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9.1: Independent Classes of Random Variables
The concept of independence for classes of events is developed in terms of a product rule. In this unit, we extend the concept to
classes of random variables.

Independent pairs
Recall that for a random variable , the inverse image  (i.e., the set of all outcomes  which are mapped into  by 

) is an event for each reasonable subset  on the real line. Similarly, the inverse image  is an event determined by
random variable  for each reasonable set . We extend the notion of independence to a pair of random variables by requiring
independence of the events they determine. More precisely,

A pair  of random variables is (stochastically) independent iff each pair of events  is
independent.

This condition may be stated in terms of the product rule

 for all (Borel) sets 

Independence implies

Note that the product rule on the distribution function is equivalent to the condition the product rule holds for the inverse images of
a special class of sets  of the form  and . An important theorem from measure theory ensures
that if the product rule holds for this special class it holds for the general class of . Thus we may assert

The pair  is independent iff the following product rule holds

Suppose  , . Taking limits shows

and

so that the product rule  holds. The pair  is therefore independent.

If there is a joint density function, then the relationship to the joint distribution function makes it clear that the pair is independent
iff the product rule holds for the density. That is, the pair is independent iff

 

suppose the joint probability mass distributions induced by the pair  is uniform on a rectangle with sides 
and . Since the area is , the constant value of  is . Simple integration gives

and

X (M)X−1 ω ∈ Ω M

X M (N)Y −1

Y N

Definition

{X,Y } { (M), (N)}X−1 Y −1

P (X ∈ M ,Y ≤ N) = P (X ∈ M)P (Y ∈ N) M ,N

(t, u)FXY = P (X ∈ (−∞, t],Y ∈ (−∞, u])

= P (X ∈ (−∞, t])P (Y ∈ (−∞, u])

= (t) (u) ∀t, uFX FY

{M ,N} M = (−∞, t] N = (−∞, u]

{M ,N}

{X,Y }

(t, u) = (t) (u) ∀t, uFXY FX FY (9.1.1)

Example 9.1.1: an independent pair

(t, u) = (1 − )(1 − )FXY e−∞ e−βu 0 ≤ t 0 ≤ u

(t) = (t, u) = 1 −FX lim
u→∞

FXY e−αt

(u) = (t, u) = 1 −FY lim
t→∞

FXY e−βu

(t, u) = (t) (u)FXY FX FY {X,Y }

(t, u) = (t) (u)fXY fX fY ∀t, u

example 9.1.2: joint uniform distributin on a rectangle

{X,Y } = [a, b]I1

= [c, d]I2 (b−a)(d−c) fXY 1/(b−a)(d−c)

(t) = du = a ≤ t ≤ bfX
1

(b−a)(d−c)
∫

d

c

1

b−a
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Thus it follows that  is uniform on .  is uniform on , and  for all , so that the pair 
 is independent. The converse is also true: if the pair is independent with  uniform on  and  is uniform on 

, the pair has uniform joint distribution on .

The Joint Mass Distribution
It should be apparent that the independence condition puts restrictions on the character of the joint mass distribution on the plane.
In order to describe this more succinctly, we employ the following terminology.

Definition

If  is a subset of the horizontal axis and  is a subset of the vertical axis, then the cartesian product  is the (generalized)
rectangle consisting of those points  on the plane such that  and .

The rectangle in Example 9.1.2 is the artesian product , consisting of all those points  such that  and 
 (i.e.  and ).

Figure 9.1.1. Joint distribution for an independent pair of random variables.

We restate the product rule for independence in terms of cartesian product sets.

Reference to Figure 9.1.1 illustrates the basic pattern. If  are intervals on the horizontal and vertical axes, respectively, then
the rectangle  is the intersection of the vertical strip meeting the horizontal axis in  with the horizontal strip meeting the
vertical axis in . The probability  is the portion of the joint probability mass in the vertical strip; the probability  is
the part of the joint probability in the horizontal strip. The probability in the rectangle is the product of these marginal probabilities.

