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15.2: Some Random Selection Problems

In the unit on Random Selection, we develop some general theoretical results and computational procedures using MATLAB. In
this unit, we extend the treatment to a variety of problems. We establish some useful theoretical results and in some cases use
MATLAB procedures, including those in the unit on random selection.

The Poisson Decomposition

In many problems, the individual demands may be categorized in one of m types. If the random variable T; is the type of the ith
arrival and the class {7} : 1 <3} is iid, we have multinomial trials. For m = 2 we have the Bernoulli or binomial case, in which
one type is called a success and the other a failure.

Multinomial trials

We analyze such a sequence of trials as follows. Suppose there are m types, which we number 1 through m. Let Ej; be the event
that type &k occurs on the ith component trial. For each %, the class { B 1<k< m} is a partition, since on each component trial
exactly one of the types will occur. The type on the ¢th trial may be represented by the type random variable

T =3 i1 kI,
we assume
{T}, : 1 < i} isiid, with P(T; = k) = P(Ey;) = py, invariant with ¢
In a sequence of n trials, we let [Ny, be the number of occurrences of type k. Then
N =Y Ig, with}}" | N, =n

Now each Ny, ~ binomial (n, py). The class {Ng, : 1 <k <m} cannot be independent, since it sums to n. If the values of
m — 1 of them are known, the value of the other is determined. If ny +ns +- - -n,, =n . the event

{Nln =n1,Nop =n2,+, Nisy :nm}

is one of the

C(n;ny,na, -, ny) =nl/(n1n2!---n,!)
ways of arranging n; of the Ey;, ng of the Ey;, - - -, ny, of the E,,; . Each such arrangement has probability p'll1 pgz -~ pp, so that
m PE

P(Nln =mn1, Nop =n2, - -Npp, :nm) =nl! Hk:l

nk!
This set of joint probabilities constitutes the multinomial distribution. For m = 2, and type 1 a success, this is the binomial
distribution with parameter (n, p;).

A random number of multinomial trials

We consider, in particular, the case of a random number N of multinomial trials, where N ~ Poisson (). Let Ny be the number of
results of type k in a random number N of multinomial trials.

Ne =YV In, =32 Iinen}Ni with 37" Ny = N
Poisson decomposition
Suppose

N ~ Poisson (i)
{T;:1<i}isiddwith P(T; =k)=pr,1 <k<m
{N,T; :1 <} is independent

Then

Each Nj, ~ Poisson (upg)
{N;:1<k<m} isindependent.
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The usefulness of this remarkable result is enhanced by the fact that the sum of independent Poisson random variables is also
Poisson, with p for the sum the sum of the p; for the variables added. This is readily established with the aid of the generating
function. Before verifying the propositions above, we consider some examples.

Example 15.2.1 A shipping problem

The number N of orders per day received by a mail order house is Poisson (300). Orders are shipped by next day express, by
second day priority, or by regular parcel mail. Suppose 4/10 of the customers want next day express, 5/10 want second day
priority, and 1/10 require regular mail. Make the usual assumptions on compound demand. What is the probability that fewer
than 150 want next day express? What is the probability that fewer than 300 want one or the other of the two faster deliveries?

Solution

Model as a random number of multinomial trials, with three outcome types: Type 1 is next day express, Type 2 is second day
priority, and Type 3 is regular mail, with respective probabilities p; = 0.4, po = 0.5, and p3 =0.1. The N; ~ Poisson
(0.4-300 =120), N, ~ Poisson (0.5 - 300 = 150), and N3 ~ Poisson (0.1 -300 = 30). Also Ny + Ny ~ Poisson (120 + 150
= 270).

P1 = 1 - cpoisson(120,150)

P1 = 0.9954
P12 = 1 - cpoisson(270,300)
P12 = 0.9620

Example 15.2.2 Message routing

A junction point in a network has two incoming lines and two outgoing lines. The number of incoming messages N7 on line
one in one hour is Poisson (50); on line 2 the number is Vo ~ Poisson (45). On incoming line 1 the messages have probability
Py, =0.33 of leaving on outgoing line a and 1 — py, of leaving on line b. The messages coming in on line 2 have probability
P,, =0.47 of leaving on line a. Under the usual independence assumptions, what is the distribution of outgoing messages on
line a? What are the probabilities of at least 30, 35, 40 outgoing messages on line a?

