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10.1: Functions of a Random Variable

Introduction

Frequently, we observe a value of some random variable, but are really interested in a value derived from this by a function rule. If
X is a random variable and g is a reasonable function (technically, a Borel function), then Z = g(X) is a new random variable
which has the value g(t) for any w such that X (w) =¢. Thus Z(w) = g(X(w)) .

The problem; an approach

We consider, first, functions of a single random variable. A wide variety of functions are utilized in practice.

SE[o]EHEONMN 1: A quality control problem

In a quality control check on a production line for ball bearings it may be easier to weigh the balls than measure the diameters.
If we can assume true spherical shape and w is the weight, then diameter is kw'/3, where k is a factor depending upon the
formula for the volume of a sphere, the units of measurement, and the density of the steel. Thus, if X is the weight of the
sampled ball, the desired random variable is D = kX'/3 .

Example 10.1.2: |3ydRiElS

The cultural committee of a student organization has arranged a special deal for tickets to a concert. The agreement is that the
organization will purchase ten tickets at $20 each (regardless of the number of individual buyers). Additional tickets are
available according to the following schedule:

e 11-20, $18 each
e 21-30, $16 each
e 31-50, $15 each
e 51-100, $13 each

If the number of purchasers is a random variable X, the total cost (in dollars) is a random quantity Z = g(X) described by
9(X) =200+ 18I (X)(X —10) + (16 — 18) I3 (X)(X —20)
+(15 — 16) I3 (X) (X — 30) + (13 — 15) I 14 (X) (X — 50)
where M1 = [10, 00), M2 = [20, c0), M3 = [30, 00), M4 =[50, o)

The function rule is more complicated than in Example 10.1.1, but the essential problem is the same.

The problem
If X is a random variable, then Z = g(X) is a new random variable. Suppose we have the distribution for X. How can we
determine P(Z € M), the probability Z takes a value in the set M?
An approach to a solution
We consider two equivalent approaches
To find P(X € M).
1. Mapping approach. Simply find the amount of probability mass mapped into the set M by the random variable X.

o In the absolutely continuous case, calculate f u fx
o In the discrete case, identify those values ¢; of X which are in the set M and add the associated probabilities.

2. Discrete alternative. Consider each value ¢; of X. Select those which meet the defining conditions for M and add the associated
probabilities. This is the approach we use in the MATLAB calculations. Note that it is not necessary to describe geometrically
the set M; merely use the defining conditions.

To find P(g(X) € M).

1. Mapping approach. Determine the set N of all those ¢ which are mapped into M by the function g. Now if X(w) € N, then
g9(X(w)) € M, and if g(X(w)) € M, then X(w) € N. Hence
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{w:g(X(w) e M} ={w: X(w) € N}

Since these are the same event, they must have the same probability. Once N is identified, determine P(X € N) in the usual
manner (see part a, above).

« Discrete alternative. For each possible value ¢; of X, determine whether g(t;) meets the defining condition for M. Select those
t; which do and add the associated probabilities.

—0O

Remark. The set N in the mapping approach is called the inverse image N = g1 (M)

A discrete example

Suppose X has values -2, 0, 1, 3, 6, with respective probabilities 0.2, 0.1, 0.2, 0.3 0.2.
Consider Z = g(X) = (X+1)(X —4) . Determine P(Z > 0).

Solution

First solution. The mapping approach

gt)=(t+1)(t—4) . N={t:g(t) >0} is the set of points to the left of —1 or to the right of 4. The X-values -2 and 6 lie
in this set. Hence

P(g(X)>0)=P(X=-2)+P(X=6)=0.2+0.2=0.4

Second solution. The discrete alternative

X= 2 0 1 3 6
PX= 0.2 0.1 0.2 0.3 0.2
Z= 6 -4 -6 -4 14
Z>0 1 0 0 0 1

Picking out and adding the indicated probabilities, we have

P(Z>0)=0.240.2=0.4

In this case (and often for “hand calculations”) the mapping approach requires less calculation. However, for MATLAB
calculations (as we show below), the discrete alternative is more readily implemented.

SE]EHINEN An absolutely continuous example

Suppose X ~ uniform [-3,7]. Then fx(t) = 0.1, —3 <t <7 (and zero elsewhere). Let
Z=g(X)=(X+1)(X-4)

Determine P(Z > 0).
Solution

First we determine N = {t: g(¢t) >0} . As in Example 10.1.3, g(¢) = (¢ +1)(t —4) >0 for ¢ < —1 or ¢t > 4). Because of the
uniform distribution, the integral of the density over any subinterval of { X, Y} is 0.1 times the length of that subinterval. Thus, the
desired probability is

P(g(X)>0)=0.1[(-1—(-3))+(7—4)]=0.5

We consider, next, some important examples.