This suggests a useful test for nonindependence which we call the rectangle test. We illustrate with a simple example.

(u) = dt = c ≤ u ≤ dfY
1

(b−a)(d−c)
∫

b

a

1

d−c

X [a, b] Y [c, d] (t, u) = (t) (u)fXY fX fY t, u

{X,Y } X [a, b] Y

[c, d] ×I1 I2

M N M ×N

(t, u) t ∈ M u ∈ N

example 9.1.3: Rectangle with interval sides

×I1 I2 (t, u) a ≤ t ≤ b

c ≤ u ≤ d t ∈ I1 u ∈ I2

P (X ∈ M ,Y ∈ N) = P ((X,Y ) ∈ M ×N) = P (X ∈ M)P (Y ∈ N) (9.1.2)

M ,N

M ×N M

N X ∈ M Y ∈ N
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Figure 9.1.2. Rectangle test for nonindependence of a pair of random variables.

Supose probability mass is uniformly distributed over the square with vertices at (1,0), (2,1), (1,2), (0,1). It is evident from
Figure 9.1.2 that a value of  determines the possible values of  and vice versa, so that we would not expect independence of
the pair. To establish this, consider the small rectangle  shown on the figure. There is no probability mass in the region.
Yet  and , so that

, but . The product rule fails; hence the pair cannot be stochastically
independent.

Remark. There are nonindependent cases for which this test does not work. And it does not provide a test for independence. In spite
of these limitations, it is frequently useful. Because of the information contained in the independence condition, in many cases the
complete joint and marginal distributions may be obtained with appropriate partial information. The following is a simple example.

Suppose the pair  is independent and each has three possible values. The following four items of information are
available.

, , 

These values are shown in bold type on Figure 9.1.3. A combination of the product rule and the fact that the total probability
mass is one are used to calculate each of the marginal and joint probabilities. For example  and 

 implies . Then P(Y = u_3) = 1 - P(Y = u_1) - P(Y =
u_2) = 0.3\). Others are calculated similarly. There is no unique procedure for solution. And it has not seemed useful to
develop MATLAB procedures to accomplish this.

Figure 9.1.3. Joint and marginal probabilities from partial information.

A pair  has the joint normal distribution iff the joint density is

where

The marginal densities are obtained with the aid of some algebraic tricks to integrate the joint density. The result is that 
 and . If the parameter  is set to zero, the result is

example 9.1.4: The rectangle test for nonindependence

X Y

M ×N

P (X ∈ M) > 0 P (Y ∈ N) > 0

P (X ∈ M)P (Y ∈ N) > 0 P ((X,Y ) ∈ M ×N) = 0

example 9.1.5: Joint and marginal probabilities from partial information

{X,Y }

P (X = ) = 0.2t1 P (Y = ) = 0.3u1 P (X = ,Y = ) = 0.08t1 u2

P (X = ,Y = ) = 0.15t2 u1

P (X = ) = 0.2t1

P (X = ,Y = ) = P (X = )P (Y = ) = 0.8t1 u2 t1 u2 P (Y = ) = 0.4u2

example 9.1.6: The joint normal distribution

{X,Y }

(t, u) =fXY

1

2π (1 −σXσY ρ2)1/2
e−Q(t,u)/2

Q(t, u) = [( −2ρ( )( ) +( ]
1

1 −ρ2

t−μX

σX
)2 t−μX

σX

t−μY

σY

t−μY

σY
)2

X N( , )μX σ2
X Y  N( , )μY σ2

Y ρ

(t, u) = (t) (u)fXY fX fY
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so that the pair is independent iff . The details are left as an exercise for the interested reader.

Remark. While it is true that every independent pair of normally distributed random variables is joint normal, not every pair of
normally distributed random variables has the joint normal distribution.

We start with the distribution for a joint normal pair and derive a joint distribution for a normal pair which is not joint normal.
The function

is the joint normal density for an independent pair ( ) of standardized normal random variables. Now define the joint density
for a pair  by

 in the first and third quadrants, and zero elsewhere

Both  ~  and  ~ . However, they cannot be joint normal, since the joint normal distribution is positive for all (
).

