on any trial, exactly one of these events occurs).
We call this the partition determined by (or, generated by) X. We may write

If , then , so that  and all the other indicator functions have value zero. The summation expression
thus picks out the correct value . This is true for any , so the expression represents for all . The distinct set  of
the values and the corresponding probabilities  constitute the distribution for X. Probability calculations for X are
made in terms of its distribution. One of the advantages of the canonical form is that it displays the range (set of values), and if the
probabilities  are known, the distribution is determined. Note that in canonical form, if one of the  has value zero,
we include that term. For some probability distributions it may be that  for one or more of the . In that case, we call
these values null values, for they can only occur with probability zero, and hence are practically impossible. In the general
formulation, we include possible null values, since they do not affect any probabilitiy calculations.
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As the analysis of Bernoulli trials and the binomial distribution shows (see Section 4.8), canonical form must be

 with , 

For many purposes, both theoretical and practical, canonical form is desirable. For one thing, it displays directly the range (i.e., set
of values) of the random variable. The distribution consists of the set of values  paired with the corresponding set
of probabilities , where .

Simple random variable X may be represented by a primitive form

, where  is a partition

Remarks

If  is a disjoint class, but , we may append the event  and assign value zero
to it.
We say a primitive form, since the representation is not unique. Any of the C  may be partitioned, with the same value 
associated with each subset formed.
Canonical form is a special primitive form. Canonical form is unique, and in many ways normative.

A wheel is spun yielding, on a equally likely basis, the integers 1 through 10. Let  be the event the wheel stops at , 
. Each . If the numbers 1, 4, or 7 turn up, the player loses ten dollars; if the numbers 2, 5, or 8 turn

up, the player gains nothing; if the numbers 3, 6, or 9 turn up, the player gains ten dollars; if the number 10 turns up, the
player loses one dollar. The random variable expressing the results may be expressed in primitive form as

A store has eight items for sale. The prices are $3.50, $5.00, $3.50, $7.50, $5.00, $5.00, $3.50, and $7.50, respectively. A
customer comes in. She purchases one of the items with probabilities 0.10, 0.15, 0.15, 0.20, 0.10 0.05, 0.10 0.15. The

random variable expressing the amount of her purchase may be written

We commonly have X represented in affine form, in which the random variable is represented as an affine combination of indicator
functions (i.e., a linear combination of the indicator functions plus a constant, which may be zero).

In this form, the class  is not necessarily mutually exclusive, and the coefficients do not display directly the set
of possible values. In fact, the  often form an independent class. Remark. Any primitive form is a special affine form in which 

 and the  form a partition.

Consider, again, the random variable  which counts the number of successes in a sequence of  Bernoulli trials. If  is the
event of a success on the th trial, then one natural way to express the count is

, with  

This is affine form, with  and  for . In this case, the  cannot form a mutually exclusive class, since
they form an independent class.

Events generated by a simple random variable: canonical form 
We may characterize the class of all inverse images formed by a simple random  in terms of the partition it determines. Consider
any set  of real numbers. If  in the range of  is in , then every point  maps into , hence into . If the set  is the
set of indices  such that , then

Only those points  in  map into .

Example  Successes in Bernoulli trials6.1.3
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Hence, the class of events (i.e., inverse images) determined by  consists of the impossible event , the sure event , and the
union of any subclass of the  in the partition determined by .

Suppose simple random variable  is represented in canonical form by

Then the class  is the partition determined by  and the range of  is .

1. If  is the interval [-2, 1], the the values -2, -1, and 0 are in  and .
2. If  is the set (-2, -1]  [1, 5], then the values -1, 3 are in  and .
3. The event , where . Since values -2, -1, 0 are in , the event 

.

Determination of the distribution

Determining the partition generated by a simple random variable amounts to determining the canonical form. The distribution is
then completed by determining the probabilities of each event .

From a primitive form

Before writing down the general pattern, we consider an illustrative example.

Suppose one item is selected at random from a group of ten items. The values (in dollars) and respective probabilities are

 

2.00 1.50 2.00 2.50 1.50 1.50 1.00 2.50 2.00 1.50

0.08 0.11 0.07 0.15 0.10 0.09 0.14 0.08 0.08 0.10

By inspection, we find four distinct values: , , , and . The value 1.00 is taken on for 
, so that  and . Value 1.50 is taken on for  so that

 and 

Similarly

 and 

The distribution for X is thus

 

1.00 1.50 2.00 2.50

0.14 0.40 0.23 0.23

The general procedure may be formulated as follows:

If , we identify the set of distinct values in the set . Suppose these are . For
any possible value  in the range, identify the index set  of those  such that  Then the terms

, where ,

and

Examination of this procedure shows that there are two phases:

Select and sort the distinct values 

X ∅ Ω
Ai X

Example  Events determined by a simple random variable6.1.6
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Add all probabilities associated with each value  to determine 

We use the m-function csort which performs these two operations (see Example 4 from "Minterms and MATLAB Calculations").