Solution

By the Poisson decomposition, IV, ~ Poisson (50 -0.33 +45-0.47 = 37.65).

ma = 50*0.33 + 45*0.47

ma = 37.6500

Pa = cpoisson(ma,30:5:40)

Pa = 0.9119 0.6890 0.3722

VERIFICATION of the Poisson decomposition

Ny =3V Inki.
This is composite demand with Y3, = Ig,; , so that gy, (s) = gz +spr, =1 +pr(s—1) . Therefore,

9N, (s) =gnlgv.(s)] =e=e
which is the generating function for Ny, ~ Poisson (upy).
For any ny, n2, - -+, Ny, letn=mn; +ny+---+mn,, ,and consider

AZ{Nl =n1,N2 :n2,~--,Nm znm}z{Nzn}ﬂ{Nln=N1,N2n=n2,~~-,Nmn :’nm}
Since N is independent of the class of I, the class
{{N = TL}, {Nln :nl,NZn =nNg, - '7Nmn = nm}}

is independent. By the product rule and the multinomial distribution
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T Tk
_ Hn m pk m _ pk m
P(A)=e#*—"-nl! = e M — = P(Ny=n
( ) ! Hk:1 (nk)! Hk:1 ng! szl ( k k)
The second product uses the fact that
et — et (Prtpet-+pn) — " enpr

Thus, the product rule holds for the class

Extreme values
Consider an iid class {Y; : 1 <} of nonnegative random variables. For any positive integer n we let
V, =min{Y1,Ys,---,Y,} and W, =max {¥1, Y2, -, Y.}
Then
PV, >t)=P™(Y >t) and P(W, <¢)=P"(Y <t)
Now consider a random number N of the Y;. The minimum and maximum random variables are
Vv =3 meo Iinen}Vo and Wy =307 g Iin—n} W

—0
Computational formulas
If we set Vo = Wy =0, then

Fy(t)=P(V <t)=14+P(N =0)—gn[P(Y >1)]

Fyy(t) = gn[P(Y <1)]

These results are easily established as follows. {Vy >t} =\/" ({N =n} {V,, >t} . By additivity and independence of
{N,V,}foreachn
P(Vy>t)=3 1 P(N=n)P(V,>t)=> >, P(N=n)P*(Y >t) ,since P(V; >t)=0
If we add into the last sum the term P(N = 0)P°(Y >t) = P(N =0) then subtract it, we have
P(Vy>t)=3 > P(N=n)P"(Y >t)—P(N=0)=gy[P(Y >t)] - P(N =0)
A similar argument holds for proposition (b). In this case, we do not have the extra term for { N =0}, since P(Wy <t)=1.

Special case. In some cases, N =0 does not correspond to an admissible outcome (see Example 14.2.4, below, on lowest bidder
and Example 14.2.6). In that case

Fu(t) = Y2, P(Va SOP(N =n) = X350, [1 - PA(Y > D] P(N =n) = Y32, P(N =n) -
S, P(Y > )P(N = n)
Add P(N =0)=p° (Y >t)P(N =0) to each of the sums to get
Fy(t) =1 -5, P'(Y > )P(N =n) = 1— gy[P(Y >1)]

—0

Example 15.2.3 Maximum service time

The number N of jobs coming into a service center in a week is a random quantity having a Poisson (20) distribution. Suppose
the service times (in hours) for individual units are iid, with common distribution exponential (1/3). What is the probability the
maximum service time for the units is no greater than 6, 9, 12, 15, 18 hours?

Solution

P(Wy <t)=gn[P(Y <t)] = 20Fr()-1] = exp(—20e~*/3)

t = 6:3:18;
PW = exp(-20*exp(-t/3));
disp([t;PW]")
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6.0000 0.0668
9.0000 0.3694
12.0000 0.6933
15.0000 0.8739
18.0000 0.9516

Example 15.2.4 Lowest Bidder

A manufacturer seeks bids on a modification of one of his processing units. Twenty contractors are invited to bid. They bid
with probability 0.3, so that the number of bids /N ~ binomial (20,0.3). Assume the bids ¥; (in thousands of dollars) form an iid
class. The market is such that the bids have a common distribution symmetric triangular on (150,250). What is the probability
of at least one bid no greater than 170, 180, 190, 200, 210? Note that no bid is not a low bid of zero, hence we must use the
special case.