Independent classes

Since independence of random variables is independence of the events determined by the random variables, extension to general
classes is simple and immediate.

A class  of random variables is (stochastically) independent iff the product rule holds for every finite subclass of
two or more.

Remark. The index set  in the definition may be finite or infinite.

For a finite class , independence is equivalent to the product rule

 for all 

Since we may obtain the joint distribution function for any finite subclass by letting the arguments for the others be ∞ (i.e., by
taking the limits as the appropriate  increase without bound), the single product rule suffices to account for all finite subclasses.

Absolutely continuous random variables

If a class  is independent and the individual variables are absolutely continuous (i.e., have densities), then any finite
subclass is jointly absolutely continuous and the product rule holds for the densities of such subclasses

 for all 

Similarly, if each finite subclass is jointly absolutely continuous, then each individual variable is absolutely continuous and the
product rule holds for the densities. Frequently we deal with independent classes in which each random variable has the same
marginal distribution. Such classes are referred to as iid classes (an acronym for independent,identically distributed). Examples are
simple random samples from a given population, or the results of repetitive trials with the same distribution on the outcome of each
component trial. A Bernoulli sequence is a simple example.

Simple random variables

Consider a pair  of simple random variables in canonical form

 

Since  and  the pair  is independent iff each of the pairs  is independent. The joint
distribution has probability mass at each point  in the range of . Thus at every point on the grid,

According to the rectangle test, no gridpoint having one of the  or  as a coordinate has zero probability mass . The marginal
distributions determine the joint distributions. If  has  distinct values and  has  distinct values, then the n+m marginal

ρ = 0

Example 9.1.7: a normal pair not joint normally distributed

φ(t, u) = exp (− − )
1

2π

t2

2

u2

2

ρ = 0

{X,Y }

(t, u) = 2φ(t, u)fXY

X N(0, 1) Y N(0, 1)

t, u

Definition

{ : i ∈ J}Xi

J

{ : 1 ≤ i ≤ n}Xi

( , , ⋅ ⋅ ⋅, ) = ( )F ⋅⋅⋅X1X2 Xn
t1 t2 tn ∏n

i=1 FXi
ti ( , , ⋅ ⋅ ⋅, )t1 t2 tn

ti

{ : i ∈ J}Xi

( , , ⋅ ⋅ ⋅, ) = ( )f ⋅⋅⋅Xi1Xi2 Xim ti1 ti2 tim ∏m
k=1 fXik tik ( , , ⋅ ⋅ ⋅, )t1 t2 tn

{X,Y }

X =∑n
i=1 tiIAi Y =∑m

j=1 ujIBj

= {X = }Ai ti = {Y = }Bj uj {X,Y } { , }Ai Bj

( , )ti uj W = (X,Y )

P (X = ,Y = ) = P (X = )P (Y = )ti uj ti uj

ti uj
X n Y m
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probabilities suffice to determine the m·n joint probabilities. Since the marginal probabilities for each variable must add to one,
only  values are needed.

Suppose  and  are in affine form. That is,

 

Since  is the union of minterms generated by the  and  is the union of minterms generated by
the , the pair  is independent iff each pair of minterms  generated by the two classes, respectivly, is
independent. Independence of the minterm pairs is implied by independence of the combined class

Calculations in the joint simple case are readily handled by appropriate m-functions and m-procedures.

MATLAB and independent simple random variables

In the general case of pairs of joint simple random variables we have the m-procedure jcalc, which uses information in matrices 
 and  to determine the marginal probabilities and the calculation matrices  and . In the independent case, we need only the

marginal distributions in matrices , ,  and  to determine the joint probability matrix (hence the joint distribution) and the
calculation matrices  and . If the random variables are given in canonical form, we have the marginal distributions. If they are in
affine form, we may use canonic (or the function form canonicf) to obtain the marginal distributions.

Once we have both marginal distributions, we use an m-procedure we call icalc. Formation of the joint probability matrix is simply
a matter of determining all the joint probabilities

Once these are calculated, formation of the calculation matrices  and  is achieved exactly as in jcalc.