S ET o) CHENMIN The normal distribution and standardized normal distribution

To show that if X ~ N (u, o%) then
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VERIFICATION

We wish to show the denity function for Z is

1
o(t) = ——=e /2

V27

Now
t—
g(t):—'u <wv ifft <ov+p
o

Hence, for given M = (—oo, v] the inverse image is N = (—o0, ov+ p] , so that
Fz(v)=P(Z<v)=P(ZeM)=P(X € N)=P(X <ov+pu)=Fx(ov+p)
Since the density is the derivative of the distribution function,
fz(v) = Fé(v) = F)’((v) = F)'((Uv—i—p)a =ofx(ov+p)
Thus
o 1 ovtp—p 1

2(0) = ——eml-5 (T ) = <=

We conclude that Z ~ N (0, 1).

Example 10.1.1

Suppose X has distribution function Fx. If it is absolutely continuous, the corresponding density is fx. Consider
Z =aX+b . Here g(t) =at +b, an affine function (linear plus a constant). Determine the distribution function for Z (and
the density in the absolutely continuous case).

Solution
Fz(v)=P(Z <v)=P(aX+b <)

There are two cases

e a>0:
v—>b b
Fz(v) = P(X < Z=2) = Fx (=)

e a<0

Fy0)=P(X > %y~ px > =0 4 px = =0
a a a
So that
v—>b v—>b
P(X =

—)+P(X = =)

Fz(’l)):].—Fx(
v—b

For the absolutely continuous case, P(X = ) =0, and by differentiation

v—>b

o fora>0 fz(v) = %fx(

—)
o fora <0 fz(v) :—%fx(v_b

)

Since for a < 0, —a = |a|, the two cases may be combined into one formula.

f20) = (=2

|al a

a
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S EN o] EHENBAR Completion of normal and standardized normal relationship
Suppose Z ~ N (0, 1). show that X =aZ +u (o > 0) is N(u, 0?).
VERIFICATION

Use of the result of Example 10.1.6 on affine functions shows that

x(t)= o) = el

t—p .\,
L)
S ET o) CHEON M Fractional power of a nonnegative random variable

Suppose X >0 and Z = g(X) = X1/% fora > 1. Since for ¢ >0, ti/a js increasing, we have 0 < the <oy iff 0 <t <o,
Thus

Fz(v)=P(Z <v)=P(X <v*) =Fx(v*)

In the absolutely continuous case
f2(v) = Fy(v) = fx (v")av**

eyl CHINM N Fractional power of an exponentially distributed random variable

Suppose X ~ exponential (A). Then Z = X'/% ~ Weibull (a, A, 0).
According to the result of Example 10.1.8,
Fz(t) = FX(ta) =1- 6_’\1'“1

which is the distribution function for Z ~ Weibull (a, A, 0).

SE o] EHEONBNEVMA simple approximation as a function of X

If X is a random variable, a simple function approximation may be constructed (see Distribution Approximations). We limit
our discussion to the bounded case, in which the range of X is limited to a bounded interval I = [a,b]. Suppose I is
partitioned into n subintervals by points ¢;, 1 <4 <n—1,witha =t and b =1¢,. Let M; = [t;_1,¢;) be the ith subinterval,
1<i<n-1 and M, = [t,_1,t,]. Let E; = X 1(M;) be the set of points mapped into M; by X. Then the E; form a
partition of the basic space 2. For the given subdivision, we form a simple random variable X as follows. In each subinterval,
pick a point s;,t;_1 < s; <t; . The simple random variable

XS = E?:l SiIEi

approximates X to within the length of the largest subinterval M;. Now Ig, = Ij;(X), since Ig (w) =1 iff X(w) € M; iff
Iy, (X(w)) = 1. We may thus write

X, =1, siIp, (X), a function of X

Use of MATLAB on simple random variables

For simple random variables, we use the discrete alternative approach, since this may be implemented easily with MATLAB.
Suppose the distribution for X is expressed in the row vectors X and PX.

e We perform array operations on vector X to obtain

G =[g(t1)g(t2) - - - g(tn)]

o We use relational and logical operations on G to obtain a matrix M which has ones for those ¢; (values of X) such that g(¢;)
satisfies the desired condition (and zeros elsewhere).

