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9.1: Independent Classes of Random Variables

The concept of independence for classes of events is developed in terms of a product rule. In this unit, we extend the concept to
classes of random variables.

Independent pairs

Recall that for a random variable X, the inverse image X ! (M) (i.e., the set of all outcomes w € 2 which are mapped into M by
X) is an event for each reasonable subset M on the real line. Similarly, the inverse image ¥ ~!(IV) is an event determined by
random variable Y for each reasonable set N. We extend the notion of independence to a pair of random variables by requiring
independence of the events they determine. More precisely,

A pair {X,Y} of random variables is (stochastically) independent iff each pair of events {X~'(M),Y }(N)} is
independent.

This condition may be stated in terms of the product rule
P(XeM,Y<N)=P(XeM)P(Y €N) forall (Borel) sets M, N

Independence implies
Fxy(t,u) =P(X € (—00,t],Y € (—o0, u])
=P(X € (—00,t])P(Y € (—o0,ul)
=Fx(t)Fy(u) Vt,u

Note that the product rule on the distribution function is equivalent to the condition the product rule holds for the inverse images of
a special class of sets { M, N'} of the form M = (—o0,t] and N = (—o0, u]. An important theorem from measure theory ensures
that if the product rule holds for this special class it holds for the general class of { M, N'}. Thus we may assert

The pair { X, Y'} is independent iff the following product rule holds
Fxy(t,u) =Fx(t)Fy(u) Vt,u (9.1.1)
Suppose Fxy (t,u) = (1 —e *)(1 —e ) 0 <t, 0 < u. Taking limits shows

Fx(t) = lim ny(t, u) =1—e™
U—00
and

Fy(u) = Jim Py (t,u) =1 e~

so that the product rule Fixy (¢, u) = Fx(t)Fy (u) holds. The pair { X, Y} is therefore independent.

If there is a joint density function, then the relationship to the joint distribution function makes it clear that the pair is independent
iff the product rule holds for the density. That is, the pair is independent iff

fxy(t,u) = fx(t) fr(uv) Vi, u

example 9.1.2: joint uniform distributin on a rectangle

suppose the joint probability mass distributions induced by the pair {X,Y} is uniform on a rectangle with sides I} = [a, b]
and I, = [e, d]. Since the area is (b — a)(d —¢) , the constant value of fxy is1/(b—a)(d —c) . Simple integration gives

d
_f)((t)zm/C du = bia a<t<b

and
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1 b 1
= dt = —— <u<d
) =G=a@=o / d—c ‘U=

Thus it follows that X is uniform on [a, b]. Y is uniform on [¢, d], and fxy (¢, u) = fx(¢)fy(u) for all ¢,w, so that the pair
{X,Y} is independent. The converse is also true: if the pair is independent with X uniform on [a, b] and Y is uniform on
[¢, d], the pair has uniform joint distribution on I3 x I .

The Joint Mass Distribution

It should be apparent that the independence condition puts restrictions on the character of the joint mass distribution on the plane.
In order to describe this more succinctly, we employ the following terminology.

Definition
If M is a subset of the horizontal axis and N is a subset of the vertical axis, then the cartesian product M x N is the (generalized)
rectangle consisting of those points (¢, w) on the plane such thatt € M and u € N.

example 9.1.3: Rectangle with interval sides

The rectangle in Example 9.1.2 is the artesian product I; x I, consisting of all those points (¢, «) such that a <t <b and
c<u<d (ie.t €l andu € I,).

Mass in vertical
strip is P(X in M)

Mass in rectangle
N M XN
POX In MIP{Y 10 M

Mass in horizontal
strip is P(Y in M)

M

t
Figure 9.1.1. Joint distribution for an independent pair of random variables.

We restate the product rule for independence in terms of cartesian product sets.
P(XeM,YeN)=P((X,Y)e MxN)=P(Xe M)P(Y €N) (9.1.2)

Reference to Figure 9.1.1 illustrates the basic pattern. If M, N are intervals on the horizontal and vertical axes, respectively, then
the rectangle M x N is the intersection of the vertical strip meeting the horizontal axis in M with the horizontal strip meeting the
vertical axis in V. The probability X € M is the portion of the joint probability mass in the vertical strip; the probability Y € N is
the part of the joint probability in the horizontal strip. The probability in the rectangle is the product of these marginal probabilities.