X = [-4 -2 0 1 3]; 

Y = [0 1 2 4]; 

PX = 0.01*[12 18 27 19 24]; 

PY = 0.01*[15 43 31 11]; 

icalc 

Enter row matrix of X-values  X 

Enter row matrix of Y-values  Y 

Enter X probabilities  PX 

Enter Y probabilities  PY 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

disp(P)                        % Optional display of the joint matrix 

    0.0132    0.0198    0.0297    0.0209    0.0264 

    0.0372    0.0558    0.0837    0.0589    0.0744 

    0.0516    0.0774    0.1161    0.0817    0.1032 

    0.0180    0.0270    0.0405    0.0285    0.0360 

disp(t)                        % Calculation matrix t 

    -4    -2     0     1     3 

    -4    -2     0     1     3 

    -4    -2     0     1     3 

    -4    -2     0     1     3 

disp(u)                        % Calculation matrix u 

     4     4     4     4     4 

     2     2     2     2     2 

     1     1     1     1     1 

n−1) +(m−1) = m+n−2

X Y

X = +a0 ∑n

i=1 aiIEi Y = +b0 ∑m

j=1 bjIEj

= {X = }Ar tr Ei = {Y = }Bj us
Fj {X,Y } { , }Ma Nb

{ , : 1 ≤ i ≤ n, 1 ≤ j≤ m}Ei Fj

X,Y P t u

X PX Y PY

t u

p(i, j) = P (X = ,Y = ) = P (X = )P (Y = )ti uj ti uj

t u

Example 9.1.8: Use of icalc to set up for joint calculations
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     0     0     0     0     0 

M = (t>=-3)&(t<=2);            % M = [-3, 2] 

PM = total(M.*P)               % P(X in M) 

PM =   0.6400 

N = (u>0)&(u.^2<=15);          % N = {u: u > 0, u^2 <= 15} 

PN = total(N.*P)               % P(Y in N) 

PN =   0.7400 

Q = M&N;                       % Rectangle MxN 

PQ = total(Q.*P)               % P((X,Y) in MxN) 

PQ =   0.4736 

p = PM*PN 

p  =   0.4736                  % P((X,Y) in MxN) = P(X in M)P(Y in N)

As an example, consider again the problem of joint Bernoulli trials described in the treatment of 4.3 Composite trials.

1 Bill and Mary take ten basketball free throws each. We assume the two seqences of trials are independent of each other, and
each is a Bernoulli sequence.

Mary: Has probability 0.80 of success on each trial.

Bill: Has probability 0.85 of success on each trial.

What is the probability Mary makes more free throws than Bill?

Solution

Let  be the number of goals that Mary makes and  be the number that Bill makes. Then  ~ binomial (10, 0.8) and  ~
binomial (10, 0.85).

X = 0:10; 

Y = 0:10; 

PX = ibinom(10,0.8,X); 

PY = ibinom(10,0.85,Y); 

icalc 

Enter row matrix of X-values  X  % Could enter 0:10 

Enter row matrix of Y-values  Y  % Could enter 0:10 

Enter X probabilities  PX        % Could enter ibinom(10,0.8,X) 

Enter Y probabilities  PY        % Could enter ibinom(10,0.85,Y) 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

PM = total((t>u).*P) 

PM =  0.2738                     % Agrees with solution in Example 9 from "Composit

Pe = total((u==t).*P)            % Additional information is more easily 

Pe =  0.2276                     % obtained than in the event formulation 

Pm = total((t>=u).*P)            % of Example 9 from "Composite Trials". 

Pm =  0.5014

Example 9.1.9: The joint Bernoulli trial of Example 4.9

X Y X Y
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Twelve world class sprinters in a meet are running in two heats of six persons each. Each runner has a reasonable chance of
breaking the track record. We suppose results for individuals are independent.

First heat probabilities: 0.61 0.73 0.55 0.81 0.66 0.43

Second heat probabilities: 0.75 0.48 0.62 0.58 0.77 0.51

Compare the two heats for numbers who break the track record.