« The zero-one matrix M is used to select the the corresponding p; = P(X =t;) and sum them by the taking the dot product of
M and PX.
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S E o] RN EENBasic calculations for a function of a simple random variable

X = -5:10; % Values of X
PX = ibinom(15,0.6,0:15); % Probabilities for X
G = (X+6).*(X-1).*(X - 8); % Array operations on X matrix to get G = g(X)
M= (G > - 100)&(G < 130); % Relational and logical operations on G
PM = M*PX' % Sum of probabilities for selected values
PM = 0.4800
disp([X;G;M;PX]") % Display of various matrices (as columns)
-5.0000 78.0000 1.0000 0.0000
-4.0000 120.0000 1.0000 0.0000
-3.0000 132.0000 (0] 0.0003
-2.0000 120.0000 1.0000 0.0016
-1.0000 90.0000 1.0000 0.0074
(C] 48.0000 1.0000 0.0245
1.0000 0 1.0000 0.0612
2.0000 -48.0000 1.0000 0.1181
3.0000 -90.0000 1.0000 0.1771
4.0000 -120.0000 0 0.2066
5.0000 -132.0000 (0] 0.1859
6.0000 -120.0000 (C] 0.1268
7.0000 -78.0000 1.0000 0.0634
8.0000 (C] 1.0000 0.0219
9.0000 120.0000 1.0000 0.0047
10.0000 288.0000 0 0.0005
[Z,PZ] = csort(G,PX); % Sorting and consolidating to obtain
disp([Z;PZ]") % the distribution for Z = g(X)
-132.0000 0.1859
-120.0000 0.3334
-90.0000 0.1771
-78.0000 0.0634
-48.0000 0.1181
0 0.0832
48.0000 0.0245
78.0000 0.0000
90.0000 0.0074
120.0000 0.0064
132.0000 0.0003
288.0000 0.0005
P1 = (G<-120)*PX ' % Further calculation using G, PX
P1 = 0.1859
pl = (Z<-120)*PZ' % Alternate using Z, PZ
pl = 0.1859
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Example 10.1.12

X =101, +18I5+10I¢c with {A, B, C} independent and P = [0.60.30.5].
We calculate the distribution for X, then determine the distribution for

Z=X"Y2_X+50

c = [10 18 10 0];
pm = minprob(0.1*[6 3 5]);
canonic
Enter row vector of coefficients c
Enter row vector of minterm probabilities pm
Use row matrices X and PX for calculations
Call for XDBN to view the distribution
disp(XDBN)
0 0.1400
10.0000 0.3500
18.0000 0.0600
20.0000 0.2100
28.0000 0.1500
38.0000 0.0900
G = sqrt(X) - X + 50; % Formation of G matrix
[Zz,PZ] = csort(G,PX); % Sorts distinct values of g(X)
disp([Z;PZ]"') % consolidates probabilities
18.1644 0.0900
27.2915 0.1500
34.4721 0.2100
36.2426 0.0600
43.1623 0.3500
50.0000 0.1400
M= (Z < 20)|(Z >= 40) % Direct use of Z distribution
M = 1 (C] (C] (C] 1 1
PZM = M*PZ'
PZM = 0.5800

Remark. Note that with the m-function csort, we may name the output as desired.

=S E[o]EREONBNEINC ontinuation of example 10.1.12, above.

H = 2*X.A2 - 3*X + 1;
[W,PW] = csort(H,PX)
W = 1 171 595 741 1485 2775
PWw = 0.1400 0.3500 0.0600 0.2100 0.1500 0.0900

SE ] CHINBFEA discrete approximation

. : L LR 1/2

Suppose X has density function fx (¢) = 5(3t +2¢) for0 <t <1.Then Fx(t) = E(t +1%) . Let Z = X'/2. We may use
the approximation m-procedure tappr to obtain an approximate discrete distribution. Then we work with the approximating
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random variable as a simple random variable. Suppose we want P(Z < 0.8). Now Z < 0.8 iff X < 0.8% = 0.64. The desired
probability may be calculated to be

P(Z <0.8) = Fx(0.64) = (0.64° +0.642) /2 = 0.3359

Using the approximation procedure, we have

tappr

Enter matrix [a b] of x-range endpoints [0 1]
Enter number of x approximation points 200

Enter density as a function of t (3*t.A2 + 2*t)/2
Use row matrices X and PX as in the simple case

G = X.N1/2);

M =G <= 0.8;

PM = M*PX'

PM = 0.3359 % Agrees quite closely with the theoretical

This page titled 10.1: Functions of a Random Variable is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform.
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