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15.1: Random Selection

Introduction

The usual treatments deal with a single random variable or a fixed, finite number of random variables, considered jointly. However,
there are many common applications in which we select at random a member of a class of random variables and observe its value,
or select a random number of random variables and obtain some function of those selected. This is formulated with the aid of a
countingor selecting random variable , which is nonegative, integer valued. It may be independent of the class selected, or may
be related in some sequential way to members of the class. We consider only the independent case. Many important problems
require optionalrandom variables, sometimes called Markov times. These involve more theory than we develop in this treatment.

Some common examples:

Total demand of  customers—  independent of the individual demands. 
Total service time for  units—  independent of the individual service times. 
Net gain in  plays of a game—  independent of the individual gains. 
Extreme values of  random variables—  independent of the individual values. 
Random sample of size —  is usually determined by propereties of the sample observed. 
Decide when to play on the basis of past results—  dependent on past

A useful model—random sums

As a basic model, we consider the sum of a random number of members of an iid class. In order to have a concrete interpretation to
help visualize the formal patterns, we think of the demand of a random number of customers. We suppose the number of customers
Nis independent of the individual demands. We formulate a model to be used for a variety of applications.

A basic sequence  [Demand of  customers] 
An incremental sequence  [Individual demands] 
These are related as follows:

 for  and  for   for all 

A counting random variable . If  then  of the  are added to give the compound demand  (the random sum)

Note. In some applications the counting random variable may take on the idealized value . For example, in a game that is played
until some specified result occurs, this may never happen, so that no finite value can be assigned to . In such a case, it is
necessary to decide what value  is to be assigned. For  independent of the  (hence of the ), we rarely need to consider
this possibility.

Independent selection from an iid incremental sequence

We assume throughout, unless specifically stated otherwise, that: 
 
 is iid 

 is an independent class

We utilize repeatedly two important propositions: 
,  

. If the  are nonnegative integer valued, then so is  and 

DERIVATION

We utilize properties of generating functions, moment generating functions, and conditional expectation. 
 by definition of conditional expectation, given an event, Now, 

 and . Hence 
. Division by  gives the desired result. 

By the law of total probability (CE1b), . By proposition 1 and the product rule for moment
generating functions,
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E[h(D)|N = n] = E[h( )]Xn n ≥ 0

(s) = [ (s)]MD gN MY Yn D (s) = [ (s)]gD gN gY

E[ (N)h(D)] = E[h(D)|N = n]P (N = n)I{n}

(N)h(D) = (N)h( )I{n} I{n} Xn E[ (N)h( )] = P (N = n)E[h( )]I{n} Xn Xn

E[h(D)|N = n]P (N = n) = P (N = n)E[h( )]Xn P (N = n)

(s) = E[ ] = E{E[ |N ]}MD esD esD
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Hence

A parallel argument holds for 

— □

Remark. The result on  and  may be developed without use of conditional expectation.

in the integer-valued case.

— □

Suppose the number  of jobs brought to a service shop in a day is Poisson (8). One fourth of these are items under warranty
for which no charge is made. Others fall in one of two categories. One half of the arriving jobs are charged for one hour of
shop time; the remaining one fourth are charged for two hours of shop time. Thus, the individual shop hour charges  have
the common distribution

 [0 1 2] with probabilities  [1/4 1/2 1/4]

Make the basic assumptions of our model. Determine .

Solution

According to the formula developed above,

Expand the exponentials in power series about the origin, multiply out to get enough terms. The result of straightforward but
somewhat tedious calculations is

Taking the coefficients of the generating function, we get

Suppose the counting random variable  ~ binomial  and , with . Then

 and 

By the basic result on random selection, we have

so that  ~ binomial .

In the next section we establish useful m-procedures for determining the generating function g  and the moment generating
function  for the compound demand for simple random variables, hence for determining the complete distribution. Obviously,
these will not work for all problems. It may helpful, if not entirely sufficient, in such cases to be able to determine the mean value 

 and variance . To this end, we establish the following expressions for the mean and variance.
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Example  A service shop15.1.1
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Example  A result on Bernoulli trials15.1.2

N (n, p) =Yi IEi P ( ) =Ei p0

= (q +psgN )n (s) = + sgY q0 p0
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D (n, p )p0

D
MD

E[D] Var[D]

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10844?pdf


15.1.3 https://stats.libretexts.org/@go/page/10844

 and 

DERIVATION

Hence

. By symmetry . . Hence,

, 

Calculations for the compound demand

We have m-procedures for performing the calculations necessary to determine the distribution for a composite demand  when the
counting random variable  and the individual demands  are simple random variables with not too many values. In some cases,
such as for a Poisson counting random variable, we are able to approximate by a simple random variable.