>> C = [2.00 1.50 2.00 2.50 1.50 1.50 1.00 2.50 2.00 1.50];  % Matrix of c_j 

>> pc = [0.08 0.11 0.07 0.15 0.10 0.09 0.14 0.08 0.08 0.10]; % Matrix of P(C_j) 

>> [X,PX] = csort(C,pc);     % The sorting and consolidating operation 

>> disp([X;PX]')             % Display of results 

    1.0000    0.1400 

    1.5000    0.4000 

    2.0000    0.2300 

    2.5000    0.2300 

For a problem this small, use of a tool such as csort is not really needed. But in many problems with large sets of data the m-
function csort is very useful.

From affine form

Suppose  is in affine form,

We determine a particular primitive form by determining the value of  on each minterm generated by the class 
. We do this in a systematic way by utilizing minterm vectors and properties of indicator functions.

 is constant on each minterm generated by the class  since, as noted in the treatment of the minterm expansion,
each indicator function  is constant on each minterm. We determine the value  of  on each minterm . This describes  in
a special primitive form

, with , 

We apply the csort operation to the matrices of values and minterm probabilities to determine the distribution for .

We illustrate with a simple example. Extension to the general case should be quite evident. First, we do the problem “by hand” in
tabular form. Then we use the m-procedures to carry out the desired operations.

A mail order house is featuring three items (limit one of each kind per customer). Let

 = the event the customer orders item 1, at a price of 10 dollars.
 = the event the customer orders item 2, at a price of 18 dollars.
 = the event the customer orders item 3, at a price of 10 dollars.

There is a mailing charge of 3 dollars per order.

We suppose  is independent with probabilities 0.6, 0.3, 0.5, respectively. Let  be the amount a customer who
orders the special items spends on them plus mailing cost. Then, in affine form,

We seek first the primitive form, using the minterm probabilities, which may calculated in this case by using the m-function
minprob.

1. To obtain the value of  on each minterm we
Multiply the minterm vector for each generating event by the coefficient for that event
Sum the values on each minterm and add the constant

To complete the table, list the corresponding minterm probabilities.

ti P (X = )ti

Example  Use of csort on Example 6.1.76.1.8
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10 18 10 c

0 0 0 0 3 3 0.14

1 0 0 10 3 13 0.14

2 0 18 0 3 21 0.06

3 0 18 10 3 31 0.06

4 10 0 0 3 13 0.21

5 10 0 10 3 23 0.21

6 10 18 0 3 31 0.09

7 10 18 10 3 41 0.09

We then sort on the , the values on the various , to expose more clearly the primitive form for .

“Primitive form” Values

0 3 0.14

1 13 0.14

4 13 0.21

2 21 0.06

5 23 0.21

3 31 0.06

6 31 0.09

7 41 0.09

The primitive form of  is thus

\(X = 3I_{M_0} + 12I_{M_1} + 13I_{M_4} + 21I_{M_2} + 23I_{M_5} + 31I_{M_3} + 31I_{M_6} + 41I_{M_7}

We note that the value 13 is taken on on minterms  and . The probability  has the value 13 is thus .
Similarly,  has value 31 on minterms  and .

To complete the process of determining the distribution, we list the sorted values and consolidate by adding together the
probabilities of the minterms on which each value is taken, as follows:

1 3 0.14

2 13 0.14 + 0.21 = 0.35

3 21 0.06

4 23 0.21

5 31 0.06 + 0.09 = 0.15

6 41 0.09

The results may be put in a matrix  of possible values and a corresponding matrix PX of probabilities that  takes on
each of these values. Examination of the table shows that

 [3 13 21 23 31 41] and  [0.14 0.35 0.06 0.21 0.15 0.09]

Matrices  and PX describe the distribution for .

i IE1 IE2 IE3 s − i pmi

si Mi X

i si pmi

X

M1 M4 X p(1) +p(4)
X M3 M6

k tk pk

X X
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X X
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An m-procedure for determining the distribution from affine form

We now consider suitable MATLAB steps in determining the distribution from affine form, then incorporate these in the m-
procedure canonic for carrying out the transformation. We start with the random variable in affine form, and suppose we have
available, or can calculate, the minterm probabilities.

