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10.1: Functions of a Random Variable
Introduction

Frequently, we observe a value of some random variable, but are really interested in a value derived from this by a function rule. If 
 is a random variable and  is a reasonable function (technically, a Borel function), then  is a new random variable

which has the value  for any  such that . Thus .

The problem; an approach
We consider, first, functions of a single random variable. A wide variety of functions are utilized in practice.

In a quality control check on a production line for ball bearings it may be easier to weigh the balls than measure the diameters.
If we can assume true spherical shape and  is the weight, then diameter is , where  is a factor depending upon the
formula for the volume of a sphere, the units of measurement, and the density of the steel. Thus, if  is the weight of the
sampled ball, the desired random variable is .

The cultural committee of a student organization has arranged a special deal for tickets to a concert. The agreement is that the
organization will purchase ten tickets at $20 each (regardless of the number of individual buyers). Additional tickets are
available according to the following schedule:

11-20, $18 each
21-30, $16 each
31-50, $15 each
51-100, $13 each

If the number of purchasers is a random variable , the total cost (in dollars) is a random quantity  described by

where , , , 

The function rule is more complicated than in Example 10.1.1, but the essential problem is the same.

The problem

If  is a random variable, then  is a new random variable. Suppose we have the distribution for . How can we
determine , the probability  takes a value in the set ?

An approach to a solution

We consider two equivalent approaches

To find .

1. Mapping approach. Simply find the amount of probability mass mapped into the set  by the random variable .
In the absolutely continuous case, calculate .
In the discrete case, identify those values  of  which are in the set  and add the associated probabilities.

2. Discrete alternative. Consider each value  of . Select those which meet the defining conditions for  and add the associated
probabilities. This is the approach we use in the MATLAB calculations. Note that it is not necessary to describe geometrically
the set ; merely use the defining conditions.

To find .

1. Mapping approach. Determine the set  of all those t which are mapped into  by the function . Now if , then 
, and if , then . Hence

X g Z = g(X)
g(t) ω X(ω) = t Z(ω) = g(X(ω))

Example 10.1 .1: A quality control problem

w kw1/3 k

X

D = kX1/3

Example 10.1.2: Price breaks

X Z = g(X)

g(X) = 200 +18 (X)(X −10) +(16 −18) (X)(X −20)IM1 IM2

+(15 −16) (X)(X −30) +(13 −15) (X)(X −50)IM3 IM4

M1 = [10, ∞) M2 = [20, ∞) M3 = [30, ∞) M4 = [50, ∞)

X Z = g(X) X

P (Z ∈ M) Z M

P (X ∈ M)

M X

∫
M

fX

ti X M

ti X M

M

P (g(X) ∈ M)

N M g X(ω) ∈ N

g(X(ω)) ∈ M g(X(ω)) ∈ M X(ω) ∈ N
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Since these are the same event, they must have the same probability. Once  is identified, determine  in the usual
manner (see part a, above).

Discrete alternative. For each possible value  of , determine whether  meets the defining condition for . Select those 
 which do and add the associated probabilities.

— □

Remark. The set  in the mapping approach is called the inverse image 

Suppose  has values -2, 0, 1, 3, 6, with respective probabilities 0.2, 0.1, 0.2, 0.3 0.2.

Consider . Determine .

Solution

First solution. The mapping approach

.  is the set of points to the left of –1 or to the right of 4. The -values –2 and 6 lie
in this set. Hence

Second solution. The discrete alternative

X = -2 0 1 3 6

P X = 0.2 0.1 0.2 0.3 0.2

Z = 6 -4 -6 -4 14

Z > 0 1 0 0 0 1

Picking out and adding the indicated probabilities, we have

In this case (and often for “hand calculations”) the mapping approach requires less calculation. However, for MATLAB
calculations (as we show below), the discrete alternative is more readily implemented.

Suppose  ~ uniform [–3,7]. Then ,  (and zero elsewhere). Let

Determine .

Solution

First we determine . As in Example 10.1.3,  for  or . Because of the
uniform distribution, the integral of the density over any subinterval of  is 0.1 times the length of that subinterval. Thus, the
desired probability is

We consider, next, some important examples.

To show that if  ~  then

{ω : g(X(ω)) ∈ M} = {ω : X(ω) ∈ N}

N P (X ∈ N)

ti X g( )ti M

ti

N N = (M)g−1

Example 10.1.3: A discrete example

X

Z = g(X) = (X +1)(X −4) P (Z > 0)

g(t) = (t +1)(t −4) N = {t : g(t) > 0} X

P (g(X) > 0) = P (X = −2) +P (X = 6) = 0.2 +0.2 = 0.4

P (Z > 0) = 0.2 +0.2 = 0.4

Example 10.1.4 . An absolutely continuous example

X (t) = 0.1fX −3 ≤ t ≤ 7

Z = g(X) = (X +1)(X −4)

P (Z > 0)

N = {t : g(t) > 0} g(t) = (t +1)(t −4) > 0 t < −1 t > 4)
{X, Y }

P (g(X) > 0) = 0.1[(−1 −(−3)) +(7 −4)] = 0.5

Example 10.1.5: The normal distribution and standardized normal distribution

X N(μ, )σ2

Z = g(X) =  N(0, 1)
X −μ

σ
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VERIFICATION

We wish to show the denity function for  is

Now

 iff 

Hence, for given  the inverse image is , so that

Since the density is the derivative of the distribution function,

Thus

We conclude that  ~ .