The procedure gend

If the  are nonnegative, integer valued, then so is , and there is a generating function. We examine a strategy for computation
which is implemented in the m-procedure gend. Suppose

The coefficients of  and  are the probabilities of the values of  and , respectively. We enter these and calculate the
coefficients for powers of :

We wish to generate a matrix  whose rows contain the joint probabilities. The probabilities in the th row consist of the
coefficients for the appropriate power of  multiplied by the probability  has that value. To achieve this, we need a matrix, each
of whose  rows has  elements, the length of . We begin by “preallocating” zeros to the rows. That is, we set 

. We then replace the appropriate elements of the successive rows. The replacement probabilities for
the th row are obtained by the convolution of  and the power of  for the previous row. When the matrix  is completed, we
remove zero rows and columns, corresponding to missing values of  and  (i.e., values with zero probability). To orient the joint
probabilities as on the plane, we rotate  ninety degrees counterclockwise. With the joint distribution, we may then calculate any
desired quantities.

Example  Mean and variance of the compound demand15.1.3

E[D] = E[N ]E[Y ] Var[D] = E[N ]Var[Y ] +Var[N ] [Y ]E2

E[D] = E[ ] = P (N = n)E[ ]∑∞
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Example  Mean and variance for Example 15.1.115.1.4

E[N ] = Var[N ] = 9 E[Y ] = 1 Var[Y ] = 0.25(0 +2 +4) −1 = 0.5

E[D] = 8 ⋅ 1 = 8 Var[D] = 8 ⋅ 0.5 +8 ⋅ 1 = 12
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The number of customers in a major appliance store is equally likely to be 1, 2, or 3. Each customer buys 0, 1, or 2 items with
respective probabilities 0.5, 0.4, 0.1. Customers buy independently, regardless of the number of customers. First we determine
the matrices representing  and . The coefficients are the probabilities that each integer value is observed. Note that the
zero coefficients for any missing powers must be included.

gN = (1/3)*[0 1 1 1];    % Note zero coefficient for missing zero power 

gY = 0.1*[5 4 1];        % All powers 0 thru 2 have positive coefficients 

gend 

 Do not forget zero coefficients for missing powers 

Enter the gen fn COEFFICIENTS for gN gN    % Coefficient matrix named gN 

Enter the gen fn COEFFICIENTS for gY gY    % Coefficient matrix named gY 

Results are in N, PN, Y, PY, D, PD, P 

May use jcalc or jcalcf on N, D, P 

To view distribution for D, call for gD 

disp(gD)                  % Optional display of complete distribution 

         0    0.2917 

    1.0000    0.3667 

    2.0000    0.2250 

    3.0000    0.0880 

    4.0000    0.0243 

    5.0000    0.0040 

    6.0000    0.0003 

EN = N*PN' 

EN =   2

EY = Y*PY' 

EY =  0.6000 

ED = D*PD' 

ED =  1.2000                % Agrees with theoretical EN*EY 

P3 = (D>=3)*PD' 

P3  = 0.1167                 

[N,D,t,u,PN,PD,PL] = jcalcf(N,D,P); 

EDn = sum(u.*P)./sum(P); 

disp([N;EDn]') 

    1.0000    0.6000        % Agrees with theoretical E[D|N=n] = n*EY 

    2.0000    1.2000 

    3.0000    1.8000 

VD = (D.^2)*PD' - ED^2 

VD =  1.1200                % Agrees with theoretical EN*VY + VN*EY^2

 

Note that the zero power is missing from . corresponding to the fact that .

Example  A compound demand15.1.5

gN gY

Example  A numerical example15.1.6

(s) = (1 +s + + + )gN

1

5
s2 s3 s4 (s) = 0.1(5s +3 +2gY s2 s3

gY P (Y = 0) = 0
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gN = 0.2*[1 1 1 1 1]; 

gY = 0.1*[0 5 3 2];      % Note the zero coefficient in the zero position 

gend 

Do not forget zero coefficients for missing powers 

Enter the gen fn COEFFICIENTS for gN  gN 

Enter the gen fn COEFFICIENTS for gY  gY 

Results are in N, PN, Y, PY, D, PD, P 

May use jcalc or jcalcf on N, D, P 

To view distribution for D, call for gD 

disp(gD)                 % Optional display of complete distribution 

         0    0.2000 

    1.0000    0.1000 

    2.0000    0.1100 

    3.0000    0.1250 

    4.0000    0.1155 

    5.0000    0.1110 

    6.0000    0.0964 

    7.0000    0.0696 

    8.0000    0.0424 

    9.0000    0.0203 

   10.0000    0.0075 

   11.0000    0.0019 

   12.0000    0.0003 

p3 = (D == 3)*PD'        % P(D=3) 

P3 =  0.1250 

P4_12 = ((D >= 4)&(D <= 12))*PD' 

P4_12 = 0.4650           % P(4 <= D <= 12)

We are interested in the number of successes in  trials for a general counting random variable. This is a generalization of the
Bernoulli case in Example 15.1.2. Suppose, as in Example 15.1.2, the number of customers in a major appliance store is
equally likely to be 1, 2, or 3, and each buys at least one item with probability . Determine the distribution for the
number  of buying customers.