This suggests a useful test for nonindependence which we call the rectangle test. We illustrate with a simple example.

u

P{Xin MY in N} = 0
PEY i M) > 0 -/

: X ’

x

P{X in My > D

https://stats.libretexts.org/@go/page/10859


https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://stats.libretexts.org/@go/page/10859?pdf

LibreTexts-
Figure 9.1.2. Rectangle test for nonindependence of a pair of random variables.

example 9.1.4: The rectangle test for nonindependence

Supose probability mass is uniformly distributed over the square with vertices at (1,0), (2,1), (1,2), (0,1). It is evident from
Figure 9.1.2 that a value of X determines the possible values of Y and vice versa, so that we would not expect independence of
the pair. To establish this, consider the small rectangle M x N shown on the figure. There is no probability mass in the region.
Yet P(X € M) >0 and P(Y € N) >0, so that

P(Xe M)P(Y € N)>0, but P((X,Y) € M xN)=0 . The product rule fails; hence the pair cannot be stochastically
independent.

Remark. There are nonindependent cases for which this test does not work. And it does not provide a test for independence. In spite
of these limitations, it is frequently useful. Because of the information contained in the independence condition, in many cases the
complete joint and marginal distributions may be obtained with appropriate partial information. The following is a simple example.

example 9.1.5: Joint and marginal probabilities from partial information

Suppose the pair {X,Y} is independent and each has three possible values. The following four items of information are
available.

P(X:tl) :02,P(Y:U1) :0.3,P(X:t1,Y:’IL2) =0.08

P(X =S t2,Y :ul) =0.15

These values are shown in bold type on Figure 9.1.3. A combination of the product rule and the fact that the total probability
mass is one are used to calculate each of the marginal and joint probabilities. For example P(X =¢;)=0.2 and
P(X=t,Y =up) =P(X =t)P(Y =uy)=0.8 implies P(Y =u3) =0.4. Then P(Y =u_3)=1-P(Y=u_1)-P(Y =
u_2) = 0.3\). Others are calculated similarly. There is no unique procedure for solution. And it has not seemed useful to
develop MATLAB procedures to accomplish this.

639 O e @

.06 0.15 0.0%

9.3 @ - 9
& & *—

0.2 0¥ a.3

Qriginals in bold, calculated in itafic.

Figure 9.1.3. Joint and marginal probabilities from partial information.

example 9.1.6: The joint normal distribution

A pair { X, Y'} has the joint normal distribution iff the joint density is
1

—Q(tw)/2
2noxoy (1l —p?)1/2 ¢

fxv(t,u) =

where

Qltyu) = (B2 (B (B (B
1 P ox ox oy o

The marginal densities are obtained with the aid of some algebraic tricks to integrate the joint density. The result is that
X N(px,0%)andY N(uy,o%). If the parameter p is set to zero, the result is

fxv (t,u) = fx(8) fr (v)
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so that the pair is independent iff p = 0. The details are left as an exercise for the interested reader.

Remark. While it is true that every independent pair of normally distributed random variables is joint normal, not every pair of
normally distributed random variables has the joint normal distribution.

Example 9.1.7: a normal pair not joint normally distributed

We start with the distribution for a joint normal pair and derive a joint distribution for a normal pair which is not joint normal.
The function

is the joint normal density for an independent pair (p = 0) of standardized normal random variables. Now define the joint density
for a pair { X, Y} by

fxy(t,u) =2¢p(t, u) in the first and third quadrants, and zero elsewhere
Both X ~ N(0,1) and Y ~ N(0, 1). However, they cannot be joint normal, since the joint normal distribution is positive for all (

t, w).

Independent classes

Since independence of random variables is independence of the events determined by the random variables, extension to general
classes is simple and immediate.

Definition

A class {X; : ¢ € J} of random variables is (stochastically) independent iff the product rule holds for every finite subclass of
two or more.

Remark. The index set J in the definition may be finite or infinite.
For a finite class {X,- 1< < n} , independence is equivalent to the product rule
FXlXZ-an(tla t27 Tt tn) = ?:1 FXi (tz) for all (tla t2, t e '7tn)

Since we may obtain the joint distribution function for any finite subclass by letting the arguments for the others be o (i.e., by
taking the limits as the appropriate ¢; increase without bound), the single product rule suffices to account for all finite subclasses.

Absolutely continuous random variables

If a class {X; : ¢ € J} is independent and the individual variables are absolutely continuous (i.e., have densities), then any finite
subclass is jointly absolutely continuous and the product rule holds for the densities of such subclasses

inlXiz“'Xim(til’ tiay -y tim) = Zl:1 ink (tlk) for all (tl’ ta, -, tn)

Similarly, if each finite subclass is jointly absolutely continuous, then each individual variable is absolutely continuous and the
product rule holds for the densities. Frequently we deal with independent classes in which each random variable has the same
marginal distribution. Such classes are referred to as iid classes (an acronym for independent,identically distributed). Examples are
simple random samples from a given population, or the results of repetitive trials with the same distribution on the outcome of each
component trial. A Bernoulli sequence is a simple example.