Solution

P(V<t)=1—gy[P(Y >t)]=1—(0.7+0.3p)*° wherep=P(Y >1t)
Solving graphically for p = P(V > t) , we get

p = [23/25 41/50 17/25 1/2 8/25] for t = [170 180 190 200 210]

Now gn(s) = (0.7 +0.35)2° . We use MATLAB to obtain

t = [170 180 190 200 210];

p = [23/25 41/50 17/25 1/2 8/25];
PV =1 - (0.7 + 0.3*p).N20;
disp([t;p;PV]")

170.0000 0.9200 0.3848
180.0000 0.8200 0.6705
190.0000 0.6800 0.8671
200.0000 0.5000 0.9612
210.0000 0.3200 0.9896

Example 15.2.5 Example 15.2.4 with a general counting variable

Suppose the number of bids is 1, 2 or 3 with probabilities 0.3, 0.5, 0.2, respectively.
Determine P(V < ¢) in each case.
Solution

The minimum of the selected Y''s is no greater than ¢ if and only if there is at least one Y less than or equal to £. We determine
in each case probabilities for the number of bids satisfying Y <¢. For each ¢, we are interested in the probability of one or
more occurrences of the event Y < ¢. This is essentially the problem in Example 7 from "Random Selection", with probability
p=P(Y <t).

t [170 180 190 200 210];

p [23/25 41/50 17/25 1/2 8/25]; % Probabilities Y <=t are 1 - p
gN = [0 0.3 0.5 0.2]; % Zero for missing value

PV = zeros(1,length(t));

for i=1:length(t)

gY = [p(1),1 - p(1)];

[d,pd] = gendf(gN,gY);
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PV(i) = (d>0)*pd’'; % Selects positions for d > 0@ and
end % adds corresponding probabilities
disp([t;PV]")

170.0000 0.1451

180.0000 0.3075

190.0000 0.5019

200.0000 0.7000

210.0000 0.8462

Example 15.2.4 may be worked in this manner by using gN = ibinom(20,0.3,0:20) . The results, of course, are the
same as in the previous solution. The fact that the probabilities in this example are lower for each t than in Example 15.2.4
reflects the fact that there are probably fewer bids in each case.

Example 15.2.6 Batch testing

Electrical units from a production line are first inspected for operability. However, experience indicates that a fraction p of
those passing the initial operability test are defective. All operable units are subsequenly tested in a batch under continuous
operation (a “burn in” test). Statistical data indicate the defective units have times to failure Y; iid, exponential (A, whereas
good units have very long life (infinite from the point of view of the test). A batch of n units is tested. Let V' be the time of the
first failure and N be the number of defective units in the batch. If the test goes ¢ units of time with no failure (i.e., V' > t),
what is the probability of no defective units?

Solution

Since no defective units implies no failures in any reasonable test time, we have
{N=0}C{V >t} sothat P(N =0|V >¢)=

Since N =0 does not yield a minimum value, we have P(V >t) = gn[P(Y >t)] . Now under the condition above, the
number of defective units N ~ binomial (n, p), so that gy (s) = (g+ps)" . If N is large and p is reasonably small, N is
approximately Poisson (np) with gy (s) = €™~ and P(N =0) =e ™ . Now P(Y >t) =e ™ ; for large n

e P

_ _ _ ,—npP(Y>t) _ —
P(N=0|V >t) g e P e "pe

For n =5000, p=0.001, A =2,and t =1, 2, 3,4, 5, MATLAB calculations give

—lambdat

t = 1:5;
n = 5000;
p = 0.001;
lambda = 2;

P = exp(-n*p*exp(-lambda*t));
disp([t;P]")

1.0000 0.5083
2.0000 0.9125
3.0000 0.9877
4.0000 0.9983
5.0000 0.9998

It appears that a test of three to five hours should give reliable results. In actually designing the test, one should probably make
calculations with a number of different assumptions on the fraction of defective units and the life duration of defective units.
These calculations are relatively easy to make with MATLAB.
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Bernoulli trials with random execution times or costs

Consider a Bernoulli sequence with probability p of success on any component trial. Let N be the number of the trial on which the
first success occurs. Let Y; be the time (or cost) to execute the ¢th trial. Then the total time (or cost) from the beginning to the
completion of the first success is

T= Zf\i 1 Y; (composite "demand" with N —1 ~ geometric p)

We suppose the Y; form an iid class, independent of N. Now N — 1 ~ geometric (p) implies g (s) =ps/(1 —gs) , so that

Mz (s) = gn[My (s)] = %

There are two useful special cases:

Y; ~ exponential ()), so that My (s) = - .

which implies T' ~ exponential (p\).