Solution

We use , , and gend.

gN = (1/3)*[0 1 1 1]; % Note zero coefficient for missing zero power 

gY = [0.4 0.6];       % Generating function for the indicator function 

gend 

Do not forget zero coefficients for missing powers 

Enter gen fn COEFFICIENTS for gN  gN 

Enter gen fn COEFFICIENTS for gY  gY 

Results are in N, PN, Y, PY, D, PD, P 

May use jcalc or jcalcf on N, D, P 

Example  Number of successes for random number  of trials.15.1.7 N

N

p = 0.6

D

gN gY
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To view distribution for D, call for gD 

disp(gD)

         0    0.2080 

    1.0000    0.4560 

    2.0000    0.2640 

    3.0000    0.0720

The procedure gend is limited to simple  and , with nonnegative integer values. Sometimes, a random variable with
unbounded range may be approximated by a simple random variable. The solution in the following example utilizes such an
approximation procedure for the counting random variable .

The number  of jobs brought to a service shop in a day is Poisson (8). The individual shop hour charges  have the
common distribution  [0 1 2] with probabilities  [1/4 1/2 1/4].

Under the basic assumptions of our model, determine .

Solution

Since Poisson  is unbounded, we need to check for a sufficient number of terms in a simple approximation. Then we proceed
as in the simple case.

pa = cpoisson(8,10:5:30)     % Check for sufficient number of terms 

pa =   0.2834    0.0173    0.0003    0.0000    0.0000 

p25 = cpoisson(8,25)         % Check on choice of n = 25 

p25 =  1.1722e-06 

gN = ipoisson(8,0:25);       % Approximate gN 

gY = 0.25*[1 2 1]; 

gend 

Do not forget zero coefficients for missing powers 

Enter gen fn COEFFICIENTS for gN  gN 

Enter gen fn COEFFICIENTS for gY  gY 

Results are in N, PN, Y, PY, D, PD, P 

May use jcalc or jcalcf on N, D, P 

To view distribution for D, call for gD 

disp(gD(D<=20,:))            % Calculated values to D = 50 

         0    0.0025         % Display for D <= 20 

    1.0000    0.0099 

    2.0000    0.0248 

    3.0000    0.0463 

    4.0000    0.0711 

    5.0000    0.0939 

    6.0000    0.1099 

    7.0000    0.1165 

    8.0000    0.1132 

    9.0000    0.1021 

   10.0000    0.0861 

   11.0000    0.0684 

   12.0000    0.0515 

N Yk

N

Example  Solution of the shop time Example 15.1.115.1.8

N Yk

Y = P Y =

P (D ≤ 4)

N
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   13.0000    0.0369 

   14.0000    0.0253 

   15.0000    0.0166 

   16.0000    0.0105 

   17.0000    0.0064 

   18.0000    0.0037 

   19.0000    0.0021 

   20.0000    0.0012 

sum(PD)                       % Check on sufficiency of approximation 

ans =  1.0000 

P4 = (D<=4)*PD' 

P4 =   0.1545                 % Theoretical value (4  places) = 0.1545 

ED = D*PD' 

ED =   8.0000                 % Theoretical = 8  (Example 15.1.4) 

VD = (D.^2)*PD' - ED^2 

VD =  11.9999                 % Theoretical = 12 (Example 15.1.4)

The m-procedures mgd and jmgd

The next example shows a fundamental limitation of the gend procedure. The values for the individual demands are not limited to
integers, and there are considerable gaps between the values. In this case, we need to implement the moment generating function 

 rather than the generating function .

In the generating function case, it is as easy to develop the joint distribution for  as to develop the marginal distribution for 
. For the moment generating function, the joint distribution requires considerably more computation. As a consequence, we find

it convenient to have two m-procedures: mgd for the marginal distribution and jmgd for the joint distribution.