Simple random variables
Consider a pair { X, Y’} of simple random variables in canonical form
X=Y 0 tdy, Y =37 ulp
Since A; = {X =t;} and B; ={Y =u;} the pair { X, Y} is independent iff each of the pairs { 4;, B;} is independent. The joint
distribution has probability mass at each point (¢;, u;) in the range of W = (X, Y"). Thus at every point on the grid,
P(X =t;,Y =uj) =P(X =t;)P(Y =u;)

According to the rectangle test, no gridpoint having one of the ¢; or u; as a coordinate has zero probability mass . The marginal
distributions determine the joint distributions. If X has n distinct values and Y has m distinct values, then the n+m marginal
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probabilities suffice to determine the m'n joint probabilities. Since the marginal probabilities for each variable must add to one,
onlyn—1)+(m—1)=m+n—2 values are needed.

Suppose X and Y are in affine form. That is,
X=ao+X0 ailg, Y =by+ 37, bl

Since A, ={X =t,} is the union of minterms generated by the F; and B; = {Y =wu,} is the union of minterms generated by
the Fj, the pair {X,Y} is independent iff each pair of minterms {M,, N} generated by the two classes, respectivly, is
independent. Independence of the minterm pairs is implied by independence of the combined class

Calculations in the joint simple case are readily handled by appropriate m-functions and m-procedures.
MATLAB and independent simple random variables

In the general case of pairs of joint simple random variables we have the m-procedure jcalc, which uses information in matrices
X,Y and P to determine the marginal probabilities and the calculation matrices ¢ and u. In the independent case, we need only the
marginal distributions in matrices X, PX, Y and PY to determine the joint probability matrix (hence the joint distribution) and the
calculation matrices ¢ and u. If the random variables are given in canonical form, we have the marginal distributions. If they are in
affine form, we may use canonic (or the function form canonicf) to obtain the marginal distributions.

Once we have both marginal distributions, we use an m-procedure we call icalc. Formation of the joint probability matrix is simply
a matter of determining all the joint probabilities

p(i,)) =P(X =t,Y =u;) =P(X =t;,)P(Y = u)

Once these are calculated, formation of the calculation matrices ¢ and u is achieved exactly as in jcalc.

S EN ][RR Use of icalc to set up for joint calculations

X =1[-4-20123];
Y =[012 4];
PX = 0.01*[12 18 27 19 24];
PY = 0.01*[15 43 31 11];
icalc
Enter row matrix of X-values X
Enter row matrix of Y-values Y
Enter X probabilities PX
Enter Y probabilities PY
Use array operations on matrices X, Y, PX, PY, t, u, and P
disp(P) % Optional display of the joint matrix
0.0132 0.0198 0.0297 0.0209 0.0264
0.0372 0.0558 0.0837 0.0589 0.0744
0.0516 0.0774 0.1161 0.0817 0.1032
0.0180 0.0270 0.0405 0.0285 0.0360

disp(t) % Calculation matrix t
-4 -2 (C] 1 3
-4 -2 0 1 3
-4 -2 (C] 1 3
-4 -2 (C] 1 3
disp(u) % Calculation matrix u
4 4 4 4
2 2 2 2
1 1 1 1 1
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(C] (C] (C] (C] (C]
M = (t>=-3)&(t<=2); % M= [-3, 2]
PM = total(M.*P) % P(X in M)
PM = 0.6400
N = (u>0)&(u.n2<=15); % N = {u: u>0, ur2 <= 15}
PN = total(N.*P) % P(Y in N)
PN = 0.7400
Q = M&N; % Rectangle MxN
PQ = total(Q.*P) % P((X,Y) in MxN)
PQ = ©0.4736
p = PM*PN
p = 0.4736 % P((X,Y) in MxN) = P(X in M)P(Y in N)

As an example, consider again the problem of joint Bernoulli trials described in the treatment of 4.3 Composite trials.

SEN[ERMMC N The joint Bernoulli trial of Example 4.9

1 Bill and Mary take ten basketball free throws each. We assume the two seqences of trials are independent of each other, and
each is a Bernoulli sequence.

Mary: Has probability 0.80 of success on each trial.

Bill: Has probability 0.85 of success on each trial.
What is the probability Mary makes more free throws than Bill?
Solution

Let X be the number of goals that Mary makes and Y be the number that Bill makes. Then X ~ binomial (10, 0.8) and Y ~
binomial (10, 0.85).