Y; —1 ~ geometric (py), so that gy (s) = 3
—s

gr(s) =

so that T'— 1 ~ geometric (ppy)-

Example 15.2.7 Job interviews

Suppose a prospective employer is interviewing candidates for a job from a pool in which twenty percent are qualified.
Interview times (in hours) Y; are presumed to form an iid class, each exponential (3). Thus, the average interview time is 1/3
hour (twenty minutes). We take the probability for success on any interview to be p =0.2. What is the probability a
satisfactory candidate will be found in four hours or less? What is the probability the maximum interview time will be no
greater than 0.5, 0.75, 1, 1.25, 1.5 hours?

Solution
T ~ exponential (0.2 -3 = 0.6), so that P(T' < 4) =1 —e %64=0.9093 .
0.2(1—e%) 1—e3

P(W <t)=gn[P(Y <t)] = 1-08(1—e ) 1+ded

MATLAB computations give

t =0.5:0.25:1.5;
PWt = (1 - exp(-3*t))./(1 + 4*exp(-3*t));
disp([t;PWt]")

0.5000 0.4105
0.7500 0.6293
1.0000 0.7924
1.2500 0.8925
1.5000 0.9468

The average interview time is 1/3 hour; with probability 0.63 the maximum is 3/4 hour or less; with probability 0.79 the
maximum is one hour or less; etc.

In the general case, solving for the distribution of 7' requires transform theory, and may be handled best by a program such as
Maple or Mathematica.
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For the case of simple Y; we may use approximation procedures based on properties of the geometric series. Since N —1 ~
geometric (p).

on08) = T2 = p 7% (45)* = sl (45)* + i (09)) = p[Sigla9)* + ()" o (as)"

=ps[24_(a5)"] + (a5)" " gn9s) = gn(s) + ()" g (s)
Note that g, (s) has the form of the generating function for a simple approximation V,, which matches values and probabilities
with N up to k =n. Now

91 (8) = gnlgy (s)] + (¢5)" " gn gy (s)]

The evaluation involves convolution of coefficients which effectively sets s = 1. Since gy (1) =gy (1) =1.
(gs)"*gn gy (s)] for s =1 reduces to g"*' = P(N >n)

which is negligible if n is large enough. Suitable n may be determined in each case. With such an n, if the Y; are nonnegative,
integer-valued, we may use the gend procedure on g, [gy (s)], where

9n(s) =ps+pqs® +pg*s® +- - +pg"s"

For the integer-valued case, as in the general case of simple Y;, we could use mgd. However, gend is usually faster and more
efficient for the integer-valued case. Unless q is small, the number of terms needed to approximate g, is likely to be too great.

Example 15.2.8 Approximating the generating function

Let p=0.3 and Y be uniformly distributed on {1, 2, - - -, 10}. Determine the distribution for

T= ZkN:I Yy,

Solution

p=0.3;

q=1-np;

a = [30 35 40]; % Check for suitable n

b = qg.ra

b= 1.0e-04 * % Use n = 40

0.2254 0.0379 0.0064

n = 40;

k = 1:n;

gY = 0.1*[0 ones(1,10)];

gN = p*[0 gq.N(k-1)]; % Probabilities, 0 <= k <= 40

gend

Do not forget zero coefficients for missing powers
Enter gen fn COEFFICIENTS for gN gN

Enter gen fn COEFFICIENTS for gY gY

Values are in row matrix D; probabilities are in PD.
To view the distribution, call for gD.

sum(PD) % Check sum of probabilities
ans = 1.0000
FD = cumsum(PD); % Distribution function for D

plot(0:100,FD(1:101)) % See Figure 15.2.1
P50 = (D<=50)*PD'

P50 = 0.9497
P30 = (D<=30)*PD'
P30 = 0.8263
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l':n Figure one is a graph labeled, execution time distribution function. The horizontal axis is labeled, Time, and the vertical axis is labeled, probability. The values on the horizontal axis range from 0 to 100 in increments
of 10. The values on the vertical axis range from 0 to 1 in increments of 0.1. There is one plotted distribution function on this graph. It begins in the bottom-left corner, at the point (0, 0), and moves right at a strong
positive slope. As the plot moves from left to right, the slope decreases as the function increases. About midway across the graph horizontally, the plot is nearly at the top, at a probability value above 0.9. The plot
continues to increase at a decreasing rate until it tapers off to a horizontal line by the point (80, 1), at which it continues and terminates at the top-right corner.