The procedure uses mintable to set the basic minterm vector patterns, then uses a matrix of coefficients, including the
constant term (set to zero if absent), to obtain the values on each minterm. The minterm probabilities are included in a row
matrix. 
Having obtained the values on each minterm, the procedure performs the desired consolidation by using the m-function csort.

>> disp([CM;const;s;pm]')            % Display of primitive form 

     0     0     0   3    3    0.14  % MATLAB gives four decimals 

     0     0    10   3   13    0.14 

     0    18     0   3   21    0.06 

     0    18    10   3   31    0.06 

    10     0     0   3   13    0.21 

    10     0    10   3   23    0.21 

>> c = [10 18 10 3];                 % Constant term is listed last 

>> pm = minprob(0.1*[6 3 5]); 

>> M  = mintable(3)                  % Minterm vector pattern 

M = 

     0     0     0     0     1     1     1     1 

     0     0     1     1     0     0     1     1 

     0     1     0     1     0     1     0     1 

% - - - - - - - - - - - - - -        % An approach mimicking ``hand'' calculation 

>> C = colcopy(c(1:3),8)             % Coefficients in position 

C = 

    10    10    10    10    10    10    10    10 

    18    18    18    18    18    18    18    18 

    10    10    10    10    10    10    10    10 

>> CM = C.*M                         % Minterm vector values 

CM = 

     0     0     0     0    10    10    10    10 

     0     0    18    18     0     0    18    18 

     0    10     0    10     0    10     0    10 

>> cM = sum(CM) + c(4)               % Values on minterms 

cM = 

     3    13    21    31    13    23    31    41 

% - - - - - - - - - - - -  -         % Practical MATLAB procedure 

>> s = c(1:3)*M + c(4) 

s = 

     3    13    21    31    13    23    31    41 

>> pm = 0.14  0.14  0.06  0.06  0.21  0.21  0.09  0.09   % Extra zeros deleted 

>> const = c(4)*ones(1,8);} 

Example  Steps in determining the distribution for X in Example 6.1.96.1.10
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    10    18     0   3   31    0.09 

    10    18    10   3   41    0.09 

>> [X,PX] = csort(s,pm);              % Sorting on s, consolidation of  pm 

>> disp([X;PX]')                      % Display of final result 

     3    0.14 

    13    0.35 

    21    0.06 

    23    0.21 

    31    0.15 

    41    0.09

The two basic steps are combined in the m-procedure canonic, which we use to solve the previous problem.

>> c = [10 18 10 3]; % Note that the constant term 3 must be included last 

>> pm = minprob([0.6 0.3 0.5]); 

>> canonic 

 Enter row vector of coefficients  c 

 Enter row vector of minterm probabilities  pm 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

>> disp(XDBN) 

    3.0000    0.1400 

   13.0000    0.3500 

   21.0000    0.0600 

   23.0000    0.2100 

   31.0000    0.1500 

   41.0000    0.0900

With the distribution available in the matrices  (set of values) and PX (set of probabilities), we may calculate a wide variety of
quantities associated with the random variable.

We use two key devices:

1. Use relational and logical operations on the matrix of values  to determine a matrix  which has ones for those values which
meet a prescribed condition. : PM = M*PX'

2. Determine  by using array operations on matrix . We have two alternatives:
a. Use the matrix , which has values  for each possible value  for , or,
b. Apply csort to the pair  to get the distribution for . This distribution (in value and probability matrices)

may be used in exactly the same manner as that for the original random variable .

Suppose for the random variable  in Example 6.11 it is desired to determine the probabilities

, , and 

Example  Use of canonic on the variables of Example 6.1.106.1.11

X

X M

P (X ∈ M)
G = g(X) = [g( )g( ) ⋅ ⋅ ⋅ g( )]X1 X2 Xn X

G g( )ti ti X

(G, P X) Z = g(X)
X

Example  Continuation of Example 6.1.116.1.12

X

P (15 ≤ X ≤ 35) P (|X −20| ≤ 7) (X −10)(X −25) > 0)
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>> M = (X>=15)&(X<=35); 

M = 0   0    1    1    1    0    % Ones for minterms on which 15 <= X <= 35 

>> PM = M*PX'                    % Picks out and sums those minterm probs 

PM =  0.4200 

>> N = abs(X-20)<=7; 

N = 0    1    1    1    0    0   % Ones for minterms on which |X - 20| <= 7 

>> PN = N*PX'                    % Picks out and sums those minterm probs 

PN =  0.6200 

>> G = (X - 10).*(X - 25) 

G = 154 -36 -44 -26 126 496      % Value of g(t_i) for each possible value 

>> P1 = (G>0)*PX'                % Total probability for those t_i such that 

P1 =  0.3800                     % g(t_i) > 0 

>> [Z,PZ] = csort(G,PX)          % Distribution for Z = g(X) 