X = 0:10;

Y = 0:10;

PX = ibinom(10,0.8,X);
PY = ibinom(10,0.85,Y);
icalc

Enter row matrix of X-values X % Could enter 0:10

Enter row matrix of Y-values Y % Could enter 0:10

Enter X probabilities PX % Could enter ibinom(10,0.8,X)
Enter Y probabilities PY % Could enter ibinom(10,0.85,Y)
Use array operations on matrices X, Y, PX, PY, t, u, and P

PM = total((t>u).*P)

PM = 0.2738 % Agrees with solution in Example 9 from "Composidi
Pe = total((u==t).*P) % Additional information is more easily

Pe = 0.2276 % obtained than in the event formulation

Pm = total((t>=u).*P) % of Example 9 from "Composite Trials".

Pm = 0.5014
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SE o] ER BN Sprinters time trials

Twelve world class sprinters in a meet are running in two heats of six persons each. Each runner has a reasonable chance of
breaking the track record. We suppose results for individuals are independent.

First heat probabilities: 0.61 0.73 0.55 0.81 0.66 0.43

Second heat probabilities: 0.75 0.48 0.62 0.58 0.77 0.51
Compare the two heats for numbers who break the track record.
Solution

Let X be the number of successes in the first heat and Y be the number who are successful in the second heat. Then the pair
{X,Y} is independent. We use the m-function canonicf to determine the distributions for X and for Y, then icalc to get the
joint distribution.

cl = [ones(1,6) 0O];

c2 = [ones(1,6) 0O];

P1 = [0.61 0.73 0.55 0.81 0.66 0.43];
P2 = [0.75 0.48 0.62 0.58 0.77 0.51];
[X,PX] = canonicf(cl,minprob(P1));
[Y,PY] = canonicf(c2,minprob(P2));
icalc

Enter row matrix of X-values X
Enter row matrix of Y-values Y
Enter X probabilities PX
Enter Y probabilities PY
Use array operations on matrices X, Y, PX, PY, t, u, and P

Pm1 = total((t>u).*P) % Prob first heat has most
Pm1 = 0.3986

Pm2 = total((u>t).*P) % Prob second heat has most
Pm2 = 0.3606

Peq = total((t==u).*P) % Prob both have the same
Peq = 0.2408

Px3 = (X>=3)*PX' % Prob first has 3 or more
Px3 = 0.8708

Py3 = (Y>=3)*PY' % Prob second has 3 or more
Py3 = 0.8525

As in the case of jcalc, we have an m-function version icalcf
[x, v, t, u, px, py, p] = icalcf(X, Y, PX, PY)\)

We have a related m-function idbn for obtaining the joint probability matrix from the marginal probabilities. Its formation of the
joint matrix utilizes the same operations as icalc.

S ECRMBMERN A numerical example

PX = 0.1*[3 5 2];
PY = 0.01*[20 15 40 25];
P = idbn(PX,PY)
P =
0.0750 0.1250 0.0500
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0.1200 0.2000 0.0800
0.0450 0.0750 0.0300
0.0600 0.1000 0.0400

An m- procedure itest checks a joint distribution for independence. It does this by calculating the marginals, then forming an
independent joint test matrix, which is compared with the original. We do not ordinarily exhibit the matrix P to be tested.
However, this is a case in which the product rule holds for most of the minterms, and it would be very difficult to pick out
those for which it fails. The m-procedure simply checks all of them.

idemo1l % Joint matrix in datafile idemo1l

P= 0.0091 0.0147 0.0035 0.0049 0.0105 0.0161 0.0112
0.0117 0.0189 0.0045 0.0063 0.0135 0.0207 0.0144
0.0104 0.0168 0.0040 0.0056 0.0120 0.0184 0.0128
0.0169 0.0273 0.0065 0.0091 0.0095 0.0299 0.0208
0.0052 0.0084 0.0020 0.0028 0.0060 0.0092 0.0064
0.0169 0.0273 0.0065 0.0091 0.0195 0.0299 0.0208
0.0104 0.0168 0.0040 0.0056 0.0120 0.0184 0.0128
0.0078 0.0126 0.0030 0.0042 0.0190 0.0138 0.0096
0.0117 0.0189 0.0045 0.0063 0.0135 0.0207 0.0144
0.0091 0.0147 0.0035 0.0049 0.0105 0.0161 0.0112
0.0065 0.0105 0.0025 0.0035 0.0075 0.0115 0.0080
0.0143 0.0231 0.0055 0.0077 0.0165 0.0253 0.0176

itest

Enter matrix of joint probabilities P
The pair {X,Y} is NOT independent % Result of test

To see where the product rule fails, call for D
disp(D) % Optional call for D
(¢} (¢} (¢}

© 0 06 Ok &0 0o r oo
© 0 &6 Ok OO0 O r O o
© 0 &6 Ok OO0 60 r O o
© 0 &6 Ok OO0 O r O o
© 0 &6 Ok OO0 O r O o
© 0 06 Ok 60 0o r oo
© 0 O Ok OO0 0 r 00

Next, we consider an example in which the pair is known to be independent.