Suppose  has distribution function . If it is absolutely continuous, the corresponding density is . Consider 
. Here , an affine function (linear plus a constant). Determine the distribution function for  (and

the density in the absolutely continuous case).

Solution

There are two cases

 > 0:

 < 0

So that

For the absolutely continuous case, , and by differentiation

for  

for  

Since for , , the two cases may be combined into one formula.

Z

φ(t) =
1

2π
−−

√
e− /2t2

g(t) = ≤ v
t −μ

σ
t ≤ σv+μ

M = (−∞, v] N = (−∞, σv+μ]

(v) = P (Z ≤ v) = P (Z ∈ M) = P (X ∈ N) = P (X ≤ σv+μ) = (σv+μ)FZ FX

(v) = (v) = (v) = (σv+μ)σ = σ (σv+μ)fZ F
′

Z
F

′

X
F

′

X
fX

(v) = exp[− ( ] = = φ(v)fZ

σ

σ 2π
−−

√

1

2

σv+μ −μ

σ
)2 1

2π
−−

√
e− /2v2

Z N(0, 1)

Example 10.1.1

X FX fX

Z = aX +b g(t) = at +b Z

(v) = P (Z ≤ v) = P (aX +b ≤ v)FZ

a

(v) = P (X ≤ ) = ( )FZ

v−b

a
FX

v−b

a

a

(v) = P (X ≥ ) = P (X > ) +P (X = )FZ

v−b

a

v−b

a

v−b

a

(v) = 1 − ( ) +P (X = )FZ FX

v−b

a

v−b

a

P (X = ) = 0
v−b

a

a > 0 (v) = ( )fZ

1

a
fX

v−b

a

a < 0 (v) = − ( )fZ

1

a
fX

v−b

a

a < 0 −a = |a|

(v) = ( )fZ

1

|a|
fX

v−b

a
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Suppose  ~ . show that  ( ) is .

VERIFICATION

Use of the result of Example 10.1.6 on affine functions shows that

Suppose  and  for . Since for ,  is increasing, we have  iff .
Thus

In the absolutely continuous case

Suppose  ~ exponential ( ). Then  ~ Weibull .

According to the result of Example 10.1.8,

which is the distribution function for  ~ Weibull .

If  is a random variable, a simple function approximation may be constructed (see Distribution Approximations). We limit
our discussion to the bounded case, in which the range of  is limited to a bounded interval . Suppose  is
partitioned into  subintervals by points , , with  and . Let  be the th subinterval,

 and . Let  be the set of points mapped into  by . Then the  form a
partition of the basic space . For the given subdivision, we form a simple random variable  as follows. In each subinterval,
pick a point . The simple random variable

approximates  to within the length of the largest subinterval . Now , since  iff  iff 
. We may thus write

, a function of 

Use of MATLAB on simple random variables

For simple random variables, we use the discrete alternative approach, since this may be implemented easily with MATLAB.
Suppose the distribution for  is expressed in the row vectors  and .

We perform array operations on vector  to obtain

We use relational and logical operations on  to obtain a matrix  which has ones for those  (values of ) such that 
satisfies the desired condition (and zeros elsewhere).
The zero-one matrix  is used to select the the corresponding  and sum them by the taking the dot product of 

 and .

Example 10.1.7: Completion of normal and standardized normal relationship

Z N(0, 1) X = σZ +μ σ > 0 N(μ, )σ2

(t) = φ( ) = exp[− ( ]fX

1

σ

t −μ

σ

1

σ 2π
−−

√

1

2

t −μ

σ
)2

Example 10.1.8: Fractional power of a nonnegative random variable

X ≥ 0 Z = g(X) = X1/a a > 1 t ≥ 0 t1/a 0 ≤ ≤ vt1/a 0 ≤ t ≤ va

(v) = P (Z ≤ v) = P (X ≤ ) = ( )FZ va FX va

(v) = (v) = ( )afZ F
′

Z fX va va−1

Example 10.1.9: Fractional power of an exponentially distributed random variable

X λ Z = X1/a (a, λ, 0)

(t) = ( ) = 1 −FZ FX ta e−λta

Z (a, λ, 0)

Example 10.1.10: A simple approximation as a function of X

X

X I = [a, b] I

n ti 1 ≤ i ≤ n −1 a = t0 b = tn = [ , )Mi ti−1 ti i

1 ≤ i ≤ n −1 = [ , ]Mn tn−1 tn = ( )Ei X−1 Mi Mi X Ei

Ω Xs

, ≤ <si ti−1 si ti

=Xs ∑n
i=1 siIEi

X Mi = (X)IEi IMi (ω) = 1IEi X(ω) ∈ Mi

(X(ω)) = 1IMi

= (X)Xs ∑n
i=1 siIMi

X

X X P X

X

G = [g( )g( ) ⋅ ⋅ ⋅ g( )]t1 t2 tn

G M ti X g( )ti

M = P (X = )pi ti

M P X
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X = -5:10;                     % Values of X 