Z =  -44   -36   -26   126   154   496 

PZ =  0.0600    0.3500    0.2100    0.1500    0.1400    0.0900 

>> P2 = (Z>0)*PZ'                % Calculation using distribution for Z 

P2 =  0.3800

Ten race cars are involved in time trials to determine pole positions for an upcoming race. To qualify, they must post an
average speed of 125 mph or more on a trial run. Let  be the event the th car makes qualifying speed. It seems reasonable to
suppose the class  is independent. If the respective probabilities for success are 0.90, 0.88, 0.93, 0.77, 0.85,
0.96, 0.72, 0.83, 0.91, 0.84, what is the probability that  or more will qualify (  = 6,7,8,9,10)?

Solution

Let 

>> c = [ones(1,10) 0]; 

>> P = [0.90, 0.88, 0.93, 0.77, 0.85, 0.96, 0.72, 0.83, 0.91, 0.84]; 

>> canonic 

 Enter row vector of coefficients  c 

 Enter row vector of minterm probabilities  minprob(P) 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

>> k = 6:10; 

>> for i = 1:length(k) 

    Pk(i) = (X>=k(i))*PX'; 

end 

>> disp(Pk) 

    0.9938    0.9628    0.8472    0.5756    0.2114

This solution is not as convenient to write out. However, with the distribution for  as defined, a great many other probabilities can
be determined. This is particularly the case when it is desired to compare the results of two independent races or “heats.” We
consider such problems in the study of Independent Classes of Random Variables.

A function form for canonic

Example  Alternate formulation of Example 4.3.3 from "Composite Trials"  
 

6.1.13

Ei i

{ : 1 ≤ i ≤ 10}Ei

k k

X =∑
10
i=1 IEi

X
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One disadvantage of the procedure canonic is that it always names the output  and PX. While these can easily be renamed,
frequently it is desirable to use some other name for the random variable from the start. A function form, which we call canonicf, is
useful in this case.

>> c = [10 18 10 3]; 

>> pm = minprob(0.1*[6 3 5]); 

>> [Z,PZ] = canonicf(c,pm); 

>> disp([Z;PZ]')                % Numbers as before, but the distribution 

    3.0000    0.1400            % matrices are now named Z and PZ 

   13.0000    0.3500 

   21.0000    0.0600 

   23.0000    0.2100 

   31.0000    0.1500 

   41.0000    0.0900

General random variables

The distribution for a simple random variable is easily visualized as point mass concentrations at the various values in the range,
and the class of events determined by a simple random variable is described in terms of the partition generated by  (i.e., the class
of those events of the form  for each  in the range). The situation is conceptually the same for the general case, but
the details are more complicated. If the random variable takes on a continuum of values, then the probability mass distribution may
be spread smoothly on the line. Or, the distribution may be a mixture of point mass concentrations and smooth distributions on
some intervals. The class of events determined by  is the set of all inverse images  for  any member of a general class
of subsets of subsets of the real line known in the mathematical literature as the Borel sets. There are technical mathematical
reasons for not saying M is any subset, but the class of Borel sets is general enough to include any set likely to be encountered in
applications—certainly at the level of this treatment. The Borel sets include any interval and any set that can be formed by
complements, countable unions, and countable intersections of Borel sets. This is a type of class known as a sigma algebra of
events. Because of the preservation of set operations by the inverse image, the class of events determined by random variable  is
also a sigma algebra, and is often designated . There are some technical questions concerning the probability measure 
induced by , hence the distribution. These also are settled in such a manner that there is no need for concern at this level of
analysis. However, some of these questions become important in dealing with random processes and other advanced notions
increasingly used in applications. Two facts provide the freedom we need to proceed with little concern for the technical details.

 is an event for every Borel set  iff for every semi-infinite interval  on the real line 
 is an event. 

The induced probability distribution is determined uniquely by its assignment to all intervals of the form 
.

These facts point to the importance of the distribution function introduced in the next chapter.

Another fact, alluded to above and discussed in some detail in the next chapter, is that any general random variable can be
approximated as closely as pleased by a simple random variable. We turn in the next chapter to a description of certain commonly
encountered probability distributions and ways to describe them analytically.

This page titled 6.1: Random Variables and Probabilities is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform.

X

Example  Alternate solution of Example 6.1.13, using canonicf6.1.14

X

= [X = ]Ai ti ti

X (M)X−1 M

X

σ(X) PX

X

(M)X−1 M (−∞, t]
((−∞, t])X−1

(−∞, t]
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