\

jdemo3 % call for data in m-file
disp(P) % call to display P
0.0132 0.0198 0.0297 0.0209 0.0264
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0.0372 0.0558 0.0837 0.0589 0.0744
0.0516 0.0774 0.1161 0.0817 0.1032
0.0180 0.0270 0.0405 0.0285 0.0360

itest
Enter matrix of joint probabilities P
The pair {X,Y} is independent % Result of test

The procedure icalc can be extended to deal with an independent class of three random variables. We call the m-procedure icalc3.
The following is a simple example of its use.

S Eo]ERR PR Calculations for three independent random variables

X = 0:4,;

Y = 1:2:7;

Z = 0:3:12;

PX = 0.1*[1 3 2 3 1];
PY = 0.1*[2 2 3 3];
Pz = 0.1*[2 2 1 3 2];

icalc3

Enter row matrix of X-values
Enter row matrix of Y-values
Enter row matrix of Z-values Z

Enter X probabilities PX

Enter Y probabilities PY

Enter Z probabilities PZ

Use array operations on matrices X, Y, Z,
PX, PY, PZ, t, u, v, and P

< X

G = 3*t + 2*u - 4*v; % W = 3X + 2Y -47
[W,PW] = csort(G,P); % Distribution for W
PG = total((G>0).*P) % P(g(X,Y,Z) > 0)

PG = 0.3370

Pg = (W>0)*PW' % P(Z > 0)

Pg = 0.3370

An m-procedure icalc4 to handle an independent class of four variables is also available. Also several variations of the m-function
mgsum and the m-function diidsum are used for obtaining distributions for sums of independent random variables. We consider
them in various contexts in other units.

Approximation for the absolutely continuous case

In the study of functions of random variables, we show that an approximating simple random variable X of the type we use is a
function of the random variable X which is approximated. Also, we show that if {X,Y} is an independent pair, so is
{g(X), h(Y)} for any reasonable functions g and k. Thus if { X, Y} is an independent pair, so is any pair of approximating simple
functions { X, Y} of the type considered. Now it is theoretically possible for the approximating pair { X, Y;} to be independent,
yet have the approximated pair { X, Y} not independent. But this is highly unlikely. For all practical purposes, we may consider
{X,Y?} to be independent iff { X;,Y;} is independent. When in doubt, consider a second pair of approximating simple functions
with more subdivision points. This decreases even further the likelihood of a false indication of independence by the approximating
random variables.
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S E[ o] ERBBESH An independent pair

Suppose X ~ exponential (3) and Y ~ exponential (2) with

fxv(t,u) =6e3te 2t = 6e~(3t+2u) ¢ > 0,4 >0

Since e 12 ~ 6 x 1075 , we approximate X for values up to 4 and Y for values up to 6.

tuappr

Enter matrix [a b] of X-range endpoints [0 4]

Enter matrix [c d] of Y-range endpoints [0 6]

Enter number of X approximation points 200

Enter number of Y approximation points 300

Enter expression for joint density 6*exp(-(3*t + 2*u))
Use array operations on X, Y, PX, PY, t, u, and P

itest

Enter matrix of joint probabilities P

The pair {X,Y} is independent

S ET ol CRMBIE Test for independence

The pair { X, Y} has joint density fxy (¢,u) =4tu 0 <t <1,0 <wu <1.Itis easy enough to determine the marginals in this
case. By symmetry, they are the same.

Fx(t)=4t [l udu=2¢,0<t <1

so that fxy = fx fy which ensures the pair is independent. Consider the solution using tuappr and itest.

tuappr

Enter matrix [a b] of X-range endpoints [0 1]
Enter matrix [c d] of Y-range endpoints [0 1]
Enter number of X approximation points 100

Enter number of Y approximation points 100

Enter expression for joint density 4*t.*u

Use array operations on X, Y, PX, PY, t, u, and P
itest

Enter matrix of joint probabilities P

The pair {X,Y} is independent
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