Figure 15.2.1. Execution Time Distribution Function Fp.

The same results may be achieved with mgd, although at the cost of more computing time. In that case, use g/N as in Example
15.2.8, but use the actual distribution for Y.

Arrival times and counting processes

Suppose we have phenomena which take place at discrete instants of time, separated by random waiting or interarrival times. These
may be arrivals of customers in a store, of noise pulses on a communications line, vehicles passing a position on a road, the failures
of a system, etc. We refer to these occurrences as arrivals and designate the times of occurrence as arrival times. A stream of
arrivals may be described in three equivalent ways.

o Arrival times: { Sy, : 0 <n},with0 =5y < S; <--- as. (basic sequence)
o Interarrival times: {W; : 1 <i}, with each W; > 0 a.s. (incremental sequence)

The strict inequalities imply that with probability one there are no simultaneous arrivals. The relations between the two sequences
are simply

So=0,8,=>7",WyandW, =5, -8, foralln>1

The formulation indicates the essential equivalence of the problem with that of the compound demand. The notation and
terminology are changed to correspond to that customarily used in the treatment of arrival and counting processes.

The stream of arrivals may be described in a third way.

« Counting processes: Ny = N (t) is the number of arrivals in time period (0, ]. It should be clear that this is a random quantity
for each nonnegative ¢. For a given ¢, w the value is N (¢, w). Such a family of random variables constitutes a random process.
In this case the random process is a counting process.

We thus have three equivalent descriptions for the stream of arrivals.
{Sp,:0<n} {W,:1<n} {N;:0<¢t}

Several properties of the counting process N should be noted:
N(t+h)—N(t) counts the arrivals in the interval (¢,¢+h|, h >0, so that N(t +h) > N(¢) forh >0.
Ny =0 and for t > 0 we have

Ny =371 I04(Si) =max {n: S, <t} =min{n: S, .1 >t}
For any given w, N (-, w) is a nondecreasing, right-continuous, integer-valued function defined on [0, co), with N (0,w) =0.
The essential relationships between the three ways of describing the stream of arrivals is displayed in
W,=8,—8n-1,{Ny >n} ={S, <t} ,{Ni;=n}={5, <t <S,41}

This imples

P(N;=n)=P(S, <t)—P(Sp41 <t)=P(Sps1 >1t)— P(S, > 1)
Although there are many possibilities for the interarrival time distributions, we assume

{W; : 1 <i} isiid, with W; >0 as.

Under such assumptions, the counting process is often referred to as a renewal process and the interrarival times are called renewal
times. In the literature on renewal processes, it is common for the random variable to count an arrival at ¢ = 0. This requires an
adjustment of the expressions relating N; and the .S;. We use the convention above.

Exponential iid interarrival times

The case of exponential interarrival times is natural in many applications and leads to important mathematical results. We utilize
the following propositions about the arrival times S,,, the interarrival times W;, and the counting process N.
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If {W;:1<4} is iid exponential (A), then S,, ~ gamma (n,\) for all n >1. This is worked out in the unit on
TRANSFORM METHODS, in the discussion of the connection between the gamma distribution and the exponential
distribution.
Sy, ~ gamma (n,A) for all n >1, and Sy =0, iff N; ~ Poisson (At) for all ¢ > 0. This follows the result in the unit
DISTRIBUTION APPROXI9MATIONS on the relationship between the Poisson and gamma distributions, along with the
fact that {N; > n} ={S, <t}.
Remark. The counting process is a Poisson process in the sense that NV; ~ Poisson (At) for all ¢ > 0. More advanced treatments
show that the process has independent, stationary increments. That is
N(t+h)—N(t)=N(h) forallt,h >0, and
For t) <ty <tg <ty <---<tp_1<t, , the class {N(tg) —N(Nl), N(t4) —N(t3), ceey N(tm) —N(tm_l)} is
independent.

In words, the number of arrivals in any time interval depends upon the length of the interval and not its location in time, and the
numbers of arrivals in nonoverlapping time intervals are independent.

Example 15.2.9 Emergency calls

Emergency calls arrive at a police switchboard with interarrival times (in hours) exponential (15). Thus, the average
interarrival time is 1/15 hour (four minutes). What is the probability the number of calls in an eight hour shift is no more than
100, 120, 140?