Solution

Let  be the number of successes in the first heat and  be the number who are successful in the second heat. Then the pair 
 is independent. We use the m-function canonicf to determine the distributions for  and for , then icalc to get the

joint distribution.

c1 = [ones(1,6) 0]; 

c2 = [ones(1,6) 0]; 

P1 = [0.61 0.73 0.55 0.81 0.66 0.43]; 

P2 = [0.75 0.48 0.62 0.58 0.77 0.51]; 

[X,PX] = canonicf(c1,minprob(P1)); 

[Y,PY] = canonicf(c2,minprob(P2)); 

icalc 

Enter row matrix of X-values  X 

Enter row matrix of Y-values  Y 

Enter X probabilities  PX 

Enter Y probabilities  PY 

 Use array operations on matrices X, Y, PX, PY, t, u, and P 

Pm1 = total((t>u).*P)   % Prob first heat has most 

Pm1 =  0.3986 

Pm2 = total((u>t).*P)   % Prob second heat has most 

Pm2 =  0.3606 

Peq = total((t==u).*P)  % Prob both have the same 

Peq =  0.2408 

Px3 = (X>=3)*PX'        % Prob first has 3 or more 

Px3 =  0.8708 

Py3 = (Y>=3)*PY'        % Prob second has 3 or more 

Py3 =  0.8525

As in the case of jcalc, we have an m-function version icalcf

[x, y, t, u, px, py, p] = icalcf(X, Y, PX, PY)\)

We have a related m-function idbn for obtaining the joint probability matrix from the marginal probabilities. Its formation of the
joint matrix utilizes the same operations as icalc.

PX = 0.1*[3 5 2]; 

PY = 0.01*[20 15 40 25]; 

P  = idbn(PX,PY) 

P = 

    0.0750    0.1250    0.0500 

Example 9.1.10: Sprinters time trials

X Y

{X,Y } X Y

Example 9.1.11: A numerical example
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    0.1200    0.2000    0.0800 

    0.0450    0.0750    0.0300 

    0.0600    0.1000    0.0400 

An m- procedure itest checks a joint distribution for independence. It does this by calculating the marginals, then forming an
independent joint test matrix, which is compared with the original. We do not ordinarily exhibit the matrix  to be tested.
However, this is a case in which the product rule holds for most of the minterms, and it would be very difficult to pick out
those for which it fails. The m-procedure simply checks all of them.

idemo1                           % Joint matrix in datafile idemo1 

P =  0.0091  0.0147  0.0035  0.0049  0.0105  0.0161  0.0112 

     0.0117  0.0189  0.0045  0.0063  0.0135  0.0207  0.0144 

     0.0104  0.0168  0.0040  0.0056  0.0120  0.0184  0.0128 

     0.0169  0.0273  0.0065  0.0091  0.0095  0.0299  0.0208 

     0.0052  0.0084  0.0020  0.0028  0.0060  0.0092  0.0064 

     0.0169  0.0273  0.0065  0.0091  0.0195  0.0299  0.0208 

     0.0104  0.0168  0.0040  0.0056  0.0120  0.0184  0.0128 

     0.0078  0.0126  0.0030  0.0042  0.0190  0.0138  0.0096 

     0.0117  0.0189  0.0045  0.0063  0.0135  0.0207  0.0144 

     0.0091  0.0147  0.0035  0.0049  0.0105  0.0161  0.0112 

     0.0065  0.0105  0.0025  0.0035  0.0075  0.0115  0.0080 

     0.0143  0.0231  0.0055  0.0077  0.0165  0.0253  0.0176 

itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is NOT independent   % Result of test 

To see where the product rule fails, call for D 

disp(D)                          % Optional call for D 

     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1 

     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1 

     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0 

Next, we consider an example in which the pair is known to be independent.

jdemo3      % call for data in m-file 

disp(P)     % call to display P 

     0.0132    0.0198    0.0297    0.0209    0.0264 

P
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     0.0372    0.0558    0.0837    0.0589    0.0744 

     0.0516    0.0774    0.1161    0.0817    0.1032 

     0.0180    0.0270    0.0405    0.0285    0.0360 

  

itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is independent       % Result of test 

The procedure icalc can be extended to deal with an independent class of three random variables. We call the m-procedure icalc3.
The following is a simple example of its use.