PX = ibinom(15,0.6,0:15);      % Probabilities for X 

G = (X + 6).*(X - 1).*(X - 8); % Array operations on X matrix to get G = g(X) 

M = (G > - 100)&(G < 130);     % Relational and logical operations on G 

PM = M*PX'                     % Sum of probabilities for selected values 

PM =  0.4800 

disp([X;G;M;PX]')              % Display of various matrices (as columns) 

   -5.0000   78.0000    1.0000    0.0000 

   -4.0000  120.0000    1.0000    0.0000 

   -3.0000  132.0000         0    0.0003 

   -2.0000  120.0000    1.0000    0.0016 

   -1.0000   90.0000    1.0000    0.0074 

         0   48.0000    1.0000    0.0245 

    1.0000         0    1.0000    0.0612 

    2.0000  -48.0000    1.0000    0.1181 

    3.0000  -90.0000    1.0000    0.1771 

    4.0000 -120.0000         0    0.2066 

    5.0000 -132.0000         0    0.1859 

    6.0000 -120.0000         0    0.1268 

    7.0000  -78.0000    1.0000    0.0634 

    8.0000         0    1.0000    0.0219 

    9.0000  120.0000    1.0000    0.0047 

   10.0000  288.0000         0    0.0005 

[Z,PZ] = csort(G,PX);          % Sorting and consolidating to obtain 

disp([Z;PZ]')                  % the distribution for Z = g(X) 

 -132.0000    0.1859 

 -120.0000    0.3334 

  -90.0000    0.1771 

  -78.0000    0.0634 

  -48.0000    0.1181 

         0    0.0832 

   48.0000    0.0245 

   78.0000    0.0000 

   90.0000    0.0074 

  120.0000    0.0064 

  132.0000    0.0003 

  288.0000    0.0005 

P1 = (G<-120)*PX '           % Further calculation using G, PX 

P1 =  0.1859 

p1 = (Z<-120)*PZ'            % Alternate using Z, PZ 

p1 =  0.1859

Example 10.1.11: Basic calculations for a function of a simple random variable
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 with  independent and  [0.60.30.5].

We calculate the distribution for , then determine the distribution for

c = [10 18 10 0]; 

pm = minprob(0.1*[6 3 5]); 

canonic 

 Enter row vector of coefficients  c 

 Enter row vector of minterm probabilities  pm 

Use row matrices X and PX for calculations 

Call for XDBN to view the distribution 

disp(XDBN) 

         0    0.1400 

   10.0000    0.3500 

   18.0000    0.0600 

   20.0000    0.2100 

   28.0000    0.1500 

   38.0000    0.0900 

G = sqrt(X) - X + 50;       % Formation of G matrix 

[Z,PZ] = csort(G,PX);       % Sorts distinct values of g(X) 

disp([Z;PZ]')               % consolidates probabilities 

   18.1644    0.0900 

   27.2915    0.1500 

   34.4721    0.2100 

   36.2426    0.0600 

   43.1623    0.3500 

   50.0000    0.1400 

M = (Z < 20)|(Z >= 40)      % Direct use of Z distribution 

M =    1     0     0     0     1     1 

PZM = M*PZ' 

PZM =  0.5800

Remark. Note that with the m-function csort, we may name the output as desired.

H = 2*X.^2 - 3*X + 1; 

[W,PW] = csort(H,PX) 

W  =     1      171     595     741    1485    2775 

PW =  0.1400  0.3500  0.0600  0.2100  0.1500  0.0900

Suppose  has density function  for . Then . Let . We may use

the approximation m-procedure tappr to obtain an approximate discrete distribution. Then we work with the approximating

Example 10.1.12

X = 10 +18 +10IA IB IC {A, B, C} P =

X

Z = −X +50X1/2

Example 10.1.13: Continuation of example 10.1.12, above.

Example 10.1.14: A discrete approximation

X (t) = (3 +2t)fX

1

2
t2 0 ≤ t ≤ 1 (t) = ( + )FX

1

2
t3 t2 Z = X1/2
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random variable as a simple random variable. Suppose we want . Now  iff . The desired
probability may be calculated to be

Using the approximation procedure, we have

tappr 

Enter matrix [a b] of x-range endpoints  [0 1] 

Enter number of x approximation points  200 

Enter density as a function of t  (3*t.^2 + 2*t)/2 

Use row matrices X and PX as in the simple case 

G = X.^(1/2); 

M = G <= 0.8; 

PM = M*PX' 

PM =   0.3359       % Agrees quite closely with the theoretical

This page titled 10.1: Functions of a Random Variable is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Paul
Pfeiffer via source content that was edited to the style and standards of the LibreTexts platform.

P (Z ≤ 0.8) Z ≤ 0.8 X ≤ = 0.640.82

P (Z ≤ 0.8) = (0.64) = ( + )/2 = 0.3359FX 0.643 0.642
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