= 1 - cpoisson(8*15,[1601 121 141])

p
p = 0.0347 0.5243 0.9669

We develop next a simple computational result for arrival processes for which S,, ~ gamma (n, A)

Example 15.2.10 Gamma arrival times

Suppose the arrival times S,, ~ gamma (n, A) and g is such that

Jo lgl < oo and B[37%; |9(S,)[] < oo
Then
By 9 =[5 g
VERIFICATION
We use the countable sums property (E8b) for expectation and the corresponding property for integrals to assert
E[ n=1 g(S")] = n=1 E[g(S")] = n=1 f0°° g(t)fn(t) dt where fn(t) = W

‘We may apply (E8b) to assert
>t fooo 9fn = fooo 91 fn
Since
(At)n71
(n—1)

oy fa(t) = Ae M 307 = e MeM =)\

the proposition is established.

Example 15.2.11 Discounted replacement costs

A critical unit in a production system has life duration exponential (A). Upon failure the unit is replaced immediately by a
similar unit. Units fail independently. Cost of replacement of a unit is ¢ dollars. If money is discounted at a rate c, then a dollar
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spent tunits of time in the future has a current value e®. If S, is the time of replacement of the nth unit, then S, ~ gamma
(n, A) and the present value of all future replacements is

C =30 ce @
The expected replacement cost is
E[C] =E[>>, 9(Sn)] where g(t) = ce=>®
Hence

A
=[S ce dt = 2€
Suppose unit replacement cost ¢ = 1200, average time (in years) to failure 1/A =1/4, and the discount rate per year
a = 0.08 (eight percent). Then
1200-4

ElC1=308

=60, 000

Example 15.2.12 Random costs

Suppose the cost of the nth replacement in Example 15.2.11 is a random quantity C,, with {C),, S,} independent and
E[C,] = ¢, invariant with n. Then

E[C] =B[Y3, Cne ™| =300, E[Cy]Ele™ %] =377, cEle™*] = Ac

(o7

The analysis to this point assumes the process will continue endlessly into the future. Often, it is desirable to plan for a specific,
finite period. The result of Example 15.2.10 may be modified easily to account for a finite period, often referred to as a finite
horizon.

Example 15.2.13 Finite horizon

Under the conditions assumed in Example 15.2.10, above, let IV; be the counting random variable for arrivals in the interval
(0,¢].

If Z, = Yy 9(Sh) , then B[Z,] = X [y o
VERIFICATION

Since N; >n iff S, <t. Zn 19082) = 22020 L(0,4(Sn)g(Sy) - In the result of Example 15.2.10, replace g by I(g 49 and
note that

I3 To,(w)g(w) du = [ g(u) du

Example 15.2.14 Replacement costs, finite horizon

Under the condition of Example 15.2.11, consider the replacement costs over a two-year period.

Solution
t—au Ac —at
BIC] =Ac [y e ™ du="=(1-¢")

Thus, the expected cost for the infinite horizon Ac/« is reduced by the factor 1 —e . For t = 2 and the number in Example
15.2.11, the reduction factor is 1 — e %1 = 0.1479 to give E[C] = 60000 -0.1479 = 8871.37

In the important special case that g(u) = ce”**, the exporession for E[Y > ¢(S,)] may be put into a form which does not
require the interarrival times to be exponential.
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Example 15.2.15 General interarrival, exponential g

Suppose Sy =0 and S, = > | W;, where {W; : 1 <i} is iid. Let {V,, : 1 <n} be a class such that each E[V,] =c and
each pair {V},, S,, } is independent. Then for & > 0
My (—a
BIO) = BIX, Ve o] = e om0
1 — My (—a)
where My is the moment generating function for W.
DERIVATION
First we note that
E[V,e *] = cMg, (—a) = cM(—a)
Hence, by properties of expectation and the geometric series
 My(-a)
1-— Mw(—a)
Since & >0 and W > 0, we have 0 < e *W < 1, so that My (—a) = E[e "] < 1

ElC]=cY 2 M} (—a) , provided | My (—a)| < 1

Example 15.2.16 Uniformly distributed interarrival times

Suppose each W; ~ uniform (a, b). Then (see Appendix C),

e 9 _ e—ba e o _ e—ba
Mw(—a) = W so that E[C] =c- a(b—a)— [e_aa _e—ba]
Leta=1,b=5,c=100 and o = 0. Then,
a=1;
b =5;
c = 100,
A = 0.08;
MW = (exp(-a*A) - exp(-b*A))/(A*(b - a))
MW = 0.7900
EC = c*MW/(1 - MW)
EC = 376.1643

This page titled 15.2: Some Random Selection Problems is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform.
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