X = 0:4;

Y = 1:2:7; 

Z = 0:3:12; 

PX = 0.1*[1 3 2 3 1]; 

PY = 0.1*[2 2 3 3]; 

PZ = 0.1*[2 2 1 3 2]; 

icalc3 

Enter row matrix of X-values  X 

Enter row matrix of Y-values  Y 

Enter row matrix of Z-values  Z 

Enter X probabilities  PX 

Enter Y probabilities  PY 

Enter Z probabilities  PZ 

Use array operations on matrices X, Y, Z, 

PX, PY, PZ, t, u, v, and P 

G = 3*t + 2*u - 4*v;        % W = 3X + 2Y -4Z 

[W,PW] = csort(G,P);        % Distribution for W 

PG = total((G>0).*P)        % P(g(X,Y,Z) > 0) 

PG =  0.3370 

Pg = (W>0)*PW'            % P(Z > 0) 

Pg =  0.3370

An m-procedure icalc4 to handle an independent class of four variables is also available. Also several variations of the m-function
mgsum and the m-function diidsum are used for obtaining distributions for sums of independent random variables. We consider
them in various contexts in other units.

Approximation for the absolutely continuous case

In the study of functions of random variables, we show that an approximating simple random variable  of the type we use is a
function of the random variable  which is approximated. Also, we show that if  is an independent pair, so is 

 for any reasonable functions  and . Thus if  is an independent pair, so is any pair of approximating simple
functions  of the type considered. Now it is theoretically possible for the approximating pair  to be independent,
yet have the approximated pair  not independent. But this is highly unlikely. For all practical purposes, we may consider 

 to be independent iff  is independent. When in doubt, consider a second pair of approximating simple functions
with more subdivision points. This decreases even further the likelihood of a false indication of independence by the approximating
random variables.

Example 9.1.14: Calculations for three independent random variables

Xs

X {X,Y }

{g(X),h(Y )} g h {X,Y }

{ , }Xs Ys { , }Xs Ys
{X,Y }

{X,Y } { , }Xs Ys
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Suppose  ~ exponential (3) and  ~ exponential (2) with

 

Since , we approximate  for values up to 4 and  for values up to 6.

tuappr 

Enter matrix [a b] of X-range endpoints  [0 4] 

Enter matrix [c d] of Y-range endpoints  [0 6] 

Enter number of X approximation points  200 

Enter number of Y approximation points  300 

Enter expression for joint density  6*exp(-(3*t + 2*u)) 

Use array operations on X, Y, PX, PY, t, u, and P 

itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is independent 

The pair  has joint density  , . It is easy enough to determine the marginals in this
case. By symmetry, they are the same.

, 

so that  which ensures the pair is independent. Consider the solution using tuappr and itest.

tuappr 

Enter matrix [a b] of X-range endpoints  [0 1] 

Enter matrix [c d] of Y-range endpoints  [0 1] 

Enter number of X approximation points  100 

Enter number of Y approximation points  100 

Enter expression for joint density  4*t.*u 

Use array operations on X, Y, PX, PY, t, u, and P 

itest 

Enter matrix of joint probabilities  P 

The pair {X,Y} is independent
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Example 9.1.15: An independent pair

X Y

(t, u) = 6 = 6fXY e−3te−2u e−(3t+2u) t ≥ 0, u ≥ 0

≈ 6 ×e−12 10−6 X Y

Example 9.1.16: Test for independence

{X,Y } (t, u) = 4tufXY 0 ≤ t ≤ 1 0 ≤ u ≤ 1

(t) = 4t udu = 2tfX ∫ 1

0
0 ≤ t ≤ 1

=fXY fXfY
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