Instead of the convolution procedure used in gend to determine the distribution for the sums of the individual demands, the m-
procedure mgd utilizes the m-function mgsum to obtain these distributions. The distributions for the various sums are concatenated
into two row vectors, to which csort is applied to obtain the distribution for the compound demand. The procedure requires as input
the generating function for  and the actual distribution,  and , for the individual demands. For , it is necessary to treat
the coefficients as in gend. However, the actual values and probabilities in the distribution for Y are put into a pair of row matrices.
If  is integer valued, there are no zeros in the probability matrix for missing values.

A service shop has three standard charges for a certain class of warranty services it performs: $10, $12.50, and $15. The
number of jobs received in a normal work day can be considered a random variable  which takes on values 0, 1, 2, 3, 4 with
equal probabilities 0.2. The job types for arrivals may be represented by an iid class , independent of the
arrival process. The  take on values 10, 12.5, 15 with respective probabilities 0.5, 0.3, 0.2. Let  be the total amount of
services rendered in a day. Determine the distribution for .

Solution

gN = 0.2*[1 1 1 1 1];         % Enter data 

Y = [10 12.5 15]; 

PY = 0.1*[5 3 2]; 

mgd                           % Call for procedure 

Enter gen fn COEFFICIENTS for gN  gN 

Enter VALUES for Y  Y 

Enter PROBABILITIES for Y  PY 

Values are in row matrix D; probabilities are in PD. 

MD gD

{N , D}

D

N Y P Y gN

Y

Example  Noninteger values15.1.9

N

{ : 1 ≤ i ≤ 4}Yi

Yi C

C
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To view the distribution, call for mD. 

disp(mD)                      % Optional display of distribution 

         0    0.2000 

   10.0000    0.1000 

   12.5000    0.0600 

   15.0000    0.0400 

   20.0000    0.0500 

   22.5000    0.0600 

   25.0000    0.0580 

   27.5000    0.0240 

   30.0000    0.0330 

   32.5000    0.0450 

   35.0000    0.0570 

   37.5000    0.0414 

   40.0000    0.0353 

   42.5000    0.0372 

   45.0000    0.0486 

   47.5000    0.0468 

   50.0000    0.0352 

   52.5000    0.0187 

   55.0000    0.0075 

   57.5000    0.0019 

   60.0000    0.0003

We next recalculate Example 15.1.6, above, using mgd rather than gend.

In Example 15.1.6, we have

 

The means that the distribution for  is  [1 2 3] and  0.1 * [5 3 2].

We use the same expression for  as in Example 15.1.6.

gN = 0.2*ones(1,5); 

Y = 1:3;

PY = 0.1*[5 3 2]; 

mgd 

Enter gen fn COEFFICIENTS for gN  gN 

Enter VALUES for Y  Y 

Enter PROBABILITIES for Y  PY 

Values are in row matrix D; probabilities are in PD. 

To view the distribution, call for mD. 

disp(mD)

         0    0.2000 

    1.0000    0.1000 

    2.0000    0.1100 

Example  Recalculation of Example 15.1.615.1.10

(s) = (1 +s + + + )gN

1

5
s2 s3 s4 (s) = 0.1(5s +3 +2 )gY s2 s3

Y Y = P Y =

gN
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    3.0000    0.1250 

    4.0000    0.1155 

    5.0000    0.1110 

    6.0000    0.0964 

    7.0000    0.0696 

    8.0000    0.0424 

    9.0000    0.0203 

   10.0000    0.0075 

   11.0000    0.0019 

   12.0000    0.0003 

P3 = (D==3)*PD' 

P3 =   0.1250 

ED = D*PD' 

ED =   3.4000 

P_4_12 = ((D>=4)&(D<=12))*PD' 

P_4_12 =  0.4650 

P7 = (D>=7)*PD' 

P7 =   0.1421 

As expected, the results are the same as those obtained with gend.

If it is desired to obtain the joint distribution for , we use a modification of mgd called jmgd. The complications come in
placing the probabilities in the  matrix in the desired positions. This requires some calculations to determine the appropriate size
of the matrices used as well as a procedure to put each probability in the position corresponding to its  value. Actual operation is
quite similar to the operation of mgd, and requires the same data format.

A principle use of the joint distribution is to demonstrate features of the model, such as , etc. This, of
course, is utilized in obtaining the expressions for  in terms of  and . This result guides the development of the
computational procedures, but these do not depend upon this result. However, it is usually helpful to demonstrate the validity of the
assumptions in typical examples.

Remark. In general, if the use of gend is appropriate, it is faster and more efficient than mgd (or jmgd). And it will handle
somewhat larger problems. But both m-procedures work quite well for problems of moderate size, and are convenient tools for
solving various “compound demand” type problems.

This page titled 15.1: Random Selection is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul Pfeiffer via
source content that was edited to the style and standards of the LibreTexts platform.
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